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1 Introduction

1.1 Irreversibility, information, and entropy

When he first mentioned his “intelligent being” able to act on the molecular scale,
James Clerk Maxwell was the first to point out the role of information in a microscopic
(atomic) understanding of irreversibility [Max71]. In a simple Gedankenexperiment,
he showed that if one was able to use information about the microscopic state of
a system, like the positions and momenta of the particles in a gas, then one could
trigger processes that would otherwise be impossible, like the creation of a heat flow
from a cold body to a hotter one without the expenditure of work. This “intelligent
being” was baptised “Maxwell’s Demon” by William Thomson [Tho79] and is now the
paradigm for the relation between information processing and irreversibility [LR02].
This relation is symmetric: On the one hand, information about the microscopic
state of a macroscopic system can be used in order to “undo” some irreversible
process, like creating a heat flow from a cold body to a hotter one or converting heat
from one single heat source into mechanical work. On the other hand, information
processing must be implemented on physical devices themselves obeying the laws of
irreversibility, and should be accompanied by a certain “amount” of irreversibility at
least enough to compensate the aforementioned “undoing” made possible.

Interestingly enough, the quantification of irreversibility and information both fall
under the name entropy. Source of fascination and confusion, entropy is the night-
mare of many physics and engineering undergraduate students and the passion of
many researchers and hobby scientists. This word has several meanings and is used
to denote different concepts. Among other things, entropy denotes the central quan-
tity both of thermodynamics, the physical theory of irreversibility, and of information
theory. The confusion (and perhaps the fascination) is increased even further by the
fact that information and irreversibility are deeply linked and information theoretic
entropy helps to understand thermodynamic entropy.

This thesis is concerned with the irreversibility of certain information processing
operations. The two main results of this thesis concern the recording and erasure
of information on a physical memory and the measurement, or acquisition of infor-
mation by a physical device. These operations are shown to be irreversible, and
their degree of irreversibility is related to the amount of information processed. The
degree of irreversibility of a process is quantified by the amount of thermodynamic
entropy produced during that process. The amount of information processed is quan-
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1 Introduction

tified using quantities derived from the information theoretic entropy. In order to
present the results of this thesis, these two kinds of entropies are carefully introduced
and a particular attention is given to how information theoretic entropy relates to
thermodynamic entropy.

1.2 Overview

The first part of this document, consisting of chapters 2 and 3 introduces the theo-
retical background while the second part consisting of chapters 4 and 5 presents the
results.

Chapter 2 presents the basics of classical thermodynamics and equilibrium statisti-
cal mechanics. Classical thermodynamics, introduced in section 2.1, is a phenomeno-
logical theory for the irreversibility of macroscopic transformations. The state of a
system is described using a few variables called state variables like the energy, the
volume or the magnetization. A physical process is a change in the state variables.
The entropy is the starting-point of our presentation. It is a function of the state
variables. Entropy has the fundamental property that it specifies the processes that
are physically possible: A process is physically possible if and only if it leads to an
increase of the total entropy of all the systems involved. The entropy produced by
a given process is a quantitative measure of the irreversibility of the process. The
concepts of heat and temperature are derived from the entropy principle. There is a
natural link between energy loss (dissipation) and entropy production. This link is
particularly simple in isothermal processes where the two quantities are proportional.

Material systems are composed of many particles in interaction. The “real”, or
“microscopic” state of a system is actually the list of the positions and velocities of
all the particles constituting the system. The time evolution of the microscopic state
of the system is specified by the Hamilton function, summarizing the characteris-
tics of the particles and their interaction. The thermodynamic description misses a
lot of details about the microscopic state of a system and a lot of microscopic con-
figurations are compatible with one thermodynamic state. Equilibrium statistical
mechanics, introduced in section 2.2, makes a bridge between the microscopic and
the thermodynamic descriptions. A thermodynamic state is seen as an ensemble of
microscopic states. The aim of statistical mechanics is then to find the distribution
of microscopic states correctly describing the thermodynamics of the system. The
distribution compatible with thermodynamics is the Boltzmann-Gibbs or canonical
distribution. This distribution allows to numerically compute the thermodynamic
functions starting from a Hamiltonian (microscopic) description.

Describing matter at the molecular level, it is tempting to assume that we can act
at this very level. Section 2.3 shows that by making use of information about the
microscopic state of a system, Maxwell’s Demon is able to perform processes that
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1.2 Overview

are not permitted by classical thermodynamics.
Chapter 3 presents the relatively recent theory of stochastic thermodynamics start-

ing with a short introduction to information theory in section 3.1. Information theory
provides theoretical tools able to quantify information. Missing information about a
physical quantity is modelled by considering the quantity random. The information
missing about that quantity is quantified by its information theoretic or Shannon
entropy. The concepts of information theory can straightforwardly be applied to
statistical mechanics: When one only specifies the thermodynamic state of a system,
one assumes that its microscopic state is random. Statistical mechanics tells us that
the probability distribution of the microscopic state is the canonical distribution.
The information that one misses about the microscopic state is then quantified by
its Shannon entropy. It turns out that this Shannon entropy is the thermodynamic
entropy given by equilibrium statistical mechanics. Moreover, the canonical distri-
bution is justified from an information theoretic point of view: It is the distribution
best representing our knowledge of the microscopic state of a system when one only
knows its thermodynamic state. In fact, among all distributions compatible with
the thermodynamic state of the system, the canonical distribution maximizes the
Shannon entropy.

Stochastic thermodynamics, presented in section 3.2, extends equilibrium statisti-
cal mechanics to non equilibrium isothermal processes. It allows for non canonical,
or non equilibrium distributions and simply assumes that such a non equilibrium
distribution relaxes towards equilibrium according to a linear equation. The various
thermodynamic functions are successfully generalized for non equilibrium states. In
particular, the thermodynamic entropy of a non equilibrium distribution is simply
given by its Shannon entropy. The relaxation towards equilibrium is the source of
irreversibility and the entropy production is actually a loss of information about the
microscopic state of the system. Stochastic thermodynamics provides an ideal frame-
work for the formalization of the problem of Maxwell’s Demon: The acquisition of
information about the microscopic state of the system naturally leads to a reduction
of its entropy. This reduction is equal to the amount of information provided by the
measurement.

Apart from introducing the theoretical framework used to derive the results of the
second part, the goal of the first part is also to emphasize the quantitative relation
between the irreversibility of a process and the loss or gain of information about
the microscopic state of the system. In the second part, this relation is investigated
the other way round. It is studied whether and to what extend the loss and gain
of information coming from an external source is irreversible. The answer is ’yes’,
and it is shown that the entropy produced during these processes is always greater
than the information lost or gained. The results of chapters 4 and 5 were published
respectively in [GK13] and [GK11] in a slightly more restrictive setup.

Chapter 4 deals with information loss. This chapter presents a simple yet general
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1 Introduction

model for a physical memory device and the processes of recording and erasing a
piece of information on it. It is shown that the erasing of the information is an
irreversible process and that the entropy produced during that process is related to
the amount of information erased. The piece of information comes from an external
source. It is just a random event such as the result of the flipping of a coin. The
memory is modelled as a system obeying the laws of stochastic thermodynamics.
The main requirement concerning the erasure of the information is that one should
not make use of the information recorded while erasing it. In fact, making use of
the information while erasing it would imply that the information is also present
elsewhere. The information present in the memory is identified as the correlation
of the microscopic state of the memory with the event recorded. Not making use
of information contained in the memory amounts to not using information about
the microscopic state of the memory and this turns out to be the reason for the
irreversibility of the erasure. The relation between irreversibility and information
erasure is resolved in time: The rate at which entropy is produced is at least equal
to the rate at which information is erased all along the erasure process.

Chapter 5 is concerned with the acquisition of information coming from an external
source. A simple model is developed for a physical measurement device able to obtain
information about the microscopic state of a system. The measurement process is
analyzed and shown to be irreversible. The amount of entropy produced is related to
the information processed. Remarkably, there is equality between the two quantities
only if they are both zero. The model presented is simple in that we assume no
back action of the measurement device on the system on which the measurement is
performed. The measurement process is cyclic. A measurement event happens to be
separable into two different processes: the loss of the information obtained during
the previous measurement cycle and the acquisition of the information of the current
cycle. Each of these processes is entropy producing.
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2 Classical thermodynamics and

statistical mechanics

2.1 Classical thermodynamics

The aim of this section is to give a short introduction to classical thermodynamics.
The presentation is inspired by [LY99]. It might differ from traditional introduc-
tions to thermodynamics in that thermal engines and maximum efficiencies are not
mentioned. Instead, the central concepts of entropy and entropy production are
introduced from the very beginning. The presentation ends with the definition of
isothermal processes which will be the processes considered in the rest of the docu-
ment.

This introduction is not meant to be complete. Interested readers might find a
complete presentation of classical thermodynamics in [Cal85].

2.1.1 Adiabatic thermodynamics

The irreversibility assumption is formulated for adiabatic processes. An adiabatic
process is a process during which the system under consideration only exchanges
energy with its environment in form of mechanical work. Since purely mechanical
transformations are reversible, if an adiabatic process is irreversible, the irreversibility
must lie inside the system. The irreversibility assumption is then the following: There
is a function called entropy, which only depends on the state of the system under
consideration (i.e. on its energy, volume etc. . . ) and which is such that an adiabatic
process is possible if and only if the entropy of the final state is not less than the
entropy of the initial state.

More formally, let us consider a system over which we have a certain control
through a control parameter denoted by λ1. The control parameter might be the
volume of the system, a magnetic or electric field applied to the system. By changing
λ, we might change the energy E of the system. The energy exchanges between the
adiabatic system and its environment can only occur in form of work. Hence, in order
to drive our system from one value of λ to another, an amount of work has to be
performed which is equal to the change in the energy of the system. For instance, in

1 Throughout this document, we will assume that λ is a scalar quantity, however generalization to
several control parameters is straightforward.
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2 Classical thermodynamics and statistical mechanics

order to compress a gas confined in a closed box (i.e. to decrease its volume), it is
necessary to perform some work. On the other hand, it is possible to extract some
work during the expansion of a gas (i.e. an increase of volume).

The energy of the system and the control parameter completely specify the ther-
modynamic state of the system. They are called state variables. The irreversibility
principle is formalized in the assumption that there exists a state function (a function
of the state variables) called entropy and denoted by S(E, λ) which can only increase
in adiabatic transformations. In other words, it is possible to bring the system from
a state (E, λ) to a state (E′, λ′) if and only if

S(E, λ) ≤ S(E′, λ′). (2.1)

If there is equality, then the transformation is said to be reversible. In fact, in that
case, it is possible to perform the reverse process, i.e. to bring the system from state
(E′, λ′) to state (E, λ). Otherwise, when strict inequality holds, it is not possible to
perform the reverse process and the process is said to be irreversible. During this
process, the entropy of the system increases by an amount ∆S = S(E′, λ′)−S(E, λ) ≥
0 and we say that the amount ∆S was irreversibly produced or simply produced during
the process. The amount of entropy produced during a process quantifies the “degree
of irreversibility” of the process. The more entropy is produced during a process, the
“more” irreversible it is.

The entropy has the following properties:

• It is an increasing function of the energy:

∂S

∂E
(E, λ) ≥ 0. (2.2)

• It is a concave function of the energy:

∂2S

∂E2
(E, λ) ≤ 0. (2.3)

• It is additive, i.e. the entropy of a compound system is the sum of the entropies
of its constitutive parts.

Saying that the entropy is an increasing function of the energy is equivalent to say
that it is always possible to increase the energy of an adiabatic system (i.e. to “heat
it up”) without changing the control parameter. However, in order to decrease the
energy of the system (i.e. to “cool it down”), it is necessary to change the control
parameter. As a consequence, the minimum amount of work needed in order to
perform a given process is minimum if the process is performed reversibly. In fact,
consider a process where λ is driven from λ0 to λ1. Let E0 and E1 be the initial and
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2.1 Classical thermodynamics

final energy of the system. The amount of work performed on the system during this
process is W = E1 −E0. Let Ẽ1 be the final energy of the system if the process had
been performed reversibly. It is given by the condition:

S(E0, λ0) = S(Ẽ1, λ1). (2.4)

The work that would be performed during the reversible process is Wrev = Ẽ1 −E0.
We have:

S(E0, λ0) = S(Ẽ1, λ1) ≤ S(E1, λ1). (2.5)

Since the entropy is an increasing function of the energy, we have Ẽ1 ≤ E1 and hence:

W −Wrev = E1 − Ẽ1 ≥ 0, (2.6)

with equality if and only if the process was performed reversibly. The extra amount
of work performed compared to a reversible process is called the dissipated work:

Wd = W −Wrev ≥ 0. (2.7)

This amount of work is lost, it cannot be retrieved performing the reverse process.
Similarly to the entropy produced, the work dissipated during a process is a measure
of the irreversibility of the process. Both quantities are zero for reversible process
and positive for irreversible process. However, the work dissipated seems to be a
more practical measure since it is expressed in terms of mechanical energy which
can in principle be measured. The relation between the energy dissipated and the
entropy produced during a process is quite complicated in general.

2.1.2 Thermal contact

The additivity of the entropy implies that two systems 1 and 2 with energies E1 and
E2 and entropies S1(E1) and S2(E2) can be combined to form a compound system
with entropy2

Stot(E1, E2) = S1(E1) + S2(E2). (2.8)

The two systems are said to be in thermal contact if they are allowed to exchange
energy. The energy exchanged between two systems in thermal contact is called heat
transfer.

Heat transfer can only happen in such a way that the total entropy (2.8) increases.
Imagine that an infinitesimally small amount dE is transferred from system 1 to
system 2. Additivity implies that the total variation of the entropy is the sum of the

2We omit for a moment the possible dependence on the control parameters since we are not going
to consider their variations.
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2 Classical thermodynamics and statistical mechanics

variations of the entropies of the two subsystems:

dStot = dS1 + dS2 =
∂S1

∂E1
dE1 +

∂S2

∂E2
dE2. (2.9)

During this process, system 1 looses amount dE of energy and system 2 receives the
same amount. Hence:

dE1 = −dE (2.10)

and
dE2 = dE. (2.11)

Equation (2.9) thus becomes:

dStot =
(
∂S2

∂E2
−
∂S1

∂E1

)

dE. (2.12)

This quantity is positive if and only if dE has the same sign as ∂S2

∂E2
− ∂S1

∂E1
. Hence,

the only heat exchanges possible are the ones in the direction of increasing ∂S
∂E .

The quantity ∂S
∂E is called the inverse temperature and is usually denoted by the

Greek letter β. The inverse temperature of a system in state (E, λ) is defined by:

β(E, λ) =
∂S

∂E
(E, λ). (2.13)

As the entropy, it is a state function. Since the entropy is an increasing function of
the energy, the inverse temperature is positive:

β(E, λ) ≥ 0. (2.14)

Furthermore, it is a decreasing function of the energy since the entropy is concave.

To be possible, an infinitesimal amount of heat dE transferred from system 1 to
system 2 has to satisfy:

(β2(E2) − β1(E1)) dE ≥ 0. (2.15)

Hence dE can be positive if and only if the inverse temperature of system 1 is lower
than the inverse temperature of system 2. Since β is a decreasing function of the
energy, any heat transfer tends to reduce the difference β2 − β1.

If the two systems have the same inverse temperature: β1(E1) = β2(E2), then no
heat exchange is allowed between them. In fact, due to the concavity of the entropy,
such a heat exchange would necessarily lead to a reduction of the total entropy. The
two systems are then said to be in thermal equilibrium. The joint state of two systems
in thermal equilibrium is completely specified by the total energy Etot = E1 + E2

(and the possible set of control parameters). The entropy of this state is then given
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2.1 Classical thermodynamics

by the maximum value of (2.8) over the possible repartitions of the total energy
between the two systems:

Seq
tot(Etot) = max

E1+E2=Etot

S1(E1) + S2(E2). (2.16)

This maximum is reached when the inverse temperatures of the two systems are
equal and we can then define the inverse temperature of the joint system by applying
equation (2.13) to the joint system:

βtot(Etot) =
∂Seq

tot

∂Etot
(Etot), (2.17)

and verify that it is indeed equal to the inverse temperature of the two subsystems:
βtot(Etot) = β1(E1) = β2(E2).

The inverse temperature is an “index of equilibrium” in the sense that two systems
are in equilibrium if and only if they have the same inverse temperature. Moreover,
the inverse temperature gives the direction in which energy (heat) transfers are pos-
sible.

We assume that when two systems are put into thermal contact, they will exchange
heat until they are in equilibrium, i.e. until their inverse temperatures are equal. This
is the “thermalization assumption”.

The absolute temperature is defined as the inverse of the inverse temperature:

T (E, λ) =
1

β(E, λ)
. (2.18)

Historically, T was introduced before β which explains the name “inverse tempera-
ture” for β. In the following, we will use T or β indifferently. Moreover, we express
the temperature in the same units as the energy implying that we consider the en-
tropy to be dimensionless.

Systems having a high temperature are said to be “hot” and systems having a low
temperature are said to be “cold”. With this definitions, inequality (2.15) implies
that heat spontaneously flows from hot bodies to colder ones.

2.1.3 Isothermal thermodynamics

When a system is so big, that its inverse temperature is not influenced by heat
exchanges with another system, it is called a heat bath, heat reservoir or thermostat.
When a heat bath at inverse temperature βr receives an amount ∆Er of energy, its
entropy varies according to

∆Sr = βr∆Er, (2.19)

where the subscript “r” stands for “reservoir”.
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2 Classical thermodynamics and statistical mechanics

Equilibrium with a heat bath

Consider a system with an entropy function S(E, λ) in contact with a heat bath at
inverse temperature βr. An amount Q of heat transferred from the heat bath to the
system leads to the production of an amount of entropy equal to

∆Stot = ∆S + ∆Sr = ∆S − βrQ, (2.20)

where ∆S = S(E +Q,λ) − S(E, λ) is the variation of the entropy of the system and
∆Sr = βr∆Er = −βrQ is the variation of the entropy of the heat bath. The entropy
production (2.20) can be written as the variation of the following function:

ψ(βr, λ, E) = S(E, λ) − βrE. (2.21)

In fact, one can check that ∆Stot = ψ(βr, λ, E +Q) −ψ(βr, λ, E). As a consequence,
heat exchanges between the system and the heat bath are only possible in the direc-
tion increasing ψ. The function ψ is called Massieu function.

Due to the concavity of the entropy, the Massieu function ψ(βr, λ, E) has a unique
maximum as a function of E for every βr and λ. From the previous paragraph, we
know that the maximum is attained when the inverse temperature of the system is
equal to the inverse temperature of the heat bath, in other words, for E = Eeq(βr, λ)
satisfying:

β(Eeq, λ) =
∂S

∂E
(Eeq, λ) = βr. (2.22)

When this condition is satisfied, no heat exchange is possible between the system
and the heat bath. The system is then said to be in equilibrium with the heat bath.
The thermalization assumption implies that when a system is put into contact with
a heat bath at inverse temperature βr, it will exchange heat with the heat bath until
it reaches equilibrium, i.e. until the inverse temperature of the system will be equal
to βr.

When the system is in equilibrium with the heat bath, then its thermodynamic
state is completely specified by the inverse temperature of the heat bath, βr (which is
also the inverse temperature of the system) and the control parameter λ. The energy
of the system is then a function of βr and λ and it is given by equation (2.22). The
equilibrium value of the Massieu function defines a new state function:

ψeq(βr, λ) = max
E

ψ(βr, λ, E) = ψ(βr, λ, Eeq). (2.23)

In the following, we will drop the subscripts “r” and “eq” and ψ(β, λ) will denote the
Massieu function of a system in equilibrium with a heat bath at inverse temperature
β.
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2.1 Classical thermodynamics

Work dissipation and entropy production in isothermal processes

Consider the following process: Our system is in equilibrium with a heat bath at
inverse temperature β and we change the control parameter from λ0 to λ1. Such a
process is called isothermal. We would like to investigate the amount of work needed
to perform such a process and to compare it to the amount of entropy produced by
the process.

The system and the heat bath can be viewed as an adiabatic compound system.
Hence, the work performed is equal to the total change in energy in the two systems:

W = ∆E + ∆Er = ∆E −Q, (2.24)

where ∆E = E(β, λ1) − E(β, λ0) is the variation of the energy of the system and
∆Er = −Q is the amount of heat transferred from the heat bath to the system
during the process. Since the energy of the system is a state function, its change just
depends on the initial and final values of its state variables, i.e. of β and λ.

The total entropy produced during the process is the sum of the changes in entropy
of the two systems:

∆Stot = ∆S + ∆Sr. (2.25)

As the energy, the entropy of the system is a state variable, hence its variation
depends only on the initial and final values of the state variables: ∆S = S(β, λ1) −
S(β, λ0). From the definition of the heat bath, its entropy variation is equal to:

∆Sr = β∆Er = −βQ. (2.26)

Equation (2.25) can be rearranged into:

βQ = ∆S − ∆Stot ≤ ∆S. (2.27)

Hence, the variation of the entropy of the system is an upper bound to the quantity
βQ, i.e. there is a maximum amount of heat that the system can receive during the
process, and this maximum depends only on the initial and final values of β and
λ, i.e. it is the variation of a state function. Equivalently, one can say that there
is a minimum amount of heat that has to be transferred from the system to the
environment. The maximum for Q is attained when ∆Stot = 0, i.e. for reversible
processes. It is equal to:

Qrev =
∆S

β
= T∆S. (2.28)

Equation (2.19) tells us that heat baths always satisfy this condition. Hence heat
baths act reversibly.

From equation (2.24) and the fact that Q is bound from above, inequality (2.27),
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2 Classical thermodynamics and statistical mechanics

we get that W is bound from below:

W = ∆E −Q = ∆E −Qrev + T∆Stot ≥ ∆E −Qrev. (2.29)

Hence, there is a minimum amount of work that has to be provided to the system
in order to perform this process. This minimum is attained for reversible processes
and is equal to:

Wrev = ∆E −Qrev = ∆E − T∆S. (2.30)

This is the variation of the following state function:

F (T, λ) = E(β, λ) − TS(β, λ), (2.31)

where T = 1/β is the absolute temperature of the heat bath. The function F
is called free energy, or Helmholtz free energy. Its variations along an isother-
mal process give the reversible work of the process. The free energy is linked to
the equilibrium Massieu function (2.23) by ψ(β, λ) = −βF (T, λ), or equivalently
F (T, λ) = −Tψ(β, λ). The work dissipated during the process is then:

Wd = W −Wrev = W − ∆F. (2.32)

Combining equations (2.29) and (2.30), we obtain:

Wd = T∆Stot. (2.33)

In words: The work dissipated during an isothermal process is proportional to the
entropy produced during the process.

It is not surprising that the work performed is minimal for a reversible process.
In fact, isothermal processes are particular cases of adiabatic processes and hence
the results of paragraph 2.1.1 still hold. However isothermal processes are somewhat
simpler than adiabatic processes. Instead of being given by the isoentropic condition
(2.4), the reversible work is given by the state function F given by equation (2.31).
Moreover, the work dissipated during an isothermal process is proportional to the
entropy produced.

Legendre transformation

It is possible to describe the state of the system using the inverse temperature β in-
stead of the energy E. Then, the (equilibrium) Massieu function ψ(β, λ) contains the
same information as the entropy S(E, λ). The function ψ is the Legendre transform
of the function S. It is defined by:

ψ(β, λ) = S(E(β, λ), λ) − βE(β, λ), (2.34)
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2.1 Classical thermodynamics

where E(β, λ) is obtained by inverting β(E, λ) = ∂S
∂E (E, λ) with respect to E. The

partial derivatives of the function ψ are:

∂ψ

∂β
(β, λ) = −E(β, λ) (2.35)

and
∂ψ

∂λ
(β, λ) =

∂S

∂λ
(E(β, λ), λ). (2.36)

The simplest way of seeing this, although not very rigorous, is to compute the dif-
ferential of ψ = S − βE:

dψ = dS − βdE − Edβ. (2.37)

The differential of S reads:
dS = βdE +Adλ, (2.38)

where we have set A = ∂S
∂λ . Inserting this into equation (2.37) above yields:

dψ = −Edβ +Adλ. (2.39)

And thus −E and A are indeed the partial derivatives of ψ with respect to β and λ.
Before going further, we have to say a few words about the function A. It is a

state function. For an adiabatic system, it is given by:

A(E, λ) =
∂S

∂λ
(E, λ). (2.40)

For an isothermal system, it is given by:

A(β, λ) =
∂ψ

∂λ
(β, λ). (2.41)

Here, and throughout this document, we abusively use the same letter A, whether
its arguments are (E, λ) or (β, λ) in order to keep the notations light. But it should
be understood that A(E, λ) and A(β, λ) are different functions of their arguments.
The rigorous form to write it is equation (2.36). Similarly, we will use the notation
S(β, λ) instead of the more rigorous but heavier S(E(β, λ), λ) to denote the entropy
of an isothermal system. The quantity A is linked to the reversible work of an
infinitesimal transformation. Define the pressure3 P = A/β. The reversible work of
an infinitesimal transformation, where the control parameter is changed by dλ is:

δWrev = −Pdλ. (2.42)

This is true for an adiabatic and for an isothermal transformation. Setting dS = 0

3In fact, if λ is the volume, then P is indeed the thermodynamic pressure.
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2 Classical thermodynamics and statistical mechanics

in equation (2.38), one obtains:

δW adia
rev = dE = −

A

β
dλ = −Pdλ. (2.43)

For an infinitesimal isothermal transformation, the reversible work is given by:

δW iso
rev =

∂F

∂λ
dλ = −

1

β

∂ψ

∂λ
dλ = −Pdλ. (2.44)

The minus signs in the equations above are due to historical reasons: when thermo-
dynamics was developed, people were interested in the amount of work they could
extract during a given transformation.

2.2 Equilibrium statistical mechanics

2.2.1 From the microscopic to the macroscopic description

An adiabatic system is actually composed of many particles that interact with each
other and are possibly subjected to some external field force. The dynamical state
of the system is described by the set of positions q = {qi} and momenta p = {pi}
of all the particles. The energy of the system is given by the Hamilton function
or Hamiltonian E = Hλ(q, p). The Hamiltonian contains all the details concerning
the dynamics of the particles including their interaction and possible external fields
applied on the system. Driving the system means to change its Hamiltonian. It
therefore depends on the control parameter λ. The evolution of the state of the
system is given by the Hamiltonian equations:

dqi

dt
=

∂Hλ

∂pi

dpi

dt
= −

∂Hλ

∂qi
. (2.45)

The Hamiltonian equations of motions are time reversible and for a constant value
of λ, the energy is conserved (it is an integral of the motion). When λ is varied, the
energy of the system changes and hence work is performed on the system.

In macroscopic systems such as considered in thermodynamics, the number of
degrees of freedoms is enormously big, around 1024. Hence, compared to the ther-
modynamic description, where the state of the system is given by a couple of state
variables (the energy and the work coordinates), the Hamiltonian description is a
highly detailed one. Passing from the Hamiltonian to the thermodynamic descrip-
tion, we thus loose an enormous amount of information about the state of the system
considered. The set x = (q, p) of coordinates and momenta of the constitutive parti-
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2.2 Equilibrium statistical mechanics

cles of the system is the microscopic configuration of the system. Later, we will also
use the terms microscopic state or micro-state to denote it.

It is the purpose of statistical mechanics, introduced in this section, to make the
bridge between the microscopic and the thermodynamic descriptions. The following
presentation is essentially the same as the one given by Gibbs in his original work
[Gib02] with a few simplifications.

2.2.2 Gibb’s canonical ensemble

In order to link the thermodynamic and the Hamiltonian description, Gibbs con-
sidered an ensemble of independent systems, all having the same Hamiltonian, but
being in possibly different microscopic configurations [Gib02]. Such an ensemble is
characterised by the density ρ over the phase space. The fraction of ensemble mem-
bers having their microscopic configuration in a region of infinitesimal size dx around
some x is given by ρ(x)dx. The purpose of statistical mechanics is to find the density,
or distribution, correctly describing a system in a given thermodynamic state.

The energy of the ensemble is given by:

Eλ[ρ] =
∫

ρ(x)Hλ(x)dx. (2.46)

The distribution ρ evolves according to the Liouville equation4:

∂ρ

∂t
−

r∑

i=1

(
∂ρ

∂pi

∂H

∂qi
−
∂ρ

∂qi

∂H

∂pi

)

= 0. (2.47)

Gibbs identified the macroscopic state of a thermodynamic system with the distri-
bution ρ over its microscopic states. An equilibrium state is a distribution that is
invariant under the Liouville equation (2.47). Such an invariant distribution is a func-
tion of the constants of motion only. Assuming that the energy is the only constant
of motion, an invariant density has the form ρ(x) ∝ f(H(x)).

Two systems with Hamiltonian H1 and H2 in equilibrium at the same temperature
can be combined to form an equilibrium system with Hamiltonian Htot = H1 +
H2. Here, we make no statement about what the temperature is in terms of the
microscopic configuration of the system; we assume the two systems to have the same
temperature in order to make sure that the compound system is an equilibrium one.
Since the two systems are not interacting, the joint distribution of their microscopic
states is the product ρtot(x1, x2) = ρ1(x1)ρ2(x2). Stating that this distribution is an
equilibrium one is saying that it has the form ρtot(x1, x2) ∝ f(Htot(x1, x2)). Hence

4Actually, Gibbs was the first to introduce this equation, but it is based on a theorem of Liouville
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2 Classical thermodynamics and statistical mechanics

the function f has to satisfy the property

f(H1 + H2) = f(H1)f(H2). (2.48)

The functions satisfying this relation are exponential functions f(y) = exp(ay). Thus,
an equilibrium ensemble will be given by the so called canonical distribution:

ρa,λ(x) =
exp(aHλ(x))

Z(a, λ)
, (2.49)

where

Z(a, λ) =
∫

exp(aHλ(x))dx (2.50)

is the normalization constant and is called the partition function.

The parameter a is an index of equilibrium in the sense that two equilibrium ensem-
bles having the same a are in equilibrium with each other. They can be combined to
form an equilibrium compound system which will have the same value for a. Hence,
a is a function of β.

The parameters a and λ are state variables because they completely specify the
equilibrium ensemble. The partition function (2.50) is a state function. However, it
is multiplicative and not additive. In fact, if two systems are canonically distributed
with parameter a and partition functions Z1(a) and Z2(a), then the system obtained
by combining them is also canonically distributed with parameter a and partition
function Ztot(a) = Z1(a)Z2(a). In order to obtain an additive state function, one
should consider the logarithm of the partition function:

R(a, λ) = logZ(a, λ). (2.51)

In order to understand the physical meaning of R, we have to analyze its variations
with respect to small variations of its parameters a and λ:

dR =
∂R

∂a
(a, λ)da+

∂R

∂λ
(a, λ)dλ. (2.52)

Using the definition of R (2.51) and of the partition function (2.50), we obtain for
the derivative of R with respect to a:

∂R

∂a
=

1

Z

∂Z

∂a
=
∫

Hλ(x)
exp (aHλ(x))

Z
dx =

∫

ρa,λ(x)Hλ(x)dx = E(a, λ), (2.53)

which is just the energy of the ensemble.
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2.2 Equilibrium statistical mechanics

The derivative of R with respect to the control parameter reads:

∂R

∂λ
= a

∫

ρa,λ(x)
∂Hλ

∂λ
(x)dx. (2.54)

To interpret this quantity, consider the following process. The control parameter λ is
driven from some initial value λ0 to some final value λ1. Furthermore, we assume that
during the whole process, the ensemble remains in equilibrium with the parameter
a being held constant. Hence, all along the process, the ensemble is canonically
distributed with the parameter a. We now wish to calculate the value of the work
performed during such a process. The work performed on one ensemble member in
micro-state x when λ is varied by an infinitesimally small amount dλ is given by:

δWλ(x) =
∂Hλ

∂λ
(x)dλ. (2.55)

Its ensemble average is:

〈δWλ〉 =
(∫

ρa,λ(x)
∂Hλ

∂λ
(x)dx

)

dλ =
1

a

∂R

∂λ
(a, λ)dλ. (2.56)

As a consequence, the average work performed during the process is given by:

〈W 〉 =
∫ λ1

λ0

〈δWλ〉 =
1

a

∫ λ1

λ0

∂R

∂λ
(a, λ)dλ =

∆R

a
, (2.57)

where ∆R = R(a, λ1) − R(a, λ0). The process just described is reversible. In fact,
if we drive the control parameter from the final value λ1 back to the initial value
λ0 and we assume that the ensemble is canonically distributed with the parameter a
being held constant all along the process, then we would be able to extract the very
same amount 〈W 〉 of work from the system. The quantity R/a gives the reversible
work to perform in a transformation where a is held constant. Hence, we have:

1

a

∂R

∂λ
= −P = −

A

β
, (2.58)

yielding an expression for the pressure in terms of the dynamical (Hamiltonian)
properties of the system.

The differential of R (2.52) thus becomes:

dR = E da−
a

β
Adλ. (2.59)

We arrive at the conclusion that the dependence of R in −a and λ is the same
as the dependence of ψ in β and λ. In other words, if we assume β = −a and
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2 Classical thermodynamics and statistical mechanics

ψ(β, λ) = R(−a, λ), we recover the results of classical (reversible) thermodynamics
derived in the previous section. The canonical ensemble provides a microscopic model
for the reversible isothermal thermodynamics.

2.2.3 Canonical statistical mechanics

A system in equilibrium with a heat bath at inverse temperature β is described by a
canonical ensemble. It’s microscopic configurations are distributed according to the
canonical distribution:

ρβ,λ(x) =
exp (−βHλ(x))

Z(β, λ)
, (2.60)

where Z(β, λ) is the partition function and is given by normalization:

Z(β, λ) =
∫

exp (−βHλ(x)) dx. (2.61)

The equilibrium Massieu function is the logarithm of the partition function:

ψ(β, λ) = logZ(β, λ). (2.62)

The free energy is related to the Massieu function and hence to the partition function
as:

F (T, λ) = −Tψ(β, λ) = −T logZ(β, λ). (2.63)

The ensemble average, or equilibrium value of the energy is given by the thermody-
namic relation (2.35):

E(β, λ) = −
∂ψ

∂β
(β, λ) = −

1

Z(β, λ)

∂Z

∂β
(β, λ). (2.64)

Using the thermodynamic definition of the Massieu function, equation (2.34) we can
find an explicit expression for the entropy of the system:

S(β, λ) = ψ(β, λ) + βE(β, λ). (2.65)

Using the definition of ψ, the normalization of ρβ,λ and of the definition of the average
energy, we obtain:

S(β, λ) = logZ +
∫

ρβ,λ(x)βHλ(x)dx = −

∫

ρβ,λ(x) log
e−βHλ(x)

Z
dx. (2.66)

Hence, the final expression of the canonical entropy also called Gibbs entropy is:

S(β, λ) = −

∫

ρβ,λ(x) log ρβ,λ(x)dx. (2.67)
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2.2 Equilibrium statistical mechanics

This is, in a slightly modified way, the derivation Gibbs presented in his celebrated
Elementary principle in Statistical Mechanics [Gib02].

With the help of statistical mechanics, it is possible to link the temperature to
the motion of the particles constituting the system. Assume that the system has
r degrees of freedom (typically, r = 3N where N is the number of particles), the
Hamiltonian is then:

Hλ(q, p) = K(p) + Vλ(q), (2.68)

where K(p) =
∑r

i=1
p2

i

2m is the kinetic energy of the system (m is the mass of the
particles) and Vλ(q) is the potential energy of the system. The partition function
factorizes into:

Z(β, λ) =
∫

e−βHλ(q,p)dqdp =
∫

e−βK(p)dp
∫

e−βVλ(q)dq = Zkin(β)Zpot(β, λ),

(2.69)
where Zkin is the part due to the kinetic energy and Zpot due to the potential energy.
The kinetic part factorizes further:

Zkin(β) =
∫

e−βK(p)dp =
∫

e−β
∑r

i=1

p2

i
2m dp1 . . .dpr =

∫

e−β
p2

1

2m dp1 . . .

∫

e−β
p2

r
2m dpr =

(
∫

e−β
p2

1

2m dp1

)r

= Z1
kin(β)r

(2.70)

The canonical distribution factorizes as well:

ρβ,λ(q, p) = ρpot
β,λ(q)ρ1

β(p1) . . . ρ1
β(pr), (2.71)

where

ρpot
β,λ(q) =

e−βVλ(q)

Zpot(β, λ)
, (2.72)

and

ρ1
β(p1) =

e−β
p2

1

2m

Z1
kin(β)

. (2.73)

Note that ρ1
β(p1) is a Gaussian distribution with 0 mean and a variance equal to
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m/β. The average kinetic energy of the system is given by:

〈K〉 =
∫

ρβ,λ(q, p)K(p)dqdp =
∫

ρpot
β,λ(q)ρ1

β(p1) . . . ρ1
β(pr)

(
r∑

i=1

p2
i

2m

)

dq dp1 . . .dpr

=
1

2m

r∑

i=1

(∫

ρ1
β(pi)p

2
i dpi

)

=
r

2m

∫

ρ1
β(p1)p2

1 dp1

︸ ︷︷ ︸

m/β

.

(2.74)
The last integral is the variance of the distribution ρ1

β(p1) which is equal to m/β as
we just noticed. Hence, the average kinetic energy is equal to:

〈K〉 =
r

2β
=
r

2
T. (2.75)

The temperature is thus twice the average kinetic energy per degree of freedom.

2.3 Maxwell’s Demon and Szilard’s engine

The microscopic description of matter suggests that it is possible to manipulate
each atom separately. Doing so, however, would allow to reduce the entropy of an
adiabatic system. The first one to realize this was James Clerk Maxwell. In his
Mechanical theory of heat, he describes a simple Gedankenexperiment. Imagine a
container containing a gas at some temperature T . The container is split into two
halves by a separating wall. On this wall, there is a small trap door. The trap door
is operated by a mechanism which opens it if:

• A particle faster than average passes from the left to the right half of the
container,

• a particle slower than average passes from the right to the left half of the
container.

Otherwise, the trap door is kept closed. As time passes, there is a net energy flow
from the left to the right half of the container. The average velocity, and thus kinetic
energy, of the particles in the left half decreases while in the right half, it increases.
Since the temperature is proportional to the average kinetic energy, see eq. (2.75),
the temperature of the left half of the container decreases while the temperature of
the right half increases. The energy flows from the colder to the hotter half. The net
result of this process is a decrease in the entropy of the gas inside the container.

One can imagine other ways to decrease the entropy of an adiabatic system in a
similar way. For instance, it is possible to compress a gas without performing work

26



2.3 Maxwell’s Demon and Szilard’s engine

Figure 2.1: Maxwell’s Demon. Courtesy of Anne Gärtner.
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2 Classical thermodynamics and statistical mechanics

by waiting for the precise moment when there is no particle in front of the piston
and by moving the piston at such moments only.

Such a process should not be possible without being accompanied by the produc-
tion of an amount of entropy at least equal to the entropy reduction in the container.

In his original book, Maxwell spoke of “an intelligent being” acting on the door
[Max71]. William Thomson (Lord Kelvin) called this being a “demon” [Tho74,
Tho79]. In the contemporary literature, it is usually called “Maxwell’s Demon”,
even though some computer with a receptor would do the job perfectly [LR02].

In a paper published in 1929, the Hungarian physicist Leó Szilard gave a quantita-
tive relation between the amount of entropy reduction and the information needed to
achieve this reduction in a simple toy model [Szi29]. Let a closed volume containing a
gas of one particle be in contact with a heat bath a temperature T . At some point, a
partition in inserted in the middle of the container. Then, the operator looks whether
the particle is on the right side or on the left side of the partition. Note that each of
these events occurs with probability 1/2. If the particle is found on the right side,
then the operator performs an isothermal expansion to the left, else the isothermal
expansion is performed to the right. Since the volume of the gas is doubled during
this expansion, it yields an amount of work

W = T log 2. (2.76)

At the end of the expansion, the system is in the same state as at the very beginning
of the process. Hence, this process is an isothermal cycle whose net effect is to furnish
some positive amount of work. Since this is a cycle, the reversible work associated
to it is 0 so that the dissipated work (and hence the entropy production) is negative.

These Gedankenexperiments show that one has to be very careful when mixing the
microscopic and the thermodynamic scale. When one only specifies the thermody-
namic state of a system, the information about its microscopic state is very limited.
These Gedankenexperiments suggest that the use of more information about the mi-
croscopic state allows one to change the thermodynamic state in a way that could
lead to a reduction of the entropy. This relation between information and entropy
will be made quantitative in the next chapter.
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3 Stochastic thermodynamics

Stochastic thermodynamics is the simplest theory describing non-equilibrium isother-
mal processes. It allows to explicitly compute the entropy produced during some ar-
bitrary processes and it extends equilibrium statistical mechanics to non-equilibrium
situations. Moreover, it provides an ideal framework to formalize Maxwell’s Demon
and the interplay between information and irreversibility.

Stochastic thermodynamics applies to “small” systems, where the energies involved
are of the order of the temperature. Examples of applications include colloidal parti-
cles, bio-polymers such as DNA, RNA or proteins, molecular motors or single electron
transistors, electrical circuits at low intensities. These system are in contact with an
environment (water or air) and they are too small to modify its temperature. Hence
the environment acts as a heat bath in a rather good approximation.

The presentation given here emphasizes the role of information from the begin-
ning. It is shown that when the system is not in equilibrium, i.e. not described
by a canonical distribution, then we have more information about its microscopic
state than just the value of its thermodynamic state variables. The non equilibrium
dynamics of the macroscopic state of the system is then the dynamics of our informa-
tion about its microscopic state. The expression for the entropy production given by
stochastic thermodynamics is shown to be equal to the loss of information about the
microscopic state of the system. The problem of Maxwell’s Demon is then formalized
easily. Since the amount of information we have about the microscopic state of the
system is a characteristic of its macroscopic (equilibrium or not) state, it is natural
that by changing this amount of information, we can change the macroscopic state.

A recent review of stochastic thermodynamics with applications to biological sys-
tems can be found here [Sei12]. Short papers presenting the formalism include [GS97,
Cro98,Sei08,VdBE10,EVdB10,Esp12]. The problem of Maxwell’s Demon is formal-
ized in [SU10,HP11b,HP11a,SU12b,ES12]. The interplay between information pro-
cessing and entropy production is developed more generally in [SU09,SU12a,SU13].

3.1 A short introduction to information theory

This presentation naturally starts with an introduction to information theory. This
section aims at introducing the mathematical tools used to quantify information.
The central concept of information theory is called (information theoretic) entropy
and was first introduced by Claude Shannon [Sha48]. At the end of the section, we
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3 Stochastic thermodynamics

show how information theory can be applied to equilibrium statistical mechanics. A
good and short introduction to information theory can be found in [Khi57] and a
detailed presentation in [CT06].

3.1.1 Shannon entropy

Let X be a random variable with N possible outcomes {x1, · · · , xN }. Let pX be the
distribution of X:

pX(xi) = P (X = xi) ≥ 0. (3.1)

The probability distribution pX satisfies normalization:

N∑

i=1

pX(xi) = 1. (3.2)

We would like to find a number H(X) quantifying our uncertainty about the outcome
of X. Any reasonable measure of the uncertainty should satisfy a small number of
basic properties:

1. H(X) should depend onX only though its distribution pX : H(X) = H(p1, · · · , pN )
where we have set pi = pX(xi). In fact, the uncertainty about the outcome of
a random variable does not depend on whether it is a ball drawn from an urn
or the result of the rolling of a die. It only depends on the probabilities of the
different outcomes.

2. Our uncertainty about the outcome of X is maximum if all the possible out-
comes are equally probable. Hence, the function H(p1, · · · , pN ) should be max-
imum for pi = 1/N for all i.

3. If X and Y are two random variables, our uncertainty about the outcome of
the couple (X,Y ) is the sum of our uncertainty about the outcome of X and
of our average uncertainty about the outcome of Y knowing the outcome of X:

H(X,Y ) = H(X) +
N∑

i=1

pX(xi)H(Y |X = xi). (3.3)

Here, H(Y |X = xi) is the uncertainty about the outcome of Y that remains
when we know that X = xi. In other words, it is the uncertainty associated
with the distribution of Y conditionned on the fact that X = xi. In particular,
if X and Y are independent, then

H(X,Y ) = H(X) +H(Y ), (3.4)
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Figure 3.1: The Shannon entropy H(p) = −p log p− (1 − p) log(1 − p) of a binary random
variable where one event occurs with probability p and the other with probability 1 − p.

meaning that our uncertainty about the ouctome of the couple (X,Y ) is the
sum of our uncertainties about the individual outcomes of X and Y .

4. Adding one event of zero probability does not change our uncertainty:

H(p1, · · · , pN , 0) = H(p1, · · · , pN ). (3.5)

It can be shown (see for instance [Khi57]) that any function satisfying these four
properties, also called Khinchin’s axioms, has the form:

H(X) = −
N∑

i=1

pX(xi) log pX(xi), (3.6)

with the convention p log p = 0 if p = 0. This quantity was first introduced by Claude
Shannon in 1948 [Sha48]. Shannon called this quantity “entropy” in analogy to the
expression for the entropy appearing in statistical mechanics, equation (2.67). In the
following, we will call H(X) the “Shannon entropy of X”. The Shannon entropy of a
random variable with two possible outcomes, one of them occurring with probability
p and the other with probability 1 − p reduces to:

H(p) = −p log p− (1 − p) log(1 − p). (3.7)

This quantity is plotted as a function of p on figure 3.1. The Shannon entropy of
X is zero if and only if the outcome of X is certain, i.e. if pX(xk) = 1 for a certain
k and pX(xi) = 0 for all i 6= k. On the other hand it is maximum if X is equally
distributed, i.e. if pX(xi) = 1/N for every i. In this case, H(X) = logN .
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3.1.2 Conditional entropy and mutual information

Let Y be a second random variable with M possible outcomes y1, · · · , yM . Let pX,Y

be the joint distribution of X and Y :

pX,Y (xi, yj) = P (X = xi and Y = yj). (3.8)

The probability pX(xi) that X = xi independently of the outcome of Y is given by
the marginal distribution of X:

pX(xi) =
M∑

j=1

pX,Y (xi, yj). (3.9)

The marginal distribution pY of Y is given by a similar relation.
The two random variables X and Y are said to independent if their joint distribu-

tion is the product of the marginal distributions:

pX,Y (xi, yj) = pX(xi)pY (yj). (3.10)

The result of the rolling of two dice is a simple example of two independent random
variables. The result of the first die does not influence the result of the second die.
For instance, the probability that the result of the second die is a six is the same,
whether the result of the first die is a six or not. In other words, the knowing the
result of one of the dice does not give any information about the result of the other
die.

If equation (3.10) does not hold, the random variables X and Y are said to be
depend on each other. In this case, the outcome of one of the random variable
“influences” the outcome of the other. Let us illustrate this point with a simple
example. Consider an urn containing k black balls and l white balls. We randomly
draw two balls from this urn. Let X = “color of the second ball” and Y = “color of
the first ball”. If Y = “black”, then the probability that X = “black” is:

P (X = “black”|Y = “black”) =
k − 1

k + l − 1
, (3.11)

whereas if Y = “white”, the probability that X = “black” is given by:

P (X = “black”|Y = “white”) =
k

k + l − 1
. (3.12)

On the other hand, the overall probability that X = “black”, i.e. the marginal prob-
ability of this event is:

P (X = “black”) =
k

k + l
. (3.13)
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One can easily verify that:

P (X = “black”) = P (X = “black”|Y = “black”)P (Y = “black”)+

P (X = “black”|Y = “white”)P (Y = “white”).
(3.14)

In this example, we see that the probability of the outcome of X is not the same
whether we know the outcome of Y or not. And if we know the outcome of Y , the
probability of X = “black” is not the same depending on the outcome of Y . The
outcome of Y does not influence the outcome of X in the sense that it acts like a
“force” on it but rather in the sense that it restricts the possibilities for the outcome
of X. In other words, knowing the outcome of Y provides some information about
the outcome of X.

The notation P (X = xi|Y = yj) introduced above means “the probability that
X = xi knowing that Y = yj”. In the following we will use the different notations:

P (X = xi|Y = yj) = pX|Y (xi|yj) = pX|Y =yj
(xi) (3.15)

to denote the probability that X = xi conditioned on Y = yj . The conditional
distributions pY |X and pX|Y are related to the joint distribution pX,Y via:

pX,Y (xi, yj) = pX|Y (xi|yj)pY (yj) = pY |X(yj |xi)pX(xi). (3.16)

When reordered in the following way:

pX|Y (xi|yj) =
pY |X(yj |xi)pX(xi)

pY (yj)
(3.17)

this equality is called Bayes theorem. By definition, the conditional distributions are
probability distributions and are thus normalized:

N∑

i=1

pX|Y (xi|yj) = 1 (3.18)

for any j.

We have seen that if one knows that Y = yj , then the probability that X = xi

changes from pX(xi) to pX|Y (xi|yj). As a consequence, our uncertainty about the
outcome of X changes. Before we know the outcome of Y , the uncertainty we have
about the outcome of X is quantified by its Shannon entropy H(X) given by equation
(3.6). When we know that Y = yj , the uncertainty we have about the outcome of X
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is quantified by the Shannon entropy of the conditioned distribution pX|Y =yj
:

H(X|Y = yj) = −
N∑

i=1

pX|Y (xi|yj) log pX|Y (xi|yj). (3.19)

The entropy of X conditioned on Y is the average over the outcomes of Y of the
quantity (3.19) above:

H(X|Y ) =
∑

j

pY (yj)H(X|Y = yj). (3.20)

This quantity is smaller than the unconditioned entropy of X:

H(X|Y ) ≤ H(X) (3.21)

with equality if and only if X and Y are independent. We will show this in the
next paragraph. The inequality (3.21) means that on average, knowing the outcome
of Y reduces our uncertainty over the outcome of X. We interpret this reduction
in uncertainty as information and define the mutual information between X and Y
as the average reduction in uncertainty about the outcome of X upon knowing the
outcome of Y :

I(X,Y ) = H(X) −H(X|Y ) ≥ 0. (3.22)

The mutual information is symmetric: I(X,Y ) = I(Y,X), i.e. X possesses as much
information about Y as Y possesses about X. We are going to show this in the next
paragraph as well.

3.1.3 Relative entropy

A concept that will prove extremely useful in the following is the concept of relative
entropy or Kullback-Leibler divergence from one distribution to another distribution.
Let p and q be two distributions over X. The relative entropy from p to q is defined
as [CT06]:

D[p‖q] =
N∑

i=1

p(xi) log
p(xi)

q(xi)
. (3.23)

This quantity is defined if and only if q(xi) 6= 0 for every i for which p(xi) 6= 0. It
is non negative and is zero if and only if the two distributions are identical, i.e. if
p(xi) = q(xi) for every i. To prove this we use of the fact that log y ≤ y − 1 with
equality if and only if y = 1. Hence we have:

log
p(xi)

q(xi)
= − log

q(xi)

p(xi)
≥ 1 −

q(xi)

p(xi)
. (3.24)
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Averaging with respect to p yields:

D[p‖q] ≥
N∑

i=0

p(xi)
(

1 −
q(xi)

p(xi)

)

=
N∑

i=1

p(xi) −
N∑

i=1

q(xi) = 0, (3.25)

where we have used the fact that p and q are normalized, i.e.
∑

i p(xi) =
∑

i q(xi) =
1. There is equality in the inequality (3.25) if and only if there is equality in the
inequality (3.24) for every i, which happens if and only if p(xi) = q(xi) for every i.
Hence we have proved that the relative entropy (3.23) is non negative and is zero if
and only if p and q are identical.

The relative entropy D[p‖q] can be interpreted as a measure of the amount of
information we miss when we think that X is distributed according to q when it
is distributed according to p in reality. It can also be interpreted as the amount of
information that we gain when we learn that X is distributed according to p when we
thought that it was distributed according to q. For instance, consider two correlated
random variables X and Y as in the previous paragraph. We are interested in X and
we assume that we are able to see a realization of Y . Before we know the outcome
of Y , we can only tell that X is distributed according to its marginal distribution
q = pX . After we see the outcome of Y , for instance Y = yj , we can say that X
is distributed according to pX|Y =yj

. The amount of information we gain about X
seeing Y = yj is then D[pX|Y =yj

‖pX ]. This quantity averaged over the outcome of
Y is equal to:

M∑

j=1

pY (yj)D[pX|Y =yj
‖pX ] =

M∑

j=1

pY (yj)
N∑

i=1

pX|Y (xi|yj) log pX|Y (xi|yj) −
N∑

i=1





M∑

j=1

pX|Y (xi|yj)pY (yj)



 log pX(xi)

= H(X) −H(X|Y ) = I(X,Y ).
(3.26)

This is precisely the mutual information between X and Y as defined by equation
(3.22). From this expression, we see that it is a positive quantity, since it is the
average of a relative entropy, which is itself a positive quantity. Moreover, it is zero
if and only if pX|Y =yj

is identical to pX for every j, hence if and only if X and Y
are independent. To see that the mutual information is symmetric, we use equation
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(3.26) above together with equation (3.16):

I(X,Y ) =
M∑

j=1

N∑

i=1

pX|Y (xi|yj)pY (yi) log
pX|Y (xi|yj)

pX(xi)

=
M∑

j=1

N∑

i=1

pX,Y (xi, yj) log
pX,Y (xi, yj)

pX(xi)pY (yj)
= D[pX,Y ‖pXpY ]

(3.27)

The last expression is symmetric with respect to the exchange of X and Y , thus
I(X,Y ) = I(Y,X). This expression gives us a new interpretation of the mutual
information between X and Y . Since I(X,Y ) is the relative entropy from the joint
distribution pX,Y to the product pXpY of the marginal distributions, it is the amount
of information we would miss if we thought that X and Y were independent. In
fact, if we thought X and Y were independent we would think that they are jointly
distributed according to the product pXpY instead of pX,Y .

3.1.4 Continuous random variables

These concepts can be generalized for continuous random variables. Let X be a real
valued random variable with a probability density function, or distribution ρX . For
two real numbers a and b with a ≤ b, the probability that X lies between a and b is
obtained by integrating the distribution from a to b:

P (X ∈ [a, b]) =
∫ b

a
ρX(x)dx. (3.28)

More generally, if X is a multidimensional random vector, the probability that X
lies in a given set A is given by:

P (X ∈ A) =
∫

A
ρX(x)dx. (3.29)

The distribution should be normalized:
∫

ρX(x)dx = 1. (3.30)

Here and every time the integration domain is not specified it should be understood
as being the whole domain.
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Differential and relative entropy

Equation (4.1) can be generalized in the following way:

H[ρX ] = −

∫

ρX(x) log ρX(x)dx, (3.31)

The quantity H[ρX ] is called differential entropy in the literature. It is the analogue
of the Shannon entropy for continuous random variables. However, it misses some
important properties of the Shannon entropy. The differential entropy is not invariant
under coordinate transformation. Moreover it can take any real value, even negative
ones. However, differential entropy still measures the degree of randomness in the
sense that a random variable having a greater differential entropy is “more random”
than a variable having a lower differential entropy. The differential entropy retains
another crucial feature of its discrete counterpart, namely that it decreases upon
conditioning on a second random variable. This decrease still gives the mutual infor-
mation between the two random variables. As we will see, the mutual information is
invariant under coordinate transformation.

The relative entropy can be generalized to continuous variables as well. Let ρ1 and
ρ2 be two probability density functions. The relative entropy from ρ1 to ρ2 is defined
as:

D[ρ1‖ρ2] =
∫

ρ1(x) log
ρ1(x)

ρ2(x)
dx. (3.32)

As in the discrete case, the relative entropy is defined if and only if ρ2(x) 6= 0
for every x for which ρ1(x) 6= 0. Unlike the differential entropy (3.31), the relative
entropy (3.32) is invariant under coordinate transformation. Moreover, as its discrete
counterpart, it is non negative and is zero if and only if ρ1 and ρ2 are identical1.

Mutual information

Let X and Y be two continuous random variables. Let ρX,Y be their joint probability
density function. In other words:

P (X ∈ A and Y ∈ B) =
∫

A

(∫

B
ρX,Y (x, y)dy

)

dx. (3.33)

The marginal distribution of X is obtained from ρX,Y by integrating out y:

ρX(x) =
∫

ρY,X(x, y)dy. (3.34)

1 Rigorously speaking, D[ρ1‖ρ2] = 0 if and only if ρ1 and ρ2 are equal almost everywhere.

37



3 Stochastic thermodynamics

The marginal distribution of Y is obtained similarly, by integrating out x. As in the
discrete case, the distribution of X conditioned on Y = y is given by Bayes’ theorem:

ρX|Y =y(x) = ρX|Y (x|y) =
ρX,Y (x, y)

ρY (y)
=
ρY |X(y|x)ρX(x)

ρY (x)
. (3.35)

The differential entropy of X conditioned on Y = y is then:

H[ρX|Y =y] = −

∫

ρX|Y (x|y) log ρX|Y (x|y)dx. (3.36)

The entropy of X conditioned on Y , which we denote H[ρX|Y ], is the average over
Y of the quantity above:

H[ρX|Y ] = −

∫

ρY (y)H[ρX|Y =y]dy. (3.37)

As already mentioned, this quantity is smaller than the marginal entropy H[ρX ] of
X and the difference between the two is the mutual information between X and Y :

I(X,Y ) = H[ρX ] −H[ρX|Y ] ≥ 0. (3.38)

To see that this expression is non negative, we note that the continuous equivalent
of equation (3.26) holds:

I(X,Y ) =
∫

ρY (y)D[ρX|Y =y‖ρX ]dy. (3.39)

Moreover, using the same reasoning as for discrete random variables, we find:

I(X,Y ) = D[ρX,Y ‖ρXρY ]. (3.40)

As a consequence, the mutual information between two continuous random variables
is invariant under coordinate transformations. Moreover, it is symmetric, non nega-
tive and it is zero if and only if X and Y are independent.

3.1.5 Application to equilibrium statistical mechanics

These information theoretic concepts can be used to reinterpret equilibrium statistical
mechanics. Consider a system in equilibrium with a heat bath at inverse temperature
β. We assume that we know its Hamiltonian Hλ. The thermodynamic state of
the system is given by the two state variables β and λ. We assume that we know
the thermodynamics of the system, i.e. we know the functional form of the state
functions E(β, λ) and S(β, λ). What can we say about the microscopic configuration
of system? The system is composed of particles that all have a unique position and
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a momentum. What can we say about theses positions and momenta? This question
can be rephrased the following way: What uncertainty do we have about the positions
and momenta of all the particles constituting our system (i.e. about its microscopic
configuration) when we only know the thermodynamic state variables β and λ?

To us, the microscopic configuration of the system is random. The question is
then, what is its distribution? Obviously any distribution ρ describing the state of
the system should be compatible with the information we have. In particular, it
should predict that the system has the energy E(β, λ):

Eλ[ρ] =
∫

ρ(x)Hλ(x)dx = E(β, λ). (3.41)

As soon as we assume that the microscopic states of the system are distributed
according to ρ, we implicitly assume that our uncertainty about the microscopic
state of the system is:

H[ρ] = −

∫

ρ(x) log ρ(x)dx, (3.42)

the Shannon (differential) entropy of ρ. In a paper published in 1957, an American
physicist named E. T. Jaynes proposed that we should choose the distribution max-
imizing the entropy (3.42) under the constraint (3.41) [Jay57]. His argument is that
if we did not do so, we would implicitly make the assumption that we have more
information about the microscopic state of the system than just the average energy.

It turns out that the distribution maximizing the entropy for a given value of the
average energy is the canonical distribution given by equation (2.60):

ρβ,λ(x) =
exp(−βHλ(x))

Z(β, λ)
, (3.43)

where Z(β, λ) =
∫

exp(−βHλ(x))dx is the partition function. It ensures that the
distributions ρβ,λ is normalized. Moreover, as we saw in the previous chapter, the
entropy S(β, λ) of the system is linked to the distribution ρβ,λ through the relation
(2.67):

S(β, λ) = −

∫

ρβ,λ(x) log ρβ,λ(x)dx = H[ρβ,λ]. (3.44)

In other words, the Gibbs entropy of the system as a function of its thermodynamic
state (β, λ) is just the Shannon entropy of the canonical distribution. Hence, the
thermodynamic entropy measures the information that we miss about the microscopic
configuration of a system when we only know its thermodynamic state.

The easiest way to prove that the canonical distribution maximizes the Shannon
entropy for a given value of the energy is to compute the relative entropy D[ρ‖ρβ,λ]
of an arbitrary distribution ρ to a canonical distribution ρβ,λ. A short calculation
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yields:
D[ρ‖ρβ,λ] = β (Eλ[ρ] − E(β, λ)) − (H[ρ] − S(β, λ)) . (3.45)

Since the relative entropy is positive, it is clear from the expression above that if
Eλ[ρ] = E(β, λ), then H[ρ] ≤ S(β, λ). Moreover, there is equality if and only if
D[ρ‖ρβ,λ] = 0, i.e. if ρ is identical to ρβ,λ. Furthermore, from equation (3.45) above,
we see that if H[ρ] = S(β, λ), then Eλ[ρ] ≥ E(β, λ) with equality if and only if ρ and
ρβ,λ are identical. In other words, the canonical distribution minimizes the energy
for a given Shannon entropy.

3.2 Stochastic thermodynamics

3.2.1 Motivation

Let us now return to our original problem, namely the production of entropy and
the dissipation of work in an isothermal process. As usual, consider a system in
equilibrium with a heat bath at inverse temperature β. An isothermal process is
performed on the system by changing the control parameter according to some time
dependence λ(t). Let λ0 be the initial value of the control parameter and λ1 its final
value. In order to carry out such a process, we have to perform an amount of work
W at least equal to the change in free energy:

W ≥ F (λ1) − F (λ0) = ∆F. (3.46)

From now on, we drop the β dependence in all the state functions since we are
not going to consider any variations of β. While the minimum amount of work
we have to perform only depends on the initial and final values λ0 and λ1 of the
control parameter, the amount of extra work Wd = W − ∆F we have to put in
actually depends on how we perform the process, i.e. on the time dependence of λ.
Furthermore, the total amount of entropy produced by this process is ∆Stot = βWd.
What can we say about the microscopic state of the system during the process? Can
we relate the amount of entropy production to the microscopic state of the system?

At the beginning of the process, the microscopic state of the system is distributed
according to the canonical distribution2 ρλ0

given by equation (3.43). At the end of
the process, the system is also in equilibrium with the heat bath, hence its microscopic
state is distributed according to the canonical distribution ρλ1

. But what happens in
between? What distribution should we assign to the microscopic state of the system
at some intermediate time t? Should we assign to it the canonical distribution ρλ(t)?
If the microscopic state of the system was distributed according to the canonical

2We also drop the β dependence of the canonical distribution. From now on, ρλ will always denote
the canonical distribution with inverse temperature β and control parameter λ given by equation
(3.43) or (2.60).
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distribution ρλ(t) all along the process, then the process would be reversible and the
work performed would be equal to ∆F . Hence, in general, we should assume that
the microscopic state of the system is distributed according to some ρ(x, t) at time
t, which is different from the equilibrium distribution ρλ(t)(x).

This leads us to the two following important remarks: (i) Irreversibility and en-
tropy production do not occur if the system under consideration is not driven out
of equilibrium. Hence, in order to get some understanding of entropy production
in terms of microscopic states, the Gibbs’ equilibrium statistical mechanics has to
be somehow extended to non equilibrium situations. (ii) The fact that we have to
describe the system using a non equilibrium distribution ρ(x, t) means that we have
additional information about the microscopic state of the system as compared to
only knowing the current value λ(t) of the control parameter (and β of course). The
distribution ρ(x, t) is the distribution of microscopic states of the system knowing
how the system was prepared.

Nevertheless, the question remains: which distribution ρ(x, t) should we choose?
Or, what equation does ρ(x, t) obey? This is equivalent to ask: How does our
information about the microscopic state of the system evolve?

The thermalization hypothesis has the following consequence: if by some way we
know that the microscopic states of the system are distributed according to some non
equilibrium distribution ρ0 (because we have prepared the system to be so) and we let
the system in contact with the heat bath keeping the control parameter at a constant
value λ, then we expect the system to eventually reach equilibrium. Hence we expect
that the microscopic state of the system is eventually distributed according to the
canonical distribution ρλ. Mathematically, this means that if λ is held constant, then
the distribution ρ(x, t) should converge towards ρλ(x) for any initial condition ρ0(x).
Physically, this means that all the information we initially have about the microscopic
state of the system by knowing it is distributed according to ρ0 eventually disappears.
When the system has reached equilibrium, the only information that remains are the
values of λ and β.

In the following we will call micro-state the microscopic configuration of a ther-
modynamic system. Typically, a micro-state is the set of positions and momenta of
all the particles constituting the system. However, a micro-state might also be some
coarse grained quantity such as a reaction coordinate. In any case, a micro-state is
something that we neither have access to nor control over. Like before, we will denote
a micro-state by the letter x. Each micro-state x has a certain energy Hλ(x). We
assume that we know the function Hλ and that we can control it through the control
parameter λ. On the other hand, we will call macro-state a probability distribution
over the micro-states. We will usually denote macro-states with the Greek letter ρ.
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Each macro-state ρ has an average energy:

Eλ[ρ] =
∫

ρ(x)Hλ(x)dx. (3.47)

Moreover, each macro-state ρ describes a certain state of knowledge we have about
the micro-state of the system. The uncertainty we have about the micro-state of the
system when it is in macro-state ρ is given by the Shannon entropy H[ρ] of ρ. The
canonical distribution ρλ is the macro-state of a system in equilibrium with the heat
bath. For a given macro-state ρ, the relative entropy

D[ρ‖ρλ] =
∫

ρ(x) log
ρ(x)

ρλ(x)
dx ≥ 0 (3.48)

can be seen as a measure of the “distance to equilibrium” or of the amount of “non-
equilibriumness” of ρ. No matter how we prepare our system, we assume that if
we leave it in contact with a heat bath, it will relax towards equilibrium and its
micro-states will eventually be distributed according to the canonical distribution
ρλ.

3.2.2 Master equations

Equation of evolution

The simplest equation compatible with the thermalization hypothesis is the following
linear equation:

∂ρ

∂t
(x, t) =

∫

Rλ(t)(x, x
′)ρ(x′, t)dx′, (3.49)

Where the coefficients Rλ(x, x′) are such that, for λ constant, the distribution ρ(x, t)
converges towards the canonical distribution ρλ. In a general process, the control
parameter depends on time and hence the coefficients Rλ as well, as explicitly written
in equation (3.49). In the following, though, we will often omit the explicit time
dependence of λ to keep the notations light but it should always be understood that
it can vary in time. The dynamics described by equation (3.49) can be summarized
into two components: driving and relaxation. By manipulating the control parameter
we can tune the instantaneous equilibrium distribution ρλ(t). This is the driving.
As a response, the system always tries to converge towards the current equilibrium
distribution. This is the relaxation.

The equation (3.49) is phenomenological. It is just the most simple equation de-
scribing the relaxation of an arbitrary distribution ρ0 towards the canonical distribu-
tion ρλ. The coefficients Rλ should be obtained either though experimental data, or
they should be derived from a fully microscopic model including the system and the
heat bath by making some approximations. From now on, we assume that equation
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(3.49) correctly describes the dynamics of a system coupled to a heat bath and that
we know the function Rλ.

In any case, the function Rλ has to satisfy a certain number of properties. The
distribution ρ(x, t) should be normalized at every time t:

∫

ρ(x, t)dx = 1. (3.50)

Hence, the time derivative of the quantity above should be zero. Using equation
(3.49), we obtain:

d

dt

∫

ρ(x, t)dx =
∫
∂ρ

∂t
(x, t)dx =

∫ (∫

Rλ(x, x′)ρ(x′, t)dx′
)

dx

=
∫ (∫

Rλ(x, x′)dx
)

ρ(x′, t)dx′ = 0.
(3.51)

This quantity should be zero for any distribution ρ(x′, t). Hence, the function Rλ

has to satisfy ∫

Rλ(x, x′)dx = 0 (3.52)

for every λ and every x′.
Obviously, the equilibrium distribution ρλ should be invariant under equation

(3.49) if λ is held constant. This implies:
∫

Rλ(x, x′)ρλ(x′)dx′ = 0 (3.53)

for every λ and every x. The canonical distribution ρλ should be the only invariant
distribution, i.e. it should be the only distribution satisfying (3.53). Furthermore, if λ
is held fixed, then any distribution should converge towards the canonical distribution
ρλ. A sufficient condition for this is that Rλ satisfies the so called detailed balance
condition:

Rλ(x, x′)ρλ(x′) = Rλ(x′, x)ρλ(x). (3.54)

This condition expresses the fact that the heat bath is in equilibrium. In the following,
we will assume it without more justification. However, many of the results can be
generalized to a situation where detailed balance does not hold.

Dynamics at the microscopic level

Under these assumptions, how does the dynamics look like at the microscopic level?
Assume that the system is in micro-state x0 at time t, where is it at some later time?
Assuming that the system is in micro-state x0 amounts to say that its micro-state is
distributed according to the so called Dirac distribution ρ(x, t) = δ(x− x0) centered
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on x0. The Dirac distribution has the following properties: δ(x) = 0 for x 6= 0 and
it is normalized: ∫

δ(x)dx = 1. (3.55)

The Dirac distribution satisfies the following property: For any function f ,
∫

δ(x)f(x)dx =
∫

δ(x)f(0)dx = f(0)
∫

δ(x)dx = f(0), (3.56)

because δ(x)f(x) = δ(x)f(0) since δ(x) = 0 for x 6= 0. In fact, the Dirac distribution
is actually defined through relation (3.56).

The distribution ρ(x, t+ dt) is, to first order in dt:

ρ(x, t+ dt) = ρ(x, t) +
∂ρ

∂t
(x, t)dt = ρ(x, t) +

(∫

Rλ(x, x′)ρ(x′, t)dx′
)

dt, (3.57)

where we have inserted equation (3.49) in the second equality to compute ∂tρ. In-
serting ρ(x, t) = δ(x−x0) in the equation (3.57) above and using the property (3.56)
yields:

ρ(x, t+ dt) = δ(x− x0) +Rλ(x, x0)dt. (3.58)

Hence for x 6= x0, Rλ(x, x0)dxdt is the probability to find the system in a neighbor-
hood of size dx around x at time t + dt given that it was in x0 at time t. In other
words, for a portion A of phase space not including x0, the quantity:

P (A, t+ dt|x0, t) =
(∫

A
Rλ(x, x0)dx

)

dt (3.59)

is the probability that the micro-state of the system is in A at time t+ dt given that
it was x0 at time t. Hence, Rλ(x, x0) is the probability per unit time (and unit phase
space volume) that the system “jumps” from micro-state x0 to micro-state x. It is
sometimes referred as “rate” in the literature.

Driving and relaxation

As already mentioned, the dynamics has two components: Driving and relaxation. It
is useful to make these two components visible when computing the time derivative
of observables. The observables we will be interested in in the following generally
have the form:

Aλ[ρ] =
∫

f(ρ(x, t), λ(t))dx, (3.60)

where f is a real function of its two real arguments. Examples of functionals of
this form include the energy Eλ[ρ], the Shannon entropy H[ρ] (which does not ex-
plicitly depend on the control parameter λ) or the distance to equilibrium D[ρ‖ρλ].
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Differentiating (3.60) with respect to time yields:

d

dt
Aλ[ρ] = λ̇

∂

∂λ
Aλ[ρ] +

∫
∂ρ

∂t
(x, t)

∂f

∂ρ
(ρ(x, t), λ(t))dx, (3.61)

where
∂

∂λ
Aλ[ρ] =

∫
∂f

∂λ
(ρ(x, t), λ(t))dx (3.62)

is the partial derivative of A with respect to λ. The two terms appearing on the right
hand side of equation (3.61) correspond respectively to the two components of the
dynamics.

The first term only involves the time derivative of λ; it is the contribution due to
the driving. The second term only involves the (partial) time derivative of ρ; it is the
contribution due to the relaxation. We introduce the following notation to denote
this second term:

∂

∂t
Aλ[ρ]

∣
∣
∣
∣
λ(t)

=
∫
∂ρ

∂t
(x, t)

∂f

∂ρ
(ρ(x, t), λ(t))dx

=
∫∫

Rλ(t)(x, x
′)ρ(x′, t)

∂f

∂ρ
(ρ(x, t), λ(t))dxdx′.

(3.63)

In the second equality we have used the master equations (3.49) to express ∂ρ
∂t . Equa-

tion (3.63) gives the evolution of Aλ[ρ] under the “frozen dynamics”, i.e. it is the time
derivative of Aλ[ρ] if the system is in macro-state ρ(x, t) and the control parameter
is “frozen” at the value λ = λ(t). Using this notation, the time derivative (3.61) of
Aλ[ρ] takes the more compact form:

d

dt
Aλ[ρ] = λ̇

∂

∂λ
Aλ[ρ] +

∂

∂t
Aλ[ρ]

∣
∣
∣
∣
λ(t)

, (3.64)

where its two contributions, driving and relaxation, are well separated.

In equation (3.48), we introduced D[ρ‖ρλ] as a measure of the distance of ρ to
the equilibrium ρλ. While the driving might increase or decrease this quantity, the
relaxation can only decrease it:

∂

∂t
D[ρ‖ρλ]

∣
∣
∣
∣
λ(t)

≤ 0, (3.65)

as we show now. Define

Σ(t) = −
∂

∂t
D[ρ‖ρλ]

∣
∣
∣
∣
λ(t)

. (3.66)

Σ measures the rate of decrease of the distance to equilibrium. Using the normaliza-
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tion condition (3.51), one can show that:

Σ(t) = −

∫
∂ρ

∂t
(x, t) log

ρ(x, t)

ρλ(t)(x)
dx. (3.67)

From this expression, using the master equations (3.49) and the detailed balance
condition (3.54) we arrive at the following expression:

Σ = −

∫∫

Rλ(x, x′)ρ(x′) log
Rλ(x′, x)ρ(x)

Rλ(x, x′)ρ(x′)
dxdx′, (3.68)

where we have omitted the time dependence in ρ and in λ to keep the notations light.
Using the identity

− logX ≥ 1 −X (3.69)

for

X =
Rλ(x′, x)ρ(x)

Rλ(x, x′)ρ(x′)
, (3.70)

we obtain:

Σ ≥

∫∫

Rλ(x, x′)ρ(x′)dxdx′ −

∫∫

Rλ(x′, x)ρ(x)dxdx′ = 0. (3.71)

This proves (3.65). There is equality in (3.71) if and only if there is equality in (3.69),
i.e. if X = 1. This happens if and only if ρ satisfies the detailed balance condition
(3.54), i.e. if ρ is the current equilibrium. Note that we have just proved that for λ
constant, ρ(x, t) converges towards ρλ(x) since D[ρ‖ρλ] decreases towards zero.

As we will show in the next paragraph, Σ is the rate of entropy production, i.e. the
amount of entropy produced per unit time. In the literature it is usually defined
through equation (3.68) first introduced in [Sch76]. Here, we showed that it measures
the rate at which the macro-state of the system tends to relax towards the current
equilibrium state.

3.2.3 Thermodynamics

Now that we have an equation for ρ and a model for the microscopic dynamics, we
can return to our problem of isothermal work dissipation introduced in paragraph
3.2.1 page 40. The question is: How much work do we have to perform in order
to carry out a protocol λ(t)? Can we show that inequality (3.46) is satisfied? Can
we quantify the dissipated work Wd = W − ∆F and relate it to the microscopic
dynamics?

The work performed per unit time on the system is given by the variation of the
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energy that is due to the driving:

Ẇ = λ̇
∂

∂λ
Eλ[ρ]. (3.72)

The total work performed during the process is then:

W =
∫

Ẇdt, (3.73)

where the integration is carried out over the whole duration of the process. Our
strategy is to try to compare the work performed per unit time (3.72) to the variation
of some “non equilibrium free energy”. Inspired by the equilibrium situation, we
generalize Gibbs’ expression for the equilibrium thermodynamic entropy, equation
(2.67), for non equilibrium states:

S[ρ] = H[ρ]. (3.74)

Using this definition of the entropy, we generalize the equilibrium expression (2.31)
of the free energy to non equilibrium states as:

Fλ[ρ] = Eλ[ρ] − TS[ρ], (3.75)

where T is the temperature of the heat bath. Using equation (3.45) we first remark
that:

Fλ[ρ] − F (λ) = TD[ρ‖ρλ], (3.76)

where F (λ) = Fλ[ρλ] is the equilibrium free energy given by (2.63) on page 24.
Equation (3.76) implies that the equilibrium distribution minimizes the free energy
(3.75).

The quantity Fλ[ρ] is a functional of the form (3.60), hence its time variation can
be split into the form (3.64):

d

dt
Fλ[ρ] = λ̇

∂

∂λ
Fλ[ρ] +

∂

∂t
Fλ[ρ]

∣
∣
∣
∣
λ(t)

. (3.77)

Since the entropy S[ρ] does not explicitly depend on λ, we get using equation (3.75):

λ̇
∂

∂λ
Fλ[ρ] = λ̇

∂

∂λ
Eλ[ρ] = Ẇ . (3.78)

On the other hand, using equation (3.76) we obtain:

∂

∂t
Fλ[ρ]

∣
∣
∣
∣
λ(t)

= T
∂

∂t
D[ρ‖ρλ]

∣
∣
∣
∣
λ(t)

= −TΣ, (3.79)
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since the equilibrium free energy F (λ) does not depend on ρ. Equations (3.77), (3.78)
and (3.79) can be combined into:

Ẇ =
d

dt
Fλ[ρ] + TΣ ≥

d

dt
Fλ[ρ]. (3.80)

In other words, the variations of the non equilibrium free energy (3.75) give a lower
bound to the amount of work performed per unit time on the system. The equality
is reached if and only if Σ = 0, i.e. if ρ is the current equilibrium state. Hence, the
variations of Fλ[ρ] provide the highest lower bound to the amount of work performed
per unit time and the name “free energy” is justified. Integrating equation (3.80)
over the whole duration of the process yields inequality (3.46). Moreover we get an
expression for the dissipated work in terms of the microscopic dynamics:

Wd = W − ∆F = T

∫

Σ(t)dt. (3.81)

This quantity is positive since Σ(t) ≥ 0 and it is zero if and only Σ(t) = 0 all along
the process, i.e. if the system remains in equilibrium over the whole process.

Using equations (3.75), (3.78) and (3.80), one can show:

Ẇ −
d

dt
Fλ[ρ] = T

d

dt
S[ρ] −

∂

∂t
Eλ[ρ]

∣
∣
∣
∣
λ(t)

= TΣ. (3.82)

The quantity:
∂

∂t
Eλ[ρ]

∣
∣
∣
∣
λ(t)

= Q̇ (3.83)

is the rate of change of the energy due to the relaxation. Hence, it is the amount of
heat received by the system per unit time. Equation (3.82) can be rewritten in the
form:

Ṡ =
Q̇

T
+ Σ ≥

Q̇

T
, (3.84)

where we have used the simplified notation Ṡ = d
dtS[ρ]. Equation (3.84) above

is a generalization of inequality (2.27) page 17 to non-equilibrium situations. The
variations of the entropy S[ρ] yields the lowest upper bound to the amount of heat
received by the system. Hence, S[ρ] is a “good” generalization of the thermodynamic
entropy to non equilibrium states. The quantity Σ introduced in equation (3.66) is
equal to the rate of entropy production:

Ṡtot = Ṡ −
Q̇

T
= Σ ≥ 0. (3.85)

The total amount of entropy produced is obtained by integrating this relation over
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the whole duration of the process:

∆Stot = ∆S −
Q

T
=
∫

Σ(t)dt. (3.86)

Recalling the definition of Σ:

Ṡtot = −
∂

∂t
D[ρ‖ρλ]

∣
∣
∣
∣
λ(t)

≥ 0. (3.87)

The rate of thermodynamic entropy production is equal to rate at which the system
relaxes towards the current equilibrium state. If λ is held constant, then the total en-
tropy produced during the relaxation from some non-equilibrium initial distribution
ρ to the equilibrium ρλ is then:

∆Stot = D[ρ‖ρλ]. (3.88)

This quantity is the total amount of information about the micro-state of the system
that we loose during the relaxation.

We see that the formalism introduced in the previous paragraph reproduces accu-
rately the results of classical isothermal thermodynamics and gives a new interpre-
tation of the entropy production in terms of relaxation towards equilibrium. This
formalism now allows us to deal with non-equilibrium states and a natural question
is now: What is the minimum amount of work to perform in a transition between
two non-equilibrium states? Imagine a process bringing the system from some non-
equilibrium macro-state ρ0 to some other ρ1 whereby the control parameter was
varied from λ0 to λ1. Integrating equation (3.80) yields:

W = ∆F + T

∫

Σ(t)dt ≥ ∆F, (3.89)

where ∆F = Fλ1
[ρ1] − Fλ0

[ρ0] is the difference in non-equilibrium free energy along
the process. As in the transition between equilibrium states, the equality is reached
if and only if Σ(t) = 0 during the whole process which only happens if the system is
in equilibrium all along the process. Here is the strategy in order to reach the lower
bound in inequality (3.89) [HITD10,THD10,EVdB11]:

1. Instantaneously change λ from λ0 to λ̃0 such that ρ0 is equilibrium: ρ0 = ρλ̃0
.

2. Infinitely slowly drive λ from λ̃0 to λ̃1 which is such that ρ1 is equilibrium
ρ1 = ρλ̃1

.

3. Instantaneously change λ from λ̃1 to its final value λ1.

The process described above is a combination of infinitely slow and infinitely fast
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processes. In fact, these processes (and combinations of these processes) are the
only “reversible” processes in the sense that they saturate inequality (3.89). By
manipulating (3.89), one can show that:

∆S =
Q

T
+
∫

Σ(t)dt, (3.90)

is still valid as well in the transition between non equilibrium states. As a conclusion,
we can say that the non equilibrium entropy S[ρ] and free energy Fλ[ρ] thus defined
successfully generalize their equilibrium counterparts to non-equilibrium states.

3.3 Measurement and feed-back

The current macro-state ρ(x, t) of the system represents the information we have
about the micro-state of the system. The master equation (3.49) actually describes
how our information about the micro-state of the system evolves in time. When
we say that the macro-state of the system is ρ(x, t), we mean that we know how it
was prepared. We were able to integrate the master equation (3.49) until time t. A
legitimate question is now: What happens if we “have a look” at the micro-state of
the system; if somehow we are able to get some information about the micro-state of
the system, not by preparing it, but by “measuring” it?

Consider the following situation. Our system is in equilibrium, the control pa-
rameter being at λ. At some point we perform a measurement on the system. The
measurement outcome y is a random variable that depends on the micro-state x oc-
cupied by the system at the moment of the measurement. If the measurement is error
free, y is a deterministic function of x. However, due to measurement errors this is
not generally the case. We note p(y|x) the probability density function of y when
the system is in micro-state x at the time of the measurement. The function p(y|x)
is a characteristic of the measurement device and it is linked to the measurement
errors. The more sharply peaked it is around some value ȳ(x), the smaller are the
measurement errors.

Knowing the measurement outcome y increases our information about the micro-
state currently occupied by the system. Before knowing the measurement outcome,
our only information about the system is that it is in equilibrium with the heat
bath, hence we assume its micro-states to be distributed according to the equilibrium
distribution ρλ. The information we obtain by knowing the measurement outcome is
incorporated by replacing the a priori distribution ρλ by the conditional distribution
ρy given by Bayes’ rule (3.35):

ρy(x) = ρ(x|y) =
p(y|x)ρλ(x)

pm(y)
, (3.91)
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where pm(y) =
∫
p(y|x)ρλ(x)dx is the marginal distribution of y, i.e. it gives the a

priori probability that a given value of the measurement outcome occurs.

In general, the distribution ρy is different from ρλ. Hence, simply by performing
a measurement on a system initially in equilibrium, we have put it in a non equilib-
rium macro-state. This is not so surprising since we have defined equilibrium as the
state where the information we have about the system is minimal. Since ρy is non
equilibrium, its free energy is higher than the free energy of the initial equilibrium
state ρλ, see equation (3.76):

∆F (y) = Fλ[ρy] − F (λ) = TD[ρy‖ρλ] ≥ 0. (3.92)

Hence, by performing a measurement on the system we were able to increase its free
energy without performing work which violates equation (3.89). By driving the system
from ρy back to its initial equilibrium state ρλ, a maximum amount of work equal to
∆F (y) can be extracted. This way, it is possible to extract work in a cyclic process
involving only one heat bath, which would be impossible without measurement.

The average increase in free energy over the possible measurement outcomes is:

∆Fmeas =
∫

pm(y)∆F (y)dy = T

∫

pm(y)D[ρy‖ρλ]dy = TI, (3.93)

where we recognize the mutual information I between the measurement outcome
and the micro-state of the system, see equation (3.39). Equation (3.93) tells us, that
when we perform a measurement on the system, we increase its free energy by an
amount that is proportional to the information provided by the measurement. The
maximum amount of work that we can extract on average by driving the system
back to its initial state ρλ is then also TI. Such a process where a measurement is
performed on the system and the system is then driven back to its equilibrium state
is sometimes called “information to work conversion”.

Note that the system does not need to be initially in equilibrium. In fact, consider
a measurement performed on a system initially in an arbitrary macro-state ρ. Right
after the measurement, the system is in state ρy given by:

ρy(x) =
p(y|x)ρ(x)

pm(y)
, (3.94)

where as in (3.91), pm(y) =
∫
p(y|x)ρ(x)dx is the marginal distribution of y. The

average over the measurement outcome of the free energy right after the measurement
is: ∫

pm(y)Fλ[ρy]dy =
∫

pm(y)Eλ[ρy]dy − T

∫

pm(y)S[ρy]dy. (3.95)
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It is easy to show that: ∫

pm(y)Eλ[ρy]dy = Eλ[ρ], (3.96)

which means that the measurement does not change the energy of the system on
average. On the contrary:

∫

pm(y)S[ρy]dy = S[ρ] − I ≤ S[ρ] (3.97)

where I is the mutual information (3.38) between the micro-state of the system and
the measurement outcome. Equation (3.97) says that measuring the state of the
system reduces its entropy. Hence, equation (3.93) is still valid if the initial state is
non equilibrium:

∆Fmeas =
∫

pm(y)Fλ[ρy]dy − Fλ[ρ] = TI ≥ 0. (3.98)

In other words, performing a measurement on the system increases its free energy
without the need of performing work. The increase in free energy is proportional to
the amount of information provided by the measurement. If the system is returned
to its initial state ρ, an amount of work up to ∆Fmeas = TI can be extracted.

3.4 Conclusion

Stochastic thermodynamics generalizes Gibbs’ equilibrium statistical mechanics to
non-equilibrium isothermal processes. A general macroscopic state of a system is
represented by a probability density over the microscopic states of the system. If the
density is not the current canonical distribution, then the system is out of equilibrium.
A non equilibrium macro-state is supposed to relax towards the equilibrium state
according to a linear equation. Under these assumptions it is possible to compute the
rate at which entropy is irreversibly produced. Moreover, it is possible to generalize
the state functions energy, entropy and free energy to non-equilibrium states.

Information theory allows to quantify the information we miss about the micro-
scopic state of a system when we only know its thermodynamic state (specified by the
values of the state variables β and λ). It turns out that the canonical distribution of
equilibrium statistical mechanics is the probability distribution correctly representing
our knowledge of the microscopic state of the system when we only know the values
of β and λ.

When we know that a system is in a non-equilibrium state because we know how it
was prepared, we have more information about its micro-state than if we only know
the values of β and λ. When the system relaxes from this non-equilibrium state
towards the equilibrium one, this extra information is lost. The amount of entropy

52



3.4 Conclusion

produced during this relaxation, computed using stochastic thermodynamics, is equal
to the amount of information lost (quantified using information theory).

If we manage to get some information about the micro-state of the system by
performing some measurement, then this information can be converted into work.
In fact, measuring the state of the system increases its free energy by an amount
proportional to the amount of information obtained through the measurement.

In the following, we will study the thermodynamics of some information processing
operation. We will use stochastic thermodynamics to model the device carrying the
information.
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the erasure of information

In the previous chapter, we saw that the irreversibility of thermodynamic processes
is due to the fact that we loose information about the microscopic state of the sys-
tem considered. This chapter investigates the relation between irreversibility and
information loss the other way round. The question is whether the erasure of any in-
formation is irreversible, and whether there is relationship between the “amount” of
information erased and the “amount” of irreversibility of the process (i.e. the amount
of entropy produced).

The pioneering work in this respect is due to Rolf Landauer [Lan61]. Working
at IBM, Landauer was interested in the minimal energetic costs of digital computa-
tion. His major contribution, now known as Landauer’s principle, was to realize that
logically irreversible operations can only be implemented by physically irreversible
processes1. Quantitatively, Landauer’s principle asserts that the erasure of one bit
is necessarily accompanied by the generation of T log 2 of heat, where T is the tem-
perature of the environment [Shi95, Pie00, DL09, DBE13]. A bit, or binary digit, is
physically modelled by a system that has access to two states, 0 and 1, used to
encode digital information. The erasure of a bit is the process of bringing the bit
to a definite state, e.g. 0, independently of its initial value. This operation is also
called the reset to 0 operation. At the end of the operation, the initial value of the
bit it definitely lost. Landauer’s principle was demonstrated experimentally only
recently [BAP+12,OLT+12].

Based on Landauer’s original idea, this chapter investigates the irreversibility of
information erasure. However, the information considered here comes from an arbi-
trary external source and is not necessarily digital. Moreover, the irreversibility of
the process is measured in terms of entropy production rather than heat generation.
A physical model for a memory device is presented and the processes of recording
and erasing information are described. The “amount” of information contained in
the memory is well defined all along the erasure process. In fact, the erasure of infor-
mation is not instantaneous and the amount of information present in the memory

1 According to Landauer [Lan94], in the fifties it was common to think that the processing of one
bit of information leads to the generation of T log 2 of heat. Landauer’s contribution was to
realize that it is only the erasure of information that leads to the generation of heat. Reversible
computations can, in principle, be implemented without heat generation.
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continuously decreases from a maximum value to zero. Stochastic thermodynamics
allows to compute the rate of entropy production all along the erasure process and
this rate turns out to be greater than the rate at which the amount of information
decreases. This work was published in a more specific setup in [GK13].

4.1 Recording and erasing information on a physical memory

4.1.1 Setup

Here we define what is meant by recording and erasing information. A source ran-
domly emits a symbol αk out of N possible symbols α1, · · · , αN . The probability
that αk is emitted is Pk. The source might be a measurement apparatus and the
symbol emitted would be the outcome of a measurement. However, in the following,
αk could be any random variable and the results will not depend on the nature of
source. Let H be the Shannon entropy of the probability distribution {Pk}:

H = −
N∑

k=1

Pk logPk. (4.1)

It measures our a priori uncertainty about the symbol emitted. As we will see, H
can be seen as the average “amount” of information that we want to record.

We want to record the symbol that has been emitted on a physical memory. Even-
tually, we want to erase the content of the memory. The memory should be a physical
system that can be put into at least N different states ϕ1, · · · , ϕN , each correspond-
ing to one of the possible symbols. The state ϕk is said to encode the symbol αk.
Moreover, it is convenient to allow for one more state ϕ0, called the standard state
which is the state of the memory when it is empty, i.e. at the beginning of the
recording and at the end of the erasure.

The recording process is the process of driving the memory from the standard
state to the state encoding the symbol that has appeared. The erasure process is
the process of driving the memory back to the standard state without making use
of the information stored. Hence, the erasure process should be independent of the
symbol that has been emitted and that was stored. In fact, if this information is
used during the erasure, then it has to be present somewhere outside the memory. If
we wish the information to be erased from any medium onto which it is recorded, we
will have to perform a process that is independent of the information at some point.
This independence of the erasure process in the information stored implies that the
erasure process cannot be the time reversed of the recording process (which has to
depend on the information to be recorded). For this reason, the erasure process is
necessarily accompanied by a certain amount of entropy production which will be
quantified in the following.
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4.1.2 The memory: encoding, recording and erasing

The memory should be a material system that we can control and which obeys the
laws of thermodynamics. We model it as a thermodynamic system in contact with
a heat bath at inverse temperature β. Its energy is given by a Hamiltonian function
Hλ(x) over its microscopic states {x}. The Hamiltonian can be controlled through
the control parameter λ. The distribution ρ(x, t) over the microscopic states of the
memory, or macroscopic state, evolves according to the master equation (3.49).

Through a suitable tuning of the control parameter λ, it is possible to control the
distribution ρ(x, t). Hence, in order to encode the different symbols {αk}, we use a
set of distributions {ϕk(x)} over the micro-states of the memory.

For the information to be unambiguously stored, the states encoding the different
symbols have to be perfectly distinguishable. This means that the corresponding
distributions should not overlap: For a given microscopic state x, there is only one
k such that ϕk(x) > 0. If this is not the case, say for a given x, ϕk(x) > 0 and
ϕk′(x) > 0, then the information is not perfectly reliably stored. However, even in
this case, we can quantify the “amount” of information recorded. We will address
this issue after having discussed the erasure.

We are now able to specify the recording process. At the beginning of the process,
the memory is in the standard state ϕ0(x). At the end of the process, we want
it to be in the state ϕk(x) encoding the symbol αk that appeared. This process is
implemented by changing the control parameter. From time ti to time trec, it is varied
from its initial value λ0 to some final value λrec according to some time dependence
λk(t). The function λk(t) is the recording protocol. Note that the protocol λk(t) has
to depend on k, else it is not possible to bring the memory in different states. However
we require that the final value λrec does not depend on the symbol that is recorded
and is thus the same for every αk. In fact, at the end of the recording process, we
want to be able to manipulate the memory without knowing which symbol is stored.

At the end of the recording process, the memory is out of equilibrium. In fact, at
the end of the recording process, we want to allow the memory to be described by
one out of N different distributions, but for each value λ of the control parameter,
there is only one equilibrium state given by the canonical distribution (2.60). In the
following, we will quantify the minimum amount of “non-equilibriumness” needed in
order to store a certain amount of information. If we want to store the information
for a long period of time, we probably want the {ϕk(x)} to be metastable with a long
life-time. Else the memory would tend to relax towards the unique equilibrium state
right after the recording process and the information would get lost rather quickly.

The erasure process is a process bringing the memory back to the standard state
without making use of the information stored. In light of the previous paragraph,
we already guess that one way of erasing the information is to let the memory relax
towards the unique equilibrium state. In general, we might want to control the erasure
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process by applying a certain protocol λ(t). The crucial feature of the erasure process
is that the protocol should not depend on the information stored, i.e. it should not
depend on which αk was recorded. For simplicity, we assume that we start the erasure
process right after the recording process and that at the end of the erasure process,
the control parameter is returned to its initial value λ0. From time trec to time tf ,
the control parameter is driven from λ(trec) = λrec to λ(tf) = λ0 in such a way that
the final macro-state of the memory is the standard state ϕ0(x).

4.1.3 The information contained in the memory

Let us now quantify the amount of information contained in the memory during the
erasure process. The question we would like to answer is the following: Assume that
we are able to know in which micro-state the memory is at some intermediate time
of the erasure process. What can we infer about the symbol that was recorded?

Let ρk(x, t) be the macro-state of the memory at time t of the erasure process if
the symbol αk was recorded. It is the probability distribution over the micro-states
of the memory at time t of the erasure process conditioned on αk being recorded and
it is obtained by propagating the distribution ϕk(x) with the master equation (3.49)
with the erasure protocol λ(t). If we know that the memory is in micro-state x at
time t, then we can infer the probability P (k|x; t) that the symbol αk was recorded.
It is given by the Bayes’ rule:

P (k|x; t) =
ρk(x, t)Pk

ρm(x, t)
, (4.2)

where ρm(x, t) =
∑

k Pkρk(x, t) is the marginal distribution over the micro-states of
the memory at time t. The presence of ρm(x, t) in the expression above ensures that
the probability distribution P (k|x; t) is normalized:

∑

k P (k|x; t) = 1. We will discuss
the physical meaning of the marginal distribution ρm(x, t) in the section 4.3 below.
For now, let us just remark that it is a linear combination of the distributions ρk(x, t)
and these distributions all obey the same linear master equations. Consequently,
the marginal distribution ρm(x, t) obeys the same master equation as well. At the
beginning of the erasure process it is given by

ρm(x, trec) = ϕm(x) =
∑

k

Pkϕk(x), (4.3)

and at some subsequent time, it can be obtained by propagating this initial value
with the master equation (3.49) with the erasure protocol λ(t).

At the beginning of the erasure process, t = trec, P (k|x; trec) = 0 or 1 depending
on whether x belongs to the support of ϕk of not. At that time, knowing the micro-
state of the memory allows to infer the symbol that was recorded with certainty.
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4.1 Recording and erasing information on a physical memory

The information contained in the memory is maximum. At the end of the erasure
process, t = tf , we have that ρk(x, tf) = ϕ0(x) for each k and thus ρm(x, tf) = ϕ0(x).
As a consequence, P (k|x; tf ) = Pk for each k, meaning that the knowledge of the
micro-state x of the memory does not change our a priori knowledge of the symbol
that appeared. At that moment, one can safely say that the memory does not contain
anymore information about the symbol that originally appeared and got recorded.

At some intermediate time t, the information contained in the memory is not max-
imum anymore, but it is not necessarily zero. The uncertainty about the symbol that
was emitted upon knowing that the memory is micro-state x at time t is quantified
by the Shannon entropy of the probability distributions P (k|x; t):

her(x, t) = −
∑

k

P (k|x; t) logP (k|x; t). (4.4)

The amount of information erased until time t is the average uncertainty about the
symbol that was stored upon knowing the position of the particle at time t:

Ier(t) =
∫

ρm(x, t)her(x, t)dx. (4.5)

In information theoretic terms, this is the entropy of the symbol emitted conditioned
on the micro-state of the memory at time t. It satisfies [CT06]:

0 ≤ Ier(t) ≤ H. (4.6)

The second inequality above means that knowing the micro-state of the memory at
time t of the erasure process on average reduces our uncertainty about the symbol
emitted. The amount of information still contained in the memory at time t of the
erasure process can be defined as the reduction in uncertainty about the symbol that
was stored upon knowing the position of the particle at time t:

I(t) = H − Ier(t). (4.7)

This is just the mutual information between the position of the particle and the
symbol originally recorded, see equation (3.22) page 34. It is a measure of how much
information the position of the particle at time t can still provide about the symbol
originally stored [CT06].

As we would intuitively expect, Ier(trec) = 0, i.e. at the beginning of the erasure
process, no information is yet erased. Hence, at the beginning of the erasure pro-
cess, the amount of information contained the memory is I(trec) = H, the Shannon
entropy of the probability distribution {Pk}. Thus, H can be seen as the amount
of information that has to be recorded. At the end of the process, knowing the
position of the particle does not reduce our uncertainty about the symbol that had
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been emitted and Ier(tf) = H. We can safely say that at that point the memory
does not contain anymore information about the symbol originally emitted. We have
I(tf) = 0, which is consistent with this statement.

Applying equation (3.39) to the present situation, we can rewrite I(t) in the fol-
lowing form:

I(t) =
∑

k

PkD[ρk(t)‖ρm(t)]. (4.8)

In fact, ρk(x, t) is the distribution of x conditioned on the symbol recorded, ρm(x, t)
is the marginal distribution of x and Pk is the marginal distribution of the symbol
recorded. The quantity D[ρk(t)‖ρm(t)] is the relative entropy of two distributions
obeying the same master equations. It is decreasing in time (see [CT06] page 34).
Hence, the amount of information contained in the memory does decrease during the
erasure process. This is due to the fact that the erasure protocol does not depend on
k, so that during the erasure process, all the ρk(x, t), and hence ρm(x, t), obey the
same master equations.

Due to practical limitations, it might not be possible to prepare the memory in
completely non overlapping states. Nevertheless, in this case it is still possible to
record some information and it is possible to quantify the maximum amount Imax of
information that be be stored:

Imax = I(trec) =
∑

k

PkD[ϕk‖ϕm] ≤ H, (4.9)

where ϕm(x) =
∑

k Pkϕk(x) was introduced in equation (4.3).

For any distribution ρ̃(x) we have the identity

∑

k

PkD[ρk(t)‖ρ̃] = I(t) +D[ρm(t)‖ρ̃]. (4.10)

In particular, for ρ̃(x) = ρλ(t)(x), we get the following result:

∑

k

PkD[ρk(t)‖ρλ(t)] = I(t) +D[ρm(t)‖ρλ(t)] ≥ I(t). (4.11)

This result means that as long as the memory contains some information, it is out
of equilibrium. Moreover, its distance to equilibrium is greater than the information
contained. In particular, for time t = trec, i.e. just at the end of the recording process,
equation (4.11) implies:

∑

k

PkD[ϕk‖ρλ(trec)] ≥ H. (4.12)

In section 4.1.2, we already observed that in order to record some information, the
device serving as a memory has to be driven out of equilibrium. Inequality (4.12),
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and more generally equation (4.11) quantify the minimum amount of “non equilibri-
umness” needed. The average distance to equilibrium measured through the relative
entropy to the equilibrium distribution has to be greater than the amount of infor-
mation one wishes to record.

4.2 Thermodynamics of the processes

4.2.1 Entropy production

The recording process can in principle be performed reversibly in the sense that it
can be performed with an arbitrarily small amount of entropy production. Hence we
now focus on the entropy produced during the erasure process.

The rate of entropy production at time t of the erasure process, assuming that the
symbol αk was stored is, according to equation (3.87):

Ṡtot
k = −

∂

∂t
D[ρk(t)‖ρλ(t)]

∣
∣
∣
∣
λ(t)

(4.13)

Hence, using equation (4.11), we get that the average rate of entropy production
reads:

Ṡtot =
∑

k

PkṠ
tot
k = −

∂I

∂t

∣
∣
∣
∣
λ(t)

−
∂

∂t
D[ρm(t)‖ρλ(t)]

∣
∣
∣
∣
λ(t)

. (4.14)

Since the information content I(t) does not explicitly depend on the control param-
eter λ(t), we have:

∂I

∂t

∣
∣
∣
∣
λ(t)

=
dI

dt
(t) = İ(t) ≤ 0. (4.15)

This quantity is the instantaneous rate of variation of the information content of the
memory. In the previous paragraph, we showed that the information is a decreasing
function of time. The quantity −İ(t) ≥ 0 is the instantaneous rate of information
erasure. Furthermore, since the distribution ρm(x, t) satisfies the same equation as
the ρk(x, t)’s, the second term in the right hand side of equation (4.14) is non negative:

−
∂

∂t
D[ρm(t)‖ρλ(t)]

∣
∣
∣
∣
λ(t)

= σ(t) ≥ 0. (4.16)

This quantity is the rate at which entropy would be produced if the memory had been
prepared in the state ρm(x, t) and evolved according to the protocol λ(t). Combining
equations (4.14), (4.15) and (4.16) leads us to the following result relating the rate
of entropy production to the rate of information erasure:

Ṡtot(t) = −İ(t) + σ(t) ≥ −İ(t). (4.17)
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4 Recording and Erasure

Equation (4.17) above is a precise and general statement about the thermodynamic
costs of information erasure. It is a generalization of Landauer’s principle [Lan61].
In words, it states that during an erasure process, the instantaneous rate of entropy
production is bounded from below by the instantaneous rate of information erasure.

Equation (4.17) shows that the entropy production rate has two non negative
contributions −İ(t) and σ(t). The first contribution −İ(t) comes from the destruction
of the correlations between the microscopic state of the memory and the symbol that
was emitted by the source. This contribution is positive as long as the information
content is non zero. The second contribution σ(t) comes from the relaxation of the
marginal distribution ρm(x, t) towards the equilibrium state ρλ(t)(x). It vanishes if
and only if the two distributions are identical, ρm(x, t) = ρλ(t)(x). Hence, if one
wants to minimize the entropy produced by an erasure process, one should ensure
that at any time the marginal distribution is the equilibrium distribution. Such a
process could be qualified as a “quasi-static erasure”. To summarize, the erasure
process is composed of two processes: (i) the convergence of the different ρk(x, t)’s
towards each other, and hence towards the marginal distribution ρm(x, t), and (ii)
the relaxation of the marginal distribution towards the equilibrium state ρλ(t)(x).
Each of these processes contribute to the entropy production.

Integrating equation (4.17) over the whole erasure process yields following lower
bound to the total amount of entropy produced during this process:

∆Stot ≥ H, (4.18)

where H = −
∑

k Pk logPk is the Shannon entropy of the source. Equation (4.18)
above is a generalization of Landauer’s principle to the situation where the infor-
mation to be erased is not necessarily binary and the device serving as a memory
is arbitrary. If it was not possible to prepare the memory in non-overlapping states
(i.e. if the ϕk(x) do overlap), then this lower bound is reduced:

∆Stot ≥ Imax, (4.19)

where Imax ≤ H is the maximal amount of information recorded and is given by
equation (4.9). More generally, the entropy produced between times t and t′ of the
erasure process is bound from below by:

∆Stot(t, t
′) ≥ I(t) − I(t′), (4.20)

i.e. by the decrease in information between times t and t′.
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4.2 Thermodynamics of the processes

4.2.2 Work performed

Recording process

The lower bound to the work performed during the recording process is given by the
variation of the non equilibrium free energy of the memory along the process. Let
F0 = Fλ0

[ϕ0] be the initial free energy of the memory and F rec
k = Fλrec

[ϕk] the free
energy of the memory when αk is recorded. The amount W rec

k of work performed
when recording the symbol αk is bound from below by:

W rec
k ≥ F rec

k − F0, (4.21)

The expected amount Wrec =
∑

k PkW
rec
k of work to perform for the recording process

is then bounded from below by:

Wrec ≥
∑

k

Pk (F rec
k − F0) . (4.22)

Noting that

∑

k

PkEλrec
[ϕk] = Eλrec

[ϕm] (4.23)

∑

k

PkS[ϕk] = S[ϕm] −H, (4.24)

where ϕm(x) =
∑

k Pkϕk(x) was already introduced, and recording the definition of
the non equilibrium free energy (3.75) we get the following relation:

∑

k

PkF
rec
k = F rec

m + TH, (4.25)

where F rec
m = Fλrec

[ϕm] would be the free energy of the memory if we had prepared
it in the state ϕm(x) and T is the temperature of the heat bath.

Combining equations (4.25) and (4.22), we obtain:

Wrec ≥ F rec
m − F0 + TH. (4.26)

The quantity F rec
m −F0 is the minimum amount of work that we would have to provide

in order to prepare the memory in state ϕm(x). Hence, in order to record the symbol
that appeared, i.e. in order to prepare the memory in state ϕk(x) with probability
Pk, one has to perform an extra amount of TH of work than to prepare the memory
in the state ϕm(x). However, this extra amount of work is not dissipated. It could
in principle be retrieved by reversing the process, i.e. by driving the memory back to
the standard state ϕ0(x) by a protocol depending on k.
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If the ϕk(x) overlap, then one should simply replace H by Imax in equations (4.24),
(4.25), and (4.26).

Erasure process

Unlike the recording process, the erasure process is necessarily producing entropy.
Hence in addition to the reversible work, which is given by the variations of the free
energy, the work performed also contains some irreversible contribution, the work
dissipated proportional to the entropy production. If the symbol αk was recorded,
the work performed per unit time at time t of the erasure process is given by:

Ẇ er
k (t) = Ḟk(t) + T Ṡtot

k , (4.27)

where Fk(t) = Fλ(t)[ρk(t)] is the instantaneous free energy of the memory at time t
of the erasure process. Averaging over αk and taking equation (4.17) into account,
we obtain:

Ẇer(t) ≥
∑

k

PkḞk(t) − T İ(t), (4.28)

where Ẇer =
∑

k PkẆ
er
k . This relation is just the work counterpart of equation (4.17).

It states that during the erasure process the rate of work dissipation is bounded from
below by −T İ, i.e. by the temperature times the rate of information erasure. The
total amount of work performed during the erasure process satisfies:

Wer ≥ F0 −
∑

k

PkF
rec
k + TH, (4.29)

where F0 is the final free energy of the memory. Again, equation (4.29) is the work
counterpart of equation (4.18). It states that the total work dissipated during the
erasure process is at least TH.

Equation (4.24) can be generalized as follows at any time t of the erasure process:

∑

k

PkS[ρk(t)] = S[ρm(t)] − I(t). (4.30)

As a consequence, the free energy of the memory satisfies a relation similar to equa-
tion (4.25) at any time t of the erasure process:

∑

k

PkFk(t) = Fm(t) + TI(t), (4.31)

where Fm(t) = Fλ(t)[ρm(t)]. Inserting this relation in equation (4.28) above yields:

Ẇer(t) ≥ Ḟm(t). (4.32)
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Integrated over the whole erasure process, the minimum amount of work performed
during the erasure process is given by:

Wer ≥ F0 − F rec
m . (4.33)

In other words, the minimum amount of work to perform is given by the variations
of the free energy of the marginal distribution ρm(x, t).

Summing equations (4.22) and (4.29), or (4.26) and (4.33), we obtain for the total
amount of work performed during the recording and erasure cycle:

Wtot = Wrec +Wer ≥ TH. (4.34)

This work is truly lost since the memory is in the same state at the beginning and at
the end of the cycle. It got dissipated in form of heat to the heat bath. If we hadn’t
performed the process cyclically, i.e. if the initial and final states of the memory were
different, then equation (4.34) would have to include some difference in free energy
between the final and the initial state of the memory.

4.3 Discussion

The work performed during the erasure process behaves as if the memory had been
prepared in the state ϕm. However, the recording process on average necessitates
more work than needed to prepare the memory in the state ϕm, see equation (4.26).
It could seem that when we “forget” which symbol was recorded at the end of the
recording process, the state of the memory “collapses” from ϕk to ϕm. This collapse
would be accompanied by an average decrease in free energy exactly corresponding
to the information that was recorded (and got lost with the symbol):

∑

k

PkF
rec
k − F rec

m = T

(

S[ϕm] −
∑

k

PkS[ϕk]

)

= TH. (4.35)

This would explain the energetic loss happening in this recording and erasure cycle.
If this was the case, then the information contained in the memory would instanta-

neously vanish at the very moment we forget the symbol, and an amount of entropy
of

∆Sforget
tot = H (4.36)

would be instantaneously produced. Apart of being unphysical, this would be in
contradiction with previous discussions. Moreover, such a collapse of the ϕk into ϕm

would not be described by the evolution equations. At time t of the erasure process,
the state of the memory is ρk(x, t) with probability Pk and not ρm(x, t). The macro-
state of the memory obeys the master equations even between the recording and
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the erasure process and hence no collapse occurs since such a collapse would not
be described by master equations. Instead, as argued in the preceding, for every k,
ρk(x, t) smoothly converges towards ρm(x, t).

However, when we “forget” the symbol recorded, our information about the micro-
state of the memory suddenly changes. Hence, the probability distribution we assign
to the micro-states of the memory changes from ϕk to ϕm. And all along the erasure
process we can only optimize the protocol with respect to ρm(x, t). Hence it is natural
that the minimum amount of work we have to provide is given by the variations of
the free energy of this distribution.

Assume that at time t′ we suddenly remember the symbol αk that was recorded.
By remembering which symbol was recorded, we suddenly recover some information
about the micro-state of the memory and we can reassign them the right distribu-
tion ρk(x, t). We can make use of that information by selecting a different protocol
depending on the symbol that was recorded. Hence, between times trec and t′ when
we do not know which symbol was recorded, it seems to us that the free energy
of the memory is Fm(t) and the minimum amount we have to perform is equal to
Fm(t′) − F rec

m . At time t′, when we suddenly recover the symbol that was stored, we
can reassign the “right” free energy Fk(t′) to the memory and it will seem to us that
we have suddenly “gained” an amount

∑

k

PkFk(t′) − Fm(t′) = TI(t′) ≤ TH (4.37)

of free energy on average. This quantity is smaller than the free energy we had lost
by “forgetting” the symbol recorded at time trec, see equation (4.35).

During this alternative process, we cannot say that we erased information about
the symbol that appeared in the first place since we made use of this information
from time t′ to tf . Nevertheless, we did loose something. What we lost is information
about the micro-state of the memory. By “forgetting” the symbol recorded at time
trec, we lost an amount H of information about the micro-state of the memory and by
“remembering” the symbol, we recovered an amount I(t′) ≤ H of information about
the micro-state of the memory. So between times trec and t′ we lost H − I(t′). This
very quantity is also the minimum amount of entropy produced between trec and t′:

∆Stot(t
′) ≥ H − I(t′), (4.38)

obtained by setting t = trec in equation (4.20).
All along the erasure process, the symbol recorded contains some information about

the micro-state of the memory. But as this information is not used, it is erased
because of the relaxation towards equilibrium, i.e. by the heat bath. This relaxation
is accompanied by an amount of entropy production which is linked to the amount of
information lost. As a consequence, the information the micro-state of the memory

66



4.4 A simple example

contains about the symbol initially emitted is erased as well.

4.4 A simple example

Let us now illustrate the previous results on the most simple system that one can
imagine: Recording and erasing the result of a binary random variable on a two
states memory. Let α1 = h (for “head”) and α2 = t (for “tail”) be the two possible
results of a binary random variable. The probability for α1 to appear is P1 = P and
the probability for α2 to appear is P2 = 1 − P . Hence, the amount of information
we wish to record is the Shannon entropy of the distribution (P, 1 − P ):

H(P ) = −P logP − (1 − P ) log(1 − P ). (4.39)

4.4.1 The memory as a two states system

The system we use as the memory is a two states system in contact with a heat bath
at inverse temperature β. Let “Left” and “Right” label these two states and let EL

and ER be their respective energies. At any time, the memory can make stochastic
transitions between these two states. The energy needed to make a transition is
provided by the heat bath in form of heat. We assume that the probability per unit
time to make a transition has a Kramer’s form: The probability wRL per unit time
to jump from the left state to the right state is then

wRL =
1

τ
exp (βEL) , (4.40)

and similarly, the probability per unit wLR time to make a transition from the right
state to the left state is given by:

wLR =
1

τ
exp (βER) , (4.41)

where τ ∝ exp (−βV ) is a time linked to the heigh of the potential barrier V that
needs to be overcome to make a transition.

The macroscopic state of the memory is given by the occupation probabilities pL

and pR of the left and right states. They evolve in time according to the following
master equations:

ṗL = −wRL pL + wLR pR

ṗR = +wRL pL − wLR pR. (4.42)
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The equilibrium state is given by the canonical distribution:

peq
L =

e−βEL

Z

peq
R =

e−βER

Z
, (4.43)

where Z = exp (−βEL) + exp (−βER) is the partition function. For fixed value of
EL, ER and τ , any initial distribution over the two micro-states of the memory will
relax exponentially within a characteristic time τ towards the canonical distribution
(4.43). Normalization requires pR + pL = 1 and hence the macroscopic state of the
memory is fully specified by the probability pL that its micro-state is the left state.
To simplify the notations, we set pL = p and in the following, when we speak about
the macro-state of the memory, we mean the probability p that it occupies its left
micro-state. Consequently, all the lower case p or q will refer to the probability for
the memory to occupy the left micro-state.

We assume that we can control the energy difference ∆E = ER −EL between the
two micro-states. Hence, through ∆E we can control the macroscopic state p of the
memory. Again, for simplicity, we assume that EL + ER = 0. Hence we set EL = E
and ER = −E and our control parameter is E. The equilibrium macro-state of the
memory is then given by peq(E) = exp (−βE) /Z(E) and the partition function by
Z(E) = 2 cosh (βE). The master equations (4.42) then simplify to:

ṗ = −
1

τ
(p− peq(E(t))) , (4.44)

where the time dependence of E gives the protocol.

We can now turn to the instantaneous rate of entropy production. Let us first
introduce the relative entropy between two distributions (p, 1 − p) and (q, 1 − q) over
a binary random variable:

D(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
. (4.45)

This is a particular case of equation (3.23). The quantity D(p‖q) is non negative
and it is zero if and only if p = q. The instantaneous rate of entropy production Ṡtot

given by equation (3.87) reads in this simple case:

Ṡtot(t) = −ṗ(t)
∂

∂p
D(p(t)‖peq(E(t))). (4.46)

where p(t) is the solution of the master equation (4.44) and E(t) is given by the
protocol.
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Figure 4.1: Imax/H(P ) as a function of q for a symmetric memory: q1 = 1 − q2 = q.

4.4.2 Information stored in the memory

Now that we have described the system serving as a memory we have to choose the
states encoding α1 and α2. Let (q1, 1− q1) encode α1 and (q2, 1− q2) encode α2. The
maximum amount of information that we can store in the memory in this setup is
given by:

Imax = P1D(q1‖qm) + P2D(q2‖qm), (4.47)

where qm = P1q1 +P2q2 is the marginal probability for the memory to occupy the left
micro-state at the end of the recording process. The maximum amount of information
stored in the memory satisfies:

0 ≤ Imax ≤ H(P ). (4.48)

It is zero if and only if q1 = q2 and it is equal to H(P ), the amount of information
emitted by the source, if and only if the two distributions (q1, 1 − q1) and (q2, 1 − q2)
do not overlap. This happens when q1 = 1 and q2 = 0 (and vice versa). In this
case, recording α1 means to confine the memory in its left micro-state and recording
α2 means to confine the memory in its right micro-state. However, this might be
difficult to implement in practice since it would necessitate to apply an infinite energy
difference between the two micro-states.

If q1 = 1 − q2 = q, then we speak about a symmetric memory. On figure 4.1 we
plotted Imax/H(P ) as a function of q for a symmetric memory for three values of P .
As we just said, Imax = 0 for q = 1/2 and Imax = H(P ) for q = 1.
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4.4.3 The erasure processes

The erasure protocol

For the illustration, we assume that we were able to prepare the memory in the two
non overlapping macro-states q1 = 1 and q2 = 0. Moreover, we assume that at the
beginning of the erasure process, the two micro-states of the memory have the same
energy Erec = 0. We propose the following erasure process: From time t = 0 to time
t = tf = 20τ , the parameter E is driven from 0 to the final value Ef = 5/β according
to

E(t) =
t

tf
Ef . (4.49)

Moreover, we set P1 = P = 0.3. The values of parameters P , q1, q2, Erec, Ef and tf
are arbitrary and the particular values used here were chosen to best illustrate what
happens during the erasure.

State of the memory during the erasure

Let p1(t) (resp. p2(t)) be the macro-state of the memory at time t of the erasure
process if the symbol α1 (resp. α2) was recorded. In other word, p1(t) (resp. p2(t))
is the solution to the master equation (4.44) with the protocol given by (4.49) and
with q1 = 1 (resp. q2 = 0) as initial condition. We introduce:

pm(t) = P1p1(t) + P2p2(t), (4.50)

the marginal probability for the memory to occupy the left micro-state at time t of
the erasure process.

On figure (4.2), we plotted the time evolution of p1, p2, pm and of the equilibrium
state peq during the erasure process. The functions p1(t) and p2(t) quickly converge
towards each other, and hence towards pm(t), on a time scale of order τ .

Inferring the symbol stored during the erasure

If the memory is found in the left micro-state at time t of the erasure process, then
the probability that α1 was stored is given by Bayes’ rule (4.2):

P (α1|L; t) =
p1(t)

pm(t)
P1. (4.51)

Similarly, if the memory is found in the right micro-state at time t, then the proba-
bility that the α2 was stored is:

P (α2|R; t) =
1 − p2(t)

1 − pm(t)
P2. (4.52)
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Figure 4.2: State of the memory as a function of time during the erasure process.

On figure (4.3) we plotted the time evolution of these quantities along the erasure
process.

At time t = 0, both of them are equal to one. This is due to the fact that we
chose non overlapping states to encode α1 and α2. In other words, at time t = 0, the
micro-state of the memory contains all the information about the symbol recorded.
After the beginning of the erasure process, P (α1|L) and P (α2|R) both drop below
one. In fact, if the memory is in the left micro-state at some time t > 0 of the erasure
process, it might be that α1 was recorded, but it might also be that α2 was recorded
and that the memory made a transition from the right to the left micro-state. At the
end of the erasure process, P (α1|L) and P (α2|R) respectively converge towards P1

and P2, the a priori probabilities that α1, respectively α2 was recorded. At that point,
knowing the micro-state of the memory does not provide any information about the
symbol that was recorded.

Information erasure and entropy production

The distance of the memory to equilibrium at time t of the erasure process is given
by:

D(t) = P1D(p1(t)‖peq(E(t))) + P2D(p2(t)‖peq(E(t))). (4.53)

The amount of information contained in the memory reads:

I(t) = P1D(p1(t)‖pm(t)) + P2D(p2(t)‖pm(t)). (4.54)

On figure 4.4, we plotted the time evolution of these two quantities at the begin-
ning of the erasure process. Clearly, the information content quickly decreases to
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P1

P2
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0 20t/τ

P (α1|L)
P (α2|R)

Figure 4.3: Conditional probabilities of the symbols given the micro-state of the memory
along the erasure process. For t = 0 both P (α1|R) and P (α2|R) are equal to 1: Knowing
the micro-state of the memory unambiguously yields the symbol recorded. For t ≫ τ ,
P (α1|R) = P1 and P (α2|R) = P2, i.e. knowing the micro-state of the memory does not
provide any information about the symbol that was stored.
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Figure 4.4: Distance to equilibrium and information as a function or time.
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−İ

(a)

0

0.1

0 5 10 15 20

Ṡ
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Figure 4.5: (a) Time evolution of the rates of entropy production, Ṡtot, and of information
erasure −İ. (b) Difference between the two rates along the erasure process. The rates are
given in units of τ−1. As expected, the rate of entropy production is not less than the rate
at which information is erased all along the process. At time t0 ≃ 0.97τ , the two rates are
equal. This is due to the fact that at this time, the marginal distribution is equal to the
equilibrium one, pm(t0) = peq(E(t0)), as can be seen on figure 4.2.

zero. Moreover, the distance to equilibrium is always greater than the amount of
information contained in the memory.

The rate of entropy production at time t of the erasure process is given by equation
(4.46) averaged over the two possible scenarios:

Ṡtot(t) = −P1ṗ1(t)
∂

∂p1
D(p1(t)‖peq(E(t))) − P2ṗ2(t)

∂

∂p2
D(p2(t)‖peq(E(t))). (4.55)

The rates of entropy production and information erasure are plotted on panel (a)
of figure 4.5 and their difference on panel (b) of the same figure. As expected, the
rate of entropy production is greater than the rate of information erasure. The total
amount of entropy produced by the erasure until time t is just the integral of (4.55)
between 0 and t:

∆Stot(t) =
∫ t

0
Ṡtot(t

′)dt′. (4.56)

On figure 4.6, we plotted the time evolution of the total amount of entropy production
and of the amount of information erased Imax − I(t) along the erasure process. As
expected, at any time, the amount of entropy produced is greater than the amount
of information erased.

In the example treated here, we focused on the recording and the erasure processes
only. However, in a practical situation, one would probably like to store the infor-
mation for a finite amount of time before erasing it. This can be done by increasing
τ , i.e. increasing the height of the potential barrier V between the two micro-states
of the memory. In fact, the information decreases significantly only on a time scale
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Figure 4.6: Entropy produced and information erased during the erasure process.

of order τ . Hence it is possible to store information for t ≪ τ .

4.5 Conclusion

In this chapter, stochastic thermodynamics was used to study one of the simplest
information processing operations, namely the recording and the erasure of infor-
mation. The two main results of this chapter are: i) The erasure of information
is irreversible and the degree of irreversibility is directly related to the amount of
information erased, see equation (4.17); ii) in order to contain some information, the
device serving as a memory needs to be out of equilibrium, see equation (4.11).

The first step was to define what it means to record, store, and erase information.
In other words, we had to find the requirements that should be satisfied by any
physical implementation of these processes. The main requirement concerning the
recording process is that, once the information is recorded, it should be possible
to manipulate the memory without knowing what was recorded. In practice, this
requirement implies that, at the end of the recording process, the value λrec of the
control parameter should be independent of the symbol αk that was recorded. In the
same way, the erasure process should be performed in a way that does not depend
on the information stored. In other words, during the erasure process, the time
dependence of the control parameter should not depend on the symbol αk originally
recorded.

Next, we used stochastic thermodynamics to model the memory and to implement
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processes satisfying the aforementioned requirements. Finally, we had to identify the
amount of information still present in the memory at any intermediate time of the
erasure process. It was identified as the reduction in our uncertainty about the symbol
that was originally recorded upon knowing the microscopic state of the memory at
some intermediate time. In other words, the amount of information contained in the
memory is the mutual information between the microscopic state of the memory and
the symbol recorded.

The results presented in this chapter have their dual counterpart in the previous
chapter. In fact, in the previous chapter, we saw that when a system is out of
equilibrium, it means that we have more information about its micro-state than if
the system was in equilibrium. In this chapter, we saw that in order to contain
some information, the system serving as a memory needs to be out of equilibrium.
Similarly, in the previous chapter, the rate of entropy production was shown to be
equal to the rate at which we loose information about the micro-state of the system.
In this chapter, we showed that when erasing information, one produces entropy at a
rate at least equal to the rate at which information is erased. While in the previous
chapter we saw how information theory can be relevant in order to understand non-
equilibrium isothermal thermodynamics, in this chapter we showed how this very
theory is relevant to understand the physics of information processing.
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In section 3.3, page 50, we saw that if one is able to obtain information about the
micro-state of a thermodynamic system, then this information can be converted into
useful work. The acquisition and/or processing of this information must therefore
involve costs that are at least high enough to compensate this information-to-work
conversion.

The aim of this chapter is to investigate the process of obtaining information about
the micro-state of a system. A minimal model for a measurement device is developed
and the process of measuring the micro-state of another system is described. The
measurement process is irreversible and the entropy produced is greater than the
information obtained. The “reversible limit” where the entropy production is equal
to the information obtained is reached when the two quantities are zero, i.e. when
nothing happens.

5.1 Physical modelling of a measurement device

5.1.1 Measurement and information

Consider a system S in equilibrium with a heat bath at inverse temperature β. Let
us assume for simplicity that the phase space of S is discrete. Let pS(x) be the
equilibrium probability that S occupies micro-state x. At some point, we perform
a measurement of the micro-state of S. The measurement is characterized by the
conditional probability p(y|x) to observe outcome y given that S is in micro-state
x. This conditional distribution contains all the information about the measurement
precision and the measurement errors. Typically, one could consider that a mea-
surement was successful if y = x and erroneous in the other cases. An error free
measurement would be achieved if p(y|x) = δx,y = 1 if y = x and 0 otherwise. In
general, a measurement is error free if the measurement outcome is a deterministic
function of the micro-state of S.

The amount of information about the micro-state of S provided by the measure-
ment is given by the mutual information:

I =
∑

x

pS(x)
∑

y

p(y|x) log
p(y|x)

pM(y)
, (5.1)
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where pM(y) =
∑

x p(y|x)pS(x) is the marginal probability to observe the measure-
ment outcome y. The information provided by the measurement can be exploited in
order to transform heat into work in a cyclic isothermal process, as we mentioned in
paragraph 3.3 page 50. The maximum amount of work extracted that way is TI.

Such a process is not possible without further entropy production. In fact, this
process would lead the destruction of up to I of entropy. Hence, the thermodynamics
tells us that the acquisition and/or processing of an amount I of information should
be accompanied by the production of a corresponding amount of entropy. In the
following, we develop a minimal model for a physical measurement device able to
regularly provide an amount I of information. We compute the entropy produced in
a cyclic measurement process and show that it is greater than I.

5.1.2 The measurement device

Any measurement device should satisfy a certain number of requirements. It should
be a physical system subject to the laws of thermodynamics. In particular, measure-
ment errors should include at least thermal fluctuations. The measurement device
should be driven by the quantity to be measured, i.e. by the micro-state of the system
S. Finally, we assume that the measurement is “ideal” in that there is no back action
of the measurement device on the system. This is certainly an idealization and it
would be of great interest to investigate situations where it is not the case.

In order to meet these requirements, we assume that the measurement device is a
thermodynamic system M in contact with a heat bath (not necessarily at the same
temperature as S). The energy EM(y|x) of a micro-state y of M depends on the
micro-state x of S. Furthermore, we assume that the relaxation time τM of M is
much smaller than the time between two transitions of S. That way we are sure
that the measurement outcome y only depends on the quantity x to be measured.
Hence, during the measurement, the micro-states of M are distributed according to
the canonical distribution (2.60):

p(y|x) =
exp (−βMEM(y|x))

ZM(x)
, (5.2)

where ZM(x) =
∑

y exp (−βEM(y|x)) is the partition function of the measurement
device when S is in micro-state x and βM is the inverse temperature of the heat bath
M is in contact with. Finally, we assume that there is no direct back action of M
on S.
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5.2 The measurement process

5.2.1 Information acquisition

The micro-state x of S plays the role of a control parameter for M. If we let M in
contact with S, then every time S makes a transition form x to x′, the energy levels
of M are instantly modified from EM(y|x) to EM(y|x′). We assume that M is in
contact with a work source which provides the work needed to change the value of
its energy levels. Before S has the time to make another transition, M relaxes from
p(y|x), which becomes non equilibrium, towards the new equilibrium distribution
p(y|x′). This relaxation is accompanied by the production of an amount ∆Stot(x, x′)
of entropy given by equation (3.88) on page 49, which, in our case, reads:

∆Stot(x, x
′) =

∑

y

p(y|x) log
p(y|x)

p(y|x′)
. (5.3)

Hence, if M is left in contact with S, it will produce entropy every time S makes a
transition. This is the price to pay to continuously monitor the micro-state of S. It
can be shown that the joint system formed by S and M will never reach equilibrium
because of the lack of back action of M on S. However this is outside the scope of
the present work.

We are not interested in continuously following the transitions of S. We just
wish to get some information about the micro-state of S at one particular moment
and then exploit that information in a feed back process. In order to minimize the
entropy production, we assume that we are able to “separate” M from S. When
M is separated from S, its energy levels are just left as they are and do not change
anymore. When we want to measure the micro-state of S, we let M in contact with
S for a time τcont which is such that:

• The probability that S makes a transition during τcont is vanishingly small.

• The measurement device has the time to relax towards equilibrium: τcont ≫ τM.

That way, S is left unchanged and at the end of the contact, the micro-state of M
is correlated with the micro-state of S. The mutual information between the micro-
states of M and S is I given by equation (5.1). Once this information is obtained,
it can be used in a cyclic feed-back process. At the end of this measurement and
feed-back process, the micro-states of M and S are independent and we can perform
a new cycle.

Before the contact, the micro-states of M are distributed according to p(y|x0)
where x0 is the micro-state S was in during the previous measurement. As a con-
sequence, M is still correlated with the micro-state S was in during the previous

79



5 Acquisition of information

measurement. In other words, M still contains some information about the previ-
ous micro-state of S. This information was already used in the previous feed-back
process and it cannot be used again, but it is still here. At the end of the contact,
the micro-states of M are distributed according to the new equilibrium distribution
p(y|x1), where x1 is the current micro-state of S. At that moment, the micro-state
of M is correlated with the current micro-state of S and has no more information
about the micro-state S was in during the previous cycle. The information about the
past micro-state of S has been replaced by information about its current micro-state.

Let us summarize the cycle of measurement and feed-back.

1. At the beginning of the cycle, the energy of a micro-state y of M is EM(y|x0)
where x0 is the micro-state occupied by S during the previous measurement
cycle. The probability that M occupies y is p(y|x0) which is also the equi-
librium distribution with the energies EM(y|x0) given by equation (5.2). The
probability that S was in micro-state x0 during the previous measurement is
pS(x0).

2. M is put in contact with S. Its energies are instantaneously changed to
EM(y|x1), where x1 is the micro-state currently occupied by S. The prob-
ability that S occupies the micro-state x1 is pS(x1).

3. M relaxes towards the new equilibrium p(y|x1). The amount of entropy pro-
duced by the relaxation is ∆Stot(x0, x1) given by equation (5.3). At the end of
the relaxation, the information about the previous micro-state of S is replaced
by information about its current micro-state.

4. M is separated from S so that it is not anymore affected by possible transitions
of S. The total duration of the contact was so short that S didn’t make any
transition during that time period.

5. A cyclic process which depends on the micro-state y of M is performed on S.
Such a process enables to convert up to TI of heat at temperature T into work.
At the end of that process, M is still correlated with the micro-state S was in
during step 3.

At the end of the cycle, the micro-state of M is uncorrelated with the micro-state of
S and a new cycle of measurement and feed-back can start.

5.2.2 Entropy produced

Entropy is produced during step 3 when M relaxes towards the new equilibrium.
The amount of entropy produced if S was in micro-state x0 during the previous
measurement and is in micro-state x1 during the current one is ∆Stot(x0, x1) given
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by equation (5.3). Since x0 and x1 are independent, the average amount of entropy
produced is:

∆Stot =
∑

x0,x1

pS(x0)pS(x1)∆Stot(x0, x1) =
∑

x0,x1

pS(x0)pS(x1)
∑

y

p(y|x0) log
p(y|x0)

p(y|x1)
.

(5.4)
We would like to compare this quantity to the amount I of information obtained by
one measurement event.

Using the trivial identity

log
p(y|x0)

p(y|x1)
= log

p(y|x0)

pM(y)
+ log

pM(y)

p(y|x1)
(5.5)

in the right hand side of equation (5.4), we can isolate two different contributions to
∆Stot:

∆Stot = ∆S1
tot + ∆S2

tot, (5.6)

where

∆S1
tot =

∑

x0

pS(x0)

(
∑

x1

pS(x1)

)
∑

y

p(y|x0) log
p(y|x0)

pM(y)
(5.7)

and

∆S2
tot =

∑

x1,y

pS(x1)

(
∑

x0

p(y|x0)pS(x0)

)

log
pM(y)

p(y|x1)
. (5.8)

In the expressions above, pM(y) =
∑

x p(y|x)pS(x) is the marginal probability that
M is in state y. Let us now analyze these two contributions separately.

Since,
∑

x1
pS(x1) = 1, the first contribution ∆S1

tot is equal to:

∆S1
tot =

∑

x

pS(x0)
∑

y

p(y|x0) log
p(y|x0)

pM(y)
= I. (5.9)

This quantity is the mutual information between the micro-state of S during the pre-
vious measurement and the micro-state of M just before the contact. Furthermore,
the quantity

∆S1
tot(x) =

∑

y

p(y|x) log
p(y|x)

pM(y)
. (5.10)

is the amount of entropy that would be produced if M relaxed from p(y|x) to pM(y),
i.e. if the energies of M were instantaneously changed from EM(y|x) to some E0

M(y)
such that the pM(y) would be equilibrium with respect to E0

M(y) and M would be
let to relax towards this new equilibrium. Hence, the quantity (5.9) is the average
amount of entropy produced if the energy levels of M were equal to EM(y|x) with
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probability pS(x) and they were instantaneously changed to E0
M(y).

Similarly, taking into account that
∑

x0
p(y|x0)pS(x0) = pM(y), the second contri-

bution ∆S2
tot can be rewritten as:

∆S2
tot =

∑

x1

pS(x1)
∑

y

pM(y) log
pM(y)

p(y|x1)
. (5.11)

The quantity

∆S2
tot(x) =

∑

y

pM(y) log
pM(y)

p(y|x)
≥ 0. (5.12)

is non negative and it is zero if and only if p(y|x1) = pM(y) because it is a Kullback-
Leibler distance. Hence ∆S2

tot is zero if and only if y and x1 are independent, i.e. if
the measurement does not provide any information. The quantity ∆S2

tot(x1) is the
amount of entropy that would be produced in the relaxation from pM(y) to p(y|x1),
i.e. in the process were M starts in pM(y) and its energy levels are instantaneously
changed to EM(y|x1).

To summarize, the entropy production (5.4) is thus composed of two non negative
contributions:

∆Stot = ∆S1
tot + ∆S2

tot, (5.13)

where
∆S1

tot =
∑

x0

pS(x0)∆S1
tot(x0) = I (5.14)

is the information gained by the measurement and

∆S2
tot =

∑

x1

pS(x1)∆S2
tot(x1). (5.15)

Hence, the average amount of entropy produced by the measurement device per cycle
is strictly greater than the amount of information available at each cycle:

∆Stot − I = ∆S2
tot ≥ 0. (5.16)

There is equality ∆Stot = I if and only if ∆S2
tot = 0 which only happens if the

information itself vanishes, i.e. I = 0.

5.2.3 Decorrelation, re-correlation

The measurement process described above is a particular case of random driving.
The energy levels of M, EM(y|x) depend on the value x. At each time step, a
new value of the control parameter x is randomly drawn from a distribution pS(x)
independently of its previous value. Then, M relaxes towards the new equilibrium
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p(y|x). At each time step, as M relaxes, it decorrelates from the previous value of x
and correlates to the new one.

In the preceding paragraph, we showed that the average amount of entropy pro-
duced is the sum of two contributions. Each of these contributions is equal to the
amount of entropy that would be produced in two different processes. In fact,
∆S1

tot(x) is the entropy produced by M in the relaxation from p(y|x) to pM(y).
Such a relaxation is obtained if x is instantaneously varied to a deterministic value
x̃ which is such that EM(y|x̃) = E0

M(y) independently of the initial value of x. In
this process, just before M starts to relax, its micro-state is correlated with the ini-
tial value of the control parameter x. At the end of the process there are no more
correlations since the final value of the control parameter is deterministic. Hence,
the sole effect of this process was to destroy the initial correlations between y and x.
Furthermore, we showed that the average amount of entropy produced is precisely
the mutual information I between the initial micro-state of M and the initial value
of the control parameter x, see equation (5.14). This result is reminiscent of the
main result of the previous chapter: Information is erased and as a consequence, a
corresponding amount of entropy is produced.

The quantity ∆S2
tot(x) on the other hand is equal to the entropy that would be

produced in the relaxation from pM(y) to p(y|x). This relaxation occurs if the
control parameter is instantaneously driven from x̃ to x, i.e. if the energies of M
are instantaneously driven from EM(y|x̃) = E0

M(y) to EM(y|x). If x is chosen
randomly according to the distribution pS(x), then at the end of the relaxation,
the micro-state of M is correlated to this new value of the control parameter and
their mutual information is I given by equation (5.1). Since the initial value of the
control parameter is deterministic, the establishment of this correlation is the only
effect of this process. In the limit of an error-free measurement, i.e. p(y|x) = δx,y,
∆S2

tot diverges. However, it is possible to find cases where ∆S2
tot is smaller than the

information I obtained1.

The total entropy produced during the measurement event is the same as the en-
tropy that would be produced if the two processes of decorrelation and re-correlation
just described were operated separately. In the following, we analyze these processes
of decorrelation and re-correlation in more details on a simple example.

1 Here is an example of situation where ∆S2

tot < I. Imagine that S and M can occupy two micro-
states, labelled by “L” and “R” as in the example described in section 5.3 below. Assume that
pS(L) = 1 − 10−4 (hence pS(R) = 1 − pS(L) = 10−4), and p(L|L) = 10−4 and p(L|R) = 1 − 10−2.
Then pM(L) = p(L|L)pS(L) + p(L|R)pS(R) ≈ 2 · 10−4, see equation (5.18). One can check that
for these numbers, I ≈ 8.6 · 10−4 whereas ∆S2

tot ≈ 5.0 · 10−4.
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5.3 Example

5.3.1 Measuring the state of a two states system

As in the previous chapter, we now consider the most simple example in order to
illustrate the results of the previous section. Let S be a system that can occupy
two micro-states labelled by “L” and “R” with respective energies ES(R) and ES(L).
For simplicity, we assume ES(R) = ES(L), so that at equilibrium the two states are
equally probable: pS(L) = pS(R) = 1/2. The Shannon entropy of pS , quantifying
the information we miss about the micro-state of S, is equal to log 2.

Our aim is to measure the state of S. Let p be the probability of a successful
measurement. The probability of measurement error is then 1 − p. The conditional
probability p(y|x) to observe the measurement outcome y ∈ {L,R} given that S is
in micro-state x ∈ {L,R} is:

p(y|x) =

{

p if y = x
1 − p if y 6= x.

(5.17)

The marginal probability to observe y = L as a measurement outcome is given by:

pM(L) = p(L|L)pS(L) + p(L|R)pS(R). (5.18)

Inserting (5.17) in the expression above yields:

pM(L) =
p

2
+

1 − p

2
=

1

2
. (5.19)

As a consequence, the marginal probability to observe y = R as a measurement
outcome is equal to pM(R) = 1 − pM(L) = 1/2. The mutual information between
the measurement outcome and the micro-state of S given by equation (5.1) becomes
in this case:

I(p) = p log
p

1/2
+ (1 − p) log

1 − p

1/2
≤ log 2. (5.20)

This quantity is zero for p = 1/2. In this case, x and y are completely independent.
For p = 1, I(1) = log 2, the maximum amount of information we can obtain about
the micro-state of S. In fact, in this case, knowing the measurement outcome we are
able to infer the micro-state of x with certainty.

Since there are two possible measurement outcomes, the measurement device M
should be able to occupy at least two micro-states. Its energy levels should be such
that p(y|x) is the equilibrium distribution. Let Esuc = EM(R|R) = EM(L|L) be
the energy of the micro-state of M corresponding to a successful measurement and
Eerr = EM(L|R) = EM(R|L) be the energy of the micro-state of M corresponding
to an erroneous measurement. For p(y|x) to be the equilibrium distribution of M,
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5.3 Example

we need:
∆E = Eerr − Esuc = TM log

p

1 − p
, (5.21)

where TM = 1/βM is the temperature of the heat bath M is in contact with. Remark
that here as in the previous chapter, if we want an error free measurement, p = 1,
we need an infinite energy difference between the two micro-states.

5.3.2 Entropy produced by the measurement

As in the general case, we consider the following cycle. Initially, S and M are
uncorrelated and the energies of the measurement device are as we left them at
the end of the previous measurement. They are equal to E(y|L) or E(y|R) with
equal probability 1/2 depending on whether S was in micro-state L or R during
the previous measurement. At some point, we put M in contact with S and the
energy levels of M instantaneously adapt to the new micro-state of S. Here there
are two possibilities: Either the micro-state of S is the same as during the previous
measurement, in which case the energies of M do not change, or the micro-state of
S is not the same, in which case the energies of the micro-states of M are simply
exchanged. Each of the two possibilities is equally probable.

The amount of entropy produced in the case where the micro-state of S is different
during the two consecutive cycles is:

∆S0
tot(p) = p log

p

1 − p
+ (1 − p) log

1 − p

p
. (5.22)

In the case where the micro-states of S are the same during the two consecutive
measurement, no entropy is produced. The two scenarios being equally probable,
the average amount of entropy produced during one measurement event is half of the
quantity above:

∆Stot(p) =
1

2
∆S0

tot(p) =
1

2

(

p log
p

1 − p
+ (1 − p) log

1 − p

p

)

. (5.23)

This quantity can be decomposed into two non negative parts:

∆Stot(p) = ∆S1
tot(p) + ∆S2

tot(p), (5.24)

where ∆S1
tot(p) = I(p) is the information provided by the measurement, given by

equation (5.20) and ∆S2
tot(p) is given by:

∆S2
tot(p) =

1

2

(

log
1/2

p
+ log

1/2

1 − p

)

. (5.25)
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log 2

0

0.5 1p

∆S1
tot

∆S2
tot

Figure 5.1: The two contributions ∆S1
tot and ∆S2

tot to the total entropy produced by the
measurement device during one measurement event as a function of the probability of a
successful measurement p. The first contribution is equal to the mutual information (5.20)
∆S1

tot = I(p) and as we can see, the second contribution satisfies ∆S2
tot ≥ I(p) with equality

if and only if the two are zero.

Both ∆S1
tot(p) and ∆S1

tot(p) are non negative and are zero if and only if p = 1/2. In
this case, the measurement device is not touched and the measurement provides no
information. Moreover, as can be seen on figure 5.1, ∆S2

tot(p) ≥ I(p) with equality
if and only p = 1/2, i.e. if ∆S1

tot(p) = ∆S2
tot(p) = 0.

As already discussed in paragraph 5.2.3, page 82, ∆S1
tot(p) can be seen as the

amount of entropy produced because of erasure of the information about the micro-
state of S during the previous measurement and ∆S2

tot(p) as the entropy produced
because of the acquisition of new information about the current micro-state of S.
In this particular example, the amount of entropy ∆S2

tot(p) produced because of
the acquisition of new information is greater than the amount of information I(p)
acquired.

5.3.3 Decorrelation, re-correlation

State of M during the measurement event

Let us resolve the infinitely fast relaxation of the measurement device happening
during one measurement event. The time evolution of M is given by the master
equations (4.42). The probability per unit time that M makes a transition from y
to y′ given that S is in micro-state x is given by:

wy′y(x) =
1

τM
exp (βEM(y|x)) , (5.26)
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1− p

p

0 5t/τM

(a)

pt(L|L,L)

pt(L|R,R)

pt(L|L,R)

pt(L|R,L)

1− p

1/2

p

0 5t/τM

(b) pc

t
(L|L)

pc

t
(L|R)

pp

t
(L|R)

pp

t
(L|L)

Figure 5.2: (a) Time evolution of the probability pt(L|x0, x1) for M to be in micro-state ‘L’
conditioned on the micro-states x0 and x1 S during the previous and the current measurement
cycle. There are four different possibilities. (b) Time evolution of the probability pp

t
(L|x0)

for M to be in micro-state ‘L’ conditioned on the micro-state x0 of S during the previous
measurement cycle, and of the probability pc

t
(L|x1) of the same event, but conditioned on

the micro-state x1 of S during the current measurement cycle.

where τM is the relaxation time of the measurement device. The probability pt(y)
that M is in micro-state y at time t given that S is in micro-state x evolves according
to the master equation:

ṗt(y) =
∑

y′

wyy′(x)pt(y
′). (5.27)

For x fixed, this distribution relaxes exponentially fast towards the equilibrium dis-
tribution:

pt(y) = exp
(

−
t

τM

)

(p0(y) − peq(y)) + peq(y), (5.28)

where p0(y) is the initial probability that M is in state y.

If S was in micro-state x0 during the previous measurement and is in micro-state
x1 during the current one, then the initial distribution of the micro-states of M is
p(y|x0) and the equilibrium (and hence final) distribution is p(y|x1). Hence, the
probability that M is in micro-state y at time t is given by:

pt(y|x0, x1) = exp
(

−
t

τM

)

(p(y|x0) − p(y|x1)) + p(y|x1), (5.29)

If x0 = x1 = x, then pt(y|x0, x1) = p(y|x) is constant and if x0 6= x1, then pt(y|x0, x1)
relaxes from p(y|x0) to p(y|x1) exponentially fast. The four different possibilities for
the evolution of pt(L|x0, x1) are plotted on figure 5.2 (a).
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Information contained in M

At time t τM of this measurement event, M still has some information about the
micro-state of S during the previous measurement and already has some information
about the current micro-state of S. We want to quantify these amounts of information
and analyze their time evolution.

The amount of information M still has about the previous micro-state of S at time
t is quantified by the mutual information Ip

t between the micro-state of M and the
previous micro-state of S:

Ip
t =

∑

x0

pS(x0)
∑

y

pp
t (y|x0) log

pp
t (y|x0)

pM
t (y)

, (5.30)

where pp
t (y|x0) =

∑

x1
pt(y|x0, x1)pS(x1) is the conditional probability that M occu-

pies micro-state y at time t given that S was in x0 during the previous measurement,
and pM

t (y) =
∑

x0,x1
pt(y|x0, x1)pS(x0)pS(x1) is the marginal probability that M oc-

cupies micro-state y at time t. The latter is constant equal to 1/2 because of the
symmetries of the problem. Similarly, the amount of information Ic

t that M already
has about the current micro-state of S at time t is given by:

Ic
t =

∑

x1

pS(x1)
∑

y

pc
t(y|x1) log

pc
t(y|x1)

pM
t (y)

, (5.31)

where pc
t(y|x1) =

∑

x0
pt(y|x0, x1)pS(x0) is the conditional probability that M occu-

pies micro-state y at time t given that the current micro-state of S is x1.

The quantities pp
t (L|x0) and pc

t(L|x1) are plotted on figure 5.2 (b). The probabilities
pp

t (L|x0) conditioned on the previous micro-state of S start at p (for x0 = L) and
1 − p (for x0 = R) and converge towards 1/2. The information M has about the
previous micro-state of S decreases as they approach this value. On the other hand,
the probabilities pc(L|x1) conditioned on the current micro-state of S start at 1/2
and converge towards p (for x1 = L) and 1 −p (for x1 = R). The information M has
about the current micro-state of S increases as they converge. The time evolution
of Ip

t and Ic
t is plotted on figure 5.3 (a). As expected, the information M has about

the previous micro-state of S decreases from I(p) to 0 while the information M has
about the current one increases from 0 to I(p). Figure 5.3 (b) shows that for this
specific example, the rate of entropy Ṡtot production is greater than the rate İc

t at
which information is obtained about the current micro-state of S plus the rate −İp

t

at which information about the previous micro-state of S is lost.
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I(p)
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(a)

10−4
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0 5t/τM
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Ṡtot

İc
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t

Figure 5.3: (a) Time evolution of the mutual information between the micro-state of M
and the micro-state of S during the previous measurement, Ip

t
(black solid line) and the

current micro-state of S, Ic
t

(blue dashed line). (b) Rate of entropy production (black solid
line) and total amount of information processed per unit time (blue dashed line). The latter
is the sum of the rate at which information about the previous micro-state of S is lost and
the rate at which new information about its current micro-state is gained. In this specific
example, the entropy production is greater than this sum.

5.4 Conclusion

In this chapter, we tried to understand the thermodynamic costs associated with the
acquisition of information about the microscopic state of a system in contact with a
heat bath. The measurement device was modelled as physical system also in contact
with a heat bath (not necessarily the same than the original system). The assump-
tions we made about the measurement device are: i) it should receive information
from the original system, and ii) it should relax infinitely fast. Furthermore, we
assumed no back action of the measurement device onto the system.

Under these assumptions, we showed that two processes occur simultaneously dur-
ing a measurement cycle. On the one hand, the measurement device loses the infor-
mation it had about the previous measurement cycle and, on the other hand, it gains
information about the current cycle. Each of these processes is entropy producing.
The entropy production due to the loss of information is equal to the amount of infor-
mation that was lost in a way that is reminiscent of the previous chapter. The entropy
production due to the gain of information, however, is not necessarily related to the
amount of information gained. In the limit of an error-free measurement, though, it
diverges.

The measurement process turned out to be a particular case of a random driving.
In fact, the micro-state x of the system plays the role of a control parameter for the
measurement device and it is randomly changed in a way such that to subsequent
values are independent and that the measurement device has the time to relax to-
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5 Acquisition of information

wards the new (random) equilibrium. Hence, it would be interesting to investigate
the entropy produced by a system subject to an arbitrary random driving and check
whether the results obtained in this chapter are still valid. The thermodynamics
of randomly driven system was already addressed in [SSBC12, BHS12, DE13], but
no attempt was made to identify the amount of information gained and lost and to
relate them to the entropy production.

The next step in order to understand the thermodynamics of measurement is to
explicitly model the interaction between the system and the measurement device and
to include back action of the measurement device onto the system. Such a model was
developed in [SSBE13] for a particular system involving two coupled quantum dots.
Interestingly, in this work, the rate of entropy production diverges in the error-free
limit. However, there exist no general model yet.
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Irreversibility and information are intimately related. The work presented here aimed
at quantifying and exploiting this relation. The main result of this work is that
whenever information is lost, there is irreversibility involved. The information loss
could be intended as in chapter 4 or might be a by-product of some other process as
in chapter 5.

In order to derive the main results of this thesis, it was first necessary to clarify
the role of information in equilibrium and non-equilibrium thermodynamics. The
thermodynamic description of a system misses a lot of information about the micro-
scopic components of that system. We saw that this missing information is captured
in the thermodynamic entropy of the system. Moreover, having more information
about the microscopic state of a system than the specification of its thermodynamic
state would provide amounts to say that the system is out of equilibrium. The as-
sumption that a non-equilibrium system eventually relaxes towards equilibrium then
implies that the extra information contained in the non-equilibrium state eventually
gets lost.

The theory of stochastic thermodynamics successfully formalizes this idea in a way
that is compatible with isothermal thermodynamics. This theory is the simplest ex-
tension of equilibrium statistical mechanics to non-equilibrium isothermal processes.
It simply assumes that when a system is coupled to an equilibrium heat bath, it
relaxes towards equilibrium according to a linear equation. Stochastic thermody-
namics successfully generalizes various equilibrium state functions (like the entropy
or the free energy) to non-equilibrium states and it provides an explicit expression for
the entropy production. Using the tools of information theory allowed us to identify
the entropy production of stochastic thermodynamics as the amount of information
about the microscopic state of the system, that gets lost in the relaxation.

The theory of stochastic thermodynamics was then used to investigate the thermo-
dynamics of information processing. We focused on two simple operations, namely
the recording and erasure of information on a physical memory and the acquisition
of information by a physical measurement device. The question was whether these
operations can be performed in a reversible way, and if not, whether there is any link
between the amount of entropy produced and the amount of information processed.

In chapter 4, we investigated the recording and the erasure of information on a
physical memory [GK13]. We first had to clarify what it actually means to record
and erase information. In other words, we had to find the requirements that should
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be obeyed by any physical implementation of the recording and erasure of infor-
mation. We then used stochastic thermodynamics to implement processes meeting
these requirements. Next, we identified the amount of information that is present in
the memory all along the erasure process. Finally, we could show that the rate at
which the information decreases during the erasure is a lower bound to the rate at
which thermodynamic entropy is produced. Moreover, we showed that, as long as
the memory contains some information, it is out of equilibrium to an extend linked
with the amount of information still present.

In chapter 5, we developed a simple model for a measurement device and for
the process of measuring the micro-state of some other system [GK11]. As in the
preceding chapter, we tried to find the minimal requirements that any measurement
device should satisfy. We then used stochastic thermodynamics to compute the
entropy that is produced in a cyclic measurement process. We showed that the
entropy production had two different non-negative contributions, one coming from
the loss of information about the previous measurement cycle, and one due to the gain
of information about the current cycle. These two contributions appear to behave
differently. The former is equal to the amount of information that is lost, in a way
reminiscent of chapter 5. The latter can be smaller than the information gained, but
it diverges in the error-free limit.

The link between information gain or loss and irreversibility can be (and will be)
exploited further at the fundamental level as well as at the applied level.

A fundamental issue that was not addressed in this work is the microscopic ex-
pression for the entropy production in adiabatic transformation. In fact, throughout
this work, we only considered transformations operated on systems in contact with
an equilibrium heat bath. The irreversibility always relied on the fact that any non-
equilibrium system relaxes towards equilibrium through heat exchanges with the
bath. During an adiabatic process, however, the system exchanges only work with
its environment and its evolution is dictated by the Hamiltonian equations. There is
currently no theory explaining entropy production based on Hamiltonian dynamics.
The results of stochastic thermodynamics now help us to understand the difficulty.
In fact, Hamiltonian dynamics conserves the Shannon entropy. In other words, the
information we have about the microscopic state of the system does not change
under Hamiltonian evolution. In order to understand the microscopic origin of en-
tropy production, one could search for reasons why the information one has about
the microscopic state of a thermally isolated system gets lost, despite Hamiltonian
evolution.

On the other hand, the thermodynamics of information processing might find in-
teresting applications in biological systems. In fact, biological systems are a preferred
field of application of stochastic thermodynamics, since many biological process op-
erate in solution, at a constant temperature. Moreover, the acquisition, the transfer,
or the erasure of information are task commonly performed even by the simplest
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living organisms. The results obtained in this work might be a first step towards the
understanding of the energetic costs involved in biological information processing.
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