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Abstract

Supersymmetry is an attractive extension of the Standard Model (SM) of particle
physics. The minimal supersymmetric extension (MSSM) provides gauge coupling
unification, a dark matter candidate particle and can explain the breaking of the
electroweak symmetry dynamically. However, it suffers from the little hierarchy and
the µ-problem. Non-minimal supersymmetric extensions of the SM with a larger
particle content or a higher symmetry can evade the problems of the MSSM. Such
models may be well-motivated by Grand Unified Theories (GUTs) and can provide a
rich new phenomenology with an extended Higgs sector, exotic particles, additional
interactions and a close connection to String Theory. Interesting examples are the
Next-to Minimal Supersymmetric Standard Model (NMSSM), which is motivated
by the µ-problem, and the Exceptional Supersymmetric Standard Model (E6SSM),
which is inspired by E6 GUTs.

For phenomenological investigations of supersymmetric (SUSY) models the pole
mass spectrum must be calculated from the fundamental model parameters. This
task, however, is non-trivial as the spectrum must be consistent with measured low-
energy observables (fine-structure constant, Z boson pole mass, muon decay etc.)
as well as electroweak symmetry breaking and potential universality conditions on
the soft supersymmetry breaking parameters at the GUT scale. Programs, which
calculate the SUSY mass spectrum consistent with constraints of this kind are called
spectrum generators.

In this thesis four different contributions to the prediction of mass spectra and
model parameters in non-minimal SUSY models are presented. (i) One-loop matching
corrections of the E6SSM gauge and Yukawa couplings to the SM are calculated to
increase the precision of the mass spectrum prediction in the constrained E6SSM. (ii)
The β-functions of vacuum expectation values (VEVs) are calculated in a general and
supersymmetric gauge theory at the one- and two-loop level. The results enable an
accurate calculation of the renormalization group running of the VEVs in non-minimal
SUSY models. (iii) An NMSSM extension of Softsusy, a spectrum generator for the
MSSM, is implemented. It represents a precise alternative to the already existing
spectrum generator NMSPEC. (iv) FlexibleSUSY is presented, a general framework
which creates a fast, modular and precise spectrum generator for any user-defined
SUSY model. It represents a generalization of the hand-written SUSY spectrum
generators and allows the study of a large variety of new SUSY models easily with
high precision.
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Chapter 1

Introduction

The physics of elementary particles aims for a unified description of the fundamental
constituents and forces in the universe. The Standard Model (SM) of particle physics,
which was supported by the discovery of a Higgs boson in 2012, is a very successful
description of all known particles as well as the electromagnetic, weak and strong
interactions. However, the SM does neither describe gravity nor does it contain
particles which are candidates for non-baryonic dark matter. In addition, it suffers
from the hierarchy problem and fails to correctly explain observations such as the
anomalous magnetic moment of the muon for example. Supersymmetric (SUSY)
extensions of the SM can provide solutions to all of these problems. Thereby the
space-time symmetries are non-trivially extended so that fundamental relations be-
tween fermions and bosons arise. A supersymmetric theory must therefore contain as
many fermionic degrees of freedom as bosonic ones. For this reason supersymmetric
extensions of the SM introduce many new bosonic and fermionic fields, which leads
to a rich and interesting phenomenology.

The Minimal Supersymmetric Standard Model (MSSM) has been extensively stud-
ied in the past decades. It provides gauge coupling unification, which allows a unifi-
cation of the three forces, contains a non-baryonic dark matter candidate particle and
can explain the origin of the electroweak symmetry breaking. However, the MSSM
is not without problems as well: Parameter scenarios which lead to the measured
value of the Higgs mass often re-introduce the hierarchy problem. Furthermore, it
contains the dimensionful parameter µ, whose value is well-motivated to be of the
order of the gauge coupling unification scale, O(1016) GeV, as well as of the order of
the electroweak scale, O(102) GeV. This tension is called the µ-problem.

Non-minimal supersymmetric models with a larger particle content or a higher sym-
metry can solve the problems of the MSSM. Such models may be well-motivated by
Grand Unified Theories (GUTs) and can provide a rich new phenomenology with an
extended Higgs sector, exotic particles, additional interactions and close connections
to String Theory. Interesting examples are the Next-to Minimal Supersymmetric
Standard Model (NMSSM) and the Exceptional Supersymmetric Standard Model
(E6SSM). The former extends the Higgs sector of the MSSM by an additional singlet
field to solve the µ-problem. The E6SSM is motivated by E6 GUTs and provides
a matter particle content which fits into fundamental representations of the E6. In
addition it introduces an extra U(1)N gauge symmetry, which leads to a new gauge
boson Z ′.
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Chapter 1 Introduction

For phenomenological investigations of supersymmetric models many complicated
computations must be performed. Given the Lagrangian of the model, the first step is
usually to calculate the pole mass spectrum given a set of fundamental theory input
parameters. This mass spectrum can then used to calculate further observables,
such as for example particle decays, cross sections or the dark matter relic density.
These observables can be compared with measurements in phenomenological studies
to search for allowed and excluded model parameter space regions. The pole masses
and the decays may as well be used in event generators and detector simulations to
study how decays of SUSY particles manifest in a detector.

The calculation of the pole mass spectrum in a SUSY model is a non-trivial task:
The model is required to correctly predict the measured low-energy observables,
such as the fine-structure constant, the Z boson pole mass and the muon decay
for example. This requirement can be ensured by a matching to the Standard Model,
which imposes constraints on the model parameters. Furthermore, the model must
contain massive W and Z gauge bosons and fermions. Their mass terms can be
generated by a spontaneous breaking of the electroweak symmetry. In order for this
symmetry breaking to happen, the scalar Higgs potential must allow for a non-trivial
ground state (vacuum expectation value, VEV). This requirement imposes further
implicit constraints upon the model parameters, as they must generate a suitably
shaped Higgs potential. In addition, in some models further universality conditions
on the soft-breaking parameters are imposed at the gauge coupling unification scale.
All of these constraints must be fulfilled simultaneously by a consistent set of model
parameters. Finding such a set is challenging, but well-suited algorithms exist for
this purpose. If a consistent set of parameters is available the pole mass spectrum
must be calculated with an appropriate precision, which is of the order or below the
experimental uncertainty. For this purpose one- and two-loop corrections have to be
taken into account. Programs which search for a consistent set of model parameters
and calculate the pole mass spectrum are called spectrum generators.

This thesis makes four contributions to the prediction of mass spectra and DR
parameters in non-minimal supersymmetric models.

In Section 3 the calculation of one-loop matching corrections of the E6SSM gauge
and Yukawa couplings to the SM will be presented, which were unknown so far.
These corrections are implemented into an existing CE6SSM spectrum generator. It
will be shown that their incorporation reduces the unphysical dependence of the pole
mass spectrum on the matching scale, which leads to a reduced uncertainty of the
predicted mass spectrum. Afterwards, a parameter scan is performed to confront the
model with exclusion limits from current experiments.

In Section 4 the β-functions of vacuum expectation values will be calculated in a
general and supersymmetric gauge theory in the DR scheme at the one- and two-
loop level. These β-functions were known so far only in the MSSM and E6SSM.
The general expressions, however, were unknown. They can be used in spectrum
generators for an accurate calculation of the renormalization group running of VEVs.

In Section 5 an extension of the MSSM spectrum generator Softsusy will be pre-
sented. The extension is able to calculate the DR parameters, the pole mass spectrum
and particle mixings in the Z3-symmetric and Z3-violating NMSSM consistent with
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low-energy observables, electroweak symmetry breaking and high-energy universality
constraints. This new NMSSM spectrum generator implements the complete two-loop
β-functions, one-loop self-energies and tadpoles as well as leading two-loop Higgs mass
corrections. Thereby it incorporates many precision corrections, which are neglected
in the already existing spectrum generator NMSPEC. This enables, among other
things, to estimate the theory uncertainty of the predicted NMSSM mass spectrum
by comparing the output of the two programs.

The by-hand programming of a precise spectrum generator for a new SUSY model
is a very challenging task, because complicated expressions, such as two-loop β-
functions, one-loop self-energies and tadpole diagrams have to be calculated and
implemented into a computer program. To simplify this task and to allow studies of a
wide range of non-minimal SUSY models to be carried out easily with a high precision,
the spectrum generator framework FlexibleSUSY will be presented in Section 6.
FlexibleSUSY is a Mathematica package which creates a spectrum generator for
any user-defined SUSY model. For this purpose several physical problems must
be solved at a general level: (i) A user interface must be created, which allows
one to define physical boundary conditions on the model. (ii) Expressions for the
mass matrices, self-energies, tadpole diagrams and DR one- and two-loop β-functions
must be calculated. (iii) The matching of the SUSY model to the Standard Model
via gauge coupling threshold corrections and one-loop Yukawa couplings must be
generalized. (iv) General numerical routines must be provided to find the minimum
of the (arbitrarily complicated) one-loop effective Higgs potential. (v) An algorithm
must be programmed which finds a set of DR model parameters consistent with
all user-defined boundary conditions. (vi) The pole masses of all particles must be
calculated from the DR parameters with one-loop precision or higher. The technical
solutions of these problems will be presented in Section 6.3. In Section 6.4 several
physical applications of FlexibleSUSY will be presented, including a comparison of
the Higgs mass in four different SUSY models and a study of the influence of GUT
threshold corrections. Not only will these applications illustrate physical features of
non-minimal SUSY models, but also demonstrate FlexibleSUSY’s wide range and
simplicity of use. FlexibleSUSY thereby is intended to represent a powerful tool to
study a large variety of new SUSY models easily with high precision.
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Chapter 2

Supersymmetry

Supersymmetry is the only possibility to non-trivially unify the spacetime sym-
metries, described by the the Poincaré group, with an internal symmetry [1, 2].1

The resulting symmetry group is called the Super-Poincaré group. It contains new
supersymmetry generators, which transform fermions into bosons and vice versa.
Thus, supersymmetry combines fermions and bosons in the same representation of
the Super-Poincaré group and requires that each fermion has a bosonic partner with
the same mass. Besides unification of the Poincaré and an internal symmetry group,
supersymmetry has the following features:

• Due to a non-renormalization theorem [3, 4, 5, 6, 7, 8], scalar self-energies
are protected against quadratic divergences. This avoids the so-called “hierar-
chy problem”, where a large fine-tuning between the bare Higgs mass and its
counter-term would be required to create a Higgs pole mass of the measured
value of 125.9 GeV [9, 10, 11]. This property is preserved in softly-broken
supersymmetric theories [12], if the mass splitting between the heavy fermion
and their superpartners is smaller or of the order of the Higgs mass.

• An implementation of local supersymmetry implies an invariance under local
coordinate transformations [13]. This provides a connection to Einstein’s theory
of General Relativity.

However, exact supersymmetry has not been observed in nature so far, because no
superpartners to the Standard Model particles with the same mass have been found
[11]. Therefore, if supersymmetry exists in nature, it must be broken. Soft breaking of
supersymmetry [12] is an attractive way to increase the masses of the superpartners
to hide them from current experimental searches, and at the same time preserve
the cancellation of quadratic divergences in scalar self-energies. A drawback of
softly breaking supersymmetry is that one introduces O(100) new paramerters, which
decreases the predictivity of the theory. However, the number of new paramerters
can be reduced by using well-motivated supersymmetry breaking models, such as
the “minimal SUperGRAvity Model of supersymmetry breaking” (mSUGRA) [14],
“Gauge Mediated Supersymmetry Breaking” (GMSB) [15, 16, 17] or “Anomaly Me-
diated Supersymmetry Breaking” (AMSB) [18, 19].

1Hereby one assumes locality of the interaction, causality, positivity of energy and finiteness of the
number of particles.
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Chapter 2 Supersymmetry

2.1 The minimal supersymmetric standard model

(MSSM)

The Minimal Supersymmetric Standard Model (MSSM) [20] is a N = 1 softly broken
supersymmetric extension of the Standard Model (SM), with minimal field content.
The superfields of the MSSM and their quantum numbers can be found in Table B.1
and Table B.2. To be supersymmetry invariant, each Standard Model spin 1/2
fermion field has a scalar spin 0 superpartner, called sfermion; the spin 1 gauge fields
get fermionic superpartners with spin 1/2, called gauginos; and the spin 0 SM Higgs
doublet components get fermionic superpartners with spin 1/2, called higgsinos. For
anomaly cancellation and due to the analyticity of the superpotential, a second Higgs
doublet must be introduced, which generates mass terms for the down-type fermions.

Allowing for all gauge and supersymmetry invariant terms in the superpotential
would lead to rapid proton decay due to sfermion exchange [20, 21]. To avoid this
R-parity is introduced, which forbids all lepton and baryon number violating terms
[22, 6, 23, 24, 25]. The R-parity invariant MSSM superpotential reads

WMSSM = µ(H1H2)− yeij(H1Li)Ēj − ydij(H1Qi)D̄j − yuij(QiH2)Ūj, (2.1)

where (AB) = ǫDEA
DBE is the invariant product of the fundamental (2) represen-

tation of SU(2), with ǫDE = −ǫED. The soft-breaking part of the MSSM Lagrangian
has the form

−LMSSM,soft = +(m2
q)ij q̃

∗
iLq̃jL + (m2

u)ijũ
∗
iRũjR + (m2

d)ij d̃
∗
iRd̃jR + (m2

ℓ)ij ℓ̃
∗
iLℓ̃jL

+ (m2
e)ij ẽ

∗
iRẽjR +m2

h1
|h1|2 +m2

h2
|h2|2 + [Bµ(h1h2) + h. c.]

+
[
(yeAe)ij(h1ℓ̃iL)ẽ∗

jR + (ydAd)ij(h1q̃iL)d̃∗
jR

+ (yuAu)ij(q̃iLh2)ũ
∗
jR + h. c.

]

+
1

2

(
M1B̃B̃ +M2W̃

iW̃ i +M3g̃
ag̃a + h. c.

)
.

(2.2)

An attractive and often studied supersymmetry breaking model of the MSSM is the
so-called “minimal SUperGRAvity model of supersymmetry breaking” (mSUGRA)
[14]. It requires all soft-breaking parameters to be real and the unification of all
soft-breaking scalar mass parameters (m2

f )ij, all soft-breaking trilinear couplings Afij
and all gaugino masses Mi at the gauge coupling unification scale MX :

(m2
f )ij(MX) = m2

0δij (f = q, ℓ, u, d, e; i, j = 1, 2, 3), (2.3a)

Afij(MX) = A0 (f = u, d, e; i, j = 1, 2, 3), (2.3b)

Mi(MX) = M1/2 (i = 1, 2, 3). (2.3c)

The so constructed variant of the MSSM is called the Constrained MSSM (CMSSM),
which has only five free parameters: signµ, m2

0, M1/2, A0, tan β. Here, the parameter
tan β is defined to be the ratio of the vacuum expectation values of the Higgs fields
h2 and h1.
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2.1 The minimal supersymmetric standard model (MSSM)

2.1.1 Advantages of the MSSM

Besides being a softly broken supersymmetric extension of the Standard Model with
a minimal particle content, the MSSM has the following attractive properties:

Gauge coupling unification Due to the new SUSY particles (gauginos, sfermions
and the extra Higgs doublet), it is possible that all three gauge couplings unify at the
scale MX ∼ 1016 GeV. This is happens in scenarios where all SUSY particles have
masses of the order 1 TeV. In reverse, if one requires gauge coupling unification, one
already restricts the allowed MSSM parameter space.

Radiative electroweak symmetry breaking In certain CMSSM scenarios the
renormalization group running can lead to a value of m2

h2
(MS) < 0, where MS is the

mass scale of the new SUSY particles. This deforms the Higgs potential such, that
the Higgs fields can develop a non-zero ground state, which leads to a spontaneous
breaking of the electroweak symmetry (radiative electroweak symmetry breaking).

Dark matter candidate In the MSSM the lightest supersymmetric particle (LSP)
is absolutely stable due to the imposedR-parity. In many MSSM scenarios the lightest
neutralino χ̃0

1 is the LSP. Since it is electrically neutral, it interacts with other matter
only via weak interactions and is therefore a candidate for non-baryonic dark matter
[26, 27].

2.1.2 Problems of the MSSM

Besides the fact that no superpartner to any of the Standard Model particles has
been found so far, the MSSM has several theoretical problems:

The µ-problem The superpotential of the MSSM (2.1) contains the bilinear Higgs
coupling term µ(H1H2) with the parameter µ of dimension of mass. The value of µ
must not be zero, because this would lead to very light charginos, which have not
been observed by experiment so far [11]. In a Grand Unified Theory (GUT) the
superpotential (2.1) is assumed to be generated by some mechanism at the GUT
scale MX , which would lead to a µ value of the order µ ∼ MX . However, in order
to make electroweak symmetry breaking possible, µ must be constrained at tree-level
by the condition

1

2
m2
Z =

m2
h1
−m2

h2
tan2 β

tan2 β − 1
− |µ|2. (2.4)

Here m2
hi

are the soft-breaking mass parameters of the scalar Higgs doublets hi and
mZ is the mass of the Z boson. Eq. (2.4) suggests that µ ∼ mZ , as long as there
is no large cancellation between the two terms on the right-hand side. This tension
between µ ∼MX and µ ∼ mZ is called the µ-problem.

7



Chapter 2 Supersymmetry

The Higgs mass fine-tuning In the MSSM it is difficult to raise the lightest CP-
even Higgs pole mass to the measured value of 125.9 GeV [9, 10, 11]. The reason is
that the tree-level Higgs mass is required to be small, because it is constrained by
the condition

(mtree
h )2 < min(m2

A,m
2
Z)c2

2β. (2.5)

Since in most MSSM scenarios the mass of the CP-odd Higgs boson, mA, is larger
than mZ , the tree-level Higgs boson mass must be below mZ . This means that the
CP-even Higgs pole mass can be at maximum

(mpole
h )2 ≈ m2

Zc
2
2β + ∆m2

h, (2.6)

where ∆m2
h are loop corrections. Eq. (2.6) implies that, in order to obtain a Higgs

pole mass of the order 125.9 GeV, large loop corrections of the order 85 GeV or more
are required. Such large loop corrections can be achieved in scenarios where one
of the stop masses is much heavier than the top mass. However, such scenarios will
automatically re-introduce the hierarchy problem, as discussed above (little hierarchy
problem).

Baryon-antibaryon asymmetry In the MSSM the generation of the baryon-
antibaryon asymmetry in the universe by a 1st order phase transition is only possible
in extreme scenarios [28].

Connection to gravity models Due to its symmetry group and particle content
the MSSM allows the connection to a large variety of gravity models with extended
gauge groups. However, this also makes the MSSM less predictive, because it does
not favor a specific gravity model.

Anomalous magnetic moment of the muon Current fits of the CMSSM param-
eters to LHC data favor parameter regions with heavy SUSY particles [29]. However,
in these regions it is difficult for the CMSSM to correctly predict the measured value
of the anomalous magnetic moment of the muon aµ [30]. The reason is that the
required large contributions from the new SUSY particles are usually too small if
the mass spectrum is heavy. In the general MSSM, however, it is still possible to
simultaneously fulfill all experimental constraints and explain the measured value of
aµ [31, 32].

2.2 Non-minimal supersymmetric models

With non-minimal supersymmetric models all supersymmetric extensions of the SM
or the MSSM are denoted, which extend the particle content, introduce extra gauge
symmetries, add R-parity violating superpotential terms, or increase the number of
SUSY generators (N > 1).
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2.2.1 Examples for non-minimal models

Most non-minimal SUSY models address the problems of the MSSM by introducing
new particles and/or extending the gauge group. Examples for extended models are

• the Next-to Minimal Supersymmetric Standard Model (NMSSM) and its vari-
ants [33, 34, 35, 36, 37, 38], which introduces an extra gauge singlet superfield
S to solve the µ-problem of the MSSM. Furthermore, it can reduce the fine-
tuning problem due to extra, positive contributions to the tree-level Higgs mass.
However, the model suffers from the so-called domain-wall problem. See Ref.
[37] for a detailed review of the NMSSM.

• the U(1)′-extended Supersymmetric Standard Model (USSM) and its variants,
which extends the NMSSM by an extra U(1)′ gauge symmetry to avoid the
domain wall problem [39, 40, 41]. It provides an extra Z ′ gauge boson and a
corresponding superpartner.

• the Exceptional Supersymmetric Standard Model (E6SSM), which extends the
particle content of the USSM such, that the chiral superfields fill complete (27)
representations of the E6 [42]. Since the E6 is a simple gauge group, the U(1)′

quantum numbers of the chiral superfields are automatically predicted. A brief
introduction can be found in Appendix C.

• the Minimal R-symmetric Supersymmetric Standard Model (MRSSM), which
introduces a continuous R-symmetry in order to solve the supersymmetric
flavour problem [43] by suppressing the off-diagonal matrix elements of the
sfermion mass matrices [44].

2.2.2 Advantages of non-minimal models

Solution of the µ-problem The NMSSM was invented to solve the µ-problem,
i.e. solving the tension between µ ∼ mZ and µ ∼ MX . It introduces a gauge singlet
superfield S with the superpotential

WZ3

NMSSM =WMSSM(µ = 0) + λS(H1H2) +
κ

3
S3, (2.7)

where the µ-term of the MSSM is explicitly forbidden. Depending on the shape of the
Higgs potential, the scalar component of the singlet superfield can have a non-trivial
vacuum expectation value v3 of the order of the TeV scale. This will dynamically
generate an effective µ-term µeff = λv3/

√
2 of the order of the SUSY scale MS.

Reduction of the Higgs mass fine-tuning Non-minimal supersymmetric models
can attenuate the Higgs mass fine-tuning by increasing its tree-level mass. This avoids
the necessity of large loop corrections to the Higgs self-energy, which again avoids
the necessity of a large stop mixing. In the NMSSM, for example, the tree-level mass

9



Chapter 2 Supersymmetry

is enhanced by a positive F -term contribution from the extra scalar, which leads to
a maximum pole mass of [37]

(mpole
h )2 ≈ m2

Zc
2
2β +

λ2v2

2
s2

2β + ∆m2
h. (2.8)

The tree-level Higgs mass is increased further in models which have, in addition to a
Higgs singlet, an extra U(1)′ gauge symmetry, as in the USSM [39] or E6SSM [42].
In these models the tree-level mass gains extra contributions from the D-term of the
new U(1)′, which leads to a maximum pole mass of

(mpole
h )2 ≈ m2

Zc
2
2β +

λ2v2

2
s2

2β +
m2
Z

4

(
1 +

1

4
c2β

)2

+ ∆m2
h. (2.9)

Here the necessary loop corrections can be reduced to ∆mh ≈ 78 GeV for large values
of tan β [45].

Baryon-antibaryon asymmetry In NMSSM scenarios it is possible to generate
the observed baryon-antibaryon asymmetry with less extreme parameter scenarios
than in the MSSM [46].

Connection to gravity models Non-minimal supersymmetric models with larger
gauge groups, like SU(5), SO(10) or E6 and/or a larger field content, which fits
into representations of these gauge groups, can provide a close connection to string-
inspired supergravity models [47, 48, 49, 42], as for example the heterotic E8 × E8

String Theory [50, 51, 52].

2.2.3 Problems of non-minimal models

Domain walls In the scale invariant NMSSM superpotential (2.7) a discrete Z3

symmetry is imposed by hand to forbid the µ-term. However, such a discrete symme-
try can generate phenomenological problems [53]: When the electroweak symmetry
is broken in the early universe, regions with different ground states develop, each
related by a Z3 transformation. The borders of these regions are so-called domain
walls, which have not been observed in nature. The USSM solves this problem by
introducing a continuous U(1)′ gauge symmetry and adjusting the U(1)′ charges of
the superfields such that Z3-violating superpotential terms are forbidden.

Incomplete group representations One of the motivations of the E6SSM is the
unification of all matter fields into complete (27) representations of the E6 [42].
However, to enable gauge coupling unification two so-called survival Higgs doublets
H ′ and H̄ ′ are added. They originate from incomplete (27)′ and (27)′ representations,
thereby spoiling the unification of the all matter fields into complete representations.

10



2.2 Non-minimal supersymmetric models

The µ′-problem The E6SSM solves the µ-problem of the MSSM by forbidding the
µ-term and let an effective µ-term be dynamically generated by the VEV of a singlet
field. To enable gauge coupling unification, two so-called survival Higgs doublets H ′

and H̄ ′ are added to the model. They carry opposite U(1)N charge to ensure anomaly
cancellation. However, this allows a superpotential term of the form µ′(H ′H̄ ′) with
a coupling µ′ with dimension of a mass. The parameter µ′ must not be zero to
avoid very light charged survival higgsinos. One the other hand, if one assumes the
superpotential to be generated by some mechanism at the GUT scale MX , one would
expect µ′ to be of the order of MX . However, to enable gauge coupling unification µ′

is required to be of the order 10 TeV. This tension between µ′ ∼MX and µ′ ∼ 10 TeV
is called the µ′-problem, analogous to the µ-problem of the MSSM.
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Chapter 3

Calculation of low-energy gauge
and Yukawa couplings in the
E6SSM

3.1 Motivation

The Exceptional Supersymmetric Standard Model (E6SSM) [42] is a supersymmetric
gauge theory, which is inspired by Grand Unified Theories (GUTs) with an E6 gauge
symmetry. It solves the µ-problem of the MSSM and can reduce the Higgs mass
fine-tuning due to extra contributions to its tree-level mass matrix. The E6 gauge
symmetry is broken at the GUT scale, MX , to the direct product of the Standard
Model gauge group and an extra U(1)N gauge symmetry

E6 → SU(3)c × SU(2)L × U(1)Y × U(1)N . (3.1)

The matter content of the E6SSM fills three generations of complete fundamental (27)
representations of the E6 group and is listed in Table C.1. Thereby, it extends the
MSSM field content with three generations of Standard Model gauge group singlet
fields Si (i = 1, 2, 3), two generations of inert Higgses H1α, H2α (α = 1, 2) and
three generations of exotic colored fields Xi, X̄i. Due to the additional U(1)N gauge
symmetry, the E6SSM includes an extra vector superfield VN , which contains a gauge
boson B′

µ and its superpartner. Furthermore, two extra survival Higgs doublets

H ′ and H̄ ′ are introduced to ensure gauge coupling unification. A more detailed
description of the E6SSM can be found in Appendix C.

In Ref. [54] the constrained E6SSM (CE6SSM) was constructed, which is defined
by universality conditions of the soft-breaking parameters at the GUT scale, see Eq.
(C.12) in Appendix C.4. The resulting model has the following 12 free parameters

λi, κi (i = 1, 2, 3), tan β, v3, µ
′, Bµ′,m2

h′ ,m2
h̄′ . (3.2)

The λi and κi are Yukawa-type superpotential couplings, which couple the third
generation singlet field to the Higgs doublets and colored exotics, respectively. See
Appendix C.3 for a description of the E6SSM superpotential. The mass dimensionful
superpotential parameter µ′ is analogous to the µ-parameter in the MSSM and
couples the two survival Higgs doublets. In the E6SSM the scalar components of
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the third generation Higgs doublets h13, h23 and of the scalar s3 get VEVs v1, v2,
v3, respectively. As in the MSSM, the ratio v2/v1 is a free parameter and is called
tan β. The soft-breaking survival Higgs sector parameters Bµ′, m2

h′ and m2
h̄′ remain

unfixed, because this sector originates from the two separate incomplete (27)′ and
(27)′ representations.

Ref. [54] describes a CE6SSM spectrum generator, which implements the univer-
sality constraints (C.12) to predict the pole masses of the new E6SSM particles using
a minimal set of parameters. This spectrum generator considers the Standard Model
to be an effective theory of the E6SSM, where the new E6SSM particles have been
integrated out. At the same time, the CE6SSM is required to correctly predict the
masses of the Standard Model (SM) fermions mf and gauge couplings gSM

i at the

Z mass scale mpole
Z . In the spectrum generator [54], this requirement is ensured by

using the known SM gauge and Yukawa couplings as low-energy input to predict the
E6SSM gauge and Yukawa couplings. This prediction has the general form

gE6SSM
i (µ) = gSM

i (µ) + ∆gi(µ), (3.3)

yE6SSM
f (µ) = ySM

f (µ) + ∆yf (µ), (3.4)

where ∆gi(µ) and ∆yf (µ) are so-called threshold corrections. These threshold cor-
rections appear when integrating out the heavy E6SSM particles and are in general
non-zero. The general form of the corrections ∆gi(µ) is well known and may be
found in Ref. [55]. The scale µ is the so-called matching scale, at which the transition
between the full and the effective theory is performed. The general results in [55]
show, that in case only scalars and fermions are integrated out (in the MS scheme),
∆gi(µ) contains only logarithmic terms of the form log(µ/mi).

1 Therefore, ∆gi(µ) is
small if all particle masses mi are degenerate and the matching scale is chosen to be
of the order the particle masses.

For simplicity the spectrum generator in Ref. [54] neglects threshold corrections.
However, since the CE6SSM mass spectrum is usually very split, these corrections are
in general non-zero and can even be large. Neglecting them introduces an unphysical
dependency of the model parameters on the matching scale µ. This dependency is
shown in the upper plot in Figure 3.1, where two sets of the running SM and E6SSM
gauge couplings are drawn, matched at the scales T1 = 500 GeV and T2 = 10 TeV.
One finds that the E6SSM gauge couplings at a fixed renormalization scale depend
on the chosen value of the matching scale. This effect leads to a dependency of the
unification scale MX (defined in the code as the scale where g1(MX) = g2(MX))
on the chosen matching scale, and a different unification scale will lead to a different
particle spectrum at the low-scale. The inclusion of threshold corrections ∆gi reduces
this unphysical dependency, as can be seen in the lower plot of Figure 3.1.

In the diploma thesis [56] partial gauge coupling threshold corrections to the
renormalization group running have been calculated to avoid the unphysical matching
scale dependency. However, the calculated corrections miss contributions from the
survival Higgs sector, as well as from the Wino and the SM Higgs. The completed,

1Integrating out vector bosons would lead to finite, non-logarithmic terms.
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Figure 3.1: Running gauge couplings of the SM and E6SSM, matched at
two different scales T1 = 500 GeV and T2 = 10 TeV. In the upper plot,
without threshold corrections, the unification scale MX depends on the unphysical
matching scale. In the lower plot, where threshold corrections are included, this
dependency is reduced significantly.

explicit form of the threshold corrections can be found in Appendix C.7 and have
been published in [57]. They are in agreement with the general result presented in
[55]. The Yukawa couplings, however, still remained unmatched in the described
CE6SSM spectrum generator.

Part of this thesis is to calculate the DR Yukawa couplings in the E6SSM at
the matching scale including one-loop radiative corrections. The procedure of the
calculation is described in Section 3.2 and the complete results can be found in
Appendix C.6. Section 3.3 describes the implementation of the Yukawa couplings
into the existing CE6SSM spectrum generator and explains the algorithm used to
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calculate the mass spectrum. Finally, an extensive parameter scan is performed to
test the CE6SSM against experimental limits. The results are presented in Section 3.4.

3.2 Calculation of the Yukawa couplings

The Standard Model Yukawa couplings ySM
f have not been measured by experiments

directly. Therefore, it is not advantageous to do a matching of the SM Yukawa
couplings to the E6SSM ones by means of threshold corrections ∆yf . However,
the SM fermion masses are known with sufficient precision and are therefore well-
suited as input parameters. For this reason the E6SSM Yukawa couplings are directly
calculated at the matching scale from the known SM fermion masses [11, 58].

The E6SSM DR Yukawa couplings yE6SSM
f are related to the third generation SM

fermion masses mf (f = t, b, τ), to the W± boson mass mW , the left-handed gauge
coupling g2 and tan β as

yE6SSM
t =

g2mt√
2mW sin β

, yE6SSM
b =

g2mb√
2mW cos β

, yE6SSM
τ =

g2mτ√
2mW sin β

. (3.5)

All quantities on the right-hand side of Eq. (3.5) are defined in the DR scheme. The
DR masses mt and mτ are expressed in terms of the corresponding pole masses as

mf (µ) = mpole
f + ℜe Σ̂f (p = mpole

f , µ), f = t, τ. (3.6)

Here Σ̂f (p) denotes the DR renormalized self-energy of the fermion f in the E6SSM
and is listed in Appendix C.6.2. The bottom quark pole mass is not known with a high
accuracy, because its experimental determination suffers from infra-red sensitivity.
However, the DR mass in the 5-flavour QCD m

(5)
b (mpole

Z ) is known with a higher
precision [58]. For this reason the E6SSM DR mass mb is expressed in terms of

m
(5)
b (mpole

Z ) directly as

mb(µ) = m
(5)
b (µ) + ℜe Σ̂b(p = m

(5)
b , µ)−ℜe Σ̂

(5)
b (p = m

(5)
b , µ), (3.7)

m
(5)
b (µ) = m

(5)
b (mpole

Z ) + β(5)
mb

log
µ

mpole
Z

, (3.8)

β(5)
mb

= −mb
g2

3

2π2
. (3.9)

In (3.8) the β-function ofm
(5)
b is used [59], to shift the mass frommpole

Z to the threshold
scale µ. Finally, the DR W± boson mass is calculated from the pole mass via

mW (µ) = mpole
W + ℜe Π̂WW,T (p2 = (mpole

W )2, µ), (3.10)

where Π̂WW,T (p2) is the transverse part of the W± boson self-energy, listed in Ap-
pendix C.6.1. This allows to express the DR Yukawa couplings in the E6SSM as
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yE6SSM
t =

g2m
pole
t√

2mpole
W sin β


1− ℜe Π̂WW,T ((mpole

W )2)

mpole
W

+
ℜe Σ̂t(m

pole
t )

mpole
t


 , (3.11a)

yE6SSM
b =

g2m
(5)
b (mpole

Z )√
2mpole

W cos β


1− ℜe Π̂WW,T ((mpole

W )2)

mpole
W

+
ℜe Σ̂b(m

(5)
b )−ℜe Σ̂

(5)
b (m

(5)
b ) + β(5)

mb
log µ

mpole

Z

m
(5)
b (mpole

Z )


,

(3.11b)

yE6SSM
τ =

g2m
pole
τ√

2mpole
W cos β


1− ℜe Π̂WW,T ((mpole

W )2)

mpole
W

+
ℜe Σ̂τ (m

pole
τ )

mpole
τ


 . (3.11c)

The complete results for the gauge coupling threshold corrections (C.63)–(C.65),
the E6SSM Yukawa couplings (3.11) and the one-loop fermion and W± self-energies
(C.37), (C.45) have been published in Ref. [57].

3.3 Implementation into a CE6SSM spectrum

generator

The CE6SSM spectrum generator presented in [54] is partly based on Softsusy 2.0.5
[60]. As input the program takes the following 8 free CE6SSM parameters from (3.2),
defined in the DR scheme:

λi(MX), κi(MX), v3(Qfix), tan β(Qfix). (3.12)

The superpotential parameters λi and κi (i = 1, 2, 3) are chosen to be input at
the GUT scale MX , because it is assumed that the superpotential is generated by
some breaking mechanism at MX . The electroweak symmetry breaking (EWSB)
parameters v3 and tan β are input at the fixed low-energy scale Qfix, which is the
scale where the EWSB consistency conditions (C.15) are imposed and where the pole
mass spectrum is calculated at. In the following Qfix is set to 3 TeV, which is the
typical scale of the CE6SSM particle spectrum. In [54] the survival Higgs parameters
µ′, mh′ , mh̄′ , Bµ′ were not necessary as program input, because they determine only
the survival Higgs masses, which decouple from the particle spectrum due to the
structure of the RGEs. However, the gauge coupling threshold corrections, given in
Appendix C.7, introduce a dependency of the gauge couplings on the survival Higgs
masses, and therefore introduce a dependency on the survival Higgs parameters. For
this reason these parameters need to be added to the program input. They are defined
in the DR scheme at the matching scale µ = TE6SSM

µ′(TE6SSM),mh′(TE6SSM),mh̄′(TE6SSM), Bµ′(TE6SSM). (3.13)

The differential equations, which relate the E6SSM model parameters at different
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renormalization scales are the renormalization group equations (RGEs) [54]. The
gauge coupling unification condition (C.14), the soft-breaking parameter universality
conditions (C.12), the input parameters at MX , Qfix and TE6SSM, (3.12)–(3.13), the
matching conditions to the Standard Model (3.3), (3.11) and the EWSB conditions
(C.15) then form a boundary value problem. The aim of the spectrum generator is
to find sets of model parameters, consistent with all the given constraints, and to
calculate the pole mass spectrum for each set.

The algorithm, which searches for a solution of the above mentioned boundary
value problem, is a nested fixed-point iteration in combination with an adaptive
Runge-Kutta algorithm. It is divided into the following five steps, see Figure 3.2:

determine
gE6SSM
i , yE6SSM

f at TE6SSM

SUSY iteration

determine soft pa-
rameter dependency

EWSB iteration

particle spectrum

finish

if converged

Figure 3.2: CE6SSM spectrum calculation algorithm. The dashed box marks
the structure of the old spectrum generator presented in [54], which neglects
threshold corrections. The inclusion of threshold corrections (in the step 1) made
an overall iteration necessary, because the threshold corrections depend on the
particle spectrum (calculated in step 5).

1. Determine the E6SSM DR gauge and Yukawa couplings, gE6SSM
i , yE6SSM

f :

a) Evolve the SM MS gauge and Yukawa couplings, gSM
i , ySM

f from their

known values at mpole
Z [11] to the intermediate matching scale TE6SSM using

SM RGEs.

b) Convert the SM MS couplings to E6SSM DR couplings using the gauge
coupling threshold corrections (C.63)–(C.65) and the calculated E6SSM
Yukawa couplings (3.11). This step is only possible once the full DR
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mass spectrum is known, i.e. after the first iteration. Hence, in the first
iteration, these corrections are neglected and the E6SSM DR gauge and
Yukawa couplings are determined as

yE6SSM
f (TE6SSM) =

ySM
f (TE6SSM)

cos β
(f = b, τ), (3.14)

yE6SSM
t (TE6SSM) =

ySM
t (TE6SSM)

sin β
, (3.15)

gE6SSM
i (TE6SSM) = gSM

i (TE6SSM) (i = 1, 2, 3). (3.16)

2. SUSY iteration: Use RGEs to determine all SUSY parameters (gi, yf , λi, κi,)
at all scales. This step is independent of soft-breaking parameters, because
the β-functions of the SUSY parameters are independent of the soft-breaking
parameters [61, 62, 63, 64].

a) Estimate the values of the Yukawa couplings λi(TE6SSM), κi(TE6SSM) at the
matching scale.

b) Evolve all SUSY parameters from TE6SSM up to the unification scale MX ,
defined as the scale where g1(MX) = g2(MX), using two-loop E6SSM
RGEs.

c) Set the Yukawa couplings λi(MX), κi(MX) to the program input values.

d) Set g′
1(MX) := g1(MX).

e) Perform an iteration between MX and TE6SSM to obtain values for the
SUSY parameters until consistency is reached with the low-energy bound-
ary conditions for yE6SSM

f (TE6SSM), gE6SSM
i (TE6SSM) and the high-energy

boundary conditions for λi(MX), κi(MX).

3. Determine soft parameter dependency: Using the high-scale universality con-
ditions (C.12) and the EWSB conditions (C.15) it is possible to express the
soft-breaking parameters in the semi-analytic form [54]

m2
i (t) = ai(t)m

2
0 + bi(t)M

2
1/2 + ci(t)A0M1/2 + di(t)A

2
0, (3.17a)

Ai(t) = ei(t)A0 + fi(t)M1/2, (3.17b)

Mi(t) = pi(t)A0 + qi(t)M1/2. (3.17c)

The coefficients ai(t), . . . , qi(t) depend only on the SUSY parameters and are
calculated numerically at the scale t = log TE6SSM/MX .

4. EWSB iteration: Use the three EWSB conditions (C.15) to fix the values of
the universal soft parameters m2

0, M1/2 and A0:

a) The semi-analytic expressions (3.17) are combined with the three tree-
level EWSB conditions (C.15) to form three quadratic equations in the
universal soft parameters m2

0, M1/2 and A0. These three equations are
then reduced to one quartic equation.
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b) This quartic equation is then solved numerically, which will yield up to
four real solutions {m2

0,M1/2, A0}i=1,...,4. Complex solutions are discarded.

c) Calculate leading one-loop tadpole corrections to the effective potential
and find a minimum iteratively.

5. For each set of {m2
0,M1/2, A0}i=1,...,4, the full CE6SSM particle spectrum is

calculated.

The gauge coupling threshold corrections and the determination of the E6SSM Yukawa
couplings in step 1b depend on the particle spectrum, which is obtained in the step
5. Therefore an iteration over all five steps is performed, until convergent solutions
are obtained.

3.4 Numerical evaluation and application

3.4.1 Reduced matching scale dependency

As discussed in Section 3.1, the inclusion of threshold corrections reduces the unphys-
ical dependency of the model parameters on the matching scale. This effect translates
to the unification scale MX , which in turn leads to a stabilization of the pole mass
spectrum. This effect is shown in Figure 3.3, where a subset of the CE6SSM particle
spectrum for the parameter point

tan β(Qfix) = 35, λ1,2,3(MX) = κ1,2,3(MX) = 0.2, v3(Qfix) = 10 TeV,

µ′(TE6SSM) = mh′(TE6SSM) = mh̄′(TE6SSM) = 10 TeV, Bµ′(TE6SSM) = 0
(3.18)

is plotted. The white and the black boxes show the absolute variation of the particle
masses when the matching scale TE6SSM is varied in the interval [1

2
T0, 2T0]. The

scale T0 is the geometric average of all shown particle masses and has the value
T0 = 1.9 TeV for this parameter point. The white boxes show the variation when
threshold corrections are neglected, and the black boxes show the variation when
threshold corrections are included. One finds that with included threshold corrections
(black boxes) the unphysical dependency of the particle masses on the matching scale
is significantly smaller than without (white boxes). This reduction effect is largest
for gluino mass mg̃ and for the lightest chargino and neutralino masses mχ̃±

1
and mχ̃0

1
,

respectively. Without threshold corrections these masses vary in the range

m
w/o TC
g̃ = (691 . . . 1330) GeV, (3.19)

m
w/o TC

χ̃±

1

= (208 . . . 479) GeV, (3.20)

m
w/o TC

χ̃0
1

= (117 . . . 275) GeV, (3.21)

which translates to relative errors of 65 %, 83 % and 85 %, respectively. With
included threshold corrections the ranges are reduced to

m
w/ TC
g̃ = (823 . . . 828) GeV, (3.22)
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Figure 3.3: CE6SSM pole mass spectrum for parameter point (3.18). The
white and the black boxes show the variation of the particle masses when the
matching scale is varied in the interval [1

2T0, 2T0], where T0 = 1.9 TeV is the
geometric average of all shown particle masses. The black boxes show the error
with threshold corrections and the white boxes without.

m
w/ TC

χ̃±

1

= (258 . . . 261) GeV, (3.23)

m
w/ TC

χ̃0
1

= (146 . . . 147) GeV, (3.24)

which translates to relative errors of 0.7 %, 1.0 % and 1.1 %, respectively. The vari-
ation of the remaining pole masses with included threshold corrections in Figure 3.3
is 4 % or less. This remaining variation is formally a two-loop effect. Note that
for the lightest first generation exotic squark x̃11 there is no reduction of the scale
dependence, but a mass shift. The reason is the non-linear behaviour of the squark
mass as a function of the matching scale. In case of x̃11 the function mx̃11

(TE6SSM)
has a minimum around TE6SSM ≈ T0, which leads to an unnatural small error band in
case threshold corrections are neglected. One can conclude that the scale variation is
not always a good estimation of the theory uncertainty, due to such non-linear effects.

3.4.2 Parameter scan

In order to show the impact of the threshold corrections in a wider range of the
CE6SSM parameter space, a parameter scan over tan β = 2 . . . 45 and λ3 = 0 . . . 3 is
performed in the following. During the scan the superpotential parameters λi(MX)
and κi(MX) parameters are chosen to be universal at the GUT scale,

λ1 = λ2 = λ3 = κ1 = κ2 = κ3, (3.25)
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and the remaining free parameters are fixed to

v3(Qfix) = µ′(TE6SSM) = mh′(TE6SSM) = mh̄′(TE6SSM) = 10 TeV,

Bµ′(TE6SSM) = 0.
(3.26)

The matching scale TE6SSM is set to 600 GeV, which is a rough estimate of the expected
average size of the pole mass spectrum. Note that the size of TE6SSM is only important
during an iteration without threshold corrections, because of the dependence of the
model parameters on TE6SSM in this case.

As described in Section 3.3, for each choice of (λ3, tan β), there exist up to four
real solutions for (m0,M1/2) from the electroweak symmetry breaking conditions.
Figure 3.4 shows the mapping from the scanned input parameters (λ3, tan β) to all
possible output values of (m0,M1/2). The butterfly shape is due to the superposition
of all four solutions, where in the overlap region only solution 1 is drawn. In the white
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Figure 3.4: Mapping of the input parameters (λ3, tan β) to the output parameters
(m0,M1/2). The left panel shows the variation of tan β across the (m0,M1/2)
plane. The right panel shows λ3 as a function of (m0,M1/2).

regions the RG solving algorithm is not able to find a simultaneous solution to the
EWSB equations and the unification conditions without producing tachyons. Due to
this effect there exists an upper limit on the value of tan β at around 45 [57]. This
already places physically constraints on the allowed (m0,M1/2) parameter space.

Figure 3.5 shows the gluino mass mg̃ (upper left panel) and lightest neutralino
mass mχ̃0

1
(lower left panel) in the scanned parameter space region. The masses vary

from 200 . . . 2500 GeV for the gluino, and 50 . . . 500 GeV for the neutralino. The
impact of the threshold corrections on the particle masses is shown in the panels of
the right column. There the difference between the mass with and without threshold
corrections is drawn for each parameter point. The size of the corrections varies from
a few GeV around M1/2 ≈ 0, up to hundreds of GeV around M1/2 ≈ −3 TeV. In the
regions with large M1/2 these corrections can be up to 40 % of the particle mass. The
reason for these large corrections is that large values of M1/2 lead to large particle
masses. In this case the used matching scale TE6SSM = 600 GeV is a bad estimate
of the average size of the pole mass spectrum. Such a bad guess leads to large
threshold corrections, because they contain logarithms of the form log(TE6SSM/mi).
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This translates to a significant mass shift compared to the case without threshold
corrections.
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Figure 3.5: Gluino (upper left panel) and lightest neutralino mass (lower left
panel) as a function of (m0,M1/2). The right column shows the differences between
the masses with and without threshold corrections.

Note that the parameter region with |M1/2| . 1.4 TeV is highly constrained by
current LHC experiments, because it leads to a gluino mass of the order or smaller
than the current limit of 1.4 TeV [65, 66, 67].

3.4.3 Parameter space exclusion

The improved spectrum generator enables to study the CE6SSM parameter space
with a higher accuracy and to search for experimentally allowed and excluded regions.
Figure 3.6 shows the lightest CP-even Higgs pole mass as a function ofm0 andM1/2 for
the scanned region from Section 3.4.2. Large Higgs masses of mh > 126 GeV can be
found for m0 & 2.5 TeV and |M1/2| & 500 GeV, while light Higgses of mh < 120 GeV
lie in regions with m0 . 2.2 TeV. For a more precise determination of the allowed
parameter space the following experimental constraints are applied:

123.5 GeV < mh < 127.5 GeV, (3.27a)

mg̃ > 1 TeV, (3.27b)

mt̃1 > 300 GeV, (3.27c)

mχ̃0
1
,mχ̃±

1
> 200 GeV, (3.27d)
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Figure 3.6: Lightest CP-even Higgs pole mass as a function of (m0,M1/2).

mZ′ > 2.1 TeV, (3.27e)

mh̃0
li
,mh̃+

i
,mh0

ij
,mh±

ij
> 100 GeV. (3.27f)

These constraints are experimental exclusion limits, translated to the CE6SSM, at
the time of the publication of the here presented analysis in 2012 [57]. A detailed
discussion of the constraints placed on the CE6SSM by current experiments can be
found in [45]. The imposed Higgs mass constraint of 123.5 GeV < mh < 127.5 GeV
is based on the ATLAS and CMS analyses [68, 69] using between 4.6 and 4.9 fb−1

of LHC data. Refs. [70, 45] have estimated a lower gluino mass limit of around
850 GeV, based on the first ≈ 5 fb−1 data at

√
s = 7 TeV [71, 72, 73, 74, 75, 76].

The limit was increased to ≈ 1 TeV by the updated results from the 5.8 fb−1 data
set with

√
s = 7 TeV [77, 78, 79, 80]. The large lower bound of 2.1 TeV on the Z ′

mass is taken from the CMS analysis [81], which uses 5 fb−1 of collected data. At
the time this scan was performed the searches for top and bottom squarks were less
advanced. The ATLAS analysis [82] excludes top squarks with a mass smaller than
310 GeV, if the lightest neutralino mass is in the range 115 . . . 230 GeV. For the
sbottom quark a lower bound of the same order applies [83]. All the here scanned
parameter points pass these light squark mass limits, because the chosen value of
v3 = 10 TeV leads to sfermion masses of the order 1 TeV or larger. The lower bounds
on the light neutralino, chargino and inert fermions and sfermions are based on the
scenarios discussed in [84, 85, 86, 87].

Figure 3.7 shows the allowed and excluded CE6SSM parameter regions when the
constraints (3.27) are imposed. The mass limits for the Higgs and the gluino are most
constraining, see Figure 3.5 and 3.6 for reference. The reason is that the CE6SSM
usually predicts a light gluino with a mass of the order M3 ∼ 0.7M1/2. The high
exclusion limit on the gluino mass of 1 TeV therefore leads to a high lower bound on
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Figure 3.7: Allowed and excluded regions of the CE6SSM parameter space using
the constraints from (3.27).

M1/2. The parameter regions with m0 . 1.8 TeV predict a light Higgs mass below
123.5 GeV and are therefore excluded as well. However, there is still a large region
around m0 ≈ 3 . . . 5 TeV and M1/2 ≈ −(1 . . . 2.5) TeV, where all constraints are
passed and where the Higgs mass is consistent with the discovery.

3.4.4 Updating benchmark points from the literature

The implemented threshold corrections allow to update the pole mass spectrum of
the CE6SSM benchmark points proposed in [54, 88, 45], where these corrections
were missing. Table 3.1 lists all benchmark points together with the reported gluino
mass (without threshold corrections) and the recalculated one including threshold
corrections. For the recalculation the survival Higgs sector parameters were set to

µ′ = mh′ = mh̄′ = 10 TeV, (3.28)

except for points marked with a or b, where the survival Higgs masses were varied
until a self-consistent solution was found.

One finds that for most of the light benchmark points BMA–BME [88] and BM1–
BM6 [54] the gluino mass is reduced. When the current LHC limit of mg̃ . 1.4 TeV
[67] is applied, all these light benchmark points are excluded. From the five heavy
benchmark points HBM1–HBM5 [45], only HBM2 and HBM3 pass the gluino mass
limit. However, these points predict light exotic quarks with masses of 368 GeV
and 521 GeV, respectively. Current LHC searches for vector-like quarks with charge
−1/3 constrain the exotic quark mass to be larger than 590 GeV [89] or 645 GeV
[90]. Therefore, HBM2 and HBM3 would be excluded by these searches. However,
the incorporation of threshold corrections does not change the qualitative properties
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mg̃ / GeV BMA BMB BMC BMD BME

without thresholds 336 330 353 327 338
including thresholds 224 269b 260 230 203b

mg̃ / GeV BM1 BM2 BM3 BM4 BM5 BM6

without thresholds 350 673 362 642 338 805
including thresholds 322 613a 275 423a 190 825

mg̃ / GeV HBM1 HBM2 HBM3 HBM4 HBM5

without thresholds 984 1352 1659 1129 1001
including thresholds 1090 1494 1886 827 1067

Table 3.1: Comparison of the originally reported gluino mass and the gluino mass
including threshold corrections for previously published CE6SSM benchmarks.
The survival Higgs sector parameters were chosen to be µ′ = mh′ = mh̄′ = 10 TeV
for all points, except those marked a where we used µ′ = mh′ = mh̄′ = 100 TeV
to evade tachyonic problems with convergence and b where they were increased to
104 TeV.

of all these points. In particular the lightest CP-even Higgs pole mass changes only
in the sub-GeV range and remains in the signal region of 125 GeV for HBM1–HBM5.

3.5 Summary and conclusion

In Ref. [54] a spectrum generator for the CE6SSM was presented, which calculates the
E6SSM mass spectrum from high-scale and low-scale input parameters. However, this
spectrum generator neglects threshold corrections to the gauge and Yukawa couplings,
which introduces an unphysical dependence of the model parameters and the mass
spectrum on the matching scale. In the diploma thesis [56], partial gauge coupling
threshold corrections were calculated and implemented into the spectrum generator.

In this thesis the gauge coupling threshold corrections were completed and are
listed in Appendix C.7. Furthermore, the full E6SSM Yukawa couplings have been
calculated at the one-loop level from known Standard Model fermion masses and
mpole
W , see Section 3.2. Full expressions for these corrections have been provided and

they have been implemented into the CE6SSM spectrum generator.
The impact of these corrections has been studied, using the improved spectrum

generator. The pole mass spectrum shows a significant reduction of the matching
scale dependency up to 80 % relative to the particle mass. The largest reduction
has been found for the gluino and the lightest neutralino and chargino masses.
Since these particles are light, they are especially important for setting limits on the
CE6SSM parameter space, which again emphasizes the necessity for the implemented
corrections.

A consequence of the threshold corrections is that they introduce a connection
between the particle spectrum from the (27)i representations and the survival Higgs
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sector (27)′ and (27)′. In former studies [54, 88, 45], without threshold corrections,
the survival Higgs sector decoupled from the rest of the spectrum. To take this new
connection into account, the parameters µ′, mh′ , mh̄′ , Bµ′ had to be added to the list
of input parameters for the spectrum generator.

Furthermore, a parameter scan over λ3 and tan β was performed using the improved
CE6SSM spectrum generator. Experimental constraints were applied to search for
allowed and excluded parameter regions. It was found that the lower limits on the
gluino and the Higgs mass are most constraining and exclude already large regions of
the m0–M1/2 parameter space. However, there are still large regions where the model
passes all experimental bounds and can predict the discovered Higgs mass.

Finally, the mass spectrum of previously proposed CE6SSM benchmark points
[54, 88, 45] has been recalculated with the improved spectrum generator. All of these
points are already excluded by current gluino and vector-like quark searches at the
LHC [65, 89, 90].

In conclusion, the calculation of threshold corrections and Yukawa couplings has
shown to be valuable, because it significantly improves the precision of the predicted
low-energy CE6SSM particle spectrum by reducing the theory uncertainty from the
unphysical matching scale. The studied CE6SSM parameter regions show that the
qualitative features of the CE6SSM do not change by the inclusion of these corrections.
The complete results for the gauge and Yukawa coupling threshold corrections, as well
as the here presented numerical studies have been published in [57].

In must be noted that the CE6SSM is still an attractive, predictive and experimen-
tally viable SUSY model. However, further LHC studies might exclude larger regions
of the CE6SSM parameter space, making it possible to distinguish between several
non-minimal SUSY models.
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Chapter 4

Renormalization of vacuum
expectation values

4.1 Motivation

The Standard Model of particle physics [91, 92, 93] as well as many attractive
extensions, such as the MSSM [20], use spontaneous breaking of the local gauge
invariance to generate mass terms for the vector bosons and fermions of the theory
[94, 95, 96, 97]. For this purpose scalar fields ϕa are introduced together with a scalar
potential which allows for a non-trivial minimum. These scalar fields are then shifted
by the constants va (the vacuum expectation values, VEVs)

ϕa → ϕa + va, (4.1)

where va can be adjusted to the minimum of the scalar potential. Finally, a gauge
fixing is introduced, which breaks the local gauge invariance to allow to quantize the
theory.

During loop calculations in the quantized theory divergences appear, which can
be removed consistently via renormalization [98, 99, 100, 101, 102, 103]. Thereby all
parameters and fields of the theory are multiplied by so-called renormalization con-
stants Zi, such that the symmetry of the Lagrangian is preserved. This procedure is
called multiplicative renormalization transformation. The renormalization constants
can be adjusted such that all divergences are absorbed at each loop level (perturbative
renormalization).

The VEV in Eq. (4.1) is renormalized by a renormalization constant Zva , which is
decomposed as Zva = 1 + δva/va. The quantity δva is called VEV counter-term and
in general depends on the chosen gauge fixing [104].

For some applications, for example in spectrum generators for supersymmetric
models, the β-function of va is required. It is used to calculate the renormalization
group equations, which are solved numerically to relate the model parameters at
different renormalization scales. For convenience, these spectrum generators use DR
renormalized parameters [105, 106] and use a Rξ gauge fixing [98, 99], because it
avoids mixings between gauge and goldstone bosons. However, βva has not been
known in a general gauge theory with Rξ gauge. So far it has been calculated only
in the MSSM at the one-loop [107] and leading two-loop level [62], as well as in the
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E6SSM at the one-loop level [57], see Table 4.1.

Model β(1)
v β(2)

v

MSSM known [107] only O(g2Y 2) known [62]
E6SSM known [57] unknown
general gauge theory unknown unknown
general supersymmetric gauge theory unknown unknown

Table 4.1: Status of the calculation of βv at the one- and two-loop level for
different gauge theories.

In the following, the VEV counter-term δva is calculated in a general gauge theory
with Rξ gauge fixing in the MS renormalization scheme at the one- and two-loop
level. The β-function of va can then be directly computed from the counter-term
δva. The result is applied to a general supersymmetric gauge theory in Wess–Zumino
gauge in the DR renormalization scheme. The VEV β-functions complement the
well-known one- and two-loop β-functions for general gauge theories and general
supersymmetric gauge theories [108, 109, 110, 61, 62, 111]. Furthermore, the results
will allow to implement the one- and two-loop DR VEV β-functions into spectrum
generators for general supersymmetric models, such as SARAH/SPheno [112, 113]
and FlexibleSUSY [114].

4.2 Calculation of the VEV counter-term

4.2.1 Background field method

As discussed above, to generate mass terms for gauge bosons and fermions, one
introduces scalar fields ϕa into the invariant Lagrangian Linv and couples them to
the fields. Furthermore, a gauge invariant and renormalizable scalar potential V (ϕa),
which allows for a non-trivial minimum is added to Linv. The scalar fields are then
shifted by a constant, va, (the vacuum expectation value, VEV)

ϕa → ϕa + va, (4.2)

where va can be set to the minimum of the scalar potential. After shifting the
field Eq. (4.2), the Lagrangian is still invariant under both local and global gauge
transformations, as long as the combination (ϕa + va) transforms as a whole.

The most general renormalization transformation of the combination (ϕa + va) can
then be written in the following two equivalent forms

ϕa + va →
√
Zabϕb + va + δva, (4.3a)

→
√
Zab (ϕb + vb + δv̄b) , (4.3b)

from which one can deduce δva = (
√
Z−1)abvb+

√
Zabδv̄b. Writing the renormalization
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transformation in the form (4.3b) has the advantage that the appearing counter-term
δv̄b characterizes to what extend vb renormalizes differently from the corresponding
scalar field ϕb.

In a theory with global (rigid) gauge invariance, the combination (ϕa + va) trans-
forms as a whole under the global gauge transformation. For this reason, in such a
theory the extra counter-term δv̄a is forbidden by the global gauge symmetry, because
it would introduce a deviation from the combined transformation of (ϕa + va) and
therefore violate the symmetry. However, if the theory is not globally gauge invariant,
the extra counter-term δv̄a is not forbidden by the symmetry and is in general non-
vanishing.

For quantization of a gauge theory a gauge fixing is required [115, 116]. In QED
and QCD, the typical gauge fixing terms have the form [117, 118]

LQCD
f.p.+g.f. = s

[
c̄A
(
FA

QCD +
ξ

2
BA

)]
, FA

QCD = ∂µV A
µ , (4.4a)

LQCD
g.f. = − 1

2ξ
FA

QCDF
A
QCD = − 1

2ξ
(∂µV A

µ )(∂νV A
ν ), (4.4b)

LQCD
f.p. = −c̄A�cA − gfABC(∂µc̄A)V B

µ c
C . (4.4c)

The fields V A represent the gauge bosons, cA are Faddeev-Popov ghosts and c̄A are
anti-ghost fields. The Nakanishi-Lautrup auxiliary fields BA can be eliminated by
their equations of motion. The gauge fixings (4.4) break local gauge invariance,
because LQCD

g.f. is no longer invariant under

V A
µ → V A

µ + ∂µα
A(x)− gfABCV B

µ α
C(x). (4.5)

However, global gauge invariance, where ∂µα
A = 0, remains intact. In spontaneously

broken gauge theories Rξ gauge fixings are used, which have the form1

LRξ

f.p.+g.f. = s

[
c̄A
(
FA
Rξ

+
ξ

2
BA

)]
, FA

Rξ
= ∂µV A

µ + igξξ′vaT
A
abϕb, (4.6a)

LRξ

g.f. = − 1

2ξ
FA
Rξ
FA
Rξ

= − 1

2ξ

(
∂µV A

µ + igξξ′vaT
A
abϕb

)2
, (4.6b)

LRξ

f.p. = −c̄A�cA − gfABC(∂µc̄A)V B
µ c

C − g2ξξ′c̄AcBvaT
A
abT

B
bc (ϕ + v)c. (4.6c)

In contrast to the covariant QCD gauge (4.4), the Rξ gauge (4.6) breaks even global
invariance (for ξ 6= 0). The reason is that FA

Rξ
is not written in terms of the

combination (ϕa + va), but contains ϕa and va separately. Therefore, in theories
with Rξ gauges, the extra counter-term δv̄a is not forbidden by symmetry and is in
general non-vanishing.

The counter-term δv̄a can be calculated in an elegant way with the aid of scalar
background fields, as used in [119]. The idea is to introduce classical real scalar

1The parameter ξ′ is introduced to preserve the non-mixing of gauge and goldstone bosons at the
loop-level. At the tree-level one has ξ′ = 1.
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background fields ϕ̂a and corresponding shifts v̂a into Linv. The gauge transformation
of the combination (ϕ̂a + v̂a) is defined to be the same as the one of the scalar field
ϕa. This allows to formulate a global gauge invariant gauge fixing function FA

bg as

FA
bg = ∂µV A

µ + igξξ′ (ϕ̂ + v̂)a T
A
abϕb. (4.7)

As a consequence, the resulting gauge fixing Lagrangian

Lbg
f.p.+g.f. = s

[
c̄A
(
FA

bg +
ξ

2
BA

)]
(4.8)

breaks local gauge invariance, but leaves global gauge invariance intact. As explained
above, due to the global gauge symmetry the extra VEV counter-term δv̄a is forbidden
and must vanish. Another important property of the modified gauge fixing function
(4.7) is that it reproduces the conventional Rξ gauge fixing (4.6a), because the
classical fields ϕ̂a have to be set to zero for the calculation of the Green functions. In
this case the shift v̂a of the background field is equivalent to the shift va of the scalar
field.

In summary, this background field formalism has the advantage that one can
calculate the VEV counter-term in a global gauge invariant theory where δv̄a = 0.
The obtained results are equivalent to the case with the conventional Rξ gauge fixing
(4.6a), because the classical background fields are set to zero at the end.

4.2.2 Lagrangian

In the following calculation a general gauge theory with a simple gauge group and
gauge coupling g is considered. The renormalizable, locally gauge invariant La-
grangian is written in terms of real scalar fields ϕa, Weyl 2-spinors ψp and gauge
fields V A. The indices a, p and A run over the gauge group representation space of
the scalar, spinor and vector fields, respectively. In the notation of [108, 109, 110, 120]
the Lagrangian reads

Linv =− 1

4
FA
µνF

Aµν +
1

2
(Dµϕ)a (Dµϕ)a + iψαp σ

µ
αα̇

(
D†
µψ̄

α̇
)

p

− 1

2!
m2
abϕaϕb −

1

3!
habcϕaϕbϕc −

1

4!
λabcdϕaϕbϕcϕd

− 1

2

[
(mf )pq ψ

α
pψqα + h.c.

]
− 1

2

[
Y a
pqψ

α
pψqαϕa + h.c.

]
.

(4.9)

The appearing covariant derivatives Dµ and the field strength tensor FA
µν have the

form

Dµϕa =
(
δab∂µ + igTAabV

A
µ

)
ϕb, (4.10a)

Dµψpα =
(
δpq∂µ + igtApqV

A
µ

)
ψqα, (4.10b)

FA
µν = ∂µV

A
ν − ∂νV A

µ − gfABCV B
µ V

C
ν . (4.10c)
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The generators TAab of the gauge transformation for the scalars are chosen to be
antisymmetric and purely imaginary, while the generators tApq for the spinors are
hermitian. The symbols fABC are the structure constants of the simple gauge group.

As described above, real scalar background fields ϕ̂a together with constant shifts
v̂a are introduced. The gauge transformation of the combination (ϕ̂a + v̂a) is defined
to be the same as for the scalar field ϕa. The Lagrangian with background fields and
shifts is then obtained by replacing in (4.9)

ϕa → ϕeff
a = ϕa + ϕ̂a + v̂a. (4.11)

To establish a gauge fixing and quantize the theory, Faddeev-Popov ghost fields
cA, anti-ghost fields c̄A, as well as the Nakanishi-Lautrup auxiliary field BA are
introduced. Furthermore one defines BRST transformations for all fields. For the
vector fields, the spinors, ghosts, anti-ghosts and the Nakanishi-Lautrup field the
standard definitions are used [121, 122, 116]

sV A
µ = ∂µc

A − gfABCV B
µ c

C , (4.12)

sψpα = −igcAtApqψqα, (4.13)

scA =
1

2
gfABCcBcC , (4.14)

sc̄A = BA, sBA = 0. (4.15)

In order to leave the physics content of the theory unchanged, the background fields
ϕ̂a need to transform as BRST doublet with another background field q̂a [123, 124]

sϕ̂a = q̂a, sq̂a = 0. (4.16)

The scalar fields ϕeff
a are required to transform homogeneously, which leads to

sϕeff
a = −igTAabcAϕeff

b . (4.17)

This implies the transformation for the scalar fields to read

sϕa = −igTAabcAϕeff
b − q̂a. (4.18)

To fix the gauge a global gauge invariant Rξ gauge is used with the gauge fixing
function

FA
bg = ∂µV A

µ + igξξ′ (ϕ̂ + v̂)a T
A
abϕb. (4.19)

The Lagrangian for the Faddeev-Popov ghosts and the gauge fixing is then given by

Lf.p.+g.f. = s

[
c̄A
(
FA

bg +
ξ

2
BA

)]
. (4.20)

After eliminating the Nakanishi-Lautrup auxiliary fieldBA by its equations of motion,
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Eq. (4.20) evaluates to

Lf.p.+g.f. =− 1

2ξ
(∂µV A

µ )(∂νV A
ν )− c̄A�cA − gfABC(∂µc̄A)V B

µ c
C

− igξ′(∂µV A
µ )(ϕ̂ + v̂)aT

A
abϕb − igξξ′c̄Aq̂aT

A
ab(ϕ + ϕ̂ + v̂)b

− g2ξξ′c̄AcB(ϕ̂ + v̂)aT
A
abT

B
bc (ϕ + ϕ̂ + v̂)c

+
1

2
g2ξξ′2(ϕ̂ + v̂)aT

A
abϕb(ϕ̂ + v̂)cT

A
cdϕd.

(4.21)

Finally, sources K for the non-linear BRST transformations are introduced

Lext = Kϕa sϕa +KV A
µ
sV A

µ +KcA scA +
[
Kψp sψp + h.c.

]
. (4.22)

They allow to formulate relations between Green functions which originate from the
BRST invariance, so-called Slavnov-Taylor identities [125, 126, 98, 99, 127, 101, 102,
103, 128]. The full BRST invariant Lagrangian with background fields is then given
by

Ltot = Linv|ϕ→ϕeff + Lf.p.+g.f. + Lext. (4.23)

4.2.3 Renormalization

The renormalization of the general gauge theory with background fields from Sec-
tion 4.2.2 proceeds as in the case without background fields [98, 99, 100, 101, 102, 103].
The most general renormalization transformation for the aforementioned setup is
given by the general solution of

1. the Slavnov-Taylor identity, which expresses the BRST invariance on the level
of Green functions,

2. the gauge condition, which fixes the dependency of the Nakanishi-Lautrup field
BA and

3. the Ward identity, which expresses the global gauge invariance.

Note that the Ward identity from 3. is a result of the preserved global gauge invariance
and provides additional information on the counter-term structure of the theory. The
resulting general renormalization transformation is given by

1. Parameter renormalization, where all parameters p ∈ {g, ξ, ξ′, m2
ab, habc, λabcd,

(mf )pq, Y
a
pq} renormalize as p→ Zpp = p+ δp. A counter-term δv̂ for the shift

v̂ is forbidden by the global Ward identity.

2. Field renormalization, where all fields transform multiplicatively with corre-
sponding

√
Z factors and the BRST sources with inverse

√
Z factors. In

particular, the renormalization transformations of the scalars, the background
fields and the source Kϕa read

ϕa →
√
Zabϕb, (4.24a)
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4.2 Calculation of the VEV counter-term

(ϕ̂ + v̂)a →
√
Zab

√
Ẑbc(ϕ̂ + v̂)c, (4.24b)

q̂a →
√
Zab

√
Ẑbcq̂c, (4.24c)

Kϕa →
(√

Z
−1
)

ba
Kϕb

. (4.24d)

Furthermore, only theories are considered that possess a symmetry (at the operator
dimension 4 level), which restricts the field renormalizations of the scalar fields to be
diagonal, i.e.

√
Zab →

√
Z(a)δab and

√
Ẑab →

√
Ẑ(a)δab. (4.25)

Such a symmetry is present in most models. For example in the MSSM and NMSSM
it is given by the the Peccei-Quinn symmetry [129]. In the E6SSM the extra U(1)N
gauge symmetry takes this role [42].

Equivalence to the standard approach

In a general gauge theory, without background fields, the general renormalization
transformation of the scalar fields ϕa including shifts read

ϕa + va →
√
Zabϕb + va + δva, (4.26)

see Eq. (4.3a). In the modified setup with background fields, the effective scalar field
ϕeff
a renormalizes as

ϕeff
a →

√
Zab

(
ϕb +

√
Ẑbc(ϕ̂ + v̂)c

)
. (4.27)

Since the classical background field is set to zero at the end, these two approaches
are equivalent and it holds

va = v̂a and δva =
(√

Z

√
Ẑ − 1

)

ab
vb. (4.28)

Eq. (4.28) shows the advantages of the background field method: First, the VEV
counter-term is expressed in terms of the field renormalization constants

√
Z and√

Ẑ of the scalar and the background field, respectively. Since
√
Z and

√
Ẑ are of

mass dimension zero, they are at most logarithmically divergent. Second, the mass
dimension of δva stems only from the direct proportionality to va. Third,

√
Z is well

known at the one- and two-loop level [120, 108].

The unknown field renormalization
√
Ẑ of the background field can be calculated

directly from renormalizing the unphysical two-point Green function Γq̂a,Kϕb
. The

reason is that the renormalization transformation, applied to the Lagrangian of the
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Kϕa

cA

ϕb
= gTAab ,

(a) Γϕb,cA,Kϕa

q̂a
c̄A

ϕb
= ξξ′gTAab ,

(b) Γϕb,q̂a,c̄A

q̂a Kϕb

= −i
(√

Ẑ − 1
)

ba
= − i

2
δẐ

(1)
ba +O(~2)

(c) Γq̂a,Kϕb

Figure 4.1: Feynman rules necessary for the calculation of
√
Ẑ.

BRST sources Lext, yields with (4.24c) and (4.24d)

Lext = −Kϕa q̂a + · · · RT→ −Kϕa

√
Ẑabq̂b + · · · . (4.29)

This leads to a counter-term Feynman rule for the q̂a–Kϕb
two-point function, which

is only proportional (
√
Ẑ − 1), see Figure 4.1(c). Choosing a renormalization scheme

then fixes the divergent and the finite parts of
√
Ẑ. Furthermore, there are only two

Feynman rules which couple q̂a and Kϕb
to propagating fields: Γϕb,cA,Kϕa

and Γϕb,q̂a,c̄A ,
see Figure 4.1(a) and 4.1(b). These two Feynman rules are both proportional to the
gauge coupling g. In addition, Γϕb,q̂a,c̄A depends on the gauge fixing parameter ξ. As

a consequence, the field renormalization
√
Ẑ of the background field is proportional

to g2 and gauge dependent. This leads automatically to a gauge dependence of δva
and βva .

Determination of βv from δv

The β-function of the VEV describes the dependency of the renormalized v on the
renormalization scale µ. It is defined as

βv = µ
∂v

∂µ
. (4.30)

It can be determined from the fact that the bare VEV, v0 = µ−ǫ√Zvv, is independent
of the renormalization scale µ

0 = µ
dv0

dµ
(4.31)

⇔ 0 = ǫ
√
Zvv −

∑

p

βp

[
∂p
√
Zv

]
v −

√
Zvβv. (4.32)
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4.2 Calculation of the VEV counter-term

Here the index p runs over all theory parameters. Expanding the field renormalization
and the β-function in powers of ~

√
Zv = 1 +

1

2

∑

n=1

~
nδZ(n)

v , (4.33a)

βv =
∑

n=0

~
nβ(n)

v , (4.33b)

yields for the β-function of the VEV

β(0)
v = ǫv, (4.34a)

β(1)
v = −

∑

p

β(0)
p

1

2

[
∂pδZ

(1)
v

]
v, (4.34b)

β(2)
v = −

∑

p

β(0)
p

1

2

[
∂pδZ

(2)
v

]
v −

∑

p

β(1)
p

1

2

[
∂pδZ

(1)
v

]
v − 1

2
δZ(1)

v β(1)
v . (4.34c)

From Eq. (4.28) one finds
√
Zv =

√
Z
√
Ẑ and the above equations reduce to

β(0)
va

= ǫva, (4.35a)

β(1)
va

= −
∑

p

β(0)
p ∂p

[
1

2

(
δZ

(1)
ab + δẐ

(1)
ab

)]
vb, (4.35b)

β(2)
va

= −
∑

p

β(0)
p ∂p

[
1

2

(
δZ

(2)
ab + δẐ

(2)
ab

)]
vb −

∑

p

β(1)
p ∂p

[
1

2

(
δZ

(1)
ab + δẐ

(1)
ab

)]
vb

− 1

2

[
δZ

(1)
ab + δẐ

(1)
ab

]
β(1)
vb
. (4.35c)

The Eqs. (4.35) can be written in a simpler form in terms of the anomalous dimensions
of the scalar and background fields. These are defined as [130]

γab(S) =
(
µ∂µ
√
Z

−1

ac

)√
Zcb, γ̂ab(S) =

(
µ∂µ

√
Ẑ

−1

ac

)√
Ẑcb. (4.36)

By using the loop-expansions (4.33), the different loop orders of the anomalous
dimension of the scalar field read

γ
(0)
ab (S) = 0, (4.37a)

γ
(1)
ab (S) = −

∑

p

β(0)
p ∂p

1

2
δZ

(1)
ab , (4.37b)

γ
(2)
ab (S) = −

∑

p

β(0)
p ∂p

1

2
δZ

(2)
ab −

∑

p

β(1)
p ∂p

1

2
δZ

(1)
ab −

1

2
δZ(1)

ac γ
(1)
cb (S). (4.37c)

The expansion for the background field is analogue. This yields the β-function of the
VEV in terms of the anomalous dimensions

β(n)
va

=
[
γ

(n)
ab (S) + γ̂

(n)
ab (S)

]
vb. (4.38)
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Chapter 4 Renormalization of vacuum expectation values

Note that Eq. (4.38) is valid for arbitrary loop orders n ≥ 0.
In summary, the here used formalism with scalar background fields allows to express

the β-function of the VEV (4.38) in terms of the anomalous dimensions of the scalar
and the background fields. The former are well known in a general gauge theory at
the one- and two-loop level. The latter can be directly calculated from the counter-
term δẐ, which renormalizes the unphysical Green function Γq̂,Kϕ . The results for
γ(S) and γ̂(S) will be given in the next section.

4.2.4 Calculation of the anomalous dimensions

q̂a Kϕb

(a)

q̂a Kϕb

(b)

q̂a Kϕb

(c)

q̂a Kϕb

(d)

q̂a Kϕb

(e)

q̂a Kϕb

(f)

q̂a Kϕb

(g)

Figure 4.2: All relevant graphs for the determination of the one- and two-loop
corrections to Γq̂a,Kϕb

. Graph 4.2(a) is of order O(g2); graphs 4.2(b)–4.2(d) are

O(g4)-contributions; graph 4.2(e) is of order O(g2Y Y †); graphs 4.2(f)–4.2(g) are
power-counting finite.

As explained in Section 4.2.3, the field renormalization δẐab can be directly calcu-
lated from renormalizing the unphysical two-point function Γq̂a,Kϕb

. At the one-loop
level there is only one Feynman diagram contributing to Γq̂a,Kϕb

, see Figure 4.2(a).

In the MS renormalization scheme one obtains for δẐab

δẐ
(1)
ab =

1

(4π)2
2g2ξξ′C2

ab(S)∆, (4.39)

where ∆ = 1/ǫ−γE+ln 4π is the regularized divergence inD = 4−2ǫ dimensions. The
quadratic Casimir C2

ab(S) of the scalar representation is defined in Appendix A. From
Eq. (4.37b) one then obtains the one-loop anomalous dimension of the background
field in the MS scheme

γ̂
(1)
ab (S) =

1

(4π)2
2g2ξξ′C2

ab(S). (4.40a)

Note that γ̂
(1)
ab (S) is gauge dependent.
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4.3 Result for the VEV β-function

At the two-loop level there are four diagrams that contribute a divergence to
Γq̂a,Kϕb

, see Figure 4.2. The diagrams 4.2(b)–4.2(d) are of the order O(g4), and

the diagram 4.2(e) contributes at the order O(g2Y Y †). The remaining two diagrams

4.2(f)–4.2(g) are finite and do therefore not contribute to δẐ
(2)
ab . Using Eq. (4.37c)

one obtains the two-loop anomalous dimension of the background field in the MS
scheme

γ̂
(2)
ab (S) =

ξξ′

(4π)4



g

4

[
2 (1 + ξ)C2

ac(S)C2
cb(S) +

7− ξ
2

C2(G)C2
ab(S)

]
− 2g2C2

ac(S)Y 2
cb(S)



.

(4.40b)

Here C2(G) is the quadratic Casimir operator of the group in the representation of the
gauge field and Y 2

cb(S) is a group invariant proportional to Yukawa coupling squared,
see Appendix A.

The anomalous dimension γab(S) of the scalar in a general gauge theory is well
known at the one- and two-loop level in the MS scheme [120, 108]. In terms of the
group invariants of Appendix A they read

γ
(1)
ab (S) =

1

(4π)2

[
g2 (3− ξ)C2

ab(S)− Y 2
ab(S)

]
, (4.41a)

γ
(2)
ab (S) =

1

(4π)4



g

4C2
ab(S)

[(
35

3
− 2ξ − 1

4
ξ2
)
C2(G)− 10

6
S2(F)− 11

12
S2(S)

]

− 3

2
g4C2

ac(S)C2
cb(S) +

3

2
H2
ab(S) + H̄2

ab(S)− 10

2
g2Y 2F

ab (S)− 1

2
Λ2
ab(S)



.

(4.41b)

4.3 Result for the VEV β-function

4.3.1 General gauge theory

Using the decomposition of βv in terms of the anomalous dimensions, Eq. (4.38),
and the one- and two-loop expressions for γ(S) and γ̂(S), Eqs. (4.40) and (4.41), one
obtains the β-function of the VEV in a general gauge theory with Rξ gauge fixing in
the MS scheme

β(1)
va

=
1

(4π)2

[
g2 (3− ξ + 2ξξ′)C2

ab(S)− Y 2
ab(S)

]
vb, (4.42a)

β(2)
va

=
1

(4π)4



g

4C2
ab(S)

[(
35

3
− 2ξ − 1

4
ξ2 +

7− ξ
2

ξξ′
)
C2(G)− 10

6
S2(F)− 11

12
S2(S)

]

+ g4
[
2ξξ′ (1 + ξ)− 3

2

]
C2
ac(S)C2

cb(S)− 1

2
Λ2
ab(S)

39



Chapter 4 Renormalization of vacuum expectation values

+
3

2
H2
ab(S) + H̄2

ab(S)− 10

2
g2Y 2F

ab (S)− 2ξξ′g2C2
ac(S)Y 2

cb(S)



vb. (4.42b)

Note that these β-functions are gauge dependent.

4.3.2 Kinetic mixing

The calculated anomalous dimensions Eqs. (4.40) and (4.41) are valid for gauge
theories with a simple gauge group G. Refs. [131, 132, 133] have generalized γ(S) to
a semisimple product group of the form

G =

(ą

k∈I
Gk

)
×
(ą

a∈J
U(1)a

)
. (4.43)

Here, Gk are simple groups and I, J are finite subsets of N. For gauge groups of the
form (4.43) kinetic mixing of the U(1) field strength tensors can occur, if |J | > 1. In
this case the Lagrangian for the abelian gauge field mixing reads

Lkin. = −1

4

∑

a,b∈J
Fa,µνΞabF

µν
b , (4.44)

with a non-diagonal matrix Ξ. To take the effect of kinetic mixing in γ̂(S) into
account, the approach in [132, 133] is followed. Here, the matrix Ξ is absorbed into a
redefinition of the abelian gauge fields, which leads to a matrix-valued gauge coupling
ĝab

ĝab =
∑

c∈J
δacg

′
c

√
Ξ

−1

cb . (4.45)

Here g′
c denotes the abelian gauge coupling corresponding to the group U(1)c. This

approach allows to provide substitution rules for the gauge coupling dependent terms
in γ̂(S), in order to account for the kinetic mixing.

At the one-loop level γ̂(1) receives no correction from kinetic mixing, because the
ghost and anti-ghost fields are not affected by the mixing. The same holds for
the O(g2Y Y †) contribution in γ̂(2) at the two-loop level. The terms of the form
g4C2(G)C2(S) receive no correction as well, because the abelian gauge fields do not
couple to ghost and anti-ghost fields. The only non-vanishing contribution appears
in the g4C2(S)C2(S) term and has it’s origin in diagram 4.2(b). The corresponding
substitution rule reads

g4C2(S)C2(S)
γ̂−−−−→

kin. mix



∑

k∈I
g2
kC

2
Gk

(S) +
∑

a∈J
Wa(S)Wa(S)


 (4.46)

×


∑

k∈I
g2
kC

2
Gk

(S) +
∑

a∈J
g′2
aQ

2
a(S)


 ,
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with

Wa(S) =
∑

b∈J
Qb(S)ĝba. (4.47)

Here gk is the non-abelian gauge coupling that corresponds to the simple group Gk.
The Qa(S) are the charges of the scalar field with respect to the abelian groups U(1)a.
Finally, C2

Gk
(S) represents the quadratic Casimir of the group Gk in the representation

of the scalar field.

4.3.3 Supersymmetric gauge theory

The VEV β-functions (4.42) are valid in a general gauge theory and are given
in the MS renormalization scheme. In this section the results are converted to a
N = 1 supersymmetric gauge theory in Wess-Zumino gauge, in the supersymmetry
preserving renormalization scheme DR [105, 106]. For the conversion the following
steps have to be performed:

1. The field content of the theory must involve complex scalars ϕa and corre-
sponding superpartner Weyl spinors ψp in the same representation of the gauge
group. Furthermore, for each vector field V A a corresponding gaugino Weyl
spinor λA is introduced, which transforms in the adjoint representation of the
gauge group.

2. The Yukawa-type coupling structure between the Weyl fermions ψp, gauginos
λA and complex scalars ϕa is restricted by supersymmetry to be

1

2

[
Y a
pqψ

α
pψqαϕa + h. c.

]
gaugino−−−−→ −

√
2g
[
λ̄Aα̇ ψ̄

α̇
p T

A
paϕa + h. c.

]
. (4.48)

Besides these Yukawa-type gaugino interactions, further Yukawa terms without
gauginos may originate from the superpotential.

3. The anomalous dimensions γ̂(S) and γ(S) must be rewritten in terms of complex
scalars and the contribution from the gauginos must be taken into account.

4. The resulting expression for γ(S) and γ̂(S) must then be converted from the MS
to the supersymmetry preserving DR renormalization scheme. This conversion
can be done by using transition counter-terms for the model parameters [134]
and fields [135].

Applying all of the above steps yields for the one- and two-loop anomalous dimensions
of the complex scalar fields in a supersymmetric theory in the DR scheme

γ
(1)
ab (S)

∣∣∣∣
DR

SUSY
=

1

(4π)2

[
g2 (1− ξ)C2

ab(S)− 1

2
Y ∗
apqYbpq

]
, (4.49a)
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γ
(2)
ab (S)

∣∣∣∣
DR

SUSY
=

1

(4π)4

{
g4
[(

9

4
− 5

3
ξ − 1

4
ξ2
)
C2(G)− S2(S)

]
C2
ab(S)

− 2g4C2
ac(S)C2

cb(S) +
1

2
Y ∗
arcYrpqY

∗
pqdYbcd

+ g2
[
C2
ac(S)Y ∗

cpqYbpq − 2Y ∗
apqC

2
pr(S)Ybrq

] }
. (4.49b)

For the anomalous dimensions of the complex scalar background fields the same
procedure must be applied. However, the conversion from the MS to the DR scheme
in the last step is trivial, because no diagram contributing to δẐ leads to a difference
between the two schemes. From this property the transition counter-terms for the
background field renormalization Ẑ and for ξ′ can be derived as a by-product:

δẐ(1),trans = 0, (4.50)

δZ
(1),trans
ξ′ = −δZ(1),trans

g +
1

2
δZ

(1),trans
V =

1

(4π)2

g2

3
C2(G). (4.51)

Here δZ(1),trans
g and δZ

(1),trans
V denote the transition counter-terms for the gauge cou-

pling and the gauge field, respectively [134, 135]. The one- and two-loop anomalous
dimensions of the background field then read

γ̂
(1)
ab (S)

∣∣∣∣
DR

SUSY
=

1

(4π)2
2g2ξξ′C2

ab(S), (4.52a)

γ̂
(2)
ab (S)

∣∣∣∣
DR/MS

SUSY
=

ξξ′

(4π)4



g

4

[
7− ξ

2
C2(G)C2

ab(S)− 2 (1− ξ)C2
ac(S)C2

cb(S)

]

− g2C2
ac(S)Y ∗

cpqYbpq



. (4.52b)

Using the decomposition (4.38) of βv in terms of γ(S) and γ̂(S) one obtains for the
VEV β-function

β(1)
va

∣∣∣∣
DR

SUSY
=

1

(4π)2

[
g2 (1− ξ + 2ξξ′)C2

ab(S)− 1

2
Y ∗
apqYbpq

]
vb, (4.53)

β(2)
va

∣∣∣∣
DR

SUSY
=

1

(4π)4



g

4

[(
9

4
− 5

3
ξ − 1

4
ξ2 +

7− ξ
2

ξξ′
)
C2(G)− S2(S)

]
C2
ab(S)

− g4 [2ξξ′ (1− ξ) + 2]C2
ac(S)C2

cb(S) +
1

2
Y ∗
arcYrpqY

∗
pqdYbcd

+ g2 [1− ξξ′]C2
ac(S)Y ∗

cpqYbpq − 2g2Y ∗
apqC

2
pr(S)Ybrq



 vb . (4.54)
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4.4 Application to the MSSM and NMSSM

4.4.1 MSSM

The MSSM [20] contains two scalar SU(2) Higgs doublets h1 and h2 with hyper-
charges Yh1

/2 = −Yh2
/2 = −1/2, respectively. The complete field content and the

superpotential of the MSSM can be found in Appendix B. The neutral components
of the Higgs doublets are shifted by VEVs v1 and v2 as

h1 =

(
h0

1

h−
1

)
→
(
v1√

2
+ h0

1

h−
1

)
, h2 =

(
h+

2

h0
2

)
→
(

h+
2

v2√
2

+ h0
2

)
. (4.55)

In this convention the one-loop anomalous dimensions of the MSSM Higgs doublets
and their corresponding background fields read

(4π)2γ
(1),DR
MSSM (h2) = (1− ξ)

(
3

20
g2

1 +
3

4
g2

2

)
−Nc Tr

(
yuyu†

)
, (4.56a)

(4π)2γ
(1),DR
MSSM (h1) = (1− ξ)

(
3

20
g2

1 +
3

4
g2

2

)
−Nc Tr

(
ydyd†

)
− Tr

(
yeye†

)
, (4.56b)

(4π)2γ̂
(1),DR
MSSM (h2) = 2ξξ′

(
3

20
g2

1 +
3

4
g2

2

)
, (4.56c)

(4π)2γ̂
(1),DR
MSSM (h1) = 2ξξ′

(
3

20
g2

1 +
3

4
g2

2

)
. (4.56d)

In the above expressions g1 is the GUT normalized gauge coupling of the U(1)Y and

is defined as g1 =
√

5/3 gY . At the two-loop level one obtains

(4π)4γ
(2),DR
MSSM (h2) = −207

200
g4

1 −
9

20
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with the abbreviation

RMSSM = (1− ξ)9
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An important application of the results (4.56)–(4.58) is the β-function of tan β. The
latter is a MSSM input parameter, which is defined as

tan β =
v2

v1

. (4.59)

At the n-loop level its β-function is given by

β
(n)
tanβ

tan β
= γ(n)(h2)− γ(n)(h1) + γ̂(n)(h2)− γ̂(n)(h1). (4.60)

Using the anomalous dimensions from (4.56) and (4.57) one obtains at the one- and
two-loop level
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Note that tan β is gauge-independent at the one-loop level, because the the ξ-dependent
terms from γ̂(1)(h1) and γ̂(1)(h2) cancel. The reason is that the two Higgs doublets
have the same SU(2)L and U(1)Y quantum numbers, up to a sign. At the two-loop
level this cancellation does not happen and, thus, tan β is gauge-dependent.

4.4.2 NMSSM

In the NMSSM [37] one introduces a gauge singlet superfield S in addition to the
MSSM Higgs doublets, see Section 5.2. Due to the shape of the scalar NMSSM
potential, its scalar component s can acquire a non-zero vacuum expectation value
v3. Therefore, s is shifted by its VEV as

s→ v3√
2

+ s, (4.62)
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and one obtains for the one-loop anomalous dimensions of the Higgs fields
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At the two-loop level one obtains
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NMSSM(s) = 0. (4.64f)

with RNMSSM = RMSSM. Since γNMSSM and γ̂NMSSM are of mass dimension zero,
they gain extra contributions, compared to the MSSM, only from the dimensionless
NMSSM superpotential couplings λ and κ. Therefore, Eqs. (4.63)–(4.64) are valid
for both the Z3-symmetric and the Z3-violating NMSSM.

Since the NMSSM Higgs doublet quantum numbers are the same as in the MSSM,
the one-loop β-functions of tan β are the same in both models

β
(1),DR
tanβ,NMSSM = β

(1),DR
tanβ,MSSM. (4.65)

For this reason β
(1),DR
tanβ,NMSSM is gauge-independent, as in the MSSM. The two-loop β-

function for tan β receives an extra contribution from the additional NMSSM Yukawa-
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coupling λ

β
(2),DR
tanβ,NMSSM

tan β
=
β

(2),DR
tanβ,MSSM

tan β
+
|λ|2

(4π)2

β
(1),DR
tanβ,MSSM

tan β
. (4.66)

Here, as in the MSSM, β
(2),DR
tanβ,NMSSM, is gauge-dependent, because the ξ-dependent

terms do not cancel in (4.60).

4.5 Summary and conclusion

The β-function of the vacuum expectation value was calculated in a general gauge
theory with Rξ gauge fixing in the MS renormalization scheme at the one- and two-
loop level. The result was converted to a general supersymmetric gauge theory in
Wess-Zumino gauge in the DR scheme. These results complement the well-known one-
and two-loop β-functions and anomalous dimensions for general gauge theories and
general supersymmetric gauge theories [108, 109, 110, 61, 62, 111]. The calculation
was performed in an elegant scheme with scalar background fields, as used in [119].
The description of the calculation and the here presented results have been published
in [63, 64].

The calculated generic one- and two-loop VEV β-functions were specialized to
the MSSM and NMSSM. This made it possible to implement the prior unknown
MSSM O(g4) contributions from (4.57) and (4.61b) into the Softsusy version 3.4.0.
In addition, the here presented full NMSSM VEV β-functions (4.63)–(4.66) were
implemented into the NMSSM extension of Softsusy in version 3.4.0 [136].

Shortly after the publication of the generic results presented here, the expressions
for γ(S) and γ̂(S) (4.49)–(4.52) were implemented by the SARAH developers into
SARAH version 4.0.0 [137]. They can now be used to calculate the DR β-function of
the VEVs in any supersymmetric model in Rξ gauge. These β-functions are of special
importance for general spectrum generators such as SARAH/SPheno [112, 113] and
FlexibleSUSY [114]. These programs impose boundary conditions for the running DR
model parameters (gauge and Yukawa couplings, VEVs, soft-breaking parameters,
etc.) at different renormalization scales. The so defined boundary value problem
is solved iteratively by numerically integrating the renormalization group equations
and imposing the boundary conditions. For this procedure the DR β-functions of all
model parameters (including the VEVs) need to be known. Before the here presented
general results were known, the VEV β-functions were incomplete in these spectrum
generators. This gap is herewith closed.
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Next-to-minimal Softsusy

5.1 Motivation for a NMSSM extension of

Softsusy

As discussed in Section 2.2, the Next-to Minimal Supersymmetric Standard Model
(NMSSM) is a well-motivated and experimentally viable model [138, 139, 140, 141,
31, 142, 143, 144], which can solve the µ-problem of the MSSM and can reduce the
lightest Higgs mass fine-tuning due to additional, positive contributions from the
extra scalar field.

To study the properties of the NMSSM and confront the model with experimental
data a spectrum generator is needed, which calculates the pole masses and the
couplings of the NMSSM particles given a set of theory input parameters. By the
end of 2013 NMSPEC [145] was the only publicly available out-of-the-box spectrum
generator for the NMSSM. Besides NMSPEC, the Mathematica package SARAH
[146, 137] can create a NMSSM spectrum generator by generating Fortran code,
which is then integrated into SPheno [147, 148]. In 2008 the SUSY Les Houches
Accord (SLHA) was extended [149] to include the NMSSM. It provides a well-defined
interface to pass the spectrum generator output to programs which calculate further
observables such as decays, the dark matter relic density, etc.

Due to the recent focus of the community on the NMSSM [31, 138, 139, 140, 141,
142, 143, 144, 150, 151, 152, 153, 154], it was decided to extend the MSSM spectrum
generator Softsusy [60, 155, 156, 136] to enable the calculation of the NMSSM mass
spectrum. Having another NMSSM spectrum generator can help to find bugs and
to estimate the theory uncertainty of the pole mass spectrum prediction, because
different spectrum generators usually use different levels of approximations [157, 158].

Part of this thesis was to implement the NMSSM into Softsusy, in collaboration
with B. C. Allanach, P. Athron, L. C. Tunstall and A. G. Williams. For this it
was necessary to re-design the Softsusy class hierarchy, implement the one- and two-
loop β-functions of all NMSSM parameters as well as mass matrices, one-loop self-
energies, one-loop tadpoles and EWSB conditions. Furthermore, the SLHA input and
output interface needed to be extended according to the specification [149]. Finally,
the full NMSSM implementation was systematically tested against existing NMSSM
spectrum generators.

This chapter is organized as follows: In Section 5.2 the NMSSM field content and
the Lagrangian is briefly described. Section 5.3 explains the physical boundary con-
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ditions imposed on the model and the task of the spectrum generator. In Section 5.4
it is described in detail how the physical problems are solved at the C++ source code
level and Section 5.5 lists the tests performed to validate the output and discusses
differences to NMSPEC. In addition a brief comparison of the lightest CP-even Higgs
pole mass between Softsusy and NMSPEC is performed to illustrate the precision of
the Higgs mass prediction in different parameter regions.

5.2 The NMSSM

The Next-to Minimal Supersymmetric Standard Model (NMSSM) extends the MSSM
field content, listed in Table B.1, by an extra gauge singlet superfield S in the
(1,1, 0) representation of the SU(3)c × SU(2)L × U(1)Y gauge group. Its (complex)
scalar component is denoted by s, and the fermionic (Weyl spinor) component by
s̃. Since all its charges are zero, it does not couple via gauge interaction. It couples
to other matter fields only via additional superpotential terms. The most general
renormalizable R-parity conserving NMSSM superpotential reads

WNMSSM =WMSSM + λS(H1H2) +
κ

3
S3 +

µ′

2
S2 + ξFS, (5.1)

with WMSSM from Eq. (2.1). However, this general superpotential does not solve
the µ-problem, since the µ-term µ(H1H2) is still contained in WMSSM. Therefore a
Z3-symmetry is imposed, which forbids all superpotential terms with dimensionful
couplings. The resulting Z3-symmetric NMSSM superpotential is then given by

WZ3

NMSSM =WMSSM(µ = 0) + λS(H1H2) +
κ

3
S3. (5.2)

When the scalar component of S acquires a non-zero vacuum expectation value

s→ v3√
2

+ s, (5.3)

an effective µ-term with the value µeff = λv3/
√

2 is generated dynamically. In the
NMSSM supersymmetry is softly broken by the following additional Lagrangian:

LNMSSM,soft = LZ3

NMSSM,soft + L\Z3

NMSSM,soft, (5.4)

LZ3

NMSSM,soft = LMSSM,soft(Bµ = 0)−
[
λAλs(h1h2) +

κ

3
Aκs3 + h. c.

]
−m2

s|s|2, (5.5)

L\Z3

NMSSM,soft = −
[
Bµ(h1h2) +

m′2
s

2
s2 + ξSs+ h. c.

]
. (5.6)

The LZ3

NMSSM,soft part contains all breaking terms present in the Z3-invariant NMSSM,

while L\Z3

NMSSM,soft contains all explicitly Z3-violating contributions. The soft-breaking
terms of the MSSM, LMSSM,soft, were given in Eq. (2.2).

The mixing of the gauge eigenstates to mass eigenstates is analogous to the MSSM,
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except for an extended neutralino and Higgs sector. The fermionic component of the
singlet superfield mixes with the bino, the neutral wino and the two neutral higgsinos
to five neutralinos χ̃0

i . In the CP-conserving NMSSM the real component of the scalar
singlet mixes with the real parts of the neutral Higgs doublet components to three
CP-even Higgs bosons hi. The imaginary part of the singlet mixes with the imaginary
parts of the neutral Higgs doublet components to two CP-odd Higgs bosons Ai and
a Goldstone boson. A broad review of the phenomenology of the NMSSM can be
found in [37].

5.3 Physical problem statement

Goal of a NMSSM spectrum generator is to numerically calculate the pole masses and
couplings of the SUSY particles, given numerical values for the NMSSM parameters.
All model parameters of the Z3-symmetric and Z3-violating NMSSM are listed in
Table 5.1. The first row shows the gauge and Yukawa couplings as well as the

Z3-NMSSM \Z3-NMSSM

SM input g1, g2, g3, yu, yd, ye, v g1, g2, g3, yu, yd, ye, v

EWSB output κ, |v3|2, m2
s |µ|2, Bµ, ξS

User input m2
q, m

2
u, m

2
d, m

2
ℓ , m

2
e, m

2
h1

, m2
h2

, m2
q, m

2
u, m

2
d, m

2
ℓ , m

2
e, m

2
h1

, m2
h2

,
(general) Ae, Ad, Au, Aλ, Aκ, Ae, Ad, Au, Aλ, Aκ,

M1, M2, M3, M1, M2, M3,
λ, tan β, sign v3 λ, tan β, signµ,

κ, v3, m
2
s, µ

′, m′2
s , ξF

User input m2
0, A0, M1/2, m2

0, A0, M1/2,
(mSUGRA) λ, tan β, sign v3 λ, tan β, signµ,

κ, v3, m
2
s, µ

′, m′2
s , ξF

Table 5.1: Model parameters of the Z3-symmetric and Z3-violating NMSSM. The

first row contains the gauge and Yukawa couplings and the VEV v =
√
v2

1 + v2
2,

which have all a Standard Model correspondence. The second row shows param-
eters chosen to be fixed by the EWSB conditions. In the third row the remaining
free NMSSM parameters are listed. The last row contains the reduced parameter
set in a mSUGRA-inspired scenario.

combination of VEVs v =
√
v2

1 + v2
2. These parameters have a direct correspondence

to their Standard Model equivalents. In the second row parameters are listed which
are chosen to be fixed by the electroweak symmetry breaking conditions, see below.
The third segment of the table contains all remaining free parameters, such as soft-
breaking squared masses, soft-breaking trilinear scalar couplings, soft-breaking linear
terms, soft-breaking gaugino masses, superpotential parameters and VEVs. The last
segment shows a reduced set of NMSSM parameters in a mSUGRA-inspired soft-
breaking scenario, see below.

49



Chapter 5 Next-to-minimal Softsusy

Since the NMSSM is a (only softly-broken) supersymmetric model, it is convenient
to define all model parameters in the supersymmetry preserving DR renormalization
scheme [105, 106]. Thereby, the model parameters become renormalization scale
dependent quantities, which is expressed by the renormalization group equations

µ
∂p

∂µ
= βp. (5.7)

Here p denotes a model parameter and µ is the renormalization scale. On the right-
hand side of Eq. (5.7) stands the β-function of the parameter p, which is known in a
general softly broken supersymmetric model up to the two-loop level [159, 160, 161,
134, 162, 61, 132, 63, 64].

In the NMSSM only parameter choices are experimentally allowed, with which
the known low-energy precision observables are correctly predicted. This includes in
particular the known Standard Model fermion masses mf , the electromagnetic and

strong couplings αe.m.(m
pole
Z ) and αs(m

pole
Z ), the muon decay constant GF and the Z

boson pole mass mpole
Z [11]. Such valid parameter choices can be ensured by using

the Standard Model observables as input to determine the NMSSM DR gauge and
Yukawa couplings gi and yf as well as the combined VEV v at the low-energy scale.

Furthermore, spontaneous breaking of the electroweak symmetry is required to
occur in the NMSSM to generate mass terms for the W and Z bosons as well as for
the quarks and leptons. This is possible in many NMSSM parameter regions, where
the Higgs potential, VHiggs, allows non-zero ground states v1, v2 and v3 for the three
scalar fields h0

1, h
0
2 and s, respectively. To ensure this, the following three electroweak

symmetry breaking consistency conditions must be fulfilled:

∂VHiggs

∂vi
= 0 i = 1, 2, 3. (5.8)

These conditions are usually imposed at the SUSY scale MS, which is the typical
scale of the SUSY particle masses and is often defined as

MS =
√
mt̃1mt̃2 . (5.9)

Here mt̃1 and mt̃2 are the DR masses of the two stops. The three EWSB equations
(5.8) can be used to fix three NMSSM parameters. In the Z3-symmetric model, these
are chosen to be κ(MS), |vs(MS)|2 and m2

s(MS). In the Z3-violating model |µ(MS)|2,
Bµ(MS) and ξS are chosen for this purpose, see the second row in Table 5.1.

Often, further conditions on the soft-breaking parameters are imposed. In the
well-motivated mSUGRA-inspired scenario for example the universality constraints

(m2
f )ij(MX) = m2

0δij (f = q, ℓ, u, d, e; i, j = 1, 2, 3), (5.10a)

m2
h1

(MX) = m2
h2

(MX) = m2
0, (5.10b)

Afij(MX) = A0 (f = u, d, e; i, j = 1, 2, 3), (5.10c)

Af (MX) = A0 (f = λ, κ), (5.10d)
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Mi(MX) = M1/2 (i = 1, 2, 3) (5.10e)

at the gauge coupling unification scale MX are demanded. These constraints reduce
the number of free NMSSM parameters drastically. One obtains 6 free parameters in
the Z3-symmetric, and 12 in the Z3-violating model, see the last segment in Table 5.1.

All together, the (i) matching of the gauge and Yukawa couplings to the Standard
Model parameters at the low-energy scale, the (ii) EWSB consistency conditions at
the SUSY scale and the (iii) mSUGRA-inspired constraints at the unification scale
form a set of boundary conditions on the model parameters at three different scales.
The renormalization group equations (5.7) together with all of the above conditions
form a boundary value problem. Task of the NMSSM spectrum generator is to find
a set of model parameters consistent with all boundary conditions and to calculate
the pole mass spectrum for this parameter set.

The widely used approach to solve such boundary value problems is to iteratively
use the renormalization group running to run with the model parameters to the
boundary condition scales and impose the constraints [163]. This so-called fixed-
point iteration is already used in Softsusy’s MSSM implementation. To adapt it to
the NMSSM case it is necessary to implement the β-functions of all model parameters.
For the calculation of the gauge and Yukawa couplings from the known Standard
Model observables the SUSY particle threshold corrections must be implemented as
well. To impose the EWSB conditions at the loop level the Higgs tadpoles diagrams
are necessary. Finally, for the calculation of the pole mass spectrum the mass matrices
and self-energies of all particles need to be implemented. The implementation details
will be given in the following section.

5.4 Implementation

To solve the boundary value problem described in Section 5.3 the DR β-functions of
all NMSSM parameters have to be implemented. To allow for a flexible usage (ex-
changeability, extendability, reuse) of the NMSSM parameters and their β-functions
they are put into C++ classes with well-defined interfaces. However, to implement
the NMSSM a re-design of Softsusy’s class hierarchy was necessary, which is described
in the following.

5.4.1 Class hierarchy

MSSM class hierarchy

In Softsusy prior to version 3.6.0 the MSSM class hierarchy was structured as shown in
the UML class diagram in Figure 5.1. At the top of the hierarchy is the abstract base
class RGE, which defines the interface for the RGE running via the runto() function.
At the level of the RGE interface, the running parameters are a treated as a vector
(DoubleVector) of real numbers. The pure virtual methods set(), display() and beta()

are to be implemented by the derived class to set and return the parameter vector
and the corresponding β-functions. The runto() user interface function integrates
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RGE

– mu : double

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector
+ runto(scale : double)

MssmSusy

– SUSY parameters

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector

SoftParsMssm

– soft-breaking parameters

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector

MssmSoftsusy

– DR masses and mixing matrices

+ fixedPointIteration()

Figure 5.1: MSSM class hierarchy in Softsusy.

the renormalization group equations from the current scale (stored in the member
variable mu) to the given new scale using a Runge-Kutta algorithm with dynamic step
size. This allows a “running” of the parameters between different scales.

In a supersymmetric theory with soft breaking, the β-functions of the supersymmet-
ric parameters (gauge couplings, superpotential parameters and vacuum expectation
values) are independent of the soft-breaking parameters [159, 160, 161, 134, 162, 61,
132, 63, 64]. This property is reflected in Softsusy’s class hierarchy by putting the
supersymmetric MSSM parameters into the MssmSusy class, which directly inherits
from RGE and implements all virtual functions. The soft-breaking parameters are
contained in SoftParsMssm, which inherits from MssmSusy. It overwrites the virtual RGE

interface functions to implement the soft-breaking β-functions in terms of the SUSY
parameters in the base class and the soft-breaking parameters themselves.
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At the bottom of the hierarchy stands the MSSM model class MssmSoftsusy, which
implements all mass matrices, self-energies, tadpoles and electroweak symmetry break-
ing conditions. The fixedPointIteration() function organizes the iteration between
the high and low scales and calculates the pole mass spectrum.

New NMSSM class hierarchy

To implement the NMSSM in Softsusy the old class structure in Figure 5.1 had to
be re-designed with the following requirements:

1. The old MSSM class hierarchy should be preserved for backward compatibility.

2. The class hierarchy should reflect the fact that the β-functions of the super-
symmetric parameters are independent of the soft-breaking parameters. This
can be done by making the class of soft-breaking β-functions a derived class of
the class of supersymmetric parameters.

3. As much MSSM code as possible (β-functions, mass matrices, self-energies,
tadpoles) should be reused in order to avoid code duplication. This simplifies
the code maintenance and reduces the size of the executable. The extra NMSSM
contributions should be added on top of the existing MSSM expressions.

To implement the NMSSM in Softsusy and at the same time fulfill the above re-
quirements, SoftParsMssm and MssmSoftsusy were converted into the class templates
SoftPars<T> and Softsusy<T>, respectively, which inherit from their template parame-
ters, see Figure 5.2. This technique is called policy-based design [164]. The template
parameter of SoftPars<T> is intended to be the class of SUSY parameters. This allows
to exchange the SUSY parameter base class, i.e. it is possible to calculate the MSSM
soft-breaking β-functions with a different set of SUSY parameters. The template
parameter of Softsusy<T> is the class of soft-breaking parameters. This allows to
calculate the MSSM mass matrices and self-energies using a different set of model
parameters. With this approach it is possible to

1. restore the old MSSM class hierarchy, Figure 5.1, by defining the following type
abbreviations:

typedef SoftPars <MssmSusy > SoftParsMssm ;

typedef Softsusy < SoftParsMssm > MssmSoftsusy ;

2. implement the NMSSM soft-breaking β-functions in terms of the supersymmet-
ric NMSSM parameters,

3. and reuse the existing MSSM expressions (β-functions, mass matrices, self-
energies, etc.) in the implementation of the NMSSM ones.

The NMSSM class hierarchy is now constructed as shown in Figure 5.3: First,
the class of supersymmetric NMSSM parameters, NmssmSusy, inherits from MssmSusy
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RGE

– mu : double

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector
+ runto(scale : double)

MssmSusy

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector

T
SoftPars

+ display() : DoubleVector
+ set(v : const DoubleVector&)
+ beta() : DoubleVector

T

Softsusy

+ fixedPointIteration()

T

T

Figure 5.2: Generalized class hierarchy in Softsusy 3.6.0.

to reuse the β-functions of the supersymmetric MSSM parameters. Afterwards,
SoftPars<NmssmSusy> is instantiated, which contains the MSSM soft-breaking β-func-
tions, using the supersymmetric NMSSM parameters. Then, the class of soft-breaking
NMSSM parameters, SoftParsNmssm, is created which inherits from SoftPars<NmssmSusy>.
It implements the NMSSM soft-breaking β-functions, reusing the MSSM ones from
its parent class by adding the extra NMSSM contributions. Afterwards, the class
template Softsusy<SoftParsNmssm> is instantiated, which contains the MSSM mass
matrices and self-energies, now written in terms of the NMSSM parameters. Finally,
the NMSSM model class, NmssmSoftsusy, is created which implements the NMSSM
mass matrices and self-energies in terms of the ones from the parent class, i.e. in
terms of the MSSM ones.
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RGE

MssmSusy

NmssmSusy

SoftPars<NmssmSusy>

SoftParsNmssm

Softsusy<SoftParsNmssm>

NmssmSoftsusy

Figure 5.3: NMSSM class hierarchy in Softsusy 3.6.0.

5.4.2 Implementation of the β-functions

After having re-designed the class hierarchy it was possible to implement the general
NMSSM β-functions in terms of the MSSM ones. The expressions were obtained from
the known one- and two-loop level results for general softly broken supersymmetric
theories [61, 62, 63, 64].

SUSY parameters

The β-functions of the SUSY parameters (gauge and Yukawa couplings, superpoten-
tial parameters and VEVs) were implemented into NmssmSusy on top of the existing
MSSM expression in the parent class. The extra NMSSM contributions read at the
one-loop level

(4π)2β(1)
gi

= 0, (5.11)

(4π)2β(1)
yf

= |λ|2yf , f = u, d, e, (5.12)

(4π)2β
(1)
λ = λ

(
3 Tr(ydy

†
d) + 3 Tr(yuy

†
u) + Tr(yey

†
e) + 2|κ|2 + 4|λ|2 − 3g2

1

5
− 3g2

2

)
,

(5.13)

(4π)2β(1)
κ = 6κ(|κ|2 + |λ|2), (5.14)

(4π)2β(1)
µ = 2µ|λ|2, (5.15)
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(4π)2β
(1)
µ′ = 4µ′(|κ|2 + |λ|2), (5.16)

(4π)2β
(1)
ξF

= 2ξF (|κ|2 + |λ|2), (5.17)

(4π)2β(1)
vi

= −vi|λ|2, i = 1, 2, (5.18)

(4π)2β(1)
v3

= −2v3(|κ|2 + |λ|2). (5.19)

In Eq. (5.13) the symbol g1 denotes the GUT normalized gauge coupling of the U(1)Y

and is defined as g1 =
√

5/3 gY . The full two-loop expressions can be found in [136].

For the implementation of the one- and two-loop VEV β-functions Eqs. (5.18)–(5.19)
the results obtained in Section 4.4.2 Eq. (4.63) were used.

Soft-breaking parameters

The extra NMSSM contributions for the soft-breaking parameters were implemented
into SoftParsNmssm class on top of the existing MSSM expressions in the parent class.
They read at the one-loop level

(4π)2β
(1)
Tyf

= |λ|2yf (Af + 2Aλ), (Tyf
)ij = (yf )ijA

f
ij, f = u, d, e, (5.20)

(4π)2β
(1)
Tλ

= λAλ
(

3 Tr(ydy
†
d) + Tr(yey

†
e) + 3 Tr(yuy

†
u) + 12|λ|2 − 3g2

1

5
− 3g2

2

)

+ 6λTr(y†
dydA

d) + 2λTr(y†
eyeA

e) + 6λTr(y†
uyuA

u) + 2|κ|2λ(2Aκ + Aλ)

+
6

5
g2

1M1λ+ 6g2
2M2λ, Tλ = λAλ,

(5.21)

(4π)2β
(1)
Tκ

= 6κ
[
|λ|2(Aκ + 2Aλ) + 3|κ|2Aκ

]
, Tκ = κAκ, (5.22)

(4π)2β
(1)
Bµ = 2λm′2

s κ
∗ + 6|λ|2Bµ+ 4µ|λ|2Aλ, (5.23)

(4π)2β
(1)
m′2

s
= 8(κλ∗Bµ+ µ′|κ|2Aκ + µ′|λ|2Aλ) + 4m′2

s (2|κ|2 + |λ|2), (5.24)

(4π)2β
(1)
ξS

= 2
[
κAκ(m′2

s )∗ + µ′m′2
s κ

∗ + 2µ′λ∗Bµ+ 2λAλ(Bµ)∗

+ (|κ|2 + |λ|2)ξS + 2ξF (|κ|2Aκ + |λ|2Aλ)
+ 2λµ∗(m2

h1
+m2

h2
) + 2m2

sκµ
′∗
]
,

(5.25)

(4π)2β
(1)
Mi

= 0, i = 1, 2, 3, (5.26)

(4π)2β
(1)

m2
f

= 0, f = q, ℓ, u, d, e, (5.27)

(4π)2β
(1)

m2
h1

= (4π)2β
(1)

m2
h2

= 2
[
|λ|2(m2

h1
+m2

h2
+m2

s) + |λAλ|2
]
, (5.28)

(4π)2β
(1)
m2

s
= 4

[
|λ|2(m2

h1
+m2

h2
+m2

s) + 3m2
s|κ|2 + |κAκ|2 + |λAλ|2

]
, (5.29)

The full two-loop expressions were published in [136].
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5.4.3 Solving the boundary value problem

The implemented NMSSM β-functions can now be used to solve the boundary value
problem described in Section 5.3. The algorithm, which solves the boundary value
problem is shown in Figure 5.4 and works as follows:

Guess gi(m
pole
Z ), yf (m

pole
Z ), v(mpole

Z )

and soft parameters at mpole
Z

Calculate gi(m
pole
Z ), yf (m

pole
Z ),

v(mpole
Z ) from SM input

run to mpole
Z

Impose high-scale
boundary conditions

run to MX

Solve EWSB eqs. iteratively

run to MS

if not converged
run to mpole

Z

Calculate pole masses

if converged run to MS

Figure 5.4: Algorithm to calculate the pole mass spectrum in Softsusy.

Initial guess of the model parameters:

1. Set the initial scale to mpole
t .

2. Calculate the Standard Model gauge couplings gSM
i (mpole

t ) in the MS scheme
from the known values gSM

1 (mpole
Z ), gSM

2 (mpole
Z ), gSM

3 (mpole
t ) [11]. Set NMSSM

gauge couplings gi to the Standard Model ones

gi(m
pole
t ) = gSM

i (mpole
t ) (i = 1, 2, 3), (5.30)

thereby ignoring threshold corrections.

3. Set the NMSSM VEV v to the Standard Model value of 246.22 GeV. After-
wards, the NMSSM Yukawa couplings are estimated from the running Standard
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Model fermion masses [11] as

yu =

√
2

v2

diag(2.4 · 10−3, 1.27, 165.0) GeV, (5.31)

yd =

√
2

v1

diag(4.75 · 10−3, 0.104, 4.2) GeV, (5.32)

ye =

√
2

v1

diag(5.10998902 · 10−4, 0.105658357, 1.77699) GeV. (5.33)

4. Run the SUSY parameters to the guessed high-energy scale MX = 2 · 1016 GeV.

5. Impose the high-scale constraint by overwriting the values of the NMSSM pa-
rameters. According to the user’s choice, this might be the mSUGRA constraint
Eq. (5.10), where the soft-breaking parameters are set to the universal values
m0, M1/2 and A0.

6. Run all model parameters to the low-energy scale mpole
Z .

7. Solve the EWSB equations (5.8) at the tree-level by setting {κ, |v3|2,m2
s} or

{|µ|2, Bµ, ξS} in the Z3- or \Z3-NMSSM, respectively.

8. Calculate the DR mass spectrum.

After this initial parameter guess all NMSSM model parameters are initialized and
the actual fixed-point iteration, which solves the boundary value problem can be
started.

Fixed-point iteration:

1. Run all model parameters to the low-energy scale mpole
Z .

a) Calculate the DR mass spectrum.

b) Calculate the DR NMSSM gauge couplings gi(m
pole
Z ) (i = 1, 2, 3) from the

known Standard Model couplings αe.m.(m
pole
Z ), αs(m

pole
Z ) and the muon

decay constant GF , including threshold and radiative corrections.

c) Calculate the DR Yukawa couplings yf (m
pole
Z ) (f = u, d, e) from the known

SM fermion masses, using radiative corrections. Afterwards, the NMSSM
VEV v(mpole

Z ) is calculated in the DR scheme as

v(mpole
Z ) =

2mZ(mpole
Z )

√
3g2

1(mpole
Z )/5 + g2

2(mpole
Z )

, (5.34)

where mZ(mpole
Z ) is the DR mass of the Z boson at the scale mpole

Z , which
is re-calculated in each iteration from the known pole mass. Note that
the gauge coupling g1 is GUT normalized. It is related to the hypercharge

coupling of U(1)Y via gY =
√

3/5 g1.
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2. Run all model parameters to the GUT scale MX .

a) Calculate the gauge coupling β-functions βg1
and βg2

at the two-loop level
and re-calculate MX as

M ′
X = MX exp

(
g2(MX)− g1(MX)

βg1
− βg2

)
. (5.35)

The scale M ′
X is used as new GUT scale in the next iteration.

b) Impose the high-scale constraint by overwriting the values of the NMSSM
parameters. According to the user’s choice, this might be the mSUGRA
constraint Eq. (5.10), where the soft-breaking parameters are set to the
universal values m0, M1/2 and A0.

3. Run all model parameters to the SUSY scale MS.

a) Calculate the DR mass spectrum.

b) Re-calculate the SUSY-scale as

MS =
√
mt̃1mt̃2 , (5.36)

where mt̃1 and mt̃2 are the DR stop masses (squark flavour mixing is
ignored).

c) Solve the EWSB equations (5.8) iteratively at the loop level by varying
{κ, |v3|2,m2

s} or {|µ|2, Bµ, ξS} in the Z3- or \Z3-NMSSM, respectively. The
iteration stops if the equations

∂V tree
Higgs

∂vi
− ti = 0 (i = 1, 2, 3) (5.37)

are fulfilled. Here ti are the full one-loop tadpole diagrams with external
CP-even Higgs gauge eigenstates. By default leading two-loop contribu-
tions of the order O(y4

t +y2
t y

2
b +y4

b +y4
τ +y2

t g
2
3 +y2

bg
2
3) from Refs. [165, 166]

are added.

4. If the relative deviation between the SUSY particles of the current and the
previous iteration is larger than the accuracy goal (set in the SLHA input file),
and the maximum number of iterations is not yet reached, then go to step 1.
Otherwise, stop the iteration.

If the iteration has converged, all NMSSM parameters are consistent with the EWSB
conditions, low-energy data and all user-supplied boundary conditions and are known
at any scale between mpole

Z and MX .1

1In Chapter 6 a generalization of the algorithm described here is presented, which can handle
towers of effective field theories with an arbitrary number of intermediate scales and boundary
conditions.
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5.4.4 Calculation of the pole mass spectrum

If a set of NMSSM parameters consistent with all boundary conditions has been found
the pole mass spectrum can be calculated. This is explained in the following.

The pole mass of a field is an observable and does not depend on the renormalization
scheme or the gauge fixing. It is therefore a well-suited spectrum generator output
quantity that can be passed to decay calculators or event generators. The pole mass
of a field is defined to be the momentum p for which the full propagator of the field
has a pole. For the general case of field multiplets this requirement is equivalent to
finding values pi for which the equations

0 = det
(
p2
i1−Mϕ +Mϕ,1L(p2

i )
)

for scalars/vectors ϕ, or (5.38a)

0 = det
(
pi1−Mξ +Mξ,1L(p2

i )
)

for Dirac/Majorana fermions ξ (5.38b)

are fulfilled. Here Mϕ and Mξ are the mass matrices of a scalar/vector field ϕ and a
Dirac/Majorana fermion ξ, respectively. In the DR scheme, in which the NMSSM is
renormalized, the mass matrix one-loop corrections Mf,1L(p2) have the form

scalar φ: Mφ,1L(p2) = Σ̂φ(p
2), (5.39a)

vector V : MV,1L(p2) = Σ̂V,T (p2), (5.39b)

Dirac fermion ψ: Mψ,1L(p2) = Σ̂S
ψ(p2) + Σ̂R

ψ (p2)Mψ +MψΣ̂L
ψ(p2), (5.39c)

Majorana fermion χ: Mχ,1L(p2) =
1

2

{
Σ̂S
χ(p2) + Σ̂S,T

χ (p2) +
[
Σ̂L,T
χ (p2) + Σ̂R

χ (p2)
]
Mχ

+Mχ

[
Σ̂L
χ(p2) + Σ̂R,T

χ (p2)
]}
. (5.39d)

Here Σ̂f is the real part of the DR renormalized one-loop self-energy of field f . The

left-, right- and unpolarized parts of the fermion self-energies are denoted as Σ̂L,R,S
f ,

and Σ̂V,T is the transverse part the vector boson self-energy. By default leading two-
loop contributions of the order O(y4

t + y2
t y

2
b + y4

b + y4
τ + y2

t g
2
3 + y2

bg
2
3) to the CP-even

and CP-odd Higgs self-energies are added [166, 167, 168].

If a consistent set of NMSSM parameters is available, the Eqs. (5.38) can be solved
numerically for all NMSSM Dirac fermions (quarks, leptons, charginos), Majorana
fermions (neutralinos, gluino), scalars (squarks, sleptons, Higgs bosons) and vector
bosons (W±, Z). For this purpose the DR mass matrices Mϕ and Mξ are calculated
numerically from the DR model parameters. Afterwards, the full loop-corrected mass
matrices (Mf −Mf,1L(p2

i )) must be diagonalized to obtain the pole masses. However,
since the loop corrections are momentum dependent an iteration over the pi has to be
performed in principle. This is done in the Higgs sector to obtain a precise pole mass
prediction. For the other fields the iteration is replaced by a faster approximation,
which is correct at the one-loop level but neglects higher order terms. Here the full
loop-corrected mass matrices are diagonalized N times, where N is the size of the
multiplet. For the ith field in the multiplet the momentum pi is set to the DR mass
mi. The ith eigenvalue is then an approximation of the pole mass mpole

i . Thereby
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two-loop terms of the form

[
(mpole

i )2 −m2
i

] ∂Mf,1L(p2)

∂p2

∣∣∣∣∣
p2=m2

i

(5.40)

are neglected.
The diagonalization of the mass matrices can lead to negative mass eigenvalues. In

case of fermions, the masses can be defined as positive by a suitable complex phase
transformation of the mixing matrices. However, in the scalar sector negative squared
mass eigenvalues inevitably result in tachyons. During the fixed-point iteration such
tachyonic states are avoided by taking the square root of the magnitude of the
eigenvalues. If these tachyons still occur after the fixed-point iteration has converged,
the parameter point is marked as unphysical and an error flag is set.

5.5 Tests and comparison to NMSPEC

To validate all implemented expressions extensive cross-checks have been performed.
The β-functions for both the Z3-symmetric and Z3-violating NMSSM are analytically
compared against the expressions given in [37] in the third family approximation. Fur-
thermore, the mass matrices, EWSB conditions, full one- and two-loop β-functions as
well as the complete one-loop self-energies and tadpoles were systematically compared
with a Z3- and \Z3-NMSSM spectrum generator, created by FlexibleSUSY, and were
found to agree within double machine precision (16 digits). The overall spectrum
of pole masses was compared with NMSPEC [145] and found to agree within 2–4%
on average.2 These deviations mainly stem from the following differences between
Softsusy and NMSPEC:

• NMSPEC uses a third-family approximation, where all Standard Model Yukawa
couplings are set to zero, except for yt, yb and yτ . Softsusy on the other hand
does not set any Yukawa couplings to zero and takes family mixing via the
CKM matrix into account.

• Softsusy implements the full one-loop self-energies and tadpoles to calculate the
pole mass spectrum. NMSPEC neglects for example electroweak contributions
in the sfermion self-energies.

• As low-energy scale Mlow NMSPEC uses the definition

Mlow = 4

√
(m2

q)33(m2
u)33. (5.41)

At this scale the SM gauge and Yukawa couplings, the Higgs wave function
renormalization constants, as well as third generation squark and slepton pole

2For parameter points with fine-tuning the deviation can be much larger (up to 50%). The reason
is that for such points the spectrum is highly sensitive to the values of the input parameters.
This has the consequence that small numerical differences during the computation can lead to a
completely different spectrum.
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masses are calculated [145]. Softsusy calculates the gauge and Yukawa couplings
at mpole

Z and all pole masses at the SUSY scale MS =
√
mt̃1mt̃2 .

• The SUSY scale is defined in NMSPEC as

MNMSPEC
S =

1

2

√
2(m2

q)11 + (m2
u)11 + (m2

d)11. (5.42)

The here appearing soft-breaking squared mass matrices of the squarks, m2
f , are

assumed to be diagonal and degenerate in the first two generations. At this scale
NMSPEC defines the input parameter λ and the EWSB output parameters κ,
v3 and m2

s (in the DR scheme). Softsusy on the other hand allows to define λ
either at the scale MS =

√
mt̃1mt̃2 , or at the high-energy scale MX . The EWSB

output parameters are always defined at MS.

To illustrate the size of the deviations of the predicted pole masses between Softsusy
3.4.1 and NMSPEC 4.2.1 a parameter scan over tan β in the Z3-symmetric NMSSM
is performed. A mSUGRA-inspired scenario with large universal parameters m0 =
M1/2 = −A0 = 5 TeV is chosen to produce spectra with heavy Higgses with a masses
of the order 120 GeV. The superpotential parameter λ is set to 0.1 at the SUSY
scale and the sign of the VEV v3 is chosen to be positive. Figure 5.5 shows the
lightest CP-even Higgs pole mass as a function of tan β in the range 2 . . . 50. The
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Figure 5.5: Lightest CP-even Higgs pole mass in the Z3-NMSSM as a function of
tan β. The plot shows the prediction with Softsusy 3.4.1 and NMSPEC 4.2.1. The
chosen Z3-NMSSM parameter point hasm0 = M1/2 = −A0 = 5 TeV, λ(MS) = 0.1
and sign v3 = +1.

used SLHA input file is listed in Appendix D. One finds that for tan β = 2 . . . 47 the
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two spectrum generators predict the same Higgs pole mass within 2–3% deviation.
For larger values, tan β > 47, the deviations can rise to 10%. In these parameter
regions the Higgs loop corrections are more sensitive to small numeric deviations.
Here the differing input scales for λ plus the various approximations used by Softsusy
and NMSPEC lead to a significantly different Higgs mass prediction. At tan β = 50
Softsusy’s loop corrections lead to a tachyonic Higgs. Overall, this emphasizes again
the benefit of having several NMSSM spectrum generators for comparison.

5.6 Summary and conclusion

The increasing lower mass limits on new SUSY particles from current LHC experi-
ments and the discovery of a Higgs boson of 125.9 GeV decrease the attractiveness of
the MSSM as an extension of the Standard Model. Currently the NMSSM becomes
more popular as it can relax the Higgs mass fine-tuning and is less experimentally
constrained.

By the end of 2013 NMSPEC was the only out-of-the-box NMSSM spectrum
generator, which could calculate the pole masses of the new NMSSM particles. In
the past, having various spectrum generators at hand has been proven useful for
the SUSY community, because different spectrum generators use different levels of
approximations, which can result in very different pole mass predictions in some
parameter regions.

Part of this thesis was to help extending the MSSM spectrum generator Softsusy,
to calculate the pole mass spectrum of the Z3-symmetric and Z3-violating NMSSM
as well. This NMSSM extension was released in version 3.4.0 [136]. To make this
extension possible Softsusy’s class hierarchy was re-designed and extended. The new
NMSSM classes implement the full two-loop DR β-functions, as well as complete mass
matrices, one-loop self-energies and tadpoles plus leading two-loop contributions to
the CP-even and CP-odd Higgs self-energies and tadpoles. The resulting NMSSM
spectrum generator was extensively tested against both NMSPEC and automatically
generated C++ code, created by FlexibleSUSY.

In Section 5.5 it was shown that there are NMSSM parameter regions where the
predicted lightest CP-even Higgs pole mass can be very different between NMSPEC
and Softsusy. The main reason is a high sensitivity of the mass spectrum on the input
parameters in these regions. This emphasizes the benefit of having several NMSSM
spectrum generators for comparison to estimate the precision of the spectrum pre-
diction.
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Chapter 6

FlexibleSUSY – A spectrum
generator generator

6.1 Motivation

As discussed in Section 2, the Minimal Supersymmetric Standard Model (MSSM) has
some theoretical problems, such as the Higgs mass fine-tuning and the µ-problem.
Non-minimal models can solve these problems by introducing new particles or ex-
tending the gauge group and provide a rich phenomenology at the TeV scale.

To study the properties of non-minimal supersymmetric models, spectrum gen-
erators are necessary, which calculate the pole masses of the new SUSY particles
numerically, given a set of theory input parameters. The calculated pole mass
spectrum can then be transferred to programs which calculate further observables,
such as cross sections, branching ratios, the dark matter relic density and detection
rates etc. These observables can then be used in experimental data analysis to search
for supersymmetric particles. For a review of some available computational tools for
SUSY phenomenology see for example [169].

To create a spectrum generator one needs the Lagrangian and the field content
of the model and derive the RGEs, mass matrices, self-energies, tadpoles and elec-
troweak symmetry breaking (EWSB) conditions. The derivation of these expressions
can be carried out algebraically with the Mathematica package SARAH [112, 113,
146, 137]. Here the user specifies the gauge group, the fields and their quantum
numbers, additional discrete symmetries, the superpotential and the mixing to mass
eigenstates. Since version 3.2 [146] SARAH can convert these expressions to Fortran
code, which can be incorporated into SPheno [147, 148] to obtain a complete spectrum
generator for the given SUSY model.

However, the so generated spectrum generator has some disadvantages:

• Due to the large variety and complexity of supersymmetric models it is likely
that the user wants to adapt the generated spectrum generator source code
to his own needs. However, the SARAH generated Fortran code is not very
modular. For example, it is not possible exchange the boundary conditions
easily at the Fortran code level. The reason is that in the generated RunRGE

function, which integrates the RGEs to run between the high-, SUSY and low-
energy scales, the used boundary condition functions are hard-coded:
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! SUSY boundary condition function

Subroutine BoundarySUSY (gA ,gB)

Real(dp),Intent (in)::gA (:)

Real(dp),Intent (out)::gB (:)

...

End Subroutine BoundarySUSY

! high -scale boundary condition function

Subroutine BoundaryHS (gA ,gB)

Real(dp),Intent (in)::gA (:)

Real(dp),Intent (out)::gB (:)

...

End Subroutine BoundaryHS

Subroutine RunRGE (kont , delta0 , g1A , g1C , mGUT)

Integer , Intent (inout ):: kont

Real(dp),Intent (in):: delta0

Real(dp),Intent (inout ):: g1A (57)

Real(dp),Intent (out):: g1C (213) ,mGUT

...

! explicit call to BoundarySUSY

Call BoundarySUSY (g1A ,g1B)

...

! explicit call to BoundaryHS

Call BoundaryHS (g1B ,g1C)

...

End Subroutine RunRGE

Due to this structure, it is not easily possible to exchange the boundary con-
dition functions by user-supplied Fortran routines. The user has to either (i)
directly modify the generated boundary condition functions and recompile, or
(ii) replace the explicit function calls to BoundarySUSY and BoundaryHS by calls to
his own routines and recompile, or (iii) try to express the boundary conditions
in the SPheno model file Sheno.m, which might not always be possible.

• The run-time of the spectrum generator is around 0.2–1.0 s for the CMSSM, see
Section 6.4.1. This is rather slow, compared to hand-written CMSSM spectrum
generators SPheno and Softsusy, which run approximately between 0.05–0.3 s
and 0.1–0.2 s, respectively. Having a fast spectrum generator is especially
important when performing parameter scans, because the dimension of the
parameter space can be quite large (5 parameters in the CMSSM1, 6 in the
Z3-NMSSM2, 12 in the \Z3-NMSSM3, 12 in the CE6SSM4).

• The algorithm, which solves the boundary value problem is a (nested) fixed-

1Free CMSSM parameters: m2
0, M1/2, A0, tan β, signµ

2In the Z3-symmetric NMSSM the following minimal parameter set can be chosen [136]: m2
0, M1/2,

A, tan β, λ, sign v3, (κ, |v3|2, m2
S are output of the EWSB equations)

3In the Z3-violating NMSSM the following minimal parameter set can be chosen [136]: m2
0, M1/2,

A0, tan β, λ, κ, v3, ξF , µ′, m′

S , m2
S , signµ (|µ|2, Bµ, ξS are output of the EWSB equations)

4See Eq. (3.2).
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point iteration together with an adaptive Runge-Kutta algorithm to integrate
the RGEs. The convergence properties of this fixed-point iteration strongly
depend on the chosen input parameters and it might happen that the algorithm
does not converge.

• In some models, for example the supersymmetric type-I see-saw model [170,
171, 172, 173], one would like to integrate out particles at some intermediate
scale between the weak and the GUT scale. To study such models one has to
construct a tower of effective field theories, which are matched at the interme-
diate scale. However, the SARAH generated Fortran code does not define an
interface for such a tower construction.

In this thesis the spectrum generator framework FlexibleSUSY was developed, which
represents an alternative to SARAH/SPheno with additional features. It provides
Mathematica meta code, which generates spectrum generators for any supersym-
metric model in C++. It uses SARAH to generate algebraic expressions for the
RGEs, mass matrices, self-energies, tadpoles and EWSB conditions and converts them
to C++ classes, which are then automatically combined to a spectrum generator.
FlexibleSUSY’s design goals are:

• The generated C++ code should be modular, in order to allow the user to
modify, extend and reuse the code easily. This is achieved by using the object
orientation features of C++, see Section 6.3.2.

• The compiled C++ code should be as fast as possible and at least as fast as
hand-written spectrum generators. This is achieved by using the linear algebra
package Eigen [174], which exploits C++ expression template techniques to
generate well-optimizable code, see Section 6.4.1.

• It provides an interface for alternative boundary value problem solvers, in
order to study parameter space regions where the standard fixed-point iteration
does not converge. This is achieved by designing the code structure such that
different solvers can be used at run-time. The standard fixed-point iteration
solver can already be generated automatically. As an alternative a lattice solver
prototype already exists for the CMSSM as a proof of concept.

• An interface for a tower of effective field theories should be provided at the
C++ level.

6.2 General physical problems

To create a spectrum generator for a arbitrary SUSY model the physical and technical
questions, which had to be solved in the NMSSM extension of Softsusy or the CE6SSM
spectrum generator have to be generalized. They are explained in the following.
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6.2.1 Definition of the model

The physical starting point for the spectrum generator is the definition of the model.
FlexibleSUSY currently considers only supersymmetric gauge theories with soft break-
ing. Such models are defined by

1. The symmetry group. This includes the N = 1 Super-Poincaré group and the
gauge group. Since the model must include the Standard Model at low energies,
only semisimple product groups are considered which contain the Standard
Model gauge group SU(3)c×SU(2)L×U(1)Y as factor. This allows to directly
identify the strong, left-handed and hypercharge gauge couplings needed for a
matching to the Standard Model.

2. The fields and their representations with respect to the symmetry group. Here
only chiral and vector superfield representations of the Super-Poincaré group
are considered, which contain fields with spin 0, 1/2 and 1. Fields with spin 3/2
or 2, such as the gravitino and the graviton are explicitly excluded. The field
representations with respect to the gauge group defines their gauge transforma-
tions and charges. The representations with respect to the full symmetry group
of the model fixes the Kähler potential and therefore the gauge interactions.
Furthermore, the charges need to be chosen such that the theory is free of
gauge anomalies.

FlexibleSUSY requires that the model contains at least the know Standard
Model fermions (quarks and leptons), gauge bosons (photon, W±, Z, gluon)
and a Higgs boson.

3. The superpotential and the soft supersymmetry breaking terms. Only power
counting renormalizable superpotentials and soft-breaking Girardello-Grisaru
terms of the form [12] are considered.

4. The spontaneous gauge symmetry breaking scheme. The breaking scheme must
be such that only SU(3)c × U(1)em remains as an exact symmetry in order to
obtain a massless gluon and photon. All other gauge group factors must be
broken to produce massive gauge bosons for phenomenological reasons.

5. The field mixings to mass eigenstates. Only mixings are allowed which do not
violate the low-energy symmetry of the model. These are the Lorentz group
and the SU(3)c × U(1)em gauge group. This implies that only fields with the
same spin, color and electromagnetic charge can be mixed.

6. The regularization and renormalization scheme. In FlexibleSUSY all model pa-
rameters are renormalized in the supersymmetry, gauge and Poincaré symmetry
preserving DR scheme [105, 106].

A so-defined SUSY model can be directly matched to the Standard Model at low
energies, because it contains all known matter fields and gauge bosons. Since the La-
grangian and the mixing to mass eigenstates is defined completely, the mass matrices,
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EWSB conditions, Feynman rules, one-loop self-energies and tadpole diagrams can be
calculated automatically for all fields. Furthermore, in such a model the β-functions
of all parameters are known up to the two-loop level [61, 132, 63, 64].

SARAH [112, 146, 137], a Mathematica package for supersymmetric models, allows
a user to define such a model. It can calculate mass matrices, EWSB conditions,
Feynman rules, one-loop self-energies and tadpole diagrams algebraically with Math-
ematica. FlexibleSUSY uses all these SARAH generated expressions to create a
spectrum generator for the given model, which numerically calculates the model
parameters, the pole mass spectrum and mixing matrices of all fields.

6.2.2 Boundary conditions

In most SUSY models some of the parameters are fixed by explicit or implicit
conditions. For example in the MSSM the gauge and Yukawa couplings are usually
chosen such that they match the known Standard Model values at the Z mass scale.
Usually many more conditions are imposed at other scales. Therefore, FlexibleSUSY
is designed to allow for an arbitrary number of boundary conditions at any scale.
However, two constraints are of particular phenomenological importance and will
always be imposed: The matching of the gauge and Yukawa couplings to the Standard
Model and the electroweak symmetry breaking.

Matching to the Standard Model

Any phenomenologically viable SUSY model is required to correctly predict the mea-
sured low-energy observables. This includes in particular the known Standard Model
fermion masses mf , the gauge boson masses mpole

W and mpole
Z and the electromagnetic

and strong couplings αSM
e.m.(m

pole
Z ) and αSM

s (mpole
Z ). As in the case of the NMSSM

extension of Softsusy and the CE6SSM spectrum generator, these parameters are
well suited to be input at the low scale to determine the gauge and Yukawa couplings
(if they exist) of the SUSY model.

For this purpose the quarks, leptons and W± and Z bosons of the Standard Model
must be identified. This identification is done by the user in the SARAH model file.
The four input quantities mpole

W , mpole
Z , αSM

e.m.(m
pole
Z ) and αSM

s (mpole
Z ) can then be used

to determine the three gauge couplings gi of the SU(3)c×SU(2)L×U(1)Y symmetry
group. This first requires the calculation of the gauge coupling threshold corrections
∆αi(µ) to determine the electromagnetic and strong couplings e and g3 in the SUSY
model via

αe.m.(µ) =
αSM

e.m.(µ)

1−∆αe.m.(µ)
⇒ e(µ) =

√
4παe.m.(µ), (6.1)

αs(µ) =
αSM

s (µ)

1−∆αs(µ)
⇒ g3(µ) =

√
4παs(µ). (6.2)

The general form of ∆αi(µ) is well known [55] and depends on the renormalization
scale µ, the field representations and the masses. Afterwards, the Weinberg angle θW
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must be calculated to relate e to g1 and g2 via

g1(µ) = NGUT
e(µ)

cos θW (µ)
, (6.3)

g2(µ) =
e(µ)

sin θW (µ)
. (6.4)

Here NGUT is a possible GUT normalization of the coupling g1 to allow the embedding
of the SM gauge group into a simple GUT gauge group. The calculation of θW is
model specific and depends on the photon–Z mixing. In case of an extended Higgs
sector and/or additional neutral gauge bosons the determination of θW is non-trivial.

The known masses of the quarks and leptons as well as the CKM matrix can in
general be used to calculate the SM-like Yukawa couplings of the SUSY model at
the low-energy scale. Special care must be taken when determining the bottom and
top quark Yukawa couplings, because they strongly influence the spectrum for large
tan β and the prediction of the Higgs pole mass, respectively.

Electroweak symmetry breaking

As discussed above, the SUSY model is required to spontaneously break the elec-
troweak symmetry by a Higgs mechanism. For this the scalar Higgs potential, VHiggs,
is required to allow for a non-zero ground state (vacuum expectation value, VEV) of
one or more electrically and color neutral spin 0 Higgs bosons. This is ensured by
the electroweak symmetry breaking consistency conditions, which have the form

∂VHiggs

∂vi
= 0 ∀i. (6.5)

Here i = 1, . . . , N enumerates all non-zero VEVs vi. These N conditions can be
fulfilled by adjustingN model parameters, the so-called EWSB output parameters. In
the CMSSM for example these are chosen to be µ and Bµ, while in the Z3-symmetric
NMSSM κ, |v3|2 and m2

s are used. At the loop level the Higgs potential receives
radiative corrections. To let the sum of all tree-level and loop tadpole diagrams
vanish, it is convenient to minimize the loop-corrected Higgs potential. The EWSB
consistency conditions then take the form

∂V tree
Higgs

∂vi
− ti = 0, (6.6)

where ti is the tadpole diagram of ith gauge eigenstate Higgs field. Since the tadpole
diagrams contain the masses of the SUSY particles, which depend on the EWSB
output parameters, Eq. (6.6) must be solved iteratively.

Further boundary conditions

In constrained SUSY models, such as the CMSSM or CE6SSM further conditions
on the soft-breaking parameters are imposed at the GUT scale MX . These models
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use mSUGRA scenarios where all soft-breaking squared masses, gaugino masses and
trilinear couplings are universal at MX . Here the GUT scale is defined to be the scale
where the (GUT normalized) gauge couplings g1 and g2 unify. Since such constrained
models are often studied, FlexibleSUSY provides a mechanism to determine the GUT
scale and impose constraints of this kind.

Boundary value problem

Just as in the case of the CE6SSM and NMSSM spectrum generators described in
Sections 3 and 5 all here listed constraints together with the β-functions of all model
parameters form a boundary value problem. Even more general constructions are
conceivable, where a tower of effective theories is constructed which are matched at
intermediate scales between mpole

Z and MX . To solve such general boundary value
problems, taking towers of effective theories and an arbitrary number of constraints
into account, FlexibleSUSY provides a generalization of Algorithm 5.4, which will be
explained in Section 6.3.2.

6.2.3 Calculation of pole masses

Having solved the above described boundary value problem it is possible to calculate
the pole mass spectrum. This means finding values for the momenta pi for which the
full propagators of the fields have a pole. It is equivalent to finding values pi such
that the equations

0 = det
(
p2
i1−Mϕ +Mϕ,L(p2

i )
)

for scalars/vectors ϕ, or (6.7a)

0 = det
(
pi1−Mξ +Mξ,L(p2

i )
)

for Dirac/Majorana fermions ξ (6.7b)

are fulfilled. Here Mf is the tree-level mass matrix and Mf,L contains loop corrections
from the self-energy of field f . In the DR scheme the form of the loop corrections
Mf,L for the here considered spin 0, 1/2 and 1 fields is well known at the one-loop
level. The general form was already given in Section 5.4.4 and can be directly applied
to the SUSY models considered here.

6.3 Implementation

Goal of FlexibleSUSY is to create a fast and modular spectrum generator for a user-
defined SUSY model, which numerically solves the given boundary value problem and
calculates the pole mass spectrum. This is done in the following way: At first the β-
functions, mass matrices, self-energies, tadpoles and EWSB equations are calculated
algebraically with SARAH. These algebraic expressions are then converted to C++
form and are written to C++ classes. The created classes are finally combined at
the C++ level to form a complete spectrum generator, which is then compiled to a
single executable.
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To achieve the design goals from Section 6.1, the generated C++ classes implement
well-defined interfaces for the model parameters, β-functions, boundary conditions,
etc. This allows to easily modify, extend, exchange and reuse the generated code.
Furthermore, the algebraic expressions for the β-functions are written at the C++
level in terms of the matrix and vector classes provided by Eigen [174]. Eigen uses
C++ expression templates [175] to formulate the matrix operations such that they
can be well optimized by the compiler. This results in very well optimized code with
a short execution time. In addition multi-threading is used to calculate the pole
mass spectrum, which further decreases the run-time of the spectrum generator on
multi-core CPUs.

This chapter is structured as follows: Section 6.3.1 describes how the algebraic
expressions for the β-functions, mass matrices, self-energies etc. are obtained from
SARAH and converted to C++ form. In Section 6.3.2 the C++ class structure is
explained, which allows for the flexible usage. Section 6.3.3 describes how a user can
define boundary conditions on the model parameters and how the gauge and Yukawa
couplings are obtained from the Standard Model values at the low-energy scale.
Sections 6.3.4 and 6.3.5 explain the algorithm to solve the user-defined boundary
value problem and the calculation of the pole mass spectrum.

6.3.1 Creating the C++ source code

To build the spectrum generator, FlexibleSUSY requires the following information:

• A SARAH model file must be available, which defines the SUSY model. Here
the user has to provide the gauge group, the field content, the superpotential
and the mixing to mass eigenstates. A detailed description of how to write such
a model file can be found in [137] or in the manual shipped with each SARAH
package. Note that SARAH already provides plenty of predefined model files for
the most common models, as for example the MSSM (and variants), NMSSM
(Z3-conserving and -violating version) and USSM. FlexibleSUSY ships addi-
tional model files for the E6SSM and a MSSM extension with right-handed
neutrinos.

• A FlexibleSUSY model file must be created, which defines the input parameters,
the boundary conditions at the high-, SUSY and low-energy scale and the
EWSB output parameters. See Section 6.3.3 for a detailed description on how
to create such a model file. Note that FlexibleSUSY already is distributed
with examples for often studied SUSY models such as the MSSM, NMSSM
(Z3-conserving and -violating version), USSM and E6SSM.

Configuration and build

When this information is available, FlexibleSUSY can be configured and build with
the following three commands
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./ createmodel --name=<model >

./ configure --with - models =<model >

make

where <model> is the user-defined name of the SUSY model. The createmodel script will
create a sub-directory <model>/ with a makefile module (module.mk), the FlexibleSUSY
model file (FlexibleSUSY.m) and the Mathematica start script (start.m). The latter
will invoke Mathematica to start the code generation. The configure script checks
the build environment (compilers, installed SARAH version, available Mathematica
version, Eigen library, etc.) and creates the Makefile. Finally, make will start the
code generation and finally compiles all source code files. After the compilation has
finished, the spectrum generator can be run with the command

./ models /<model >/run_ <model >.x \

--slha -input -file=<input -file > --slha -output -file=<output -file >

This will calculate the pole mass spectrum and the model parameters for the pa-
rameter point given in the SLHA input file <input-file> and write the result to the
output file <output-file> in SLHA format [176, 149].

Code generation

When make is called, a Mathematica kernel is started and the start script in the model
directory <model>/start.m is loaded, which starts the C++ code generation. This code
generation is described in the following and is illustrated in Figure 6.1.

At first, SARAH is loaded and SARAH‘Start["<model>"] is called. This loads the
SARAH model file, where the gauge symmetry group, the particles, their mass
eigenstate mixings and the superpotential are defined. Afterwards, FlexibleSUSY
is loaded and FlexibleSUSY‘MakeFlexibleSUSY[] is called. This function starts the code
generation:

1. The β-functions are calculated algebraically by calling SARAH‘CalcRGEs[]. These
β-functions are then split into two sets: β-functions for SUSY parameters
(gauge couplings, VEVs and superpotential parameters) and β-functions for
soft-breaking parameters (soft squared masses, soft-breaking gaugino masses
and trilinear, bilinear and linear soft-breaking scalar couplings). This splitting
is physically motivated, because the β-functions of the SUSY parameters do not
depend on soft-breaking parameters due to the general structure of the RGEs
[159, 160, 161, 134, 162, 61, 132, 63, 64]. Therefore, the RGEs of the SUSY
parameters can in principle be solved independently from the soft-breaking
ones.

This property is also reflected in the generated C++ code, as will be explained
in Section 6.3.2: The SUSY parameters and their β-functions are stored in the
class <model>_susy_parameters. The soft-breaking model parameters, together
with their β-functions are stored in the class <model>_soft_parameters. The
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Start SARAH
and FlexibleSUSY

SARAH‘Start["<model>"]

FlexibleSUSY‘MakeFlexibleSUSY[]

Calculate β-functions
SARAH‘CalcRGEs[]

Calculate mass matrices,
EWSB eqs. and self-energies

SARAH‘MassMatrix[]

SARAH‘TadpoleEquations[]

SARAH‘CalcLoopCorrections[]

Create boundary conditions

<model>_susy_parameters.cpp

<model>_soft_parameters.cpp

<model>.cpp

<model>_high_scale_constraint.cpp

<model>_susy_scale_constraint.cpp

<model>_low_scale_constraint.cpp

Figure 6.1: FlexibleSUSY C++ code generation program flow.

dependence of the soft-breaking parameters on the SUSY parameters is realized
via inheritance, see Figure 6.2, where <model>_soft_parameters inherits from
<model>_susy_parameters. In this way, the class <model>_soft_parameters can
implement the soft-breaking β-functions in terms of the all parameters, while
the class <model>_susy_parameters is independent of the soft-breaking ones.

2. The mass matrices are calculated by calling SARAH‘MassMatrix[<particle>] for
each mass eigenstate <particle>. The obtained expression is converted into a
C++ member function of the model class. For example, the mass matrix for
the CP-even Higgs hh in the MSSM is converted to

Eigen :: Matrix <double ,2,2> MSSM :: get_mass_matrix_hh () const

{

Eigen :: Matrix <double ,2,2> mass_matrix_hh ;

mass_matrix_hh (0 ,0) = mHd2 + AbsSqr (Mu)

+ 0.225* Sqr(g1)*Sqr(vd) + 0.375* Sqr(g2)*Sqr(vd)

- 0.075* Sqr(g1)*Sqr(vu) - 0.125* Sqr(g2)*Sqr(vu);

mass_matrix_hh (0 ,1) = -0.5* BMu - 0.5* Conj(BMu)

- 0.15* vd*vu*Sqr(g1) - 0.25* vd*vu*Sqr(g2);

mass_matrix_hh (1 ,0) = mass_matrix_hh (0 ,1);

mass_matrix_hh (1 ,1) = mHu2 + AbsSqr (Mu)

- 0.075* Sqr(g1)*Sqr(vd) - 0.125* Sqr(g2)*Sqr(vd)

+ 0.225* Sqr(g1)*Sqr(vu) + 0.375* Sqr(g2)*Sqr(vu);
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return mass_matrix_hh ;

}

For each mass matrix a corresponding diagonalization function is created, which
calculates the DR mass eigenstates and the mixing matrices. For the CP-even
Higgs this function looks like

void MSSM :: calculate_Mhh ()

{

const auto mass_matrix_hh ( get_mass_matrix_hh ());

fs_diagonalize_hermitian ( mass_matrix_hh , Mhh , ZH);

if (Mhh. minCoeff () < 0.)

problems . flag_tachyon (hh);

else

problems . unflag_tachyon (hh);

Mhh = AbsSqrt (Mhh);

}

For mass matrices of size 4×4 or smaller, the function fs_diagonalize_hermitian()

uses Eigen’s SelfAdjointEigenSolver to diagonalize the mass matrix. For larger
matrices, LAPACK’s diagonalization functions are used for speed reasons. After
the diagonalization the function checks for tachyons and takes the square root
of the mass eigenstate vector Mhh.

3. The tree-level electroweak symmetry breaking equations are calculated by call-
ing SARAH‘TadpoleEquations[]. FlexibleSUSY tries to solve them analytically for
the user-defined set of EWSB output parameters. If an analytic solution can
be found, the result is written to the solve_ewsb_tree_level() function of the
model class.5 In the CMSSM, for example, where µ and Bµ are chosen as
EWSB output, the function which solves the EWSB equations has the form

int MSSM :: solve_ewsb_tree_level ()

{

int error = 0;

const double old_BMu = BMu;

const double old_Mu = Mu;

BMu = (0.05*( -20* mHd2*vd*vu + 20* mHu2*vd*vu

- 3* Power(vd ,3)*vu*Sqr(g1) + 3*vd*Power(vu ,3)*Sqr(g1)

- 5* Power(vd ,3)*vu*Sqr(g2) + 5*vd*Power(vu ,3)*Sqr(g2)))

/( Sqr(vd) - Sqr(vu));

5In case multiple solutions are found, which differ by a sign only, the free sign is added to the list
of input parameters. This is the case in the CMSSM for example, where the EWSB conditions
fix only |µ|2 and signµ remains free.
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Mu = LOCALINPUT ( SignMu )*Sqrt ((-( mHd2*vd) + vu*BMu

- 0.075* Power(vd ,3)*Sqr(g1) - 0.125* Power(vd ,3)*Sqr(g2)

+ 0.075* vd*Sqr(g1)*Sqr(vu)

+ 0.125* vd*Sqr(g2)*Sqr(vu))/vd);

const bool is_finite = std :: isfinite (BMu)

&& std :: isfinite (Mu);

if (! is_finite ) {

BMu = old_BMu ;

Mu = old_Mu ;

error = 1;

}

return error;

}

If no analytic solution can be found, an iterative algorithm is used to solve the
EWSB conditions numerically. The algorithm tries to find the root of the EWSB
equations (6.6) simultaneously using GNU GSL’s gsl_multiroot_fsolver_hybrid

[177]. If no solution can be found the multi-dimensional GSL root-finder with
dynamic step size gsl_multiroot_fsolver_hybrids is used. If this method fails as
well the Broyden method gsl_multiroot_fsolver_broyden is tried finally.

4. The one-loop self-energies, tadpole diagrams and Feynman Rules are calculated
by calling SARAH‘CalcLoopCorrections[]. The obtained expressions are converted
to C++ functions and are written to the model class. For example, the CP-even
Higgs self-energy function in the MSSM has the form

std :: complex <double > MSSM :: self_energy_hh ( double p,

unsigned gO1 , unsigned gO2) const

{

std :: complex <double > result ;

result += 4*B0(p,MVWm ,MVWm)*Conj( CpUhhconjVWmVWm (gO2))

* CpUhhconjVWmVWm (gO1);

result += 4*A0(MVWm)* CpUhhUhhconjVWmVWm (gO1 ,gO2);

...

return result * oneOver16PiSqr ;

}

The first argument of the function is the momentum of the external Higgs field.
The second and third arguments are the mass eigenstate indices of the external
Higgs fields (i = 1, 2). The function then successively adds all one-loop diagrams
that contribute to the self-energy. For instance, the first diagram in the above
example is a W -boson loop with two propagators and is written in terms of
the B0(p,mW ,mW ) Passarino-Veltman function [178], which are defined in the
convention of [179].
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5. As last step, FlexibleSUSY creates classes for the three user-defined boundary
conditions at the high-, SUSY and low-energy scale. All of these classes imple-
ment the common Constraint interface, which defines the abstract properties of
a boundary condition. See Section 6.3.3 for the implementation details.

6.3.2 Class hierarchy

To allow for a flexible usage (reuseability, extendability, exchangeability) of the
model information the generated code is structured in C++ classes with well-defined
interfaces. For this purpose two main class hierarchies are created:

1. The model class hierarchy, which contains the model parameters, β-functions,
mass matrices, EWSB equations, tadpoles and self-energies. Most of this
information is provided by SARAH. Among the expressions mentioned here
only the parameters, which are chosen to be output of the EWSB equations are
defined in the FlexibleSUSY model file.

2. The RGE solver class hierarchy, which connects the model class hierarchy with
the boundary conditions at an abstract level. The later established concrete
connection with the user-defined boundary conditions defines the actual bound-
ary value problem at the C++ level.

These two C++ class hierarchies are described in the following. The concrete model-
specific definitions of the boundary conditions will be explained afterwards in Sec-
tion 6.3.3.

Model class hierarchy

The model class hierarchy describes in essence four properties of the SUSY model
from Section 6.2: The model parameters, the β-functions, the electroweak symmetry
breaking and the calculation of the pole mass spectrum. It is illustrated in the UML
diagram in Figure 6.2.

At the top of the hierarchy is the Beta_function interface class. Its purpose is to
define the run_to() function, which integrates the RGEs up to a given scale, using
a Runge-Kutta method with adaptive step size. To provide this functionality, three
virtual interface functions need to be implemented by the derived class: (i) The
get() function, which returns all model parameters in form of a vector, (ii) the
corresponding set() function, which sets all model parameters, given the vector of
parameters, and (iii) the beta() function, which returns all β-functions in form of a
vector. The run_to() function uses these three interface functions to implement the
Runge-Kutta algorithm. For the concrete implementation Softsusy’s numerics module
is used [60], slightly adapted to the data types used in FlexibleSUSY.

The model parameters and their β-functions are contained in the first and sec-
ond derived class in the hierarchy. The first derived class, <model>_susy_parameters,
contains the SUSY parameters and implements the three interface functions get(),
set() and beta(). Thus, the <model>_susy_parameters class has already implemented
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Beta_function

– scale : double

+ get() : const Eigen::ArrayXd
+ set(v : const Eigen::ArrayXd&)
+ beta() : Eigen::ArrayXd
+ run_to(scale : double)

Two_scale_model

+ calculate_spectrum()
+ run_to(scale : double)

<model>_susy_parameters

# SUSY parameters

+ get() : const Eigen::ArrayXd
+ set(v : const Eigen::ArrayXd&)
+ beta() : Eigen::ArrayXd

<model>_soft_parameters

# soft-breaking parameters

+ get() : const Eigen::ArrayXd
+ set(v : const Eigen::ArrayXd&)
+ beta() : Eigen::ArrayXd

<model>

+ calculate_spectrum()
+ run_to(scale : double)
+ solve_ewsb()

Figure 6.2: Model class hierarchy.

the complete Beta_function interface, and can therefore already be used on its own.
The second derived class is <model>_soft_parameters, which contains all soft-breaking
parameters. It inherits directly from <model>_susy_parameters and extends the in-
terface functions by the soft-breaking parameters. As a consequence the function
<model>_soft_parameters::run_to() integrates the RGEs of all model parameters.

The bottom of the hierarchy is formed by the so-called model class <model>. It
inherits from the <model>_soft_parameters class in order to have access to all model
parameters. At the same time it implements the Two_scale_model interface, which is
used for communication with the boundary condition solver RGFlow. This interface
defines a calculate_spectrum() and a run_to() function. The model class imple-
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ments the run_to() function simply by calling <model>_soft_parameters::run_to(). The
calculate_spectrum() function uses the generated mass matrices and self-energies to
calculate the pole mass spectrum, see Section 6.3.5.

In summary, the so defined model class hierarchy contains all information about
the SUSY model from Section 6.2, except for the boundary conditions. It already
has a lot of potential for being reused:

• The class of SUSY parameters, <model>_susy_parameters, can be used indepen-
dently of the soft-breaking parameters and the model class. In particular, it can
be used to run the SUSY parameters to any scale by using the run_to() function.
This is especially useful in models where the boundary value problem must be
solved for the SUSY parameters first, ignoring the soft-breaking parameters.
This is the case in the CE6SSM, for example.

• The class of soft-breaking parameters, <model>_soft_parameters, can be used
independently of the model class. It contains all model parameters, including
the SUSY parameters, and also implements the run_to() function.

• The model class <model> contains all information about the model parameters,
the electroweak symmetry breaking and is able to calculate the pole mass spec-
trum. It is completely independent of the RGE solver class and the boundary
conditions. It can be used for example to study pure low-energy models, which
do not impose boundary conditions at different scales.

RGE solver class hierarchy

The RGE solver class hierarchy connects the model class hierarchy (Two_scale_model

interface) with the boundary conditions (Constraint interface) and the boundary
condition solver RGFlow. Thereby it defines a constrained SUSY model completely
at an abstract level. It is illustrated in Figure 6.3. In the standard “two-scale” imple-
mentation the RGFlow class solves the boundary value problem iteratively by running
the model parameters to the various scales, defined by constraints, and impose the
boundary conditions by calling the apply() member function. In detail it works as
described in Algorithm 6.1. This algorithm is a generalization of the procedures
described in [163] for the CMSSM and in Section 5.4.3 for the NMSSM.6 It is widely
implemented in SUSY spectrum generators [60, 136, 147, 146, 137, 180, 181, 182]. To
use the RGE solver at the C++ level, the user has to provide the following classes:

• One or more model classes, which implement the Two_scale_model interface. See
the model class hierarchy implementation in the previous section.

• One or more model boundary conditions (constraints), which implement the
Constraint interface. The interface defines a get_scale() function, which should

6The two-scale algorithm described in Algorithm 6.1 is a fixed-point iteration of the form xn+1 =
f(xn) (n = 0, 1, 2, . . .), where xn is the vector of model parameters after the the nth iteration.
The function f is the integration of the RGEs and the imposition of the boundary conditions.
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1..* 1..*
1..*

Two_scale_model

+ calculate_spectrum()
+ run_to(scale : double)

RGFlow

+ add_model(model : Two_scale_model*,
constraints : std::vector<Constraint*>)

+ solve()

Constraint

+ apply()
+ get_scale() : double

Initial_guesser

+ guess()

Convergence_tester

+ accuracy_goal_reached() : bool
+ max_iterations() : unsigned

Matching

+ get_scale() : double
+ match_low_to_high_scale_model() : bool
+ match_high_to_low_scale_model() : bool

Figure 6.3: Class hierarchy of the two-scale boundary value problem solver
RGFlow.

return the renormalization scale where the constraint is supposed to be imposed,
and an apply() function, which imposes the constraint.

• If more than one model should be used, a matching condition class, imple-
menting the Matching interface, must be given. It defines the interface functions
match_low_to_high_scale_model() and match_high_to_low_scale_model(), which con-
vert the parameters of the low-energy (high-energy) model to parameters of the
high-energy (low-energy) model. An example of such a parameter matching are
the E6SSM gauge coupling threshold corrections given in Appendix C.7.

• A convergence tester, which implements the Convergence_tester interface. Its
accuracy_goal_reached() function should implement a convergence measure and
must return true if convergence is achieved. FlexibleSUSY creates a default
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Algorithm 6.1 Two-scale iteration in RGFlow::solve()

Assume there is a tower of m models M1, . . . ,Mm and corresponding constraints
Cij, where i = 1, . . . ,m is the model index and j = 1, . . . , ci labels the constraints for
model i. Calling the solve() function starts the following iteration:

1. Initial guess: Call the guess() function of the initial guesser.

2. While not maximum number of iterations reached and the convergence tester
method accuracy_goal_reached() returns false, do

a) Run the tower up: For each model i = 1 to m do

I For each constraint j = 1 to ci do

A. get the scale µ of constraint Cij: µ← Cij.get_scale()

B. run model Mi to scale µ: Mi.run_to(µ)

C. impose the constraint: Cij.apply()

II If i < m, then match model Mi to Mi+1:
Mi.match_low_to_high_scale_model()

b) Run the tower down: For each model i = m to 1 do

I For each constraint j = ci to 1 do

A. get the scale µ of constraint Cij: µ← Cij.get_scale()

B. run model Mi to scale µ: Mi.run_to(µ)

C. impose the constraint: Cij.apply()

II If i > 1, then match model Mi to Mi−1:
Mi.match_high_to_low_scale_model()

3. If the convergence tester method accuracy_goal_reached() still returns false,
throw an exception of type NoConvergenceError.

convergence tester for each model, which compares the maximum relative de-
viation of the DR mass spectrum between two consecutive iterations against a
threshold. The value of the threshold can be set in the in the SLHA input file
or directly in the class constructor.

• Optional: An initial guesser, which implements the Initial_guesser interface.
Its guess() function should set the model parameters to guessed values, which
are not too far away from the real solution.

Note that, when FlexibleSUSY’s Mathematica interface is used, see Section 6.3.3, the
model class, three boundary conditions (at the low-, SUSY and high-energy scale),
a convergence tester and an initial guesser are created automatically. The above
description is only relevant for users which want to build their own model at the
C++ level.
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In summary, the RGE solver class hierarchy plugs together the SUSY model and the
boundary conditions, thereby defining a constrained model completely at an abstract
level. The solve() method of the RGFlow class tries to find a solution for the so-
defined boundary value problem using a fixed-point iteration. It is a generalization
of the procedures used in the CMSSM and NMSSM with the additional possibility
to specify a tower of models (effective field theories) with matching conditions and
an arbitrary number of constraints. An advantage of this hierarchy is that RGFlow

depends only on abstract interfaces. This allows the user to easily exchange the
models and constraints during run-time. This so-called run-time polymorphism is an
advantage of object-oriented programming languages, like C++, over statically typed
languages, such as Fortran.

6.3.3 Boundary conditions and the FlexibleSUSY model file

In the previous sections it was described how the C++ code for a user-supplied
non-constrained SUSY model is created and structured. This section explains how
a user can define boundary conditions at the Mathematica (meta code) level via a
FlexibleSUSY model file.

After the createmodel script has been executed, see Section 6.3.1, the configuration
file for the SUSY model can be found in <model>/FlexibleSUSY.m. In this model file the
user can specify (i) the model input parameters, (ii) the EWSB output parameters
and (iii) three boundary conditions at the low-, SUSY and high-energy scale. In the
following the various model file options are explained on the basis of the CMSSM.
The application to other models is straightforward. The FlexibleSUSY model file for
the CMSSM reads

Source code listing 6.1: FlexibleSUSY model file for the CMSSM

FSModelName = "MSSM"; (* model name *)

MINPAR = {

{1, m0},

{2, m12},

{3, TanBeta },

{4, Sign [\[ Mu]]},

{5, Azero}

};

EXTPAR = {};

EWSBOutputParameters = { B[\[ Mu]], \[Mu] };

HighScale = g1 == g2;

HighScaleFirstGuess = 2.0 10^16;

HighScaleInput = {

{T[Ye], Azero*Ye},

{T[Yd], Azero*Yd},
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{T[Yu], Azero*Yu},

{mHd2 , m0^2},

{mHu2 , m0^2},

{mq2 , UNITMATRIX [3] m0^2},

{ml2 , UNITMATRIX [3] m0^2},

{md2 , UNITMATRIX [3] m0^2},

{mu2 , UNITMATRIX [3] m0^2},

{me2 , UNITMATRIX [3] m0^2},

{MassB , m12},

{MassWB , m12},

{MassG , m12}

};

SUSYScale = Sqrt[M[Su [1]]*M[Su [6]]];

SUSYScaleFirstGuess = Sqrt[m0^2 + 4 m12 ^2];

SUSYScaleInput = {};

LowScale = SM[MZ];

LowScaleFirstGuess = SM[MZ];

LowScaleInput = {

{Yu , Automatic },

{Yd , Automatic },

{Ye , Automatic },

{vd , 2 MZDRbar Cos[ ArcTan [ TanBeta ]]

/ Sqrt[ GUTNormalization [g1 ]^2 g1^2 + g2 ^2]} ,

{vu , 2 MZDRbar Sin[ ArcTan [ TanBeta ]]

/ Sqrt[ GUTNormalization [g1 ]^2 g1^2 + g2 ^2]}

};

InitialGuessAtLowScale = {

{vd , SM[vev] Cos[ ArcTan [ TanBeta ]]},

{vu , SM[vev] Sin[ ArcTan [ TanBeta ]]},

{Yu , Automatic },

{Yd , Automatic },

{Ye , Automatic }

};

InitialGuessAtHighScale = {

{\[ Mu] , 1.0} ,

{B[\[ Mu]], 0.0}

};

UseHiggs2LoopMSSM = True;

EffectiveMu = \[Mu];

OnlyLowEnergyFlexibleSUSY = False ; (* default *)

The variable FSModelName contains the name of the FlexibleSUSY model. It is set to
"MSSM" in this case.
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All (non-Standard Model) model input parameters are specified in the variables
MINPAR and EXTPAR in form of a list. The elements of these lists are two-component
lists, where the first entry is the index of the parameter in the MINPAR or EXTPAR
block of the SLHA input file, respectively. See [176, 149] for the definition of the
SLHA format. The second entry in the list is the name of the input parameter. In
the above example the five free CMSSM parameters m0, M1/2, tan β, signµ and A0

are defined as input, see Section 2.1. When the spectrum generator is run, these
parameters are read from the MINPAR block of the SLHA input file. This block has
the form

Block MINPAR # Input parameters

1 125. # m0

2 500. # m12

3 10. # TanBeta

4 1 # SignMu

5 0 # Azero

where the first column contains the SLHA indices, and the second column contains
the corresponding input parameter values.

The model parameters, which shall be used as output of the electroweak symmetry
breaking conditions (6.6), are set in the variable EWSBOutputParameters. When the
solve_ewsb() method of the model class is called, these parameters will be adjusted
such that the EWSB conditions (6.6) are fulfilled. In the CMSSM these are chosen
to be the superpotential parameter µ and the corresponding soft-breaking parameter
Bµ.78

Furthermore, the user can specify parameter boundary conditions at three different
scales: low-, SUSY and high-energy scale. These scales are defined with variables
LowScale, SUSYScale and HighScale. The values of these variables can be set to:

• a fixed numerical value, such as 2.0 10^14

• a predefined fixed scale, such as a pole mass of a Standard Model particle, for
example SM[MZ], SM[MW], SM[MH], SM[MTOP], SM[MBOTTOM], etc.

• an expression evaluated at run-time, for example Sqrt[M[Su[1]]*M[Su[6]]]. Here
M[Su[1]] is the DR mass of the lightest, and M[Su[6]] the mass of the heaviest
up-type squark (see the SARAH model file for the definition of the particle
names).

• a condition of the form <lhs> == <rhs>, where <lhs> and <rhs> are expressions

7In the MSSM the EWSB conditions fix only |µ| and leave the sign of µ unfixed. FlexibleSUSY
recognizes such cases and introduces the sign of µ as free model input parameter.

8Care should be taken when choosing dimensionless model parameters as EWSB output. The
reason is that these parameters in general affect the running of all other model parameters.
This can lead to a very unstable iteration. However, there are cases where a dimensionless
parameter has little impact on the RG flow, as for example κ in the Z3-symmetric NMSSM.
Such parameters may therefore be chosen as EWSB output.
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of model parameters. An example for such a condition is the definition of the
gauge coupling unification scale, defined as the scale where g1 == g2.

Furthermore, for each scale there is an initial guess variable, which defines the
first guess of the scale. For the three constraints these are HighScaleFirstGuess,
SUSYScaleFirstGuess and LowScaleFirstGuess. These variables may have either fixed
numerical values, predefined pole mass scales (such as SM[MZ], SM[MW], SM[MH], SM[MTOP],
SM[MBOTTOM], etc.), or expressions of input parameters.

The exact form of the three constraints is set in the variables HighScaleInput,
SUSYScaleInput and LowScaleInput. These variables contain lists of settings, applied at
the corresponding scale. A setting can be any of the following:

• A two-component list of the form {parameter, value}. This defines an assign-
ment of the value to the parameter at the considered scale. value can be either
(i) a fixed numerical value, (ii) a predefined fixed value, such as a mass of a
Standard Model particle (SM[MZ], SM[MW], SM[MH], SM[MTOP], SM[MBOTTOM], MZDRbar,
MWDRbar), or (iii) an expression of input parameters. As an alternative, value

can be read from a special “input block” from an input file in SLHA-2 format
[149]. In this case, it must be written as LHInput[value]. Example:

SUSYScaleInput = {

{mHd2 , m0^2},

{mHu2 , LHInput [mHu2 ]}

};

Here the parameter mHd2 is set to the value of m0^2, where m0 is a model input
parameter read from the MINPAR block. The parameter mHu2 is set to the value
given in the MSOFTIN block, entry 22 [149]. The SLHA-2 input block names and
entry numbers can be defined in the SARAH model file parameters.m, see [112].

For the Standard Model Yukawa couplings Yu, Yd, Ye the special value Automatic

is allowed. This will trigger the automatic calculation of the Yukawa couplings
from the known Standard Model quark and lepton masses, see below.

• The special symbol FSMinimize[parameters, function] can be used to adjust the
model parameters given in the list parameters, such that the scalar function is
minimal. Example:

FSMinimize [{vd ,vu},

(SM[MZ] - Pole[M[VZ ]]) ^2

/ STANDARDDEVIATION [MZ ]^2 +

(SM[MH] - Pole[M[hh [1]]]) ^2

/ STANDARDDEVIATION [MH ]^2]

Here, the model parameters vu and vd are varied until the function

χ2(vd, vu) =
(SM[MZ]−mpole

Z )2

σ2
mZ

+
(SM[MH]−mpole

h )2

σ2
mh

(6.8)
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is minimal. The constants SM[MZ], SM[MH], σmZ
and σmh

are defined in the file
src/ew_input.hpp and have the values [11]

SM[MZ] = 91.1876, SM[MH] = 125.9, (6.9)

σmZ
= 0.0021, σmh

= 0.4. (6.10)

• The special symbol FSFindRoot[parameters, functions] can be used to adjust the
model parameters given in the list parameters, until a root of the vector-valued
function is found. Example:

FSFindRoot [{vd ,vu},

{SM[MZ] - Pole[M[VZ]], SM[MH] - Pole[M[hh [1]]]}]

In this example the parameters vu and vd are varied until the vector-valued
function

f(vd, vu) =

(
SM[MZ]−mpole

Z

SM[MH]−mpole
h

)
(6.11)

is zero in each component.

Please note that it might not always be possible to find a minimum or a root of
the above functions. Especially the correct prediction of the lightest CP-even
Higgs mass by just varying vu and vd might fail in most of the CMSSM parame-
ter regions. However, the above examples illustrate how function minimization
and root finding can be used in principle to determine model parameters.

In the above example the high-scale is defined to be the GUT scale, where the gauge
couplings of U(1)Y and SU(2)L unify9:

HighScale = g1 == g2;

The settings in HighScaleInput are precisely the mSUGRA boundary conditions from
Eq. (2.3). In addition to the boundary condition definitions above, FlexibleSUSY
automatically calculates the gauge couplings g1, g2 and g3 at the low-scale from
known Standard Model input αe.m.(m

pole
Z ), αs(m

pole
Z ), mpole

Z , mpole
W . The details of

this calculation can be found in the next section. The SUSY scale is special in
FlexibleSUSY, because it is the scale where the EWSB conditions (6.5) are solved
and the pole mass spectrum is eventually calculated. In a model without squark
flavour mixing this scale is usually defined to be

√
mt̃1mt̃2 .

Finally, the user can define an initial guess for the model parameters at the low and
high scale, using the variables InitialGuessAtLowScale and InitialGuessAtHighScale,

9Note that FlexibleSUSY GUT normalizes all gauge couplings, so that the gauge coupling
unification condition takes the simple form g1(MX) = g2(MX). A consequence is that in
the calculation of the VEVs vu and vd from mZ and tan β at the low-energy scale the GUT-
normalization of g1 has to be taken into account.
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respectively. Non-guessed parameters will be initialized to zero, except for the gauge
couplings, which are initialized automatically at the low-energy scale from the known
Standard Model parameters. The initial guess for the Yukawa couplings can be done
automatically by setting the corresponding value to Automatic, see the example above.

For a precise prediction of the CP-even and -odd Higgs pole masses, Flexible-
SUSY allows one to add leading two-loop contributions to the Higgs self-energies
and tadpoles. For MSSM-like models10 these corrections can be enabled by setting
in the model file UseHiggs2LoopMSSM = True; and by defining the effective µ-term in
EffectiveMu. This will add the zero-momentum corrections of the order O(y4

t +y2
t y

2
b +

y4
b +y4

τ ) and O(y2
t g

2
3 +y2

bg
2
3) from [165, 166, 167, 183, 184]. For NMSSM-like models11

the two-loop contributions are enabled by setting UseHiggs2LoopNMSSM = True; and by
again defining the effective µ-term. In the NMSSM one might set EffectiveMu = \

\[Lambda] vS / Sqrt[2], for example. This will add the the zero-momentum correc-
tions of the order O(y2

t g
2
3 + y2

bg
2
3) from [168], plus MSSM-like contributions of the

order O(y4
t + y2

t y
2
b + y4

b + y4
τ ) [166, 167]. Note that two-loop corrections from matter

fields absent from the MSSM and NMSSM are not included automatically.
It is possible to create a pure low-energy model, which has only a low-scale and

SUSY-scale constraint, but no high-energy scale is defined. Such a model can be
created by setting OnlyLowEnergyFlexibleSUSY = True in the model file. Here all model
parameters, which are not specified in MINPAR, EXTPAR or EWSBOutputParameters, are read
from the corresponding input blocks of the SLHA input file [149] and are set at the
SUSY scale.

Calculation of the gauge couplings at the low-scale

At the low-energy scale, the DR gauge couplings gi(m
pole
Z ) of the SUSY model are cal-

culated automatically from the known Standard Model MS parameters αSM(5),MS
e.m. (mpole

Z ),

αSM(5),MS
s (mpole

Z )12 and the W and Z boson pole masses mpole
Z and mpole

W [11]. This
is done by first converting the SM MS parameters to DR parameters of the SUSY
model

αe.m.(m
pole
Z ) =

αSM(5),MS
e.m. (mpole

Z )

1−∆αSM
e.m.(m

pole
Z )−∆αsusy

e.m.(m
pole
Z )

, (6.12)

αs(m
pole
Z ) =

αSM(5),MS
s (mpole

Z )

1−∆αSM
s (mpole

Z )−∆αsusy
s (mpole

Z )
, (6.13)

10Here a model is MSSM-like if (i) its superpotential is approximately given by (2.1), (ii) it
implements R-parity conservation, and (iii) contains two CP-even and CP-odd Higgs bosons,
where one CP-odd Higgs boson may be a Goldstone boson, all with an MSSM-like coupling to
t, b and τ .

11Here, a model is NMSSM-like if (i) its superpotential is approximately given by (5.1), (ii) it
implements R-parity conservation, and (iii) contains three CP-even and CP-odd Higgs bosons,
where one or two CP-odd Higgs bosons may be Goldstone bosons, all with an NMSSM-like
coupling to t, b and τ .

12α
SM(5),MS
e.m. (mpole

Z ) and α
SM(5),MS
s (mpole

Z ) denote the electromagnetic and strong couplings in the
MS scheme in the Standard Model including only 5 quark flavours.

87



Chapter 6 FlexibleSUSY – A spectrum generator generator

where

∆αSM
e.m.(µ) =

αe.m.

2π

[
1

3
− 16

9
log

mt

µ

]
, (6.14)

∆αsusy
e.m.(µ) =

αe.m.

2π


−

∑

susy particle i

FiTi log
mi

µ


 , (6.15)

∆αSM
s (µ) =

αs

2π

[
−2

3
log

mt

µ

]
, (6.16)

∆αsusy
s (µ) =

αs

2π


1

2
−

∑

susy particle i

FiTi log
mi

µ


 (6.17)

are threshold corrections. The constant Ti is the Dynkin index of the representation
of SUSY particle i with respect to the gauge group, and Fi is a particle type-specific
constant [55]

Fi =





2/3 if particle i is a Majorana fermion,

4/3 if particle i is a Dirac fermion,

1/6 if particle i is a real scalar,

1/3 if particle i is a complex scalar.

(6.18)

For αSM(5),MS
e.m. (mpole

Z ) and αSM(5),MS
s (mpole

Z ) FlexibleSUSY uses internally [11]

αSM(5),MS
e.m. (mpole

Z ) = 1/127.944, (6.19)

αSM(5),MS
s (mpole

Z ) = 0.1185. (6.20)

From αe.m.(m
pole
Z ) and αs(m

pole
Z ) in the DR scheme the electromagnetic and strong

coupling constants are then calculated as

e(mpole
Z ) =

√
4παe.m.(m

pole
Z ), (6.21)

g3(m
pole
Z ) =

√
4παs(m

pole
Z ). (6.22)

To obtain the gauge couplings g1 and g2, the DR Weinberg angle θW is calculated in
the given SUSY model from the corresponding expression set in DependenceNum in the
SARAH model file. In the MSSM it is given by

θW (mpole
Z ) = arcsin

√√√√1−
(
mW (mpole

Z )

mZ(mpole
Z )

)2

, (6.23)
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while in a model with a Higgs triplet the relation has the form

θW (mpole
Z ) = arcsin

√√√√1− m2
W (mpole

Z )− g2
2v

2
T

m2
Z(mpole

Z )
. (6.24)

At run-time, the DR W and Z boson masses mW and mZ , appearing in (6.23)–(6.24),
are calculated from the corresponding pole masses as

m2
W (mpole

Z ) =
(
mpole
W

)2
+ ℜe ΠT

WW (p2 = (mpole
W )2, µ = mpole

Z ), (6.25)

m2
Z(mpole

Z ) =
(
mpole
Z

)2
+ ℜe ΠT

ZZ(p2 = (mpole
Z )2, µ = mpole

Z ). (6.26)

For the pole masses, FlexibleSUSY uses mpole
W = 80.404 GeV andmpole

Z = 91.1876 GeV
[11]. Finally, the expressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 in
terms of θW are used to calculate g1(m

pole
Z ) and g2(m

pole
Z ). In the MSSM, for example,

one has

g1(m
pole
Z ) = NGUT

e(mpole
Z )

cos θW (mpole
Z )

, (6.27)

g2(m
pole
Z ) =

e(mpole
Z )

sin θW (mpole
Z )

, (6.28)

where the GUT normalization prefactor for g1 has the value NGUT =
√

5/3.

Calculation of the Yukawa couplings at the low-scale

In case the user has chosen to let FlexibleSUSY calculate the DR Yukawa couplings
yu, yd, ye automatically, they are determined from the known Standard Model fermion
masses [11] as follows: At first, the mass matrices of the up- and down-type fermions
ui, di, ei (i = 1, 2, 3) are calculated with the help of SARAH’s MassMatrix[] func-
tion. Thereby it is assumed that these matrices are expressed in terms the Yukawa
couplings. FlexibleSUSY then tries to invert these expressions to obtain the Yukawa
coupling matrices in terms of the fermion mass matrices. In the MSSM, for example,
the result is in the SLHA convention

yu(m
pole
Z ) =

√
2mT

u

vu
, yd(m

pole
Z ) =

√
2mT

d

vd
, ye(m

pole
Z ) =

√
2mT

e

vd
. (6.29)

In FlexibleSUSY version 1.0.0, flavour mixing is neglected, which leads to diagonal
mass matrices (mf )ij = mfi

δij (f = u, d, e). At the Z mass scale these fermion mass
matrices are composed as

mu = diag(mu,mc,mt(m
pole
Z )), (6.30a)

md = diag(md,ms,mb(m
pole
Z )), (6.30b)

me = diag(me,mµ,mτ (m
pole
Z )), (6.30c)
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where the masses of the first two generations are directly read from the SMINPUTS

block of the SLHA input file [176]. The 3rd generation quark masses mt, mb and
mτ are calculated in the DR scheme from the SLHA user input quantities mpole

t ,

mSM,MS
b (mpole

Z ), mSM,MS
τ (mpole

Z ). The calculation of the top quark DR mass reads

mt(µ) = mpole
t + ℜe ΣS

t (mpole
t )

+mpole
t

[
ℜe ΣL

t (mpole
t ) + ℜe ΣR

t (mpole
t ) + ∆m

(1),qcd
t + ∆m

(2),qcd
t

]
.

(6.31)

Here ΣL,R
f denote the left- and right-handed part of the self-energy of fermion f , and

ΣS
f is the unpolarized part. In Eq. (6.31) QCD corrections are omitted from the self-

energies. The separated one- and two-loop QCD corrections ∆m
(1),qcd
t and ∆m

(2),qcd
t

have the form [185]

∆m
(1),qcd
t = − g2

3

12π2

[
5− 3 log

(
m2
t

µ2

)]
, (6.32)

∆m
(2),qcd
t =

(
∆m

(1),qcd
t

)2 − g4
3

4608π4


396 log2

(
m2
t

µ2

)
− 1476 log

(
m2
t

µ2

)

− 48ζ(3) + 2011 + 16π2(1 + log 4)


.

(6.33)

The DR mass of the bottom quark is calculated from the known Standard Model MS
mass as [58, 176]

mb(µ) =
mSM,DR
b (µ)

1−∆mb(m
SM,MS
b )

, (6.34)

∆mb(µ) = ℜe ΣS,heavy
b (µ)/mb + ℜe ΣL,heavy

b (µ) + ℜe ΣR,heavy
b (µ), (6.35)

mSM,DR
b (µ) = mSM,MS

b (µ)

(
1− αs

3π
− 23

72

α2
s

π2
+

3g2
2

128π2
+

13g2
Y

1152π2

)
. (6.36)

Note that Eq. (6.34) resums tan β-enhanced loop corrections. Finally, the τ DR mass
is calculated as

mDR
τ,susy(µ) = mDR

τ,SM(µ) + ℜe ΣS,heavy
τ (mMS

τ,SM)

+mDR
τ,SM(µ)

[
ℜe ΣL,heavy

τ (mMS
τ,SM) + ℜe ΣR,heavy

τ (mMS
τ,SM)

]
,

(6.37)

mDR
τ,SM(µ) = mSM,MS

τ (µ)

(
1− 3

g2
Y − g2

2

128π2

)
. (6.38)

In the equations above, the QCD and photon contributions to the bottom and τ self-
energies are omitted, which is indicated by the “heavy” keyword. For the conversion
of the fermion masses from the MS to the DR scheme the Yukawa coupling conversion
given in [134] is used and it is assumed that the VEV is defined in the DR scheme.
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6.3.4 Solving the boundary value problem

In the previous sections it was described how the user can specify a SUSY model and
supply boundary conditions (constraints) for the model parameters at three different
renormalization scales. From this information the Mathematica meta code creates a
model class hierarchy and three constraint classes. After these have been created, the
actual spectrum generator is set up, which combines the classes to solve the boundary
value problem. This combined setup is shown in source code listing 6.2.

Source code listing 6.2: Combining all spectrum generator components: model
class, constraints and boundary condition solver

<model > model;

<model > _input_parameters input;

std :: vector < Constraint *> constraints = {

new <model > _high_scale_constraint (input),

new <model > _susy_scale_constraint (input),

new <model > _low_scale_constraint (input)

};

RGFlow solver ;

solver . add_model (& model , constraints );

solver .solve ();

model. calculate_spectrum ();

At first, an instance of the model class <model> and the input parameters structure
is created. Afterwards, a vector of pointers to Constraint classes is defined and filled
with the three user-supplied boundary conditions. Then, the boundary value problem
solver RGFlow is created and the model and the constraints are registered via a call to
add_model(). When the solve() method is called, the solver tries to find a solution to
the given boundary value problem by iteratively running between the three scales and
imposing the boundary conditions (by calling the apply() function of each constraint).
If a solution was found, the solve() routine returns and the calculate_spectrum()

function is called, which calculates the pole mass spectrum.
The general algorithm hidden in the solve() function was described in Section 6.3.2,

Algorithm 6.1. For the concrete CMSSM example, given in source code listing 6.1, it
proceeds as follows (see Figure 6.4):

Initial guess of the model parameters:

1. Set initial scale to mpole
t .

2. Calculate the Standard Model gauge couplings gSM
i (mpole

t ) in the MS scheme
from the known values gSM

1 (mpole
Z ), gSM

2 (mpole
Z ), gSM

3 (mpole
t ) [11]. Set MSSM

gauge couplings gi to the Standard Model ones

gi(m
pole
t ) = gSM

i (mpole
t ) (i = 1, 2, 3). (6.39)
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Guess gi(m
pole
t ), yf (m

pole
t ) and

soft parameters at LowScale

Calculate gi(m
pole
Z ), yf (m

pole
Z )

and apply low-scale boundary
conditions (LowScaleInput)

run to LowScale

Apply high-scale boundary
conditions (HighScaleInput)

run to HighScale

Apply susy-scale boundary
conditions (SUSYScaleInput)

and solve EWSB eqs.

run to SUSYScale

if not converged
run to LowScale

Calculate pole masses

if convergend run to SUSYScale

Figure 6.4: Iterative two-scale algorithm to calculate the spectrum.

3. Impose user-defined low-scale constraint (LowScaleInput):

v1 =
v

√
1 + tan2 β

, v2 =
v tan β

√
1 + tan2 β

. (6.40)

Here tan β is an input parameter, defined in the DR scheme, and is read from the
SLHA input file. The appearing Standard Model VEV v is set to 246.22 GeV.
Afterwards, the Yukawa couplings are guessed automatically from the running
Standard Model fermion masses [11] as

yu(m
pole
Z ) =

√
2

v2

diag(2.4 · 10−3, 1.27, 165.0) GeV, (6.41)

yd(m
pole
Z ) =

√
2

v1

diag(4.75 · 10−3, 0.104, 4.2) GeV, (6.42)

ye(m
pole
Z ) =

√
2

v1

diag(5.10998902 · 10−4, 0.105658357, 1.77699) GeV. (6.43)

4. Run the SUSY parameters to the high-scale guess MX = 2 · 1016 GeV
(HighScaleFirstGuess).
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5. Impose the mSUGRA high-scale constraint on the soft-breaking MSSM param-
eters (HighScaleInput):

Afij(MX) = A0 (f = u, d, e; i, j = 1, 2, 3), (6.44a)

m2
hi

(MX) = m2
0 (i = 1, 2), (6.44b)

m2
f (MX) = m2

01 (f = q, ℓ, d, u, e), (6.44c)

Mi(MX) = M1/2 (i = 1, 2, 3), (6.44d)

where A0, m0 and M1/2 are the universal soft-breaking input parameters, read
from the SLHA input file. The soft-breaking scalar squared mass terms of the
MSSM are denoted in (6.44) as m2

hi
and m2

f . The Mi are the gaugino masses

and Afij are the soft-breaking trilinear scalar couplings. Afterwards, the initial
guess of the remaining model parameters (defined in InitialGuessAtHighScale)
is imposed:

µ(MX) = 1, Bµ(MX) = 0. (6.45)

6. Run all model parameters to the low-energy scale mpole
Z (LowScaleFirstGuess).

7. Solve the EWSB conditions (6.5) at the tree-level by choosing µ(mpole
Z ) and

Bµ(mpole
Z ) suitably.

8. Calculate the DR mass spectrum.

At this point all model parameters are initialized and the actual fixed-point iteration
can be started.

Fixed-point iteration:

1. Run all model parameters to the low-energy scale mpole
Z (LowScale).

a) Calculate the DR mass spectrum.

b) Calculate the DR gauge couplings gi(m
pole
Z ) (i = 1, 2, 3) from the known

Standard Model values αe.m.(m
pole
Z ), αs(m

pole
Z ), mpole

W and mpole
Z including

threshold corrections, as described in Section 6.3.3.

c) Impose the user-defined low-scale constraint (LowScaleInput): (i) Calculate
the Yukawa couplings yf (m

pole
Z ) (f = u, d, e) as described in Section 6.3.3

and (ii) calculate the VEVs as

v1(m
pole
Z ) =

2mZ(mpole
Z ) cos β

√
3g2

1/5 + g2
2

, (6.46a)

v2(m
pole
Z ) =

2mZ(mpole
Z ) sin β

√
3g2

1/5 + g2
2

. (6.46b)
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Here mZ(mpole
Z ) is the DR mass of the Z boson at the scale mpole

Z , which
is re-calculated in each iteration as shown in Eq. (6.26). In Eqs. (6.46)
cos β and sin β are obtained from tan β in the DR scheme. As a result,
the calculated VEVs vi are defined in the DR scheme.

2. Run parameters to the GUT scale MX (HighScale).

a) Calculate the gauge coupling β-functions βg1
and βg2

up to the two-loop
level and re-calculate the scale as

M ′
X = MX exp

(
g2(MX)− g1(MX)

βg1
− βg2

)
. (6.47)

The scale M ′
X is used as new GUT scale in the next iteration.

b) Impose the mSUGRA high-scale constraint (HighScaleInput) from Eqs.
(6.44).

3. Run all model parameters to the SUSY scale MS (SUSYScale).

a) Calculate the DR mass spectrum.

b) Re-calculate the SUSY scale as

MS =
√
mũ1

mũ6
, (6.48)

where mũ1
and mũ6

are the DR masses of the lightest and heaviest up-
type squark, respectively. Note that this is a non-standard definition,
which is used here due to the allowed squark flavour mixing. However,
since the pole masses are renormalization scale independent quantities,
their dependence on the definition of MS is of two-loop order or higher.

c) Solve the EWSB conditions (6.6) at the loop level by varying µ(MS)
and Bµ(MS). In the here discussed CMSSM model file UseHiggs2LoopMSSM

is set to True, which triggers the inclusion of leading two-loop tadpole
contributions of the order O(y4

t + y2
t y

2
b + y4

b + y2
t g

2
3 + y2

bg
2
3) [165, 166].

4. If the relative deviation between the SUSY particle DR masses of the current
and the previous iteration is larger than the accuracy goal (set in the SLHA
input file), and the maximum number of iterations is not yet reached, then go
to step 1. Otherwise, stop the iteration.

If the iteration has converged, all model parameters are consistent with the EWSB
conditions, low-energy data and the user-supplied mSUGRA boundary conditions
at any scale between mpole

Z and MX . In this case FlexibleSUSY runs all model
parameters to the SUSY scale and calculates the pole mass spectrum by calling the
calculate_spectrum() function, see the next section.

Note that the above described algorithm is exactly the procedure described in [163]
for the CMSSM. The special feature of FlexibleSUSY is that the C++ classes, used
in the above algorithm, are generated automatically from a user-supplied model file.
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This allows an immediate application of the algorithm to other, non-minimal models.
Furthermore, FlexibleSUSY’s boundary value problem solver RGFlow is generalized
to handle a tower of effective theories with an arbitrary number of constraints as
described in Section 6.3.2.

6.3.5 Calculation of the pole masses

In the previous sections it was described how the user can set up a SUSY model and
define boundary conditions for the model parameters at the meta code level. From
this information C++ code is generated and a boundary value problem solver is used
to find a set of model parameters consistent with the so-defined constraints. The final
step is to calculate the pole mass spectrum and the corresponding mixing matrices.
This is done in the calculate_spectrum() function and is described in the following.

As explained in Section 5.4.4 the (physical) pole mass is defined to be the momen-
tum for which the full propagator of the field under consideration has a singularity.
For general case of particle multiplets it means to find values pi for which the Eqs.
(5.38) are fulfilled. This can be achieved by diagonalizing the full loop-corrected mass
matrix

Mf,full(p
2
i ) = Mf −Mf,1L(p2

i ) i = 1, . . . , N, (6.49)

where Mf is the tree-level DR mass matrix of field f and Mf,1L(p2
i ) contains self-

energy loop corrections. However, since the loop corrections are by themselves
momentum dependent an iteration over the pi must be performed, where the mass
eigenvalues of the previous iteration are used as momenta to calculate the loop
corrections. If this iterative procedure converges, the eigenvalues of the full loop-
corrected mass matrix are the pole masses.

However, this iterative procedure can be very time-consuming, because it must be
performed for each field in the multiplet, i.e. N times. In case of Nit iterations, the
loop correction matrix must be calculated NitN times. Each matrix entry again
involves the calculation of a self-energy, which requires the evaluation of O(50)
Feynman diagrams with complicated vertices and loop functions. All together, to
calculate the pole masses of a particle multiplet NitN

3 self-energies need to be
calculated.

For this reason FlexibleSUSY provides two alternative pole mass calculation algo-
rithms with a lower precision but a shorter run-time. The algorithm to be used can
be selected in the model file <model>/FlexibleSUSY.m for each particle multiplet. They
work as follows:

• LowPoleMassPrecision: This algorithm has the lowest precision, but also the
shortest run-time. Here the full mass matrix M low

f,full is calculated exactly once
as

∀i, j : (M low
f,full)ij = (Mf,full(p

2 = mfi
mfj

))ij, (6.50)

where mfi
is the ith DR mass eigenvalue of the tree-level mass matrix Mf . The
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matrix M low
f,full is diagonalized and the eigenvalues are interpreted as pole masses

mpole
fi

. Thereby two-loop terms of the form

[
(mpole

fk
)2 −mfi

mfj

] ∂Mf,1L(p2)

∂p2

∣∣∣∣∣
p2=mfi

mfj

(6.51)

are neglected. This approximation leads to significant deviations from the true
pole masses if the DR mass spectrum of the multiplet is very split or the loop
corrections are very large. With this method the self-energy of field f needs to
be calculated only N2 times.

• MediumPoleMassPrecision (default): This algorithm calculates the pole masses
with medium precision and has a medium execution time. Here the full mass
matrix Mmedium

f,full is calculated N times as

(Mmedium
f,full )

(k)
ij = (Mf,full(p

2 = m2
fk

))ij, k = 1, . . . , N, (6.52)

where mfk
is the kth DR mass eigenvalue of the tree-level mass matrix Mf .

Afterwards, each mass matrix (Mmedium
f,full )(k) is diagonalized and its kth eigen-

value is interpreted as pole mass mpole
fk

. Thereby for the kth eigenvalue two-loop
terms of the form

[
(mpole

fk
)2 −m2

fk

] ∂Mf,1L(p2)

∂p2

∣∣∣∣∣
p2=m2

fk

(6.53)

are neglected. This approximation leads to significant deviations from the true
pole masses if the loop corrections are large. Note that this algorithm is used in
Softsusy to calculate the pole masses of the non-Higgs fields, see Section 5.4.4.
For this method the self-energy of field f needs to be calculated N3 times.

Besides these two approximations, FlexibleSUSY also provides the precise calculation
of the spectrum via iterations over the momenta pi. This algorithm is selected by
choosing HighPoleMassPrecision. Here the full mass matrix Mhigh

f,full is diagonalized N

times, as in the case of MediumPoleMassPrecision, resulting in N pole masses mpole
fk

(k = 1, . . . , N). Afterwards, the diagonalization is repeated, this time using the
calculated pole masses mpole

fk
for the momentum calculation p2 = (mpole

fk
)2. This

iteration stops if convergence is reached.

6.3.6 Summary

To calculate the pole mass spectrum of a general SUSY model several non-trivial
tasks have to be performed: First, the model must be defined and the β-functions,
mass matrices, self-energies and tadpole diagrams must be calculated. In addition the
model must be matched to the Standard Model and electroweak symmetry breaking
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must be ensured. Further user-defined boundary conditions might be imposed at the
GUT or weak scales.

In the previous sections it was shown that FlexibleSUSY can create a complete,
modular C++ spectrum generator automatically, given a SARAH and FlexibleSUSY
model file. Depending on the user’s choice it includes boundary conditions for the
matching to the Standard Model and the electroweak symmetry breaking as well as
high-scale conditions for GUT models. A generalized boundary condition solver is
provided, which tries to find a set of model parameters consistent with all given
constraints, even supporting towers of effective theories. Finally, the pole mass
spectrum can be calculated using the full one-loop self-energies of all particles. In
addition leading two-loop Higgs mass corrections can be added automatically for
MSSM- and NMSSM-like models. Thereby FlexibleSUSY represents a powerful tool
to study a large variety of non-minimal SUSY models with high precision and great
flexibility.
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6.4 Applications

6.4.1 Run-time comparison

One of the design goals of FlexibleSUSY is a short run-time. In this section the
run-time of two FlexibleSUSY-generated CMSSM spectrum generators (a flavour-
violating and a non-flavour-violating variant) are compared to the hand-written
spectrum generators Softsusy [60], SPheno [147, 148] and to SARAH’s automatically
generated SPhenoMSSM [137, 146].

From studying and profiling the source code of Softsusy and SPheno, two major
speed bottlenecks can be identified:

1. Calculation of the β-functions: The dominant part (approximately 60% or
more) of the run-time is used for the calculation of two-loop β-functions. The
reason is the complicated structure, which involves O(500) additions of products
of up to five (3, 3)-matrices. For an average CMSSM parameter point with a
mass precision goal of 0.01% the β-functions have to be calculated O(500) times
during the full fixed-point iteration.

2. Calculation of the pole masses: The second most time-consuming part (ap-
proximately 20–30%) is the calculation of the pole masses and especially the
self-energies. The reason is that the self-energy matrices have to be calculated
multiple times, where each matrix entry involves the evaluation of Passarino-
Veltman loop functions and complicated vertices (especially the scalar four-
point vertices).

FlexibleSUSY uses the following two techniques to address these two bottlenecks:

1. Fast linear algebra via Eigen: FlexibleSUSY expresses the β-functions in terms
of the fixed-size Matrix class provided by the linear algebra package Eigen [174].
Eigen exploits C++ expression templates to remove temporary objects and
enable lazy evaluation. It supports explicit vectorization and avoids dynamic
memory allocation. These features in combination allow the compiler to gener-
ate very fast code for the calculation of the β-functions.

2. Multi-threading: The optimization of the pole mass calculation is difficult.
However, modern CPUs provide multiple cores, which can be used to parallelize
certain calculations. By default FlexibleSUSY calculates each pole mass in a
separate thread, allowing the operating system to distribute these calculations
among several cores. The overhead of creating and joining these threads is
negligible compared to the time needed to calculate a single pole mass.

In the following, the run-times of two sets of CMSSM spectrum generators are
compared:

• FlexibleSUSY-NoFV (version 1.0.0), Softsusy (version 3.4.0) and SPheno (ver-
sion 3.2.4). All of these spectrum generators disable flavour violation.
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• FlexibleSUSY-FV (version 1.0.0) and SPhenoMSSM (generated with SARAH
4.1.0 and linked against SPheno 3.2.4), which are both based on SARAH’s
MSSM model file. FlexibleSUSY-FV uses the configuration file given in source
code listing 6.1. These two automatically generated spectrum generators both
allow flavour violation and are therefore a bit slower than the ones above.

The source codes of FlexibleSUSY and Softsusy are compiled with g++ 4.8.0 and
Intel ifort 13.1.3 20130607. SPheno and SPhenoMSSM are compiled with Intel ifort
13.1.3 20130607 only.13 For the comparison 2 · 104 random CMSSM parameter points
are generated, with m0 ∈ [50, 1000] GeV, M1/2 ∈ [50, 1000] GeV, tan β ∈ [1, 100],
signµ ∈ {−1,+1} and A0 ∈ [−1000, 1000] GeV. For every point a MINPAR block in
SLHA format is created and appended to the SLHA input template file listed in
Appendix E. The resulting SLHA file is passed to each spectrum generator and the
(wall-clock) time is measured until the program stops. To measure the influence of
the number of cores, the study is done on three different architectures: (i) On an
Intel Core2 Duo (P8600) where only one core is enabled, (ii) on an Intel Core2 Duo
(P8600) where two cores are enabled and (iii) on a machine with two Intel Xeon
CPUs (L5640) with six physical cores each. The run-time distributions for the three
architecture types can be found in Figure 6.5. In Table 6.1 the average run-times are
listed.

Intel Core2 Duo Intel Core2 Duo 2 × Intel Xeon
(P8600, 1 core, (P8600, 2 cores, (L5640, 6 cores
2.40 GHz) 2.40 GHz) 2.27 GHz)

FlexibleSUSY-NoFV 1.0.0 0.086 s 0.079 s 0.060 s
SPheno 3.2.4 0.119 s 0.114 s 0.101 s
Softsusy 3.4.0 0.175 s 0.171 s 0.147 s

FlexibleSUSY-FV 1.0.0 0.150 s 0.113 s 0.074 s
SPhenoMSSM 4.1.0 0.415 s 0.401 s 0.370 s

Table 6.1: Average CMSSM spectrum generator run-time (in seconds) for random
parameter points. The first three rows list spectrum generators which do not allow
flavour violation. The 4th and 5th row show automatically generated spectrum
generators which allow flavour violation.

One finds that under both the non-flavour violating spectrum generators (rows
1–3 in Table 6.1), as well as under the flavour violating ones (4th and 5th row),
FlexibleSUSY is significantly fastest. Compared to SPheno, FlexibleSUSY-NoFV is
a factor 1.4–1.7 faster, and compared to Softsusy around a factor 2–2.5. Compared
to the automatically generated spectrum generator SPhenoMSSM, FlexibleSUSY-
FV is faster by a factor 2.8–5. One of the main reasons for the long run-time of
SPhenoMSSM is the long calculation time of the β-functions, as can be seen from

13Intel’s ifort compiler is used, because it decreases the run-time of SPheno and SPhenoMSSM by
approximately a factor 1.5, compared to gfortran 4.8.0.
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Figure 6.5: Run-time distributions of different CMSSM spectrum generators for
random parameter points on different architectures. The top row shows the run-
time on an Intel Core2 Duo (P8600) with one (left panel) and two (right panel)
cores enabled. In the plot at the bottom a machine with two Intel Xeon CPUs
(L5640) with six physical cores each is used. For each spectrum generator the
average run-time is given in brackets.

the long tail in the distributions in Figure 6.1. At this point FlexibleSUSY benefits
a lot from Eigen’s well-optimizable matrix expressions, resulting in sharp peaks in
the run-time distributions. One also finds that increasing the number of CPU cores
decreases FlexibleSUSY’s run-time. The reason is that each pole mass is calculated
in a separate thread, which lets FlexibleSUSY benefit from multi-core CPUs.

6.4.2 Comparison of Higgs masses in supersymmetric models

As a small application of FlexibleSUSY’s ability to create spectrum generators for
user-defined SUSY models, parameter scans in four different constrained models are
presented. The considered models are the CMSSM, the NMSSM, the USSM and the
E6SSM. Studying these models successively is particularly interesting, because each
model adds additional particles or symmetries to the predecessor: The NMSSM adds
a singlet field, the USSM adds another U(1)′ gauge symmetry and the E6SSM adds
further matter fields to complete the (27)i representations. All of these models use a
mSUGRA-inspired soft supersymmetry breaking scenario at the GUT scale MX with

100



6.4 Applications

the universal soft-breaking sfermion mass m0, a universal gaugino mass M1/2 and
a universal trilinear scalar coupling A0. Furthermore, all contain a down-type and
an up-type Higgs doublet with VEVs v1 and v2, respectively. Since the combination

v =
√
v2

1 + v2
2 is fixed by the measured Z mass, only the ratio of the Higgs VEVs

tan β = v2/v1 is a free parameter in all of these models.
In the following the lightest CP-even Higgs pole mass is studied in these four models

as a function of tan β and m0 in the range tan β = 1 . . . 50 and m0 = 0 . . . 10 TeV.
All other common parameters are set to M1/2 = A0 = 5 TeV. The thereby studied
parameter region yields heavy spectra with SUSY masses of the order O(1 TeV).
Depending on the model, the lightest CP-even Higgs boson pole mass varies between
93 and 135 GeV in these regions. For a precise Higgs mass prediction, the leading two-
loop Higgs self-energy and tadpole corrections described in Section 6.3.3 are enabled
in each model.

CMSSM

For the parameter scan in the CMSSM, the model file from Section 6.3.3 is used. It
defines the mSUGRA constraint (2.3) at the GUT scale, which leaves the 5 free input
parameters m0, M1/2, A0, tan β(mpole

Z ) and signµ. The parameters |µ(MS)|, Bµ(MS)
are chosen to be output of the EWSB conditions at the SUSY scale. The lightest
CP-even Higgs pole mass as a function of the scanned parameters m0 and tan β is
shown in Figure 6.6.
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Figure 6.6: Lightest CP-even Higgs pole mass in the CMSSM as a function of
m0 and tan β. The parameter point uses M1/2 = A0 = 5 TeV and signµ = +1.

The measured value of mpole
h = 125.9 GeV can be found on the black contour line.

In the shaded area the LSP is a charged particle.

Only in the region tan β = 1 . . . 44 GeV physical solutions to all the boundary
conditions can be found. For tan β & 44 the CP-odd and charged Higgs bosons
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become tachyonic. As can be seen from Eq. (2.6) increasing tan β and keeping m0

fixed increases the tree-level mass contribution, which is approximately given by
mZc2β. The slope of c2β as a function of tan β is very steep in the range 1 . . . 5,
thereby leading to a rapidly increasing Higgs mass. However, increasing tan β also
decreases the top Yukawa coupling, given by yt =

√
2mt/v2. This leads to decreasing

Higgs self-energy loop corrections and therefore to a slowly decreasing Higgs pole
mass for tan β & 25. For constant tan β increasing m0 raises the stop masses, which
leads to larger self-energy loop corrections and therefore to a large Higgs mass.

Large CP-even Higgs masses of the order 126 GeV are achieved in regions with
large m0 ∼ 8 . . . 10 TeV and tan β ∼ 10 . . . 35. Small values of tan β . 3 lead to very
light Higgs masses of mpole

h . 110 GeV. The measured value of mpole
h = 125.9 GeV lies

on the black contour line in the region with m0 > 8 TeV. It is remarkable that even
for m0 = 0 parameter points with a large Higgs mass of up to 125 GeV can be found.
The reason is the large value of M1/2, which generates large gaugino masses at the
GUT scale that significantly influence the RG running of the soft-breaking squared
Higgs masses. However, such CMSSM parameter regions with m0 . 2 TeV contain
charged LSPs (usually the lightest down-type slepton) and are therefore ruled out.
In Figure 6.6 these areas are shaded.

As conclusion, the measured value of the Higgs pole mass significantly constrains
the allowed CMSSM parameter space. For the here studied region values of m0 >
8 TeV and tan β between 10 . . . 35 are preferred. The SUSY spectra in this region
contain gluinos, neutralinos and charginos with masses in the range 3 . . . 10 TeV and
very heavy sfermions with masses of the order 7 . . . 12 TeV. These points thereby
suffer from a large splitting between the top and stop masses, which re-introduces
the hierarchy problem as discussed in Section 2.1.2.

NMSSM

For the scan in the Z3-symmetric NMSSM the superpotential (5.2) is used, together
with the mSUGRA boundary conditions from Eq. (5.10). This model has the five
input parameters m0, M1/2, A0, tan β(mpole

Z ) and λ(MX) plus the sign of the VEV
v3. As EWSB output the parameters κ(MS), |v3(MS)|, m2

s(MS) are chosen. The
lightest CP-even Higgs mass as a function of m0 and tan β is shown in Figure 6.7 for
two different values of λ(MX) and A0 = ±5 TeV. The plots in the left column use
λ(MX) = 0.1, and in the right column λ(MX) = 0.2. In the upper row, the universal
trilinear coupling A0 is set to 5 TeV, and in the lower row it is set to −5 TeV.

Similarly to the CMSSM, for fixed m0 the Higgs mass shows a steep slope as
a function of tan β for small values of tan β. The reason is again the tree-level
contribution of the form mZc2β, which rises with tan β. Furthermore, as shown in Eq.
(2.8), in the NMSSM the Higgs mass gains an additional positive contribution at the
tree-level from an F -term. This term is proportional to s2β and has therefore a strong
influence for small tan β. However, in Figure 6.7 one finds that for A0 = 5 TeV (upper
row) small values of tan β lead to CP-even Higgs tachyons, resulting in unphysical
points. The situation is almost inverted for negative A0, where large values of tan β
lead to tachyonic CP-even Higgs bosons. Furthermore, the overall Higgs mass found in
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(a) λ = 0.1, A0 = 5 TeV
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(b) λ = 0.2, A0 = 5 TeV
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(c) λ = 0.1, A0 = −5 TeV
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(d) λ = 0.2, A0 = −5 TeV

Figure 6.7: Lightest CP-even Higgs pole mass in the NMSSM as a function of
m0 and tan β. The parameter point uses M1/2 = ±A0 = 5 TeV and sign v3 = +1.

The measured value of mpole
h = 125.9 GeV can only be achieved for λ(MX) = 0.1

and A0 = −5 TeV and is drawn with a black contour line. In the shaded area the
LSP is a charged particle.

the scanned parameter regions is rather small compared to the CMSSM. The reason
for these phenomena is the mixing with the singlet field. Including this mixing, the
lightest CP-even tree-level mass is approximately given by [186, 37]

(mtree
h )2 ≈ m2

Zc
2
2β +

λ2v2

2
s2

2β −
λ2v2

2κ2

[
λ− s2β

(
κ+

Aλ√
2v3

)]2

. (6.54)

The last term, which comes from the mixing with the singlet is a negative Higgs mass
contribution proportional to λ2v2, which can be more significant for larger λ (right
column). This term is the major origin for the overall small NMSSM Higgs masses
and the increased appearance of Higgs tachyons found in this parameter scan. It can
in principle be minimized by adjusting Aλ accordingly. However, in the here studied
NMSSM variant Aλ is fixed to A0 at the GUT scale. Relaxing this constraint can lead
to larger Higgs masses. Large Higgs masses with mpole

h ≥ 125 GeV are only achieved
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for λ(MX) = 0.1 and A0 = −5 TeV. Parameter points which lead to the measured
value of 125.9 GeV lie on the black contour line. Also in the NMSSM it is possible
to achieve large Higgs masses of up to 125 GeV with m0 = 0. However, such points
are again ruled out due to charged LSPs and are marked by the shaded area.

Thus, the experimentally allowed parameter space of the here studied NMSSM
is highly constrained by the measured value of the Higgs pole mass. In the studied
region negative values of A0 are preferred as they increase the stop mass splitting and
reduce the singlet mixing, which in combination raises the lightest Higgs pole mass.
A less constrained NMSSM variant, where Aλ is a free input parameter can lead to
larger Higgs masses and would therefore be less sensitive to experimental constraints.

USSM

The third model considered here is the USSM [39, 40, 41], which extends the general
NMSSM by an extra U(1)′ gauge symmetry. A discrete Z3 symmetry, as introduced
by hand in the NMSSM, is not imposed on the USSM superpotential. The U(1)′

charges of the superfields are chosen to be the same as the U(1)N charges in the
E6SSM, see Table C.1, including the GUT normalization 1/

√
40. Due to the chosen

U(1)′ charges the USSM superpotential is the same as the in the Z3-symmetric
NMSSM and reads

WUSSM = λS(H1H2)− yeij(H1Li)Ēj − ydij(H1Qi)D̄j − yuij(QiH2)Ūj. (6.55)

A possible gauge-kinetic mixing term is omitted from the Lagrangian. At the GUT
scale the following mSUGRA-inspired boundary conditions on the soft-breaking pa-
rameters are imposed:

(m2
f )ij(MX) = m2

0δij (f = q, ℓ, u, d, e; i, j = 1, 2, 3), (6.56a)

Afij(MX) = A0 (f = u, d, e; i, j = 1, 2, 3), (6.56b)

Aλ(MX) = A0, (6.56c)

Mi(MX) = M1/2 (i = 1, 2, 3, 4). (6.56d)

Furthermore, gauge coupling unification is enforced by setting the U(1)′ gauge cou-
pling g′(MX) to the value of g1(MX) = g2(MX) at the GUT scale. As output of
the three EWSB equations the soft squared Higgs masses m2

h1
(MS), m2

h2
(MS) and

m2
s(MS) are chosen. This variant of the USSM can therefore be called a non-universal

Higgs mass model (NUHM). It has six free parameters: m0, M1/2, A0, tan β(mpole
Z ),

λ(MX), v3(MS).

The lightest CP-even Higgs pole mass as a function of m0 and tan β is shown
in Figure 6.8 for v3 = 10 TeV and three different choices of λ(MX). In the white
regions with large tan β no simultaneous solution to all boundary conditions with a
non-tachyonic mass spectrum can be found. It is remarkable that even low values
of m0 < 100 GeV lead to large Higgs masses of the order 130 GeV in the scanned
parameter region. The reason is the positive D-term contribution from the extra
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(a) λ = 0.1
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(b) λ = 0.2
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(c) λ = 0.4

Figure 6.8: Lightest CP-even Higgs pole mass in the USSM as a function of
m0 and tan β for three different choices of λ(MX). The parameter point uses
M1/2 = A0 = 5 TeV and v3 = 10 TeV. The measured value of mpole

h = 125.9 GeV
can be found on the black contour line. In the shaded regions the LSP is a charged
particle.

U(1)′ gauge symmetry to the tree-level Higgs mass

(mtree
h )2 ≈ m2

Zc
2
2β +

λ2v2

2
s2

2β +
m2
Z

4

(
1 +

1

4
c2β

)2

. (6.57)

This last term contains a tan β-independent part, which increases the tree-level Higgs
mass by approximately mZ/2, and a tan β-dependent part, which raises the Higgs
mass further in regions with large tan β. For λ = 0.1 there is a relatively large area
between tan β = 10 . . . 45 and with low values of m0 . 5 TeV, in which the predicted
Higgs masses are of the order 126 GeV or larger. A value of λ = 0.2 leads to large
regions with masses of the order 130 GeV. For higher values of λ the mixing with
the singlet gains more influence, which reduces the Higgs mass again. This effect has
already been seen in the NMSSM above, see Eq. (6.54) and Figure 6.7.

An interesting property of the additional U(1)′ gauge symmetry in the USSM
is that the sfermion masses gain extra positive D-term contributions. In the case
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of λ = 0.1 . . . 0.2 this leads to parameter regions with m0 = 0 where the lightest
slepton is heavier than the lightest neutralino, resulting in neutral LSPs. However,
for tan β . 10 or tan β & 30 charged LSPs can still appear.

The parameter scans performed here have shown that the USSM predicts large
Higgs masses of the order 125 . . . 131 GeV easily due to the extra D-term contribution
to the tree-level mass. As a consequence, the constraints imposed upon the USSM
parameter space from the measured Higgs mass are therefore significantly weaker
than in the CMSSM and NMSSM.

E6SSM

The last model studied here is a constrained variant of the E6SSM with non-universal
soft Higgs masses [187]. A brief introduction to the general E6SSM is given in
Appendix C. For the parameter scan the superpotential

WE6SSM = λ3S3(H13H23)− yeij(H13Li)Ēj − ydij(H13Qi)D̄j − yuij(QiH23)Ūj

+ κijS3(XiX̄j) + λαβS3(H1αH2β) + µ′(H ′H̄ ′)
(6.58)

is used, with i, j = 1, 2, 3 and α, β = 1, 2. At the GUT scale, MX , the following
mSUGRA-inspired constraints on the soft-breaking parameters are imposed:

(m2
f )ij(MX) = m2

0δij (f = q, ℓ, u, d, e, x, x̄; i, j = 1, 2, 3), (6.59a)

(m2
s)αβ(MX) = m2

0δαβ (α, β = 1, 2), (6.59b)

(m2
hp

)αβ(MX) = m2
0δαβ (α, β = 1, 2; p = 1, 2), (6.59c)

m2
h′(MX) = m2

0, (6.59d)

m2
h̄′(MX) = m2

0, (6.59e)

Afij(MX) = A0 (f = u, d, e, κ; i, j = 1, 2, 3), (6.59f)

Aλ3(MX) = Aλαβ(MX) = A0 (α, β = 1, 2), (6.59g)

Mi(MX) = M1/2 (i = 1, 2, 3, 4). (6.59h)

I addition, the singlet couplings are set to the universal values λ and κ at the GUT
scale:

λ3(MX) = λ(MX), (6.60a)

λαβ(MX) = λ(MX)δαβ, (6.60b)

κij(MX) = κ(MX)δij. (6.60c)

Furthermore, to ensure gauge coupling unification the extra U(1)N gauge coupling is
set to the value of g1(MX) = g2(MX) at the GUT scale. As output of the EWSB
equations the soft-breaking squared Higgs masses m2

h13
(MS), m2

h23
(MS) and m2

s3
(MS)

are chosen. This leaves the parameters m0, M1/2, A0, tan β(mpole
Z ), λ(MX), κ(MX),

v3(MS), µ′(MS) and Bµ′(MS) unfixed, which are treated as input.

Figure 6.9 shows the lightest CP-even Higgs pole mass as a function of m0 and
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(a) λ = 0.1, κ = 0.1
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(c) λ = 0.2, κ = 0.1
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(d) λ = 0.2, κ = 0.2
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(e) λ = 0.4, κ = 0.1
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(f) λ = 0.4, κ = 0.2

Figure 6.9: Lightest CP-even Higgs pole mass in the semi-constrained E6SSM
as a function of m0 and tan β. The parameter point uses M1/2 = A0 = 5 TeV and

v3 = µ′ = Bµ′ = 10 TeV. The measured value of mpole
h = 125.9 GeV can be found

on the black contour line.

tan β for different values of the universal couplings λ(MX) and κ(MX). The input
parameters v3(MS), µ′(MS) and Bµ′(MS) are set to 10 TeV. Physical points can be
found between tan β = 1 . . . 15 for low values of m0, and between tan β = 1 . . . 45
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for high values of m0. Outside this region the large top and bottom Yukawa cou-
plings drive the soft squared sfermion masses negative, which results in tachyonic
sfermions.14 As can be seen from Figure 6.9, the studied parameter space leads to
overall very large Higgs masses of mpole

h = 125 . . . 135 GeV. Smaller masses are only
achieved for values of tan β . 5. The main reason for the large Higgs masses is the
extra D-term contribution from the U(1)N , analogous to the USSM. In addition,
the extra matter fields present in the E6SSM influence the renormalization group
equation of λ, which results in a larger value of λ(MS) than in the USSM [45]. This
leads to an additional enhancement of the F -term contribution to mtree

h .
Analogous to the USSM, the sfermion masses gain extra D-term contribution from

the additional U(1)N gauge group. This leads to parameter points withm0 = 0, which
contain a heavy Higgs of the order 130 GeV or more, but which are not excluded by
charged LSPs. However, while in the USSM charged LSPs sill appear for small or
very large tan β, in the E6SSM parameter regions studied here the LSP is always the
neutralino. The reason is the extra matter, which contributes to the gaugino mass
β-functions and thereby leads lighter neutralinos than in the USSM.

Similarly to the USSM, the NUHM E6SSM is less constrained by the experimentally
measured Higgs mass than the CMSSM and NMSSM. However, the E6SSM in general
predicts a gluino which is significantly lighter than the squarks [54, 88, 70, 45]. This
imposes a strong constraint on the allowed parameter space due to the large gluino
mass bounds extracted from the LHC data [70, 45].

Conclusions

The lightest Higgs pole mass was studied in the four different SUSY models CMSSM,
NMSSM, USSM and the E6SSM, as a function of the common input parameters tan β
and m0. The additional common free parameters M1/2 and A0 were set to 5 TeV
to allow for heavy gauginos and a large stop mass splitting. The remaining free
parameters of the individual models were chosen to be of the order of the TeV scale
to produce heavy spectra. The obtained values for the Higgs mass in the scanned
parameter region demonstrate that

• the USSM and E6SSM predict CP-even Higgs pole masses which are signifi-
cantly larger than in the CMSSM and NMSSM. The main reason is the positive
contribution from the extra U(1) D-term. Beyond that the extra matter fields
in the E6SSM can lead to a larger value of λ(MS), which increases the influence
of the F -term contribution for low values of tan β.

• For the here studied parameter region the NMSSM predicts Higgs masses which
are smaller or of the order of the CMSSM values. The reason is a reduction

14Note that in the CE6SSM there exists an upper bound on tanβ of around 45 [57]. The reason
is that for high tan β the top and bottom Yukawa couplings become equal at the SUSY scale,
which makes it difficult to generate a large splitting between the soft Higgs masses, as required
for EWSB. However, this effect does not occur in the here considered variant of the E6SSM,
because the soft Higgs masses are output of the EWSB equations and are automatically chosen
to be as large as required.
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of the tree-level Higgs mass due to mixing with the singlet field. This mixing
can be avoided by choosing Aλ differently from A0 at the GUT scale in order
to suppress the negative term in Eq. (6.54).

Furthermore, the parameter scans demonstrate that FlexibleSUSY is able to create
spectrum generators for the here studied minimal and non-minimal SUSY models
and can be used to do extensive parameter scans. The lightest CP-even Higgs pole
mass can be predicted for each parameter point at the one-loop and leading two-loop
level. This enables to constrain the allowed parameter space of non-minimal SUSY
models by the measured value of mpole

h = 125.9 GeV, as shown above.

6.4.3 Influence of loop corrections of different order on the
pole mass spectrum

In this section the influence of the loop order in the β-functions, self-energies, tadpoles
and threshold corrections on the pole mass spectrum is examined with FlexibleSUSY
for two different SUSY models. The purpose is to illustrate the size of the loop effects
and demonstrate how they can be studied with FlexibleSUSY.

The first model considered here is the flavour-violating CMSSM, which was intro-
duced in Section 6.4.2. It has five the free input parameters m0, M1/2, A0, tan β and
signµ, which are for the purpose of illustration set to

m0 = 125 GeV, M1/2 = A0 = 500 GeV, tan β = 10, signµ = +1, (6.61)

in the following. This CMSSM parameter point results in a spectrum with light
SUSY particles of 0.2 . . . 1.2 TeV and a light CP-even Higgs of 113 GeV. To study the
influence of different loop orders on the SUSY particle masses a spectrum generator
for the CMSSM is created with FlexibleSUSY using the model file from Section 6.3.3.
The loop orders used in the self-energies, tadpoles, β-functions and low-scale threshold
corrections can be selected in the FlexibleSUSY block in the SLHA input file. The
default is

Block FlexibleSUSY

4 2 # pole mass loop order

5 2 # EWSB loop order

6 2 # beta - functions loop order

7 1 # threshold corrections (0 = disabled , 1 = enabled )

Switch number 4 defines the loop order of the self-energies used to calculate the pole
mass spectrum from the DR model parameters. FlexibleSUSY provides full one-loop
self-energies for each field in any SUSY model. These one-loop self-energies can be
enabled by setting switch 4 to 1. In the MSSM and NMSSM additional leading
two-loop contributions to the CP-even and CP-odd Higgs bosons can be added by
setting the switch to 2 (default). Switch 5 selects the loop order of the effective Higgs
potential used for the electroweak symmetry breaking. Here full one-loop Higgs
tadpole diagrams are provided by FlexibleSUSY. Leading two-loop contributions are
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available in the MSSM and NMSSM. The switch 6 selects the β-function loop order
and switch 7 enables/disables the gauge and Yukawa coupling threshold corrections.

Figure 6.10 shows three excerpts of the CMSSM pole mass spectrum for the
parameter point given in (6.61). In 6.10(a) the β-function loop order is set to 1
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Figure 6.10: Influence of loop corrections of different order on the pole mass
spectrum in the CMSSM. The parameter point uses m0 = 125 GeV, M1/2 =
A0 = 500 GeV, tan β = 10 and signµ = +1.

(dashed lines) and 2 (solid lines). One finds that the difference in the pole mass
spectrum between one- and two-loop β-functions can be up to 25 GeV. The largest
effect is found for the gluino. The reason is that its mass is given by M3 at the tree-
level, and the renormalization group running of M3 depends on the strong coupling
constant g3. Since g3 is of the order O(1) at the low-scale, the contribution of the
two-loop β-function to the running of M3 is not negligible. The lightest Higgs mass
is insensitive to the β-function loop order and changes only by 0.03 GeV. The
main reason is that after the electroweak symmetry breaking the tree-level mass is
independent of the soft-breaking squared Higgs masses and is mainly given by mZc2β.

Since mZ and c2β are fixed at the scale mpole
Z , which is in usually close to MS, the

contribution of the two-loop β-functions to their running is subdominant.
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Figure 6.10(b) shows the CMSSM mass spectrum when the self-energy and tadpole
loop orders are set simultaneously to 0 (dotted lines), 1 (dashed lines) and 2 (solid
lines), respectively. Thereby, zero-loop order corresponds to the DR mass spectrum.
The largest mass difference between the zero-loop and one-loop self-energy correc-
tions can be found for the gluino and squark masses, where dominant self-energy
contributions of the order O(g2

3) appear. The one-loop correction for the lightest CP-
even Higgs mass is of the order 20 GeV and the leading two-loop correction amounts
for further 4 GeV. It is well known that these large loop corrections stem mainly
from top and stop diagrams of the order O(y2

t ), which are enhanced by a large top-
stop mass splitting. The size of these corrections emphasizes the necessity to include
two-loop Higgs self-energy and tadpole contributions to achieve a precise Higgs pole
mass prediction.

In Figure 6.10(c) the influence of threshold corrections to the gauge and Yukawa
couplings at the low-scale on the mass spectrum is shown. One finds that neglecting
these corrections can lead to mass shifts of up to 80 GeV. The largest effect can
again be found for the gluino and the squarks, which are influenced by large threshold
corrections to αs due to the large gauge coupling g3. The influence on the lightest
CP-even Higgs mass is also not negligible: It is decreased by 5 GeV when threshold
corrections are added. This change is mainly due to decreased stop loop corrections
to the Higgs self-energy. On the one hand the threshold corrections decrease the top
Yukawa coupling by 4 %. On the other hand the change in the gauge couplings at the
low scale changes the value of the GUT scale, which leads to 8 % smaller stop masses
for this parameter point. These two effects in combination lead to a significantly
decreased Higgs pole mass.

The second model considered here is the Z3-symmetric NMSSM, which was used in
Section 6.4.2 before. Compared to the CMSSM it has the additional free parameter
λ(MX), which is set to 0.1 in the following. The parameters m0, M1/2, A0, tan β
and signµ are set to the values given in (6.61). For the parameter point studied here
the mass spectrum of the NMSSM is similar to that of the CMSSM, except for the
modified Higgs sector. Figure 6.11 shows an excerpt of the NMSSM mass spectrum
for three different self-energy and tadpole loop orders. Similarly to the CMSSM, one
finds that the largest loop contributions appear for the gluino and the squarks due to
the O(g2

3) enhancement. The one-loop contribution to the lightest CP-even Higgs is
23 GeV and the two-loop corrections are around 4.5 GeV. This shows again that two-
loop corrections are necessary to predict the Higgs pole mass with sufficient precision.
Note again, that leading two-loop Higgs self-energy and tadpole contributions can be
added automatically for any MSSM- and NMSSM-like model in FlexibleSUSY, see
Section 6.3.3.

Conclusions

The influence of different loop orders in the β-functions, self-energies, tadpoles and
threshold corrections on the pole mass spectrum was quantified in the CMSSM
and NMSSM for parameter points with light spectra. The size of the one-loop
contributions to the pole masses were found to be up to 80 GeV. The leading two-loop
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Figure 6.11: Influence of the self-energy and tadpole loop order on the pole mass
spectrum in the NMSSM. The parameter point uses m0 = 125 GeV, M1/2 = A0 =
500 GeV, tan β = 10, signµ = +1 and λ(MX) = 0.1.

contributions to the Higgs pole mass were of the order 4 GeV, which demonstrates
the need to include them when constraining on non-minimal SUSY models. Here,
FlexibleSUSY provides an easy way to enable these contributions for MSSM- and
NMSSM-like models.

6.4.4 Influence of GUT threshold corrections on the Higgs
mass

In this section the influence of GUT threshold corrections on the predicted Higgs
pole mass is studied with FlexibleSUSY for two different SUSY models. Since most
SUSY models do not assume a specific GUT gauge group breaking mechanism, these
threshold corrections are unknown and therefore ignored. However, they can affect
the low-energy mass spectrum, which allows to constrain the possible size of the
corrections from measured low-energy observables.

One important motivation for most SUSY models is the unification of gauge cou-
plings, which allows to embed the low-energy gauge group into a simple GUT gauge
group with a single gauge coupling. At the unification scale, MX , the GUT gauge
group is broken and the thereby emerging heavy fields are integrated out. As discussed
in Section 3.1, integrating out heavy fields results in threshold corrections to the
model parameters, in particular to the gauge couplings. The latter are of particular
importance as they determine the value of the GUT scale by a condition of the form

g1(MX) = g2(MX) + ∆g(MX). (6.62)
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The GUT threshold corrections ∆g have the general form [55]

∆g(MX) =
1

(4π)2

∑

i

(
Ci log

mi

MX

+Di

)
, (6.63)

where the sum on the right-hand side runs over all fields that are integrated out. The
constants Ci andDi involve symmetry group invariants, charges and couplings and are
of the order O(1). However, the exact size of the the constants Ci and Di is unknown
as long as no concrete GUT model is considered. For this reason ∆g is set to zero in
many SUSY models, as for example the CMSSM, NMSSM or CE6SSM. However, one
can gain information about the allowed size of the GUT threshold corrections from
known low-energy observables. For example, in models with mSUGRA-inspired GUT
boundary conditions, as the CMSSM or CE6SSM, the GUT scale is a fundamental
input scale where the soft-breaking parameters are fixed. A variation of the GUT
scale due to non-zero threshold corrections will therefore translate to a variation of
the low-energy phenomenology, which can be compared to experimental data.

In the following the influence of non-zero GUT threshold corrections on the lightest
CP-even Higgs pole mass is studied with FlexibleSUSY. As models the CMSSM and
the NUHM E6SSM, from Section 6.4.2, are considered. For the study the threshold
corrections are parametrized by a constant tc and the GUT scale condition is written
as15

g1(MX) = g2(MX) + tc. (6.64)

In the FlexibleSUSY model files for the CMSSM and E6SSM this condition is realized
by adding tc to the input parameter block EXTPAR and changing the definition of the
high-energy scale to

EXTPAR = { {100 , tc} };

HighScale = g1 == g2 + tc;

A scan over tc in the range −0.1 . . . 0.1 is performed for heavy CMSSM and E6SSM
scenarios, with m0 = M1/2 = A0 = 5 TeV, signµ = +1, λ = κ = 0.1 and v3 = µ′ =
Bµ′ = 10 TeV. The chosen scan range for tc is based on the following consideration:
The overall size of tc is given by the loop factor (4π)−2 ≈ 0.006, the group invariants
and the splitting of the mass spectrum at the GUT scale. Assuming O(100) heavy
particles16 with masses of the order 0.9 . . . 1.1MX to be integrated out leads to a
threshold correction of the order tc ≈ 0.05.

The left column in Figure 6.12 shows the lightest CP-even Higgs pole mass in the
CMSSM and E6SSM as a function of tc for different values of tan β. First, one finds
that the overall variation of mpole

h with tc is larger in the CMSSM than in the E6SSM.

15The case tc < 0 in the CMSSM is equivalent to the so-called sub-GUT CMSSM [188, 189, 190],
where the input scale for the soft-breaking parameters is chosen to be below the GUT scale.

16In the E6SSM, for example, the fields which complete the (27)′, (27)′ and (78) representations
need to be integrated out, which results in O(100) degrees of freedom.
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Figure 6.12: Higgs pole mass and GUT scale as a function of the GUT threshold
corrections tc in the CMSSM and E6SSM. Both models use the common
parameters m0 = M1/2 = A0 = 5 TeV and signµ = +1. In the E6SSM the
remaining free parameters are set to λ = κ = 0.1 and v3 = µ′ = Bµ′ = 10 TeV.

The reason is that in the CMSSM the GUT scale is more sensitive to tc, see the plots
in the right column. This sensitivity translates to a larger variation of the Higgs mass
at the low-scale. The reason for the weaker dependency of MX(tc) in the E6SSM are
the larger E6SSM gauge coupling β-functions. As shown in Figure 6.13, they lead to
a steeper slope of gi(MX), which results in a weaker dependency of MX on a deviation
from exact coupling unification.

The overall variation of the Higgs mass is around 1 . . . 2 GeV in the CMSSM and
around 1 GeV in the E6SSM. It is thereby of the same order or smaller than the
two-loop Higgs self-energy and tadpole corrections [166, 167]. The origin is a varying
stop mass splitting, which is influenced by the value of the GUT scale at which the
soft-breaking parameters are constrained. In the CMSSM this splitting is of the order
1 TeV for tc = −0.1 and rises to 1.5 TeV when tc is increased to 1.0.

Finally, it can be seen from Figure 6.12(b) that large negative threshold corrections
(g1(MX) < g2(MX)) significantly decrease the GUT scale in the CMSSM. This
can lead to a deformed Higgs potential at the low-scale, which prevents electroweak
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Figure 6.13: Running gauge couplings in the CMSSM and E6SSM. Both models
use the common parameters m0 = M1/2 = A0 = 5 TeV, tan β = 10 and signµ =
+1. In the E6SSM the remaining free parameters are set to λ = κ = 0.1 and
v3 = µ′ = Bµ′ = 10 TeV.

symmetry breaking from occurring. In the here studied case for tc . −0.08 no real
solution for the µ parameter which solves the EWSB equations exists. On the other
hand, a large positive threshold correction tc & 0.1 can lead to a very high GUT scale
of the order 1019 GeV or larger.

Conclusions

The influence of non-zero GUT threshold corrections on the predicted lightest CP-
even Higgs pole mass was studied in the CMSSM and E6SSM for parameter scenar-
ios with heavy spectra. The threshold corrections were varied in the wide range
−0.1 . . . 0.1 to cover GUT models where large multiplets with O(100) fields are
integrated out. It was found that the variation of the Higgs pole mass can be up
to 2 GeV in this range, which is due to a strong dependence of the GUT scale on the
threshold correction. The size of this effect should therefore be kept in mind when
considering GUT models with large multiplets. Furthermore, it could be seen that
this study was easily possible with FlexibleSUSY, since only minimal modifications
to existing CMSSM and E6SSM model files were needed to introduce a non-zero
threshold correction.

6.5 Summary and conclusion

In this chapter FlexibleSUSY was presented, a Mathematica package which creates
spectrum generators for minimal and non-minimal SUSY models in C++. It provides
two levels to influence the generated source code: (i) The Mathematica meta code
level, where the user can customize the model and the boundary conditions via a
model file and (ii) the C++ level, where modular C++ classes are generated which
allow for flexible reuse and extension. In addition FlexibleSUSY focuses on a short
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run-time and provides interfaces for alternative boundary value problem solvers and
towers of effective theories.

To demonstrate that the design goals have been achieved and to illustrate Flexi-
bleSUSY’s range of use four different applications were studied:

• A CMSSM spectrum generator run-time comparison was performed with the
two hand-written programs SPheno and Softsusy and the automatically gener-
ated SPhenoMSSM. It was found that due to the fast linear algebra package and
the used multi-threading FlexibleSUSY is faster by a factor 1.4–2.5 compared to
Softsusy and SPheno, and faster by a factor 2.8–5 compared to SPhenoMSSM.

• The lightest CP-even Higgs pole mass was studied in the CMSSM, NMSSM,
USSM and E6SSM. It was found that in the studied parameter regions the
USSM and E6SSM can predict the largest Higgs masses.

• The influence of the loop order in the β-functions, self-energies, effective Higgs
potential and threshold corrections was quantified in the CMSSM and NMSSM.
Reduced loop orders or missing threshold corrections were found to shift the
pole mass spectrum up to 80 GeV. The lightest Higgs mass was found to be
sensitive to the used self-energy, tadpole and threshold corrections, which can
amount to ±5 GeV in the mass.

• The influence of non-zero GUT threshold corrections on the predicted Higgs
pole mass was studied in a CMSSM- and E6SSM-like model. It was found that
integrating out large field multiplets with O(100) particles at the GUT scale
can shift the Higgs mass up to 2 GeV at the low-energy scale.

These applications demonstrate that FlexibleSUSY can be used to create spectrum
generators for minimal and non-minimal SUSY models and to constrain the pa-
rameter space by calculating the Higgs pole mass with leading two-loop precision.
Furthermore, existing model files for the MSSM, NMSSM, USSM, E6SSM etc. can be
easily modified at the Mathematica meta code level to allow studying model variants
with different boundary condition set-ups. The generated C++ code is modular,
which enables to exchange different modules easily by user-supplied routines and
reuse components in existing programs.

Extensions of FlexibleSUSY are already planned which calculate sparticle and
Higgs decays as well as the anomalous magnetic moment of the muon. The for-
mer is especially important in order to test SUSY models on experimental data.
Furthermore, models with complex parameters will be allowed in the future, to study
CP-violation for example.

FlexibleSUSY has been published in [114] and can be obtained from
https://flexiblesusy.hepforge.org.
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Chapter 7

Summary

Non-minimal supersymmetric models are attractive extensions of the Standard Model
and the MSSM, as they provide solutions to the µ-problem, for example, can re-
duce the Higgs mass fine-tuning and introduce interesting new phenomenology. For
phenomenological investigations of such models and to search for signals of SUSY
particles in experimental data complicated consecutive computations must be car-
ried out. The first step is usually to calculate the pole mass spectrum from a set
of theory input parameters. This mass spectrum can then be used to calculate
further observables, such as decays, cross sections, the dark matter relic density etc.
Alternatively, the mass spectrum may be passed on to event generators and detector
simulations to study how particle collisions manifest in a detector. This thesis makes
four contributions in the field of non-minimal supersymmetry phenomenology, which
increase the precision of the mass spectrum prediction and the DR parameters and
allow to easily study new models with high accuracy.

The mass spectrum prediction in the CE6SSM has been improved by calculating
the E6SSM gauge and Yukawa couplings taking one-loop radiative corrections from
SUSY particles into account. They complement the partial gauge coupling threshold
corrections to the Standard Model, which have been calculated earlier. Implementing
these corrections into an existing CE6SSM spectrum generator led to a more precise
mass spectrum prediction and allowed one to re-evaluate the proposed benchmark
points from the literature. A parameter scan was performed using the improved
spectrum generator to confront the model with exclusion limits from current experi-
ments. Parameter regions with light squarks have been found to be excluded by the
gluino mass limit due to the characteristic gluino-sfermion hierarchy in the CE6SSM.
Regions which are not excluded by this limit can lead to the measured value of the
Higgs mass due to large contributions from heavy stops and the extra D-term from
the additional U(1)N gauge symmetry. The model is therefore still viable and can be
probed by current experiments.

The β-functions of vacuum expectation values was calculated in a general and
supersymmetric gauge theory in Rξ gauge at the one- and two-loop level using an
elegant background field formalism. The results reveal the general structure of the
β-function of tan β, which was found to be gauge-independent in the MSSM and
NMSSM at the one-loop level due to an accidental cancellation. At the two-loop level
the gauge dependence is manifest. The general expressions for the one- and two-loop
VEV β-functions were specialized to the MSSM and NMSSM and implemented into
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Softsusy. In addition, these general expressions are now available in SARAH since
version 4.0.0 and are used to calculate the one- and two-loop β-functions of VEVs
in any softly broken N = 1 SUSY model. The general SUSY spectrum generators
SARAH/SPheno and FlexibleSUSY for example make use of these expressions to
implement the renormalization group running of the VEVs in a user-defined SUSY
model.

An NMSSM extension of Softsusy was created in order to calculate the pole
mass spectrum and the DR parameters in the NMSSM with a high precision. As
discussed, the NMSSM is a well-motivated SUSY model which solves the µ-problem
of the MSSM and provides an interesting phenomenology with an extended Higgs
sector which can be probed by the LHC. This extension is able to calculate the pole
mass spectrum in the Z3-symmetric and Z3-violating NMSSM using full two-loop
β-functions, one-loop self-energies and tadpoles as well as leading two-loop Higgs
mass corrections. Softsusy thereby implements many precision corrections, which
are neglected in NMSPEC. Among the advantages of having multiple spectrum
generators for the same model, this enables to estimate the theory uncertainty of
the predicted mass spectrum by comparing the output of the two programs.

FlexibleSUSY, a Mathematica package which creates spectrum generators for SUSY
models, was written to allow studies of a wide range of non-minimal SUSY models
to be carried out easily. The user defines a SUSY model at the Mathematica meta
code level and specifies physical assumptions about the model in form of boundary
conditions, as for example the electroweak symmetry breaking or universality condi-
tions on the soft-breaking parameters at the gauge coupling unification scale. For a
so-defined model FlexibleSUSY calls functions from SARAH to calculate β-functions,
mass matrices, one-loop self-energies and tadpoles and converts these expressions into
C++ classes with well-defined interfaces. In addition, leading two-loop Higgs mass
contributions can be added in MSSM- and NMSSM-like models to enable a more
precise mass prediction. Furthermore, one-loop expressions for the gauge coupling
threshold corrections and Yukawa couplings are generated automatically to match the
SUSY model to the Standard Model taking radiative corrections into account. The
loop-corrected effective Higgs potential is constructed from the tadpole diagrams and
electroweak symmetry breaking conditions and numerical routines are automatically
created to find a minimum. All of these components are finally combined to a
complete spectrum generator, which calculates the DR parameters and pole masses
consistent with the user-defined boundary conditions. To solve the boundary value
problem the standard two-scale fixed-point iteration algorithm used in the MSSM
was generalized. It finds physical solutions consistent with an arbitrary number of
constraints and can handle towers of effective field theories as well. FlexibleSUSY
aims for a fast run-time, a modular structure and provides an interface for alternative
boundary condition solvers to study parameter regions where the standard fixed-point
iteration does not converge.

Using FlexibleSUSY it was possible to compare the lightest CP-even Higgs pole
mass with leading two-loop accuracy in four different SUSY models, thereby studying
the impact of extra matter fields and symmetries. It was found that especially
in models with extra U(1) gauge symmetries, such as the USSM and E6SSM, the
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Higgs mass is significantly increased, which mitigates of the fine-tuning problem. In
addition, the influence of non-zero GUT threshold corrections on the lightest CP-even
Higgs pole mass was studied in CMSSM- and E6SSM-like models. These corrections
are ignored in many SUSY models due to an unspecified GUT gauge group breaking
mechanism. However, these corrections can have a significant effect on the low-energy
phenomenology in models where large multiplets with O(100) particles are integrated
out at the GUT scale, as is the case for example in the E6SSM. In the studied range
it was found that the lightest Higgs pole mass can vary up to 2 GeV, which is of the
order or smaller than the two-loop Higgs mass corrections.

In summary, FlexibleSUSY provides a fast, precise, modular and easy to use
spectrum generator framework. It allows the study of a wide range of non-minimal
supersymmetric models and thereby can assist the SUSY community to search for
supersymmetry at current experiments.
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Appendix A

Group invariants

The group invariants used in Section 4 are defined as

C2
ab(S) = TAacT

A
cb , (A.1)

C2
ab(F) = tAact

A
cb, (A.2)

C2(G)δAB = fACDfBCD, (A.3)

S2(S)δAB = Tr[TATB], (A.4)

S2(F)δAB = Tr[tAtB], (A.5)

Y 2
ab(S) =

1

2
Tr
(
Y †aY b + Y †bY a

)
, (A.6)

Λ2
ab(S) =

1

6
λacdeλbcde, (A.7)

H2
ab(S) =

1

2
Tr
(
Y aY †bY cY †c + Y †aY bY †cY c

)
, (A.8)

H̄2
ab(S) =

1

2
Tr
(
Y aY †cY bY †c + Y †aY cY †bY c

)
, (A.9)

Y 2F
ab (S) =

1

2
Tr
[
C2(F)(Y aY †b + Y bY †a)

]
. (A.10)

The TAab and tAab are the generators of the gauge transformation of the scalar fields and
Weyl spinors, respectively. The structure functions of the gauge group are denoted
as fABC . The Yukawa couplings Y a

bc and the scalar four-point couplings λabcd are
normalized as in Eq. (4.9).
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Appendix B

MSSM field content

The field content of the MSSM [20] in terms of chiral and vector superfields and their
quantum numbers is listed in Table B.1. The decomposition of the superfields in
terms of bosonic and fermionic component fields can be found in Table B.2. In this
thesis the following R-parity conserving superpotential is used

WMSSM = µ(H1H2)− yeij(H1Li)Ēj − ydij(H1Qi)D̄j − yuij(QiH2)Ūj, (B.1)

where the bracket product (AB) = ǫCDA
CBD denotes the SU(2) invariant doublet

product with ǫCD = −ǫDC and ǫ12 = −1.

Field SU(3)c × SU(2)L × U(1)Y SU(5)

Qi = (Qui
Qdi

) (3,2, 1
6
)i





(10)iŪi (3̄,1,−2
3
)i

Ēi (1,1, 1)i
D̄i (3̄,1, 1

3
)i

}
(5̄)iLi = (Lνi

Lei
) (1,2,−1

2
)i

? (3̄,1, 1
3
)

}
(5̄)

H1 = (H0
1 H−

1 ) (1,2,−1
2
)

? (3,1,−1
3
)

}
(5)

H2 = (H+
2 H0

2 ) (1,2, 1
2
)

V a
g (8,1, 0)





(24)
? (3̄,2, 5

6
)

? (3,2,−5
6
)

V i
W (1,3, 0)
VY (1,1, 0)

Table B.1: MSSM superfields and their gauge group representations (generation
index i = 1, 2, 3). For the abelian group U(1)Y the charges Y/2 are listed. The
? placeholder represents fields that do not exist in the MSSM, but which would
complete the fundamental (5), (5̄) and (24) representations of SU(5).
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Superfield Component fields
Spin 0 Spin 1/2 Spin 1

Qi = (Qui
Qdi

)T q̃iL = (ũiL d̃iL)T qiL = (uiL diL)T

Ūi ũ∗
iR uCiR

D̄i d̃∗
iR dCiR

Li = (Lνi
Lei

)T ℓ̃iL = (ν̃iL ẽiL)T ℓiL = (νiL eiL)T

Ēi ẽ∗
iR eCiR

H1 = (H0
1 H−

1 )T h1 = (h0
1 h−

1 )T h̃1L = (h̃0
1L h̃−

1L)T

H2 = (H+
2 H0

2 )T h2 = (h+
2 h0

2)
T h̃2L = (h̃+

2L h̃0
2L)T

V a
g g̃a Ga

µ

V i
W W̃ i W i

µ

VY B̃ Bµ

Table B.2: Component fields of the MSSM superfields (generation index i =
1, 2, 3). The charge conjugation of a spinor ψ is defined as ψC := C ψ̄T , where
C = iγ2γ0.
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Appendix C

The E6SSM

C.1 Gauge group

The Exceptional Supersymmetric Standard Model (E6SSM) is a supersymmetric
gauge theory, that is inspired by Grand Unified Theories (GUTs) with an E6 gauge
symmetry. The E6 gauge symmetry is broken at the GUT scale MX via the Hosotani
mechanism [191] to the direct product of the Standard Model gauge group an extra
U(1)N gauge group

SU(3)c × SU(2)L × U(1)Y × U(1)N . (C.1)

This additional U(1)N arises from the step-wise breaking of the E6 as [192, 193]

E6 → SO(10)× U(1)ψ (C.2a)

�

SU(5)× U(1)χ (C.2b)

�

SU(3)c × SU(2)L × U(1)Y , (C.2c)

where the two abelian gauge groups U(1)χ × U(1)ψ are combined to

U(1)N = U(1)χ cos θ + U(1)ψ sin θ, (C.3)

with tan θ =
√

15. This choice of the mixing angle tan θ leads to a pure gauge
singlet, which can be assigned to the right-handed neutrino. For this gauge singlet
a gauge invariant Majorana mass term is allowed, which enables a high-scale seesaw
mechanism for the generation of neutrino masses.

C.2 Field content

The field content of the E6SSM fills three generations of complete fundamental (27)
representations of the E6 group, see Table C.1. Anomaly cancellation is ensured
hereby. In order to enable gauge coupling unification, the model is enhanced by two
Higgs-like doublets H ′ and H̄ ′, called survival Higgses. They originate from extra,
incomplete (27)′ and (27)′ representations and do not spoil anomaly cancellation.

The Standard Model fermions and their superpartners fill the SU(5) × U(1)N
multiplets (10, 1)i and (5̄, 2)i. The (5̄,−3)i and (5,−2)i representations contain three
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Field GSM × U(1)N SU(5)× U(1)N E6

Qi = (Qui
Qdi

) (3,2, 1
6
, 1)i





(10, 1)i





(27)i

Ūi (3̄,1,−2
3
, 1)i

Ēi (1,1, 1, 1)i
D̄i (3̄,1, 1

3
, 2)i

}
(5̄, 2)iLi = (Lνi

Lei
) (1,2,−1

2
, 2)i

X̄i (3̄,1, 1
3
,−3)i

}
(5̄,−3)iH1i = (H0

1i H−
1i) (1,2,−1

2
,−3)i

Xi (3,1,−1
3
,−2)i

}
(5,−2)iH2i = (H+

2i H0
2i) (1,2, 1

2
,−2)i

Si (1,1, 0, 5)i (1, 5)i
N̄i (1,1, 0, 0)i (1, 0)i

H ′ = (H ′0 H ′−) (1,2,−1
2
, 2) ∋ (5̄, 2)′ ∋ (27)′

H̄ ′ = (H̄ ′+ H̄ ′0) (1,2, 1
2
,−2) ∋ (5,−2)′ ∋ (27)′

V a
g (8,1, 0, 0) ∋ (24, 0) ∋ (78)
V i
W (1,3, 0, 0) ∋ (24, 0) ∋ (78)
VY (1,1, 0, 0) ∋ (24, 0) ∋ (78)
VN (1,1, 0, 0) ∋ (1, 0) ∋ (78)

Table C.1: E6SSM superfields and their gauge group representations (generation
index i = 1, 2, 3), where GSM ≡ SU(3)c×SU(2)L×U(1)Y . For the abelian groups
U(1)Y and U(1)N the charges Y/2 and N/2 are listed.

generations of Higgs-like superfields H1i, H2i and exotic colored matter fields Xi, X̄i.
The remaining SU(5) singlets (1, 0)i and (1, 5)i represent right-handed neutrinos
and singlet fields Si, respectively. The complete list of E6SSM particles and their
representations can be found in Table C.1 and C.2.

In an E6 gauge symmetric theory the gauge bosons and their superpartners fill the
adjoint (78) representation of the E6. Under the breaking (C.2) and (C.3) the (78)
representation decomposes into

(78)→ (8,1, 0, 0) + (1,3, 0, 0) + (1,1, 0, 0) + (1,1, 0, 0) + · · · (C.4)

The broken E6 generators correspond to gauge bosons (and gauginos) with a mass
of the order of the GUT scale MX , which are assumed to be integrated out.1 The
four unbroken multiplets in (C.4) represent the eight gluons Ga (and gluinos g̃a), the
three SU(2)L gauge bosons W i (and winos W̃ i), the U(1)Y gauge boson B (and the
bino B̃) and the extra U(1)N gauge boson B′ (and B̃′), respectively.

1Integrating out heavy E6 gauge bosons and gauginos can lead to significant threshold corrections
to the gauge couplings at the GUT scale [55]. The presence of these corrections should be kept in
mind when studying gauge coupling unification within a low-scale supersymmetric theory, such
as the MSSM or E6SSM.
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Superfield Component fields
Spin 0 Spin 1/2 Spin 1

Qi = (Qui
Qdi

)T q̃iL = (ũiL d̃iL)T qiL = (uiL diL)T

Ūi ũ∗
iR uCiR

D̄i d̃∗
iR dCiR

Li = (Lνi
Lei

)T ℓ̃iL = (ν̃iL ẽiL)T ℓiL = (νiL eiL)T

Ēi ẽ∗
iR eCiR

N̄i ν̃∗
iR νCiR

Xi x̃iL xiL
X̄i x̃∗

iR xCiR
H1i = (H0

1i H−
1i)

T h1i = (h0
1i h−

1i)
T h̃1iL = (h̃0

1iL h̃−
1iL)T

H2i = (H+
2i H0

2i)
T h2i = (h+

2i h0
2i)

T h̃2iL = (h̃+
2iL h̃0

2iL)T

Si si s̃i

H ′ = (H ′0 H ′−)T h′ = (h′0 h′−)T h̃′
L = (h̃′0

L h̃′−
L)T

H̄ ′ = (H̄ ′+ H̄ ′0)T h̄′ = (h̄′+ h̄′0)T
˜̄
h′
L = (

˜̄
h′

+

L
˜̄
h′

0

L)T

V a
g g̃a Ga

µ

V i
W W̃ i W i

µ

VY B̃ Bµ

VN B̃′ B′
µ

Table C.2: Component fields of the E6SSM superfields (generation index i =
1, 2, 3). The charge conjugation of a spinor ψ is defined as ψC := C ψ̄T , where
C = iγ2γ0.

C.3 Superpotential

The most general renormalizable, E6 invariant superpotential that can be formed out
of the (27)i representations of the E6 gauge group is given by the trace of the (27)i⊗
(27)j ⊗ (27)k. The invariance under the low-energy gauge group (3.1) of the E6SSM
allows further terms. However, as in the case of the MSSM, the most general gauge
SU(3)c × SU(2)L × U(1)Y × U(1)N invariant superpotential is phenomenologically
not viable [42, 54], because it contains baryon number violating terms and could lead
to unacceptably large non-diagonal flavor transitions. To conserve baryon number,
avoid flavor changing neutral currents (FCNCs), and at the same time avoid stable
exotic colored quarks [194, 195, 196], two discrete symmetries are imposed [42]:

1. An approximate ZH
2 symmetry, under which H13, H23 and S3 carry charge +1,

and all other chiral superfields carry charge −1.23 This symmetry suppresses
baryon number violating terms and avoids FCNCs.

2Such a ZH
2 symmetry could be the result of a ∆27 family symmetry imposed at the GUT scale

[197].
3As an alternative one might impose an exact Z̃H

2 symmetry and at the same time allow the exotic
colored quarks to decay into matter fields from additional incomplete (27) representations [198].
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2. A symmetry analogous to R-parity in the MSSM, which avoids rapid proton
decay, caused by the ZH

2 violating terms. This can either be

a) a ZL
2 symmetry, under which all chiral superfields carry charge +1, except

for the leptons which carry charge −1 (Model I) or

b) a ZB
2 symmetry, under which the exotic quarks and leptons carry charge

−1, and all others superfields carry charge +1 (Model II).

The so constructed two possible E6SSM superpotentials read

WZH
2 ,Z

L/B
2

E6SSM =WZH
2

E6SSM +WZ
L/B
2

E6SSM, (C.5)

where

WZH
2

E6SSM = −yeij(H13Li)Ēj − ydij(H13Qi)D̄j − yuij(QiH23)Ūj

+
1

2
MijN̄iN̄j + hE4j(H13H

′)Ēj + hN4j(H23H
′)N̄j + µ′(H ′H̄ ′)

+ λiS3(H1iH2i) + κiS3XiX̄i + fαβSα(H13H2β) + f̃αβSα(H1βH23),

(C.6)

WZL
2

E6SSM = gQijkXi(QjQk) + gqijkX̄iD̄jŪk, (C.7)

WZB
2

E6SSM = gNijkN̄iXjŪk + gEijkĒiXjŪk + gDijk(QiLj)X̄k. (C.8)

As can be seen from Eq. (C.7), in the ZL
2 symmetric case the scalar exotic quarks can

decay into two quarks (they are diquarks), while in the ZB
2 symmetric case, Eq. (C.8),

they decay into a lepton and a quark (they are leptoquarks).

To give masses to the gauge bosons, to the Standard Model fermions, to the exotic
quarks and to the first two generation of Higgs-like doublets (so-called “inert Higgses”)
it is sufficient that the neutral scalar components of H13, H23 and S3 have non-zero
vacuum expectation values

〈h0
23〉 = v2/

√
2, 〈h0

13〉 = v1/
√

2, 〈s3〉 = v3/
√

2. (C.9)

To ensure this, the following hierarchy between the Yukawa couplings is imposed

κi ∼ λ3 & λ1,2 ≫ fαβ, f̃αβ, h
E
4j, h

N
4j. (C.10)

This hierarchy allows to approximate the E6SSM superpotential (C.5) as

WE6SSM ≈ −yτ (H13L3)Ē3 − yb(H13Q3)D̄3 − yt(Q3H23)Ū3

+ λiS3(H1iH2i) + κiS3XiX̄i + µ′(H ′H̄ ′),
(C.11)

where the right-handed neutrinos are assumed to be integrated out and only dominant
terms are kept. Note that in the superpotential (C.11), the singlet VEV generates an
effective µ-term of the form µeff := λ3v3/

√
2, just as in the NMSSM, see Section 2.2.2.

Further model details, as the Higgs potential, electroweak symmetry breaking condi-
tions and mass eigenstates of all the particles have been presented in Ref. [54].
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C.4 The constrained E6SSM

The Constrained Exceptional Supersymmetric Standard Model (CE6SSM) [54] is a
variant of the Exceptional Supersymmetric Standard Model (E6SSM) where the soft
squared masses m2

k of all (27)i scalars, the soft trilinear couplings Ai and the gaugino

masses Mi unify at the GUT scale MX (the scale where
√

5/3gY = g2)

m2
k(MX) = m2

0 for all scalars k in (27)i, (C.12a)

Ai(MX) = A0, (C.12b)

Mi(MX) = M1/2. (C.12c)

These unification constraints are well-motivated by supergravity models of supersym-
metry breaking [14]. The soft scalar masses of the survival Higgs bosons m2

h′ , m2
h̄′

are not assumed to be unified with m2
0, because they stem from incomplete (27)′ and

(27)′ representations of the E6. The soft bilinear term Bµ′ is also unconstrained.

Due to the simplified superpotential (C.11), the constraints (C.12), and VEVs (C.9)
the CE6SSM introduces the following 16 new parameters compared to the Standard
Model4

gN , λi (i = 1, 2, 3), κi (i = 1, 2, 3), tan β, v3,

m2
0,M1/2, A0, µ

′, Bµ′,m2
h′ ,m2

h̄′ ,
(C.13)

where tan β = v2/v1. Since the CE6SSM is a GUT model, the new gauge coupling
gN is restricted at the GUT scale to unify with g1 and g2

g1(MX) = g′
1(MX) = g2(MX) = g3(MX), (C.14)

where the GUT-normalized gauge couplings g1 :=
√

5/3gY and g′
1 :=

√
40gN were

introduced. The three non-zero vacuum expectation values of the Higgs fields lead
to three electroweak symmetry breaking conditions

0 =
∂VHiggs

∂vi

∣∣∣∣∣
h13=h23=s3=0

(i = 1, 2, 3), (C.15)

which demand that the scalar Higgs potential VHiggs has an extremum. These con-
ditions can fix further three of the parameters in (C.13). In Refs. [54, 57] these are
chosen to be m2

0, M1/2 and A0. This leaves the following 12 free parameters in the
CE6SSM

λi (i = 1, 2, 3), κi (i = 1, 2, 3), tan β, v3, µ
′, Bµ′,m2

h′ ,m2
h̄′ . (C.16)

4The gauge couplings gY , g2, g3 as well as the Yukawa couplings yt, yb, yτ are considered to

be Standard Model parameters here. They are fixed by the known values of αSM,MS
e.m. (mZ),

αSM,MS
s (mZ), θSM,MS

W (mZ), mpole
t , mSM,MS

b (mZ), mpole
τ [11].
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C.5 Mass eigenstates

C.5.1 Higgs sector

The Higgs bosons in the E6SSM are written as

hpi =

(
h1
pi

h2
pi

)
, si, (C.17)

where i = 1, 2, 3 is the generation index. The index p = 1, 2 labels the Higgs
bosons which give masses to the down-type (p = 1) and up-type (p = 2) fermions,
respectively. When the SU(2)L × U(1)Y × U(1)N is broken to U(1)em the third
generation Higgs bosons get a vacuum expectation value

h13 =

(
h0

13

h−
13

)
→
(
v1√

2
+ ℜeh0

13 + iℑm h0
13

h−
13

)
, (C.18)

h23 =

(
h+

23

h0
23

)
→
(

h+
23

v2√
2

+ ℜeh0
23 + iℑm h0

23

)
, (C.19)

s3 →
v3√

2
+ ℜe s3 + iℑm s3. (C.20)

The following abbreviations are introduced:

v :=
√
v2

2 + v2
1, tan β :=

v2

v1

, tanφ :=
v

2v3

sin 2β, µeff,i :=
λiv3√

2
. (C.21)

From the real parts of h0
13, h

0
23 and s3 three CP-even Higgs bosons are constructed.

The diagonalization of the corresponding mass matrix is done in two steps. At first
one transforms ℜeh0

13, ℜeh0
23 and ℜe s3 into intermediate states (h1, h2, h3) as



ℜeh0

13

ℜeh0
23

ℜe s3


 = UMSSM

1√
2




h1

h2

h3


+

1√
2



v1

v2

v3


 , (C.22)

where the mixing matrix UMSSM has the form

UMSSM =




cos β − sin β 0
sin β cos β 0

0 0 1


 . (C.23)

In the basis of h = (h1, h2, h3)
T the Lagrangian for the CP even Higgs masses reads

Leven = −1

2
h
TMMSSMh, (C.24)

where the matrix MMSSM is non-diagonal in general. Note that the above trans-
formation is analogous to the MSSM, where the mixing angle in UMSSM is β. In a
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C.5 Mass eigenstates

second step one diagonalizes the mass matrix MMSSM by the unitary matrix UE6
.

The resulting CP-even Higgs mass eigenstates are labeled h = (h1, h2, h3)
T . The

diagonalization transformation reads

h = UE6
h, ME6

= U∗
E6
MMSSMU

†
E6
, (C.25)

where ME6
is diagonal. From the gauge eigenstates A = (ℑm h0

13,ℑm h0
23,ℑm s3)

T

one constructs three CP-odd Higgs boson mass eigenstates A = (A1, A2, A3)
T ≡

(G0, G′, A0)T as

1√
2
A := UAA, MA = U∗

AMU †
A, (C.26)

where MA is diagonal. The mixing matrix UA is parametrized as

UA =




cos β − sin β 0
− sin β sinφ − cos β sinφ cosφ
sin β cosφ cos β cosφ sinφ


 . (C.27)

Analogous to the MSSM the charged Higgs and goldstone bosons (h±
i ) = (G± h±)T

are constructed from the gauge eigenstates h±
i3 as

h±
i = U±

ijh
±
j3 (i, j = 1, 2), where U± =

(
cos β − sin β
sin β cos β

)
. (C.28)

C.5.2 Inert Higgs sector

The first two generations (i = 1, 2; p = 1, 2) Higgs doublets in Eq. (C.17) are called
inert Higgs bosons. For each generation i = 1, 2 the fields h0

1i, h
0∗
2i are mixed to mass

eigenstates h0
ik with an unitary matrix U0i

inert as

h0
ik = (U0i

inert)kl

(
h0

1i

h0∗
2i

)

l

, U0i
inert =

(
cos θ0

i sin θ0
i

− sin θ0
i cos θ0

i

)
. (C.29)

Here k, l = 1, 2 enumerates the mass eigenstates and inter-generation mixing is
neglected. Furthermore, for each generation i = 1, 2 the fields h−

1i, h
+∗
2i mix to mass

eigenstates h−
ik with an unitary matrix U±i

inert as

h−
ik = (U±i

inert)kl

(
h−

1i

h+∗
2i

)

l

, U±i
inert =

(
cos θ±

i sin θ±
i

− sin θ±
i cos θ±

i

)
. (C.30)

Here k, l = 1, 2 enumerates again the mass eigenstates and inter-generation mixing is
neglected. Furthermore, for each generation i = 1, 2 the higgsinos h̃0

1iL, h̃0
2iL mix to

mass eigenstates ψ0
li with an unitary matrix Z as

ψ0
li = Zln

(
h̃0

1iL

h̃0
2iL

)

n

, Z =
1√
2

(
1 1
−1 1

)
. (C.31)
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The Majorana mass eigenstates are then defined as

h̃0
li =

(
ψ0
li

ψ0
li

T

)
. (C.32)

The charged higgsinos h̃−
1iL, h̃+

2iL are combined to mass eigenstates h̃−
i

h̃−
i =


 h̃−

1iL

h̃+
2iL

T


 . (C.33)

C.5.3 Survival Higgs sector

The neutral survival Higgs bosons h′0, h̄′0 mix to mass eigenstates h′0
k with an unitary

matrix U0
surv as

h′0
k = (U0

surv)kl

(
h′0

h̄′0∗

)

l

, U0
surv =

(
cos θ′0 sin θ′0

− sin θ′0 cos θ′0

)
. (C.34)

The charged survival Higgs bosons h′−, h̄′+ mix to mass eigenstates h′−
k with an

unitary matrix U±
surv as

h′−
k = (U±

surv)kl

(
h′−

h̄′+∗

)

l

, U±
surv =

(
cos θ′± sin θ′±

− sin θ′± cos θ′±

)
. (C.35)

The survival higgsinos obey the same mixing as the neutral and charged inert hig-
gsinos in Section C.5.2. Their mass eigenstates are denoted as h̃′± and h̃′0

i (i = 1, 2),
respectively.

C.6 Self-energies

C.6.1 W boson

The W± boson 1PI correlation function is decomposed into a transverse and longi-
tudinal part as

ΓW+
µ W

−
ν

(p) = −gµν(p2 −m2
W )−

(
gµν − pµpν

p2

)
ΠWW,T (p2)− pµpν

p2
ΠWW,L(p2).

(C.36)

The DR renormalized transverse part is denoted as Π̂WW,T (p2), where the divergences
∆ = 1/ǫ− γE + ln 4π are subtracted. In the E6SSM it reads

(4π)2

g2
2

Π̂E6SSM
WW,T (p2) =

1

4

3∑

i=1

2∑

k=1

{(
UA∗
ik

)2
A0(mAi

) +
(
UE6∗
ik

)2
A0(mhi

)
}
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+
1

2
A0(mh±) +

1

2
A0(mG±) +m2

W

3∑

i=1

(
UE6∗
i1

)2
B0(p

2,mhi
,mW )

−
3∑

i=1

2∑

j=1

∣∣∣UA
i1U

±
j1 + UA

i2U
±
j2

∣∣∣
2
B22(p

2,mAi
,mh±

j
)

−
3∑

i=1

2∑

j=1

∣∣∣∣∣

3∑

k=1

UE6

ik

(
UMSSM

1k U±
j1 − UMSSM

2k U±
j2

)∣∣∣∣∣

2

B22(p
2,mAi

,mh±

j
)

+
2∑

i,l=1

{
1

2

(
|Zl1|2 + |Zl2|2

)
H(p2,mh̃+

i
,mh̃0

li
)

− 2Zl1Zl2mh̃+
i
mh̃0

li
B0(p

2,mh̃+
i
,mh̃0

li
)

}

− 2
2∑

i=1

{
cos2(θ0

i + θ±
i )
(
B̃22(p

2,mh±

i1
,mh0

i1
) + B̃22(p

2,mh±

i2
,mh0

i2
)
)

+ sin2(θ0
i + θ±

i )
(
B̃22(p

2,mh±

i1
,mh0

i2
) + B̃22(p

2,mh±

i2
,mh0

i1
)
)}

+
2∑

l=1

{
1

2

(
|Z ′

l1|2 + |Z ′
l2|2
)
H(p2,mh̃′+ ,mh̃′0

l
)

− 2Z ′
l1Z

′
l2mh̃′+mh̃′0

l
B0(p

2,mh̃′+ ,mh̃′0
l

)

}

− 2
2∑

i=1

{
cos2(θ′0 + θ′±)

(
B̃22(p

2,mh′±

1
,mh′0

1
) + B̃22(p

2,mh′±

2
,mh′0

2
)
)

+ sin2(θ′0 + θ′±)
(
B̃22(p

2,mh′±

1
,mh′0

2
) + B̃22(p

2,mh′±

2
,mh′0

1
)
)}

+ 4m2
W

g2
N

g2
2

{(
NH13

2
+
NH23

2

)2

sin2 β cos2 βB0(p
2,mh± ,mZ′)

+
(
NH23

2
sin2 β − NH13

2
cos2 β

)2

B0(p
2,mG± ,mZ′)

}

− s2
W

(
8B̃22(p

2,mW , 0) + 4p2B0(p
2,mW , 0)

)

−
{
(4p2 +m2

Z +m2
W )c2

W −m2
Zs

4
W

}
B0(p

2,mZ ,mW )

− 8c2
W B̃22(p

2,mZ ,mW )

+
∑

fu/fd





1

2
N f
c H(p2,mu,md)−

2∑

i,j=1

2N f
c w

2
fijB̃22(p

2,mũi
,md̃j

)





+
1

g2
2

6∑

i=1

2∑

j=1

{
fijWH(p2,mχ̃0

i
,mχ̃+

j
) + 2gijWmχ̃0

i
mχ̃+

j
B0(p

2,mχ̃0
i
,mχ̃+

j
)

}

(C.37)
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Analogous to [179] the symbol
∑
fu/fd

sums over quark and lepton doublets and

(wfij) =

(
cucd cusd
sucd susd

)
. (C.38)

The neutralino–chargino–W-boson couplings are given by

fijW = |aχ̃0
i χ̃

+
j W
|2 + |bχ̃0

i χ̃
+
j W
|2, gijW = 2ℜe

(
b∗
χ̃0

i χ̃
+
j W

aχ̃0
i χ̃

+
j W

)
, (C.39)

where the Feynman rule for the neutralino–chargino–Wµ vertex is written as−iγµ(aPL+
bPR). The nonzero couplings in the E6SSM are the same as in the MSSM

aψ̃0
2
ψ̃+

1
W = bψ̃0

2
ψ̃+

1
W = −g2, aψ̃0

4
ψ̃+

2
W = −bψ̃0

3
ψ̃+

2
W =

g2√
2
. (C.40)

The couplings to mass eigenstates for an incoming neutralino χ̃0
i are

aχ̃0
i χ̃

+
j W

= N∗
ikVjlaψ̃0

k
ψ̃+

l
W , bχ̃0

i χ̃
+
j W

= NikU
∗
jlbψ̃0

k
ψ̃+

l
W , (C.41)

while for an incoming chargino χ̃+
j the couplings read

aχ̃0
i χ̃

+
j W

= NikV
∗
jlaψ̃0

k
ψ̃+

l
W , bχ̃0

i χ̃
+
j W

= N∗
ikUjlbψ̃0

k
ψ̃+

l
W . (C.42)

C.6.2 Fermions

The general fermion 1PI correlation function can be decomposed as

Γff̄ (p) = /p
[
PLΓLff̄ (p

2) + PRΓRff̄ (p
2)
]

+ PLΓlf f̄ (p
2) + PRΓrff̄ (p

2) (C.43)

and the fermion self-energy is defined as

Σf (p
2) :=

1

2

{
mf

[
ΓLff̄ (p

2) + ΓRff̄ (p
2)
]

+ Γlf f̄ (p
2) + Γrff̄ (p

2)
}
. (C.44)

In the following the DR renormalized fermion self-energies Σ̂f are listed, where the
divergences ∆ = 1/ǫ− γE + ln 4π are subtracted. In the E6SSM they are given by

(4π)2 Σ̂t(p
2)

mt

=
4g2

3

3



B1(p

2,mg̃,mt̃1) +B1(p
2,mg̃,mt̃2)−

(
5 + 3 ln

µ2

m2
t

)

− sin(2θt)
mg̃

mt

[
B0(p

2,mg̃,mt̃1)−B0(p
2,mg̃,mt̃2)

]




+
y2
t

2

3∑

i=1

{
A2
ti

[
B1(p

2,mt,mhi
) +B0(p

2,mt,mhi
)
]

+B2
ti

[
B1(p

2,mt,mAi
)−B0(p

2,mt,mAi
)
] }
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+
1

2

[
(y2
bs

2
β + y2

t c
2
β)B1(p

2,mb,mh+) + (g2
2 + y2

b c
2
β + y2
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(C.45)

The matrix elements Afi and Bfi are defined as

Afi =





(UMSSM)2k(UE6
)∗
ik if f is up-type,

(UMSSM)1k(UE6
)∗
ik if f is down-type,

(C.46)

Bfi =





(UA)∗
i2 if f is up-type,

(UA)∗
i1 if f is down-type.

(C.47)

In analogy to [179] the Feynman rules for the χ̃iff̃j couplings are written as −i(aPL+
bPR) and the following abbreviations are defined:

fif f̃j
= |aχ̃iff̃j

|2 + |bχ̃iff̃j
|2, gif f̃j

= 2ℜe(b∗
χ̃iff̃j

aχ̃iff̃j
). (C.48)

In the gauge eigenstate basis ψ̃0, ψ̃+ one has

aψ̃0
1
ff̃R

=
gY√

2
YfR

, bψ̃0
1
ff̃L

=
gY√

2
YfL

(C.49)

bψ̃0
2
ff̃L

=
√

2g2τ
fL
3 , aψ̃+

1
dũL

= bψ̃+
1
ud̃L

= g2, (C.50)

aψ̃0
3
dd̃L

= bψ̃0
3
dd̃R

= −bψ̃+
2
dũL

= −bψ̃+
2
ud̃R

= yd, (C.51)

aψ̃0
4
uũL

= bψ̃0
4
uũR

= −aψ̃+
2
ud̃L

= −aψ̃+
2
dũR

= yu, (C.52)

aψ̃0
6
ff̃R

=
gN√

2
NfR

, bψ̃0
6
ff̃L

=
gN√

2
NfL

, (C.53)

where the quantum numbers Yf/2, Nf/2 and τ f3 are listed in the Table C.1. The
couplings to the mass eigenstates χ̃0

i and χ̃+
i are obtained by the rotations

aχ̃0
i ff̃

= N∗
ijaψ̃0

j ff̃
, bχ̃0

i ff̃
= Nijbψ̃0

j ff̃
, (C.54)

aχ̃+
i ff̃

′ = V ∗
ijaψ̃+

j ff̃
′ , bχ̃+

i ff̃
′ = Uijbψ̃+

j ff̃
′ . (C.55)
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To obtain the couplings to the sfermion mass eigenstates one rotates these couplings
(both a- and b-type) by the sfermion mixing matrix,

(
aχ̃f f̃ ′

1

aχ̃f f̃ ′
2

)
=

(
cf ′ sf ′

−sf ′ cf ′

)(
aχ̃f f̃ ′

L

aχ̃f f̃ ′
R

)
. (C.56)

The self-energies for the other fermions are obtained from Σ̂t by the substitutions

Σ̂τ (p
2) = Σ̂t(p

2)
∣∣∣
t→b,g3=0

, (C.57)

Σ̂b(p
2) = Σ̂t(p

2)
∣∣∣
t→b,cβ↔sβ

. (C.58)

In Eqs. (C.37) and (C.45) the Passarino-Veltman loop functions in the convention
[179] are used. Finally, the one-loop bottom quark self-energy in the 5-flavour QCD
reads

(4π)2 Σ̂
(5)
b (p2)

m
(5)
b

= −4g2
3

3

(
5 + 3 ln

µ2

m2
b

)
. (C.59)

C.7 Gauge coupling threshold corrections

Gauge coupling threshold corrections ∆g relate the gauge couplings between two
different models. Here the E6SSM is considered to be a full theory and the Standard
Model to be an effective theory, where all new E6SSM particles have been integrated
out. In this setup the threshold corrections relate the E6SSM to the SM gauge
couplings as

gDR,E6SSM
i (µ) = gMS,SM

i (µ) + ∆gi(µ) (i = 1, 2, 3). (C.60)

As described in [57], the ∆gi can be calculated by matching all Green functions
(and their derivatives), which are one-particle irreducible with respect to the light
(Standard Model) fields li, at zero external momentum ki = 0

∂nki
ΓE6SSM
li1
li2

···lin

∣∣∣
ki=0

= ∂nki
ΓSM
li1
li2

···lin

∣∣∣
ki=0

. (C.61)

These matching conditions will lead to relations between the model parameters of the
E6SSM and the Standard Model. To obtain the threshold corrections for the gauge
couplings, the following relations have to be imposed [57]

∂p ΓE6SSM
qiq̄i

(p,−p)
∣∣∣
p=0

= ∂p ΓSM
qiq̄i

(p,−p)
∣∣∣
p=0

, (C.62a)
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= ∂k2 ΓSM
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, (C.62b)

ΓE6SSM
Ga

µqiq̄i
(k, p,−(p+ k))

∣∣∣
p=k=0

= ΓSM
Ga

µqiq̄i
(k, p,−(p+ k))
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p=k=0

, (C.62c)
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ΓE6SSM
ZµAν

(k,−k)
∣∣∣
k2=0

= ΓSM
ZµAν

(k,−k)
∣∣∣
k2=0
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. (C.62j)

The field Aµ denotes the photon, Zµ and W±
µ are the gauge bosons of the weak

interaction and ψi denote the Standard Model quarks and leptons. Evaluating the
Eqs. (C.62) leads to the following gauge coupling threshold corrections:
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The µ-dependence in the above equations has been cross-checked against the differ-
ence of the E6SSM and SM gauge coupling β-functions and are in agreement with
the general result [55].
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Appendix D

NMSSM SLHA input template file

BLOCK MODSEL # Select model

1 1 # mSUGRA

3 1 # NMSSM

6 0 # flavour violation

8 2 # Higgs 2L corrections

9 0 # dark matter relic density

10 0 # no scan

13 0 # calc decays

BLOCK SMINPUTS # Standard Model inputs

1 1.279180000 e+02 # alpha ^( -1) SM MSbar(MZ)

2 1.166390000e -05 # G_Fermi

3 1.189000000e -01 # alpha_s (MZ) SM MSbar

4 9.118760000 e+01 # MZ(pole)

5 4.200000000 e+00 # mb(mb) SM MSbar

6 1.709000000 e+02 # mtop(pole)

7 1.777000000 e+00 # mtau(pole)

BLOCK SOFTSUSY # SOFTSUSY specific inputs

1 1.000000000e -04 # tolerance

2 2.000000000 e+00 # up -quark mixing (=1) or down (=2)

5 1.000000000 E+00 # 2-loop running

18 0.000000000 E+00 # use soft Higgs masses as EWSB output

BLOCK VCKMIN # input parameters for CKM matrix

1 2.272000000e -01 # lambda

2 8.180000000e -01 # A

3 2.210000000e -01 # rhobar

4 3.400000000e -01 # etabar

BLOCK MINPAR

1 5.000000000 e+03 # m_0

2 5.000000000 e+03 # m_12

3 [0 .. 50] # tan(beta)

4 1.000000000 e+00 # sign(mu)

5 -5.000000000 e+03 # A_0

BLOCK EXTPAR

61 0.1 # lambda

BLOCK QEXTPAR

61 -1 # input lambda at Msusy
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Appendix E

CMSSM speed test SLHA input
template file

For the run-time comparison of the different CMSSM spectrum generators in Sec-
tion 6.4.1 the following SLHA input template file was used:

Block MODSEL # Select model

6 0 # flavour violation

1 1 # mSUGRA

Block SMINPUTS # Standard Model inputs

1 1.279180000 e+02 # alpha ^( -1) SM MSbar(MZ)

2 1.166390000e -05 # G_Fermi

3 1.189000000e -01 # alpha_s (MZ) SM MSbar

4 9.118760000 e+01 # MZ(pole)

5 4.200000000 e+00 # mb(mb) SM MSbar

6 1.709000000 e+02 # mtop(pole)

7 1.777000000 e+00 # mtau(pole)

Block SOFTSUSY # SOFTSUSY specific inputs

1 1.000000000e -04 # tolerance

2 2 # up -quark mixing (=1) or down (=2)

3 0 # printout

5 1 # 2-loop running

7 2 # EWSB and Higgs mass loop order

Block FlexibleSUSY

0 1.000000000e -04 # precision goal

1 0 # max. iterations (0 = automatic )

2 0 # two -scale algorithm

3 0 # calculate SM pole masses

4 2 # pole mass loop order

5 2 # EWSB loop order

6 2 # beta - functions loop order

7 1 # threshold corrections (1 = enabled )

Block SPhenoInput # SPheno specific input

1 -1 # error level

2 1 # SPA conventions

11 0 # calculate branching ratios

13 0 # include 3-Body decays

31 -1 # dynamical GUT scale

32 0 # Strict unification

34 1.000E -04 # Precision of mass calculation

35 40 # Maximal number of iterations
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37 1 # Set Yukawa scheme

38 2 # 1- or 2-Loop RGEs

50 1 # use only positive masses

51 0 # Write Output in CKM basis

52 0 # Write spectrum in case of tachyons

55 1 # Calculate one loop masses

57 0 # Calculate low energy constraints

60 0 # Include possible , kinetic mixing

65 1 # Solution tadpole equation

75 0 # Write WHIZARD files

76 0 # Write HiggsBounds file

86 0. # Max. width for invisible in h decays

510 0. # tree level values for EWSB

515 0 # Write parameter values at GUT scale

520 0. # Write effective Higgs couplings

525 0. # Write loop contributions

For each parameter point a MINPAR block of the form

Block MINPAR

1 [50..1000] # m0(MX)

2 [50..1000] # m12(MX)

3 [1..100] # tan(beta)(MZ) DRbar

4 { -1 ,+1} # sign(mu)

5 [ -1000..1000] # A0(MX)

was appended with concrete values for m0, M1/2, tan β, signµ and A0.
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