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Abstract. Probabilistic model checking mainly concentrates on tech-
niques for reasoning about the probabilities of certain path properties or
expected values of certain random variables. For the quantitative system
analysis, however, there is also another type of interesting performance
measure, namely quantiles. A typical quantile query takes as input a
lower probability bound p ∈ ]0, 1] and a reachability property. The task is
then to compute the minimal reward bound r such that with probability
at least p the target set will be reached before the accumulated reward
exceeds r. Quantiles are well-known from mathematical statistics, but to
the best of our knowledge they have not been addressed by the model
checking community so far.
In this paper, we study the complexity of quantile queries for until
properties in discrete-time finite-state Markov decision processes with
nonnegative rewards on states. We show that qualitative quantile queries
can be evaluated in polynomial time and present an exponential algorithm
for the evaluation of quantitative quantile queries. For the special case
of Markov chains, we show that quantitative quantile queries can be
evaluated in pseudo-polynomial time.

1 Introduction

Markov models with reward (or cost) functions are widely used for the quantitative
system analysis. We focus here on the discrete-time or time-abstract case. Discrete-
time Markov decision processes, MDPs for short, can be used, for instance, as
an operational model for randomised distributed algorithms and rewards might
serve to reason, e.g., about the size of the buffer of a communication channel or
about the number of rounds that a leader election protocol might take until a
leader has been elected.

Several authors considered variants of probabilistic computation tree logic
(PCTL) [12,4] for specifying quantitative constraints on the behaviour of Markov
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models with reward functions. Such extensions, briefly called PRCTL here,
permit to specify constraints on the probabilities of reward-bounded reachability
conditions, on the expected accumulated rewards until a certain set of target
states is reached or expected instantaneous rewards after some fixed number of
steps [7,6,9,1,15], or on long-run averages [8]. An example for a typical PRCTL
formula with PCTL’s probability operator and the reward-bounded until operator
is the formula P>p(a U≤r b) where p is a lower probability bound in [0, 1[ and
r is an upper bound for the accumulated reward earned by path fragments
that lead via states where a holds to a b-state. From a practical point of view,
more important than checking whether a given PRCTL formula φ holds for
(the initial state of) a Markov model M are PRCTL queries of the form P=? ψ
where the task is to calculate the (minimum or maximum) probability for the
path formula ψ. Indeed, the standard PRCTL model checking algorithm checks
whether a given formula P▷◁p ψ holds in M by evaluating the PRCTL query
P=? ψ and comparing the computed value q with the given probability bound p
according to the comparison predicate ▷◁. The standard procedure for dealing
with PRCTL formulas that refer to expected (instantaneous or accumulated)
rewards relies on an analogous scheme; see e.g. [10]. An exception can be made
for qualitative PRCTL properties P▷◁p ψ where the probability bound p is either
0 or 1, and the path formula ψ is a plain until formula without reward bound (or
any ω-regular path property without reward constraints): in this case, a graph
analysis suffices to check whether P▷◁p ψ holds for M [16,5].

In a common project with the operating system group of our department, we
learned that a natural question for the systems community is to swap the given
and unknown parameters in PRCTL queries and to ask for the computation of
a quantile (see [2]). For instance, if M models a mutual exclusion protocol for
competing processes P1, . . . , Pn and rewards are used to represent the time spent
by process Pi in its waiting location, then the quantile query P>0.9(waiti U≤? criti)
asks for the minimal time bound r such that in all scenarios (i.e., under all
schedulers) with probability greater than 0.9 process Pi will wait no longer than
r time units before entering its critical section. For another example, suppose
M models the management system of a service execution platform. Then the
query P>0.98(true U≤? tasks_completed) might ask for the minimal initial energy
budget r that is required to ensure that even in the worst-case there is more than
98% chance to reach a state where all tasks have been completed successfully.

To the best of our knowledge, quantile queries have not yet been addressed
directly in the model checking community. What is known from the literature
is that for finite Markov chains with nonnegative rewards the task of checking
whether a PRCTL formula P>p(a U≤r b) or P≥p(a U≤r b) holds for some given
state is NP-hard [14] when p and r are represented in binary. Since such a formula
holds in state s if and only if the value of the corresponding quantile query at s
is ≤ r, this implies that evaluating quantile queries is also NP-hard.

The purpose of this paper is to study quantile queries for Markov decision
processes with nonnegative rewards in more details. We consider quantile queries
for reward-bounded until formulas in combination with the standard PRCTL
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quantifier P▷◁p (in this paper denoted by ∀P▷◁p), where universal quantification
over all schedulers is inherent in the semantics, and its dual ∃P▷◁p that asks
for the existence of some scheduler enjoying a certain property. By duality, our
results carry over to reward-bounded release properties.

Contributions. First, we address qualitative quantile queries, i.e. quantile
queries where the probability bound is either 0 or 1, and we show that such
queries can be evaluated in strongly polynomial time. Our algorithm is surprisingly
simple and does not rely on value iteration or linear programming techniques (as
it is e.g. the case for extremal expected reachability times and stochastic shortest-
paths problems in MDPs [9]). Instead, our algorithm relies on the greedy method
and borrows ideas from Dĳkstra’s shortest-path algorithm. In particular, our
algorithm can be used for checking PRCTL formulas of the form ∀P▷◁p(aU≤r b) or
∃P▷◁p(aU≤r b) with p ∈ {0, 1} in polynomial time. Previously, a polynomial-time
algorithm was known only for the special case of MDPs where every loop contains
a state with nonzero reward [13].

Second, we consider quantitative quantile queries. The standard way to com-
pute the maximal or minimal probabilities for reward-bounded until properties,
say aU≤r b, relies on the iterative computation of the extremal probabilities aU≤ib
for increasing reward bound i. We use here a reformulation of this computation
scheme as a linear program whose size is polynomial in the number of states
of M and the given reward bound r. The crux to derive from this linear program
an algorithm for the evaluation of quantile queries is to provide a bound for
the sought value, which is our second contribution. This bound then permits
to perform a sequential search for the quantile, which yields an exponentially
time-bounded algorithm for evaluating quantitative quantile queries. Finally,
in the special case of Markov chains with integer rewards, we show that this
algorithm can be improved to run in time polynomial in the size of the query,
the size of the chain, and the largest reward, i.e. in pseudo-polynomial time.

Outline. The structure of the paper is as follows. Section 2 summarises the
relevant concepts of Markov decision processes and briefly recalls the logic PRCTL.
Quantile queries are introduced in Sect. 3. Our polynomial-time algorithms for
qualitative quantile queries is presented in Sect. 4, whereas the quantitative case
is addressed in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 Preliminaries

In the following, we assume a countably infinite set AP of atomic propositions.
A Markov decision process (MDP) M = (S,Act, γ, λ, rew, δ) with nonnegative
rewards consists of a finite set S of states, a finite set Act of actions, a function
γ : S → 2Act \ {∅} describing the set of enabled actions in each state, a labelling
function λ : S → 2AP, a reward function rew : S → R≥0, and a transition function
δ : S × Act × S → [0, 1] such that

∑
t∈S δ(s, α, t) = 1 for all s ∈ S and α ∈ Act.

If the set Act of actions is just a singleton, we call M a Markov chain.
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Given an MDP M, we say that a state s of M is absorbing if δ(s, α, s) = 1 for
all α ∈ γ(s). Moreover, for a ∈ AP we denote by λ−1(a) the set of states s such
that a ∈ λ(s), and for x = s0s1 . . . sk ∈ S∗ we denote by rew(x) the accumulated
reward after x, i.e. rew(x) =

∑k
i=0 rew(si). Finally, we denote by |δ| the number

of nontrivial transitions in M, i.e. |δ| = |{(s, α, t) : α ∈ γ(s) and δ(s, α, t) > 0}|.
Schedulers are used to resolve the nondeterminism that arises from the

possibility that more than one action might be enabled in a given state. Formally,
a scheduler for M is a mapping σ : S+ → Act such that σ(xs) ∈ γ(s) for all
x ∈ S∗ and s ∈ S. Such a scheduler σ is memoryless if σ(xs) = σ(s) for all
x ∈ S∗ and s ∈ S. Given a scheduler σ and an initial state s = s0, there is
a unique probability measure Prσ

s on the Borel σ-algebra over Sω such that
Prσ

s (s0s1 . . . sk · Sω) =
∏k−1

i=0 δ(si, σ(s0 . . . si), si+1); see [3].
Several logics have been introduced in order to reason about the probability

measures Prσ
s . In particular, the logics PCTL and PCTL∗ replace the path

quantifiers of CTL and CTL∗ by a single probabilistic quantifier P▷◁p, where
▷◁ ∈ {<,≤,≥, >} and p ∈ [0, 1]. In these logics, the formula φ = P▷◁p ψ holds in
state s (written s |= φ) if under all schedulers σ the probability Prσ

s (ψ) of the
path property ψ compares positively with p wrt. the comparison operator ▷◁, i.e.
if Prσ

s (ψ) ▷◁ ψ. A dual existential quantifier ∃P▷◁p that asks for the existence of
a scheduler can be introduced using the equivalence ∃P▷◁p ψ ≡ ¬P▷◁p ψ, where
▷◁ denotes the dual inequality. Since many properties of MDPs can be expressed
more naturally using the ∃P quantifier, we consider this quantifier an equal citizen
of the logic, and we denote the universal quantifier P by ∀P in order to stress its
universal semantics.

In order to be able to reason about accumulated rewards, we amend the until
operator U by a reward constraint of the form ∼ r, where ∼ is a comparison
operator and r ∈ R ∪ {±∞}. Since we adopt the convention that a reward is
earned upon leaving a state, a path π = s0s1 . . . fulfils the formula ψ1 U∼r ψ2 if
there exists a point k ∈ N such that 1. sksk+1 . . . |= ψ2, 2. sisi+1 . . . |= ψ1 for
all i < k, and 3. rew(s0 . . . sk−1) ∼ r. Even though our logic is only a subset of
the logics PRCTL and PRCTL∗ defined in [1], we use the same names for the
extension of PCTL and PCTL∗ with the amended until operator. The following
proposition states that extremal probabilities for PRCTL∗ are attainable. This
follows, for instance, from the fact that PRCTL∗ can only describe ω-regular
path properties.

Proposition 1. Let M be an MDP and ψ a PRCTL∗ path formula. Then there
exist schedulers σ∗ and τ∗ such that Prσ∗

s (ψ) = supσ Prσ
s (ψ) and Prτ∗

s (ψ) =
infτ Prσ

s (ψ) for all states s of M.

3 Quantile queries

A quantile query is of the form φ = ∀P▷◁p(a U≤? b) or φ = ∃P▷◁p(a U≤? b), where
a, b ∈ AP, p ∈ [0, 1] and ▷◁ ∈ {<,≤,≥, >}. We call queries of the former type
universal and queries of the latter type existential. If r ∈ R ∪ {±∞}, we write
φ[r] for the PRCTL formula that is obtained from φ by replacing ? with r.
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Given an MDP M with rewards, evaluating φ on M amounts to computing,
for each state s of M, the least or the largest r ∈ R such that s |= φ[r]. Formally,
if φ = ∀P▷◁p(a U≤? b) or φ = ∃P▷◁p(a U≤? b) then the value of a state s of M
with respect to φ is valMφ (s) := opt{r ∈ R : s |= φ[r]}, where opt = inf if
▷◁ ∈ {≥, >} and opt = sup otherwise.1 Depending on whether valMφ (s) is defined
as an infimum or a supremum, we call φ a minimising or a maximising query,
respectively. In the following, we will omit the superscript M when the underlying
MDP is clear from the context.

Given a query φ, we define the dual query to be the unique quantile query φ
such that φ[r] ≡ ¬φ[r] for all r ∈ R ∪ {±∞}. Hence, to form the dual of a
query, one only needs to replace the quantifier ∀P▷◁p by ∃P▷◁p and vice versa.
For instance, the dual of ∀P<p(aU≤? b) is ∃P≥p(aU≤? b). Note that the dual of a
universal or minimising query is an existential or maximising query, respectively,
and vice versa.
Proposition 2. Let M be an MDP and φ a quantile query. Then valφ(s) =
valφ(s) for all states s of M.
Proof. Without loss of generality, assume that φ is a minimising query. Let s ∈ S,
v = valφ(s) and v′ = valφ(s). On the one hand, for all r < v we have s ̸|= φ[r],
i.e. s |= φ[r], and therefore v′ ≥ v. On the other hand, since φ[r] implies φ[r′] for
r′ ≥ r, for all r > v we have s |= φ[r], i.e. s ̸|= φ[r], and therefore also v′ ≤ v. ⊓⊔

Assume that we have computed the value valφ(s) of a state s with respect
to a quantile query φ. Then, for any r ∈ R, to decide whether s |= φ[r], we just
need to compare r to valφ(s).
Proposition 3. Let M be an MDP, s a state of M, φ a minimising or max-
imising quantile query, and r ∈ R. Then s |= φ[r] if and only if valφ(s) ≤ r or
valφ(s) > r, respectively.
Proof. First assume that φ = Q(a U≤? b) is a minimizing query. Clearly, if
s |= φ[r], then valφ(s) ≤ r. On the other hand, assume that valφ(s) ≤ r and
denote by R the set of numbers x ∈ R of the form x =

∑k
i=0 rew(si) for a finite

sequence s0s1 . . . sk of states. Since the set {x ∈ R : x ≤ n} is finite for all n ∈ N,
we can fix some ε > 0 such that r + δ /∈ R for all 0 < δ ≤ ε. Hence, the set of
paths that fulfil a U≤r b agrees with the set of paths that fulfil a U≤r+ε b. Since
valφ(s) < r + ε and φ is a minimising query, we know that s |= φ[r + ε]. Since
replacing r + ε by r does not affect the path property, this implies that s |= φ[r].
Finally, if φ is a maximising query, then φ is a minimising query, and s |= φ[r] if
and only if valφ(s) = valφ(s) ≤ r, i.e. s |= φ[r] if and only if valφ(s) > r. ⊓⊔

Proposition 3 does not hold when we allow r to take an infinite value. In fact,
if φ is a minimizing query and s ̸|= φ[∞], then valφ(s) = ∞. Analagously, if φ is
a maximising query and s ̸|= φ[−∞], then valφ(s) = −∞.

To conclude this section, let us remark that queries using the reward-bounded
release operator R can easily be accommodated in our framework. For instance,
the query ∀P≥p(a R≤? b) is equivalent to the query ∀P≤1−p(¬a U≤? ¬b).
1 As usual, we assume that inf ∅ =∞ and sup ∅ = −∞.
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Algorithm 1 Solving qualitative queries of the form Q(a U≤? b)
Input: MDP M = (S, Act, γ, λ, rew, δ), φ = Q(a U≤? b)
for each s ∈ S do

if s |= b then v(s)← 0 else v(s)←∞
X ← {s ∈ S : v(s) = 0}; R← {0}
Z ← {s ∈ S : s |= a ∧ ¬b and rew(s) = 0}
while R ̸= ∅ do

r ← min R ; Y ← {s ∈ X : v(s) ≤ r} \ Z
for each s ∈ S \X with s |= a ∧Q X(Z U Y ) do

v(s)← r + rew(s)
X ← X ∪ {s}; R← R ∪ {v(s)}

R← R \ {r}
return v

4 Evaluating qualitative queries

In this section, we give a strongly polynomial-time algorithm for evaluating
qualitative queries, i.e. queries where the probability bound p is either 0 or 1.
Throughout this section, let M = (S,Act, γ, λ, rew, δ) be an MDP with non-
negative rewards. By Proposition 2, we can restrict to queries using one of the
quantifiers ∀P>0, ∃P>0, ∀P=1 and ∃P=1. The following lemma allows to give a
unified treatment of all cases. (X denotes the next-step operator).

Lemma 4. The equivalence QX(a U (¬a ∧ ψ)) ≡ QX(a U (¬a ∧Qψ)) holds in
PRCTL∗ for all Q ∈ {∀P>0,∃P>0,∀P=1,∃P=1}, a ∈ AP, and all path formulas ψ.

Algorithm 1 is our algorithm for computing the values of a quantile query
where we look for an upper bound on the accumulated reward. The algorithm
maintains a set X of states, a set R of real numbers, and a table v mapping states
to non-negative real numbers or infinity. The algorithm works by discovering
states with finite value repeatedly until only the states with infinite value remain.
Whenever a new state is discovered, it is put into X and its value is put into R. In
the initialisation phase, the algorithm discovers all states labelled with b, which
have value 0. In every iteration of the main loop, new states are discovered by
picking the least value r that has not been fully processed (i.e. the least element
of R) and checking which undiscovered a-labelled states fulfil the PCTL∗ formula
QX(Z U Y ), where Y is the set of already discovered states whose value is at
most r and Z is the set of states labelled with a but not with b and having
reward 0. Any such newly discovered state s must have value r + rew(s), and
r can be deleted from R at the end of the current iteration. The termination of
the algorithm follows from the fact that in every iteration of the main loop either
the set X increases or it remains constant and one element is removed from R.

Lemma 5. Let M be an MDP, φ = Q(aU≤? b) a qualitative query, and let v be
the result of Algorithm 1 on M and φ. Then v(s) = valφ(s) for all states s.
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Proof. We first prove that s |= φ[v(s)] for all states s with v(s) < ∞. Hence, v is
an upper bound on valφ. We prove this by induction on the number of iterations
the while loop has performed before assigning a finite value to v(s). Note that
this is the same iteration when s is put into X and that v(s) never changes
afterwards. If s is put into X before the first iteration, then s |= b and therefore
also s |= φ[0] = φ[v(s)]. Now assume that the while loop has already completed
i iterations and is about to add s to X in the current iteration; let X, r and Y
be as at the beginning of this iteration (after r and Y have been assigned, but
before any new state is added to X). By the induction hypothesis, t |= φ[r] for all
t ∈ Y . Since s is added to X, we have that s |= a ∧QX(Z U Y ). Using Lemma 4
and some basic PRCTL∗ laws, we can conclude that s |= φ[v(s)] as follows:

s |= a ∧QX(Z U Y )
=⇒ s |= a ∧QX(Z U (¬Z ∧Q(a U≤r b)))
=⇒ s |= a ∧QX(Z U (¬Z ∧ (a U≤r b)))
=⇒ s |= a ∧QX(a U≤r b)
=⇒ s |= Q(a U≤r+rew(s) b)
=⇒ s |= φ[v(s)]

To complete the proof, we need to show that v is also a lower bound on valφ.
We define a strict partial order ≺ on states by setting s ≺ t if one of the following
conditions holds:

1. s |= b and t ̸|= b,
2. valφ(s) < valφ(t), or
3. valφ(s) = valφ(t) and rew(s) > rew(t).

Towards a contradiction, assume that the set C of states s with valφ(s) < v(s)
is non-empty, and pick a state s ∈ C that is minimal with respect to ≺ (in
particular, valφ(s) < ∞). Since s |= φ[∞] and the algorithm correctly sets v(s)
to 0 if s |= b, we know that s |= a ∧ ¬b and valφ(s) ≥ rew(s). Moreover, by
Proposition 3, s |= φ[valφ(s)]. Let T be the set of all states t ∈ S \ Z such that
valφ(t) + rew(s) ≤ valφ(s), i.e. t |= φ[valφ(s) − rew(s)]. Note that T ̸= ∅ (because
every state labelled with b is in T ) and that t ≺ s for all t ∈ T . Since s is a minimal
counter-example, we know that v(t) ≤ valφ(t) < ∞ for all t ∈ T . Consequently,
after some number of iterations of the while loop all elements of T have been
added to X and the numbers v(t) have been added to R. Since R is empty upon
termination, in a following iteration we have that r = max{v(t) : t ∈ T} and
that T ⊆ Y . Let x := valφ(s) − rew(s). Using Lemma 4 and some basic PRCTL∗

laws, we can conclude that s |= QX(Z U Y ) as follows:

s |= ¬b ∧ φ[valφ(s)]
=⇒ s |= Q(¬b ∧ (a U≤x+rew(s) b))
=⇒ s |= QX(a U≤x b)
=⇒ s |= QX(Z U (¬Z ∧ (a U≤x b)))
=⇒ s |= QX(Z U (¬Z ∧Q(a U≤x b)))
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=⇒ s |= QX(Z U T )
=⇒ s |= QX(Z U Y )

Since also s |= a, this means that s is added to X no later than in the current
iteration. Hence, v(s) ≤ r + rew(s) ≤ valφ(s), which contradicts our assumption
that s ∈ C. ⊓⊔

Theorem 6. Qualitative queries of the form Q(a U≤? b) can be evaluated in
strongly polynomial time.

Proof. By Lemma 5, Algorithm 1 can be used to compute the values of Q(aU≤? b).
During the execution of the algorithm, the running time of one iteration of the
while loop is dominated by computing the set of states that fulfil the PCTL∗

formula QX(ZUY ), which can be done in time O(|δ|) for Q ∈ {∀P>0,∃P>0,∀P=1}
and in time O(|S| · |δ|) for Q = ∃P=1 (see [3, Chapter 10]). In each iteration of
the while loop, one element of R is removed, and the number of elements that
are put into R in total is bounded by the number of states in the given MDP.
Hence, the number of iterations is also bounded by the number of states, and the
algorithm runs in time O(|S| · |δ|) or O(|S|2 · |δ|), depending on Q. Finally, since
the only arithmetic operation used by the algorithm is addition, the algorithm is
strongly polynomial. ⊓⊔

Of course, queries of the form ∃P>0(aU≤? b) can actually be evaluated in time
O(|S|2 + |δ|) using Dĳkstra’s algorithm since the value of a state with respect to
such a query is just the weight of a shortest path from s via a-labeled states to a
b-labelled state.

Algorithm 1 also gives us a useful upper bound on the value of a state with
respect to a qualitative query.

Proposition 7. Let M be an MDP, φ = Q(aU≤? b) a qualitative quantile query,
n = |λ−1(a)|, and c = max{rew(s) : s ∈ λ−1(a)}. Then valφ(s) ≤ nc for all
states s with valφ(s) < ∞.

Proof. By induction on the number of iterations Algorithm 1 performs before
assigning a finite number to v(s). ⊓⊔

Finally, let us remark that our algorithm can be extended to handle queries of
the form Q(a U>? b), where a lower bound on the accumulated reward is sought.
To this end, the initialisation step has to be extended to identify states with
value −∞ and the rule for discovering new states has to be modified slightly.
We invite the reader to make the necessary modifications and to verify the
correctness of the resulting algorithm. This proves that the fragment of PRCTL
with probability thresholds 0 and 1 and without reward constraints of the form
= r can be model-checked in polynomial time. Previously, a polynomial-time
algorithm was only known for the special case where the models are restricted to
MDPs in which every loop contains a state with nonzero reward [13].
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5 Evaluating quantitative queries

In the following, we assume that all state rewards are natural numbers. This
does not limit the applicability of our results since any MDP M with non-
negative rational numbers as state rewards can be converted efficiently to an
MDP M′ with natural rewards by multiplying all state rewards with the least
common multiple K of all denominators occurring in state rewards. It follows
that valM

′

φ (s) = K · valMφ (s) for any quantile query φ and any state s of M, so
in order to evaluate a quantile query on M we can evaluate it on M′ and
divide by K. Throughout this section, we also assume that any transition
probability and any probability threshold p occurring in a quantile query is
rational. Finally, we define the size of an MDP M = (S,Act, γ, λ, rew, δ) to
be |M | :=

∑
s∈S∥rew(s)∥ +

∑
(s,α,t)∈δ,α∈γ(s)∥δ(s, α, t)∥, where ∥x∥ denotes the

length of the binary representation of x.

5.1 Existential queries

In order to solve queries of the form ∃P≥p(a U≤? b) or ∃P>p(a U≤? b), we first
show how to compute the maximal probabilities for fulfilling the path formula
aU≤r b when we are given the reward bound r. Given an MDP M, a, b ∈ AP and
r ∈ N, consider the following linear program over the variables xs,i for s ∈ S and
i ∈ {0, 1, . . . , r}:

Minimise
∑
xs,i subject to

xs,i ≥ 0 for all s ∈ S and i ≤ r,
xs,i = 1 for all s ∈ λ−1(b) and i ≤ r,
xs,i ≥

∑
t∈S δ(s, α, t) · xt,i−rew(s)

for all s ∈ λ−1(a), α ∈ Act and rew(s) ≤ i ≤ r.

This linear program is of size r · |M|, and it can be shown that setting xi,s

to maxσ Prσ
s (a U≤i b) yields the optimal solution. Hence, we can compute the

numbers maxσ Prσ
s (a U≤i b) in time poly(r · |M|).

Our algorithm for computing the value of a state s wrt. a query of the form
∃P>p(a U≤? b) just computes the numbers maxσ Prσ

s (a U≤i b) for increasing i
and stops as soon as this probability exceeds p. However, in order to make this
algorithm work and to show that it does not take too much time, we need a
bound on the value of s provided this value is not infinite. Such a bound can be
derived from the following lemma, which resembles a result by Hansen et al., who
gave a bound on the convergence rate of value iteration in concurrent reachability
games [11]. Our proof is technically more involved though, since we have to deal
with paths that from some point onwards do not earn any more rewards.

Lemma 8. Let M be an MDP where the denominator of each transition prob-
ability is at most m, and let n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)} and
r = kncm−n for some k ∈ N+. Then maxσ Prσ

s (aU b) < maxσ Prσ
s (aU≤r b) + e−k

for all s ∈ S.

9



Proof. Without loss of generality, assume that all b-labelled states are absorbing.
Let us call a state s of M dead if s |= ∀P=0(a U b), and denote by D the set of
dead states. Note that s ∈ D for all states s with s |= ¬a ∧ ¬b. Finally, let τ be
a memoryless scheduler such that Prτ

s (a U b) = maxσ Prσ
s (a U b) for all states s,

and denote by Z the set of all states s with s |= a ∧ ¬b and rew(s) = 0. By
the definition of D and Z, we have that Prτ

s (a U≤r (D ∨ GZ) ∧ a U b) = 0 for all
s ∈ S. Moreover, if s is not dead, then there must be a simple path from s to a
b-labelled state via a-labelled states in the Markov chain induced by τ . Since any
a-labelled state has reward at most c, this implies that Prτ

s (a U≤nc b) ≥ m−n for
all non-dead states s. Now let ψ be the path formula b ∨D ∨ GZ. We claim that
Prτ

s (¬(a U≤r ψ)) < e−k for all states s. To prove this, let s ∈ S. We first show
that Prτ

s (aU≤i+ncψ | ¬(aU≤iψ)) ≥ m−n for all i ∈ N with Prτ
s (aU≤iψ) < 1. Let

X be the set of sequences xt ∈ S∗ · S such that xt ∈ {s ∈ S \D : s |= a ∧ ¬b}∗,
rew(x) ≤ i and rew(xt) > i. It is easy to see that the set {xt · Sω : xt ∈ X} is a
partition of the set of infinite sequences over S that violate a U≤i ψ. Using the
fact that τ is memoryless, we can conclude that

Prτ
s (a U≤i+nc ψ | ¬(a U≤i ψ))

≥ Prτ
s (a U≤i+nc b | ¬(a U≤i ψ))

= Prτ
s (a U≤i+nc b ∩X · Sω)/Prτ

s (X · Sω)

=
∑

xt∈X

Prτ
s (a U≤i+nc b ∩ xt · Sω)/Prτ

s (X · Sω)

=
∑

xt∈X

Prτ
t (a U≤i−rew(x)+nc b) · Prτ

s (xt · Sω)/Prτ
s (X · Sω)

≥
∑

xt∈X

Prτ
t (a U≤nc b) · Prτ

s (xt · Sω)/Prτ
s (X · Sω)

≥
∑

xt∈X

m−n · Prτ
s (xt · Sω)/Prτ

s (X · Sω)

= m−n .

Now, applying this inequality successively, we get that Prτ
s (¬(a U≤r ψ)) ≤

(1 −m−n) r
nc = (1 −m−n)kmn

< e−k. Finally,

Prτ
s (a U b) = Prτ

s (a U b ∧ ¬(a U≤r (D ∨ GZ)))
≤ Prτ

s (¬(a U≤r (D ∨ GZ)))
≤ Prτ

s (¬(a U≤r ψ) ∨ (a U≤r b))
≤ Prτ

s (¬(a U≤r ψ)) + Prτ
s (a U≤r b)

< e−k + maxσ Prσ
s (a U≤r b)

for all s ∈ S. Since Prτ
s (a U b) = maxσ Prσ

s (a U b), this inequality proves the
lemma. ⊓⊔

Given an MDP M and a, b ∈ AP, we denote by M̃ the MDP that arises
from M by performing the following transformation:
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1. In each state s, remove all actions α with
∑

t∈S δ(s, α, t) · maxσ Prσ
t (aU b) <

maxσ Prσ
s (a U b) from the set γ(s) of enabled actions.

2. Label all states s such that s |= P=0(a U b) with b.

The following lemma, whose proof is rather technical, allows us to reduce the
query ∃P≥p(a U≤? b) to the qualitative query ∃P=1(a U≤? b) in the special case
that p equals the optimal probability of fulfilling a U b.

Lemma 9. Let M be an MDP, φ = ∃P≥p(a U≤? b) and φ̃ = ∃P=1(a U≤? b).
Then valMφ (s) = valM̃φ̃ (s) for all states s of M with p = maxσ Prσ

s (a U b).

With the help of Lemmas 8 and 9, we can devise an upper bound for the
value of any query whose value is finite.

Lemma 10. Let M be an MDP where the denominator of each transition
probability is at most m, φ = ∃P▷p(a U≤? b) for ▷ ∈ {≥, >}, n = |λ−1(a)|,
c = max{rew(s) : s ∈ λ−1(a)}, s ∈ S, and q = maxσ Prσ

s (a U b). Then at least
one of the following statements holds:

1. p ≥ q and valφ(s) = ∞.
2. p = q, ▷ = ≥ and valφ(s) ≤ nc.
3. p < q and valφ(s) ≤ kncmn, where k = max{−⌊ln(q − p)⌋, 1}.

Proof. Clearly, if either ▷ = > and p ≥ q or ▷ = ≥ and p > q, then valφ(s) = ∞,
and 1. holds. Now assume that p = q and ▷ = ≥. By Lemma 9, we have
that valMφ (s) = valM̃φ̃ (s). Hence, if valM̃φ̃ (s) = ∞, then 1. holds. On the other
hand, if valM̃φ̃ (s) < ∞, then Proposition 7 gives us that valM̃φ̃ (s) ≤ nc, and
2. holds. Finally, if p < q, then let r := kncmn. By Lemma 8, we have that
maxσ Prs(a U≤r b) > q − e−k ≥ q − e⌊ln(q−p)⌋ ≥ q − (q − p) = p, i.e. s |=
∃P▷p(a U≤r b). Hence, valφ(s) ≤ r, and 3. holds. ⊓⊔

It follows from Lemma 10 that we can compute the value of a state s wrt.
a query φ of the form ∃P>p(a U≤? b) as follows: First compute the maximal
probability q of fulfilling a U b from s, which can be done in polynomial time.
If p ≥ q, we know that the value of s wrt. φ must be infinite. Otherwise,
valφ(s) ≤ r := kncmn, where k = max{−⌊ln(q − p)⌋, 1}, and we can find the
least i such that maxσ Prσ

s (a U≤i b) > p by computing maxσ Prσ
s (a U≤i b) for all

i ∈ {0, 1, . . . , r}, which can be done in time poly(r · |M|). Since r is exponential
in the number of states of the given MDP M, the running time of this algorithm
is exponential in the size of M. If φ is of the form ∃P≥p(a U≤? b), the algorithm
is similar, but in the case that p = q, we compute maxσ Prσ

s (a U≤i b) for all
i ∈ {0, 1, . . . , nc} in order to determine whether the value is infinite or one of
these numbers i.

Theorem 11. Queries of the form ∃P≥p(a U≤? b) or ∃P>p(a U≤? b) can be
evaluated in exponential time.
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5.2 Universal queries

In order to solve queries of the form ∀P>p(aU≤? b), we first show how to compute
the minimal probabilities for fulfilling the path formula a U≤r b when we are
given the reward bound r. Given an MDP M, a, b ∈ AP and r ∈ N, consider the
following linear program over the variables xs,i for s ∈ S and i ∈ {0, 1, . . . , r}:

Maximise
∑
xs,i subject to

xs,i ≤ 1 for all s ∈ S and i ≤ r,
xs,i = 0 for all s ∈ S with s ̸|= ∀P>0(a U≤i b) and i ≤ r,
xs,i ≤

∑
t∈S δ(s, α, t) · xt,i−rew(s)

for all s ∈ S \ λ−1(b), α ∈ Act and rew(s) ≤ i ≤ r.

This program is of size r · |M|, and it can be shown that setting xi,s to
minσ Prσ

s (a U≤i b) yields the optimal solution. Since the set of states s with
s |= ∀P>0(aU≤i b) can be computed in polynomial time (Theorem 6), this means
that we can compute the numbers minσ Prσ

s (a U≤i b) in time poly(r · |M|). The
following lemma is the analogue of Lemma 8 for minimal probabilities.

Lemma 12. Let M be an MDP where the denominator of each transition prob-
ability is at most m, and let n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)} and
r = kncm−n for some k ∈ N+. Then minσ Prσ

s (aU b) < minσ Prσ
s (aU≤r b) + e−k

for all s ∈ S.

Proof. Without loss of generality, assume that all b-labelled states are absorbing.
Let us call a state s of M dull if s |= ∃P=0(aU b), and denote by D the set of dull
states. Note that s ∈ D for all states s with s |= ¬a∧¬b. If s is not dull, then it is
easy to see that, for any scheduler σ, the probability of reaching a b-labelled state
from s in at most n steps (while seeing only a-labelled states before reaching a
b-labelled state) is at least m−n. Since any a-labelled state has reward at most c,
we get that Prσ

s (aU≤nc b) ≥ m−n for all non-dull states s and all schedulers σ. In
the following, denote by Z the set {s ∈ S : s |= a ∧ ¬b and rew(s) = 0}, and let
ψ be the path formula b ∨D ∨ GZ. In the same way as in the proof of Lemma 8,
we can infer that Prσ

s (¬(aU≤r ψ)) < e−k for all states s and all schedulers σ. Now
fix a scheduler τ that minimises Prτ

s (aU≤r b) for all s ∈ S and a scheduler σ such
that Prσ

s (a U b) = 0 for all s ∈ D. From τ and σ, we devise another scheduler τ∗

by setting

τ∗(x) =
{
τ(x) if x ∈ (S \D)∗,
σ(x2) if x = x1 · x2 where x1 ∈ (S \D)∗ and x2 ∈ D · S∗.

Note that Prτ∗

s (a U≤r (D ∨ GZ) ∧ a U b) = 0 and Prτ∗

s (a U≤r (D ∨ GZ)) =
Prτ

s (a U≤r (D ∨ GZ)) for all s ∈ S. Hence,
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Prτ∗

s (a U b) = Prτ∗

s (a U b ∧ ¬(a U≤r (D ∨ GZ)))

≤ Prτ∗

s (¬(a U≤r (D ∨ GZ)))
= Prτ

s (¬(a U≤r (D ∨ GZ)))
≤ Prτ

s (¬(a U≤r ψ) ∨ (a U≤r b))
≤ Prτ

s (¬(a U≤r ψ)) + Prτ
s (a U≤r b)

< e−k + Prτ
s (a U≤r b)

= e−k + minσ Prσ
s (a U≤r b)

for all s ∈ S. Since minσ Prσ
s (a U b) ≤ Prτ∗

s (a U b), this inequality proves the
lemma. ⊓⊔

With the help of Lemma 12, we can devise an upper bound for the value of a
query of the form ∀P>p(a U≤? b) in case this value is finite.

Lemma 13. Let M be an MDP where the denominator of each transition prob-
ability is ≤ m, φ = ∀P>p(a U≤? b), n = |λ−1(a)|, c = max{rew(s) : s ∈ λ−1(a)},
s ∈ S, and q = minσ Prσ

s (a U b). Then one of the following statements holds:
1. p ≥ q and valφ(s) = ∞.
2. p < q and valφ(s) ≤ kncmn, where k = max{−⌊ln(q − p)⌋, 1}.

Proof. Clearly, if p ≥ q, then valφ(s) = ∞, and 1. holds. On the other hand, if
p < q, then let r := kncmn. By Lemma 12, we have that minσ Prs(a U≤r b) >
q − e−k ≥ q − e⌊ln(q−p)⌋ ≥ q − (q − p) = p, i.e. s |= ∀P>p(a U≤r b). Hence,
valφ(s) ≤ r, and 3. holds. ⊓⊔

As in the last section, Lemma 13 can be used to derive an exponential
algorithm for computing the value of a state wrt. a query of the form ∀P>p(aU≤?b).

Theorem 14. Queries of the form ∀P>p(aU≤? b) can be evaluated in exponential
time.

Regarding queries of the form ∀P≥p(a U≤? b), we can compute the value of a
state s whenever the probability minσ Prσ

s (a U b) differs from p using the same
algorithm. However, in the case that p = minσ Prσ

s (a U b) it is not clear how to
bound the value of s. As the following example shows, the analogous bound of nc
for existential queries from Lemma 10 does not apply in this case.

Example 15. Consider the MDP depicted in Fig. 1, where Act = {♭, ♮} and
q ∈ [0, 1[ is an arbitrary probability. A state’s reward is depicted in its bottom half,
and a transition from s to t labelled with α, p indicates that δ(s, α, t) = p. Only
transitions from non-absorbing states with nonzero probability and corresponding
to enabled actions are shown. Assuming that every state is labelled with a but
only s3 and s5 are labelled with b, it is easy to see that minσ Prσ

s0
(a U b) = 1

2 .
Moreover, a quick calculation reveals that the value of state s0 with respect to
the query ∀P≥1/2(a U≤? b) equals −⌊1/ log2 q⌋. Since q can be chosen arbitrarily
close to 1, this value can be made arbitrarily high.
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s0
0

s1
0

s2
0

s3
0

s4
1

s5
0

♭, 1 ♮, 1

♭, 1
2

♭, 1
2

♮, q

♮, 1− q

Fig. 1: An MDP with nonnegative rewards.

5.3 A pseudo-polynomial algorithm for Markov chains
In this section, we give a pseudo-polynomial algorithm for evaluating quantile
queries of the form P▷p(a U≤? b) on Markov chains. (Note that the quantifiers
∃P and ∀P coincide for Markov chains.) More precisely, our algorithm runs in
time poly(c · |M| · ∥p∥) if c is the largest reward in M. As an important special
case, our algorithm runs in polynomial time on Markov chains where each state
has reward 0 or 1.

Our polynomial-time algorithm relies on the following equations for computing
the probability of the event a U=i b in a Markov chain with rewards 0 and 1.
Given such a Markov chain M and a ∈ AP, we denote by Z the set of states s
such that rew(s) = 0 and s |= a ∧ ¬b. Then the following equations hold for all
s ∈ S, a, b ∈ AP and r ∈ N:

– Prs(a U=0 b) = Prs(Z U b),
– Prs(a U=2r b) =

∑
t∈S\Z Prs(a U=r {t}) · Prt(a U=r b),

– Prs(a U=2r+1 b) =
∑

t∈λ−1(a)\Z

∑
u∈S Prs(a U=r {t}) · δ(t, u) · Pru(a U=r b),

Using these equations, we can compute the numbers Prs(aU=r b) along the binary
representation of r in time O(poly(|M|) · log r) for Markov chains with rewards
0 and 1 (see also [12]). Since any Markov chain M with rewards 0, 1, . . . , c can
easily be transformed into an equivalent Markov chain of size c · |M| with rewards
0 and 1, the same numbers can be computed in time O(poly(c · |M|) · log r) for
general Markov chains. Finally, we can compute the numbers Prs(aU≤r b) in the
same time by first applying the following operations to each b-labelled state s:
Make s absorbing, add a to λ(s), and set rew(s) = 1; in the resulting Markov
chain each state s fulfils Prs(a U≤r b) = Prs(a U=r b).

Now let φ = P▷p(a U≤? b). Our algorithm for evaluating φ at state s of a
Markov chain M is essentially the same algorithm as for MDPs. Hence, we first
compute the probability q := Prs(a U b). If either p > q or p = q and ▷ = >,
then valφ(s) = ∞, by Lemma 10. If p < q, then the same lemma entails that
valφ(s) ≤ r := kncmn, where n = |λ−1(a)|, m is the least denominator of any
transition probability, and k = max{−⌊ln(q−p)⌋, 1} ≤ poly(M)+∥p∥. Hence, we
can determine valφ(s) using an ordinary binary search in time O(poly(c · |M|) ·
log2 r) = O(poly(c · |M| · ∥p∥)). Finally, the same method can be applied if p = q
and ▷ = ≥ since Lemma 10 tells us that valφ(s) ≤ nc in this case.

Theorem 16. Queries of the form P≥p(aU≤? b) or P>p(aU≤? b) can be evaluated
in pseudo-polynomial time on Markov chains.
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6 Conclusions

Although many researchers presented algorithms and several sophisticated tech-
niques for the PCTL model checking problem and to solve PCTL and PRCTL
queries, the class of quantile-based queries has not yet been addressed in the
model checking community. In this paper, we presented algorithms for qualita-
tive and quantitative quantile queries of the form P▷◁p(a U≤? b) and their duals
∃P▷◁p(a U≤? b). We established a polynomial algorithms for the qualitative case
and exponential algorithms for all but one of the quantitative cases. Although
the algorithms for the quantitative cases rely on a simple search algorithm for
the quantile, the crucial feature is the bound we presented in Lemmas 8 and 12.
These bounds might be interesting also for other purposes. There are several
open problems to be studied in future work. First, the precise complexity of
quantitative quantile queries is unknown and more efficient algorithms might
exist, despite the NP-hardness shown in [14]. Second, we concentrated here on
reward-bounded until properties, and by duality our results also apply to reward-
bounded release properties. But quantile queries can also be derived from other
PCTL-like formulas, such as formulas reasoning about expected rewards, e.g. in
combination with step bounds.
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