
Fakultät Informatik, Institut für Systemarchitektur, Lehrstuhl Rechnernetze

PHD THESIS

for obtaining the academic degree of

DOKTOR-INGENIEUR (DR.-ING.)

Community based Question Answer
Detection

Klemens Muthmann
born 04/27/1984 in Löbau

First Reviewer: Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

External Reviewer: Prof. Dr. Alexander Löser (BEUTH Hochschule für Technik Berlin)

Submitted on 10/09/2013

Acknowledgment

This thesis was only possible because of the support of many great persons.

My supervisor Professor Alexander Schill read many early drafts of the individual chapters

and provided valuable feedback. He was very patient in times I did not make as much

progress as I was supposed to and he always allowed me much room in between my other

tasks to finish this thesis

I also got a lot of assistance from my colleagues in Dresden. Among them, David, Philipp,

Miranda and Daniel are the ones who provided me with the most feedback. Learning to

know these people was a great time. Thank you for your help and your support.

Finally, I would like to thank my family for the support I received over the years. My grand-

parents, even though they could not witness this project anymore, helped me acquire the

skills I needed to finish it. My parents always kept me motivated, and tried to interfere not

too much with the actual process of writing.

Lastly but most importantly, big thanks go to my great girlfriend Anja who stayed by my

side all these years and provided me with enough room to finish the thesis. For her it

meant spending many evenings or weekends without me, which she endured with little

complaints.

There are many other people who supported me over the years. As there is not enough

room to mention them all, I still want to thank them for all the backup I received.

III

Abstract

Each day, millions of people ask questions and search for answers on the World Wide Web.

Due to this, the Internet has grown to a world wide database of questions and answers,

accessible to almost everyone. Since this database is so huge, it is hard to find out whether

a question has been answered or even asked before. As a consequence, users are asking the

same questions again and again, producing a vicious circle of new content which hides the

important information.

One platform for questions and answers are Web forums, also known as discussion boards.

They present discussions as item streams where each item contains the contribution of one

author. These contributions contain questions and answers in human readable form.

People use search engines to search for information on such platforms. However, current

search engines are neither optimized to highlight individual questions and answers nor to

show which questions are asked often and which ones are already answered.

In order to close this gap, this thesis introduces the Effingo system. The Effingo system is

intended to extract forums from around the Web and find question and answer items. It

also needs to link equal questions and aggregate associated answers. That way it is possible

to find out whether a question has been asked before and whether it has already been an-

swered. Based on these information it is possible to derive the most urgent questions from

the system, to determine which ones are new and which ones are discussed and answered

frequently. As a result, users are prevented from creating useless discussions, thus reducing

the server load and information overload for further searches.

The first research area explored by this thesis is forum data extraction. The results from this

area are intended be used to create a database of forum posts as large as possible. Further-

more, it uses question-answer detection in order to find out which forum items are questions

and which ones are answers and, finally, topic detection to aggregate questions on the same

topic as well as discover duplicate answers. These areas are either extended by Effingo,

using forum specific features such as the user graph, forum item relations and forum link

structure, or adapted as a means to cope with the specific problems created by user gener-

ated content. Such problems arise from poorly written and very short texts as well as from

hidden or distributed information.

V

Contents

Acknowledgment III

Abstract V

1 Introduction 1

1.1 Types of forums . 2

1.2 Definition of a Web Forum . 2

1.3 Scenario and Use-case . 4

1.3.1 The Effingo Vision . 5

1.4 Research Theses . 8

1.4.1 Post Aggregation . 8

1.4.2 Question/Answer Identification . 8

1.5 Research Questions and Outline . 8

2 Basics 11

2.1 Evaluation . 11

2.1.1 Measures . 11

2.1.2 Cross-Validation . 13

2.2 Information Retrieval . 13

2.2.1 Bag of Words Model . 14

2.2.2 The tf-idf Model . 14

2.2.3 Kullback Leibler Divergence / Information Gain 15

2.2.4 Cosine Similarity . 15

2.3 Classification Algorithms . 16

2.3.1 Naïve Bayes Classification . 18

2.3.2 Perceptron Algorithm . 19

2.3.3 Support Vector Machine . 19

2.3.4 Bagging . 21

2.3.5 Decision Tree . 22

2.3.6 Rule Based Classification - Ripper Algorithm 23

2.4 Summary . 24

VII

CONTENTS

3 Forum Data Acquisition 25

3.1 Overview of the Focused Forum Crawler Process 26

3.2 Structure of an HTML page . 29

3.3 Web Forum Retrieval . 30

3.4 Features for Focused Forum Crawling . 31

3.4.1 Page Preprocessing . 33

3.4.2 HTML Structure . 37

3.4.3 Uniform Resource Identifier . 38

3.4.4 Metadata . 38

3.4.5 Interactive Elements . 39

3.4.6 Page text . 40

3.5 Performance of Focused Forum Crawling . 41

3.5.1 Dataset . 42

3.5.2 Experiments . 42

3.5.3 Result Discussion . 43

3.6 Forum Page Clustering . 45

3.6.1 Existing Approaches . 45

3.7 Features for Forum Page Classification . 46

3.7.1 Page URL . 46

3.7.2 Link-to-Text Ratio . 47

3.7.3 Height of List Elements . 47

3.7.4 Page Flipping Links . 48

3.8 Results of Forum Page Classification . 49

3.8.1 Dataset . 49

3.8.2 Experiments . 50

3.9 Forum Data Extraction . 51

3.9.1 Extracted Entities . 51

3.9.2 Overview of Data Extraction Approaches 56

3.9.3 Unsupervised Data Extraction . 56

3.9.4 Existing Forum Data Extraction Approaches 61

3.10 Forum Data Extraction Algorithm . 61

3.10.1 Segmentation . 63

3.10.2 Post Identification . 65

3.10.3 Split/Merge/Refine - Algorithm . 72

3.10.4 Template Detection - Algorithm . 74

3.10.5 Tag Path Classification . 76

3.10.6 Thread-Identifier Extraction . 78

3.10.7 Summary . 80

3.11 Evaluation of Forum Data Extraction . 80

3.11.1 Post Identifier Extraction . 81

VIII

CONTENTS

3.11.2 Extraction Patterns . 81

3.11.3 Entity Classification . 82

3.11.4 Thread Identifier Extraction . 83

3.11.5 Comparison to Existing Approaches . 83

3.12 Summary . 85

4 Finding Question and Answer Posts 87

4.1 Question/Answer Detection . 87

4.1.1 General Question/Answer Detection 88

4.1.2 Speech Act Analysis . 93

4.1.3 Question/Answer Detection in User Generated Content 96

4.1.4 Automatic Question/Answer Systems 101

4.1.5 Summary . 101

4.2 Contribution Typology . 102

4.2.1 Data Used to Identify the Forum Contribution Typology 103

4.2.2 Contribution Types . 103

4.2.3 Preparing the Dataset . 106

4.2.4 Calculation of Inter-Annotator Agreement 107

4.3 Feature Engineering for Question/Answer Detection 109

4.3.1 Token Level features . 109

4.3.2 Sentence Level Features . 111

4.3.3 Post Level Features . 112

4.3.4 Thread Level Features . 113

4.3.5 Forum Level Features . 116

4.3.6 Summary . 117

4.4 Experiments . 117

4.4.1 Experimental Setup . 117

4.4.2 Classifier Selection . 119

4.4.3 Feature Selection . 120

4.4.4 Results and Discussion . 128

4.4.5 Comparison of Results from Cong, Wang, Lin, Song & Sun (2008) and

Hong & Davison (2009) to Effingo . 135

4.4.6 Discussion . 141

4.5 Conclusion . 142

5 Example Applications 145

5.1 Near-Duplicate Question Aggregation . 145

5.1.1 Topic Detection . 146

5.1.2 Question Aggregation . 147

5.1.3 Evaluation . 150

IX

CONTENTS

5.1.4 Summary . 154

5.2 Other Applications . 154

5.2.1 Stakeholders . 155

5.2.2 Applications . 156

5.3 Summary . 159

6 Conclusion 161

6.1 Summary . 161

6.1.1 Focused Forum Crawling and Extraction 163

6.1.2 Classification of Forum Contributions 165

6.1.3 Dataset for Forum Contribution Types 166

6.2 Future work . 166

A Dataset Details 173

B Bibliography 175

X

1 Introduction

Since the time Berners-Lee & Mark (2000) proposed the Semantic Web and postulated that

“[t]he ‘intelligent agents’ people have touted for ages will finally materialize” much work

has been done on making the World Wide Web machine processable. The Internet, and es-

pecially the World Wide Web, is a huge collection of a large part of the knowledge available

to humankind. However, in contrast to databases vast parts of this knowledge are still not

intended to be used for automatic information querying. This is particularly true for con-

tent created by often technically inexperienced users in the form of free text. Even though

this free text might be based on grammatical and lexical rules of natural language, it usually

does not follow any consistent formal schema. It therefore is not machine processable and

because there is so much of this unstructured user generated content available, it is not an

easy task to find out whether a piece of information already exists or not.

Most user generated content is located in systems like Facebook1, Twitter2 or so called Web

forums, bulletin boards or Question/Answer sites. Such systems are summarized as social

media sites, because their content is produced by the community of all Web users. A large

part of such content is located in Web forums. A forum is used to discuss current topics or

to ask questions about specific problems. Especially Question/Answer sites like StackOver-

flow3 contain a huge number of high quality questions and their correct answers. Like the

Web, a forum is a growing collection of information and although it is possible to answer

many questions instantly using the information available, the information overload often

hides relevant discussions from their audience. In order to address this problem, compa-

nies like Google or Microsoft created search engines which crawl the Web and try to point

people to the information they seek. However, since search engines—either the forums’ or

global ones—usually only match keywords to documents, they are not optimized to provide

users with the answer they seek. So even though information might be available, users are

not able to find it and thus repeatedly create new discussion threads about similar topics.

Thereby, the forums grow even faster and get more and more confusing, leading to more

and more duplicated information—a vicious circle.

Although there are several algorithms which are able to find similarity relations in databases

or the Web, these algorithms either only capture very close text similarity or very broad

definitions of topical similarity. In addition, most of them work on whole documents such

1http://facebook.com
2http://twitter.com
3http://stackoverflow.com/

1

1 Introduction

as Web pages rather than individual forum posts and none of them are focused on finding

similar questions in online forums. Therefore, this thesis presents Effingo, a system which is

able to find similar questions in Web forums and provide an aggregated view on the answers

that are available for an aggregated question on the Web.

In order to introduce Effingo, this chapter starts with a definition of Web forums and similar

systems constituting the research domain for the rest of the thesis. It continues with an

application scenario and the vision of the system, and closes with a description of research

tasks in the form of two theses and four research questions.

1.1 Types of forums

No forum is quite like any other. Indeed, there are several types of forums.

Very often one encounters a forum with short threads, opened by many different users,

but answered by only a few. These are typical Question/Answer forums, usually containing

one question and often a direct answer per thread. Note that such forums might be Ques-

tion/Answer sites such as http://stackexchange.com but there are also classical forums

showing that user behaviour such as https://forums.oracle.com/. If there are more than

two contributions in such a forum, they usually contain clarification requests or thank you

contributions.

Other forums contain very long threads with discussions that are updated for months until

interest in the topic fades. Such forums usually collect updates on some event or topic. They

are using a forum engine, but they are more like a collaborative Blog or Wiki. One example

for such forums is the German forum on www.scharesoft.de. On this forum, users discuss

about plugins to “The Elder Scrolls” games. Each plugin has its own thread and all questions

about that specific plugin are grouped into the same thread.

This work is going to concentrate on the type of Question/Answer forums.

1.2 De�nition of a Web Forum

The following paragraph explains and defines online discussions and sets them within the

context of the social Web and the Web 2.0. Figure 1.1 shows a model for streams of user

generated Web items. The model does not only fit Web forums, but also news feed streams,

Twitter streams, Facebook messages etc. Such streams are quite similar to Web forums and

the techniques discussed in this work might be applicable to them as well. Without loss of

generality this thesis is going to focus on Web forums as one source for many item streams

on similar topics.

The model in Figure 1.1 shows that an online discussion—commonly referred to as thread—

is an item stream consisting of several items also called posts, forming the discussion flow.

Within each single thread, there is a specific start post which opens the discussion. The rest

2

http://stackexchange.com
https://forums.oracle.com/
www.scharesoft.de

1.2 Definition of a Web Forum

Item
Link
Title
Publication Date
Update Date
Text

Item Stream Stream Group

Stream Source

Source Name
Source Address

Item Type

QUESTION
OTHER
CORRECT_ANSWER
UNCERTAIN_ANSWER
HELPFUL_ANSWER
VERY_HELPFUL_ANSWER

children

users

author
type

parent

items

parent

Author

Items created
Streams started
Author rating
Registration date
Username

predecessor

start item 1 *

Figure 1.1: Typical structure of a Web forum.

is usually ordered by creation date. Each post, except for the first one, has a predecessor.

Note that two items might have the same predecessor. That way, posts form a tree structure.

This models the case that discussions may split and continue in different directions. Such

a feature is not supported by all online discussion platforms and is mostly used in classical

forums which present one contribution per Web page. Another type are bulletin boards,

showing multiple posts on each page usually ordered by their time of creation.

Some online discussion pages support the rating of answers and the marking of the correct

answer. Therefore, each item belongs to a specific category depending on whether it is a

question, an answer of a certain type (i.e. correct answer, uncertain answer, helpful answer

or very helpful answer) or some other contribution. This is one of the central features of

Question/Answer sites. Hence, Question/Answer sites usually do not order answers by

publication date but rather by answer quality with the highest ranking answer at the top.

They also support the discussion of answers in a special comments section per answer. This

is also mapped by the tree structure of posts in Figure 1.1.

Item streams (i.e. threads) are a special kind of stream source. Stream sources form a tree

as well, usually starting at the forum level. Sometimes the tree only has a depth of one if

the forum does contain the threads directly. However, forums may also be organized into

an arbitrary hierarchy of subforums. Figure 1.2 shows an example for how subforums are

presented on forum.polar.fi. Those subforums either contain other subforums, a list of

item streams or both. Since forums and subforums group item streams concerning the same

topic they are called stream groups in Figure 1.1.

3

forum.polar.fi

1 Introduction

Figure 1.2: Example of a forum containing subforums on diverse topics.

Each forum has a number of users writing the contributions. One of those users is responsible

as author for each item.

The following definitions describe the differences between contributions and posts as well

as discussions and threads more formally. Definition 3 and Definition 4 are provided by

Lin, Yang, Cai, Wang, Wang & Zhang (2009). Definition 1 and Definition 2 are created for

the purpose of this work specifically.

Definition 1 Contribution A contribution is the text a user contributes to an online community,
with the intention on extending the content available to the community. Contributions are usually
displayed as posts. Spam contributions are contributions as well, even though their intention is
malignant.

Definition 2 Discussion A discussion is an exchange of user contributions via the Web. In Web
forums a discussion is usually displayed in the form of a thread on a thread page.

Definition 3 Post (Lin et al. 2009) A post is a user-submitted content at a particular time stamp.
Posts are contained in threads, where they appear as boxes one after another. If a post is not the first
of the corresponding thread, it is referred to as a reply. Posts are physical entities shown on a forum
thread page to present one forum contribution.

Definition 4 Thread (Lin et al. 2009) A discussion thread (without ambiguity we use thread here-
after) is a series of posts, usually displayed by default from the oldest to the latest.

This means that a post is the visual representation in the form of rendered HTML code of a

user’s contribution. The contribution is only the content the user provided to the community

and is independent of how it is presented on the forum. The same is true for the relation

between a thread and a discussion.

1.3 Scenario and Use-case

Imagine the following scenario: A user is searching for a solution to a specific problem on

the Internet. They enter a few keywords into a search engine and get a result list with some

results from online discussions containing the keywords they entered.

If their problem is prominent or generic enough, they will get a huge amount of discussions

from different forums, blogs, etc. In order to find a solution for the problem, they have an

4

1.3 Scenario and Use-case

intimidatingly extensive research task to do. They need to look through all the results, find

the discussions that do not only share some keywords, but capture the queried problem and

find one or several of them containing a helpful answer. If there are multiple answers they

might be contradictory or complementary. The user needs the big picture to make an actual

decision on how to solve the problem. The worst case scenario might be to find out that

there is no solution to their problem, after having wasted several hours of reading.

If the problem is not prominent or generic enough those few people who already discussed

it might have used very different sets of words. Thus, the user only finds a few pages, which

contain a random subset of keywords from their query. The chance of finding at least the

correct question could be increased if users formulated complete questions. However, this

is not how search engines are used nowadays.

In order to solve their problem users need a system that collects all duplicates of a question

and aggregates all answers. That way, if the system is able to present the user with at least

one existing question equal to their own, it has the complete picture of what is going on

about that question. The user therefore could skip reading all discussions and just press a

big red button labeled: “just show me the answer”. Since the system already knows every-

thing about the question, users either get the one and only answer, they get several answers

with similar ones grouped together and contradictory ones shown separately or they get the

information that no answer to their problem was found in any discussion on the World Wide

Web. In the last and worst case the system would ideally already indicate which forum has

the highest probability of getting an answer to that question and would provide the user

with the ability to directly post their question there. In addition, the user may participate

in ongoing discussions on their questions provided by the system or they might try to solve

the problem themselves, thus providing answers for future searchers. In the last case they

could be sure to do meaningful work in solving the question since it has not been solved

before, and thus have the good feeling of providing something to the community.

1.3.1 The E�ngo Vision

In order to implement a system as described in the last section a multi-step processing of

contributions should be applied as shown in Figure 1.3.

First of all the system needs to find every forum and every thread on the World Wide Web

and put it into an index similar to a search engine. It also needs to keep those threads up-

dated and continuously add new threads to the index. This is not an easy task since Effingo

has no direct database access to all forums. Therefore, a focused crawler is required which

crawls the Web but selects only pages from Web forums and chooses the ones containing

the user generated content. From these pages an extractor needs to get data fields, thereby

reconstructing the database of the forum operator.

The next step is to identify irrelevant contributions and select question and answer contri-

butions. We define a question as follows:

5

1 Introduction

COLLECT
Contributions

CLASSIFY
Contributions

GROUP
Questions
BY Topic

GROUP
Answers

BY
Ques. Group

RANK
Answers

● Question
● Answer
● Other
● ... Q

A
O

O

Q
A

Thread 1 Thread 2

A
O

O

Q

A

Question Group Ranked Answers

A1:

result list or listsresult list or lists

?

Just show me the
Answer

Just show me the
Answer

Yes! This is my QuestionYes! This is my Question

A2:

A3:

Figure 1.3: The Effingo process overview.

Definition 5 A question contribution is a contribution written by an author who is a forum user
(questioning user) with an Information Need.

We also define an answer as:

Definition 6 A contribution with the intention to satisfy the information need provided by a ques-
tion.

After we know which of the posts are questions and which of them are answers, we need

to find equal questions. It is not easy to define what an equal question is. A first definition

could be:

Definition 7 Topical Question Equality 1: Two questions are equal if there is an answer to both,
satisfying both questioning users’ information needs. The answer is not required to exist in the form
of a forum post but it needs to be hypothetically possible.

However, it is possible to aggregate unrelated questions and still match this definition if an

answer is so generic that it matches multiple questions. For example, restarting a computer

is a valid solution for many problems and thus an answer such as “Turn your PC off and on

again!” would group many unrelated questions. We thus need to reduce the set of answers

that are valid for the definition of “Topical Question Equality”. As already explained, very

generic answers are not suitable even though they might be correct. However, even if a

very specialized answer is available, it might still be correct for other questions, at least in

some sense. In addition to an answer’s precision we also require its correctness. Both span a

two-dimensional space were we could point out the relation each answer has to a question.

6

1.3 Scenario and Use-case

In order to improve Definition 7 the most special and most correct answer is required. This

leads to the following updated definition.

Definition 8 Topical Question Equality 2: Two questions are equal if it is possible to find a most
correct and most special answer, satisfying both questioning users’ information needs. The answer is
not required to exist in the form of a forum post but it needs to be hypothetically possible.

Consider for example the question “How to improve my running time”. “Eat a healthy

diet!” is a correct answer for that question but also for “How do I loose weight effectively?”.

Since we do not want to group both questions but we might want to group the first with

“How do I win the marathon?” another correct but more specialized answer might be “Do

interval training while running!”. This answer is very specialized and very correct for the

first and the third question. It is in some sense also correct for loosing weight, but not as

correct as for the other two questions.

This definition is very subjective. It is not intended to function as the basis for an algorithm,

but rather as a means to provide a human evaluator with an idea of what the expected

results from an algorithm should look like.

After questions are grouped, we have at least one or possibly several threads associated

with each question. Hopefully, at least one thread per question contains an answer. If there

are multiple answers, some of them might be topical duplicates as well although topical

duplicates might be just as hard to define as for equal questions. The following definition

will be used:

Definition 9 Topical Answer Duplication: An answer A is a topical duplicate of another answer
B if both are answers to the same question and if A provides no additional information over B for
answering their shared question.

Those duplicates are grouped during the fourth step from Figure 1.3.

Some of the answers might be wrong, some might be of low quality, others might be incom-

plete but hopefully some of them are correct and helpful to all users with the same question.

In order to improve the visibility of correct high quality answers, a ranking is applied on all

answers per question group in a final step.

The process as presented here would require to preprocess a complete corpus of forum con-

tributions and store the grouped questions with their ranked answers statically. Adding

new questions would mean reprocessing the whole corpus again. A better solution would

be an online system, which carries out steps three to five for each user query. Such a system

would continuously crawl the Web and extract forum content and classify contributions (i.e.

steps one and two). For each user query it would try to find the most relevant questions,

group them according to step three and wait for the user to choose the correct question. It

then would prepare the answers from that question group, according to steps four and five.

The focus of this work will be steps one “COLLECT Contributions” and two “CLASSIFY

Contributions”. Chapter 5 provides a brief overview and a simple approach to group ques-

tions and answers. There are algorithms for step five, which can provide substitutes for now.

7

1 Introduction

For example Agichtein, Castillo, Donato, Gionis & Mishne (2008) provide a way to assess

the quality of a forum contribution which may be used for ranking contributions.

1.4 Research Theses

The work is based on two theses presented in this section. Both are structured into a claim

and a thesis. The claim is a prerequisite. Only if the claim is true we will be able to prove

the thesis.

1.4.1 Post Aggregation

The first thesis is about extracting posts automatically from all over the Web.

Claim 1 Even though user generated questions and answers are distributed over different

platforms on the World Wide Web, all of them follow a common basic schema.

Thesis 1 It is possible to extract the data, common to all user generated questions and an-

swers from all over the Web automatically and with a low margin of error.

1.4.2 Question/Answer Identi�cation

The second thesis deals with the automatic identification of questions and answers from a

Web forum. It consists of the following claim and thesis:

Claim 2 Forums on the World Wide Web contain user posts with the intent to ask a question

or to answer a question.

Thesis 2 It is possible to separate posts—with the intention of asking a question and an-

swering a question—from each other and from posts with some different intention

automatically and with high reliability.

The two theses cover step one and step two from Figure 1.3. There are three reasons for

setting the focus on these two. First, the research areas of topic detection, question answer

linking and answer ranking are well established. There are surely some research topics but

our examinations of existing works showed that solutions for the first two steps are not as

clear. Second, starting with the first steps removes the necessity of simulating the results

from unknown steps. Starting with a later step would us to generate the results of prior

steps using some naïve algorithm. Third, focusing on a small number of steps allows us to

put more effort into each individual step, instead of doing a superficial analysis of all five.

1.5 Research Questions and Outline

This section provides an overview of the research questions this thesis is going to answer as

well as a brief outline of the following chapters.

8

1.5 Research Questions and Outline

Following this introduction, Chapter 2 gives a brief summary of basic terms and algorithms

used throughout this work. If you are well versed in machine learning you may safely skip

this chapter.

After Chapter 2 the core chapters show validity of the theses discussed in the previous sec-

tion. They are raising several research questions. For thesis 1 we need to find and extract

Web forum posts automatically. Therefore the first research questions is:

1: How to identify a Web forum among other Web sites?

The second question asks for the data available on Web forum sites and how to access it:

2: What is the common schema for user generated questions and answers on the World Wide Web
and how can we extract it from HTML source code?

Answers to both questions are discussed in Chapter 3. The chapter starts by describing

a solution for question 1 from Section 3.3 to 3.5 and thereafter handles question 2 from

Section 3.6 to 3.11.

For thesis 2 we claim that there are question and answer contributions in Web forums. In

order to demonstrate this, it is necessary to identify the contribution types encountered in

a Web forum and prove that questions and answers are among them. The third research

question thus is:

3: Which typology is appropriate for user generated content in online forums?

It should be possible to show the answer to this question by examining a large slice of con-

tent from some big forum. The answer to this question is discussed in Section 4.2 of Chap-

ter 4.

Having such a typology, questions and answers must be separated from other contribution

types. So we need to find an answer to the question:

4: Is there an approach to map user contributions into a forum contribution typology automatically?

This answer is discussed in Chapter 4. A machine learning approach, as explained in Sec-

tion 4.3, is used as a solution and evaluated on a large corpus of real world forum data in

Section 4.4.

After answering those research questions, Chapter 5 provides a short overview of possible

applications of the proposed algorithms and Chapter 6 concludes with a summary and an

outlook on future work.

9

2 Basics

This chapter presents some basic techniques which are applied throughout this thesis to de-

velop solutions for the research questions discussed in the last chapter. The research ques-

tions are concerned with how to find and extract forum posts on the Web and assigning

types based on each posts content. Therefore, this chapter presents basics from the areas

of information retrieval and extraction as well as classification with a focus on supervised

classification methods. However, the chapter starts with some of the most common evalua-

tion techniques used to measure the success of algorithms from those research areas. These

measures are used in the following chapters to show how well the presented concepts work.

The chapter continues with established information retrieval techniques. Such techniques

are used in state of the art algorithms for forum data retrieval and question answering. Fi-

nally, the chapter briefly presents some of the most common classification algorithms. Those

algorithms are used in Chapter 3 and 4.

2.1 Evaluation

The following sections present the principles and measures used for evaluating the degree

of success of the theses from Chapter 1.4. Since most solutions presented in this document

are based on classification, the sections concentrate on typical classification measures. These

measures are frequently used in related work and thus increase comparability.

2.1.1 Measures

There are multiple measures available to assess the quality of an information retrieval or

classification algorithm.. They are based on the idea that the goal of each algorithm is to

identify a set of information entities—often called documents—from among a larger set of

similar or less similar entities. Examples are the retrieval of a number of Web pages based on

a user’s query from a larger set of Web pages or the classification of a text as either “spam” or

“no spam”. There are two possible error cases as well as two possible indicators for success

for such problems. An error is either an element in the result set which does not belong there

or an element which should be included in the result set but is not. The first is usually called

a false positive (FP) while the second is a false negative (FN). Correct results are either items

that are correctly included in the result set also called true positives (TP) or items that are

correctly excluded from the result set, called true negatives (TN). Figure 2.1 visualizes these

11

2 Basics

sets as subsets of the population the algorithm works on.

Figure 2.1: Result types used to evaluate information retrieval and classification algorithms.

Typical measures calculated from this layout are accuracy, recall, precision and F -Measure.

Accuracy calculates the ratio of good results among all items. It therefore follows Equa-

tion 2.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

The biggest problem with accuracy is that it easily creates good values for populations con-

taining few positive items. So if an algorithm searches for Web pages from the set of all

pages called pages and only five of all pages on the Web are correct results, that algorithm

can achieve very high accuracy (close to 1.0) by simply discarding all pages as wrong. In

this case, TP becomes 0 and TN is the number of pages minus 5. Thus, Equation 2.1 boils

down to |pages|−5|pages| . Assuming |pages| is much larger than 5, equation 2.1 results in close to 1.

For this reason, the measures of precision and recall are introduced. Precision results from

the good entities among all resulting entities while recall is the proportion of good entities

among all expected ones. Precision is calculated using Equation 2.2 and recall is calculated

using Equation 2.3.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

12

2.2 Information Retrieval

In addition, there is a measure to avoid having to look at two numbers for every algorithm

result. This measure is called F -measure as in “Fallout”, because it describes the fallout of

the algorithm. The F -measure is the harmonic mean of precision and recall, as shown in

Equation 2.4.

F1 = 1 · Precision ·Recall

Precision + Recall
(2.4)

Actually, Equation 2.4 is a special case called the F1-measure, applying equal weight to recall

and precision. The general form is presented in Equation 2.5.

Fβ = (1 + β2) · Precision ·Recall

β2 · Precision + Recall
(2.5)

Using this equation it is possible to apply more weight to either precision or recall. Common

weights are the F0.5-measure or the F2-measure with values of 0.5 or 2 for β respectively.

2.1.2 Cross-Validation

Some classifiers and some classification tasks show a high variance depending on the train-

ing set used to build the classifier. In order to calculate meaningful performance measures

for such classifiers, multiple runs using different subsets of the gold standard are required.

The typical approach is called cross-validation. Cross-validation is parameterized with a

number of folds for the number of runs. So a 5-fold cross-validation does 5 runs over the

gold standard set, while a 10-fold cross-validation does 10 runs. For a test on the whole

dataset, each fold uses a different training and test set. This depends on the number of

folds. The input gold standard data set is divided by the number of folds. Each part is used

as a test set for one run, while the remaining input items are used for training purposes.

So for a 10-fold cross-validation the input set would be split into 10 equally sized partitions

and the final performance measures are calculated from the results of 10 runs using each of

the 10 test sets exactly once as test set. A typical value for the number of folds according to

the literature, for example McLachlan, Do & Ambroise (2005, p. 214), is 10. However, using

only 5 folds produces reasonable results as well. Reducing the number of folds to 5 is for

example necessary if single runs are too expensive to carry out 10 of them.

2.2 Information Retrieval

The discipline of information retrieval aims at retrieving documents from a larger collection

of documents with arbitrary data thus satisfying some specific information need. The most

common implementation of an information retrieval system is a search engine like Google1.

Such a search engine uses the World Wide Web as a document corpus. The user enters his

information need, using a free text query to the search engine which retrieves matching

1https://www.google.com/

13

2 Basics

documents, using an index of documents combined with some kind of similarity metric.

More sophisticated information retrieval systems provide the particular piece of information

the user is searching for instead of the document containing the information. Such systems

are usually built around information extraction systems which collect information and try

to understand it by applying semantic data structures like ontologies.

The Effingo system aims to be a second grade information retrieval system. It provides fo-

rum entries extracted from forum pages to satisfy user information needs. For this purpose

some basics of information retrieval are briefly explained in the following.

2.2.1 Bag of Words Model

The Bag of Words Model is one way to index documents for an information retrieval system.

It is also one of the most common approaches. The Bag of Words Model assumes each

document to be a bag of words, while ignoring the word order. Each document is indexed

under each of its words. In the pure Bag of Words Model the occurrence of each word is

counted. Documents are retrieved based on the comparison between a user query and the

documents’ bag of words. Each word from the user’s query is compared to the words in

each document. Documents are ranked higher if they contain one of the words from the

user’s query with a higher frequency. This measure is called token frequency (tf).

A special case for the Bag of Words Model is the Set of Words Model. In this even simpler

model only the presence of a word is important, not its frequency of occurrence. The ad-

vantage of this is that very common words are not highlighted that much and do not mask

uncommon but specific words. As a disadvantage, documents containing a very specific

word multiple times are not ranked higher than documents containing the same specific

word only once.

2.2.2 The tf-idf Model

The token frequency/inverse document frequence (tf-idf) model is slightly more complex

than the Bag of Words Model. However, it is the basis for the indices used by most major

search engines. It combines the advantages of the Bag of Words and Set of Words Model

while avoiding the disadvantages of both. It nevertheless features the big disadvantage

of the need to know the whole vocabulary in advance. This is usually not possible for

expanding document collections. It is however possible to update the vocabulary once in a

while and still get reasonable values with a small error margin.

The tf-idf model is based on two measures. The token frequency (tf) is the number of occur-

rences of a token within a document as shown in Equation 2.6, where f(t, d) is a function

counting all occurrences of term t in document d. The inverse document frequency is the

inverse of the number of documents a token occurs in, shown in Equation 2.7. It is com-

mon practice to apply a logarithmic scale as a dampening factor for very common or very

14

2.2 Information Retrieval

uncommon terms. So the tf-idf measure may be calculated according to Equation 2.8.

tf(t, d) = f(t, d) (2.6)

idf(t,D) = log
|D|

| {d ∈ D : t ∈ d} |
(2.7)

tfidf(t, d,D) = tf(t, d)× idf(t,D) (2.8)

That way, the tf-idf model raises the importance of very specific terms frequently occurring

in only a few documents and lowers the importance of unspecific terms occurring in most

documents.

2.2.3 Kullback Leibler Divergence / Information Gain

The Kullback Leibler Divergence (Kullback & Leibler 1951) is a measure of the difference of

two probability distributions. In information retrieval it is used to calculate the similarity

of two documents based on language models calculated from the words occurring in both

documents. Each language model defines a probability distribution over the occurrence

probability of the words from both documents. So, assuming there are two language models

defined by the probability distributions P and Q, the Kullback Leibler Divergence may be

calculated using Equation 2.9

DKL(P ‖ Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i). (2.9)

In case of both models being equal, the divergence is equal to one. DKL approaches zero as

the difference between P and Q increases.

The Kullback Leibler Divergence is also known as Information Gain which is the basis for the

Query Likelihood ranking. Query Likelihood ranking is the most simple ranking algorithm

and enjoys wide coverage among researchers in Information Retrieval.

Information Gain is also used to evaluate the use of some attribute v with values v1 . . . vn
in distinguishing documents. In this sense, it is a ranking scheme arranging attributes as to

how well they distinguish different document classes. The query language model is created

from the possible values of attribute v in this case, while the document language model is

created from the true distribution of the attribute values over a training set. This approach

is for example used to build decision trees as explained in Section 2.3.5.

2.2.4 Cosine Similarity

Another similarity metric used to compare documents in information retrieval is the cosine

similarity. It is based on the so called vector space model. The vector space model is based

on the values calculated for each word using the bag of words or tf-idf model. Those val-

ues form a vector representing a document in the space of all words. This is a very high

15

2 Basics

dimensional space. Fortunately every document only contains a few of those words. The

value for all other words is zero. Such a vector is therefore called a sparse vector. The cosine

similarity is calculated as the cosine of the angle θ between two document vectors ~v and ~u

using equation 2.10.

cos(θ) =
~v · ~u
‖~v‖‖~u‖

(2.10)

There is a big difference between cosine similarity and the common euclidean distance with

regard to the similarity calculation. It becomes apparent when you scale one of the two vec-

tors that are compared. If you scale up one vector by a factor of two, the distance between the

two documents doubles and so their similarity is halved using euclidean distance. The angle

between both vectors stays the same and so, scaling has no influence on cosine similarity.

This means that if you take a document and append it to itself and compare the appended

version to the original version, both documents will still be identical using cosine similar-

ity, whereas the distance will increase using euclidean distance. In practice this means if

one document is very large and contains a term frequently it can still be very similar to a

small document where the same term occurs only once. This is important for information

retrieval, since often a very short user query is compared to a long result document.

2.3 Classi�cation Algorithms

This section provides an overview of the classification algorithms used in this work. For

additional information see for example the book by Manning, Raghavan & Schütze (2009,

ch. 13, 14, 15) or Mitchell (1997).

This is not intended as a complete overview of classification methods but rather a selection

of some of the more prominent approaches and a brief introduction to the algorithms used

in this work and by authors of related publications. The explanations are focused on super-

vised algorithms. This means that all of the presented algorithms rely on human labeled

training data to build a classifier for predicting unlabeled data.

Classification is about searching a function based on some training examples in some multi-

dimensional space spanned by the features of the training examples. The training examples

are also called instances. Every classification algorithm is based on the assumption that

this function generalizes to unseen instances and thus allows an accurate prediction of their

value. The function, called hypothesis or classifier, might be discrete valued or continuous

valued. Discrete valued functions are most important for this work.

It is almost impossible to create a hypothesis for the training examples and further yet un-

seen examples from the same population of data items. As a consequence, there is always a

tradeoff between either fitting the training examples and the quality of the classifier’s pre-

diction of unseen items. If a classifier tends to trend to one or the other direction, it is either

called an underfitting or an overfitting classifier. Classification algorithms are arranged ac-

cording to how much they tend to overfit or underfit training data, which is also called the

16

2.3 Classification Algorithms

variance or the bias of the classifier. This means that some classification algorithms tend to

produce overfitting classifiers, while others tend to create underfitting ones. Even though

this thesis is focused on discrete valued classifiers, the following explains the concepts of

bias and variance for a continuous valued example, since this is easier to visualize. So con-

sider the three continuous valued hypotheses for a one-dimensional feature space (the sec-

ond dimension is the predicted value) in Figure 2.2. The hypotheses represented by the

feature

prediction prediction

feature feature

prediction

Figure 2.2: Example of a high variance classifier on the left, a high bias classifier in the middle and a
balanced classifier on the right.

three functions drawn as black lines, one per picture. The black dots are the training exam-

ples used to create these classifiers. The figure shows that the hypotheses on the left and in

the middle are extreme prospects of matching the three training instances. While the first

will not generalize well to new examples because it matches all training instances exactly,

the second will not generalize well since it is far away from all training instances. If adding

new instances to the left training algorithm, the hypothesis will change extremely, while the

training algorithm in the middle will hardly change at all if new instances are added. The

left case is called overfitting or high variance, while the middle is called underfitting or high

bias. Both cases should be avoided since otherwise, the assumption that the hypothesis will

generalize to unseen test instances is not true. The classifier on the right is more desirable,

since it captures the essence of the training set without fitting it exactly. Unfortunately, clas-

sifiers tend to either underfit or overfit training data under certain circumstances. However,

if this tendency is known beforehand, it is possible to analyze and apply the correct classifier

to the correct situation.

For evaluating classifiers the measures presented in Section 2.1.1 are used. However, in

their pure form they are only applicable to evaluate a classifier’s performance for a single

class. In cases of multi class classifiers, it is necessary to calculate average precision, recall,

accuracy and F-measure values for all classes the classifier is able to distinguish. That way,

it is possible to report accumulated quality statistics for a complete classifier. There are two

ways to build average measures. Macro averaging builds the common arithmetic mean for

each value as overall performance of a classifier. That way, each class is weighted equally

and if a small class produces many errors, the classifiers overall measure will decrease. If it

is necessary to avoid this, Micro averaging weights the measures for each class with the size

of that class. In contrast to macro averaging, it favors the results achieved on larger classes.

17

2 Basics

2.3.1 Naïve Bayes Classi�cation

The Naïve Bayes classification algorithm is based on Bayes law (Bayes 1763) shown by Equa-

tion 2.11.

P (A|B) = P (A)
P (B|A)

P (B)
(2.11)

It states that the probability of observing an Event A under the condition that event B was

observed depends on the prior probability of observing A (P (A)), the probability of observ-

ing B under the condition that A was observed (P (B|A)) and on the probability of observing

B at all (P (B)). Mapping this to the classification of forum entries or natural language texts

A is the event that a document d1 is assigned to a class c1 and B is the event that a certain

feature, e.g. the word “help”, occurs inside document d1. The prior probability that any

document is assigned to c1 is calculated from the distribution of c1 in the training set. The

probability P (B) stands for the distribution of the word “help” in all the training documents

(i.e., which fraction of the training set contains the term “help”). The probability P (B|A)

stands for the fraction of training documents containing the term “help” and belonging to

class c1. In order to apply a Naïve Bayes classifier, these distributions are calculated for each

feature using an adapted version of Equation 2.11 shown as Equation 2.12.

P (C = ck|dm) = P (C = ck)
n∏
i

P (fi|C = ck) (2.12)

With dm being a set of features f1, f2, · · · , fn representing any document; for example all the

words from a document with n words.

It is important to note that the Naïve Bayes classifier assumes that all features are

conditional- and position-independent which is usually not the case (Manning et al. 2009).

This means Naïve Bayes cannot predict that you, for example, like movies starring only

Matt Damon or Ben Affleck but not both. These assumptions result in high bias, which

causes large deviations of classification probabilities. This however is negligible in practice.

Experience shows that deviations usually point to the correct direction, meaning that docu-

ments belonging to a class almost always get a probability close to 100% while documents

not belonging to a class get a probability close to 0%. In addition, a Naïve Bayes classifier

converges quite quickly. The reason for that is that, as stated earlier, additional training ex-

amples don’t change the hypothesis very much after some point for high bias classifiers. As

a consequence Naïve Bayes can be used if the training set is small and the features are not

tightly coupled.

An implementation of the Naive Bayes classifier has linear complexity in the time it takes to

scan the training and the test data (Manning et al. 2009, p. 262) and thus is a very attractive

text classification algorithm.

18

2.3 Classification Algorithms

2.3.2 Perceptron Algorithm

The perceptron algorithm is a linear classifier, meaning it tries to find a plane separating the

training data, which can be used to separate additional data points in the same space. It

was originally presented by Rosenblatt (Rosenblatt 1958, Rosenblatt 1961). The input for the

perceptron algorithm is a set of training instances in the form of points Rn and associated

labels from -1,+1. The perceptron algorithm iterates over this training set, starting with the

prediction vector ~v = 0. As long as the prediction vector produces correct predictions it

stays alive. If a wrong prediction is encountered for a training position vector ~x with label

y, a new prediction value is calculated as ~v = ~v + y~x and the iteration starts again. For

the process to converge the data must be linearly separable which means that it needs to be

possible to draw a straight line—or hyperplane in higher dimensional spaces—separating

the positive from the negative examples. If true, predictions of the form ∆ = sign(~v · ~x)

become possible.

The so called voted perceptron algorithm is one way to improve the classifier performance.

This algorithm keeps all the calculated prediction vectors, even those which did not fit the

training set. A weight is assigned to each prediction vector depending on how long it sur-

vived until making the first error. Predictions are made using all vectors and calculating the

final result from the weighted sum of the predictions of the individual prediction vectors.

This algorithm was developed by Freund & Schapire (1999). Although it shows improved

performance as compared to the basic perceptron algorithm, its performance is still infe-

rior compared to the support vector machines presented below. However, it is simpler and

easier to implement.

The perceptron algorithm is the foundation for the more complex neuronal networks. Basic

neuronal networks, called multilayer perceptrons, are built from many connected percep-

tron nodes.

2.3.3 Support Vector Machine

Support vector machines (SVM) are classifiers used to classify objects into two classes from

the set of {−1, 1}. Similar to the previously presented perceptron algorithm, they try to cre-

ate a separator between positive and negative examples of the training set. However, in

contrast to the perceptron, an SVM finds an ideal (also called large margin) separator be-

tween instances of the training set. For this purpose, the discriminating features extracted

from the objects are placed into a vector representation of these objects. The union of all

features forms a vector space also called feature space. The training phase of an SVM tries

to find a hyperplane inside the feature space with maximum distance from both classes ac-

cording to the training set. This is shown in Figure 2.3 for a space with two features. An

optimal separation is achieved by maximizing the margin between the separating hyper-

plane and the two feature vectors from both classes closest to each other. These two feature

vectors are also called support vectors, hence the designation as support vector machines.

19

2 Basics

Figure 2.3: Example of SVM hyperplane for two-dimensional feature space.

Once the separating hyperplane is constructed, the classifier is able to assign new feature

vectors to either class −1 or 1 by evaluating the result of Equation 2.13.

f(~x) = sgn(~w~x+ b) (2.13)

The question solved during the training phase is: which are the values of ~w and b? More

information is provided for example by Manning et al. (2009, p. 319). An important fact to

know when using support vector machines is that the optimization function used to train

a support vector machine has a parameter, usually called C. This parameter is used to

influence the support vector machine’s tendency to either a higher bias or a higher variance.

For large values of C, the trained SVM tends to overfit the training data set showing high

variance, while for small values it tends to underfit showing high bias.

Support vector machines are widely used and perform exceptionally good with small sets

of training data (Manning et al. 2009). On the other hand, they induce many rather arcane

parameters which are required to be set correctly for the SVM to show its full potential.

The training data for a support vector machine need to be linearly separable as already

explained for the perceptrons in the last section. This, of course, is not true for arbitrary

datasets, at least not in the space spanned by all input features. Nevertheless, with SVMs

it is possible to get a separable training set, using the so called "kernel trick". The principle

is presented in Figure 2.4. The dataset with four training instances in the one-dimensional

feature space represented in the left part of Figure 2.4 is not linearly separable. However, if

the feature space is extended with an additional feature, e.g. the proximity to some point l

in the original feature space (see middle of Figure 2.4), we get a linearly separable training

set in the two-dimensional feature space shown on the right of Figure 2.4. This principle is

applicable to arbitrary dimensional data. The function sim is called the kernel function. A

linear support vector machine uses a linear kernel function. Other typical kernel functions

are the polynomial kernel function and the gaussian kernel function (also called RBF for

20

2.3 Classification Algorithms

Figure 2.4: Example of the SVM kernel trick applied to a one-dimensional training set with four train-
ing instances, two positive and two negative ones.

Radial Basis Function). The gaussian kernel supports the usual gaussian parameter sigma σ,

which influences the steepness of the gaussian function. Using this parameter, it is possible

to influence bias and variance of the SVM classifier. A high value of sigma causes a higher

bias and lower variance since it distributes the training instances more smoothly over the

higher dimensional space. A low value has the exact opposite effect increasing variance and

reducing bias.

2.3.4 Bagging

Bagging as in bootstrap aggregating is a meta classifier, which aggregates the results produced

by multiple classifiers. It was introduced by Breiman (1996) as a means to build an aggre-

gated classifier from multiple versions of the same classifier. For this purpose, a number

of classifiers of the form ϕ(x,L) = j are generated. In this formula, x is a feature vector,

j ∈ {1 . . . J} is the label the classifier ϕ assigns to x and L are the training instances for the

classifier ϕ. The training instances L are randomly chosen with replacement from among

the training set and are called bootstrap samples. That way, a number of bootstrap repli-

cates L(B) are created and used to train a set of classifiers ϕ(B). In order to aggregate the

predictions performed by all ϕ(B)(x) = j(B), the bagging classifier applies majority voting.

This means that the prediction with the most agreement among all ϕ(B) is considered the

correct prediction.

The goal of a bagging classifier is to improve the performance of classifiers which are very

instable. This especially applies to classifiers which tend to easily overfit their training data,

most notably decision tree classifiers like REPTree.

Breiman (1996) shows that a bagging classifier is at least as good as the best of its wrapped

classifiers, if the L(B) are chosen independently from the same distribution. Since we would

require a new training set for each L(B) this is usually not done. Instead, as already men-

tioned above, a set of instances from L is chosen as training set for each individual classifier

ϕ(B). Those sets may overlap or contain duplicates and are thus not optimal for building

the subclassifiers. Still, they are shown to have a high potential for improving very insta-

ble classifiers like REPTree, which is explained in Section 2.3.5. On the other hand, such a

bagging classifier might decrease the performance of already stable classifiers like k-nearest

21

2 Basics

neighbors (kNN).

The most important parameters for a bagging classifier are the size and amount of the boot-

strap replicates L(B). Breiman (1996) evaluated both parameters. The size of the bootstrap

replicates should be chosen to be equal to |L|. Breiman (1996) evaluated larger sizes but

could not improve classification accuracy that way. The amount of bootstrap replicates de-

pends on the number of classes {1 . . . J}. Breiman (1996) suggests to use 50 and shows that

larger numbers only result in marginal improvements to classification error rate.

2.3.5 Decision Tree

A decision tree is one of the fundamental algorithms in machine learning. It is based on

the idea of deriving a tree with a decision about one attribute at each node from the set of

training examples. This is similar to a cascade of intermingled ‘if - then - else’ statements.

One of the most basic algorithms to derive a decision tree is the ID3 algorithm as proposed

by Quinlan (1979). This algorithm builds the tree recursively over the set of attributes in the

training set. On each step the algorithm decides which attribute to select for the next node

based on the attribute’s importance. Importance is calculated using the Information Gain

measure as explained in Section 2.2.3. After a node is calculated, the partition of the training

set corresponding to the node is split into new partitions with each partition corresponding

to one value of the attribute at the current node. New nodes are calculated for each of these

partitions. If a partition either contains no unseen attributes or only instances belonging to

one class, a leaf node is added. In the first case, the leaf corresponds to the majority class of

the training examples at that node. In the second case, the leaf corresponds to the one class

common to all training examples of the partition at that node.

There are several limitations to the ID3 decision tree learner: it overfits the training data

easily, it cannot handle continuous or missing attributes and in the space of all possible de-

cision trees for a given problem it only finds a local optimum. For these reasons, extensions

and different decision tree learning algorithms have been developed. Some of them are pre-

sented in the following paragraphs. With these extensions decision trees perform similar

to support vector machines but do not have as many complicated parameters to set as the

latter.

Reduced Error Pruning

One approach to avoid overfitting of decision trees is to prune the tree and thus to generalize

it. A decision tree should be pruned if there is another more general decision tree that shows

better performance on some validation data. Reduced Error Pruning (REP) as presented by

Mingers (1987) is one of the simplest forms of pruning. It prunes the tree step by step starting

at the leaves. At each step one node is replaced with its most popular class, but only if the

prediction accuracy on some validation data is not reduced by the change. REP is naive but

has the advantages of simplicity and speed.

22

2.3 Classification Algorithms

Decision Stump

A decision stump is a very simple decision tree with only one level. It is often used within

ensemble classifiers such as the bagging classifier presented in Section 2.3.4. Further expla-

nations are available for example via Iba & Langley (1992).

C4.5

The C4.5 algorithm is an extended version of the ID3 algorithm, proposed in Quinlan (1993).

The algorithm includes solutions to the problems mentioned for the ID3 algorithm. It re-

duces overfitting by pruning the created decision tree, allows missing and continuous at-

tributes and uses an improved measure to decide which attribute should be used at which

node of the tree. See Quinlan (1993) or Mitchell (1997) for further information.

Random Forest

Similar to the bagging classifier described in Section 2.3.4, random forest is a meta classifier

for decision trees. It was developed by Breiman (2001), the author of the bagging classifier,

which was extended by feature selection methods from Ho (1998) and Amit & Geman (1997).

The random forest works on a set of possibly overfitted decision trees. Each is created from

a subset of available training data whereas the remaining training data is used to calculate

the error of that particular decision tree. New classification instances are pushed down all

the trees. A mode vote based on the results from all the trees in the ensemble is used to

calculate the final decision of the random forest.

A random forest usually reduces the overfitting problem encountered when using tradi-

tional decision trees. However, it has been observed that random forests still overfit in

environments with noisy classification tasks.

2.3.6 Rule Based Classi�cation - Ripper Algorithm

Rule based classification algorithms are based on decision trees and use notations like the

one given by the programming language Prolog. There, for example, exists a version of

the C4.5 algorithm called C4.5rules, which uses a flat representation of the C4.5 tree. This

representation is generated from the tree by creating one rule per path through the tree. That

way, each rule is expressed in conjunctive normal form.

According to Cohen (1995), rule sets are easy to understand and they perform better than

decision trees on many datasets. However, rule based systems in general tend to be very

complex to learn if huge amounts of training data, especially noisy data, are available and

required. Cohen (1995) present, a good overview of the performance implications of using a

rule based system in contrast to a tree based one. He also created the repeated incremental

pruning to produce error reduction (RIPPER) algorithm, which is used in this and several

related publications. Cohen (1995) shows that the RIPPER algorithm performs similar if

23

2 Basics

not better than C4.5rules and is faster on learning noisy datasets. This is due to a highly

optimized pruning step in comparison to reduced error pruning or the incremental reduced

error pruning (IREP) as invented by Fürnkranz & Widmer (1994).

2.4 Summary

This chapter started with an introduction to the most common evaluation measures in clas-

sification. The following chapters are going to report on those measures for various classifi-

cation tasks.

The second part of the chapter introduced important terminology from the research area of

information retrieval. Those terms are going to become important during retrieval of forum

pages as well as during retrieval of questions and answers from corpora of Web forum posts.

Finally, the chapter presented an overview of some of the most important classification al-

gorithms. It is not always clear beforehand which of these algorithms is best used in which

situation. If this is the case, our experiments will test different classifiers and report on their

performance. Subsequent chapters will show that meta classifiers like bagging and random

forest are constantly among the best performing algorithms for the problems in this thesis.

However, it is important to note that in most cases the choice of the correct classifier is not

as important as having good and plenty of data and the correct features for the classification

task, as pointed out by Edwin Chen in his Blog2.

2http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/

24

http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/

3 Forum Data Acquisition

The amount of online discussions is enormous. Even a single topic area is discussed by

thousands of users distributed over several forum communities. A topic’s scale depends on

its popularity, of course.

As soon as manual steps are involved, even monitoring all questions from a single topic

area such as Java programming, football, or travel becomes an impossible task. Even though

it might be possible to gather all existing discussions, new ones appear constantly and old

ones disappear on a similar rate. For this reason, the following chapter presents a fully auto-

matic approach for acquisition of data from various different forums with low error margin.

The idea is to have a black box system taking the World Wide Web as input and provid-

ing a database containing all discussions posted anywhere, anytime and keep them up to

date. This is an idealized goal, of course, and can only be achieved partially. The following

sections provide details for achieving this goal based on existing Web scale retrieval.

There are four possible source types for forum data: Web feed data, API access, a focused

Web forum crawler, or, at best, direct access to the forum’s database. Database access is the

least error prone and fastest way to retrieve content. However, it is also the most limited,

since most forum operators do not open their databases to public access, which is why it is

only possible to gain access to the databases of a limited amount of self operated forums at

best. Feed readers are well suited for retrieving most recent forum data, but they are not

good at collecting a large amount of forum data at once. This is due to the fact that feeds

usually show the most recent updates only. Everything that occurred a fixed time span or

a fixed number of updates ago is deleted from the feed. In order to provide a good user

experience and conduct meaningful research, historical data is required though.

Nowadays many platform operators provide API access to their data. While these provide

some interesting data, for example via Twitter1, they are usually not available for Web fo-

rums. Thus, the only viable solution is crawling the Web pages a forum consists of with a

focused forum crawler maybe extended by a feed crawler to keep data up to date and extract

the crawled pages with an approach that detects typical structures of Web forum pages.

The concepts and evaluations presented in this chapter result from the supervision of two

diploma theses and three study theses by Drescher (2010), Rudolph (2011), Beyer (2011),

Pretzsch (2011) and Pretzsch (2012). Further details are available from each individual work.

1https://twitter.com/

25

https://twitter.com/

3 Forum Data Acquisition

3.1 Overview of the Focused Forum Crawler Process

The focused forum crawler requires three parts as shown in Figure 3.1 All three are pre-

(1) Classify

(2) Classify
Page Type

Web Page

[is no forum page]

[is forum page]

(3) Extract
Data

[is no discussion page]

[is discussion page]

Extracted Data

Figure 3.1: Sequence of activities required for a fully automatic forum data extractor.

sented in detail in the following sections. In short, the crawler needs to retrieve Web pages

and select those belonging to a Web forum from among the millions of pages it receives

during a crawling run. This is explained in Sections 3.3, 3.4, and 3.5.

If the selected pages truly are from a Web forum they belong to one of five classes based on

the classes already identified by Cai, Yang, Lai, Wang & Zhang (2008). An example for each

class is shown in Figure 3.2.

26

3.1 Overview of the Focused Forum Crawler Process

(a) list-of-board page (b) list-of-thread page

(c) post-of-thread page (d) user-profile page

Figure 3.2: Examples for forum page types

27

3 Forum Data Acquisition

list-of-board Every forum usually has one page which lists all the sub forums also called

channels or boards. This page is called list-of-board page. Figure 3.2(a) shows an

example.

list-of-thread Each sub forum displays a page showing the threads ordered by most recent

activity. Such pages are called list-of-thread and form the entry point for small forums

with no list-of-board page. Figure 3.2(b) shows an example from the Oracle Devel-

oper Network2. Older threads are usually displayed on list-of-thread pages that are

accessible via so called page flipping links from the initial list-of-thread page.

post-of-thread The post-of-thread pages show the actual user generated content in the form

of forum posts, such as shown in Figure 3.2(c). One post-of-thread page shows only

posts from one thread, but one long thread can be distributed over multiple post-

of-thread pages. Those pages are accessible via page flipping links similar to list-

of-thread pages. For classical forums, posts are ordered by their creation date. For

modern question/answer sites it is common to show one question as the first page

and to either show the accepted answer below or to organize all answers by their user

provided ranking.

user-pro�le Forums usually also make some information about each user accessible to other

users. Pages presenting such statistics about a user’s created threads, posts, time since

registration, user name etc. are called user-profile pages. Some forums provide them

only to registered users, which makes them inaccessible to robots and Web crawlers.

Other forums such as the SAP Developer Network3 example in Figure 3.2(d) provide

only a small part of the information to unregistered users.

Miscellaneous Everything that does not belong to one of the previous categories falls into

this miscellaneous category. For Effingo it is used as a garbage category for all pages

requiring no further processing.

Since only post-of-thread and user-profile pages contain relevant data, a second step sep-

arates those from the remaining forum pages. Sections 3.6, 3.7, and 3.8 show how to do

that.

After having a set of content pages in raw HTML, the source is parsed to extract actual fo-

rum data and save it to a database. This database follows an aggregated schema describing

all types of forums and discussion pages as already shown in the introductory chapter, Sec-

tion 1.2 of this thesis. Sections 3.9, 3.10, and 3.11 provide detailed information about the

extraction approach applied by Effingo.

2http://forums.oracle.com
3http://forums.sdn.sap.com

28

3.2 Structure of an HTML page

3.2 Structure of an HTML page

Crawlers and parsers make use of the fact that HTML pages consist of HTML tags to access

the page content. Each tag is a node in an HTML tag tree. Each sub tree is called a segment.

The process of splitting an HTML page into segments is called page segmentation. Thus, on

order to find the page content, we need to find the segment spanning the complete content

area. A segment is defined by a path of tags from the page’s root tag to the segment’s root

tag. One segment can also contain other subsegments.

A linearization of the tree structure reshapes the tree into a list of so called tag paths. Tag

paths are all paths leading to all segments on the page in order of appearance. A tag path

consists, similar to XPath expressions, of HTML elements also called path elements. Each

path element is one step in the sequence of HTML elements from the HTML root node to the

block-level element surrounding a segment. That way, path elements represent a decision as

to which node to choose from the sub nodes at the current path position until the addressed

node is reached. Individual elements of a tag path are:

html[1]︸ ︷︷ ︸
a

> body︸ ︷︷ ︸
b

[1] > div[2]︸︷︷︸
c

> div[@class="post"]︸ ︷︷ ︸
d

[1]

a: Root Element; the root path element.

b: Path Element; the name of the HTML element

c: Index; Unambiguously addresses the element in a list of siblings, creating an absolute

path element in contrast to a relative path element without such an index.

d: Predicate; refinement or selection predicate

Tag paths are either a representation of exactly one HTML element or of a whole set of simi-

lar HTML elements, depending on whether index information is provided or not. Therefore,

we distinguish between the following types of tag path representations:

Relative Tag Path Representation (RTR): Addresses multiple segments if the selection

predicate at one of the segments is ambiguous. The set of segments addressed by

an RTR α is henceforth called Sα (segments under α). The quantity of segments ad-

dressed by α is denoted by |RTR|. The position at which the tag path starts to get

relative has a special semantics. It is the first position inside the tag path where the

HTML tree splits and the tag path follows multiple branches. The parent node of this

split is called template container. Its direct child path elements are called template nodes.

Absolute Tag Path Representation (ATR): Addresses a single segment unambiguously.

Either all path elements are identified by their index or the last path element has a

unique identifier in form of an HTML id attribute selection predicate. An absolute

29

3 Forum Data Acquisition

path’s template container is the document’s root node. Its only template node is the

<html> node.

3.3 Web Forum Retrieval

This and the following two sections cover the box marked (1) in Figure 3.1. While crawl-

ing the whole Web, we encounter arbitrary Web pages. If the page belongs to a forum, it

might contain important information for community based question answering. However,

initially, we know nothing about those pages, so we need a way to tell whether any page we

encounter either belongs to a forum or not.

As already shown for Blogs (Fetterly & Chien 2007, NITLE Weblog Census 2003) a Web

crawler focused on a certain type of Web page can either use features from the page’s HTML

source to find the correct type or apply certain analyses on the page’s Web address URL. The

NITLE Weblog Census (2003)4 project and the Microsoft patent for a focused Blog crawler

(Duong, Hall, Mayfield, McNamee & Piatko 2002), for example, identify Blogs based on

features such as:

- If a page’s URL is registered in some Web log update side or Web log database, such

as http://www.dmoz.org

- If a page’s URL belongs to some well-known Blog hosting provider, e.g. http://

wordpress.com/ or http://www.blogger.com/

- The page’s URL contains certain substrings, such as “blog”

- The Web site contains META tag attributes created by well-known Blog generators

- The Web site contains outgoing links—especially a button, logo or a “Powered by”

link—connected to a blogging engine

- The Web site’s content contains code specific to blogging tools

- The Web site contains a certain keyword with a certain frequency. Commonly used

keywords are: “blog”, “blogroll”, “metaphilter”, “powered by”, “permalink”, “track-

back”, “comment”, “comments”, “blogad” or “posted at”

- The Web site provides a feed

Such an approach can be applied on forums as well, as already pointed out by Chen & Choi

(2008) for a more generic case. They propose a hierarchical categorization of Web pages—

not only forums—and provide an approach to classify new pages into these categories. In

addition to “Discussing Forum” they also propose Web page types such as “Online shop-

ping”, “Information and resource page”, “Information search page”, and “Homepage”. On

a small handcrafted dataset of 1,000 Web pages they achieved an F1-Score of 91% using a

Naïve Bayes like classification approach with features such as:

4The page is not available anymore as of 04/09/2013.

30

http://www.dmoz.org
http://wordpress.com/
http://wordpress.com/
http://www.blogger.com/

3.4 Features for Focused Forum Crawling

- Number of occurrences of telephone numbers, prices, email links, copyright notes,

dates, times, and question sentences

- Special script functions such as JavaScript alerts and confirms and their VBScript

pendants

- Type of top level domain (“.edu” identifies academical sites etc.)

- Occurrence of the terms “forum”, “forums”, “FAQ”, or “faq” in the URL’s directory

part

- Number of certain HTML tags from the following list: input box, message box, select-

and radio button, submit button, frame, hyperlink, link to ftp, list, password, reset,

style sheet, table, textarea, textinput, image link, image

Unfortunately, their approach requires much adaptation. Every feature needs to be

weighted and thresholds have to be set manually. Such an approach is prone to overfit-

ting, expensive, and not easily adaptable to changing input data. Supervised classifiers,

such as the ones presented in Section 2.3, can do all this automatically and perform on the

same level or even better, as we are going to show at least for Web forum pages.

Our approach differs from the existing works by setting a clear focus on Web forums. Other

focused crawling strategies are either specialized on a different domain or handle forums as

one of many categories. In addition, we are going to show an approach using a supervised

classification approach instead of handcrafted parameters and rules.

We intend to build upon feature sets identified by previous work and extend them with

features found during an extensive analysis of an extensive sample of real world forums. For

example, in contrast to the separation of links into hyperlinks and e-mail links as proposed

by Chen & Choi (2008), we are going to show a more detailed separation of different links

presented in Section 3.4.5. Moreover, we do not choose among the form elements present

on a page, but rather take all of them, letting the classifier decide which ones are actually a

good feature for a forum. The extended feature set is presented in the next section.

3.4 Features for Focused Forum Crawling

The previous section shows many features of Web and forum pages. In order to build a

classifier which is able to separate forum pages from other Web pages, the following section

takes a detailed look into features specific to forum pages. The classifier which was created

based on these features is evaluated in the following section.

Feature engineering usually starts with a look on the actual data. For that reason a subset

of forums was examined in detail. Those forums are examined with regard to different

features and with the aim of illustrating to clarify those we already know from the related

work discussed in Section 3.3 and to find new ones. The forums are chosen from the results

returned by standard search engines using terms such as “forum”, “forums”, and “popular

31

3 Forum Data Acquisition

forums”. In addition, the list was complemented using hand-crafted lists of different forums

provided by the following sites:

http://www.mister-wong.de/tags/forum/ Forum directory with a list of several thou-

sand forums.

http://www.dmoz.org/ Web page directory providing several subcategories for "Chats and

Forums".

Table 3.1 provides an excerpt from the list of investigated forums. The investigation of these

Table 3.1: An excerpt of the forums used for feature engineering for the focused forum web crawler.

Forum - Name Forum - URL

Sun forum http://forums.sun.com

Forum for the news page spiegel.de. http://forum.spiegel.de/

Forum for the World of Warcraft game. http://forums.worldofwarcraft.com/

Microsoft Developer Network http://social.msdn.microsoft.com/Forums/de-DE

Forum for Ubuntu operating system http://ubuntuforums.org/

ASP Forum http://forums.asp.net/

A forum for travelers http://www.tripadvisor.de/ForumHome

Oracle support forum http://forums.oracle.com/

Yahoo question answer forum http://de.answers.yahoo.com/

An SAP forum http://www.dv-treff.de/sap-community/

Forum BMW cars http://www.bmw-forums.net/

sites provided a list of commonalities, which might be helpful to identify forums among

other sites on the World Wide Web. The goal is to find a feature set which is not prone to

overfitting and which matches forums with hight precision. Such features are explained in

detail in the following sections.

For a human observer the obvious way to distinguish a forum from another site is the way

its content is laid out in lists of posts, threads, and sub forums The analysis of forum features

is therefore focused on those HTML nodes surrounding a page’s content. Content only oc-

curs in the form of multimedia objects. Possible multimedia objects are text, images, videos,

sounds, music, animations, interactive applets etc. Text is the most common way to show

content in a Web forum. Therefore, segments containing text are most important for detect-

ing Web forums. A quick analysis via Google shows that images are approximately twice as

frequent as other multimedia objects. Since those other multimedia objects are not so easy

to process, image objects are the only other type of multimedia content considered. Neither

an image nor a text node can wrap other HTML nodes. Therefore, they are always leafs in

the HTML tree.

Content is often split up by formatting HTML markup. In a forum it is, for example, com-

mon to provide the user with a few limited possibilities for formatting his contribution. Such

formatting nodes are not part of the page’s structure. If they were handled like other HTML

32

http://www.mister-wong.de/tags/forum/
http://www.dmoz.org/
http://forums.sun.com
http://forum.spiegel.de/
http://forums.worldofwarcraft.com/
http://social.msdn.microsoft.com/Forums/de-DE
http://ubuntuforums.org/
http://forums.asp.net/
http://www.tripadvisor.de/ForumHome
http://forums.oracle.com/
http://de.answers.yahoo.com/
http://www.dv-treff.de/sap-community/
http://www.bmw-forums.net/

3.4 Features for Focused Forum Crawling

nodes they would split content actually belonging together. In order to avoid such splits, a

segment containing a continuous piece of content and possible formatting markup is called

an information container and follows Definition 10.

Definition 10 Information Container. An information container is a node in an HTML tree satis-
fying two properties:

- It contains at least one direct child non empty text node or image node.

- It has no parent node which is an information container.

See the following code snippet for an example.

1 <div>
2 <div>
3 some t e x t
4 some i n t e r n a l t e x t
5 </div>
6 </div>

Listing 3.1: Example for an information container and non-information container

The node starting on line 1 is no information container since it contains no direct text child

node. The node starting on line 2 is an information container since it contains a direct text

child node and no parent is an information container. Since the node starting on line 2 is

an information container, the node on line 4 cannot be one. It has a parent which is an

information container. With this definition it is possible to prevent splitting of text due to

inline formatting in most cases.

The following sections give a detailed explanation of all the features used for Web page

classification by Effingo. At first, an overview of necessary preprocessing steps is provided,

followed by information on how to use a page’s HTML structure, URL, Metada, Interactive

Elements, and the page’s text to separate forum from non-forum pages.

3.4.1 Page Preprocessing

Not all of the content on an HTML page is equally important for the purpose of finding out

whether or not it is a forum page. A usual HTML page contains advertisements, informa-

tion texts, control areas, etc.. in addition to the actual main content. Therefore, some pre-

processing is necessary prior to feature extraction. For data extraction, as described below

in Section 3.9 and following, an exact identification of this main content area is important.

However, the page classification described here is applied to a much larger amount of arbi-

trary Web pages. In order to reduce the computation per page, the following estimate is used

to separate main content from the rest of the page. Initially, the tag paths for all information

containers of the page are collected and grouped by length. Tag paths of equal length are

compared pairwise and merged if it is possible to create a relative tag path representation

33

3 Forum Data Acquisition

addressing the same nodes as the two individual tag paths. A set of tag paths P is created

that way.

Consider the example HTML tree in Listing 3.2.

1 <html>
2 <body>
3 <h1> T i t l e : F a v o r i t e Movies</h1>
4
5 < l i >
6 <div>Author : Max</div>
7 <div>
8 T i t l e : What ’ s your f a v o r i t e movie?
9 </div>

10 <div>
11 My f a v o r i t e movie i s
12 S t a r Trek : F i r s t Contact
13 </div>
14 </ l i >
15 < l i >
16 <div>Author : Moritz</div>
17 <div>
18 T i t l e : Re : What ’ s your f a v o r i t e movie?
19 </div>
20 <div>I ’ d p r e f e r F o r r e s t Gump</div>
21 </ l i >
22
23 </body>
24 </html>

Listing 3.2: Example for showing the generation of all absolute and relative tag paths.

Figure 3.3 shows the contents of P for that example after certain iterations. It contains tag

1st Iteration
Length Tag Paths
3 html[1]/body[1]/h1[1]

2th Iteration
Length Tag Paths
3 html[1]/body[1]/h1[1]

6 html[1]/body[1]/ul[2]/li[1]/div[1]/b[1]

4th Iteration
3 html[1]/body[1]/h1[1]

5 html[1]/body[1]/ul[2]/li[1]/div[2]

html[1]/body[1]/ul[2]/li[1]/div[3]

html[1]/body[1]/ul[2]/li[1]/div

6 html[1]/body[1]/ul[2]/li[1]/div[1]/b[1]

Figure 3.3: Content of P for some example iterations on the HTML structure in Listing 3.2.

paths to the first two information containers after two iterations. During the fourth iteration

a second path of length 5 is added. This additional path points to a sibling of the other

path of length 5 and thus a relative tag path addressing both segments is also added to P .

Figure 3.4 shows the final content of P .

34

3.4 Features for Focused Forum Crawling

Length Tag Path Name
3 html[1]/body[1]/h1[1] p3

5 html[1]/body[1]/ul[2]/li[1]/div[2] p1

html[1]/body[1]/ul[2]/li[1]/div[3] p2

html[1]/body[1]/ul[2]/li[1]/div p3

html[1]/body[1]/ul[2]/li[2]/div[2] p4

html[1]/body[1]/ul[2]/li[2]/div[3] p5

html[1]/body[1]/ul[2]/li[2]/div p6

html[1]/body[1]/ul[2]/li/div[2] p7

html[1]/body[1]/ul[2]/li/div[3] p8

6 html[1]/body[1]/ul[2]/li[1]/div[1]/b[1] p9

html[1]/body[1]/ul[2]/li[2]/div[1]/b[1] p10

html[1]/body[1]/ul[2]/li/div[1]/b[1] p11

Figure 3.4: Resulting set P of paths for the example HTML structure in Listing 3.2.

Afterwards, tag paths sharing the same template container such as p7, p8 and p11 in Table 3.4

are grouped together. Each such group is called a path group. Each path group usually

consist of some main content, some important paths and perhaps some clutter. In order

to separate paths into these three groups, a score is calculated for each path depending on

the template nodes that specific path reaches. The score for a path k is calculated using

Equation 3.1 with all paths from a path group paths and the set of template nodes covered

by those paths nodes.

scorek(paths,nodes) =
M∑
i=1

(sign(pathsk, nodesi)(2 · covers(nodesi, paths)−N)) (3.1)

sign(p,n) =

1, if n covers p.

−1, otherwise.
(3.2)

The equation uses the amount of information container paths covering a template node,

which is provided by the function covers(n, p). The result of this function is a value between

0 and N , with N being the number of paths in the path group. The result is used either to

boost the overall score or to penalize it, depending on whether template node i covers path

k. If it does not, the negative of the summand is used. This is controlled using the function

sign(p,n). The path to the template container with the highest score is considered as the main
path; the path to the main content of the page. All paths (including the main path) sharing

at least 90% of the main paths template nodes are considered as important paths.

For an example consider the path group shown in Table 3.2 with paths sharing the template

container ol [1]. In addition to the relative paths from the group, the table also shows the

amount of template nodes addressed by each relative tag path. In total, there are six li

template nodes. Since not each path in Table 3.2 is part of six template nodes not each

path occurs together with each template node. Meaning that some paths, such as p1, mark

optional segments. Specifically all paths occurring only in combination with five template

35

3 Forum Data Acquisition

Table 3.2: Example path group to show how selecting the main path works.

Name Relative Tag Path Template Nodes

p1 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/ul[2]/li[1]/a[1] 5
p2 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/div[1]/div[1]/p[1] 5
p3 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/div[1]/div[1]/p[2] 5
p4 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/h4[2] 6
p5 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/div[1]/div[1]/div[1] 5
p6 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/div[2] 6
p7 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/div[1]/h4[1] 6
p8 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/ul[1]/li [2] 5
p9 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/h4[1] 6
p10 /body[1]/div[1]/div[6]/ol[1]/li[1]/ol[1]/li/div[1]/ul[1]/li [1] 5

nodes are optional since they are missing as content of exactly one of them. All paths with

six template node occurrences seem to be mandatory. They always occur as a part of the

template container ol [1] and its template nodes li . The main path should be one that marks

such a non-optional segment or at least a segment common to most paths in the same path

group. In order to be selected as main path, a path should have a higher score than paths

not occurring for each template node. Table 3.3 shows how to calculate the scores for all

those paths. Paths such as p1, p2 and p3 are punished for not occurring together with all

Table 3.3: Example calculation to find the main path of a path group.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

li1 2 · 10− 10 = 10 10 10 10 10 10 10 10 10 10
li2 2 · 10− 10 = 10 10 10 10 10 10 10 10 10 10
li3 2 · 10− 10 = 10 10 10 10 10 10 10 10 10 10
li4 2 · 7− 10 = 4 −4 −4 4 −4 4 4 4 4 4
li5 −1(2 · 7− 10) = −4 4 4 4 4 4 4 −4 4 −4
li6 2 · 10− 10 = 10 10 10 10 10 10 10 10 10 10

Score/Sum 40 40 40 48 40 48 48 40 48 40

template nodes, whereas paths such as p4 get a high score. For this example any of the

paths with score 48 are suitable main paths. In case of such a tie, the first is taken, i.e. p4.

Remaining paths are categorized as important paths if they share at least 90% of the main

path’s template nodes, otherwise, they are categorized as clutter paths. For the example

presented this means paths p4, p6, p7, and p9 are important paths, while the remaining

paths are clutter paths. In addition, we also count clutter nodes as the set of those template

nodes from the important paths, not occurring together with the main path. There are no

clutter nodes in the example above.

For each HTML page one path group is chosen as the page’s main path group. Two alterna-

tive heuristics were considered for choosing the main path group. The first was to use the

group covering the most text counted in words, which proved to be inadequate. As for the

36

3.4 Features for Focused Forum Crawling

second heuristic a measure was applied based on the product of the segments covered by

the main path and the number of paths belonging to the group. The path group with the

highest value for this product was used as main path group for each page.

The main path group and the separation of clutter paths and important paths is essential for

calculating the features discussed in the following sections of this chapter.

3.4.2 HTML Structure

Based on the examination of serveral Web forums and in contrast to the research results

presented by Chen & Choi (2008), apparently single HTML tags are not the only feature

accessible from a page’s HTML code. Forums are created by means of similar software

systems and follow a common layout. As a result, common patterns inside their HTML

code can be employed to separate forum pages from non-forum pages.

In order to capture those patterns important paths are examined for their content and catego-

rized into one of several classes. Important paths are chosen according to the preprocessing

explained in Section 3.4.1. There are two types of classes a tag path may belong to: Semantic

classes and text classes.

A tag path in a semantic class is considered as belonging to the class if at least 50% of its

segment’s content matches the class description. For example, a tag path belongs to the

class “Semantic, Number” if at least 50% of its content are numbers.

A tag path in a text class on the other hand belongs to its class if it matches a certain text

length, which was found by an empirical examination of pages from the forums presented

in Table 3.1.

The following classes are used to find forum pages.

Semantic, Equal timestamps The path contains dates or dates and times in a uniform for-

mat

Semantic, Ordered timestamps In addition to a uniform formatting these timestamps are

ordered

Semantic, Number A number (i.e. page flipping links used for pagination)

Semantic, Image An image, for example a user’s avatar

Text, short Arbitrary text spanning three or less words, for example user names or page

navigation

Text, medium Arbitrary text spanning more than 3 but less than 25 words, for example

thread titles

Text, long Arbitrary text spanning more than 25 words, for example user post body texts

37

3 Forum Data Acquisition

Those classes are calculated for all tag paths in the path group containing the page’s main

path and aggregated to seven features, one per class.

In addition, all clutter paths, all clutter nodes for the page’s main path and all remaining

important paths are counted and used as three additional features. Furthermore the CSS

classes common to all paths in the main group and the HTML Tags occurring after the tem-

plate container are used as text features.

3.4.3 Uniform Resource Identi�er

A Web page’s URL often contains hints on whether it is a forum or not. Such hints can result

from comparing the URL to lists of known Web forums. However, managing those lists is

rather tedious. Clues with fewer manual effort can be retrieved from keywords occurring

within the URL. The word “forum”, for example, often occurs directly in the address, like

https://forums.oracle.com. On the other hand, there are other pages such as http://

www.sachsen-forum-dresden.de containing the word forum, which are no forums at all.

As a result of a combined search on Google Web search and Google discussion search for

pages containing the term “forum” in the URL (Query “allinurl: forum”), approximately

26% percent of pages containing the term “forum” are actual forums. A Google-analysis of

the German World Wide Web reveals that approximately 3% of all pages and approximately

51% of all forums contain the term “forum” within their URL. So even though the occurrence

of this feature is a good indicator, other features are required to eliminate false positives and

to find the remaining 49%. However, presently it still remains unclear how to tokenize a

URL since they usually do not contain whitespace. Nevertheless, some important keywords

such as “thread”, “user”, or “post” occur in URL parameter names, such as “threadid” or

“userid”. This facilitates the separation of those keywords from the rest of the URL and thus

parameters are used as features to represent each page’s URL.

3.4.4 Metadata

Another interesting feature are meta data tags of a page. Since they are used by search en-

gine robots as a means to identify the content of a Web page, they display the term “forum”

quite often. They consist of key value pairs and are usually located in the header of an

HTML page. An example taken from http://forum.polar.fi is shown in Listing 3.3.

1 <meta name=" keywords " content=" forum , bbs , discuss ion , b u l l e t i n board " />
2 <meta name=" d e s c r i p t i o n " content=" This i s a d iscuss ion forum . " />

Listing 3.3: Examples for the usage of meta tags

The most interesting meta tags are the “keywords” and the “generator” tag. The keywords

tag usually contains a very dense description of the site a page belongs to, while the non-

standardized “generator” tag often contains the name of the forum software that generated

the page. Another very interesting meta data tag is the “description” tag, which usually

38

https://forums.oracle.com
http://www.sachsen-forum-dresden.de
http://www.sachsen-forum-dresden.de
http://forum.polar.fi

3.4 Features for Focused Forum Crawling

contains a quite lengthy content. This lengthy content would generate much noise, which is

why it is not included as a feature for focused forum crawling. Thus, only the words from

the content attributes of the “keywords” and “description” meta tags are used as features to

describe a page for the forum page classifier.

3.4.5 Interactive Elements

Forums provide a user with many possibilities to interact with the page, to publish new

content and navigate on the site. By identifying those HTML elements which provide the

interactive behavior the crawler gets additional clues whether it encountered a forum page

or not.

Hyperlinks

Large parts of the interaction with a forum page are facilitated by hyperlinks. Forums can

contain links to other sites, though most links are internal service links. Instances of such

service links are links from list-of-thread pages to the individual threads, links from post-of-

thread pages to authors or self referencing anchor links and links from one post-of-thread

page to other post-of-thread pages belonging to the same thread. Therefore, the link density

can be considered to be a feature which helps to identify whether a domain is a forum or not.

Link density is a measure based on the amount of links and the distance of each link from

the current page. As already mentioned, an accumulation of internal links can be a clue to

having discovered a page from a Web forum. In reality there is no such thing as a distance

between two URLs. However, assuming the resources on server side are categorized by

a particular schema, it is possible to define one. Considering an example page like http:

//example.com/test/foo.html?p=1 with an examined link inside a container under the

identifier (i.e. HTML id attribute) “content”, enables us to define the distances presented in

Table 3.4.

In order to calculate a feature from this information, the amount of links of each distance

category in the main path group is counted and used as link density feature.

Link density, however, provides no notion of how large the amount of linked text is in

comparison to all the text in the document: On the one hand, a link could be a single word

in a long text while on the other hand, it could be a long thread title completely linked to

its content. Therefore, the link ratio for each information container (see Definition 10) is

calculated using Equation 3.3.

linkratio =
length(Text in Links)

length(Whole text from information container)
(3.3)

An information container with a link ratio of more than 50% is called link dominant. Link

dominant information containers are grouped into the same classes already shown for non-

link dominant information containers in Section 3.4.2 and their counts are used as separate

39

http://example.com/test/foo.html?p=1
http://example.com/test/foo.html?p=1

3 Forum Data Acquisition

Table 3.4: Possible link distances in ascending order.

Distance Type Example

1 selfreferencing link http://example.com/text/foo.html?p=1#content

2 anchors http://example.com/test/foo.html?p=1#top

3 Javascript function javascript:alert(’test’);

4 same parameters http://example.com/test/foo.html?p=1

5 different parameters http://example.com/test/foo.html?p=1&sort=asc

6 same directory http://example.com/test/news.php

7 same directory branch http://example.com/test/f/img.jpg

8 same server http://example.com/other/page.pdf

9 same server, different
port

http://example.com:8080/other/page.pdf

10 same domain http://forum.example.com/index.php

11 different server http://page.example.org

12 different protocol mailto:max@mustermann.de

features for link dominant content.

Form Elements

In addition to hyperlinks, many interactions on a forum are provided via HTML forms and

their elements. Therefore, the frequency of occurrence of elements of the following type is

used as another feature:

- Text Field

- Text Box

- Dropdown Box

- Check Box

- Radio Button

- Password Field

- File Uploader

- Button

- Form

3.4.6 Page text

As shown by Fetterly & Chien (2007), NITLE Weblog Census (2003), and Chen & Choi (2008)

the page text also provides valuable information for site classification. Table 3.5 shows some

examples for words that might be useful. Inline images are handled like word tokens since

they usually are smileys or emoticons with a meaning similar to words.

The extraction of features from the page text is based on the information container according

to Definition 10. At first, the text for an information container node is created by concatenat-

40

http://example.com/text/foo.html?p=1#content
http://example.com/test/foo.html?p=1#top
http://example.com/test/foo.html?p=1
http://example.com/test/foo.html?p=1&sort=asc
http://example.com/test/news.php
http://example.com/test/f/img.jpg
http://example.com/other/page.pdf
http://example.com:8080/other/page.pdf
http://forum.example.com/index.php
http://page.example.org
mailto:max@mustermann.de

3.5 Performance of Focused Forum Crawling

Table 3.5: Possible keywords, used as features for forum detection.
Keyword Meaning
forum common word within most forums
views commonly used to show the amount of

users who already viewed a thread
topics used as heading
message to send personal messages to other users
statistics evaluation of forum usage
posts commonly used to show amount of posts

a user has created so far
new post/thread to create new posts or threads
phpBB, Yet Another Forum, vBulletin,
Jive Forums, Burning Board, ...

name of the forum software, used to cre-
ate the forum

ing the text from all child text nodes. As a second step, the text is analyzed for the following

tokens in the given order:

- Upper-/lowercase sentence beginnings

- Timestamps (dates and optional times)

- Numbers

- Pronouns

- other words.

If one of those tokens is found (except for sentence beginnings), it is removed from the text,

so it can not reoccur in other categories. The occurrences for each category are saved.

Pronouns are separated into pronouns of first and second person and pronouns of third

person. The first and second person pronouns usually occur in forums since they are much

more personal and forums tend to be pages with personal salutations. The third person is

more common on other pages. More specifically, the following list of words was used to

indicate first and second person pronouns: “I”, “me”, “my”, “you”, “your”, “yours”, “we”,

“us”. Additionally, “@nickname”, the common salutation used in forums, was included.

The list of third person pronouns consists of: “he”, “him”, “his”, “she”, “her”, “hers”, “it”,

“its”, “they”, “them”, “their”, and “theirs”.

Page text statistics were calculated for the main path group as the fraction of text inside the

main path group each type covers. For example, the feature for the “Numbers” class was

calculated by counting the number of number-only tokens and by dividing this number by

the number of all tokens covered by the main path group.

3.5 Performance of Focused Forum Crawling

The following section describes the performance of the focused forum crawler. Within this

scope, it provides details about the dataset used for evaluation as well as about the ex-

41

3 Forum Data Acquisition

perimental setup and it is closed by a discussion about the pros and cons of the proposed

approach.

3.5.1 Dataset

The dataset used to evaluate the focused forum crawler consists of 1,326 pages from 71

different sites. The pages are equally distributed over forum and non-forum pages. In order

to identify a representative set of pages from the Web, we applied two different approaches

to find forum and non-forum pages.

Forum Page Collection

In order to generate a set of forum pages a list of forums was created. For that purpose the

Web site directory dmoz.org was searched for the term “forum”. Subsequently the results

were filtered manually to remove orphaned pages and pages containing the term “forum”

without being one. Only forums spanning a whole domain were considered. Finally, up to

10 pages were retrieved from each of those forums until 663 pages were collected.

Non-Forum Page Collection

For non-forum pages a different approach was used. In order to achieve a broad spectrum

of non-forum pages, the top 100 pages according to alexa.com were used. Since this thesis is

focused on English pages, only pages from the US and GB lists were considered. Finally, a

crawler was applied to retrieve pages from those sites. The crawler was configured to follow

only external links, meaning links pointing to different domains.

3.5.2 Experiments

In order to test the feature set, the following classification algorithms from the Weka3 frame-

work were evaluated using their standard settings:

Naïve Bayes see Section 2.3.1.

Support Vector Machines see Section 2.3.3

Voted Perceptron see Section 2.3.2.

JRip see Section 2.3.6

DecisionStump see Section 2.3.5

J48 see the C4.5 algorithm in Section 2.3.5

RandomForest see Section 2.3.5

REPTree see Reduced Error Pruning in Section 2.3.5

42

3.5 Performance of Focused Forum Crawling

Table 3.6: Results of different classifiers using the features presented in Section 3.4. Each classifier
was run for 10 times with 10-fold cross validation.

Accuracy Precision Recall F1-Measure

Naïve Bayes 0.81 0.78 0.87 0.82
Support Vector Machines 0.93 0.93 0.93 0.93
Voted Perceptron 0.75 0.76 0.75 0.75
JRip 0.90 0.90 0.89 0.89
Decision Stump 0.64 0.58 0.98 0.72
J48 0.92 0.91 0.92 0.91
Random Forest 0.95 0.94 0.97 0.95
REPTree 0.90 0.89 0.91 0.90

Each classifier was executed 10 times using a 10-fold cross validation with all features pre-

sented in Section 3.4. Thus finally each classifier was run 100 times. Table 3.6 provides the

results for accuracy, precision, recall, and F1-measure.

As a means to evaluate the performance of single features, the three “winning” classifiers

according to Table 3.6 (J48, support vector machine, random forest) were re-evaluated on

five feature subsets.

Interactive Elements (IE) Amount of control elements and forms.

Page text (PT) Upper/Lowercase sentences, pronouns, in text images.

Metadata and URL (MU) Keyword and generator meta tag values, plus HTTP parameter

names and whether the URL contains the term “forum”.

HTML Structure (HS) All HTML page structure data, like path counts and element sets.

HTML Content (HC) Used tags and CSS classes in the main group.

Each classifier was run again for 5 times with 10 fold cross validation using combinations of

similar features. Table 3.7 shows the accuracy for all feature combinations.

3.5.3 Result Discussion

It is obvious that by applying the proposed features, focused forum crawling achieves very

good results. The only comparable approach by Chen & Choi (2008) recognized 84% of

forums correctly and reached a mean accuracy of 93,25%. Our classifier is able to recognize

94% of the forums and reaches a mean accuracy of 95%. Comparing the results, however,

is not absolutely fair, since Chen & Choi (2008) used a different and not publicly available

dataset.

Despite the high accuracy, there still was a number of error cases, which were analyzed in

detail. The most interesting anomaly was the behavior of page text features. Those features

did not only fail to improve the classification results, but decreased them in some cases.

43

3 Forum Data Acquisition

Table 3.7: Accuracy for different feature combinations of the focused forum crawler classifier.
IE 81.39% IE+PT+MU 91.93%
PT 73.24% IE+PT+HS 90.71%
MU 86.49% IE+PT+HC 93.69%
HS 88.12% IE+MU+HS 93.17%
HC 91.51% IE+MU+HC 95.07%
IE+PT 88.49% IE+HS+HC 93.15%
IE+MU 89.68% PT+MU+HS 93.06%
IE+HS 90.88% PT+MU+HC 95.2%
IE+HC 93.05% PT+HS+HC 92.52%
PT+MU 88.73% MU+HS+HC 94.84%
PT+HS 88.01% IE+PT+MU+HS 93.76%
PT+HC 91.93% IE+PT+MU+HC 95.08%
MU+HS 93.05% IE+MU+HS+HC 95.11%
MU+HC 94.3% PT+MU+HS+HC 95.32%
HS+HC 92.14% IE+PT+MU+HS+HC 95.37%

There is no definite explanation to this, but it should be taken as an advice to avoid these

features. They are not strictly necessary and they might even lower the quality of results.

Further problems concerned almost empty pages like HTTP error pages. Those pages are

often classified as forum pages. However, it should be easy to filter them out prior to classi-

fication in a future iteration of the focused forum crawler.

Pages available via https as well as http caused some problems, which may be caused by

the URL distance measures. A link normalization approach could be helpful to remove such

kinds of errors.

Finally, there are some pages which look like a forum but are none. These cases are rare

but not easy to handle. One example is the site hotukdeals.com as shown in Figure 3.5.

Furthermore, there are a few forums which are displayed as a tree structure rather than as a

Figure 3.5: Example page from hotukdeals.com that is classified as forum page.

44

3.6 Forum Page Clustering

flat list of posts. Such forums are hard to detect for the current classifier.

3.6 Forum Page Clustering

Not all the pages crawled by the focused forum crawler from the previous section contain

useful information. Among the less interesting ones are search interfaces, overview pages,

and license as well as other legal information pages. It is necessary to filter out such pages

before running data extraction (see Section 3.9). This step is marked as step (2) in Figure 3.1.

The next sections provide further details.

3.6.1 Existing Approaches

As explained in Section 3.1, Cai et al. (2008) propose four categories of important pages.

These categories are list-of-board, post-of-thread, list-of-thread, and user-profile. Since they con-

tain the user generated content, post-of-thread pages are the most interesting pages for

Effingo. In order to find those page types, Cai et al. (2008) present a repetitive-region-based-
clustering approach combined with a URL-based-sub-clustering. The repetitive-region-based-

clustering is based on the fact that forum Web pages are created by different templates.

Following this assumption pages generated by the same template should contain regions

which look pretty much the same and are located at similar positions on every page. Based

on these repetitive patterns the authors identify two crucial findings:

- Repetitive regions within a forum Web page are able to describe the page’s structure

in a robust way.

- The location of links within a forum page is important.

The HTML structure of those repetitive regions is called repetitive patterns. Web forum

pages may now be clustered using the repetitive patterns and their locations. The core of

that algorithm is formed by “repetitive region detection”, “records in region alignment”,

and “tree alignment cost calculation”. The exact operating principles those algorithms are

described by Zhai & Liu (2006) and by Zheng, Song, Wen & Wu (2007).

In a second step URL-based sub clustering is applied to further refine the created clusters.

For this purpose the pages’ URLs are examined, the interesting parts being the paths fol-

lowing the host name and the parameters separated from the path by a “?”. Parameters are

available as (key-value) pairs. Using this information it is possible to calculate the similarity

of two URLs by comparing:

- the number and order of path elements

- the keys of the parameters.

Finally, the system created clusters of forum Web pages based on their repetitive regions

and URL formats. Using these clusters the system created by Cai et al. (2008) is also able to

45

3 Forum Data Acquisition

find an effective traversal path for a forum and to adjoin discussion threads distributed over

multiple pages.

The analysis of forums carried out by Cai et al. (2008) is interesting and forms the foundation

for the features we used for forum page classification. Unfortunately, they employed an

unsupervised learning approach. Such approaches are not easy to apply in situations with

a growing input set. As a consequence every time a new page is found the clustering needs

to be adapted. Therefore, in this work we evaluate the performance of supervised learning

algorithms to resolve this dilemma. Such algorithms are well suited for growing input sets,

since they process one document at a time using a fixed classifier trained on some human-

labeled data.

3.7 Features for Forum Page Classi�cation

In order to identify crucial features for page type classification, the forums listed in Table 3.8

were used. The first four represent large forum software systems running many forums.

Table 3.8: Forums used to identify common forum page types and features.

Forum Software Example URL

vBulletin Version 4.1.6 (Beta 1) http://vbulletin.com/forum/forum.php
vBulletin Version 3.6.4 http://forum.spiegel.de
phpBB http://phpbb.de/community
Phorum http://phorum.org/phorum5/index.php
Individual http://forums.d2jsp.org

The last one is a self-made forum to make sure small systems can be handled by page clas-

sification as well. The structure of the pages in those forums leads to the features explained

in the following sections.

3.7.1 Page URL

As a simple approximation to the URL-based sub-clustering proposed by Cai et al. (2008)

Effingo uses the number of parameters from each page’s URL to classify pages into forum

page types. An analysis of the sites from Table 3.8 results in the distribution of URL param-

eters shown in Table 3.9 for each page type and forum. Obviously this feature possesses a

certain discriminatory power, although this does not apply to all forums. Some use rest-

ful URLs without parameters, like vBulletin 4.1.6 whereas for others, it is only useful as a

means to distinguish certain types or groups of types. However, the separation of list-of-

board pages as well as post-of-thread and user-profile pages seems to be most promising.

46

3.7 Features for Forum Page Classification

Table 3.9: Number of parameters used to access a page of each type in different forums.

Phorum phpBB

list-of-board 0 0
list-of-thread 1 1
post-of-thread 2 2
user-profile 2 2

vBulletin 4.1.6 vBulletin 3.6.4

list-of-board 0 0
list-of-thread 0 1
post-of-thread 0 1
user-profile 0 1

Table 3.10: Average link-to-text ratio for different forum page types.

vBulletin 4.1.6 vBulletin 3.6.4 phpBB Phorum Self-Made

list-of-board 44% 54% 34% 17% 51%
list-of-thread 47% 56% 37% 56% 39%
post-of-thread 49% 20% 33% 25% 28%
user-profile 34% 63% - 49% -

3.7.2 Link-to-Text Ratio

The example site analysis revealed some conspicuous patterns with regard to the distribu-

tion of linked and non-linked text over the different page types. Overview pages, like list-

of-board pages and list-of-thread pages, are usually heavily linked whereas post-of-thread

pages and user-profile pages do not contain as many links.

Table 3.10 shows the link density as described in Section 3.4.5, for the different forum page

types. The table illustrates that the expected patterns exist but are not as conspicuous as

initially expected. The problem is twofold. Some forums have mostly short threads and

thus little unlinked text created by a user. This reduces the link-to-text ratio in post-of-thread

pages. Secondly, there are forums having a lot of explanatory text for each sub forum which

is not linked. In that case list-of-board pages show a similar or even smaller link-to-text ratio

than post-of-thread pages and user-profile pages.

Nevertheless, the link-to-text ratio provides a valuable clue as to examine which page type

a page belongs to and shall thus be considered as a feature for the page type classification.

3.7.3 Height of List Elements

Generally, pages are divided into detail pages and list pages. Detail pages such as user-profile

pages display information for only one data entry. List pages contain information on multi-

ple data entries, usually listed in consecutive order.

47

3 Forum Data Acquisition

Data entries such as posts for post-of-thread pages, thread titles for list-of-thread pages,

and sub forums for list-of-board pages are usually displayed that way. Figure 3.6 shows an

example of a list for a list-of-thread page. Those lists usually look very different and the main

distinguishing feature seems to be the height of each list element on the screen. This height

is influenced by the content the list elements need to display and the CSS style applied. The

post-of-thread page elements usually contain more content than the other classes and thus

are much higher.

The Identification of the height of the ele-

Figure 3.6: Example list structure for a list-of-
thread page.

ments of the main content list consists of

two steps. At first the systems searches

for the main content list. In a second step

the average height of the list elements for

this main content list is calculated from the

HTML source code of the page.

Each HTML page, regardless of its class,

contains many lists. For example, the main

menu or the page flipping links form a sim-

ilar list structure. Finding the list with the main content is a demanding task. Any list

consists of repeating tag patterns. In addition, we assume that the required main content

list contains the most text in the majority of the forum pages. As a consequence, the search

algorithm starts from the HTML element containing the most text. It assumes that this ele-

ment is a list element, even if it only forms a list of length one. This assumption is helpful to

handle threads having only one post or user-profile pages with only one large content block.

Using those list elements, an HTML rendering engine is applied to render the HTML page

as it would be rendered by a browser. It is now possible to calculate the height in pixels of

the detected list elements from the rendered HTML representation. The mean height value

of all list elements of one page is finally used as a feature for page classification.

3.7.4 Page Flipping Links

Especially list-of-thread and post-of-thread pages contain so called page flipping links pro-

viding access to pages showing old threads on list-of-thread pages or newer posts of long

threads on post-of-thread pages. If these links are identified a separation of both types from

the other three types is possible.

Page flipping links usually consist of an ordered sequence of numbers, with most of them

embedded in <a> tags as shown in Figure 3.7. Page flipping links are used if there is at least

a second page. Hence there must be an <a> node containing a numerical value x as well as

a second <a> node containing a numerical value with x + 1. In the simple case shown in

Figure 3.8(a) it should be possible to identify page flipping links by searching the siblings of

all <a> tags containing a number x for other <a> tags containing the number x+ 1.

48

3.8 Results of Forum Page Classification

Figure 3.7: Example of page flipping links as usually encountered on “list-of-thread” or “post-of-
thread” pages.

However, usually page flipping links do not occur as direct siblings. So for the example as

shown in Figure 3.8(b) a different approach is required. To identify page flipping links in

such cases it is necessary to consider <a> tags which are no siblings. The approach still uses

only <a> tags containing numbers. However, additionally <a> tags with the same depth in

the HTML tag tree are used.

If the algorithm finds page flipping links on a page the feature is true, otherwise it is false.

divdiv

bb 22 33 1111

aa aa aa aa

11

(a) Page flipping link structure in vBulletin 4.1.6

aa aa aa aa

11 22 33 1111

tdtd tdtd tdtd tdtd

trtr

tabletable

(b) Page flipping link structure from an individual
forum example

Figure 3.8: Examples for the structure of page flipping links

3.8 Results of Forum Page Classi�cation

This section presents the evaluation of forum page classification using the features from

the previous section. For that purpose a dataset labeled with the forum page types from

Section 3.1 is required as gold standard. Different classifiers will be tested on that dataset

with different feature combinations in order to measure the performance of the presented

classification approach. Performance is measured using macro averaged precision, recall,

and F1-Measure.

3.8.1 Dataset

A dataset created from the forums presented in Section 3.7 was used for the evaluation. We

divided this dataset into a training set and a test set. The composition of the final dataset is

49

3 Forum Data Acquisition

Table 3.11: Distribution of forum page types within the dataset used for evaluation

list-of-board list-of-thread post-of-thread user-profile
∑

Training Set 4 178 200 101 483
Test Set 1 50 50 50 151

shown in Table 3.11.

3.8.2 Experiments

For evaluation purposes we ran experiments using a support vector machine (SVM) with

RBF kernel, decision trees (DT), and the Naïve Bayes (NB) classifier. The parameters C and

σ for the SVM where configured using a script provided by the LIBSVM library5. Both are

explained in Section 2.3.3.

Table 3.12: Results for forum page classification using different feature sets and different classifiers;
L=Link to Text ratio, H=Height of List Elements, F=Page Flipping Links, U=Page URL;
P=Precision, R=Recall, F1=F1-Measure

Naïve Bayes Decision Tree Support Vector Machine
Prec Rec F1 Prec Rec F1 Prec Rec F1

L 0.74 0.50 0.60 0.70 0.40 0.51 0.70 0.50 0.58
H 0.75 0.50 0.60 0.50 0.41 0.45 0.49 0.40 0.44
L+H 0.74 0.50 0.60 0.49 0.46 0.47 0.74 0.50 0.60
L+F 0.74 0.50 0.60 0.75 0.50 0.60 0.74 0.50 0.60
U+F 0.17 0.25 0.20 0.17 0.25 0.20 0.33 0.25 0.28
L+H+F 0.74 0.50 0.60 0.75 0.50 0.60 0.73 0.50 0.59
L+H+U 0.74 0.50 0.60 0.49 0.47 0.48 0.49 0.49 0.49
H+U+F 0.74 0.50 0.60 0.50 0.72 0.59 0.62 0.69 0.65
L+H+F+U 0.75 0.50 0.60 0.70 0.38 0.49 0.74 0.50 0.60

Discussion

Table 3.12 presents the macro-averaged performance statistics using different classifiers and

feature sets. It shows that the most important feature is the Height of List Elements (H).

None of the other features seem to provide additional insight for the evaluated classifiers.

Only the feature combination Height of List Elements, Page URL, and Page Flipping Links

(H+U+F) improves on the recall in exchange for 10% of precision. The biggest problems are

the separation of list-of-thread pages from list-of-board pages as well as the separation of

post-of-thread pages from user-profile pages. Both problems are due to the fact that pages

from those classes look quite similar. Most classifiers, after all, are able to separate user-

profile pages from post-of-thread pages using the correct features, like for example Height

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html

50

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html

3.9 Forum Data Extraction

of List Elements. Anyhow, none of the examined classifiers is able to distinguish between

list-of-board and list-of-thread pages, which might be caused by the small amount of train-

ing data for that type of page as well as by their similarity. However, a forum’s data are

displayed on user-profile pages and post-of-thread pages. Therefore, these two types are

the ones required for forum data extraction. The micro-averaged performance statistics (not

shown in Table 3.12) show that it is possible to identify both with high confidence.

At this stage of the complete extraction process, the content pages are found. The next

sections are going to describe how to extract the required data from those pages in order to

fill the Effingo data storage.

3.9 Forum Data Extraction

Next, the step marked (3) in Figure 3.1 uses the pages identified as containing relevant data

by the algorithms presented in the last sections. At this point the algorithm is able to identify

which pages belong to a forum and which do not. With regard to the first, the algorithm

is able to identify which of them contain content and which do not. The content pages

are user-profile and post-of-thread pages. However, it still remains unclear how to use the

information from user-profile pages for question answering. In addition, user-profile pages

are not accessible on all forums. Therefore, they are excluded as well. The remaining page

type is the post-of-thread-page type. Pages belonging to this type contain the user generated

text and, as such, the questions and answers required for question answering. However,

the user generated content as well as any other content on each post-of-thread page is still

embedded in semi-structured HTML code. The last step is the extraction of information

entities such as title, user generated text, author name etc.

This section describes an approach to automatically create extraction patterns for those fields

from a set of post-of-thread pages. The approach is based on the detection of those patterns

for a specific forum from a small set of pages from forum and to apply those extraction

patterns to the remaining pages and pages generated in the future. The following sections

start with a description of the entities which are supposed to be extracted and continues with

an explanation of related approaches. Related approaches mainly originate from the area of

general Web page data extraction, but there also is one work concerned with forum data

extraction. The following two sections discuss the algorithm we used for data extraction as

well as experiments to evaluate its performance.

3.9.1 Extracted Entities

A Web page such as a forum page consists of information entities and template, boilerplate,

or structuring content. The template code consists of template tokens, while the information

entities consist of data tokens. An entity is the smallest unit of content a page displays. The

focus of forum data extraction refers to the extraction of the entities that are common to all

51

3 Forum Data Acquisition

Web forums, thereby creating a unified database for Web forums. However, there usually is

a large amount of entities per page which are either very forum-specific or do not contain

useful information. Those entities are not relevant for forum data extraction. Although they

hide the important entities and add noise to the page. This complicates the assignment of

entity types to concrete entities on the page. For example, see the two forum posts in Fig-

ure 3.9. Additionally, entities might contain template text. Template text is static text usually

Figure 3.9: Examples for extraction candidates.

inserted to describe the entity and make the text readable. For example consider the two text

nodes “username: nick” and “publication date: 07/04/2011”. Both contain a template part

and an entity part. With regard to the first example, the template part is “username: ”, while

the entity is just “nick”. The second example has the template “publication date: ”, marking

the entity “07/04/2011”. Even though the template text identifies the correct entity, it must

52

3.9 Forum Data Extraction

be separated from it during extraction.

In order to get a comprehensive impression of the entities which are common among Web fo-

rums and how they are represented we analyzed the HTML code generated by the ten most

frequently used forum systems according to http://www.big-boards.com/statistics.

The analysis shows that there are two categories of forum data, which are user data and post

data. Both are discussed in detail in the following paragraphs.

User Data

User data is divided into collected and aggregated user data.

Collected user data is provided by the user himself and usually presented on a user-profile

page. Sometimes those entries are also displayed in combination with every post the user

creates. This, however, usually depends on the user’s choice about how much data they

want to provide and show to the forum community. Examples of such data entries include

the user’s home town, their job, contact data, and, for some forums, e.g. product support

forums, also topic specific fields like products the user owns. The only obligatory user data

field is the post author’s username. Table 3.13 shows the usual ways to display collected

user data on post-of-thread pages.

Table 3.13: Analysis of how collected user data is presented on HTML pages for the ten most popular
forum systems according to http://www.big-boards.com/statistics.

Posts Metadata vBulletin 4 vBulletin 3 IPB 3 phpBB 3 phpBB 2

Username T, L T, L T, L T, L, P T
Residence T, P T, P T, P T, P T, P
Web Site – – – I I
Signature T T T T T
IM Contact I I – I I
E-Mail address – – – – I

Posts Metadata SMF 2 SMF 1 WBB 3 Jive SBS Jive CS

Username T, L T, L T, L T, L T, L
Residence – – T, P – –
Web Site I I I – –
Signature T T T T T
IM Contact I I I – –
E-Mail address – I – – –

Key:
T : Presented as text
L : Linked text
I : Presented as linked icon

P/S: Marked by prefix/suffix template text
– : not available

Aggregated user data is calculated from user activity on the forum and also presented on

53

http://www.big-boards.com/statistics
http://www.big-boards.com/statistics

3 Forum Data Acquisition

user profile pages. Similarly to collected user data, some of these entries are presented with

every post authored by the user. Examples for collected user data are the amount of posts

a user has written, the user’s registration date for the forum and their membership status.

Some of the more common aggregated user data entries shown with each post and the way

they are presented on post-of-thread pages are shown by Table 3.14. The table illustrates

Table 3.14: Analysis of how aggregated user data is presented on HTML pages for the ten most pop-
ular forum systems according to http://www.big-boards.com/statistics.

Posts Metadata vBulletin 4 vBulletin 3 IPB 3 phpBB 3 phpBB 2

Registration Date T, P T, P T, P T, P T, P
Posts Written T, P T, P T, P T, P T, P
User Status T T T, P – –
Online Status I I I I –

Posts Metadata SMF 2 SMF 1 WBB 3 Jive SBS Jive CS

Registration Date – – – T, P T, P
Posts Written T, P T, P T, P, L T, S T, P
User Status T T T I I
Online Status – – I – –

Key:
T : Presented as text
L : Linked text
I : Presented as linked icon

P/S: Marked by prefix/suffix template text
– : not available

that user data is usually represented by an icon or text with some template text in front. As

mentioned before, the username is the only entry occurring for all presented forums. It is

usually presented as text linked to its user-profile page.

Post Data

The data directly associated with a forum post consist of the user-generated content sep-

arated into the main text or body and the post’s title. Some forums are not supporting

individual titles per post. Especially modern forum systems noticed that the common user

has no intention of providing an individualized title for an answer post. Hence, titles are an

optional post data entry.

In addition to the user-generated content a post is extended with meta data and service

links. Meta data consists of the date the post was published on and an optional update date

if the post was edited after its creation. Service links are either used to directly address a

post within its thread, to reply to a post by citing it or to jump to the start of the thread.

An overview of post data and the way it is presented on a forum page is given by Table 3.15.

Some of those data entries are optional and only displayed if the user provided them. Those

54

http://www.big-boards.com/statistics

3.9 Forum Data Extraction

Table 3.15: Analysis of how post data is presented on HTML pages for the ten most popular forum
systems according to http://www.big-boards.com/statistics.

Post Metadata vBulletin 4 vBulletin 3 IPB 3 phpBB 3 phpBB 2

Title T, O T – T T, P
Publication Date T T T T, P, M T, P
Update Date T, O, P T, O, P T, O – T, P
Cite T I T, I I I
Direct Link T T T I I
Start Link – – – I T

Post Metadata SMF 2 SMF 1 WBB 3 Jive SBS Jive CS

Title T, L T, L T T T
Publication Date T, P T, P T T T, P
Update Date T, P T, P T, P – T, P, O
Cite – T, I T, I – T, I
Direct Link T I T – –
Start Link – I – – –

Key:
T: Presented as text
I : Presented as linked icon
P: Marked by prefix template text
O: Depends on author’s choice
– : not available

55

http://www.big-boards.com/statistics

3 Forum Data Acquisition

entries are marked by an “O”.

In addition, Table 3.15 lists the posts’ title as an entity which sometimes is linked. This

means that author usernames are not the only linked text within the meta data area of a post

and thus, a link is not a feature unique to author usernames.

The analysis shows that besides the always available body, only the publication date ex-

ists in every forum. Hence, in addition to the author’s username, extraction will focus on

publication date and body content.

3.9.2 Overview of Data Extraction Approaches

Early data extraction approaches are based on wrapper induction. This means that an ex-

tractor or wrapper for some semi-structured format such as HTML is created from example

instances with manmade marks as to which entities are to extract. Examples are explained

by Muslea (1999), Laender, Ribeiro-Neto, da Silva & Teixeira (2002), and Chang, Kayed, Gir-

gis & Shaalan (2006). This approach is of course only viable for a small number of forums.

For each new forum a human supervisor would be required and if a forum changed its

markup, someone would need to update the wrapper. This problem is also called wrapper

maintenance and discussed for example by Meng, Hu & Li (2003).

More recent works attempt to eliminate the manual step. They are divided into approaches

for both page types as explained in Section 3.7.3. In order to find the template part of detail

pages, multiple example pages are necessary. However, if the wrapper generator examines a

list page and discovers an instance with enough entries, it might be able to create a wrapper

from a single instance. Most content pages such as list-of-board pages, list-of-thread pages

and post-of-thread pages in a forum belong to this type. Since post-of-thread pages contain

the discussed topics in form of user-generated content and since the goal for the Effingo

system is answering questions on the topics discussed in a forum, our discussion on existing

data extraction approaches will only focus on list pages.

The following sections present crucial work from the two most closely related research areas

the first of which is generic unsupervised data extraction. Most research has concentrated

on this area. The second field of interest explicitly focused on forum data extraction, which

will later be used as a baseline for the algorithms in this work.

3.9.3 Unsupervised Data Extraction

The goal of unsupervised data extraction is the separation of template and content parts on

arbitrary Web pages. Important research in this area was provided by the RoadRunner sys-

tem described by Crescenzi, Mecca & Merialdo (2001), EXALG and it extensions described

by Zhai & Liu (2006), and Lo, Ng, Ng & Chan (2006) and FiVaTech developed by Kayed &

Chang (2010). In order to understand how these systems work the following paragraphs

provide detailed explanations of the above mentioned methods using the example HTML

code from Figure 3.10.

56

3.9 Forum Data Extraction

1 <html>
2 <body>
3 <h1> T i t l e : F a v o r i t e Movies</h1>
4
5 < l i >
6 <div>Author : Max</div>
7 <div>
8 T i t l e : What ’ s your f a v o r i t e movie?
9 </div>

10 <div>
11 My f a v o r i t e movie i s
12 S t a r Trek : F i r s t Contact
13 </div>
14 </ l i >
15 < l i >
16 <div>Author : Moritz</div>
17 <div>
18 T i t l e : Re : What ’ s your f a v o r i t e movie

?
19 </div>
20 <div>I ’ d p r e f e r F o r r e s t Gump</div>
21 </ l i >
22
23 </body>
24 </html>

1 <html>
2 <body>
3 <h1> T i t l e : Regular Expressions</h1>
4
5 < l i >
6 <div>Author : Hans</div>
7 <div>
8 T i t l e : RegEx Whitespace Modifier
9 </div>

10 <div>
11 Hi , how do I s e t the
12 Ignore−Whitespace Modifier in Java ?
13 </div>
14 </ l i >
15
16 </body>
17 </html>

Document 1 Document 2

Figure 3.10: Example HTML pages

RoadRunner

In 2001, Crescenzi et al. (2001) presented a tool for automatic content extraction from HTML

documents. RoadRunner works on multiple pages of equal class with the aim to find a

common schema. For this purpose it linearizes the HTML tag tree as a list. Each position

of that list is either an HTML tag or #PCDATA. Figure 3.11 presents the results of running the

system on the example documents from Figure 3.10. The wrapper is generated as a regular

expression from a line-by-line comparison of both documents. If two positions differ, they

need to be inspected. If both contain #PCDATA like on line 4 of the example above, a simple

placeholder is inserted. If there are different tags a cross search starts. For each document the

tags following the mismatching line from the other document are compared to the tag at the

mismatching line. If a match is found the area between the new match and the mismatching

line is examined further. This area either is an optional element or an area with a different

number of instances. The last tag of the spanned area is called the terminal tag.

The example contains non-matching areas between line 16 and 19. In this case the termi-

nal tag is . To limit the non-matching area the corresponding start tag is discovered.

Thereafter, the repetition of the non-matching area is examined. For that purpose the area

between start and end tag is pushed up as long as the position of the last match between

both documents has not been reached yet. If equal areas are identified by that means, a

list of equal items is found. The example from Figure 3.11 shows this using the list items

57

3 Forum Data Acquisition

 1:<html>
 2: <body>
 3: <h1>
 4: Title: Favorite Movies
 5: </h1>
 6:
 7:
 8: <div>
 9: Autor: Max
10: </div>
11: <div>
12: Title:Favorite Movies
13: </div>
14: <div>
15: My favorite movie is

16:
17: Star Trek: First Contact
18:
19: </div>
20:
21:
22: <div>
23: Author: Moritz
24: </div>
25: <div>
26: Title: Re: Favorite Movies
27: </div>
28: <div>
29: I'd prefer Forrest Gump
30: </div>
31:
32:
33: </body>
34:</html>

 1:<html>
 2: <body>
 3: <h1>
 4: Title:Regular Expressions
 5: </h1>
 6:
 7:
 8: <div>
 9: Author: Hans
10: </div>
11: <div>
12: Title: RegEx Whitespace Modifier
13: </div>
14: <div>
15: Hi, how to set the
 Ignore-Whitespace Modifier
 in Java?
16: </div>

17:
18:
19: </body>
20:</html>

Parse

String Difference

String Difference

String Difference

String Difference

Tag Difference (?)

Tag Difference (+)

Finished wrapper as regular expression

<html><body><h1>#PCDATA</h1>
(

<div>#PCDATA</div>
<div>#PCDATA</div>
<div>

#PCDATA
(Star Trek: First Contact)?

</div>
)+
</body></div>

Figure 3.11: Creating a regular expression describing the template of two Web pages using Roadrun-
ner (Crescenzi et al. 2001)

58

3.9 Forum Data Extraction

 starting on line 7 and 21. Hence, a repetition is established within the resulting regular

expression (+). If no repetition is found the area is marked as optional (?). Differences in-

side of equal repetitions are handled recursively. The wrapper is refined using additional

documents. Its final form is shown as a regular expression in Figure 3.11.

However, RoadRunner as one of the early approaches is subject to several restrictions.

Firstly, it considers every tag as part of the page template, thereby ignoring that user gen-

erated content may contain HTML tags as part of the page data. Furthermore, it considers

#PCDATA as either belonging completely to the template or completely to the content. How-

ever, the example in Figure 3.10 clearly shows that text sometimes contains template parts

as well as data parts, such as the “Author” or “Title” token.

EXALG

EXALG was developed by Arasu & Garcia-Molina (2003) and works on a finer level of gran-

ularity. It considers both, tags and text, as tokens either belonging to the template or data

part of an HTML page. The basic idea is that tokens occurring with the same frequency

belong to the same data structure. The algorithm tries to separate template tokens from data

tokens by creating a schema for a Web page. The authors derive the problem of schema gen-

eration from the generic problem of regular grammar generation. They build upon previous

work creating a DTD from a set of XML documents.

An EXALG-generated schema consists of a sequence of types T from the following list:

1. T : a simple type, consisting of one token

2. 〈T1, . . . , Tn〉: a tuple containing instances of types T1, . . . , Tn

3. {T}: a set containing an instance B of type T .

The types 2 and 3 enable composite data records as well as optional, multiple or nested

occurrences. They are called type constructor since they enable the creation of new types.

Type 2 is called the tuple constructor while type 3 is called set constructor. The schema for

the example presented by Figure 3.10 follows the schema 〈B{〈B,B,B〉}〉. The first B marks

the threads title, while 〈B,B,B〉 stands for one forum entry.

The algorithm works as follows: A set of documents P is used as input. The documents

are tokenized and every token is assigned to an occurrence vector. Each occurrence vector

has a length of |P| and contains token frequencies for each document. For example, the

first document in Figure 3.10 contains the term two times, while it occurs only once in

the second. So the occurrence vector would be vT = (2 1). A second step searches for

equivalence classes based on their occurrence vectors. Tokens with equal occurrence vectors

form an equivalence class. Each equivalence class preserves the order of tokens from the

documents. With regard to the example in Figure 3.10 this means that the equivalence class

(1 1) contains the occurrence vector for the token <html> as first element and for the token

<body> as second element.

59

3 Forum Data Acquisition

Large equivalence classes are marked as large and frequent equivalence classes. Based on the

assumption that template tokens are very common among documents, they should occur

only in such large and frequent equivalence classes. For their experiments the authors of

EXALG regard every equivalence class of size 3 or higher as large and frequent. However,

they report that this sometimes leads to tokens erroneously included in the wrong category.

An iterative process follows the initial creation of equivalence classes. It creates new equiv-

alence classes and extends existing ones. It checks for every existing equivalence class

whether it occurs multiple times within the same document; i.e. whether the token occurs

several times at different positions. If this is the case the context of the token is examined.

The context is created using the path from the HTML parse tree and the position within the

region. An equal token occurring at different positions has different roles. The token “Title:”

for example has two different roles in Figure 3.10. The role of the first token is defined by

the path /html/body/h1, while the role of the second token is defined by /html/body/ul/li/div. If a

token has multiple roles it is removed from the previous equivalence class and added to an-

other equivalence class matching the new occurrence vector. The token “Title:” initially had

the occurrence vector (2 2) and belonged to the equivalence class {Title:}. After one iteration

“Title:1” has the occurrence vector (1 1) and “Title:2” the occurrence vector (2 1) because

“Title:” with context 1 occurs once in each of the two example documents whereas it occurs

twice in document 1 and once in document 2 with context 2. Therefore, “Title:1” is added to

the large and frequent equivalence class <html>, <body>, <h1>, Title:1, </h1>, ... while “Title:2” is

added to another equivalence class. The algorithm stops as soon as there is no more need to

further extend any of the existing (large and frequent) equivalence classes.

Finally, the template is reconstructed from all large and frequent equivalence classes. The

template generation starts with the root equivalence class, which is the one consisting only

of “1” elements (i.e. there is always one <html> token per page). If there is a gap between

tokens from a specific large and frequent equivalence class, the algorithm continues with

the large and frequent equivalence class the next token belongs to. Positions with no tokens

from a large and frequent equivalence class are marked with a placeholder. These are the

areas where data tokens are presumably located.

Even though the algorithm presented in this thesis is loosely based on ideas from EXALG,

it is different since EXALG works on arbitrary HTML pages, while the proposed approach

is focused on post-of-thread forum pages. Therefore it is possible to draw certain premises

which the authors of EXALG could not assume. So, in contrast to EXALG, we do know

that there is a certain amount of posts on each page and that each post contains exactly one

instance of each data entity. In addition, EXALG has no capability to assign semantics to

the extracted entities, whereas here we know that we need to find instances of usernames,

publication dates and body texts.

FiVaTech by Kayed & Chang (2010) advances the algorithm of EXALG and avoids the prob-

lem that tokens are sometimes included in the wrong category. However, they reintroduce

the drawbacks of RoadRunner. With this algorithm templates text is no longer separable

60

3.10 Forum Data Extraction Algorithm

from entities in the same text segment and embedded HTML tags are always considered to

be part of the template.

3.9.4 Existing Forum Data Extraction Approaches

One recent work specifically concerning forums was introduced by Yang, Cai, Wang, Zhu,

Zhang & Ma (2009). Their approach is based on an analysis of the link structure of a forum

site. Since the forum structure is analyzed, such a Site Level procedure requires at least 2,000

crawled pages in order to be successful. In contrast, the Effingo algorithms operate on Page

Level and thus achieve good results with a smaller set of analyzed pages.

Based on the site structure Yang et al. (2009) apply rules formulated in predicate logic to

additionally extract author, publication date, and body of a post. They assume that authors’

usernames are always linked to their user-profile page, that bodies contain the largest text

and that publication dates are parsable and available in ascending order. The analysis of

forums from Section 3.9.1 proves this to be wrong for many forums. Especially if not logged

in, the links to the user-profile pages are not accessible. The third assumption might be true

for classical forums but extraction will fail on Q/A sites, where posts are ordered according

to user rating and not by publication date. Also, since Yang et al. (2009) run no analysis of

the text content they extract, their approach is unable to separate template tokens from data

tokens inside the same HTML element, similar to RoadRunner.

They evaluated their approach on a dataset with pages from 20 different forums. The dataset

uses mostly pages created by the same forum software. For this reason it might be heavily

skewed. Nevertheless, the approach by Yang et al. (2009) is the closest to ours and thus used

as a baseline in Section 3.11.5.

3.10 Forum Data Extraction Algorithm

The following sections are going to show how to reference data entities within a post-of-

thread page. They also illustrate how to map a data entity to a post and how to map a

thread to all its posts even if they are distributed over several pages. Finally, we assign one

of four labels to an entity using a classification approach similar to the one we employed

to detect forum pages and types of forum pages in the previous section. For this purpose a

distinguishing feature set is created again. In contrast to existing approaches, this approach

is not only able to extract data entities but also to assign extracted entities to the correct

attribute such as the author’s username, the body text etc. In addition, the presented ap-

proach is also able to distinguish data content from template content inside of segments and

not only on segment level and also is able to handle custom user-provided HTML content

as part of data entities.

The forum data extraction is separated into two parts. At first, a set of pages from one

forum site is analyzed to find valid extraction patterns. This small set is called analysis

61

3 Forum Data Acquisition

set. The analysis step is necessary only once per forum to create extraction patterns for

all required entities. By means of those patterns an extractor is able to find the entities

from new and unknown pages of the same forum. An extraction pattern is a tuple of three

elements: The first part is an extraction path referencing the HTML tag which encompasses

the text containing the entity. The second is a token pattern marking tokens inside the text

as either belonging to the page’s template text or to the data. The third part is a group index

referencing the entities data part in the token pattern. This can be formalized to:

(Extraction Path,Token Pattern,Group Index)

Those extraction patterns are required to address all instances of a data entity on one post-

of-thread page.

Technically, an extraction path is an XPath Expression, a token pattern is a regular expression

and a group index is an index into a regular expression group enclosed in “(” and “)”.

Thus for the example from Listing 3.4 the analyzer should create extraction patterns such as:

- Author

Extraction Path /html/body/div/div[contains(text(), {Posted, by, at, in, response, to})]/text()

Token Pattern Posted by (.*?) at (.*?) in response to (.*?)

Group Index g = 1

- Date

Extraction Path /html/body/div/div[contains(text(), {Posted, by, at, in, response, to})]/text()

Token Pattern Posted by (.*?) at (.*?) in response to (.*?)

Group Index g = 2

- Post identifier

Extraction Path /html/body/div[starts-with(@id, "post")]/@id

Token Pattern .*?([0-9]+).*

Group Index g = 1

- Thread identifier

Extraction Path /html/head/link[@rel="canonical"]/@href

Token Pattern .*?thread/([0-9]+).*

Group Index g = 1

The following sections explain the analysis process, for which an overview is shown in Fig-

ure 3.12. At first, the analysis set is selected from all post-of-thread pages of one forum. The

post-of-thread pages identified by the process described in Section 3.6 could serve as an in-

put to this step. Using their URL it is easy to find the pages belonging to the same forum. It

is important to select maximum length analysis pages during this step. If only pages with-

out the maximum amount of posts per page are selected, extraction pattern generation for

the last posts will definitely fail. The second step can be defined as a segmentation process

62

3.10 Forum Data Extraction Algorithm

1 <html>
2 <head>
3 . . .
4 < l ink r e l =" canonica l " href=" http :// example . com/thread /1111 " />
5 </head>
6 <body>
7 . . .
8 <div id=" post4711 ">
9 <div>Posted by Moritz a t 12/11/2011 04 :35 pm in response to Frank</div>

10 . . .
11 </div>
12 . . .
13 </html>

Listing 3.4: Example page for showing the style of extraction patterns.

Analysis Set
Selection Segmentation

Post Identifier
Extraction

Post Region
Extraction

Tag Path
Extraction

Create Extraction
Rules

Thread Identifier
Extraction

Path to thread identifier
position

Classification
Refined path and
token-patterns

Postregion and
Postnodes

Candidates for
segmenst,

post identifier and
thread identifier

Maximum Length
Analysis Pages

Figure 3.12: Overview of generating extraction patterns during the analysis process on a small set of
analysis pages.

during which candidate segments are selected that possibly contain the required entities.

The selection of segments is explained in Section 3.10.1. The process then splits into post

extraction and thread identifier extraction, the latter of which is explained in Section 3.10.6

and is necessary to associate posts which belong to the same thread but are distributed over

multiple HTML pages. The first step of the analysis process is split into three sub steps.

Initially, the identifier for posts is extracted as a means to retrieve all segments belonging to

the same post. Second the region surrounding the post is identified, and lastly, tag paths are

extracted for all segments inside each post. Those tag paths are classified in order to find

out which entity they contain. These steps are explained in Sections 3.10.2, 3.10.3, 3.10.4, and

3.10.5.

3.10.1 Segmentation

HTML unfortunately does not explicitly mark entities. Tags such as <author> would render

the whole forum page extraction useless. However, entities are only surrounded with tags

to create structure and formatting such as <div> or . Each such tag surrounds a segment

of content as described in Section 3.2. Fortunately, these tags are good reference points

for contained entities and sometimes even contain clues to their content. For this reason,

as a first step candidate segments are extracted from the post-of-thread page. The list of

candidates should not miss any required entities, but should exclude as many unnecessary

segments as possible. In order to achieve this result the following requirements are applied

63

3 Forum Data Acquisition

to select candidate segments:

- Granularity The granularity of a segment needs to be as small as possible to contain

only one entity but at the same time as big as necessary in order to include all text

belonging to the entity. Specifically, it is important that the segment does not split up

user-generated text. An example segmentation might look like:

Max wrote on 11/11/2011: I have a question...

For this purpose it is important to know that HTML elements are divided by the W3C

into block-level elements and inline-level elements6. Block-level elements are those

HTML elements that generate a break after themselves. Examples are div and p. They

are usually used for structuring a Web page. On the hand, inline-level elements are

those elements occurring inside of continuous text. Examples are strong or span. They

are used for formatting text and for providing interactivity to a Web page. Valid candi-

date segments are surrounded by HTML block-level elements satisfying the following

properties.

– contains text

– contains inline-level elements

Each block-level element containing another block-level element is considered as valid

segment if it satisfies the conditions as well.

- Similarity Candidate segments containing the same data entity shall have the same

relative tag path. For two forum posts, for example, the segments surrounding the

publication dates in both need to have the same relative tag path.

- Features Since segments are used for classification as explained in Section 2.3, it is

necessary to keep additional features for each, such as:

– HTML attributes and their values

– Formatting

– Links

– Relative Position in Post

Listing 3.5 shows a small example page. Applying page segmentation results in the follow-

1 <html>
2 <head> . . . </head>
3 <body c l a s s =" page ">
4 <div id=" 4711 ">The f i r s t example . </div>
5 <div id=" 4712 ">A second example . </div>
6 </body>
7 </html>

Listing 3.5: A small HTML example

ing list of candidate segments:
6http://w3.org.TR/html14/struct/global.html#h-7.5.3

64

http://w3.org.TR/html14/struct/global.html#h-7.5.3

3.10 Forum Data Extraction Algorithm

Segment S1 The first example.

Segment S2 A second example.

As shown by the example, two block level elements create two segments. It also illustrates

that the second text would have been split up if the segments surrounding inline-level ele-

ments had been considered as well.

3.10.2 Post Identi�cation

The list of segments spans the whole HTML page. For the purpose of data extraction only

the segments pointing to the actual forum posts are important. Therefore, we now present

an approach to select those segments that are part of a forum post.

The approach is based on the fact that every forum post is identified by a unique identifier

within the forum system. This is necessary to save the post in the underlying database. In

order to address a post, for example via service links, the forum software inserts the post

identifier into the HTML markup. If we are able to find an instance of the post identifier

and the corresponding HTML element, all tag paths containing that element are also part of

a post.

Usually an identifier is expressed by a numerical value as part of an HTML id or name

attribute. Therefore, all numerical values from all id attributes and name attributes are ini-

tially considered as post identifier candidates. All tag paths for the same identifier should be

equal and form a relative tag path from the page root element to the id element. This relative

tag path usually addresses the whole post. Unfortunately, there might be other identifiers

such as the identifier of the thread on the page. However, as explained above, the pages

from the analysis set are large post-of-thread pages. Since such a large page contains the

maximum amount of posts and most of the post identifiers, we can assume that the post

identifier will be the most frequent identifier on such a page. Therefore, from the candidate

tag paths we choose the one addressing the most segments. An initial evaluation has shown

that this approach already achieves 99% accuracy on classical forums.

Unfortunately the naïve approach is not applicable to social media platforms, especially

question/answer sites such as StackOverflow7. The problem here is that pages from those

sites do not follow the classical structure of a forum discussion, where one post follows the

next. On question/answer sites first level posts are usually only questions and answers,

while discussions are carried out via comments attached to the discussed post. It is very

common that there are more comments than posts on such pages and each of those com-

ments has its own identifier. Therefore, the comment identifier addresses a much larger

section of the page and the approach discussed above fails. In addition, numbers are not

the only type of identifiers. Other common identifier formats are hexadecimal strings or

Universally Unique Identifiers (UUID8). Hence, the approach mentioned above at first is
7http://stackoverflow.com
8http://tools.ietf.org/html/rfc4122

65

http://stackoverflow.com
http://tools.ietf.org/html/rfc4122

3 Forum Data Acquisition

Table 3.16: Identifier formats in the order they are searched for in a page.

Processing Step Format

1 whole numbers
2 hexadecimals
3 UUIDs

extended to search candidates for the identifier formats presented in Table 3.16. The order is

important since the alphabet of the first format is part of the alphabet of the second format

and so on.

Again, for each identifier, an absolute candidate tag path is created and grouped with other

tag paths for the same identifier as attribute representation α. That way all tag paths ad-

dressing the same identifier candidate are grouped as Pα. From the attribute representation

we can create a relative tag path referencing all equal identifiers.

Consider the following example:

1 <div>
2 <div id=" post4711 ">
3 . . .
4 <div id=" post4711_message "> . . . </div>
5 </div>
6 <div id=" post4712 ">
7 . . .
8 <div id=" post4712_message "> . . . </div>
9 </div>

10 </div>

This results in two attribute representations α and β, each of which represents a relative tag

path corresponding to two absolute tag paths.

α: /div/div[@id]:

Pα: {/div/div[@id="post4711"],

/div/div[@id="post4712"]}

β: /div/div[@id]/div[@id]:

P β : {/div/div[@id="post4711"]/div[@id="post4711_message"],

/div/div[@id="post4712"]/div[@id="post4712_message"]}

Using a function id() the two sets IDα := {4711, 4712} and IDβ :=

{4711_message, 4712_message} are extracted as post identifier candidates. Since ID is

a set duplicates are removed automatically. So if all post-of-thread pages contain an element

of the form div[@id="wrapper-1"], the cardinality of the resulting ID set still is only 1. If,

however, every post-of-thread page has a different identifier at the same position, the ID

set has a cardinality of |post-of-threadpages |. There are three possible relations between the

cardinality of the post-of-thread pages and the cardinality of the ID sets.

66

3.10 Forum Data Extraction Algorithm

| IDα | < | post-of-threadpages |: The identifier either occurs only on some post-of-thread

pages or the identifier is equal in all thread pages, if

|Pα| = |post-of-threadpages |.
| IDα | = | post-of-threadpages |: This means that there is one identifier per post-of-thread

page and it is a different identifier on each visited page.

| IDα | > | post-of-threadpages |: The identifiers belong to a data structure with multiple data

records per page.

Based on these observations we can build three identifier sets, namely: ID/ < containing all

identifier candidates with fewer instances than post-of-thread pages, ID/ = with all candi-

dates whose cardinality is equal to the number of analyzed post-of-thread pages and ID/ >

containing identifier sets with a cardinality higher than the number of analyzed post-of-

thread pages. The set with the post identifiers is inside of ID/ > since we can assume that at

least one analyzed post-of-thread page has more than one post. So if | ID/ > | = 1 the post

identifiers are found. This is the standard case for classical Web forums as described above.

As already explained | ID/ > | > 1 for modern question answer sites, with comments and a

question which is separated from the answers. For pages from such sites we apply a distance

measure between tag paths. Since an ordered list of tag paths represents all segments from

an HTML page, the distance can be calculated by comparing the distance of the indices of

two tag paths in this list. As shown in Figure 3.13 the minimal segment distance between

comments is much shorter than between posts. However, the amount of comments and

posts varies on each post-of-thread page, so it is impossible to find a globally applicable

measure to divide posts from other segments identified on the page. Due to this, we revert

to a widely applicable heuristic, which weights the amount of identifiers with the pairwise

minimal segment distance of identifiers from one P set. As a result of this heuristic the set

of post identifiers IDPosts is calculated using Equation 3.4 and 3.5

weight(Pα) := |Pα| ·min-segment-distance(Pα) (3.4)

IDPosts := max(weight(Pα),weight(P β), . . .) (3.5)

The algorithm selects those identifiers occurring frequently albeit with maximum distance,

which is a crucial feature of posts on post-of-thread pages.

For example, consider a post-of-thread page containing two posts and four comments. Post

identifiers are called α while comment identifiers are called β. Table 3.17 shows the setup.

Assuming a minimal distance of 20 segments between two posts, the weighted cardinality

of Pα becomes 20 · 2 = 40. In contrast, the minimum distance of two comments is only 3

segments and thus the weighted cardinality of P β results in 3 ·4 = 12. Therefore, α’s relative

tag path is chosen to select post identifiers.

By means of the post identifier’s tag path the node of the post region and each individ-

ual post can be extracted. This is necessary in order to assign segments to posts. For this

67

3 Forum Data Acquisition

log in | careers | chat | meta | about | faq

Questions Tags Users Badges Unanswered Ask Question

about | faq | new blog | chat | data | podcast | shop | legal | advertising info | mobile | contact us | feedback

 stackoverflow.com api/apps careers serverfault.com superuser.com meta area 51 webapps gaming ubuntu

 webmasters cooking game development math photography stats tex english theoretical cs programmers

 unix apple wordpress physics home improvement gis electronics android security bicycles dba drupal

 sharepoint scifi & fantasy user experience

rev 2012.2.1.846

2 Answers active oldest votes

8

2

Given a "run configuration" in Eclipse, I want to print out the associated shell command that would be
used to run it.

For example: Right now, in Eclipse, if I click "play" it will run:

mvn assembly:directory -Dmaven.test.skip=true

I don't see that command, I just know that's what the IDE must run, at some point. However, some of the
other run configurations are far more complex with long classpaths and virtual machine options and,
frankly, sometimes I have no idea what the equivalent shell command would be (particularly when it
comes to Flex).

There must be some way to access the shell command that would be associated with a "Run
Configuration" in Eclipse/Flex Builder. This information must be available, which leads me to believe
someone has written a plugin to display it. Or maybe there's already an option built into Eclipse for
accessing this.

So is there a way to, essentially, convert an Eclipse run configuration into a shell command?

(for context only: I'm asking because I'm writing a bash script that automates everything I do, during
development--from populating the Database all the way to opening Firefox and clearing the cache before
running the web app. So every command I run from the IDE needs to exist in the script. Some are tricky
to figure out.)

java flex eclipse flexbuilder

link | improve this question asked Jun 4 '10 at 17:49

87% accept rate

1 It won't necessarily run a shell command. In fact, it almost never will since Eclipse doesn't have a shell or
use a shell interpreter. Things like maven and ant have Java hooks which bypass any need for a shell. –
 Mark Peters Jun 4 '10 at 17:54

feedback

8
This should work for Java and Maven processes. You can get the command line from the Process
properties.

run the process in debug mode
right click on the process item in the "Debug" view and choose "Properties"
the command line is displayed

link | improve this answer answered Jun 15 '10 at 6:38

This is exactly the kind of thing I'm looking for. I tested it in Flash Builder 4 (it's a watered-down eclipse) and
it didn't work there but I see how it could work in other situations. So I'll check it in my plain Eclipse when I
bring it back up. – gmale Jun 16 '10 at 17:05

This works for me, but see miki's answer below as well...the agentlib argument needs to be removed. – Bill
Apr 24 '11 at 13:42

feedback

2
thanks so much splash. one thing to add-- i was getting a weird error at the commandline:

ERROR: transport error 202: connect failed: Connection refused ERROR: JDWP Transport dt_socket
failed to initialize, TRANSPORT_INIT(510) JDWP exit error
AGENT_ERROR_TRANSPORT_INIT(197): No transports initialized
[../../../src/share/back/debugInit.c:708] FATAL ERROR in native method: JDWP No transports
initialized, jvmtiError=AGENT_ERROR_TRANSPORT_INIT(197) Aborted!

this can be avoided by just taking out the agentlib argument:

-agentlib:jdwp=transport=dt_socket,suspend=y,address=localhost:56431

link | improve this answer answered Apr 3 '11 at 14:17

feedback

Your Answer

log in

Name

Email

Home Page

Not the answer you're looking for? Browse other questions tagged java flex

eclipse flexbuilder or ask your own question.

question feed

How to view shell commands used by eclipse “run configurations”

site design / logo © 2012 stack exchange inc; user contributions licensed under cc-wiki with attribution required

gmale
1,632 6 29

splash
5,697 6 17

miki
51 3

Hello World!

This is a collaboratively edited
question and answer site for
professional and enthusiast
programmers. It's 100% free,
no registration required.

about » faq »

tagged

java

eclipse

flex

flexbuilder

asked 1 year ago
viewed 848 times
active 10 months ago

Related
How do I make FlexBuilder
recognize my MXML files as
applications instead of
components?

How to get command line
arguments for a running process

How to turn off the beep sound in
Eclipse?

Disabling project refresh on build

Is it possible to configure Adobe's
Flex Builder (or Flash Builder) to
use the Eclipse embedded browser
to run apps?

How do I create a Flex 3 HTTP
service with variable arguments?

How to exclude files from being
copied to bin-debug on build

Flex - changes to mxml not
reflected in browser

Add .properties file to output folder
of Flex project

Does FlexBuilder 3 work with
Eclipse 3.5.1?

next/previous word in flex builder

Can I run flexunit tests in the Flash
Player instead of the browser?

Trying to synch Flex
Builder/Eclipse project with SVN
source tree

Where are these ant properties
defined? (FlexBuilder/Eclipse)

How to do Actionscript trace
and/or component flow log using
debugger

Custom project in Adobe Flex
Builder 3?

install flex builder with eclipse
ubuntu 9.10

How to get the server time in flex

Flex Builder: Not picking up new
files

flex builder 4 step by step tutorials
how to use it?

flex eclipse plugin isn't it free?

Flex How to use forms/modules

How to work as a team on
FlexBuilder

Eclipse Adobe plugin causes crash

How to make “package explorer”
display paths

Get the weekly newsletter!

Top questions and answers
Important announcements
Unanswered questions

see an example newsletter

or

Welcome to Q&A for professional and enthusiast programmers — check out the FAQ!

Figure 3.13: Distances of comments and posts on a typical question answer page.

Table 3.17: Example of identifier extraction on a page containing posts and comments for each post.
AR = attribute representation

AR PAR min. Distance weight(PAR)

α /div/div/div[@id="message−4711"]
/div/div/div[@id="message−4712"]

20 Segments 40

β /div/div/div[@id="comment−23111"]
/div/div/div[@id="comment−23112"]
/div/div/div[@id="comment−23113"]
/div/div/div[@id="comment−23114"]

3 Segments 12

68

3.10 Forum Data Extraction Algorithm

purpose we compare the frequency representations of the post identifier’s tag paths. If the

frequencies differ at a certain position of all paths, that position marks a split in the HTML

tag tree, and thus the root nodes of the posts. That way, the previous element in the tag path

constitutes the node marking the post region. See for example the following tree structure

and the corresponding tag path frequency representation:

Tree Structure: Frequency Representation:

div

div

div

div

div

→ /div[1]/div[1]/div[1]

→ /div[1]/div[2]/div[1]

This leads to a trisection of tag paths into prefix and suffix parts surrounding the post node

like:

/html/ . . .︸ ︷︷ ︸
Prefix

/Post-Node[i] / . . . /Leaf-Node︸ ︷︷ ︸
Suffix

A final problem with regard to the location of the post region is the fact that some forums

display the first post differently. Especially question answer pages usually show the ques-

tion on a different layer of the tag tree hierarchy. For this purpose we can use the thread

identifier group ID / = which contains all identifiers with one instance per thread page,

such as question identifiers. In order to check whether the tag paths belonging to such an

identifier group point to question posts, their suffixes are compared to the suffixes of the

answer posts. If their relative tag paths match, the identifiers belong to question posts. For

example, consider the following HTML tree and the relative tag paths addressing the mes-

sage body for the answer as well as the question:

69

3 Forum Data Acquisition

Tree: Example Code:

div

div

div

div

div

div

div

div

1 <div>
2 <div c l a s s =" quest ion " id=" post4711 ">
3 . . .
4 <div id=" post4712_message "> . . . </div>
5 </div>
6 <div c l a s s =" answers ">
7 <div id=" post4712 ">
8 . . .
9 <div id=" post4712_message "> . . . </div>

10 </div>
11 <div id=" post4713 ">
12 . . .
13 <div id=" post4712_message "> . . . </div>
14 </div>
15 </div>
16 </div>

α′ := /div/div /div[starts-with(@id, "post") ∧ ends-with(@id, "message")]︸ ︷︷ ︸
Suffix α′

α′′ := /div /div[starts-with(@id, "post") ∧ ends-with(@id, "message")]︸ ︷︷ ︸
= Suffix α′

→ α′ ∼ α′′

Even though the question is located in a higher hierarchy of the tree it is possible to merge it

with the answers, since their relative tag path suffixes match. Of course this approach only

succeeds when the markup of the questions is the same as the markup of the answers. This,

however, is true for most of such pages. A detailed evaluation on how the heuristic works

is shown in Section 3.11.

Predicate Based Relative Tag Path Re�nement

If one of the relative tag paths is too relative it addresses more segments than intended.

Such error cases must be ruled out by refining tag paths. For example, consider the HTML

code in Listing 3.6: A relative tag path addressing both author elements would look like

/div/div but would also wrongly address all other entities of the post. In order to solve

this problem a relative tag path addressing the same child segment of both posts is required.

For this purpose the expressiveness of tag paths using only tags is not enough. A possible

representation of tag paths are XPaths, which provide a wealth of predicates for refinement,

like:

1. Existence/Absence of attributes and/or their values.

2. Existence of a common string in all segments

3. Existence of element types, especially inline elements.

70

3.10 Forum Data Extraction Algorithm

1 <div c l a s s ="odd">
2 <div c l a s s =" author ">Max wrote : </div>
3 <div c l a s s =" date ">Posted : 05/10/2009</div>
4 <div>Regis tered : 12/27/2005</div>
5 <div>Locat ion : Dresden</div>
6 <div id=" message4725 ">
7 Lorem ipsum dolor s i t amet
8 c o n s e c t e t u r a d i p i s c i n g e l i t .
9 </div>

10 </div>
11 <div c l a s s =" even ">
12 <div c l a s s =" author ">Moritz wrote : </div>
13 <div c l a s s =" date ">Posted : 05/11/2009</div>
14 <div>Regis tered : 07/12/2005</div>
15 <div>Locat ion : B e r l i n </div>
16 <div id=" message4731 ">
17 Aliquam nec dictum sapien .
18 </div>
19 </div>

Listing 3.6: Two example posts.

The most naïve way of refining the relative tag path with predicates for all attributes of all

elements in each path would generate tag paths like:

1 /div[@class="odd"]/div[@class="author"]

2 /div[@class="odd"]/div[@class="date"]

3 /div[@class="odd"]/div

4 /div[@class="odd"]/div[@id]

5 /div[@class="even"]/div[@class="author"]

6 /div[@class="even"]/div[@class="date"]

7 /div[@class="even"]/div

8 /div[@class="even"]/div[@id]

Listing 3.7: Relative tag paths refined with
attributes

These paths are still addressing the wrong number of segments. Note especially that, now,

some of the relative tag paths address too few segments. This results from the separation of

posts into an even and an odd class, which is usually done to improve the contrast between

posts in a forum. In such a case, a reduction of relative tag paths is required in addition to the

extension explained before. For this purpose, Section 3.10.3 presents the Split/Merge/Refine -
algorithm, to generate tag paths like:

α: /div[@class]/div[@class="author" ∧ ends−with(text(), "wrote:")]

β: /div[@class/div[@class="date" ∧ starts−with(text(), "Posted:")]

γ: /div[@class]/div[starts−with(text(), "Registered:")]

δ: /div[@class]/div[starts−with(@id, "message")]

71

3 Forum Data Acquisition

3.10.3 Split/Merge/Re�ne - Algorithm

The algorithm presented here is responsible for adding appropriate predicates to tag paths,

thereby lending them an unambiguous character. A tag path is unambiguous if it addresses

only one segment per post, which means in return that it reaches exactly as many segments

per post-of-thread page as there are posts. There are two different cases in which the SMR

algorithm is required to add predicates to an erroneous relative tag path: either the tag path

addresses too many segments or too few. In the first case, the tag path must be split until

it addresses just as many segments as there are posts. In the second case, the algorithm is

supposed to find other relative tag paths addressing too few segments which can be merged

until the result addresses as many segments as there are posts.

Sometimes merging will not be possible if the addressed segments span an optional entity.

This applies, for example, if the user has the option but is not required to provide its res-

idence. All posts of authors who provided their residence will have an additional entity

showing this information within the page. The forum engine inserts such an optional entity

as an additional segment moving all following segments by one step. In this case, indices

referencing the same entity might become different for some posts.

If a tag path is not focused enough after a split or merge operation, this may lead to acciden-

tally having the same form as a later merge or split result. This would require an expensive

new split operation. Therefore, the results of a split or merge step should be refined in order

to match the targeted segments as closely as possible.

The input for the SMR algorithm are relative tag paths as described above. Its output are

refined relative tag paths, referencing all segments and only segments containing the same

entity. As a means to simplify the remaining steps of the algorithm those tag paths are

initially qualified with all attributes and their values. Only id attributes are left out. Since

they always reference exactly one tag on an HTML page they are no good predicates to

find relative tag path representations. In addition, for each tag path generated that way

the amount of segments it addresses is recorded. The algorithm stops as soon as the set of

relative tag paths stops changing.

Split/Re�ne Step

If a relative tag path addresses too many segments it must be extended with predicates.

These predicates are based on appropriate template tokens. For this purpose the following

XPath predicates are available:

- starts-with(String, Sub-String)

- ends-with(String, Sub-String)

- contains(String, Sub-String)

In addition, the content of a node is accessible using XPath functions like text() or

normalize-space().

72

3.10 Forum Data Extraction Algorithm

In order to find the set of template tokens we start by tokenizing the content of each segment

content. Then, for each token the number of segments it occurs in is counted. If a token

occurs in as many segments as there are posts on the page it must be a template token. All

tokens always occurring in combination with one another are grouped and used to refine

the tag paths. A similar approach can be applied to the content of id attributes as shown by

the following example:

. . .

<div>

<div id="post4711_author">Moritz</div> → α: /div/div[@id]

<div id="post4711_message">Lorem ipsum ...</div> → α: /div/div[@id]

</div>

. . .
=⇒split(α)

α′ : /div/div[starts-with(@id, "post") ∧ ends-with(@id, "_author")]

α′′ : /div/div[starts-with(@id, "post") ∧ ends-with(@id, "_message")]

The example displays the markup of one post with two entities; the author’s username and

the message text. Both are initially addressed using the same relative tag path /div/div[@id].

Since every post contains an author and a message, the tag path addresses twice the number

of posts per post-of-thread page and thus needs refinement. Tokenization transforms the

content of the id tag to {post. 4711, _author} and {post, 4711, _message}. The second token

4711 is different for each post and thus not considered as an additional attribute. The tokens

_author and _message occur as frequently as there are posts on the page. Thus, they are

added as attributes to the refined tag paths. The post token is not absolutely necessary in

this example but should still be added to avoid costly re-refinement steps.

Merge/Re�ne Step

Sometimes, for example, if a forum assigns different classes to a post to give every even

post a different style to every odd one, a relative tag path addresses fewer segments than in-

tended. In such cases we merge tag paths using the following five step approach, explained

on example paths which are based on Listing 3.6:

1. Take an attribute representation from one of the tag paths addressing fewer segments

than the amount of posts and remove all attribute values.

Example:

α′ = /div[@class="odd"]/div[@class="author"]

α′∗ = /div[@class]/div[@class]

Here the “odd” and “author” values are removed.

2. Choose another tag path representation with the same reduced form, such as:
β′ = /div[@class="even"]/div[@class="author"]

β′∗ = /div[@class]/div[@class]

73

3 Forum Data Acquisition

3. Add the relative index of the leaf node for both merge candidates. Relative indices

are counted from all siblings of a node. If the indices do not match, both tag paths

reference different segments and should thus not be merged. If they match go on.

For the author entity in the example this results in the relative tag path /div[@class]/div[

@class][1], since the div tag surrounding the author entity is the first child of the div tag

surrounding the post segment.

One should take into consideration that indices could have been slipped due to op-

tional elements occurring in only some posts. In such cases tag paths to the same

segment might still have different indices. Therefore, the algorithm should choose the

most frequent index for its merge decision.

4. Merge both paths by reducing all elements with different attribute values to their at-

tribute key. This is achieved by pairwise comparison of both tag paths.

5. Refine the path if possible by means of template tokens as already described for the

split step. This prevents a further merge step from creating an equal tag path, which

would have to be split in another split step.

Step four and five together produce a final tag path representation for the author entity,

which looks like /div[@class]/div[@class="author"]. In order to create this final representation, step

four has removed the "even" and "odd" attribute values and step five re-adds the "author" value.

3.10.4 Template Detection - Algorithm

The SMR algorithm creates tag paths referencing exactly the segment which contains equal

entities. However, in addition to entities, the segment usually contains other text data be-

longing to the template. Consider the template tokens framed in Listing 3.8 and the marked

data tokens.

1 <div c l a s s =" p o s t d e t a i l s ">
2 <div> Posted: 10.05.2009 </div>
3 <div> Registered: 12/27/2005 </div>

4 <div> Location: Dresden </div>
5 <div id=" message4725 ">
6 Nullam vehicula porttitor rutrum.

7 </div>
8 </div>

Listing 3.8: Detail information about post with highlighted template and entity tokens

74

3.10 Forum Data Extraction Algorithm

The application of the SMR algorithm provides tag paths referencing the whole segment,

including template and data tokens. This section explains how to split the content of the

segments addressed by SMR-created tag paths.

The main difference between data and template tokens is that data tokens change their value

for each instance of a relative tag path while template tokens always stay the same. It is

possible to use that fact to create an extraction pattern for a data field. For example, consider

the following two data fields Sα1 and Sα2 :

Sα1 : John earl of Doe wrote on 12/10/2011 01:12 pm

Sα2 : Moritz wrote on 12/11/2011 04:35 pm (edited)

From these the following extraction pattern could be created:

patternα = [*, wrote, on, *, pm, *]

Creating such an extraction pattern is a four-step process described by the following para-

graphs:

Tokenization of Segment Content

The first step is to run a tokenization of the content of each analyzed segment. The tok-

enized content forms the foundation for the remaining steps. Using a simple whitespace

tokenization, the example resolves to the following tokens:

Tα1 = [John, earl, of, Doe, wrote, on, 12/10/2011, 01:12, pm]

Tα2 = [Moritz, wrote, on, 12/11/2011, 04:35, pm, (edited)]

Mark Template Tokens

Template tokens are identified based on the tokenized content. For this purpose, the inter-

section of all segments is used. Tokens appearing in the intersection have occurred in every

segment and thus are considered as template tokens. The set of template tokens would be

generated from the example segments:

{wrote, on, pm}

Exchange Data Tokens by Placeholders

The instances of data tokens are irrelevant for extraction patterns. We only require the order

of template and data tokens. Therefore, data tokens are replaced by Placeholders such as *.

For the example presented above, this results in the following patterns.

Tα
′

1 = [*, *, *, wrote, on, *, *, pm]

Tα
′

2 = [*, wrote, on, *, *, pm, *]

75

3 Forum Data Acquisition

Merge Continuous Placeholders

It is possible that a segment contains an arbitrary number of data tokens at a certain position.

Only the start and end points of those positions are important. Everything in between will

be extracted anyway. In order to unify all patterns for a relative tag path, continuous place-

holders are merged to one. For the resulting patterns a placeholder represents an arbitrary

number of data tokens. This results in the extraction pattern as intended for our example.

3.10.5 Tag Path Classi�cation

At this point, the system is able to create extraction patterns for repeated data entities inside

posts. However, it still does not know which pattern extracts which data entity. In order

to assign an entity type to an extracted value a classification approach is applied again. For

that purpose we need to find distinguishing features for the entity types. These features are

created based on the analysis presented in Section 3.9.1.

Even though the task is to extract only a small subset of entity types, it can be helpful to

provide the classifier with some information about additional entities in order to reduce

noise. If a segment is classified as the user’s home location with high confidence, it can be

ruled out as anything else. Hence, the classifier is trained on the following list of entity types

commonly found in Web forums:

- Creation date: The date the post was created.

- Author: The name of the post’s author which might occur in several extraction pat-

terns.

- Body: The user-generated content of the post.

- Title: A post’s title, which is part of the posts in many forums.

- Posts written: The number of prior posts an author has published.

- Home Location: The home town of the author of the post if it was provided via the users

profile.

- Registration Date: The date the post’s author was registered for the forum.

- User Status: The author’s status, such as “User”, “Moderator” or “Administrator”.

- Signature: An author’s signature.

- Update Date: The date the post was last updated.

- none: A garbage class used to classify all of a post’s remaining segments.

In order to classify extraction patterns into all these categories, the following features con-

sider a broad set of entity types. All features are distributed over three categories. Syntactic

features result from the text of a segment, context features stem from the HTML markup

level, and semantic features are based on the meaning of a segment.

76

3.10 Forum Data Extraction Algorithm

Syntactic Features

Syntactic features are calculated for every instance of a segment on a post-of-thread page

and are averaged for the classification of an extraction pattern. The following syntactic

features are used:

- MeanLength: The amount of characters.

- MeanSpecialCharCount: The amount of special characters.

- MeanTokenCount: The amount of tokens.

- MeanWordCount: The amount of tokens consisting only of letters.

- TokenDiversity Measures the frequency of a token in all instances of a segment. It is

calculated based on the measure invented by Jaccard (1901):

tdα :=
|Dα

1j ∩ . . . ∩Dα
nj |

|Dα
1j ∪ . . . ∪Dα

nj |

The equation uses the jth data field of segment 1 . . . n from relative tag path α.

- TokenCountDiversity: A measure for the variation range of the number of tokens among

segment instances.

tcdα := max(|Dα
1j |, . . . , |Dα

nj |)−min(|Dα
1j |, . . . , |Dα

nj |)

The equation again uses the jth data field of segment 1 . . . n from relative tag path α

- TemplateDataTokenRatio: The ratio of template tokens to data tokens within segments.

Context Features

Contextual features describe features from a data fields environment. They are averaged

over all segments addressed by an extraction pattern.

- MeanRelativeSegmentNumber: Segment’s position within its post. This is expressed by

the relative index of the segment counting all segments for that post.

- MeanInlineTagCount: Amount of inline elements within a segment.

- MeanFormattingTagCount: Amount of HTML formatting elements, for example, BB-

Code in body segments.

- MeanLinkTagCount: Amount of link elements, i.e. HTML <a>, which is often found

with author names which are linked to their profile.

- TemplateTokenBeforeData: The amount of template tokens in front of a data field. Con-

siders only template tokens directly in front of a data field. Counting stops if another

data field is found within the same segment.

77

3 Forum Data Acquisition

Semantic Features

Semantic features provide information about the meaning of a data field or its surrounding

template tokens. For this purpose they use different parsers and techniques.

- ContainsDate: Is true if the data field always contains a date. This is a useful feature

for identifying dates like the registration date of a user or the creation date of a post.

- TemplateContainsContext: Template tokens are checked against a dictionary to examine

whether it is a term describing a certain entity type. The terms “Location:” or “Written

by:”, for example, are good indicators for certain tokens. The problem is that this

feature is very language-specific. Although this work is focused on English forums, it

would be easy to extend those features using a forums language pack which provides

translations for the most important terms into almost any language. To create a feature

from template tokens each token becomes a boolean feature, so is either true or false.

- AttributeContainsContext: Similar to TemplateContainsContext but works on HTML

class attribute values such as class="author".

3.10.6 Thread-Identi�er Extraction

Some forums distribute long threads over multiple HTML pages which results in discon-

nected posts. However, it is possible to reconnect them, if we are able to extract the thread

identifier assigned by the forum software. This identifier should be equal on all pages be-

longing to the same thread and different on all other post-of-thread pages.

We used the same forum systems as for the entity analysis in Section 3.9.1 to test for occur-

rences of the thread identifier. The analysis results in our finding that the thread identifier

usually occurs at least in one of the following places.

- Canoncial URL: A markup used for search engine optimization, providing a unique

URL for a page.

- Open Graph URL: A concept developed by Facebook as Social Graph to publish user

relations. Open Graph is an extension by relations between users and Web sites. These

meta data contains a primary URL similar to the canonical URL.

- Feed URL: The URL for a news feed of the current thread.

- Form URL: URLs in the action attribute of <form> elements, such as those of search

buttons or send buttons.

- Form Field: If a <form>’s URL does not contain the thread identifier it is often provided

as content of a hidden HTML field.

Table 3.18 shows where the thread identifier occurs with regard to the ten forums of our

analysis set. If one of those occurrences exists, it is examined for one of the following terms:

{t, thread, topic, questions, discussion}

78

3.10 Forum Data Extraction Algorithm

Table 3.18: Occurrences of thread identifiers

Position vBulletin 4 vBulletin 3 IPB 3 phpBB 3 phpBB 2

Canonical URL • – • – –
Open Graph URL • – – – –

Feed URL ◦ –
Form URL • • ◦ – –
Form Field • – ◦ • •

Position SMF 2 SMF 1 WBB 3 Jive SBS Jive CS

Canonical URL ◦ – – • –
Open Graph URL – – – – –

Feed URL – • ◦ •
Form URL – – – – –
Form Field ◦ ◦ • ◦ –

Legend:
•: thread identifier is unambiguously available
◦: thread identifier is available but mixed with other identifiers
 : position exists, but contains no thread identifier

Occurrences containing one of the terms plus “ID” are considered as well. They are exam-

ined further for occurrences of identifiers. The same rules as for post identifiers are applied

(see Section 3.10.2). In addition, if one of the symbols ’=’, ’/’ or ’-’ occurs between term and

identifier it is ignored. This is very common since the identifier is either part of the URL or

the URL parameters. Some extractable examples using those rules are:

thread/4711

threadID=4711

topic-4711

...

These rules are expressible using the following regular expression:

(?i)︸︷︷︸
a

(�|[�a-z]+)︸ ︷︷ ︸
b

(t | thread | topic | questions | discussion)︸ ︷︷ ︸
c

(id)?︸︷︷︸
d

(= | / | -)︸ ︷︷ ︸
e

(ID-Format)︸ ︷︷ ︸
f

With its individual parts having the following semantics:

a: a Modifier, switching off case sensitivity

b: prevents. “start=4711” from being detected as “t=4711”

c: the terms mentioned above

d: the optional “id” suffix for the recognition of forms like “topicID” or “threadId”

e: the symbols connecting terms and identifier

f: the identifier format like integer, hexadecimal or UUID

79

3 Forum Data Acquisition

3.10.7 Summary

This concludes the description of the data extraction process introduced at the beginning of

this section. The application of all of these steps to the analysis set results in a list of ex-

traction patterns for one forum. These extraction patterns, as introduced in the beginning

of this section, are triples of an Extraction Path, a Token Pattern and a Group Index. The Ex-

traction Path points to the node or nodes in the HTML tag tree holding the extraction data.

The Token Pattern identifies the tokens that make up the extraction data. Template tokens

which are part of the pages’ template and not of the data are removed. Finally, the group

index points to the group of data tokens composing the target data. This is necessary since

multiple data tokens might be part of the same text content, separated only by template

tokens.

The application of these extraction patterns to previously unseen pages from the same forum

results in candidate entities which are classified by the supervised classifier presented in this

chapter. The classifier predicts which entities are publication date, author name or body of

a post.

We also presented an approach to find thread identifiers to merge threads distributed over

multiple HTML pages.

The next section shows an evaluation of applying such extraction patterns to different fo-

rums and a discussion on the results possibly achievable.

3.11 Evaluation of Forum Data Extraction

This section describes the extraction success achieved by means of the extraction patterns

created by the approach described in the last section. With regard to the evaluation, we

focus on four questions.

1. Is the extraction of post identifiers correct and complete?

2. Are the extraction patterns correct and unambiguous?

3. Are extracted entities classified correctly?

4. How well works the thread identifier extraction?

Post identifier extraction is crucial since it guarantees that all entities belonging to the same

post are grouped together. It is also necessary for the SMR algorithm (see Section 3.10.3) in

order to work correctly. Thread identifier extraction is important for grouping posts from

long threads distributed over multiple HTML pages.

With the aim to answer these questions, four different datasets were applied to research

different aspects of forum data extraction. The following list is an overview of these datasets.

Detailed information on the forums used for each dataset are provided in Appendix A.

80

3.11 Evaluation of Forum Data Extraction

Fodex-Small: A dataset consisting of post-of-thread pages of two forums created by soft-

ware from the following list: vBulletin, Jive Clearspace, phpBB3, phpBB2 Invision

Power Boards. These are different classical forums. The dataset is used to examine

how the algorithms work on those type of forums.

SiteLevel-FO: A dataset consisting of post-of-thread pages for the 20 forums also used by

Yang et al. (2009). The dataset is used to compare the presented approach to the one

created by Yang et al. (2009). As already mentioned, this dataset is very biased since it

uses 15 forums created by vBulletin and only 5 created by some custom software.

Fodex-Large: A larger dataset including the pages from “SiteLevel-FO” and adding 10 fo-

rums created by phpBB2, phpBB3, and Invision Power Board. This dataset was created

to restore the balance of “SiteLevel-FO” and see how this influences performance.

Fodex-QA: Contains post-of-thread pages from 10 different Q/A pages created by different

software systems. Most of them are custom implementations but some are created

using frameworks like QSQA, Question2Answer, or Jive Social Business Platform.

The Fodex datasets were created by Pretzsch (2012), which is one of the works this chapter

is based on. The data is available upon request.

For each dataset 300 post-of-thread pages where downloaded and used as analysis set.

Based on segment count (to make sure they contain a maximum amount of posts), the sys-

tem always chooses the 50 largest pages. This is important since the successful generation

of extraction patterns depends on repetition of posts.

3.11.1 Post Identi�er Extraction

As already mentioned the correct extraction of post identifiers is crucial for the rest of the

algorithms to work with a high success rate. Fortunately, the evaluation results show that

from all 50 examined forums only one provides an incorrect number of posts. For the forum

at http://forums.dpreview.com from the SiteLevel-FO dataset post identifier extraction

returned 1,224 instead of the expected 612 posts. This is due to the fact that the post iden-

tifier in this forum occurs two times for two equal sibling HTML nodes. Since the selecting

tag path is relative it selects both occurrences and thus identifies two posts when there is

actually one. This problem could be solved by extending the selection predicate by the oc-

currence index to only select every odd or even-numbered position of the post identifier.

3.11.2 Extraction Patterns

We used the output of the SMR algorithm for all our datasets to check whether there are

forums where no relative tag path was found for some entities. The results are shown in

Table 3.19. There are two problems with these forums.

81

http://forums.dpreview.com

3 Forum Data Acquisition

Table 3.19: Entities not addressable for certain forums using the SMR algorithm

Date Author Body

stackoverflow.com stackoverflow.com devhardware.com
forums.d2jsp.org bbs.cqzg.cn
social.msdn.microsoft.com forum.joomla.org

Table 3.20: Results of entity classification

Dataset Date Author Body

Fodex-Small 9/10 9/10 10/10
SiteLevel-FO 16/20 19/20 17/20
Fodex-Large 9/10 9/10 9/10
Fodex-QA 7/10 4/10 10/10

Sum 41/50 41/50 46/50

Accuracy 82% 82% 92%

Firstly, if the content of the tag path contains no template tokens the split step of the SMR

algorithm fails. One possibility to solve this problem is to split relative tag paths using

path node indices. So if a tag path addresses two sibling nodes in the same post with the

same relative tag path and both nodes contain no template tokens, the split step can qualify

them using their indices from the HTML tree, thereby splitting both paths. However, this

approach creates problems if there are optional elements in between the parent node and the

node addressed by the index. In this case, the proposed approach fails because the index

depends on whether the optional element exists or not.

Secondly, for the social.msdn.microsoft.com forum the author node is loaded dynami-

cally via AJAX. The extractor is unable to extract such values since it does not process the

page. A future implementation could do exactly that using for example the WebKit9 or

Gecko10 engines.

3.11.3 Entity Classi�cation

For the classification as presented here the Weka3 implementation of the RandomForest

classification algorithm was used. We tried several of the other algorithms provided by

Weka and chose RandomForest because of its good performance. Evaluation was carried

out by means of a Leave-One-Out-Cross-validation on forum level. Since we evaluated on

50 forums this results in a 50-fold cross-validation The results are shown in Table 3.20. One

of the major problems was the correct classification of the publication date. On the one hand,

the date parsers had problems parsing relative dates like “yesterday”, “5 hours ago” and so

on. On the other hand, sometimes parts of the date are registered as template tokens, thus

9http://www.webkit.org
10https://developer.mozilla.org/de/Gecko

82

3.11 Evaluation of Forum Data Extraction

Table 3.21: Accuracy of thread identifier extraction

Dataset Extracted

Fodex-Small 10/10
SiteLevel-FO 17/20
Fodex-Large 8/10
Fodex-QA 7/10

Sum 42/50

Accuracy 84%

splitting dates in half. This occurs if either the date contains a real template token like a ’-’

in 26 Aug 2011 - 10:10 or if the range of dates from the analyzed forum is too small. For

example, if all analyzed dates are from 2011, the number 2011 is registered as a template

token and the date is split. The split dates are parsed as two separate dates resulting in

extraction errors. A solution to this problem would be a more intelligent tokenizer which

recognizes dates as tokens themselves. The current tokenizer used white-space separation

resulting in the errors mentioned above.

3.11.4 Thread Identi�er Extraction

The results of the thread identifier extraction approach are shown in Table 3.21. The follow-

ing URLs are examples for failing extractions:

- frageee.de/292562/pizzeria

- frageee.de/292534/playstation-3-problem

- getsatisfaction.com/mozilla/topics/poor_ram

- getsatisfaction.com/mozilla/topics/kde_integration

These URLs are optimized for search engines. So they do not carry the required identifiers

along. As a solution to this problem we could run an analysis of a tokenized URL to see

how often each part occurs, thus finding the part marking the thread identifier.

Figure 3.14 finally shows the location thread identifiers were found during our experiments.

3.11.5 Comparison to Existing Approaches

As a last step we compare our results to the results achieved by Yang et al. (2009). For

this purpose, only results using the SiteLevel-FO dataset are included. Table 3.22 shows a

direct comparison of the results achieved for the extraction of the three main entities. The

approach of Yang et al. (2009) differs significantly since it evaluates link relations in addition

to the instance level used by the approach presented in this chapter. For this purpose it

recreates the forum’s sitemap which facilitates the identification of the author if it is linked

83

3 Forum Data Acquisition

21%21%

26%26%
16%16%

21%21%

16%16%
Input

Action

RSS

Canoncial

not found

Figure 3.14: Distribution of locations the thread identifier was extracted from.

Table 3.22: Comparison of extraction results between this work and Yang et al. (2009).

Date Author Body

Yang et al. (2009) 94 % 95% 88%
This work 85% 95% 90%

84

3.12 Summary

to its profile page. This explains the good extraction quality of 94% accuracy achieved for

author entities.

Date extraction in both cases employs a date parser. All dates are ordered in order to sep-

arate the creation date of posts from the users registration date. The problem with the ap-

proach presented in this work is the same as already discussed in Section 3.11.3: If the dates

do not differ significantly some parts of them are filtered out as template token.

Surprisingly, accuracy for body extraction by Yang et al. (2009) is only 88% even though

they use a feature called “ContainLongText”. The features in this work seem to be more

appropriate for this type of entity.

However, it is necessary to repeat that even though both extractions were carried out on the

same forums, Yang et al. (2009) conducted their experiments at a different time and thus

their results are achieved on a different set of actual pages. Furthermore, 15 of the 20 forums

are generated by the same forum software, having the same sitemap. This might skew the

results in unpredictable ways.

3.12 Summary

This chapter describes a complete automatic approach for forum data extraction based on

arbitrary Web pages as input. For that purpose, a focused forum crawler is applied, which

classifies Web pages into forum pages and non-forum pages. The forum pages are classi-

fied further into list-of-board, list-of-thread, post-of-thread, user-profile, and miscellaneous.

Finally, only the post-of-thread pages contain useful information and are processed by a

forum data extractor. This extractor analyzes a small set of pages per site and creates extrac-

tion patterns applicable to remaining and new pages from the same site. It finally classifies

the extracted entities into author, publication date, body and other and assigns the first three

to the correct post and the correct thread. This final step is the desired output of the whole

system.

Our experiments show that most steps fulfill the requirement of a low error extraction. How-

ever, they also show that there is room for improvement in future work.

Post extraction could be extended to additional optional entities. The problem is how to

find out whether an entity is present or not. Additional entities include information such

as a contribution’s title or the points assigned to the contribution by other users. Some

Web forums, for example, even provide explicit information on whether a contribution is a

question or an answer. Especially Question/Answer sites like StackOverflow contain a rich

amount of useful additional information, which reduces the necessary further processing

steps and thus would reduce the overall error. Additional entities are already discussed in

Section 3.9.1.

Another area open for further research is how to keep the data up to date. The explained

components would need to run regularly to collect the most recent content as quickly as

possible. This is a major problem since the amount of forums is very large and monitoring

85

3 Forum Data Acquisition

all of them could prove to be quite expensive in terms of hardware resources. Fortunately,

we can expect that there are some forums getting very few updates while others receive

more in a shorter time. There are many sophisticated algorithms to monitor the update be-

havior of Web pages, feeds and databases. One example is presented by Urbansky, Reichert,

Muthmann, Schuster & Schill (2011).

The next chapter explains how the extracted data is further processed in order to find ques-

tion and answer posts.

86

4 Finding Question and Answer Posts

The application of the techniques from the last chapter results in a dataset of forum posts

ordered by discussion threads and forums as shown in the introduction in Section 1.2. Each

such post usually contains a user contribution to the forum in form of a freely formulated

text. The second step of the Effingo process (see Section 1.3.1) requires a separation of these

user contributions into questions, answers and other types.

Chapter 1 introduces two research questions related to Question/Answer (Q/A) detection

in Section 1.5. Question 3 asks for a typology of forum contributions, including questions

and answers as distinct types. Question 4 asks for an approach to automatically assign the

types identified by answering question 3 to existing contributions. This chapter presents the

basics of Question/Answer detection as well as a classification approach for detecting con-

tribution types (i.e. questions, answers, etc.). The classification task is discussed in further

detail as from Section 4.3 of this chapter.

The chapter also shows how contribution type detection performs and focuses especially on

the quality of Question/Answer detection.

4.1 Question/Answer Detection

The research area of Question/Answer detection comprises the identification of questions

and answers from unstructured text as well as the linking of each answer to the correct ques-

tion. According to Allam & Haggag (2012), it combines research from Information Retrieval

(IR), Information Extraction (IE) and Natural Language Processing (NLP). In contrast to cur-

rent IR systems, Question/Answer detection not only retrieves documents to match them to

a user query but extracts the answer from the document text and thus gives a reformulated

answer to the user’s query.

As stated by Allam & Haggag (2012) Question/Answer detection approaches are separated

into open domain and closed domain approaches. Closed domain Question/Answer de-

tection systems work an a closed domain of possible topics for questions and their answers

(such as software development, running, science fiction movies, rock music, etc.). Since

the domain is limited, they can make heavy use of natural language processing as well

as domain-specific ontologies. Open domain Question/Answer detection systems answer

questions about any topic. Since they may only use general knowledge about questions,

answers and their relations, they are more limited with regard to available resources. A

87

4 Finding Question and Answer Posts

Web-spanning system such as Effingo clearly is an open domain Question/Answer detec-

tion system.

The following subsections start with a discussion of existing research for Question/Answer

detection in general. They also explain the speech act theory, which is a generalization of

Question/Answer detection applied to e-mail conversations and Web forums. After that,

the last parts of this section give an overview of Question/Answer detection with focus on

social media content and present some existing systems.

This work’s contribution to the research in that area is presented in the following sections.

4.1.1 General Question/Answer Detection

The automatic detection of questions and answers is split into several subtasks. These tasks

are steps in a common process that emerged from the numerous research activities in the

area (for instance see Buscaldi, Rosso, Gómez-Soriano & Sanchis (2010) or Jijkoun & De Ri-

jke (2004)) and was presented for example by Allam & Haggag (2012) and Ko, Si & Nyberg

(2007). Figure 4.1 shows a merged version of both processes. Starting from a set of ques-

Document ProcessingQuestion Processing

Question
Analysis

Question
Classification

Question
Reformulation

Document
Retrieval

Question
Analysis

Paragraph
Ordering

Paragraph
Filtering

Answer Processing

Answer
Identification

Answer
Extraction

Answer
Validation/
Selection

Answer Extraction

Docs
Answer

Candidates

Query

Users

Question Answer

Figure 4.1: Question/Answer detection process based on the processes presented by Ko et al. (2007)
and Allam & Haggag (2012).

tions, at first more precise subtypes are assigned. This is called Question Analysis. There is

no common set of question types agreed on in the literature. Most QA systems work on

factoid questions such as “Which city in China has the largest number of foreign financial

88

4.1 Question/Answer Detection

companies?”. Such questions are answered by one simple fact, such as “Shanghai” in this

case. One reason for most QA systems to use factoid questions is the easy availability of the

TREC QA dataset containing questions and answers for many factoid questions. It was cre-

ated as a part of the TREC Question Answer Track to test systems’ ability to retrieve answers

for factoid questions (Banerjee & Han 2007). This Track ran from 1999 till 2002.

Other question types we encountered in the literature are even simpler decision questions

such as “Is the sun shining (on Octobre 31st 2012 in Dresden, Germany)?” or relational

questions such as “What is the relationship between Alan Greenspan and Robert Rubin?”.

Relational and boolean questions can be seen as a special case of factoid questions. Accord-

ing to Allam & Haggag (2012), there also are list questions such as “Which car manufacturers

were founded in Germany?”, why-type questions like “Why was World War I begun?” and

definitional question such as “Who is the President of Egypt?”. However, it could be argued

that why-type questions and definitional questions are just factoid questions as well.

Effingo works on more complex questions such as the ones typically encountered in a Web

forum. Such questions are not put into words easily by means of a single sentence. They

require to explain some scenario or setting to provide a helpful answer. In this case, the

answer might not be as simple as a fact, a relation, a list or just yes or no. In order to identify

the type of a contribution, it is for example possible to apply machine learning techniques

or pattern recognizers (Buscaldi et al. 2010).

While Ko et al. (2007) consider question analysis as a single step, Allam & Haggag (2012)

split this into question analysis, question classification and question reformulation. In ad-

dition to question classification as described above, they prepend this first step with a

question-analysis step which is responsible for finding the focus of a question. A question’s

focus narrows down the information sought after. This enables the removal of ambigu-

ous answers. The third substep is called question reformulation. This step is usually also

designated as query expansion in Information Retrieval. The question is enriched with ad-

ditional keywords like synonyms or hypernyms to expand on the set of matching answers.

That way, alternative versions of the question, e.g. questions employing different wordings

are considered as well.

According to Ko et al. (2007), the output of the first step is a query into a document re-

trieval system. Document retrieval refers to the search for documents containing possible

answer candidates. This is usually achieved by Information Retrieval approaches using dif-

ferent feature sets to map the question as a query to a document corpus containing answers.

The details of the different feature types examined in the literature are described further in

the following paragraphs. While Ko et al. (2007) visualize this as an atomic step directly

followed by an answer-extraction step, Allam & Haggag (2012) group it together with para-

graph filtering and paragraph ordering. According to Ko et al. (2007) answer extraction

refers to the creation of answer candidates from the retrieved documents text. Allam &

Haggag’s (2012) paragraph filtering reduces the amount of text from each document. It se-

lects a paragraph only if it contains keywords from the question which are closely clustered

89

4 Finding Question and Answer Posts

together. Paragraph ordering finally ranks all selected paragraphs by the number of key-

words matched and not matched and the distances between these keywords and finishes

the document processing. Ko et al. (2007) groups paragraph filtering and paragraph order-

ing together with answer identification and answer extraction as a single step of extracting

answers from the retrieved documents. The output of this step are answer candidates. An-

swer identification selects paragraphs matching the question type found during the ques-

tion classification step. Answer extraction extracts the terms from the paragraph which are

actually belonging to the answer.

The fourth step is equal for both processes and selects the correct answer from among the

answer candidates. This can be achieved by means of a ranking algorithm, such as the one

presented by Ko et al. (2007).

Both processes have an advantage over one another. Ko et al. (2007) clearly shows the input

and output but provides a very abstract set of steps in comparison to Allam & Haggag

(2012), who provide a fine grained process with a lack of information on the data exchanged

between process steps.

Many approaches combine Ko et al.’s (2007) third and fourth step (Buscaldi et al. 2010, Jijk-

oun & De Rijke 2004) to a single step often only designated as answer extraction or according

to Rinaldi, Hess, Mollá, Schwitter, Dowdall, Schneider & Fournier (2002) answer retrieval

(AR). Researchers like Agichtein et al. (2008) or Jeon, Croft, Lee & Park (2006) provide a

ranking based on answer quality. Bian, Liu, Agichtein & Zha (2008), for example, show how

to establish a ranking function from training data obtained from Yahoo! Answers and the

TREC Q/A corpus. By means of this ranking function they achieve precision@1 of over 76%

for the factoid questions from the TREC data, which they believe are good values for factoid

question answering.

The benefit to using a Web forum as the answer source is the fact that answers are already

formulated by the answering user. Effingo only needs to select the correct contributions,

without any reformulation.

Purely Syntax-Based Question/Answer Detection

Buscaldi et al. (2010) finds answers by forming answer candidates in the form of paragraphs.

A paragraph consists of sentences matching tf-idf ranked keywords with the question. The

number of sentences forming a paragraph is a parameter of the system. The authors pro-

vide evidence that three is a good value. In order to extract the answer from the candidate

paragraphs questions are analyzed and classified into different types and subtypes. That

way it is possible to assign patterns in the form of regular expressions to each question to

find the questions’ target and context. The target and context are summarized in the form

of one target constraint and zero or more context constraints per question. The question

“How many inhabitants were there in Sweden in 1994?”, for example, contains the target

constraint “inhabitants” and two contextual constraints “Sweden” and “1994”. The answer

90

4.1 Question/Answer Detection

to this question is extracted from the candidate paragraphs by searching for a quantity ad-

jacent or near to the target and contextual constraints. The system knows to search for a

quantity, because the initial question classification step matched the question to belong to

the quantity type. Overall they achieved only around 60% accuracy.

Light, Mann, Riloff & Breck (2001) relate answers to user questions based on the common

feature of word overlap. Word overlap refers to the intersection of words between the ques-

tion and a possible answer sentence. They experimented with different settings comparing

absolute word overlap to relative word overlap. Absolute word overlap is defined by a sim-

ple count of all words common to question and answer, while the same count normalized

with the similarity counts of other possible answer candidates is designated as relative word

overlap. By means of using that feature, the authors show that it is possible to find a correct

answer for a question in almost 80% of the cases for the TREC-8 and -9 and for a reading

comprehension dataset (Canadian Broadcasting Corporation-CBC) developed by Dalmas,

Leidner, Webber, Grover & Bos (2004). They demonstrate that absolute word overlap does

not help to solve the task while relative word overlap does. They also present another in-

teresting problem: If there is a question which has no answer in the available document

collection, the results are very poor. This is due to the fact that the retrieval system will al-

ways return some results. It is easy to tell which result has the highest score for the current

query. It is, however, not easy to tell that no result is relevant at all. This is a crucial prob-

lem for Question/Answer Detection in Web forums as Section 4.1.3 is going to show. Light

et al. (2001) also demonstrate that it is not possible to find the remaining 20% of answers

by means of simple lexical features, but conclude that it is necessary to apply semantical or

grammatical features. Finally, they discovered that questions with multiple correct answer

candidates cause better results. This suggests that redundancy is a helpful trait for answers.

The discovery of answers based on redundancy was already attempted by Jijkoun & De Ri-

jke (2004) and Ko et al. (2007). Jijkoun & De Rijke (2004) show, based on the Q/A sets from

TREC 2002 and 2003, that extraction quality improves if aggregated results from multiple

different Question/Answer retrieval systems are applied. Ko et al. (2007) confirm these

findings using the same dataset adding questions from TREC 1999 to 2001. With the aim

of aggregating answers Jijkoun & De Rijke (2004) used six answer streams. Each stream

formulates answers from the TREC dataset to a query (i.e. question) by means of different

features. The basic structure of the system is displayed in Figure 4.2. As shown, a question

is sent to the system and gets answered by each of the six answer retrieval systems. Each of

the systems is based on a different feature. These features are: the content from a knowledge

base extracted from the answer corpus, two pattern based approaches, two n-gram based

approaches and one approach using linguistic information. In order to filter out redun-

dancy, they applied a simple syntactic approach using Levensthein distance, containment

and absolute matches. Ko et al. (2007) aggregate four different answer sources to calcu-

late an aggregated ranking of answer candidates and, finally, calculate a similarity score for

answers to find redundancy. They boost redundant answers by ranking them higher and

91

4 Finding Question and Answer Posts

Knowled.
Base

Pattern 1 Pattern 2 n-gram 1 n-gram 2

Query Distributor

Answer Aggregator

Ans1

Ans2

..
.

AnsN

AnsN+1

Ans1

Ans2

..
.

AnsN

Ans1

Ans2

..
.

AnsN

Ans1

Ans2

..
.

AnsN
AnsN+1

Ans1

Ans2

..
.

AnsN

Ans1

Ans2

...

AnsN
AnsN+1

Linguistic

TREC 2002/2003 Q/A Dataset

}

}

Ranked
Answers

Q/A
Systems

Users

Answer

Question

Figure 4.2: Overview of the Quartz system as proposed by Jijkoun & De Rijke (2004).

apply a combined score from all four strategies to find the final answer to a question. They

show that a knowledge base like WordNet or Gazetteers for geographical information pro-

duce worse results than data-driven sources like Wikipedia and Google. This is due to the

fact that knowledge bases do not cover as many questions as data driven sources do. How-

ever, both approaches are only evaluated on factoid questions from TREC, which is a kind

of question not often appearing in a Web forum.

Semantic Approaches to Question/Answer Detection

Light et al. (2001) explain that semantic knowledge about relations of terms in both, question

and answer would benefit the quality of Question/Answer detection. Such an approach was

for example developed by Rinaldi et al. (2002) and Rinaldi, Dowdall, Schneider & Persidis

(2004). Their system called ExtrAns incorporates semantics for the answer extraction step.

They transform their queries as well as their documents into Minimal Logical Form (MLF)

to match queries against phrases containing answers. MLFs are logic predicates represent-

ing the relations of the terms in a sentence. Their big advantage is that they are robust to

ungrammatical sentences, providing a fallback form by means of simple keyword match-

ing. They are also extensible. This means that it is possible to start with a few very general

predicates and provide incremental extensions without the need to throw away the already

working predicates. The creation of MLFs is described (in German) by Schneider, Aliod

& Hess (1999). Like Light et al. (2001), they evaluated their approach on the TREC-8 and

92

4.1 Question/Answer Detection

-9 dataset and achieved quite high results, with precision and recall often ranging around

80%. They compared their system to a classic bag-of-words (see Section 2.2) system and

concluded that it worked better. They especially showed that bag-of-words systems are in-

ferior with regard to finding answers from short text segments with less than fifty words.

Forums might contain such contributions, so it is important that Effingo works better than

the bag-of-words approach as well. However, the evaluation of Rinaldi et al. (2002) used

only 30 queries from a very limited domain with only 100 documents containing answers.

A much bigger evaluation is necessary to actually prove the statements made in the paper.

Earlier experiments attempting to incorporate semantic knowledge about the content of

question and answer paragraphs were conducted by Narayanan & Harabagiu (2004). They

use semantic frames such as the information that a theft has a thief, a victim and a stolen

good, provided by knowledge bases such as FrameNet and ProbBank (Kingsbury, Palmer &

Marcus 2002, Baker, Fillmore & Lowe 1998). By means of those semantic frames they infer

the answer to a question from a corpus of documents. That way they are able to capture the

meaning of the question and connect it to the answer.

Based on our observations with regard to the presented approaches we conclude that se-

mantic approaches, such as the ones developed by Narayanan & Harabagiu (2004), Rinaldi

et al. (2002) and Senellart & Blondel (2008) are unnecessarily complex for the domain of

Web forums and show no significant improvement over simpler syntactic approaches. Se-

mantic approaches always require some kind of ontology, knowledge base or semantic data

structure describing the forum’s context as well as common synonyms and antonyms, to

provide terms with semantics. Such an ontology is hard to create. It requires large manual

effort and it is neither language nor domain-independent. Semantic frames, as proposed

by Narayanan & Harabagiu (2004), are potentially available for common concepts, such as

a theft, but surely not for specific problems such as an explanation on how to install SAP

NetWeaver software. Additionally, we observed text quality in Web forums to be low, con-

taining many spelling mistakes and incorrect sentences.. Thus, we assume that it is too bad

to automatically generate a suitable knowledge base from the existing forum content. Even

if the knowledge bases are available it is hard to use them with “dirty” forum content.

4.1.2 Speech Act Analysis

Research on the detection of questions and answers in forums is based on classification

approaches developed for a different, well known kind of asynchronous online discussion

system: e-mail. E-mail discussions are very similar to forum discussions in many respects.

They have a reply-response-structure and often contain informal discussions about almost

all topics one can possibly think of. The technique used to classify e-mails is called speech

act analysis. Early work on the theory of speech acts dates back to the middle ages but was

defined more recently by Austin (1962). While Austin (1962) used very broad categories of

speech acts, today more narrow categories are used for classifying natural language texts.

93

4 Finding Question and Answer Posts

Figure 4.3: Ontology of e-mail conversation speech acts (Cohen et al. 2004).

Table 4.1: Substitutions for e-mail speech act analysis according to (Carvalho & Cohen 2006).

Symbol Pattern

[number] any sequence of numbers
[hour] [number] : [number]
[wwhh] ”why, where, who, what, or when”
[day] the strings ”Monday, Tuesday, . . . , or Sunday”
[day] the strings ”Mon, Tue, Wed, . . . , or Sun”
[pm] the strings ”P.M., PM, A.M. or AM”
[me] the pronouns ”me, her, him, us or them”
[person] the pronouns ”I, we, you, he, she or they”
[aaafter] the strings ”after, before or during”
[filetype] the strings ”.doc, .pdf, .ppt, .txt, or .xls”

Carvalho & Cohen (2006) and Cohen, Carvalho & Mitchell (2004), for example, use speech

acts to perform categorization of e-mail conversations according to verbs and nouns used

in the e-mail’s text. The authors define a small ontology of such speech acts shown in Fig-

ure 4.3. Each e-mail is defined by its verbs and nouns to belong to a composed speech act.

The speech acts define the role the e-mail carries out in an e-mail conversation. Unfortu-

nately, the ontology does not consider questions or answers explicitly.

In order to classify messages, the authors trained a linear support vector machine on the 1

to 5-grams from the e-mail’s text. These n-grams are masked by means of the filters from

table 4.1. Afterwards the most important features are selected using the information gain

(Forman 2003) feature selection approach.

Carvalho & Cohen (2006) and Cohen et al. (2004) conducted several experiments with their

approach on a set of 1716 manually labeled e-mails from the CSpace e-mail corpus (Minkov,

94

4.1 Question/Answer Detection

Wang & Cohen 2005). The labels are assigned according to Figure 4.3. They achieved a

precision of around 60% together with a recall of 60% using the above mentioned features

to classify into the presented ontology.

Kim, Chern, Feng, Shaw & Hovy (2006) picked up the approach of Carvalho & Cohen (2006)

and Cohen et al. (2004) and applied it to a small Web forum they used to communicate with

their students. The forum consists of approximately 200 threads produced by 98 students

and their advisors. Most of these threads had a length of only two, but there where some up

to a length of eighteen. In contrast to Carvalho & Cohen (2006) and Cohen et al. (2004), Kim

et al. (2006) used a flat set of speech act classes consisting of:

Question Question to specific problems discussed in that forum.

Announcement Announcing some event or commanding some behaviour.

Answer/Suggestion A complex or simple answer or suggestion to a question.

Elaboration Elaborate on previous contribution.

Correction/Objection Correct or object to another contribution.

Acknowledge/Support Provide support for another contribution.

Most notably, they introduced questions and answers to the speech act theory. They also

proposed a much wider set of categories but realized during their experiments that not

even humans are able to separate them clearly.

They annotated the forum with correct speech acts from the list above using human anno-

tators. This gold standard was used for the evaluation of all further experiments.

For speech act detection Kim et al. (2006) applied a classifier and three features. The first is a

matrix of the probabilities of one speech act following another one. Since contributions are

aligned in a sequence similar to the way words are aligned in a sequence within a sentence,

this resembles word co-ocurrence but with contribution speech acts. The matrix was created

from their set of human annotated training data. In addition, they included the activity

of users, meaning how many contributions a user wrote within that forum and a set of

keywords per speech act similar to Table 4.1.

Ravi & Kim (2007) refined and evaluated this approach. Two human annotators manually

annotated a dataset of 1834 messages from 475 threads with 133 authors. Their kappa agree-

ment for questions is 0.89 and 0.72 for answers. The reason for this could be that there is a

higher variance of answers than of questions. Some answers, for example, were part of ques-

tions again. The classifier was a linear support vector machine as explained in Section 2.3.3.

The features are unigrams, bigrams, trigrams and quadrograms with a few preprocessing

steps applied. The preprocessing steps are similar to the ones shown in Table 4.1, which

were used by Carvalho & Cohen (2006). They removed the text from previous messages

inserted due to the “reply to” function. They applied simple stemming, removing “s” and

95

4 Finding Question and Answer Posts

“es” endings, exchanged programming code with the placeholder code, substituted “I”,

“we” and “you” for categ_person, sequences of numbers by categ_number_seq and words

like “which”, “where”, “when”, “who” and “how” by categ_wh. Similar substitutions were

applied to filetype extensions, URL links, informal words and smileys. Furthermore, short-

enings such as “you’re”, “I’m”, “we’ve” or “don’t” were replaced with their long forms.

Finally, all technical terms were replaced by tech_term. Only the top 200 features per clas-

sifier (answer and question) according to Information Gain feature selection were used for

classification. Tests were run using 5-fold cross validation, resulting in 88% accuracy for the

question classifier and 73% for the answer classifier.

Besides automatic detection of correct speech acts, Kim et al. (2006) tried to improve question

answering by finding the focus contribution within each thread. According to them, the

purpose for this is to improve Question/Answer detection but neither do they define what

a focus contribution is nor do they say how it supports Question/Answer detection. In order

to detect the focus contribution, they calculate a connection strength from the connections

between different contributions, based on the contribution author’s activity. After that, to

calculate the final strength scores, they use the HITS and PageRank algorithms and achieved

a precision of 70%.

The approach presented by Kim is very close to what Effingo requires for Question/Answer

detection. However, the adaptations to the selected features are very specific to the used

forum, the dataset is quite small and the whole approach was only tested on one forum.

4.1.3 Question/Answer Detection in User Generated Content

While the last section provided an overview of general Question/Answer detection, this one

will provide insights into the state of the art with regard to Web forums and social media

sites. Question/Answer detection within Web forums was first carried out by Cong et al.

(2008). The task is different from classic question answering because Web forums are col-

lections of user-generated discussions, with no clear separation of question content, answer

content and glue text. In contrast, classic Question/Answer detection assumes the set of

questions to be known. It is either a set of user queries or explicitly marked on FAQ pages,

etc. So the task for classic Question/Answer detection is finding answers to these questions.

User-generated content, on the other hand, does not make the location of questions explicit.

Therefore, the process presented in Figure 4.1 must be extended by an additional “find the

question” step in the beginning, as shown in Figure 4.4. This is not trivial. Every user con-

tribution might contain a question and even though often it is the first contribution to a

thread, this does not necessarily apply. A quick check on a dataset of 10,021 contributions

from the SAP Developer Network forum and the Oracle Developer Network forum reveals

that 7.23% of the answers are not the beginning of the thread. In addition, many threads are

general discussions and do not even contain a question. Hence, Cong et al. (2008) propose

an approach to first detect question sentences in a forum and second linking answer para-

96

4.1 Question/Answer Detection

Document ProcessingQuestion Processing

Question
Classification

Question
Reformulation

Document
Retrieval

Question
Analysis

Paragraph
Ordering

Paragraph
Filtering

Answer Processing

Answer
Identification

Answer
Extraction

Answer
Validation/
Selection

Answer Extraction

Docs
Answer

Candidates

Query

Users

Question

Question
Retrieval

Answer

Figure 4.4: Extended Question/Answer Detection Process for Web forums based on the process pre-
sented by (Ko et al. 2007).

graphs to these questions. Their question-detection approach works on so called labeled

sequential patterns (LSP). Such patterns are combinations of certain words such as 5W1H

words, modal words, etc. and Part of Speech tags. LSPs are rules in the form of LHS → c

where LHS is a sequence of words and PoS tags forming a pattern. Patterns may contain

other patterns. So for example the pattern < a, d, f > contains < a, f >. Each pattern

formulates a rule that either denotes a question or not. Whether the pattern is a rule for a

question or not is expressed by the value of the parameter c. So for the Question/Answer

domain c can take on the values of Q (is question) or NQ (is no question). Each pattern B

which contains A counts as instance for pattern A as well. That way, a database of LSPs is

created. Since a pattern can occur multiple times (either as part of another pattern or as a

stand-alone pattern), it is possible to calculate a confidence value and a support value for

each pattern in context of the current database. The confidence is a statement about how

probable a pattern denotes a question, based on how often a pattern has the value c = Q

versus how often it has c = NQ in the database. The support value for a pattern measures

the fraction of instances containing that pattern within the database. Using this information

it is possible to calculate whether a specific sentence matching one or several patterns is a

question or not. For example consider the following enumeration of LSPs:

1. < a, d, e, f >→ Q

97

4 Finding Question and Answer Posts

2. < a, f, e, f >→ Q

3. < d, a, f >→ NQ

Now we find a sentence matching pattern < a, e, f > and would like to know if it is a

question (Q) or no question (NQ). It is obvious that < a, e, f > is part of LSP one and LSP

two. So within the set of the three given LSPs, < a, e, f > has a support of 66.7% to be a

question and a confidence of 100% since there is no rule stating < a, e, f >→ NQ. Another

example is the LSP < a, f > which has a support of 66.7% to be a question and a confidence

of 66.7%. So the first pattern has a higher propability to be a question than the second

one. Patterns are used as sparse features for a question classification algorithm. In order

to remove bad patterns, two thresholds for support and confidence are applied. Cong et al.

(2008) report a minimum support threshold of 0.5% and a minimum confidence threshold of

85%. Those thresholds are set to retrieve thousands of patterns, but are not optimized. Cong

et al. (2008) use the Ripper classification algorithm, as outlined in Section 2.3.6, to process

the LSPs and classify sentences as to whether they are a question or not.

In the next step, Cong et al. (2008) assign answers to the detected questions. The set of candi-

date answers is made up of all text paragraphs preceding the question within its discussion

thread. Cong et al. (2008) apply a graph-based approach with answers as vertices connected

by edges and labeled by means of different weighting strategies. The most successful ap-

proach is a Kullback-Leibler divergence model (see Section 2.2.3). For comparison they also

apply a cosine similarity and a query likelihood model. A final score for each answer can-

didate is calculated by means of the popular PageRank algorithm (Page, Brin, Motwani &

Winograd 1999) using the created graph. This results in a ranked list of answer paragraphs

for each question.

Cong et al.’s (2008) approach achieves quite amazing results on their dataset. For question

detection they report 97% recall and precision. The results for answer detection range be-

tween 60% and 88%.

However, it is important to consider that they used a relatively small set of only 650 threads

with around 1,500 question sentences. In addition, their classification approach works on

sentence level. However, observations on forum data show that the question sentence itself

usually does not contain all the information that makes up the question. To address this

issue, Ding, Cong, Lin & Zhu (2008) present an approach to associate context sentences with

each question and improve answer identification based on these context sentences. On a

corpus of approximately 2,300 forum items with 1,064 questions sentences they observe that

only 26% of all questions do not need a context at all. In order to detect the context for the

remaining ones they apply different conditional random fields (CRF) and compare those re-

sults with support vector machines and the C4.5 decision tree algorithm. CRFs are a kind of

sequence learning mechanism, taking a sequence of items as input and providing an associ-

ated output sequence of the same length. Similar to a supervised classifier they are trained

on a set of labeled sequences which then enables them to label new unknown sequences.

98

4.1 Question/Answer Detection

However, with results not even reaching 80% for either of precision, recall or F1-measure,

this additional step introduces a big error into the overall process of Question/Answer de-

tection.

Another interesting observation by Cong et al. (2008) illustrates that many errors are due

to questions having no answer at all. Ignoring such questions improves answer detection

results by 20% for some experiments. In order to solve this it would be necessary to detect

whether a question has an answer or not. Cong et al. (2008) propose this as an open research

problem. The classification approach presented in this thesis is able to master such cases

gracefully by finding answers independently of the questions. The question-answer linking

may be done in a future step.

A similar approach by Hong & Davison (2009) directly compares to the work from Cong

et al. (2008), but has a different problem definition. They try to classify threads as either

starting with a question or not. In addition, each question may only have one answer con-

tribution. It was already mentioned at the beginning of this section that an analysis on our

own dataset as presented in Section 4.2.1 shows that there are 7.23% questions which are

not the first contribution in a thread. In addition, 8.54% of the answer contributions share

a thread with another answer contribution. By applying the problem definition of Hong &

Davison (2009) those additional questions and answers are lost.

If they find a thread starting with a question they try to find the answer post. In order to

solve both tasks, they apply a support vector machine-based classification of contributions,

using two sets of overlapping features: One for question detection, the other one for answer

detection. The features for question detection are:

- Question Mark: This feature is a count of the number of question marks inside the

contribution.

- 5W1H: This feature is a count of the number of 5W1H-words inside the contribution.

It is derived from a theory about the typical set of questions used to get the core infor-

mation about an event in journalism. The foundations for this theory stem from the

greek rethorican Hermagoras of Temnos and are reformulated in a modern way for

example by Flint (1917). The set of questions changes at least a little from source to

source. Flint uses the set of “What”, “Why”, “When”, “How”, “Where” and “Who”.

Hong & Davison (2009) do not report which words they actually use, but since the set

of Flint is the most current, it is reasonable to assume Hong & Davison (2009) use the

same.

- Number of contributions in the thread: This feature concerns the number of the con-

tributions in the thread the question candidate belongs to. Short threads tend to have

clear questions while long ones are usually badly worded and drift away from the

initial topic.

- Authorship: Experts usually provide answers while newbies ask questions. Author-

ship therefore results in two features: One is the number of threads the author of the

99

4 Finding Question and Answer Posts

Table 4.2: Example n-grams used by Hong & Davison (2009) for question classification. All n-grams
are stemmed and lower cased.

i do not know if i wa wonder if anyon
what is the best way i do not have

i am not sure do not know what
i am look for i can not
do not know would like to

contribution has started and another is the number of replies they have created.

- n-gram: This is a sparse feature consisting of n-grams according to Speech Act analysis

research by Carvalho & Cohen (2006) and Cohen et al. (2004). They used classic n-gram

text classification but masked several special terms; e.g. “.pdf”, “.doc” was converted

to “.[fileending]” as already presented in Table 4.1. On these features they applied

information gain feature selection to choose the most significant features. Table 4.2

shows some example n-grams Hong & Davison (2009) used for question classification.

For answer detection they run the classifier on all contributions in a thread previously clas-

sified as question and apply the following features:

- Position of the answer contribution: At which index in the thread is the contribution

located.

- Authorship: The same as for question detection.

- N-gram: The same as for question detection.

- Stop words: Authors of answers usually use few stop words in favor of more expres-

sive ones.

- Query Likelihood Model Score: Similar to Cong et al. (2008). Used as comparison.

What is the probability of a question language generating the answer.

Even though the domain is quite restricted and Hong & Davison (2009) use a very limited

set of features, they achieve quite good results. On their own dataset they achieve an effec-

tiveness ameliorated by nearly 10% measured by precision and recall as compared to Cong

et al. (2008). This, as a result, accounts for F1 scores of around 80% up to 97%. They con-

ducted a comprehensive analysis of the performance of different sets of their features. Their

most interesting conclusion is the fact that the features performing best are authorship and

position of a contribution. This is not surprising. A high authorship score is a sign for a very

active user who knows much about the topic discussed in the forum and thus provides an-

swers instead of posing questions. Second, the position of a contribution is important since

answers usually do not occur as opening post of a thread while questions often do. There

might be other interesting correlations between a contribution’s position in a thread and its

type, which will be examined later.

100

4.1 Question/Answer Detection

4.1.4 Automatic Question/Answer Systems

There are some existing solutions for automatic question answering. Systems such as WEB-

COOP (Benamara & Saint Dizier 2004) or TrueKnowledge (Tunstall-Pedoe 2012) require an

underlying ontology to answer questions. These ontologies form huge databases filled with

facts to answer questions. The problem with ontologies is always how to create the data

necessary to answer a critical mass of questions. Usually an ontology engineer is necessary

to solve this problem. TrueKnowledge provides an interface for users to enter new facts

but is limited to information added to the system that way and focused on factual answers.

WEBCOOP does not incorporate knowledge provided by the Internet community. Another

instance of a knowledge based Q/A system is Wolfram Alpha(Wolfram|Alpha: Computa-
tional Knowledge Engine 2012). This, however, is focused on computable answers since it

uses the math library mathematica as a kind of ontology. That way it is able to answer many

factual questions that are computable, such as currency conversions.

Question/Answer communities like Stackoverflow1, Yahoo!Answers2 or Answers.com3 fo-

cus on the community aspect of question answering. They, however, are only able to provide

the answers generated by their community. A user trying to find an answer on such a Q/A

portal needs to choose among the portals available to find his answer. Since there usually

are multiple portals for similar questions, it is tedious to search all of them for the correct

answer. If an answer does not exist in the database of such a system, the user can post

the question and wait for an answer. Analyses on our data show that this usually takes

around 10 hours (modal value on 23,277 threads). However, if, for example, the expert able

to answer a certain question is on another forum, the questioner is out of luck.

Systems like ChaCha 4 try to decrease the time between posting the question and getting the

answer by forwarding the question to a real person to provide a direct answer. However,

there are many questions and only very few persons answering those questions. Therefore

the questions are limited in size and complexity.

All of the presented systems are either focused on automatic answering of factoid ques-

tions or on manual answering of more complex questions. Automatic answering of com-

plex questions is only possible by aggregation of the large knowledge base provided by

user-generated content on the World Wide Web. This is the aim of Effingo.

4.1.5 Summary

Summing up question-answer detection based on the research questions formulated in Sec-

tion 1.5, classic Q/A detection so far only works for factoid questions. Ding et al. (2008)

prove with a corpus of 1064 questions taken from the TripAdvisor5 that only 10% of those

1http://stackoverflow.com/
2http://answers.yahoo.com/
3http://www.answers.com/
4http://www.chacha.com/
5http://www.tripadvisor.com/ForumHome

101

http://stackoverflow.com/
http://answers.yahoo.com/
http://www.answers.com/
http://www.chacha.com/
http://www.tripadvisor.com/ForumHome

4 Finding Question and Answer Posts

questions are factoid. It is reasonable to assume that a similar percentage applies to most

other forums as well. In addition, no approach considers the identification of questions but

only works for extracting and assigning answers to already known questions. As already

explained, this does not apply to the forum domain, since there, questions are hidden among

all the other contributions.

The most promising approach on finding a valid typology for forum posts was presented by

Kim et al. (2006) and is based on speech acts. Those or similar types should be applicable to

other forums as well. However, Kim et al. (2006) left out an evaluation of their classification

approach.

Question and answer identification on the forum domain was carried out by Cong et al.

(2008) and Hong & Davison (2009). They already achieved reasonable performance on some

forums. However, they have a different problem definition. Cong et al. (2008) try to detect

only question sentences and answer paragraphs. Typical forums usually require the whole

contribution to get a meaningful question or answer. Otherwise, they suffer from a lack of

context. Consider, for example, questions like “Any idea on this?” or “Anyone could help

me to solve this scenario?” Both are questions extracted from real forum data and both do

not make sense without the contribution they are extracted from. Cong et al. (2008) combine

answer identification with answer extraction. The problem is that answers are extracted

based on the text in the question, so questions like the ones above would not produce any

reasonable results. In addition, the approach assumes that an answer to a question is always

available. This is not true. Cong et al. (2008) describe that a manual filter for those questions

with no answer improved their results by around 20% F1 measure. They also describe the

creation of an automatic filter for questions with no answers as an open research problem.

We are going to show a solution to this problem in the remainder of this chapter.

Hong & Davison (2009), despite working on complete contributions, make some limiting

assumptions as well. They consider questions only in the first position of a thread and they

assume there is only one answer contribution per thread. That way, they would miss 8.54%

of the answers and 7.23% of the questions of our manually annotated dataset. Apart from

these facts, both systems are evaluated on a small dataset and might not generalize well.

4.2 Contribution Typology

One important dimension of each Web forum contribution is its author’s intent. Research

question 3 in Section 1.5 asks for a typology to identify an author’s intent in the form of a

label assigned to a forum contribution. This section explains the typology we found while

reviewing a large set of contributions from real forums.

102

4.2 Contribution Typology

4.2.1 Data Used to Identify the Forum Contribution Typology

The dataset used consists of a crawl of posts from two different forums. It includes posts

from the Oracle Developer Network Forum6 and the SAP Developer Network Forum7. The

distribution of posts from both forums is presented in Table 4.3.

Table 4.3: Absolute distribution of posts, threads, channels and users in the dataset used for experi-
mentation.

SAP Developer Network Oracle Developer Network
Posts Threads Channels Users Posts Threads Channels Users

45,216 11,247 137 8,674 30,742 12,030 89 7,211

In total the dataset consists of 75,958 different posts written by 15,885 different users orga-

nized in 23,277 discussion threads which again are organized in 226 different topic channels.

In order to identify the typology, two human annotators examined a randomly chosen sam-

ple of 1,088 contributions from the SAP Developer Network (SDN) and the Oracle Devel-

oper Network (ODN). Since it is not clear whether an approach for one forum generalizes

to other forums of the same domain, multiple forums were chosen. So if Users on the SDN

and the ODN discuss similar topics and show similar behavior, all algorithms developed

and evaluated on this dataset should generalize well to both. That way, we can assume that

the concepts are applicable to a multitude of other forums.

Some contributions do have more than one intent. In this case, the annotator was asked to

put it into a dominant category. That way, multi-type contributions are ignored throughout

this work and all types are mutually exclusive with each contribution being assigned to

exactly one type. As a result of this methodology, we identified nine common contribution

types that fit into three broad groups: questioning, answering and adversarial contributions.

The types we found are similar to those found by Kim et al. (2006).

4.2.2 Contribution Types

The following enumeration describes the identified types.

Questioning contributions The following three contribution types refer to contributions

that ask, request or elaborate an issue:

Question Most posts belonging to this type are the start posts of a thread. However,

occasionally during the discussion on a question, a new question occurs or the

initial question is refined into even more detailed questions. Such posts also be-

long to this type. Finally, sometimes a user kidnaps an old thread to pose a new

related question. Such posts also belong to the Question type.

6https://forums.oracle.com
7http://forums.sdn.sap.com

103

https://forums.oracle.com
http://forums.sdn.sap.com

4 Finding Question and Answer Posts

Request Sometimes, an expert does not have enough information for answering a

question. In that case they write a Request post, asking for additional information.

Elaboration Often, the initial question does not contain enough information for the

expert users to answer it. If the user posing the question notices this problem

or if experts request additional information, the author of the question usually

elaborates on his initial question, effectively posing the same question again with

additional information. Such posts belong to the Elaboration type.

Answering contributions The next contribution types refer to posts that give an answer or

confirm a helpful answer.

Answer Any description or reference leading to a question’s solution. Often, Answer
contributions contain an ordered list of instructions or links to helpful resources.

Thx Is for any contribution with the sole intention to thank others. This is usually a

reply to authors that provided a helpful answer.

Adversarial contributions Often, users try to manipulate the attention of other users for

disseminating an information or for raising their attention to an unsolved thread. We

also identified three typical contribution types for this group:

A�rmation If someone encounters a problem that is already described, they write an

affirmative post stating that they have the same problem to thereby increase the

priority for answering that question.

Bump Most Web forums show threads on an overview page ordered by date of the

last contribution. Threads without activity are pushed down the list until no

one pays attention to them any more. Some users try to increase attention to

their problems by writing posts with no additional content just to bring their

thread back to the top of the list. This is usually called a bump post and thus, any

contribution whose sole purpose is to bring the whole thread back to the attention

of the forum community belongs to this category.

Description Besides the usual-question answer cycle in Web forums, some contribu-

tions are simply used to give some information to the community. This type thus

covers stories, tutorials, advices, announcements and so on.

Other contributions There are some rare cases in which a post belongs to none of the types

in this enumeration. Such posts belong to the Other type.

Table 4.4 shows the contribution text of an example per contribution type to illustrate the
definitions. All examples are taken directly from our dataset.

104

4.2 Contribution Typology

Table 4.4: Examples for contribution types.

Contribution type Example

Question Hi Mustafa

I have a problem which can be related to you answer. When you define
the path it’s my understanding that a HTML file is generated from the XML
and put into the defined folder. Is that right?
Presuming i’m right why is my news put into the folder /documents/news
when something else is defined in the path. Do I need to make some other
configurations in order to make it work?

Best regards
Ole Mose Nielsen

Request Hello Kwabla,

we would need more information ot this one. Looks like the connection
to your jdbc datasource does not work properly.
By the way, there is a new Sneak Preview Edition of Web AS Java based on
Web AS 6.40 available. You may want to download and use this edition?

Many greetings

Ivo

Elaboration Hi,
I have set the personalization class.But i dont think the problem is because of
that.
The requirement is to open the personalization class in the same iview and
not as a popup.

Thanks,
Vivek

Answer Hi Leander,

Check Chapter 6 from the SAP Exchange Infrastructure 2.0 Configura-
tion guide. The RFC Adapter Configuration is explained in details in this
chapter.

Thanks
Prasad

Thx Thank you very much. It works!

Affirmation I have the same problem. Can sb help us / give a working example for a credit
card payment ?

Bump (bump)

105

4 Finding Question and Answer Posts

Table 4.4: Examples for contribution types.

Contribution type Example

Description SDN is hosting the webinar “SAP Exchange Infrastructure, XI-30 Overview”
as part of The SAP NetWeaver Know-How Network Webinar series.
On Wednesday, March 10, SAP’s Prasad Illapani will discuss this XI overview.
We invite you to post your questions to the presenter prior to the Webinar
taking place and carry on the discussion afterwards.

. . .

A replay of this call is available for five days following each conference. Please
access this recording by dialing one of the following numbers and using the
replay access code 720129.
. . .

We encourage you to join this Webinar, educate yourself and collaborate with
SAP experts and peers.

Other Hi Karin,

sorry for my impatience :-) I guessed the posting might have gone lost
somehow at the point of software change.

Best regards

Stefan

4.2.3 Preparing the Dataset

In order to prove or refute thesis two and thus answer research question 4, a so called gold

standard or ground truth is required. This means a human annotator is required to manually

provide the true labels for a significant set of forum posts. Hence, a subset of the dataset was

manually labeled by human annotators. The labeled dataset for the forum post classification

experiments is a random subset of the complete set of 75,958 contributions. A human an-

notator independently labeled 10,029 posts from random threads, using only the definitions

given in Section 4.2.2. For that purpose, a tagging tool was created and deployed as a Web

application as shown in Figure 4.5. The human annotator used this tagging tool to annotate

forum posts. The tool iterates through the whole dataset and presents random threads to the

annotator. The annotator decides for each post of the thread to which type it belongs. After

having finished the tagging of one thread, the tool presents the next thread. At the top of

the page the annotator was provided with the same definitions for each contribution type as

presented in Section 4.2.2. The box to the right of a post shows the contribution types while

the left box contains the controls as well as statistics about the current progress of labeling

the dataset. In addition to saving the labels for a thread the annotator was also allowed to

skip a thread and go on with labeling the next one.

106

4.2 Contribution Typology

Figure 4.5: Tagging tool for tagging forum posts.

Henceforth, the set of all 10,029 manually labeled contributions will be referred to as the

“full dataset”.

4.2.4 Calculation of Inter-Annotator Agreement

It is important to note that not all contributions are clear and thus even humans are making

errors while labeling. We cannot assume that a machine classifier produces better results,

than a human annotator. Therefore, it is important to find out which labels are clear and

which not. For that purpose, we use multiple labels on the same contributions provided by

different human annotators. Hence, the tagging tool was designed to show contributions

which were already labeled by other annotators to each new annotator before showing new

contributions. Nevertheless, annotators are independent of each other, which means anno-

tator A does not know which label was given to a contribution they are labeling by another

annotator. The purpose of these independent double annotations will be explained during

the remainder of this section.

Before concluding any experiments on the labeled dataset, it is important to evaluate the

label quality. To this end, usually the inter-annotator agreement of labels added by different

annotators to the same data object (i.e. forum contribution) is calculated. For this purpose a

smaller subset of forum contributions was labeled twice by different persons. The set con-

sists of 1,088 randomly chosen contributions from the full dataset. Henceforth, this set will

be referred to as “benchmark dataset”, since it will be used for benchmarking the classifier

107

4 Finding Question and Answer Posts

Table 4.5: Inter-annotator agreement for contribution types ordered by kappa value.

Post type kappa value first annotator second annotator

Thx 0.92 40 39
Question 0.89 378 396
Answer 0.87 489 433
Bump 0.87 7 9

Elaboration 0.71 117 100
Description 0.5 4 9

Request 0.49 38 70
Other 0.44 22 38

Affirmation 0.16 8 9

prior to the final evaluation.

In order to measure inter-annotator agreement, the well known kappa measure (Manning

et al. 2009, p. 164) is applied. It is calculated using Equation 4.1.

kappa =
P (A)− P (E)

1− P (E)
(4.1)

The probabilities P (A) and P (E) correspond to the probability that both annotators agreed

and to the probability that both annotators agreed by chance. Please refer to Manning et al.

(2009, p. 164) for details on how to calculate these probabilities. So Equation 4.1 subtracts

the by-chance agreement from the actual agreement and normalizes with the ideal case of

an absolute agreement minus the by-chance agreement.

The calculation and results for kappa are shown in the next paragraphs. According to Man-

ning et al. (2009), a kappa value above 0.8 is considered as good agreement while a kappa

between 0.67 and 0.8 is considered as a fair agreement. If kappa is below 0.67, the data is

not really fit for evaluation since not even humans can agree on how the data should be la-

beled. The literature provides other scales for assessing kappa as well (Fleiss 1981, Landis &

Koch 1977). The scale provided by Manning et al. (2009) seems to be the most conservative.

So we stay with it for now as a worst case scenario.

Table 4.5 shows the kappa values for all contribution types. It is evident that not all of them

are clearly distinguishable. The types of Description, Request, Other and Affirmation have a

kappa value that is far smaller than 0.67, which means the annotators did not agree as to

which contributions belong to these types and which do not. However, most important is

that the central types of Questions and Answers show a fairly high agreement. It is interesting

to see that there are some additional classes with a high kappa value. It seems that Thx
contributions are easy to distinguish as well as Bump contributions. Elaborations are more

difficult but it seems to be possible to label them with some agreement. This is interesting,

especially since it often is not easy to distinguish between an Elaboration and a Question.

The macro-averaged kappa value according to Table 4.5 is 0.65. This means that the overall

confusion between the two annotators including all post types is a little too high. Agreement

108

4.3 Feature Engineering for Question/Answer Detection

was especially low on very small classes with few instances. It is reasonable to assume that

those kappa values are not statistically significant though.

Only the labels for Questions and Answers are really important for contribution type classi-

fication. Therefore, it is reasonable to aggregate all other classes using the label Other. That

way, the classifier only needs to distinguish between the three types Question, Answer and

Other.

4.3 Feature Engineering for Question/Answer Detection

Feature engineering defines the set of features that are employed by Effingo’s algorithms to

distinguish between contribution types. A feature is a distinguishing piece of information

that is used as evidence to assign labels to posts. That way, it is possible to define a function

assigning labels based on different feature sets. Each feature should possess a similar value

or range of values for at least one contribution type and different values or range of values

for the Other contribution types. Ideally it even has a certain value for each contribution

type.

In classic information retrieval, features are simply all keywords from a document. Their

values are either simple booleans stating the presence or absence of the word in a document.

More sophisticated values are based on the tf-idf measure as described in Section 2.2.2. That

way, words that are very common over the whole corpus are voted down, while words that

are common for a document but not for the whole corpus are voted up. Domain-dependent

information retrieval systems can use additional domain-specific feature types. For forum

contributions for example, we have additional knowledge about each document and thus

the ability to choose feature types fitting exactly that domain, which might be useful for

classification. Choosing the correct ones is crucial for the success or failure of the system.

As a requirement for Effingo the approach has to work for a large number of forums dis-

cussing different topics. Hence, selected features must be domain-independent with respect

to the forum’s topic. This task is particularly difficult since discriminative features may be

sparse for some contribution types.

Effingo’s feature types are organized into a hierarchy of categories based on the information

unit the feature originates from. The categories are token level, sentence level, thread level and

forum level. The following sections present the domain-independent feature types, ordered

by these feature levels. They also show the distribution of each feature type’s value on the

benchmark dataset of 1,088 in Figures 4.6, 4.7 and 4.8.

4.3.1 Token Level features

Token level features are created from the text of a post’s body or title. A token normally is a

word, but some tokens are only numbers, control characters, links etc.

109

4 Finding Question and Answer Posts

Mean Std. Dev.
0

0.01
0.01
0.02
0.02
0.03
0.03
0.04

FPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

SPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.02

0.04

0.06

0.08

0.1

0.12

Noun Overlap

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

Web Linking

Question Answer Other

Mean Std. Dev.
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Question Ratio

Question Answer Other

Mean Std. Dev.
0

0.02

0.04

0.06

0.08

0.1

On Thread Topic

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

Consecutive Punctuation

Question Answer Other

Mean Std. Dev.
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07

Consecutive Upper Case

Question Answer Other

Mean Std. Dev.
0

0

0

0.01

0.01

0.01

Author Activity

Question Answer Other

Mean Std. Dev.
0

0.1

0.2

0.3

0.4

0.5

0.6

Thread Position

Question Answer Other

Mean Std. Dev.
0

0.5

1

1.5

2

Timeliness

Question Answer Other

Mean Std. Dev.
0

100

200

300

400

500

600

Body Text Length

Question Answer Other

Figure 4.6: Distribution of numeric feature values per Question, Answer and Other contribution types.
The distributions are calculated over a set of 1,088 manually labeled contributions from
the SAP Developer Network and the Oracle Developer Network forums. SPSP is short
form for Second-Person Singular Pronoun while FPSP is the short form for First-Person
Singular Pronoun.

110

4.3 Feature Engineering for Question/Answer Detection

First-Person Singular Pronoun Ratio Calculates the fraction of first-person singular pro-

nouns (e.g. I, my, . . .) in proportion to all terms in the same contribution. Authors

posing a Question usually talk about themselves and their problem using many first-

person singular pronouns. Such pronouns are easily detected by means of a part of

speech tagger. Figure 4.6 in the upper left corner shows this to be true. The mean

value is much higher for Questions than Answers and even a little higher than for Other
contributions.

Second-Person Singular Pronoun Ratio The Second-Person Singular Pronoun Ratio is sim-

ilar to the ratio for first-person singular pronouns, except that it calculates the value

for the second-person singular (e.g. you, yours, . . .). We assume that Answers usually

address the questioning user, employing mainly pronouns in the second-person sin-

gular. This is true for the benchmark dataset as shown in Figure 4.6 in the middle of

the first row of diagrams.

Ratio of Consecutive Upper Case Letters Consecutive capitals are used for acronyms,

shouting and inside of source code. Acronyms are often used for technical and

domain-specific terms similar to how Noun Overlap will be used as a feature to iden-

tify technical terms below. Shouting, on the other hand, is mostly used in low quality

contributions which rarely qualify as an Answer. Figure 4.6 shows the distribution of

consecutive upper case letters in the upper right corner. Answers tend to have a higher

value in that feature but they also have the highest variation. It is not clear from that

figure whether the feature will be really helpful for classification.

Ratio of Consecutive Punctuation Consecutive punctuation is a feature often used for

source code. Source code appears quite often in Questions and Answers but rarely in

Other contributions.

Consecutive punctuation can be transformed to a feature by counting all consecutive

occurrences of punctuation (2 or more punctuation characters) and setting this value

in proportion to all terms from the same contribution. That way, a ratio between 0.0

and 1.0 is generated. The distribution on the left of the second line in Figure 4.6, how-

ever, shows that there is no clear difference concerning this feature for the different

contribution types.

The feature will be kept for the evaluation. However, we assume it will not be very

helpful for the classifier in the end.

4.3.2 Sentence Level Features

Sentence level features are created from the sentences of a post’s body or title. Such features

depend on a good sentence detector and are easily deteriorated by badly written text or

non-natural language content such as source code.

111

4 Finding Question and Answer Posts

Each sentence can be classified to belong to a type, such as a question or an imperative.

Some sentence types are co-located with some post types. Question sentences are a good

indicator for Question contributions. However, they are not necessarily an indicator and not

every question sentence belongs to a Question contribution.

Sentences also have different meanings based on their position in the post text. Question

posts, for example, often either start with a question followed by an explanation of the prob-

lem or they end with a question preceeded by a long explanation.

Question Ratio Not all, but many contributions stating a Question actually contain a ques-

tion sentence. Such sentences are identified by searching for sentence endings with

a question mark and/or starting with one of the famous 5W1H words already intro-

duced in Section 4.1.3. The 5W1H words are interpreted differently depending on the

reference. This thesis applies “What”, “Who”, “Where”, “How”, “Why” and “When”

in accordance with Hong & Davison (2009). Question sentences identified this way

are set in proportion to all sentences from the same contribution to calculate a feature

with a value between 0.0 and 1.0.

Most question sentences occur either directly at the start of a Question contribution

or at its end. This is due to the fact that users either poses a Question and gives a

lengthy explanation or they start with an explanation of their problem finishing it with

a question sentence.

Figure 4.6 shows this feature in the middle of the second line. It is obvious that Answers
contain a lot less question sentences than Questions and Other contributions.

Web Linking Links to Web pages with further information are an indicator for an Answer,

where some user provides a reference to a page containing the actual information.

Using this intuition, we can calculate a feature by at first extracting all links from a

contribution and then creating the ratio of those extracted links in proportion to the

number of sentences from the same contribution. That way, the feature assumes the

value 1.0 if all sentences contain a link and 0.0 if there are no links. Figure 4.6 shows

the distribution for the Web Linking feature on the right side of the second row. It is

evident that a high value clearly distinguishes Answers from all other types of contri-

butions. An extension to this feature would be to separate forum internal links from

external links. While external links usually point to resources like documentations or

files, internal links usually point to other threads. However, since it is unclear how

this influences the contribution types it is not considered for contribution type classi-

fication.

4.3.3 Post Level Features

Features which are calculated in isolation of the surrounding thread but which are valid for

a whole post are post level features.

112

4.3 Feature Engineering for Question/Answer Detection

Body Text Length The length of the body text is usually an indicator for posts with some

content. Although there are also short Questions and even short Answers, long posts

have a higher probability of not being a simple Thx statement or an Affirmation. There-

fore, this feature concerns the length of the body text in characters. As Figure 4.6 (third

row on the left) shows, the assumption clearly can be maintained for Question contri-

butions, while for Answers the difference to other contributions is not that clear.

Lexical Patterns An important feature for distinguishing post types from each other is

given by generic type-specific words. The phrase “thank you” might be typical for

Thx contributions while Questions usually describe scenarios of what an author has

done. Phrases of the form “I am getting ...” are typical for such posts (such as in “I am
getting an exception while starting SAP Netweaver”). It is not really feasible to capture

all these rules manually. As a solution, patterns similar to the ones adapted by Hong &

Davison (2009) from Carvalho & Cohen (2006) can be employed as a language model,

trained from labeled training data. In order to avoid over-specification, these patterns

mask all words with part of speech tags. That way each contribution is transformed to

its pattern representation, which in turn is transformed to lexical n-grams. Similar to

the approach presented by Carvalho & Cohen (2006), we keep some words instead of

substituting them with their PoS tag. These words are the 5W1H words presented for

the Question Ratio feature as well as the closed word class of modal words. They are

generic enough to be relevant for patterns individually, but we want to avoid that they

get substituted to only one PoS tag. The language model created from those lexical n-

grams is a matrix of the size M ×N with M being the size of the distinct set of lexical

n-grams from all training contributions and N being the number of contribution types

(i.e. nine based on the types presented in Section 4.2 or three if we only consider Ques-
tion, Answer and Other). Based on this language model, it is possible to identify the

crucial lexical n-grams per type and classify new unkown contributions (i.e. a test set)

according to patterns known from the training data. Each n-gram forms its own very

sparse feature and not all are useful for classification. Section 4.4.3 explains how to

select the most important lexical n-grams by means of a χ2 test.

4.3.4 Thread Level Features

Features on thread level provide statistics on the whole thread and require information from

the whole thread.

Noun Overlap The idea for this feature is based on the assumption that Questions and An-
swers contain many technical terms. Nouns are a first approximation of technical

terms. Further refinements could be based on named entity recognition techniques

as explained for example by Nadeau and Sekine (Nadeau & Sekine 2007). Assuming

that the first contribution of a thread sets that thread’s topic, noun overlap is calculated

113

4 Finding Question and Answer Posts

0%

5%

10%

15%

20%

25%

30%

35% 33.18%

1.65%

15.63%

Question Answer Other

Contribution Type

Fr
ac

ti
on

 o
f
C
on

tr
ib

ut
io

ns
 f
ro

m
 T

hr
ea

d
St

ar
te

r

Figure 4.7: The fraction of contributions of different types created by the initial author of a thread.
This distribution was calculated on the benchmark dataset.

as the Jaccard distance (Jaccard 1901) between a contribution and the start contribution

from the same thread. This, of course, means that the first contribution always gets a

value of 1.0, which explains the high mean for the noun overlap of Questions shown

in the middle of the third row of Figure 4.6. The figure also shows that, surprisingly,

Answers have a lower noun overlap than other contributions. This fact might cause the

feature to fail during classification.

Post is by Thread Creator A contribution created by the author who started a thread has

a high probability of being a Question and a lower probability of being an Answer. this

is due to the fact that most threads start with a Question whose author rarely answers

himself. This is a boolean feature since each contribution either is created by the same

author who created the thread or not. Figure 4.7 shows the fraction of contributions of

one type taking on the value “true” for the benchmark dataset. The feature is true for

one third of all Questions. This is no surprise since a large fraction of Questions starts

a thread. Interestingly, the feature is well suited to distinguish Answers from Other
contributions. There are more than seven times as many Other contributions created

by the thread starter than Answers.

Deviation from Thread Topic A post that has a high deviation from the thread’s topic has

a high probability of being spam instead of a Question or an Answer. This deviation

can be measured by calculating the distance between a post and all other posts in the

same thread. Distance can be measured using the Jaccard coefficient (Jaccard 1901), for

example. In order to reduce computation costs it also suffices to calculate the devia-

tion from the start post instead of from all other posts. The Jaccard coefficient, for this

feature, is calculated on the sets of words from a contribution and the thread’s starting

114

4.3 Feature Engineering for Question/Answer Detection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Thx
Bump
Elaboration
Affirmation
Answer
Request
Other
Description
Question

Position

Figure 4.8: Distribution of the post types at the first 15 thread positions from a human labeled dataset
of around 10,000 posts as described in Section 4.2.1.

contribution, similar to the Noun Overlap feature although including all words. Fig-

ure 4.6 shows the distribution for this feature on the right of the third row. It is evident

that Questions and Answers are more on thread topic than other contributions. How-

ever, the difference is small and the variation very similar. It is hard to say whether

the difference is going to suffice for a classifier. The experiments in Section 4.4 provide

some information on the quality of the feature.

Post's Position in Thread The contribution’s position in a thread is an important feature

for detecting the contribution type. Figure 4.8 shows the distribution of post types at

each position within a thread of our labeled data set. The figure includes all annotated

contribution types. Obviously, posts at the starting position 0 are mostly of the type

Question. Another observation is that posts of the type Thx do not appear among po-

sition 0 and 1. Moreover, Questions tend not to be frequent at position 1, but appear in

higher positions with an equal likelihood. Answers are the most frequent contribution

type in positions 1 and higher. Elaborations appear, to a lesser extent, also in higher

order postings.

Figure 4.6 shows the distribution only for the types Question, Answer and the aggre-

gated Other type. It is evident that Questions appear at very low positions while Answer
and Other contributions tend to appear later in a thread.

Answers usually appear before Other contributions. This illustrates that long threads

usually lose focus.

In order to create a feature, the contribution’s post position is normalized by the thread

length to a value between 0 and 1.

Timeliness Sometimes users revive old threads since they think their Question belongs to the

one that was discussed there before. In this case, a new Question appears somewhere

115

4 Finding Question and Answer Posts

in the middle of a thread but with a large deviation between the time passed since the

last contribution and time passed between other contributions in the same thread.

At the bottom in the middle of Figure 4.6 the distribution of a contribution’s timeliness

is shown. Timeliness is calculated using Equation 4.2 and denotes the time it took for

a contribution to be created in proportion to the mean time a contribution was created

in that thread.

T (cj) =
AbsT(cj)∑N

i=0,i 6=j AbsT(ci)
(4.2)

Timeliness is calculated based on absolute timeliness AbsT , which simply refers to

the time in seconds since the last contribution and equals 0 for the first contribution

of a thread. The feature is calculated from the absolute timeliness of a contribution

in proportion to the mean timeliness of the whole thread. The distribution shows

that it is very low for Questions, which is not very surprising since most Questions
are the first contribution of a thread (T = 0). The distribution also shows a slightly

lower timeliness of Answers in contrast to Other contributions. This corresponds to

our expectations since a high timeliness often indicates some disturbing contribution.

However, whether or not the difference is large enough will be shown in Section 4.4.

4.3.5 Forum Level Features

User statistics and overall statistics are created and managed on forum level. The relation-

ship of a post and its thread to these statistics provides valuable information, grouped by

this category of features.

Activity A user’s activity can be denoted by the fraction of posts created within the forum.

For the following considerations activity (A) for an author (ai) in a forum (fj) will be

calculated using Equation 4.3.

A(ai, fj) =
|F (ai, fj)|
|G(fj)|

(4.3)

The function F refers to all contributions of author ai in forum fj . The function G

provides all contributions from forum fj .

To make our experiments repeatable, a static dataset is used for evaluation. Since it

takes very long or is even—with the available resources—impossible to crawl a com-

plete forum and since some authors might have created new posts during this process

the true values of |fj | and F are impossible to measure. Hence, a small adaptation is

applied to Equation 4.3 to calculate an author’s activity. Instead of including all con-

tributions created by an author we only consider the contributions inside the dataset.

The same is true for the fj value which denotes the size of the dataset. For our example

dataset the complete set of 75,958 contributions from the SAP Developer Network and

116

4.4 Experiments

the Oracle Developer Network Forum was used. We assume that this sample is large

enough to approximate the true distribution of an author’s activity at the time of our

data collection.

As shown in the lower right corner of Figure 4.6, Answers are usually created by au-

thors with a high activity value, while Other contributions and Questions are created

by low-activity users. This is no surprise since expertise and dedication are required

to Answer contributions. More active users tend to have both.

4.3.6 Summary

This list of feature types might not be complete and is created from observations of existing

forums and partly compiled from related work adapted to the forum domain. In order to

clarify which feature results from which source, Table 4.6 presents an overview of the dis-

cussed features and the sources used to acquire them. Section 4.4.4 shows results of detect-

ing forum contribution types by means of either single features or different combinations.

4.4 Experiments

The following section explains the experiments carried out to evaluate the forum contribu-

tion type classifier. It begins with an explanation on how to select an appropriate feature

set from the features discussed in the previous section. After that, the actual classification

experiments on the large dataset are shown. Finally, a comparison to a classifier from the

related work is presented.

4.4.1 Experimental Setup

Forum contribution type classification is evaluated by means of different classification algo-

rithms and different feature subsets. The feature sets are based on the features presented in

Section 4.3. The datasets are based on the manually labeled contributions as described in

Section 4.2.3. For evaluation purposes, the two datasets, as explained in Section 4.2, were

used. The benchmark dataset is used to tune the classifier and it is the fundament for finding

correct values for parameters and to evaluate different feature sets as well as classification

algorithms. The full dataset is only used to report final numbers and never used to tune

the classification approach. That way, the final results are prevented from overfitting. Thus,

we assume the results in this chapter to be applicable to larger samples at least from fo-

rums with similar user behavior and topics as the SAP Developer Network and the Oracle

Developer Network.

For the evaluation of the contribution type classifier we adopt the measures (P)recision,

(R)ecall and the derived (F)1-Measure as defined by Grishman & Sundheim (1996). In addi-

tion, we report on the (A)ccuracy, which is defined for example by Manning et al. (2009, p.

117

4 Finding Question and Answer Posts

Table 4.6: Overview of the features used for the classification of forum posts and their sources.

Token Level

First-Person Singular Pronoun Ratio (FPR) New feature
Second-Person Singular Pronoun Ratio (SPR) New feature
Ratio of Consecutive Upper Case Letters (CU) Wanas, El-Saban, Ashour & Am-

mar (2008) used this as “Format-
Capitals” feature for determining a
post’s quality.

Ratio of Consecutive Punctuation (CP) Wanas et al. (2008) used this as “For-
matPunctuation” feature for deter-
mining a post’s quality.

Sentence Level
Question Ratio (QR) Adapted from Hong & Davison’s

(2009) “Question Count” and
“5W1H Word” features

Web Linking (WL) Adapted from Wanas et al. (2008)
WebLinking feature.

Post Level

Body Text Length (BL) Based on “Lengthiness” feature pro-
posed by Wanas et al. (2008).

Lexical Patterns (LP) Based on the n-gram feature pre-
sented by Hong & Davison (2009),
which is based on the e-mail classi-
fication approach proposed by Car-
valho & Cohen (2006).

Thread Level

Noun Overlap (NO) New feature
Post is by Thread Creator (TC) New feature
Deviation from Thread Topic (TT) Wanas et al. (2008) used this as On-

ThreadTopic feature for determining
a post’s quality.

Post’s Position in Thread (Pos) New feature
Timeliness (Time) Wanas et al. (2008) used this feature

for determining a post’s quality.

Forum Level

Activity (Act) Based on “Authorship” feature pro-
posed by Hong & Davison (2009).

118

4.4 Experiments

155). For a brief summary of those measures refer to Section 2.1.1. Specifically, (P)recision,

(R)ecall, and (A)ccuracy are defined for a binary classification problem (i.e., a posting be-

longs to a target class, for example, Question or not). To use them for multi class classification

(i.e. Question, Answer, Other) we adapt them as follows: For each target class we consider

as true positives (tp) all cases where both, the human annotator and the classifier, assign the

postings to the target class, true negatives (tn) refer to the cases where both, the human an-

notator and Effingo, do not assign the postings to the target class, false positives (fp) concern

the cases where Effingo assigns the post to the target class which is not considered correct

by the human annotator, and false negatives (fn) refer to the cases where Effingo does not

assign the post to the target class although it is correct according to the ground truth. Then,

precision is defined as P = tp
tp+fp , recall as R = tp

tp+fn , and accuracy as A = tp+tn
tp+tn+fp+fn .

F1-Measure is defined as the harmonic mean of P and R.

All experiments are carried out using the classifier implementations provided by the Weka

Machine Learning Library8 in version 3.6.8 or LibSvm9 in version 3.1. Altough there is a

LibSvm wrapper in Weka we directly used the LibSvm implementation without that wrap-

per. For feature extraction the pipelining functionality of the Palladian10 library was used

and extended by several additional feature extraction components.

4.4.2 Classi�er Selection

Section 2.3 shows several possible classification algorithms. Some of them demonstrate a

better runtime behavior in certain cases, while others show higher quality results. Some are

prone to underfitting, while others are prone to overfitting. The most recent implementa-

tions of the algorithms try to overcome their drawbacks as well as possible. However, it is

still unclear which classifier is supposed to be employed for contribution type classification.

Before tuning a classifier, a reasonable selection of state-of-the-art algorithms is run with

their default settings including all features presented in Section 4.3. Since there are many

classification approaches available, we tried a selection of common algorithms, using their

implementation as provided by Weka with their default settings. As already explained we

tested only the benchmark dataset for these initial evaluations in order to avoid overfitting.

The classifier with the most promising results during this first evaluation is used for further

refinements of the classification approach. The results on the benchmark dataset are shown

in Figure 4.9.

As the figure indicates, all measures (i.e. precision, recall, accuracy, F1 measure) are nearly

the same for most classifiers. The bagging classifier provides the best results with around

88% on all measures, while random forest is by far the worst. This leads to the conclusion

that the bagging classifier should be used for all further evaluations.

8http://www.cs.waikato.ac.nz/ml/weka/
9http://www.csie.ntu.edu.tw/~\relaxcjlin/libsvm/

10http://palladian.ws/

119

http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~\relax cjlin/libsvm/
http://palladian.ws/

4 Finding Question and Answer Posts

Bagging
REP Tree

Ripper
C 4.5

Bayes Net
SVM

Naïve Bayes
Random Forest

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Precision Recall F1-Score Accuracy

Figure 4.9: Results for different classification algorithms using 5-fold cross validation on the bench-
mark dataset.

4.4.3 Feature Selection

Section 4.3 describes a set of features which might be helpful to separate Question and An-
swer contributions from each other and from Other contributions. Since these features are

discovered by means of an empirical study of a subset of forum contributions we do not

exactly know whether and how useful each feature is. We could simply use all features and

not investigate any further. This approach, however, has two drawbacks. At first, we do

not know whether all these features are really helpful to identify the target classes. Some

of them might even be destructive and confuse the classifier more than they are helping.

Second, using redundant features or features carrying no helpful information is not harmful

to the classifier’s quality but increases the feature space unnecessarily and thus decreases

classification speed. The features selected for classification need to be able to distinguish the

classes presented in Section 4.2 but need not be redundant or reduce classification quality.

That means each feature must have a statistically significant association with some class.

This association may either be the presence or absence of that feature for a particular class.

This section evaluates the feature set and shows how useful each feature actually is.

On its own, each feature achieves micro-averaged accuracy, recall, precision and F1 score as

presented in Table 4.7. It is interesting to see that some features achieve quite good results

on their own. The timeliness feature, for example, reaches an F1 score of more than 60%.

The question now is as to whether a combination of those features improve these numbers

and which features actually carry additional information.

There are two different types of features and feature selection works differently for both.

Categorial features are countable, they only have a fixed set of possible values. One ex-

120

4.4 Experiments

Table 4.7: Performance of the features presented in Section 4.3 in isolation.

Feature Accuracy Recall Precision F1 score

Noun Overlap 0.815 0.727 0.702 0.667
Timeliness 0.802 0.705 0.675 0.664
Deviation from Thread Topic 0.795 0.695 0.666 0.659
Post is by Thread Creator 0.852 0.756 0.605 0.646
Post’s Position in Thread 0.808 0.719 0.667 0.638
First-Person Singular Pronouns Ratio 0.707 0.578 0.557 0.529
Second-Person Singular Pronouns Ratio 0.681 0.543 0.572 0.507
Question Ratio 0.713 0.586 0.497 0.502
Body Text Length 0.636 0.496 0.502 0.487
Lexical n-grams 0.607 0.443 0.415 0.412
Activity 0.626 0.485 0.388 0.371
Ratio of Consecutive Upper Case Letters 0.567 0.402 0.375 0.359
Ratio of Consecutive Punctuation 0.591 0.443 0.407 0.348
Web Linking 0.595 0.449 0.370 0.281

ample of such a feature are the lexical n-grams presented in Section 4.3. To select the most

important n-grams we can either apply a so called χ2 test or the Kullback-Leibler divergence

(also known as Information Gain) as explained in Section 2.2.3. The χ2 test is based on the

assumption a combined accurrence of each n-gram with a specific class takes place only by

chance. This hypothesis is called null hypothesis. The goal of the χ2 test for feature selection

is to disprove this hypothesis for important n-grams. If the null hypothesis is disproved for

the correlation between an n-gram and a class, that pair is statistically significant and should

be considered as a feature for forum contribution type classification.

Information Gain feature selection is, for example, well explained by Yiming & Pedersen

(1997). The idea there is to measure the occurrence distribution of each feature in respect to

the target class distribution. According to Yiming & Pedersen (1997), the Information Gain

for a term t and a set of target classes (c1, c2, . . . , cm) is calculated using Equation 4.4.

G(t) = −
m∑
i=1

P (ci) logP (ci) + P (t)

m∑
i=1

P (ci|t) logP (ci|t) + P (t̄)

m∑
i=1

P (ci|t̄) logP (ci|t̄) (4.4)

The first sum calculates the distribution of the target classes using the probability P (ci) that

a target class occurs at all in the dataset. The second sum refers to the probability P (ci|t) that

a term occurs in combination with any class, multiplied by the probability P (t) that the term

occurs at all. The third sum refers to the probability P (ci|t̄) that term and class do not occur

together, multiplied by the probability P (t̄), that this term does not occur. All probabilities

are calculated based on some training or validation dataset.

The second type of features are numeric features. All features presented in Section 4.3 except

for lexical n-grams are numeric features. Since those features have a continuous range of

values, it is not so easy to calculate a correlation value. It is possible to define buckets and

121

4 Finding Question and Answer Posts

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Selection

Top N Features

F
1

 S
co

re

Figure 4.10: F1 scores for different feature selection runs on lexical n-grams using increasing cutoffs.

calculate the χ2 value for those buckets. Such an approach is for example described by

Fayyad & Irani (1993). However, an easier method is brute force feature selection, where

the classification performance is calculated for all feature combinations, filtering out those

which do not improve or even lower performance. The drawback of brute force feature

selection is the immense complexity. It increases exponentially with the amount of features.

This means if there are n features, there are 2n different combinations and all are checked

using cross validation on some large dataset. However, since the numeric feature set in this

case is very limited, the computational overhead can be neglected.

Lexical N-gram Selection

Table 4.8 shows the ten most important n-grams according to their χ2 values for Questions,

Answers and the aggregated Other contribution type. In total, there are 7,528 different n-

grams. Different n-grams are important for different contribution types and thus have a

different χ2 value for each contribution type. In order to get a global ranking for each lexical

n-gram, we selected the top n-grams for each class in a round-robin fashion.

In order to select a set of n-grams for classification, an ever increasing set is singled out and

micro-averaged accuracy, precision, recall and F1 score are calculated. The ai is to find a

maximum F1 score and employ that set of n-grams for all further classification tasks. Fig-

ure 4.10 shows the results of those runs. The runs start only with the top feature increasing

the set in steps of 50, which means that the next run used 50, the one thereafter 100, 150 a.s.o.

This was repeated until the last run included all 7,528 lexical n-grams. Figure 4.10 clearly

shows that the peak in F1 score is reached very early. Therefore, we conducted another set of

cross validation runs, evaluating increments of one over the top 1,700 features. Figure 4.11

shows the results.

122

4.4 Experiments

Table 4.8: The top 10 most significant lexical n-grams for the benchmark set of 1,088 forum contribu-
tions. The n-grams are chosen from all 2 and 3-grams extracted from those contributions.

Question Answer Other

MD P MD P CS QL R
P VB P VB DET SPEC Please
P HV you MD CS QL
DTI N You MD DTI i IN
TO VB P HV DTI i

MD P VB you MD VB CS JJ CS
P VB AT MD P VB N MD CC
VB TO Thanks IN DOD nothing

VB TO VB DET SPEC R DOD
VB AT N my N WRB JJ IN

The following abbreviations are used:

AT Article (the, an, a, . . .)

CC Conjunction, Coordinating (and, or, but, plus, . . .)

CS Conjunction, Subordinating (that, as after, . . .)

DET Determiner (quite, all, both, many, other, . . .)

DOD Form of “to do”

DT* Determiner/Pronoun (any, some, . . .)

HV Form of “to have”

IN Preposition (of, into, against, over, . . .)

JJ Adjective (recent, possible, hard, meager, fit, such, . . .)

MD Modal Auxiliary (’ll, ’d, . . .)

N Noun

TO Infinitive marker to

P Pronoun (something, everything, . . .)

QL Qualifier (very, little, still, . . .)

R Adverb (further, loudest, formally, . . .)

SPEC Special Character (., ;, (, . . .)

VB Verb

WRB WH-adverb (however, when, where, why, . . .)

123

4 Finding Question and Answer Posts

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Selection

Top N Features

F
1

 S
co

re

Figure 4.11: Zoomed in to the performance on the first 1,700 lexical n-grams.

The oscillating behavior of the graph is due to the random selection of the cross validation

cuts on each run and only represents static noise.

The peak at the beginning is reached after only 155 features. This means that the most dis-

tinguishing 155 features according to χ2 measure are the best for contribution type classifi-

cation. Adding further features only increases confusion for the classifier. These 155 features

are going to be used for the final run on the test dataset.

Brute Force Numeric Feature Selection

Brute force feature selection was carried out using the features presented in Section 4.3 with

two exceptions. Lexical n-grams were selected as described in the previous paragraph and

are thus excluded at this point. In addition, we excluded the imperative ratio feature, since

early experiments showed that our algorithm was unable to extract imperatives from any

contribution in our dataset. The remaining thirteen features were evaluated by means of

five-fold cross validation on the benchmark dataset.

Since 2amount of feature-types = 213 = 8, 192, the complete experiment consists of 8,192 runs,

each one calculating micro-averaged accuracy, precision, recall and F1 score. Of course, the

run with no features is unnecessary and thus excluded, which is why 8,191 runs remain.

The micro-averaged F1 score was used to assess the runs and, thereby, the feature combi-

nations. Since it is rather unfeasible to display the details for all 8,187 remaining runs in a

comprehensive table here, Table 4.9 only shows the five best combinations.

In order to assess a feature’s usefulness for contribution type classification, a record of how

often that particular feature contributes to high quality runs is required. Figure 4.12 shows

the distribution of a feature to occur in a run, which resulted in a certain F1 score range. Since

each feature must occur exactly 4,096 times, each graph sums up to 4,096. For comparison,

124

4.4 Experiments

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
First Person Pronouns

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Second Person Pronouns

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Body Text Length

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Web Linking

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Question Count

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Thread Topic Deviation

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Consecutive Punctuation

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Consecutive Upper Case

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Noun Overlap

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Activity

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
By Thread Creator

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Position in Thread

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Timeliness

F1-score

re
la

ti
ve

 f
re

qu
en

cy

Figure 4.12: Absolute distribution of F1 scores over brute force feature selection runs per feature.
If the histogram is left-skewed the feature has a bad influence on classification quality,
if it is right-skewed it has a good influence. The lowest right distribution shows the
distribution of all 8,142 runs.

125

4 Finding Question and Answer Posts

Table 4.9: The five best feature combinations according to brute force feature selection. The abbrevi-
ations are defined by Table 4.6.

Feature Kombination Accuracy Recall Precision F1 score

FPR+BL+WL+QC+CP+Act+TC+Pos 0.924 0.878 0.883 0.880
FPR+SPR+BL+WL+QC+CU+NO+Act+TC+Time 0.924 0.877 0.885 0.880

BL+WL+QC+CU+NO+Act+TC 0.925 0.878 0.883 0.880
BL+QC+CP+TC+Pos 0.925 0.879 0.883 0.881

FPR+BL+QC+CP+TC+Pos 0.925 0.879 0.885 0.881

the lowest left graph in Figure 4.12 shows the distribution of all 8,142 runs over the F1 scores.

The skewness of a distribution of a feature provides an understanding of how useful it is for

classification. A feature has a high usefulness if the distribution is skewed to the right, which

means that the feature occurs more often in high quality runs. A feature has a low usefulness

if its distribution is skewed to the left. This means that the feature occurs more often in

low quality runs. It is evident that most features have a quite similar distribution and no

feature shows a left-sided concentration. Thus, all features seem to have some value for

classification and are not disturbing the classifier. However, since most runs are already high

quality runs—compare the total distribution on the lower right—a consideration of only

viewing the absolute distributions is not enough. Figure 4.13 shows the relative distribution.

Each bar refers to the relative amount of runs which the specific feature was part of in a

certain range of F1 scores. Again, a right-sided distribution is better than a left-sided one.

However, it should not be overestimated that for example “Web Linking” occurs for all runs

in the range of 25%–30% F1 score since, as can be seen from the distribution of all runs on

the lower right of Figure 4.12, there are very few (namely exactly one) runs in that range.

Still, it is possible to estimate from a wide distribution that such a feature has much less

discriminative power than one which is clearly shifted to the right. The figure also shows

that “Post is by Thread Creator” is by far the most powerful feature and we most definitely

should not leave it out.

In order to get a feeling for the consequences of the exclusion of a feature, Table 4.10 shows

the micro-averaged quality measures for all feature combinations missing exactly one fea-

ture. The table also shows the results using all features at the bottom. Except for “Post is by

Thread Creator” the exclusion of a feature seems to have no recognizable effect.

From these observations we can conclude that some features are more powerful and other

less so. Since it is the only feature occurring during all runs which achieved an F1 score of

between 85% and 90%, the information on whether a contribution was created by the same

author, who started the thread or not, sticks out. Nevertheless, all other features seem to at

least have no destructive effect on classification and the exclusive use of “Post is by Thread

Creator”, as shown in Table 4.7, results in very low precision and clearly inferior results.

For the classification we are going to test the best feature combination according to Table 4.9,

but we also will provide results for the application of all features since it is not clear whether

126

4.4 Experiments

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
First Person Pronouns

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Second Person Pronouns

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Body Text Length

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Web Linking

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Question Count

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Thread Topic Deviation

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Consecutive Punctuation

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Consecutive Upper Case

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Noun Overlap

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Activity

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
By Thread Creator

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Position in Thread

F1-score

re
la

ti
ve

 f
re

qu
en

cy

25
-3

0
30

-3
5

35
-4

0
40

-4
5

45
-5

0
50

-5
5

55
-6

0
60

-6
5

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0

0

0.2

0.4

0.6

0.8

1
Timeliness

F1-score

re
la

ti
ve

 f
re

qu
en

cy

Figure 4.13: Relative distribution of F1 scores over brute force feature selection runs per feature.

127

4 Finding Question and Answer Posts

Table 4.10: Classification results on the benchmark dataset leaving one feature out.

Missing Feature Accuracy Recall Precision F1 score

Body Text Length 0.921 0.872 0.879 0.875
Ratio of Consecutive Punctuation 0.919 0.870 0.877 0.873
Web Linking 0.919 0.868 0.874 0.870
Second-Person Singular Pronoun Ratio 0.917 0.866 0.873 0.869
Deviation from Thread Topic 0.916 0.865 0.873 0.869
Timeliness 0.917 0.865 0.869 0.867
Post’s Position in Thread 0.915 0.864 0.867 0.865
Ratio of Consecutive Upper Case Letters 0.914 0.862 0.869 0.865
Activity 0.914 0.861 0.865 0.862
First-Person Singular Pronoun Ratio 0.910 0.855 0.861 0.857
Noun Overlap 0.911 0.855 0.858 0.856
Question Ratio 0.908 0.854 0.855 0.852
Post is by Thread Creator 0.862 0.787 0.790 0.787

0.917 0.865 0.870 0.867

Table 4.11: Classification results on five fold cross validation of the full dataset using the top 155
lexical n-grams together with all thirteen dense features.

Contribution Type Prior Accuracy Recall Precision F1 score

Answer 0.356 0.864 0.771 0.878 0.821
Other 0.245 0.825 0.691 0.517 0.592
Question 0.399 0.902 0.866 0.893 0.880
Micro Average - 0.870 0.796 0.790 0.788

there are any disturbing features at all. However, remember that each feature adds another

dimension to the feature space and thus increases computational costs. If, in practice, fast

computation is more important than correctness to a certain point, the figures and numbers

above can help to make an educated decision on which features are to be left out and what

impact this might have on the expected results.

4.4.4 Results and Discussion

After deciding on a classifier and a final feature set the performance was evaluated employ-

ing the full dataset. For this experiment the top 155 lexical n-grams from the benchmark

dataset were applied in unison with the thirteen other dense features. In order to get the

final values, the classifier ran on the full dataset using five fold cross validation. The results

are displayed in Table 4.11 The table also shows the prior probability of encountering each

class. A comparison of that probability to the results achieved emphasizes the improvement

in contrast to a less to a naïve random classifier.

As the confusion matrix of the bagging classifier in Figure 4.12 shows, the most error-prone

type is the Other type. Individually it only reaches a F1 score of around 70% while the other

128

4.4 Experiments

Table 4.12: Confusion matrix for the classification of the full dataset into Question, Answer, Other us-
ing all features presented in Section 4.3.

Classified as
Other Question Answer

Other 1270 451 734
Question 233 3575 194
Answer 334 101 3128

Table 4.13: Counts of classification errors by bagging classifier broken down for the classes presented
in Section 4.2.

Classification Result
Question Answer Other

Question – 194 233
Answer 101 – 334
Other 66 218 –

Elaboration 127 66 –
Thx 4 31 –

Request 54 138 –
Description 108 237 –
Affirmation 63 42 –

Bump 29 2 –

two classes are above 80%. Thus, the discrimination for the class Other needs to be im-

proved. Since we know that the Other class consists of several subclasses, we can analyze

which of those subclasses is the most error-prone. For that purpose Table 4.13 shows the

misclassifications broken down to the classes explained in Section 4.2. Of course, with re-

gard to the overall number of questions and answers there was no change, whether they

were attributed to the wrong classes or not. The table shows that most errors result due

to the misclassification of Descriptions as Answers. This is not surprising since Description
contributions share many commonalities with Answer contributions. Both usually contain

long explanatory texts addressing another individual. The only difference is that descrip-

tions are usually destined to the whole community while an Answer is for one individual.

Patterns that address a general audience might be added as an additional feature similar to

the current first and second-person pronoun features to avoid this error.

The second most common error results from the non-aggregated Other contribution type as

Answer. Finding a feature to reduce this error is much harder on intuition.

As a means to point out individual features relate to the correctly classified vs. the incor-

rectly classified ones, the same plots as in Section 4.3 for the distribution of the features are

presented in Figures 4.14 for all erroneous cases and 4.15 for all correct cases.

As can be seen most features show a different distribution for the correctly classified con-

tributions versus the incorrect ones. Correct distributions have at least one value that is

129

4 Finding Question and Answer Posts

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

Noun Overlap

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

SPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.01

0.01

0.02

0.02

0.03

0.03

FPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

Web Linking

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

Question Ratio

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

On Thread Topic

Question Answer Other

Mean Std. Dev.
0

0.01
0.01
0.02
0.02
0.03
0.03
0.04

Consecutive Punctuation

Question Answer Other

Mean Std. Dev.
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07

Consecutive Upper Case

Question Answer Other

Mean Std. Dev.
0
0
0

0.01
0.01
0.01
0.01
0.01

Author Activity

Question Answer Other

Mean Std. Dev.
0

0.1

0.2

0.3

0.4

0.5

0.6

Thread Position

Question Answer Other

Mean Std. Dev.
0

0.5

1

1.5

2

2.5

Timeliness

Question Answer Other

Mean Std. Dev.
0

200

400

600

800

1000

Body Text Length

Question Answer Other

Figure 4.14: Distribution of dense feature values for all erroneous classifications.

130

4.4 Experiments

Mean Std. Dev.
0

0.2

0.4

0.6

0.8

1

Noun Overlap

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

SPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

FPSP Ratio

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

Web Linking

Question Answer Other

Mean Std. Dev.
0

0.05

0.1

0.15

0.2

0.25

0.3

Question Ratio

Question Answer Other

Mean Std. Dev.
0

0.2

0.4

0.6

0.8

On Thread Topic

Question Answer Other

Mean Std. Dev.
0

0.01

0.02

0.03

0.04

0.05

Consecutive Punctuation

Question Answer Other

Mean Std. Dev.
0

0.02

0.04

0.06

0.08

Consecutive Upper Case

Question Answer Other

Mean Std. Dev.
0

0.01

0.01

0.02

Author Activity

Question Answer Other

Mean Std. Dev.
0

0.1

0.2

0.3

0.4

0.5

0.6

Thread Position

Question Answer Other

Mean Std. Dev.
0

0.5

1

1.5

2

Timeliness

Question Answer Other

Mean Std. Dev.
0

200

400

600

800

1000

Body Text Length

Question Answer Other

Figure 4.15: Distribution of dense feature values for all correct classifications.

131

4 Finding Question and Answer Posts

clearly distinguishable from the other two types. Incorrect distributions are almost equally

distributed. This suggests that additional features are required to help improve classifier

performance in contrast to providing additional training examples. Whether this is true or

not can be shown by means of so called learning curves as explained by Professor Andrew

Ng from Stanford University11. For this purpose we split the full dataset in half. The first

half was used as training set, while the second was used as validation set. From each set

we took the first example and trained a classifier as explained at the beginning of this sec-

tion with the instance from the training set. We classified both instances by means of that

classifier and measured the average squared error for both, the validation and the train-

ing set. In the next iteration the first two instances from the training and the validation set

were included, then three, then four and so on until both sets were consumed. The aver-

age squared errors are plotted for each iteration to create the learning curves. The training

curve is expected to start at a very low average squared error since it is easy to perfectly fit

a classifier to the same set it was trained on if that set is small. The validation curve, on the

other hand, starts at a very high average squared error since it is hard to train a classifier

that fits unknown examples well on a small training set. So iteration after iteration, both

curves are going to gradually close in on each other. If they are close to touching one an-

other, this indicates that an underfitting or high bias problem exists. In this case, additional

training examples are not useful since the classifier already fits the training examples to its

best and will not improve on additional examples. Only additional features are capable of

increasing extraction quality in such cases. If, on the other hand, there is a large gap between

both curves, we are experiencing an overfitting or high variance problem. This may result

if there are multiple features which allow the classifier to match the training set exactly but

no other instances. In such cases, adding additional training examples helps to improve the

generalizability of the classifier.

Figure 4.16 shows the learning curves for the full dataset. For low training set sizes the error

bounces around wildly. It is interesting to see that the bagging classifier is not even able to

classify its own training set in such a case. The error rate stabilizes at around 0.3 for larger

training sets. Since both, the validation and the training set error rate, stabilize at around the

same value, it is save to conclude that adding further training examples would not be helpful

in this case. In order to classify the remaining error cases correctly, additional features are

required. This confirms the observations from the feature distributions in Figure 4.14 and

Figure 4.15.

Still, the effect of choosing fewer features is unknown. According to brute force feature

selection (see Section 4.4.3), there is a subset of dense features producing higher quality

results on the benchmark dataset as compared to the application of all features. In a final

experiment we are going to show how this subset works for the full dataset. We conducted

the same experiment as at the beginning of this chapter, yet including only the dense features

11https://class.coursera.org/ml/lecture/64

132

https://class.coursera.org/ml/lecture/64

4.4 Experiments

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

Size of training and validation set

Figure 4.16: Learning curves showing the mean squared error rate for the full dataset split half into
a training set and half into a validation set.

133

4 Finding Question and Answer Posts

Table 4.14: Results of a five fold cross validation run on the full dataset using the top 155 lexical
n-grams together with the top features according to brute force feature selection.

Contribution Type Prior Accuracy Precision Recall F1 score

Answer 0.356 0.856 0.760 0.869 0.811
Other 0.245 0.813 0.653 0.500 0.566
Question 0.399 0.882 0.846 0.861 0.854
Micro Average - 0.856 0.768 0.775 0.767

from the top run in Table 4.9 together with the top 155 n-grams. Table 4.14 displays the

results in the same format as before. A comparison of this table with Table 4.11 shows that

all results are slightly worse. So instead of improving the classification the subset created

worse results. This is not absolutely unexpected, since even the improvement achieved on

the benchmark dataset was very small and might have occurred because of noise. However,

Table 4.14 also reveals that even the employment of a much smaller feature set produces

comparable results.

Performance of Two Class Classi�ers

Hitherto, we always used a three-class classifier (i.e. separating contributions into Questions,

Answers and Other contributions). As an alternative, Table 4.15 and Table 4.16 show the

performance on two two-class classifiers.

Table 4.15: Performance of classifier using only types for Questions and Other contributions. Answer
contributions are marked as Other contributions in this case.

Contribution Type Prior Accuracy Precision Recall F1 score

Other 0.601 0.904 0.918 0.924 0.921
Question 0.399 0.904 0.884 0.875 0.880
Micro Average - 0.904 0.904 0.904 0.904

Table 4.16: Performance of classifier using only types for Answers and Other contributions. Question
contributions are marked as Other contributions in this case.

Contribution Type Prior Accuracy Precision Recall F1 score

Answer 0.204 0.903 0.772 0.742 0.757
Other 0.796 0.903 0.935 0.944 0.939
Micro Average - 0.903 0.901 0.903 0.902

The first classifier separates Questions and Other contributions. Answers are grouped to-

gether with the remaining Other contributions. The second one separates Answers and Other
and groups Questions together with the remaining Other contributions.

The expectation with regard to such two-class classifiers is the following. Since there are

only two classes, the confusion for the classifier is much smaller. Therefore, the classification

134

4.4 Experiments

results should improve. However, in comparison to Table 4.11 all measures for Question and

for Answer contributions lost significantly. The Other type, including Questions and Answers
respectively, improved by a considerable amount to approximately 90%.

The improvement for the Other type and the loss for both Questions and Answers in this case

is, however, probably not due to a decreased classifier confusion. In particular, it results

from the very high prior probability of Other contributions. This means that since the prob-

ability of encountering an Other contribution for both classifiers is so high, the probability of

the classifier assigning the Other label to borderline cases also increases significantly. That is

also the reason why Questions and Answers lose so dramatically.

However, there might be application scenarios for this kind of classifiers which are able to

separate Other contributions with high confidence. On the other hand, the use of two clas-

sifiers may involve another disadvantage: Since both are applied to the same dataset there

might be disagreements between them on the same contribution. Disagreement refers to

the scenario that one classifier classifies a contribution as Question, while the other classifies

the same contribution as Answer. For the experiment presented here this occurred in only

approximately 0.2% of the classified instances. For such cases it would be possible to apply

the three-class classifier as a tie-breaker for example.

4.4.5 Comparison of Results from Cong et al. (2008) and Hong & Davison

(2009) to E�ngo

Both publications, the one by Cong et al. (2008) as well as Hong & Davison (2009) report

better results to the those shown in the previous chapter for the Effingo classifier. Both

approaches also differ from our approach but provide good benchmark results. Unfortu-

nately, neither Cong et al. (2008) nor Hong & Davison (2009) were able to provide their

dataset or their implementation. For this reason, a reimplementation was used to create the

benchmark. To reduce the necessary effort, only the approach of Hong & Davison (2009)

was implemented. As explained in Section 4.1.3, Hong & Davison (2009) already compared

their results to the ones by Cong et al. (2008). This comparison justifies omitting a separate

comparison to Cong et al. (2008).

Since Hong & Davison (2009) created two distinct two-class classifiers for Questions and

Answers, the labels from the dataset used in this thesis were filtered accordingly. For the

Question classifier all labels except the Question label are mapped to Other, while for the

Answer classifier all labels except the Answer one are mapped to Other. In addition, since

Hong & Davison (2009) assume Questions to occur only at the first position in a thread, only

first-position posts are used for training. Classification is carried out over items from every

position (no filtering of only first-position posts is done) to examine whether the classifier

created by Hong & Davison (2009) would be able to detect Questions occurring in other

positions as well. In accordance, all first posts are filtered out for training the Answer classi-

fier. Additionally, Hong & Davison (2009) assume each thread to only contain one Answer.

135

4 Finding Question and Answer Posts

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - With Training Filter

C

F
1

S
co

re

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - Without Training Filter

C

F
1

S
co

re

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - Without Training Filter

Top N Features

F
1

S
co

re

Figure 4.17: F1 score values dependent on the value of C – the regularization parameter for the (Hong
& Davison 2009) Answer classifier.

Therefore, only the first Answer is used for training. Remaining Answers are also mapped to

the Other label. As explained for the Answer classifier, no filtering is done during classifica-

tion as well. We denominate this procedure of filtering Questions at the start of a thread and

including only first Answers a training filter since it is only applied during training.

We tried to keep as close to the description as possible, however Hong & Davison (2009)

leave out several implementation issues. Firstly, they use LIBSVM as classifier, without

providing its detailed settings. The most important parameters are the value C used for

regularization and the kernel, as explained in section 2.3.3. For this experiment, a linear

kernel was used as proposed by the LIBSVM documentation (Hsu, Chang & Lin 2003) for

problems with large training sets and large feature sets. The regularization parameter was

determined by searching the parameter space for the best value according to F1 measure

and five-fold cross validation on the benchmark dataset. Following the advice from the

LIBSVM documentation (Hsu et al. 2003), parameter search started with a value of 2−5 =

0.03125. The value was increased by powers of two e.g. 2−4, 2−3 . . . and so forth. Figure 4.17

shows the development of C for the Answer classifier over 100 increments. The F1 score

remains relatively constant up to a regularization parameter of 16. After this value the score

suddenly drops by almost 5% and then rises to reach a value slightly above 60% at around

C = 256. It stays at this height for the remainder of the search scope and thus we are going

to use C = 256 for the remaining experiments with the Answer classifier.

There is no figure to illustrate the development of C for the Question classifier. This is due to

the fact that the Question classifier shows no significant change in F1 score, no matter which

value is used. It stays at around 0.25% and thus the initial value of 0.03125 will be used.

136

4.4 Experiments

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - With Training Filter

C

F
1

S
co

re

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - Without Training Filter

C

F
1

S
co

re

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - Without Training Filter

Top N Features

F
1

S
co

re

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - With Training Filter

Top N Features

F
1

S
co

re

Figure 4.18: F1 score of different Information Gain cutoff points for Hong & Davison’s (2009) Answer
classifier.

Secondly, Hong & Davison (2009) describe their application of the approach developed by

Carvalho & Cohen (2006) as explained in Section 4.1.2. This approach uses Information

Gain feature selection (see Section 2.2.3), which requires a threshold value to select the most

important features. However, no such value is provided by either paper. Therefore, we need

to find a reasonable one independently. It can either be an absolute cutoff point such as the

1,000 most discriminative features, or an Information Gain score such as taking features with

a score above 1.3. In order to find a valid amount of the top features to use, we tried various

absolute cutoff points and measured the change in F1 score to find the best. As regularization

parameters for Question and Answer classifier we used the ones determined above. In total,

the benchmark dataset contains close to 240,000 Carvalho n-grams. Figure 4.18 shows the

results of Information Gain feature selection for values between 1 and 40,000 in increments

of 1,000 using our implementation of Hong & Davison’s (2009) Answer classifier. The figure

for the Question classifier is not displayed, since it is a straight line similar to parameter

search which alternates between 0.2549 and 0.2554. It is therefore not clear which cutoff

point to use. For this reason, feature selection for Hong & Davison’s (2009) Question classifier

experiments is ignored and all n-grams are used.

The Answer classifier has a sudden increase at around 12,000 n-grams with an F1 score of

0.47. After this, there are only slight changes which can be attributed to noise. In order

to select the most appropriate set of top n-gram features we zoomed into the area around

12,000 top n-grams. Figure 4.19 shows the development of the feature selection curve from

11,000 top features to 13,000 top features in increments of 100 features. The peak is reached

at 12,200 top n-grams, which consequently are used for further experiments.

Table 4.17 shows the results for both Hong classifiers in comparison to Effingo results pre-

137

4 Finding Question and Answer Posts

10500 11000 11500 12000 12500 13000 13500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - With Training Filter

Top N Features

F
1

S
co

re

Figure 4.19: Development of F1 score for feature selection using the Answer classifier as proposed by
Hong & Davison (2009).

sented in the previous section.

Table 4.17: Comparison of Question and Answer Classification by Hong & Davison (2009) to the
Effingo results.

Accuracy Precision Recall F1 score

Hong & Davison (2009)

Question 0.40 0.40 1.0 0.57
Question on first posts 0.95 0.95 1.0 0.97
Answer 0.80 0.69 0.54 0.61
Other vs. Question 0.40 1.0 0.0008 0.002
Other vs. Question on first posts 0.95 1.0 0.02 0.04
Other vs. Answer 0.80 0.83 0.90 0.87

Effingo

Question 0.90 0.89 0.87 0.88
Answer 0.86 0.88 0.77 0.82
Other 0.83 0.52 0.69 0.59

The abysmal performance of the Hong features on our dataset might be caused by the ar-

tificial reduction of training items for the two classes of Questions and Answers. This is no-

ticeable especially for Questions. Since only first post contributions are used for training and

since almost all first post contributions are Questions, the classifier has a large bias towards

Questions. Therefore, it classifies nearly everything as a Question. This is not absolutely fair

since it was never intended to classify anything but first position posts by Hong & Davison

(2009). For comparison we tried the same classifier only on first post contributions. The

138

4.4 Experiments

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - With Training Filter

C

F
1

S
co

re

3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - Without Training Filter

C

F
1

S
co

re

0 50000 100000 150000 200000 250000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - Without Training Filter

Top N Features

F
1

S
co

re

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - With Training Filter

Top N Features

F
1

S
co

re

Figure 4.20: F1 score of different Information Gain cutoff points for Hong & Davison’s (2009) Answer
classifier without using the filtering as applied by Hong & Davison (2009).

results—also provided by Table 4.17—do ameliorate little, although not significantly. Recall

for Other contributions is still very bad, because the classifier predicts nearly everything to

be a Question. We therefore conclude that this artificial filtering of posts for Answers as well

as for Questions is not beneficial to the classification results since it reduces the training set

size and especially its variance drastically. Therefore, we repeatedly conducted the same

experiments, but left out the training filter explained in the beginning of this section.

The Question classifier manifests a similar behavior without training filter. No value of C

and no n-gram feature set size has any influence on the classifier’s performance. However,

the performance is constantly above 40% by a small amount. Thus again we will use a

regularization parameter of 0.03125 and include all n-grams.

The parameter search for the Answer classifier without training filter reaches its maximum

very early as displayed in Figure 4.20. It only shows a zoom into the first few runs. After

these runs the curve is a straight line at F1 score of 0.75. Its maximum is reached at 1.0, which

basically means the optimum regularization parameter effects no regularization at all.

The feature selection curve in Figure 4.21 shows feature selection for all the 240,000 Car-

valho n-grams. However, the maximum is also reached very early at approximately 30,000

features. From that point on, it only decreases. This means, only the top 30,000 n-grams

according to information gain scores from the benchmark dataset are helpful for Answer
classification, whereas the remaining 210,000 only confuse the classifier. Thus, these 30,000

features are applied to generate the final results on the complete dataset.

The final results using the parameters determined so far are shown in Table 4.18.

Omitting the training filter results in much better classification quality. The classification

of Question and Answer contributions is still not as good as the Effingo classifier. However,

139

4 Finding Question and Answer Posts
3.13E-02 3.13E+02 3.13E+06 3.13E+10 3.13E+14 3.13E+18 3.13E+22 3.13E+26

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - With Training Filter

C
F
1

S
co

re

0.03125 2.03125 4.03125 6.03125 8.03125 10.03125 12.03125 14.03125
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Parameter Search for C

Hong Answer Classifier - Without Training Filter

C

F
1

S
co

re
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Feature Selection

Hong Answer Classifier - With Training Filter

Top N Features

F
1

S
co

re

Figure 4.21: F1 score values dependent on the value of C–the regularization parameter for the (Hong
& Davison 2009) Answer classifier without filtering of contributions, like done by Hong
& Davison (2009).

Table 4.18: Comparison of Question and Answer Classification by Hong & Davison (2009) to the
Effingo results without filtering of contributions like done by Hong & Davison (2009).

Accuracy Precision Recall F1 score

Hong & Davison (2009)

Question 0.63 0.85 0.08 0.14
Answer 0.82 0.76 0.75 0.75
Other vs. Question 0.63 0.62 0.99 0.76
Other vs. Answer 0.82 0.86 0.87 0.86

Effingo

Question 0.90 0.89 0.87 0.88
Answer 0.86 0.88 0.77 0.82
Other 0.83 0.52 0.69 0.59

140

4.4 Experiments

they achieved much better results on the Other type using both classifiers. As shown at the

end of Section 4.4.4, this is probably a result of employing the two-class classifier approach

in contrast to the one three-class classifier approach preferred by Effingo. In comparison to

the Effingo two-class classifier presented in Table 4.15 and Table 4.16, the results for both

Other types are still worse, while the performance of both two-class classifiers for Questions
as well as for Answers is comparable.

4.4.6 Discussion

The results presented in Section 4.4.4 and the comparison in Section 4.4.5 illustrate that the

Effingo Question/Answer classifier is capable of finding Question/Answer contributions

from Web forums with high quality. Especially the classification quality for Question contri-

butions is quite high.

The low scores for the Other type indicate that many Other contributions are erroneously

categorized as Question or Answer. However, if we look at the errors in detail, it seems that

this is mostly due to ambiguities between whether a contribution is really of the Other type

or not. For example the following contribution was labeled as Description, so it actually

belongs to the Other type but was classified as Answer.

you both are right in different ways: There will be an upgrade path to

mySAP ERP, but there will be no way to run R/3 Enterprise 4.7 on WebAS 6.40.

Or to make it more easy:

R/3 Enterprise runs on WebAS 6.20 mySAP ERP runs on WebAS 6.40

Regards,

Benny

One could, however, argue that the label is wrong and this contribution is no Description
but an Answer and thus the classifier was correct.

The classifier also seems to have problems with very short contributions consisting of one or

two words. Such contributions seem to cause confusion quite easily. They usually require

the context of another contribution they are referring to which the classifier does currently

not use.

Answers are often wrongly classified if they contain first-person personal pronouns. Such

Answers do not fulfill the expectations that Answers usually refer to the asking user em-

ploying second-person pronouns such as ‘you’. This often happens if the answering user

provides an example explaining how the problem is solved in their case.

Another problem is the occurrence of code blocks, which is quite common in the examined

forums. Features dependent on natural language processing such as the lexical n-grams fail

on such texts.

141

4 Finding Question and Answer Posts

Some of the strongest evidence for a Question is the position of the post in the thread and

its author’s activity. The classifier easily confuses Questions not located in the beginning

of the thread or Questions by very active users. This is well illustrated by Figure 4.14 and

Figure 4.15.

The comparison to the results achieved by Hong & Davison (2009) shows that the Effingo

classifier is better suited for the complete dataset presented in this work. This, however,

does not rule out that Hong & Davison’s (2009) algorithm was better suited for the dataset

used in their work. The experiments however showed that their classifier is probably not

generalizable to all Web forums.

4.5 Conclusion

This chapter started with an overview of automatic question answering for the generic case

and also for approaches with a focus on Web forums.

We showed that classic question answering is not sufficient to find Questions and Answers
in a Web forum and that approaches focused on forums still have some severe drawbacks.

Most important are the assumptions as to which contributions may be Questions, that each

Question may only have one Answer and the complete ignorance of a question’s context.

Furthermore, existing approaches only used very small datasets not openly available.

Based on existing work we developed a typology of forum contributions and showed sev-

eral features of the different contribution types. The features focus mainly on Question and

Answer identification, which are the contributions most easily distinguished from the Other
types as our inter-annotator agreement analysis shows. We also presented a means to se-

lect the most significant features from all proposed ones and, finally, used those features to

evaluate different classifiers on our manually labeled dataset. For that purpose we used a

smaller benchmark dataset to choose the best classifier and examined the parameter space

for that classifier in more detail.

The results on our complete dataset of 10,021 contributions from the SAP Developer Net-

work and the Oracle Developer Network show that it is possible to achieve usable results

with the proposed approach. It might be possible to improve the classification by means

of another or an extended selection of features. However, such a selection requires care-

ful consideration since each feature could also decrease the classification accuracy already

achieved. So instead of applying additional features, fixes and improvements on the existing

features might be a next step to take. The POS tagger for the lexical n-grams, for example,

currently works on the brown corpus tag set. A tagger trained specifically for forum data

might produce more reliable results. Also, the question tagger and the imperative tagger are

very basic implementations applying simple rules. More elaborate implementations could

provide improved values for these features and might be able to improve extraction quality.

Different types of sentences are, for example possible, to detect applying supervised learn-

ing as well. Techniques such as Hidden Markov Models are possible proposals for such

142

4.5 Conclusion

algorithms.

We tried to setup all experiments in such a way as to avoid any overfitting. All parameters

are set using the benchmark dataset and the labels for the final evaluation are provided by a

student annotator who was not involved in the creation of the classifier and its evaluation.

Thus, we believe that the results are applicable at least to other forums which show a similar

behavior to the SDN and the ODN. Such forums include question-focused forums, which

usually present one question per thread. Among them are probably Question/Answer fo-

rums such as the network provided by StackExchange12

Finally, we also showed Effingo’s behavior in comparison to one of the most recent related

approaches. The results indicate that the related approach developed by Hong & Davison

(2009) is inferior with regard to the presented dataset. We were, however, able to raise its

results to comparable values with a few small adaptations that alleviated the constraints

Hong & Davison (2009) applied during their research.

Finally, we provided a discussion of the most obvious and common error cases we encoun-

tered during the final analysis of the classification results. These observations can serve as

the foundation for future research.

12http://stackexchange.com/

143

http://stackexchange.com/

5 Example Applications

After the previous two chapters have shown how to extract forum posts from the Web and

how to find question and answer contributions, this chapter finally presents an overview

of applications for the crawled and classified forum contributions. The chapter is separated

into two parts.

The first part is an application for question aggregation, as explained in Section 1.3, with a

discussion of how to achieve this task. In the discussion a semantic approach for the task of

finding near-duplicate questions is compared to a syntactic one.

The second part of the chapter explains several other applications which are possible to

build upon the Effingo system as presented in Section 1.3.1.

5.1 Near-Duplicate Question Aggregation

Finding near-duplicate questions is an application of text topic detection. Current algo-

rithms for topic detection however mostly ignore semantic similarities for simpler syntactic

ways of matching similar questions as the following paragraphs show. Syntax in this context

refers to matching word occurrences in two near-duplicate question candidates, possibly

modified by some scoring of the word’s importance for the question. In contrast, seman-

tic similarities are relations between words as well as semantic connections like synonymy

and hypernymy. We assume that such relations are important to find near-duplicate ques-

tions with the same content phrased by different people, who might not even be aware of

each other. For this reason, a semantic topic detection approach on Web forum questions

is presented in the following sections. The approach considers semantic relations using the

generic knowledge base provided by Miller (1995). The proposed approach finds questions

with near-duplicate content to a query question. That way, near-duplicate questions are

easily grouped and, in a condensed way, shown to users with a similar question.

The contribution of this section is the examination of shallow semantic topic detection on

question posts from Web forums using questions from different forums. It also includes a

detailed discussion of the possible results. In addition, a comparison to naïve implemen-

tations and a state-of-the-art approach is provided. The results were created during the

supervision and as part of the diploma thesis of Christian Hensel (Hensel 2013).

145

5 Example Applications

5.1.1 Topic Detection

The area of Topic Detection was established with the Topic Detection and Tracking (TDT)

conferences by Allan, Carbonell, Doddington, Yamron & Yang (1998). Topic Detection finds

topic groups in a collection of news stories and assigns them to the correct group.

Stories are clearly marked pieces of text as short as a single paragraph, such as a forum post,

or as long as a complete text, such as can be found on a Web page. A story is defined as A
Seminal event or activity along with all directly related events and activities. Allan et al. (1998) de-

scribe the research problems of Story Segmentation, First Story Detection, Cluster Detection,

Tracking and Story Link Detection. Allan et al.’s (1998) research focuses on transliterations

of television news shows. Since a forum is—in contrast to such a transliteration—no con-

tinuous stream of text with hidden stories occurring one after another, Story Segmentation,

First Story Detection and Tracking are not relevant for this work. It rather focusses on Clus-

ter Detection and Story Link Detection. In addition, Allan’s definition of a topic does not

fit the problem of question aggregation well since it requires an event or activity. Our def-

inition for questions, formulated by Definition 5, in contrast requires a forum user with an

Information Need.

The publications of TDT propose probabilistic and vector space-based approaches for topic

detection on news stories from the TDT2 corpus.

The probabilistic approach models each topic as a language model, such as a Hidden

Markov Model used by Leek, Schwartz & Sista (2002), or uses simple unigram models as

developed by Yang & Ng (2008) and Yamron, Gillick, van Mulbregt & Knecht (2002). These

approaches generalize well to all texts and are even language-independent. With regard to

news stories the approach proposed by Leek et al. (2002) achieves only mediocre results.

However, with their precision of 53% and a recall of 67% for the cluster detection task, their

Hidden Markov Model approach performs better than the ones proposed by Yang & Ng

(2008) and Yamron et al. (2002).

In contrast to the probabilistic approach, the vector space approach models topics and news

stories as vector from the vector space of all words. Vector space approaches are discussed

in Yang & Ng (2008), Franz, McCarley, Ward & Zhu (1999), Eichmann & Srinivasan (2002),

Levow & Oard (2002), Allan, Lavrenko & Swan (2002), (Schultz & Liberman 2002) and Chen

& Ku (2002). Both approaches were only tested on news topics using an edited and limited

vocabulary.

Topic detection for online discussions is examined for example by Tang (2008). She builds

graph structures by matching keywords. By means of these keyword graphs her approach

is capable of clustering the blogosphere, online discussion boards or similar Web 2.0 appli-

cations into topics. However, the detected topics only build an overview of hot topics and

are not associated to groups of similar questions. Bengel, Gauch, Mittur & Rajan (2004) use

a set of predefined concepts and a keyword index for each concept to categorize chat mes-

sages into hot topics similar to Tang. Even though such messages show similar properties

146

5.1 Near-Duplicate Question Aggregation

as forum posts, such short utterances are not the focus of this work.

Work on Semantic Topic Detection was introduced, for example, by Wang, Huang, Guo &

Li (2009). They extract terms from research papers, considering synonyms and hypernyms

using data collected from WordNet. This approach demonstrates that a semantic topic de-

tection approach is able to achieve high-quality results on research papers. The approach

presented in this section will build on some of these ideas but add word co-occurrences and

show performance on Web forums.

Topic Detection in Web forums was examined by Wu & Li (2007), Xu & Ma (2006) and Yang

& Ng (2008). However, these algorithms only consider forum pages or whole threads—not

question contributions—as stories.

5.1.2 Question Aggregation

The goal of the algorithm proposed in the following sections is to assign similarity scores to

question contribution pairs such as the following pair of questions:

I can add nodes to my JTree, but after expand-
ing a node, I can not add any child nodes
to that node, or at least they dont show on
the screen? Actually I can use the .add(new
DefaultMutableTreeNode("Label")); to add a
node to a parent node, but the new child node
doesn’t show on the display of the JTree? I am
having trouble displaying a JTree with newly
added nodes.
 ...

Using the same exact routine as above - I add
additional new children to the root, the new
children do not display in the Jtree. ...

Our semantic similarity detection approach starts with a training phase using a large corpus

of questions. The initial step is to calculate a co-occurrence matrix for terms occurring to-

gether in the same question. In order to reduce the amount of relevant terms, each question

is preprocessed with a stemmer and a stop word filter. Repeated co-occurrences are counted

multiple times. The absolute frequencies of each word pair are added to the corresponding

field in the co-occurrence matrix. The matrix is a representation of typical word relations

and provides the input for the similarity calculation of two questions. The similarity calcu-

lation considers two factors. The next paragraphs present a formalized notation of both. An

example will be provided afterwards for improved understanding.

The first factor is the relation of matching term co-occurrences from both questions. At

first, an importance measure i is calculated for each co-occurrence based on the value in the

co-occurrence matrix M according to Equation 5.1. The importance value of i for a term

co-occurrence c and a question Q refers to the absolute co-occurrence frequency of both co-

occurring terms c(1) and c(2) normalized by the maximum absolute frequency for any two

147

5 Example Applications

terms in Q.

i(c,Q) =
Mc(1),c(2)

max(MQ)
(5.1)

The result of i is high for co-occurrences which are frequent in the training set and low

for infrequent ones. That way, all co-occurrences are ranked in order of importance for a

question with values ranging from 0 to 1.

The similarity score consists of an aggregated relation score for all co-occurrences from both

questions. This relation score is calculated for one pair of co-occurrences using Equation 5.2.

It builds the ratio of the smaller importance value to the larger one. That way, the domain

of rel is (0, 1]. For important co-occurrences, according to the co-occurrence matrix M , rel

takes on higher values than for unimportant ones.

rel(i1, i2) =


i1
i2
, if i1 < i2

i2
i1
, otherwise

(5.2)

Equation 5.2 is only applicable for two co-occurrences with the same terms. This means that

both terms c(1) and c(2) must be equal for both co-occurrences with importance values i1
and i2 to make them comparable. However, as already mentioned the relations between

terms are more complex on a semantic level. That is why a second, diminishing factor is

added for co-occurrences with terms having a similar meaning. This factor results from se-

mantic similarities between the terms of two co-occurrences according to the word database

WordNet developed by Miller (1995). Current research provides different similarity mea-

sures based on word relations from WordNet. There are for example approaches developed

by Wu & Palmer (1994), Lin (1998), Resnik (1995) and Leacock & Chodorow (1998). Since

the approach by Lin (1998) has proved to produce high quality measures, it will be used as

a function called lin. Its domain is defined as a value of 1 for equal words and a value close

to 0 for rather unrelated words. There are four possible relations between the four words

from two co-occurrences shown in Figure 5.1. Since lin is defined over two words, and not

c
1
(1)

c
1
(2)

c
2
(1)

c
2
(2)

Figure 5.1: Possible relations between the words of two co-occurrences.

on co-occurrences, lin is calculated as the average of all four possible relations for our pur-

poses. Since lin never reaches 0, a threshold is defined to filter out all similarities below a

certain value. All values of lin below this threshold are set to 0. These two factors result in

Equation 5.3 which calculates the similarity between two questions Q1 and Q2 as the sum of

148

5.1 Near-Duplicate Question Aggregation

Table 5.1: Co-occurrence matrix and importance values i for Q1 and Q2.
awt concept component swing understand comprehend

awt 9 3 2 3 1 3
Q1 (2/6) (3/6) (3/6)
Q2 (1/7) (2/7) (3/7) (1/7)
concept 3 18 3 7 2 8
Q1

Q2 (2/7) (7/7) (2/7)
component 2 3 13 6 4 1
Q1 (6/6) (1/6)
Q2 (6/7) (4/7)
swing 3 7 6 19 4 1
Q1 (1/6)
Q2 (4/7)
understand 1 2 4 4 11 1
comprehend 3 8 1 1 1 12

the two presented factors over all co-occurrences from Q1 and Q2.

sim(Q1, Q2) =

∑
c1∈Q1

∑
c2∈Q2

(rel(i(c1, Q1), i(c2, Q2)) · lin(c1, c2))

|Q1| · |Q2|
(5.3)

Equation 5.3 also contains a factor normalizing the result with the product of the lengths of

the two questions.

For an example consider the following two term sets, resulting from two questions after stop

word filtering and stemming:

Q1: awt, swing, concept, awt Q2: concept, awt, swing, component

Also consider the co-occurrence matrix presented by Table 5.1. The matrix presents the co-

occurrences (the integer numbers) in the first line of each cell. In order to simulate a larger

training set, some additional words not in Q1 or Q2 are shown as well (i.e. “understand”

and “comprehend”). In addition, the importance values i for each co-occurrence in each

query are shown in the second and third line of each cell, but only if co-occurrence applies.

This means the value in the first row, fourth line, results from the term “swing” occurring

three times together with “awt”, for instance. The most important co-occurrence for the

second question is “swing” and “component”, since among the co-occurrences from that

question it has the largest value in the co-occurrence matrix. Thus, all other values are

normalized with 6 and the importance of “swing” and “awt” for question two computes to

3/6. Populating Equation 5.3 with these values results in Equation 5.4.

sim(Q1, Q2) =

(
2/7
2/6 + 3/7

3/6 + 2/6
2/7

)
· 1.0 +

(
1/7
3/6 + 1/6

4/7 + 1/6
4/7

)
· 0.9

4 · 5
= 0.183154762

(5.4)

149

5 Example Applications

5.1.3 Evaluation

This section provides details on the performance of the similarity detection algorithm pre-

sented in the previous section. It focuses on two areas. First, it explores the influence of the

threshold value for the semantic similarity as proposed in the previous section and second,

it compares the results generated by the similarity measure to human assessments.

Dataset

Near-duplicate questions are very sparse among arbitrary sets of Web forum contributions.

This makes it hard to evaluate any near-duplicate question detection approach. Never-

theless, in order to test the performance of the approach presented in Section 5.1.2, a new

dataset was generated and enriched with duplicates. The dataset consists of 315 question

posts with a shared domain, namely Java programming. We started with a collection of 15

seed questions and added near-duplicates using Google and diverse forum search engines.

We also added non near-duplicates from the same forums just including the most recent

threads. As most recent threads we used the threads displayed on top of the first list-of-

thread page from each forum. That way, we created 15 sets of 20 posts for each seed ques-

tion, totaling 315 posts (each group consisting of the seed question and 15 near-duplicates

as well as non near-duplicates).

Three human annotators evaluated each of the 15 sets and created a ranking of how sim-

ilar to the seed question they thought each question to be. Furthermore, they were asked

to mark a question if they thought it was a near-duplicate. This gold standard was used

for all further evaluations presented in this section. General agreement between the human

annotators was quite good. All annotators recognized nearly all near-duplicate questions

and ordered them at the top of the list. However, even though relative positions of posts

were assigned similarly by all annotators, the absolute order varied heavily. All annotators

tended to attribute shorter questions to higher ranks. In addition, long and complicated

near-duplicate questions with the actual question sentence at the end of a long descriptive

text were not recognized correctly. The evaluation results are calculated using each annota-

tor’s assessment separately, averaging the individual results to generate the final values.

Evaluation Measures

The results are evaluated based on the measures presented in Section 2.1.1. However, since

this is no classification task, they required some adaptation. For the purpose of measuring

the correctness of ranked lists precision, recall and F1 score are adapted as proposed by

Vaughan (2004).

Precision is calculated by means of the simplified Spearman coefficient according to Equa-

tion 5.5.

p = 1−
6 ·
∑

i[rg(xi)− rg(yi)]
2

n(n2 − 1)
(5.5)

150

5.1 Near-Duplicate Question Aggregation

The value of n refers to the amount of posts in the list and thus always equals 20 for our

evaluation. The result of rg(x) refers to the rank of the post x either in the gold standard or

as provided by the automatic system it is compared to. This automatic system, for example,

can be the algorithm presented in Section 5.1.2. The Spearman coefficient takes on values

between −1 for no agreement between the ranking from the gold standard and the human

labeler up to 1 for complete agreement.

Recall is calculated according to Vaughan (2004) by counting the correct results from the top

k results, with k being the amount of expected results. As a result recall is 1 if the top k are

the expected semantically similar questions and gradually decreases to 0 as fewer of the top

k results are relevant results.

F1 score is the known harmonic mean of precision and recall as proposed for MUC

(Grishman & Sundheim 1996).

Those three—precision, recall and F1 score—are used for the evaluation results presented in

the following sections.

Threshold Evaluation

As a first step we tried to find the optimal threshold for semantic similarity. A low thresh-

old would include terms rather distantly related in semantic terms, while a high thresh-

old would reduce the approach to a simple syntactic co-occurrence comparison. Figure 5.2

shows the development of the F1 score on our dataset with regard to different threshold val-

ues. The optimal value for our dataset is located, according to Figure 5.2, at approximately

0.74. This value will be employed for the following experiments.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Threshold for semantic similarity

F
1

sc
or

e

Figure 5.2: Development of F1 score for different thresholds.

The small hump around the maximum can be explained as follows: For very low thresholds,

words which have almost no relation are considered for similarity calculation. Words such

as “help” and “use” might occur by chance reducing result quality. At around 0.74 the lin

151

5 Example Applications

Table 5.2: Results for applying different algorithms to the evaluation dataset.
Spearman/Precision Recall F1 score

Semantic Baseline 0.133 0.497 0.210
Syntactic Baseline 0.589 0.790 0.675
Effingo 0.670 0.864 0.755
Lucene 0.667 0.867 0.754

algorithm returns only direct hypernyms and synonyms. These are the kinds of relations

which have a positive effect on the assessment of whether two questions are near-duplicates

or not. At around 0.75 the lin algorithm returns only synonyms and thus, the F1 score drops

again.

Results

The final results of the algorithm proposed for this work were compared to three other ap-

proaches: a semantic baseline, a syntactic baseline and a state-of-the-art syntactic algorithm.

The semantic baseline calculates semantic similarity between all words from Q1 to Q2 ac-

cording to Lin (1998) and sums them up.

In addition, two syntactic approaches were compared. The syntactic baseline is a simple

tf-idf approach. It creates two term vectors with tf-idf values for Q1 and Q2 and compares

them using their scalar product. This comparison is conducted for all pairs of two questions,

the first question being the seed question and the second being one of the 20 other questions

from the same group. The calculated scores are used to rank all questions with respect to

the seed question. The tf-idf values are calculated from the complete evaluation dataset

including training and test data.

As state-of-the-art syntactic algorithm we used a well established Information Retrieval

framework: Apache Lucene (Apache Lucene 2013). In this approach the 20 questions from

each group are indexed by Lucene. The Lucene index is queried using the seed question

and Lucene creates a ranking of all 20 questions according to the seed question.

Table 5.2 presents the results of those three approaches and the approach explained in this

work, namely Effingo.

As expected, the semantic and the syntactic baseline produce lower scores than the Effingo

and the Lucene approach. The baseline even resembles an equal distribution where all ques-

tions are randomly distributed over all 20 ranks. The expected recall for an equal distribu-

tion is 0.5 since the relevant documents in this case are equally distributed over the 20 ranks.

The Spearman coefficient for such a distribution is 0.135. The result according to Table 5.2 is

0.133, which indicates a rapport.

Both approaches, the semantic and the syntactic baseline, have the problem that long texts

tend to have a higher probability of containing many relevant terms with low scores. Such

long texts tend to swallow shorter ones and, thus, are usually ranked higher. The algorithm

in this case shows the same behavior as the human annotators, who tended to rank long

152

5.1 Near-Duplicate Question Aggregation

texts higher than short ones.

The syntactic Lucene algorithm’s results are similar to the results of the Effingo approach.

This may be due to the way the gold standard was created. Since a search engine was used

to find the near-duplicates in the first place, it is not surprising that another search engine

such as Lucene is capable of finding those texts again.

The Effingo approach was also capable of finding a significant portion of the relevant texts.

It identified 128 of the 150 near-duplicates correctly. False positives resulted from questions

with a similar length as the seed question, which were capable of moving weak true posi-

tives down below themselves. The false positives usually contain some low ranking similar

words which suffice to boost the similarity above the similarity achieved by some of the

weak true positives.

For high thresholds the Effingo approach reduces to a syntactic co-occurrence measure of

terms between questions. This occurs if the lin measure is below the threshold for all ex-

cept equal co-occurrences. The hump in Figure 5.2 occurs directly before this threshold is

reached. It is located at an F1 score of around 0.7. Since the F1 score drops after this thresh-

old, it seems that semantic relations do indeed have an influence on the quality of similarity

detection.

Another advantage of the Effingo approach over Lucene is that it returns a normalized score.

Lucene ranking scores are not comparable among different queries. The Effingo scores are

constant, no matter which questions are compared for a whole dataset. This is important as

soon as rankings must be merged or extended.

The Effingo approach still has some limitations which prevent it from finding all near-

duplicates. One is that WordNet is a generic knowledge base which knows nothing about

the target domain. On the one hand, this makes the approach domain-independent. On

the other hand, domain-dependent terms provide useful information, which consequently

is not taken into consideration with Effingo. Thus, instead of associating Java with a pro-

gramming language, it might relate it to coffee or the term “island”. Information about such

terms in the form of a structured knowledge base could solve or at least reduce the prob-

lem of long questions swallowing smaller ones. How can this be facilitated? A controlled

vocabulary in the form of a knowledge base could provide the terms used for semantic near-

duplicate detection and their meanings. That way, the term Java would not be associated

with an “island” or coffee but only with a programming language in a programming fo-

rum. In addition, the amount of terms would be drastically reduced and, since not every

random word would be matched, random matches from long texts would no longer occur.

The problem with this approach is the cost associated with the creation of such a knowledge

base for each domain. There is a large research area regarding this topic which is not part of

this thesis.

153

5 Example Applications

5.1.4 Summary

This section explained an approach to find semantic near-duplicate questions from social

media sites. It is based on the idea that co-occurrences of words are important to iden-

tify two differently phrased questions with the same content. In addition, it incorporates

the knowledge base WordNet to identify similarities between semantically correspondent

terms.

The section shows that the approach allows for better results than a semantic and a syn-

tactic baseline and reaches the performance of current state-of-the-art information retrieval

systems, measured by means of established scores.

It is still uncertain whether the results of the state-of-the-art algorithm and the Effingo al-

gorithm would find the same results or whether the union of the result sets would create a

higher quality ranking. If the overlap between both was smaller than one, it would be pos-

sible to take the correct results from both algorithms and combine them to an aggregated

correcter result. First impressions from the result set suggest that the overlap is not one,

which means there are unique true positives only detected by one of both algorithms. In

future work the overlap of the Effingo algorithm and the state-of-the-art syntactic algorithm

needs to be examined and a a method combining both has to be developed thus fully ex-

ploiting the advantages of both approaches with the aim to create better results than one

single algorithm alone.

The goal is to create a system which is capable of aggregating questions from all over the

Web, thus providing users with an overview on a question and its answers.

Additionally, a better gold standard could facilitate differentiation between the semantic and

the syntactic approaches. The dataset should contain near-duplicate pairs with fewer com-

mon words. However, the creation of such a gold standard requires a manual comparison

of huge amounts of question pairs to find the sparse set of semantic duplicates.

Finally, the problem of long texts swallowing short ones still persists. This is hard to solve

without the use of a knowledge base. However, it might be possible to split up contributions

into paragraphs and sentences and compare them sentencewise, thus reducing the amount

of text compared against each other. It would then be possible to create an aggregated score

from the sentence and paragraph scores.

5.2 Other Applications

The following section presents additional applications which could be built on top of the

Effingo system. Each application is motivated by a different scenario shown in Table 5.3,

and each application is important for a different set of stakeholders. The following section

introduces the stakeholders and then presents six possible applications. They are summa-

rized in Table 5.3.

154

5.2 Other Applications

Table 5.3: Possible Effingo applications
Functionality Beneficiary Scenario Application
Answer Provider Member “Before I ask...

maybe there’s
already an answer?”

Tool to suggest
existing answers to
new threads.

Moderator
Operator

Subforum Advisor Member
“Should post be into
this forum?”

Tool to detect
content in wrong
forum.

Moderator
Operator

Thread Recommender Member “Nice thread. Any
others like it
around?”

Tool to show related
threads.

Expert Assistant Expert “Which thread is
most urgent to
answer?”

Tool to detect most
pressing questions.

Moderator
Operator

Spam Detector Member
“Are there spam
threads to delete?”

Tool to detect spam
threads and show to
moderators.

Moderator
Operator

5.2.1 Stakeholders

Many people produce and consume content on Web forums. Others care for the correct

operation and earn money with running forums. Each of them takes up one of the four roles

presented by the following list:

Member

Forum members are typical registered users who pose questions to the forum community.

The average member typically provides no answers. They found the forum via Google or a

link on some support page, pose their question, read the answer and probably never return.

Expert

Experts are forum members who tend to answer many questions. They usually have some

deeper understanding of the topics discussed in the forum and can identify topic duplicates

with their inherent knowledge. They are also a valuable asset for answering new and com-

plicated questions. Therefore, they should be shielded from trivial questions or questions

already answered several times before.

Moderator

Moderators are people responsible for keeping the quality of forum discussions. They can

close completed or hijacked topics, delete unwanted contributions and move contributions

and threads to the correct place. In some forums, experts get the right to carry out this job.

In other, mostly commercial forums, paid workers moderate the forum content.

155

5 Example Applications

Operator

Operators are people or companies running a forum. They own the forum, provide the

hard- and software needed, pay the moderators and sometimes even the experts, and are

responsible with regard to legal issues.

5.2.2 Applications

The Effingo system, as described in Section 1.3.1, is applicable to realize different systems.

Those applications are presented in the following paragraphs. They are intended as prospect

for further development of the system.

Answer Provider

When people use a forum they usually search answers, opinions or want to read about some

event or topic. If they cannot find threads covering their intention they start creating new

ones. In order to find threads they use either the forum’s search engine or a global one.

Such search engines usually take a list of key words and match that list against an inverted

index. All threads containing these keywords are shown as results ordered by the number of

keywords they contain. Threads matching the searchers question but not containing these

keywords are not shown. Thus, if someone used a different vocabulary to describe the same

problem, that search engine can not provide the answer.

In contrast to the keyword-based query formulation provided by search engines, users pro-

vide much more information upon writing a new question. During this step they describe

their problem in whole sentences in a way other people can understand. Therefore, a tool

could be created that analyses the new question before it is converted to a new thread and

propose existing questions on the topic. If the users find a solution they do not need to

create a new thread with their question and thus, a new near-duplicate has been avoided.

If they find no solution they can still create a new thread from their already entered ques-

tion. Similar tools are already used on https://launchpad.net/, http://digg.com/ and

http://stackexchange.com. An example for the Stackexchange Network is shown in Fig-

ure 5.3.

Subforum Advisor

Many forums, such as https://forums.oracle.com/forums contain a large list of subfo-

rums for several topic areas. This is helpful to structure the information but often also con-

fuses new users. Since they do not know were to post their question they just post where it

seems appropriate, often in the wrong place. It is the moderators’ job to move such threads

to the correct place. Currently this is hard manual work. One could imagine a tool that

calculates the similarity between all threads and tells moderators which threads might be

156

https://launchpad.net/
http://digg.com/
http://stackexchange.com
https://forums.oracle.com/forums

5.2 Other Applications

Figure 5.3: Example for an Answer Provider on the Stackoverflow Forum

157

5 Example Applications

in the wrong place or a tool that tells users which subforum their thread belongs to. If its

precision is high enough, it might even insert threads automatically to the correct subforum.

Extrapolating from this idea, it would be possible to generate a list of subforums dynami-

cally from the user-generated content. This list could evolve and thus represent the users’

understanding of the forum’s content in contrast to the limited understanding of the opera-

tors or moderators.

Thread Recommender

Often, a user finds an interesting discussion and wants to know what else is discussed about

this topic. Some forums, such as http://social.msdn.microsoft.com/Forums/, or those

run on the phpBB forum software provide a basic implementation of this feature. Both

implementations use keyword queries1 to retrieve threads containing similar words and

show them as similar thread proposals to the user.

Expert Assistant

A forum might contain questions that repeatedly occur but never receive an answer. Such

questions might be too complex or not of interest to the people knowing the answer. Usually

it is, however, in the interest of the forum community to solve such pressing questions. This

increases the community of happy forum users who might provide answers in the future. It

also extends the forum’s shared knowledge.

However, experts should not waste time answering questions that were already answered in

other threads. By detecting and grouping similar questions it is easier to find groups which

never recieved an answer and those already having multiple answers in another thread.

Thus, it is easy to point expert users to groups of the first kind and keep them away from

groups of the second kind.

Spam Detector

Sometimes users post their questions multiple times to heighten their visibility. It is usually

possible to find such duplicates with existing techniques, but it becomes more complicated

if one such near-duplicate thread actually gets an answer or is modified by its creator. In

this case, the changed thread is not equal to the other near-duplicates anymore and thus is

harder to find. Large forums have moderator teams to remove such posts, but they might

miss occurrences, they are expensive and therefore better employed for more important

work and might not be available for smaller forums. By detecting near-duplicate questions

automatically one can move them together and possibly even send a warning to the creator

to discourage such behavior. Alternatively, the system could send a warning to a moder-

ator, who can delete the spam threads and warn the spamming user to prevent him from

1https://www.phpbb.com/customise/db/mod/precise_similar_topics_ii/

158

http://social.msdn.microsoft.com/Forums/
https://www.phpbb.com/customise/db/mod/precise_similar_topics_ii/

5.3 Summary

continuing the spamming.

5.3 Summary

This chapter shows several possible applications for the concepts presented in this thesis.

Some of those applications already exist in rudimentary forms on today’s web forums. All

of them can be realized based on the approach presented in Section 1.3.1.

This shows that the algorithms and methods presented in the previous chapters are of prac-

tical relevance.

159

6 Conclusion

To this point the thesis has developed the foundations for a question answering system

based on Web forum discussions.

This chapter starts with a brief summary of the most important results of the work. It pro-

vides an overview about the thesis’s contribution to the research community. Thereafter, it

explains further steps to build on the thesis and expand its results to an integrated working

solution.

The three main contributions this thesis provides to the research community are:

- An approach to find user discussions on the Web and to extract the relevant data for

automatic question answering from these discussions automatically;

- A classifier to separate user contributions into questions, answers and other contribu-

tions;

- A large dataset of manually annotated contributions to measure and evaluate the clas-

sifier and to be used as baseline for future works, with a similar approach.

6.1 Summary

This thesis presented an approach to collect user contributions from Web forums and to

classify these contributions into questions, answers and other contributions.

Collecting contributions and classifying those contributions are the first two steps necessary

to realize a question/answer system based on questions and corresponding answers explic-

itly formulated by human beings for human beings. Such a system, called Effingo, was

presented in the introductory chapter in Section 1.3.1. Effingo is a proposal for a system to

help manage and reduce the information overload a user is presented with when searching

for answers on the World Wide Web, using online discussions such as those prevalent in

Web forums as a knowledge base.

Research Theses

Two research thesis have been derived from the description of the Effingo system.

Thesis 1 The first states that user contributions all over the Web follow a similar structure

and thus, it is possible to crawl and extract them automatically. While we were using dif-

ferent kinds of Web forums it became clear that this statement is at least true with regard to

161

6 Conclusion

visual evidence. The look and feel of most forums is similar and a human user who is capa-

ble of using one forum usually feels at home in another one pretty fast. However, automatic

systems have a much harder time finding these structural similarities. Thus, nowadays

data is usually collected by handcrafted wrappers. These wrappers require maintenance.

First, each time a Web page changes the wrapper must adapt and second, adding new Web

pages requires a partly or complete rewrite of the wrapper. Both tasks are tedious, unexcit-

ing and expensive manual work. Improvements are possible by applying semi-supervised

approaches. The approach presented in Chapter 3 is intended to go one step further and

examine the possibilities of collecting forum data fully automatically. Two research ques-

tions are asked to guide our research in that area. The first asks how forum content can be

identified among all the content on the Web. The second asks for a common schema among

forum posts from different Web forums. With answers to both questions it is possible to

crawl for forum posts and to extract those posts to a single database.

Thesis 2 Thesis two asserts that user contributions contain questions, answers and other

content and that it is possible to separate all three from each other. Only by identifying

questions as opposed to answers are we able to build a question/answer system based on

user formulated questions and answers. A supervised classifier ordering forum contribu-

tions into these three types was presented in Chapter 4.

The Main Di�erence to Existing Question Answering

Existing question/answer systems usually try to formulate an answer based on a query en-

tered by a user and the facts it knows about this query. That way, so called factual questions

are easy to answer. It is however still not possible to answer problem oriented questions

automatically by means of a knowledge base with a collection of facts. Since problem ori-

ented questions require longer explanations, a human is necessary to formulate the answers.

The advantage of Effingo is the usage of the readily available questions and answers formu-

lated by forum users. Thus, the Effingo system does not need to understand the question

and create an answer from the facts it knows. It only needs to find a question matching

the user’s query question and show the answer belonging to the question. An approach

on how to match such topical near-duplicate questions was presented in Chapter 5. Since

problem oriented questions that exceed simple fact questions are hard to answer by an au-

tomatic system, this approach extends the possible range of questions computer systems

can answer with support of the crowd. A crowd-based question/answer system, such as

Effingo, can have a much higher topic coverage than a traditional system working on a fact

knowledge base. Chapter 5 also provided an overview of possible applications with regard

to this concept.

162

6.1 Summary

6.1.1 Focused Forum Crawling and Extraction

Our research in Chapter 3 rendered answers to research questions one and two. It provides

a feature set to identify Web forums among other Web pages and even offered a second

feature set to identify the content pages from among those pages belonging to a Web forum.

Our main research contribution for the first two steps are the feature sets developed and

evaluated to create successful classifiers.

It also answered research question two by a detailed analysis of different Web forums and

demonstrated that the common schema consists of only three entities. Finally, an approach

to extract those entities fully automatically was discussed. The workflow regarding the

retrieval of relevant forum pages on the Web to extracted data was structured into three

distinct steps.

Step 1: Focused Forum Crawler

The focused forum crawler and extractor presented in this thesis was structured into three

parts. At first we examined crawling and developed a classifier for forum pages. This

crawler works like a normal Web crawler but includes a filter for non-forum pages. This

filter only passes forum pages to the crawlers index and rejects all pages that are classified

as non forum pages.

The crawler was examined on a dataset of pages from diverse forums, mixed with ran-

domly chosen non-forum pages. Overall, the best classifier—Random Forest—achieved an

accuracy of 95%.

Step 2: Forum Page Classi�er

There are five types of Web forum pages. During the analyses in Chapter 3 we found that

only post-of-thread pages contain valuable information and thus created a second classifier

for identifying the post-of-thread pages. Post-of-thread pages are those pages containing the

actual contributions. The forum page classifier was evaluated on a selection of pages created

by different forum systems. Our classifier only achieved an F1 score of 65% for classifying

these forum pages into all five identified page classes. However, the classifier was able to

distinguish post-of-thread pages with high accuracy.

Simplifying Steps 1 and 2 in Future Work

In a not yet developed advanced approach we would combine the focused crawler and the

page classifier to one step. This would result in a crawler with a filter passing only post-of-

thread pages to the index and rejecting all other pages, even if they are from a Web forum.

On the one hand, such a classifier needs to find a much smaller set on a much wider domain

(post-of-thread pages among all Web pages), so classification accuracy could be expected to

163

6 Conclusion

drop. On the other hand, the classifier only needs to find differences between two classes

(post-of-thread vs. non post-of-thread), which might again increase accuracy.

The existing classifiers for forum pages and entities could be further analyzed by means of

similar approaches as presented for the contribution type classifier in Chapter 4. Learning

curves and feature selection could show whether it is necessary to remove any features or

to add new ones to improve their performance.

Step 3: Post-Of-Thread Page Information Extraction

The final step was the extraction step. This step takes a set of post-of-thread pages as input

and outputs the raw data extracted from those pages. The first step to a solution for such

an algorithm was to answer research question two and find a common schema for Web forum

posts. It turned out that the only constant fields for all Web forum posts are the publication
date, the author’s username and the body text. Consequently, the extraction approach focused

on these three entities. Our algorithm’s goal was to find extraction patterns for entities oc-

curring in all posts from the same forum and to classify these extraction patterns in order to

find out which pattern points to which of the target entities. The approach we presented in

Sections 3.9, 3.10 and 3.11, requires a certain amount of example pages per forum to learn

the extraction patterns from. Since it is possible to create such a set of example pages au-

tomatically, the system works fully automatically. The simplest approach for the collection

of example pages is to wait until the crawler has added a certain amount of post-of-thread

pages from the same domain. The data extractor would begin creating its extraction patterns

as soon as that amount is collected. This approach assumes that only one forum is operated

under each domain. Since this is not always the case, a more sophisticated approach might

consider similarities in sub-domains and URL paths as well.

For the extraction of the most important part of a forum post—the body—the system

achieved 92% accuracy while it still passed the 80% for the other two entity types.

An important problem addressed by the approach regards scattered threads. Scattered

threads are threads that have so many posts that the forum template engine decided to

split the thread into two or more pages. While many existing multi-purpose data extraction

approaches, extract data from only one Web page, our approach finds the thread identifier

and links scattered threads back together.

Di�erences to Related Work

Altogether Chapter 3 provided concepts for all the steps necessary to create a fully automatic

forum post retrieval and extraction system. Our extractor is not only able to find the data

entries on a Web page like existing automatic data extraction approaches, it is also able to

find and assign a meaning to the top three data entities.

The chapter also provided evidence for the truth of thesis one. However, it is restricted evi-

dence since our approaches are unable to achieve 100% accuracy. One the one hand, a fully

164

6.1 Summary

automatic approach based on statistical classifiers will never reach 100% accuracy. On the

other hand, since the markup used for Web forums is very diverse, it is impossible to deter-

mine rules or a complete semantic description for all Web forums that would allow to extract

them with absolute certainty. Thus, the statistical approach is a very reasonable compromise

between engineering complexity and result quality. If the Semantic Web achieved broader

coverage in the future and forum posts would be annotated with a unique semantic tag, an

easier approach with higher accuracy would become possible. Until then, the current fully

automatic approach can be used in addition to the existing manual approaches. In such a

scenario the automatic retriever and extractor would be used as fall-back solution for pages

which are unknown by the manually created wrappers.

6.1.2 Classi�cation of Forum Contributions

In order to prove or disprove thesis two, a forum contribution classifier has been described

in Chapter 4. Similar to the classifiers developed for forum post retrieval and extraction, no

new classification algorithms were developed for contribution type classification.

Classi�cation Results

The classifier achieves good results when trying to find question and answer contributions.

Other contributions, however, are often wrongly classified as questions and answers. We

divided these other contributions into additional classes. With regard to these additional

classes it is evident that some are very close to questions and answers and thus pose a

challenge to the classifier. However, in a real application a human would probably accept

them as questions and answers and thus not recognize the error. With our question/answer

classifier we were able to prove thesis two and answer research questions three and four. Just

as for the page classifiers and entity classifier, improvement is possible. Since the classifier

is a statistical approach and works on complex data not even clear to humans, it does not

achieve 100% classification quality.

Baseline Comparison

We also compared our approach to the most recent similar approach from Hong & Davison

(2009). As a result, Hong performs better for some special restricted cases but in general

shows a worse performance. It however was able to achieve a higher F1 score on contribu-

tions belonging to the Other type.

Research Contribution

Our research contribution in this area is the feature set and the careful analysis of the clas-

sifier created from this new and extended feature set and its comparison to existing ap-

proaches. This carefully crafted and explained feature set based on our observations on real

165

6 Conclusion

forum data. It was derived from existing work and extended with additional or adapted

features. Different classifiers and feature combinations were examined and limitations of

the classifier were shown by means of established and widely applied techniques from the

machine learning community.

6.1.3 Dataset for Forum Contribution Types

For feature engineering as well as for the contribution type classifier’s evaluation a dataset

was developed as part of this thesis. The dataset consists of content from two forums stem-

ming from the same domain. Approximately 10,000 contributions were manually and care-

fully annotated by a human labeler.

The dataset features question and answer labels and divides all other contributions into

seven distinct labels. This results into 10,000 contributions labeled with nine different la-

bels. The labels are the result of careful observation on approximately 1,000 benchmark

contributions. These 1,000 benchmark contributions form a benchmark dataset.

Calculation of Inter Annotator Agreement

The benchmark dataset is a subset of the full dataset but was labeled a second time by a

different annotator. Hence, it was possible to calculate the κ score as a measure of inter-

annotator agreement. Inter-annotator agreement was very good for some labels and very

bad for others. This means that humans agreed on some labels more than on others. Most

important was the fact that both annotators achieved a very good agreement on the classi-

fication of labels as questions and answers. Due to the partially bad agreement, all other

labels were summarized as an aggregated Other label.

The benchmark dataset was used as source for the features engineered for the contribution

type classifier. The complete dataset was applied to calculate the final performance statis-

tics of the developed approach. It also served as a common ground truth to compare the

classifier developed in this thesis with the classifier developed by Hong & Davison (2009).

Research Contribution

The dataset will be provided for free, so that future research on forum contribution clas-

sification has a point of reference to start from. Aside from its usage in our evaluation it

contains a typology for forum contributions with nine different classes and many examples

per class.

6.2 Future work

The following section describes ideas we developed during our work on this thesis. They

are supposed to inspire future research building on this work. Using and developing these

166

6.2 Future work

ideas will enable the implementation of the complete Effingo system and even extend it with

additional new and helpful features to overcome the information overload many users are

faced with while searching solutions on the World Wide Web.

Additional Input Sources

Today, social media is spreading from the domain of mere forums to new platforms like

Twitter, Facebook, Google+ and similar applications. Such platforms do not use threads

but activity streams, which nevertheless are similar to forum threads. They also form a

discourse of multiple authors on some topic. The difference is that they are not limited to

one discourse but may contain multiple mixed discourses and run forever. So even though

they might contain questions and answers as well, finding them requires an additional step

of separating the intermingled discussions. This is similar to the Story Segmentation task

proposed by Allan (2002) for news transcripts.

Even more promising as a source for community-contributed questions and answers are

question/answer sites like those operated by the StackExchange Network. In the course of

this work we handled them like ordinary forums. That way, we were able to use the knowl-

edge stored inside. However, question/answer sites contain a richer amount of meta infor-

mation about questions and answers. They provide points for questions and answers as well

as for each user. Items with more points are rated as more valuable or as being of a better

quality than items with fewer points. Since they support a wiki style, it is possible for each

user to edit and extend existing questions and answers so that the quality of the knowledge

base increases over time. There also are explicit links between topical near-duplicates, reduc-

ing the necessity to detect such anomalies automatically. Even a semi-automatic approach

would be possible in this case, highlighting possible topical near-duplicates and waiting for

a critical mass of users to acknowledge the near-duplicate before grouping both questions to-

gether. A question/answer classifier has no high relevance for question/answer sites, since

questions and answers are marked explicitly. This fact qualifies the data on question/an-

swer sites as an ideal candidate for training such a classifier and use it on unlabeled data

sources such as ordinary Web forums. In addition, the different ranking schemes for ques-

tions, answers and users could be used to create an automatic ranking for a hypothetical

question/answer system using such platforms as knowledge base.

Improving Community Based Question Answering with User Feedback and Active

Learning

In a production environment constant maintenance is necessary for the classifier to adapt

to changing user behavior. This is only possible via user feedback. The problem with user

feedback is that users usually do not like or do not care to provide information about their

contribution. If they asked a question they expect an answer while they do not want to tell

the system that it was a question. If they provide an answer they usually also do not want

167

6 Conclusion

to tell the system that it is an answer. However, this information would be very helpful to

improve the classifier and adapt it to changing requirements. One possibility to reduce the

amount of required user feedback is called Active Learning. By means of Active Learning

users are only asked for feedback if knowledge about their contribution improved the clas-

sifier significantly. This would mostly be the case for borderline cases where the classifier

is unsure about the classification. Feedback could be asked for via direct feedback. This

means the users would get some kind of popup asking them for the correct type to use. A

less invasive way would be to use indirect feedback and add the process of creating a ques-

tion or an answer directly to the workflow of creating a contribution. This is similar to what

the question/answer sites are doing. In this case, the user would click explicitly on "create

new question" or "create new answer". Although this is the safer way for actually getting

feedback, the users will require reimbursement for their effort. This reimbursement usually

comes in the form of great user experience or fast and very helpful answers. In this case, the

information concerning the advantage must be available to the users just the same moment

they create the question or answer. One will possibly face a cold start problem with such a

system. Early users might not see the benefit if the knowledge base is still empty and thus

provide no content. A solution might be to use the content from existing question/answer

sites as bootstrap dataset.

A Complete Architecture for E�ngo

The Effingo system as envisioned in Section 1.3.1 requires some additional steps which are

not discussed in this thesis. A complete implementation could follow an architecture as

proposed in Figure 6.1. As can be seen not only forums are considered as input, but also

question/answer sites and FAQs. FAQs are a very valuable knowledge base since they are

authored by experts and usually contain explicitly marked questions and answers. Unfor-

tunately, they do not share the structure of a typical forum post. They usually have no date

or author and contain a large collection of question and answer pairs on the same page. Dif-

ferent retrievers and extractors are required for this type of input source. The component

Content Discovery covers the first two steps from Chapter 3 and delivers retrieved forum

pages to a raw data storage. Content Processing covers the extractor from Chapter 3 as well

as the classifier from Chapter 4. Some threads contain multiple questions and answers per

thread. In such cases it is important to have a component that links each answer to its

question. The Question-Answer Linker component would solve this problem. It was already

mentioned briefly in Section 1.3.1 as a part of the “GROUP Answers BY Question Group”

step. Extracted question/answer pairs are stored to a central knowledge base. The knowl-

edge base is used by a Question Aggregator which can build on the topical near-duplicate

detection presented in Section 5.1 and an Answer Summarizer which creates a summary from

all the answers available for one grouped question. Topical near-duplicate detection was not

completely solved by the approach presented in Section 5.1. However, we found evidence

168

6.2 Future work

Content Discovery

Crawler Page Filter

Raw Data Storage

World Wide Web

Question Answer Sites FAQs Forums

R

Content Processing

Item Extractor Item Classifier

Question-

Answer Linker

User

User Interface
Knowledge Storage

Personal

Question

Storage

Feedback

Storage

Question /

Answer

Storage

Community

Storage

Question IndexWeb Interface

Feedback

Processor

Query

Extensor

R

Content Aggregation

Answer

Summarizer

Question

Aggregator

Figure 6.1: A hypothetical architecture for a complete implementation of the Effingo system.

169

6 Conclusion

that approaches using semantic information might be unnecessarily complex. Further in-

vestigations in this area should examine the possibilities of syntactic topical near-duplicate

detection and of combinations of both. The User Interface presents the user with a search

interface to ask questions and get available answers. In order to get the correct question it

might be necessary to extend the user’s query with additional terms, such as synonyms and

related entities. This can be handled by the Query Extensor. It is also possible to include

some of the applications proposed in Chapter 5 into this interface. User feedback can be

processed using a Feedback Processor.

Automatic Discourse Systems

An interesting extension to the proposed Effingo system could build on recent research on

automatic discourse management. Such a system does not simply return an answer to a

question, but tries to initiate a dialogue with the user. An example for a first partial im-

plementation is the Siri system from Apple. For unclear or ambiguous concepts it asks the

user for further information and is thus able to narrow down the set of possible answers,

even telling the user with high confidence that no answer is available yet. In such a case the

users could pose their questions with high confidence that they are not creating a topical

near-duplicate.

Thread Development Analysis

A user who really needs to ask a question because it was never answered before could be

supported by an analysis of existing threads and a feedback as to how long they can expect

to wait until an answer arrives. It would even be possible to provide recommendations on

how to alter a question in order to improve the chance of receiving an answer. Algorithms

for this task can be based on time line and development analyses on existing threads. The

most obvious feature would be the time between posts. Additionally, the classifier devel-

oped in Chapter 4 can identify the type for each post. That way it is possible to predict

which type of post to expect next and how long it may take until it appears.

Type and time might not be enough information. We could again analyze the contribution

itself and rank it according to its quality. An approach to this was shown by Agichtein et al.

(2008). High quality contributions are more likely to attract a quick high quality answer.

Such a system could help to facilitate the usage of forums and explain well known pitfalls

to new users. In addition, a filter for low quality content might be useful to improve all

algorithms working on forum data.

Handling Obtrusive Content

A final note on contribution content concerns obtrusive content which is not comparable to

text. Examples for such content are code snippets, signatures, and citations from previous

170

6.2 Future work

contributions. Often, such content is marked by HTML tags, other times it is not and even

if it is, the markup usually changes from forum to forum. All approaches presented in this

thesis ignored such content and handled it just like normal text. Filtering such content might

improve algorithm performance. Further experiments are necessary to prove or disprove

this idea.

171

A Dataset Details

Datasets used for Forum Data Extraction

Table A.1: Web forums used for the SiteLevel-FO dataset.

Forum Software
avsforum.com vBulletin
boards.cruisecritic.com
codeguru.com
computerforum.com
devhardware.com
disboards.com
flyertalk.com
forum.gsmhosting.com
photography-on-the.net
forums.photographyreview.com
ubuntuforums.org
howardforums.com
pctools.com
phpbuilder.com
sitepoint.com
forums.d2jsp.org custom
bbs.imobile.com.cn
forums.asp.net
www.dpreview.com/forums
bbs.cqzg.cn Discuz!

Table A.2: Web forums used for the Fodex1-FO dataset.

Forum Software
dslr-forum.de vBulletin
forums.steampowered.com
area51.phpbb.com phpBB3
tt-forum.co.uk
forums.gentoo.org phpBB2
forums.theonering.com
forums.sdn.sap.com Jive Clearspace
forums.oracle.com
forums.syfy.com Invision (IPB)
community.invisionpower.com

173

A Dataset Details

Table A.3: Web forums used for the Fodex2-FO dataset.

Forum Software
creditboards.com Invision
diskusjon.no
neowin.net
www.bzpower.com
forums.xkcd.com phpBB3
forums.mozillazine.org
www.dmtabs.com
car-pc.info phpBB2
forum.joomla.org
onlinebanking-forum.de

Table A.4: Web forums used for the Fodex2-QA dataset.

Forum Software
de.answers.yahoo.com custom
stackoverflow.com
social.msdn.microsoft.com
ask.sqlservercentral.com
getsatisfaction.com
discussions.apple.com
gutefrage.de
lockergnome.net QSQA
community.jivesoftware.com Jive Social Business Platform
frageee.de Question2Answer

174

B Bibliography

Agichtein, E., Castillo, C., Donato, D., Gionis, A. & Mishne, G. (2008), Finding high-quality

content in social media, in ‘International conference on Web search and web data min-

ing’, ACM, pp. 183–194.

Allam, A. M. N. & Haggag, M. H. (2012), ‘The Question Answering Systems: A Survey’,

International Journal of Research and Reviews in Information Sciences 2(3).

Allan, J. (2002), Introduction to topic detection and tracking, in ‘Topic detection and track-

ing’, Kluwer Academic Publishers, pp. 1–16.

Allan, J., Carbonell, J., Doddington, G., Yamron, J. P. & Yang, Y. (1998), Topic detection and

tracking pilot study: Final report, in ‘Broadcast news transcription and understanding

workshop’, Vol. 1998, Citeseer, pp. 194–218.

Allan, J., Lavrenko, V. & Swan, R. (2002), Explorations within topic tracking and detection,

in ‘Topic detection and tracking’, Kluwer Academic Publishers, pp. 197–224.

Amit, Y. & Geman, D. (1997), ‘Shape Quantization and Recognition with Randomized Trees’,

Neural Computation 9(7), 1545–1588.

Apache Lucene (2013).

URL: https://lucene.apache.org

Arasu, A. & Garcia-Molina, H. (2003), Extracting structured data from Web pages, in ‘Inter-

national conference on Management of data’, ACM, pp. 337–348.

Austin, J. L. (1962), How to do Things with Words.

Baker, C. F., Fillmore, C. J. & Lowe, J. B. (1998), The berkeley framenet project, in ‘Inter-

national conference on Computational linguistics’, Association for Computational Lin-

guistics, pp. 86–90.

Banerjee, P. & Han, H. (2007), Drexel at TREC 2007: Question answering, in ‘Text Retrieval

Conference’.

Bayes, T. (1763), ‘An Essay Towards Solving a Problem in the Doctrine of Chances’, Philo-
sophical Transactions of the Royal Society of London pp. 370–418.

175

BIBLIOGRAPHY

Benamara, F. & Saint Dizier, P. (2004), Advanced relaxation for cooperative question answer-

ing, in ‘New Directions in Question Answering’, Citeseer, pp. 263–274.

Bengel, J., Gauch, S., Mittur, E. & Rajan, V. (2004), Chattrack: Chat room topic detection

using classification, in ‘Intelligence and Security’, Springer, pp. 266–277.

Berners-Lee, T. & Mark, F. (2000), Weaving the Web: The Original Design and Ultimate Destiny
of the World Wide Web, HarperInformation.

Beyer, M. (2011), Fodex2 - Automatische Typisierung von Forenseiten, Study thesis, Techni-

cal University Dresden.

Bian, J., Liu, Y., Agichtein, E. & Zha, H. (2008), Finding the right facts in the crowd: fac-

toid question answering over social media, in ‘International conference on World Wide

Web’, ACM, pp. 467–476.

Breiman, L. (1996), ‘Bagging predictors’, Machine learning 140, 123–140.

Breiman, L. (2001), ‘Random Forests’, Machine Learning 45(1), 5–32.

Buscaldi, D., Rosso, P., Gómez-Soriano, J. M. & Sanchis, E. (2010), ‘Answering questions

with an n-gram based passage retrieval engine’, Journal of Intelligent Information Systems
34(2), 113–134.

Cai, R., Yang, J.-M., Lai, W., Wang, Y. & Zhang, L. (2008), iRobot: An intelligent crawler for

Web forums, in ‘International conference on World Wide Web’, ACM, pp. 447–456.

Carvalho, V. R. & Cohen, W. W. (2006), Improving email speech acts analysis via n-gram

selection, in ‘Workshop on Analyzing Conversations in Text and Speech’, Association

for Computational Linguistics, pp. 35–41.

Chang, C.-H., Kayed, M., Girgis, R. & Shaalan, K. F. (2006), ‘A Survey of Web Information

Extraction Systems’, IEEE Transactions on Knowledge and Data Engineering 18(10), 1411–

1428.

Chen, G. & Choi, B. (2008), Web page genre classification, in ‘Symposium on Applied com-

puting’, ACM, pp. 2353–2357.

Chen, H.-H. & Ku, L.-W. (2002), An NLP & IR approach to topic detection, in ‘Topic detection

and tracking’, Kluwer Academic Publishers, pp. 243–264.

Cohen, W. W. (1995), Fast effective rule induction, in ‘ICML’, pp. 115–123.

Cohen, W. W., Carvalho, V. R. & Mitchell, T. M. (2004), Learning to classify email into

“speech acts”, in ‘EMNLP’, Vol. 4, pp. 309–316.

176

BIBLIOGRAPHY

Cong, G., Wang, L., Lin, C.-Y., Song, Y.-I. & Sun, Y. (2008), Finding question-answer pairs

from online forums, in ‘International conference on Research and development in in-

formation retrieval’, ACM, pp. 467–474.

Crescenzi, V., Mecca, G. & Merialdo, P. (2001), Roadrunner: Towards automatic data extrac-

tion from large web sites, in ‘VLDB’, Vol. 1, pp. 109–118.

Dalmas, T., Leidner, J., Webber, B., Grover, C. & Bos, J. (2004), ‘Annotating CBC4Kids: A

Corpus for Reading Comprehension and Question Answering Evaluation’, Institute for
Communicating and Collaborative Systems .

Ding, S., Cong, G., Lin, C.-Y. & Zhu, X. (2008), Using conditional random fields to extract

contexts and answers of questions from online forums, in ‘ACL-08: HLT’, number June,

Association for Computational Linguistics, pp. 710–718.

Drescher, R. (2010), Entwicklung eines fokussierten Crawlers für Internetforen, Diplomath-

esis, Technical University Dresden.

Duong, L. T., Hall, M. R., Mayfield, J. C., McNamee, P. J. & Piatko, C. T. (2002), ‘Directed

web crawler with machine learning’.

Eichmann, D. & Srinivasan, P. (2002), A cluster-based approach to broadcast news, in ‘Topic

detection and tracking’, Kluwer Academic Publishers, pp. 149–174.

Fayyad, U. M. & Irani, K. B. (1993), ‘Multi-interval discretization of continuous-valued at-

tributes for classification learning’.

Fetterly, D. C. & Chien, S. S.-T. (2007), ‘Identifying a web page as belonging to a blog’.

Fleiss, J. L. (1981), Statistical methods for rates and proportions, John Wiley.

Flint, L. (1917), Newspaper writing in high schools, containing an outline for the use of teachers,

Department of journalism press in the University of Kansas.

Forman, G. (2003), ‘An extensive empirical study of feature selection metrics for text classi-

fication’, The Journal of Machine Learning Research 3, 1289–1305.

Franz, M., McCarley, J. S., Ward, T. & Zhu, W.-J. (1999), ‘Segmentation and detection at IBM:

hybrid statistical models and two-tiered clustering’, Topic detection and tracking .

Freund, Y. & Schapire, R. E. (1999), ‘Large margin classification using the perceptron algo-

rithm’, Machine learning 37(3), 277–296.

Fürnkranz, J. & Widmer, G. (1994), Incremental reduced error pruning, in ‘International

Conference on Machine Learning’, Morgan kaufmann, New Brunswick, New Jersey,

pp. 70–77.

177

BIBLIOGRAPHY

Grishman, R. & Sundheim, B. (1996), ‘Message understanding conference-6: A brief history’,

COLING 96, 466–471.

Hensel, C. (2013), Themenbasierte Aggregation von Fragen in Sozialen Medien, Diploma

thesis, Technical University Dresden.

Ho, T. K. (1998), ‘The random subspace method for constructing decision forests’, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832—-844.

Hong, L. & Davison, B. (2009), A classification-based approach to question answering in

discussion boards, in ‘International conference on Research and development in infor-

mation retrieval’, ACM, pp. 171–178.

Hsu, C.-W., Chang, C.-C. & Lin, C.-J. (2003), ‘A practical guide to support vector classifica-

tion’.

Iba, W. & Langley, P. (1992), Induction of one-level decision trees, in ‘The Ninth International

Conference on Machine Learning’, Vol. ML92: Proc, Citeseer, pp. 233–240.

Jaccard, P. (1901), Étude comparative de la distribution florale dans une portion des Alpes et des
Jura, Vol. 37.

Jeon, J., Croft, W. B., Lee, J. H. & Park, S. (2006), A framework to predict the quality of

answers with non-textual features, in ‘International conference on Research and devel-

opment in information retrieval’, ACM, pp. 228–235.

Jijkoun, V. & De Rijke, M. (2004), ‘Answer selection in a multi-stream open domain question

answering system’.

Kayed, M. & Chang, C.-H. (2010), ‘FiVaTech: Page-level web data extraction from template

pages’, IEEE Transactions on Knowledge and Data Engineering 22(2), 249–263.

Kim, J., Chern, G., Feng, D., Shaw, E. & Hovy, E. (2006), Mining and assessing discussions on

the web through speech act analysis, in ‘Workshop on Web Content Mining with Hu-

man Language Technologies at the 5th International Semantic Web Conference’, Cite-

seer.

Kingsbury, P., Palmer, M. & Marcus, M. (2002), Adding semantic annotation to the penn

treebank, in ‘Proceedings of the Human Language Technology Conference’, number 36,

Citeseer, pp. 252–256.

URL: ftp://ftp.cis.upenn.edu/pub/ace/public_html/HLT2002-propbank.pdf

Ko, J., Si, L. & Nyberg, E. (2007), A probabilistic framework for answer selection in question

answering, in ‘Proceedings of NAACL-HLT’, pp. 524–531.

Kullback, S. & Leibler, R. A. (1951), ‘On information and sufficiency’, The Annals of Mathe-
matical Statistics 22(1), 79–86.

178

BIBLIOGRAPHY

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S. & Teixeira, J. S. (2002), ‘A brief survey

of web data extraction tools’, ACM SIGMOD Record 31(2), 84—-93.

Landis, R. J. & Koch, G. G. (1977), ‘The measurement of observer agreement for categorical

data.’, Biometrics 33(1), 159–174.

Leacock, C. & Chodorow, M. (1998), ‘Combining local context and WordNet similarity for

word sense identification’, WordNet: An electronic lexical database 49(2), 265–283.

Leek, T., Schwartz, R. & Sista, S. (2002), Probabilistic approaches to topic detection and track-

ing, in ‘Topic detection and tracking’, Kluwer Academic Publishers, pp. 67–83.

Levow, G. A. & Oard, D. W. (2002), Signal boosting for translingual topic tracking: Docu-

ment expansion and n-best translation, in ‘Topic detection and tracking’, Kluwer Aca-

demic Publishers, pp. 175–195.

Light, M., Mann, G. S., Riloff, E. & Breck, E. (2001), ‘Analyses for elucidating current ques-

tion answering technology’, Natural Language Engineering 7(04), 325–342.

Lin, C., Yang, J.-M., Cai, R., Wang, X.-J., Wang, W. & Zhang, L. (2009), Simultaneously mod-

eling semantics and structure of threaded discussions: a sparse coding approach and

its applications, in ‘Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval’, ACM, pp. 131–138.

Lin, D. (1998), An information-theoretic definition of similarity, in ‘Proceedings of the 15th

international conference on machine learning’, Morgan Kaufmann Publishers Inc.,

pp. 296–304.

Lo, L., Ng, V. T.-Y., Ng, P. & Chan, S. C. (2006), Automatic Template Detection for Struc-

tured Web Pages, in ‘10th International Conference on Computer Supported Coopera-

tive Work in Design’, IEEE Computer Society, pp. 1–6.

Manning, C. D., Raghavan, P. & Schütze, H. (2009), An introduction to information retrieval,
number c, Cambridge University Press.

McLachlan, G. J., Do, K.-A. & Ambroise, C. (2005), Analyzing microarray gene expression data,

Wiley-Interscience.

Meng, X., Hu, D. & Li, C. (2003), Schema-guided wrapper maintenance for web-data extrac-

tion, in ‘Proceedings of the fifth ACM international workshop on Web information and

data management’, ACM, pp. 1–8.

Miller, G. A. (1995), ‘WordNet: a lexical database for English’, Communications of the ACM
38(11), 39–41.

Mingers, J. (1987), ‘Rule induction with statistical data-a comparison with multiple regres-

sion’, Journal of the operational research Society pp. 347–351.

179

BIBLIOGRAPHY

Minkov, E., Wang, R. & Cohen, W. W. (2005), Extracting personal names from emails: Ap-

plying named entity recognition to informal text., in ‘HLT-EMNLP’05’.

Mitchell, T. M. (1997), Machine Learning, McGraw-Hill.

Muslea, I. (1999), Extraction patterns for information extraction tasks: A survey, in ‘The

AAAI-99 Workshop on Machine Learning for Information Extraction’.

Nadeau, D. & Sekine, S. (2007), ‘A survey of named entity recognition and classification’,

Lingvisticae Investigationes 30(1), 3–26.

Narayanan, S. & Harabagiu, S. (2004), Question answering based on semantic structures, in
‘Proceedings of the 20th international conference on Computational Linguistics’, Asso-

ciation for Computational Linguistics, p. 693.

NITLE Weblog Census (2003).

URL: http://www.blogcensus.net

Page, L., Brin, S., Motwani, R. & Winograd, T. (1999), ‘The pagerank citation ranking: Bring-

ing order to the web’, World Wide Web Internet And Web Information Systems .

Pretzsch, S. (2011), Fodex - Datenextraktion aus Webforen, Study thesis, Technical Univer-

sity Dresden.

Pretzsch, S. (2012), FODEX2 - Informationsextraktion aus Social Media Diskussionen,

Diploma thesis, Technical University Dresden.

Quinlan, J. R. (1979), Discovering rules by induction from large collections of examples,

in ‘Expert systems in the micro electronic age’, Vol. 174, Edinburgh University Press,

pp. 168–201.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.

Ravi, S. & Kim, J. (2007), ‘Profiling student interactions in threaded discussions with speech

act classifiers’, Frontiers in Artificial Intelligence and Applications 158, 357.

Resnik, P. (1995), Using information content to evaluate semantic similarity in a taxonomy, in
‘Proceedings of the 14th international joint conference on Artificial intelligence-Volume

1’, Vol. 1, Morgan Kaufmann, pp. 448–453.

Rinaldi, F., Dowdall, J., Schneider, G. & Persidis, A. (2004), Answering questions in the

genomics domain, in ‘Proceedings of the ACL 2004 Workshop on Question Answering

in Restricted Domains’, pp. 46–53.

Rinaldi, F., Hess, M., Mollá, D., Schwitter, R., Dowdall, J., Schneider, G. & Fournier, R. (2002),

Answer extraction in technical domains, in ‘Computational Linguistics and Intelligent

Text Processing’, Springer, pp. 360–369.

180

BIBLIOGRAPHY

Rosenblatt, F. (1958), ‘The perceptron: a probabilistic model for information storage and

organization in the brain.’, Psychological review 65(6), 386–408.

Rosenblatt, F. (1961), Principles of neurodynamics. perceptrons and the theory of brain

mechanisms, Technical report, DTIC Document.

Rudolph, M. (2011), Automatische Erkennung von Internetforen mittels Maschinellen Ler-

nens, Study thesis, Technical University Dresden.

Schneider, G., Aliod, D. M. & Hess, M. (1999), Inkrementelle minimale logische Formen für

die Antwortextraktion, in ‘Proceedings of 4th Linguistic Colloquium’, pp. 7–10.

Schultz, M. J. & Liberman, M. Y. (2002), Towards a "Universal dictionary" for multi-language

information retrieval applications, in ‘Topic detection and tracking’, Kluwer Academic

Publishers, pp. 225–241.

Senellart, P. & Blondel, V. D. (2008), Automatic Discovery of SimilarWords, in ‘Survey of

Text Mining II’, Springer, pp. 25–44.

Tang, X. (2008), Approach to detection of community’s consensus and interest, in ‘Advanced

Web and NetworkTechnologies, and Applications’, Springer, pp. 17–29.

Tunstall-Pedoe, W. (2012), ‘TrueKnowledge’.

URL: http://www.trueknowledge.com/

Urbansky, D., Reichert, S., Muthmann, K., Schuster, D. & Schill, A. (2011), An Optimized

Web Feed Aggregation Approach for Generic Feed Types, in ‘Proceedings of the Fifth

Internationl Conference on Weblogs and Social Media’, pp. 638–641.

Vaughan, L. (2004), ‘New measurements for search engine evaluation proposed and tested’,

Information Processing & Management 40(4), 677–691.

Wanas, N., El-Saban, M., Ashour, H. & Ammar, W. (2008), Automatic scoring of online dis-

cussion posts, in ‘Proceeding of the 2nd ACM Workshop on information Credibility on

the Web’, ACM, pp. 19–26.

Wang, H.-C., Huang, T.-H., Guo, J.-L. & Li, S.-C. (2009), Journal Article Topic Detec-

tion Based on Semantic Features, in ‘Next-Generation Applied Intelligence’, Springer,

pp. 644–652.

Wolfram|Alpha: Computational Knowledge Engine (2012).

URL: http://www.wolframalpha.com/

Wu, Z.-L. & Li, C.-h. (2007), Topic Detection in Online Discussion Using Non-negative Ma-

trix Factorization, in ‘Proceedings of the 2007 IEEE/WIC/ACM International Con-

ferences on Web Intelligence and Intelligent Agent Technology-Workshops’, IEEE,

pp. 272–275.

181

BIBLIOGRAPHY

Wu, Z. & Palmer, M. (1994), Verbs semantics and lexical selection, in ‘Proceedings of the

32nd annual meeting on Association for Computational Linguistics’, Association for

Computational Linguistics, pp. 133–138.

Xu, G. & Ma, W.-Y. (2006), Building implicit links from content for forum search, in ‘Pro-

ceedings of the 29th annual international ACM SIGIR conference on Research and de-

velopment in information retrieval’, ACM, pp. 300–307.

Yamron, J. P., Gillick, L., van Mulbregt, P. & Knecht, S. (2002), Statistical Models of Topical

Content, in ‘Topic detection and tracking’, Kluwer Academic Publishers, pp. 115–134.

Yang, C. C. & Ng, T. D. (2008), Analyzing content development and visualizing social inter-

actions in Web forum, in ‘IEEE International Conference on Intelligence and Security

Informatics’, IEEE, pp. 25–30.

Yang, J.-M., Cai, R., Wang, Y., Zhu, J., Zhang, L. & Ma, W.-Y. (2009), Incorporating site-level

knowledge to extract structured data from web forums, in ‘Proceedings of the 18th

international conference on World wide web’, ACM, pp. 181–190.

Yiming, Y. & Pedersen, J. O. (1997), A Comparative Study on Feature Selection in Text Cate-

gorization, in ‘ICML’, Morgan Kaufmann, pp. 412–420.

Zhai, Y. & Liu, B. (2006), ‘Structured data extraction from the web based on partial tree

alignment’, IEEE Transactions on Knowledge and Data Engineering 18(12), 1614–1628.

Zheng, S., Song, R., Wen, J.-R. & Wu, D. (2007), Joint optimization of wrapper generation and

template detection, in ‘Proceedings of the 13th ACM SIGKDD international conference

on Knowledge discovery and data mining’, ACM, pp. 894–902.

182

