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Abstract

The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous
partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary
conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-
conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application,
the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being
expatiated on a special case of linear boundary conditions.

1 Introduction

1.1 Motivation

As mentioned earlier [1], analytical solutions for more or less general cases of boundary value problem (BVP)
consisting of systems of partial differential equations (PDEs) and given boundary conditions (BCs) are of
scientific interest especially against the background of the assessment of found numerical solutions, cf. e.g. [2–6]
The present paper can be considered an addendum of [1], as an analytical solution of the BVP is derived for a
different set of BCs.

1.2 Inhomogeneous boundary value problem

In addition to [1], the following inhomogeneous boundary value problem (iBVP) is considered: The linear,
elliptic, inhomogeneous partial differential equation (iPDE)
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∂2

∂r2
uz(r, z) +G

∂

∂r
uz(r, z) + (K +

4

3
G) r

∂2

∂z2
uz(r, z) = 2Gεplrz, ∀(r, z) ∈ D := (0, ra)× (0, L) (1)

for the real solution uz : D → R1 with given real parameters ra, L > 0. Furthermore the corresponding set of
inhomogeneous boundary conditions (iBCs) is given in form of Dirichlet-type BCs by

uz(ra, z)
!
= Φ1(z), ∀z ∈ (0, L) (2)

∂

∂z
uz(r, 0)

!
= 0, ∀r ∈ [0, ra] (3)

∂

∂z
uz(r, L)

!
= 0, ∀r ∈ [0, ra] (4)

with given real function Φ1 that is not specified further at this point for generality reasons.
Remark: Due to the same remarks as in [1], the iBVP does not lack a BC for r = 0 as it appears at first sight.

∗Corresponding author: Andy Eschke (andy.eschke@tu-dresden.de)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236371571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Eschke, A.: Analytical solution of a linear, elliptic, inhomogeneous partial differential equation

2 Results

For abbreviative purposes, the iPDE (1) is written as

Gr u′′z (r, z) +Gu′z(r, z) + (K +
4

3
G) r üz(r, z) = 2Gεplrz, ∀(r, z) ∈ D (5)

with the symbolic abbreviations (·)′ := ∂
∂r (·) and ˙(·) := ∂

∂z (·). Similar to [1], the analytical solution of the
iBVP, i.e. iPDE (5) with iBCs (2)–(4), is derived in the following with the well-known Fourier series approach
– based on the separability of the form

uz(r, z)
!
= R(r) · Z(z), ∀(r, z) ∈ D (6)

with real functions R : [0, ra]→ R1 and Z : [0, L]→ R1. Thus, the analytical total solution for the iBVP given
above splits into the two (real) partial solutions uz,i(r, z), i = I, II [7]:

1. solution uz,I(r, z) of the respective homogeneous PDE (hPDE) with iBCs in r, but homogeneous BCs
(hBCs) in z

2. solution uz,II(r, z) of the iPDE (5) with both hBCs in r and z

The solution uz(r, z) of the given iBVP equals the superposition of these partial solutions:

uz(r, z) = uz,I(r, z) + uz,II(r, z), ∀(r, z) ∈ D (7)

2.1 Solution uz,I(r, z)

By analogy with [1], the ansatz (6) converts the hPDE

Gr u′′z (r, z) +Gu′z(r, z) + (K +
4

3
G) r üz(r, z) = 0, ∀(r, z) ∈ D, (8)

into the problem
R′′(r)

R(r)
+

1

r

R′(r)

R(r)
= −3K + 4G

3G

Z̈(z)

Z(z)

!
= l, ∀(r, z) ∈ D (9)

with l ∈ R1, that is separable into the two ODEs

−Z̈(z)− l 3G

3K + 4G
Z(z) = 0, ∀z ∈ (0, L), (10)

r R′′(r) +R′(r)− l r R(r) = 0, ∀r ∈ (0, ra) (11)

for the non-zero functions R and Z, respectively. Moreover, using (6), the hBCs (3) and (4) in z turn into

Ż(0)
!
= 0

!
= Ż(L). (12)

2.1.1 Eigenvalue problem for Z(z)

From (10) and the hBCs (12) the eigenvalue problem (EVP)

−Z̈(z) = l
3G

3K + 4G︸ ︷︷ ︸
=:l̃∈R1

Z(z), ∀z ∈ (0, L), Ż(0) = Ż(L) = 0 (13)

evolves. Consideration of the three cases l̃ > 0, l̃ = 0 and l̃ < 0 leads to the two non-trivial solutions and
to the respective eigenvalues l̃0 = 0 and l̃n = (nπL )2 for n = 1, 2, ... . The corresponding eigenfunctions are
Z(z) ≡ Z0 = 1 and Z(z) ≡ Zn(z) = cos(nπL z), respectively. Hence,

uz,I(r, z) = R0(r) +

∞∑
n=1

Rn(r) cos(
nπ

L
z), ∀(r, z) ∈ D. (14)
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2.1.2 Bessel ODE for Rn(r)

Insertion of the two classes of eigenvalues l̃0 = 0 and l̃n > 0, calculated in section 2.1.1, into (11) leads – for
fixed n ∈ N and under consideration of (5) – to the determining equations

for l̃0 = 0 : r R′′
0 (r) +R′

0(r) = 0, ∀r ∈ (0, ra), (15)

for ln
(13)
=

3K + 4G

3G
(
nπ

L
)2 > 0 : r R′′

n(r) +R′
n(r)− ln r Rn(r) = 0, ∀r ∈ (0, ra), n ∈ N, (16)

for the functions R0(r) and Rn(r) with n ∈ N, yet unknown in (14). Each being a homogeneous ODE (hODE),
(15) is a Eulerian-type, while (16) belongs to the Bessel-type [8, 9]. Thus, (for fixed n ∈ N) the corresponding
two classes of solutions are

R0(r) = A0 +B0 ln(r), ∀r ∈ [0, ra], (17)

Rn(r) = An I0(
√
ln r) +BnK0(

√
ln r), ∀r ∈ [0, ra], n ∈ N, (18)

with the unknown coefficients A0, B0, An and Bn ∈ R1 (n ∈ N). Here, the so-called modified Bessel functions

I0 and K0 : R1 → R1 are denoted according to [8, 9]. Because of lim
r→0+

ln(r) = −∞ as well as lim
r→0+

K0(
√
ln r) =

+∞, it follows that B0
!
= 0 as well as Bn

!
= 0, n ∈ N. From a physical point of view, this correlates with finite

displacements of the material.
Using (17) and (18) in (14) yields

uz,I(r, z) = A0 +

∞∑
n=1

An I0(
√
ln r) cos(

nπ

L
z), ∀(r, z) ∈ D (19)

whereas the (yet unknown) real coefficients A0 and An are specified by the iBC in r as follows.

2.1.3 Consideration of the iBCs in r

By analogy with [1], substituting (19) into the iBC (2) in r leads to the linear equation

Φ1(z)
(2)
= uz,I(ra, z)

(19)
= A0 +

∞∑
n=1

An I0(
√
ln ra) cos(

nπ

L
z), ∀z ∈ (0, L) (20)

for the coefficients A0 and An, n ∈ N. In order to determine the former, equation (20) is integrated according

to
∫ L
z=0

(·) dz [7] which yields

A0 =
1

L

∫ L

z=0

Φ1(z) dz. (21)

The coefficients An are obtained by multiplication of (20) with cos(
κπ

L
z) for κ = 1, 2, ... and then integrating

analog to the mentioned above. Doing so, (20) turns (for κ = 1, 2, ...) into∫ L

z=0

Φ1(z) cos(
κπ

L
z) dz

!
= A0

∫ L

z=0

cos(
κπ

L
z) dz︸ ︷︷ ︸

=0

+

∫ L

z=0

[ ∞∑
n=1

An I0(
√
ln ra) cos(

nπ

L
z) cos(

κπ

L
z)

]
dz, (22)

and is solved for the coefficients An, giving

Aκ =
2

L

1

I0(
√
lκ ra)

∫ L

z=0

Φ1(z) cos(
κπ

L
z) dz, κ = 1, 2, .... (23)

Therefore, using l0 = 0 and ln = 3K+4G
3G (nπL )2 > 0 from section 2.1.1, the final expression for uz,I(r, z) can be

written as

uz,I(r, z) =
1

L

∫ L

z=0

Φ1(z) dz +
2

L

∞∑
n=1

 I0(
√

3K+4G
3G

nπ
L r)

I0(
√

3K+4G
3G

nπ
L ra)

∫ L

z=0

Φ1(z) cos(
nπ

L
z) dz

 cos(
nπ

L
z), ∀(r, z) ∈ D.

(24)
Remark: For further specification of the coefficients A0 in (21) and Aκ in (23) for their usage in (24), the
function Φ1(z) in (2) has to be specified itself. By analogy with [1], Φ1(z) can be estimated to be linear in z in
first-order approximation, i.e. with the measured values Φ̂1L ≈ Φ1(L) and Φ̂10 ≈ Φ1(0),

Φ1(z)
!
=

1

L

[
Φ̂1L z + Φ̂10 (L− z)

]
, with Φ̂1L, Φ̂10 ∈ R1 (25)
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is used. Thus, the unknown coefficients A0 and Aκ can be derived from (21) and (23), respectively. Thus,

A0 =
Φ̂1L + Φ̂10

2
, (26)

Aκ =
2

(πκ)2
(−1)κ+1

I0(
√
lκ ra)

[
Φ̂1L − Φ̂10

]
, κ = 1, 2, ... , (27)

and therefore converting (24) into

ûz,I(r, z) =
Φ̂1L + Φ̂10

2
+

2(Φ̂1L − Φ̂10)

π2

∞∑
n=1

(−1)n+1

n2

I0(
√

3K+4G
3G

nπ
L r)

I0(
√

3K+4G
3G

nπ
L ra)

cos(
nπ

L
z), ∀(r, z) ∈ D. (28)

2.2 Solution uz,II(r, z)

In [1], a possibility to obtain the solution of the iPDE (5) with a set of hBCs is shown. By analogy, the partial
solution uz,II(r, z) of this iPDE with the corresponding set

uz,II(ra, z)
!
= 0, ∀z ∈ (0, L) (29)

u̇z,II(r, 0)
!
= 0, ∀r ∈ [0, ra] (30)

u̇z,II(r, L)
!
= 0, ∀r ∈ [0, ra] (31)

of hBCs (instead of the iBCs (2)-(4)) is determined – by using the ansatz

uz,II(r, z) = Ĉ0(r) +

∞∑
n=1

Ĉn(r) cos(
nπ

L
z), ∀(r, z) ∈ D (32)

with the coefficients Ĉn(r) with n = 0, 1, 2, ..., yet to determine.
Motivation of the ansatz above is the fact of the functions Z0 = 1 and Zn(z) = cos(nπL z) being the eigenfunctions
of the EVP (13). Moreover, (32) ensures the satisfaction of (30) and (31). By analogy with [1],

üz,II(r, z) = − π2

L2

∞∑
n=1

n2 Ĉn(r) cos(
nπ

L
z), ∀(r, z) ∈ D (33)

inserted in (5) yields

r Ĉ ′′
0 (r) + Ĉ ′

0(r) +

∞∑
n=1

[
r Ĉ ′′

n(r) + Ĉ ′
n(r)− 3K + 4G

3G

n2π2

L2
r Ĉn(r)

]
cos(

nπ

L
z) = 2 εplrz, ∀(r, z) ∈ D. (34)

Thus, the solution of (34) is obtained by solving the following two ODEs:

εplrz
!
= r Ĉ ′′

0 (r) + Ĉ ′
0(r), ∀r ∈ (0, ra) (35)

0
!
= r Ĉ ′′

n(r) + Ĉ ′
n(r)− 3K + 4G

3G

n2π2

L2︸ ︷︷ ︸
>0

r Ĉn(r), ∀r ∈ (0, ra) (36)

By analogy with (17) and (18) in section 2.1.2, the solutions of the Eulerian-type ODE (35) and the Bessel-
type ODE (36) are

Ĉ0(r) = Ĉ0,1 + Ĉ0,2 ln(r) + 2 εplrz r, ∀r ∈ [0, ra] (37)

and

Ĉn(r) = Ĉn,1 I0(

√
3K + 4G

3G

nπ

L
r) + Ĉn,2K0(

√
3K + 4G

3G

nπ

L
r), ∀r ∈ [0, ra], n ∈ N, (38)

respectively. The (yet unknown) coefficients Ĉn,1, Ĉn,1 ∈ R1 (n ∈ N+) are determined as shown below.

Firstly, analog arguments as described in section 2.1.2 lead to Ĉn,2
!
= 0 (n ∈ N+). Secondly, the usage of the

hBC (29) gives

Ĉ0,1 = −2 εplrz ra (39)

Ĉn,1 = 0, ∀n ∈ N, (40)

and thus Ĉn(r) = 0, ∀r ∈ [0, ra] and ∀n ∈ N. Hence, (32) yields the final expression of

uz,II(r, z) = uz,II(r) = 2 εplrz (r − ra), ∀(r, z) ∈ D. (41)
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2.3 Total solution uz(r, z)

The partial solutions uz,I(r, z) and uz,II(r) – given in (24) and (41), respectively – result according to (7) into
the (total) solution uz(r, z) of the iBVP, given in section 1.2.
Additionally, in case of a linear form of the iBC (2), i.e. (25), uz,I(r, z) simplifies according to (28) to ûz,I(r, z),
yielding the corresponding (total) solution ûz(r, z) = ûz,I(r, z) + uz,II(r).

3 Conclusion

Studying the solution of the static equilibrium conditions in the context of elasticity theory while using a non-
conservative symmetry ansatz and extended constitutive law as shown in [1], the general analytical solution of a
special rotationally symmetric iBVP is derived above. Furthermore, the solution is then expatiated on a special
case of linear iBCs for user convenience.
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