
Fakultät Informatik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211X

TUD-Fl14-04-August 2014

Dr. Frank J. Furrer, Jan Reimann (Eds.)
Institut für Software- und Multimediatechnik

Impact and Challenges of Software in 2025

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

Hauptseminar Sommersemester 2014

Dr. Frank J. Furrer

Impact and Challenges of Software in 2025
Collected Papers

Editors: Dr. Frank J. Furrer, Jan Reimann

Technische Universität Dresden
Technical Report TUD-FI14-04-August 2014

c©Fotolia.com (Used with permission)

“Software is the fuel of our
modern economy – Where are we
going?”

Table of Contents

Introduction 5

Contributed Papers 9
Impact of Heterogeneous Processor Architectures and Adaptation Technologies on the

Software of 2025
Kay Bierzynski . 9

Facing Future Software Engineering Challenges by Means of Software Product Lines
David Gollasch . 19

Capabilities of Digital Search and Impact on Work and Life in 2025
Christina Korger . 27

Transparent Components for Software Systems
Paul Peschel . 37

Functionality, Threats and Influence of Ubiquitous Personal Assistants with Regard to
the Society
Jonas Rausch . 47

Evolution-driven Changes of Non-Functional Requirements and Their Architecture
Hendrik Schön . 57

Introduction

Dr. Frank J. Furrer

Context

Today (2014), software is the key ingredient of most products and services. Software generates
innovation and progress in many modern industries. Software is an indispensable element of
evolution, of quality of life, and of our future. Software development is (slowly) evolving from
a craft to an industrial discipline. Software – and the ability to efficiently produce and evolve
high-quality software – is the single most important success factor for many highly competitive
industries.
Software technology, development methods and tools, and applications in more and more

areas are rapidly evolving. The impact of software in 2025 in nearly all areas of life, work,
relationships, culture, and society is expected to be massive.
The question of the future of software is therefore important. However – like all predictions –

quite difficult. Some market forces, industrial developments, social needs, and technology trends
are visible today. How will they develop and influence the software we will have in 2025?

Topic

This seminar worked on answers to the central question: Which are the situation, the challenges,
and the impact of software in the year 2025?
The focus lies on 3 relevant areas:

5

Q1 How will the software in 2025 be different from today’s software?

Q2 How will software be engineered, developed, operated, and evolved in 2025?

Q3 What is the impact of software on people, work and society in 2025?

Each participant had to choose one focus and elaborate on one specific theme related to the
focus question. The following choices were made:

Name Q1 Q2 Q3

Bierzynski, Kay X

Gollasch, David X

Korger, Christina X

Peschel, Paul X

Rausch, Jonas X

Schön, Hendrik X

Objectives

The participants learned:

(a) to do focused research in a specific area,

(b) to author a scientific paper,

(c) to improve their LATEX expertise,

(d) to experience the peer-review process,

(e) to learn how to deliver effective and efficient presentations,

(f) to benefit from a considerable broading of their perspective in the field of technology,
software, applications, and impact.

The participation in the Hauptseminar will enable the participants to plan their personal
education and professional evolution.

Mandatory Reading

All participants were asked to read the following 3 references:

• Edgar G. Daylight, Sebastian Nanz (Editors): Conversations: The Future of Software
Engineering – Panel Discussions. 22-23 November 2010, ETH Zurich. Lonely Scholar
bvba, Heverlee, Belgium, 2011. ISBN 978-94-91386-01-5

• U.S. National Academy of Engineering: The Engineer of 2020: Visions of Engineering
in the New Century. National Academy Press, Washington D.C., USA, 2004. ISBN
978-0-309-09162-6. Downloadable from: http://www.nap.edu/download.php?record_
id=10999

6

http://www.nap.edu/download.php?record_id=10999
http://www.nap.edu/download.php?record_id=10999

• ISTAG – Information Society Technologies Advisory Group (Working Group on Software
Technologies), July 2012: Software Technologies – The missing Key Enabling Technology
(Toward a Strategic Agenda for Software Technologies in Europe). Downloadable from:
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf

Papers

The following papers were authored, peer-reviewed and presented during the Hauptseminar. All
papers are reproduced in full on the following pages.

7

http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf

Impact of Heterogeneous Processor
Architectures and Adaptation Technologies on

the Software of 2025

Kay Bierzynski

Institut für Software- und Multimediatechnik, Technische Universität Dresden
D-01062, Dresden, Germany

Abstract. Many products and services, which we are using today, are
powered by software. The software has a big impact on our everyday life
and became in the last three decades one of the most important drivers
of the global economy. The result of this development is that our present-
day society extremely relies on software. This dependency will grow in
the future, because of that we need to find and understand the challenges
and trends, which will influence software in future, so that research and
the economy can focus on them.
A way to do so is to answer the question: What is the difference in soft-
ware in 2025? We will make a contribution to the answer for this question
through discussing the influence of heterogeneous processor units on the
software and their deployment environments in 2025 in the first part of
the paper. In the discussion we will present some reasons for our conclu-
sion of the first part. The conclusion is that we expect that the software of
2025 will be executed on mobile devices from a heterogeneous processor
unit and on stationary devices from a central or graphic processing unit.
This very likely development rise the need for more and better dynamic
adaptation technologies so that software can efficiently use the different
processor unit kinds.
In the second part of the paper we discuss reasons beside the efficiently
use of processor units for the importance of the self adaptation approach,
the autonomic computing approach and the role approach for the soft-
ware in 2025. But important as autonomic computing may be we expect
that autonomic computing as envisioned by IBM [10] will not completely
exist in 2025, because of the standardization process, the difficult devel-
opment of a query language, legal issues and security issues. More infor-
mation to these are presented in the paper. To conclude both discussions
we will give some recommendations.

Keywords: APU, CPU, GPU, heterogeneous processor unit, autonomic
computing, self adaptive software, role

1 Introduction

Many products and services, which we are using today, are powered by software.
The software has a big impact on our everyday life and became in the last three

9

Kay Bierzynski

decades one of the most important drivers of the global economy. The result of
this development is that our present-day society extremely relies on software.
This dependency will grow in the future, because of that it is important to
find and understand the challenges and trends, which will influence software in
future. One possibility to do so is to answer the question: What is the difference
in software in 2025? To formulate a complete answer for that question is hard,
because software is used in many different areas. Some of them for example
are the following: parallel, cloud and high performance computing; big data;
social computing; internet-based applications and real-time services; embedded
systems; human-centred computing and multi-media; enterprise applications and
the future generation of software-intensive systems [3].

It is not possible to analysing and discussing all challenges and trends in the
different areas in a single paper, this is the reason why we will focus on two
specific topics. The first topic is the impact of heterogeneous processing units on
the software in 2025. We will deal with this topic through analysing the question:
Which kind of processing units will execute software in 2025? As a basis for the
analysis, we will use the results of an experiment, which was executed in my
bachelor thesis [1]. After that we present the importance of the self adaptation
approach, the autonomic computing approach and the roles approach for the
software in 2025 and the reasons for why we think that autonomic computing
as envisioned by IBM [10] will not completely exist in 2025.

Based on the two topics the structure of the paper is as follows: In the next
section we will talk about existing works. The third section deals with the first
topic and the fourth section with the second. In the last section we present our
conclusions and recommendations.

2 Existing Work

The two works, which inspired this paper, are the report ”Software Technologies
The missing Key Enabling Technology (Toward a Strategic Agenda for Software
Technologies in Europe)” from the Information Society Technologies Advisory
Group [3] short ISTAG and the book ”Conversations: The Future of Software
Engineering Panel Discussions” from Edgar G. Daylight and Sebastian Nanz [2].

The latter is about two panels, where some of the top researchers in the area
of software engineering discuss how the state of the art of software and software
engineering is today and how it should be in the future. As already mentioned
our paper is inspired by this book so for example we got the idea to look in the
area of software parallelism from a statement of Bertrand Meyer in the second
panel [2].

The ISTAG propose in their report the creation of a European Software
Agenda. To support their proposal they analyse the current strengths and emerg-
ing trends in software technology and a number of critical application areas in-
cluding: parallel, cloud and high performance computing; big data; social com-
puting; internet-based applications and real-time services; embedded systems;

10

Impact of Heterogeneous Processors and Adaptation Technologies

human-centred computing and multi-media; enterprise applications and the fu-
ture generation of software-intensive systems [3].

This paper is different from these two works to the amount that we specifically
focus on the influence of heterogeneous processing units in the software of 2025
and on the importance of the self adaptive software approach, the autonomic
computing approach and the role approach for the software in 2025.

For the field of adaptation technologies the paper ”The Vision of Autonomic
Computing” from Jeffrey O. Kephart and David M. Chess [10] and the white pa-
per ”An Architectural Blueprint for Autonomic Computing” [11] are important
to mention. In the first paper the vision of autonomic computing is delivered.
This term describes computing environments with the ability to manage itself
and dynamically adapt to change in accordance with business policies and ob-
jectives. These environments can perform such activities based on situations
they observe or sense in the IT environment rather than requiring IT profes-
sionals to initiate the task (from [11]). The properties such environments be-
side self-managing should have are listed in the first paper as well. They are
self-configuring, self-healing, self-optimizing, and self-protecting. The terms self-
configuring and self-optimizing are self-explaining. The term self-healing means
that autonomic computing systems will detect, diagnose, and repair localized
problems resulting from bugs or failures in software and hardware [10]. Self-
protection describes the task of a autonomic computing system to defend the
system as a whole against large-scale, correlated problems arising from malicious
attacks or cascading failures that remain uncorrected by self-healing measures
and to anticipate problems based on early reports from sensors and take steps to
avoid or mitigate them [10]. Beside the basic definition of autonomic computing
Kephart et. al. present in their paper [10] the engineering challenges and sci-
entific challenge, which we need to overcome to realize the vision of autonomic
computing, as well as the architectural considerations for autonomic systems. An
architectural blueprint for autonomic computing system is the result of a work
from the IBM Business Consulting Service and is shown in the already mentioned
white paper ”An Architectural Blueprint for Autonomic Computing” [11].

In this paper, we will deal with autonomic computing through presenting the
reasons for why we think that the vision of autonomic computing will be not
completely realized in 2025.

3 Impact of Heterogeneous Processor Architectures on
the software in 2025

In the first part of this section we describe the terms central processing unit
short CPU, graphic processing unit short GPU and accelerated processing unit
short APU. After that the experiment from my bachelor thesis[1] is presented.
The results of the experiment are used to answer the question which kind of
processing units will execute software in 2025.

11

Kay Bierzynski

3.1 Processing Units

Many different kinds of processing units are used in today’s products. In this
paper, we only look at three of them. These three are the CPUs, the GPUs
and the APUs. We choose the CPUs and the GPUs, because they are the most
commonly used processing units. The APUs as representatives for heterogeneous
processor units are interesting, because they will play an important role in the
future of computing especially in the future of mobile computing.

The CPU is the central component of a computer. It monitors and steers the
computer. Beside these two tasks the CPU is responsible for carrying out the
instructions of a computer program. The memory system of the CPU is called
cache.

The GPU is in the computer responsible for calculating the monitor output
and other parallel and mathematically-intensive tasks. To deal with such tasks
GPUs have many more cores in comparison to CPUs.

The APUs from AMD fall in the category of the heterogeneous processor
architectures. These architectures combine a main processor with a coprocessor.
The latter is always at least in one area superior to the main processor so that
it can support the main processor in specific situations. A common combination
of processors is the combination of a CPU as a main processor with a GPU as
a coprocessor, because of the already addressed parallel and mathematically-
intensive tasks. The combination of processors offers beside the support in spe-
cific situations new possibilities for parallel execution of programs.

3.2 The Experiment

In my bachelor thesis [1] the radix sort algorithm was implemented and optimized
for CPU, GPU and APU. The APU, which was used, had a CPU as a main
processor and GPU as a coprocessor. After the optimization the three resulting
variants were tested on their respective processor unit with different data input
sizes. Before we look at the results of the tests a short description to the coarse
structure of the radix sort algorithm. It consist of the following three steps: create
the local histograms, scan and permutation. In the first step the input data is
split into several pieces and for every data piece a local histogram is calculated.
The local histograms are combined into one global histogram in the process of
the scan step. The last step uses the histogram to calculate the position of the
data pieces in the sort sequence of the data and puts the pieces at the correct
position in the output.

An execution variant of the radix sort is shown in figure 1. In this variant the
CPU deals with the first and the last step of the algorithm and the GPU executes
the scan step, because of reasons which will follow shortly in this subsection [1].
Before the development of heterogeneous processor units such an variant would
be extremely inefficient performance wise due to the slow connection with a small
bandwidth between the CPU and the GPU. In my bachelor thesis this variant
was implemented, optimized and tested for the APU to see if such variants could
be better as variants, which are executed only by one processor kind, in regard

12

Impact of Heterogeneous Processors and Adaptation Technologies

to performance when the CPU and the GPU are more closely connected.

CPU GPU

Create
Histograms

Scan

Permute

Fig. 1. Radix sort variant, which is partly executed by the CPU and the GPU.

The results of the tests are presented in the figure 2. The basic result of
these tests is that starting from a data input size of 64 KB the APU variant is
faster as the GPU and CPU variant [1]. This basic result also corresponds to
data input sizes ranging from 1MB to 1GB.

0 100 200 300 400 500 600 700 800 900 1,000 1,100
0

0.5

1

1.5

2

2.5

3

3.5

4

Amount of data in kB

E
x
ec
u
ti
on

ti
m
e
in

m
s

CPU
GPU
APU

1

Fig. 2. Diagram with measurements until 1MB

The reason behind this result and the execution, distribution of the steps in
the APU variant is the second step of the radix sort variant. This step includes

13

Kay Bierzynski

parallel and mathematically-intensive tasks, which as already described in the
subsection 3.1 are faster executed by the GPU as by the CPU. The first and last
step in comparison to that are completed faster on the CPU, because through
it’s cache the CPU is good at loading data pieces and putting the pieces at new
positions in the memory. The cache is also the reason why for small input data the
CPU variant is the fastest variant, because when the input data fits completely in
the cache than the CPU can even execute parallel and mathematically-intensive
tasks faster as the GPU [1].

3.3 Which kind of processing units will execute software in 2025?

Which kind of processing units will execute software in 2025? The answer to
this question should be APUs when we look at the results presented in the last
part, but it is important to mention that the CPU and the GPU used in the
experiment didn’t belong to the high-end hardware area [1]. The APUs which
are on the market today can’t compete in the area of performance with high-end
graphic cards or CPUs, but they have other benefits.

Some of these benefits are the low production costs and the low energy con-
sumption, which are resulting through the combination of the processors. An-
other advantage of APUs is the possibility to save space in the products, where
an APU is implemented as the processor and the coprocessor of the APU is
a GPU. Such products could use the GPU coprocessor as a replacement for a
graphic card [6]. These three benefits we listed here are also the reason why
APUs are interesting for the mobile computing branch. Since low energy con-
sumption, low costs and low space requirements belong to the most important
requirements for mobile computing devices.

Based on these facts we expect for the processor unit usage in 2025 two cases.
In the first case the development of APUs and other heterogeneous processors
was so successful that CPUs and GPUs are no longer needed and every device has
a heterogeneous processor implemented. The other possibility is that processing
unit kinds get clear usage domains. So it is very likely that APUs and other
heterogeneous processors are primarily implemented in mobile and embedded
devices in 2025 and CPUs and GPUs in stationary devices such as servers or
desktop computers.

We assume that the second case has a higher plausibility to occur as the first
case, because the development of GPUs and CPUs goes on as well. Based on this
assumption our answer to the initial question is as follows: In 2025 software on
mobile devices will be executed by an APU or another heterogeneous processor
unit and software on stationary devices will be processed through a CPU or a
GPU.

This distribution of processor unit kinds on specific domains leads to a new
challenge for software, because when software applications wants to reach the
best possible performance on many different devices than they need to adapt to
the implemented processor units and other conditions.

As mentioned in the last subsection 3.2 the APU variant of the radix sort,
which was used in the experiment, distributed its components between the main

14

Impact of Heterogeneous Processors and Adaptation Technologies

processor and the coprocessor. This is not the only possibility to implement the
execution of software efficient on the APU. Another approach would be to split
the input data and let one part processed by the main processor and the other
part by the coprocessor [7]. These two approaches can even further refined so
for example it is possible to execute components parallel on the APU, when the
components not depend on each other. Here we listed just some of the options
for executing software, but in 2025 software applications can choose from many
more as well.

So the questions which arise is what is the best way to process software on
the APU or processors in general? This is hard to answer, because the efficiency
of processing depends on many different things and it is clear that humans can-
not cope with all of them. The problem of finding the best option gets even
bigger, when the software in 2025 is for stationary devices as well. So when
we want the best performance, we need software which can automatically and
dynamically adapts itself according to the conditions. We can get such soft-
ware through implementing adaptation technologies. Especially the autonomic
computing approach from IBM is interesting for heterogeneous processing units,
because in this approach the main processor and the coprocessor would be au-
tonomic elements. Such elements can in a autonomic computing system directly
communicate and negotiate with each other. This implies that the main process-
ing unit and the coprocessor can efficiently transfer the data between each other
depending on their workload.

The ISTAG addresses this challenge in their report as well. They list some
technologies, which could be used to face it. One of these technologies for exam-
ple, is high-level parallel languages capable of handling heterogeneous many-core
processors [3].

4 Adaptation Technologies

In the first part of this section we define the terms, which are role and self
adaptive software. After the definitions we discuss the self adaptive approach, the
autonomic computing approach and the role approach regarding to the software
in 2025 and present the reasons for why we think that the vision of autonomic
computing will be not completely realized in 2025.

4.1 Definitions

The definition for self adaptive software was provided in a DARPA Broad Agency
Announcement on Self Adaptive Software (BAA-98-12) in December of 1997.
The announcement defined self adaptive software as follows:

Definition 1. Self Adaptive Software evaluates its own behaviour and changes
behaviour when the evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or performance is possi-
ble. [4]

15

Kay Bierzynski

Until today, no uniform definition of role exist in software engineering. Based
on the works of Reenskaug [8] and Riehle [9] we will define roles for this paper
as C. Piechnick et al. [5] described roles in their work:

Definition 2. A role is a dynamic view or a dynamic service of an object in
a specified context, offering the possibility of separation of concerns, interface-
structuring, dynamic collaboration description, and access restriction. A role is
clearly specified by a role type and can be played and removed from an object at
runtime. [5]

4.2 Self adaptive software, autonomic computing and roles in 2025

At the conclusion of the concluding section we pointed out that it is to await
that the software of 2025 needs to adapt to different processor unit kinds in
different deployment environment. Beside this challenge many more challenge
exists and will arise. Two of these are the problematic of complexity management
and dynamic change management. Both of them and the initial challenge of
different deployment can be dealt with through adaptation technologies. But
today’s adaptation technologies are primarily limited to product enhancements,
patches within the software development process and other static adaptation
methods [5]. This technologies will be not sufficient for these challenges, because
they are as already mentioned in the most cases static, lack automation and
don’t have the ability to adapt themselves.

Hence, when we want software applications, which can for example, adapt to
different deployment environments, then we must develop them mostly indepen-
dent from a hardware platform or operating system and implement technologies
through they can automatically and dynamically adapt themselves at deploy-
ment or runtime. Such software application would be then belong in a group
of self adaptive software. We expect that almost all software applications and
systems in 2025 will be self adaptive regarding to at least one of the self-* prop-
erties, which were defined as the properties of a autonomic computing system in
the paper ”The Vision of Autonomic Computing” [10]. But this doesn’t mean
that we expect that the vision of autonomic computing will be completely re-
alized in 2025, because for the realization of autonomic systems standards are
needed. Especially the negotiating process between autonomic elements needs to
be standardized, when we want to use autonomic elements from different ven-
dors. The standardization is a problem insofar that the process of developing a
standard is slow and we doubt that the standard development processes will be
finished until 2025.

Other reasons why we think that complete autonomic systems will not exist in
2025 are the following points: development of a query language to give high level
orders to the autonomic system, which the system realizes through deciding and
executing low level orders and processes, legal issues and security in general. The
foremost reason is difficult in the way that in the best case autonomic systems
should be usable by people, which have no IT knowledge and cannot speak
English, hence the query language must be intuitive and needs to handle as many

16

Impact of Heterogeneous Processors and Adaptation Technologies

natural languages as possible. The second reason and third reason are problems,
because the autonomic system should protect the user against the invasion of his
digital privacy and the careless use of private data. To realize the protection of
the user laws needs to be defined for what a autonomic system can do without
the user’s approval, which data should be transferred between the autonomic
elements and which data should be send out of the system. We doubt that such
laws will be created until 2025 and without such laws the development of the
security of autonomic systems is difficult as well, because it is not clear what is
legal and what is not. Nevertheless, it is important to focus on the autonomic
computing approach, because it will be a great tool to manage complexity and
changes of software.

The concept of roles is useful for managing changes of software and dynamical
adaptation in general as well, insofar that they can be loaded at runtime. We
think roles will be implemented in many software applications, because of their
high utility and easy deployment. To get a better understanding of how useful
roles are let’s see how we can use roles to make the radix sort variant, which was
implemented in my bachelor thesis [1], more adaptable.

One option would be to transform the steps of the radix sort in completely
independent components. These components than could dynamically switch, de-
pending on the input from the operating system, their configuration and assign-
ment to a specific processor unit kind through the role objects they play. Another
possibility is to use roles to transfer dynamically the threads between the main
processor and coprocessor depending on their workload, when the radix sort is
executed on a heterogeneous processor unit. Threads are the packages in which
the processing of the radix sort is divided into by the operating system. Beside
these two options it gives many more ways to use roles for adaptation.

5 Conclusion

The initial question for our paper was the following: What is the difference in
software in 2025? In the area of adaptation technologies we contributed to the
answer of this question insofar that we presented reasons for why we expect
that almost all software applications and systems in 2025 will implement au-
tomatically and dynamically adaptation technologies through they can adapt
themselves to highly diverse requirements and why we think that the vision of
autonomic computing [10] will not be realized in 2025. This will be a big step
from today’s software, because today the implemented adaptation technologies
are in most cases static and not automatically. Another contribution to the an-
swer of the initial question we made is that we discussed why it is very likely that
in 2025 software on mobile devices will be always executed by a heterogeneous
processing unit and on stationary devices from a central or a graphic processing
unit. This will give rise to a challenge regarding performance, which can over-
come through adaptation technologies, and is different from today insofar that
at the moment software is in the most cases executed by central processing units.

17

Kay Bierzynski

Based on the expectations we listed, we recommend the following things. In
general, we should focus on adaptation technologies and approaches. To realize
the vision of autonomic computing until 2025 we should execute standardization
processes in the research and development of autonomic computing and involve
lawyers in the process beside focusing on the challenges, which were pointed out
in the paper ”The Vision of Autonomic Computing” [10]. For the other presented
adaptation approach we suggest that the concept of roles should be implemented
in all programming languages.

References

1. Kay Bierzynski. Effizientes Sortieren auf heterogenen Prozessoren. 2013. Certifi-
cation link: http://forschungsinfo.tu-dresden.de/detail/abschlussarbeit/

28376.
2. Edgar G. Daylight and Sebastian Nanz. Conversations: The Future of Software

Engineering Panel Discussions. 22-23 November 2010.
3. ISTAG Information Society Technologies Advisory Group. Software Technologies

The missing Key Enabling Technology (Toward a Strategic Agenda for Software
Technologies in Europe). July 2012. Downloadable from: http://cordis.europa.
eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf.

4. Robert Laddaga and Paul Robertson. Self Adaptive Software: A Position Pa-
per. June 2004. Downloadable from: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.127.5472.
5. Christian Piechnick, Sebastian Richly, Sebastian Götz, Claas Wilke and

Uwe Amann. Using Role-Based Composition to Support Unanticipated,
Dynamic Adaptation - Smart Application Grids. May 2012. Download-
able from: http://www.thinkmind.org/index.php?view=article&articleid=

adaptive_2012_5_10_50066.
6. Benedict Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa. Het-

erogeneous Computing with OpenCL. Morgan Kaufmann, August 2011. Down-
loadable from: http://www.sciencedirect.com/science/book/9780123877666

7. Michael Christopher Delorme. Parallel Sorting on the Heterogeneous AMD Fu-
sion Accelerated Processing Unit. 2013. Downloadable from: https://tspace.

library.utoronto.ca/handle/1807/35116.
8. T. Reenskaug, P. Wold, and O. A. Lehne. Working with objects - the OOram

software engineering method. Manning, 1996. Downloadable from: http://heim.
ifi.uio.no/~trygver/1996/book/WorkingWithObjects.pdf.

9. D. Riehle and T. Gross. Role model based framework design and integration. In
Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA 98, pages 117133, New York,
NY, USA, 1998. ACM. Downloadable from: http://dl.acm.org/citation.cfm?
id=286951.

10. Jeffrey O. Kephart, David M. Chess. The Vision of Autonomic Computing. IEEE
Computer Society, New York, January 2003, pp. 41-50. Downloadable from: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055.

11. IBM Business Consulting Services. An Architectural Blueprint for Autonomic
Computing. IBM Autonomic Computing, 4th edition, June 2006. Download-
able from: http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%

20Paper%20V7.pdf.

18

Facing Future Software Engineering Challenges
by Means of Software Product Lines

David Gollasch

TU Dresden, Faculty of Computer Science, Institute of Software- and
Multimedia-Technology, Chair for Software Technology

david.gollasch@tu-dresden.de

Abstract. As software requirements change very rapidly, software engi-
neering principles have to keep up with these changes. This paper names
significant trends in the field of software engineering and discusses ways
to cope with these trends in the future. The software product line ap-
proach seems to be promising here to have a strong influence in the future
on larger software products where it’s affordable to apply the product line
approach. While it currently allows abstraction of variability in space,
it will support variability in time as well in the near future. This paper
discusses in how far this approach can cope with the former identified
upcoming trends.

Keywords: software engineering, future trends, software product lines,
software evolution, hyper feature models, variability

1 Introduction

Software engineering is the field of creating and maintaining software products.
As the requirements and expectations on software are subject to change very
rapidly over time, this has a strong influence on methods, tools and processes
in the software engineering field. Hence, it is meaningful to discuss upcoming
trends in this area in order to find feasible development approaches.

One promising approach to cope with the rising challenges is software prod-
uct line engineering. Software product lines allow efficiently developing complex
software products by applying reuse principles and introduce a high level of
abstraction at design time. It is the goal of this paper to discuss the product
line approach in context of its future-awareness. Therefore, the concept of hyper
feature models will be discussed.

To obtain this goal, section 2 of this paper discusses currently observable
trends in the area of software engineering according to their influence in the
future. This leads to new challenges in the future that new software engineer-
ing approaches have to face. As software product lines appear to be promising,
section 3 presents the underlying principles and aspects to address the chal-
lenges. The concept of hyper feature models as current state-of-the-art findings
is presented as well, as this is highly interesting for the future-readiness of the

19

David Gollasch

presented development approach. Section 4 sets the product line approach of sec-
tion 3 including the hyper feature model approach against the discussed trends
of section 2. Finally, section 5 summarizes the findings and gives a short outlook
for further investigation.

2 Upcoming Trends in Software Engineering

There are some observable trends in today’s field of software engineering. Boehm
identified ten of them in his findings [1]. This paper focusses on a selection of
five out of them that I assume to be relevant for the further discussion.

A more rapid development and adaptability. As software requirements
change increasingly fast, the development has to keep up. Therefor, future de-
velopment strategies have to enable a more efficient way of composing software
and adapt to changing requirements.

More software criticality and need for assurance. Software is becoming
more and more ubiquitous as it is more easy to adapt software to new require-
ments than hardware. This leads to the need of a higher software quality. Reliable
software is indispensable in some fields, e.g. logistics and medicine.

Increasing complexity and need for scalability and interoperability.
Due to the rising importance of the internet and networks in general, software
that interacts with other systems is increasingly required. That leads to a growth
in complexity and to software that can be scaled.

A need to accommodate commercial off-the-shelf and legacy software.
The interoperability between a product and existing COTS (commercial off-the-
shelf) or legacy software that is already in use on the customer’s side gains in
importance as well.

More emphasis on users and end value. Technical borders that develop-
ers have to cope with are becoming less relevant in software engineering. That
more and more moves the user and cost-benefits into the focus. Future soft-
ware development strategies should support this trend by means of enabling the
composition of software that fits the user’s requirements as exactly as possible.

2.1 Coping With These Trends

The above-mentioned trends are on a less technical level, but rather on a rela-
tively abstract one.

Generally, it is the developer’s goal to create software with the right set
of features, that can be developed efficiently and that can evolve easily. This

20

Facing Future Software Engineering Challenges Through SPLs

implies that coping with these trends is only possible if software engineering can
be done on a more abstract level [6]. Higher abstraction allows developers to
focus rather on the conceptual aspects of a software than on the technical ones.
This is possible as abstraction means the reduction of the concrete software to
a more general conception.

A common way to introduce additional levels of abstraction is the use of
models. In consequence, a model based engineering approach can help to cope
with the mentioned trends. A low level of abstraction means less generalization.
A typical low abstraction level of a software is a complete structural model of
the code in form of a UML class diagram. A higher level of abstraction can be
a component model or even the representation of features in feature models.

3 Software Product Lines and Feature Modeling

Software product line engineering allows the efficient development of relatively
similar software products due to capturing commonalities and variable function-
ality. This allows an intense level of reusing software components in multiple
products that can be derived out of one product line.

To illustrate the principle of software product lines it is feasible to find a
relation to building blocks. There are two development life cycles: the Domain
Engineering life cycle and the Application Engineering life cycle [7]. The main
purpose of the first life cycle is to build up the actual product line which includes
the development of all relevant parts or aspects of the later to be derived prod-
ucts. These parts and aspects can be interpreted as a set of different building
blocks. During the second life cycle the actual product will be derived which
can be seen as the process of building a specific object out of the former pre-
pared set of building blocks. Blocks that are part of every derived object define
commonalities, blocks that are not mandatory for each object define variability.

The model-based product line approach allows the mentioned level of ab-
straction to cope with the challenges stated in section 2. That makes it appear
to be a very promising approach [2].

Feature models are used to represent product lines through a set of features
and dependencies between those features. Features can map to structural and
behavioral (functional) and/or qualitative and characteristic (non-functional)
aspects of a software system [5].

A concrete product can be derived out of a product line through a config-
uration process. This process encompasses the selection of features included in
the product line while respecting existing constraints.

3.1 Variability in Space

Software product lines allow multiple levels of abstraction as features in feature
models can represent functional and non-functional aspects of a software. So the
levels of abstraction can be determined as follows (according to [5]):

1. structural level (representation of functional aspects of a software)

21

David Gollasch

2. (user-visible) behavioral level
3. qualitative/non-functional level
4. software-system’s characteristic level

These levels of abstraction have the structure of resulting configurations in
mind. These variable aspects are also called ”variability in space”. This can be
assumed as state-of-the-art.

3.2 Variability in Time

Current product lines only support variability in space. There is a lack of sup-
porting evolutionary processes. This is important in terms of the support for
future-ready software development. Respecting software evolution in product
lines is called ”variability in time” which introduces the time abstraction level.

Variability in time enhances reuse in product lines which makes it a necessity
when it comes to future-ready software development.

Elsner et al. [3] identify three types of variability in time:

1. the linear change over time (evolution and maintenance)
2. supporting multiple versions at one point in time (as part of a configuration)
3. binding over time where different types of variability are present at different

stages of development

Referring to the second type of variability in time, the support of multiple
versions in configurations, there already is one approach to face this. Seidl at
al. [8] propose the use of hyper feature models. They describe an extension of
feature models in a way that supports maintaining multiple versions of a feature
in a product line.

The field of supporting evolutionary aspects of product lines is the objective
of current and ongoing research. In terms of coping with upcoming trends in
software engineering, this could be a key aspect in making the software product
line approach a feasible solution and having a massive impact in future software
development processes as stated by Boehm [1].

3.3 Hyper Feature Models

One approach to include version-awareness into the software product line ap-
proach is the hyper feature model approach introduced by Seidl et al. [8] as an
extension to ”normal” feature models introduced by Kang et al. [5].

A feature model represents the commonalities and variabilities of all soft-
ware products of a product line. Therefor, it includes a set of features and the
dependencies between them.

A feature model is structured as an acyclic graph respectively a hierarchical
tree structure. So each feature (except the root feature) has one parent feature
and can have multiple sub-features. A concrete product of the product line is
called configuration and describes a valid subset of the product line’s set of

22

Facing Future Software Engineering Challenges Through SPLs

features. One rule that ensures the validity of a configuration is that the selection
of a feature automatically leads to the selection of its parent feature.

Next to the hierarchical structure, there are cross-tree-constraints. These
constraints define additional rules for the validity of configurations. They rep-
resent rules like ”If feature A is part of the configuration, feature B has to be
selected as well” or ”Feature A and B cannot be selected at the same time in
one configuration”.

Fig. 1. Example of a feature model based on [4, p. 10]

Figure 1 shows a small example of a simple feature model with all essen-
tial elements of such models. The illustration shows the hierarchical structure
of features, beginning with the root called Customer Relationship Management.
During the configuration process, features have to be selected from top to bot-
tom, starting with the root feature and respecting the given dependencies.

Hyper feature models additionally allow maintaining multiple versions of each
feature into the model, including the representation of development branches (so
each version can have a predecessor and one or multiple successors). The available
cross-tree-constraints are extended by version requirements, e.g. ”If version 2.0
and above of feature A is part of the configuration, feature B has to be selected
in version 1.1 and above as well.” Figure 2 extends the example of Figure 1 to an
hyper feature model. Each feature has been extended by multiple versions and
development branches. Version-aware cross-tree-constraints are not represented
in this example.

3.4 Risks, Challenges and Limits of Software Product Lines

The software product line approach is rather complex and needs strong gover-
nance. Model inconsistencies directly lead to errors while generating valid con-
figurations and concrete software products. Each change in code and model has
to be reflected on each other.

23

David Gollasch

Fig. 2. Example of an hyper feature model based on Figure 1 and the notation proposal
of Seidl et al. [8]

That makes is costly and inefficient if only one concrete product should be
developed. The software product line approach is only affordable and saves time
if multiple products should be generated out of one product line.

Nevertheless, the link between source code and the features in the model
is fragile and needs a careful maintenance to ensure the seamless generation
of concrete, running software products. The risk of generating redundancy and
architecture erosion should be kept in mind.

4 Facing Upcoming Trends Through Software Product
Lines

Hyper feature models are only a first attempt to introduce a time abstraction
level in software product line engineering. But if we assume that software product
lines support variability in space and time, it may cope with the upcoming trends
as follows.

According to the trend of a rapid development, the strong use of reusing
principles helps facing this trend. As a software product line and ecosystem can
become very complex due to plenty of dependencies, version-awareness simplifies
reusing heavily. However, the product line approach is only appropriate when it
is the attempt to generate multiple products out of a product line. That makes
it inappropriate for a lot of other software development projects where only one
single piece of software is the desired result.

24

Facing Future Software Engineering Challenges Through SPLs

To address the need for assurance, composing software out of reliable and
proven components can face this trend. As those components are never newly
implemented, a version-aware product line will be important as well.

Software product lines cope with complexity due to the reuse principle. I do
not see a direct advantage in the additional variability in time.

The need to accommodate COTS makes it important to keep the own software
compatible. As there is no way to influence the life cycle of the third-party
software component, version-awareness is fundamental.

The product line approach copes with user-specific configurations due to the
general variability principle. I, again, do not see a direct advantage in the addi-
tional time abstraction.

5 Conclusion

Software in the future tends to get more and more complex and user-oriented
while there is a need to get them developed faster without a loss in quality.
These trends are a major challenge for software engineers in the future.

Abstraction is one possible key to success. The software product line ap-
proach as a model-driven development strategy already allows abstraction on
the structural, behavioral, qualitative and characteristic level in form of vari-
ability in space.

Variability in time as a time abstraction level will be necessary to cope with
the mentioned trends in the future considering evolutionary processes. One ap-
proach is the use of hyper feature models as they allow maintaining multiple
versions of each feature in one product line.

This makes the software product line approach very promising to be the
appropriate development methodology for many software projects in the future.
As this approach is very costly to apply, it is only affordable if multiple software
products should be generated out of one single product line. Otherwise, the
overall development process needs too much time and is rather inefficient.

To get over this drawback, it would be interesting in how far it is possible to
combine agile development strategies with the presented software product line
approach. If there is a feasible solution, it would be potentially possible to com-
bine the advantages of both worlds and get over the disadvantages mentioned.

References

[1] Barry Boehm. “Some Future Software Engineering Opportunities and Chal-
lenges”. In: The Future of Software Engineering. Ed. by Sebastian Nanz.
Springer Berlin Heidelberg, 2011, pp. 1–32.

[2] Manfred Broy. “Seamless Method- and Model-based Software and Systems
Engineering”. In: The Future of Software Engineering. Ed. by Sebastian
Nanz. Springer Berlin Heidelberg, 2011, pp. 33–47.

25

David Gollasch

[3] Christoph Elsner, Goetz Botterweck, Daniel Lohmann, and Wolfgang Schroe-
der-Preikschat. “Variability in Time - Product Line Variability and Evolu-
tion Revised”. In: Fourth International Workshop on Variability Modelling
of Software-intensive Systems. VaMoS. Vol. 10. Linz, 2011, pp. 131–137.

[4] David Gollasch. “Qualitaetssicherung mittels Feature-Modellen”. Bachelor
Thesis. Dresden: TU Dresden, 2013.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Carnegie-
Mellon University Software Engineering Institute, Nov. 1990.

[6] K.RustanM. Leino. “Tools and Behavioral Abstraction: A Direction for
Software Engineering”. In: The Future of Software Engineering. Ed. by Se-
bastian Nanz. Springer Berlin Heidelberg, 2011, pp. 115–124.

[7] Frank van der Linden. Software Product Lines in Action: The Best Indus-
trial Practice in Product Line Engineering. In collab. with Klaus Schmid
and Eelco Rommes. Berlin ; New York: Springer, 2007. 333 pp.

[8] Christoph Seidl, Ina Schaefer, and Uwe Assmann. “Capturing variability in
space and time with hyper feature models”. In: ACM Press, 2014, pp. 1–8.

26

Capabilities of Digital Search and Impact on
Work and Life in 2025

Christina Korger

Technische Universität Dresden, Fakultät Informatik, Dresden, Germany
christina.korger@tu-dresden.de

http://inf.tu-dresden.de

Abstract. As the amount of digital data is increasing at an accelerat-
ing pace, it becomes a central requirement for digital search systems to
maintain accessibility. This paper builds on the distinction of different
search goals and examines respective search system designs in research
and practice to support predictions of impact on work and life in 2025.
Major trends such as diverse and more natural search user interfaces, per-
sonalization of results or modern forms of human contribution, e.g. hu-
man question-answering and social rankings influence the working world
and personal life. Beside positive effects in the form of increased support
and productivity, several risks are identified. These include increasing de-
pendence on software, loss of credibility of search system providers and
information and misuse of personal information. Possible solutions how
these challenges can be met are discussed in the remainder. As opposed
to previous studies on either search system design or impacts of software,
this paper aims to provide a contribution by illustrating the relationship
between both.

Keywords: Software in 2025, Digital Search, Cultural Impact, Eco-
nomic Impact, Information Retrieval, Search Systems, Search Interfaces

1 Introduction

Increasing amounts of digital data assign great responsibility on search interfaces
and information retrieval. In order to assess the impact of advances in search on
work and life, it is vital to have an overview of state-of-the-art research. This
comprises three different areas: the distinction of a user’s initial search goal,
types of interaction provided in search systems and promising approaches. As
a result of the analysis possible and emerging impacts on work and life can be
derived from a critical point of view.

A good starting point for research about the impact of software offers “The
Software Society” by William Meisel [11]. Brynjolfsson and McAfee provide fur-
ther insight into impacts on the working world in their work “Race Against The
Machine” [3]. For state of the art there should be mentioned Marti Hearst’s book
on search user interfaces [9], which provides valuable information and references
to important research in the specific field of search interfaces.

27

Christina Korger

The quality of a search system is evaluated by the ability to meet a user’s
search goal. Section 2 distinguishes information needs and categorizes them into
three types which require substantially different ways of searching. As a con-
sequence, search systems have to address each type individually. The search
interface is essential to the user experience. Section 3 provides an overview of
interface design possibilities. Multiple approaches towards better accessibility
and relevance of results can be observed from state-of-the-art research. Section
4 covers different search approaches such as vertical, personalized, social and
semantic search and gives examples of representative models. As search systems
evolve, the relation between humans and computers has to be reconsidered. Sec-
tion 5 aims to answer the question of what positive and negative impacts on
work and life can be derived from upcoming advances in information retrieval
and better adaptation to user needs. Section 6 concludes with a summary and
a personal reflection on technical evolution in search and impacts in 2025.

2 Search Goals

In a narrow sense the only query correctly answered by a basic web search engine
can be a navigational query, signifying someone uses a search engine instead of
the address bar to navigate to a specific web site. Another recognized intent is
the satisfaction of a transactional need [2]. The user wants to acquire a physical
or digital product, e.g. shop for a new camera or download a song, or maybe
exchange messages in a chat room. But the original intent behind a search is
to satisfy an information need. This implies two things: Firstly, the return of a
ranked list of web links is not the shortest way to success. Secondly, the options
of query specification are not necessarily sufficient to express an information
need. To overcome that distance, users and especially their information needs
must be identified and thoroughly understood. On this basis search systems can
be adapted accordingly. With some simplifications, information needs can be
grouped into three categories: simple fact search, complex problem solving and
explorative search.

Many queries are about a specific fact. This can be the size of a building, the
name of an actor, today’s weather conditions or the price of a product converted
to a different currency. The answers are short and mostly unambiguous. An-
other type of information needs addresses complex problem solving. As well as
this may be approached using varying techniques, it requires extensive informa-
tion and context. Relevant results do not accumulate to a single truth. A correct
set of answers would be uninfluenced and complete or at a minimum represen-
tative in terms of composition. A third information need has been formulated as
information exploration by Waterworth and Chignell [16]. There is no explicit
question, thus the underlying goal is not a direct answer but an overview of
available information and help in concretizing the question.

28

Capabilities of Digital Search and Impact on Work and Life in 2025

3 Search System Interaction

On the one hand, the above performed categorization demonstrates the require-
ment for search systems of dynamic adaptability to individual needs. On the
other hand, it has to provide interaction possibilities guaranteeing simple and
expedient use. This section covers different options of query specification and
the presentation and preparation of results.

3.1 Query Specification

The standard model of query specification in web search consists of keyword
search in text form. Content-specific search systems like digital libraries addi-
tionally support structural filtering. Compared to the most natural means of
information exchange, oral communication, this may appear inflexible, too re-
stricted in terms of expressiveness or just too much effort to convert to from the
original thought.

Advances in speech recognition and natural language interpretation stimulate
attempts to offer alternative specification mechanisms. Especially mobile search
applications rely on interaction types more suited to a small screen.

As a second approach, [10], [17] investigate the utility of content-specific
input, based on the assumption that a query of the same content type as the
sought answer can be specified more easily or accurately. For instance, it may
be easier to define the rough appearance of an image by sketching it than by
describing it with words. This works particularly well if similarities can be better
computed on the same content type, as well as when the information seeker has
a specific object in mind.

3.2 Presentation of Results

Similar to the different interaction possibilities of query initiation, results can be
presented and prepared in alternative ways. As well as web search implies the
conventional return of a ranked list of potentially relevant page links (enriched
with relevant meta information such as titles and snippets), engines such as
Google1 currently feature a variety of output generation.

With the same query, a web search, an image search, a video search or a
map search can be conducted. Specific search for news, books, flights or apps is
possible, corresponding to the heterogeneous pool of domain-specific webpages.

Even some queries not covered by one of these search extensions are partly
being answered in additional boxes next to the list of web links. For example “100
pound to euro”, “cinema” or “weather” are presented “direct-to-content” [11],
whereas the query “Robin Hood” leads to a summarized presentation of images,
the respective Wikipedia article and a suggested disambiguation (if the search
intent was to retrieve information on the film, not the legend).

1 https://www.google.com

29

Christina Korger

In addition to text-dominated presentation there are several approaches of
result visualization, for instance thumbnails of each document i.e. page previews
in case of web search. Further possible visualizations include display of computed
graphics about relations between topical categorization, temporal correlations
or tag clouds. Dörk et al. [6] provide a detailed investigation of the concept
of visual exploration. While the response time-benefit ratio currently does not
always justify the additional effort, this problem could vanish in the future due
to increased performance of both hardware and software.

Opposed to visual output, a query can also be answered in oral form. Together
with natural language input this offers the particular advantage of a hands- and
eyes-free operation.

Leading further, a search system can be just the entry point to an inquiry,
automatically forwarding to a respective system which provides tailored output
in arbitrary form. Meisel [11] elaborates on a similar vision with the following
words: “While it isn’t a current feature as this is written, it would be a natural
evolution if one personal assistant application could be supported by another
personal assistant application through an appropriate transfer of control. [. . .]
If requested from a general PA or another specialized PA, e.g., by saying ’XYZ
Company customer service,’ the active PA can launch the company customer
service PA.” An explicit example illustrating this case would be talking to your
personal assistant about getting directions to some place and having this inquiry
forwarded to your navigation system, immediately starting operation.

4 Search Approaches

While some of the mentioned interaction models promise a more natural usage
of search tools, others may prove a minor contribution to usability in future
search systems. This section describes different approaches from state-of-the-art
research, user needs they address and interaction models implemented.

4.1 Vertical Search

One field of research in information retrieval concentrates on the vertical search
approach. Vertical search engines as opposed to serving a general purpose focus
on a specific content segment. This can be defined by content type, domain,
target audience, location or enterprise.2 Approaches of this kind are driven by
the hypothesis that they can provide higher precision of results and targeted
support of user tasks. While the starting point of most searches on the web
might be a general search engine, many continue to a vertical site. Looking
for a new desktop background may involve a visit to flickr.com. Inspiration
of what to cook tomorrow may be found on allrecipes.com. Shopping may
be pursued on amazon.com. Places nearby can easily be explored from mobile
phones via location-based applications like Yelp3 and various others. Last, but

2 cf. SEO Term Glossary: http://seotermglossary.com/vertical-search-engine/
3 http://www.yelp.com/

30

Capabilities of Digital Search and Impact on Work and Life in 2025

not least, enterprise search solutions combining company-relevant information
from multiple internal and external sources are good business. The idea has
been successfully implemented in practice but is still gaining importance.

4.2 Personalized Search

A second field of research is represented by personalized search. The aim is to
return results tailored to the individual by incorporating context information.
The simplest form of context information is daytime and location. For exam-
ple, a query for “cinema” conducted on Google immediately returns a list of
movies running at cinemas nearby and a map of where they are located. Addi-
tional information can be extracted directly from user profiles or indirectly from
logging search behavior. Sohn et al. [14] observe particular benefits for mobile
search applications with 72% of the information needs surveyed being classified
as contextual.

4.3 Social Search

Another promising field of research in information retrieval is social search. Ac-
cording to Hearst [9], social search can be divided into three manifestations:
social ranking, collaborative search and human question-answering. Commenc-
ing with the first, many search systems are being supported by constant user
feedback. Results are computed based on user ratings, letting subsequent users
profit of the so-called collective intelligence. This mechanism can also be applied
as an additional sort or filter option as known from e-commerce platforms such
as amazon.com or hostelworld.com.

Collaborative search, on the other hand, originates from findings that in the
context of work solving complex search tasks in cooperation is common prac-
tice [1]. The standard collaboration model deploying an ordinary search system
is one person interacting directly with the computer, the remaining participants
influencing the process by making suggestions to the former. Research mainly
addresses this problem at the interface level. Models range from display synchro-
nization to the implementation of notification mechanisms as a replacement for
physical presence and oral communication or with the intent to increase produc-
tivity. Pickens et al. [13] introduce a system with separate roles and interfaces
for exploration and evaluation, facilitating synchronized mutual influence while
protecting workflows from interruption.

The third manifestation of social search is human question-answering. The
term represents the model of already well-established Q&A sites (short for “ques-
tions and answers”) such as ask.com and associates of the Stack Exchange Net-
work4. Users can post a question and suggest answers to open questions in
reverse, assigning part of the search engine task back to humans. Consequently,
users can conduct a search for terms occurring either in the question, i.e. some-
one else’s query, or in the answer. As the questions provide a more detailed

4 http://www.stackexchange.com

31

Christina Korger

description of an information need, it enables better judgement of relevance to
the seeker and is often accompanied by a more tailored answer than computation
could facilitate.

4.4 Semantic Search

One more field of research to be considered is committed to semantic search. The
idea behind the concept is to improve recognition of user intents by applying
semantical analysis and interpretation to the query. This can either be achieved
similarly to Google’s Knowledge Graph5 by statistic evaluation, or based on
ontologies which map knowledge to a hierarchy of concepts enriched with types,
properties and inter-entity relationships. Large ontologies exist, especially for
specific domains such as Gene Ontology for the biomedical sector, forming the
basis for semantic search engines.

For general purpose search engines, semantic search is the foundation of many
direct-to-content result presentations, including elements like “related search” or
discussed integration of Wikipedia references. Further subsets of semantic search
identified by Grimes [8] are faceted search, clustered search and natural language
search. The former two relate to query classification into facets respectively pre-
defined or extracted from the content of results. Examples for predefined facets
are topic, task, spatial and time sensitivity and can be applied either individually
or simultaneously (cf. González-Caro and Baeza-Yates [7]). A representative of
the latter is the computational knowledge engine WolframAlpha6 which states
the goal “to make all systematic knowledge immediately computable and accessi-
ble to everyone”7. It accepts free-form input and directly generates answers from
a curated knowledge base, combining natural language search with the direct-
to-content approach. Another type of application offering a complete natural
language interface is the mobile personal assistant, among them Apple’s Siri8

which also uses WolframAlpha as a service.

5 Impact of Digital Search

Preceding sections have given an outline of the state of the art and trends in
search system design. This section concentrates on the derivation of possible
positive and negative impacts in 2025. Recent developments and state-of-the-
art research imply a trend towards ubiquitous and fast access to a large base
of knowledge, either through general purpose systems with rich interaction fea-
tures or through specialized systems such as domain-specific search engines and
intranets.

In both private and professional life this will lead to increasing use - and thus
to dependence on software. One critical aspect in dealing with digital information

5 http://www.google.com/insidesearch/features/search/knowledge.html
6 http://www.wolframalpha.com
7 http://www.wolframalpha.com/about.html
8 https://www.apple.com/ios/siri/

32

Capabilities of Digital Search and Impact on Work and Life in 2025

distributed over the web is trustworthiness. To serve as a reliable source, the
origin of any information must be traceable. The retrieval of information should
best be transparent to the user. Neither should information be withhold, nor
manipulated. If this issue is ignored, it will not be possible to guarantee full
reliability. For this reason there has to be some kind of independent control
structure ensuring the objectivity of digital search engines and providers.

Another common problem to be managed is possible misuse of personal infor-
mation. Ubiquitous access to information creates great value, but the individuum
always needs to be protected. In this regard, improving personal decision-making
powers over what information to share is an important step forward.

5.1 Impact on Work

Beside general aspects, explicit effects on the business world and professional life
can be derived. Brynjolfsson and McAfee [3] emphasize the economic impact of
technological innovation by calling it the “third industrial revolution”.

One incipient impact is the shift of task fields. While long-term prospects
may decline in certain fields, jobs may emerge in others. As outlined in Section
3 on interactions, natural language processing and speech recognition do and
will experience significant progress. For economy this implies an automation of
services. Call center or help desk agents, but also general customer services in
automated form are already being established9 and are likely to replace jobs
little by little.

Another impact of more efficient search and accessibility of information may
be a decreasing need for human consultants. Library reference staff or booksellers
are going to become redundant as digital search, neither tied to time nor location,
can offer equal advice or aggregated recommendations.

On the one hand, the replacement of human labour with software offers cost
savings and independence for enterprises. Customers may value constant perfor-
mance and the convenience of unlimited access. On the other hand, there are
reasons why some people still prefer human interaction. While digital software
agents are no longer built only on mechanisms as simple as yes/no navigation
or a predefined topic selection, it still seems a long way to go until software will
be able to react almost freely or even creatively to human inquiries.

Where creativity is part of the solution, retrieval of information often is insuf-
ficient. Here, human and computer abilities may prove an excellent complement
to each other and highly increase productivity. For example a software consultant
looks up facts and solutions to single, isolated problems but can much more effi-
ciently combine and adapt everything to an actual more complex problem with
various dependencies. Meisel [11] expresses this very well as the computer pro-
viding an “extension to human capabilities”. Supporting developments in search
are models of personal assistants, quoted collaborative search, general relevance

9 cf. IBM Watson for businesses as an example of software services building
on automated search mechanisms: http://www.ibm.com/smarterplanet/us/en/

ibmwatson/

33

Christina Korger

improvements by better retrieval and preparation, and highly esteemed intranet
solutions.

Jobs with an especial requirement of creativity directly emerging are con-
ceivable in the field of digital content evaluation and organization, supervision
of knowledge contribution and in the field of regulations and protection mecha-
nisms handling privacy and security.

On the other hand, acceleration of developments particularly driven by ad-
vances in information retrieval might encompass a dynamization of the eco-
nomic sector. This can mean an advantage for start-ups and everyone with en-
trepreneurial spirit and a good business plan. Brynjolfsson and McAfee [3] lend
further support to this idea, claiming “enormous opportunities for individuals to
use their unique and dispersed knowledge for the benefit of the whole economy”.

5.2 Impact on Life

Just like the working world, also people’s everyday life and society as a whole
will be significantly influenced by developments and new approaches in search
systems design. As knowledge becomes more easily acquirable and interaction
more natural, improved user experience and increasing use become apparent also
in this area of life.

Increasing use will widely release people from memorizing tasks as access
to digital information provides immediate reference to build on. This may have
consequences extending as far as to education, laying the foundation of both
more logic-centered and creative thinking [11].

Whereas findings of Church et al. [5] suggest that mobile search is often de-
ployed during social activities, interaction with surrounding people may other-
wise decrease as information needs are saturated by a personal search assistant.
Examples are navigation, personalized recommendation as well as facts, with
search systems likely to provide more reliability and objectivity or respectively
sensitivity to personal preferences. As permanent reassurance is guaranteed, ac-
tivities such as ’eat at a restaurant not recommended by your personal assistant
and without checking the menu in advance and making a reservation’ for some
people may become close to an adventure.

Cerf [4] provides personal assessment on the threat of personification of soft-
ware systems10 accompanying human-like behavior such as natural language
interfaces. Although Cerf classifies this not as an immediate danger, he con-
cludes that “users might assume intelligence beyond the system’s capacity” [4]
and sounds a note of caution for the designers of stated intelligent systems.

One concern voiced specifically on the trend towards personalization is that
the user could perceive a distorted image of the world: “The new generation of
Internet filters looks at the things you seem to like the actual things you’ve
done, or the things people like you like [. . .], constantly creating and refining a
theory of who you are and what you’ll do and want next. Together, these engines

10 based on [15]

34

Capabilities of Digital Search and Impact on Work and Life in 2025

create a unique universe of information for each of us [. . .] which fundamentally
alters the way we encounter ideas and information.” [12]

6 Conclusion

In the course of this work trends in the design of search systems, able to address
different user goals, have been analysed. Identified as prevailing has been ubiqui-
tous access, interfaces facilitating more diverse and especially natural interaction,
and consideration of personal and semantic context for improved relevance and
presentation of results. Further developments have been emphasized relating to
explicit human contribution in the form of human question-answering and social
rankings. These serve as an additional foundation for analysis and sensemaking
of data. On the other hand, it has been shown in which ways work and life may
be affected by this forthcoming evolution. Main connections can be seen: firstly,
in the personal search assistant model and increasing use and dependence; sec-
ondly, in the advanced integration into the working environment and enhanced
productivity; and finally, specifically in the advances in natural language pro-
cessing, speech recognition and semantic analysis as a stimulator of automation
of services.

My perception is that evolution of search system design has high potential to
complement work and life. I am confident that we will master to keep pace with
accelerating changes as we do not compete but collaborate with technology. Al-
though in some fields digital search applications will supersede humans as they
offer equal or better performance at lower cost, at the same time this means peo-
ple are able to engage in other tasks. Fields where human strengths exceed those
of search systems are where information needs have yet to be elaborated, i.e. in
mediation, or where the desire for technical depth has to be estimated carefully
to satisfy the information need but not to overwhelm. Apart from this, even
though a personal search assistant may provide objective, reliable answers and
simple interaction, human interaction may still be appreciated as more engaging
and inspiring more confidence through allowing personal judgement.

Whoever controls access to information has great power. It is therefore vital
for the reliability of search systems that information about who is responsible for
the data and about the principles underlying result computation is transparent
and comprehensible to some extent. From my point of view personalized results
are never desirable unless explicitly stated. The latter for example is conceiv-
able in the music domain. Separated from access to unbiased search and results
the benefits of finding “what people like who like what I like” can consciously
be enjoyed. Caution also is advised in terms of distinction between human in-
telligence and simulation thereof. Whereas natural interaction is important for
better accessibility, it should never lead to the misconception that behind this
interaction might be more than hardware and code.

In conclusion, while demanding careful attention, evolution of search systems
should be perceived as a vital and valuable contribution to both work and life.
The ultimate shape is residing in our hands.

35

Christina Korger

References

1. Amershi, S., Morris, M.R.: Cosearch: a system for co-located collaborative web
search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. pp. 1647–1656. ACM, New York (2008)

2. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (Sep 2002)
3. Brynjolfsson, E., McAfee, A.: Race against the machine: How the digital revolu-

tion is accelerating innovation, driving productivity, and irreversibly transforming
employment and the economy (2012)

4. Cerf, V.G.: Sherry turkle: Alone together. Internet Computing, IEEE 15(2), 95–96
(March 2011)

5. Church, K., Oliver, N.: Understanding mobile web and mobile search use in today’s
dynamic mobile landscape. In: Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services. pp. 67–76.
MobileHCI ’11, ACM, New York (2011)

6. Dörk, M., Williamson, C., Carpendale, S.: Navigating tomorrow’s web: From
searching and browsing to visual exploration. ACM Trans. Web 6(3), 13:1–13:28
(Oct 2012)

7. González-Caro, C., Baeza-Yates, R.: A multi-faceted approach to query intent clas-
sification. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) String Processing and
Information Retrieval, LNCS, vol. 7024, pp. 368–379. Springer Berlin Heidelberg
(2011)

8. Grimes, S.: Breakthrough analysis: Two + nine types of semantic search (Jan
2010), http://www.informationweek.com/software/information-management/

breakthrough-analysis-two-+-nine-types-of-semantic-search/d/d-id/

1086310?

9. Hearst, M.A.: Search User Interfaces. Cambridge University Press, New York, 1st
edn. (2009), http://www.searchuserinterfaces.com

10. Kreuzer, R., Springmann, M., Kabary, I., Schuldt, H.: An interactive paper and
digital pen interface for query-by-sketch image retrieval. In: Baeza-Yates, R., Vries,
A., Zaragoza, H., Cambazoglu, B., Murdock, V., Lempel, R., Silvestri, F. (eds.)
Advances in Information Retrieval, LNCS, vol. 7224, pp. 317–328. Springer Berlin
Heidelberg (2012)

11. Meisel, W.: The Software Society: Cultural and Economic Impact. Trafford Pub-
lishing (2013)

12. Pariser, E.: The filter bubble: What the Internet is hiding from you. Penguin UK
(2011)

13. Pickens, J., Golovchinsky, G., Shah, C., Qvarfordt, P., Back, M.: Algorithmic me-
diation for collaborative exploratory search. In: Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in informa-
tion retrieval. pp. 315–322. ACM, New York (2008)

14. Sohn, T., Li, K.A., Griswold, W.G., Hollan, J.D.: A diary study of mobile infor-
mation needs. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 433–442. CHI ’08, ACM, New York (2008)

15. Turkle, S.: Alone Together: Why We Expect More from Technology and Less from
Each Other. Basic Books (2011)

16. Waterworth, J.A., Chignell, M.H.: A model of information exploration. Hyperme-
dia 3(1), 35–58 (1991)

17. Zhu, S., Zou, L., Fang, B.: Content based image retrieval via a transductive model.
Journal of Intelligent Information Systems 42(1), 95–109 (2014)

36

Transparent Components for Software Systems

The future of software engineering in 2025

Paul Peschel

Technische Universität Dresden
Fakultät Informatik

Institut für Software-und Multimediatechnik
Lehrstuhl Softwaretechnologie

Abstract. Most of the improvements today and in the future will be
achieved with software. Since more and more systems in our modern
world depend on complex software, the development process of the soft-
ware has to be adapted to upcoming needs in the future. A way to
manage the complexity is to use tools for automated code generation by
specifications. Hence, a key technology will be the composition of arbi-
trary software components to a big software system. For this purpose
we will describe the usage of the Double Roof Model already used in the
hardware/software codesign. We will also reflect the benefits and possible
problems which may occur when using transparent software components.
These software components are highly reusable and can be made by the
open source community. So firms can almost move the expensive cost fac-
tors of code writing, testing and maintaining of their software systems
to the open source community and produce with a little effort software
with a good quality.

Keywords: automatic software component composition, transparent soft-
ware components, reliability

1 Introduction

There is a run between the upcoming high performance embedded systems which
are called Cyber Physical Systems(CPS) when they interact with other systems
and the needed software systems to drive these devices. Because such digital
devices are all getting cheaper more people can become users of such systems
like the assistance systems in modern cars, intelligent devices at home building
the internet of things, and so on.

The economy is pushing the transformation from an almost analogous world
to a nearly full digitalized world because of the high profits this digital market
will generate. Most innovations today are created within this digital market.
With the increasing amount of devices and needs of the economy generated by
the innovation and resulting profit pressure, the software systems will become
more complex and have to be delivered in shorter time to the market. That is why
we have to prepare for the future of software systems to make even very complex

37

Paul Peschel

software systems still maintainable in an easy way and the development cheap
and fast to gain a high profit. The highest profit will be gained with software
platforms in the future(see [3]). So the facility to easy generate platforms will
be a key technology in the future of software development.

In particular we need software systems which satisfy the needs of the economy
and hence we need approaches that enable the easy connection of all devices,
collect and interpret data in real time and we need platforms which combine
all these systems together to provide a perfect user experience. The software
development process can already not follow the evolution of the new upcoming
digital market resulting in many crashes of complex software projects.

The vision will be to create methods, tools and software development pro-
cesses which enable us to create automatically software that will fit the functional
and non-functional properties of the future applications. An achievable vision will
be a framework which allows a user with less software engineering knowledge to
create new software just by combining already tested software components(e.g.
made by the open source community).

So the question is how should we improve the software developing processes
to easy enable complex software systems? A nice approach would be to connect
arbitrary software components together especially the open source components
which are almost well tested and maintained by the open source community. So
we have got an automatic evolution process of these components by the work of
the open source community. The focus is on how to combine these components
to reach a Pareto-optimal state [2] of the whole resulting software system and
how to ensure reliability [5]. Because of the heterogeneity of the CPS we also
have to ensure independence from the platform where the software will work on.

2 Related work

We want to present the ideas this paper is based on. In particular it was the book
”Conversations”[4] and the ISTAG report[6] providing the ideas of experienced
software developers for this paper. Furthermore the approaches in the Hard-
ware/Software Codesign[7] and the researches in the reliability of software[5]
completed the concepts for this paper.

2.1 Basic ideas

Because software is getting more complex with respect to the upcoming tech-
nologies like Internet of Things, Cyber Physical Systems (CPS), high perfor-
mance computing on multi-core computers we need methods and tools to build
more robust and resilient software. A possible way could be a tool which builds
whole software systems without programming. But to fulfil the functional and
non-functional properties we need such methods like the complete automatic
simulation of the software including the interaction with the user. Another ap-
proach would be a target independent compiler analysis, static and dynamic(at
runtime) code optimization.

38

Transparent Components for Software Systems

The European software industry can become leading in the world when it ex-
ploits new ways of software engineering which increases the efficiency and quality
of produced software. Hence, there is also a need to reduce the lead times to get
more complex software projects finished. A way to get this managed is the reuse
of core infrastructures (e.g. maintained by the open source community) of open
source frameworks which are easy extensible(e.g. eclipse). Another possibility is
the combination of existing software components which we will reflect in this
paper.

The quality of software can be improved by introducing transparency into it
like it happens in the open source software. Hence, a great community can give
feedback about the code and helps to make it better and leads to a better quality
of the software. Another approach will be to find errors as early as possible e.g.
already in the meta model or in the code itself during compilation with pre-and
postconditions and invariants. So we can avoid errors occurring at runtime. In
this paper we will extend the idea of transparency in software by introducing
transparent software components (see 3).

For this purpose we will also use the ideas presented in the ISTAG report.
An advice of this report concerning software engineering in the future is the
installation of a library of best practices and exemplary software like for energy
efficiency or large scale efficiency management. Exemplary for such libraries are
the mentioned websites berlios.de or ow2.org. The idea of this paper relies on
establishing such a central managed library to use it as a source for transparent
software components.

Because it is getting too difficult to develop a complex software system only
by requirement specifications and descriptions we are pressured to use domain-
specific modelling e.g. with ontologies. An approach would be to reuse the created
artefacts for the domain in later software projects corresponding to the same
domain. The created ontologies and requirements should be used to generate
software systems only by the obtained design specifications.

In the future we need higher abstraction levels which helps us to manage the
things which are hard to overview for humans like parallel programming and to
let the software system work on different hardware architectures. For instance
approaches in machine learning could help us to deal with high parallelism in
future software systems. So we will present in this paper a possible tool similar
to a synthesizer tool which generates out of a set of software components and
design specifications the wished software system with respect to these for humans
difficult to overview things.

2.2 Hardware/Software Codesign

In the future of codesign we have to deal with a growing amount of software
dependent devices. It will become hard to develop rapidly new software for the
hardware. One approach to create new software is the Double Roof Model of
Codesign [7] (see fig. 1). It describes a way to create the software implementation
and hardware structure by specifications.

39

Paul Peschel

The Double Roof Model just takes the specifications made by the developer
out of the wanted functional behaviour of the whole system (left arrow in fig. 1).
The synthesis step chooses then the appropriate architecture out of a known set
of platform architectures and components called Design Space (right arrow in fig.
1) and generates the implementation corresponding to the specifications (vertical
arrows from the top roof to the bottom roof in fig. 1). At this point the resulting
implementations are used as an additional specification for other components
(horizontal dashed lines in fig. 1). The result is a refined model which already
contains the necessary non-functional properties and design specifications. As a
source of software components and architectures for the Design Space we could
use the software library mentioned in 2.1.To find the optimal components and

Design Specifications Design Space

Refined Model / Structural Implementation

Fig. 1. Double Roof Model - Each result of one synthesis step (vertical arrows) is used
as additional specification (horizontal dashed arrows) for the next step

architectures the paper describes a way of Design Space Exploration. The aspects
the exploration respects are efficiency, optimality and there should not be only
one but many components regarding to these aspects. To find an optimal Design
Space corresponding to the wanted objectives we have to solve a multi-objective
optimization problem. Algorithms like Integer Linear Programming(ILP) are
used to solve the problem and hence to generate a Pareto-front of components
building the Input Space.

In this paper we will use the Double Roof Model to create whole software sys-
tems out of design specifications. The Design Space will be a set of Transparent
Software Components (see 3).

40

Transparent Components for Software Systems

2.3 Software Reliability Engineering: A Roadmap

The future of reliability is focussing on software architecture and component
based software engineering(see [5]). While in the past software reliability relied on
specific design models, architectures and measurements with respect to reliability
properties in the future this methods have to be improved.

A manually measuring of failures will be replaced by automatic methods
which will not add unnecessary complexity to the software and don’t disturb
the system while monitoring it. The major task in the future will be the re-
search of new failure-resilient software architectures guaranteeing separation of
components during runtime. So failures can be clear assigned to components.

The software system should be able to measure reliability properties by itself
like the time between failures as well as the number of occurred failures in a
specific period. With this information the software system can predict failures
of components by using e.g. machine learning techniques.

3 Transparent Software Components

Transparent software components are functional parts of software with an open
source code. There are two views on transparent software components. 1) Firms
can make parts of their software products public so everyone can take a look at
the code. This kind of peer review will increase the quality of this piece of soft-
ware (see [4]) by relying on the experience of other software developers. Hence,
it will improve the code. A side effect of this code review is the saving of money
and the production of software with a good quality. 2) Another aspect of trans-
parent software components is the open availability of software made by the
open source community. In this case we will introduce the term ”transparent
software component” as a software component which is free available, developed
and maintained by the open source community and hence has an open source
code. This software can be used to create a set of components where implemen-
tation frameworks can build an appropriate architecture corresponding to given
design specifications out of this Design Space. For filling the Design Space it is
strongly necessary to have a central managed repository of open source com-
ponents to avoid redundancy and to enable strict versioning of the transparent
software components. For this purpose exemplary software from the web could
be used (e.g. berlios.de or ow2.org).

3.1 Evolution of Transparent Software Components

The Design Space of transparent software is governed by a natural evolution
process in the sense that the open source community is doing a continues devel-
opment. It leads to a continued improvement of the software and keeps it up to
date.

The evolution process forces the community also to abort the development
of software e.g. if there is no demand for it, the quality is not good enough or

41

Paul Peschel

the functional and non-functional properties do not fit the needs of the users
and developers that use this software. This mechanism lead in the future to a
set of well designed and tested software.

If we use this set as our Design Space the software which was generated out of
it will benefit of the quality improvements of the components. This dependence
between the software system and the used transparent components enable a low
expensive maintenance and an automatic good quality of the software and hence
lower tremendously the development costs.

Like in the natural evolution the set of open source software increases after
new ideas and approaches leading to new software and maybe completely new
branches in the field of software. So we have an automated innovation process.

4 Composition of Transparent Components

One problem of using transparent components in the Design Space is the com-
position of them to new software systems. Because the open source community
almost does not develop components with specific coupling standards (e.g. de-
fined by the industry to use components in a Design Space for generating software
systems) we have to find ways how to compose components with an arbitrary
interface and data. There are two ways of doing that.

4.1 Static Composition

The static coupling of components happens at the compilation time. That means
that already at design time the data structures the components use to exchange
information through their interfaces have to be known. In particular the devel-
oper have to use them with an interface definition language (IDL) or have to
integrate the component manually connecting the interfaces at the right point
in the code. Latter will be necessary for open source components which usually
don’t define their interfaces by an IDL.

A benefit of a static coupling is the opportunity to choose the most suitable
components which fit the non-functional design specifications. Though, it is only
useful if we already know at design time which components we will use for our
desired software system. A future approach would be a tool which recognizes the
interfaces of the available components by itself and knows how to compose them
to a functional software system with respect to the given specifications.

4.2 Dynamic Composition - Roles

A dynamic coupling is in the future more applicable than a static one. Because
future software systems should ensure a very high availability stopping the ap-
plication for maintenance reasons should be avoided. Hence, a dynamic way of
interchanging or adding new components is necessary.

Since with static coupling the software system has to be recompiled to add
or replace an arbitrary software component we need an advantage mechanism

42

Transparent Components for Software Systems

to couple components dynamically. However, we need a dynamic view of the
components which will be realized with roles (see [1]) in the future.

The concept of roles will be introduced into the design part of the software
development process. So we will introduce another model level above the meta
model where we can create role models. After the roles and contexts are specified
they will be mapped on the objects of the meta model(e.g. a UML model).
Hence, the role model defines the interoperability and the interchangeability of
the software system components.

The role model enables the software system a dynamic view on a new compo-
nent corresponding to the role model. It allows a dynamic adding and integrating
of new components if they fulfil a specific role in the software system.

The automatic determination of a components role relies on the facility to
determine the components semantic. It will be a further scientific challenge to
develop such a functionality but it will make a big step towards an automatic
synthesizer tool. Hence, a further approach would be to pass the role model in
addition to the specifications and Design Space to the synthesizer tool which
maps the role model on the components of the Design Space with respect to the
design specifications. Of course the semantic of the open source components in
the Design Space have to be determined before. This is necessary, since the open
source components were not intended to be used in an arbitrary software system
and may have not any meta data about their semantics saved.

So for the future would it be very helpful to have multiple meta data like
architecture information in the source code included. An additional external
documentation will become unnecessary and can’t get lost with the time. Design
information in the source code of components will also make the automatic
semantic determination less complex.

4.3 Pareto-optimality of the Input Set

Another scientific research topic will be the ensuring of Pareto-optimality of
the composed components. Because a set of components composed to a whole
system can lower the efficiency if several components are not independent from
each other or do not fit the non-functional properties the input set of components
to the synthesizer tool should be Pareto-optimal[7]. It defines a set of components
in which each component conflicts the processing of another component as less
as possible. Figure 2 illustrates the optimization of the component set.

This means before we can compose the software components to a software
system we have to choose a subset (big ellipse in Fig. 2) out of the Design Space
and generating the input space by making this subset Pareto-optimal. So the in-
put set defines a Pareto-front created by solving the multi-objective optimization
problem. Objectives can be to minimize looming conflicts components can have
with each other and to optimize non-functional properties the system should
have at the end. In Fig. 2 the length of the arrows above each component in-
dicates the value of a specific property serving an objective. Hence, we have to
derive the possible effects of each component to other components while execu-
tion and to measure non-functional properties even of the resulting system(e.g.

43

Paul Peschel

with simulations mentioned in [6,4]). This is a similar research challenge like the
determination of the components semantic and behaviour. Optimizing the con-

A C

B

Property Value

O
b

je
ct

iv
e

1

O
b

je
ct

iv
e

2

O
b

je
ct

iv
e

3

Conflict

Fig. 2. Multi Objective Optimization - Automatic selection of components to gain
optimal non-functional properties. The ellipses notated with a big letter define compo-
nents which have valued properties. The values are indicated by the length of the arrows
each serving a specific optimization objective. The goal is to select these components
which improves the optimization objectives best without conflicting other components.
Conflicting components with lower optimization benefits will be removed.

flict potential of the set of components will be usually achieved by separation
of concerns and a high cohesion of the components. However, a resulting low
coupling enables the software system to a better isolation of components which
disturb the normal operation of the system (see 4.4). Hence, a Pareto-optimal
input set results in a low coupling of the components and less complexity of the
resulting software system.

4.4 Ensuring Reliability

Because we want to show in this paper a possible way how to create software
systems in the future we reflect in this section reliability. A perfect software sys-
tem will be completely stable. Though, a perfect composition of perfect work-
ing components resulting in a perfect stable software system may even with a

44

Transparent Components for Software Systems

Pareto-optimal input set not possible. So it is necessary to ensure reliability to
guarantee a stable software system. The need of reliability can be introduced
with the interaction of the components because the components may be not
tested in their actual runtime environment and hence we can not guarantee a
failure free working in the system.

The separation of components as the intended consequence of generating a
Pareto-optimal input set leads to a separation of concerns of the resulting soft-
ware system. It makes it easier to identify failures occurring in the software
system. Since failures in software do not happen independent (see [5]) an er-
ror can be easier assigned to a component if there is a high cohesion and low
dependence between the components.

The software system should have the ability to reconfigure its components. If
an error occurs and the responsible component could be identified the software
system has three possibilities: It can reconfigure this component, replace it or
put it into isolation to avoid further violation of the rest of the system.

A future advantage will be the automatic enabling of reliability in software
systems. The developer should only define in the non-functional properties and
several constraints which give the synthesizer tool a hint which components have
to be selected for the input space. Again we need to determine automatically
the behaviour of open source software components since the developer of the
component can not provide measurement values concerning reliability because
he usually does not know the runtime environment of the software system.

5 Conclusion

We have seen it will be a long way to establish a software engineering process to
automatically generate software systems. There is still much research needed in
some specific fields mentioned in this paper. For instance we should develop a tool
which fulfils the synthesizer step for selecting software components corresponding
to the given design specifications and composing them to an entire software
system.

Because of the usage of open source components in the design space we gain
an automatic maintenance and improvements made by the open source commu-
nity. Hence, this will lower the software development costs of firms but also the
authority over the components. The evolution of the transparent components
will lead to a continues improvement of the software quality and to innovations
in the domain of computer science.

Since open source developers creating their software just for a specific system
or hopefully in a generic manner we need methods for choosing the right compo-
nents out of the Design Space. For the selection of the software components out
of the Design Space first we need an automatic way to determine the semantic
and the runtime behaviour of the components in the appropriate environment of
the resulting software system. This will be a further research topic(e.g. machine
learning).

45

Paul Peschel

The complexity of the semantic and behavioural determination step can be-
come less if we introduce a standard in the open source community which defines
to write meta data into the components source code. For this, a programming
language supporting architectural information inside the code would be helpful.

The recognized semantics and behaviour information of the components can
be used to generate a Pareto-optimal set of input components which will build
the software system at the end. The information enable also reliability of the
software system and helps it to detect in the lead-up to runtime possible points
of failure of the components.

In the year 2025 we expect a central managed repository of open source
software components which can be freely integrated into software projects. This
is the basis for the described synthesizer tool. Current researches like on roles
(see [1]) should finish 2025 and enables a dynamic component composition. Also
the standards for the development process with transparent software components
will be defined 2025. The creation of a synthesizer tool will be a still open research
topic for the time after 2025.

References

1. Prof. Uwe Aßmann. Role-based software infrastructures https://wwwdb.inf.

tu-dresden.de/rosi/lectures/rosi-lecture/. [Last access: 22.07.2014].
2. Lars Boshold. Multikriterielle optimierung. http://www.scai.fraunhofer.de/

fileadmin/ArbeitsgruppeTrottenberg/WS0809/seminar/Boshold.ppt [Last ac-
cess: 30.05.2014].

3. Michael A Cusumano. Staying Power: Six Enduring Principles for Managing Strat-
egy and Innovation in an Uncertain World (lessons from Microsoft, Apple, Intel,
Google, Toyota and More). Oxford University Press, 2010.

4. Sebastian Nanz Edgar G. Daylight, editor. Conversations: The Future of Software
Engineering: Panel Discussions. Lonely Scholar, 2011.

5. Michael R Lyu. Software reliability engineering: A roadmap. In 2007 Future of
Software Engineering, pages 153–170. IEEE Computer Society, 2007.

6. ISTAG – Information Society Technologies Advisory Group (Working Group
on Software Technologies). Software Technologies – The missing Key Enabling Tech-
nology (Toward a Strategic Agenda for Software Technologies in Europe). July 2012.

7. Jürgen Teich. Hardware/software codesign: The past, the present, and predicting
the future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–1430, 2012.

46

Functionality, Threats and Influence of
Ubiquitous Personal Assistants with Regard to

the Society

Jonas Rausch

Dresden University of Technology
Jonas.Rausch@mailbox.tu-dresden.de

Abstract. With the ever increasing power in computation, the capa-
bilities of software to perform very complex processes and tasks are ex-
panded to a hole new level. This leads to more benefits for people due
to more reliable and smarter software. With the help of such software,
tasks which were seen as not automatable only a few years ago will be
accomplishable by machines. This paper outlines how this trend will con-
tinue towards the year 2025 with the invention and ongoing development
of personal assistants on mobile devices. The communication with these
assistants will be mainly based on voice input from the user which will
feel much more natural as of today due to the rapid progress in fields
like natural language processing. Other key technologies like speech un-
derstanding and machine learning are also playing a great role in terms
of developing more natural personal assistants. This development will
peak eventually in an extended form of the Personal Assistant Model:
Ubiquitous Personal Assistants, which will have an impact on every part
of our life due to the time- and location-independent possibility of us-
age through multiple mobile devices. An unpleasant side effect will be
security, safety and social issues that have to be examined and solved si-
multaneously. Finding solutions especially for the security problems will
be the key factor for Ubiquitous Personal Assistants getting introduced
and accepted by a wide variety of people in the upcoming years. Inde-
pendently, companies will extend the use of personal assistants due to
workflow-related reasons which enables the increasing automation of jobs
and thus will harm the society.

Keywords: personal assistants, PAM, Personl Assistant Model, UPA,
Ubiquitous Personal Assistants, smart software, job automation, cloud-
based software, mobile devices, voice communication, NLP, natural lan-
guage processing, natural user interface, speech understanding, machine
learning, knowledge representation, technology communities

1 Introduction

In the year 2014, technology is pervasive in almost every part of our daily life.
Whether we use our smart phones to check the weather forecast for the next
days or consult the GPS system of our car to get directions, the connection to

47

Jonas Rausch

mobile services from mobile devices gets indispensable and self-evident. With
the help of the Internet, the software behind these services can be ran in the
cloud on multiple powerful servers, allowing the software on the mobile devices
to be executed with much more speed and efficiency than the device alone could
provide. You experience this power every time when you do a Google web search,
since the calculation of the resulting web pages is done by servers in the cloud.
This cloud-based software also leads to a faster change of software because it is
no longer necessary to buy software physically and install it from a CD or DVD
on your PC. Instead, purchasing and using the software is done online. The user
is not forced to buy new hardware or to worry about maintenance anymore,
even the updates are installed in the cloud with the result that the user does
not have to worry about them. Thus, little improvements to the software can be
added very fast and the company which sells the software deals with only one
version which can be maintained easier than various released versions with every
customer having a different one.
Cloud-based software leads to the profitable situation that we can use computer
intelligence paired with much computational power from almost every location
through our mobile devices. Even as of today, almost every information we ob-
tain on our device originates from online services which are ran by cloud-based
software, thus a connection of the mobile devices to the Internet is very impor-
tant.
Now, with the infrastructure of cloud-based software and fast wireless connection
for mobile devices set up, the next step would be to tighten the human-software
connection in a way that we can take advantage of these technologies not only
in the private sector but also in our job and every part of our life. This should
additionally be done in a more quickly and natural way. The ISTAG (Informa-
tion Society Technologies Advisory Group) labels such mobile devices as ”smart
objects” which ”will increase the intelligence, control and communication capa-
bilities of a wide range of objects, enabling their interaction and cooperation
with people and organizations.” [1]
The vision is to connect people and software in a way that an individual is time-
and location-independently able to search for and obtain any needed informa-
tion or services through a natural user interface by using computer intelligence
and resources provided by the world wide web. An approach to this requirement
is the Personal Assistant Model (PAM) described by William Meisel [2]. This
paper discusses required technologies, possible capabilities and the usage of per-
sonal assistants which will be available in every part of our life in the near future
towards the year 2025. Furthermore, I will take a look at Ubiquitous Personal
Assistants [2] which are based on the Personal Assistant Model and embody an
extension of the search concept used by these assistants. The occurring risks and
negative consequences of personal assistants are also covered in a later section.

48

Influence of Ubiquitous Personal Assistants on the Society

2 The Personal Assistant Model

The main approach of the Personal Assistant Model (PAM) is the usage of a
personal assistant that is integrated in a mobile device. To fulfill the vision
mentioned in the section above, several key technologies are required.

2.1 Required Key Technologies of the PAM

The concept of the Personal Assistant Model (PAM) aims for a communication
with a mobile device that is as natural as possible. The user interface of personal
assistants should therefore make use of techniques which on one hand imitate
the interaction with another human and on the other hand do not require prior
knowledge of using advanced mobile devices like smart phones. The avoidance of
”too technological” foreknowledge could help to delight technology-reluctant or
skeptical people and to prevail them to use personal assistants, while they still
would not use a smart phone. Especially older people benefit from this approach
since they have generally a lower motivation to learn using new technologies,
even though they would profit greatly and in some cases would have to rely on
personal assistants, for example instructing the personal assistant by voice to do
an emergency call.
Thus, advanced natural language processing (NLP) is one of the key technologies
for an effective usage of personal assistants. In earlier times, especially in the
1980s, the focus of research laid on speech-to-text respectively speech recogni-
tion where spoken words are translated into text [3]. A technique that is very
useful for dictating messages or calendar entries into our mobile device, but not
sufficient enough to actually communicate with the device. It does not under-
stand the meaning of the words, it just recognizes them with statistically-based
speech recognition algorithms [2]. For advanced tasks, for example asking the
device whether there is a meeting scheduled for the next day, the much more
challenging technology of speech understanding is indispensable. Today, personal
assistant applications perform the computation intensive process of speech un-
derstanding in the network or cloud.
Another key technology that supports the NLP of the PAM is machine learn-
ing. It enables the personal assistant to consider and learn from your personal
interests, search behavior, location, financial situation and many more factors in
order to answer an information request. The personal assistant becomes person-
alized and adjusts its behavior to the user, leading to better search results that
are much more suitable for this particular user [2].
A further requirement for the PAM is to provide the answer to an information
need as directly as possible, which means that the result is not a list of websites
that may contain the needed information but the information it self. To accom-
plish this task, methods of the last key technology, knowledge representation,
are necessary. These methods extract the answer to a query out of knowledge-
bases [4]. Today, early forms of personal assistants like Apple’s Siri can manage
this task for queries in specific domains like the weather for a certain day or the
result of a football game.

49

Jonas Rausch

2.2 Applications of Personal Assistants

With the help of the presented technologies, you can communicate very naturally
with the personal assistant and advise or consult it to accomplish different tasks
for you. The underlying software of the personal assistant can process queries be-
ing committed as voice or text input. Even though voice interaction is the more
sophisticated and desired option, text interaction remains important due to occa-
sionally ambient noise or privacy concerns which make voice input impracticable.
It is of course also possible to issue instructions per gesture and touch. If the
subject to be searched for is not comprehensible enough, e.g. poorly described,
the personal assistant should request additional information or suggest alterna-
tives by voice in a communication-like manner. The queries are interpreted by
the personal assistant’s computer intelligence using the mentioned technologies
of NLP. Afterwards, a search for the extracted objective is not only executed
in the web but also in the personal information which are stored both on the
device and in the cloud. Thus, our personal information become more organized
and more easily available to us because we could simply run a search on them.
Due to the processing of the software being done in the cloud, search results get
returned very quickly and accurately. These results should be presented in the
most natural and intuitive form, for example by voice with supporting graphics
or pictures. Another feature would be providing information proactively in ap-
propriate situations, even though the user did not send any information request.
Because of the described possibilities of communication, there is a trend to an
ever increasing dependence on personal assistants because they simply expand
what we know and what we can do. We will start to rely on them in a way
that makes it almost impossible to not having it with us when we leave the
house, whether it is for work or to engage in a hobby. Today, examples for
the dependence are messaging services, access to the email account or the ac-
count balance, calendar entries or simply music and e-books. In the future, even
more tasks can be accomplished by personal assistants. Additionally, time- and
location-independently use is provided by assistants located on mobile devices.
As the research on NLP proceeds, mobile devices will be fully hands- and eyes-
free controllable, making other forms of interacting in most cases dispensable.
This leads to the opportunity to use these devices as assistance in one’s job where
using both hands all the time while having the personal assistant as source of
knowledge accessible via voice is a huge advantage.
All in all, the result of the current development will be a mobile device with
an integrated personal assistant which can basically help you in every part of
your life. Thus, I sympathize with William Meisel’s view as he stated in [2]
”Increasingly, we will view our mobile devices as an extension of ourselves.”

3 Ubiquitous Personal Assistants

Personal assistants are either specialized to a certain field of operation or pro-
vide general usage for all kinds of objectives. [2] Generalized personal assistants
encounter the problem that they can not answer every question to every topic

50

Influence of Ubiquitous Personal Assistants on the Society

because they have a limited scope of knowledge mostly related to common use-
cases (for example navigational tasks, the weather or making an appointment).
To solve this issue, many different personal assistants have to be connected to
collect all the specific knowledge for every context. It is easy to see, that this
does fall short of the once formulated vision of a personal assistant that can pro-
vide help in every part of a human life. Instead, the user is forced to maintain
a more or less uncomfortable number of personal assistants on multiple devices
which constantly have to communicate with each other. Another problem is the
not consistent user interface because it is not very likely that every single used
personal assistant is from the same company.
Again, William Meisel proposed a new idea: Ubiquitous Personal Assistants
(UPAs), an extension of personal assistants based on the Personal Assistant
Model. [2] The concept of Ubiquitous Personal Assistants is that there should
only be one personal assistant across multiple mobile and stationary devices
(Figure 1). This single personal assistant manages all the data that was for-
merly distributed over many assistants in the PAM. Knowledge about the user
that was learned through machine learning on one device is now available and
used on all the other devices, too, because there is only one single personal as-
sistant that collects and retains all insights. Thus, the UPA is required to have
access to all of our personal information in order to facilitate an efficient use.
The great advantage of sharing all your information and data with only one
personal assistant are the new possibilities related to answering an information
request by the user. Due to the central storage of your emails, contacts, files on
the PC, media files and the information earned through personalized machine
learning, it is possible to search simultaneously in all these sources of informa-
tion, instead of having to execute a search process on all the different normal
personal assistants. A common user interface and therefore only one ”interface
language” mark yet another advantage. An additional benefit emerges due to
the universal usage of all devices that a person owns, which makes it feasible
to use the stationary PC at home as one among many devices. This is a clear
improvement in comparison with the PAM.

3.1 Impact on Companies - Technology Communities

Due to the comprehensive range of usage of UPAs, company’s interest will be
drawn. Through the use of only one platform across multiple devices, companies
receive two major advantages. Firstly, one platform is easier to develop, upgrade
and maintain, increasing the agility of the software running on this platform.
The user obtains very similar benefits because he only has to worry about man-
aging a single piece of software, the UPA, offered by only one company. Secondly,
the customer gets tied to the company by buying their UPA because it invades
every part of the customer’s life, even his job where the today occurring ”Bring
Your Own Device” trend will likely be strongly enhanced as it is stated in [2].
The result is that the user will be increasingly dependent on the company and
their technology community, making it hard to switch to another company’s
community. The best example is Apple which is nowadays trying to establish

51

Jonas Rausch

Fig. 1. Multiple devices send information requests (queries) to a single Ubiquitous
Personal Assistant (UPA)

their community by providing both software and hardware, a comprehensive
cloud-based storage system synchronizing data across multiple devices and their
own App Store which enables Apple to have full control over the variety of apps
that is being offered to their customers [2]. This trend towards technology com-
munities will increase with other companies concluding the same as Apple and
trying to establish their own community, for example Google with its Android
community or Facebook trying to enter this field through Social Media. In the
future towards the year 2025, those big companies will try to get more and more
control over their users, including buying in smaller companies with innovative
ideas [2], for example Facebook buying recently WhatsApp, Instagram or Ocu-
lus VR, a company developing virtual reality displays that are attached to the
user’s head [5]. My prediction is that in 2025, technology communities will be
more established as ever, making it almost impossible for smaller firms to come
up with new ideas without getting bought in. Even big companies like IBM or
Hewlett Packard that do not develop own communities will be forced to join
one of the other communities in order to make the own work more efficient and
contemporary.
Due to the fact of one company possessing all of your data, many security issues
are raised, which I will outline among other threats in the next chapter.

4 Issues of Ubiquitous Personal Assistants

4.1 Security

The producer of the Ubiquitous Personal Assistant will use cloud-based software
to process the data of the customer, which means that also all the personal data
is stored in a network, possibly unencrypted. In case of a hacker attack, not only
one type of (possibly critical) data could be stolen, but all the data associated
with the customer which would cause significantly more damage than for exam-
ple ”only” a stolen email account out of possibly multiple accounts the user owns.

52

Influence of Ubiquitous Personal Assistants on the Society

Additionally, advanced methods and algorithms of natural language processing
have to be computed in the cloud because of speed and accuracy requirements.
Thus, data has to be send almost continuously from a UPA to the network and
could be intercepted meanwhile [2]. This issue gets exacerbated due to the fact
that the data also gets stored over long periods of time in the cloud which leads
to an increased exposure time of the data [6].
Another security relevant feature of personal assistants is providing information
proactively in appropriate situations, even though the user did not send any
information request. The personal assistant can only recognize such situations
under the premise that it analyzes every situation in the first place, which could
be a serious security issue. Consider an example in which a business meeting is
taking place and your personal assistant automatically records everything that
is said, whether it is confidential or not, in order to do some research on the
main topics only to provide you with some additional information. The search
related to these confidential information could be intercepted by an attacker and
the company would suffer significant damage.
A very relevant problem is also the ongoing interweaving of mobile devices in pri-
vate use and business use. As already mentioned, the ”Bring Your Own Device”
trend will increase exponentially in the future, not least because they become in
fact indispensable for the work because of the assistance they provide to many
jobs [2]. The integration of UPAs in the business will cause many security con-
cerns. Business software has to be installed on those devices, confidential data is
stored on them and will most certainly get uploaded to a cloud for processing or
synchronization tasks, which brings us back to the first issue I have described.
Furthermore, if the device of the user gets infected with a virus, the business
data is also affected and in acute danger.
The described problems of data theft can potentially be solved by the cloud
providers. As it is stated in [6], they have to implement ”an information secu-
rity program and [put] in place effective, reasonable and adequate safeguards
that cover physical, administrative and technical aspects of security”. Small or
mid-sized businesses could even increase their security by providing and control-
ling the cloud services in-house. In general, there are three big areas to focus
on: innovative regulatory frameworks, responsible company governance (which
refers to the above described liability of cloud providers) and using appropriate
technologies which support privacy, for example encryption and anonymization.
Refer to [6] for a much more widespread overview as well as concrete concepts
for these three areas.

4.2 Safety

The usage of UPAs will also play a role in safety applications, for example as
an on-board computer in an automobile. The enabled possibilities of making a
hands free phone call, receiving navigational directions, playing your own music
and monitoring all information regarding the vehicle, just to name a few ap-
plications, via a single integrated device are very comfortable and desired by
the customer. Furthermore, the personalized nature and constant connection to

53

Jonas Rausch

the Internet of UPAs could facilitate a better assessment and forecast of cur-
rent situations (e.g. traffic jams) based on the individual road behavior and the
present location. An autonomous driving assistant would be the next step and
gets developed already [7].
It does however become problematic when a system failure occurs. Maybe it is
triggered by a function that is not even required for the actual purpose of the
system (which in the case of using UPAs would be various functions). Though
it could cause the hole system to shut down which induces a great threat to the
user in safety critical applications like the mentioned self-driving car.
A possible solution would be to improve the safety engineering, especially by
proving the software in terms of correct functionality in every possible situation.
Methods like root cause analysis and stress testing could also be helpful [8].
The main counterargument for the safety and security concerns is that an ef-
ficient use of the NLP key technologies of UPAs is not realizable without the
processing power of multiple servers in the cloud. It is eventually a trade-off be-
tween using the enormous potential and assistance of UPAs (as well as normal
personal assistants) and the occurring issues [6].

4.3 Digitalization of Our World

Additionally to the mentioned security and safety issues, the usage of personal
assistants in general will exacerbate the already ongoing digitalization of our
society. The vast amount of possibilities and the constant usage of UPAs could
cause a kind of addiction to the device(s) and an anxiety of losing these capa-
bilities [9], a phenomenon which already can be seen today in terms of smart
phones. In such cases, human communication mostly takes place via electron-
ically gadgets. This trend will increase due to the widespread use of personal
assistants and thus everyone getting available through a device. There is no
need to meet in person anymore, people will rather stay at home. Additionally,
the real world will be increasingly easier to simulate and at some point in time,
an online ”second life” could be established, possibly leading to a loss of sense
for reality.
Furthermore, the addiction to a device and the insistence to use them continu-
ously can lead to considerable risks when used in the wrong situations [9], for
example while driving a car, riding a bike or even passing the street while staring
on a smart phone. The resulting moment of abstraction can lead to tremendous
medical consequences.

5 Automation

A big impact on the society emerges out of the extended possibilities of automat-
ing once human controlled tasks through not only the use of UPAs but in general
more efficient and intelligent software. This trend results in a higher overall pro-
ductivity [10] which is desirable for companies and could also lead to reduced
product prices [2]. Though, full automation of jobs has too many downsides.

54

Influence of Ubiquitous Personal Assistants on the Society

The most significant one being the massive loss of jobs due to a decreased need
of workers for jobs that require only minor training to be executed because of
their repetitive nature. Industrial robots currently are and prospectively will in-
creasingly take over this kind of jobs. Other negative impacts of full automation
are the destruction of certain job categories (e.g. assembly line work) and less
income for the remaining employees [2]. Thus, we have to find the right balance
between utilizing the great possibilities of automation and retaining reasonable
working conditions.

5.1 Race With the Machines

A better method to use the capabilities of higher developed software is to ex-
ploit the synergy between computer intelligence and human strengths to create a
”potentially beautiful partnership” [10] for achieving results which are only pos-
sible by using the best properties of both worlds. In the foreseeable future, the
combination of human adaptability, experience and reasoning together with the
accuracy, computational speed and reliability of machines coupled with software
remains indisputable [2]. Additionally, the advantages of personal assistants like
voice communication with the machine as well as hands and eyes freedom for
the worker can also be used. Furthermore, new job categories get created that
would not exist with the help of either side [2].
A good example for the use of this synergy in the workplace is the health care
sector [2] where software, possibly running on the mobile device as a personal
assistant of a doctor, could automatically collect and organize information about
the doctor’s patients to be treated. The doctor would not have to waste so much
time for deriving information out of the medical patient record due to the in-
telligent software already having collected and appropriately summarized these
information. The real treatment as well as the diagnose is left to the human
expert who is far better at considering different medical aspects, additionally to
his work experience. Another enabled application are Warehouse Management
Systems [2] where workers receive the position of a specific item in the huge
warehouse via personal assistant software that keeps track of the inventory.
The big advantage of the synergy for employees is simply that most of them will
will not lose their jobs, at least in the near future towards the year 2025. How-
ever, at some point in time, software and personal assistants will definitely be
that highly developed in the matter of reasoning and NLP that comprehensive
automation will become inevitable.

6 Conclusions

This paper described the huge impact of the Personal Assistant Model and its
extension, Ubiquitous Personal Assistants, on the society in the near future until
the year 2025. It also outlined the numerous benefits as well as the drawbacks
and potential endangerments.

55

Jonas Rausch

The already existing and prospective security problems will be the major chal-
lenge during the introduction of UPAs, especially in businesses. Data privacy
and protection will play a role in this context. Without proper solutions and
security standards, personal assistants are going to experience rejection from a
not negligible number of people. Although there is neither entire security nor
safety, companies will commence and expand the use of UPAs towards 2025 due
to their immense advantages for workflows [2] which will affect the society in a
negative way due to the increasing automation of jobs. Only a possible big leak
and abuse of sensitive business data and classified technology knowledge could
lead to rethinking.
Society has to develop an open-minded awareness of the evident threats of the
ongoing digitalization of our world which gets exacerbated by personal assistants.
As long as these threats get recognized and controlled by the society, UPAs in
my opinion are going to improve the world we live in significantly, especially at
developing safety critical applications and providing various aids for older peo-
ple. Therefore, research should continue the already chosen path on developing
and extending Ubiquitous Personal Assistants.

References

1. ISTAG - Information Society Technologies Advisory Group (Working Group on
Software Technologies): Software Technologies - The missing Key Enabling
Technology (Toward a Strategic Agenda for Software Technologies in Eu-
rope). European Commission, Bruessel, Belgium, 2012

2. William Meisel: The software society - Cultural and economic impact. Traf-
ford Publishing, Bloomington, USA, 2013. ISBN 978-1-4669-7411-1

3. Natural language processing. Retrieved 15:18, May 16, 2014, from
http://de.wikipedia.org/wiki/Spracherkennung

4. Knowledge representation and reasoning. Retrieved 16:37, May 30, 2014, from
http://en.wikipedia.org/wiki/Knowledge representation and reasoning

5. Oculus VR. Retrieved 10:45, May 29, 2014, from http://www.oculusvr.com/
6. Siani Pearson, George Yee (Editors): Privacy and Security for Cloud Com-

puting. Springer-Verlag, London, 2013. ISBN 978-1-447-14188-4
7. The latest chapter for the self-driving car: mastering city street driving.

Retrieved 14:32, May 28, 2014, from http://googleblog.blogspot.de/2014/04/the-
latest-chapter-for-self-driving-car.html

8. Safety. Retrieved 15:17, May 28, 2014, from http://en.wikipedia.org/wiki/Safety
9. Sherry Turkle: Alone Together - Why we expect more from Technology and

less from Each Other. Basic Books, New York, USA, 2011. ISBN 978-0-465-01021-
9.

10. Erik Brynjolfsson, Andrew McAfee: Race Against the Machine - How the
Digital Revolution is Accelarting Innovation, Driving Productivity, and
Irreversibly Transforming Employment and the Economy. Digital Frontier
Press, Lexington, MA, USA, 2011. ISBN 978-0-9844725-11-3

56

Evolution-driven Changes of Non-Functional
Requirements and Their Architecture

Hendrik Schön

Dresden University of Technology
Hendrik.Schoen@tu-dresden.de

Abstract. Software is a product that continuously changes and evolves
to adapt to a more and more integrated product in our life. Today, only
a few new technologies are developed without integrated software prod-
ucts or embedded software. This progression forces older technologies,
best practises, component designs and at least the whole style of the
architecture to change side by side with the evolving domain and scope
of software products, technology and platforms. Finally, software will
evolve to an integrated system that will play a significant role in our life.
This paper demonstrates the main drivers of software evolutions of today
and predicts how non-functional requirements along with their architec-
ture and design decisions have to adapt to fit to the new changes. It is
obvious that not all of the available qualities can be discussed here but
the chosen ones give a well suited view to the most important software
aspects: performance, availability, modifiability, security, testability and
usability. Beside that, it is difficult to compare the importance of the
qualities with each other. Research and further development will show
the point which will become significant. As a personal view I would
predict that security, availability and modifiability are the most critical
issues for future software systems and future systems will rise and fall
with them. All in all, this paper shows the increasing importance of such
qualities in the future rather than a real ranking between them since
software systems in 2025 will requires attention to all of them.

Keywords: Software Evolution, Drivers, Non-functional Requirements,
Qualities, Architecture, Performance, Availability, Modifiability, Secu-
rity, Testability, Usability

1 Introduction

While technical progress moves on and new technologies and needs are discov-
ered, software has to evolve and move on accordingly. Thereby, some software
principles and styles are maybe adopted or just not relevant in the new en-
vironment any longer. New software architectures have to be deployed in the
near future. The upcoming environment in 2025 in some cases will have varying
requirements for new situations with regard to many non-functional require-
ments like modifiability, privacy or safety. Innovations in the last twenty years
have shown, how variable software should be. For example, how the Internet has

57

Hendrik Schön

changed the typical single-machine architecture to a wider server-client struc-
ture to reach more platforms and devices to interact with. With introduction
of smartphones and tablets, the full-installation has given away to the newer
cloud-based application structure. Reuse of components and frameworks are now
more important than ever. Along with that, the payment methods change and
software is constantly moving to the software-in-the-cloud-style. That requires
time-dependent fees but provide higher availability and some further functions
for micro-payments and others. As mentioned in [14], the major transition is
driven by development in other technology sectors. Therefore more types of
problems are to be solved through software to improve the social life and scien-
tific researches. ”The future is the result of choices made today”, as also stated
in [14], describes a well defined view of how software has to improve now for its
duty to satisfy the needs of the future environment and therefore guarantee the
non-functional properties through new architecture solutions.

This paper consists of two major parts. Firstly, it will determine the main
software evolution drivers within the context of the current developments. The
second part takes a deeper look at some selected non-functional requirements and
evaluates their impact and challenges in the future with regard to the previously
introduced drivers: performance, availability, modifiability, security, testability
and usability.

2 Changes of the Software Product and its Environment

2.1 Software Technology Evolution

It is predictable that established software designs would not always fit the future
environment any more. Current technology trends demonstrate some of the fu-
ture needs of non-functional properties. Cloud computing, as one of the biggest
trends, has a direct impact on software architectural styles to provide elastic-
ity and scalability [13]. Today, everybody wants to store, manage, synchronize,
deploy and share things by the cloud system or a cloud based architecture respec-
tively. This trend has received a boost in the last years, and it will perspectively
increase even more. The main program’s business logic layer and data layer will
continue moving away from the client side into the cloud system. Even once
big monolithic architectures now use increased bandwidth which allows them to
use more complexity over network, for instance the Adobe Creative Cloud [1]
or Microsoft Office Online [9]. Beside that trend, parallel computing also plays
an important role of future software systems. As you can build, deploy and
run software on a web server (or any other cloud based system) you have ac-
cess to much more computing power through provided cloud-based services like
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) or Software-as-
a-Service (SaaS). Those are parts of hosting centres where you can simply rent
computing power and coupled maintenance. This trend will lead to to more
cores, more nodes and more parallelism. In general the complexity and scale of
such systems will increase in future. On the one hand the clock frequency will
be consistent [15] because of the physical limits (component size, heat, etc.) and

58

Evolution-driven Changes of Non-Functional Requirements

on the other hand the energy power consumption will decrease further in the
future through a new thinking in ”green energy” (for example, through intelli-
gent resource usage and scheduling). The number of platforms on which software
should run, would increase in number while the software has to deal with shared
hardware and distributed systems. ”The old paradigm of software programs de-
veloped for a single hardware platform or operating system will be obsolete.” as
mentioned in [13] is a important point of how software has to act in future in this
field. Newer computing systems will range from smartphones to huge server clus-
ters and each of them will provide parallelism and heterogeneity [13]. Common
aspects of software architecture as structure, data flow, communication, memory
and others [7] should be adjusted to the requirements of the future scenario.

2.2 Embedded Software Evolution

Software would also be increasingly needed for embedded systems like medical
devices for artificial organs or components for connected physical systems (e.g.
”smart grid” systems, robots). These systems will be a critical part of our social
and scientific life. Thus, it will be essential to evaluate the correctness of software,
e.g. through testing routines (unit, assembly, regression and system level tests)
or code/logic verification. The awareness of responsibility of the software itself
and the programmer of just this software code is significant as the software may
have huge critical impact on human life. ”In the next years, by further exploit-
ing the Internet and the world-wide-web, embedded systems will increase the
intelligence, control and communication capabilities of a wide range of objects,
enabling their interaction and cooperation with people and organizations.” [13].
The general need for intelligent and smart software will raise to satisfy our needs
more and efficiently. Today, we can spot several projects of embedded systems
in our social life with a kind of artificial intelligence or at least semi-intelligent
software and hardware products, like self-driving cars [6], Google Glasses [5] or
smart watches with health functionality. The number of those smart objects will
grow in the future. Such embedded software products need to adjust its struc-
ture to provide all of the requirements in this comparatively new field of use. It
is foreseeable that all of those smart objects will be connected via the web and
they also would have relatively low power cores but the tasks they will perform
become more complex and have to be executed faster. In general, the technical
trend seems to follow either the software-hardware-synergy or the independence
of hardware and software within complete systems.

2.3 Data Evolution

A further view of future software systems would show an increasing mass of data
that has to be stored, processed and analysed. The variety of data from sources
will be a wide field and contains structured (relational DBMS, XLS, HTML,
PDF) to semi-structured (XML, web services, RDF) to totally unstructured data
(sound, image) [13]. But that have to be integrated in one single system in order
to analyse these data for other purposes. Also, the data processing follows the

59

Hendrik Schön

general trend and will be rather real-time analysis than an follow-up summary
to provide more service for, e.g. the current customer. Beside that, more and
more data will be collected and current database sizes will explode. Less costs
and less physical size for more storage capacity will lead to a database system
beyond the traditional relational DBMS. Data mining, data management and
visual analytics of huge amounts of semantic data then will play an even bigger
role in enterprises and science. In order to provide functioning software products,
its architecture has to be prepared for this new scenario of data processing to
continuously provide acceptable requirements like performance, availability or
data integrity. Data transfer, fetching, caching or intelligent locking will then
play an even bigger role in such systems, just to mention some of viable methods
here.

2.4 Software Principles Evolution

Software standards will be mentioned here as a last bigger part of changing
software described here. As long as software itself should evolve, the software
standards and best practises would also change side by side. Next generation
programming languages allow better describing of behaviour of new systems.
Novel protocols serve a likely functionality for incoming needs of social and sci-
entific life and work. Mixed standards will be needed for a proper functionality.
”As one would have recommended a full C++ or Java based vertical solution,
we could have today a mix of node.js, PHP, iOS, Android, C# [...]. The open
protocols (SQL, JSON, HTTP, SSL etc) are solid and rich enough to allow this
technological fragmentation.” as mentioned well in [13]. Also the code paradigm
seems to change since much more open source software is available for free. Free
or payable eligible components can be connected together to provide a compo-
nent based and modular functionality as well as reuse and interchangeability of
systems (or parts of a system) instead of a full monolithic and closed architecture
to serve more use cases. At least it is worth mentioning a trend for automatically
produced software as a factor for cost and performance efficient programming.

3 Non-functional Requirement Trend Assessment

Until now, we have seen the main evolution drivers of software. In this section will
try to explain and predict the challenges and impacts of some of the major non-
functional properties of software systems, based on these drivers. The selected
qualities are chosen from [7] as these represent a good view on the overall software
system in my opinion. Some parts of given assumptions here are mentioned in
the above section so I do not explain them here furthermore.

3.1 Performance

Even though future systems have to accomplish more work, we still expected
at least the same level of reaction at incoming events. It creates the demand of

60

Evolution-driven Changes of Non-Functional Requirements

the future that software is able to respond to real-time information [14]. Since
software will handle an even bigger amount of data and will be used in a wider
range and amount of embedded systems, it is the task of future systems to
provide real-time processing to the user. A technical opponent will be the la-
tency by limited bandwidth since the software logic and data layers move into
cloud systems and the increasing amount of system nodes like cores and threads
hold other resources (CPU, GPU, dependencies, data, etc.) for diverse objects
by which the waiting time expands. The top level approach for lower resource
latency (including the bandwidth) are more important than ever before. Some
significant design decisions here are the following methods [7]. Firstly, one can
simply reduce the resource demand, e.g. by decreasing the incoming events or the
plain amount of the resources through better algorithms, more code efficiency
or hard limited execution time. Secondly, it can be realised through better re-
source management like queuing of events, parallelism or simply more available
resources). And at least, one can perform resource arbitration (through better
scheduling). Thereby enough resources will be available in future IT systems,
the management and scheduling are the more important aspects. Also worth
mentioning is the maximization of the performance while reducing the power
consumption [13] as an important point of future systems because the new trend
for ”green energy” and environmental awareness. Therefore more nodes are the
more predictable trend than more powerful nodes which leads, still in combina-
tion with efficient design and programming, to lower power consumption (not to
say there are also other methods to decrease power consumption). Through the
fast expansion of embedded systems (”smart objects” as semi-intelligent embed-
ded systems) or connected devices, the need of faster processing of more content
is a crucial fact software will be faced with. In history, for example Google’s
MapReduce [8] has shown fast indexing of the new web content, new database
models like Hive [3] are created to handle massive amounts of data content (like
Facebook ’s data). Also, ”main memory database concepts have demonstrated
significant performance improvements above the classical database approach.
Combining this approach with parallel programming could generate a complete
new generation of enterprise software systems [...].” [13]. Prospective systems
have to implement similar approaches or intentions for the upcoming content.
Performance is, like many other qualities, a major important factor for busi-
ness applications as high latency or slow reactions decrease users happiness. The
establishment of alternative devices like smartphones and tablets increase the
requirement of proper performance guarantee for all platforms and use cases.

3.2 Availability

It is the intention of the most enterprises to satisfy the user in his needs anytime
and anywhere. In a shop, the customer should buy things when and where he
wants to, either with his smartphone, tablet, desktop or his notebook. To reach
that goal of service, permanent server and system up-time is inescapable. ”An
increasing reliance on software-driven artefacts will require that the software as
infrastructure [...] is always-on.” as mentioned in [13]. As a suitable example here

61

Hendrik Schön

the Adobe Creative Cloud can be mentioned. Many creative businesses depend on
this concept as a working tool for them. But, if the cloud software is not available
(as happened in recent past) all of them are unable to work with their data and
software. This has a huge negative impact for both, the customer (and most of
the time also the customer’s customer) and Adobe itself (this has also a direct
impact on reliability). Also, it is important for the up-time that future systems
are checked against failures (cf. Sect. 3.5) as software will be a very critical
part of many physical systems, social and political infrastructures and medical
services. Therefore a timely fault detection is a major issue. As systems are more
distributed in the future, an appropriate management for fault detection systems
is needed to handle the greater amount of echo, ping, heartbeats or exceptions.
Faults have to be dealt with and solved at runtime through the software itself
instead by a programmer afterwards [13] to keep the needed server up-time. That
means to predict, detect and solve faults by decision making by the software
itself, while preserving the performance and availability. This can happen by
reallocating resources, change sub-platforms or components just-in-time in an
autonomous way [13]. The most likely outcome will be that simple backups,
checkpoints and rollbacks are not suitable anymore, at least not as single fault
recovery tool because every minute and hour produce a huge amount of data
and enterprise turnover which is lost if we roll-back. And such loss of data is not
acceptable for current and future enterprises. Distributed and well-chosen RAID
systems will be a standard and a must-have. Other architectural methods like
redundancy, state-synchronizing or spare machines (failover computing units)
[7] then will become more important than today to serve better ”service-level
agreements” to the user.

3.3 Modifiability

As mentioned in the previous section of evolving software, these future sys-
tems became more component based and therefore more modular, scalable and
reusable. Since requirements will change during the lifetime of a software system,
modifiability is required to serve such transitions of functionalities. Furthermore,
”Software components will be combined in such a way that the result solution
will provide new functionality emerging out of existing software components and
services.” [13]. That is a very important fact as future software will be written
completely new only in a few cases. This will have a direct impact on testability
(cf. Sect. 3.5). It is the task of software to adapt to newer platforms and envi-
ronments as their number will be increasing in the future (e.g. a smart-watch
or new car entertainment systems). In order to deliver such variety it might be
very useful to build component-based software to just modify some parts and
linking them intelligently to support a specific system. Big online repositories
should give access to large component databases, solutions and protocols and
help to characterize the quality and security of these items [13]. ”Future sys-
tems will often have to operate under conditions that differ significantly from
the ones for which they were designed.” [13] to get to the heart of it. Several
architectural principles are thereby generally relevant for component-based and

62

Evolution-driven Changes of Non-Functional Requirements

modular systems [7]. First, it is important to localize the possibilities of modifi-
cations through defined interfaces as this induces lower costs and the amount of
changes. Second, to generalise the input options for more functionality for future
purposes and to minimise the amount of dependencies. As mentioned, interfaces
and their descriptions as well as their generalisation will be very important to
the modular software policy for future. The modifiability (”permanent adapta-
tion”) of software allows the re-design and re-engineering of used components,
which will be finally the basement for the whole software evolution [10] (cf. Sect.
2).

3.4 Security

Due to the spread of IT systems within our society it is obvious that those
systems have to be protected against any attacks, malware or other virtual and
physical threats. As all our important documents, personal data, cash card infor-
mation or profiles end up in any software products (probably in the cloud based
software) it is potentially attractive to hackers, crackers and other malicious pur-
poses. Due to the increasing complexity and scale of the software systems and the
vast amount of stored and processed data, the difficulty of providing guaranteed
quality of service for security and privacy [13] accelerate and will be a future
hurdle for software engineers and architects. It may be a bit ironic that even mal-
ware evolves to a more component-based software product and adapts through
drivers, as well as other software products, to the new future environment with
its non-functional requirements. Malicious attacks, system overloads and nat-
ural disasters can have a huge impact on our economy, our national security,
our lifestyles and our sense of personal security [14] pointed the future situation
out. ”[...] software will be THE critical infrastructure on which all other critical
infrastructures will depend, smart grids are just the first indicator for this.” [13].
To go along with this development, engineers, designers and architects have to
implement more robust and resilient methods for their software systems as well
as more generic defence methods to cover as much as possible creative attack
vectors. As the availability (cf. Sect. 3.2) methods works fine for physical (natu-
ral) disasters (safety as a non-functional requirement here), resisting, detecting
and recovering from attacks or dysfunctions will be more important than today.
To resist attacks, established methods for information hiding, authentication,
authorisation, integration, encryption or limitation [7] will work fine in future.
But there is no way around to increase their level of trust and therefore the com-
plexity, e.g. more digits for encryption keys, saver implementations, two-factor
authentication, distributed possible point-of-failures and the avoiding of single
point-of-failures, system decentralising, better reputation- and policy-based rules
or layer- and ring-based security architecture. In addition to that, future comfort
functions will outline new security problems, for example the relinquishment of
passwords inputs. We will also need to identify new components in modular soft-
ware in order to reduce the risk of security leaks and ”[...] verify the the correct
function of services, while protecting the privacy [...].” [13]. Responsible intrusion
detections systems (especially for networks and cloud systems) prevent systems

63

Hendrik Schön

from attacks, but with the increasing level and development of technology it is
necessary to raise the level and range of attack prevention, detection and recov-
ering in the same way. Full automated checks, analysis and autonomous decision
making of logs, traffic, sensors, files and other systems will be more viable due
to faster reacting to events for critical IT systems.

3.5 Testability

Testability and integrity are some of the qualities that do not expect huge
changes in relation to actual handling. The old paradigm to prove and test
software with validation and verification does not change that much. Something
emphasized in this quality aspect is to test own software with third party com-
ponents as software should and would be opened to modularity in the future.
That can be done with conventional beta testers, test routines or with monitor-
ing functions within the program [7]. It seems very possible, that monitoring of
system states will extend while testing via hand would have a lower impact since
new software systems are more complex and scale dynamically what makes it
difficult to reach all possible use cases. Because it is the task of the modifiability
quality (cf. Sect. 3.3) to provide and require defined ports of used components,
it will make these stitched systems actually easier to verify and validate. Es-
pecially for critical systems (cf. Sect. 3.4), tested software will be a must-have
in future systems (for example Googles Self-driving car) [6] as this lowers the
risk of failure and thereby have direct impact to most of the other important
non-functional properties.

3.6 Usability

It is difficult to say something specific about usability as it will strongly develop
with future integration of systems and how they interact with social and scien-
tific life. In 2025 the software systems are not designed only for scientific and
computer experts purposes only. A wide range of different kinds of humans would
use something which has software in it since the progress of smart objects and
the Internet-of-things will continue being developed. You can simply not expect
that the average user can deal with terminal, parameter or software configura-
tions in the future systems. Especially in the private life environment there is an
incredible increase of computational power, but the user does not need to have
any IT related skills to use them correctly. For example, nowadays established
smartphones and tablets profit extremely from user friendly software design (An-
droid [2] as well as iOS [4]) as they allow semi-one-click-installations, automated
user security group management, limited software manipulation entry points and
other architectural methods as well as new (or better) technologies like natural
language processing for more comfortable input. As mentioned in [11] the four
following measurable properties define the ambiguous quality ”usability” very
well: 1) learnability as how quickly and easily users can begin to do productive
work, 2) efficiency of use as the number of tasks per unit that the user can
perform, 3) reliability in use as an attribute referring to the error rate in using

64

Evolution-driven Changes of Non-Functional Requirements

the system and their recover times, and 4) satisfaction as the subjective opinion
from the user itself via interviewing, poll or something like that. These references
would not change in the future that much (you can still say, they should all in-
crease to make future software successful) but are, like the testability quality,
somehow important in questions of the target audience and the acceptance of
the new software product in the market.

4 Conclusion

This paper has shown a selection of different non-functional requirements and
their architecture aspects of software systems. We have seen the trends and
drivers of actual software technologies and how they have an impact on non-
functional requirements for future software systems. Because these future sys-
tems need generally more attention to the majority of the non-functional re-
quirements, none of the mentioned qualities can be left out of consideration.
Software architects have to consider the necessary methods and designs for the
new environments. To skip a quality described above (or a quality in general)
will always lead to some downsides in the software system, for example loss of
stability, functionality and comfortability.

There are much more qualities beside the ones described here, like function-
ality, reliability, efficiency, maintainability [12] and so on. It is difficult to chose
a set of qualities and state them as the most important ones, since it depends
on the application scope. But as a conclusion and personal view, I believe that
the three following non-functional requirements will have the most impact for
all domains in the future and every software system will have to deal with: secu-
rity, availability and modifiability. These three qualities will build the basement
of other requirements, especially for huge qualities like performance, usability,
testability, safety, privacy, scalability and so on.

Firstly, security is a major challenge for software in 2025 because software
will be known in a context of ubiquitous computing. This fact will increase the
need of better security and privacy qualities for the consumer and the enter-
prise. Critical infrastructures and objects have to be secured against developed
malicious purposes to avoid costs and maintain trust. This basically means to
deploy up to date adapted security-by-design principles and new generic defence
methods to secure all kinds of malicious entry points and provide quite good
security quality even in future systems.

Secondly, availability is very important for both, the user and the company
since both depend heavily on the provided services which therefore should be
up all the time ideally. Because future software will be always connected with
the web, the provided services rise and fall with the up-times and down-times.
This all-time-connection for nearly every system makes it unacceptable to left
availability out of consideration. This requires to implement intelligent error
handling and fault prevention as well as autonomous decision making.

Finally, modifiability is an important quality for future adaptable software.
This quality lowers the development costs and work time, simultaneously it lets

65

Hendrik Schön

software be variable for other purposes than first implemented. As stated in
chapter Modifiability (cf. Sect. 3.3), the requirements of functionality of future
software will change during their lifetime. It will not be effective anymore, to
build up unmodifiable software from scratch coupled with a five year lifetime as
an example. Software has to be build to even connect future devices and should
be able to adapt to future technologies to extend its lifetime and acceptance.

In fact the described scenarios are still predictions, it goes without mentioning
that everything can take a different direction in further development from the
described paths above. Many things can happen, but in general, these predictions
seem to be very feasible.

References

1. Adobe Creative Cloud - Cloud-based creative software and services.
http://www.adobe.com/creativecloud.html, [Online; Jul 2014]

2. Android. http://www.android.com, [Online; Feb 2014]
3. Apache Hive TM. http://hive.apache.org, [Online; Jan 2014]
4. Apple - iOS 7. https://www.apple.com/ios/, [Online; Jun 2014]
5. Google Glasses. http://www.google.com/glass/start, [Online; Jun 2014]
6. Just press go: designing a self-driving vehicle.

http://googleblog.blogspot.de/2014/05/just-press-go-designing-self-driving.html,
[Online; Jul 2014]

7. Lecture Notes from Software Architecture. http://st.inf.tu-
dresden.de/content/index.php?node=teaching&leaf=1&subject=235&head=2,
[Online; Jun 2014] Lehrstuhl für Softwaretechnologie, TU Dresden. Based on
Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice. (2003)

8. MapReduce: Simplified Data Processing on Large Clusters.
http://research.google.com/archive/mapreduce.html, [Online; Apr 2014]

9. Office Online - Collaborate on Microsoft Office documents, spreadsheets, presen-
tations and more online. http://office.microsoft.com/en-gb/online, [Online; Jun
2014]

10. Bucchiarone, A., Cappiello, C., Nitto, E.D., Kazhamiakin, R., Mazza, V., Pistore,
M.: Design for Adaptation of Service-Based Applications: Main Issues and Re-
quirements. Service-Oriented Computing, ICSOC/ServiceWave 2009 Workshops
pp. 467–476

11. Folmer, E., Bosch, J.: Usability Patterns in Software Architecture. Department of
Mathematics and Computing Science, University of Groningen (2004)

12. Greefhorst, D., Proper, E.: Architecture Principles. Springer (2011)
13. ISTAG, Working Group on Software Technologies: Software Technologies - The

Missing Key Enabling Technology (2012)
14. National Academy of Engineering: The Engineer of 2020 - Visions of Engineering

in the new Century (2004)
15. Sutter, H.: The Free Lunch Is Over - A Fundamental Turn Toward Concurrency

in Software. Dr. Dobb’s Journal 30(3) (2005/2009)

66

	Introduction
	Contributed Papers
	Impact of Heterogeneous Processor Architectures and Adaptation Technologies on the Software of 2025Kay Bierzynski
	Facing Future Software Engineering Challenges by Means of Software Product LinesDavid Gollasch
	Capabilities of Digital Search and Impact on Work and Life in 2025Christina Korger
	Transparent Components for Software SystemsPaul Peschel
	Functionality, Threats and Influence of Ubiquitous Personal Assistants with Regard to the SocietyJonas Rausch
	Evolution-driven Changes of Non-Functional Requirements and Their ArchitectureHendrik Schön

