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Introduction 

Motivation: Carbon nanotubes are known as one of the strongest materials in nature and 

since their discovery; they have triggered the scientific interest for fabricating multi-

functional polymer composites. However, a well-known problem associated to the 

incorporation of nanoparticulate materials in polymer matrices is their tendency to 

agglomerate in order to reduce their surface energy, and the extreme increase of the polymer 

viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers 

can be efficiently reinforced by fibers for applications where high strength and stiffness are 

required. Micro-scale short fiber reinforced polymer composites have been an alternative 

way to obtain fiber reinforced composites since the long fiber incorporation is a painful job 

and not always feasible and easy to produce composites in big scale. Therefore, use of long 

glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles 

was made, and the resulting interfaces were investigated in detail by single fiber model 

composites. This approach can bring the CNT functionality, fiber strength and toughness to 

the final composite, and simultaneously alleviate the manufacturing process from increase of 

the polymer high viscosities. Finally, very logically the question of whether to improve or 

destroy the interface integrity comes before implementing the hybrid hierarchical 

reinforcements in bigger scales, and an output out of this work will be given. Furthermore, 

several information and functionalities arising from the CNTs at the interphase region will be 

elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and 

thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-

modified natural fibers also have been utillised to fabricate short fiber reinforced composites, 

and have shown a promising reinforcement effect due to the CNT nanostructured interfaces. 

 The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very 

crucial parameter that has to be considered in the design of a composite with desired 

properties. Interfaces are often considered as surfaces however, they are in fact zones or 

areas with compositional, structural, and property gradients, typically varying from that of 

the fiber and the matrix material. Characterization of the mechanical properties of interfaces 

is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the 

mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical 

properties of the component materials, ii) the surface of the fiber, and iii) the nature of the 

fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many 

factors that govern the characteristics of composites involving a glass, carbon, natural or 

ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a 
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predominant role. In specific, the stress transfer at the interface requires an efficient coupling 

between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since 

a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance 

composite material. 

Aims & objectives: The main aims and objectives of this study are summarized within 

the bullets indicated below: 

 Modify the surface of conventional fibers (glass and jute) with MWCNTs, and 

incorporate them in a polymer matrix. 

 Strengthen the composite interfaces by the use of MWCNTs. 

 Investigate the composite interfacial adhesion strength by single fiber model 

composites. 

 Provide the CNT- and/or any other kind of desired functionality in the composite by 

depositing CNTs and/or different kind of nanoparticles on the fiber surface. Create 

hierarchical structures and hybrid composite multi-functional interfaces. 

 Use the fiber/CNT reinforcement as a smart tool for providing information about the 

structure (epoxy cure state) and the health condition of the composite (UV-sensing). 

 Use the densely packed CNT-networks at the interface region for the effective 

thermoelectric energy harvesting, upon exposition of the composite to a temperature 

gradient. 

 Use the CNT-coated fibers as support for depositing superparamagnetic Fe3O4 

nanoparticles via ionic interactions, endowing the fibers with increased conductivity 

and showing a response to an external magnetic field; potential applications: i) 

recyclable fibers, ii) electromagnetic shielding effectiveness, iii) data storage, iv) 

magnetic strain sensor showing the existence of cracks or voids at the interface 

region which can accumulate resulting further in the materials’ failure. 

 Incorporate a big amount of nano-scale filler in the final composites using the fiber 

as the agent/support to immobilize any kind of different nanoparticles. 

Thesis outline: The first chapter provides an introduction to the structure and properties of 

CNTs as well as their use in polymer composites. In chapter 2, the theoretical background 

about the physicochemical properties of colloids which have been used in this thesis are also 

provided, whereas rare information about block copolymers is also given because BCPs can 

successfully induce nanostructuring to an epoxy, used as the matrix throughout this thesis. 

The definition and classification of fiber reinforced polymer composites (FRPCs) are 
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described as well in this chapter and special focus is given to make understandable the big 

importance of the ‘interphase’ in composite materials. In the next chapter (chapter 3), all the 

experimental techniques used within this thesis are described, and their principles are briefly 

explained. The chapter 4 deals with the chemical protocols we applied to synthesize different 

kinds of nanocolloids as well as their micro-structural and physical characterisation. Epoxy 

blended with BCP was prepared and their properties as well as special functionalities are 

discussed in chapter 5. Then, chapter 6 describes the anchorage of MWCNTs onto the GF 

surfaces via covalent and non-covalent bonds, and the resulting interphases in an epoxy 

matrix were extensively characterized. In addition, this chapter demonstrates the 

functionality of the hybrid interfaces which have been developed and discussed for the first 

time within the research accomplished within this thesis. Making use of the results we 

obtained on single fiber level of GF-CNT/epoxy model composite investigations regarding 

the strengthening of the composite interfaces, we extended the idea of CNT-modified fibers, 

and especially natural fibers, in order to effectively reinforce a natural rubber matrix (chapter 

7). The final, chapter 8 presents the general conclusions and gives an outlook for future 

work.
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Chapter 2 

Theoretical background and literature overview 

2.1 Structure and properties of Carbon Nanotubes (CNTs) 

2.1.1 Introduction: Discovery of CNTs 

 Since the discovery of closed graphite shells dubbed buckminsterfullerene by Kroto 

et al. [2] in 1985, carbon has started to obtain a significant interest in nanoscale science 

including chemistry, biology and engineering. Carbon Nanotubes were first discovered 

around 1952 by Radushkevich et al. [3] and possibly have been around for much longer. 

However, it is only after Iijima’s observation of CNTs in 1991, which gave rise to an 

extreme interest from the scientific community all over the world for many wide-ranging 

disciplines. [4] 

2.1.2 Bonding of carbon atoms in carbon nanotubes 

 The structure of a carbon nanotube can be thought as a single graphene sheet rolled 

up into a cylinder, as illustrated in Fig. 2.1. 

 

Fig. 2.1 - Schematic view of carbon nanotube structure derived from a rolled up graphene sheet.[1] 

 CNTs can be considered as long seamless cylinders consisting of an hexagonal 

honeycomb lattice of carbon atoms, the ends of which can either be capped by two halves of 

fullerene or left open. A carbon atom has six electrons of which two are accommodated in 

the 1s orbital and the remaining four occupy the 2s and 2p orbitals, responsible for bonding. 

CNTs have deformed sp
2
 hybridization due to the circular curvature [5], and this causes the 

shifting of the three σ bonds which lie in the sp
2
 plane to out of plane. As a result the π 

                                                           
[1] http://eed.gsfc.nasa.gov/562/SA_CarbonNanotubes.htm 
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orbital is more delocalized outside to compensate as shown in Fig. 2.2. This type of 

symmetry change in the sp
2
 orbital makes nanotubes chemically more reactive, mechanically 

more strong, and electrically and thermally more conductive than graphite. [5] 

 

Fig. 2.2 - Schematic representation of C-C bond in single-walled carbon nanotube framework. [2] 

 Additionally, they produce topological defects such as pentagons and heptagons in 

the hexagonal network to form capped bent, toroidal, and helical nanotubes where electrons 

are localized in pentagons and heptagons because of redistribution of π electrons. [5] There 

can also be sp
3
 hybridized carbons, formed from the carbon framework due to oxidation, 

which can result in the formation of terminal esters, anhydrides and carboxylic acid groups at 

the open end of nanotubes, as illustrated in Fig. 2.3. 

 

Fig. 2.3 - A schematic illustration of possible surface defects in a SWNT (R=alkyl). [2] 

2.1.3 Structure and types of CNTs 

 It has been reported that the CNTs have extraordinary mechanical, thermal and 

electrical properties, and especially the electrical ones are highly related to the structure of 

CNTs. [6] With respect to the rolling angle of the graphene sheet, CNTs can have chiral and 

non-chiral configurations. For a unique definition of the structure of a particular nanotube, 

one needs to define a chirality vector, in terms of integer multiples of two primitive lattice 

parameters of graphene, that exactly maps the circumference of the nanotube. This chirality 

vector, Ch, is used to describe the chirality of the tube and it is defined as: 

                                                           
[2] http://etheses.dur.ac.uk/390/1/PhD_Thesis_MK_BAYAZIT_Chemistry_2010.pdf?DDD7+ 
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Ch = na1+ma2  (2.1) 

where a1 and a2 are the unite factors, n and m (integers) are the steps along the directions 

showed in Fig. 2.4 of the original graphene lattice. [7] If the graphene sheet is cut along the 

vertical direction of the vector C, and rolled up into a cylinder, the tube can be defined as 

(n,m). When n=m or m=0, the nanotube is symmetric and these nanotubes are named as 

armchair and zig-zag, respectively (Fig. 2.4). When n-m is a multiple of 3, the tube is 

metallic; otherwise, the tube is a semiconductor. [8] For the non-chiral configurations, two 

carbon-carbon atoms (C-C) on opposite sides of a hexagon may lie perpendicular to the tube 

axis (armchair) or parallel to the tube axis (zig-zag), while chiral configurations are defined 

as those that display any other angle. Illustrations are provided in Fig. 2.4. 

  

Fig. 2.4 - Schematic diagram showing the possible ways that an hexagonal graphene sheet can be rolled 

into a CNT along the chiral vector [7], and molecular models of SWNTs exhibiting different chiralities, (b) 

armchair (m, m) configuration, (c) zig-zag (n,0) arrangement and (d) chiral (n,m) conformation [9]. 

 As reviewed by Terrones [9], the chiral vector may be used to determine the 

diameter of the tube according to the formula:   

 √        

 
 , where a is the graphite sheet lattice constant 

(1.42×√  Å), and m and n are the lattice coordinates. 

 Carbon nanotubes can be divided into two groups 

depending on the number of their walls: single-walled carbon 

nanotubes (SWNTs) and multi-walled carbon nanotubes 

(MWNTs). The SWNTs have only one layer of graphene 

wall, and the MWNTs have two or several concentric 

Fig. 2.5 – HR-TEM image of 

single MWNT showing the 

concentric walls. 
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cylinders of increasing diameter placed around a central axis (Fig. 2.5), binded together by 

the effect of Van der Waals forces. [4] The spacing between each shell is in the order of the 

spacing between two adjacent layers in graphite (3.4 Å). [10] The typical diameter of 

SWNTs is in the range of 0.6-2 nm, while for MWNTs about 10-50 nm. The length of a 

CNT can range from 1 micron to tens of microns, depending on the type of CNTs or the 

production method.  

 CNTs can be produced by many different methods and each method has its own 

advantages and disadvantages in 

terms of cost and quality. Four 

major production methods have 

been widely used: arc discharge 

[11], laser ablation [12], high 

pressure CO conversion [13] and 

the chemical vapour deposition 

(CVD). [14] [1] Due to the 

simplicity of its production setup, 

the low costs and relatively high 

purity of the end product, the CVD 

technique (Fig. 2.6) has become the 

main technology for mass 

production of MWNTs. 

2.1.4 Electronic properties of CNTs 

 The electronic properties of CNTs have received a wide research interest for being 

utillised in specific applications. According to both experimental and theoretical results, 

SWNTs can be considered as either metallic or semiconducting depending on the wrapping 

angle of the graphene sheet with regards to the tube axis. [15] [16] [17] [18] [19] [20] Fig. 

2.7 displays the chirality map which shows the various types of SWNTs that can be formed. 

The extraordinary and unique dependence of electronic structure on chirality vector arises 

from the fact that, in a single graphene sheet, the conduction and valence bands just touch 

each other at the six corner points, called as Fermi points which are one particular electron 

state, of the hexagonal first Brillouin zone. The Fermi point refers to an event chirality of 

electrons involved, and the diameter of a carbon nanotube for which the nanotube becomes 

metallic. This unusual band structure has a direct impact on the electronic properties of 

H2

CnHm

Inert gas

Fig. 2.6 – Schematic diagram for the CVD growth 

method. Hydrocarbon gas is decomposed in a quartz 

tube in a furnace over a transition metal catalyst (a 

CVD reactor) [1]. 
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graphene making it a zero band gap semiconductor. However, when a graphene sheet is 

rolled into a SWNT, periodic boundary conditions are imposed in the circumferential and as 

a result, each band of graphene splits into a number of 1-D sub bands. The allowed energy 

states of the tube are the cuts of the graphene band structure. When these cuts pass through a 

Fermi point, the tube is metallic whereas if no cuts pass through a Fermi point, the tube is 

semiconducting. [21] 

 Calculations [15] [16, 17] [18] [19] reveal that all armchair tubes (n=m) are 

conducting, while the other tubes, which are zigzag and chiral, are either small band gap 

semiconductors (as a consequence of curvature-induced mixing of π and σ states) if n-m=3i, 

or otherwise truly semiconducting with larger band gaps if n-m≠3i, where ‘i’ is a non-zero 

integer. Theoretical calculations also predict that one third of the tubes are metallic and two 

thirds are semiconducting. [16]
 
Scanning tunneling microscopy (STM) studies on SWNTs, 

by Wildöer [20] and Odom [22] confirm these predictions experimentally. However, CNTs 

are always produced as a mixture with a distribution of diameters and chirality and no 

method has so far been developed to synthesize individual nanotubes having the same 

chirality. 

 The electron transport property 

of MWNTs is more complicated than 

SWNTs. Each of its carbon shells can 

be metallic or semiconductive, 

depending on the chirality of the shell. 

At room temperature, the outer two 

shells will interact with each other and 

contribute to the conductance. [23] At 

low temperatures and low voltage bias, 

the current flows only through the outer 

shell. [24] Although the shells of the 

MWNT can be semiconductive, due to 

the fact that the band gap of the nanotube is inversely proportional to the CNT diameter, the 

band gap for the outer two layers of the MWNT with a diameter about 10 nm is very small 

compared with semiconductive SWNTs. [23] Experimentally, both metallic and 

semiconductive behaviour have been observed for MWNTs, and tubes with more complex 

conduction behaviours have also been observed. [25] In conclusion, MWNT yarns or mats 

should behave as metallic at room temperature. The conductivity of a single MWNT has 

Fig. 2.7 - Graphical representation of chirality map 

which displays the different types of SWNTs that can 

be formed via rolling a graphene sheet. SWNTs 

denoted by blue (n, m) are semiconducting and red (n, 

m) are metallic. 
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been evaluated experimentally, ranging from 10
5
-10

7
 S/m. [25] [26] Although it is still 

smaller than the conductivity of the gold or silver (10
8
 S/m), it is reaching the resistivity of 

the crystalline graphite, ~10
7
 S/m. 

2.1.5 Applications of CNTs 

 Since their discovery, carbon nanotubes have attracted much interest due to their 

small dimensions, strength and their exceptional physical properties. Until now, they have 

been used in a wide range of scientific and industrial applications such as field-effect 

transistors, [27] [28] [29] nano-tweezers, [30] high resolution atomic probes, [31] chemical 

probes, [32] mechanical actuators, [33]
 
hydrogen storage, [34]

 
non-volatile random access 

memory, [35] field-emission displays, [36] data storage devices, [37] and chemical sensors. 

[38] Moreover, SWNTs are among the strongest materials known to exist in nature. Namely, 

SWNTs have a Young’s modulus approximately 1 TPa and tensile strength nearly 50 GPa, 

which are greater than Young’s modulus (200 GPa) and tensile strength (400 MPa) of 

stainless steel. [39] These values are in accordance with the in-plane values for graphite and 

with that of diamond, and also agree with theoretical calculations. [40] [41] Direct 

measurements performed by an AFM set-up in a scanning electron microscope also revealed 

similar values of tensile strengths of the order of 20 GPa. [42] Hence, nanotubes can tolerate 

large strain before mechanical failure [38] [43] [44] and in combination with their light 

weight, they are an ideal candidate for the reinforcement of polymer composites, [45-47] 

[48] [49] [50] [51] [52]
 
 in many applications such as the construction of aircraft, space-craft 

and building industry, [53] etc. 

2.1.6 CNTs in polymer composites 

 The mechanical and electrical properties of CNTs render them as a very interesting 

material to reinforce polymer matrices as well as to obtain conductive polymer composites. 

When considering the potential applications of CNTs, important is to achieve a good 

dispersion of CNTs, or in other words obtaining individual CNTs instead of CNT aggregates. 

Depending on the production methods, the as produced CNTs have different aggregated 

morphologies. SWNTs produced by arc-discharge appear as yarns, while SWNTs or 

MWNTs produced by most of the CVD methods appear as random coils. These features 

result in difficulties in breaking down the CNT aggregates and obtaining individual CNTs. 

Apart from the intrinsic interaction between the adjacent CNTs in the yarns, or 

entanglements of the CNT in the coils, the poor compatibility between CNTs and many 

polymers or solvents is also found to be a big obstacle for obtaining individual CNTs in 
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solutions or composites. One of the solutions is to covalently or non-covalently attach small 

molecules or even polymer chains to the CNT sidewalls in order to improve their 

compatibility with polymer matrices. This method is called chemical functionalization of 

CNTs. Various kinds of molecules can be attached to the CNT side walls [54] [55] [56]. 

Banerjee et al. summarized various possibilities of covalent functionalization of SWNTs, 

which is shown in Fig. 2.8. [54] These treatments were proved to improve the dispersion of 

the CNTs in solutions. [57] Since the discovery of CNTs, the production volume of various 

kinds of CNTs has been dramatically increased. Several major producers have scaled up 

their CVD MWNT productions to the level of tons/year. This enables researchers to take 

CNT research to a semi-industrial scale. The price of the CVD MWNTs with a diameter of 

~10 nm has dropped dramatically over the last couple of years, from ~50 €/g in 2005, to 

about ~100-150 €/kg in 2009, depending on the quantity of the orders. Except for the 

MWNTs, SWNTs are also widely available on the market. Although the price of SWNTs has 

also dropped, it is still very expensive compared to MWNTs. [58] Carboxyl (-COOH) and 

hydroxyl (-OH) functionalized MWNTs are available in large quantity also at reasonable 

prices; the price of 90 % purity functionalized MWNTs with diameters of 10-30 nm is ~900 

$/kg. [58] 
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Fig. 2.8 – Diagram showing various covalent sidewall functionalisation reactions of SWNTs [54]. 

2.2 Nanoparticles and their physicochemical properties 

2.2.1 Silica nanoparticles (SiO2 NPs) 

 Colloidal silica (SiO2) can be defined as dispersed silica particles with a diameter in 

the range of 1 nm ≤ d ≤ 1000 nm. In this size regime, the particles are large enough to 

display properties unique from true solutions and are small enough that Brownian motion has 

a large influence. [59] [60] Silica NPs are of particular interest due to the ease of synthesis 

and precise control of the size and distribution of the particles. [61] Silica finds various 

applications ranging from ceramics, industrial coatings, silicon wafer polishing, catalysis, 
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health care, etc. [60] Silica NPs have also been used as fillers in the manufacture of paints, 

rubber products, and plastic binders. [62] Moreover, silica particles coated with organic 

modifiers are used in applications that include stationary chromatography phases, [63] 

heterogeneous supported catalysts, [64] and in the automotive, electronics, appliance, 

consumer goods, [65] aerospace and sensor [66] industries. 

 The industrial development of colloidal silica started first at 1861 by acidifying a 

solution of sodium silicate. [60] Since that time, several variations of this aqueous process 

have been developed. An important factor in this method of colloid formation is the pH 

dependence of the rate of condensation/polymerization of the Si-O functionality. At high 

pHs, like those found in solutions of sodium silicate, polymerization is extremely slow. As 

the pH is lowered, polymerization of Si-O units occurs and particles begin to form. [67] It is 

also possible to form silica particles starting from tetraalkoxysilanes (Si(OR)4). However, the 

alkoxy groups must first be hydrolyzed by acid or base catalysis before polymerization can 

occur, because hydrolysis is extremely slow at neutral pH. [68] [69] One of the most widely 

used base-catalyzed methods is the Stöber process. 

 Stöber and co-workers [70] 

reported a simple synthesis of 

monodisperse spherical silica 

particles. The synthesis proceeds with 

the hydrolysis of tetraethyl 

orthosilicate (TEOS) in a mixture of 

alcohol, water and ammonia 

(catalyst), and the subsequent 

condensation of the silanol groups. In 

general, the hydrolysis reaction gives the slightly hydrolyzed TEOS monomer (Fig. 2.9, 

Equation 1). This hydrolyzed intermediate undergoes condensation to eventually form silica 

according to Fig. 2.9, Equation 2. The resultant particles are stabilized by electrostatic 

repulsion due to the ions in the ammonia solution (Fig. 2.9). By this method, monodisperse 

spherical particles of silica can be generated between 50 nm and 2 μm, depending on which 

alcohol is used as solvent, concentration of water, concentration of ammonium hydroxide, 

concentration of alkoxysilane, and which alkoxysilane is used. The evolution of silica, 

formed in a sol gel process from alkoxysilanes, is well understood. At high pH, as in the 

Stöber process, [70] alkoxysilanes undergo efficient hydrolysis and less effective 

condensation. The primary particles that first appear after oligomerization are 

electrostatically stabilized by silanolate (R3SiO
-
) groups on the surface. When properly 

Fig. 2.9 – (a) Synthesis of Stöber spherical silica 

particles and (b) stabilization of the silica particles. 
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controlled, particles that subsequently form are captured by the primary particles, leading to 

a steady increase in the average diameter of relatively monodisperse particles. 

2.2.2 Silver nanoparticles (Ag NPs) 

 During the last decades, the synthesis and characterization of noble metal 

nanoparticles (NPs), defined as particles with a diameter between 1 and 100 nm, have 

attracted an extensive research interest in the field of drug delivery, photonics, catalysis, 

biosensors, ultrasensitive molecular detection via SERS substrates [71-73], etc. Their 

characteristic colorful colloidal solutions [74] was the reason why Gold (Au) colloids were 

used as a pigment of ruby-colored stained glass dating at the 17
th
 century. [75] Faraday first 

recognized that the red color was due to metallic gold in colloidal form. [76]  

 The use of noble metal NPs can be more precisely realized due to the fact that at this 

size level the properties of materials differ remarkably from that at the macroscopic scale or 

that of individual atoms or molecules. [77] These differences are, amongst others, caused by 

the well-known localized surface plasmon resonance (LSPR). [78, 79] This phenomenon is 

produced when an external electromagnetic field interacts with a metal nanoparticle resulting 

in the delocalization of the electron cloud. This electronic delocalization promotes two 

important consequences: i) an intense absorption band in the UV-vis spectrum, supplying 

interesting optical properties, [80] and ii) an increase in the local electromagnetic field near 

the nanoparticle surface that affect the local environment, which is exploited for surface-

enhanced Raman spectroscopy (SERS) applications, [81-83] superlensing, [84] or light 

transmission through optically thick films. [85] Therefore, rough metallic surfaces or  metal 

NPs under plasmonic excitation can act as antennae achieving scattering cross section 

enhancements of several orders of magnitude. [86] Amongst the three metals (Ag, Au, Cu) 

that display plasmon resonances in the visible spectrum, Ag exhibits the strongest plasmon 

band. [87] This is explained due to the higher energy of the interband transition (~3.2 eV), 

relative to the energy of the plasmon resonance, leading to a minimum damping of the 

plasmon. [88] Hence, silver NPs interact with light more efficiently than other particles of 

the same dimension composed of any known organic or inorganic chromophore. The light-

interaction cross-section for Ag can be about ten times that of the geometric cross-section, 

which indicates that the particles absorb much more light than is physically incident on them. 

[89] Silver is also the only material whose plasmon resonance can be tuned to any 

wavelength in the visible spectrum. [90] It should be mentioned that the SPR characteristics 

of metal NPs are determined by a set of physical parameters that are particles size, 
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composition, structure (e.g., solid or hollow) and dielectric constant of the surrounding 

medium. To that end, anisotropic shaped NPs (i.e rods, wires, etc) have SPR intensity that is 

stronger compared to isotropic ones. 

 Noble metal NPs (Ag, Au, Cu) have been utilized also as catalysts for many 

electron-transfer chemical reactions acting as an electron-relay. Their high surface area 

relative to their volume enables an enormous amount of external atoms on the surface whose 

are accessible to react with the environment (atoms, molecules, etc). [91] 

2.2.2.1 Origin of surface plasmon resonance (SPR) 

 Plasmon resonance is an optical phenomenon arising from the collective oscillation 

of the conduction band electrons in metals, when electrons are disturbed from their 

equilibrium positions. This can be induced by an electromagnetic wave (light), in which the 

free electrons of a metal are driven by the alternating electric field to coherently oscillate 

relative to the lattice of positive ions. For a bulk metal of infinite size, the frequency of 

oscillation ωp is defined as:   
  

    
 

    
⁄ , where Ne is the number density of conduction 

electrons, ε0 is the dielectric constant of vacuum, e is the charge of an electron, and me is the 

effective mass of an electron. [92] Therefore, the bulk plasmon frequency of a particular 

material depends only on its free electron density and for most metals occurs in the UV 

range, while alkali and some transition metals such as Cu, Ag, and Au exhibit plasmon 

frequencies in the visible region. 

 Due to the fact that the penetration depth of an electromagnetic wave inside a metal 

is limited (typically less than 50 nm), only plasmons caused by surface electrons are 

significant and commonly referred to as surface plasmons. Additionally, if a surface plasmon 

is associated with an extended metal surface, it is called a propagating surface plasmon. The 

frequency of a propagating surface plasmon is lower than the bulk frequency, with the 

theoretical frequency value of    √  for the metal-vacuum interface boundary conditions. 

[93] If the collective oscillation of free electrons is confined to a finite volume as with small 

metal particle, the corresponding plasmon is called a localized surface plasmon with the 

theoretical frequency of    √  for a metal sphere placed in vacuum. [92] 

 Fig. 2.10 [94] depicts the interaction between the electric field of incident light and 

the free electrons of a metal sphere whose size is smaller than the wavelength of light. The 

electric field of incident light displaces particles electrons from equilibrium in one direction 
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creating dipoles that can switch direction with the change in electric field. A generated 

restoring force tend to recombine charges, 

resulting thus in oscillatory motion of 

electrons. When the frequency of the 

dipole oscillation approaches that of an 

incident light, a resonance condition is 

reached, leading to constructive 

interference and showing the strongest 

signal for the plasmon. Such a condition is 

referred to as surface plasmon resonance 

(SPR), or localized surface plasmon resonance (LSPR). [95] 

 Surface polarization (i.e. charge separation) is the most important factor that 

determines the frequency and intensity of plasmon peak for a given metal, because it 

provides the main restoring force for electron oscillation. Therefore, exact position and shape 

of SPR peak are mainly defined by the 

materials’ properties, namely, materials’ 

electron density and dielectric constant. 

Indeed, any variation in particle size, 

shape, or dielectric environment will 

change the surface polarization and, further 

the position of the resonance peak. 

Polarisation of the surrounding medium, 

which is induced by oscillation of metal electrons, reduces the restoring force for the 

electrons, and thereby shifting the SPR to a lower frequency. Thus, by controlling the 

dielectric constant of the surrounding medium, the wavelength of SPR can be fine-tuned to a 

desired position. With the increasing particle size, the plasmonic peak maximum shifts 

towards the red region of the visible spectrum. Furthermore, for larger particles, higher order 

peaks (e.g. quadrupole, octupole SPR) become noticeable, arising from the existence of two 

or more polarization directions (Fig. 2.11 [90]). [95] 

 Gustav Mie [80] was the first who explained theoretically the localized surface 

plasmon resonance of metal colloids by solving the Maxwell’s equation for an 

electromagnetic light wave interacting with small spheres having the same frequency 

dependent dielectric constant as the bulk metal. The solution of this electro-dynamic 

calculation with appropriate boundary conditions for a spherical object leads to a series of 

Fig. 2.10 - Schematic illustration of a localized 

surface plasmon of a metal sphere. Reproduced 

from [95]. 

Fig. 2.11 - Diagrams depicting the electric field 

lines for the (a) dipole, (b) quadrupole and (c) 

octupole resonances. Reproduced from [90]. 
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multipole oscillations for the extinction cross-section of the particles (σext). For NPs with 

radius r much smaller than the wavelength of light (r <<λ), where only the dipole oscillation 

dominates (dipole approximation), the solution of Maxwell equations gives the following 

formula: 

    ( )  
      

 
  

     ( )

   ( )         
 ( )

 (2.2) 

where r is the particle radius, ω is the angular frequency of the exciting light, c is the speed 

of light, εm is dielectric constant of surrounding medium. While the εm is assumed to be 

frequency independent, the dielectric function of material itself is complex and dependent on 

energy (i.e. frequency) of incident light: ε(ω)= εr(ω) + i εi(ω), where εr and εi are the real and 

imaginary parts of dielectric function of material, respectively. The k factor is related to the 

particles shape anisotropy: it has a value of 2 for the case of a sphere, but increases to as 

large as 20 for the particle geometries with high aspect ratios. [96] For spherical particles, 

the resonance condition is fulfilled when εr(ω) = -2εm and εi is small or weakly dependent on 

ω: 

    
   ( )  

        
   

   
  (2.3) 

2.2.2.2 SERS effect and SERS substrates 

 The surface enhanced Raman scattering (SERS) effect was discovered by Martin 

Fleischman in 1974 as a large enhancement of the Raman signal of certain molecules 

adsorbed on roughened metallic surfaces. [97] Since then, SERS has been used as a powerful 

analytical tool for the sensitive and selective detection of molecules. The enhancement 

factors were calculated to be more than a million-fold in comparison with the normal Raman 

signals. Consequently, this means that the detection limits are considerably lower (down to 

10
-9 

M) compared to those for resonance Raman scattering. [98] In addition, the advantages 

of Raman scattering, i.e. molecularly specific vibrational spectra, simple versatile sampling 

and the ready determination of analytes in air and in water, are applicable to SERS 

spectroscopy. 

 More specific, a qualitative understanding of the SERS effect is provided by the 

classical theory of light scattering. [82] One can consider an incident light beam that induces 

an oscillation dipole P in a particle, which reemits or scatters light at the same frequency of 
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the dipole oscillation. For the particular case that the magnitude of the incident electric field 

E is not too large, the induced dipole moment, P can be approximated as follows: 

P = α E  (2.4) 

where α is the polarizability of the molecule. 

 The enhancement effect can influence either the molecular polarizability or the 

electric field experienced by the molecule. Surface selection rules are also available. [99] 

According to them, the most intense bands are those given by vibrations which induce a 

polarization of the adsorbate electron cloud perpendicular to the metal surface. [100] Hence, 

using the surface selection rules, the orientation of the adsorbed molecules relative to the 

metal surface can be predicted. [101]  

 Even if it is not yet fully understood the nature of mechanisms which are responsible 

for the SERS effect, nowadays, there considered two major types of contributions to the total 

enhancement of the Raman signal of different molecules: i) an electromagnetic 

enhancement, referred as the electric effect in which the molecule experiences large local 

fields caused by electromagnetic resonances occurring near the metallic surface, and ii) a 

chemical or charge-transfer effect ,referred as the molecular effect in which the molecular 

polarizability is affected by the interaction between the molecule and the metallic surface. It 

is generally believed that the enhancement is mainly attributed to the electromagnetic 

mechanism; however, the contribution of the charge transfer mechanism to the overall SERS 

enhancement cannot be ignored. [102] 

i) Electromagnetic enhancement mechanism 

 The electromagnetic enhancement is the result of two different factors. The first is 

the enhancement of the laser electromagnetic field due to the addition of the field induced by 

the polarization of the metal particle. The second is due to the molecule amplified Raman 

field which further polarizes the metal particle and acts as an antenna amplifying further the 

Raman signal. The concept of electromagnetic enhancement mechanism can be 

schematically illustrated as shown in Fig. 2.12. Considering a metal nanosphere with a 

diameter of 2r (small compared to the wavelength λ of the incident light, with a complex 

dielectric function ε) embedded in a medium with a dielectric constant εo, and a molecule 

located near the metallic surface at a distance d, it will be exposed to a field EM, which is the 
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superposition of the incident field E0 and the induced dipole field on the metal sphere Esp. 

[103] 

 

Fig. 2.12 - Schematic illustration of the electromagnetic effect in SERS. 

The field enhancement factor A(v) is defined as the ratio of the field that the molecule 

experiences at a distance d from the particle surface, divided by the incident field. 

 ( )  
  ( )

  ( )
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)   (2.5) 

where A(ν) is particularly intense when the real part of ε(ν) equals to -2εo. Additionally, to 

get an increase in the electromagnetic field, the imaginary part of dielectric constant should 

be small. These are the conditions which describe the resonant excitation of surface 

plasmons in a metallic sphere. 

 In conventional Raman scattering, the Stokes scattering intensity (P
RS

) is 

proportional to the Raman cross section (σ
R
), the excitation laser intensity I(νL) and the 

number of molecules in the irradiated volume (N). [103] 

   (  )      (  )  (2.6) 

To estimate the Stokes SERS intensity, equation (2.6) should be modified to describe the 

specific effects of metal nanostructures. According to the two mechanisms described 

previously, equation (2.6) gets the following form: 

     (  )       | (  )|
  | (  )|

   (  ) (2.7) 

where A(νL) and A(νS) are the enhancement factors for the laser and for Raman Stokes 

respectively, and N´ is the number of molecules involved in the SERS process. The 

enhancement of the electric field intensity close to the metallic surface is produced as 

consequence of the LSPR excitation. Therefore, the localized surface plasmon excitation is 

r

ε= ε″+ iεʺ

r/λ≤0.05

Metallic sphere

Molecule
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the direct cause of the SERS electromagnetic mechanism, and any variation in the intensity 

or frequency of the plasmon has an impact on the SERS signal acquired. [103] 

 Taking into account the effects of the increase for the field of laser and Stokes, the 

electromagnetic enhancement factor for the Stokes signal intensity, Gem(νs), can be written 

as: 

   (  )  | (  )|
  | (  )|

   |
 (  )   

 (  )    
|
  

|
 (  )   

 (  )    
|
  

(
 

   
)    (2.7) 

The electromagnetic mechanism does not require direct contact between the molecule and 

the metal, but decreases exponentially with the distance from the particle surface. This is 

because the dipole field decay with distance 1/d
3
, when it is raised to the fourth power, it 

results in the dependence 1/d
12

. [103] 

 Surface roughness is an important factor for SERS. On a smooth metallic surface, 

surface plasmons exist as waves of electrons bound to the metal surface and are capable of 

moving only in a direction parallel to the surface. On a roughened metal surface, the 

plasmons are no longer confined, and the resulting electric field can radiate both in a parallel 

as well as in perpendicular direction to the surface. When an incident photon falls on the 

roughened surface, excitation of the metallic particle plasmon resonance may occur and this 

allows scattering. Furthermore, due to the difference in dielectric constant between the 

roughened surface and the surrounding media, a concentration of electric field density occurs 

at sharp points on the surface. [104] Metal colloids and colloidal aggregates provide a 

particularly rich example of such local electromagnetic enhancement. Several authors [105] 

[106] have reported that protrusions on the surface of colloidal particles as well as cavities 

between adjacent particles in an aggregate can lead to a giant enhancement of the local field, 

up to a factor of 10
14

-10
15

. 

ii) Charge Transfer Mechanism 

 A lot of studies have been carried out to elucidate the existence of the charge transfer 

mechanism in SERS. [102] [107] The enhancement attributed to the charge transfer 

mechanism occurs when molecules physisorb or chemisorb on roughened metallic surfaces, 

forming an adsorbate-metal complex. In the case of chemisorption, the molecular orbitals are 

broadened by the interaction with the conduction bands of the metal surface. This results in a 

ready transfer of electrons and excitation from the metal to the adsorbate and vice versa (Fig. 

2.13). Consequently, the SERS spectra of chemisorbed molecules are significantly different 
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from the Raman spectrum of the free species or even the physisorbed species. The charge 

transfer mechanism is restricted by its nature to molecules directly adsorbed on the metal 

surface, as opposed to the electromagnetic enhancement mechanism which requires a certain 

distance beyond the molecule and the metallic surface. Thus, it effectively operates only on 

the first layer of adsorbate. It was Campion et al. [108] who first reported the experimental 

evidence of the charge transfer mechanism linking new features in the electronic spectrum of 

an adsorbate to SERS, under conditions where electromagnetic enhancement were 

unimportant. It was mentioned that it was difficult to observe only the charge transfer 

because electromagnetic effects had to be accounted. However, this was restricted by 

measuring SERS enhancement on a flat, smooth single crystal surface where electromagnetic 

effects were small and well understood. The problem is even more complex due to the fact 

that electromagnetic enhancement decreases as the adsorbate-surface distance decreases, and 

only the additional enhancement can be classified as charge transfer. However, the degree of 

enhancement of the first layer is very large. Overall, the charge transfer mechanism is not yet 

completely understood and still there a big debate on its mechanism. 

 

Fig. 2.13 - Energy level scheme for a metal-molecule complex formed when an analyte chemisorbs on a 

metal surface. 

 Colloidal suspensions of metallic nanoparticles are quite attractive for the fabrication 

of SERS substrates. The tendency of nanoparticles to coagulate upon casting on a surface 

leads to the formation of aggregates exhibiting roughness and fractal morphology, necessary 

for SERS. [109] [110] A lot of different metal colloids have been used, including gold and 

copper; however, silver is the most efficient since it has the most intense surface plasmon 

band due to the position of the interband transitions. It is also reported that SERS intensity 

increases with the size of silver particles (average diameter of 50 nm), however, further 

increase of the particle size (100-130 nm) has shown lower SERS signals. [111] The upper 
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dimension limit of the SERS-active system is determined by the laser wavelength. When 

nanoparticles with size of the order of the wavelength or larger are used, the optical fields 

excite progressively higher order multipoles that are non-radiative and thus not efficient in 

causing Raman excitations. [112] 

 The SERS substrates are very efficient when they are formed by plasmonic 

nanoparticles with fractal structures, like particle aggregates or thin films which form 

metallic islands. In these aggregates the oscillating surface plasmon is coupled between the 

particles being in close proximity. However, the field excitation is not uniformly distributed 

over all the aggregate; it is localized spatially in the so-called hot spots. The hot spot size is 

small, in the order of a few nanometers, and the localization depends on the fractal geometry, 

the excitation wavelength and the field’s polarizations. When the optic excitation is located 

in small hot spots, the SERS electromagnetic enhancement is extremely high, because it is 

proportional to the forth power of the electric field. [103] For these areas a theoretical 

enhancement nearly to 10
12

 has been predicted. [113] This order of magnitude has been 

confirmed by SERS experiments of one single molecule, in which the ‘normal’ Raman 

signal of 10
14

 molecules of methanol possess the same SERS signal intensity of one single 

molecule. [114] One disadvantage of the aggregate formation is that the hot spots have a 

random distribution. Moreover, aggregate systems are difficult to be controlled, and their 

reproducibility is limited by the dependence on the particle size and the distance between 

particles. [115] These reasons prevent reproducible signal intensity, restricting the 

applications of this technique. Lithography techniques (i.e. electron-beam lithography) have 

been exploited to fabricate topographically engineered SERS substrates with desired shape, 

size and arrangement. The obtained substrates were used to explore how the magnitude of 

the enhancement factor is influenced, by the varied size, shape, and interparticle spacing. 

[116] [117] [118] It is still under investigation to develop SERS substrates with longer 

lifetime, with stable and optimized enhancement factors permitting SERS in different 

environments. 

2.2.2.3 Synthetic routes for preparation of silver NPs 

 Several methods have been reported for the synthesis of Ag NPs, and they can be 

divided into ‘traditional’ and ‘non-traditional’ ones. [90] The term ‘traditional’ is used for 

solution-phase synthetic protocols that are based on the reduction of a silver salt. The most 

common methods were developed by Creighton and Lee who used AgNO3 as a metal source 

and NaBH4 as well as sodium citrate as a reducing agent, respectively. [119, 120] Resulting 
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colloids appear electrostatically stabilized due to the adsorption of citric ions to the particle 

surfaces during growth. A two-phase method, developed by Brust and co-workers, based on 

reduction of metal precursors, allows the preparation of metal organosols directly from 

water-soluble metal salts. [121] [122] By stirring aqueous solutions of metal salts (e.g. 

HauCl4, AgNO3, AgClO4) with toluene containing phase transfer agent, i.e. 

tetraoctylammonium bromide (TOAB), a two-phase system is formed initially, containing 

metal precursors on organic phase. Next, a measured quantity of capping agent, typically a 

long-chain alkanethiol, is added to the solution while stirring, and then a reducing agent (e.g. 

NaBH4 or hydrazine) is rapidly introduced to nucleate nanocrystals. The average particles 

size is coarsely tuneable by adjusting the ratio of the stabilizing agents to metal salt, whereas 

size-selective precipitation is employed to narrow the initial size distribution. The so-called 

‘non-traditional’ methods, include Ag particle synthesis through high-temperature reduction 

in porous solid matrices, [123] vapor-phase condensation of metal onto a solid support, [124] 

laser ablation of a metal target into a suspending liquid, [125] photoreduction of silver ions 

[126] and electrolysis of a silver salt solution. [127] High temperature decomposition of 

metal precursors in the presence of stabilizing agents has been used to produce noble metal 

NPs. [128] In that case, preparation involves injection of metal precursors in high-boiling 

point inert solvents along with a combination of stabilizing ligands, such as alkanethiols, 

amines or carboxylic acids, at elevated temperature. Similar to other synthetic methods, NPs 

size can be coarsely tuned by the ratio of capping agent to metal salt, while size-selective 

precipitation yields particles with polydispersity of ~5%. Recently, Hiramatsu reported a 

simple and large-scale synthesis of gold and silver nanocrystals through mild reduction of 

metal precursors in the presence of oleylamine at elevated temperature. [129] This method 

can produce nearly monodisperse particles with no need of time- and solvent-consuming size 

selective precipitation steps. The oleylamine serves both as a reducing and stabilizing agent 

simplifying the optimisation of reaction conditions significantly if compared to more 

complex multicomponent systems. So far, different silver salts and reducing agents have 

been utillised to obtain stable and monodisperse Ag NPs in solution. [130, 131] 

Unfortunately, both of the two approaches have to face some inherent problems. Traditional 

methods, for instance, have a limited range in the final size of the particles producing in most 

of the cases particles below 10 nm, size not sufficient for optical and spectroscopic purposes. 

On the other hand, the disadvantages of the non-traditional methods are the wide size 

distribution, lack of crystallinity, high cost and up-scaling of the fabrication process. 

 Recently, some strategies have been exploited to overcome the previously mentioned 

problems of the traditional synthetic methods. Hybrid systems composed of polymer-
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nanoparticle or inorganic material-nanoparticle arrangements have been developed where 

NPs can endow their unique properties to the resulting nanoassemblies. The structure and 

functionalities of the host material used as the support for the metal NPs can control the 

spatial distribution of NPs, avoiding thus the most prominent problem which is their 

tendency to agglomerate due to their high surface energy. [132] To that end, a great number 

of polymeric materials, such as dendrimers, [133] latex particles, [134] microgels, [135] 

polymers brushes, [136, 137] and inorganic materials like SiO2 microspheres, [138] have 

been used as carriers for the immobilization of metal NPs. Liu et al. used poly(amidoamine) 

(PAMAM) dendrimers as carriers to incorporate Ag NPs after the reduction of Ag ions by 

NaBH4, previously interacted within the branched structure of PAMAM. [133] The 

disadvantage of this protocol is that the final size of the metal NPs is determined by the 

dimension of the dendrimer, limiting the method only for small Ag NPs. Chen et al. 

synthesized poly(N-isopropylacrylamide)-coated latex microgels to facilitate the deposition 

of Ag nanospheres on the microgel surface in ethanol/water media. [134] These Ag NPs 

were produced via in situ reduction of Ag
+
 by radicals generated from the polymerization 

initiator. Ballauff et al. used also the same core-shell system to immobilize Ag NPs via 

chemical reduction of Ag
+
 with sodium borohydride, and proposed the hybrid system for 

catalytic applications tunable with temperature variations. [135] For both cases, non-

biocompatible polymers were used preventing from bio-medical applications. In order to 

overcome this obstacle, metal coated SiO2 particles have gained tremendous interest and 

many synthetic approaches have been reported. [138, 139] Core-shell Ag@SiO2 particles 

have been also fabricated with a homogeneous SiO2 shell surrounding the silver surface used 

as nanoreactors for redox catalysis. [140] Moreover, Deng el al. used polyvinylpyrrolidone 

(PVP) as reducing and stabilizing agent for the fabrication of SiO2@Ag nanocomposites. 

[141] Although no additional reducing agent was needed, the synthesis is unfeasible in 

aqueous media and limited for particles dispersed finally in an organic solvent. Zhu el al. 

used an electroless process to obtain core-shell SiO2@Ag submicrometer spheres. In that 

case, the silica surface was modified through the adsorption of Sn
2+

 ions in a first step, and 

then reduced by an ammoniacal silver nitrate solution at low concentration, using a mixture 

of ethanol/formaldehyde to obtain a dense silver coating. [142] However, an important 

drawback of this protocol is the use of toxic formaldehyde. Kobayashi et al. used as well an 

electroless plating process to deposit Ag NPs on silica spheres. Initially, they modified the 

silica surface with SnCl2, and then Ag
+
 where reduced toAg

0
, while Sn

2+
 oxidizes to Sn

4+
, 

leading to a homogeneous deposition of Ag NPs. [143]
 
Nevertheless, in order to obtain a 

relatively dense Ag coating, the two step process had to be repeated several times. 
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2.3 Block copolymer (BCP) nanostructures 

 Nanostructured Epoxy/BCP blends have been fabricated in this thesis using diblock 

copolymers. Diblock copolymers represent a sort of block 

copolymers, consisting of two covalently bonded and 

chemically dissimilar polymer subunits (blocks) (Fig. 2.14). 

[144] Block copolymers (BCPs) are considered also other 

sorts of macromolecules like triblock copolymers, star-

block copolymers, cyclic block copolymers, etc. [145] [146] 

The most used macromolecular components in diblock copolymers are polystyrene (PS), 

poly(methyl methacrylate) (PMMA), polyvinylpyridine (PVP), polyisoprene (PI), 

polybutadiene (PB), polydimethylsiloxane (PDMS), and poly(ethylene oxide) (PEO). 

Although the first block copolymers were synthesized in 1950s, the extensive research 

emerged upon advanced polymerization methods at the end of 1980s. [147]  Their synthesis 

utilizes the well-known living polymerisation techniques; 1) Living Anionic or Cationic 

Polymerization, 2) Atom Transfer Free Radical Polymerization (ATRP), 3) Reversible 

Addition Fragmentation Chain Transfer (RAFT) and 4) Group Transfer Polymerization 

(GTP) which efficiently enable a control over the chain polydispersity (PDI) [146] [148]. 

 Block copolymers have obtained a significant interest due to their inherent 

microphase separation of the chemically distinct blocks in microdomains, at the nanometer 

scale. This characteristic arises from the covalent coupling of the blocks, unlike polymer 

blends which provide microdomains of a micrometer scale. Therefore, the term ‘microphase 

separation’ seems obsolete; however, it is steadily used in place of ‘nanophase separation’ 

because of similar thermodynamic processes, which describe the origin of microdomains. 

The nanometer scale of the BCP morphologies is considered as a very attractive structural 

asset for many physico-chemical devices, since it is of the same order as the exciton 

diffusion length or the thickness of tunneling barriers. Also the surface to volume ratio, in 

comparison for instance with a polymer blend, is much higher in BC microdomains (around 

two orders of magnitude). This is very challenging for surface dependent processes like 

photovoltaics, electroluminescence, catalysis, etc. 

 There are three principal factors which can determine the morphology of a BCP; the 

total degree of polymerisation N (= NA + NB), the Flory-Huggins segment-segment 

interaction parameter χ, and the volume fractions of the blocks f (fA, fB). [149] Degree 

of polymerization predestinates the radius of gyration Rg of the polymer, and therefore the 

Fig. 2.14 - A diblock copolymer. 
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size of the microdomains. Growing of polymer chains is associated with characteristic 

stretching in order to fill space, thus, N specifies the entropic contribution to the overall 

Gibbs energy of the BCP. On the other hand, chemical incompatibility of the blocks results 

in their repulsion, and so it leads to penetration of the phase A into the phase B. 

 The incompatibility is expressed with the χ parameter, which is a rational function of 

temperature 
[3] 

so that it specifies the enthalpic contribution to the overall Gibbs energy. Plot 

of the product χ N vs. the volume fraction f of one of the blocks, expresses the phase balance 

between entropy and enthalpy of the block, and it is called as phase diagram. Using the full 

self-consistent field theory (SCFT), 

Matsen and Bates calculated the 

complete phase diagram of diblock 

copolymer melt (Fig. 2.15). [150] 

[151] Accordingly, they found that 

diblock copolymer at χ N less than 

ca. 10.5 is always in disordered state 

irrespective of the volume fraction. 

This may occur at higher temperature 

and lower degree of polymerization. 

The diblock copolymers used in this 

thesis have N around 400 and such 

degree of polymerization is usually 

high enough to overcome the order-

disorder transition (ODT) at room 

temperature. Typical value of χ parameter in copolymer melts is around 0.1 (e.g. PS-P2VP); 

χ parameter of PS-P4VP several times is higher due to ionomeric nature of P4VP. [152] 

[153] It is also worthwhile to mention the experimental work of F. S. Bates et al. [154] who 

estimated the thermal dependence of χ as χ(T)=91.6⁄T-0.095 for symmetric PS-b-P2VP via 

rheological measurements. Dai and Kramer [155] came to similar result using forward recoil 

spectrometry: χ(T)=66⁄T-0.033. PS-P4VP copolymers have also higher ODT temperature 

than PS-P2VP due to greater dipole polarization as was found using thermally stimulated 

currents and dielectric relaxation spectroscopy. [156] Over ODT, the copolymer blocks are 

segregated in microdomains according to the phase diagram (Fig. 2.15). However, if χ N is 

                                                           
[3] 𝜒  

𝐶1

𝑇
−   , where C1 and C2 are constants. 

Fig. 2.15 - Diblock copolymer morphologies with the 

corresponding phase diagram. [150] 
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less than ca. 50 the phases are only moderately segregated, i.e. the phases fluctuate at the 

interfaces. In the strong segregation regime (χ N > 50), the interfaces among the 

microdomains are very sharp and so the microdomains are well defined. In strongly 

segregated diblock copolymer, the disordered state is observed only at high asymmetry, with 

volume fraction of the minor block less than ca. 5 %.  

 With increasing volume fraction, strongly segregated diblock copolymer forms 

body-centered cubic (BCC) arranged spheres (S) of A-phase for fA ≈ 5-15 %, hexagonally 

arranged cylinders (C) for fA ≈ 15-30 %, and stacking lamellae (L) for fA ≈ 30-50 %. For 

fA > 50 %, A-phase becomes a matrix for B-phase morphologies as is evident from the axial 

symmetry of the phase diagram at f = 0.5 (Fig. 2.15). Weak segregated regime provides also 

intermediate morphologies as closed-packed (Scp) or bicontinuous gyroids (G). Emergence of 

these morphologies in diblock copolymers is strongly dependent on both χ N, and f, 

respectively. Several further metastable morphologies, like hexagonal modulated lamellae 

(HML), hexagonal perforated lamellae (HPL), and double-diamond (D), have been observed 

in diblock copolymer melts. [157] 

2.4 Fiber Reinforced Polymer Composites (FRPCs) 

 Composites are the materials which are composed of a mixture of two or more 

immiscible phases, and their performance is highly dependent on the properties and 

interactions of the constituent phases. The classification of fiber reinforced polymer 

composites (FRPCs) is in general contradictory and arbitrary. Composites are often 

classified according to the matrix or the fiber used, the length of the fiber, the goal of the 

application, etc. The most used composite materials are consisted of long fiber reinforced 

thermoset composites, and the fibers are usually glass, carbon or aramid. These materials 

possess exceptional stiffness and strength; they are light-weight, however, usually very 

expensive. The amount of long fiber reinforced thermoplastic composites is much smaller 

because of the processing difficulties. Extruded profiles and glass mat or woven textile 

reinforced polymers represent this class. Moreover, both thermosets and thermoplastics are 

reinforced by short fibers. Short fiber reinforced composites are extensively used by the 

automotive and machine industry. These materials are usually supplied in the form of 

granules and they are processed by injection molding. 

 The properties of FRPCs are determined by four factors: i) component properties, ii) 

structure and iii) interphase between fiber and matrix. All four are equally essential and they 

must be adjusted to achieve optimum performance of the final composite. The materials 
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studied in this thesis fall into two categories. The first chapter discusses Epoxy/GF model 

composites. Single GFs covalently and non-covalently bonded with MWCNTs were 

embedded in an epoxy matrix, and investigations of the interphasial adhesion strength as 

well as the electrical properties of the interphase for specific applications, have been studied. 

The other chapter deals with CNT-modified short JFs and their use for reinforcing natural 

rubber. In that case, the use of CNTs functions as a macromolecular coupling agent 

improving the interfacial interaction, and together with the interfacial toughening 

mechanisms are discussed in detail to explain the remarkable enhancement of the mechanical 

properties of the natural rubber matrix. If we consider that the factors determining the 

properties of polymer composites are the same, on the one hand, and that the thesis focuses 

mostly on interfacial interactions and their modification, on the other hand, the variation of 

composite components becomes of much less significance. 

 Some applications of the materials used in this study, which our results can be of 

great interest for the fabrication 

of final products in the future, 

are depicted in Fig. 2.16. In the 

upper side, products made out of 

Epoxy/GF composites are 

illustrated, while in the lower left 

side; epoxy/natural fiber 

composite parts of a car are 

depicted, while in the lower right 

side, natural rubber/natural fiber 

based composite material for 

shoe application is illustrated. 

2.4.1 Fibers used to reinforce a polymer matrix 

 Due to the high tensile modulus and strength, the fibers carry the most of the load in 

a FRPC. The fibers also toughen the brittle matrix by blocking or deflecting any cracks that 

may propagate through the polymer matrix. In addition, the fibers can be selectively aligned 

in specific directions and locations where the maximum stresses are likely to occur. [158] 

[159] The fiber content of polymer composites may change in a wide range and the ulterior 

aim to improve stiffness and strength. These goals require the introduction of the largest 

possible amount of fibers in a polymer matrix, but the improvement of the targeted property 

Fig. 2.16 – Applications of Epoxy/GF composites (upper side), 

as well as natural fiber reinforced epoxy (lower left side) and 

natural rubber (lower right side) composites. 
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may be accompanied by the deterioration of some others. Numerous fiber characteristics 

such as chemical composition and purity, fiber surface morphology and chemistry, surface 

free energy, hardness and other properties can influence the properties of FRPCs. [160] 

 Glass fibers (GFs) are the most used reinforcing fibers in modern composites, and 

their products are found in various market areas such as transportation, construction, marine, 

electric and consumer products. Fig. 2.16 shows some examples of GFRPs applications. 

Many of these industrial composites are cost-competitive with metals, and in many cases are 

able to substitute metals due to their unique and inherent properties (low corrosion and better 

fatigue resistance), lower tooling costs and ease of fabrication. [161] The chemical 

composition and properties of different types of GFs commercially available in the market, 

are given in Table 2.1. [162] As it can be observed, GFs exhibit in general high strength-to-

weight ratio and this justifies their use as reinforcement where high strength and minimum 

weight are required. As a textile, GFs can be in the form of unidirectional or bidirectional 

and they are known for their electrical and thermal insulating properties. E-Glass fibers are 

mostly used nowadays, and they have been employed within this thesis throughout all the 

experiments. 

Table 2.1 Different types of GFs with their composition and their physical properties [162] 

 

A Glass C Glass D Glass E Glass AR Glass R Glass 

High alkali 
Chemical 

resistance 

Hi- 

dielectric 

‘Electric’ 

glass 

Alkali-

resistance 

High- 

dielectric 

SiO2 63-72 64-68 72-75 52-56 55-75 55-60 

Al2O3 0-6 3-5 0-1 12-16 0-5 23-28 

B2O3 0-6 4-6 21-24 5-10 0-8 0-0.35 

Cao 6-10 11-15 0-1 16-25 1-10 8-15 

MgO 0-4 2-4  0-5  4-7 

ZnO       

Bao  0-1     

Li2O     0-1.5  

Na2O+K2O 14-16 7-10 0-4 0-2 11-21 0-1 

TiO2 0-0.6   0-1.5 0-12  

ZrO2     1-18  

Fe2O3 0-0.5 0-0.8 0-0.3 0-0.8 0-5 0-0.5 

F2 0-0.4   0-1 0-5 0-0.3 

Density(g/cm3) 2.44 2.52  2.58 2.70 2.54 

Tensile str. (MPa) 3310 3310  3445 3241 4135 
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Young’s Mod. (GPa) 68.9 68.  72.3 73.1 85.5 

Elongation % 4.8 4.8  4.8 4.4 4.8 

Durability (% wt loss)       

H2O: 24 hr 0-6 3-5  12-16 0-5 23-28 

10% HCl: 24 hr 0-6 3-5  12-16 0-5 23-28 

Vol. res. (Ohm×cm) 1.0E+10   4.02E+14  2.03E+14 

Surf. resistivity (Ohms)    4.20E+15  6.74E+13 

  

 Among others, natural fibers are used as reinforcement of polymer matrices because 

of their good strength and stiffness, as well as their low density. Another important factor is 

their low price, since these raw materials obtained from natural, renewable resources and 

usually are much cheaper than synthetic fibers. Natural fibers can be derived from plants, 

animals (wool) or minerals (asbestos, basalt) [163] [164] and mostly composites are prepared 

from plant fibers. Plant fibers can be classified according to their origin, the part of the plant 

supplying the fiber, thus we talk about seed fibers (cotton, coconut), bast fibers (flax, hemp, 

jute) and leaf or hard fibers (sisal, pineapple, abaca or Manila hemp). [164] All of these 

fibers are based on cellulose, which is the building element of the long fiber-like plant cells. 

The chemical composition of different types of natural fibers is given in Table 1.2. [164] 

Depending on the climatic conditions of the crop area and the technology of the treatment, it 

can be clearly observed that they differ remarkably in their chemical composition from each 

other (Table 1.2). [164] The physical and chemical characteristics (biological degradation, 

flammability, sensitivity to moisture, thermal/UV stability) are strongly influenced by the 

additional components of the fiber, the amorphous hemicellulose and the lignin contents. 

Table 2.2 Chemical composition of plant fibers [164] 

Component 

Composition of fiber (wt%) 

Cotton Jute Flax Ramie Sisal 

Cellulose 82.7 64.4 64.1 68.6 65.8 

Hemicellulose 5.7 12.0 16.7 13.1 12.0 

Pectin 5.7 0.2 1.8 1.9 0.8 

Lignin - 11.8 2.0 0.6 9.9 

Water soluble 1.0 1.1 3.9 5.5 1.2 

Wax 0.6 0.5 1.5 0.3 0.3 

Water 10.0 10.0 10.0 10.0 10.0 
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 The main characteristics of different natural fibers compared to synthetic ones are 

listed in Table 1.3. [164] The data clearly indicate that the properties of natural fibers vary in 

wide range. As mentioned above, these differences can be explained by the dissimilar 

structure of fibers coming from crop areas with different climatic conditions, and besides the 

climatic differences, the technology and treatment applied to obtain the fibers influences 

significantly their properties as well. 

Table 2.3 Selected properties of natural and synthetic fibers [164] 

Fiber Density(g/cm
3
) Tensile strength 

(Mpa)  
Elongation Young’s 

modulus (GPa) 

Cotton 1.5-1.6 290-600 7.0-8.0 5.5-12.6 

Jute 1.3 390-780 1.5-1.8 26.5 

Flax 1.5 350-1040 2.7-3.2 27.6 

Hemp - 690 1.6 - 

Ramie - 400-940 3.6-3.8 61-128 

Sisal 1.5 510-640 2.0-2.5 9-22 

Coir 1.2 175 30.0 4-6 

Soft wood 1.5 1000 - 40 

E glass 2.5 2000-3500 2.5 70 

S Glass 2.5 4570 2.8 86 

Aramide 1.4 3000-3150 3.3-3.7 63-67 

Carbon 1.4 4000 1.4-1.8 230-240 

 

 The preparation and use of polymers containing natural fillers or reinforcements is 

not new in the plastic industry, however, these materials went through a revival in recent 

years all over the world. Composites containing lignocellulosic components are known since 

the 1900-ies, especially in the building and furniture industry. [165] Already in 1916 Rolls 

Royce used a phenol-formaldehyde resin/wood composite for the production of the knob of 

its gear lever. [166] The various wood-fiber, laminated and MDF boards are prepared from 

phenol-formaldehyde, urea-formaldehyde and melamine formaldehyde resins [165]. After 

recognizing the advantages of natural fillers and fibers, more and more research groups 

started to work on the replacement of glass and carbon fibers in composites and to study 

natural fiber reinforced unsaturated polyester [167], epoxy [168] and novolac [169] 

composites. In recent years, increasing quantities of thermoplastic polymers were used as 

matrix materials in wood/plastic composites (WPC). Due to geographical conditions, i.e. 

large quantities of primary wood raw material as well as byproducts, wood composites are 
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used in the building industry as decking mainly in North America. [170] Europe is behind 

the US and Canada in the application of natural fiber reinforced plastics. Hemp, flax and jute 

are more often used here as natural reinforcements mostly in the automotive industry [171], 

since wood based raw materials, as well as wood waste are available in smaller quantities. 

[170] [171] Commodity polymers are used the most often as matrices for the production of 

composites. [172] Internal panels in cars are produced from polypropylene or polyurethane 

reinforced with natural fiber. [173] Apart from the advantages listed above, natural fibers 

have also some drawbacks. Their hydrophilic nature may create problems when introduced 

in polymer composites. Moisture content can reach as high as 10 wt% depending on their 

chemical composition and the amount of voids in the non-crystalline regions. The 

mechanical properties of composites are strongly affected by the moisture content of the 

fibers. [164] In addition, the transverse strength of the fibers is small and they can easily 

break or split at this direction of the load. 

2.4.2 Polymer matrices 

 The characteristics of the polymer matrix strongly influence the effect of fiber on 

composite properties. The role of the polymer matrix is to determine and maintain the shape 

of the composite, to keep the fibers in position, to prevent the fibers from buckling, and to 

protect the fiber surfaces from chemical and mechanical damage. Apart from the fiber 

characteristics, the matrix properties influence also the performance of the composite, and 

the selection of the polymer depends on the intended application. 

 Based on the chain structure, polymers can be classified as linear, branched or cross-

linked. In linear polymers, the mer units are from single continuous chain and the mer units 

in the chain are bonded together by weak Van der Waals forces. In the case of branched 

polymers, additional side branches result from further reaction that occurs during synthesis. 

In cross-linked polymers, the side branches join up with adjacent branches chains. These 

bonds are covalent bonds formed during the synthesis of the polymer or at elevated 

temperature, resulting in a cross-linked polymer chain network. [174] Polymers can also be 

classified as either thermosets or thermoplastics. Thermoplastic polymers melt upon heating 

and return in their original chemical state upon cooling, whereas, thermoset polymers 

become infusible and insoluble upon heating and do not return in the original chemical state 

upon cooling. Thermoplastics can be further classified as amorphous, semi-crystalline or 

highly-crystalline. Amorphous thermoplastics have no long range order on supramolecular 

level. Semi-crystalline and highly-crystalline thermoplastics have at least some portion of 
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their bulk with a long range order. Thermoset polymers can be amorphous or semicrystalline. 

[175] 

 Epoxy resin is one of the most resistant thermosetting polymers and contains more 

than one ethoxyline group in its molecular structure. The epoxy monomer contains epoxide 

groups which can polymerize in the presence of a ‘hardener’. The polymerisation process is 

known as ‘curing’, and it can be controlled by temperature, choice of resin/hardener and the 

ration of the reactive components. There are two main categories of epoxy resins, the 

glycidyl and the non-glycidyl epoxies. Diglycidyl ether of bisphenol-A (DGEBA) is a typical 

commercial epoxy resin and it is synthesized by reacting bisphenol-A with epichlorhydrin in 

the presence of a basic catalyst. [176] Fig. 2.17 shows the structure of DGEBA resin. [177] 

The properties of the resins depend on the value of n, which is the number of repeating units 

commonly known as degree of polymerisation. Typically, n ranges from 0 to 25 in many 

commercial products. 

 

Fig. 2.17 – Generalised structure of bisphenol-A epichlorohydrin resin (or DGEBA). 

 The curing agents usually include amine, polyamides, phenolic resins, anhydrides, 

isocyanates and polymercaptans compounds or a mixture of them. The stoichiometry of the 

epoxy/hardener system affects the properties of the cured material. By employing different 

types and amounts of hardener, one can control the cross-linking density which can affect 

further the structure and the final properties. Amines and amine-functional amides are the 

most commonly used hardeners for high-performance, ambient-cured industrial maintenance 

epoxy resins. The typical reactions between epoxy and amine hardener are shown in Fig. 

2.18. [177] 
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Fig. 2.18 – Epoxy reaction mechanisms. [177] 

 Primary and secondary amines are highly reactive with epoxide groups and 

nucleophillic ring-opening addition reactions occur. At the same time, an etherification 

reaction can also occur between the reacted epoxy groups which carry a terminal –OH group, 

with the non-reacted epoxide groups. [177] These epoxy polymers are commonly used as 

adhesives, high-performance coatings and potting, and encapsulating materials, owing to 

their excellent electrical insulating properties low shrinkage, good adhesion to many metals 

and resistance to moisture, thermal and mechanical shock. 

2.4.3 Interphase between fiber and matrix and interfacial interactions 

 The interphase is considered as a crucial parameter in controlling the overall 

composite performance. The load is transferred from the matrix to the fiber through the 

interphase, and deformation of the interphase region upon loading is critical in absorbing 

energy during failure. [158] [159] The interphase joins the composite constituents, and it 

serves as an important determinant for the composite properties such as interlaminar shear 

strength (ILSS), stiffness, delamination resistance, fatigue and corrosion resistance. 

Therefore, it is imperative that the interphase should be ‘engineered’ to enhance the 

component interaction. [178] 

 As noted by Hoecker and Karger-Kocsis, [179] the inherent three dimensional 

stresses that arise within laminate composite samples are quite complicated; thus, single fiber 

testing has been adopted to simplify analysis.  Currently, the test of single fiber 

microcomposites is a widely used method to analyze the fiber/matrix interphase, in which 

single fibers are embedded in special geometries of matrix blocks. Micromechanical test 

methods include: a) the single fiber pull-out test, b) the single fiber micro-debond test, c) the 
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single fiber fragmentation test and d) the single fiber push-out test (or indentation) which are 

illustrated schematically in Fig. 2.19. 

 

Fig. 2.19 – Schematic illustration of the different micromechanical tests used to determine the interfacial 

adhesion strength of single fiber model composites. a) single fiber pull-out test, b) single fiber micro-

debond test, c) single fiber fragmentation test and d) single fiber push-out test (or indentation). 

 Matrix/fiber interactions lead to the development of an interphase with properties 

different from those of both components. Strong interaction is needed that is usually 

achieved by the creation of covalent bonds between the fiber and the matrix. Other types of 

interactions discussed sometimes are, Van der Waals forces, electrostatic interactions, 

interdiffusion, mechanical interlocking, and they usually depend on the fiber surface 

chemistry or the matrix functionality. 

 In fiber reinforced polymers, strong interaction is usually achieved by coupling. This 

assumes the chemical, covalent bonding of the components. However, either the fibers or the 

polymers rarely contain reactive groups, which can react with each other. As a consequence, 

coupling agents are used, which can react both with the polymer and the fiber. A typical 

example is the use of organofunctional silane coupling agents in glass fiber reinforced 

thermoset composites. The properly selected organofunctional group reacts with the matrix 

polymer, while silanols formed by hydrolysis from trimethoxy groups react by condensation 
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with the active –OH functionalities of the GF surface. The success of silanols in such 

composites led to their application in other material combinations. The principle of coupling 

and the example presented above clearly indicates that coupling agents are system specific, 

so they must be selected according to the chemical structure of the component. 
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Chapter 3 

Experimental Techniques 

3.1 Analytical methods 

3.1.1 Fourier transform infrared spectroscopy (FT-IR) 

 Infrared (IR) spectroscopy is a useful analytical technique for studying pure 

rotational, pure vibrational, and rotation-vibration energy changes in the ground state of 

molecules. [180] Especially, it deals with the interaction between a molecule and photon 

energy from the IR region (IR region = 4000 - 400 cm
-1

) of the electromagnetic spectrum, 

which is translated as energy of molecular vibration, either stretching or bending. The 

appearance of a vibrational transition in the IR region depends on an overall change of the 

electric dipole moment during the vibration, and the intensity of the bands is dependent on 

the magnitude of the dipole moment change. [180] IR gives information on vibrational 

frequencies which have been extensively used to fingerprint certain groups in different 

molecules. In FT-IR spectroscopy, there are three frequency regions, which are attributed to 

different vibration modes: near-infrared (10000-4000 cm
-1

), middle (4000-200 cm
-1

) and far 

infrared (200-10 cm
-1

). FT-IR spectrum is plotted as transmittance (or absorbance) versus 

wavenumber. Liquids are examined as thin films sandwiched between two polished NaCl 

plates that display no absorbance in IR region. Solids usually are incorporated into thin KBr 

disk, prepared under high pressure, or mixed with non-volatile liquid and ground to a paste 

that is smeared between salt plates. 

3.1.2 Raman and Surface-enhanced Raman spectroscopy 

 Raman spectroscopy belongs to the family of vibrational spectroscopy, and it is 

commonly used as a fingerprint of chemical bonds in molecules. The Raman effect allows 

the observation of vibrational spectra giving complementary information to those of infrared 

spectroscopy. The most important stimulus to the development of Raman spectroscopy has 

been the laser, invented by Maiman in 1960. [181] Due to its non-destructive character; 

Raman spectroscopy represents one of the most useful tools to obtain information about the 

structure and properties of molecules from their vibrational transitions. However, the direct 

assignment of Raman bands of relatively complex species is rather complicated. [182]  
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 The Raman instrument consists of 3 components: a laser source, a sample 

illumination system and a spectrophotometer. When electromagnetic radiation falls on an 

atomic or molecular sample, it may be absorbed if the energy of the radiation corresponds to 

the separation of two energy levels of the atoms or molecules. If not, the radiation will be 

either transmitted or scattered. The scattered light consists of two types: i) one called 

Rayleigh scattering which is strong and has the same frequency as the incident beam (ν0); it 

was Lord Rayleigh in 1871 who showed that the intensity Is of scattered light is related to λ 

by 

 𝑠𝛼 𝜆−4
  (3.1) 

and ii) the other called Raman scattering which is very weak (~10
-5

 of the incident beam), 

and has frequency ν0±νm, where νm is a vibrational frequency of a molecule. The ν0-νm and 

ν0+νm lines are called Stokes and anti-Stokes lines, respectively. In fact, in Raman 

spectroscopy it is measured the vibrational frequency (νm) as a shift from the incident beam 

frequency (ν0). In contrast to IR spectra, Raman spectra are measured in the UV-vis region 

where the excitation as well as Raman lines appear. The incident radiation should be highly 

monochromatic so as the Raman effect can be observed, and because Raman scattering is so 

weak should be also very intense. According to classical theory, Raman scattering can be 

explained as follows: The electric field strength (E) of the electromagnetic wave (laser beam) 

fluctuates with time (t) as described by 

𝐸 = 𝐸𝑜𝑐𝑜𝑠2𝜋𝜈𝑜𝑡  (3.2) 

where E0 is the vibrational amplitude and ν0 is the frequency of the laser. If a diatomic 

molecule is irradiated by this light, an electric dipole moment P is induced 

  = 𝛼𝐸 = 𝛼𝐸𝑜𝑐𝑜𝑠2𝜋𝜈𝑜𝑡 (3.3) 

Here, α is a proportionality constant called polarizability. Accordingly, if the molecule is 

vibrating with a frequency νm, the nuclear displacement q is written as 

𝑞 = 𝑞𝑜𝑐𝑜𝑠2𝜋𝜈 𝑡  (3.4) 

where q0 is the vibrational amplitude. For small amplitude of vibration, α is a linear function 

of q. Thus, it can be written 

𝛼 = 𝛼𝑜 + (𝛿𝛼/𝛿𝑞) 𝑞𝑜 + ... (3.5) 
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The combination of [3.3], [3.4] and [3.5] equations results in the formula: 

    𝐸 𝑐𝑜𝑠 𝜋𝜈 𝑡    𝐸 𝑐𝑜𝑠 𝜋𝜈 𝑡  (
  

  
)𝑞𝐸 𝑐𝑜𝑠 𝜋𝜈 𝑡    𝐸 𝑐𝑜𝑠 𝜋𝜈 𝑡  

(
  

  
)𝑞 𝐸  𝑐𝑜𝑠 𝜋𝜈 𝑡 𝑐𝑜𝑠 𝜋𝜈 𝑡    𝐸 𝑐𝑜𝑠 𝜋𝜈 𝑡  

 

 
(
  

  
)𝑞 𝐸 {      𝜋(𝜈  𝜈 )𝑡  

      𝜋(𝜈 − 𝜈 )𝑡 } (3.6) 

 According to classical theory, the first term represents an oscillating dipole that 

radiates light of frequency ν0 (Rayleigh scattering), while the second term corresponds to the 

Raman scattering of frequency ν0+νm (anti-Stokes) and ν0-νm (Stokes). If (δα/δq)0 is zero, the 

vibration is not Raman-active, therefore, the rate of change of polarizability (α) with the 

vibration must not be zero. Accordingly, Fig. 3.1 illustrates the Raman scattering in terms of 

a simple diatomic energy level. In normal Raman spectroscopy, the exciting line (ν0) is 

chosen so that its energy is far below the first electronic excited state. The dotted lines 

indicate a ‘virtual energy state’ to distinguish from the ‘vibrational energy state’. The 

population of molecules at ν=0 is much larger than that at ν=1 (Maxwell-Boltzmann 

distribution law). Hence, the Stokes lines are stronger than the anti-Stokes lines under 

normal conditions. Since both give the same information, it is necessary to measure only the 

Stokes side of the spectrum. Resonance Raman (RR) scattering occurs when the exciting 

frequency coincides with the electronic transitions, so that its energy intercepts the manifold 

of an electronic excited state. Excitation then produces RR spectra that show extremely 

strong enhancement of Raman bands originating in this particular electronic transition. 
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Fig. 3.1 - Mechanism of various light-scattering processes: Rayleigh, Stokes and anti-Stokes Raman, for 

non-resonance and resonance Raman. 

 In this study, Raman is a facile tool for the characterization of CNTs as well as jute 

cellulose based natural fibers. Raman spectra were measured with an alpha300R Raman 

spectrometer system (WITEC GmbH, Germany), and the same instrument was used for 

SERS ultradetection of Rhodamine molecules. The spectra were acquired in the back-

scattering geometry and the excitation wavelength was 532 nm from an Nd:YAG laser in 

various powers. In most of the cases, the 20× magnifying objective of the microscope 

focused the beam into a spot of about 1 μm in diameter was used. In general, when higher 

sensitivity is required, Argon–ions lasers with line at 488 and 514 nm can be utilized. 

 The Raman spectra of CNTs are rich in information about the structure and 

properties of nanotubes. Normally, within the spectrum, the radial breathing mode (RBM), 

the disorder-induced mode (D mode) and the 

tangential modes (G mode), can be used to access 

different properties. Radial breathing band (RBM) 

appears in a range of 120-250 cm
-1

, and it 

corresponds to the atomic vibration of C atoms in the 

radial direction, as if the tube was breathing. (Fig. 3.2 

[4]
). The frequency of the radial breathing mode can 

be used to determine the diameter of the nanotube. 

RBM mode, in fact, is proportional to the inverse of 

the nanotube diameter. For large diameter tubes (d>2 nm), the intensity of the RBM is weak 

and hardly detectable. The observation of characteristic multi-peak features around 1580 cm
-

1
 (G-band) provides also a signature of CNTs. Spectra in this frequency range can be used 

for SWNT characterization, independent of the RBM observation. This multi-peak feature 

can also be used for diameter characterization, although the information obtained is less 

accurate than the RBM feature. G-band also provides information about the metallic 

character of the SWNTs in resonance with a given laser line. Thus, Raman scattering can 

distinguish between metallic and semiconducting nanotubes. In metallic CNTs the lower 

high-energy mode is strongly broadened and shifted to smaller energies (1540 cm
-1

). This so-

called metallic spectrum appears only in metallic tubes. Finally the observation of a peak 

around 1450 cm
-1

 (D-band) is also common. The intensity of the disorder-induced D-band 

                                                           
[4] http://www.scielo.br/scielo.php?pid=S0001-37652006000300004&script=sci_arttext 

Fig. 3.2 - Schematic showing the 

atomic vibrations for (a) the RBM 

and (b) the G-band modes. [4] 
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can be used to determine the defects in the structure. Furthermore it can be used to monitor 

the process of functionalization, which transforms the carbon from sp
2
 to sp

3
 hybridization. 

 Nevertheless, the application of conventional Raman spectroscopy for a lot of 

molecules is limited by the weak intensity of the Raman scattered light. One way to 

overcome this is the so-called surface-enhanced Raman spectroscopy (SERS). [81] The 

SERS effect is known as a large enhancement of the Raman signal of certain molecules 

adsorbed on roughened metallic surfaces. The first period of SERS started after its discovery 

and lasted until the mid-1980s. The research activity was focused on getting a mechanistic 

comprehension of the 10
6
 fold intensity enhancement observed for normal Raman scattering. 

It was stated [81] [99] [101] that the enhancement of the Raman signal can be considered as 

the product of two main contributions: i) an electromagnetic enhancement mechanism and ii) 

a chemical or charge-transfer enhancement mechanism, while the contribution of the 

electromagnetic mechanism to the total enhancement is of the order of 10
4
, and the chemical 

mechanism participation is in the range of 10
2
. Surface selection rules were also presented in 

this time. In their simplest form, and assuming no specific symmetry selection rules, the 

most intense bands are predicted as those from vibrations, which induce a polarization of the 

adsorbate electron cloud perpendicular to the metal surface. [100] This information can be 

used qualitatively to find out details about the angle formed between the adsorbed molecule 

and the metal surface. It should be also mentioned the case of surface-enhanced resonance 

Raman scattering (SERRS) with combined SERS and resonant Raman scattering (RRS) 

enhancement factors in the range of 10
9
-10

10
. [98] In the next decade, the attention of 

researchers of the condensed matter physics was turned from SERS to other subjects, and 

other researchers started working in SERS spectroscopy as a potential analytical tool in the 

field of electrochemistry, heterogeneous catalysis, polymer science, biochemistry of surface 

immobilized proteins, etc. [183] In the last years the interest in SERS has been extended 

mainly because of the discovery of a single molecules by SERS. [184] Moreover, there is an 

huge research interest concerning how to control, manipulate and amplify light on the 

nanometer length scale using the properties of the collective electronic excitations in noble 

metal films or nanoparticles. Although the theoretical understanding of the mechanism of 

SERS is not definite and still evolving, the experimental data have demonstrated SERS to be 

a sufficiently sensitive spectroscopic method for possible use in surface science, analytical 

and environmental applications, biomedicine and biochemistry, etc. [185] [186] [187] 
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3.1.3 Ultraviolent-visible spectroscopy (UV-vis) 

 UV-vis spectroscopy is suitable for characterization of many compounds due to their 

absorption of the light. [188] In UV-vis, absorbance A, as a measure of ratio between the 

source intensity I0 and the transmitted intensity I, is measured as function of the wavelength 

and it obeys the Beer-Lambert law: 

  −   
 

  
   𝑐   ,  (3.7) 

where ε is the molar absorptivity, c is the concentration of solution and b is thickness of the 

cuvette. In thin film geometry, the absorbance is usually expressed as: 

  −  
 

  
 𝛼       ( ), (3.8) 

where α is the absorption coefficient of the film material and d is the film thickness. 

Absorption spectra reflect electronic structure of molecules and therefore, their shape 

depends on bonding and polarization of the molecules (the Franck-Condon principle). [189] 

3.1.4 Electrokinetic analysis 

 The zeta potential (ZP) and the size distribution of colloidal NPs were measured 

with the Zetasizer nano ZS, Model Zen 3600 (from Malvern Instruments Ltd., UK), which 

works in the particle size range from 0.6 nm to 6 μm and uses a 4 mW He-Ne (633 nm) laser. 

The size measurements employed the NIBS (non-invasive back scatter technology). The 

Zetasizer measures zeta potential by measuring the velocity of the charged particles moving 

toward the electrode of the opposite sign under the applied potential. The ZP is proportional 

to the velocity of the particles. All measurements were made using disposable cells. 

3.1.5 Thermogravimetric analysis (TGA) 

 TGA is an analytical method used to determine the thermal stability of a compound, 

by monitoring the weight change that occurs upon heating. The analyzer usually consists of a 

high-precision balance with a pan loaded and a furnace. The measurement is normally 

performed in air or in an inert atmosphere, such as N2 or Argon and the weight loss of a 

sample is recorded as a function of temperature. A computer is used to control the 

instrument. TGA is commonly employed to determine characteristics of materials such as 

polymers, to determine degradation temperatures, absorbed moisture content of materials, 
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the level of inorganic and organic components in materials, decomposition points, and 

solvent residues. 

3.1.6 X-ray Photoelectron Spectroscopy (XPS) 

 XPS is a very informative surface chemical analysis technique that involves analysis 

of kinetic energy distribution of electrons knocked out from inner electron shells of atoms by 

a monochromatic beam of soft X-rays. [190] Due to the softness of X-rays, free electrons 

pass small distances in a material without scattering, therefore, only electrons ionized close 

to the sample surface (max 10 nm) could be detected. The kinetic energy of the emitted 

electrons, Ek, is equal to the difference between the energy of X-ray photons (Ep= hc) and 

the electron binding energy, Eb: 

Ek = hc / λ     Eb  (3.9) 

 The core electrons of each element have unique binding energy, thus by its 

measuring the elemental composition could be determined. The electron binding energy also 

depends on the chemical environment of the element. This variation of the binding energy 

assists to study the chemical status of the element (oxidation state, functional groups, etc.). 

After all, XPS provides a wealth of information related to elemental composition, empirical 

formula, chemical state and electronic state of the elements present in sample. 

3.2 Atomic force microscopy (AFM) 

 AFM belongs to a family of Scanning 

Probe Microscopy (SPM) instruments, and it is 

widely used for the investigation of materials’ 

surface properties at the nanometer scale. The 

development of the AFM was preceded by the 

development of the Scanning Tunneling 

Microscope (STM) in 1982 at IBM Zurich 

Research Laboratory by G. Binnig and H. Rohrer. 

[191] AFM is used to solve processing and 

materials problems for a lot of technological issues related to electronics, 

telecommunications, biological, chemical, automotive, aerospace and energy industries. 

AFM offers a wide range of new contrast mechanisms which provide information about 

Fig. 3.3 - Schematic illustration of the 

AFM working principle. [5] 
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friction, adhesion, elasticity, hardness, electric fields, magnetic fields, carrier concentration, 

temperature distribution, spreading resistance and conductivity. 

 During the scanning process, a sharp tip at the end of a flexible cantilever interacts 

with the specimen to form three-dimensional surface topography image of nanometer lateral 

and subangstrom vertical resolution. The tip-sample interaction is monitored by reflecting a 

laser off the back of the cantilever into a split photodiode detector.  A principal schematic of 

AFM is shown in Fig. 3.3.
 [5]

 In general, physical nature and character of tip-sample 

interaction are quite complicated, since they are defined by tip characteristics, surface 

properties and surrounding medium. The main forces which contribute to exert the tip are: 

force, coming from mechanical contact of tip 

end atoms with sample, van der Waals force 

and capillary force, arising from condensation 

of water vapour in the contact area. The forces 

between them are not measured directly, but 

calculated by measuring the deflection of 

cantilever. The tip-sample interaction force F 

is proportional to the tip deflection x 

(according to Hook’s law F = -k x, where k is 

the stiffness of the cantilever). The interaction 

force between the surface and the tip could be 

ether attractive, reaching maximum value at 

certain sample-to-tip distance, or repulsive, reaching infinity when this distance approaches 

zero. The dependence of force versus sample-to-tip distance is illustrated in Fig. 3.4. 
[6] 

 AFM can be operated in many ways measuring different interactions between the 

probe tip and sample and using different types of detection schemes. The two most 

commonly used modes of operation are contact mode AFM and TappingMode™ (or 

intermittent mode). In TappingMode (TM-AFM), a probe cantilever is driven to vibrate with 

high amplitude (10–100nm) near its resonant frequency by a piezoelectric element. Since the 

contact time between the tip and the sample is two orders shorter as compared to contact 

mode, the TM-AFM is less damaging and typically used for imaging topography of soft 

materials. Because of the high amplitude of oscillation, the tip propagates through regions of 

                                                           
[5] http://www3.physik.uni-greifswald.de/method/afm/AFM_laser.gif ml 

[6] www.nanoscience.com/education/AFM.html 

Fig. 3.4 - Force versus distance curve and 

AFM operating modes. [6] 
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attractive (Van der Waals, electrostatic) and repulsive forces in a single oscillation cycle 

(Fig. 3.4). The amplitude and the frequency of the cantilever decrease while approaching the 

sample surface. Upon scanning, these parameters (and, hence, the force gradient) are 

maintained constant at a set-point level, by adjusting the tip-sample distance. This is 

controlled by feedback loop. The feedback signal and the phase lag of the cantilever 

oscillation relative to the driving oscillation are displayed yielding height and phase images, 

respectively. 

3.3 Scanning electron microscopy (SEM) 

 The electron microscopy images were 

collected using a Zeiss NEON 40 (from Carl Zeiss 

SMT AG, Germany) field emission microscope, 

operated at 1 kV, with a nominal resolution of 0.23 

nm.
 [7] 

3.4 Transmission electron microscopy (TEM) 

 The transmission electron microscopy (TEM) is an imaging technique based on the 

irradiation of a sample by a beam of electrons. The image is formed, magnified and detected 

by a sensor such as CCD camera. Contrary to the normal light microscope where photons are 

employed, TEM uses electrons as light source. In this way it is possible to get a resolution a 

thousand times better than with a light microscope thanks to their much lower wavelength. 

The filament on the top of the microscope emits electrons that go through vacuum in the 

column of the microscope. Electromagnetic lenses are used to focus the electrons into a very 

thin beam. This beam travels through the sample to study. 

                                                           
[7] http://www.semtechsolutions.com/node/138/zeiss-neon-40-esb-crossbeam (SEM) 

Fig. 3.5 – FIB/FE-SEM CrossBeam 

Carl Zeiss NEON 40 EsB. [7] 

http://www.semtechsolutions.com/node/138/zeiss-neon-40-esb-crossbeam
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Fig. 3.6 - Transmission Electron Microscope (TEM), Zeiss Libra 200 MC, U = 200. Picture (left side) and 

scheme of TEM (right side). [8] 

 Depending on the density of the material, some of the electrons are scattered away 

from the beam. At the bottom of the microscope the unscattered electrons hit the fluorescent 

screen and an image of the sample is obtained. The image can be photographed with a 

camera. The TEM micrographs were recorded on a high-resolution CCD camera using 

Digital Micrograph software. 

3.5 Electrical resistance measurements 

 DC-electrical resistance measurements were performed using the Keithley 2400 

Source-Measure Unit. The Keithley model 2400 

SourceMeter solution is a 20W instrument that 

allows sourcing and measuring voltage from 

±5μV (sourcing) and ±1μV (measuring) to ±200V 

DC and current from ±10pA to ±1A. All data 

were automatically transferred to computer and 

treated with an interfaced LabVIEW™ program. 

 

                                                           
[8] http://ibme.utk.edu/wp-content/uploads/2013/04/Zeiss-Libra200MC.jpg 

Fig. 3.7 - Photo of the Keithley 2400 

source-measure unit used for the DC-

electrical resistance measurements. 
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Chapter 4 

Synthesis and properties of nano-sized colloidal systems 

4.1 Chemical modifications of carbon nanotubes (CNTs) 

4.1.1 Acid treatment of MWCNTs 

 Throughout the whole experimental work, commercially available MWCNTs 

(Nanocyl, NC 7000) with a carbon purity of >90%, average length 1.5 µm and diameters 

around 10 nm were received from Nanocyl S.A. (Sambreville, Belgium). As received 

MWCNTs, were treated first with hydrochloric acid (HCl) to remove impurities arising from 

the catalytic process. [192] In brief, one gram of MWNCT was placed in a 500 ml round 

bottom flask, and 200 ml of HCl was added. The mixture was stirred for 2 h, then diluted in 

water, filtered and washed several times with deionized water until the neutral pH value. The 

TEM images in Fig. 4.1 show the structure of as received MWCNTs where catalytic residue 

particles could be observed, as well as after the HCl treatment that all the impurities have 

been removed. 

  

Fig. 4.1 – TEM images of as received (left side) and HCl treated (right side) MWCNTs. 

 In the next step, MWCNTs were treated with a mixture of concentrated H2SO4 

(98%) / HNO3 (67%) to introduce carboxylic acid groups (MWCNT-COOH). [193] Briefly, 

1 g of MWCNTs was added in a round bottom flask containing 120 ml of the acidic mixture, 

and stirred for 6 h at 60
 
°C under reflux. The mixture was left to cool down and diluted with 

distilled water followed by filtering through a polycarbonate membrane (47 mm diameter 

and 0.4 μm pore size). Several steps of cleaning with distilled water were acquired to reach a 
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neutral pH value. The MWCNTs were collected and dried overnight under vacuum at 60 °C. 

The carboxyl groups were converted further to carbonyl chloride groups. In that case 

MWCNT-COOH (70 mg) were treated with 50 ml of SOCl2 / 2.5ml DMF (20:1 v/v) at 70 
o
C 

for 24 h under argon atmosphere. Thionyl chloride was removed by vacuum filtration using a 

PTFE membrane (47 mm diameter and 0.2 μm pore size) and the MWCNT-COCl filtrate 

was washed several times with extra dry THF and finally dried in a vacuum oven at 50 °C 

for 6 h. The carboxylation and acyl chlorination treatment of MWCNTs were carried out to 

attach them via covalent and non-covalent bonds to amine terminated glass fiber which will 

be described in detail in Chapter 6. The morphology of MWCNTs after the acid oxidation is 

depicted by the TEM image in Fig. 4.2, and as it can be observed the outer wall of CNTs 

seems to expose some defects. 

 

Fig. 4.2 – TEM images of as received (left side) and HCl treated (right side) MWCNTs. 

 Besides, the Raman spectra in Fig. 4.3 reveal that the amount of defects after the 

harsh acidic treatment has not been significantly increased and this is a good hint for keeping 

the electronic properties of the starting material unaltered. 

 

Fig. 4.3 – Raman spectra of (a) pristine (red line) and (b) acid treated (blue line) MWCNTs. 
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4.1.2 Grafting of MWCNTs with Polystyrene (PS) chains 

 In this thesis, hydrochloric acid purified MWCNTs have been grafted with 

polymeric chains for their application in polymer composites. For this purpose, nitroxide 

mediated radical polymerization (NMP) was performed with 2,2,6,6-tetramethylpiperidinyl-

1-oxyl (TEMPO) following the method of Lou et al., [194, 195] and polystyrene 

homopolymer with TEMPO terminal groups has been synthesised. The PS-TEMPO 

precursor was grafted afterwards (“grafting to” approach) onto the MWCNT surface via 

radical addition as described in the work of Wode et. al. [196] The average molecular weight 

per number of the precursor was determined from GPC to be 55.600 g/mol (PDI=2.4). The 

TEM images in Fig. 4.4 show the PS brushes grafted on the outer wall  of CNTs (left image), 

and the successful grafting was proven by the selective localisation of MWCNT-g-PS in the 

PS phase of a PS/P2VP blend (right image). 

  

Fig. 4.4 – TEM images showing the PS brushed grafted to the MWCNT surface (left image), and the 

selective localization of MWCNT-g-PS in the PS phase of a blend (left image). 

4.2 Synthesis of silica spheres (~120 nm) 

 Prior to use, all glassware were cleaned with a 3:1 v/v acidic solution consisting of 

hydrochloric/nitric acid (36% and 68%, respectively) and then rinsed copiously with MilliQ 

water. Monodisperse SiO2 spheres were synthesized through base-catalyzed hydrolysis of 

TEOS following the protocol of An et al. with some slight modifications. [197] In brief, a 

round bottom flask was charged with 3.3 mL of saturated ammonia solution (28%) and 47 

mL of ethanol under magnetic stirring to form a homogeneous solution. In this mixture, 4 

mL of TEOS were injected and kept under stirring at 750 rpm for 24 h. The resulting SiO2 

spheres were centrifuged, washed with ethanol and dried under vacuum at 50 °C for 24 h. 

The washing steps with centrifugation and redispersion in ethanol were repeated at least five 
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times in order to fully purify the particles. Fig. 4.5 depicts the SEM (left) and TEM (right) 

images of bare silica spheres, respectively, with an average diameter of 120 nm. 

  

Fig. 4.5 – SEM (left) and TEM (right) images of bare silica spheres. 

4.3 Synthesis of silica@silver hybrid particles for SERS and catalytic applications 

 A facile water-based method for the synthesis of silica (SiO2) spheres decorated with 

silver nanoparticles (Ag NPs) of controllable and uniform metal size has been developed. 

The hybrid particles exhibited a raspberry-like morphology, and their potential for SERS and 

catalytic applications has been demonstrated. SiO2 spheres with an average diameter of 120 

nm were synthesized and modified with polyethyleneimine (PEI) to introduce amine surface 

functionalities. The amine groups were coordinated with silver ions (Ag
+
) and reduced to Ag 

seeds using sodium borohydride (NaBH4). The Ag seeds with an average diameter of 4 nm 

were uniformly distributed onto the SiO2 surface (SiO2@Ag-seed), as revealed by the TEM 

investigations. Two subsequent silver growth steps were performed over the SiO2@Ag-seed 

system to improve the optical and spectroscopic responses as well as the catalytic activity. 

The diameter of Ag seeds was increased to 12 and 19 nm, respectively, hereafter denoted as 

SiO2@Ag-1 and SiO2@Ag-2. The immobilization and controlled growth of Ag NPs on the 

SiO2 spheres was confirmed by UV-vis spectroscopy, scanning and transmission electron 

microscopy (SEM, TEM). All specimens displayed remarkable SERS activity increasing 

with the Ag NP size, showing clear Raman peaks of Rhodamine 6G (R6G). The SiO2@Ag 

particles were also tested and compared for their catalytic efficiency towards the reduction of 

4-nitrophenol (4-Nip) by NaBH4. The principal advantages of this protocol lie on the ability 

to tune the Ag NP size, the long-term colloidal stability of all fabricated SiO2@Ag systems 

in aqueous media, and the limited use of hazardous chemicals and pollutant organic solvents 

during the synthetic process. 
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4.3.1 Decoration of SiO2 spheres with Ag seeds (SiO2@Ag-seed)  

 Initially, 100 mg of dried SiO2 spheres were dispersed in 100 mL of MilliQ water 

and sonicated for 30 min to fully disperse them. To this colloidal solution, 5 mL of PEI 

aqueous solution (2 mg/mL) were added under gentle magnetic stirring. The mixture was 

kept for 30 minutes to achieve the adsorption of positively charged PEI chains onto the 

negatively charged SiO2 surface followed by centrifugation at 8000 rpm for 30 min to 

remove excess of PEI. After centrifugation, the supernatant was discarded and the pellet was 

annealed at 100 °C for 30 min. Afterwards, the PEI modified particles were redispersed in 40 

mL of MilliQ water. To this suspension, 1.75 mL of AgNO3 (10 mM) were added dropwise 

under magnetic stirring and maintained for 30 min in order to allow a homogeneous 

coordination of the silver ions with the amine surface moieties. It should be noted that the 

amine groups of the silica surface are capable of forming complexes with metal ions via 

coordination.[198]
 
The resulting mixture was centrifuged at 8000 rpm for 30 min, the 

supernatant was removed and the precipitate was redispersed in 40 mL of MilliQ water. 

Finally, 1.75 mL of ice-cold freshly prepared NaBH4 solution (50 mM) was added under 

vigorous stirring to promote the Ag NP growth. Simultaneously, a rapid color change to 

slight yellow was observed indicating the formation of Ag NPs (seeds) and the stirring was 

slowed down after 30 min to ensure that complete reduction has occurred. The solution was 

centrifuged at 8000 rpm for 45 min, followed by the removal of the supernatant and 

redispersion in 40 mL of MilliQ water. Subsequent centrifugation-redispersion steps were 

conducted to remove traces of NaBH4 as well as Ag NPs not strongly bound to the SiO2 

surface. Finally, the SiO2@Ag-seed particles were dispersed and remained in 100 mL of 

MilliQ water. The average size of silver NPs formed was statistically extracted from the 

TEM images and found to be (4.2 ± 1.1) nm. The described protocol is illustrated in Fig. 4.6 

A, and the fabricated SiO2@Ag-seed colloids with a raspberry-like morphology were used 

further for the subsequent Ag growth steps. 

4.3.2 Silver growth using SiO2@Ag-seed as templates 

 Two different silver growth steps were performed over the SiO2@Ag-seed system 

using a slightly modified protocol of Yang et al. [199] In detail, for the preparation of the 

SiO2@Ag-1 system, 5 mL of a solution composed by 0.4 M glycine buffer solution with pH 

8.5 (adjusted by addition of NaOH, 1 M) and CTAB (200 mM) were mixed with 5 mL of the 

previously synthesized SiO2@Ag-seed particles. Then, 100 μL of AgNO3 (10 mM) were 

added under medium magnetic stirring. After 30 min, 50μL of ascorbic acid (50 mM) were 
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added under vigorous magnetic stirring and the mixture was maintained for 30 min, followed 

by centrifugation (8000 rpm, 30 min). The supernatant was removed and the precipitant was 

redispersed in 10 mL of MilliQ water. The average dimension of Ag NPs after this step was 

measured by TEM and it was (12.8 ± 3.4) nm. Further, a second silver growth step was 

performed using the previously grown SiO2@Ag-1 particles as seed system. Briefly, 5 mL of 

a buffer solution composed by 0.4 M glycine at pH 8.5 and CTAB (200 mM) as stabilizer 

were mixed with 5 mL of SiO2@Ag-1 particles. Afterwards, 100μL of AgNO3 (10 mM) were 

added under medium magnetic stirring. After 30 min, the silver reduction was carried out 

adding 50μL of ascorbic acid (50 mM) under vigorous magnetic stirring and the mixture was 

allowed to react for 30 min. In order to remove excess of ascorbic acid, the solution was 

centrifuged at 8000 rpm for 30 min, the supernatant was discarded and the precipitant was 

redispersed in 10 mL of MilliQ water. TEM analysis of the SiO2@Ag-2 particles revealed an 

average diameter of Ag NPs in the range of (19.6 ± 3.9) nm. The subsequent silver growth 

steps yielding SiO2@Ag-1 and SiO2@Ag-2 with a raspberry-like morphology are 

highlighted in Fig. 4.6 B and 4.6 C, respectively. 

 

Fig. 4.6 - A) Schematic illustration for the decoration of silica particles with silver seeds using PEI as ligand 

of silver ions and further silver growth on the preformed silver seeds using two subsequent growth steps (B 

and C). 

4.3.3 Characterization techniques 

 Fourier-transformed infrared (FT-IR) spectra were recorded using a Vertex 80v FT-

IR spectrometer (Bruker Germany) equipped with a DTGS detector by signal averaging of 
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256 scans. Approximately 1.0 mg of neat or PEI modified SiO2 particles were pressed 

together with 100 mg of crystalline KBr to form pellets. The zeta-potential of SiO2 particles 

as a function of pH was investigated by electrokinetic analysis (EKA) at 25.0 ± 0.2 °C using 

a zeta potential analyser (Zetasizer Nano-ZS, Malvern Instruments Ltd, UK). Aqueous 

suspensions with 1.0×10
-3

 M KCl at different pH values were used for the zeta potential 

determination and the relation between zeta potential and pH was used to determine the 

isoelectric point (IEP). X-ray diffractometry (XRD) was performed with an X-ray 

diffractometer XRD T/T (GE Inspection Technologies Ahrensburg, Germany) in symmetric 

step-scan mode with 2 = 0.05° in transmission operating at 40 kV and 30 mA with Cu K 

radiation. All UV-vis spectra were recorded using a Cary 50 scanning spectrophotometer 

(Varian, USA) with an incorporated xenon flash lamp at room temperature by using 1-cm 

quartz cell. Scanning electron microscopy (SEM) was performed using the NEON 40 (Carl 

Zeiss AG, Germany) scanning electron microscope under an accelerating voltage of 1.0 kV. 

Samples were prepared by drop casting 100 μL of each aqueous suspension on a 2×1 cm
2
 

silicon substrate followed by drying at room temperature in a fume hood. TEM 

investigations were performed with the Libra 200 transmission electron microscope (Carl 

Zeiss AG, Germany) operating at 200 kV. Samples for TEM were prepared by dispensing 10 

μL of each suspension on a Cu grid with a carbon support membrane, followed by drying.  

 Raman and surface enhanced Raman scattering spectra were measured using the 

confocal Raman Microscope (CRM) alpha 300R, (WITEc GmbH, Germany). The 

spectrograph uses high resolution gratings with additional band-pass filter optics and a 2D-

CCD camera. Raman and SERS signals were recorded by exciting the samples with a laser 

power of 5 mW using a laser line (Nd:YAG) at 532 nm. All measurements were obtained in 

backscattering geometry using a 20× microscope objective with NA values of 0.46 which 

provided scattering areas of 1.0 μm
2
. For one measurement, between 50 and 200 single 

Raman spectra with a measuring time of 0.5 s were accumulated and the corresponding 

Raman spectra were recorded within the spectral range of 150-3500 cm
–1

 for Raman shift. 

For SERS experiments, 1.5 mg of SiO2@Ag-seed, SiO2@Ag-1 and SiO2@Ag-2 particles, 

respectively, were added into 1.5 mL of Rhodamine (R6G) aqueous solution at a 

concentration of 10
–5

 M. The solutions were sonicated for 5 min. to fully disperse the 

particles and kept in the dark for 30 min, time enough to reach a thermodynamic equilibrium. 

A homogenous film of each of the as-prepared SiO2@Ag/R6G solutions was formed onto 

the surface of cleaned glass slides by dip coating. Then, the substrates were air-dried and 

used for SERS investigations.  
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 The catalytic activity was proven quantitatively using a model reaction, the 

reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) in excess of NaBH4. In a 

typical experiment, 0.5 mL of freshly prepared aqueous solution of NaBH4 (60 mM) was 

mixed with 2.0 mL of 4-nitrophenol aqueous solution (0.1 mM) in a standard quartz cuvette 

(path length 1 cm).  To this mixture, a constant amount (2 mg) of each of the SiO2@Ag 

particles dispersed in 0.2 mL of MilliQ water was added and the reaction mixture was 

monitored immediately by successive UV-vis spectra taken every 50 s in the range of 250-

550 nm. All experiments were performed at room temperature (20 °C). The rate constants of 

the catalytically activated reactions using each of the SiO2@Ag systems were determined by 

measuring the change in intensity of the peak at 400 nm with time. 

4.3.4 Results and discussion 

4.3.4.1 Fourier transformed infrared spectroscopy (FT-IR) 

 The surface modification of silica spheres with PEI chains was proven in a first 

instance by FT-IR spectroscopy. Fig. 4.7 A shows the FT-IR spectra of SiO2 particles in the 

spectra range of 4000-1400 cm
–1

. For the bare SiO2 (black solid line), the broad band at 

around 3325 cm
–1

 is assigned to the asymmetric stretching vibrations of silanol groups (Si-

OH) and adsorbed water molecules on the silica surface, while that at 1631 cm
–1

 belongs to 

H-O-H bending. [200] In the case of PEI modified particles (red solid line), the band in the 

range of 3325 cm
–1

 is slightly weakened and new bands appear at 2982 and 2906 cm
–1

 

corresponding to the symmetric and asymmetric stretching vibrations of C-H bond, 

confirming the existence of -CH2 groups. Fig. 4.7 B depicts the selected FT-IR spectra region 

from 1500 to 1350 cm
–1

 where the peaks located at 1485, 1451 and 1398 cm
–1

 belong to the 

C-H bending vibrations of the -CH2 groups, arising from the adsorbed PEI molecules. [201] 

Unfortunately, N-H peaks of the PEI amine groups were overlapped from the band of silanol 

groups of the SiO2 surface. However, we can confirm the presence of amine groups with the 

peak located at 1360 cm
–1

, corresponding to the C-N stretching vibration. [202] 
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Fig. 4.7 - FT-IR spectra of bare SiO2 (black line) and PEI functionalized SiO2 particles (red line) for A) the 

spectral region between 4000-1400 cm–1 and B) from 1500 to 1350 cm–1. 

4.3.4.2 Zeta potential measurements 

 Fig. 4.8 represents the zeta potential as a function of pH for bare and PEI 

functionalized SiO2 particles at constant ionic strength (10
-3

 M KCl). For the neat SiO2 

particles, the mean zeta potential values are negative in the pH range between 3.0 and 10.0, 

while the isoelectric point (IEP) was found to be slightly below pH 3.0, suggesting a 

negative surface charge. This could be attributed to the acidic behavior of the surface silanol 

groups. On the other hand, for PEI modified particles, the effect of basic amine groups can 

explain the positive zeta potential values throughout the pH range between 3.0 and 8.0, with 

the IEP slightly below pH 9.0. [203] 
 
The results demonstrate the change of the surface 

charge upon adsorption of the PEI molecules, confirming a successful surface modification. 

 

Fig. 4.8 - Mean zeta potential as a function of pH for bare and PEI functionalized SiO2 particles. 
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4.3.4.3 UV-vis spectroscopy of SiO2 and SiO2@Ag particles 

 Fig. 4.9 shows the UV-vis spectra of the three different SiO2@Ag colloidal systems 

in aqueous media, as well as for the bare SiO2 particles at a concentration of 1 mg/mL. The 

optical image given as an inset demonstrates the high colloidal stability of the suspensions at 

a concentration of 1 mg/mL, while the images were recorded one week after the dispersions 

have been prepared. It can be observed that the color changes after immobilization of Ag 

NPs onto the SiO2 spheres, and especially becomes more intense yellow with the increased 

Ag NP size. As it was expected, no distinct plasmon band was detected for the SiO2 spheres. 

However, after decoration of the Ag NPs, each corresponding spectrum depicted a localized 

surface plasmon resonance (LSPR) band with a maximum centered at ca. 400 nm. The 

presence of a minimum at ca. 320 nm can be also observed, characteristic of the interband 

transition in the metal that damps the plasmon oscillation in this spectral region. [78] With 

the increased silver size, the position of the absorption peak is slightly shifted to higher 

wavelengths. This red-shift is accompanied also by a strong increase in the peak intensity. 

This behavior can be explained with two different factors, i) the higher excitation cross-

section of the metal nanoparticle in each growth step, and ii) the increase of the particle 

volume. [204] This evolution confirms not only the presence of Ag NPs onto the SiO2 

spheres, but also the increase of the particle size during the silver growth steps. 

 

Fig. 4.9 - UV-vis spectra of the different colloidal systems in aqueous media: A) bare silica (black solid 

line), B) SiO2@Ag-seed (red solid line), C) SiO2@Ag-1 (blue solid line) and D) SiO2@Ag-2 (pink solid line). 

The optical image given as an inset depicts the high colloidal stability of SiO2 and SiO2@Ag systems as well 

as the changes in color upon deposition of Ag NPs. 
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4.3.4.4 XRD of SiO2@Ag nanohybrids 

 Fig. 4.10 represents a typical X-ray diffraction pattern of the nanohybrid SiO2@Ag 

system (pattern of the SiO2@Ag-2 sample). Sharp diffraction peaks were observed which 

can be indexed to the face-centered cubic (fcc) structure of metallic Ag (blue lines in Fig. 

4.10), with the diffraction peaks corresponding to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) 

planes indicating the formation of pure silver of high crystallinity (JCPDS file, No. 4-783). 

We can also observe the X-ray diffraction of the silica particles with a broad scattering 

maximum centered at 22.5º, typical for amorphous SiO2. [205] 

 

Fig. 4.10 - Typical X-ray diffraction pattern of the SiO2@Ag particles. The blue lines correspond to the 

pure crystalline Ag diffraction peaks. 

4.3.4.5 Electron microscopy investigations 

 The presence of Ag seeds onto the SiO2 surface as well as the increase of the Ag 

seed size during the different growth steps were visualized by SEM and TEM images. 

Representative SEM (left side) and TEM (right side) micrographs of SiO2 and the different 

SiO2@Ag particles, exhibiting a raspberry-like morphology, are depicted in Fig. 4.11. Bare 

SiO2 particles with uniform size are shown in Fig. 4.11 A. Fig. 4.11 B demonstrates the 

morphology of SiO2@Ag-seed particles, while 4.11 C and 4.11 D correspond to the 

SiO2@Ag-1 and SiO2@Ag-2 system, respectively. It is important to note that from the SEM 

and TEM investigations, no residual silver dots were detected after the silver growth steps, 

confirming a homogeneous nucleation and increase of the Ag NP size. 
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Fig. 4.11 - SEM (left side) and TEM (right side) images of A) bare silica spheres, B) SiO2@Ag-seed, C) 

SiO2@Ag-1 and D) SiO2@Ag-2 hybrid particles with a raspberry-like morphology. 

 The size of Ag NPs for each of the SiO2@Ag systems was determined from the 

corresponding TEM images, and the resulting histograms are plotted in Fig. 4.12. Fig. 4.12 

A displays the histograms of around 100 NPs analyzed from the TEM images of SiO2@Ag-

seed system, showing an average diameter of (4.2 ± 1.1) nm. The histograms corresponding 

to the SiO2@Ag-1 and SiO2@Ag-2 system are depicted in Fig. 4.12 B and 4.12 C, exposing 

a clear increase of the Ag NP size with (12.8 ± 3.4) and (19.6 ± 3.9) nm, respectively. 

 

Fig. 4.12 - Histogram of 100 Ag NPs measured by TEM images of A) SiO2@Ag-seed, B) SiO2@Ag-1 and C) 

SiO2@Ag-2 systems, showing the corresponding average size and size distribution of Ag NPs. 

4.3.4.6 SERS experiments 

 In order to exploit the excellent SERS capabilities of Ag NPs, Rhodamine 6G (R6G) 

was used as a model analyte to demonstrate the potential of our nanohybrid systems for 

SERS ultradetection. Fig. 4.13 illustrates the 532 nm excitation SERS spectra of R6G 
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(1.0×10
–5

 M), previously mixed with the three different colloidal suspensions and deposited 

onto glass slides, as described in the experimental section. It is obvious that all specimens 

exposed SERS activity as revealed by the characteristic peaks of R6G at 615, 779, 1189, 

1316, 1365, 1510, 1577 and 1652 cm
–1

 within the spectral region of 600 to 1800 cm
–1

, 

perfectly matching with those found in literature. [206] In addition, the Raman peak located 

at 1365 cm
–1 

confirms that the enhancement of the SERS signal increases with the Ag NP 

size, being in a good agreement with previously reported results. [207, 208] It is important to 

note that the improvement of the SERS intensity for the SiO2@Ag-1 and SiO2@Ag-2 

systems is not only attributed to the increased Ag NP size. It is a well-known fact that the 

SERS property remarkably increases when NPs are close enough to induce coupling between 

their oscillating surface plasmon. This plasmon coupling is expected only for core-core 

distances below one particle diameter and produces high local excitation fields. [209]
 
Within 

these areas, the so-called hot spots, the SERS electromagnetic enhancement is extremely 

high [136, 210] and a theoretical enhancement factor nearly to 10
12

 has been calculated in 

some cases. [113] The TEM images in Fig. 4.11C and 4.11D indicate that some Ag NPs are 

in close proximity to allow plasmon coupling, and consequently the generation of hot spots 

increasing the SERS signal. [52] On the contrary, the smaller size of Ag seeds for the 

SiO2@Ag-seed system (Fig. 4.11B) is not suitable for the generation of hot spots, resulting 

in the lowest SERS response. In order to quantitatively compare the SERS activity of the 

three fabricated systems, surface enhanced factors (SEFs) were calculated according to the 

expression SEF=(Isurf/Csurf)/(Ibulk/Cbulk), [30] where Isurf and Ibulk denote the intensities of the 

R6G at 1365 cm
-1 

adsorbed to the SiO2@Ag systems and those of dissolved as bulk in 

solution (10
-1

M), respectively. The Csurf and Cbulk represent the concentrations of R6G used 

for the Raman and the SERS experiments, respectively. The Isurf values at 1365 cm
-1 

(vibration of aromatic C-C stretching band) for the three different systems are provided by 

the SERS spectra in Fig. 4.13 which correspond to 7211, 14393 and 21897 counts for the 

SiO2@Ag-seed, SiO2@Ag-1 and SiO2@Ag-2 systems, respectively. Unfortunately, due to 

the fact that R6G is a fluorescent molecule which absorbs strongly with a maximum at 528 

nm, close to the laser measurements (532 nm), no proper value can be assigned to the Raman 

signal Ibulk. Therefore, we assume a maximum value of Ibulk in the rage of the detector noise 

of 200 counts. [30] For the Cbulk and Csurf values representing the concentrations of R6G 

solutions used for the Raman and SERS experiments, we used 1.0×10
-1

 M and 1.0×10
-5

 M, 

respectively. Consequently, the calculated SEFs for the SiO2@Ag-seed, SiO2@Ag-1 and 

SiO2@Ag-2 are 3.61×10
5
, 7.19×10

5
 and 1.09×10

6
, confirming the relationship between the 

SERS intensity and the Ag NP size deposited to the SiO2 surface. The excellent SERS 
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performance of all fabricated systems in combination with their high colloidal stability could 

be an important parameter for the detection of various water-soluble contaminants by means 

of SERS spectroscopy. 
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Fig. 4.13 - SERS spectra of R6G (10–5 M) adsorbed from aqueous solution at the three different samples 

tested; A) SiO2@Ag-seed (black line), B) SiO2@Ag-1 (red line) and C) SiO2@Ag-2 (blue line). 

4.3.4.7 Catalytic reduction of 4-nitrophenol to 4-aminophenol 

 In order to test quantitatively the catalytic efficiency of SiO2@Ag systems, the 

reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) with an excess of NaBH4 was 

employed as a reliable model reaction. [211] Although the reduction of 4-Nip to 4-Amp 

using aqueous NaBH4 is thermodynamically favorable (E0 for 4-Nip/4-Amp −0.76 V and 

H3BO3/BH4
ˉ −1.33 V versus NHE: normal hydrogen electrode), the presence of a kinetic 

barrier due to the large potential difference between donor and acceptor molecules decreases 

the feasibility of this reaction. Metal NPs can serve as electron relay from electron donor 

BH4
ˉ
 ions (reductant) to the acceptor 4-nitrophenolate (oxidant) ions, overcoming the kinetic 

barrier and efficiently catalyze the reduction of 4-Nip to 4-Amp. [212]
 
A typical UV-vis 

spectrum of 4-Nip aqueous solution shows a distinct absorption maximum peak at ~317 nm. 

Upon the addition of NaBH4, the light yellow color of 4-Nip changes to yellow-green and 

the 4-Nip peak at ~317 nm is immediately red-shifted to 400 nm due to the formation of 4-

nitrophenolate ions in the alkaline medium caused by NaBH4. The progress of the catalytic 

reaction was evaluated quantitatively by monitoring the changes of the absorption spectra of 

4-nitrophenolate ions as a function of time after adding each of the SiO2@Ag colloidal 
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catalytic systems into the 4-Nip/NaBH4 reaction mixture. [211]
 
As a control experiment, the 

catalytic activity of bare SiO2 particles instead of SiO2@Ag was evaluated. After a time 

period of six hours, no change of the nitrophenolate anions peak intensity was observed 

confirming the catalytic role of Ag NPs. After the addition of SiO2@Ag nanocolloids in the 

reaction mixture, the reduction of 4-Nip by NaBH4 and its conversion to 4-Amp was 

observed. The intensity of the peak at 400 nm gradually dropped with time accompanied by 

a concomitant appearance of a new peak at 295 nm indicating the formation 4-Amp. The 

UV-vis spectra were recorded at regular intervals of 50 seconds and they are depicted in Fig. 

4.14. Fig. 4.14 A represents the time dependent UV-vis spectra during the reduction of 4-Nip 

using SiO2@Ag-seed as the reaction catalyst. The data in imply that the reaction terminates 

within a time frame of 500 s consistent with the disappearance of the yellow color of 4-Nip 

at the end of the reaction. Fig. 4.14 B and 4.14 C display the time dependent reduction of 4-

Nip using SiO2@Ag-1 and SiO2@Ag-2, respectively. The results indicate that SiO2@Ag-1 

and SiO2@Ag-2 particles effectively catalyze the reaction as well, however, at different 

reaction times. From the spectra presented in Fig. 4.14 A, 4.14 B and 4.14 C, it can be 

concluded that the intensity of the peak at 400 nm decreases gradually during the catalytic 

reaction but with a different reaction rate. Fig. 4.14 C demonstrates that, SiO2@Ag-2 system 

shows the shortest time needed for the complete conversion of 4-Nip to 4-Amp. 

Consequently, the order of catalytic activity for the three samples is SiO2@Ag-2>SiO2@Ag-

1>SiO2@Ag-seed and this trend is in accordance with the size of Ag NPs. Since the 

concentration of NaBH4 greatly exceeds that of 4-Nip and SiO2@Ag, the reduction rates can 

be assumed to be dependent only on the concentration of 4-Nip and independent of the 

NaBH4 concentration. Taking into account the aforementioned assumption, the catalytic 

reaction rate constants (K) can be evaluated by studying the pseudo-first-order kinetics with 

respect to 4-Nip concentration. [213] As a result, the reaction rate constants (K) were 

calculated from the corresponding slopes, which can be determined from the linear fits of the 

ln(At/A0) versus t plots. This allows the qualitative comparison of the catalytic activity of the 

three different hybrid nanocolloids as well as with other systems reported in literature, in 

which Ag-based systems were used as nanocatalysts for the reduction of 4-Nip. Specifically, 

At stands for absorbance at time t and A0 for absorbance at time 0 which was taken as the 

time at 50 s corresponding to the second absorbance peak at 400 nm, because of the 

relatively small ‘induction times’ (will be discussed in the next paragraph),  observed at the 

beginning of each reaction. [211]
 
Fig. 4.14 D demonstrates the differences of the reaction 

rate constants for the three different SiO2@Ag catalysts which can be attributed to the 

increased Ag NP size. All the plots shown in Fig. 4.14 D, present a good linear relation 
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between ln(At/A0) and time t, for almost 90% of the reactions for each catalytic system. K 

exhibits the highest value for the SiO2@Ag-2 particles (K = 9.32×10
–3 

s
–1

), whereas the 

lowest value was found for the SiO2@Ag-seed with a reaction rate constant of 2.9×10
–3 

s
–1

. 

The same conditions in all the experiments were used and the results of rate constants (K) are 

summarized in Table 1. The rate constant of the SiO2@Ag-2 system which was found to be 

9.32×10
–3

 s
–1

 is higher than values reported by Zhang (5.63×10
–3

 s
–1

), Gangula (9.19×10
–3

 s
–

1
) and Huang (4.73×10

–4
 s
–1

) et al. [211, 212, 214] 

 The induction time which was previously mentioned is a typical phenomenon for the 

heterogeneous catalysis, and related to the time required for the catalyst activation. In the 

reactions performed in our study, after addition of all the reactants, within the second 

spectrum run at a time interval of 50 s the absorbance intensity was already decreased 

revealing the initiation of the catalytic reaction. This observation can prove that the induction 

time in our systems was very small because the Ag NPs are directly in contact with the 

reaction components and no time for the diffusion of 4-Nip to reach the surface of meal 

particles was needed like in previously reported studies. [213, 215] Normally, bigger 

induction times are attributed to many factors: (i) the diffusion-controlled adsorption of 

reactants onto the nanoparticle surface as already mentioned, (ii) the presence of dissolved 

oxygen in water reacting at a faster rate with NaBH4 than with 4-Nip, (iii) the coating of a 

metal oxide layer onto the metal surface upon the addition of BH4
ˉ
, poisoning the catalyst 

surface and (iv) a slow surface restructuring of the nanoparticles. [171]
 
However, in our work 

the aqueous reaction medium containing the 4-Nip was degassed before adding the NaBH4, 

therefore, we avoided the formation of an oxide layer at the Ag NP surface as well as the 

reaction of NaBH4 with dissolved oxygen. 

  
250 300 350 400 450 500 550

0,0

0,5

1,0

1,5

2,0

A
b

s
o

rb
a

n
c
e

 (
a

.u
)

Wavelength (nm)

 B

 C

 D

 E

 F

 G

 H

 I

 J

 K

 L 

 

A Time (sec)
0
50
100
150
200
250
300

350
400
450
500

NO2

O-

NH2

O-

250 300 350 400 450 500 550

0,0

0,5

1,0

1,5

2,0

A
b

s
o

rb
a

n
c
e

 (
a

.u
)

Wavelength (nm)

 B

 C

 D

 E

 F

 G

 H

 I

 J

 K 

 

B Time (sec)
0
50
100
150
200
250
300

350
400
450

NO2

O-

NH2

O-



Chapter 4 Synthesis and properties of  
nano-sized colloidal systems 

 

P a g e  | 73 

  

Fig. 4.14 - Time dependent UV-vis spectra (A, B and C) for the catalytic reduction of 4-Nip by NaBH4 in 

the presence of SiO2@Ag-seed, SiO2@Ag-1 and SiO2@Ag-2, respectively. D) Comparative plots of ln(At/A0) 

versus time t towards the reduction reaction using SiO2@Ag catalytic systems. 

Table 1 Summary of the catalytic activity of the three different SiO2@Ag systems towards the reduction of 

4-Nip to 4-Amp by NaBH4 at room temperature (20 °C). 

Sample ID Amount of 

SiO2@Ag used 

(mg) 

Aver. size of Ag 

NPs decorated to 

the SiO2 spheres 

(nm) 

Time of completion 

the reaction (s) 

Calculated rate 

constant, K (s–1) 

SiO2@Ag-seed 0.5 4.2 ± 1.1 500 2.91×10–3 

SiO2@Ag-1 0.5 12.8 ± 3.4 450 5.06×10–3 

SiO2@Ag-2 0.5 18.6 ± 3.9 300 9.32×10–3 

 

 In summary, a relatively simple and facile method for the decoration of SiO2 spheres 

with Ag NPs of tunable and uniform metal size has been developed. The general process 

involves the functionalization of SiO2 particles with terminal amine groups and the 

coordination of silver ions which were reduced to Ag seeds. By using the SiO2@Ag-seed 

system as a template, subsequent Ag growth steps were performed and the size of Ag seeds 

was remarkably increased, facilitating enhanced SERS and catalytic properties. The SERS 

ability can be exploited for the detection of conventional SERS analytes in water due to the 

long-term colloidal stability of all fabricated systems in aqueous media. It should be also 

emphasized that due to the limited use of organic solvents and toxic substances during the 

synthetic process, this protocol can be defined in general as an environmentally ‘green’ 

synthetic approach, feasible to be scaled up for the production of bigger amounts of the 

hybrid particles.  
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4.4 Synthesis of superparamagnetic Fe3O4 nanoparticles 

 Magnetite nanoparticles (Fe3O4 NPs) have been synthesized via a solvent-free 

thermal decomposition method according to the protocol of Maity et. al. [216] In brief, 2 

mmol of iron(III) acetylacetonate, Fe(acac)3, were dissolved in 20 ml of oleic 

acid/oleylamine surfactant mixture, and magnetically stirred under argon atmosphere. The 

mixture was kept at 120 ºC for one hour to achieve dehydration, and then quickly heated to 

300 ºC and kept for 2 h. The black solution was cooled down then and 20 ml of ethanol were 

added to achieve the precipitation of the particles. The Fe3O4 NPs were dispersed then in 

hexane for size analysis and further use. The TEM images at two different magnifications in 

Fig. 4.15 (left and central image) demonstrate the excellent stabilized particles with a 

relatively narrow size distribution (12.3±3.8 nm) while in the right side, the digital 

photograph depicts the response of Fe3O4 NPs to an external magnetic field. 

 

Fig. 4.15 – TEM images at two different magnifications (left and central image) showing the excellent 

stabilized particles with a relatively narrow size distribution (8.3±3.8 nm). In the right side, the particles 

very fast respond to the external magnetic field. 
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Chapter 5 

Epoxy/BCP nanostructured thermosetting materials  

Thermoset Magnetic Materials Based on Poly(ionic liquid)s Block Copolymers 

 

Abstract 

 The preparation of nanostructured magnetic thermoset materials without any kind of 

metal oxide or metal magnetic nanoparticles has been developed. The present protocol 

describes the nanostructuration of thermoset materials based on poly(ionic liquid)s block 

copolymer, and the subsequent production of magnetic nanostructured thermoset. Judicious 

selection of block copolymer, such as P2VP-b-PMMA, soluble in epoxy and its subsequent 

quaternization leads to a phase modification of the system, from totally soluble to a 

nanostructured system. Different degree of quaternization of the pyridine groups showed the 

range of quaternization values which allowed the nanostructuration of the thermoset. 

Magnetic material was obtained by anion exchange of the quaternized poly(ionic liquid) 

block copolymer without using any kind of metal oxide or metal magnetic nanoparticles. The 

different materials obtained by quaternization of the block copolymers, the anion exchange 

of the polymeric ionic liquid and thermoset materials were characterized by 
1
H nuclear 

magnetic resonance (
1
H-NMR), thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC), transmission electron microscopy (TEM), and magnetic properties were 

measured by Superconducting Quantum Interference Device (SQUID). 

5.1 Introduction 

 Conventional plastics form a wide variety of durable and light-weight materials that 

are easy and inexpensive to process, but they often lack properties such as electrical 

conductivity, mechanical strength, heat resistance, magnetism or high dielectric constants. 
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[217] For this reason, in the past few years, research in the field of advanced materials with 

novel properties has targeted combining materials with different properties. The term 

‘nanocomposites’ relates to composite materials whose characteristic length scale of the 

reinforcing agent is in the nanometer range. When different materials are combined to form a 

heterogeneous structure, the properties of the resulting nanocomposites depend closely on 

the properties of the constituent materials, i.e. the length scale, as well as the chemical and 

morphological details of the dispersion. In the field of nanocomposites, recent studies have 

shown that magnetic polymer nanocomposites prepared with magnetic nanoparticles are one 

promising material [218] with high-valued potential applications in high density magnetic 

recording, magnetic sensors, magnetic carriers, color imaging, biomedical, magnetic storage, 

and electronics. [219-222] So far, most of the works reported on magnetic nanocomposites 

have been based on metal oxide or metal magnetic nanoparticles in various polymers, such 

as vinyl-ester resin, polyurethane, parylene, polymethyl methacrylate, epoxy resin, and block 

copolymers. [223-229] Herein, a novel route to obtain nanostructured magnetic thermoset 

materials without use of any kind of metal oxide or metal magnetic nanoparticles, but simply 

introducing magnetic poly(ionic liquid) block copolymer is proposed. The resulting material 

exhibits well defined ferromagnetic interactions, remanence and coercivity at room 

temperature. 

 Ionic liquids (ILs) are organic salts with low melting point. Like salts, ionic liquids 

are composed of cations and anions responsible of the material properties. [230]  Moreover, 

the ILs properties can be tuned by simple anion exchange. [231] Ionic liquids have been 

combined with polymer networks which offer great value practical applications like specialty 

polymer additives and for the development of functional polymers. [232-235] However, 

ionic liquids present one main disadvantage by exuding easily from the polymer network. To 

tackle this problem poly(ionic liquid)s (PILs) may be used. PILs are described as a new class 

of polymeric materials with unique properties combining those of ILs (ionic conductivity, 

thermal stability, tuneable solution properties and chemical stability) and specific properties 

of polymers. Although several studies have been devoted to magnetic ILs, [236-238] the 

synthesis, characterization and application of paramagnetic PILs are still at their infancy. For 

example, Tang et al. investigated the properties and application of PILs as optically 

transparent micro-wave absorbing materials [239] since PILs contain anion-cation pairs. 

Therefore, PILs have a relatively high density of strong dipoles, which makes them 

promising candidates for microwave absorption. That is the reason why the development of a 

magnetic structural material, such as magnetic epoxy, should be of great interest as a 
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microwave absorption material and could open new fields of application to structural 

materials. 

 In order to develop the nanostructured epoxy material, we make use of (i) the 

anionic synthesis of poly(2-vinylpyridine)-b-poly(methyl methacrylate), (ii) the production 

of a microphase separated thermoset system which consists of an epoxy resin containing a 

diblock copolymer, like poly(2-vinylpyridine)-b-poly(methyl methacrylate) [where the two 

blocks are selected in order to be completely miscible with the epoxy], (iii) the influence of 

the degree of quaternization of the poly(2-vinylpyridine) block on the morphology of the 

final nanostructured thermoset materials and (iv) the development of a novel magnetic 

nanostructured thermoset material based on a magnetic PIL block copolymer obtained by 

anion exchange. 

5.2 Experimental part 

5.2.1 Materials 

 Calcium hydride (CaH2 purity 95%, Acros), 1,1 diphenylethylene (DPE) (purity 

97%), n-butyl lithium (1.6 M in hexanes), butyllithium (sec-BuLi) (1.4 M in cyclohexane), 

1,1 diphenylethylene (98%, Acros), methyl methacrylate (99%, MMA), triethyl aluminum 

(TEA) (25% in toluene), 2-vinylpyridine (95%, 2-VP, Aldrich), bromoethane, diethyl ether, 

iron (III) bromide (FeBr3) were purchased from SigmaAldrich. Tetrahydrofuran (THF) 

(99.99%), hexane (99.7%) methanol (99.9%), were obtained by Fisher Scientific, Riedel de 

Haen and Fluka respectively. The epoxy system was composed by an epoxy resin (Araldite 

LY556), an anhydride hardener (Aradur 917) and an imidazole accelerator (DY 070). 

5.2.2 Synthesis of P2VP-b-PMMA 

 The synthesis of poly(2-vinylpyridine)-b-poly(methyl methacrylate) (poly(0)) was 

carried out according to the protocol: The solvent for the polymerization was THF purified 

via freezing-degassing cycles in the presence of calcium hydride, distillation from 

sodium/potassium alloy (Na/K), and finally stored under high vacuum in 

diphenylhexylithium (DPHLi), which was prepared through the reaction of 1,1-

diphenylethylene and n-butyl lithium. The initiator used was sec-BuLi and was diluted in 

hexane to a more convenient concentration (0.2 M) in a custom made Pyrex glass apparatus 

through scientific glassblowing. 1,1 diphenylethylene was purified by reaction with n-BuLi, 

distilled under vacuum, diluted with hexane and stored in a custom made Pyrex glass 
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apparatus through scientific glassblowing into precalibrated ampoules. A Pyrex glass 

ampoule was calibrated at ambient conditions with distilled water according to a well-

established procedure thoroughly described in the literature. [240] In all cases the amount of 

solvent used for dilution was adjusted according to the concentration required to achieve the 

desired molecular weight of each block.  

 2-Vinylpyridine was purified twice with calcium hydride to remove water traces, 

distilled over at least two sodium mirrors in order to be completely dried and finally distilled 

from triethylaluminum for final purification under stirring for twenty minutes. 2VP was 

finally distilled in an evacuated calibrated glass ampoule, stored at -27 °C and was freshly 

distilled prior to use and was continuously kept frozen. The second monomer, methyl 

methacrylate, was purified as well through freeze drying via CaH2, TEA and then distilled in 

a custom made Pyrex precalibrated ampoule through scientific glassblowing. During the 

anionic polymerization procedure, 2VP as well as MMA were kept frozen at -196 ºC (liquid 

nitrogen temperature) prior to their use. The living chains were terminated with methanol, 

which was purified after freeze-drying cycles and finally distilled into Pyrex glass 

precalibrated ampoules through calcium hydride.  

 The polymerization was carried out according to the literature and methods usually 

adopted for anionic polymerization, [241-243] and a brief description is given. The diblock 

copolymer of the poly(0) type was synthesized through sequential anionic polymerization 

and high vacuum techniques. [244] A specific Pyrex glass apparatus was built up via 

scientific glassblowing. After the purification of the Pyrex custom made glass apparatus with 

DPHLi through continuous rinsing of THF until no red colour appears throughout the main 

reactor, the appropriate amount of 2VP (0.030 mol or 3.15 g) was distilled in the reactor 

followed by the addition of the initiator (0.141 mmol). An intense red colour appeared due to 

the living ends of P2VP
(-)

Li
(+)

 and the mixture was left to react for approximately one hour. 

All procedures were performed at -78 ºC, using a 2-propanol / liquid nitrogen bath. Then, 

1,1-DPE (0.155 mmol, ratio 1:1.1, excess of DPE when compared with the initial sec-BuLi 

concentration) was added in order to avoid the competitive reaction of the carbonyl bond 

from the MMA monomeric units leading eventually to side products. Following the addition 

of the protective agent, the second monomer (MMA, 0.070 mol or 7 g) was added via 

distillation and almost immediately the dark red colour disappeared due to the fast initiation 

and propagation of the MMA quantity through the macroinitiator [P2VP
(-)

Li
(+)

]. The mixture 

was left to react for approximately 1 hour again at -78 ºC. The synthesis procedure was 

accomplished in approximately 200 mL of THF as solvent. Finally, a small quantity of 
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methanol was added for the termination of the living ends. The diblock copolymer was 

precipitated into a large excess of hexane, dried from the solvents and stored under vacuum 

in sealed ampoules. The synthetic procedure is shown in Fig. 5.1. 

 

Fig. 5.1 – Synthetic procedure of the poly(0) diblock copolymer through anionic polymerization. 

5.2.3 Synthesis of the Ionic Liquid Block Copolymer 

 [P2VP-r-poly(1-ethyl-2-vinylpyridinium bromide)]-b-Poly(methyl methacrylate) 

block copolymer were prepared (poly(1), poly(2) and poly(3)) following a similar procedure 

to the one described in literature. [245] Under vigorous stirring, 40 mL of bromoethane was 

added to 0.4 g of poly(0) in a round-bottom flask. The mixture was refluxed for 168 h. At 

specific time intervals, aliquots were taken from the flask using syringes. The resulting 

white-yellow solid was allowed to cool down at room temperature, and then washed several 

times with diethyl ether. The product was isolated and dried in a vacuum oven at 50 ºC.  

5.2.4 Synthesis of paramagnetic ionic liquid block copolymer 
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 [P2VP-r-poly(1-ethyl-2-vinylpyridinium Fe3Br10
-
)]-b-Poly(methyl methacrylate) 

(poly (4)) was prepared following a similar procedure to the one described in the literature. 

[246] For the synthesis of paramagnetic ionic liquid block copolymer, three equivalents 

(with respect to monomer units) of FeBr3 were dissolved in methanol and added drop-wise 

under stirring to poly(1),  previously dissolved in methanol. After addition of the iron 

halogenide, the final solution was stirred for 24 h. Finally, poly (4) was obtained by 

removing the solvents using a rotary evaporator followed by freeze-drying up to a constant 

weight. Reactions for the synthesis of poly(ionic liquid)s and magnetic poly(ionic liquid) are 

given in Fig. 5.2. 

 

Fig. 5.2 - Synthesis reactions of the poly(ionic liquid)s and magnetic poly(ionic liquid). 

5.2.5 Protocol for blending epoxy and PIL block copolymer 

 The protocol to prepare the thermoset samples of block copolymer and epoxy system 

was already described [247], and
 
typically all block copolymers were dissolved in THF in all 

cases (except poly(4), which was dissolved in dichloromethane), Araldite LY556 was added 

to the block copolymer (all samples contain 30 wt.% of the diblock copolymer). Then, the 

solvent was partially evaporated at room temperature. Aradur 917 and DY 070 were added 

and blended with the concentrated mixture. A small amount of this mixture was introduced 

and degassed in a mold at room temperature and heated up to 80 ºC for 2 h. Finally, the 

sample was post-cured at 100 ºC for 2 h. 

5.2.6 Experimental techniques 

 1
H NMR experiments were performed on a Bruker AVANCE III spectrometer at 500 

MHz. Measurements were performed at room temperature in deuterated chloroform (CDCl3) 

and DMSO-d6. Transmission electron microscopy (TEM) was performed using a ZEISS 
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Libra 120 TEM with an acceleration voltage of 120 kV. Samples for TEM were prepared by 

ultramicrotomy, using an Ultramicrotome Reichert Ultracut S (Leica) to obtain thin slices 

(ca. 70 nm thick). Diamond knives for cryo-temperatures (Diatome) were used for both the 

trimming (model cryotrim 45) and cutting process (model cryo 35°). The slices were placed 

on copper grids (400 mesh Cu, Agar), and stained for 8-13 h with iodine. Thermal analysis 

was performed by Differential Scanning Calorimetry (DSC) using a DSC instrument from 

Perkin Elmer (Pyris Diamond DSC) in a temperature range from 50 to 220 ºC, under 

nitrogen. The glass transition temperature (Tg) was obtained as the onset point of the heat 

flow step recorded at a scan rate of 40 ºC min
-1

 in case of thermoset materials and 20 ºC min
-

1
 for the block copolymers. Thermal Gravimetry Analysis (TGA) measurements were carried 

out with a TA-Instrument Q500 TGA using a temperature range of 30 - 800 ºC at a heating 

rate of 10 ºC min
-1

 under nitrogen. Fourier-Transform Infra-Red (FTIR) spectra were 

recorded at room temperature using a Nicolet Avatar 360 spectrophotometer. All samples 

were cast directly onto KBr pellets. A 4 cm
-1

 resolution in a wavenumber range from 4000 to 

600 cm
-1

 was used. The synthesized copolymers were characterized by high temperature size 

exclusion chromatography (HT-SEC) to confirm the molecular weight distributions and the 

corresponding number average molecular weight (Mn) values. Additionally, membrane 

osmometry (MO) technique was carried out to confirm the results obtained by HT-SEC. 

Moreover, proton nuclear magnetic resonance spectroscopy (
1
H NMR) and infrared 

spectroscopy (IR) were used to calculate the weight fraction of each block and to certify the 

chemical structure of the final diblock copolymers respectively. The equipment used for the 

characterization was a HT-GPC from Polymer Laboratories (PL-GPC-120) equipped with 

one pre-column for organic solutions, three PLgel 5μm MIXED-C columns and a refractive 

index (RI) detector. The solvent used was THF containing 0.5% pyridine at 35 ºC with a 

flow rate of 1ml/min. Size exclusion chromatography (SEC) was calibrated with eight PS 

standards (Mp: 4,300 g/mol to 3,000,000 g/mol) and PS standard were regularly tested to 

ensure the accuracy of the SEC instrument. The number-average molecular weights (Mn) 

(higher than 15,000 g/mol) of the precursors and the final products were measured with a 

membrane osmometer (MO) Gonotec-Osmomat 090 at 35 °C. Toluene, distilled over CaH2, 

was used as the measuring solvent. For the magnetic characterization a “Superconducting 

Quantum Interference Device” (SQUID) from Quantum Design Magnetic Property 

Measurement System (MPMS) 5T was used. Isothermal hysteresis cycles were measured at 

300K with applied magnetic field ranging between -50,000 Oe and 50,000 Oe. 
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5.3 Results and discussion 

 Production of the magnetic thermoset involved several steps. Firstly, a copolymer 

poly(0) was synthesized by anionic polymerization as described in the experimental section. 

After purification, the resulting poly(0) block copolymer had a number average molecular 

weight roughly equal to 71,000 g/mol. The molecular characteristics are summarized in 

Table 1 as determined with the aforementioned instrumentation. It is important to mention 

that the final diblock copolymer can be considered a model material, according to molecular 

characterization results since it exhibits molecular and compositional homogeneity. 

Table 1 Molecular characterization results for the initial P2VP segments and the final diblock copolymer 

poly(0) as calculated from HT-SEC and 1H NMR spectroscopy. 

  

(g/mol)a,b 

PDIa 

P2VP 

 

(g/mol)c 

 

(g/mol)b 

 

(g/mol)a 

PDIa 

 

% wt 

P2VPd 

Poly(0) 22,000 1.08 49,000 71,000 80,200 1.13 30 

 

a. Calculated from size exclusion chromatography (HT-SEC). 

b. Calculated from membrane osmometry (MO). 

c. Calculated from the equation:  

 ̅ 
       ̅ 

       ̅ 
     

d. Calculated from 1H NMR spectroscopy (1H NMR). 

 Fig. 5.3 shows the 
1
H NMR spectrum obtained for poly(0) in CDCl3. The weight 

fraction of P2VP was estimated to be 30 %. This value was determined by taking into 

account the relative peak integration values at δ ≈ 8.3 ppm corresponding to the proton (N-

CH-) of P2VP compare to the signal at δ ≈ 3.6 ppm was attributed to the methyl group of 

PMMA. 

2P VP

nM
PMMA

nM
total

nM
total

wM
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Fig. 5.3 - 1H NMR spectra in CDCl3 of poly(0). 

 Poly(1), poly(2) and poly(3) were prepared following a similar procedure to the one 

described in the literature. [245] In order to calculate the extent of quaternization of poly(0), 

the initial diblock and the intermediate PILs were characterized by 
1
H NMR in DMSO-d6 

(Fig. 5.4a). The decrease of the signals characteristic of the pyridine protons (δ ≈ 8.27-6.10 

ppm) as well as the appearance of the (N
+
-CH) peak (δ ≈ 8.85 ppm) of the pyridine group 

after quaternization confirmed the successful quaternization of the nitrogen from the P2VP 

chains. Furthermore, the doublet observed at δ = 8.3 ppm corresponding to the proton (N-

CH-) of P2VP at short reaction time (or low conversion) became a singlet at longer reaction 

time (or higher conversion). Ruiz de Luzuriaga et al. [248]
 
reported similar behaviour during 

the quaternization of poly(4-vinylpyridine) which was attributed to the mobility reduction of 

monomeric units after quaternization. 
1
H NMR was used to monitor the kinetics of 

quaternization of poly(0). The degree of quaternization P2VP increased linearly until 90 h 

reaching a plateau at 37%. The steric hindrance induced by the neighbouring 2-vinylpyridine 

units could explain the low conversion obtained for the quaternization reaction. 
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Fig. 5.4 - a) 1H NMR spectra in DMSO-d6 spectra for quaternization degree and b) extent of 

quaternization versus time of reaction of neat poly(0). 

 The influence of the quaternization degree of 2-vinylpyridine in the 

nanostructuration of the thermoset materials was carried out using three PILs with different 

degrees of quaternization (poly(1)=7.5, poly(2)=16.4 and poly(3)=37). Poly(1), poly(2) and 

poly(3) were characterized by DSC and TGA prior to blending with epoxy resin.  

 Fig. 5.5 shows the TGA curves of poly(0), poly(1), poly(2) and poly(3). It can be 

seen that poly(0) shows only one weight loss that starts at 275 ºC. This weight loss is 

attributed to backbone degradation. However, in the case of poly(1), poly(2) and poly(3), 

quaternized block copolymers, two weight losses were observed. The first one, in the range 

175-250 ºC which could corresponds to the loss of the bromide anion as alkyl bromide after 

dealkylation of pyridinium salt. [249] Likewise, these block copolymers show the same 

weight loss that starts at 275 ºC as poly(0). From the first weight drop quaternization degree 

could be estimated. As expected, the weight decreased in the range of 175-250 ºC increased 

as the quaternization degree increased. Degree of quaternization determined by TGA 

confirmed the value obtained by 
1
H NMR. Nevertheless, it is worth pointing out that the 

values determined by 
1
H NMR are more accurate. 
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Fig. 5.5 - TGA curves of poly(0), poly(1), poly(2) and poly(3). 

 DSC curves of the poly(0) and the three PILs with different degree of quaternization 

are shown in Fig. 5.6. The table inserted in Fig. 5.6 shows Tg values for PMMA block and 

P2VP block of each block copolymer. The Tg of pure PMMA and P2VP blocks in the poly(0) 

copolymers were measured to be  95 ºC and 120 ºC, respectively. In the case of PILs, on one 

hand the disappearance of the Tg of PMMA block was observed in all cases. On the other 

hand, a decrease of the Tg of P2VP block was noticed with increasing the degree of 

quaternization. The Tg value of P2VP block of poly(1) and poly(2) was measured to be 114 

and 98 ºC, respectively. Surprisingly, no transition could be detected for the poly(3). The 

decrease of Tg observed for the PILs is influenced by the increasing number of ethyl groups 

after quaternization inducing higher mobility of the polymer chains which results in a 

decrease of the glass transition temperature. 

 

Fig. 5.6 - DSC curves of poly(0), poly(1), poly(2), and poly(3). 
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 After characterization of poly(0), poly(1), poly(2) and poly(3), several thermoset 

materials were prepared at 30 wt.% in epoxy resin as already reported. [247] All samples 

were found to be transparent indicating the absence of macroscopic phase separation, except 

for the sample prepared with poly(3) that was opaque (Fig. 5.7).  

 

Fig. 5.7 - From left to right sequence of photographs for the obtained thermosets with poly(0), poly(1), 

poly(2) and poly(3). 

 Fig. 5.8 shows the DSC curves of the neat epoxy system and their thermoset blends. 

The inserted table in Fig. 5.8 shows Tg values for each of the samples. On one hand the Tg 

measured for the neat epoxy system was 138 ºC. On the other hand, the Tg for the epoxy-rich 

phase in modified systems with 30 wt.% poly(1), poly(2) and poly(3) decreased with 

increasing degree of quaternization, ranging from 88 to 77 ºC. Several factors can explain the 

decrease of Tg for cured blends modified with the same amount of block copolymer with 

different degree of quaternization, such as dilution of epoxy groups and an increment of the 

system viscosity, leading to a decrease in the curing rate. Moreover, the solubility of PMMA 

block with the epoxy system could explain the decrease of Tg observed. The miscibility of 

PMMA in an epoxy system was evidenced by the depletion of Tg of the epoxy-rich phase as 

a result of its miscibility in the matrix. [250, 251] 

 

Fig. 5.8 - DSC curves of neat epoxy system and its blends with poly(0) and poly(1), poly(2) and poly(3). 

Table inset shows the glass transition temperatures of neat and poly(ionic liquid) cured blends. 
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 The evolution of self-assembly of the P2VP block at different degrees of 

quaternization is shown in Fig. 5.9. TEM image of the poly(0)/epoxy blend (Fig. 5.9a) did 

not show any nanostructure since both blocks are fully miscible with the epoxy. For cured 

blends containing poly(1), a well-defined nanostructure was observed with the presence of 

round spheres corresponding to the coaxial (Fig. 5.9b) and the parallel (Fig. 5.9c) view to the 

main axis, at which cross-sections have been prepared. The average diameters of P2VP-r-

poly(1-ethyl-2-vinylpyridinium bromide) domains were approximately 38 nm. Similar 

behaviour was found in cured systems containing poly(2), where spherical nanostructures 

could be clearly seen (Fig. 5.9d, coaxial view and Fig. 5.9e, parallel to the main axis) with a 

diameter of the pattern ~27 nm. The cured blends containing poly(3) were opaque, thus 

indicating the presence of macroscopic phase separation. The TEM images of poly(3)/epoxy 

cured blend (Fig. 5.9f and 5.9g) showed the absence of nanodomains. TEM images reveal 

that degree of quaternization of poly(2-vinylpyridine) block between 7.5% and 16.4%, 

allows nanostructuration of the thermoset material with the P2VP-r-poly(1-ethyl-2-

vinylpyridinium bromide) chains being in the form spheres within the epoxy cured system 

containing the PMMA block. It should be noted that for degrees of quaternization of 37% or 

more, macrophase separation of PIL in epoxy occurs. 
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Fig. 5.9 - TEM micrographs for the blends with 30 wt% poly(0) (a), 30 wt% poly(1) (b and c), 30 wt% 

poly(2) (d and e) and 30 wt% poly(3) (f and g). Scale bar: 200 nm except f which is 1 µm. 

 Before producing thermoset with poly(4) FTIR characterization of poly(0) and 

poly(4) was carried out in order to study the coordination of iron with pyridine units. Ramos 

et al. [252] studied the complexes formation of poly(4-vinylpyridine) with different 

transition metals such as cobalt, nickel and iron using FTIR spectroscopy to assess the 

nitrogen-metal coordination bonds. They found that pyridine stretching band at 1600 cm
-1
 

was displaced to higher wavenumber when coordination occurred. Fig. 5.10 shows the 

infrared spectra for poly(0) and poly(4). In the presence of iron metal, a new absorption band at 

1623 cm
-1

 attributed to the new nitrogen-metal coordination bonds was observed. The presence 

of this band indicates the coordination of the iron salt with P2VP after [Fe3Br10
-
] anion 

exchange. 

 

Fig. 5.10 - FTIR spectra of poly(0) and poly(4). 

 Poly(4) was blended with the epoxy resin and cured. Afterwards, it was 

characterized by carrying out both TEM and SQUID investigations. Fig. 5.11 shows the 

TEM micrographs of 30 wt% poly(4)/epoxy cured blend (Fig. 5.11a, coaxial view and Fig. 

5.11b, parallel to the main axis). TEM images revealed a well-defined spherical 

nanostructure of the thermoset material. The size of spheres in this case was approximately 

16 nm. It should be noted that despite having the same diblock copolymer content, the 

domain size was significantly different. It is well known that, the physical and chemical 

properties of PILs can be modified by anion exchange without altering the main structure of 

the polymer. [253] As a consequence, the miscibility of PILs with organic solvents or water 

becomes mostly dependent on the anions. This variation of block copolymers solubility 

influences strongly the morphology and the orientation of nanostructures. [245] 
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 Fig. 5.11c shows the corrected long moment (M) vs. magnetic field (H) behaviour of 

samples poly(4) and 30 wt% poly(4)/epoxy cured blend, after careful subtraction of the 

diamagnetic background stemming from the organic fraction of the polymer. For such 

purpose the high field data of the cyclates were fitted to a straight line with negative slope 

and this contribution was subsequently subtracted from the data. The resulting hysteresis 

cycles revealed the presence of well conformed ferromagnetic interactions exhibiting 

remanence and coercivity. As expected, the reference compound, poly(4), showed one order 

of magnitude higher saturated values of the magnetization (Ms =1.04x10
-02
 emu g

-1
) when 

compared to the cured blend 30 wt% poly(4)/epoxy (Ms = 1.68e
-03
 emu g

-1
).The same trend 

was observed for the remanence, Mr = 9.40x10
-04
 emu g

-1 
and Mr = 1.37x10

-04
 emu g

-1
, for 

poly(4) and 30 wt% poly(4)/epoxy cured blend respectively. These discrepancies were not 

observed in the coercive fields, Hc = 72 Oe and Hc = 83 Oe 30 for wt% poly(4) and 30 wt% 

poly(4)/epoxy respectively, pointing out towards similar levels of magnetic disorder and 

number of pinning centres in both samples. Differences in the saturated and remanence 

values of the magnetization of poly(4) and 30 wt% poly(4)/epoxy are probably due to the 

dilution of the magnetic entities per mass unit in the blend rather than to a real change in the 

basics of the ferromagnetic interactions. It is noteworthy that Döbbelin et al. [246] reported 

the synthesis of novel homopolymeric paramagnetic PIL. In their work, they did not observe 

a qualitative dependence of the magnetic behaviour on the nature of the polymer 

(imidazolium or diallydimethylammonium-monomers, or the anion, chloride or bromine) 

used for building up magnetic interactions in their homopolymers. Also, the homopolymers 

used for their studies did not exhibit any kind of structure related to the assembly of the 

polymeric chains. As a result, the observed paramagnetic behaviour was consistent with a 

single ion picture of isolated, non interacting magnetic entities (i.e. the anions lying far apart 

in the proximity of the linear polymer chains). In contrast, our materials, poly(4) and 

poly(4)/epoxy cured blend, showed a clear ferromagnetic ordering related to the material 

composition. Nanostructures in block copolymers are generated by the self-assembly of less 

miscible blocks. As inferred from the TEM micrographs, our polymeric chains undergo an 

ordering process that makes the P2VP-r-poly(1-ethyl-2-vinylpyridinium Fe3Br10
-
) block to 

induce spherical nanostructuration (or assembly). This nanostructuration, in turn, allows the 

confinement of several magnetic anions within these spherical nanostructures, as inferred 

from the bright spots in Fig. 5.11, which translates into the promotion of strong dipolar 

interactions between the magnetic entities and the observed ferromagnetic ordering. 
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Fig. 5.11 - TEM micrographs for 30 wt% poly(4)/epoxy cured blend (a and b) and magnetization curve of 

poly(4) and 30 wt% poly(4)/epoxy cured blend (c). 

 In conclusion, a new methodology for the production of nanostructured magnetic 

thermoset materials without any kind of metal oxide or metal magnetic nanoparticles has 

been proposed. We have demonstrated that the degree of quaternization of the pyridine block 

can induce microphase separation through self-assembly of the quaternized pyridine block in 

the epoxy matrix. When the quaternization degree is higher than the maximum threshold, 

macrophase separation occurred. Furthermore, anion exchange of corresponding selected 

poly(ionic liquid)s block copolymer, led to the formation of a new magnetic nanostructured 

thermoset material which revealed the presence of well conformed ferromagnetic 

interactions by exhibiting remanence and coercivity at room-temperature. 
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Chapter 6 

Epoxy/Glass fiber nanostructured interphases 

6.1 The interphase microstructure and electrical properties of glass fibers 

covalently (GF-g-CNT) and non-covalently (GF-ad-CNT) bonded with multiwall 

carbon nanotubes 

 

Abstract 

 A solution-based method for the chemical grafting of multiwall carbon nanotubes 

(MWCNTs) onto the surface of glass fibers (GFs) is reported. MWCNTs and GFs were 

modified to expose the functional moieties for the formation of an ‘amide’ chemical bond. 

Treatment with strong acids introduces carboxylic groups to the MWCNT walls, which are 

converted to carbonyl chloride groups. The GFs are coupled with gamma-

aminopropyltriethoxysilane (γ-APS) yielding amine surface functionalities (GF-APS), and 

acyl chloride modified MWCNTs (MWCNT-COCl) are covalently bonded in a dip-coating 

deposition process. The surface morphology and electrical properties of single fibers grafted 

with CNTs (GF-g-CNT) are studied and compared to physically adsorbed ones (GF-ad-

CNT). The GF-g-CNT exhibited a fully CNT surface coverage and ten times higher 

electrical conductivity compared to GF-ad-CNT. X-ray photoelectron spectroscopy (XPS), 

scanning electron and atomic force microscopy (SEM, AFM) were used to characterize the 

fibers after each step of treatment. Single filaments were embedded in an epoxy to 
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investigate the interphase microstructures, through transmission electron microscopy (TEM). 

Single-fiber pull out (SFPO) tests accompanied with fractographic analysis of the pulled-out 

fibers were performed to study the interfacial adhesion strength. The results suggest that GFs 

with chemically grafted MWCNTs are promising multi-functional reinforcements. 

6.1.1 Introduction 

 Carbon nanotubes have been widely used for advanced applications in the field of 

nanotechnology due to their unique electrical, mechanical and thermal properties. [6] [254] 

The combination of their extraordinary intrinsic properties, as well as their nanoscale size, 

low density and extremely high aspect ratio makes them an ideal candidate for fabricating 

functional polymer nanocomposites. [255] [256] [257] [258] [196] Recently, the deposition 

of MWCNTs onto micro-scaled reinforcements has attracted the interest of various research 

groups working in the area of high-performance polymer composites. [259] Several studies 

exist in which conventional fibers have been modified with CNTs creating ‘hierarchical’ 

structures, and incorporated further into polymer matrices. [260] [261] [262] [263] A review 

could be found where carbon nanotube-based hierarchical composites and the advantages of 

fabricating hybrid fiber/CNT multi-scale reinforcements were elaborately discussed. [264] 

 The mechanical behavior of polymer composites depends strongly on the interphase 

between fibers and the host matrix. The interphase acts as the intermediate bridge, which 

transfers the mechanical stresses from the matrix to the reinforcement upon loading through 

the shear flow. Therefore, an appropriately designed/engineered interphase is a critical 

parameter to control the strength and toughness of polymer composites. [265] [266] By 

definition, the interphase exists from some area around the fiber surface where the local 

properties including i) morphological characteristics, ii)  chemical composition and iii)  

thermo-mechanical properties begin to alter from the bulk matrix properties. [267] [178] 

Normally, fibers used to reinforce a polymer matrix are modified to introduce functional 

groups, and increase the chemical interaction and wettability with the polymeric resin. In 

addition, the fiber surface modification can increase the surface nanoscale roughness which 

can impart mechanical interlocking with the polymer matrix. In such a way, optimal 

interphases with high interfacial adhesion strength can be developed facilitating an efficient 

stress transfer from the continuous matrix phase to the reinforcing fibers, whereby the fibers 

act as the main load-bearing constituent. [268] [269] Modification of fibers by CNTs has also 

been proposed as an efficient method to increase the interfacial adhesion strength as well as 

to introduce functionality at the interphase of the final composites. [270] [271] [272] By this 

approach, high loadings of CNTs can be achieved in the final composites alleviating the 
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critical problems encountered during the composite fabrication process related to the high 

viscosity of the polymer melts as well as the CNT agglomeration. [13] [273] Grafting of 

CNTs to the surface of glass or carbon fibers was found to enhance the interfacial strength 

via increased chemical bonding, mechanical interlocking and/or local stiffening of the 

polymer chains at the fiber/matrix interface, all of which can improve the stress transfer 

efficiencies, as outlined before. Composites reinforced with hierarchical multi-scale CNT-

modified fibers leading to enhanced interfacial shear strength (IFSS) have already been 

reported. [274] [275] [276] Several approaches have been followed to deposit CNTs onto the 

surface of either glass or carbon fibers. In particular, in-situ growth of CNTs by chemical 

vapor deposition (CVD) directly to the surface of carbon [277] [278] [279] [280] or silica 

[281] fibers has been extensively used. An important finding was that controlling the 

experimental parameters, different lengths, density and orientation of the grown CNTs can 

be achieved and the structural characteristics of the CNT-networks could affect the 

composite’s interfacial strength as revealed by model composite investigations. [24] [31] 

[282] However, there are some drawbacks of the CVD technique itself. The fibers must be 

modified with a catalyst before performing the CVD process, which can result in 

contamination of the fibers. In addition, the growth of CNTs requires the use of high 

temperatures, which can deteriorate the inherent strength of the fibers. Other methods that 

have been proposed to deposit CNTs onto conventional fibers include dip coating and 

electrophoretic deposition processes based on physical interactions between modified CNTs 

and functionalities of the fiber surface. [20] [283] [284] Fibers have been also modified after 

the spinning process with multi-component nanocomposite sizing systems containing 

specific amount of CNTs in the sizing mixture. [285] In general, CNT-coatings convert glass 

fibers from insulators to semi-conductive reinforcements with increased composite 

interfacial strength and multifunctional interfacial properties. [34] The resulting composite 

materials can be used for a wide range of applications such as electrostatic dissipitation, 

interfacial damage sensing and electric field shielding. Recently, it has been reported by Gao 

et al., [283] the use of CNT-coated GFs as interfacial damage, humidity and temperature 

sensors. Until now, the enhancement of interfacial strength and the functionality of 

hierarchical CNT/fiber structures have been discussed in several studies. [9-12, 20-27] 

Chemical methods for the deposition of MWCNTs onto the surface of carbon fibers via 

chemical bonding have also been reported, and their surface morphology as well as the 

interfacial strength enhancement have been discussed. [286] [287] [288] [289] [290] 

 Herein, a chemical method for grafting MWCNTs onto the surface of GFs is 

proposed. Single GFs with amine surface functionalities (γ-APS treated) were dipped in a 
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solution of acyl chloride modified MWCNTs (MWCNT-COCl), and amide chemical bonds 

were formed (GF-g-CNT). In comparison, and in order to elucidate the importance of 

activating MWCNTs with –COCl groups, silanized GFs were dipped in a solution of 

carboxylated MWCNTs (MWCNT-COOH). In that case, CNTs were physically adsorbed to 

the GF surface (GF-ad-CNT) via hydrogen bonds or zwitterionic interactions (MWCNT-

COO
H3N-GF), as revealed by the XPS analysis. In both cases, electrically conductive 

GFs were achieved due to the MWCNT deposited networks. Our approach differs from the 

protocol of Zhang et al. [270, 283] where commercial carboxyl functionalised MWCNTs 

were dispersed with the help of an anionic surfactant (SDS), and a dip coating and/or 

electrophoretic deposition was utilized to deposit them onto silanized GFs with a positive 

charge (non-covalent bond formation). Fourier-transform infrared spectroscopy (FT-IR), 

Raman spectroscopy, thermogravimetric analysis (TGA) and electrokinetic investigations 

proved the successful modification of MWCNTs with carboxyl groups. The surface 

morphology of single filaments was characterized by scanning electron microscopy (SEM) 

and tapping mode atomic force microscopy (TM-AFM). The fiber and MWCNT surface 

element concentrations, functional groups, as well as the chemical grafting reaction of 

MWCNTs to the GFs were detected by X-ray photoelectron spectroscopy (XPS). GF-g-CNT 

and GF-ad-CNT were characterized electrically by ‘two probe’ electrical resistance 

measurements. The interphase microstructures of single GF-g-CNT and GF-ad-CNT epoxy 

composites were studied by transmission electron microscopy (TEM) of interphase-sections 

prepared by focused ion beam (FIB). High durability of the grafted MWCNT-network to 

remain attached to the GF surface was observed and further correlated to the interfacial 

mechanical properties studied by single-fiber pull out tests. The TEM images reveal that the 

microstructure of the CNT-network along the GF/epoxy interphase is affected by the 

polymerization and cross-linking of epoxy resin during the hardening process. The nature of 

bonding between GF and MWCNTs with respect to the electrical properties, interfacial 

microstructure and interfacial adhesion strength will be discussed further more in detail. 

6.1.2 Experimental 

6.1.2.1 Materials 

 E-glass fibers (GFs) without sizing with an average diameter of 18 μm and yarns’ 

fineness of 120 tex having 204 filaments were used in this study. The GFs were 

manufactured by a continuous melt-spinning process at the Leibniz Institute of Polymer 

Research Dresden. Commercially available MWCNTs (Nanocyl, NC 7000) with a carbon 
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purity of >90%, average length 1.5 µm and diameters around 10 nm were received from 

Nanocyl S.A. (Sambreville, Belgium). The silane coupling agent, 3-

aminopropyltriethoxysilane (γ-APS, 98%) was supplied by ABCR (Karlsruhe, Germany) and 

used for the GF surface modification. Ammonium hydroxide (28 wt% ammonia), hydrogen 

peroxide, absolute ethanol, acetone, sulfuric-nitric acid, thionyl chloride (SOCl2), 

dichloromethane, extra dry toluene, dimethylformamide (DMF) and tetrahydrofuran (THF) 

were purchased from Sigma-Aldrich (Steinheim, Germany). As commercial DGEBA-based 

epoxy resin and amine-based hardener (resin EPR L20 and hardener EPH 960) were 

obtained from Hexion Specialty Chemicals (Stuttgart GmbH) and used as the polymer 

matrix with a resin to hardener weight ratio of 100:34. The curing of the resin was carried 

out at 60 °C for 4 h, followed by high temperature post curing at 120 °C for 3 h. All the 

chemical reagents were analytical grade and used as received without further purification. 

6.1.2.2 Glass fiber cleaning - silanisation treatment 

 10 cm long tow of GFs was cut from the spin cake and cleaned with 

dichloromethane for half an hour. The fibers were collected and treated with a basic piranha 

solution consisting of NH4OH/H2O2/H2O (1:1:1 in volume, respectively) for 2 h at 65 °C. 

This step was performed in order to fully purify the fibers and increase the number of surface 

silanol groups (Si-OH) by hydrolysis of the fiber surface siloxane network. Therefore, it is 

defined onwards as ‘cleaning-activation’ treatment. Afterwards, the GFs were dried for 6 h at 

80 °C under vacuum, and subjected further to a silanisation treatment by immersing into a γ-

APS (1%) solution in extra dry toluene. The reaction left for 24 h at 80 °C in N2 atmosphere. 

Then, the fibers were removed and cleaned several times with toluene followed by ethanol 

and water to remove any trace of physically adsorbed silane. Silanised fibers were kept for 6 

h at 80 °C under vacuum to complete the condensation of surface silanol groups and remove 

traces of ethanol molecules from the hydrolysis of γ-APS. [291] Then, they were stored in a 

desiccator until the MWCNT deposition process and other analytic investigations. 

6.1.2.3 MWCNT functionalisation 

 MWCNTs were treated with a mixture of H2SO4 (98%) / HNO3 (67%) to introduce 

carboxylic acid groups (MWCNT-COOH) [193]. 1 g of HCl treated MWCNTs was added in 

a flask containing 120 ml of the acidic mixture, and stirred for 6 h at 60
 
°C under reflux. The 

mixture was left to cool down and diluted with distilled water followed by filtering through a 

polycarbonate membrane (47 mm diameter / 0.4 μm pore size). Several steps of cleaning 

with distilled water were acquired to reach a neutral pH. MWCNTs were collected then and 
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dried overnight at 60 °C under vacuum. The carboxyl groups were converted further to 

carbonyl chloride groups in order to facilitate the chemical grafting reaction with the 

terminal amine groups of the GF surface. Particularly, MWCNT-COOH (70 mg) were mixed 

with 50 ml SOCl2 / 2.5ml DMF (20:1 v/v) at 70 ºC for 24 h under argon atmosphere, and 

thionyl chloride was removed by filtration using a PTFE membrane. The MWCNT-COCl 

filtrate was washed several times with THF and dried at 50 °C for 6 h in a vacuum oven. 

6.1.2.4 Deposition of MWCNTs onto single glass fibers via chemical or physical bonds 

 MWCNTs containing carbonyl chloride groups (10 mg) were dispersed by 

ultrasonication in 100 ml of extra dry THF (0.1 mg/ml). GFs modified with γ-APS were 

carefully de-yarnd the previous day and individual fibers were attached lengthwise on a glass 

frame using a quick-dry adhesive. The fibers were kept then in a vacuum oven at 60 °C 

overnight. Once the MWCNT-COCl suspension was ready, a conventional dip coating 

apparatus was used and the glass frame was immersed into the CNT solution for 30 min. 

This time was sufficient to complete the MWCNT chemical grafting onto the GF surfaces 

through nucleophilic substitution reaction between the GF amine groups and the CNT acyl 

chloride groups. Afterwards, the frame was removed and GF-g-CNT kept for drying with 

their axes perpendicular at 80 °C for 24 h. It should be mentioned that all the reaction steps 

were carried out under argon (Ar) atmosphere. Following the same deposition process, GFs 

were coated also with MWCNT-COOH (GF-ad-CNT) via hydrogen bonds and/or 

zwitterionic interactions between the GF amine groups and MWCNT carboxyl groups 

(MWCNT-COO
H3N-GF). The two different approaches used to attach MWCNTs to the 

GF surfaces, based either on chemical or physical bonds are illustrated in Fig. 6.1. 
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Fig. 6.1 - Schematic illustration of (a) MWCNTs chemically grafted (GF-g-CNT) and (b) physically 

adsorbed (GF-ad-CNT) to the GF surface. Dip coating was used in both cases. 

6.1.2.5 Characterization techniques 

 Fourier-transform infrared (FT-IR) spectra were recorded using a Vertex 80v FT-IR 

spectrometer (Bruker Germany) equipped with a DTGS detector. Scanning was conducted in 

transmission mode with a spectral resolution of 2 cm
-1

. Small amount of either pristine or 

carboxyl functionalized MWCNTs were pressed together with KBr to form pellets. Raman 

spectra were measured with a WITEC alpha300R micro-Raman system (RAMAN Imaging 

System WITEC alpha300R). The spectra were acquired in the back-scattering geometry and 

the excitation wavelength was 532 nm from an Ar
+ 

ion laser with a laser power of 1mW. 

Thermogravimetric analysis (TGA) was used to analyze the thermal behavior of pristine and 

acid modified MWCNTs. Thermal scans were performed under nitrogen flow using a TA 

instrument (Q 5000) from 30 °C to 800 °C with a heating rate of 10 °C/min. 

 In order to study the grafting reaction procedure, XPS studies were carried out by 

means of an AXIS Ultra X-Ray photoelectron spectrometer (Kratos Analytical, England). 

Areas of approximately 300 × 700 μm
2 
were analyzed with a monochromatic Al Kα (hν 

=1486.6 eV) X-ray source of 300 W operating at 15 kV. The kinetic energy of the 

photoelectrons was determined with a hemispheric analyzer set to pass energy of 160 eV for 

the survey spectra and of 20 eV for high-resolution spectra. During all measurements 

electrostatic charging of the sample was avoided by means of a low-energy electron source 

working in combination with a magnetic immersion lens. All the recorded peaks were shifted 

by the same amount which was necessary to set the C 1s peak to 285.00 eV for saturated 

hydrocarbons or, respectively, 284.5 eV for the carbon atoms, which are bonded in the 

graphite-like lattice. For all the measurements the base pressure in the analysis chamber was 

less than 10
−8

 mbar. Quantitative elemental compositions were determined from peak areas 

using experimentally determined sensitivity factors and the spectrometer transmission 

function. Spectrum background was subtracted according to Shirley [292]. The high-

resolution spectra were deconvoluted by means of a computer routine (Kratos Analytical, 

Manchester, UK). Free parameters of component peaks were their binding energy (BE), 

height, full width at half maximum and the Gaussian-Lorentzian ratio. The samples were 

fixed with double-sided adhesive tape (Scotch 3M) on a sample holder. The maximum 

information depth of the XPS method is not more than 8 nm. In order to avoid hydrolysation 

reactions, the sample preparation was carried out under inert atmosphere. 
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 Field-emission scanning electron microscopy (FE-SEM) was performed with a 

NEON 40 (Carl Zeiss AG, Germany) scanning electron microscope operating at an 

accelerating voltage of 1.0 kV. Dispersions of pristine or carboxyl functionalized MWCNTs 

were prepared by adding specific amount in DMF (0.1mg/ml) and sonicated for ten minutes. 

Three drops of each MWCNT suspension were dispensed onto the surface of cleaned silicon 

wafers and dried. In order to study the surface morphology of pristine, cleaned-activated, 

silanized and MWCNT-coated GFs, single fibers were placed onto the surface of cleaned 

silicon wafers and attached at both sides with a copper adhesive tape. Prior to the SEM 

analysis, all specimens were coated with a thin layer (3 nm) of platinum using a sputter 

coater to avoid charging effects. 

 The surface topography of different GFs was observed by Tapping Mode Atomic 

Force Microscopy (TM-AFM). AFM images (height data) were recorded with a scanning 

probe microscope (Nanoscope III, Dimension 3100
TM

, Veeco Digital Instruments) in air at 

room temperature at a resonant frequency of approximately 300 kHz. Commercially 

available silicon cantilevers were used (TM Nanoprobe, Veeco) with a cantilever spring 

constant of 35 N/m, a tip cone angle of 20° and tip radius of about 10nm while the scanning 

frequency was 1 Hz. The values of surface mean roughness (Ra) and maximum height 

roughness (Rmax) were calculated after 2
nd

 flattening operation over the captured area of 2×2 

μm. For the AFM investigation, single GFs were stabilized onto clean silicon wafers in a 

similar way as for the SEM analysis. 

 In an attempt to visualize the electrically conductive interphases, single fibers were 

embedded in epoxy and cross-sections were prepared as reported elsewhere [33]. 

Afterwards, current maps were acquired by the PeakForce TUNA module with a Bruker 

ICON scanning probe microscope (Bruker Corporation). Electrically conductive tips PPP-

EFM supplied by NanoAndMore GmbH were used and as measurement parameters, a scan 

rate of 0.5 Hz and a direct Voltage bias of 5 V were applied. In the obtained images, only the 

CNTs are visible which form the conductive paths within the area of investigation. The 

Nanoscope analysis software (Bruker, ver. 1.40) was used for the image analysis. 

 The Libra 200 transmission electron microscope (TEM, Carl Zeiss AG, Germany) 

operating at 200 kV was used to investigate the morphological characteristics of MWCNTs, 

as well as the interphase microstructures of single fiber composites. Bright field TEM 

images were recorded, while the energy filtering and contrast apertures were inserted to 

enhance the contrast of the images. For MWCNT investigations, one drop of pre-dispersed 

pristine or acid modified CNTs in DMF (0.01 mg/ml) was dispensed onto the surface of a 
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holey carbon coated grid and the excess solvent was removed by placing the grid on a filter 

paper. Interphase-sections of single fiber composites were prepared by Focused Ion Beam 

(FIB) using the NEON 40 FIB/SEM chamber equipped with a gallium ion beam operating at 

30 kV. A single filament of either GF-g-CNT or GF-ad-CNT (~30mm length) was placed 

flat onto a cleaned silicon wafer and stabilized from both sides with an adhesive tape. 

Afterwards, a thin layer of well-mixed and degassed epoxy resin/hardener mixture (DGEBA-

based epoxy resin with amine hardener EPH 960) covered thoroughly the whole GF and 

cured at 60 °C for 4 h, followed by high temperature post curing at 120 °C for 3 h. Single 

fiber composites were exposed to the focused ion beam process for the fabrication of the 

interphase-sections which were investigated further with TEM. Initially, the samples were 

sputtered with a platinum layer of 60 nm thickness to avoid charging effects during the FIB-

cutting (milling) process. By using the ion beam, a localized 15 nm protective platinum layer 

was also deposited to the surface of each sample over the region of interest selected for the 

interphase-section preparation. After several steps of milling-polishing, lamellae of 100 nm 

thickness were obtained and stabilized with a macro-manipulator on a special Cu grid for the 

TEM investigations. The FIB interphase-sections of GF-g-CNT and GF-ad-CNT composites 

were acquired following the same preparation steps. 

 The DC electrical resistance (R) of single GFs chemically grafted and physically 

bonded with MWCNTs, at different fiber lengths, was measured through a standard two-

probe method using a Keithley 2400 Source-Measure Unit (Keithley Instruments GmbH, 

Germany) interfaced with a PC. Single fibers were laid down on a glass slide with pre-

patterned sputtered platinum electrodes at 0.5, 1.0, 2.0 and 5.0 mm electrode-electrode 

distances, respectively, and glued with silver paste to stabilize them. Then, two copper 

electrodes were adjusted tightly to the gold contacts and electrical resistance measurements 

were performed at 22 °C and 22% relative humidity (RH) providing a voltage source (V) of 

0-10 V in 100 steps. By recording the current (I) which flows through the fiber surface in 

every step, the average resistance of each fiber was calculated. At least, 20 samples of either 

GF-g-CNT or GF-ad-CNT were measured and the mean resistance values with the 

corresponding standard deviations are presented. The distance between the pre-patterned 

sputtered gold electrodes defines the length of the fiber used for the resistivity (ρ) and 

conductivity (σ) calculations. The I-V characteristics of single GF-g-CNT and GF-ad-CNT 

embedded in epoxy were also determined. A single fiber was placed lengthwise on two 

prepatterned sputtered platinum contacts on opposite sides of a rectangular shaped Teflon 

mould at 5.0 mm distance between them. Silver paste was used to contact and glue two 

copper wires with the platinum contacts in order to be connected further with the Keithley 
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Source-Measure Unit. Epoxy mixed with the hardener was poured into the mould and cured 

as previously described. Using a voltage power supply (V) of 0-10 V in 100 steps, the current 

values were recorded and the I-V curves were plotted. Each measurement set-up is shown 

schematically in Fig. 6.2. 

  

Fig. 6.2 – Schematic illustration of the set-up used for the electrical investigations of (a) MWCNT-coated 

glass fibers and (b) single fiber composites. 

 In order to study the interfacial adhesion strength, single fiber pull-out tests (SFPOT) 

were performed on single fiber model micro-composites. This micro-mechanical technique is 

very sensitive to variations of the interfacial adhesion and it has been extensively used in 

order to study the interphase quality in composite materials as a function of the fiber surface 

modifications. Model composites were prepared using self-made embedding equipment as 

previously described elsewhere. [293] Single GFs with a pre-determined embedding length 

between 50 and 200 μm, were accurately end-embedded perpendicularly into the epoxy 

matrix under controlled atmosphere and temperature conditions. After curing, the single fiber 

pull-out tests were carried out using a self-made pull-out apparatus to evaluate the apparent 

interfacial shear strength (τapp) as a measure of the practical adhesion at the fiber/matrix 

interphase. [294] All the tests were performed in an ambient atmosphere under quasi-static 

conditions with force accuracy of 1 mN and displacement accuracy of 0.07 μm. The 

crosshead displacement rate used throughout all the experiments was set at 0.01 μm/s. From 

each force-displacement curve, the maximum force (Fmax) required for pulling the fiber out 

of the matrix and the embedded fiber length (le) were derived. The apparent interfacial shear 

strength (τapp) was calculated then according to the following equation: 

     
    

     
  (6.1) 

where df is the fiber diameter measured by optical microscopy. The adhesion bond strength 

between the fiber and the epoxy matrix was characterized finally by the values of apparent 

interfacial shear strength for each group of model composites. The average values of shear 
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strength which are presented with the corresponding error bars representing the standard 

deviations were determined from at least ten successful pull-out experiments. The pulled-out 

fibers were collected and their surface morphologies were investigated by SEM. 

6.1.3 Results and discussion 

6.1.3.1 MWCNT analytics 

Fig. 6.2 shows the FT-IR spectrum of pristine and acid functionalised MWCNTs, 

respectively. The appearance of a band at 1712 cm
-1

 can be assigned to the stretching 

vibrations of carbonyl groups (C=O), arising from the -COOH moieties introduced to the 

sidewalls and open ends of MWCNTs after the oxidative treatment. The absorption band at 

2918 cm
-1

 for both pristine and acid modified MWCNTs is attributed to hydrocarbon groups 

(-CHx), and it is slightly decreased for the acid treated MWCNTs due to existence of surface 

-COOH functionalities. [24] [295] [192] TEM images of pristine and acid treated MWCNTs 

are depicted next to the FT-IR spectra. Obviously, the acidic treatment generates some 

structural defects to the MWCNTs, which appear with not such a smooth surface of the outer 

wall compared to pristine ones. 

        

Fig. 6.2 - FT-IR spectra of pristine (red line) and acid treated (blue line) MWCNTs. The inset image shows 

the colloidal stability of MWCNTs in water, one month after the CNT-dispersions have been prepared. 

TEM images of pristine and acid treated MWCNTs are depicted next to the FT-IR spectra. 

6.1.3.2 XPS analysis 

 On molecularly smooth surfaces, the XPS method gives information on the chemical 

composition of a surface layer, which is not thicker than 8 nm. Hence, XPS was utilized as a 

suitable tool to show modifications carried out on the MWCNT and GF surfaces but also on 

the GF-g-CNT and GF-ad-CNT hybrid filaments (areas of approximately 300 × 700 μm
2 

were analyzed). XPS scans were performed to detect the presence of surface elements and 

determine the chemical composition of MWCNTs, GFs and GFs with chemically and 
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physically attached MWCNTs. The peaks of carbon, oxygen, nitrogen and chlorine are 

centered at around 283.9, 532.4, 399.5 and 200.1 eV, respectively. Fig. 6.3 shows the wide-

scan and high-resolution element spectra of pristine MWCNTs, MWCNTs modified with 

carbonic acid (MWCNT-COOH) and acyl halide (MWCNT-COCl) groups. It can be seen 

from Fig. 6.3a (left column, wide-scan spectrum of pristine MWCNTs) that besides the 

intensive C 1s peak of carbon (99.14 at.%), MWCNTs contain traces of oxygen (O 1s and O 

2s peaks, and O KLL Auger series; 0.66 at.%), which can be mainly a constituent of typical 

inorganic impurities such as aluminum (0.30 at.%). The asymmetric shape of high-resolution 

C 1s spectrum for pristine MWCNTs is very characteristic for carboneous substances having 

graphite-like lattices. Photoelectrons of carbon atoms of the carbon nanotube graphite-like 

lattice (–C=C–  =C–C=) contributes to the main component peak Gr at 284.5 eV. Excited 

states caused by the consumption of external energy led to its asymmetric shape. Electron 

transitions between  and * orbitals of the conjugated carbon atoms in the sp
2
 hybrid state 

were observed as shake-up peaks. The endowing of MWCNTs with carbonic acid groups 

clearly increased the relative amount of oxygen (13.31 at.%) in the sample surface (Fig. 6.3b, 

left column). Accordingly, it can be observed that the shape of the corresponding C 1s high-

resolution spectrum has been slightly changed. The asymmetric shape of the main 

component peak Gr is not significantly affected, however, two additional component peaks, 

C (3.99 at.%) and E (5.46 at.%) resulting from surface functional groups were introduced. 

Component peak E (at 288.5 eV) results from carbonyl carbon atoms of carbonic acids (HO–

C=O) and their corresponding carboxylate groups (
-
O–C=O  O=C–O

-
), showing the 

success of the functionalization reaction. Component peak C (at 286.6 eV) indicates 

oxidative side reaction where phenol-like groups (C–OH) were formed. Furthermore, the 

acid treatment partly decomposed the graphite-like structures, which is accompanied by the 

formation of sp
3
 hybridized carbon atoms (component peak A at 285.00 eV). The oxidation 

reaction decreased slightly only the intensities of the shake-up peaks. These findings support 

the assumption that carbonic acids and other functional groups were formed only on the 

carbon nanotubes' surfaces. The attachment of -COCl groups after treatment with thionyl 

chloride, introduced chlorine to the carbon nanotube surface which was detected as Cl 2p 

and Cl 2s peaks (Fig. 6.3c, left column; 4.21 at.%). The high-resolution Cl 2p spectrum (Fig. 

6.3c, right column) clearly indicated that the majority of chlorine is organically bonded (C–

Cl) in intact acyl chloride groups (component peaks N [Cl 2p3/2] at 199.82 eV and N' [Cl 

2p1/2] at 201.42 eV). Hydrolysis of acyl chloride groups released chloride ions (Cl
-
) which 

were observed as component peaks M [Cl 2p3/2] and M' [Cl 2p1/2] at lower binding energy 

values (197.35 eV and 198.95 eV, respectively). The shape of the C 1s narrow scan spectrum 
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of the MWCNT-COCl sample (Fig. 6.3c, second column) is obviously different from the 

other C 1s spectra discussed above. Component peak D (at 287.2 eV) results from carbonyl 

carbon atoms of intact acyl chloride groups (O=C–Cl). Its intensity (3.9 at.%) excellently 

agrees with the intensity of the organically bonded chlorine in the high-resolution Cl 2p 

spectrum. The component peak E shows carbonic acid groups and their corresponding 

carboxylate groups, which were formed by the hydrolysation of some of the acyl chloride 

groups. The lower intensities of the shake-up peaks suggest that the endowing of MWCNTs 

with acyl chloride groups has affected the graphite-like lattice stronger than the first step of 

oxidation treatment to introduce carbonic acid groups. 
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Fig. 6.3 - Wide-scan XPS spectra, C 1s and Cl 2p high-resolution XPS element spectra of (a) pristine 

MWCNTs, (b) MWCNT-COOH and (c) MWCNT-COCl. 

 Differently surface-modified MWCNTs were attached to GFs which were coupled 

with -APS. Fig. 6.4 shows the XPS wide-scan and the corresponding high-resolution C 1s, 

N 1s and Cl 2p spectra of -APS modified GFs (Fig. 6.4a), GF-ad-CNT (Fig. 6.4b) and GF-

g-CNT (Fig. 6.4c). The successful silanisation of GFs can be seen by the presence of a 

considerable amount of nitrogen on the sample surface ([N]:[C] = 0.125) in Fig. 6.4a (left 

column). Moreover, the high-resolution C 1s spectrum (Fig. 6.4a, second column) shows a 

component peak Si (at 284.33 eV) appearing from carbon atoms which are bonded to silicon 

(C–Si). With respect to the stoichiometry of -APS, component peak A (at 285.00 eV) shows 

an excess of saturated hydrocarbons (CxHy). Such surface contaminations are usually 

observed on oxide surfaces because the high amount of the material's surface free energy can 
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be minimized by non-specific adsorption of organic molecules during wet processes or from 

atmosphere. Component peaks C (carbon atoms of alcohol and/or ether groups, alcohol-sided 

carbon atoms of carbonic ester groups), E' (carbonyl carbon atoms of carbonic ester groups) 

and E (carbonyl carbon atoms of carbonic acid groups and their corresponding carboxylate 

groups) appeared from carbon atoms of functional groups containing oxygen. Carbon atoms 

bonded to nitrogen (C–N) contributed to component peak B (at 286.02 eV). The N 1s high-

resolution spectrum (Fig. 6.4a, third column) shows the two component peaks G and H 

which indicate the presence of organically bonded nitrogen. The binding energy found for 

component peak G (at 399.8 eV) is typical for C–N bonds of amino groups. Component peak 

H (at 401.6 eV) arose from protonated amino groups (C–N
+
H). The intensity ratio [H]:([G] + 

[H]) quantifies the protonation equilibrium of the amino groups. On glass surfaces, it is also 

possible that the primary amino groups of -APS can be partly protonated by their interaction 

with the Brønsted-acid silanol groups of the glass substrate. 

 If it is assumed that a small amount of carboxyl modified MWCNTs were attached 

to the silanized GF surface, the slight decrease observed for the peak intensity of silicone of 

the substrate material seemed to be plausible (Fig. 6.4b, left column). In the corresponding 

high-resolution C 1s spectrum it was impossible to separate neither a component peak Gr 

showing the carbon atoms of the graphite-like lattice of the carbon nanotubes nor a 

component peak Si showing C–Si bonds of silanes. Hence, all these carbon atoms 

contributed to component peak A, which is wider than the main component peak in the C 1s 

spectrum of the silanized GF without MWCNTs. After the attachment of MWCNT-COCl, 

chlorine was detected on the GF surface as Cl 2s and Cl 2p peaks (Fig. 6.4c, left column). In 

contrast to the MWCNT-COCl sample, the high-resolution Cl 2p spectrum of the MWCNT-

COCl grafted glass fiber shows only chlorine (Fig. 6.4c, right column), which is not 

organically bonded (component peak M [Cl 2p3/2] at 197.36 eV and component peak M' [Cl 

2p1/2] at 198.95 eV). The absence of organically bonded chlorine can be explained by taking 

place of reactions between the carbon nanotube's acyl chloride groups and the primary amino 

groups of the silane coated fibers. The carbonic amide groups (O=C–NH–C) formed during 

these reaction contributed to component peak D' (at 287.83 eV), which was observed in the 

corresponding C 1s spectrum (Fig. 6.4c, second column). The new component peak D' 

resulted from carbonyl carbon atoms of the amide groups (O=C–NH–C) while the amine-

sided carbon atoms of the amide groups (O=C–NH–C) contributed to component peak B. 

The intensity of component peak D' was approximately the half of the [N]:[C] ratio, which 

was determined from the wide-scan spectrum. That means only the half of the amino groups 

was involved in the reaction with the acyl chloride-modified carbon nanotubes. These 
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findings correspond to the high amount of protonated amino groups (component peak H), 

which cannot react with acyl chloride groups of the MWCNTs. The formation of amide 

groups did not significantly shift the position of component peak G, which represents now 

mainly nitrogen atoms of the carbonic amide bonds (O=C–NH–C). In contrast to the 

formation of covalent bonds between the acyl chloride-functionalized MWCNTs and the GF 

surface carrying primary amino groups; the attachment of COOH-modified MWCNTs on the 

fibers is mediated by electrostatic interactions. The Brønsted basic primary amino groups of 

the silane layer drive the deprotonation of the weak Brønsted acid carbonic acid groups by 

stabilizing the hydronium ion. As a result, a salt pair between MWCNT-COOH and the -

APS modified GFs (–COO
-H–

+
NH2–) is formed. The protonated amino groups should 

contribute to component peak H in the N 1s spectrum (Fig. 6.4b, third column). However, 

the negative charge of the carboxylate group in the immediate neighborhood of the primary 

amino group apparently neutralized the amino group’s electric field and compensated the 

expected chemical shift in the N 1s spectrum. Hence, in Fig. 6.4b the intensity of component 

peak H seems to be decreased. 
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Fig. 6.4 – Wide-scan XPS spectra and C 1s, N 1s, Cl 2p high-resolution XPS element spectra of (a) APS-

modified GFs, (b) GFs coated with MWCNT-COOH and (c) grafted with MWCNT-COCl. 

6.1.3.3 Glass fiber surface microstructures 

 The SEM images in Fig. 6.5a-c depict the fiber’s surface morphology after the 

spinning process, the cleaning-activation treatment and the silanisation coupling, 

respectively. The GFs produced by the spinning process expose some small glass particles 
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on the surface (Fig. 6.5a) which are removed after the basic piranha treatment (Fig. 6.5b). 

This step yields activated as well as neat and smooth fiber surfaces due to possible 

hydrolysis of siloxane bonds, which may cause the extraction of the glass particles. The 

surface modification of GFs with γ-APS generates a mountain-like topography (Fig 5c) 

which is typical for the condensation of silanes on glass surfaces. [41] Fig. 6.5d and 6.5e 

demonstrate the microstructures of chemically attached (GF-g-CNT) and physically 

adsorbed (GF-ad-CNT) MWCNTs to the GF, at two different magnifications. The MWCNT-

coating of GF-g-CNT is more uniform compared to GF-ad-CNT, and MWCNTs form an 

interconnected network with fully surface coverage and very few visible agglomerates. This 

could be attributed to the covalent bond between GF/MWCNTs, which is strong enough to 

prevent undesired agglomeration of CNTs upon drying after the dip-coating process. On the 

other hand, the surface morphology of GF-ad-CNT (Fig. 6.5e) shows that MWCNTs are 

assembled into arrays due to their native Van der Waals forces or possible electro-

hydrodynamic and electro-osmotic effects. [20] It can be presumed that the nature of 

bonding between MWCNTs and GFs plays an important role to obtain a good quality of 

CNT-coating which may affect the electrical properties as well as the interfacial strength. 
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Fig. 6.5 – SEM images of GFs (a) after the spinning process, (b) cleaned-activated and (c) silane treated. (d) 

GFs grafted with MWCNT-COCl and (e) non-covalently bonded with MWCNT-COOH at two different 

magnifications. 

 Fig. 6.6 illustrates the AFM height images of single GFs showing the variations of 

fiber surface topographies. Fig. 6.6a corresponds to the GF after the spinning process and 

small glass impurities can be observed, while, relatively clean and smooth fiber morphology 

was obtained after the cleaning-activation treatment (Fig. 6.6b). The lowest values of image 

mean and maximum roughness indicate that the cleaning-activation treatment not only 

increases the number of surface silanol groups (Si-OH), but also removes the small glass 

particles originating from the spinning process. In Fig. 6.6c, the silane islands as discussed 

above are formed due to the condensation of the silane coupling agent. Fig. 6.6d and 6.6e 

display the CNT-layer characteristics of GF-g-CNT and GF-ad-CNT, respectively, and the 

observed topographies fully corroborate with the SEM micrographs. 

  

  

Fig. 6.6 – AFM height images of (a) GF after the spinning process, (b) cleaned-activated, (c) silane treated, 

(d) grafted and (e) non-covalently bonded with MWCNTs. Scan size: 2 x 2 μm, Z data scale: 100 nm. The 

values of image mean and maximum roughness (Ra, Rmax) are inserted in the corresponding AFM image. 

6.1.3.4 TEM interphase microstructures of single fiber composites 

 Fig. 6.7a demonstrates a representative SEM image of the single fiber composite 

interphase-section at an intermediate step of the Focused Ion Beam (FIB) milling-polishing 
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process. Consecutive steps were performed to achieve ~100 nm thickness of the interphase-

section lamellae which were investigated by TEM at the direction shown by the arrow. Fig. 

6.7b and Fig. 6.7c depict the TEM images of single GF-g-CNT and GF-ad-CNT epoxy 

composite interphases. These images provide detailed information about the MWCNT-

network characteristics along the interphase region. In Fig. 6.7b, a homogeneous and 

interconnected network can be observed that remains in contact with the GF surface after 

embedding in epoxy matrix. This could be an indirect proof of the chemical bonding 

between MWCNTs and GF, which is in a good agreement with the results of the XPS 

analysis. On the contrary, Fig. 6.7c shows that only few MWCNTs are close to the GF 

surface and the CNT-network has migrated away, around 40 nm to the epoxy phase. A 

possible explanation could be that i) the chemical reaction of epoxy groups with the GF 

amine surface functionalities as well as the MWCNT carboxylic groups via a nucleophilic 

ring opening mechanism, and ii) the molecular mobility of the epoxy polymeric chains 

during the curing process, overcome the strength of zwitterionic interactions (or H-bonds) 

formed between MWCNT-COOH and amine terminated GFs resulting in the detachment of 

MWCNTs. From the interfacial characteristics obtained by the TEM analysis, we can deduce 

that chemically grafted MWCNTs expose high durability to remain attached to the GF when 

they are introduced in an epoxy matrix. This finding is of utmost importance for further 

utilization of the hierarchical reinforcement as multifunctional sensor in composite materials. 
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Fig. 6.7 – (a) SEM image of the FIB interphase-section at an intermediate step of the milling-polishing 

process. (b and c) TEM interface microstructures of single GF-g-CNT and GF-ad-CNT epoxy composites. 

6.1.3.5 Electrical properties of single MWCNT-coated glass fibers and single fiber 

composites 

 Fig. 6.8a and 6.8b show the arithmetic mean values with the corresponding standard 

deviations of electrical resistance (R, black bars) and conductivity (σ, grey bars) for single 

GF-g-CNT and GF-ad-CNT, respectively. In general, the resistance increased with 

increasing the electrode-electrode distance, and specifically for the GF-g-CNT was in the 

range of 10
4
-10

5
 Ω while for the GF-ad-CNT about 10

5
-10

6 
Ω. It can be observed that the 

resistance values and their variation are higher for the GF-ad-CNT samples. This can result 

from the inhomogeneous microstructure of the CNT surface layer which was previously 

demonstrated by the SEM and AFM images. Accordingly, the specific conductivity of 

MWCNT-coated GFs (GF-CNT) with an average diameter of d≈18 μm was calculated by the 

formula: σGF-CNT = (4L) / πd
2 
R, and it was ~20 S/m for the GF-g-CNT and ~2 S/m for the GF-

ad-CNT. The conductivity introduced to the intrinsic electrically insulating GFs can be 

attributed to the ultrathin CNT-networks deposited to the fiber surfaces creating the electron 

transport pathways. In fact, higher values were achieved for the GF-g-CNT due to the 

excellent distribution of MWCNTs which were arranged in highly entangled and closely 

packed networks. The maximum conductivity (~20 S/m) of the GF-g-CNT is to our 

knowledge one of the highest values compared to existing ones in literature for similar 

systems. [33] However, the concentration of the CNT solution (0.1 mg/ml) used for the dip 

coating process was five times lower than previously reported protocols. [20, 33] The 
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aforementioned conductivity values can be explained more precisely if we consider the 

existence of a continuous MWCNT thin layer with thickness, t, on the fiber surface with 

electrical conductivity, σCNT, attached either by covalent or non-covalent bonds. The 

conductivity of the CNT layer (σCNT) then is given by the following equation: [33] [296] 

 𝐶 𝑇  
 

  
    𝐶 𝑇 (6.2) 

Taking this equation as a rough estimate, the fibers average diameter d≈18 μm, the thickness 

of the CNT layer about 70-80 nm according to the AFM maximum roughness data, and σGF-

CNT the conductivity of CNT-coated GFs given in Fig 6.8a and 6.8b, the conductivity of the 

CNT layer is calculated to be 1.18×10
3
 S/m for GF-g-CNT and 1.1×10

2
 S/m for GF-ad-CNT, 

respectively. The difference is assigned as already discussed to the CNT-coating 

morphology. It should be mentioned that the thin CNT layer which was formed by grafted 

MWCNTs possesses high electrical conductivity comparable to the aggregated and highly 

dense structure of CNT-only bucky paper film (calculated to be ~2.3×10
3
 S/m; bucky paper 

CNT films were prepared by vacuum filtering a CNT suspension of the nanotubes used for 

the fiber coatings). On the other hand, the CNT layer of the GF-ad-CNT exposes a non-

uniform morphology which dampers the extended individual CNT junction points resulting 

in one order of magnitude lower conductivity. 

 Fig. 6.8c represents the I-V characteristics of single GF-g-CNT and GF-ad-CNT 

epoxy composites together with two linear dash lines showing the regression of the 

experimental data. Obviously, there is a linear dependency of the measured current as a 

function of the applied voltage and this indicates that Ohmic contacts between GF-CNT and 

electrodes were formed. Therefore, the contact resistance between the fibers and the 

electrodes is negligible compared to the resistance of single fiber composites. The resistance 

of the single GF-g-CNT and GF-ad-CNT composites was calculated from the reciprocal of 

the corresponding I-V curve slope and it is inserted in Fig. 6.8c. The specific conductivity of 

a single GF-CNT in epoxy at the longitudinal direction was given by the formula: σGF-CNT/epoxy 

= (4L) / πd
2
 R, and after calculations was found to be 0.79 S/m and 0.24 S/m, respectively, 

which is one to two orders of magnitude lower than the conductivity of the bare fibers. This 

can be explained by the presence of the epoxy insulating macromolecular chains through the 

MWCNT-networks which generate an insulating layer at the nanotube-nanotube junctions 

preventing direct physical contact between them. [297] In the same way like previously, 

considering the thickness, t
*
 of the MWCNT-networks after embedding in epoxy as revealed 

by the TEM interphase-section images (t
*
≈250 nm), using Equation 6.2, we can correlate the 
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conductivity of the nanostructured interphases (σInterphase) with the respective specific 

conductivity of single GF-CNT in epoxy following the expression: σInterphase ≈ (d/4t
*
) σGF-

CNT/epoxy. After calculations, the interphase conductivity of GF-g-CNT and GF-ad-CNT in 

epoxy matrix was ~14.2 S/m and ~4.4 S/m, respectively. The high values of conductivity 

within the interphases can be compared to CNT/polymer composites with high CNT 

loadings, [33] and they can be attributed to the dense MWCNT-networks located at the 

interphase region. 

 Fig. 6.8d and 6.8e depict the nanoscale electrical current maps of single fiber/epoxy 

cross-sections investigated by PeakForce TUNA atomic force microscopy (PF-TUNA 

AFM). We should mention that these images provide a qualitative sense of the interphase 

electrical properties. Both GF-g-CNT and GF-ad-CNT composite interphases expose 

conductive characteristics due to the localization of MWCNTs at the interphase area. 

However, the non-fully surface coverage of GF-ad-CNT results in a non-continuous 

conductive interphase. 
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Fig. 6.8 – DC electrical resistance (R, black bars) and conductivity (σ, grey bars) of single GFs with (a) 

chemically grafted (GF-g-CNT) and (b) physically adsorbed (GF-ad-CNT) MWCNTs as a function of the 

electrode distance (error bars represent the corresponding standard deviations). (c) I-V characteristics of 

single GF-g-CNT and GF-ad-CNT epoxy composites showing the linear regression (linear dash lines) in 
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each case. PeakForce TUNA current maps of single (d) GF-g-CNT and (e) GF-ad-CNT epoxy cross-

sections (scale: 50 pA, Vbias = 5 V). 

6.1.3.6 Interfacial adhesion properties 

 The single fiber pull-out test was used to determine the quality of interfacial bonding 

between the epoxy matrix and the different fibers used in this study. Fig. 6.9a shows the 

results of apparent interfacial shear strength (τapp) measurements performed on single fiber 

model micro-composites. The interfacial shear strength is an evaluation of the efficiency of 

the interface to transfer the applied stress from the matrix to the fiber. GFs modified with 

APS (GF-APS); widely used as a coupling agent to improve the adhesion strength of 

GF/epoxy composites, have been compared with GF-ad-CNT and GF-g-CNT, respectively. 

As it can be observed, the GF-g-CNT exposed the highest interfacial adhesion strength 

(65.4±6.4 MPa) with an increase of ~48% compared to the GF-APS. A plausible explanation 

about this could be that the epoxy monomer interdiffuses through the CNT-grafted network 

and interacts chemically both with the amine groups of the fiber surface via nucleophilic ring 

opening reaction, as well as with the carbonyl groups of the CNTs via esterification. 

Therefore, the covalent bonds of epoxy at the interphase region combined with the high 

strength of the grafted CNT-network to be attached to the GF surface very effectively hinder 

the shear flow through the interphase resulting in the highest interfacial strength among the 

investigated fibers. The SEM images in Fig. 6.9b, 6.9c and 6.9d depict the fracture 

morphologies of the pulled-out fibers and it is clear that in all cases cohesive failure 

occurred, since matrix material was observed on the fibers after the pull-out process. 

Improvement of the τapp for the GF-ad-CNT (~13.4%) and GF-g-CNT compared to GF-APS 

could be attributed to the local stiffening of the polymeric chains at the interphase region 

because CNTs act as nucleating agent. The CNT carboxyl groups could be also responsible 

for an increase of the epoxy cross-linking density which may contribute to the stiffening of 

the polymer chains. In addition, the nanoscale roughness can further introduce a mechanical 

interlocking mechanism that was apparently more effective in the case of chemically grafted 

MWCNTs. 
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Fig. 6.9 – (a) Apparent interfacial shear strength (τapp) and (b, c, d) SEM fracture surface morphologies of 

GF-APS, GF-ad-CNT and GF-g-CNT, respectively. 

 In conclusion, MWCNTs were successfully deposited onto the surface of electrically 

insulting GFs via covalent or non-covalent bonds in a conventional dip coating deposition 

process. SEM and AFM images of MWCNT-coated fibers demonstrated the surface 

morphological and topographic characteristics. Homogeneous MWCNT-networks were 

achieved by chemically grafting carbon nanotubes to the GFs, whereas relatively big areas 

remained uncovered in the case of non-covalently bonded CNTs. The electrical conductivity 

of single fibers grafted with MWCNTs was generally more than ten times higher than the 

physically adsorbed ones, reaching the value of ~20 S/m at 0.5 mm fiber length. XPS 

analyses together with the interfacial microstructures observed by the TEM images, can 

strongly prove the formation of an amide chemical bond between the GF-APS and the 

MWCNT-COCl. By using each of the hybrid filaments, single fiber composites were 

prepared and the resistance in each case was found to be increased approximately one order 

of magnitude compared to the values of the respective fibers at the same length. For the first 

time in this work, we presented the cross-sectional interface characteristics of a CNT-coated 

GF embedded in epoxy matrix. Focused ion beam was employed to prepare the interphase-

sections, and it is the only possible technique since conventional ultramicrotomy is not a 

suitable due to the brittle behavior of GFs which can destroy the diamond knifes, used for the 

cross-sectioning process. The corresponding TEM images of single fiber composite 

interphase-sections reveal the microstructures of the interfacial area and the durability of the 
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MWCNT-coating, which is shown to remain attached or to migrate away few nanometers 

from the GF surface after embedding in epoxy matrix. For possible utilization of the hybrid 

filaments as in-situ mechanical damage sensors, the fiber fragmentation steps can be more 

precisely and efficiently monitored when the MWCNTs remain attached to the GF after 

embedding into the epoxy matrix. The hierarchical GFs chemically grafted with MWCNTs 

can be easily prepared according to the protocol proposed here, and they show great potential 

to be used as novel reinforcements in high performance composites. 
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6.2 MWCNT-grafted glass fiber yarns as a smart tool for the epoxy cure 

monitoring, UV-sensing and thermal energy harvesting 

 

Abstract 

 A hierarchical reinforcement structure of glass fiber yarns (GFs) grafted with 

multiwalled carbon nanotubes (MWCNTs) has been utillised as a smart tool for the epoxy 

cure monitoring, UV-sensing and thermal energy harvesting. CNT-networks were covalently 

attached onto the surface of intrinsically insulating GF yarns (GF-CNT) in a dip-coating 

deposition process at 0.1; GF-CNT(0.1) and 0.5; GF-CNT(0.5) mg/mL CNT solutions, 

respectively. An electrically conductive layer was formed covering the fiber surfaces, as 

revealed by the scanning electron microscopy (SEM) images. In turn, GF-CNT(0.5) reached 

a maximum conductivity of 2020 S/m, very close to the CNT-only bucky paper film value. A 

GF-CNT yarn in a uni-directional arrangement within a dog-bone shaped mould was used 

for the epoxy cure monitoring recording the resistance change during the hardening process. 

Furthermore, three yarns in parallel connection highlighted the potential of detecting the 

resin position upon filling a mold. The GF-CNT embedded in epoxy matrix has been 

proposed also to function as a UV-sensor, providing the possibility of the polymer matrix 

health monitoring, since polymers are known to be sensitive in the UV-light. Besides, the 

semi-conductive nature of MWCNTs provided the opportunity of harvesting thermal energy 

by the GF-CNT, operating as a typical thermoelectric material. This work highlights some 

new insights and potential of CNT/fiber hierarchical structures; and it is envisaged that all 
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the ideas presented here could be implemented in a bigger scale giving rise to 

multifunctional structural composites. 

6.2.1 Introduction 

 Since their discovery, carbon nanotubes (CNTs) have been widely used for advanced 

applications due to their unique electrical, mechanical and thermal properties. [6] [254] The 

incorporation of CNTs in polymer matrices has been the subject of different studies, 

demonstrating that they are an ideal candidate for fabricating multi-functional polymer 

nanocomposites. [255] [256] [257] [258] [196] [298] Recently, CNTs have been combined 

together with micro-scale filaments like glass, carbon [276] or natural fibers resulting in 

‘hierarchical’ [275] or ‘fuzzy’ [299] multi-scale structures, [260] and have been incorporated 

further into different polymer matrices. [260] [261] [262] [263] A review could be found 

where carbon nanotube-based hierarchical composites and the advantages for the formation 

of a multi-scale reinforcement were elaborately discussed. [264] The methods of CNT 

deposition onto the fibrous reinforcements include: i) chemical vapor deposition (CVD), ii) 

electrophoretic deposition, iii) sizing mixtures containing CNTs applied to the fibers during 

the spinning process and iv) dip-coating. The hybrid fibers have been found to enhance the 

interfacial adhesion strength as well as endowing with multi-functional properties to the final 

composites. The multi-functional properties arise specifically from the composite hybrid 

interphases or interphasial regions, and different kinds of functionalities have been 

established such as strain and temperature sensing. [283] 

 Glass fiber reinforced polymer composites (GFRPs) offer a flexible design approach 

for structural materials with significantly enhanced specific properties such as strength and 

stiffness. [177] Epoxy resins are one of the most important thermosetting polymers used as 

the matrix in composite materials, due to their ability to be infused in fabrics at room 

temperature, [300] and their high chemical as well as temperature resistance. [301] It is a 

well-known fact that fibers are the load-bearing constituent in a composite structure, and the 

matrix/fiber interface should be designed in an engineered way, since it acts as the bridge for 

transferring the mechanical stresses from the matrix to the reinforcement. However, the 

matrix-dominated properties such as interlaminar shear strength, [302] [303] resin failure 

strain, [304] void content, [305] crosslink density, [306] etc can play a crucial role on the 

composite’s damage development and progression. To that end, factors which can influence 

the properties of the epoxy matrix include: i) chemical composition and stoichiometry of the 

reagents, i.e relative epoxy/amine concentration; ii) cure schedule used to process the resin; 
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and iii) the detection of resin location upon filling a mold containing fibers; for instance pre-

pregs. Hence, there is a demand for sensors which can determine in situ the state of cure of a 

composite at points remote from the surface. The curing reaction of the resin is one of the 

major processes in composite materials, and therefore cure monitoring is crucial for the 

control and optimisation of composites’ manufacturing process which influences further the 

composite mechanical properties. [307] [308] The cure monitoring can rely on various 

physical or chemical properties that can be used to follow the transformation of an initially 

liquid thermoset resin into its final rigid solid form. Optical fibre sensors, [177] dielectric 

analysis, [307] ultrasonic wave propagation, [309] heat-flux measurements [310] and 

viscosity measurements [311] are some of the techniques that have been already used for the 

cure monitoring of epoxy resins. Conventional spectroscopic techniques such as near-

infrared (NIR), [312] mid-infrared, fluorescence [313] and Raman [314] have been also 

employed, and they can provide even quantitative information about the relative 

concentrations of the chemical constituents in the resin. Since the fiber/CNT hierarchical 

structures have been promising reinforcements increasing the interfacial adhesion strength 

studied by single fiber model composites, [281] as well as the interlaminar shear strength 

investigated by laminate composites, [315] it would be ideal if they could provide some 

information about the curing state of the resin in which they are incorporated. 

 Besides, polymers are known to be sensitive in UV-light which can cause the 

shortening of the polymeric chain’s by time, phenomenon called as ‘photodegradation’. In 

particular, photodegradation has been explained via different kind of mechanisms for 

thermosetting and thermoplastic polymers. [316] [317] Consequently, exposition of 

polymers in UV irradiation can have a negative impact on their mechanical performance by 

time. Therefore, in polymer composites where the matrix provides the structural integrity, it 

is very important that it is free of defects. To that end, the possibility of an integrated sensor 

within the composite structure that can give an output signal when it is exposed to UV 

irradiation would be beneficial for the composite health state. Then, by testing the resistance 

and stability of the polymer itself towards the UV illumination, the sensor’s data can be 

correlated to the polymer’s structural state. This can give the opportunity to determine 

whether the polymer has undergone a significant damage or not. 

 Composite materials are exposed in several cases in environments where there is a 

temperature gradient, i.e composite parts of airplanes, cars, etc. Thereby, the potential of 

composites to function as thermoelectric materials is a very intriguing field of research. 

[318] Thermoelectric materials are one of the potential candidates for energy harvesting 
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(such as waste heat) due to their ability to generate voltage upon exposure to a temperature 

difference. This so-called thermoelectric or Seebeck effect is described by the thermoelectric 

power (TEP), or thermopower, or Seebeck coefficient (S), which is the direct solid state 

conversion of thermal energy to electricity. [319] The thermoelectric power is defined as: 

   
  

 𝑇
  (6.3) 

where ΔV is the electric potential difference (or thermovoltage, or thermoelectric voltage) 

created by the temperature gradient, ΔT, within the material. The Seebeck coefficient is used 

further to calculate the power factor [PF, PF = σ×S
2
 = σ×(ΔV/ΔT)

2
, σ is the electric 

conductivity], as a means to compare the efficiency of different thermoelectric materials. 

The dimensionless Fig. of merit [ZT, ZT = (σ×S
2
/κ) T, κ is the thermal conductivity and T is 

the absolute temperature] is also used to compare the thermoelectric efficiency; [320] 

however in this study due to the difficulties to determine the thermal conductivity of the 

composite interface, alternatingly the values of power factor are given, often used to 

compare materials to one other. [321] It should be mentioned that the Seebeck coefficient, S, 

is positive for p-type materials, and negative for n-type material, [322] and it is an intrinsic 

property of the materials related to their electronic properties, and independent of their 

geometry. [323] It can be realised that for an optimum thermoelectric efficiency, a high 

electrical conductivity and Seebeck coefficient, combined with low thermal conductivity are 

required. Traditional thermoelectric materials are known to be fabricated from low band gap 

semiconductors like Bi2Te3, PbTe, etc., however they are toxic and expensive to mass 

produce. [324] CNT-based polymer nanocomposites have been already reported as 

thermoelectrics, and they are of particular interest due to their low thermal conductivities 

(due to phonon scattering at the CNT-polymer-CNT interphase) which can sustain a 

temperature difference across the material, high electrical conductivities, ease of production, 

relatively low cost, flexibility and high specific properties. Especially, highly loaded 

SWCNT nanocomposites [325] have reached very promising power factors (σ×S
2
), and 

values in the range of ~140 μW m
-1 

K
-2

 have been reported. [326] The optimisation of the 

power factor by increasing both the conductivity as well as the Seebeck coefficient, remains 

still an open field for further investigation, and for that different approaches have been 

adopted such as doping of CNTs with different molecules, [327] creation of structural 

geometries like a p/n heterojunction, [328] different kind of conjugated polymers, [329] etc. 

Until now, the thermoelectric power of mainly solution processed CNT filled polymer 

nanocomposites, [328] as well as for long carbon fiber reinforced laminates [318] [330] and 

short carbon fiber/polycarbonate composites [331] have been investigated. Indeed, 
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thermoelectric structural materials are very promising for large-scale thermal energy 

harvesting, and several factors should be addressed in order to increase their thermoelectric 

efficiency, making them an attractive technology for the composite market. To the best of 

our knowledge, GF/CNT hierarchical reinforcements embedded in a polymer matrix with a 

great potential to harvest thermal energy has not been yet reported. 

 Herein, an effective wet chemical method for grafting MWCNTs onto the surface of 

GFs (GF-CNT) is presented. GF yarns exhibiting amine surface functionalities were dipped 

in a solution of acyl chloride modified MWCNTs (MWCNT-COCl), and amide chemical 

bonds were formed (GF-CNT) as revealed by the XPS analysis. The fiber surface 

morphology was investigated by scanning electron microscopy (SEM). MWCNTs were 

found to be arranged into entangled and densely packed networks homogeneously distributed 

onto the fiber surfaces. The interphase microstructure of single GF-CNT embedded in epoxy 

was studied by transmission electron microscopy (TEM). The electrical properties of the 

hybrid fibers attributed to the surface anchored CNTs were investigated by ‘two probe’ 

electrical resistance measurements. A GF-CNT yarn has been proposed as a smart tool for 

the in-situ cure monitoring of a commercial DGEBA-based epoxy resin upon fabricating 

single fiber yarn uni-directional model composites. Recording the fiber resistance changes as 

a function of time was found to give a fingerprint of the epoxy degree of cure, and correlated 

further to the real state of cure investigated by isothermal dynamic scanning calorimetry 

(DSC). The principle of this study can be simply implemented to big-scale composites, since 

the GF-CNT yarns can be incorporated in the composite during the manufacturing process, 

for example in prepregs, woven fabrics, pultrusion and filament winding. The fibers could 

allow to monitor in real time the curing process as well as to detect the resin infiltration, in 

different composite fabrication routes such as RTM , infusion, autoclave and pultrusion. The 

GF-CNT exhibited also excellent response to UV-light illumination facilitating the use as an 

integrated UV-sensor within the composite. This could be an important feature for the health 

monitoring of the polymer matrix. Thermal energy harvesting was finally demonstrated by 

the GF-CNT before and after being embedded in the epoxy matrix and more investigation is 

required to increase the thermoelectric efficiency. The use of GF-CNT yarns for the epoxy 

cure monitoring, UV-sensing and thermoelectric energy harvesting is for the first time 

addressed in this work. 

6.2.2 Experimental 

6.2.2.1 Materials 



Chapter 6 Epoxy/Glass fiber  
nanostructured interphases  

 

P a g e  | 120 

 

 E-glass fiber yarns (GFs) without sizing and with a fineness of 120 tex consisting of 

204 filaments (aver. diameter of 18 μm) were manufactured by a continuous spinning 

process at the Leibniz Institute of Polymer Research Dresden. Commercially available 

MWCNTs (Nanocyl, NC 7000) with a carbon purity >90%, average length 1.5 µm and 

diameters around 10 nm were received from Nanocyl S.A. (Sambreville, Belgium). The 

silane coupling agent, 3-aminopropyltriethoxysilane (γ-APS, 98%) was supplied by ABCR 

(Karlsruhe, Germany) and used for the fiber’s surface modification. Ammonium hydroxide 

(28 wt% ammonia), hydrogen peroxide, absolute ethanol, acetone, sulfuric-nitric acid, 

thionyl chloride (SOCl2), dichloromethane, extra dry toluene, dimethylformamide (DMF) 

and tetrahydrofuran (THF) were purchased from Sigma-Aldrich (Steinheim, Germany). A 

commercial low viscosity diglycidyl ether of bisphenol-A (DGEBA) based epoxy resin (η ~ 

0.7 Pa s) with triethylenetetramine (TETA) hardener (Epofix, Struers) was used, known to 

cure under a ring-opening addition polymerisation reaction. According to the supplier’s 

specification, the epoxy fully cures at room temperature (cold curing) within 24 h. The 

stoichiometric ratio was 100:12 (w/w) epoxy resin:hardener, and the chemical formula of the 

two constituents are depicted in Fig. 6.10. All the chemical reagents were analytical grade 

and used as received without further purification. 

 

Fig. 6.10 – Chemical structure of (a) Epofix Struers resin and (b) triethylenetetramine hardener. 

6.2.2.2 Chemical grafting of MWCNTs onto the GF surface 

 Initially, 5 cm long tow of GFs (containing 204 filaments) was cut from the spin 

cake and cleaned followed by a silanisation treatment similar to the procedure described in 

6.1.1.2 section. As already mentioned in 6.1 of this chapter, MWCNTs were chemically 

modified with carbonyl chloride groups in order to facilitate the chemical grafting reaction 

with the amine terminal groups of the glass fiber surfaces. In brief, MWCNT-COCl solutions 

of 0.1 and 0.5 mg/ml were prepared, and γ-APS modified GF yarns were immersed using a 

dip-coating apparatus, similar to the steps described in 6.1.13 paragraph. Hereafter, GFs 

grafted with MWCNTs at a 0.1 mg/mL solution are denoted as GF-CNT(0.1), and at a 0.5 
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mg/mL as GF-CNT(0.5), respectively. All the reaction steps were carried out under argon 

(Ar) atmosphere. Fig. 6.11 illustrates schematically the chemical procedure followed to 

covalently attach CNTs onto the GFs. 

 

Fig. 6.11 - Schematic illustration of the steps followed to attach covalently MWCNTs onto the GF surface. 

6.2.3 Characterisation techniques 

6.2.3.1 Scanning and Transmission electron microscopy (SEM, TEM) 

 A NEON 40 (Carl Zeiss AG, Germany) scanning electron microscope operating at 

1.0 kV was used to study the surface morphology of GF-CNT(0.1) and GF-CNT(0.5). Single 

fibers were placed onto the surface of cleaned silicon wafers and attached from both end-

sides with a copper adhesive tape. Prior to the SEM analysis, all specimens were sputter-

coated with platinum (~3 nm) to avoid charging effects. The Libra 200 transmission electron 

microscope (TEM, Carl Zeiss AG, Germany) operating at 200 kV was used to investigate the 

interphase microstructures of single fiber composites. Bright field TEM images were 

recorded, while the energy filtering and contrast apertures were inserted to enhance the 

image quality. Interphase-sections of single GF-CNT composites were prepared by Focused 

Ion Beam (FIB) using the NEON 40 FIB/SEM chamber equipped with a gallium ion beam 

operating at 30 kV. 

6.2.3.2 Electrical resistance and conductivity measurements 

 The electrical resistance, R, of GF-CNT(0.1) and GF-CNT(0.5) yarns was 

represented by measuring the resistance on a single fiber level. More specific, single 

filaments were thoroughly detached from the corresponding fiber yarns, and resistance 

measurements were carried out at 20.0 mm fiber length by a standard two-probe method 

using a semiconductor characterization system (Keithley 2400 Source-Measure Unit, 

Keithley Instruments GmbH, Germany). An individual filament was laid down on a glass 
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slide with pre-patterned sputtered platinum electrodes at 20.0 mm electrode-electrode 

distance, and glued with silver paste to be stabilized. Then, two copper electrodes were 

tightly adjusted to the gold contacts. A voltage source (V) of 0-10 V in 100 steps has been 

provided, and by recording the current (I) which flows through the fiber surface, the 

resistance values were derived. At least 20 samples of GF-CNT(0.1) and GF-CNT(0.5) were 

tested in order to obtain significant statistical averages. The resistance mean values with the 

corresponding standard deviations are finally presented. The distance between the two gold 

electrodes defines the length of the fiber used for the resistivity (ρ) and conductivity (σ) 

calculations. The I-V characteristics of a single GF-CNT(0.1) and GF-CNT(0.5) embedded 

in epoxy were also determined in order to evaluate the interphasial electrical properties. A 

single filament was placed lengthwise on two sputtered platinum contacts on the opposite 

sides of a rectangular shaped teflon mould at 20.0 mm distance. Silver paste was used to 

contact two copper wires with the fiber and connected further to the Keithley Source-

Measure Unit. Epoxy mixed with the hardener was poured into the mould and left 24 h at 

room temperature for curing. By using voltage of 0-10 V, the current values were recorded 

and the I-V curves were plotted. 

6.2.3.3 In-situ cure monitoring of epoxy using the GF-CNT smart tool 

 In order to conduct the epoxy cure monitoring measurements, a GF-CNT(0.1) yarn  

was placed lengthwise on a dog-bone shaped teflon mold and two silver wires were 

contacted at the ends of the fiber yarn using silver paste. The epoxy mixture was prepared 

within 1 min, and then was thoroughly added into the mold until it was entirely filled. 

Afterwards, the current was immediately recorded providing a constant voltage of 0.1 V 

every two seconds for a period of 24 h. The resistance values were derived by the Ohm’s law 

and used for the cure monitoring evaluation. For the detection of the epoxy position upon 

filling a mold, three GF-CNT yarns were connected in parallel, and the current measurement 

started using a constant voltage of 0.1 V, as previously. After one minute, the epoxy mixture 

was added within three time intervals, covering fully each of the three yarns. The 

experimental set-up used for the epoxy cure monitoring and the epoxy position detection 

using the GF-CNT sensor is depicted in Fig. 6.12a. In order to correlate the GF-CNT 

resistance change with the state of cure of the epoxy resin, similarly to the ‘optical degree of 

cure’ which has been defined in other publications [332] in which an optical fiber sensor has 

been utillised as the cure monitoring tool, here we define for the first time the ‘electrical 

degree of cure’ as: 



Chapter 6 Epoxy/Glass fiber  
nanostructured interphases  

 

P a g e  | 123 

   
      

     
  (6.4) 

where Rt is the resistance of the GF-CNT at any time, t, after the start of cure, R0 is the 

resistance of the sensor 10 sec after the epoxy was introduced in the mold fully covering the 

GF-CNT sensor (this time is considered as the beginning of the cure reaction), and Rf is the 

resistance at the end of the cure. The above equation assumes a linear relationship between 

the degree of cure and the resistance during the entire course of the cure. Therefore, the 

equation presented below relates the ‘electrical degree of cure’ to the real conversion values 

determined by the DSC experiments. 

𝛼( )     𝛼  𝐶
   

( )
 (6.5) 

where α(t) is the fractional conversion at time t for an isothermal cure at temperature T, and 

𝛼  𝐶
   

( )
 is the maximum conversion attainable at temperature T. 

6.2.3.4 Thermal analysis of the resin cure by differential scanning calorimetry (DSC) 

 Thermal characterisation was performed using a Q2000 dynamic scanning 

calorimeter (TA Instruments Inc., USA) in order to analyze the epoxy cure behavior and 

establish the degree of cure. Prior to the DSC experiments, epoxy was mixed with the 

hardener under magnetic stirring for 1 min, to ensure a homogeneous mixture. The curing 

process was studied then using isothermal scans at 23 ºC for 24 h, performed on ~10 mg 

sample by hermetically sealed aluminum sample pans. The experiments were carried out 

isothermally at 23 ºC, under a constant flow of nitrogen at a rate of 50 mL/min. The room 

temperature isothermal measurements allowed to compare and correlate the curing process 

with the electrical resistance change results of the GF-CNT sensor, thus avoiding any impact 

of temperature on the electronic transport properties of CNTs. For isothermal cure 

measurements, the degree of cure can be estimated as the reaction progresses by monitoring 

the DSC heat flow during the curing reaction. From the DSC scan, the degree of cure (α) was 

calculated then from the enthalpy per unit mass (ΔHt) at any time during the isothermal cure, 

divided by the total heat of the reaction (HT) obtained by integrating the area under the heat 

flow curve. The degree of cure (α) can range from 0 (completely uncured) to 1 (fully cured) 

and it is defined as follows: 

𝛼  
   

  
   (6.6) 
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The degree of cure was plotted as a function of time for direct comparison with the 

resistance change results. 

6.2.3.5 Rheology 

 Rheological experiments were conducted by an AR2000 rheometer (TA Instruments 

Inc., Delaware), in a rate control mode, using a parallel plate geometry at a frequency of 1 

Hz. Isothermal time sweeps were performed at 23 ºC for 24 h using a gap of 1 mm and a 

strain of 1 %. The sample (pure epoxy mixture) was placed on the lower plate, and the upper 

plate was lowered to make contact with the resin. The experiment started after the system 

was allowed to come to thermal equilibrium (1-2 min). 

6.2.3.6 UV-sensing  

 The response of a GF-CNT yarn embedded in epoxy matrix to UV-light has been 

detected by recording the generated photocurrent. This property is attributed to the excellent 

behavior of CNTs to induce charge carriers upon photon excitation. In particular, a 

continuous constant voltage bias (Vbias) of 0.1 V with a step of 0.1 sec was applied to the GF-

CNT through the two wires as shown in Fig, 6.12b. Then, the current under the UV lamp 

(Deutsche Mechatronics, Inc., λ=254 nm, typical peak UV-intensity: 640 μW/cm
2
 @ 25 cm) 

was measured using as previously the Keithley 2400 Source-Measure Unit. ON/OFF (UV-

irradiation/UV-turned off) cycles at time intervals of 650 sec with the sample enclosed in a 

dark experimental chamber were carried out. To evaluate the GF-CNT sensor characteristics, 

the IUV/ID is defined as the ratio of the UV illuminating current (IUV) versus the dark current 

(ID) measured at a constant voltage of 0.1 V, while the distance between the sample and the 

lamp was kept at around 25 cm. 

6.2.3.7 Thermoelectric energy harvesting 

 The thermoelectric power (or Seebeck coefficient, S) measurements were carried out 

using an experimental set-up which is schematically shown in Fig. 6.12c. The Seebeck 

coefficient is an intrinsic property of materials related to the material’s electronic properties, 

and independent of their geometry. [323] To measure the S, a single GF-CNT yarn or GF-

CNT/epoxy model composite (like the one used for the UV-sensing) was mounted on two 

copper blocks.  Then, one block was kept at room temperature (~298 K), while the other 

block was heated up in a controlled way by 10 K steps up to 373 K. This created the 

temperature difference between the ends of the investigated sample. The generated electric 
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potential difference, or thermovoltage (ΔV), was measured across the electrodes, while the 

temperature of the two blocks was continuously measured with K-type thermocouples to 

determine the temperature gradient, ΔT within the material. The Seebeck coefficient (S = 

ΔV/ΔT) was derived then from the slope of ΔV vs ΔT curves by linear fitting, and the power 

factors have been calculated as well. 

 

Fig. 6.12 – Schematic illustration of the set-up used for (a) the epoxy position detection (in a similar way 

the epoxy cure monitoring has been performed using a single GF-CNT(0.1) yarn), (b) UV-sensing and (c) 

thermoelectric power measurements. For all measurements a single GF-CNT(0.1) yarn has been used. For 

simplicity in the schematics a single fiber is drawn representing the single GF-CNT yarn which was 

utilized throughout all the measurements. 

6.2.3 Results and discussion 

6.2.3.1 Surface morphology of MWCNT-grafted glass fibers 

 Fig. 6.13 shows the microstructures of GF-CNT(0.1) and GF-CNT(0.5), 

respectively. As it can be observed, the higher the CNT concentration of the solution used 

for the dip-coating process, the denser the resulting CNT surface layer. This is an important 

finding which had an effect on the electrical conductivity of the fibers as well as on their 

thermoelectric properties before and after embedding into the epoxy matrix. 
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Fig. 6.13 – SEM images of GFs grafted with MWCNT-COCl at (a) 0.1 and (b) 0.5 mg/ml respectively, 

shown at two different magnifications. 

6.2.3.2 Single fiber composite interphase microstructures 

 Fig. 6.14a and Fig. 6.14b depict the TEM images of single GF-CNT(0.1) and GF-

CNT(0.5) composite interphases. These images provide detailed information about the 

MWCNT-network characteristics along the interphase region. It can be easily realised that 

the CNT-network microstructure is affected by the polymerization and cross-linking of the 

epoxy resin during the hardening process. The GF-CNT(0.5) as it was expected exhibits a 

higher loading of CNTs at the interfacial area with almost the double of the thickness as 

compared with the GF-CNT(0.1). The thickness of the CNT rich interphase is about 120 nm 

for the GF-CNT(0.1) and about 250 nm for the GF-CNT(0.5) epoxy composite. The 

difference of the CNT coating thickness before embedding in epoxy (calculated from AFM 

height images; 44.6 and 88.4 respectively), and afterwards as revealed by the TEM 

micrographs, could be attributed to the epoxy interdiffusion through the CNT network. More 

precisely, this occurs due to the chemical reaction of the epoxy groups with the MWCNT 

carboxylic groups via a ring opening addition mechanism resulting in the grafting of the 

epoxy monomer on the CNT surface. By the time, due to the increase of the epoxy molecular 

weight during the polymerisation process, the distance between CNT-CNT also increases 
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speculating that the epoxy results finally in a kind of ‘swelling’ of the fiber CNT surface 

layer. The increase of the CNT coating thickness is around three times in each case after 

embedding the fibers in the epoxy matrix. This finding is of utmost importance for the 

calculation of the electrical conductivity of this CNT-rich interphase, as well as for the 

thermoelectric power factor determination. 

   

Fig. 6.14 – TEM interface microstructures of single (a) GF-CNT(0.1) and (b) GF-CNT(0.5) epoxy 

composites. 

6.2.3.3 Epoxy cure monitoring and position detection using the GF-CNT sensor 

 Fig. 6.15a depicts the electrical degree of cure, aR, (black line) as a function of time 

within the 24 h curing cycle. At the same Fig., the DSC degree of cure (blue line) is also 

plotted for direct comparison. As it was expected, the conversion increases with increasing 

time, and 24 h were found to be sufficient time for the fully-cure of the particular epoxy 

resin, being in a good agreement with the manufacturers’ data sheet. Fig. 6.15b demonstrates 

the epoxy rheological properties showing that about 5 h are required for the epoxy to become 

a gel. The time between the onset of the rapid increase of the dynamic viscosity (~3000 sec = 

50 min), and that at which it exceeded 100 KPa-s was taken as the gelation period, similarly 

to other studies. [332] [333] At the end of gelation period, the gel point is reached and it is 

considered as the point in which storage and loss modulus cross. [334] At that time, the onset 

of vitrification occurs and the curing reaction continues until the end of vitrification, which is 

considered practically as the end of the epoxy curing. The DSC and rheological 

investigations were performed in order to have a full image about the curing reaction and its 

completion, as well as for the epoxy molecular mobility during hardening. Regarding the 
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electrical degree of cure, it can be observed that it increases by the time until it reaches a 

certain maximum, and then slightly decreases until a final plateau. This can be explained by 

two factors: i) predominant one is that the epoxy interdiffuses/penetrates through the fiber 

surface CNT-networks increasing the distance between adjacent CNTs and hampering the 

direct physical contact of the CNT-CNT junctions, both of which affect the electron 

transport via a tunneling or a hoping mechanism, and ii) alternation of the CNT surface 

electronic properties by the absorption of the epoxy molecules, due to their chemical reaction 

with the CNT carboxylic groups via a ring opening addition mechanism. More specific, 

taking into account the epoxy’s reaction progression, and its molecular mobility as revealed 

by the rheological analysis, we can distinguish three areas of the electrical degree of cure 

curve. In the first one, the epoxy is in a liquid state and penetrates very fast and easily though 

the CNT network, therefore the resistance changes with a high rate. The rate of resistance 

change starts to decrease at a time around 3000 sec which is consistent with the rapid 

increase of the viscosity from the rheological investigation (onset of gelation). Further, the 

resistance changes with a lower rate and the epoxy comes into the rubbery state until it 

reaches a maximum at around 18000 sec or 5 h, shown to be the gel point. At this point, the 

molecular mobility of the epoxy starts to become very slow, thereby interdiffusion through 

the CNT network becomes practically zero without increasing any more the CNT-CNT 

distances. Comparing this point with the DSC degree of cure, we can claim that at the 

maximum of the electrical degree of cure, epoxy has been 62 % cured, and the maximum of 

the electrical degree of cure corresponds to the gelation point. It should be mentioned that 

the slight decrease of the electrical degree of cure afterwards is attributed to the chemical 

interaction of the epoxy and/or the amine hardener with the carboxyl groups of CNTs which 

can act as a doping decreasing slightly the CNT resistance. Fig. 6.15c demonstrates that three 

GF-CNT yarns can very effectively give a fast response of their resistance change when 

epoxy has reached and wetted them. The resistance like previously increases due to the 

reasons which were already mentioned. The response of the GF-CNT sensor at each time 

that epoxy came in contact can be utillised to detect the location of epoxy resin upon filling a 

mold in big-scale composite manufacturing processes. 
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Fig. 6.15 – (a) Electrical and DSC degree of cure at an isothermal cure cycle within 24 h (b) Epoxy 

rheological properties within 24 h. (c) Illustration of the fast resistance change upon filling a mold with 

epoxy resin. 

6.2.3.4 UV sensing properties 

 Fig. 6.16 depicts the ON or OFF state of the UV-light illumination (λ≈254 nm, 640 

μW/cm
2
) and the fast response of the GF-CNT sensor to the incidence of UV-light. A 

significant increase of the forward current could be observed upon UV illumination which 

showed complete elastic and recoverable behavior. Since the MWCNTs used for coating the 

GFs contained –COCl functionalities (considered to have been transformed to –COOH 

groups by hydrolysis after the grafting reaction), the CNTs attached onto the fiber are p-

doped because the carboxyl groups facilitate the e
-
 withdrawing from the CNT-backbone, 

creating holes as charge carriers. Therefore, the observed response of the GF-CNT sensor 

was due to the presence of photo-excited holes and slightly due to the rise in temperature. 

[335] The responsivity of the GF-CNT/epoxy device with an active area of 15×0.15 mm
2
 

was found to be 3.61×10
-3

 A/W at a forward bias of 0.1 V. The fast response of the GF-CNT 

can be attributed to the highly entangled and concentrated CNT network located at the 

interphase region (illustrated by the TEM image in Fig. 6.13) which allows high carrier 

mobility due to its high conductance and enables fast transfer of the generated photocarriers. 

It was also observed from test experiments that the measured light-induced current increased 
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as the UV power was increased, corroborating the results found in literature. [336] In 

addition, the current changes very slightly under visible light illumination and considering its 

high response to UV illumination, the hierarchical GF-CNT can act as an excellent UV 

sensor. The UV-sensing ability could be utilized to health monitor the condition of the 

polymer matrix, by counting the time that a composite material has been exposed to UV-

light and how much this time could affect the degradation of the polymer due to the 

shortening of the polymeric chains. 
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Fig. 6.16 – The ratio of photocurrent divided by the dark current at a constant bias of 0.1 V versus time. 

The time intervals between On/Off state of the UV-irradiation has been 650 sec. 

6.2.3.5 Electrical resistance and conductivity of GF-CNT and GF-CNT/epoxy 

composites 

Fig. 6.17a shows the arithmetic mean values with the corresponding standard 

deviations of the electrical resistance (R, black bars) and conductivity (σ, grey bars) of single 

GF-CNT(0.1) and GF-CNT(0.5), respectively. The average resistance of GF-CNT(0.1) was 

136.24±18.5 MΩ, while for GF-CNT(0.5) 4.91±0.50 MΩ. It should be noted that the 

variation of the resistance values in both cases is relatively low as a result of the 

homogeneous CNT-coating characteristics observed previously by the SEM microstructural 

analysis. The specific conductivity of a GF-CNT with an average diameter of d≈18 μm was 

derived from the formula: σGF-CNT = (4L) / πd
2 

R, and after calculations, it was found to be 

5.78±0.74 S/m for the GF-CNT(0.1), and 160.15±16.84 S/m for the GF-CNT(0.5), 

respectively. Higher values have been achieved for the GF-CNT(0.5) due to the highly 
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loaded CNT-coating which facilitates a more efficient electron transport through the CNT-

networks. The conductivity introduced to the electrically insulating GFs arises from the 

interconnected ultrathin CNT-networks deposited onto the fiber surfaces, with the CNT-CNT 

extensive junctions to create the electron transport pathways. The conductivity values can be 

explained more precisely if we consider the existence of a continuous CNT thin layer with 

thickness, t, and with electrical conductivity, σCNT. The conductivity of the CNT layer (σCNT) 

then is given by the following equation. [33] [296] 

 𝐶 𝑇   
 

  
    𝐶 𝑇 (6.7) 

Taking this formula as a rough estimate, the fiber average diameter d≈18 μm, the thickness 

of the CNT layer 44.6 and 88.4 nm for GF-CNT(0.1) and GF-CNT(0.5) respectively 

(according to the AFM maximum roughness data), and σGF-CNT the conductivity of CNT-

coated GFs given in Fig. 6.17a, the conductivity of the CNT layer is calculated to be 

5.84×10
2
 S/m for GF-CNT(0.1) and 8.15×10

3
 S/m for the GF-CNT(0.5). The difference is 

assigned as already discussed above to the CNT-coating structure. The thin CNT layer which 

was formed in both cases possesses high electrical conductivity comparable to the 

aggregated and highly dense structure of CNT-only bucky paper film. The maximum 

conductivity of the GF-CNT(0.5) is to our knowledge the highest value compared to existing 

ones in literature for similar systems. [33] 

Fig. 6.17b represents the I-V characteristics of single GF-CNT(0.1) and GF-

CNT(0.5) epoxy composites together with two linear dash lines showing the regression of 

the experimental data. Obviously, there is a linear dependency of the measured current as a 

function of the applied voltage, indicating the formation of Ohmic contacts between GF-

CNT and the electrodes. The resistance of the single fiber composites was calculated from 

the reciprocal of the corresponding I-V curve slope and it is inserted in Fig. 6.17b. The 

specific conductivity of single GF-CNT(0.1) and GF-CNT(0.5) in epoxy at the longitudinal 

direction was given by the formula: σGF-CNT/epoxy = (4L) / πd
2
 R, and after calculations was 

found to be 2.71 S/m and 70.21 S/m, respectively, which is around two times lower than the 

conductivity of the respective fibers. This can be explained by the presence of the epoxy 

insulating chains through the CNT-networks generating an insulating layer at the nanotube-

nanotube junctions preventing direct physical contact between them. [297] In the same way 

like previously, if we consider the thickness, t
*
 of the CNT-networks after embedding in 

epoxy, as revealed by the TEM interphase-section images (t
*
GF-CNT(0.1) ≈120 nm and t

*
GF-

CNT(0.5) ≈250 nm), using Equation 6.7, we can correlate the conductivity of the nanostructured 
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interphases (σInterphase) with the respective specific conductivity of single GF-CNT in epoxy 

following the expression: σInterphase ≈ (d/4t
*
) σGF-CNT/epoxy. After calculations, the σInterphase of 

GF-CNT(0.1) and GF-CNT(0.5) was 1.01×10
2 
S/m and 1.05×10

3
 S/m, respectively. The high 

conductivity values within the interphases can be compared to CNT/polymer composites 

with high CNT loadings, [33] and this is of utmost importance for utilising the GF-CNT as 

thermoelectric elements in composite materials. 
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Fig. 6.17 – (a) DC electrical resistance (R, black bars) and conductivity (σ, grey bars) of single GF yarns 

chemically grafted with MWCNTs in 0.1 and 0.5 mg/mL CNT solutions at L=20 mm electrode-electrode 

distance (error bars represent the standard deviations). (b) I-V curves of single GF-CNT(0.1) and GF-

CNT(0.5) epoxy composites showing the linear regression (linear dash lines) in each case. 
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6.2.3.6 Thermoelectric power generation 

 Fig. 6.18a demonstrates the generated thermovoltage upon exposition to a 

temperature gradient, for the different samples tested. It could be observed that within the 

temperature range, the generated voltage increased linearly with the increased temperature, 

as revealed by the perfectly matching linear regressions. The slope of the voltage versus 

temperature difference (Seebeck coefficient) was found to be 12.26 μV/K for GF-CNT(0.1), 

16.79 μV/K for GF-CNT(0.5), 14.05 μV/K for GF-CNT(0.1)/epoxy, 21.59 μV/K for GF-

CNT(0.5)/epoxy and 16.1 μV/K for the CNT film (bucky paper film). It is easily observed 

that the GF-CNT(0.5) exhibits a Seebeck coefficient very close to that of the bucky paper 

CNT film. Accordingly, the power factors after calculations have shown the best value for 

the CNT film [6.49×10
-7 

Wm
-1

K
-2

)], while the GF-CNT(0.5) and GF-CNT(0.5)/epoxy 

showed 5.56×10
-7

 and 1.61×10
-7

, respectively. Both of the fiber yarns depict higher values 

after being incorporated in the epoxy matrix due to the phonon scattering which facilitates 

the remaining of the temperature gradient within the material. Moreover, due to the high 

electrical conductivity of the highly loaded CNT interphase regions, high power factors can 

be achieved reaching the value of CNTs. By increasing also the CNT loading onto the fiber 

surface, it was found to have a positive effect to the power factor. The extremely high 

conductivity of the filaments which is  endowed to the resulting composite interphases, 

combined with the high Seebeck coefficients exceeded that of CNTs used for the fiber 

coatings, are very promising values higher than highly filled MWCNT composites prepared 

via solution blending techniques. [326] 
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Fig. 6.18 – (a) Seebeck voltage (or thermovoltage) versus deltaT with the corresponding linear regression 

fits giving the values of Seebeck coefficients from the slopes. (b) Electrical conductivity, Seebeck 

coefficients and Power factors calculated for the materials investigated in this study. 

 In summary, the development of glass fibres coated with MWCNTs (GF-CNT) by 

covalent bonds following a solution based dip-coating deposition process has been achieved. 

The CNT coating was found to be sensitive in the epoxy molecular mobility during the 

hardening process, and therefore GF-CNT can serve as a non-invasive sensor for the real 

time epoxy cure monitoring. The GF-CNT embedded in epoxy matrix exhibited also a high 

sensitivity to UV-light offering the possibility to be used as an integrated composite UV-

sensor. Finally, a major finding of this study is the utilization of the GF-CNT multi-scale 

structure for harvesting thermal energy, when a model composite with a single fiber yarn 

was exposed to a temperature gradient. All the properties investigated in this study are for 

the first time reported, and they arise from the CNT-rich composite interphases. The use of 

GF-CNT yarns with p- and n-type conductivity characteristics connected in series, as well as 

decoration of effective thermoelectric nanoparticles onto the CNT network covering the fiber 

surface, is ongoing research to increase the efficiency of the thermoelectric interphases. 
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Chapter 7 

Jute fibers covered with CNT-networks as hybrid fillers for 

the effective reinforcement of a natural rubber matrix 

 

Abstract 

 A simple and facile method is reported for depositing multiwall carbon nanotubes 

(MWCNTs) onto the surface of naturally occurring short jute fibers (JFs). Hierarchical 

multi-scale structures were formed with CNT-networks uniformly distributed and fully 

covering the JFs (JF-CNT), as depicted by scanning electron microscopy (SEM) images. The 

impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix 

was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 

mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. 

MWCNTs were treated under mild acidic conditions following the protocol of Aviles et al. 

to generate carboxylic acid moieties [295]. Afterwards, MWCNTs were dispersed in an 

aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy 

confirmed the chemical interaction between CNTs and JFs. The JF-CNT exposed quite 

hydrophobic behavior as revealed by the water contact angle measurements, improving the 

wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength 

was significantly enhanced while a micro-scale "mechanical interlocking" mechanism was 

observed from the interphase-section transmission electron microscopy (TEM) images. SEM 

analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF 

and NR/JF-CNT composites, at different fiber loadings. It can be presumed that the CNT-

coating effectively compatibillised the composite structure acting as a macromolecular 

coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra 

confirmed the high mechanical performance of the natural-based hierarchical composites. 
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CNT interface layer

Natural rubber (NR)
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7.1 Introduction 

 Natural fiber reinforced polymer composites have been introduced since 1908 when 

for the first time cellulose fibers were incorporated in phenolic resins. [337] Nowadays, 

natural fibers such as jute, flax or hemp have attracted considerable scientific interest in the 

field of polymer composites due to their intrinsic low density as well as the high specific 

mechanical properties at a very low price. Therefore, it can be easily realised that natural 

fibers possess great potential to replace synthetic ones, like glass, carbon or aramid for 

specific applications, since they are recyclable, biodegradable and non-polluting. 

Accordingly, environment-friendly biodegradable composites can be achieved exposing 

comparable mechanical properties with that of glass fiber composites [338], but with lower 

weight and significantly reduced carbon footprint. [339]  

 Recently, natural fibers have been used as alternative reinforcements of conventional 

glass fibers for petroleum-based polymer composites in the automotive and building product 

industry. [164] However, the use of natural fibers has to face some specific drawbacks, e.g. 

the relatively poor thermal stability and especially the poor compatibility and interfacial 

bond strength with the hydrophobic polymer matrices, due to their basically hydrophilic 

nature. [340] [341] This can result further in weak fiber/matrix interfaces and poor 

mechanical properties of the final composites. Nevertheless, it has been reported in several 

studies that most of these drawbacks can be overcome utilising specific surface 

modifications. [342] [343] [344] [345] In composite materials, it is a well-known fact that the 

strength and modulus are both dominated by the reinforcement phase which is considered to 

be the main load bearing constituent. The interphase between fibers and matrix acts as an 

intermediate bridge which transfers the load from the matrix to the reinforcing fibers through 

the shear flow. Therefore, it is considered as a critical parameter in controlling the overall 

composite’s performance. [282] [346] Optimized engineered interfaces can guarantee a 

"good adhesion" between the composite constituents resulting in enhanced interfacial 

strength; a key parameter for the effective stress transfer upon mechanical loading. Indeed, 

the high quality of the interphase is a precondition for the optimal composite’s mechanical 

performance as concluded in various studies. [266] [281] [289] 

 The reinforcement of rubbers by particulate and fibrous fillers is quite common 

method to enhance their mechanical properties, however, useful products and their 

commercial viability have been found only when these two parameters, viz., lowest 

dimension of the dispersed phase and strong interaction between the filler/matrix are 

achieved. [347]
 
Much investigation has been focused on the reinforcement of rubbers by 

using both synthetic as well as natural fibers. Especially, the incorporation of short fibers in a 
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rubber matrix has become an attractive field of research due to the versatile processing 

which lowers the production costs compared to unidirectional fiber composites. Short fiber 

rubber composites can be used in a wide range of applications such as belts, hoses, seals, 

complex-shaped mechanical goods and tire industries. [348] Several studies are available on 

the use of short synthetic fibers like glass, carbon, rayon, nylon, aramid and asbestos in 

various natural and synthetic rubbers. [349] [350] [351] [352] Sreeja and Kutty [353] 

investigated the mechanical properties of rubber composites reinforced with short nylon 

fibers. In another work, Senapati [354] embedded short polyester fibers in a natural rubber 

matrix. Generally, the mechanical properties of short fiber reinforced composites are largely 

governed by the fiber/matrix adhesion strength as well as the state of fiber dispersion, 

concentration, aspect ratio and orientation which may directly be affected by the processing 

method and processing parameters. [355] Hintze et al. [352] described that the reinforcement 

of an EPDM rubber matrix was significantly influenced by the process induced orientation 

and the residual length of aramid type short fibers. Due to the fact that natural fibers are 

renewable in nature, a lot of attention is given to achieve rigid rubber-based composites. 

Many researchers have reported the use of natural fibers, viz., pineapple leaf fiber [356], 

short jute fiber [357], short coir fiber [358], bamboo [359], sisal/oil palm [360] in elastomer 

compounds. Murthy [361] and Chakraborty [357] investigated the reinforcing effect of short 

jute fibers in natural and carboxylated nitrile rubber composites. Recently, Götze et al. [351] 

reported that short cellulose type fibers offered much reinforcement at lower filler content 

compared to conventional synthetic fillers in a solution processed styrene butadiene rubber. 

 The fabrication of natural rubber/jute fiber composites is in general a quite new 

research field and the effective reinforcement could be a challenging topic. Obviously, the 

dispersion of JFs in NR and the formation of a strong interphase between them is a difficult 

task which requires extensive investigation. It is reported that partial modification of either 

the fiber surface or the polymer matrix can develop an improved bonding leading to 

satisfying reinforcing effects. [294] The JFs in the as grown state consist of a cellulose rich 

core and their outside surface is dominated by cementing which includes waxes, fats, lignin, 

pectin and hemicellulose. This cementing prevents from the formation of a good interface 

and normally it is removed by an alkali treatment. However, the hydrophilic and polar nature 

of JFs after alkali treatment still remains not suitable for direct incorporation with the apolar 

NR. A lot of different approaches have been utillised to rendering the JFs more compatible 

with polymer matrices. [343] [345] [294] A first step usually contains as mentioned above an 

alkali treatment so that the fibers will expose their cellulosic nature. [362] Silane coupling 

agents and/or other chemical substances [363] have been further used to promote the 
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fiber/matrix adhesion and endow the desired interfacial strength. Garcia-Hernandez [364] 

reported an apparent influence of the natural fiber surface modifications on the interfacial 

shear strength of polystyrene composites. Another method to improve the compatibility 

between natural fibers and polymeric matrices is to use modified polymers, e.g. the addition 

of a small amount of maleic anhydride grafted PP to a polypropylene matrix. [345] Recently, 

carbon nanotubes (CNTs) have been regarded as excellent candidates to modify the fiber 

surfaces and improve the interfacial strength as well as to introduce interphase functionality 

due to their unique electrical, mechanical and thermal properties. [365] [366] In particular, 

deposition of CNTs onto glass or carbon fibers using chemical vapour deposition, simple 

solution dip-coating methods or spray coating techniques has been found to increase the 

interfacial interaction via increased chemical bonding, mechanical interlocking and local 

stiffening of the polymer chains at the interphase region, all of which may improve the stress 

transfer from the matrix to the reinforcement. [275] Subsequently, high loadings of CNTs in 

the final composites can be achieved while alleviating the critical problems encountered 

during the composite fabrication related to the high viscosity of the polymer melts and the 

CNT agglomeration. [281] A review could be found where carbon nanotube-based 

hierarchical composites and the advantages for the formation of a multi-scale reinforcement 

were elaborately discussed. [264] The influence of CNT-modified fibers, e.g., on static 

tensile and dynamic mechanical properties of elastomer composite materials with the aim to 

be applied finally in products under dynamic loading, are not established yet. Meanwhile, the 

chemical vapour deposition (CVD) process which is already reported for CNT deposition 

[367] [263] [368] onto fibrous reinforcements cannot be employed in the case of JFs and/or 

other kind of natural fibers, because they are not stable at high temperatures required for the 

CVD CNT-growth. 

 The main objective of the current study is to develop an engineered interface in short 

jute fiber reinforced NR composites, using CNTs as a novel interphase coupling agent. JFs 

were coated with CNTs (JF-CNT) via non covalent interactions and hierarchical structures 

were created.  The resulting JF-CNT hybrid fillers were embedded in a NR matrix, and 

exposed a significant reinforcing effect as revealed by the static tensile tests and dynamic 

mechanical analysis (DMA). This was mainly attributed to the NR improved wettability 

towards the CNT-coated JFs at 10, 20 and 30 phr (parts per hundred gram of rubber) 

loadings, compared to the respective a-JF composites. JF-CNT exposed less polar and less 

hydrophilic behaviour as shown by the water contact angle measurements explaining more 

precisely the improved wetting of the NR resin. SEM fractographic analysis exhibited 

limited JF-CNT pulled-out from the NR matrix, and also no significant interfacial 
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debonding. The CNT-networks introduced a mechanical interlocking mechanism illustrated 

by the TEM interphase-section images. In addition, the JFs were endowed with nano-scale 

roughness which is responsible for the local stiffening of the NR chains at the fiber/matrix 

interphase region. Overall, it can be envisaged that the CNT surface layer played an 

important role on the enhanced interfacial adhesion strength reflecting to the mechanical 

properties of the final composites. The different micro-scale toughening mechanisms 

correlated to the improved mechanical performance of the hierarchical natural-based rubber 

composites will be discussed further more in detail. 

7.2 Experimental 

7.2.1 Materials 

 The natural rubber used in our study is Standard Malaysian Rubber (SMR-10). Jute 

yarn was obtained from Gloster Jute Mills, (TD 4 grade, Howrah, India). Stearic acid was 

purchased from Acros Organics (Geel Belgium, 97 % purity) and N-cyclohexyl-2-mercapto 

benzothiazole sulfonamide from Rhein Chemie (Rheinau, Mannheim Germany). Sulfur, zinc 

oxide, ethanol, toluene and sodium hydroxide were supplied by Sigma-Aldrich (Steinheim, 

Germany) and used as received. Commercially available pristine MWCNTs (Nanocyl, 

NC 7000) with carbon purity > 90 %, average length 1.5 µm and diameters around 10 nm 

were provided by Nanocyl S.A (Belgium). All the chemicals were analytical grade and used 

as received without further purification. 

7.2.2 Purification and functionalization of MWCNTs 

 Pristine MWCNTs (0.3 g) were mixed with 70 ml of HNO3 (3.0 M) and dispersed by 

magnetic stirring and short time of sonication alternatingly at 60
 
°C for 15 min. [295] The 

mixture was left to cool down, diluted with one liter of distilled water and subsequently 

filtered through a polycarbonate membrane (47 mm diameter and 0.4 μm pore size) using a 

vacuum filtration apparatus. The bucky paper CNT-film formed onto the filter membrane 

was cleaned with copious amount of distilled water up to the neutral pH value, and dried 

under vacuum at 60 °C for 24 h. 

7.2.3 Jute fiber alkali treatment and deposition of MWCNTs 

 Chopped JFs were ground to powder with the help of a mixer grinder and 

subsequently de-waxed in a mixture of ethanol and toluene (100:50 volume ratio) for 48 h at 

50 °C. The solvent mixture was removed by filtration and the obtained fibers were cleaned 

several times with distilled water followed by drying at 60 °C for 12 h. Dried JFs were added 
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then in a flask containing 1.0 wt% sodium hydroxide aqueous solution and remained under 

stirring for 4 h at room temperature. After alkali treatment, the fibers were washed with 

distilled water, neutralized with diluted acetic acid to remove any freed from the alkali 

substance followed by rinsing again with distilled water. Finally, the a-JFs were dried at 60 

°C overnight in a vacuum oven. [294] The length of the fibers was about 2.0 mm and the 

average diameter 30.0 μm as observed by optical microscopy micrographs. In order to 

deposit MWCNTs onto the a-JF surfaces, dry acid modified MWCNTs (100 mg) were 

dispersed in 100 ml of distilled water with the help of an ultrasonic bath to obtain a stable 

suspension with a concentration of 1.0 mg/ml. Alkali treated JFs (5.0 g) were dispersed in 

1000 ml of distilled water under magnetic stirring for 6 h and then MWCNTs were added 

drop by drop into the beaker containing the a-JFs. The mixture was kept for 24 h under 

vigorous stirring at room temperature and finally filtered through a glass filter and washed 

with distilled water to remove excess of MWCNTs which have not interacted with the 

hydroxyl groups of the JF-surface. Finally, the JF-CNT were annealed at 100 °C for 30 min, 

and afterwards kept in a vacuum oven overnight at 60 °C. After the complete drying, JF-

CNT were stored in a desiccator until the preparation of NR composites and other analytic 

investigations. The plausible interaction mechanism based on the formation of H-bonds 

between the hydroxyl functionalities of the a-JFs and the carboxyl groups of MWCNTs is 

illustrated in Fig.7.1.
 

 

Fig. 7.1 - Schematic illustration of the preparation and the interaction mechanism between a-JFs and 

MWCNTs. The optical image of JFs coated with CNTs (JF-CNT) in dry state depicts the color change of 

JFs from light yellow to black after deposition of MWCNTs. 
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 For the fabrication of NR/JF composites, initially the NR mixture containing all the 

components for the cross-linking process was prepared. In brief, requisite amount of ZnO 

and stearic acid were incorporated sequentially in previously masticated rubber in an open 

two-roll mixing mill (Polymix 110L, Servitech GmbH, Wustermark, Germany) at 70 °C with 

15-min compounding cycle. Then, different amounts of a-JF and JF-CNT were added in the 

elastomer mixture followed by adding finally the accelerator and the sulphur. The stocks 

were cured under pressure at 150 °C using an optimum cure time. The mixture formulation 

used in our study is given in Table 1. The optical images of the different types of short JFs 

used for the preparation of NR compounds as well as the resulting composite dog-bone 

shaped samples used for the mechanical tensile test investigations are depicted in Fig. 7.2. 

Table 1 The mixture formulation of NR/JF composites 

Mix. No. & 

composition* 

1 2 3 4 5 6 7 

NR 100 100 100 100 100 100 100 

ZnO 5 5 5 5 5 5 5 

Stearic Acid 5 5 5 5 5 5 5 

CBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

S 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

a-JF - 10 20 30 - - - 

JF-CNT - - - - 10 20 30 

* Numbers for components in recipe are in phr (parts per hundred rubber) 

 

Fig. 7.2 - Schematic illustration of the fabrication of NR composites and the final dog-bone shaped samples 

used for the tensile test investigations. The arrows illustrated to the dog-bone sample show the dimensions 

of the samples used for the mechanical characterization according to the ASTM D 412-92. 

7.2.5 Characterization techniques 

 Fourier-transform infrared (FT-IR) spectra were recorded with spectral resolution of 

2 cm
-1

 using a Vertex 80v FT-IR spectrometer (Bruker Optics, Germany) equipped with a 

DTGS detector by signal averaging of 256 scans in transmission mode. Very small amount 

of either pristine or carboxyl functionalized MWCNTs were pressed together with KBr to 

form pellets. Raman spectra were measured with an alpha300R Raman spectrometer system 
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(WITEC GmbH, Germany). The spectra were acquired in the back-scattering geometry and 

the excitation wavelength was 532 nm from an Nd:YAG laser with a laser power of 1mW 

used for all the measurements in our study. The 20× magnifying objective of the microscope 

focused the beam into a spot of about 1μm in diameter. Thermogravimetric analysis (TGA) 

was carried out in order to study the thermal behavior of neat NR as well as the NR/JF 

composites. The alkali treated and CNT-coated JFs were studied also by TGA and the weight 

difference obtained at 800 °C can be attributed to the amount of CNTs which were attached 

onto the JF-surface. The TGA scans were performed using a TA instrument (Q 5000) under 

nitrogen flow from 30 °C to 800 °C with a heating rate of 10 °C/min. Curie point standards 

were utilized for the temperature calibration and all the investigated samples were dried 

overnight at 60 °C prior to the thermogravimetric analysis. The wettability of a-JF and JF-

CNT were evaluated by the sessile drop method using the Dataphysics OCA 20 

(Dataphysics, Germany) contact angle analyser system. All the experiments were performed 

at 25 ± 1 °C and at about 65 % relative humidity. Alkali treated and CNT-coated JFs were 

pressed to form pellets using the same pressure conditions and the same amount of material 

(200 mg). The fiber pellets were kept then for drying at 60 °C under vacuum overnight 

before conducting the contact angle measurements. A droplet of deionized water with 2 μl 

volume was suspended onto the surface of jute fiber pellets and after standing for 5 s, the 

droplet profile was recorded with a CCD video camera. A microsyringe was used to form the 

water droplets and from each single droplet profile, the corresponding contact angles were 

determined. The reported values are representative of at least five different samples of which 

three measurements were performed at different positions in order to obtain clear and 

statistically valid values. Field-emission scanning electron microscopy (FE-SEM) 

investigations were performed with the NEON 40 (Carl Zeiss AG, Germany) scanning 

electron microscope operating at an accelerating voltage of 1.0 KV, and the images were 

recorded using the secondary electron (SE2) detector. In order to study the surface 

morphology of pristine, alkali treated and CNT-coated JFs, a small amount of fibers was 

stabilized onto the surface of an adhesive copper tape. Scanning electron microscopy was 

used also for the fractographic analysis of the composite samples by investigating the 

fracture surface morphologies of all the specimens after the tensile testing. Prior to the SEM 

analysis, all the samples were sputter coated with a 3 nm platinum layer in order to avoid 

charging effects. Interphase-sections of the NR/JF-CNT hierarchical composite with 

approximately 60-80 nm thickness, have been prepared by means of cryo-ultramicrotomy 

using the Leica Ultramicrotome (Reichert Ultracut S). Diamond knives for cryo-

temperatures (Diatome) were used for the trimming (model cryotrim 45°) as well as the 
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cutting process (model cryo 35°). The cutting has been carried out at temperatures between -

120 and -160 °C. The thin sections were placed on a copper grid (300 mesh Cu, Agar), and 

investigated further using the Libra 200 transmission electron microscope operating at 

200 kV acceleration voltage (HR-TEM, Carl Zeiss AG, Germany). Bright field TEM images 

were recorded and the energy filtering and contrast apertures were inserted in order to 

enhance the contrast of the images. Curing studies were performed using a rubber processing 

analyzer (Scarabaeus SIS-V50, Langgöns Germany) in the isothermal time sweep mode for 

all the samples at 150 °C for 60 min. Tensile test experiments of the cured samples were 

carried out using a material testing equipment Zwick 1456 (model 1456, z010, Ulm 

Germany) at room temperature with a crosshead speed of 200 mm/min (ISO527) according 

to ASTM D 412-92 after 24 h of maturation of the same. The hardness was determined 

according to ASTM D 2240-85 with a Shore A durometer (Zwick & Co., Germany). 

Dynamic mechanical thermal analysis (DMTA) was performed on strips using a dynamic 

mechanical spectrometer (Gabo Qualimeter, Ahlden, Germany, model Eplexor-2000N). 

Temperature sweep analysis was carried out using a constant frequency of 10 Hz in a 

temperature range of -80 to +80 °C. For the measurement of the complex modulus (E*), a 

static tensile load of 1 % pre-strain was applied and then the samples were oscillated to a 

dynamic load of 0.5 % strain. Measurements were performed with a heating rate of 2 °C/min 

under liquid nitrogen flow. Strain sweep analysis was performed for the crosslinked samples 

in isochronal frequency of 10 Hz and dynamic strain of 0.2 – 30 %, with a static load of 30 

% strain at room temperature. 

7.3 Results and Discussions 

7.3.1 Infrared spectroscopy (FT-IR) 

 The FT-IR spectrum of pristine and functionalized MWCNTs using mild acidic 

treatment is shown in Fig. 7.3. The appearance of a small band at 1712 cm
-1

 for the modified 

CNTs, can be assigned to stretching vibrations of  the carbonyl groups (C=O) which are 

introduced after the acid treatment. The optical image which is given as an inset in Fig.3 

represents the colloidal stability of pristine and acid functionalized CNTs in water media at 

equal concentrations (1 mg/mL). The image has been recorded six hours after the CNT 

dispersions have been prepared by ultrasonication and as it can be observed, CNTs 

containing small amount of oxygen groups remain well-dispersed. 
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Fig. 7.3 - FT-IR spectra of (a) pristine (red line) and (b) acid-treated (blue line) MWCNTs. The optical 

image given as an inset shows the colloidal stability of pristine (left) and functionalized MWCNTs (right) in 

water six hours after the CNTs have been dispersed by ultrasonication. 

7.3.2 Raman spectroscopy 

 Raman spectroscopy is a powerful tool to characterize structural changes of 

materials which contain hexagonally packed aromatic hydrocarbons, and this is due to the 

stretching vibrations of the C-C bonds of the aromatic rings. Therefore, Raman spectroscopy 

has been utilized as a useful experimental technique to probe sensitively the non-covalent 

interactions of CNTs with various molecular moieties. [369] In our case, both the MWCNTs 

as well as the JFs are Raman active materials due to presence of aromatic benzene rings and 

the hemicellulosic structure, respectively. Fig. 7.4 shows the room temperature Raman 

spectra of pristine and mild acid treated CNTs, as well as a-JFs and JF-CNT. The spectra in 

Fig. 7.4a display three characteristic bands corresponding to the CNT tangential modes. The 

D-band at ~1340 cm
-1

 indicates the density of defects of CNTs (sp
3
 hybridization) and the G-

band at ~1575 cm
-1

 is assigned to the in-plane tangential stretching from the C-C bonds in 

the graphene sheets (sp
2
 hybridization). The G

+
 band at ~1610 cm

-1 
is a weak shoulder of the 

G-band and originates also from defects and disorder in the graphitic lattice. Comparing the 

G
+
 band intensity of pristine and acid-treated CNTs, we note that it is not significantly 

increased for the acid treated material, and also the intensity of G-band remains almost the 

same in both cases. The ID/IG relative band intensity ratio is 1.40 for pristine and 1.42 for 

acid treated CNTs. This fact can prove further that the mild acidic treatment has not 

generated significant defects to the graphitic structure of pristine CNTs. The Raman spectra 

of a-JF and JF- CNT, compared to the spectra of acid treated CNTs are depicted in Fig 7.4b. 

In Fig. 7.4c, the spectra region of 1250-1450 cm
-1

 is demonstrated and it can be clearly 

observed that there is a relative shift of the CH2 deformation band of the a-JF from 1335 to 

1352 cm
-1

. At the same time, as shown from the spectra region of 1525-1700 cm
-1 

in Fig. 
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7.4d, a shift of the CNT G-band from 1560 to 1576 cm
-1

 occurs in the case for the JF-CNT 

sample. Both shifts provide strong evidence that CNTs have interacted chemically with the 

a-JFs by means of non-covalent bonds. 

  

  

Fig. 7.4 - Raman spectra of pristine and acid treated MWCNTs (Fig. 7.4a) and comparison of MWCNT-

COOH, a-JF and JF-CNT (Fig. 7.4b). Fig 7.4c and 7.4d depict the spectral regions indicated by dashed-line 

boxes in Fig. 7.4b, showing the relative shifts of the bands. 

7.3.3 Thermogravimetric analysis (TGA) 

 In order to study the thermal degradation behavior of NR and the corresponding 

composites containing a-JF and JF-CNT, the thermal decomposition temperatures (Td) were 

studied by thermogravimetric analysis under N2 atmosphere. Fig. 7.5a illustrates the TGA 

scans of neat NR and NR/JF composites, respectively. The results suggest that the 

incorporation of 10 phr JFs in the NR matrix increases slightly its thermal stability. Since 

CNTs are highly thermally conductive fillers [196], the thermal stability of NR loaded with 

10 phr JF-CNT has been additionally increased. A quite remarkable enhanced thermal 

degradation behavior was observed for the NR/JF-CNT composite. This is a very important 

finding considering that the CNT loading is less than 0.6 wt% in relation to the final NR/JF-

CNT composite, as revealed by the TGA investigations depicted in Fig. 7.5b. The weight 
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difference of the residue at the temperature range of 700 °C for a-JF compared to JF-CNT 

was around 6 wt% as shown from the TGA scan in Fig. 7.5b. Apparently, the weight 

difference between the dried a-JFs and JF-CNT corresponds to the amount of CNTs 

deposited onto the surface of a-JFs. 

  

Fig. 7.5 - TGA curves of (a) neat NR and NR filled with 10 phr a-JFs and JF-CNT, respectively, and (b) a-

JF and JF-CNT showing the residue at the temperature range of 700 °C which corresponds to the CNTs 

adsorbed to the a-JF surface. 

7.3.4 Contact angle measurements 

 Contact angle is a sensitive tool for the characterization of the outermost surface 

layer of materials (about 0.5 nm). In order to get more insight into the surface properties of 

JFs used for the fabrication of NR composites, the static water contact angles of a-JF and JF-

CNT pressed in the form of pellets were measured. [370] The wetting of fibers by deionized 

water can clearly indicate their hydrophillicity which is apparently a non-desired factor to 

achieve a good adhesion and interfacial compatibility with the apolar and hydrophobic NR 

matrix. From the contact angle experiments, the nature and the expected compatibility of a-

JFs as well as JF-CNT with the natural rubber were elucidated. Typical results are given in 

Fig. 7.6 showing the contact angle images of a-JFs (Fig. 7.6a) and JF-CNT (Fig. 7.6b) JFs 

including as inserts the arithmetic values of the contact angles given by the software 

(Dataphysics) for each captured droplet profile. The images were captured five seconds after 

the drop was suspended onto the surface of the fiber pellets, and several experiments were 

performed in different positions which have shown relatively small variations of the values 

which are finally presented. The water contact angle of a-JF was found to be around 49.5° 

being in good agreement with the reported data of Doan et al. [294], whereas the JF-CNT 

showed a contact angle of around 70°. It can be speculated that the deposited CNT-networks 

endow quite hydrophobic behavior of the hybrid JF-CNT fillers compared to their inherent 

hydrophilic properties. Jute fibers surface modified with silane coupling agents have exposed 
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similar contact angles with the values obtained in our study. [294] The increased 

hydrophobicity of the CNT-modified JFs can be explained mainly by two factors, i) the low 

amount of CNT functional groups which form the CNT-coating as compared to the high 

content of hydroxyl functionalities of the a-JFs and ii) the nanoscale surface roughness [371] 

induced by the CNT-networks on the microscale jute fiber. The JF-CNT micro-nanoscale 

binary hierarchical structure formed results in the formation of an artificial lotus leaf 

structure on the JF surface. Liu et al. [371] has reported even super hydrophobic properties 

of the inherently hydrophilic cotton fibers after coating with CNT-networks. 

  

Fig. 7.6 - Contact angle images of a water droplet in contact with (a) a-JFs and (b) JF-CNT, pressed in the 

form of pellets, showing the static contact angles measured by a goniometer. 

7.3.5 Electron microscopy investigations 

 Fig. 7.7 represents the SEM images showing the surface microstructures of pristine, 

a-JFs and JF-CNT (Fig. 7.7a, 7.7b and 7.7c). Pristine JFs in Fig. 7.7a appear with a lot of 

structural defects and small parts of jute as well as hemicellulosic impurities and/or other 

impurities like waxes, fats, lignin, pectin, all of which they are part of the cementing which 

exists on the JF-surface in the as grown state. After the alkali treatment, the cementing layer 

and small jute parts are hydrolyzed and removed as can be observed in Fig.7.7b, yielding a 

quite smooth and uniform surface with visible the natural fiber’s veins. Fig.7.7c and the 

corresponding micrograph at a higher magnification depicts the surface morphology of JF-

CNT hierarchical structure. It can be obviously seen that CNT-networks cover fully the JF 

surface forming a uniform, homogeneous and interconnected CNT-layer. The resulting CNT 

coating endows nanoscale roughness to the microscale jute fiber which is responsible for the 

hydrophobic properties of the JF-CNT as mentioned above. In addition, the CNT-coating 

effectively increases the surface area of the JF-CNT compared to the a-JFs, promoting 

mechanical interlocking for the NR/JF-CNT hierarchical composites. 
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Fig.7.7 - SEM images showing the surface morphology of pristine (Fig 7.7a), a-JFs (Fig 7.7b) and JF-CNT 

(Fig 7.7c). 

 Fig. 7.8 depicts the SEM fracture surface images after tensile testing for the NR/JF 

composites containing 10 phr (Fig. 7.8a and 7.8b), 20 phr (Fig. 7.8c and 7.8d) and 30 phr 

(Fig 7.8e and 7.8f) a-JFs and JF-CNT, respectively. In Fig. 7.8, the composite interphase 

microstructures are also illustrated by the SEM (Fig 7.8g and 7.8h) and TEM (Fig 7.8i) 

micrographs. In Fig. 7.8a, 7.8c and 7.8e, the images correspond to the fractured surfaces of 

the NR composites with different loadings of a-JFs (10, 20 and 30 phr), while Fig. 7.8b, 7.8d 

and 7.8f depict the NR composites containing JF-CNT at different loadings. It can be clearly 

seen that a-JFs are pulled out from the NR matrix after the tensile test fracturing process. On 

the other hand, the JF-CNT due to the improved interfacial adhesion and compatibility with 

the NR in conjunction with the occurring mechanical interlocking mechanism remain 

embedded in the NR matrix. From the fractographic analysis, it can be also observed that the 

fibers for both NR/a-JF and NR/JF-CNT composites are well separated and dispersed in the 

matrix indicating our optimized processing parameters. Consequently, the good state of 

dispersion of the short JF-CNT hierarchical reinforcement combined with the enhanced 

interfacial adhesion should result in high mechanical performance of the final composites 

due to the apparent potential to efficiently transfer the load from the matrix to the 

reinforcement. Fig. 7.8g and 7.8h show the NR composite’s interphase section characteristics 
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at high magnification focusing on the single fiber/matrix interphase level. These images 

demonstrate more precisely the interfacial adhesion and highlight the wettability of the NR 

to the a-JFs (Fig. 7.8g) and JF-CNT (Fig. 7.8h). In the first case, it is observed that the fiber 

is detached from the NR after the tensile fracturing whereas in the second case, JF-CNT 

remains in contact with the NR showing the interfacial integrity and the good wetting of the 

NR to the JF-CNT. 

 Fig. 7.8i shows the TEM interphase cross-section image of the NR/JF-CNT 

hierarchical composite. The thickness of the CNT-coating was found to be around 100 nm 

and it can be seen that the NR fully wets the JF-CNT without any cracks or microvoids 

generated during the fabrication process. The TEM image at higher magnification represents 

a more detailed overview for the interfacial microstructure of the NR/JF-CNT composite. In 

specific, the CNT-coating consists of a dense and interconnected assembly of CNTs attached 

to the JF surface. Another important factor is that the nano-sized CNT-particles are acting 

probably as a healing agent for the a-JF which as a natural material even after the alkali 

treatment still contains some defects and some cracks on the outer surface. 

  

  

200 μm

8b

200 μm

8d
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Fig. 7.8 - SEM images of the fracture surfaces of NR composites after tensile testing containing 10 phr (Fig 

7.8a, 7.8b), 20 phr (Fig 7.8c, 7.8d) and 30 phr (Fig 7.8e, 7.8f) a-JFs (left side) and JF-CNT (right side). High 

magnification of the 7.8a and 7.8b images shows the interphase section area of a single JF in the NR matrix 

(Fig 7.8g and 7.8h). Fig 7.8i depicts the TEM interphase cross-section image of the NR/JF-CNT 

hierarchical composite and the selected area at a higher magnification. 

7.3.6 Cure and physical properties of NR and NR/JF composites 
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 The maximum rheometric torque (Smax), scorch time (t2) and optimum curing time 

(t90) obtained from this study are recorded in Table 2. It has been found from the values 

presented in this table that the maximum rheometric torque for the composites is always 

higher as compared with neat NR gum and the value is increasing with the increased JF 

loading. However, the JF-CNT did not show much difference with a-JFs with respect to the 

maximum torque. A slight decrease in scorch time was observed with JF-CNT filled 

compounds. The curing time was not affected too much with addition of JFs and this is also 

true for the cure rate index. 

Table 2 Cure and physical properties of NR compounds 

Mix. No. & cure 

properties 

Smin 

(dNm) 

Smax 

(dNm) 

t2 

(min) 

t90 

(min) 

*Cure rate 

index 

NR 0.39 4.91 4.92 16.0 9.02 

NR/a-JF_10 0.40 6.98 4.05 20.8 5.97 

NR/a-JF_20 0.36 7.31 5.28 16.55 8.87 

NR/a-JF_30 0.45 8.85 5.30 16.16 9.20 

NR/JF-CNT_10 0.42 6.29 5.09 17.02 8.38 

NR/JF-CNT_20 0.48 7.03 4.17 16.79 7.92 

NR/JF-CNT_30 0.65 9.12 3.81 14.14 9.68 

*The cure rate index (CRI) is given by the formula CRI = 100/(t90 – t2) and after calculations is given in the last 

column of Table 2. 

 Natural rubber shows an excellent flexibility as a typical elastomeric material. 

However, its mechanical properties should be improved for certain applications like truck 

tires tread application where abrasion resistance, cut growth resistance, structural long term 

durability, reliability at speed, blow-out resistance, impact resistance are the major concerns. 

Nano-sized fillers like reinforcing carbon black need to be added at a relatively large amount 

into a NR matrix in order to gain sufficient mechanical properties, due to weak interfacial 

adhesion of the fillers with the NR. [372] [373] In silica filled synthetic rubbers, the amount 

of nano-fillers is also very high; even higher compared to rubber composites reinforced with 

carbon black. [374] In the present work, it is aimed to understand the effect of addition of a 

relatively smaller amount of micro-scale sized anisotropic fillers on the final mechanical 

properties of NR composites. The modulus, tensile strength, elongation at break and 

hardness of the resulting composites were measured and presented in Table 3. In one hand, 

the NR composites with 10, 20 and 30 phr JF-CNT depict a more prominent increase at 100 

% modulus, 200 % modulus and 300 % modulus, respectively (Table 3), as compared to the 

composites filled with the same amounts of a-JFs. On the other hand, the tensile strength of 

composites filled with both a-JFs and JF-CNT is increased with the addition of only 10 phr 

of fibers. However, tensile strength found to decrease at higher loading of both fibers 
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(especially after 20 phr). NR/JF-CNT_20 exhibits higher tensile strength together with 

higher modulus at different elongations compared to a-JF filled compound with similar fiber 

loading. Such behaviour can be explained in terms of enhanced interfacial adhesion strength 

which can result in higher crosslinking density in the system. In general, the mechanical 

properties of a rubber intensely depend on crosslinking density. [375] Modulus and hardness 

increase gradually with increasing cross-linked density. Tensile strength passes through a 

maximum as cross-linked density is increased. When a rubber is deformed externally, part of 

the applied energy stored elastically in the chains and is available as driving force for 

fracture. The remaining energy is dissipated through molecular motions into heat and in this 

way is made inaccessible to break further chains. At high cross-links level, chain motions 

become restricted and the tight network is incapable of dissipating much energy. The 

enhanced modulus of NR/JF-CNT hierarchical composites shows a strong correlation with 

the morphology obtained from their SEM fracture surface images. Although, it was found 

that the elongation at break values did not follow any trend. 

 The filler reinforcement and filler-polymer affinity of both a-JFs and JF-CNT based 

NR composites are further analyzed using Mooney-Rivlin (MR) equation which is often 

used by rubber scientists to discuss the stress-strain curves. [376] The stress-strain 

relationship was studied from the stress-strain behavior illustrated by a phenomenological 

expression suggested by Mooney [377] and Rivlin and Saunders. [378] 

 

       (     𝜆
  )    (7.1) 

where, σ is the applied stress, λ is the extension ratio, and C1, C2 are the Mooney-Rivlin 

(MR) constants. 

 However, the original MR equation does not explain the steep increase at large 

elongation. It is believed in many publications that the upturn or steep increase in the stress-

strain plot of rubbers is frequently attributed to the limited polymer chain extensibility and 

also to the strain-induced crystallization, especially for natural rubber. [379]
 
Hence, both 

crystallizable and non-crystallizable rubbers can exhibit a steep increase of elastic force due 

to the limitation of polymer chain extensibility if the rupture is avoided. Furukawa et al. 

[380] proposed a modified MR equation, based on the assumption of uniform stress rather 

than uniform strain. The effect of limited chain extensibility was also considered in the 

aforementioned equation in deriving the stress strain relationship. According to this modified 

MR equation, one can obtain Eq. 7.2 

   (       ) ( )    (7.2) 
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where, the F (λ) can be denoted as: 

 ( )   −
 

   
  

   
      (7.3) 

λm being the maximum extension ratio, i.e, λ at the break point. 

 It is worth to be noted that at λ<< λm, the function F(λ) approaches to λ-1/ λ
2
, and the 

Eq. 3 becomes again the original MR equation. According to the modified MR equation, a 

plot of σ/F(λ), generally known as reduced stress, as a function of inverse extension ratio, 

1/λ, should yield a linear curve, from which the values of C1 and C2 can be obtained from the 

stress-strain curves. An upturn is observed in unfilled and JF filled NR compounds 

particularly at high deformations. Unfilled NR exhibits an upturn at high deformations 

attributed to the phenomenon commonly known as ‘strain-induced crystallization’. However, 

in JF filled NR compounds, the elongation at which the upturn occurs, decreases with the 

filler loading. NR/JF-CNT_20 shows upturn even at lower elongations and this result 

indicates the presence of some strong interaction between the JF-CNT and the 

macromolecular rubber chains (Fig. 7.9b). 

Table 3 Physical properties of NR, NR/a-JF and NR/JF-CNT composites 

Mix No. & 

Properties 

E-mod. 

(MPa) 

Mod. 

(100%) 

(MPa) 

Mod. 

(200%) 

(MPa) 

Mod. 

(300%) 

(MPa) 

Tensile 

Strength 

(MPa) 

Elongation at 

break (%) 

Hardness 

Shore–A 

NR 1.33 0.85 1.33 1.91 10.00 560 42.8 

NR/a-JF_10 3.18 1.40 1.70 2.27 14.08 580 56.2 

NR/a-JF_20 5.88 1.77 2.00 2.53 9.98 552 60.0 

NR/a-JF_30 10.57 2.27 2.44 3.06 8.02 502 63.8 

NR/JF-CNT_10 4.00 1.41 1.80 2.47 17.60 636 58.1 

NR/JF-CNT_20 7.51 2.45 2.93 3.97 11.92 530 62.2 

NR/JF-CNT_30 12.33 2.89 3.33 4.28 9.32 503 65.8 

 

 

 

 

 

Fig. 7.9 - (a) Stress-strain behavior and (b) Mooney-Rivlin plot of NR composites reinforced with 20 phr of 

a-JFs and JF-CNT. 
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 To understand further the reinforcing mechanism of JF filled NR composites, tensile 

properties of different systems were analyzed using the Halpin-Tsai composite model. [381] 

The Halpin-Tsai equation serves as a model in this case since it is accurately utilized to 

determine the reinforcement effect of incorporated fillers in the composites. Specifically, the 

elastic modulus of composites filled with fibrous reinforcing particulates is given by the 

Halpin-Tsai as follows: [381] 

  

  
 

      

    
  (7.4) 

where f is the aspect ratio,   
              

               
 and Efiller the Young’s modulus of the filler. For 

most of the fibrous fillers, the value of Efiller/Em is ~10
5 
and η is ~1. 
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Fig. 7.10 - Modeling of E- modulus using the Halpin-Tsai model. 

 In this study, the aforesaid H-T model has been utilized to fit the mechanical 

properties of the NR/JF composites. It has been observed that the H-T equation gives a 

reasonable fit at low fiber concentration but under-predicts the reinforcement factor at higher 

filler concentrations. The aspect ratio (f), which is a fitting parameter, obtained 

corresponding to the best fit are 35 and 28, respectively. Similar aspect ratio is also reported 

elsewhere. [382] Higher aspect ratio is obtained in the case of JF-CNT fillers attributed to a 

possible better dispersion of these fibers in the NR matrix after modification or the enhanced 

interfacial strength that the CNT-coating provided. The reinforcement factors (Ec/Em) are 
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plotted as a function of filler volume fraction (φ) in the Fig.7.10. It is interesting to note that 

the reinforcement factor is increased with the increase of both a-JF and JF-CNT volume 

fraction. Nevertheless, this increment in reinforcement factor is more pronounced in the case 

of NR/JF-CNT compared to NR/ a-JF composites. 

7.3.7 Dynamic mechanical thermal analysis of NR and NR/JF composites 

 Dynamic mechanical thermal analysis (DMTA) has been performed to understand 

the dynamic response of the blend after the addition of JFs. The dependency of storage 

modulus obtained from oscillatory tension deformation as a function of temperature is given 

in Fig.7.11a. All samples show a steep decrease of E′ value at the temperature range between 

T = -50 and -20 °C followed by a rubbery plateau. The most exciting information observed 

in Fig. 7.11a is the increase of modulus values at room temperature by the addition of JFs. 

With the increase of JF content, the modulus values also increase but in the case of JF-CNT, 

the increase is more prominent than the same loading of a-JFs. It has to be mentioned that 

the good state of dispersion of the JFs into the NR matrix was also a critical parameter for an 

optimum reinforcing effect of the incorporated fillers. At the glass transition temperature 

(Tg), the stiffness of materials is strongly reduced; the storage modulus decreases strongly 

and the loss modulus reaches a maximum. When the loss factor tan δ (tan δ=E″/E′) is plotted 

versus the temperature, the glass transition temperature is indicated by a peak. Addition of 

the filler reduces the peak height. The reduction of polymer fraction in a certain volume of 

the vulcanized rubber (dilution effect) might be the main reason. A strong interaction 

between the rubber molecules with the filler surface can restrict the movement of the chains 

and can decrease the peak height. The large variation in the height of the tan δ peaks for the 

different rubber samples filled with the alkali treated and CNT-coated JFs, clearly suggest 

different interactions between the NR with each type of JFs used (Figs. 7.11a, 7.11b, 7.11c). 

Fig.7.11c shows the tan δ–temperature plots of the filled and the gum samples of NR. 

Addition of JF-CNT reduced more strongly the tan δ peak height than the addition of a-JFs. 

In order to understand the pronounced effect of JF-CNT on height of the tan δ peak of NR 

vulcanizates, the plots of E′ and E″ with temperature were considered (Fig. 7.11a, 7.11b). 

Natural rubber filled with a-JFs shows less increase of E′ value compared to gum whereas 

NR filled with JF-CNT shows higher increase of E′ value compared to gum above the glass 

transition temperature. E″ values are also following the same trend throughout the whole 

temperature range. The reduction of polymer fraction in a certain volume of the vulcanized 

rubber (dilution effect) might be the main reason. 
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 The strain sweep analysis of a filled and crosslinked rubber can give some 

information about the filler-filler interaction and rubber-filler interaction. [383] Generally, an 

unfilled rubber does not show any dependencies of the dynamic modulus with strain, but 

filled rubber composite shows strong dependencies. At higher strain the filler-filler network 

is destroyed and the dynamic modulus values are decreased with strain.  Fig.7.11d describes 

the results obtained from strain sweep analysis. As expected the gum rubber did not show 

any change of the storage modulus with strain but all the filled rubbers showed a strong 

effect. The higher the fiber content, the higher is the effect. However, the effect of JF-CNT 

in the filler-filler network is stronger as compared with the a-JFs at same loading. This 

observation leads to conclude that CNTs remaining on the surface of the fibers are 

mechanically interlocking two neighbour fiber particles and impart the strong filler-filler 

networks. 

  

  

Fig. 7.11 - Dynamic mechanic thermal analysis of neat NR and NR/JF composites showing E′, E′′ and loss 

factor tan  versus temperature scans (Fig. 7.11a, 7.11b, 7.11c) and the dependency of the dynamic moduli 

E′ versus strain amplitude measured at room temperature (Fig. 7.11d). 
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 In conclusion, the introduction of CNT-networks onto the surface of short JFs 

created a hierarchical structure which showed a promising reinforcing effect in the resulting 

short fiber reinforced NR composites. The hybrid JF-CNT fillers improved significantly the 

composite mechanical performance, as revealed by the tensile tests and the dynamic 

mechanical thermal analysis, via improved wetting of the NR resin as well as the occurring 

interfacial mechanical interlocking. The excellent interfacial adhesion of CNT-coated JFs 

with the NR matrix contributes to a significant improvement in tensile strength and tensile 

modulus at different elongations up to the 20 phr filled compounds. Additionally, a 

remarkable improvement of the thermal degradation temperature of the NR/JF-CNT 

hierarchical composites was observed. Raman spectra evaluation supports directly the 

interaction between CNTs and JFs. The hybrid fillers seem to be the leading effect of the 

improved mechanical properties offering a satisfactory reinforcing effect to the final NR 

composites. The application of these novel elastomeric materials could be realized where 

good mechanical properties of the composites are required at lower loading of fillers. This 

finding also triggers to develop and design lightweight elastomer products where a good 

dynamic mechanical performance is a crucial factor for long service life. Namely, the 

products like truck tyres, conveyor and power transmission belts, engine mounts and 

vibration dampers could be the items for the application of this high performance elastomeric 

material based on NR and natural JFs. 
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Chapter 8 

General Conclusions and Outlook 

 In this work, multi-walled carbon nanotubes (MWCNTs) have been deposited onto 

the surface of fibrous reinforcements (Glass and Jute fibers) via wet chemical methods, 

resulting in multi-scale hierarchical reinforcements. CNTs in general convert the insulating 

fibers to semi-conductors, impart a nanoscale roughness increasing the fiber surface area, 

and they change significantly the fiber surface chemistry endowing with the chemical 

functionalities that CNTs contain. 

 Initially, glass fibers were modified with MWCNTs via covalent and non-covalent 

bonds, and the interfacial mechanical as well as the electrical properties of single fiber/epoxy 

composites were investigated. This allowed determining the deposition process parameters 

such as CNT concentration, time of completion for the reaction between CNTs and glass 

fiber, etc. Single fiber pull-out tests and resistance measurements demonstrated that there is a 

prominent increase of the interfacial strength and the interphasial conductivity when the 

CNTs are covalently attached onto the fiber surface. Moreover, the results obtained on single 

fiber level gave us the opportunity to up scale the chemical methods and modify single glass 

fiber yarns with CNTs (GF-CNT). A single GF-CNT yarn was incorporated in a uni-

directional arrangement within an epoxy matrix, and served as epoxy cure monitoring 

sensor, integrated UV-detector, and thermal energy harvesting element, giving rise to multi-

functional structural composites. Further research is required to increase the thermoelectric 

efficiency arising actually from the hybrid nanostructured interphases, either by engineering 

the band gap of CNTs (with different kind of dopants), or modifying the fibers with p- and n-

doped CNTs which can facilitate the formation of p/n heterojunction by connecting the fibers 

in series. Additionally, another possibility that can increase the thermoelectric efficiency is 

to attach onto the highly conductive CNT networks which cover the fiber surfaces some kind 

of narrow band gap thermoelectric nanoparticles like for e.g. PbTe or Bi2Te3. 

 Having a general image and overview about the impact of CNT-modified glass 

fibers on the interfacial interactions in model epoxy composites, we extended the idea of 

CNT deposition by using natural jute fibers. MWCNTs were deposited by a very simple and 

facile method onto the surface of short jute fibers, and the hybrid fillers exposed a significant 

interfacial enhancement when incorporated in a natural rubber matrix. This affected further 

macroscopically the mechanical (static and dynamic) properties of the natural rubber, 



Chapter 8 General Conclusions and Outlook 

 

P a g e  | 160 

 

making these novel natural-based elastomeric materials appropriate where good mechanical 

properties are required at lower loading of fillers. This finding also triggers to develop and 

design lightweight elastomer products where a good dynamic mechanical performance is a 

crucial factor for long service life. Namely, the products like truck tyres, conveyor and 

power transmission belts, engine mounts and vibration dampers could be the items for the 

application of this high performance elastomeric material based on NR and natural JFs. It 

should be mentioned that it is the first time that CNTs have been introduced onto the surface 

of jute fibers to act as a macromolecular coupling agent for the enhanced interfacial adhesion 

with an apolar rubber matrix. In future, higher content of CNTs can be introduced onto the 

fiber surfaces in order to achieve reasonable electrical conductivity values of the final 

composites, thus alleviating the well-known problem of viscosity increase during the 

processing of rubbers with nanoparticulate reinforcements. 

 Since in this study it has been given a special interest on the utilization of epoxy 

resins; widely used as a matrix in composite materials, epoxy was blended with a block 

copolymer. The resulting blends exhibited spherical nanostructured morphology, and 

appropriate modification of the block copolymer with an ionic liquid endowed with 

remarkable magnetic properties. It can be easily realised that the novel thermosetting 

materials could be of great interest to introduce fiber/CNT reinforcements, and investigate 

both the mechanical as well as the physical properties, i.e electrical conductivity, magnetic 

response, etc 

 Finally, due to our interest to synthesize different kind of colloidal particles and 

stabilize them onto the CNT-coated fibers, silica particles have been decorated with Ag dots 

and used as SERS substrates as well as redox catalysts. Potential applications of these hybrid 

colloids when combined together with the hierarchical fiber/CNT structures are under 

investigation. 
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