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Notation

Ω computational domain

D ⊂ Ω arbitrary domain

diamD diameter of D

measD measure of the area of D

L differential operator

∇ gradient

∆ Laplacian

∂v
∂x , vx partial derivative of v with respect to x

C generic constant, independent of ε, of any mesh
and of the function under consideration

CM,p the constant of Lemma 28 on page 62

Ck(D) space of functions over D with continuous
k-th order derivatives

Ck,α(D) subspace of Ck(D), k-th order derivatives are
Hölder-continuous
with exponent α

Lp(D) p <∞: Lebesgue space of p-power
integrable functions over D
p =∞: Lebesgue space of essentially
bounded functions over D

Wk,p(D) standard Sobolev space, derivatives
up to order k lie in Lp(D)

Hk(D) Sobolev space Wk,2(D)

H1
0 (D) subspace of H1(D), vanishing boundary traces

H1,2(ΩN ) broken Sobolev space, see (4.32) on page 92

Qp(D) space of polynomials of degree p
in each variable over D

Pp(D) space of polynomials of
absolute degree p over D

ε perturbation parameter

β lower bound for convection

c0 lower bound for reaction

c? constant associated with the lower bound
for reaction, see page 71

1



2

γ the constant in (2.29), page 21;
penalty parameter in (2.76), page 30

σe penalty parameter of the CIP method
associated with an edge e, see 92

σ mesh parameter for S-type meshes

N number of mesh cells in each coordinate direction

λ mesh-transition point in Shishkin meshes

I a certain index set, see 74

E(I), E(II), E(III), E(IV ), set of interior edges of a certain class,
see Definition 6 on page 75

∼ equivalence of two quantities, see page 8

O(·), o(·) Landau symbols

α, β,γ multi-indices in N2

|α| := α1 + α2 order of the multi-index α

xα := xα1yα2 ,Dα := ∂α1

xα1

∂α2

yα1
standard multi-index notation

P , Q set of multi-indices

P (D) polynomial function space associated with P
over D, see page 45

P hull of P , see page 46

HPp (Λ) certain Sobolev function space, see page 46

hT := diamT diameter of an element T

h maxT hT , mesh size of the mesh;
small step size on a Shishkin mesh

hT := (hT,x, hT,y) size vector of the axis-aligned rectangle T

H large step size on a Shishkin mesh

hx, hy sizes of a mesh rectangle T in the coordinate
directions

ρT radius of largest inscribed circle of the element T

T , Th, ΩN , Ωh triangulations of Ω

S + E1 + E2 + E3 + E12 + E23 decomposition of solution u, see pages 21, 23

S +
∑4
i=1Ei + E12 + E23 + E34 + E41 decomposition of solution u, see page 71

Γ1, Γ2, Γ3, Γ4, the four sides of the unitsquare, see page 21

Ωf , Ωif , Ωbf , Ωc, Ωic, Ωbc subdomains of Ω, see page 24

Ωij , Ωi, Ωf subdomains of Ω, see page 72

uI piecewise nodal interpolant of u

πu approximation operator of u,
sometimes the L2-projection

Zh Scott-Zhang operator

ΠD local L2(D) projection onto a polynomial space
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·̂ quantity in a reference domain

Λ := [−1, 1]2 reference domain

M̂ reference macro-element

M,Mh macro-element mesh

SM macro-element neighbourhood, see page 57

ωM macro-element patch associated with M ,
see Definition 5 on page 58

Fi, Fi,j , F
γ
i,j (associate) functionals

σi,j a macro-element edge on a tensor product mesh
with (xi, yj) ⊂ σi,j

ϕ̂±1, ψ̂±1 Lagrangian C1 − P2 spline basis functions
on {[−1, 0], [0, 1]}, see page 42

ϕ̂±1,±1, φ̂±1,±1, χ̂±1,±1, ψ̂±1,±1 Lagrangian C1 −Q2 spline basis functions

on M̂ , see page 43

ϕi, ψi Lagrangian C1 − P2 spline basis functions,
see pages 58, 74

ϕi,j , φi,j , χi,j , ψi,j Lagrangian C1 −Q2 spline basis functions
on M, see page 74

ψdi dual spline basis functions, see pages 59, 74

Π̂, Π full C1 −Q2 interpolation operator,
see page 44

Π̂r, Πr reduced C1 −Q2 interpolation operator,
see page 47

Π̃ C1 −Q2 quasi-interpolation operator,
see pages 57, 74

Π̂x, Πx, Π̂y, Πy anisotropic interpolation operator,
see (3.75) on page 67

for Π̂x, Πx the roles of x and y are interchanged

u? a certain projection of u on a Shishkin mesh,
see pages 74–76

(·, ·)D L2-scalar product on D

a(·, ·), aN (·, ·), aΓ0(·, ·), B(·, ·), B±(·, ·) several bilinear forms

σe penalty parameter of the CIP method
associated with an edge e, see 92

‖ · ‖0,D, ‖ · ‖Lp(D) L2- and Lp-norm on D

‖ · ‖k,D, | · |k,D standard norm and semi-norm in Hk(D)

‖ · ‖ε energy norm, see 6

||| · ||| balanced CIP norm defined in (4.38) on page 93

‖ · ‖b balanced norm defined in (4.5) on page 86

‖ · ‖b,2 balanced norm defined in (4.12) on page 87

‖ · ‖X,Y,θ,p norm in an , see 16

|[ · ]|,
[[
·
]]

jump across an edge
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1
∣∣ Introduction

In a chemical reaction several substances called reactants are transformed into one or more
products. The local nature of this process on molecular level has an important implication:
The concentration of a product in a certain point will highly depend on the concentration of
reactants at that point. Hence, the spacial distribution of the concentrations of the substances
has to be considered. Diffusion causes the substances to spread out. Without other transport
phenomena this mixing process would yield a uniform concentration distribution eventually.
However, there might also be a mass transfer induced by a flow in the chemical reactor. The
latter transport process is called convection or advection.

In this work we are mainly interested in problems in which reaction or convection are the
dominant processes. The stationary linear reaction-convection-diffusion problem

Lu := −εu′′ε (x) + b(x)u′ε(x) + c(x)uε(x) = f(x) in (0,1), uε(0) = uε(1) = 0, (1.1)

can be considered the simplest mathematical model for these and related problems. Note
that the second-order derivative that models the diffusion is multiplied by a small coefficient
0 < ε� 1. Such problems are very common in fluid-flow. Especially they can be interpreted
as linearized Navier-Stokes equation with large Reynolds number. Moreover, they appear in
mathematical models for semi-conductor devices, see [50, 64, 43] for further applications. If
b ≡ 0 then (1.1) is of reaction-diffusion type. Generalizations of this equation have widespread
applications in the modelling of many biological and chemical processes (see e.g. [36] and the
references given in the first paragraph of that paper).

In general one might consider problems involving small parameters as perturbed problems of
simpler ones also called reduced problems in which the small values of the parameters are replaced
by zero. In case of a regular perturbation it is possible to study the reduced problem instead of
the perturbed one because their solutions are somewhat “close” to each other. However, there
are cases in which this approach fails:

For constant data (1.1) can be solved analytically. For instance, one obtains

uε(x) = x− exp
(
− 1−x

ε

)
− exp

(
− 1
ε

)

1− exp
(
− 1
ε

) (1.2)

for b = f ≡ 1 and c ≡ 0 or

uε(x) = 1−
exp

(
− 1−x√

ε

)
+ exp

(
− x√

ε

)

1 + exp
(
− 1√

ε

) (1.3)

for c = f ≡ 1 and b ≡ 0.
If we allow the parameter ε to become small then problem (1.1) is singularly perturbed

(with respect to the maximum norm): In the limiting case ε→ 0 the order of the differential
equation is reduced. However, we still demand uε to satisfy both boundary conditions of (1.1).
Consequently, the problem is somehow ill-posed. The simple examples (1.2) and (1.3) show
that, cf. [64, 43]

lim
x→xb

lim
ε→0

uε(x) 6= lim
ε→0

lim
x→xb

uε(x),

for some boundary point xb ∈ {0, 1} (more precisely, for (1.2) we have xb = 1 while for (1.3)
one can not interchange the limiting operations at any boundary point). Hence, the function
(x, ε) 7→ uε(x) has a singularity at (xb, 0). In [43] one finds a more formal definition:

5



6 CHAPTER 1. INTRODUCTION

Definition 1. Let B be a function space with norm ‖ · ‖B . Let D ⊂ Rd be a parameter domain.
The continuous function u : D → B, ε 7→ uε is said to be regular for ε → ε? ∈ ∂D if there
exists a function u? ∈ B such that:

lim
ε→ε?

‖uε − u?‖B = 0, (1.4)

otherwise u is said to be singular for ε→ ε?.
Let (Pε) be a problem with solution uε ∈ B for all ε ∈ D. We say (Pε) is singularly perturbed

for ε→ ε? ∈ ∂D in the norm ‖ · ‖B if u is singular for ε→ ε?.

From this formal definition it can be seen that the choice of the norm is very significant. A
fact that is also discussed in [24]. For instance, the constant coefficient problems associated
with (1.2) and (1.3) are singularly perturbed in the maximum norm because of (1.4). However,
both examples are not singularly perturbed in the L2 norm. In fact if we consider for instance
the convection-diffusion problem associated with (1.2) we find that for u? = id : x 7→ x it holds

‖uε − u?‖0 = O(ε1/2). (1.5)

This function u? is deeply connected to the solution (1.2) of the problem itself. A comparison
shows that the solution (1.2) can be decomposed into the smooth or regular component u?

and a singular one. The regular component is associated with the solution of the reduced
problem and the other one is often called a boundary layer function. For the solution (1.2)
of the convection-diffusion problem considered the boundary layer function is of the form
exp

(
−(1− x)/ε

)
. This function and its lower-order derivatives decay exponentially and can be

bounded by ε outside a neighbourhood of the point x = 1 with a width proportional to ε| ln ε|.
Hence, for a small value of ε the solution and its derivatives change rapidly near that point.
One refers to these narrow regions of rapid change as layers. More precisely, the solution (1.2)
features a boundary layer of width O(ε| ln ε|) at x = 1.

In view of (1.5) we see that (1.4) is in fact a condition on the underlying boundary layer
function and the norm considered: The bound (1.5) shows that the L2 norm is too weak
to capture the boundary layer function. Note that this observation is non-judgmental. An
appropriate measurement of accuracy is always user-defined. For certain applications global
L2-error control may be sufficient. Moreover, some methods introduce a natural norm by
themselves.

Another L2-based norm is given by the so-called energy norm of problem (1.1), which is an
ε-weighted H1-norm:

‖v‖2ε := ε|v|21 + ‖v‖20. (1.6)

Generally, we write Hk(D) with a positive integer k for the usual Sobolev space over the domain
D with associated semi-norm | · |k,D and norm ‖ · ‖k,D. We follow a widespread convention
and drop the symbol D from the notation for D = Ω. Let H1

0 (D) denote the space of Sobolev
functions in H1(D) whose traces vanish on ∂D. The inner product in L2(D), denoted by (·, ·)D
and the norm ‖ · ‖0,D with (v, v)D = ‖v‖20,D for all v ∈ L2(D), are treated similarly. These
definitions are extended to vector-valued functions, naturally.

The energy norm (1.6) is a natural choice for the analysis of Galerkin methods and in
particular the Galerkin finite element method (FEM) for the approximate solution of problem
(1.1).

For the boundary layer function E(x) := exp
(
−(1− x)/ε

)
we observe ‖E‖2ε = 1/2 +O(ε).

Hence, for this particular problem the energy norm captures the boundary layer function and
the problem associated with (1.2) is singularly perturbed in the energy norm. We shall soon
discuss the situation for reaction-diffusion problems in more detail.

Before that we turn our attention to the approximate solution of problem (1.1). For problems
with layer phenomena the numerical solution is much more challenging than in the standard
case. Morton says in [50] that “Accurate modelling of the interaction between convective and
diffusive processes is the most ubiquitous and challenging task in the numerical approximation
of partial differential equations”. For problems in which diffusion is the dominant process,
solutions vary gradually and a lot of numerical methods have been developed and analyzed.
However, unless the number of degrees of freedom is inversely dependent on (some positive
power of) ε, which is impractical, these classical schemes are often inappropriate for ε → 0.
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For instance, these methods fail to resolve the layers. In the case of convection-diffusion the
approximate solution is often polluted by huge oscillations due to stability issues rendering it
practically useless.

These effects are reflected in classical convergence results for these methods in the following
way: Let uhε denote a family of approximate solutions computed by a classical method using
equidistant meshes with element diameters h. Then an error estimate of classical type has the
form

‖uε − uhε‖ ≤ Khµ,

where K,µ > 0 are positive constants. Estimates of this type are not satisfactory in a singularly
perturbed setting because the constant K depends on some norm of certain derivatives of the
solution u which in turn depends on some negative power of the perturbation parameter ε.
Hence, the constant K blows up for ε→ 0 and a fine mesh does not imply a small error. On
the contrary, in certain cases mesh refinement can increase the error, initially. This fact can be
observed numerically if we use for a fixed ε a standard scheme on uniform meshes and measure
the maximum of the pointwise error in the discrete mesh points. These observations led to the
concept of uniform convergence (see also [64, Subsection I.2.1.3]).

Definition 2. A discretization method (with parameter h) yielding the family of approximations
uhε is called uniformly convergent (with respect to ε) of order µ > 0 in the norm ‖ · ‖, if there
exist positive constants ε0, C that are independent of ε and of any mesh used, such that for all
sufficiently small h (independently of ε), one has

sup
0<ε≤ε0

‖uε − uhε‖ ≤ Chµ.

Remark 1. Throughout this work C denotes a generic positive constant that is independent of
ε and of any mesh used. Moreover, for the sake of readability we shall drop the dependence of
uε on the perturbation parameter ε and write u instead of uε.

Methods for which ε-uniform convergence can be proved are called (parameter) robust.
These methods perform well regardless of how small the perturbation parameter ε is.

In this dissertation we focus on Galerkin methods. There are at least two possibilities to
adjust Galerkin methods to obtain good approximations even within the (arbitrarily sharp)
layer: one could consider adequate basis functions that reflect the behavior of the solution
within the layer or one could choose a fine mesh there. Additionally one may stabilize the
numerical method by for instance artificial diffusion (in particular streamline diffusion), local
projection or interior penalty, see [64]. Note however, that this will only improve the stability
of the method and has no effect on the approximation error which is a lower bound for the
error, naturally.

The concept of adapting the basis function is very elaborated in the one-dimensional setting.
The construction and application of exponentially fitted splines also called L-splines in a
Galerkin method is discussed at length for instance in [64, Section I.2.2.5]. Basically, the
idea is to approximate the coefficients of the operator L by piecewise constants over a one
dimensional mesh {xi}Ni=0 giving the differential operator L. Next L-splines `i, i = 1, . . . , N − 1
are constructed. The function `i is characterized by lying in the null space of the operator L in
every open mesh interval and the Lagrangian relation `i(ij) = δij with the discrete Kronecker
delta. Consequently, it has a support in [xi−1, xi+1].

In the two-dimensional setting the situation is different, see [64, Section II.3.5]. Most research
in this direction follows the idea of forming the tensor product of one-dimensional L-splines.
Hence, these approaches are limited to rectangular tensor product meshes. Sacco, Gatti and
Gotusso [65] give a more useful generalization of the L-spline concept to two dimensions using
on each mesh triangle the local basis functions

1, e(b1x+b2y)/ε and b1x− b2y.

Observe that all these functions lie in the null space of the operator L given by

Lv := −ε∆v + b1vx + b2vy.
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The paper [66] also examines this choice of basis functions with piecewise linear test functions
in a Petrov-Galerkin method, revealing a remarkable relation to a known but unusual upwinded
scheme.

Still, in the two dimensional case all result known so far that use this approach are of
low order. For instance, for convection-diffusion problems there seems to be no result in the
literature that proves uniform convergence of an order greater than 1/2 in a norm that is strong
enough to capture the exponential layers like the (discrete) L∞-norm or the energy norm. This
is perhaps the most substantial reason why there is a general consensus that the most promising
approach to solving any problem with layers (or singularities) is given by mesh adaptation
based on a posteriori error estimation. In these algorithms a stable numerical method is used to
compute an approximate solution on some coarse and standard grid, for instance an equidistant
one. Based on the approximate solution some error indicator is obtained revealing where the
mesh should be refined (or coarsened) in order to obtain a better-suited mesh. This process is
repeated iteratively until some stopping criterion is met. Unfortunately the research in this
direction for say convection-diffusion problems in more than one dimension is progressing very
slowly, see [64, Section III.3.3.6], [73, Section 10.5] and [58, Section 4]. In this dissertation we
shall only consider a priori mesh design relying on knowledge of the behaviour of the exact
solution.

Let us first fix some notation and definitions. Throughout we shall only consider so-called
admissible triangulations. This means that the considered domain Ω is decomposed into non-
overlapping (triangular or rectangular) elements and that two distinct elements with non-empty
intersection have either a common vertex or an entire common edge. Let Th denote a family of
triangulations of Ω. For any element T ∈ Th we denote by hT the diameter of T , by ρT the radius
of its largest inscribed circle and by |T | its area. Moreover, we set as usual h := maxT∈Th hT .
We call Th shape regular if hT ≤ CρT for all T ∈ Th. Hence, for a shape regular mesh one has

hT ≤ CρT ≤ ChT ≤ Ch for all T ∈ Th (1.7)

and a shape regular mesh features a bounded aspect ratio hT /ρT . The corresponding element T
is called isotropic. For triangular elements this is equivalent to Zlámal’s minimal angle condition
[83].

In certain applications (for instance in order to use certain quasi-interpolants) it is important
to have a global lower bound in (1.7) as well. A triangulation is called quasi-uniform if

h ∼ hT ∼ ρT for all T ∈ Th.

Here the notation a ∼ b symbolizes the equivalence of two quantities, i.e. the existence of two
positive constants C0 and C1 independent of any mesh (and of the function under consideration)
such that C0b ≤ a ≤ C1b. Obviously, quasi-uniformity of a family of triangulations implies its
shape regularity. However, this assumption is very restrictive. For instance, a family of locally
refined meshes generated by some adaptive algorithm might not be quasi-uniform. We call a
shape regular family of triangulations locally uniform if

hT ∼ hT ′ for all T, T ′ ∈ Th such that T ∩ T ′ 6= ∅.

As examples for locally uniform families of triangulations used in the approximation of functions
with boundary layers let us mention the graded meshes of [27] and [22, 23] or the modifications
of standard layer-adapted meshes in [62].

In general a layer-adapted mesh is characterized by condensing grid points within the
layer. We shall now present some frequently used layer-adapted meshes and comment on
error estimates obtained on these. The interested reader is referred to [43] for details. The
presentation is borrowed from [58, 43] and [64].

The idea of adjusting the mesh to the boundary layers for a reaction-diffusion problem was
introduced by Bakhvalov [7] in 1969. However, it is easy to extend this idea to other layers of
known structure. Let us consider a layer problem over the domain (0, 1). Within the layer, say
near x = 0, Bakhvalov proposed to use the function t = q(1− E(x)) — a mirrored and scaled
boundary layer function E — to map an equidistant t-grid back to the x-axis. More precisely,
the grid points xi are defined by

q
(
1− E(xi)

)
:= q

(
1− e−

βxi
σε

)
=

i

N
=: ti for i = 0, 1, . . . , τN.
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The parameter β is intrinsic to the layer problem. It is associated with the coefficients of the
differential operator involved. The other parameters are user chosen: q ∈ (0, 1) determines the
ratio of the number of mesh points within the layer to N (which is the overall number of mesh
intervals). The other parameter σ > 0 controls the grading. At a transition point τ (in the
t-domain) the Bakhvalov mesh changes from a graded to a uniform one, i.e. xi = ϕ(ti) for
i = 0, 1, . . . , N with the mesh generating function

ϕ(t) =





χ(t) := −σε
β

ln
q − t
q

for t ∈ [0, τ ],

χ(τ) +
(
1− χ(τ)

) t− τ
1− τ for t ∈ [τ, 1].

Note that neither the Bakhvalov mesh nor the other following standard layer-adapted meshes
are locally uniform. The transition point τ is chosen in such a way that ϕ ∈ C1[0, 1] with
ϕ(1) = 1. It can be obtained efficiently by solving the non-linear equation

χ′(τ) =
1− χ(τ)

1− τ
with a fixed-point iteration (and a start value τ = 0). Note that this equation is not solvable if
σε ≥ βq. In this case it is common practice to switch to a uniform mesh with N mesh intervals.
For the transition point χ(τ) with respect to the original x-domain one can show that

χ(τ) ∈
(
σε

β
ln
( β
σε
q
)
,
σε

β
ln
( β
σε

1

1− q
))

.

Consequently, the explicit definition χB := γε
β | ln ε|, which gives exp(−βx/ε) ≤ εγ for x ≥ χB ,

can be considered a reasonable alternative. Note that for this choice of a transition point it is
also possible to bound derivatives of the boundary layer function ε-uniformly in points away
from the layer. Meshes using this transition point and an adequate grading within the layer are
referred to as Bakhvalov-type meshes, i.e. the mesh generating function is given (with q = 1/2
for simplicity) by

ϕ(t) =




−σε
β

ln
(
1− 2(1− ε)t

)
for t ∈ [0, 1/2],

1− 2(1− χB)(1− t) for t ∈ [1/2, 1].

A Shishkin-type mesh is characterized by χS := min{q, γεβ lnN}. Hence, (for χS ≤ q which

is practically the only relevant case since otherwise N is exponentially large relative to ε−1 and
uniform meshes can be used)

exp(−βx/ε) ≤ N−γ for x ≥ χS ,
which is sufficient to facilitate ε-uniform error estimates. Consequently, γ is typically chosen
equal to the formal order of the method (though sometimes larger values are assumed). The
probably most-studied mesh of this class is the Shishkin mesh (see e.g. [49]) which is particularly
simple because it is piecewise uniform. It is constructed by dividing the intervals [0, χS ] and
[χS , 1] into qN and (1 − q)N equidistant mesh intervals, respectively. Note that a Shishkin
mesh does not fully resolve the layer: the derivative of a boundary layer function is still large
on part of the first coarse mesh interval.

In two dimensions frequently-studied layer-adapted meshes are tensor products of the
one-dimensional meshes considered over rectangular domains under the assumption that only
boundary layers and so-called corner layers are present (— for more general layer-adapted
meshes see [35], [47] and [64, Remarks III.3.121 and III.3.123]). In these tensor products meshes
we observe elements with arbitrarily high aspect ratio hT /ρT . If there is no ε-uniform bound for
this ratio of an element T , it is referred to as anisotropic element. We call a mesh anisotropic if
the underlaying family of meshes contains anisotropic elements.

The performance of the linear or bilinear Galerkin FEM over two dimensional Shishkin
meshes of tensor product type (draw diagonals into each mesh rectangle to obtain a Shishkin
triangulation into triangles) is well understood for convection-diffusion problems with only
exponential layers. For the error of the Galerkin FEM in the energy norm the result

‖u− uN‖ε ≤ CN−1 lnN (1.8)
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was established in [74, 16]. See, [59] for similar results over the more general Shishkin-type
meshes. The Galerkin FEM over Bakhvalov-type meshes is considered in [60]. It is shown that

‖u− uN‖ε ≤ CN−1Q(ε,N)

with some function Q that depends on ε and N very mildly, i.e. Q(ε,N) ≤
√

ln 10 for N ≥ 10
and ε ≥ 10−100.

For convection-diffusion problems with characteristic layers Roos [57] proves the validity of
(1.8) for the error of the Galerkin FEM on appropriately constructed Shishkin meshes. The
generalization to Shishkin-type meshes can be found in [43, Theorem 9.27].

Most results are known for reaction-diffusion problems. For instance, in the energy norm it
holds

‖u− uN‖ε ≤ C
(
ε1/4N−1 lnN +N−2

)

on appropriately constructed Shishkin meshes, see [16, 64]. It is possible to extend this result
to higher order elements (see [2] and [39]) if the solution features sufficient regularity. In this
case results proving exponential convergence for the hp-FEM [48] over hp meshes have been
obtained, too.

All the anisotropic layer-adapted meshes mentioned feature small mesh sizes in the direction
in which the solution changes rapidly. In the perpendicular direction larger mesh sizes are used.
In order to prove that the approximation error benefits from this setting one relies on so-called
anisotropic interpolation error estimates: Let for instance T be a rectangular element with
sides aligned to the x- and y-coordinate axes and of size hx and hy, respectively. Then for
v ∈ H2(T ) the bilinear nodal interpolant vI that interpolates v in the four vertices of T exists
and the error of bilinear nodal interpolation satisfies (see [3, 2]):

∥∥(v − vI)x
∥∥

0,T
≤ C

(
hx‖vxx‖0,T + hy‖vxy‖0,T

)
. (1.9)

Note that this estimate holds true independently of the aspect ratio of the element T . Conse-
quently, a small mesh size hx can compensate for a large second derivative of v with respect to
x. We shall prove similar but new results in Chapter 3.

In the introduction of [2, page 13] Apel states that “anisotropic mesh refinement offers a
great potential for the construction of efficient numerical procedures, more efficient than it is
possible with the restriction to a bounded aspect ratio. So one can expect a broad utilization of
such meshes”.

However, anisotropic meshes have certain drawbacks as well. For instance, the analysis
of certain quasi-interpolants is much more elaborated in the case of locally uniform meshes,
cp. [62, 2]. Moreover, there is not much known with respect to anisotropic a posteriori mesh
refinement which can be challenging even from a practical point of view (for instance for a
problem with a curved interior layer). Finally, it is well-known that the usage of anisotropic
meshes in a Galerkin FEM leads to very high condition numbers of the system matrices of the
resulting linear systems and it is challenging to realize multi-grid or multi-level methods on
these usually non-nested families of meshes, see [46].

Let us now come back to the question whether reaction-diffusion problems are singularly
perturbed in the energy norm. Let E denote one of the boundary layer functions given by
x 7→ exp

(
−(1− x)/

√
ε
)

and x 7→ exp
(
−x/√ε

)
. If we measure E in the energy norm a short

calculation gives

‖E‖ε = O(ε1/4). (1.10)

Hence, the energy norm fails to capture the boundary layer functions for reaction-diffusion
problems. In view of Definition 1 reaction-diffusion problems are not singularly perturbed with
respect to the energy norm. This observation raises two questions:

1. Does the Galerkin finite element method on standard meshes yield satisfactory approxi-
mations for the reaction-diffusion problem with respect to the energy norm?

2. Is it possible to strengthen the energy norm in such a way that the boundary layers are
captured and that it can be reconciled with a robust finite element method, i.e. robust
with respect to this strong norm?
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The first question is interesting not only from a mathematical point of view:

• Any adaptive method that fails to resolve the layers of a reaction-diffusion problem in
an initial phase will feature similar error reduction in the energy norm until the mesh is
sufficiently layer-adapted.

• In certain applications the energy norm might be a feasible measurement of accuracy.
Then our results show that standard methods can be applied. One may use the freedom
gained in the choice of the mesh by adapting it to other goals like in the dual weighted
residuals approach (in contrast to resolving the layers for stability reasons).

• Whenever resolving the layer in a reaction-diffusion problem is of the essence our results
demonstrate that the energy norm is not adequate. This observation questions the quality
of certain methods and the significance of the corresponding error estimates in a wide
variety of papers.

In Chapter 2 we answer the first question. We show that Galerkin finite element approxi-
mation uh converges ε-uniformly in the energy norm to the solution of the reaction-diffusion
problem on standard shape regular meshes with mesh size h. More precisely, we show in Section
2.1 that the error of the linear or bilinear Galerkin FEM satisfies

‖u− uh‖ε ≤ Ch1/2, (1.11)

given certain regularity conditions on the data of the problem over a polygonal and convex
domain Ω. For instance, (1.11) holds true for f/c ∈ H1(Ω) (see Theorem 5) which has been
published in [63]. Extending a technique of Wahlbin and Schatz [67] we prove in Theorem
4 that ∇c ∈ L∞(Ω) and f ∈ H1/2,∞ (which is a certain intermediate Sobolev space) is also
sufficient for (1.11). These assumptions allow the presence of interior layers generated by jump
discontinuities of f along Lipschitz curves. Numerical experiments (presented in Subsection
2.4) indicate that these estimates are sharp.

These results are completely new in two dimensions. So far a similar estimate has only been
known for the local discontinuous Galerkin least-squares method over Ω = (0, 1)2 assuming that
u ∈ H3(Ω), see [41].

As already mentioned these results are possible because the energy norm fails to capture
the layers. Consequently, one can prove similar ε-uniform error estimates for the Galerkin
FEM on standard meshes applied to problems with relatively (with respect to the norm) weak
layers. For instance, Leykekhman [37] considers a reaction-diffusion problem with homogeneous
Neumann boundary conditions (2.26) which leads to the formation of very weak layers. In that
paper he proves almost first order convergence in the global maximum norm.

In Section 2.2 we extend this idea and consider a two dimensional convection-diffusion
problem posed in the unit square with characteristic layers and a Neumann outflow condition.
Hence, the exponential boundary layer is weakened. We follow [63] and show that the error of
the linear or bilinear Galerkin FEM on a shape regular mesh with mesh size h satisfies

‖u− uh‖ε ≤ Ch1/3,

under reasonable assumptions on the solution u, see Theorem 7.
Finally, Section 2.3 deals with a convection-diffusion problem in Ω = (0, 1)2 with a strong

exponential layer and weaker characteristic layers. Assuming a solution decomposition, the
Galerkin FEM is proven to be robust on a family of meshes with N2 elements that is only adapted
with respect to the strong exponential layer and neglects the presence of the characteristic
layers. This result extends [63, Section 3.2, Theorem 1] by proving that the bilinear Galerkin
finite element approximation uN satisfies

‖u− uN‖ε ≤ CN−1/2. (1.12)

In particular, in contrast to the result in [63] no relation of ε and N is required to conclude
ε-uniform convergence of order 1/2. Inspecting the proof of (1.12) one finds that imposing the
Dirichlet boundary conditions along the characteristic boundary of Ω in a weak sense might be
beneficial. We show in Theorem 15 that this is indeed the case if ε is very small in comparison
to N−1.
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Chapter 3 is concerned with approximation theory. Let V N be a finite element space of
piecewise polynomials over some triangulation ΩN of Ω and let {ϕi}Ni=1 be a basis of V N . One
can obtain an approximation πv ∈ V N of a sufficiently smooth function v over Ω by

πv(x) =
N∑

i=1

Fi(v)ϕi(x),

where Fi, i = 1, . . . , N are linear functionals. If Fi(v) is simply the evaluation of (a certain
derivative of) v at some point xi (or a linear combination of such), then we call this functional
local. As an example consider nodal interpolation over Lagrange elements, where Fj(v) := v(xj)
and ϕi(xj) = δij for all mesh points xj of ΩN . Consequently, πv(xj) = v(xj).

In contrast, the well-known Clément operator, in which the linear functionals are given by
averaging operators, is not local. More precisely if {ϕi}Ni=1 is again the Lagrangian basis of V N ,
then Fj(v) is defined by some projection of v over the patch of elements that are adjacent to
xj . The Clément operator is called a quasi-interpolation operator because in general one only
has Fj(v) ≈ v(xj).

As already mentioned the analysis of numerical methods over anisotropic meshes for layer
problems relies critically on so-called anisotropic (quasi-)interpolation error estimates, like (1.9).
In Chapter 3 we extend the theory of [2] in the following ways:

• We consider (quasi-)interpolation operators defined on macro-elements. This means
that the (quasi-)interpolant of a function v is defined by means of linear functionals
Fi on a certain patch of neighbouring elements (— the macro-element). Alternatively,
we can point out the main difference by considering (quasi-)interpolation on a single
macro-element: Then the value of Fi(v) is based on values of v within the considered
macro-element but piecewise polynomial basis functions ϕi have to be used.

• The results of [3] are limited to interpolation operators that are based solely on function
values of the function v to be interpolated. In [2] additionally the Scott-Zhang interpolation
operator and certain modifications of it are considered. However, there are no results for
(quasi-)interpolation operators that process derivatives of v, though the developed theory
is capable of dealing with such operators of Hermite-type. The problem appears to be
that it is hard to determine the so-called associated functionals, that are needed within
the theoretical framework. We show in Chapter 3 that for rectangular elements that are
aligned to the coordinate axes these are given by two dimensional divided differences.
This observation makes it possible to obtain anisotropic interpolation error estimates for
C1 elements over tensor product meshes.

Summarizing, a general theory for obtaining anisotropic interpolation error estimates for
macro-element interpolation is developed, revealing general construction principles. We apply
this theory to interpolation operators on a macro-type of biquadratic C1 finite elements on
rectangular tensor product grids. The resulting macro-element can be viewed as a rectangular
version of the C1 Powell-Sabin element.

This theory also shows how interpolation on the C1 Bogner-Fox-Schmidt finite element
space (or higher order generalizations) can be analyzed in a unified framework. Moreover,
we discuss a modification of Scott-Zhang type that (processes derivatives of v and) gives
optimal error estimates under the regularity required without imposing quasi-uniformity on
the family of macro-element meshes used. Finally, we introduce and analyze an anisotropic
macro-element interpolation operator, which is the tensor product of one-dimensional C1 − P2

macro-interpolation and P2 Lagrange interpolation.
These results are used to approximate the solution of a singularly perturbed reaction-diffusion

problem on a Shishkin mesh that features highly anisotropic elements. Hereby we obtain an
approximation whose normal derivative is continuous along certain edges of the mesh, enabling
a more sophisticated analysis of a continuous interior penalty (CIP) method in Chapter 4.

We dedicate Chapter 4 to the task of devising finite element methods for reaction-diffusion
problems that are robust with respect to a norm that strengthens the energy norm and is able
to capture the arising boundary layers. We proceed as follows:

In Section 4.1 the ideas of [42] are sketched. This paper was the first to deal with the
particular problem of designing a finite element method for which error estimates in a better
suited so-called balanced norm could be proven. Also, it coined this expression.
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We adapt the main idea of that paper in Section 4.2 to propose and analyze a new C0

interior penalty method that features improved stability properties in comparison with the
Galerkin FEM. For the latter balanced norm results are obtained in Section 4.3. In that section
we also examine a supercloseness property of the Galerkin finite element approximation and
comment on error estimates in the L2- and the maximum-norm.

At the end of Chapter 4 we supply numerical experiments, give a brief summary and mention
further work in this field of research.
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2
∣∣ Galerkin FEM error estima-

tion in weak norms

2.1 Reaction-diffusion problems

In the introduction we have seen from a 1D example that the reaction-diffusion problem is
not singularly perturbed in the energy norm in the sense of Definition 1: The energy norm
fails to capture the layers, raising the question whether or not it is possible to prove uniform
convergence for the Galerkin finite element method in this weak norm without fitting the mesh
to the boundary layers.

In the one-dimensional setting an answer to this question can be found in [6, p. 121]:

Theorem 1. Let u ∈ H1
0 (0, 1) ∩H2(0, 1) be the unique solution of

−εu′′ + cu = f in (0, 1),

u(0) = u(1) = 0,

where 0 < ε� 1, c, f ∈ H2(0, 1) and c ≥ c0 > 0. Let V h denote the space of piecewise linear
basis functions on a uniform mesh with mesh size h. Then the solution uh ∈ V h of the Galerkin
finite element method satisfies the uniform estimate

‖u− uh‖ε :=
(
ε|u− uh|21 + |u− uh|20

)1/2 ≤ Ch1/2.

Proof. The proof relies on the quasi-optimality property of the Galerkin error with respect to
the energy norm:

‖u− uh‖ε ≤ C inf
vh∈V h

‖u− vh‖ε, (2.1)

which follows from the fact that the bilinear form associated with the Galerkin method is an
inner product on H1

0 (Ω) which induces a norm that is equivalent to the energy norm. In a
standard trick the infimum in the right hand side of (2.1) is estimated by choosing vh = uI

the Lagrange interpolant of u. Consequently, the following interpolation error estimates and a
priori information of u are very helpful:

|u− uI |1 ≤ Ch|u|2 ≤ Chε−3/4, ‖u− uI‖0 ≤ Ch|u|1 ≤ Chε−1/4, (2.2)

|u− uI |1 ≤ C|u|1 ≤ Cε−1/4, ‖u− uI‖0 ≤ Ch1/2‖u‖L∞(Ω) ≤ Ch1/2. (2.3)

For the simple proof consider the cases h ≤ √ε and h ≥ √ε separately and apply (2.2) and
(2.3), respectively.

We see that indeed the Galerkin finite element method converges ε-uniformly on a uniform
mesh.

Remark 2. The assumptions c, f ∈ H2(0, 1) in Theorem 1 were required in [6] to prove the
needed a priori estimates on u. Even if one assumes their validity in the two-dimensional case
the arguments of the proof do not extend to 2D because the Lagrange interpolant is not H1

stable in contrast to (2.3) in the one-dimensional case.

15
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In higher dimensions this question appears to be unanswered until recently [63]. We shall
shortly give elegant proofs for the two dimensional case that also prove the 1D case reducing
the regularity of the data required. Some of the results presented in this chapter have been
published in [63].

Let us consider the reaction-diffusion problem

−ε∆u+ cu = f in Ω ⊂ R2, (2.4a)

u = 0 on ∂Ω, (2.4b)

where Ω is polygonal and convex, 0 < ε � 1 and f ∈ L2(Ω), c ∈ C(Ω) with c ≥ c0 > 0.
Under these assumptions problem (2.4) has a unique solution u ∈ H1

0 (Ω) ∩ H2(Ω) which is
characterized by sharp boundary layers near ∂Ω.

For the definition of trial and test space for the Galerkin finite element method we introduce
a shape-regular mesh Th and let h := maxT∈Th diamT denote the maximal mesh size. Let
V h ⊂ H1

0 (Ω) denote the space of linear or bilinear elements over the given mesh. The Galerkin
finite element approximation uh ∈ V h is then determined as the solution of

ε(∇uh,∇vh) + (cuh, vh) = (f, vh) for all vh ∈ V h. (2.5)

The interesting paper [67] deals mainly with deriving local and global L∞-error estimates for
the Galerkin finite element method (2.5) for problem (2.4). We shall come back to them later.
However, Schatz and Wahlbin [67] also prove an uniform error estimate in the L2(Ω)-norm:

Theorem 2. Assume f ∈ H1/2,∞(Ω) and ∇c ∈ L∞(Ω). Then the error of the linear or bilinear
Galerkin finite element method on a shape regular mesh satisfies

‖u− uh‖0 ≤ Ch1/2. (2.6)

In order to supply a deeper understanding of the first assumption and the proof we shall
shorty sketch the K-interpolation method for two admissible Banach spaces X,Y (i.e. there is a
Hausdorff topological vector space Z, such that there are continuous embeddings X,Y ↪→ Z).
Note that in this case X ∩ Y normed by ‖v‖X∩Y := max{‖v‖X , ‖v‖Y } and X + Y normed by

‖v‖X+Y := inf
v=x+y

x∈X, y∈Y
‖x‖X + ‖y‖Y

are Banach spaces and it is possible to define intermediate spaces V such that X ∩ Y ↪→ V ↪→
X + Y . More precisely for t > 0 and v ∈ X + Y let

K(t, v) := inf
v=x+y

x∈X, y∈Y
‖x‖X + t‖y‖Y .

For θ ∈ (0, 1), 1 ≤ p ≤ ∞ define the interpolation space (X,Y )θ,p as

(X,Y )θ,p := {v ∈ X + Y : ‖v‖X,Y,θ,p <∞},

where

‖v‖X,Y,θ,p =





(∫ ∞

0

(
t−θK(t, v)

)p dt

t

)1/p

for 1 ≤ p <∞,

sup
t>0

t−θK(t, v) for p =∞.

Remark that for any choice of θ and p the normed space (X,Y )θ,p is complete. For more
information on interpolation spaces we refer the interested reader to [8] or [77].

With this definitions we can specify the space H1/2,∞(Ω) := (L2(Ω), H1
0 (Ω))1/2,∞ which is

ideally suited for the data of problem (2.4):

• It allows the data to have jump discontinuities along Lipschitz curves in Ω.

• In contrast to the Hilbertian interpolation space H
1/2
00 (Ω) := (L2(Ω), H1

0 (Ω))1/2,2 or H1
0

the space H1/2,∞(Ω) does not demand boundary conditions. This fact can nicely be seen
from the result H1(Ω) ↪→ H1/2,∞(Ω), see [67].
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The estimate (2.6) now follows by interpolating the corresponding results for f ∈ L2(Ω) and
f ∈ H1

0 (Ω). We shall sketch the technique.

Proof of Theorem 2. It is possible to prove

‖u− uh‖0 ≤ C‖f‖0 (2.7a)

and if c ∈W1,∞(Ω) and f ∈ H1
0 (Ω)

‖u− uh‖0 ≤ Ch‖f‖1, (2.7b)

see [67]. The latter first order estimate is not surprising because the last assumption precludes
u from having boundary layers due to the fact that the solution f/c of the reduced problem
to (2.4) already fulfills the homogeneous boundary conditions and no boundary layer function
correcting an incompatibility is needed.

Now let f ∈ H1/2,∞(Ω). Based on the construction of that space f = f0 + f1 can be
decomposed into components f0 ∈ L2(Ω) and f1 ∈ H1

0 (Ω). By linearity of the involved
differential operator this decomposition carries over to the solution of (2.4): u = u0 + u1,
where ui are the solutions of the problems (2.4) in which f is replaced by fi. Similarly, such
a decomposition can be given for the Galerkin finite element approximation: uh = uh0 + uh1 .
Hence, by (2.7)

‖u− uh‖0 ≤ ‖u0 − uh0‖0 + ‖u1 − uh1‖0 ≤ C
(
‖f0‖0 + h‖f1‖1

)
.

Switching to the infimum of all possible decompositions of f = f0 + f1 one arrives at

‖u− uh‖0 ≤ CK(h, f) = Ch1/2h−1/2K(h, f) ≤ Ch1/2‖f‖L2(Ω),H1
0 (Ω),1/2,∞.

It turns out that (2.6) holds also true if the L2-norm of the error is replaced by the stronger
energy norm. We shall prove this in Theorem 4. Before that we need the following lemma.

Lemma 3. The solution u of (2.4) satisfies the following a priori estimates:

‖u‖ε ≤ C‖f‖0, (2.8)

if f ∈ H1
0 (Ω) and c ∈W1,∞(Ω), then

ε1/2|u|2 + ‖u‖1 ≤ C‖f‖1, (2.9)

if f ∈ H1(Ω) ∩ L∞(Ω) and c ∈W1,∞(Ω), then

ε3/4|u|2 + ε1/4|u|1 + ‖u‖0 ≤ C
(
ε1/4|f |1 + ‖f‖0 + ‖f‖L∞(Ω)

)
, (2.10)

if u0 := f/c ∈ H1(Ω), then

ε3/4|u|2 + ε1/4|u|1 + ε−1/4‖u− u0‖0 ≤ C
(
ε1/4|u0|1 + ‖u0‖0,∂Ω

)
. (2.11)

Proof. The bound (2.8) follows by multiplying (2.4a) with u and applying integration by parts.
Similarly, testing the differential equation with −∆u integrating over Ω and using integration

by parts as well as u, f ∈ H1
0 (Ω) one obtains

ε‖∆u‖20 + (c∇u,∇u) + (u∇c,∇u) = (∇f,∇u).

Hence,

ε‖∆u‖20 + c0|u|21 ≤ ‖∇f − u∇c‖0|u|1 ≤
c0
2
|u|21 +

1

2c0
‖∇f − u∇c‖20.

Since |u|2 ≤ C‖∆u‖0 for the considered domain one obtains

ε|u|22 +
c0
2
|u|21 ≤

1

2c0

(
|f |1 + ‖∇c‖L∞(Ω)‖u‖0

)2
.

By (2.8) the stability estimate (2.9) follows.
The result (2.10) is taken from [42, Section 2] where it is proven rigorously.
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For (2.11) we follow [63] and rewrite the differential equation (2.4a) to

−ε∆u+ c(u− u0) = 0. (2.12)

This implies

|u|2 ≤ Cε−1‖u− u0‖0. (2.13)

Multiplying (2.12) with u− u0 integrating over Ω and applying integration by parts yields

ε
(
∇u,∇(u− u0)

)
+
(
c(u− u0), u− u0

)
= −ε

(∂u
∂n

, u0

)
∂Ω

Hence,

ε|u|21 + c0‖u− u0‖20 ≤ −ε
(∂u
∂n

, u0

)
∂Ω

+ ε(∇u,∇u0). (2.14)

The fist term on the right hand side is estimated using Young’s inequality and a trace inequality:

∣∣∣∣ε
(∂u
∂n

, u0

)
∂Ω

∣∣∣∣ ≤
α
√
ε

2
‖u0‖20,∂Ω +

Cε3/2

2α
|u|1|u|2

≤ α
√
ε

2
‖u0‖20,∂Ω +

C

2α

(
β

2
ε|u|21 +

1

2β
ε2|u|22

)

≤ α
√
ε

2
‖u0‖20,∂Ω +

Cβ

4α
ε|u|21 +

C

4αβ
‖u− u0‖2.

(2.15)

The last inequality is due to (2.13). Clearly, one can choose α > 0 and β > 0 independently of
ε in such a way that the sum of the last two terms can be bounded by ε|u|21/4 + c0‖u− u0‖20/2.
For the last term of (2.14) we proceed likewise:

|ε(∇u,∇u0)| ≤ ε|u|1|u0|1 ≤
ε

4
|u|21 + ε|u0|21. (2.16)

Collecting (2.14), (2.15) and (2.16) we obtain

ε|u|21 + ‖u− u0‖20 ≤ C
(
ε|u0|21 +

√
ε‖u0‖20,∂Ω

)
(2.17)

Combining (2.13) and (2.17) completes the proof.

Remark 3. As already mentioned in the proof of Theorem 2 the assumption f ∈ H1
0 (Ω) precludes

u from having boundary layers. This is why (2.9) is possible.

Theorem 4. Assume f ∈ H1/2,∞(Ω) and ∇c ∈ L∞(Ω). Then the error of the linear or bilinear
Galerkin finite element method on a shape regular mesh satisfies

‖u− uh‖ε ≤ Ch1/2. (2.18)

Proof. For the error of the Galerkin finite element method for problem (2.4) with f ∈ L2(Ω)
one can improve (2.7a) to

‖u− uh‖ε ≤ C‖f‖0. (2.19)

Let us prove this. We consider the case h ≤ √ε first. Let πu ∈ V h ⊂ H1
0 denote the L2

projection which is H1-stable on the given shape regular triangulation.

‖u− uh‖ε ≤ C‖u− πu‖ε = C
(√
ε|u− πu|1 + ‖u− πu‖0

)
≤ C

(√
ε‖u‖1 + h‖u‖1

)

≤ C√ε‖u‖1 ≤ C‖u‖ε ≤ C‖f‖0,

where we also used (2.8).
It remains to study the case

√
ε ≤ h. With the help of the H1-stability of π and an inverse

estimate we obtain

|u− uh|1 ≤ |u− πu|1 + |πu− uh|1 ≤ C
(
|u|1 + h−1‖πu− uh‖0

)
.
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Hence, using (2.7a),
√
ε ≤ h and the stability estimate ‖u‖ε ≤ C‖f‖0

‖u− uh‖ε ≤ C
(√
ε|u− uh|1 + ‖u− uh‖0

)
≤ C

(√
ε|u|1 + (1 +

√
εh−1)‖u− uh‖0

)
≤ C‖f‖0.

Next we consider problem (2.4) with f ∈ H1
0 (Ω): Using the quasi-optimality property and

the a priori estimate (2.9) one obtains

‖u− uh‖ε ≤ C‖u− uI‖ε ≤ C
(
ε1/2|u− uI |1 + ‖u− uI‖0

)

≤ Ch
(
ε1/2|u|2 + |u|1

)
≤ Ch‖f‖1.

(2.20)

The estimate (2.18) now follows by interpolating (2.19) and (2.20) in complete analogy to
the proof of Theorem 2.

As already mentioned Theorem 4 allows the right hand side f to be discontinuous along
Lipschitz curves which will cause the presence of interior layers, see Subsection 2.4.2 for a
numerical experiment with an example problem. Also the demanded regularity of f ∈ H1/2,∞(Ω)
fits nicely with the half convergence order obtained. In fact

‖u‖L2(Ω),H1
0 (Ω),1/2,∞ ≤ C‖f‖L2(Ω),H1

0 (Ω),1/2,∞ ≤ C,

for c ∈ W1,∞(Ω) and choosing θ > 1/2 breaks ‖u‖L2(Ω),H1
0 (Ω),θ,∞ ≤ C due to the boundary

layers regardless of the regularity of f , see [67].
Nevertheless the assumption c ∈ W1,∞(Ω) of Theorem 4 is unsatisfactory. We shall now

present a result from [63] that side-steps this assumption allowing a rougher coefficient c.

Theorem 5. Let the solution u0 := f/c of the reduced problem to (2.4) satisfy the estimate
|u0|1 + ‖u0‖0,∂Ω ≤ C. Then for the Galerkin finite element method on a shape-regular mesh of
linear or bilinear elements with mesh size h the ε-uniform error estimate (2.18) holds true.

Proof. Based on (2.1) it remains to estimate the approximation error. We bound the latter by
a projection error. To this end, let πu ∈ V h denote an approximation of u governed by an L2-
and H1-stable operator π. On a shape regular mesh one might choose the L2 projection or the
Clément quasi-interpolant.

We start off with the error in the L2-norm:

‖u− πu‖20 ≤ C
(
‖u0 − πu0‖20 + ‖u− u0 − π(u− u0)‖20

)
(2.21)

In contrast to |u|1 the solution u0 of the reduced problem is bounded uniformly: |u0|1 ≤ C.
Hence, the first summand on the right hand side of (2.21) can be estimated in a classical
manner. For the other summand we use once the same well-known estimate and once the L2

stability.

‖u− πu‖20 ≤ Ch2|u0|21 + Ch|u− u0|1‖u− u0‖0. (2.22)

By (2.11) one has ‖u− u0‖0 ≤ C
(
ε1/2|u0|1 + ε1/4‖u0‖0,∂Ω

)
≤ Cε1/4 and

|u− u0|1 ≤ |u|1 + |u0|1 ≤ 2|u0|1 + ε−1/4‖u0‖0,∂Ω ≤ Cε−1/4.

Hence, we can conclude from (2.22) that

‖u− πu‖20 ≤ Ch2 + Chε−1/4ε1/4 ≤ Ch. (2.23)

Similarly, using (2.11) again

ε|u− πu|21 = ε|u− πu|1|u− πu|1
≤ Cεh|u|2|u|1 ≤ Cεhε−3/4ε−1/4 ≤ Ch.

(2.24)

Collect (2.23) and (2.24) to complete the proof.

Remark 4. By an inverse estimate and (2.11) one can conclude that

√
ε|u− uh|1 ≤ Cε1/4 +

√
ε|uh|1 ≤ Cε1/4 + C

√
ε

h
.

Hence, for h� √ε the error in the energy norm is dominated by the L2(Ω) error. This fact is
nicely reflected in Figure 2.2 depicting the results of numerical experiments.



20 CHAPTER 2. GALERKIN FEM ERROR ESTIMATION IN WEAK NORMS

The estimate of Remark 4 as well as others in this section use that the boundary layer is not
captured by the energy norm as already mentioned in the introduction, see (1.10). Consequently,
the situation is entirely different if stronger norms are considered. In [67], Schatz and Wahlbin
consider the maximum norm and prove the quasi-optimality result

‖u− uh‖L∞(Ω) ≤ ln(C + ε/h) min
vh∈V h

‖u− vh‖L∞(Ω) (2.25)

for the linear Galerkin finite element method on a quasi-uniform family of triangulations and
state that for certain “higher order” element spaces, the logarithmic factor can be replaced
with a constant C, [67, page 48]. Moreover, they derive a localized version of (2.25) from
which uniform almost second order convergence in the maximum norm over certain interior
subdomains can be concluded.

However, the Galerkin finite element method on a quasi-uniform mesh cannot converge
uniformly with respect to ε in the L∞(Ω) norm, because even the best approximation with
respect to this norm fails to approximate an arbitrarily sharp layer on these kind of meshes.
This conjecture can also be found in [67, page 51].

Remark 5. It is unlikely that the situation improves if the class of triangulations is enlarged by
allowing locally uniform triangulations. For instance, simple upwinding on a locally uniform
family of meshes can not yield uniform convergence in the discrete maximum norm for the
convection-diffusion problem, see [64, Remark I.2.85, page 121]. See also [62] for the difficulties
of obtaining uniform error estimates of the Galerkin finite element method on locally uniform
meshes for convection-diffusion problems in the energy norm.

Leykekhman [37] considers the case of homogeneous Neumann boundary conditions, more
precisely

−ε∆u+ u = f in Ω ⊂ R2, (2.26a)

∂u

∂n
= 0 on ∂Ω, (2.26b)

where Ω is a domain in Rn, n ≥ 2, with smooth boundary, 0 < ε ≤ 1 and f ∈ L2(Ω). In this
problem the boundary layers are of a weaker nature, less pronounced, see [67, Page 49]. Using
the techniques of [67] he obtains for the linear Galerkin finite element error on quasi-uniform
meshes an estimate similarly to (2.25) but in which the best approximation is measured in
some weighted L∞(Ω) norm. Like in [67] this result is then localized yielding almost optimal
order interior convergence. Moreover, assuming f ∈W1,∞(Ω) he shows in Corollary 2.3 that

‖u− uh‖L∞(Ω) ≤ C(lnh)3 min{h2/ε, h}‖f‖W1,∞(Ω)
. (2.27)

We see that the Galerkin finite element method for problem (2.26) on a quasi-uniform mesh
is almost first order ε-uniformly convergent in the global maximum norm. Hence, we may
conclude from this result that the maximum norm is too weak to capture the boundary layers
arising in problem (2.26). This is of course due to the very weak nature of the layers. In fact,
in one space dimension the solution structure is again well-understood. For Ω = (0, 1) the
boundary layer functions behave like

√
ε exp(−c?x/√ε) and

√
ε exp(−c?(1 − x)/

√
ε). For a

simple and elegant proof of this fact, see [51, page 178]. We see that even first-order derivatives
remain bounded in the maximum norm for ε→ 0. Consequently, regarding Definition 1 this
Neumann problem is not singularly perturbed with respect to the maximum norm.

Note that this observation is in stark contrast to the general statement in [24, Page 7] that
the need for a priori information of the solution can be avoided if the maximum norm is used.

2.2 A convection-diffusion problem with weak character-
istic layers and a Neumann outflow condition

We have seen at the end of the previous section that Neumann boundary conditions lead to the
formation of weaker layers in comparison to Dirichlet boundary conditions. This is theoretically
clear based on the theory of matched asymptotic expansion, see e.g. [64, Page 16] concerning a
one-dimensional convection-diffusion problem.
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In two space dimensions the situation is similar. The paper [52] considers a convection-
diffusion problem on the unit square with constant coefficients. The convection is aligned to
two edges of the domain leading to the formation of two characteristic layers along these edges.
The problem is posed with a Neumann boundary condition along the outflow boundary and
Dirichlet conditions on the remaining three sides, where the data is allowed to be incompatible
to a certain degree. The paper sheds light on the regularity of the solution. Moreover, a solution
decomposition is obtained yielding pointwise bounds on derivatives of the solution and revealing
the dependence of the solution on the small diffusion coefficient ε.

In this section we shall consider a similar problem, following [63]:

−ε∆u− bux + cu = f in Ω := (0, 1)2, (2.28a)

∂u

∂x

∣∣∣∣
x=0

= 0, u|x=1 = 0 and u|y=0 = u|y=1 = 0, (2.28b)

where 0 < ε� 1, b ∈W 1,∞(Ω), b ≥ β > 0 with some constant β, c ∈ L∞(Ω), f is sufficiently
smooth and

c+
1

2
bx ≥ γ > 0. (2.29)

Let us introduce a notation for the sides of Ω:

Γ1 = {(x, 0) : 0 ≤ x ≤ 1}, Γ2 = {(0, y) : 0 ≤ y ≤ 1},
Γ3 = {(x, 1) : 0 ≤ x ≤ 1}, Γ4 = {(1, y) : 0 ≤ y ≤ 1}. (2.30)

Under the assumptions made one can easily show that the bilinear form

a(w, v) := ε(∇w,∇v) + (−bwx + cw, v) (2.31)

is coercive in V = {v ∈ H1(Ω) : v|Γi = 0, i = 1, 3, 4 in the sense of traces} with respect to the
energy norm. Hence, by continuity of a(·, ·) and the well-known Lax-Milgram Lemma, problem
(2.28) is uniquely solvable in V . The solution u possesses characteristic boundary layers of
width O(

√
ε ln(1/ε)) along the characteristic boundary Γ1 ∪ Γ3 that is parallel to the direction

of convection. Additionally, the solution possesses a weak exponential layer at the outflow
boundary Γ2 where u is required to satisfy homogeneous Neumann boundary conditions.

In the corners of the domain Ω derivatives of u are unbounded, in general. One refers to
the solution components that cause this phenomenon as corner singularities. We shall neglect
these, assuming that the right hand side f allows for the following solution decomposition to
hold true:

u = S + E1 + E2 + E3 + E12 + E23, (2.32a)

where for all (x, y) ∈ Ω and 0 ≤ i+ j ≤ 2 we have the pointwise estimates

∣∣∣∣
∂i+jS

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C,
∣∣∣∣
∂i+jE1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−j/2e−y/
√
ε,

∣∣∣∣
∂i+jE2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε1−ie−βx/ε,

∣∣∣∣
∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j/2−1)e−βx/εe−y/
√
ε

(2.32b)

and bounds for E3 and E23 similarly to E1 and E12, respectively. In (2.32a) the term S
corresponds to the well-behaved regular solution component of u. The components E1 and E3

contain the characteristic layers along Γ1 and Γ3. Similarly, E2 covers the weak exponential
layer near Γ2. Finally, Eij contains the corner layer that arises at the intersection of Γi and Γj ,
(i, j) ∈ {(1, 2), (2, 3)}.
Remark 6. In the case of constant coefficients we could use [52] to specify local compatibility
conditions on f at the vertices of Ω such that the bounds (2.32b) can be proven to hold true.
Remark that the pointwise bounds assumed here are stronger than needed for the presented
error analysis. In fact we only need the estimates (2.33) which bound certain L2(Ω)-based
norms.

The solution decomposition (2.32) implies the following a priori estimates.
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Corollary 6. Assume (2.32) and set E := u− S. Then u and the layer components E satisfy:

|S|1 ≤ C, |E|1 ≤ Cε−1/4, |u|2 ≤ Cε−3/4,

‖E‖0 ≤ Cε1/4,
∥∥Ex

∥∥
0
≤ Cε1/4,

∣∣Ex
∣∣
1
≤ Cε−1/2.

(2.33)

As in the previous Section, let V h denote the space of linear or bilinear finite elements on
a shape-regular mesh. Then the Galerkin approximation uh ∈ V h is governed by solving the
linear system

a(uh, vh) = (f, vh) for all vh ∈ V h.

Remark that by coercivity of a(·, ·) the approximate solution uh is well defined.

Theorem 7. Let (2.33) hold true. Then the error of the finite element method with linear or
bilinear finite elements on a shape-regular mesh satisfies the ε-uniform estimate

‖u− uh‖ε ≤ Ch1/3.

Proof. Like in the proof of Theorem 5 let π denote an L2- and H1-stable operator giving the
approximation πu ∈ V h of u, for instance the L2 projection. We can estimate the approximation
error as in the proof of Theorem 5:

‖u− πu‖20 ≤ C
(
‖S − πS‖20 + ‖E − πE‖20) ≤ C

(
h2|S|21 + h|E|1‖E‖0

)
.

Hence, by (2.33) the bound (2.23) follows. Similarly, (2.33) yields the estimate (2.24). Conse-
quently, one obtains

‖u− πu‖ε ≤ Ch1/2. (2.34)

It remains to estimate the discrete error component πu− uh ∈ V h. A standard argument using
coercivity and Galerkin orthogonality yields

‖πu− uh‖2ε ≤ Ca(πu− uh, πu− uh) = Ca(πu− u, πu− uh).

By the definition of a(·, ·) and the Cauchy-Schwarz inequality

‖πu− uh‖2ε ≤ C
(
‖πu− u‖ε‖πu− uh‖ε +

∣∣(b(πu− u)x, πu− uh
)∣∣
)

≤ C
(
‖πu− u‖ε + ‖(πu− u)x‖0

)
‖πu− uh‖ε.

(2.35)

Hence, we need to estimate ‖(πu− u)x‖0.

‖(u− πu)x‖30 ≤ C
(
‖(S − πS)x‖30 + ‖(E − πE)x‖30

)
≤ Ch3 + ‖Ex‖20

∥∥(E − πE)x
∥∥

0

≤ Ch3 + Cε1/2h|Ex|1 ≤ Ch3 + Ch.
(2.36)

Collect (2.34), (2.35) and (2.36) to complete the proof.

Remark 7. Numerically we observe ε-uniform convergence of order 0.5. Clearly, Theorem 7
could be improved if one could devise a L2- and H1-stable projection πu of u with better
approximation properties with respect to ‖(u− πu)x‖0.

Remark 8. Note that we only dealt with homogeneous boundary data. The inhomogeneous
case is more difficult, in particular Shishkin’s obstacle theorem applies (see [72] for a similar
result and note that this phenomenon is not caused by the parabolic nature of the problem
considered therein). This negative result should be kept in mind whenever a problem whose
solution exhibits characteristic boundary layers is discretized on an equidistant mesh. It states
that it is impossible to devise a difference scheme (with coefficients drawn from a fixed class of
functions) on an equidistant mesh that features uniform convergence in the discrete L∞-norm
inside the characteristic boundary layers without excluding certain classes of (smooth and
compatible) boundary data. Remember that (besides the homogeneous boundary data) our
result for the Galerkin FEM relies on the weakness of the energy norm; it fails to capture the
characteristic layers.
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2.3 A mesh that resolves only part of the exponential
layer and neglects the weaker characteristic layers

We have seen in Sections 2.1 and 2.2 that the Galerkin finite element solution on standard
meshes converges ε-uniformly to the solution u of certain problems in norms that fail to capture
the layers of u.

However, in other problems the solution u might contain several kinds of layers and the
norm considered may fail to capture only some of them. With respect to the other results of
this chapter it is interesting to know if in such a scenario the Galerkin finite element method is
robust on a mesh fitted to the stronger layers only. Besides this theoretical point of view this
question is interesting:

• An adaptive algorithm for these singularly perturbed problems based on the Galerkin
FEM and a posteriori error estimation may fail to refine the characteristic layers initially
due to their weaker nature. Can one still expect a meaningful approximation?

• Problems and costs concerning remeshing of the domain may be avoided. For instance,
imagine a weak interior layer moving through the domain in a singularly perturbed
parabolic problem.

As a model problem we consider

−ε∆u− bux + cu = f in Ω = (0, 1)2,

u|∂Ω = 0,
(2.37)

assuming 0 < ε� 1, b ∈W 1,∞(Ω), b ≥ β > 0 with some constant β, c ∈ L∞(Ω), f is sufficiently
smooth and

c+
1

2
bx ≥ γ > 0. (2.38)

As in the previous section defined in (2.30), let Γi denote the sides of Ω. Problem (2.37) has a
unique solution u that is characterized by an exponential boundary layer near Γ2. Moreover, u
possesses two characteristic layers near Γ1 and Γ3. We shall shortly see that the energy norm
captures the exponential layer but fails to do so for the characteristic layers which must be
therefore of a weaker nature.

Again we assume a solution decomposition:

u = S + E1 + E2 + E3 + E12 + E23, (2.39a)

where for all (x, y) ∈ Ω and 0 ≤ i+ j ≤ 2 we have the pointwise estimates

∣∣∣∣
∂i+jS

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C,
∣∣∣∣
∂i+jE1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−j/2e−y/
√
ε,

∣∣∣∣
∂i+jE2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−βx/ε,
∣∣∣∣
∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j/2)e−βx/εe−y/
√
ε

(2.39b)

and bounds for E3 and E23 similarly to E1 and E12, respectively.

Remark 9. From [32, 33] one can deduce compatibility and smoothness conditions on f such
that (2.39) holds true in the constant coefficient case.

Measuring the boundary layer component E2 in the energy norm, we see ‖E‖ε = O(1). Hence,
problem (2.39) is singularly perturbed in the energy norm in view of Definition 1. However, for
the weaker characteristic layer components E1 and E3 a short calculation gives ‖E1‖ε+‖E3‖ε =
O(ε1/4). Consequently, the energy norm is too weak to capture the characteristic layers.

On a mesh sequence that is fitted to all layers one can achieve uniform first order convergence
for the bilinear Galerkin finite element method in the energy norm. For instance, on appropriately
constructed Shishkin meshes with N2 elements the error satisfies

‖u− uN‖ε ≤ CN−1 lnN.
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Ωi
f Ωi

c Ωb
cΩb

f

τ

1
N

Figure 2.1: Domain decomposition, N = 6.

However, the scope of this chapter is different. As motivated in the beginning of this
section we introduce a mesh that is fitted to the stronger exponential layer but we ignore the
characteristic layers. More precisely, we use a Shishkin mesh. Let N be an even positive integer
which will be used to denote the number of mesh intervals in each coordinate direction. Define
the transition point

τ := min
{1

2
,

2ε

β
lnN

}
.

A one-dimensional Shishkin mesh is piecewise equidistant, i.e. over (0, 1) it subdivides each of
the intervals (0, τ) and (τ, 1) into N/2 intervals giving N + 1 grid points, i.e. for τ < 1/2:

xi :=





ih for i = 0, 1, . . . ,
N

2
with h =

4ε

β
N−1 lnN,

τ +

(
i− N

2

)
H for i =

N

2
+ 1, . . . , N with H = (1− τ)

2

N
.

(2.40)

The mesh is fine near x = 0: In (0, τ) the mesh size is h = O(εN−1 lnN). To the right of τ the
size H of the mesh intervals is equivalent to N−1.

We introduce a rectangular mesh ΩN over Ω by forming the tensor product of the described
Shishkin mesh in the x-direction with a uniform mesh (giving the grid points yj = jN−1 for
j = 0, . . . , N) in the y-direction.

For our subsequent error analysis we partition Ω as follows, see Figure 2.1:

Ω = Ωif ∪ Ωbf ∪ Ωic ∪ Ωbc,

where

Ωf := (0, τ)× (0, 1), Ωif := (0, τ)× (y1, yN−1), Ωbf := (0, τ)×
(
(0, y1) ∪ (yN−1, 1)

)
,

Ωc := (τ, 1)× (0, 1), Ωic := (τ, 1)× (y1, yN−1), Ωbc := (τ, 1)×
(
(0, y1) ∪ (yN−1, 1)

)
.

Note that Ωf contains all the anisotropic elements, which means that the aspect ratio of
these mesh rectangles is unbounded for ε→ 0. In contrast to this the mesh is quasi-uniform
in Ωc. The subscripts f and c refer to the mesh sizes in x-direction which are fine in Ωf and
coarse elsewhere. Ωbf denotes the first and last ply of elements along Γ1 and Γ3, i.e. close to the

characteristic boundary. Ωif = Ωf \ Ωbf is the remainder of Ωf . The symbols Ωbc and Ωic have a
similar meaning. These subdomains will be useful in the estimation of the characteristic layer
component, later on. See Figure 2.1 for some illustration of these definitions and the mesh Ω6.

In order to define the numerical method let V N ⊂ H1
0 (Ω) denote the space of piecewise

bilinears over the mesh ΩN . The bilinear Galerkin finite element method now reads: Find
uN ∈ V N such that the linear system

a(uN , vN ) = (f, vN ) for all vN ∈ V N (2.41)



2.3. CONVECTION-DIFFUSION ON A MESH IGNORING CHAR. LAYERS 25

with a(·, ·) from (2.31) is satisfied. Note that uN is well defined due to the coercivity of the
bilinear form in the energy norm with respect to V N .

If the mesh evolves into a very fine (or even uniform) one, i.e. N−1 ≤ Cε, then we could
analyze the Galerkin finite element method in a conventional manner. Note that in this case all
the layers — in particular the characteristic layers of width O

(√
ε ln(1/ε)

)
— are resolved by

the mesh. It remains to study ε ≤ CN−1.

Next, let us consider an intermediate case in which the mesh is layer-adapted, more precisely

N−1 ≤ √ε ≤ CN−1/2. (2.42)

Consequently, we also have

ε1/2 ≤ C(lnN)−2. (2.43)

Lemma 8. Assuming (2.42) the Lagrange interpolation error on a Shishkin mesh with bilinear
elements and N intervals in each coordinate direction that is only fitted to the exponential
boundary layer satisfies

‖u− uI‖ε ≤ CN−1/2. (2.44)

Proof. We use the solution decomposition (2.39) to estimate the the interpolation error by
splitting u into components and applying a triangle inequality. The interpolation error of the
regular solution component is easily bounded

‖S − SI‖0 ≤ CH2|S|2 ≤ CN−2 and |S − SI |1 ≤ CH|S|2 ≤ CN−1. (2.45)

Since the mesh is fitted to the exponential boundary layer component E2 one can use
standard arguments [64, See e.g. III.3.5.2] and (2.43) to obtain

‖E2 − EI2‖0 ≤ CN−2, ε1/2|E2 − EI2 |1 ≤ CN−1 lnN,

yet,

‖E2 − EI2‖L∞(Ω) ≤ CN−2 lnN2. (2.46)

For the characteristic layer components, for instance for E1, we use (2.39b) and (2.42) to
obtain

‖E1 − EI1‖0 ≤ CH|E1|1 ≤ Cε−1/4N−1 ≤ CN−1/2. (2.47)

Similarly,

‖(E1 − EI1 )x‖0 ≤ CH
(
‖(E1)xx‖0 + ‖(E1)xy‖0

)
≤ Cε−1/4N−1 ≤ CN−1/2, (2.48)

ε1/2‖(E1 − EI1 )y‖0 ≤ Cε1/2H
(
‖(E1)xy‖0 + ‖(E1)yy‖0

)
≤ Cε−1/4N−1 ≤ CN−1/2., (2.49)

Finally, we consider a corner layer, for instance E12. In the subdomain Ωf the mesh
rectangles T of size h := (hx, hy) are anisotropic. We use the well-known bilinear anisotropic
interpolation error estimates [3, 2]

‖v − vI‖0,T ≤ C
∑

|α|=m
hα‖Dαv‖0,T for m = 1, 2,

‖Dγ(v − vI)‖0,T ≤ C
∑

|α|=1

hα‖Dα+γv‖0,T for |γ| = 1.

Hence, by (2.43),

‖E12 − EI12‖0,Ωf ≤ C
(
h‖(E12)x‖0,Ωf +H‖(E12)y‖0,Ωf

)
≤ C

(
hε−1/4 +Hε1/4

)
≤ Cε1/4N−1.

(2.50)
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Similarly, and by (2.42)

ε1/2‖(E12 − EI12)x‖0,Ωf ≤ Cε1/2
(
h‖(E12)xx‖0,Ωf +H‖(E12)xy‖0,Ωf

)

≤ Cε1/2
(
εN−1 lnNε−5/4 +N−1ε−3/4

)
≤ Cε−1/4N−1 ≤ CN−1/2,

(2.51)

ε1/2‖(E12 − EI12)y‖0,Ωf ≤ Cε1/2
(
h‖(E12)xy‖0,Ωf +H‖(E12)yy‖0,Ωf

)

≤ Cε1/2
(
εN−1 lnNε−3/4 +N−1ε−1/4

)
≤ Cε1/4N−1.

(2.52)

In the remainder of the domain we have x ≥ τ = 2ε/β lnN . Consequently, (2.39b) yields
pointwise smallness of the corner layer, ‖E12‖L∞(Ωc) ≤ CN−2. By maximum-norm stability of
Lagrange interpolation one obtains

‖E12 − EI12‖0,Ωc ≤ ‖E12 − EI12‖L∞(Ωc) ≤ C‖E12‖L∞(Ωc) ≤ CN−2. (2.53)

Eventually, we use an inverse estimate in Ωc where the mesh is quasi-uniform with mesh size
H ∼ N−1:

ε1/2|E12 − EI12|1,Ωc ≤ ε1/2
(
|E12|1,Ωc + |EI12|1,Ωc

)
≤ Cε1/2

(
ε−1/4N−2 +H−1‖EI12‖0,Ωc

)

≤ C
(
ε1/4N−2 +N‖EI12‖L∞(Ωc)

)
≤ CN−1. (2.54)

Summarizing (2.45)–(2.54) we get ‖u− uI‖ε ≤ C(N−1/2 +N−1 lnN) ≤ CN−1/2.

Theorem 9. Let (2.42) be satisfied. Using the described Shishkin mesh that is only fitted to
the exponential boundary layer with N intervals in each coordinate direction the error of the
Galerkin finite element method with bilinear elements satisfies

‖u− uN‖ε ≤ CN−1/2.

Proof. Based on Lemma 8 and a triangle inequality it remains to estimate the discrete error
component ξ := uI −uN ∈ V N . Coercivity of the bilinear form with respect to the energy norm
and Galerkin orthogonality yield

C‖ξ‖2ε ≤ a(ξ, ξ) ≤ a(uI − u, ξ) = ε
(
∇(uI − u),∇ξ

)
−
(
b(uI − u)x, ξ

)
+
(
c(uI − u), ξ

)
.

Let E := E1 +E3 denote the sum of the characteristic layer components of u. We introduce
the following splitting uI − u = EI − E + (u− E)I − (u− E) and use integration by parts for
all terms except for E − EI to obtain

C‖ξ‖2ε ≤ ε
(
∇(uI − u),∇ξ

)
−
(
b(EI − E)x, ξ

)
+
(
c(EI − E), ξ

)

+
(
b
(
(u− E)I − (u− E)

)
, ξx

)
+
(

(bx + c)
(
(u− E)I − (u− E)

)
, ξ
)
.

(2.55)

Note that ξ ∈ V N implies ξ ≡ 0 on x = 0 and x = 1. Hence, we may choose to apply integration
by parts to any component of u separately without introducing terms on the boundary.

All summands but the fourth one of the right hand side in (2.55) are easily estimated using
the Cauchy-Schwarz inequality. Collecting (2.44), (2.48) and (2.47) gives

‖ξ‖2ε ≤ C
(
‖(u− uI)‖ε + ‖(E − EI)x‖0 + ‖E − EI‖0

)
‖ξ‖ε + C

∣∣∣
(
b
(
(u− E)I − (u− E)

)
, ξx

)∣∣∣

≤ CN−1/2‖ξ‖ε + C
∣∣∣
(
b
(
(u− E)I − (u− E)

)
, ξx

)∣∣∣. (2.56)

The last term is split into components and is sometimes estimated in Ωf and Ωc separately.
For the regular solution component S we use the Cauchy-Schwarz inequality, (2.45) and

(2.42):
∣∣(b(SI − S), ξx

)∣∣ ≤ C‖S − SI‖0‖ξx‖0 ≤ CN−2‖ξx‖0 ≤ CN−1‖ξ‖ε. (2.57)

For the exponential boundary layer component the Hölder inequality and (2.46) yield in Ωf
∣∣(b(EI2 − E2), ξx

)
Ωf

∣∣ ≤ C meas(Ωf )1/2‖E2 − EI2‖L∞(Ωf )‖ξx‖0,Ωf
≤ ε1/2N−2(lnN)5/2‖ξx‖0 ≤ CN−1/2‖ξ‖ε.

(2.58)
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In Ωf we estimate the corner layer components using the Cauchy-Schwarz inequality with
(2.50) and (2.42). For instance, for E12 we have

∣∣(b(EI12 − E12), ξx
)

Ωf

∣∣ ≤ C‖E12 − EI12‖0,Ωf ‖ξx‖0,Ωf
≤ Cε1/4N−1‖ξx‖0 ≤ CN−1/2‖ξ‖ε.

(2.59)

Obviously, a similar estimate holds true for E23.
Finally, we consider Ẽ := E2 +E12 +E23 in Ωc where the mesh is quasi-uniform and of mesh

size H ∼ N−1. Based on x ≥ τ = 2ε/β lnN for all points (x, y) ∈ Ωc and (2.39b) we observe
that Ẽ is pointwise small, i.e. ‖Ẽ‖L∞(Ωc) ≤ CN−2. Consequently, an inverse estimate gives

∣∣(b(ẼI − Ẽ), ξx
)

Ωc

∣∣ ≤ C‖Ẽ − ẼI‖0,Ωc‖ξx‖0,Ωc
≤ C‖Ẽ − ẼI‖L∞(Ωc)N‖ξ‖0,Ωc
≤ C‖Ẽ‖L∞(Ωc)N‖ξ‖ε ≤ CN−1‖ξ‖ε.

(2.60)

Collecting (2.56), (2.57), (2.58), (2.59) and (2.60) completes the proof.

Finally, we consider the most interesting case in which ε is small in comparison to N−1, i.e.

√
ε ≤ N−1. (2.61)

Some techniques used for this case have been published in [63]. Note that the argument
presented can be carried out without assuming the solution decomposition (2.39). Instead one
may use an asymptotic approximation of Schieweck [68] — as was done in [63].

In view of (2.61) the fact that the characteristic layer terms and the corner layer components
are of order O(ε1/4) in the energy norm gives

‖u− (S + E2)‖ε = ‖E1 + E2 + E12 + E23‖ε ≤ Cε1/4 ≤ CN−1/2. (2.62)

This observation motivates the following splitting:

‖u− uN‖ε ≤ ‖u− (S + E2)‖ε + ‖S + E2 − π(S + E2)‖ε + ‖π(S + E2)− uN‖ε (2.63)

with some projection π(S + E2) ∈ V N of S + E2. By (2.62) we have already an estimate for
the first term in (2.63). In order to study the second one we need to specify the projector π.
Note that for the sum of regular solution component and exponential boundary layer one has

(S + E2)|x=0 = (S + E2)|x=1 = 0 but in general S + E2 6≡ 0 on Γ2 and Γ4.

Hence, we cannot use a standard projector because this would break π(S + E2) ∈ V N . Instead
we modify bilinear interpolation for grid points on Γ2 ∪ Γ4:

(πv)(xi, yj) :=

{
v(xi, yj) for 0 ≤ i ≤ N , 1 ≤ j ≤ N − 1

0 otherwise.

Before we turn our attention to the second term in (2.63) we show a useful stability result
for the projector π.

Lemma 10. Consider the mesh rectangle T = [xi, xi+1]× [yN−1, 1] for i ∈ {0, . . . , N − 1} with
an edge length of H in y-direction. Let v ∈ C(T ) ∩W1,∞(T ). Then

‖(πv)x‖0,T ≤ C
√
H‖vx(·, yN−1)‖0,(xi,xi+1).

Proof. One easily checks that for (x, y) ∈ T and with hi := xi+1 − xi

πv(x, y) = v(xi, yN−1)
(xi+1 − x)(1− y)

hiH
+ v(xi+1, yN−1)

(x− xi)(1− y)

hiH
.

Hence,

(πv)xy(x, y) =
1

hiH

(
v(xi, yN−1)− v(xi+1, yN−1)

)
= − 1

hiH

∫ xi+1

xi

vx(s, yN−1) ds.
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Using this identity and (πv)x(x, 1) = 0 gives

(πv)x(x, y) = −
∫ 1

y

(πv)xy(x, t) dt =
1

hiH

∫ 1

y

∫ xi+1

xi

vx(s, yN−1) dsdt.

Squaring, using 0 ≤ 1− y ≤ H and applying the Cauchy-Schwarz inequality yields

(
(πv)x(x, y)

)2 ≤ 1

h2
iH

2
H2
(∫ xi+1

xi

|vx(s, yN−1)|ds
)2

≤ 1

h2
i

hi

∫ xi+1

xi

(
vx(s, yN−1)

)2
ds.

Integrating this estimate over T and taking the square root the proof is complete.

Lemma 11. Assuming (2.61) the projection error of S + E2 satisfies

‖S + E2 − π(S + E2)‖ε ≤ CN−1/2.

Proof. Set ũ = S +E2. Since the projection is given by bilinear interpolation in Ωif and Ωic, we
can use standard arguments [64, See e.g. III.3.5.2] to obtain

‖ũ− πũ‖ε,Ωif ≤ CN
−1 lnN and ‖ũ− πũ‖ε,Ωic ≤ CN

−1.

It remains to estimate the projection error in the subdomains Ωb
f and Ωb

c adjacent to the
characteristic boundary. Here the projection of ũ is non-standard because the values along the
characteristic boundaries y = 0 and y = 1 are ignored and replaced by zero.

In Ωbf we use that ũ as well as πũ are bounded to get

‖ũ− πũ‖0,Ωbf ≤ ‖ũ− πũ‖L∞(Ωbf )(meas Ωbf )1/2 ≤ Cε1/2N−1/2(lnN)1/2 ≤ CN−1/2.

Similarly, by an inverse estimate, (2.39b) and (2.61)

ε1/2‖ũy − (πũ)y‖0,Ωbf ≤ ε
1/2
(
‖ũy‖0,Ωbf + ‖(πũ)y‖0,Ωbf

)

≤ Cε1/2
(
‖ũy‖L∞(Ωbf ) +H−1‖πũ‖L∞(Ωbf )

)
(meas Ωbf )1/2

≤ Cε1/2N−1/2(lnN)1/2 ≤ CN−1/2.

For the derivative with respect to x we use Lemma 10 and (2.39b):

ε1/2‖ũx − (πũ)x‖0,Ωbf ≤ ε
1/2
(
‖ũx‖0,Ωbf + ‖(πũ)x‖0,Ωbf

)

≤ Cε1/2H1/2
(
ε−1/2+ ‖ũx(·, yN−1)‖0,(0,τ) + ‖ũx(·, y1)‖0,(0,τ)

)
≤ CN−1/2

because ‖ũx(·, yN−1)‖0,(0,τ) + ‖ũx(·, y1)‖0,(0,τ) ≤ Cε−1/2.

Next we consider Ωb
c and estimate the components S and E2, separately. For S in Ωb

c we
use the same arguments as for ũ in Ωbf : By ‖πS‖L∞(Ωbc)

≤ ‖S‖L∞(Ωbc)
≤ C one obtains

‖S − πS‖0,Ωbc ≤ ‖S − πS‖L∞(Ωbc)
(meas Ωbc)

1/2 ≤ CN−1/2.

The derivative with respect to y is bounded using an inverse estimate and (2.61)

ε1/2‖Sy − (πS)y‖0,Ωbc ≤ ε
1/2
(
‖Sy‖0,Ωbc + ‖(πS)y‖0,Ωbc

)

≤ Cε1/2
(
‖Sy‖L∞(Ωbc)

+H−1‖πS‖L∞(Ωbc)

)
(meas Ωbc)

1/2

≤ Cε1/2N1/2 ≤ CN−1/2.

For the x-derivative a triangle inequality and Lemma 10 yields

ε1/2‖Sx − (πS)x‖0,Ωbc ≤ ε
1/2
(
‖Sx‖0,Ωbc + ‖(πS)x‖0,Ωbc

)

≤ Cε1/2
(

(meas Ωbc)
1/2 +

√
H
)
‖Sx‖L∞(Ωbc)

≤ Cε1/2N−1/2.
(2.64)

In Ωbc we have x ≥ τ . Consequently, ‖E2‖L∞(Ωbc)
≤ CN−2 and

‖E2 − πE2‖0,Ωbc ≤ C‖E2‖L∞(Ωbc)
≤ CN−2, (2.65)

ε1/2|E2 − πE2|1,Ωbc ≤ Cε
1/2
(
|E2|1,Ωbc +H−1‖E2‖L∞(Ωbc)

)
≤ C(ε1/2N−1 +N−2),

where we used an inverse estimate again.
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Theorem 12. Assume that (2.61) holds true. The error of the bilinear Galerkin finite element
method for problem (2.37) on a Shishkin meshes with N intervals in each coordinate direction
that is only fitted to the exponential boundary layer satisfies

‖u− uN‖ε ≤ CN−1/2. (2.66)

Proof. Based on (2.63), (2.62) and Lemma 11 it remains to estimate the discrete error component
ξ := π(S + E2)− uN ∈ V N in (2.63). Using coercivity of a(·, ·) and Galerkin orthogonality

C‖ξ‖2ε ≤ a(ξ, ξ) = a
(
π(S + E2)− u, ξ

)
= a

(
π(S + E2)− (S + E2), ξ

)
+ a(S + E2 − u, ξ).

(2.67)

We study the last term first. Integration by parts as in (2.55) but this time for the corner layer
terms and the Cauchy-Schwarz inequality gives

|a(S + E2 − u, ξ)| = |a(−E1 − E2 − E12 − E23, ξ)|
≤ C‖E1 + E2 + E12 + E23‖ε‖ξ‖ε+

∣∣(b(E12 + E23), ξx
)∣∣+

∣∣(b(E1 + E2)x, ξ
)∣∣

≤ C
(
ε1/4 + ε−1/2‖E12 + E23‖0 + ‖(E1 + E2)x‖0

)
‖ξ‖ε ≤ Cε1/4‖ξ‖ε.

Hence, by (2.61)

a(S + E2 − u, ξ) ≤ CN−1/2‖ξ‖ε. (2.68)

Similarly, to (2.55) we start to estimate the first summand of (2.67), splitting it into

∣∣a
(
π(S + E2)− (S + E2), ξ

)∣∣ ≤ ‖π(S + E2)− (S + E2)‖ε‖ξ‖ε
+
∣∣(b(πS − S)x, ξ

)∣∣+
∣∣(b(πE2 − E2), ξx

)∣∣ (2.69)

The first summand in (2.69) is easily bounded by N−1/2‖ξ‖ε based on Lemma 11.
In Ωi := Ωif ∪ Ωic where πv = vI coincides with bilinear interpolation one can use standard

arguments for the other terms, i.e. (2.58), (2.60) and

∣∣(b(πS − S)x, ξ
)

Ωi

∣∣ ≤ C‖(SI − S)x‖0,Ωi‖ξ‖0,Ωi ≤ CN−1‖ξ‖ε. (2.70)

In Ωbc we estimate

∣∣(b(πS − S)x, ξ
)

Ωbc

∣∣ ≤ C‖(πS − S)x‖0,Ωbc‖ξ‖0,Ωbc ≤ CN
−1/2‖ξ‖ε (2.71)

using the Cauchy-Schwarz inequality and (2.64). Clearly, a similar estimate holds true in Ωbf .

By (2.65) the smallness of the exponential boundary layer component E2 in Ωb
c and an

inverse estimate give

∣∣(b(πE2 − E2), ξx
)

Ωbc

∣∣ ≤ C‖πE2 − E2‖0,Ωbc‖ξx‖0,Ωbc ≤ CN
−2H−1‖ξ‖0 ≤ CN−1‖ξ‖ε. (2.72)

It remains to estimate
∣∣(b(πE2−E2), ξx

)
Ωbf

∣∣ to complete the proof. Note that applying Hölder’s

inequality is too crude by a logarithmic factor:

∣∣(b(πE2 − E2), ξx
)

Ωbf

∣∣ ≤ C‖πE2 − E2‖L∞(Ωcf )(meas Ωcf )1/2‖ξx‖0 ≤ N−1/2(lnN)1/2‖ξ‖ε.

We estimate more carefully:

∣∣(b(πE2 − E2), ξx
)

Ωbf

∣∣ ≤
∣∣(b(πE2 − EI2 ), ξx

)
Ωbf

∣∣+
∣∣(b(EI2 − E2), ξx

)
Ωbf

∣∣

The second summand is again bounded by (2.58) in a standard way. Let us estimate the first
summand on the lower ply of elements of Ωbf denoted by ω := [0, τ ]× [0, y1] as the other upper
ply can be treated similarly. By the Cauchy-Schwarz inequality

∣∣(b(πE2 − EI2 ), ξx
)
ω

∣∣ ≤ C‖πE2 − EI2‖0,ω‖ξx‖0,ω. (2.73)
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The term πE2 − EI2 is discrete (but not in V N ) and the only non-vanishing coefficients in a
nodal basis representation of this term correspond to basis functions along the characteristic
boundaries Γ1 and Γ3. Consequently,

∥∥πE2 − EI2
∥∥2

0,ω
=

N/2∑

i=1

∥∥πE2 − EI2
∥∥2

0,[xi−1,xi]×[0,y1]
≤ C

N/2∑

i=1

∫ y1

0

∫ xi

xi−1

max
x∈{xi−1,xi}

(E2(x, 0))2 dxdy

≤ C
N/2∑

i=1

∫ y1

0

∫ xi

xi−1

e−2βxi−1/ε dxdy

In order to bound this term we adapt a technique of Stynes and Tobiska, see e.g. [76, Lemma
3.2.]. In fact, e−2βxi−1/ε ≤ e−2βx/ε for x ∈ [xi−2, xi−1]. Hence,

∥∥πE2 − EI2
∥∥2

0,ω
≤ C

N/2−1∑

i=1

∫ y1

0

∫ xi

xi−1

e−2βx/ε dxdy + C

∫ y1

0

∫ x1

0

e−2βx0/ε dxdy

≤ CH
∫ τ

0

e−2βx0/ε dx+ ChH ≤ CH(ε+ h) ≤ CεH.
(2.74)

Collecting (2.73) and (2.74) gives
∣∣(b(πE2 − EI2 ), ξx

)
ω

∣∣ ≤ C
√
εH‖ξx‖0,ω ≤ CN−1/2‖ξ‖ε. (2.75)

Similarly, an estimate on the upper ply of elements belonging to Ωbf follows. Summarizing the
proof is complete.

Since one can use standard arguments to obtain an error estimate superior to (2.66) in the
regime N−1 ≤ Cε combining Theorems 12 and 9 gives the main result of this section.

Corollary 13. Assume that the solution u of (2.37) can be decomposed according to (2.39).
Let ΩN denote the rectangular Shishkin mesh defined in the beginning of this section which has
N ≥ 2 intervals in each coordinate direction and is fitted to the exponential layer only. Hence,
the mesh completely ignores the presence of the characteristic layers of u. Let V N ⊂ C(Ω) be
the space of piecewise bilinears on ΩN . Then there is a constant C which is independent of ε
and N such that the Galerkin finite element approximation uN defined in (2.41) satisfies

‖u− uN‖ε ≤ CN−1/2.

Remark 10. In contrast to [63, Section 3.2 Theorem 1] Corollary 13 states uniform convergence
of order 1/2. Unfortunately our proof relies on assuming (2.39) paying the price. Our numerical
experiments show that this estimate is sharp.

2.3.1 Weakly imposed characteristic boundary conditions

Inspecting the proof of Theorem 12 we see that most problems are induced by the homogeneous
boundary conditions of V N along the characteristic boundaries Γ1 and Γ3. This observation
raises the question: What error estimates can we expect if we impose the boundary conditions
weakly? This would enable us to use standard Lagrange interpolation instead of π.

Note that a characteristic boundary layer occurs in general along the characteristic boundary
Γ0 that is parallel to the characteristics of the convective field ~b, i.e. on Γ0 the outer unit normal
vector n to Ω is perpendicular to ~b. Hence, imposing only the boundary conditions along Γ0

weakly can be contrasted from the general case, in which artificial terms involving ~b · n are
introduced to ensure coercivity of the modified bilinear form, see [64, Part III Section 3.3.2].
In this sense weakly imposed characteristic boundary conditions are more natural than the
complete treatment of the entire boundary with this technique.

We study this idea. In our case ~b = (−b, 0)T and Γ0 := Γ1 ∪ Γ3. Let us introduce the
function space Ṽ := {v ∈ H1(Ω) : v|x=0 = v|x=1 = 0 in the sense of traces} and denote by
Ṽ N the space of piecewise bilinears over the mesh ΩN . The bilinear Galerkin finite element
method for problem (2.37) with weakly imposed characteristic boundary conditions reads: find
ũN ∈ Ṽ N such that

aN (ũN , vN ) = (f, vN ) for each vN ∈ Ṽ N (2.76a)
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where

aN (w, v) := ε(∇w,∇v) + (−bwx + cw, v) + aΓ0
(w, v), (2.76b)

aΓ0
(w, v) := −ε

(∂w
∂n

, v
)

Γ0

± ε
(
w,

∂v

∂n

)
Γ0

+
γε

H
(w, v)Γ0

. (2.76c)

The positive penalty parameter γ > 0 will be needed to ensure coercivity if one picks the minus
sign in (2.76c). Note that neglecting this term completely also devises a feasible method.

It is easy to see, that these methods are consistent: For a solution u ∈ H1
0 ∩H2 one has

aN (u, vN ) = (f, vN ) for each vN ∈ Ṽ N .

In order to analyze this method we rely on trace inequalities. We shall prove such a result
and state the dependencies of the element-geometry, explicitly. Hence, this result will also be
valuable on anisotropic meshes in subsequent chapters.

Lemma 14 (Anisotropic multiplicative trace inequality). Let T be a rectangle with sides parallel
to the coordinate axes and a width in y-direction of hy. Let ∂Tx denote the union of the two
edges parallel to the x-axis. Then for v ∈W1,p(T ) we have the estimate

‖v‖pLp(∂Tx) ≤ p‖v‖
p−1
Lp(T )‖vy‖Lp(T ) +

2

hy
‖v‖pLp(T ) for p ∈ [1,∞), (2.77)

‖v‖L∞(∂Tx) ≤ ‖v‖L∞(T ). (2.78)

Proof. The proof follows its isotropic version in [28, Theorem 1.5.1.10] (or [18, Lemma 3.1] in
the L2 setting): Without loss of generality we assume that the origin of the coordinate system
is given by the midpoint of the rectangle T . The divergence theorem yields for v ∈ C1(T ):

∫

T

∂

∂y
(|v|py) dxdy =

∫

T

∇ ·
(
|v|py

0

)
dxdy =

∫

∂T

n ·
(
|v|py

0

)
ds

=

∫

∂Tx

|v|p|y|ds =
hy
2

∫

∂Tx

|v|pds =
hy
2
‖v‖pLp(∂Tx).

(2.79)

Moreover, since |y| ≤ hy/2 on T an application of the product rule and Hölder’s inequality with
1
p + 1

q = 1 imply

∫

T

∂

∂y
(|v|py) dxdy =

∫

T

∂

∂y
(|v|p) y dxdy +

∫

T

|v|pdxdy = p

∫

T

|v|p−2v
∂v

∂y
y dxdy + ‖v‖pLp(T )

≤ phy
2

∫

T

|v|p−1

∣∣∣∣
∂v

∂y

∣∣∣∣dxdy + ‖v‖pLp(T ) ≤
phy
2

(∫

T

|v|pdxdy

)1/q ∥∥∥∥
∂v

∂y

∥∥∥∥
Lp(T )

+ ‖v‖pLp(T )

≤ phy
2
‖v‖p−1

Lp(T )

∥∥∥∥
∂v

∂y

∥∥∥∥
Lp(T )

+ ‖v‖pLp(T ).

The assertion follows from a standard density argument. The case p =∞ is trivial.

The trace inequality of Lemma 14 and an inverse estimate for an edge E ⊂ Γ0 of a mesh
rectangle T adjacent to Γ0 yield

ε
∣∣∣
(∂vN
∂n

, vN
)
E

∣∣∣ ≤ ε‖vNy ‖0,E‖vN‖0,E ≤
Cε√
H
‖vNy ‖0,T ‖vN‖0,E ≤

ε

2
|vN |21,T +

Cε

H
‖vN‖20,E .

Hence, the bilinear form aN (·, ·) is coercive in Ṽ N with respect to the norm ||| · ||| given by

|||vN |||2 := ε|vN |21 + ‖vN‖0 +
γε

H
‖vN‖20,Γ0

provided that γ ≥ γ0 is sufficiently large (independently of ε and H). In this case ũN is well
defined.
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Remark 11. Choosing the plus sign in (2.76c) obviously generates a method with a coercive
bilinear form without further restrictions on γ > 0.

Based on (2.63) and the fact that one can use (S + E2)I instead of π(S + E2), standard
arguments [64, 43] improve the error estimate to

‖u− ũN‖ε ≤ C
(
ε1/4 +N−1 lnN

)
+ ‖ξ‖ε, (2.80)

where ξ = (S + E2)I − ũN .
For the discrete error component ξ we use

‖ξ‖ε ≤ |||ξ||| (2.81)

and bound ξ in the stronger norm ||| · |||. By the standard argument that led to (2.67)

C|||ξ|||2 ≤
∣∣aN

(
(S + E2)I − (S + E2), ξ

)∣∣+
∣∣aN (S + E2 − u, ξ)

∣∣.

Using again standard arguments [64, 43] for the Galerkin part a(·, ·) of the bilinear form aN (·, ·)
we arrive at

C|||ξ|||2 ≤ C
(
ε1/4 +N−1 lnN

)
|||ξ|||+

∣∣aΓ0

(
(S + E2)I − (S + E2), ξ

)∣∣+
∣∣aΓ0(S + E2 − u, ξ)

∣∣.
(2.82)

Let us abbreviate ũ := S + E2 and estimate the two remaining terms of (2.82) by splitting
them into the components of aΓ0(·, ·). We start off with the second summand:

∣∣aΓ0

(
ũI − ũ, ξ

)∣∣ ≤
∣∣∣ε
( ∂

∂n
(ũI − ũ), ξ

)
Γ0

∣∣∣+
∣∣∣ε
(
ũI − ũ, ∂ξ

∂n

)
Γ0

∣∣∣+
∣∣∣γε
H

(ũI − ũ, ξ)Γ0

∣∣∣. (2.83)

We need interpolation error estimates of ũ on Γ0. Applying the trace inequality of Lemma 14
yields

‖(ũI − ũ)y‖20,Γ0
≤ C‖(ũI − ũ)y‖0‖(ũI − ũ)yy‖0 +

C

H
‖(ũI − ũ)y‖20 ≤ CN−1, (2.84)

‖ũI − ũ‖20,Γ0
≤ C‖ũI − ũ‖0‖(ũI − ũ)y‖0 +

C

H
‖ũI − ũ‖20 ≤ CN−3. (2.85)

By the Cauchy-Schwarz inequality and (2.84)

∣∣∣ε
( ∂

∂n
(ũI − ũ), ξ

)
Γ0

∣∣∣ ≤ ε1/2H1/2

γ1/2
‖(ũI − ũ)y‖0,Γ0

ε1/2γ1/2

H1/2
‖ξ‖0,Γ0 ≤ Cε1/2N−1|||ξ|||. (2.86)

Similarly, a trace inequality and (2.85) give

∣∣∣ε
(
ũI − ũ, ∂ξ

∂n

)
Γ0

∣∣∣ ≤ ε1/2‖ũI − ũ‖0,Γ0

Cε1/2

H1/2
‖ξy‖0 ≤ Cε1/2N−1|||ξ|||. (2.87)

Finally, simply use the Cauchy-Schwarz inequality and (2.85) to obtain

∣∣∣γε
H

(ũI − ũ, ξ)Γ0

∣∣∣ ≤ γ1/2ε1/2

H1/2
‖ũI − ũ‖0,Γ0

ε1/2γ1/2

H1/2
‖ξ‖0,Γ0 ≤ Cε1/2N−1|||ξ|||. (2.88)

Next, we consider the last summand of (2.82):

∣∣aΓ0(ũ− u, ξ)
∣∣ ≤

∣∣∣ε
( ∂

∂n
(ũ− u), ξ

)
Γ0

∣∣∣+
∣∣∣ε
(
ũ− u, ∂ξ

∂n

)
Γ0

∣∣∣+
∣∣∣γε
H

(ũ− u, ξ)Γ0

∣∣∣. (2.89)

The characteristic layers and corner layers ũ − u are pointwise and ε-uniformly bounded by
a constant, i.e. ‖ũ − u‖L∞(Ω) ≤ C. Moreover, ‖(ũ − u)y‖L∞(Ω) ≤ Cε−1/2. Hence, by a trace
inequality

∣∣∣ε
( ∂

∂n
(ũ− u), ξ

)
Γ0

∣∣∣ ≤ ε‖(ũ− u)y‖0,Γ0

C

H1/2
‖ξ‖0 ≤ C(εN)1/2|||ξ|||. (2.90)
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Similarly,

∣∣∣ε
(
ũ− u, ∂ξ

∂n

)
Γ0

∣∣∣ ≤ ε1/2‖ũ− u‖0,Γ0

Cε1/2

H1/2
‖ξy‖0 ≤ C(εN)1/2|||ξ||| (2.91)

and

∣∣∣γε
H

(ũ− u, ξ)Γ0

∣∣∣ ≤ γ1/2ε1/2

H1/2
‖ũ− u‖0,Γ0

ε1/2γ1/2

H1/2
‖ξ‖0,Γ0 ≤ C(εN)1/2|||ξ|||. (2.92)

Collecting (2.80)–(2.83) and (2.86)–(2.92) we obtain the following result.

Theorem 15. Assume that the solution u of (2.37) can be decomposed according to (2.39).
Let ΩN denote the rectangular Shishkin mesh defined in the beginning of this section which has
N ≥ 2 intervals in each coordinate direction and is fitted to the exponential layer only. Let
V N ⊂ C(Ω) be the space of piecewise bilinears on ΩN . Then there is a constant C which is
independent of ε and N such that the Galerkin finite element approximation ũN with weakly
imposed characteristic boundary conditions defined in (2.76) satisfies

‖u− ũN‖ε ≤ C
(
ε1/4 +N−1 lnN + (εN)1/2

)
.

Remark 12. Comparing Theorem 15 with the sharp estimate of Corollary 13:

‖u− uN‖ε ≤ CN−1/2,

we see that it is beneficial to impose the boundary conditions along the characteristic boundary
weakly if ε is very small in comparison to N−1. In the extreme case ε ≤ CN−4(lnN)4 (which
holds true for instance for the last two columns of Table 2.9) Theorem 15 states convergence of
almost first order. This is the best possible result for bilinear elements on a Shishkin mesh.

2.4 Numerical experiments

2.4.1 A reaction-diffusion problem with boundary layers

Consider the test boundary value problem

−ε∆u+ u = f in Ω = (0, 1)2,

u = 0 on ∂Ω

where ε ∈ (0, 1] and f is chosen in such a way that

u(x, y) = û(x)û(y), û(t) = −1− e−1/
√
ε

1− e−2/
√
ε

(
e−t/

√
ε + e−(1−t)/√ε

)
+ 1

is the exact solution, which exhibits typical boundary layer behavior. Let ΩN denote the
uniform mesh that is generated as the tensor product of two uniform 1D meshes dissecting the
interval (0, 1) into N elements. Moreover, we define V N as the FE-space of bilinear functions
on ΩN . We denote by uN the solution of the Galerkin FE-method. We use some adaptive
quadrature algorithm to compute all integrals with a tolerance of 10−10.

In Table 2.1 we see the performance of the method in the setting ε = 1. In agreement with
classical analysis one observes convergence of second order in the L2(Ω) norm as well as in the
L∞(Ω) norm and its discrete version. However, the error of the method measured in the energy
norm is O(N−1) because its H1(Ω) semi-norm component is only first order convergent and
dominates the L2(Ω) error (even for small N). Remark that similar results will follow if for the
element diameter h(N) it holds h(N) ≤ √ε, see Table 2.2.

If
√
ε is small in comparison to h(N) — as is the case in Table 2.3 — one observes that

the rates of converges decline. Furthermore the error in the energy norm is dominated by the
L2(Ω) norm component for small values of N where the H1(Ω) semi-norm component attains
convergence rates smaller than 1/2.

Finally, Table 2.4 shows that if the ratio
√
ε/h(N) is further decreased one observes no error

reduction in the H1(Ω) semi-norm or the L∞(Ω) norm. However, the L2(Ω) error seems to be
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N

√
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞

error rate error rate error rate error rate

8 3.92e-3
1.00
1.00
1.00
1.00
1.00
1.00

1.22e-4
2.00
2.00
2.00
2.00
2.00

3.57e-3
2.08
2.02
2.01
2.00
2.00
2.00

1.66e-4
2.01
2.00
2.00
2.00
2.00

16 1.96e-3 3.05e-5 8.41e-4 4.12e-5
32 9.78e-4 7.63e-6 2.07e-4 1.03e-5
64 4.89e-4 1.91e-6 5.16e-5 2.57e-6

128 2.45e-4 4.77e-7 1.29e-5 6.42e-7
256 1.22e-4 1.19e-7 3.22e-6 1.60e-7
512 6.11e-5 2.98e-8 8.06e-7 4.01e-8

Table 2.1: ε = 1

N

√
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞

error rate error rate error rate error rate

8 1.27e-1
0.94
0.98
1.00
1.00
1.00
1.00

4.08e-2
1.92
1.98
2.00
2.00
2.00
2.00

9.54e-2
1.53
1.74
1.86
1.93
1.96
1.98

4.74e-2
2.24
2.05
2.01
2.00
2.00
2.00

16 6.65e-2 1.08e-2 3.29e-2 1.00e-2
32 3.36e-2 2.73e-3 9.87e-3 2.41e-3
64 1.69e-2 6.84e-4 2.72e-3 5.98e-4

128 8.44e-3 1.71e-4 7.15e-4 1.49e-4
256 4.22e-3 4.28e-5 1.83e-4 3.73e-5
512 2.11e-3 1.07e-5 4.64e-5 9.31e-6

Table 2.2: ε = 10−2

N

√
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞

error rate error rate error rate error rate

8 1.30e-1
0.14
0.37
0.69
0.90
0.97
0.99

2.96e-1
0.84
1.21
1.63
1.88
1.97
1.99

8.19e-1
0.42
0.87
1.35
1.46
1.69
1.83

5.65e-1
0.30
0.88
1.68
2.34
2.01
2.02

16 1.18e-1 1.65e-1 6.13e-1 4.57e-1
32 9.17e-2 7.11e-2 3.36e-1 2.48e-1
64 5.69e-2 2.30e-2 1.32e-1 7.70e-2

128 3.06e-2 6.24e-3 4.81e-2 1.53e-2
256 1.56e-2 1.60e-3 1.49e-2 3.78e-3
512 7.84e-3 4.01e-4 4.20e-3 9.30e-4

Table 2.3: ε = 10−4

N

√
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞

error rate error rate error rate error rate

8 1.41e-2
0.00
0.00
0.00
0.01
0.02
0.03

3.72e-1
0.49
0.50
0.51
0.52
0.55
0.60

9.99e-1
0.00
0.00
0.00
0.01
0.04
0.10

6.08e-1
0.00
0.00
0.00
0.00
0.01
0.03

16 1.41e-2 2.65e-1 9.99e-1 6.07e-1
32 1.41e-2 1.88e-1 9.97e-1 6.07e-1
64 1.41e-2 1.32e-1 9.94e-1 6.07e-1

128 1.40e-2 9.17e-2 9.86e-1 6.07e-1
256 1.38e-2 6.27e-2 9.60e-1 6.03e-1
512 1.35e-2 4.13e-2 8.97e-1 5.90e-1

Table 2.4: ε = 10−8
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h

erro
r

√
ε|u− uN |1
‖u− uN‖0
‖u− uN‖ε
y = Ch1/2

y = Ch

y = Ch2

10−5 10−4 10−3 10−2 10−110−5

10−4

10−3

10−2

10−1

Figure 2.2: 1D reaction-diffusion problem: energy norm errors for ε = 10−8

h

erro
r ‖u− uN‖b

‖u− uN‖∞
‖uI − uN‖∞
y = Ch

y = Ch2

10−5 10−4 10−3 10−2 10−1

10−3

10−2

10−1

100

Figure 2.3: 1D reaction-diffusion problem: errors for ε = 10−8
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1

Figure 2.4: Example grid for the reference
solution.

Figure 2.5: Reference solution for ε = 10−4

O(N−1/2). In fact we have ‖u− uN‖0 ≤ 1.06N−1/2. Since the L2(Ω) error dominates the error
in the H1(Ω) semi-norm the energy norm error is O(N−1/2), as well. Note that in order for the
L2(Ω) error to reach the same magnitude as the H1(Ω) semi-norm, namely 1.4e− 2, we would
need N > 5000 elements reducing the critical ratio

√
ε/h(N) and resulting in convergence rates

similar to those of Table 2.3 (with N > 32).
The different phases described above can nicely be seen in Figure 2.2. Here a 1D reaction-

diffusion problem similar to the original test problem with ε = 10−8 is considered. Hence,
a broader interval for the parameter h = h(N) can be studied. Figure 2.3 shows that the
approximations uN do not converge uniformly in ε to the solution of the problem u neither
in the L∞(Ω) norm nor in its discrete counterpart. An initial phase of error stagnation (until
h(N) ≤ √ε and the layers are resolved) can also be observed in the stronger balanced norm
‖ · ‖b, i.e. ‖v‖2b :=

√
ε|v|21 + ‖v‖0.

2.4.2 A reaction-diffusion problem with an interior layer

In this subsection we want to examine the sharpness of Theorem 4 and consider a problem with
an interior layer along a Lipschitz curve:

−ε∆u+
(

1 + x2y2exy/2
)
u = f in Ω = (−1, 1)2,

u = 0 on ∂Ω

with ε ∈ (0, 1] and

f(x, y) =

{
x3(1 + y) + sin(πx2) + cos(πy/2) if x2 + y2 ≤ 1/4,

0 else.

Consequently, u will exhibit an interior layer near the circle centered at the origin and with
radius 0.5. By the definition of f , the reduced solution f/c vanishes outside that circle. Hence,
it satisfies homogeneous boundary conditions and no boundary layers arise. This is for our
convenience: we numerically studied the performance of the Galerkin finite element method
for reaction-diffusion problems with boundary layers already and want to focus on the interior
layers.

Since we can’t supply a reasonable solution structure for this problem we use a finely resolved
numerical reference solution u? to calculate the errors of the numerical scheme. By our a
priori knowledge of the position of the layers we are able to generate a very fine and graded
layer-adapted mesh, similarly to the one presented in Figure 2.4. However, in contrast to the
coarse mesh depicted (featuring about 7560 mesh triangles) the high resolution mesh generated
accumulates about 1 million triangular elements.We use quadratic finite elements over this mesh
to compute the reference solution u?, which is depicted in Figure 2.5 for the moderate value
ε = 10−4. Moreover, we approximate all integrals by a high order Gaussian quadrature rule.
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Figure 2.6: L2-norm error (colored) and H1 semi-norm error (gray) for various values of ε and
N .

The results of this numerical experiment are shown in Table 2.5 and Figure 2.6. In the
former errors and convergence orders with respect to the energy norm are displayed in the lower
and upper half, respectively. Inspecting that table we find complete agreement with Theorem 4:
The Galerkin finite element approximation on uniform meshes appears to converge ε-uniformly
of order 1/2 to the (reference) solution in the energy norm. As before we note that the ratio of
1/N and

√
ε is critical. If these two quantities are comparable in size, then we observe first

order convergence of the Galerkin FEM in the energy norm. If however,
√
ε� 1/N then the

convergence order breaks down and numerically computed orders around 0.5 become evident.
This also yields sharpness of Theorem 4.

Regarding the distribution of the error to the two components the situation is again similar
to the previous numerical experiment. This time we use a three dimensional plot in form of
Figure 2.6 to present these results. In that figure errors in both norm components of the energy
norm — namely the L2-norm (colored surface) and the weighted H1 semi-norm (gray surface)

— are plotted as surfaces over pairs (N, ε). Hence, moving further to the front in the parameter
domain of Figure 2.6 corresponds to uniform mesh refinement, while for instance moving to the
left decreases ε. Note that all three axes of that figure are logarithmic.

The two surfaces intersect along some almost straight line which is apparently of the form√
ε = C/N . For

√
ε� 1/N the error in the energy norm is dominated by the L2-norm error.

This is only due to the small multiplier of the H1 semi-norm component. In particular the
H1 semi-norm error is almost constant for ε = 10−10 and N ≤ 1024. Consequently, we would
observe error stagnation in the stronger norm ‖ · ‖b (as the larger multiplier would lift the gray
surface). For ε < 10−7 the dominant error component shifts to the H1- semi-norm component
within the observed parameter interval of N . Still the both components can be bounded by
1.3N−1/2 which is illustrated as black line in the right of Figure 2.6. This bound also holds
true for ε = 10−10 which also realizes the maximal error.
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N ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8 ε = 10−9 ε = 10−10

16 0.76 0.64 0.58 0.55 0.53 0.53 0.53
32 0.83 0.66 0.55 0.52 0.52 0.52 0.52
64 0.91 0.76 0.61 0.54 0.50 0.49 0.49

128 0.94 0.88 0.70 0.58 0.54 0.53 0.54
256 0.96 0.89 0.78 0.61 0.53 0.50 0.49
512 0.98 0.94 0.88 0.72 0.58 0.53 0.52
16 2.28e-01 2.61e-01 2.70e-01 2.71e-01 2.71e-01 2.71e-01 2.71e-01
32 1.35e-01 1.67e-01 1.80e-01 1.85e-01 1.87e-01 1.87e-01 1.87e-01
64 7.60e-02 1.06e-01 1.23e-01 1.29e-01 1.30e-01 1.31e-01 1.31e-01

128 4.05e-02 6.26e-02 8.07e-02 8.87e-02 9.19e-02 9.30e-02 9.33e-02
256 2.10e-02 3.41e-02 4.96e-02 5.93e-02 6.32e-02 6.42e-02 6.43e-02
512 1.08e-02 1.83e-02 2.89e-02 3.89e-02 4.37e-02 4.54e-02 4.57e-02

1024 5.49e-03 9.54e-03 1.57e-02 2.36e-02 2.92e-02 3.15e-02 3.19e-02

Table 2.5: Difference to the reference solution ‖u? − uN‖ε of the bilinear Galerkin FEM on
equidistant meshes for a problem with an interior layer.

2.4.3 A convection-diffusion problem with characteristic layers and
a Neumann outflow condition

For the numerical verification of the results of Section 2.2 we consider the problem

−ε∆u− 2ux + u = f in Ω = (0, 1)2,

∂u

∂x

∣∣∣∣
x=0

= 0, u|x=1 = 0 and u|y=0 = u|y=1 = 0,
(2.93)

with 0 < ε ≤ 1 and f chosen in such a way that

u(x, y) =
(

cos
πx

2
− 2x+ 2− ε

(
e−2x/ε− e−2/ε

))(
1− e−y/

√
ε
)(

1− e−(1−y)/
√
ε
)

is the exact solution of (2.93). It exhibits typical boundary layer behavior for this kind of
problem. We denote by uN the finite element solution determined by

ε(∇uN ,∇vN ) + (uN − 2uN,x, vN ) = (f, vN ) for all vN ∈ V N .

Here V N is the FE-space of bilinear functions on a uniform mesh with N2 elements like in the
previous subsection.

In Table 2.6 we see the error of the method measured in the
√
ε-weighted H1(Ω) semi-norm.

For the last two columns in that table (ε = 10−8 and ε = 10−12) we observe no significant error
reduction. In fact the error behaves almost like ≈ 1.8ε1/4 independently of N . Since u is of
the same quality (according to (2.33): |u|1 ≤ Cε−1/4) this indicates that for

√
ε� hN := N−1

bilinear functions are not able to yield good approximations for a sharp layer function. For a
bigger value of ε, namely ε = 10−4 we find that the rates of convergence increase significantly
if some hundred elements are considered. Hence, the ratio

√
ε/hN appears to be significant.

Remark that a parabolic boundary layer has a width O(
√
ε ln(1/ε)). If

√
ε/hN ≥ 1 we observe

first order convergence.
The L2(Ω) errors and corresponding rates are depicted in Table 2.7. For

√
ε/hN ≥ 1 second

order convergence can be observed. If that ratio is smaller than one the rates start to fall but
1/2 appears to be a lower bound for all L2(Ω) rates, independently of the quotient

√
ε/hN .

Remark also that for
√
ε/hN � 1 the L2(Ω) error dominates the corresponding

√
ε-weighted

H1(Ω) semi-norm error. Hence, in this case the energy norm error is essentially given by its
L2(Ω) component.
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N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error error

8 6.98e-2
1.00
1.00
1.00
1.00
1.00

2.04e-1
0.94
0.98
0.98
0.99
1.00

1.73e-1
0.13
0.34
0.68
0.91
0.98

1.86e-2 1.86e-3
16 3.49e-2 1.06e-1 1.58e-1 1.86e-2 1.86e-3
32 1.74e-2 5.37e-2 1.25e-1 1.85e-2 1.86e-3
64 8.72e-3 2.72e-2 7.78e-2 1.85e-2 1.86e-3

128 4.36e-3 1.37e-2 4.13e-2 1.84e-2 1.87e-3
256 2.18e-3 6.89e-3 2.09e-2 1.82e-2 1.87e-3

Table 2.6:
√
ε|u− uN |1 for different values of N and ε.

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error rate error rate

8 2.23e-3
2.00
2.00
2.00
2.00
2.00

5.89e-2
1.99
1.99
1.98
1.98
1.99

4.00e-1
0.86
1.24
1.71
1.97
2.01

4.98e-1
0.50
0.51
0.51
0.52
0.55

4.99e-1
0.50
0.50
0.50
0.50
0.50

16 5.56e-4 1.49e-2 2.20e-1 3.52e-1 3.53e-1
32 1.39e-4 3.74e-3 9.34e-2 2.48e-1 2.50e-1
64 3.47e-5 9.47e-4 2.85e-2 1.74e-1 1.77e-1

128 8.68e-6 2.39e-4 7.30e-3 1.21e-1 1.25e-1
256 2.17e-6 6.01e-5 1.82e-3 8.25e-2 8.82e-2

Table 2.7: ‖u− uN‖0 for different values of N and ε.

2.4.4 A mesh that resolves only part of the exponential layer and
neglects the weaker characteristic layers

In the problem of Section 2.3 the energy norm associated with (2.37) is strong enough to capture
the exponential layer in contrast to the previous problems. The numerical results reflect this
exceptional feature. Let uN denote the solution of (2.41) on the tensor product mesh composed
by a Shishkin mesh in x-direction and a uniform mesh in y-direction introduced in Section 2.3.

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error rate error rate

8 2.21e-2
1.00
1.00
1.00
1.00
1.00
1.00

2.59e-1
0.60
0.68
0.74
0.78
0.81
0.83

3.61e-1
0.62
0.74
0.80
0.81
0.83
0.84

3.90e-1
0.52
0.58
0.60
0.61
0.61
0.63

3.90e-1
0.52
0.57
0.59
0.59
0.58
0.56

16 1.10e-2 1.70e-1 2.35e-1 2.71e-1 2.72e-1
32 5.52e-3 1.06e-1 1.41e-1 1.82e-1 1.82e-1
64 2.76e-3 6.35e-2 8.10e-2 1.20e-1 1.21e-1

128 1.38e-3 3.70e-2 4.60e-2 7.86e-2 8.01e-2
256 6.90e-4 2.11e-2 2.59e-2 5.14e-2 5.36e-2
512 3.45e-4 1.18e-2 1.44e-2 3.31e-2 3.64e-2

Table 2.8:
√
ε|u− uN |1 for different values of N and ε.

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error rate error rate

8 6.55e-4
2.00
2.00
2.00
2.00
2.00
2.00

2.57e-2
2.07
2.00
1.92
1.87
1.84
1.81

1.53e-1
0.87
1.24
1.71
1.96
2.00
2.00

1.91e-1
0.51
0.51
0.51
0.52
0.55
0.60

1.91e-1
0.51
0.50
0.50
0.50
0.50
0.50

16 1.63e-4 6.12e-3 8.40e-2 1.34e-1 1.34e-1
32 4.09e-5 1.53e-3 3.56e-2 9.42e-2 9.50e-2
64 1.02e-5 4.05e-4 1.09e-2 6.60e-2 6.72e-2

128 2.55e-6 1.11e-4 2.80e-3 4.59e-2 4.75e-2
256 6.38e-7 3.11e-5 6.99e-4 3.14e-2 3.36e-2
512 1.60e-7 8.85e-6 1.75e-4 2.07e-2 2.37e-2

Table 2.9: ‖u− uN‖0 for different values of N and ε.
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As in the previous subsection we choose b = 2 and c = 1. Moreover, we determine f in such
way that

u(x, y) =

(
cos

πx

2
− e−2x/ε − e−2ε

1− e−2ε

)(
1− e−y/

√
ε
)(

1− e−(1−y)/
√
ε
)

is the exact solution of (2.37).
In Table 2.8 and Table 2.9 the

√
ε-weighted H1(Ω) semi-norm errors and the errors in L2(Ω)

are presented, respectively. In contrast to previous numerical results both components are
almost of the same magnitude if ε is very small. For the

√
ε-weighted H1(Ω) semi-norm error

we observe first order convergence in the non-perturbed case and |u− uN | ≤ CN−1 lnN if the
singular perturbation is mild (ε ≥ 10−4). In the case of a very small perturbation parameter
convergence with a rate slightly greater than 1/2 can be observed uniformly in ε. For the L2(Ω)
error the rates of convergence are close to two for ε ≥ 10−4 and N ≥ 64. If

√
ε � N−1 we

observe uniform convergence of order 1/2. Hence, the method is of order 1/2 in the energy
norm and our theoretical findings are sharp.



3
∣∣ Macro-element interpolation

on tensor product meshes

3.1 Introduction

There is a high interest in differentiable finite elements and their corresponding interpolation
operators as these are used for instance in the construction and analysis of methods for higher
order problems like the biharmonic equation. On a triangular mesh the fifth degree Argyris
element and its reduced version — the Bell element — are most popular. However, they are
rarely used as they introduce a large number of degrees of freedom. In fact, Ženižek [79] showed
that on a triangular element with polynomial shape functions at least 18 degrees of freedom are
needed to grant the C1 property. In this respect the Bell element can be considered optimal.

The desire for reducing the number of degrees of freedom used (and therefore the polynomial
degree) lead to the construction of macro-elements in 1960s and 1970s. Let us mention the
cubic Hsieh-Clough-Tocher macro-element [12] and the quadratic Powell-Sabin macro-element
[56]. In the latter, each base triangle is split into six sub-triangles that share an inner point (for
instance the center of the inscribed circle) of the base triangle. The inner degrees of freedom
are then eliminated by the C1 property.

While there is a huge amount of literature for triangular macro-elements (see for instance
the survey article [53] and the references therein), there appears to be only one publication [31]
dealing with rectangular ones. Moreover, to the knowledge of the author, there appears to be
no paper dealing with anisotropic interpolation error estimates for macro-element interpolation,
i.e. up to now macro-element interpolation has only been considered on quasi-uniform meshes.
However, one can certainly improve the approximation quality by allowing elements with an
arbitrarily high aspect ratio in certain cases. This benefit becomes obvious if the underlaying
domain or the function to be approximated has anisotropic features (like layers).

In Section 3.2 of this chapter we shall briefly introduce the concept of C1 − P2 macro-
interpolation in the 1D case and fix some notation.

The following Section 3.3 starts by showing how the 1D C1 − P2 macro-element extends to
the 2D C1 −Q2 macro-element on tensor product meshes. Then a general theory for obtaining
anisotropic interpolation error estimates for macro-element interpolation is developed and
general construction principles are revealed. This theory is then applied in order to analyze the
C1 −Q2 macro-element interpolation operator Π as well as some reduced counterpart.

Thereafter we discuss a modification of Π of Scott-Zhang [71] type in Subsection 3.5.3
giving optimal error estimates under the regularity required. The price to pay is that not
all linear functionals that define this modified operator are local, i.e. in order to obtain the
value of the quasi-interpolant on a base macro-element M some averaging process of the
data on a macro-element edge that does not necessarily belong to M is needed. This causes
some difficulties because quasi-interpolation operators of similar type are mostly studied on
quasi-uniform meshes.

We summarize our results concerning C1 (quasi-)interpolation in Subsection 3.5.4 and cite
some results of the literature.

In Section 3.6 we introduce and analyze an anisotropic macro-element interpolation operator.
Basically, this operator is the tensor product of one-dimensional C1 − P2 macro-interpolation
and P2 Lagrange interpolation.

We conclude this chapter with Section 3.7 in which we apply the results of the (Sub-)Sections
3.5.3 and 3.6 in order to approximate the solution of a singularly perturbed reaction-diffusion
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problem on a Shishkin mesh that features anisotropic elements, i.e. elements with an unbounded
aspect ratio for ε→ 0. Hereby we obtain an approximation whose normal derivative is continuous
along certain edges of the mesh, enabling a more sophisticated analysis of a continuous interior
penalty method in the next chapter.

3.2 Univariate C1 − P2 macro-element interpolation

Consider the 1D Hermite interpolation problem on the interval [−1, 1]: Let u be a real function
over [−1, 1] such that u(±1), u′(±1) ∈ R can be defined. Find s ∈ C1[−1, 1], such that

s(±1) = u(±1), s′(±1) = u′(±1). (3.1)

In 1983 Schumaker [69] observed that while the Hermite interpolation problem considered
is only solvable for a quadratic polynomial s ∈ P2[−1, 1] if and only if

u′(−1) + u′(1) = u(1)− u(−1),

there is always a solution in the space of quadratic splines with one simple knot. We may
choose x = 0 as this knot and introduce the spline space

S2 :=
{
v ∈ C1[−1, 1] : v|T ∈ P2(T ), T ∈ {[−1, 0], [0,−1]}

}
.

Of course other choices for the additional knot are possible. This parameter can be used to
grant additional properties of the underlaying interpolation operator, see [69].

A function s that is a quadratic polynomial on each of the intervals [−1, 0] and [0, 1] can
be characterized by six parameters of which two are determined by the C1 property at zero.
Hence, the remaining four parameters of a function s ∈ S2 may be chosen in such a way that
(3.1) is fulfilled. In fact, a simple calculation shows that

s(x) =
∑

i=±1

(
u(i)ϕ̂i(x) + u′(i)ψ̂i(x)

)
, x ∈ [−1, 1] (3.2)

is the unique solution of (3.1) in S2. Here ϕ̂±1 and ψ̂±1 ∈ S2 denote the Lagrangian basis
functions

ϕ̂−1(x) =
(x− 1)2

2
−
{
x2, x ∈ [−1, 0],

0, x ∈ [0, 1],
ϕ̂1(x) =

(x+ 1)2

2
−
{

0, x ∈ [−1, 0],

x2, x ∈ [0, 1],

ψ̂−1(x) =
(x− 1)2

4
−
{
x2, x ∈ [−1, 0],

0, x ∈ [0, 1],
ψ̂1(x) = − (x+ 1)2

4
+

{
0, x ∈ [−1, 0],

x2, x ∈ [0, 1],

(3.3)

i.e. these spline functions fulfill the conditions

ϕ̂−1(−1) = ϕ̂1(1) = ψ̂′−1(−1) = ψ̂′1(1) = 1,

ϕ̂1(−1) = ψ̂−1(−1) = ψ̂1(−1) = ϕ̂−1(1) = ψ̂−1(1) = ψ̂1(1) = 0,

ϕ̂′−1(−1) = ϕ̂′1(−1) = ψ̂′1(−1) = ϕ̂′−1(1) = ϕ̂′1(1) = ψ̂′−1(1) = 0.

For a graphical representation of these functions, see Figure 3.1.
Based on the symmetry of the subproblem defining the basis functions we observe

ϕ̂−1(x) = ϕ̂1(−x) and ψ̂−1(x) = −ψ̂1(−x) ∀x ∈ [−1, 1].

Moreover, ϕ̂′±1 are even functions, i.e.

ϕ̂′±1(x) = ϕ̂′±1(−x) ∀x ∈ [−1, 1].

From these properties we can deduce that ϕ̂′1(x) = −ϕ̂′−1(−x) = ϕ̂′−1(x) for all x ∈ [−1, 1].
Hence, similar to a cubic polynomial the derivative s′ of a spline s ∈ S2 is an element of a
three dimensional vector space. Since the second derivative of the spline considered is piecewise
constant, it belongs to a two dimensional space.
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x

ϕ−1(x)

ψ−1(x)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 3.1: Lagrangian basis functions ϕ−1 and ψ−1

This fact can nicely be seen if we switch from the Lagrangian representation (3.2) of the

solution of (3.1) to its Newtonian one. Based on ψ̂1(±1) = ψ̂′1(−1) = 0 we observe, that

s(x) = u[−1] + u[−1,−1](x+ 1) + u[−1,−1, 1](x+ 1)2 + u[−1,−1, 1, 1]4ψ̂1(x). (3.4)

Here u[x0, . . . , xN ] are the well known divided differences of order N of u with possibly coincident
knots x0 ≤ x1 ≤ · · · ≤ xN , recursively defined by

u[xi] := u(xi) and u[x0, . . . , xN ] :=





1

N !
u(N)(x0), if x0 = · · · = xN ,

u[x1, . . . , xN ]− u[x0, . . . , xN−1]

xN − x0
, else.

A simple calculation shows that

u[−1] = u(−1), u[−1,−1] = u′(−1), u[−1,−1, 1] =
1

4

(
u(1)− u(−1)

)
− 1

2
u′(−1),

u[−1,−1, 1, 1] =
1

4

(
u(−1)− u(1) + u′(−1) + u′(1)

)
.

(3.5)

If we substitute the expressions from (3.5) into (3.4) and expand in terms of u(±1) and u′(±1)
we re-obtain the Lagrangian representation (3.2) of s. However, the Newtonian form (3.4) of s
will prove to be very useful in the derivation of anisotropic interpolation error estimates.

3.3 C1 − Q2 macro-element interpolation on tensor prod-
uct meshes

One can easily solve the Hermite interpolation problem (3.1) for a cubic polynomial s. Hence,
similar to (3.3) a Lagrangian basis for a cubic C1 spline can be obtained associated with
the values of the function and its first derivative in the endpoints of the interval considered.
It is well-known that the tensor product of this basis of the cubic C1 splines leads to the
Bogner-Fox-Schmidt element, which is in fact a C1 element. Here the 16 degrees of freedom are
associated with the values v(Vi), the first derivatives vx(Vi), vy(Vi) and the mixed derivative
vxy(Vi) of a function v ∈ Q3(T ) at the four vertices Vi, i = 1, . . . , 4 of a rectangle T , see Figure
3.2. Note that the restriction of the generated finite element space to any element T is Q3(T ),
where T is a rectangle of the underlaying triangulation with sides aligned to the coordinate
axes.

By analogy with the Bogner-Fox-Schmidt element the tensor product of the basis functions
(3.3) generates a C1 macro-element, as well. One obtains 16 basis functions that are piecewise
biquadratic:

ϕ̂i,j(x, y) := ϕ̂i(x)ϕ̂j(y), φ̂i,j(x, y) := ψ̂i(x)ϕ̂j(y),

χ̂i,j(x, y) := ϕ̂i(x)ψ̂j(y), ψ̂i,j(x, y) := ψ̂i(x)ψ̂j(y),
i, j ∈ {−1, 1}. (3.6)
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function value

first derivatives
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Figure 3.2: The Bogner-Fox-Schmidt Q3 element (left) and its Q2 analogue on a macro of four
elements (right)

Figure 3.3: The basis functions ϕ̂−1,−1, φ̂−1,−1, χ̂−1,−1, ψ̂−1,−1 on the reference macro-element.

Whenever definitions are tied to a reference (macro-)element we shall continue to use a hat
symbol to emphasize this fact. With the dual functionals

F ϕ̂i,j(v) := v(i, j), F φ̂i,j(v) := vx(i, j),

F χ̂i,j(v) := vy(i, j), F ψ̂i,j(v) := vxy(i, j),
i, j ∈ {−1, 1}.

the basis functions obey the Lagrange relation

F vi,j(wk,`) = δvwδikδj`

for v, w ∈ {ϕ̂, φ̂, χ̂, ψ̂} and i, j, k, ` ∈ {−1, 1}. We denote by M̂ the reference macro-element
which is given as the triangulation of the reference domain Λ := [−1, 1]2 induced by the
coordinate axes. On M̂ the four basis functions for i = j = −1 associated with the point
(−1,−1) are depicted in Figure 3.3.

In a natural way, a biquadratic interpolant Π̂v ∈ C1(Λ) of a function v ∈ C2(Λ) is defined
by

Π̂v =
∑

i,j∈{−1,1}
F ϕ̂i,j(v)ϕ̂i,j + F φ̂i,j(v)φ̂i,j + F χ̂i,j(v)χ̂i,j + F ψ̂i,j(v)ψ̂i,j . (3.7)
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By affine equivalence, it suffices to define the interpolation operator Π̂ on the reference macro-
element M̂ . Given a rectangular macro-element mesh M of tensor product type, the value of
the interpolant Πv of a function v ∈ C2(Ω) in a certain point (x, y) ∈ Ω of the physical domain
can be obtained by identifying a macro-element M such that (x, y) ∈ M and performing an
affine transformation.

After making an independent construction an excessive search of the literature available
showed that the C1 −Q2 macro-element is not new. In fact, it can be traced back to the PhD
thesis [5]. In the work [30] the thesis [5] is cited and optimal interpolation error estimates

|u−Πu|m ≤ Ch3−m|u|3

for m = 0, 1, 2 are proven for u ∈ H3(Ω) ∩ C2(Ω) and a tensor product triangulation which is
required to be quasi-uniform.

Strangely, this idea appears to be unpublished until 2011. In [31] the C1 property of
the finite element space Vh introduced by the C1 − Q2 macro-element on a tensor product
triangulation Th of a domain Ω is shown. Moreover, it is established that Vh coincides with the
full C1 −Q2 space, i.e.:

Vh = {vh ∈ C1(Ω) : vh|T ∈ Q2(T ) ∀T ∈ Th}. (3.8)

This appears to be of high interest in certain applications. Finally, optimal interpolation error
estimates are derived for an extension of the Girault-Scott operator into the C1 − Q2 finite
element space, i.e. a modification Π̃ of the operator Π (defined via an affine transformation
as Π̂ on the reference macro-element M̂ in (3.7)) is obtained in such a way that a function
v ∈ H2(Ω) can be interpolated and

‖v − Π̃v‖0 + h|v − Π̃v|1 + h2|v − Π̃v|2 ≤ Ch2|v|2.

However, the analysis in [31] of the interpolation error also requires quasi-uniformity of the
triangulation Th, i.e. it is assumed that there is a positive constant C > 0 such that for all
axis-aligned mesh rectangles T ∈ Th the edge lengths hx(T ) and hy(T ) in x- and y-direction
are equivalent to a global discretization parameter h, i.e.

Ch ≤ hx(T ), hy(T ) ≤ h ∀T ∈ Th. (3.9)

On the other hand there are problems that can be treated efficiently if elements with very
high aspect ratios are permitted within the triangulation or if edge lengths of neighboring
elements are allowed to vary unbounded. As examples, let us mention the approximation of a
smooth function over a long and thin domain Ω or solutions of partial differential equations
with anisotropic behavior like layers. Wherefore we ask the question: Is it possible to prove
anisotropic interpolation error estimates for the operator Π from (3.7) or a modification of it?

It turns out that the wonderful theory of [3, 2] is incapable to handle the analysis of
macro-element interpolation. In the following we shall therefore develop a slight modification of
it.

3.4 A theory on anisotropic macro-element interpolation

We first introduce some notation, partly adopted from [3].

Let M̂ :=
{
T̂i
}`
i=1

be our reference macro-element, i.e. a triangulation of some reference
domain Λ. For a set of multi-indices P we denote by

P (Λ) := span{X 7→Xα : α ∈ P } ⊂ C∞(Λ) (3.10)

the corresponding polynomial function space over Λ that is spanned by the monomials Xα

(α ∈ P ).
Here we used standard multi-index notation:

α = (α1, α2), |α| = α1 + α2, Xα = xα1yα2 , hα = hα1
x hα2

y , Dα =
∂α1

∂xα1

∂α2

∂yα2
.
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The hull P of P is the set

P := P ∪ {α+ ei : α ∈ P , i = 1, 2},

where {e1, e2} denotes the canonical basis of R2.
Associated with a set of multi-indices P with 0 := (0, 0) ∈ P and 1 ≤ p ≤ ∞ we introduce

a norm and a semi-norm on the reference domain Λ:

‖v‖pP ,p :=
∑

α∈P
‖Dαv‖pLp(Λ), |v|p

P ,p
:=

∑

α∈P \P
‖Dαv‖2Lp(Λ),

with obvious modifications for p =∞. Furthermore, let HPp (Λ) denote the function space

HPp (Λ) := {v ∈ L1(Λ) : ‖v‖P ,p <∞} (3.11)

and let S(M̂) be a spline space such that for v ∈ S(M̂) the restrictions v|T̂i are polynomials,
i = 1, . . . , `.

The following two Lemmas are taken from [3].

Lemma 16. Let P be a set of multi-indices. To each v ∈ HPp (Λ) there exists a unique q ∈ P (Λ)
with

∫

Λ

Dα(v − q) dX = 0 ∀α ∈ P .

For a short and elegant proof see [3, Lemma 1]. The argument is a slight extension from
the well-known Bramble-Hilbert theory.

Lemma 17. Let P be a set of multi-indices with 0 ∈ P . Then there exists a constant C
independent of v such that

‖v‖P ,p ≤ C|v|P ,p

for all v ∈ HP (Λ) with
∫

Λ
Dαv dX = 0 for α ∈ P .

An indirect proof can be found in [3, Lemma 2]. It relies on the compactness of a certain
embedding, extending a similar result from Bramble and Hilbert.

The next Lemma is an adaptation of [3, Lemma 3] to our patchwise setting.

Lemma 18. Let γ be a multi-index, I : Cµ(Λ) → S(M̂) ⊂ HP+γ
p (Λ), µ ∈ N be a linear

operator and let Q be a set of multi-indices with 0 ∈ Q and P ⊂ Q. Assume that there are

linear functionals Fi ∈
(
HQp (Λ)

)′
, i = 1, . . . , j = dimDγS(M̂), with the properties

{
Fi(D

γIu) = Fi(D
γu), i = 1, . . . , j, ∀u ∈ Cµ(Λ) ∩HQ+γ

p (Λ),
(
Fi(D

γs) = 0 for i = 1, . . . , j
)
⇒ Dγs = 0 ∀s ∈ S(M̂).

(3.12)

Then there exists a constant C independent of u such that

‖u− Iu‖P+γ,p ≤ C
(
|u|Q+γ,p + ‖q − Iq‖P+γ,p

)
∀u ∈ Cµ(Λ) ∩HQ+γ

p (Λ), (3.13)

where the polynomial q ∈ (Q+ γ)(Λ) is uniquely determined by

∫

Λ

Dα+γ(u− q) dX = 0 ∀α ∈ Q. (3.14)

Proof. By Lemma 16 the polynomial q ∈ (Q+ γ)(Λ) satisfying (3.14) is indeed unique. The
triangle inequality gives

‖u− Iu‖P+γ,p ≤ ‖u− q‖Q+γ,p + ‖q − Iq‖P+γ,p + ‖I(q − u)‖P+γ,p. (3.15)
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Based on (3.12) we observe that
∑j
i=1 |Fi(·)| is a norm on DγS(M̂). Hence, norm equivalence

in finite dimensional spaces yields for the last term

‖I(q − u)‖P+γ,p = ‖DγI(q − u)‖P ,p ≤ C
j∑

i=1

∣∣Fi
(
DγI(q − u)

)∣∣

= C

j∑

i=1

∣∣Fi
(
Dγ(q − u)

)∣∣ ≤ C‖u− q‖Q+γ,p.

(3.16)

With (3.14) an application of Lemma 17 gives

‖u− q‖Q+γ,p =
∥∥Dγ(u− q)

∥∥
Q,p
≤ C|Dγu|Q,p = C|u|Q+γ,p. (3.17)

Collecting (3.15), (3.16) and (3.17) the result follows.

Remark 13. The estimate (3.13) shows that a macro-element interpolation operator should
be designed in such a way that on the macro-element polynomials with a degree as high as
possible are reproduced. Ideally, q = Iq for all q ∈ (Q + γ)(Λ) which leads to the estimate

‖u−Iu‖P+γ ≤ C|u|Q+γ for all u ∈ Cµ(Λ)∩HQ+γ
p (Λ). Otherwise an additional error component

arises due to the inability to reproduce certain polynomials. This is the only difference in
comparison with the theory of [3] caused by a triangle inequality with Iq in (3.15). Such an
amendment becomes necessary because in general the polynomial q 6∈ S(M̂) does not lie within
the spline space.

Definition 3. Since the interpolation operator is usually defined by linear functionals we follow
the nomenclature of [3] and will call the Fi from (3.12) associated functionals (with respect to
Dγ).

3.5 C1 macro-interpolation on anisotropic tensor product
meshes

Before we turn our attention to a rigorous analysis of Π from (3.7) we want to consider a simpler
reduced operator. By doing so we demonstrate the developed techniques without getting bogged
down in details. Moreover, the insight gained into this reduced interpolation operator will prove
to be very useful in the analysis of a quasi-interpolation operator.

3.5.1 A reduced macro-element interpolation operator

Let us consider the reference domain Λ := [−1, 1]2 decomposed into the reference macro-element
M̂ := {T̂i}i=1,...,4, where T̂i is the intersection of Λ with the ith quadrant, i = 1, . . . , 4. With
the basis functions from (3.6) we introduce the following reduced macro-element interpolation
operator Π̂r : C1(Λ)→ S(M̂) with S(M̂) ⊂ {v ∈ C1(Λ) : v|T̂i ∈ Q2, i = 1, . . . , 4},

(Π̂rv)(x, y) =
∑

i,j∈{−1,1}
v(i, j)ϕ̂i,j(x, y) + vx(i, j)φ̂i,j(x, y) + vy(i, j)χ̂i,j(x, y), (x, y) ∈ Λ.

(3.18)

In comparison to Π from (3.7) we discard the basis functions associated with the mixed
derivative. Since Π̂ maps a sufficiently smooth function into C1(Λ), as was shown in [31], we
observe for v ∈ C1(Λ) that

Π̂rv = Π̂
(

Π̂rv
)
∈ C1(Λ).

Hence, indeed S(M̂) ⊂ {v ∈ C1(Λ) : v|T̂i ∈ Q2, i = 1, . . . , 4} ⊂W2,p(Λ). Let us fix γ = (1, 0).
If we seek to apply Lemma 18 to this setting we need to find eight associated functionals Fi,
i = 1, . . . , 8, since

D(1,0)S(M̂) = span{ϕ̂′−1(x)ϕ̂−1(y), ϕ̂′−1(x)ϕ̂1(y), ψ̂′−1(x)ϕ̂−1(y), ψ̂′1(x)ϕ̂−1(y),

ψ̂′−1(x)ϕ̂1(y), ψ̂′1(x)ϕ̂1(y), ϕ̂′−1(x)ψ̂−1(y), ϕ̂′−1(x)ψ̂1(y)}
(3.19)
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is an eight-dimensional space. Setting P = Q := {(0, 0), (0, 1), (1, 0)} these functionals must
be members of (W2,p(Λ))

′
. For i = 1, . . . , 4 let Vi denote the four vertices of Λ. Then for

v ∈W2,p(Λ) we find

Fi(v) := v(Vi), i = 1, . . . , 4

with |Fi(v)| ≤ C‖v‖W2,p(Λ), i = 1, . . . , 4 due to the well known Sobolev embedding W2,p(Λ) ↪→
C(Λ) in two dimensions. Moreover, for u ∈ HQ+γ

p (Λ), i.e. ux ∈W2,p(Λ) one has

Fi(D
γu) = ux(Vi) = Fi(D

γΠ̂ru), i = 1, . . . , 4.

The other four associated functionals are defined on the edges E1 := {(x,−1) : |x| ≤ 1} and
E2 := {(x, 1) : |x| ≤ 1} of Λ which are parallel to the x-axis. In fact, they are the mean value
and the mean value of the normal derivative:

F4+i(v) :=
1

2

∫

Ei

v(s)ds, F6+i(v) :=
1

2

∫

Ei

vy(s)ds, i = 1, 2.

By well known trace theorems |Fi(v)| ≤ C‖v‖W2,p(Λ), i = 5, . . . , 8 (see e.g. [2] and the references
cited in Section 1.3) and

F5(Dγu) =
1

2

∫

E1

ux(s)ds =
1

2

(
u(V2)− u(V1)

)
=

1

2

∫

E1

Dγ
(

Π̂ru
)

(s)ds = F5(DγΠ̂ru),

F7(Dγu) =
1

2

∫

E1

uxy(s)ds =
1

2

(
uy(V2)− uy(V1)

)
=

1

2

∫

E1

Dγ
(

Π̂ru
)
y

(s)ds = F7(DγΠ̂ru).

Similarly, these identities can be shown to hold true for F6 and F8.
Next we show that the functionals Fi define a norm in DγS(M̂). For this purpose let

u ∈DγS(M̂) with Fi(u) = 0 for i = 1, . . . , 8. Based on the relations

ψ̂′i(k)ϕ̂j(`) = δikδj`, i, j, k, ` ∈ {−1, 1}

and v(±1,±1) = 0 for all other basis functions v of DγS(M̂) in (3.19) we find that

u ∈ span{ϕ̂′−1(x)ϕ̂−1(y), ϕ̂′−1(x)ϕ̂1(y), ϕ̂′−1(x)ψ̂−1(y), ϕ̂′−1(x)ψ̂1(y)}.

Out of these remaining four basis functions only ϕ̂′−1(x)ϕ̂−1(y) is non-trivial on the edge E1.
Similarly, only ϕ̂′−1(x)ϕ̂1(y) has values different from zero on E2. Moreover, these values are
all not positive. Since the mean values F5(u) = F6(u) = 0 of u vanishes on these edges we
conclude that

u ∈ span{ϕ̂′−1(x)ψ̂−1(y), ϕ̂′−1(x)ψ̂1(y)}.

The remaining two basis functions are treated in the same way: while the normal derivative of
ϕ̂′−1(x)ψ̂−1(y) on the Edge E1 is non-trivial and not positive we find ϕ̂′−1(x)ψ̂′1(y) ≡ 0 on E1.
On the edge E2 the relations are exactly the other way round. Hence, u ≡ 0.

An application of Lemma 18 yields

‖(u− Π̂ru)x‖W1,p(Λ) ≤ C
(
|ux|W2,p(Λ) + ‖(q − Π̂rq)x‖W1,p(Λ)

)
, (3.20)

for all u ∈ C1(Λ) ∩ HQ+γ
p (Λ). The latter means that ux ∈ W2,p(Λ). The polynomial q is

determined by (3.14) and we want to estimate the second error component of (3.20) containing
it. Obviously, q ∈

(
Q+ γ

)
(Λ) has a representation of the form

q(x, y) = q1x+ q2xy + q3x
2 (x, y) ∈ Λ.

Here the coefficients qi ∈ R, i = 1, 2, 3 are determined by u. A direct calculation shows that
the function (x, y) 7→ x is invariant under interpolation:

Π̂rx =
(
ϕ̂1,−1(x, y) + ϕ̂1,1(x, y)

)
−
(
ϕ̂−1,−1(x, y) + ϕ̂−1,1(x, y)

)
+

∑

i,j∈{−1,1}
φ̂i,j(x, y) (3.21)

=
(
ϕ̂1(x)− ϕ̂−1(x) + ψ̂−1(x) + ψ̂1(x)

)(
ϕ̂−1(y) + ϕ̂1(y)

)
= x. (3.22)
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Figure 3.4: macro-element mesh M (left) and element mesh T (right).

Similarly, the function (x, y) 7→ x2 is preserved by the interpolation operator on the macro-
element, i.e. Π̂r(x2) = x2. From (3.14) with α = (0, 1) we determine q2 = 1

4

∫
Λ
uxy(x, y) dxdy,

hence

‖(q − Π̂rq)x‖W1,p(Λ) = |q2| ‖(xy − Π̂rxy)x‖W1,p(Λ) ≤ C
∣∣∣∣
∫

Λ

uxy(x, y) dxdy

∣∣∣∣ . (3.23)

Collecting (3.20) and (3.23) we arrive at

‖(u− Π̂ru)x‖W1,p(Λ) ≤ C
(
|ux|W2,p(Λ) +

∣∣∣∣
∫

Λ

uxy(x, y) dxdy

∣∣∣∣
)
, (3.24)

for all ∀u ∈ C1(Λ) ∩HQ+γ
p (Λ).

Remark 14. For γ = (1, 1) one can choose

Fi(v) :=

∫

Ei

v ds i = 1, . . . , 4 and F5(v) =

∫

Λ

v ds

as associated functionals. Here Ei denotes the ith edge of Λ, i = 1, . . . , 4. In fact, it is easy to
show that

∑5
i=1 |Fi(·)| is a norm on

D(1,1)S(M̂) = span{ϕ̂′−1(x)ϕ̂′−1(y), ψ̂′−1(x)ϕ̂′−1(y), ψ̂′1(x)ϕ̂′−1(y), ϕ̂′−1(x)ψ̂′−1(y), ϕ̂′−1(x)ψ̂′1(y)}

and that Fi(D
(1,1)Π̂ru) = Fi(D

(1,1)u) for i = 1, . . . , 5. Moreover, Fi ∈
(
W1,p(Λ)

)′
:

∣∣Fi(v)
∣∣ =

∣∣∣∣
∫

Ei

v ds

∣∣∣∣ ≤ ‖v‖L1(Ei) ≤ C‖v‖W1,1(Λ) ≤ C‖v‖W1,p(Λ) i = 1, . . . , 4,

∣∣F5(v)
∣∣ =

∣∣∣∣
∫

Λ

v dxdy

∣∣∣∣ ≤ C‖v‖Lp(Λ) ≤ C‖v‖W1,p(Λ),

based on Sobolev embeddings and Hölder’s inequality. Hence,

‖(u− Π̂ru)xy‖Lp(Λ) ≤ C
(
|uxy|W1,p(Λ) +

∣∣∣∣
∫

Λ

uxy(x, y) dxdy

∣∣∣∣
)

(3.25)

Now, letM be a tensor product mesh of Ω. We shall refer toM as the macro-element mesh
and do not require it to be quasi-uniform, i.e. there are no restrictions on the element sizes
of the underlaying 1D-triangulations Mx and My of the macro-element mesh. We obtain the
element mesh T as the tensor product mesh of the two 1D-triangulations that are generated
by subdividing every element of Mx and My uniformly into two elements of equal size. The
choice of the midpoint as transition point of a macro-element M is not significant. The theory
can handle any subdivision such that the elements within one macro are comparable in size.
However, it simplifies the presentation. See Figure 3.4 for a graphical representation of M and
T .

Let M ∈M be the macro-element M = [x0 − h1, x0 + h1]× [y0 − h2, y0 + h2]. Note that M
consists out of the four elements of T that share the vertex (x0, y0). Introducing the reference
mapping FM from [−1, 1]2 to M by

x = x0 + h1x̂, y = y0 + h2ŷ, (3.26)

we obtain anisotropic error estimates for the macro-interpolation operator Πru := Π̂rû ◦ F−1
M

with û := u ◦ FM on M .
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Theorem 19. Associated with the shape of the macro-element M let h := (h1, h2). For
u ∈ C1(M) with ux ∈W2,p(M) we have the estimate

‖ (u−Πru)x ‖Lp(M) ≤ C


∑

|α|=2

hα‖Dαux‖Lp(M) + h2

∣∣∣∣
∫

M

uxy(x, y) dxdy

∣∣∣∣


 . (3.27)

Proof. The proof uses change of variables, the result (3.24) on the reference macro-element and

the relation Dα = h−αD̂
α

:

‖D(1,0) (u−Πru) ‖pLp(M) = h−p1

∥∥∥D̂(1,0)
(
û− Π̂rû

)∥∥∥
p

Lp(Λ)
h1h2

≤ Ch−p1

(∣∣∣D̂(1,0)
û
∣∣∣
p

W2,p(Λ)
+

∣∣∣∣
∫

Λ

ûxy(x̂, ŷ) dx̂dŷ

∣∣∣∣
p)

h1h2

≤ Ch−p1


∑

|α|=2

hp1h
pα
∥∥∥DαD(1,0)u

∥∥∥
p

Lp(M)
+ hp1h

p
2

∣∣∣∣
∫

M

D(1,1)u(x, y) dxdy

∣∣∣∣
p

 .

Which is the desired estimate. In the case p =∞ some minor modifications are needed.

Remark 15. The diagonal form of the affine reference mapping FM according to (3.26) is needed
for affine equivalence of the interpolation operator. Note that only in this case Qk elements are
affine equivalent.

Remark 16. While for functions u ∈ C1(M) with ux ∈ W2,p(M) the reduced interpolation
operator Πr is not of second order in the W1,p semi-norm it is of optimal second order if
additionally the mean value of the mixed derivative uxy vanishes on M . Clearly, this reduction

in approximation ability corresponds to discarding the basis functions ψ̂±1,±1 in (3.18).

Remark 17. Similarly, one can can deduce from the result in Remark 14 that

‖(u−Πru)xy‖Lp(M) ≤ C


∑

|α|=1

hα‖Dαuxy‖Lp(M) +

∣∣∣∣
∫

M

uxy(x, y) dxdy

∣∣∣∣


 .

Clearly, this result is in general unsatisfactory. The inability to yield anisotropic interpolation
error estimates for second order derivatives of the approximation error is caused by discarding
the basis functions corresponding to the mixed derivative.

3.5.2 The full C1 −Q2 interpolation operator

As a second example we want to consider the interpolation operator Π̂ of (3.7). We refer to it
as full not only to contrast it from the reduced operator in the previous subsection but also
to underline the property (3.8) of its underlaying macro-element space. Since this operator is
closely related to interpolation on the bicubic C1 Bogner-Fox-Schmidt element, we shall first
give a result from the literature. To the knowledge of the author there exists only one paper
dealing with anisotropic interpolation error estimates for this element. In [13] the authors
derive the result

∥∥∥D̂γ
(
û− Î12û

)∥∥∥
0,K̂
≤ C

∣∣∣D̂γ
û
∣∣∣
4−|γ|,K̂

, (3.28)

for |γ| ≤ 2 and û ∈ H4(K̂) on the reference element K̂ := [0, 1]2. Here I12 is the analogue of
Π̂ in the space of bicubic polynomials, i.e. the Lagrangian basis functions in (3.7) have to be
replaced by bicubic polynomials satisfying the same (duality and Kronecker) relations. Using
affine transformation this result can be extended to

‖Dγ (u− I12u)‖0,K ≤ C
∑

|α|=4−|γ|
hα ‖DαDγu‖0,K , (3.29)

for |γ| ≤ 2 and u ∈ H4(K) on a rectangular element K with sides aligned to the coordinate
axes and h = (h1, h2) with edge lengths hi, i = 1, 2.



3.5. C1 MACRO-INTERPOLATION ON ANISOTROPIC MESHES 51

However, in [13] the theory of Apel [3, 2] is not used to obtain this result. Instead a

new interpolation operator L̂1 is introduced such that L̂1(D̂
γ
û) = D̂

γ
Î12û and standard

interpolation theory is applied to obtain a bound for the interpolation error of L̂1. Since we are
dealing with only piecewise polynomials this path is blocked for us. A spin-off of our discussion
will be how the results (3.28) and (3.29) can be obtained using Apel’s theory. The key is to
recognize that divided differences can be used as associated functionals. Since we need certain
Sobolev embeddings, we focus on the case p = 2, which also appears to be the most important
one with respect to applications.

Inspired by [13] we generalize the Newtonian representation (3.4) to two dimensions obtaining

(
Π̂u
)
(x, y) =

3∑

i=1

3∑

j=1

Fi,j(u)(x+ 1)i−1(y + 1)j−1 + 4
3∑

j=1

F4,j(u)ψ̂1(x)(y + 1)j−1

+4
3∑

i=1

Fi,4(u)(x+ 1)i−1ψ̂1(y) + 16F4,4(u)ψ̂1(x)ψ̂1(y).

(3.30)

Here the 16 functionals Fi,j , i, j = 1, . . . , 4 are two-dimensional divided differences with multiple
knots, see e.g. [55]. If we define a sorted node sequence by

ni =





−1 for i = 1,

−1,−1 for i = 2,

−1,−1, 1 for i = 3,

−1,−1, 1, 1 for i = 4,

then Fi,j(u) := u[ni;nj ] is the divided difference of order i− 1 to x and order j − 1 to y:

Definition 4. For a fixed y ∈ [−1, 1] let

uni(y) := u(·, y)[ni]

denote the parametrized one dimensional divided difference (with respect to x and the node
sequence ni). Then the two dimensional divided difference u[ni;nj ] is defined by

u[ni;nj ] := uni [nj ].

Remark 18. Because of u[ni;nj ] =
(
u(x, ·)[nj ]

)
[ni] one can start with the evaluation in y, as

well.

We find that

Fi,j(u) = u[

i times︷ ︸︸ ︷
−1, . . . ,−1;

j times︷ ︸︸ ︷
−1, . . . ,−1] = D(i−1,j−1)u(−1,−1), i, j = 1, 2. (3.31)

Moreover, using (3.5) for instance

F3,1 = u[−1,−1, 1;−1] =
1

4
u(1,−1)− 1

4
u(−1,−1)− 1

2
ux(−1,−1),

F4,1 = u[−1,−1, 1, 1;−1] =
1

4
u(−1,−1)− 1

4
u(1,−1) +

1

4
ux(−1,−1) +

1

4
ux(1,−1),

F3,2 = u[−1,−1, 1;−1,−1] =
1

4
uy(1,−1)− 1

4
uy(−1,−1)− 1

2
uxy(−1,−1),

F4,2 = u[−1,−1, 1, 1;−1,−1] =
1

4
uy(−1,−1)− 1

4
uy(1,−1) +

1

4
uxy(−1,−1) +

1

4
uxy(1,−1).

Similarly, the other divided differences can be calculated, e.g.

F3,3 = u[−1,−1, 1;−1,−1, 1] =
1

4

(
1

4
u(1, 1)− 1

4
u(−1, 1)− 1

2
ux(−1, 1)

)

− 1

4

(
1

4
u(1,−1)− 1

4
u(−1,−1)− 1

2
ux(−1,−1)

)

− 1

2

(
1

4
uy(1,−1)− 1

4
uy(−1,−1)− 1

2
uxy(−1,−1)

)
.
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Obviously, all divided differences Fi,j , i, j = 1, . . . , 4 can be expressed as linear combinations of
the interpolation data {u(±1,±1), ux(±1,±1), uy(±1,±1), uxy(±1,±1)}.

In contrast to Subsection 3.5.1 we want to consider an arbitrary multi-index γ with |γ| ≤ 2
here. Consequently, certain sets and functionals depend on the specific choice of γ and we
emphasize this by using the additional subscript or superscript γ. By applying the differential
operator Dγ to the representation (3.30) we observe that the space DγS(M̂) can be normed
by
∑

(i,j)∈Jγ |Fi,j(·)|. Here

J(γ1,γ2) = {(i, j) : i = γ1 + 1, . . . , 4 and j = γ2 + 1, . . . , 4}.

Note also that by construction dimDγS(M̂) = |Jγ |. We want to apply Lemma 18 with
Q := {α : |α| ≤ 3 − |γ|}. In order to establish that Fi,j with (i, j) ∈ Jγ are associated
functionals according to (3.12) we have to show that the divided differences Fi,j can be

interpreted as the application of a linear functional Fγi,j ∈
(
H4−|γ|(Λ)

)′
on the derivative Dγu

such that

Fγi,j(D
γΠ̂u) = Fγi,j(D

γu), (i, j) ∈ Jγ , ∀u ∈ {v ∈ C2(Λ) : Dγv ∈ H4−|γ|(Λ)}.

Following [13] we reinterpret (3.31) in the form

Fi,j(u) = D(i−1−γ1,j−1−γ2)Dγu(−1,−1) =: Fγi,j(D
γu), (i, j) ∈ Jγ , i, j = 1, 2.

Since all these Fi,j can be expressed as linear combinations of the interpolation data we have

Fγi,j(D
γu) = Fi,j(u) = Fi,j(Π̂u) = Fγi,j(D

γΠ̂u) (3.32)

for (i, j) ∈ Jγ , i, j = 1, 2. Moreover, from a standard Sobolev embedding H4−|γ| ↪→ C2−|γ| for
v ∈ H4−|γ|(Λ)

∣∣Fγi,j(v)
∣∣ ≤

∣∣∣D(i−1−γ1,j−1−γ2)v(−1,−1)
∣∣∣ ≤ C‖v‖4−|γ|, (i, j) ∈ Jγ , i, j = 1, 2.

For the other divided differences we need some kind of Peano form which was developed in
[13]. In fact, replacing u(1) and u′(1) in (3.5) by the Taylor expansions

u(1) = u(−1) + 2u′(−1) +

∫ 1

−1

(1− x)u′′(x) dx and u′(1) = u′(−1) +

∫ 1

−1

u′′(x) dx

one obtains

u[−1,−1,

i times︷ ︸︸ ︷
1 . . . 1] =

∫ 1

−1

si(x)u′′(x)dx with si(x) =

{
(1− x)/4, for i = 1,

x/4, for i = 2.
(3.33)

With respect to (3.32) it is important to note that this identity does not only hold for C2([−1, 1])
functions but also for the quadratic C1 splines considered as can be checked by examining all
the basis functions ϕ̂±1 and ψ̂±1, for instance

ϕ̂−1[−1,−1, 1] = −1

4
=

∫ 1

−1

(1− x)

4
ϕ̂′′−1(x)dx.

Clearly, |si(x)| ≤ 1
2 for x ∈ [−1, 1] and i = 1, 2. Hence, one can conclude that

Fi,j(u) = u[ni;nj ] =

∫ 1

−1

si−2(x)D(2,j−1)u(x,−1) dx

=

∫ 1

−1

si−2(x)D(2−γ1,j−1−γ2)Dγu(x,−1) dx =: Fγi,j(D
γu),

for (i, j) ∈ Jγ , i = 3, 4, j = 1, 2 and with

∣∣Fγi,j(v)
∣∣ ≤ 1

2

∫ 1

−1

∣∣∣D(2−γ1,j−1−γ2)v(x,−1)
∣∣∣ dx ≤ C‖v‖4−|γ|, (i, j) ∈ Jγ , i = 3, 4, j = 1, 2.
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for v ∈ H4−|γ|(Λ) by a trace theorem (c.p. [13]). Note that the identities in (3.32) hold true for
(i, j) ∈ Jγ , i = 3, 4, j = 1, 2, as well.

In exactly the same manner we treat the functionals Fi,j with (i, j) ∈ Jγ , i = 1, 2, j = 3, 4:

Fi,j(u) = u[ni;nj ] =

∫ 1

−1

sj−2(y)D(i−1,2)u(−1, y) dx

=

∫ 1

−1

sj−2(y)D(i−1−γ1,2−γ2)Dγu(−1, y) dy =: Fγi,j(D
γu).

Using the same argument as before it is easy to obtain
∣∣Fγi,j(v)

∣∣ ≤ ‖v‖4−|γ| and (3.32) for
(i, j) ∈ Jγ , i = 1, 2, j = 3, 4.

Finally, we consider Fi,j for i, j = 3, 4.

Fi,j(u) = u[ni;nj ] =

∫

Λ

si−2(x)sj−2(y)D(2,2)u(x, y) dxdy

=

∫

Λ

si−2(x)sj−2(y)D(2−γ1,2−γ2)Dγu(x, y) dxdy =: Fγi,j(D
γu), i, j = 3, 4.

Again the functionals can be shown to be bounded. Using the Cauchy Schwarz inequality

∣∣Fγi,j(v)
∣∣ ≤ 1

4

∫

Λ

∣∣∣D(2−γ1,2−γ2)v(x, y)
∣∣∣ dxdy ≤ C

∥∥∥D(2−γ1,2−γ2)v
∥∥∥

0
≤ C‖v‖4−|γ|

for i, j = 3, 4. Additionally, (3.32) holds true for i, j = 3, 4.
Hence, for a given differential operator Dγ with |γ| ≤ 2 we can use Fγi,j , (i, j) ∈ Jγ as

associated functionals and Lemma 18 yields for u ∈ C2(Λ) with Dγu ∈ H4−|γ|(Λ) that

∥∥∥Dγ
(
u− Π̂u

)∥∥∥
2−|γ|

≤ C
(
|Dγu|4−|γ| +

∥∥∥Dγ
(
q − Π̂q

)∥∥∥
2−|γ|

)
. (3.34)

Here the polynomial q ∈ (Q + γ)(Λ) is defined by (3.14) where Q := {α : |α| ≤ 3 − |γ|}.
Hence, with X = (x, y),

q(x, y) =
∑

α∈Q
qα+γX

α+γ =
∑

α∈Q
|α+γ|<3

qα+γX
α+γ +

∑

α∈Q
|α+γ|=3

qα+γX
α+γ ,

with coefficients qα+γ = qα+γ(u) ∈ R for α ∈ Q. A simple calculation shows that Π̂(xβ) = xβ

on Λ for all β satisfying |β| < 3. Therefore we obtain with a triangle inequality
∥∥∥Dγ

(
q − Π̂q

)∥∥∥
2−|γ|

≤
∑

α∈Q
|α+γ|=3

|qα+γ |
∥∥∥Dγ

(
Xα+γ − Π̂(Xα+γ)

)∥∥∥
2−|γ|

≤ C
∑

α∈Q
|α+γ|=3

|qα+γ |.

Note that the last summation is carried out over multi-indices of highest order for which we
observe by (3.14)

∫

Λ

Dα+γq(x, y) dxdy = 4(α1 + γ1)!(α2 + γ2)! qα+γ

=

∫

Λ

Dα+γu(x, y) dxdy, α ∈ Q, |α+ γ| = 3.

Hence,

∥∥∥Dγ
(
q − Π̂q

)∥∥∥
2−|γ|

≤ C
∑

|α|=3−|γ|

∣∣∣∣
∫

Λ

DαDγu(x, y) dxdy

∣∣∣∣ . (3.35)

Collecting (3.34) and (3.35) we obtain another main result.

Theorem 20. Let γ be a multi-index with |γ| ≤ 2 and let Π̂ denote the full C1−Q2 interpolation
operator defined in (3.7) on the reference macro-element M̂ . For u ∈ H4(Λ) we have the estimate

∥∥Dγ
(
u− Π̂u

)∥∥
0
≤ C


|Dγu|4−|γ| +

∑

|α|=3−|γ|

∣∣∣∣
∫

Λ

DαDγu(x, y) dxdy

∣∣∣∣


 .
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Using an affine mapping we can define Π on a macro-element M ∈M and extend the result
like in the proof of Theorem 19.

Corollary 21. Let M = [x0−h1, x0 +h1]× [y0−h2, y0 +h2] be the axis-aligned macro-element
that contains the four elements sharing the vertex (x0, y0). With the reference mapping FM
from Λ := [−1, 1]2 to M defined in (3.26) one can introduce the full C1 − Q2 interpolation
operator Π on M by Πu := Π̂û ◦ F−1

M with û := u ◦ FM . Let γ be a multi-index with |γ| ≤ 2
and h = (h1, h2). Then for u ∈ H4(M) we have the estimate

‖Dγ (u−Πu) ‖0,M ≤ C


 ∑

|α|=4−|γ|
hα ‖DαDγu‖0,M +

∑

|α|=3−|γ|
hα
∣∣∣∣
∫

M

DαDγu(x, y) dxdy

∣∣∣∣


 .

(3.36)

Corollary 22. Let I12 be the analogue of Π in the space of bicubic polynomials, i.e. the
Lagrangian basis functions in (3.7) are replaced by bicubic polynomials satisfying the same
duality and Kronecker relations. Let γ be a multi-index with |γ| ≤ 2. Then the estimate (3.29)
holds true for all u ∈ C2(M) with Dγu ∈ H4−γ(M).

Proof. Replace (3.30) by

(
I12u

)
(x, y) =

3∑

i=1

3∑

j=1

Fi,j(u)(x+ 1)i−1(y + 1)j−1 +
3∑

j=1

F4,j(u)(x+ 1)2(x− 1)(y + 1)j−1

+

3∑

i=1

Fi,4(u)(x+ 1)i−1(y + 1)2(y − 1) + F4,4(u)(x+ 1)2(x− 1)(y + 1)2(y − 1).

Now all arguments carry over to I12. Observe that for this interpolation operator on the
reference element we find I12(Xβ) = Xβ for all β satisfying |β| ≤ 3. Hence, the additional
error component containing q vanishes.

Remark 19. It is possible to extend this result to Hermite interpolation by polynomials of
higher degree as was done in [13]. However, in that paper a different technique is used. By
identifying possible associate functionals we enable the analysis of these operators using the
unified theory of Apel and Dobrowolski, see [3].

Remark 20. Comparing the estimates (3.29) and (3.36) we see that the macro-interpolation
attains in general a lower order than the corresponding element interpolation. This is due to
the inability of the macro-interpolation operator to reproduce cubic polynomials.

Remark 21. The reduced macro-interpolation operator Πr is of even lower order compared to
Π and it appears doubtful to obtain anisotropic estimates for second order derivatives of the
interpolation error of Πr. However, it does not rely on so much regularity of the function u
to be interpolated. Note that the only difference of Π̂r and Π̂ is the choice of the functional
determining the coefficient of the basis functions ψ̂i,j , i, j = −1, 1, see also Table 3.1.

3.5.3 A C1−Q2 macro-element quasi-interpolation operator of Scott-
Zhang-type on tensor product meshes

Let us start this subsection by recalling the definition of the Scott-Zhang quasi-interpolation
operator Zh. This operator was designed in order to obtain approximations to functions u that
are not sufficiently regular for nodal interpolation, see [71]. For instance, one might wish to
approximate non-smooth functions. The basic idea is to use local L2 projections on certain
element edges to specify the coefficients of the approximating finite element function Zhu. In
contrast to the well-known Clément quasi-interpolant this approach can grant the projection
property and the ability to preserve homogeneous boundary conditions.

Since we only want to demonstrate the basic ideas and fix some notation here we shall
only consider the function space Vh of continuous piecewise linears induced by a quasi-uniform
partition Ωh of the polygonal domain Ω ⊂ R2 into triangles. For a more extensive presentation
we refer the interested reader to [2, Section 3.2].
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Πu Πru Π̃u

coefficient of the basis-function
corresponding to mixed derivative

uxy(xi, yj) 0 aij , see (3.44),
non-local

required regularity of u H4(Ω) H3(Ω) H3(Ω)

formal order of the first derivative
of the approximation error in L2

2 1 2

best possible order of the first deriva-
tive of the approximation error in L2

3 2 2

anisotropic estimates for the deriva-
tives Dγ of the approximation error

|γ| ≤ 2 |γ| ≤ 1 |γ| ≤ 1

Table 3.1: Comparison of the (quasi-)interpolation operators Πr (Subsection 3.5.1), Π (Subsec-
tion 3.5.2) and Π̃ (Subsection 3.5.3) on tensor product meshes.

Let ϕi, i ∈ I denote the nodal basis functions of Vh, i.e. for any grid node Xj , j ∈ I the
piecewise linear function ϕi ∈ Vh satisfies

ϕi(Xj) = δij . (3.37)

Next, for each node Xi, i ∈ I of the mesh we pick an edge σi of a mesh triangle such that
Xi ∈ σi. If Xi ∈ ∂Ω belongs to the boundary then we further restrict the choice of these
edges by demanding σi ⊂ ∂Ω. This is essential if one wishes to preserve homogeneous boundary
conditions. Now the Scott-Zhang operator is defined by

Zhu(x, y) =
∑

i∈I

(
Πσiu

)
(Xi)ϕi(x, y), (3.38)

where Πσi : L2(σi)→ P1(σi), i ∈ I is the local L2-projection operator. It is easy to see that Zh
inherits the property of being a projector ; actually, Zhvh = vh for all vh ∈ Vh.

In order to provide an equivalent but more useful definition of the Scott-Zhang quasi-
interpolant Zhu to u let us assume that σi is the straight line connecting the nodes Xi and Xj

for some j ∈ I. On σi let ψdi ∈ P1(σi) denote a dual basis function, uniquely determined by

∫

σi

ψdi ϕi ds = 1 and

∫

σi

ψdi ϕj ds = 0. (3.39)

Obviously Πσiu ∈ P1(σi) can be represented as a linear combination of the restrictions of ϕi
and ϕj to σi, i.e.

Πσiu = biϕi
∣∣
σi

+ bjϕj
∣∣
σi
.

with real numbers bi and bj still to be specified. Hence, by (3.39) and the definition of Πσi one
finds that

bi = bi

∫

σi

ψdi ϕi ds =

∫

σi

(Πσiu)ψdi ds =

∫

σi

uψdi ds. (3.40)

Finally, by the Kronecker relation (3.37) it is clear that
(
Πσiu

)
(Xi) = bi. Consequently, with

(3.40) and (3.38) one obtains

Zhu(x, y) =
∑

i∈I

∫

σi

uψdi dsϕi(x, y). (3.41)

From its representation (3.41) it can be seen that the coefficients of the Scott-Zhang
interpolant Zhu to u are weighted local averages of u over σi. In fact, the dual basis function
ψdi can be interpreted as some weighting function since

∫

σi

ψdi ds =

∫

σi

ψdi (ϕi + ϕj) ds =

∫

σi

ψdi ϕi ds = 1,
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because of (3.39) and the fact that {ϕi, ϕj} is a partition of unity on σi. In this light it is clear
that stability and error estimates for Zhu over an element T will be based on the values of
derivatives of u on an entire patch ωT of elements around T . More precisely, a mesh triangle
Tj is a subset of ωT iff T has a vertex Xi such that Xi ∈ σi ⊂ Tj .

Moreover, (3.41) extends the domain of definition. Naturally one would demand that for
the function u to be approximated it holds u ∈ L2(σi). However, since one has ψdi ∈ L∞(σi)
for the polynomial dual basis functions ψdi , i ∈ I, it is possible to apply Zh to any function u
such that its trace satisfies u ∈ L1(σi).

Under the assumption of a quasi-uniform mesh Ωh and for u ∈ Wj,p(ωT ) the stability
estimate

|Zhu|Wk,p(T ) ≤ Ch−k
∑̀

j=0

hj |u|Wj,p(ωT ), for p ∈ [1,∞], 0 ≤ k ≤ ` ≤ 2, ` ≥ 1,

can be found for instance in [17]. Next, standard arguments can be used to obtain the error
estimate

|u− Zhu|Wk,p(T ) ≤ Ch`−k|u|W`,p(ωT ), for p ∈ [1,∞], 0 ≤ k ≤ ` ≤ 2, ` ≥ 1.

In [2] the Scott-Zhang operator is studied over anisotropic meshes of tensor product type.
It is shown in Theorem 3.1 of that book that for p ∈ [1,∞] and some rectangular axis-aligned
element T this operator grants a stability estimate and an anisotropic quasi-interpolation
error estimate for ‖Zhu‖Lp(T ) and ‖u− Zhu‖Lp(T ), respectively. Moreover, in [2] one finds a
counterexample showing that in general the original Scott-Zhang operator does not provide
such an estimate for derivatives of the approximation error. Therefore the original operator is
modified in several ways in the Sections 3.3, 3.4 and 3.5 of [2] and anisotropic quasi-interpolation
error estimates for the resulting operators are obtained. However, in the entire third chapter
of that book it is assumed that there is no abrupt change in the element sizes. This means
that while elements are allowed to have an arbitrary aspect ratio hx/hy the edge length hx and
hy have to vary gradually when moving from one element to a neighboring one, see [2, (3.4)
on page 100]. Clearly, this assumption is quite restrictive. For instance, the frequently used
Shishkin-type meshes do not meet this requirement.

The paper [4] deals with the possibility of applying the Scott-Zhang operator on Shishkin
meshes ΩN of tensor product type. The authors suggest to choose the element edges σi for
every mesh node Xi ∈ σi, i = 1, . . . , N2 in a special way:

• Certain edges σi on the boundary may be chosen arbitrarily but the rest has to be parallel
to one coordinate axis, say the x-axis.

• The ratio of the size of the patch ωT to the size of the element T must have an ε-uniform
upper bound in both coordinate directions. Consequently, for instance an element T
with a small side in the x-direction must be associated with a patch ωT with the same
property.

This modified Scott-Zhang operator QN can be applied on a Shishkin mesh. Unfortunately
the authors needed more regularity of the regular solution component S ∈ W2,∞(Ω) of a
convection-diffusion problem to prove optimal quasi-interpolation error estimates. Still, this
result shows that the Scott-Zhang operator is quite flexible and that it can be tailored to suit
an application on meshes with abrupt changes in the mesh sizes.

Note that the original Scott-Zhang operator and its modifications sketched so far were
introduced for elements of Lagrange-type, i.e. the linear functionals associated with the element
are function evaluations in certain points. The C1−Q2 macro-element however features also the
point evaluation of derivatives. We want to apply the basic ideas of the Scott-Zhang operator
to the components of the C1 −Q2 macro-element space that are associated with the evaluation
of the mixed second derivative. We do so with the aim of reducing the regularity required
to prove anisotropic quasi-interpolation error estimates. In view of Remark 21 we study the
question, whether it is possible to define a new C1 interpolation operator Π̃ by introducing the
right functional corresponding to the mixed derivative in such a way that estimates like (3.36)
are possible assuming only some W3,p regularity of u.
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The quasi-interpolant Π̃u to u over some macro-element M will be governed on a macro-
element neighbourhood or macro-element patch around M . More precisely, the coefficients of
the basis functions that correspond to the mixed derivative are calculated by some weighted
averaging process of the mixed derivative of u over macro-element edges that do not necessarily
belong to M . Because of this non-local character of Π̃ we have to be very careful when
a reference mapping to some reference domain is used to prevent imposing very restrictive
conditions on the geometry of the macro-element patch. Instead we shall use some ideas of [2]
and estimate directly on the world domain.

Let Xij := (xi, yj), (i, j) ∈ I denote the nodes of a rectangular tensor product mesh Mh,
generated by the two arbitrary one-dimensional triangulations {xi}ni=0 and {yj}mj=0. We shall
refer to Mh as macro-element mesh. We use

hi :=
1

2
(xi − xi−1), i = 1, . . . , n and kj :=

1

2
(yj − yj−1), j = 1, . . . ,m,

to denote the local step sizes in x- and y-direction. Each macro-element M ∈Mh is subdivided
into four congruent elements introducing new mesh nodes with subscript 1

2 ,
3
2 ,

5
2 , . . . . The

generated element mesh is denoted by Th, see Figure 3.4. Note that one may chose a different
refinement of the macro-element mesh such that the elements within one macro-element remain
comparable in size. We choose the presented uniform one in order to simplify the presentation.
Now each macro-element Mij := [xi+1/2 − hi, xi+1/2 + hi]× [yj+1/2 − kj , yj+1/2 + kj ] ∈Mh is
centered around (xi+1/2, yj+1/2) and consists of four elements of size hij := (hi, kj). Moreover,
we denote by Iij := IMij

:= {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)} the set of the four node
indices that are vertices of Mij .

Let Vh denote the space of C1 −Q2 finite element functions over the tensor product mesh
Th. Using the reference mapping Fij : [−1, 1]2 →Mij ∈Mh with

x = xi+1/2 + hix̂, and y = yj+1/2 + kj ŷ

we can specify basis functions of Vh in the world domain using (3.6). Consider for instance the
lower right vertex Xi+1,j of the macro-element Mij . Then the basis function ψi+1,j associated
with the mixed derivative in Xi+1,j admits the representation

ψi+1,j

∣∣
Mij

= hikjψ̂1,−1 ◦ F−1
ij ,

where ψ̂1,−1 was defined in (3.6). Similarly,

ψi,j
∣∣
Mij

= hikjψ̂−1,−1 ◦ F−1
ij , ψi,j+1

∣∣
Mij

= hikjψ̂−1,1 ◦ F−1
ij , ψi+1,j+1

∣∣
Mij

= hikjψ̂1,1 ◦ F−1
ij .

Let us now define a (quasi-)interpolation operator Π̃ by

Π̃u
∣∣
M

:= Πr
(
u
∣∣
M

)
+

∑

(k,`)∈IM
ak,` ψk,`, (3.42)

with the reduced interpolation operator Πr from Subsection 3.5.1 and real numbers ak,` still

to be determined. Note that the choice of ak,` does not alter the ability of Π̃ to reproduce
inhomogeneous Dirichlet boundary conditions g (if g ∈ Vh|∂Ω , i.e. g ∈ C1(∂Ω) and piecewise
quadratic), because ψk,`, (k, `) ∈ Iij vanishes on the boundary of Mij , see Figure 3.3.

The local choices ak,` = 0 and ak,` = uxy(Xk`) correspond to Π̃ = Πr and Π̃ = Π,
respectively. Next, we want to follow the approach of Scott and Zhang [71] and define the
coefficients ak,` using certain mean values of uxy along macro-element edges σk,`. Hence, as
already mentioned, the interpolation operator is of non-local character and the theory developed
in Section 3.4 can not be applied to Π̃. However, the definition of Π̃u on a macro-element M is
not global but shall be based on the values of uxy on the macro-element neighbourhood SM of
M :

SM =
⋃
{M ′ : M ′ ∈Mh, M

′ ∩M 6= ∅}. (3.43)

More precisely, we associate every node Xij of the macro-element mesh Mh with a macro-
element edge σi,j ⊂ SM such that Xij ∈ σi,j , see Figure 3.5 for some illustration.
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M

SM

Xij

four possible choices
for σi,j

Figure 3.5: Definitions on the macro-element mesh.

Once the edges σi,j ∈ SM for (i, j) ∈ IM are chosen we can define the associated macro-
element patch ωM around M . Another patch neighbourhood of M is needed because the
value of our quasi-interpolation operator will be based on values of its interpolant on M and
σi,j . Hence, if the approximation error is estimated norms of the interpolant over a patch of
macro-elements will appear on the right hand side of the estimate. On the other hand estimates
that use the full neighbourhood SM might be too crude.

Definition 5. The smallest (in area) rectangular patch of macro-elements that contains the
convex hull of {σi,j : (i, j) ∈ IM} is called the associated macro-element patch ωM around M .

Note that M ⊂ ωM ⊂ SM . If for instance at each node Xij of the tensor product macro-
element mesh the set σi,j is chosen to be the edge to the left of that point, then the associated
macro-element patch ωM around M is defined as the union of M and its left macro-element
neighbour.

We plan to set

ai,j =
∂2

∂x∂y

(
Πσi,ju

)
(Xij), (3.44)

with a suitable projector Πσi,j . Assuming that σi,j is the horizontal macro-element edge
(xi, xi+1)× {yj} that connects the macro-element vertices Xij and Xi+1,j we set

Πσi,ju = bi,jψi,j + bi+1,jψi+1,j . (3.45)

We determine the real coefficients bi,j and bi+1,j by

∫

σi,j

∂2

∂x∂y

(
Πσi,ju

)
(x, yj)v(x) dx =

∫

σi,j

∂2u(x, yj)

∂x∂y
v(x) dx for all v ∈ Vi+1/2, (3.46)

with Vi+1/2 = span{ψi + ψi+1, θi+1/2} and θi+1/2(x) =
(
x−xi+1

hi

)2

− 1
6 . Here ψi and ψi+1 are

the one dimensional spline basis functions from (3.3) scaled to σi,j , i.e.

ψi(x) =
hi
4
− x− xi+1/2

2





− 3(x− xi+1/2)2

4hi
, xi ≤ x ≤ xi+1/2,

+
(x− xi+1/2)2

4hi
, xi+1/2 ≤ x ≤ xi+1,

ψi+1(x) = −hi
4
− x− xi+1/2

2





− (x− xi+1/2)2

4hi
, xi ≤ x ≤ xi+1/2,

+
3(x− xi+1/2)2

4hi
, xi+1/2 ≤ x ≤ xi+1

(3.47)
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and hi = xi+1 − xi+1/2 = xi+1/2 − xi. Note that these functions have O(hi) scalings while
their first derivatives have O(1) scalings on (xi, xi+1). Moreover, we would like to recall
ψi,j(x, y) = ψi(x)ψj(y) and point out that the ansatz (3.45) is justified by the fact that
∂2

∂x∂yψk,` vanishes on σi,j if Xk,` /∈ σi,j , i.e. only adjacent basis functions contribute to the

integral over σi,j on the left hand side of (3.46). The choice of Vi+1/2 will become clear in the
next Lemma. Basically, we need that this space is L2-orthogonal to certain functions to prove
that discrete functions are left invariant, see Lemma 23.

Next, we want to find a more suitable representation of ai,j according to (3.44). For this
purpose let us define the dual basis function ψdi ∈ Vi+1/2 by

∫

σi,j

∂2ψk,j(x, yj)

∂x∂y
ψdi (x) dx = δk,i. (3.48)

This system yields with (3.45)

bi,j =
i+1∑

k=i

bk,j

∫

σi,j

∂2ψk,j(x, yj)

∂x∂y
ψdi (x) dx =

∫

σi,j

∂2

∂x∂y

(
Πσi,ju

)
(x, yj)ψ

d
i (x) dx.

An application of (3.46) then gives

bi,j =

∫

σi,j

∂2u(x, yj)

∂x∂y
ψdi (x) dx.

Finally, we use the Lagrange relation
∂2ψk,`(xi,yj)

∂x∂y = δk,iδ`,j to obtain

ai,j =
∂2

∂x∂y

(
Πσi,ju

)
(Xij) = bi,j =

∫

σi,j

∂2u(x, yj)

∂x∂y
ψdi (x) dx. (3.49)

Hence, ai,j is indeed a weighted mean value of uxy on the macro-element edge σi,j . For the
weighting function we solve (3.48) to find

ψdi (x) = −h
2
i + 12hi(x− xi+1/2)

2h3
i





− 3(x− xi+1/2)2

h3
i

, xi ≤ x ≤ xi+1/2,

+
9(x− xi+1/2)2

h3
i

, xi+1/2 ≤ x ≤ xi+1,

ψdi+1(x) = −h
2
i − 12hi(x− xi+1/2)

2h3
i





+
9(x− xi+1/2)2

h3
i

, xi ≤ x ≤ xi+1/2,

− 3(x− xi+1/2)2

h3
i

, xi+1/2 ≤ x ≤ xi+1.

(3.50)

Here ψdi+1 ∈ Vi+1/2 is the other dual basis function on σi,j , satisfying (3.48) with i replaced by

i+ 1. Note that ψdi , ψ
d
i+1 ∈ C1

(
xi, xi+1

)
and that ‖ψdi ‖L∞(σi,j) ≤ Ch−1

i with a similar bound

for ‖ψdi+1‖L∞(σi,j). A simple calculation shows the important property

∫

σi,j

ψdi (x) dx = 1, (3.51)

which again underlines the role of ψdi as a weighting function.

Remark 22. In Section 4 of [31] a similar macro-element edge based approach is used to reduce
the regularity demanded of the function to be interpolated. There, the Girault-Scott operator
is extended to the C1 −Q2 macro-element. In [31] integration by parts is applied to an identity
similar to (3.49) which results in a different system defining the dual basis functions. However,
this approach appears to be not suitable for anisotropic quasi-interpolation error estimates.
Another difference to that paper is that here we mix local and non-local functionals for the
definition of our quasi-interpolation operator which is reflected in the sophisticated choice of
Vi+1/2.
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Lemma 23. Π̃ preserves Vh functions, i.e.

Π̃vh = vh for all vh ∈ Vh. (3.52)

Proof. Since every function vh ∈ Vh is uniquely determined by the nodal values

vh(Xij),
∂vh
∂x

(Xij),
∂vh
∂y

(Xij),
∂2vh
∂x∂y

(Xij),

in the macro-element vertices Xij with (i, j) ∈ I, it remains to prove that these functionals are

invariant to the application of the quasi-interpolation operator Π̃. Let us prove the identity of
the last functional involving the mixed derivative as the other ones are trivial. We observe with
(3.49) that

∂2Π̃vh
∂x∂y

(Xij) = ai,j =

∫

σi,j

∂2vh(x, yj)

∂x∂y
ψdi (x) dx. (3.53)

Since vh ∈ Vh it can be expanded on the macro-element M considered in terms of the basis
functions ϕi,j , φi,j , χi,j and ψi,j , (i, j) ∈ IM according to (3.6). For the mixed derivative on
σi,j we find

∂2vh
∂x∂y

∣∣∣∣
σi,j

=
i+1∑

`=i

∂vh
∂y

(X`j)
∂2

∂x∂y
χ`,j +

∂2vh
∂x∂y

(X`j)
∂2

∂x∂y
ψ`,j

=
i+1∑

`=i

∂vh
∂y

(X`j)ϕ
′
`(x)ψ′j(yj)︸ ︷︷ ︸

=1

+
∂2vh
∂x∂y

(X`j)
∂2

∂x∂y
ψ`,j ,

since the mixed derivative of the other basis functions vanishes on σi,j . The functions ϕ′`,
` = i, i+ 1 are continuous, piecewise linear and vanish in the endpoints of the interval (xi, xi+1).
Hence, the odd function ψi + ψi+1 is L2(σi,j) orthogonal to them. A direct calculation shows
the same orthogonality relation for θi+1, i.e. Vi+1/2 ⊥L2(σi,j) ϕ

′
`, ` = i, i + 1. Using this

orthogonality and (3.48) in (3.53) we see that

∂2Π̃vh
∂x∂y

(Xij) =

∫

σi,j

∂2vh(x, yj)

∂x∂y
ψdi (x) dx =

∂2vh
∂x∂y

(Xij).

From which the assertion follows.

Remark 23. With (3.49) the quasi-interpolation operator Π̃ from (3.42) is a projector due to
(3.52).

Lemma 24. For some macro-element M ∈ Mh let v ∈ Q2(ωM ) i.e. v is biquadratic on the
associated macro-element patch ωM around the macro-element M , then

Π̃v
∣∣∣
M

= v|M . (3.54)

Proof. We use the Q2-preservation of the interpolation operator Π and Lemma 23:

v|M = (Πv)|M =
(
Π̃(Πv)

)∣∣∣
M

= (Π̃v)
∣∣∣
M
.

In the second identity we applied Lemma 23 and need v ∈ Q2(ωM ) because of the non-local
character of Π̃.

The following lemma is taken from [15, Theorem 1.1].

Lemma 25. Let Ω ⊂ Rn be convex with diameter d and let g ∈ Wν,p(Ω), ν ∈ N, p ∈ [1,∞].
Then there exists a polynomial pgν ∈ Pν−1 for which

|g − pgν |Wk,p(Ω) ≤ C(n, ν)dν−k|g|Wν,p(Ω), k = 0, 1, . . . , ν.
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Here the polynomial

pgν(x) = Qν
(
g(A·)

)(
A−1x

)

is constructed using the averaged Taylor polynomial Qν over the ball B(0, 1) ⊂ Rn and A is
John’s optimal affine transform with respect to Ω, cp. [15]. The basic idea of this paper is the
usage of ellipsoids in contrast to balls which is more suitable for anisotropic elements to which
we want to apply this result. Yet, we shall first give a small modification of it.

Lemma 26. Let Ω ⊂ Rn be convex with diameter d, γ be a multi-index with |γ| = m ∈ N, and
let v ∈W`,p(Ω), m ≤ ` ∈ N, p ∈ [1,∞]. Then there exists a polynomial pv` ∈ P`−1 for which

|Dγ(v − pv` )|Wk,p(Ω) ≤ C(n, `−m)d`−m−k|Dγv|W`−m,p(Ω), k = 0, 1, . . . , `−m.

Proof. First assume that v ∈ C`(Ω). Applying Lemma 25 with ν = `−m and g = Dγv yields
the existence of a polynomial pD

γv
`−m ∈ P`−m−1 such that

|Dγv − pDγv`−m|k,p ≤ C(n, `−m)d`−m−k|Dγv|`−m,p, k = 0, 1, . . . , `−m.

Next one finds that for 1 ≤ m ≤ `− 1

pD
γv

`−m(x) = Q`−m
(
(Dγv)(A·)

)(
A−1x

)
= Dγ

(
Q`
(
v(A·)

)(
A−1x

))
= Dγpv` ,

i.e. the averaged Taylor polynomial and differentiation commute in some sense [15, Corollary
3.4]. Now the case v ∈W`,p(Ω) follows by standard arguments based on the density of C∞(Ω)
in W`,p(Ω). For m = 0 the assertion of the Lemma is given by Lemma 25 and for m = ` the
assertion is trivial.

Remark 24. A slightly more general result is given in [2, Lemma 2.1]. However, there the
dependencies of the constant of geometrical properties of the domain considered is not stated
explicitly.

Assumption 1. Let for each node Xij of a macro-element M the macro-element edges σi,j
be chosen in such a way that with the associated macro-element patch ωM around M it holds

hk(ωM ) ≤ Chk(M) k = 1, 2. (3.55)

Here and in the following hk(T ) denotes the size of an axis-aligned rectangle T in xk-direction,
k = 1, 2. Moreover, we set hM = (h1(M), h2(M)) for any macro-element M .

Lemma 27. Based on Assumption 1 for any u ∈W`,p(ωM ) there is a polynomial q ∈ P`−1(ωM )
with

∑

|α|≤`−m
hαM |Dα(u− q)|Wm,p(ωM ) ≤ C

∑

|α|=`−m
hαM |Dαu|Wm,p(ωM ) ,

for all m = 0, . . . , `.

Proof. Using an affine transformation we can map the macro-element M to the reference
macro-element [−1, 1]2. This transformation maps ωM to ω̂M . Based on (3.55) we see that the
diameter of the rectangle ω̂M can be bounded by a constant. Hence, we can apply Lemma 26

in the transformed domain. Scaling back to ωM we obtain due to hαMD
α = D̂

α
that

∑

|α|≤`−m
hαM‖Dα+γ(u− q)‖Lp(ωM ) ≤ C

∑

|α|=`−m
hαM‖Dα+γu‖Lp(ωM ),

for a multi-index γ with |γ| = m. The assertion follows by summing up over all of these
multi-indices.

Remark 25. A similar lemma is given in [2, Lemma 3.1]. However, there the mesh is required
to have no abrupt changes in the element sizes. Clearly, Assumption 1 can be dropped then.
Note that (3.55) can also be found in the paper [4].
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Lemma 28 (Stability of Π̃). Under Assumption 1 the quasi-interpolation operator Π̃ satisfies
the stability estimate

∣∣Π̃u
∣∣
W1,p(M)

≤ CCM,p

∑

|α|≤2

hαM |Dαu|W1,p(ωM )

with

CM,p :=

(
measM

minM ′∈Mh,M ′⊂ωM measM ′

)1/p

≥ 1,

provided that u ∈W3,p(ωM ) ∩ C1(M) with p ∈ [1,∞].

Proof. Let M ∈Mh be a macro-element and set hM = (h1(M), h2(M)). We consider a first
derivative in x-direction. Using the definition of Π̃ and a triangle inequality we find that

∥∥(Π̃u
)
x

∥∥
Lp(M)

≤ ‖(Πru)x‖Lp(M) +

∥∥∥∥∥∥
∑

(i,j)∈IM
ai,j

∂ψi,j
∂x

∥∥∥∥∥∥
Lp(M)

, (3.56)

with coefficients ai,j depending on the direction of σi,j given by

ai,j =





∫

σi,j

∂2u(x, yj)

∂x∂y
ψdi (x) dx if σi,j is horizontal,

∫

σi,j

∂2u(xi, y)

∂x∂y
ψdj (y) dy if σi,j is vertical.

(3.57)

We estimate the first term on the right hand side of (3.56) using Theorem 19
∥∥(Πru

)
x

∥∥
Lp(M)

≤ ‖ux‖Lp(M) + ‖(u−Πru)x‖Lp(M)

≤ C
∑

|α|≤2

hαM‖Dαux‖Lp(M).
(3.58)

For the other term we use
∥∥ ∂
∂xψi,j

∥∥
L∞(M)

≤ Ch2(M) which yields

∥∥∥∥∥∥
∑

(i,j)∈IM
ai,j

∂ψi,j
∂x

∥∥∥∥∥∥
Lp(M)

≤ C(measM)1/ph2(M) max
(i,j)∈IM

|ai,j |. (3.59)

Next we use ‖ψdk‖∞,σi,j ≤ C meas(σi,j)
−1 for k = i, j and obtain with a Hölder inequality

|ai,j | ≤ C meas(σi,j)
−1

∥∥∥∥
∂2u

∂x∂y

∥∥∥∥
L1(σi,j)

for (i, j) ∈ IM . (3.60)

Set

M ′ := arg min
M̃∈Mh

M̃⊂ωM

(meas M̃),

i.e. the macro-element M ′ ∈Mh belongs to the associated macro-element patch ωM around M
and realizes the smallest surface measure. Using the embeddings W1,p(ω̂M ) ↪→ W1,p(M̂

′) ↪→
L1(σ̂i,j) in a transformed domain ω̂M and scaling back to the original one, we see that

‖v‖L1(σi,j) ≤ meas(σi,j) meas(M ′)−1/p
∑

|α|≤1

hαM‖Dαv‖Lp(ωM ) (3.61)

for v ∈W1,p(ωM ). Here we also used Assumption 1. Collecting (3.59), (3.60) and (3.61) with

v = ∂2u
∂x∂y we obtain
∥∥∥∥∥∥
∑

(i,j)∈IM
ai,j

∂ψi,j
∂x

∥∥∥∥∥∥
Lp(M)

≤ C (measM)1/p

(measM ′)1/p

∑

|α|≤1

h
α+(0,1)
M

∥∥∥Dα+(0,1)ux

∥∥∥
Lp(ωM )

. (3.62)

Together with (3.56) and (3.58) the assertion of the lemma is proven since the first derivative
in y-direction can be estimated analogously.
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Theorem 29. Based on Assumption 1 for the quasi-interpolation operator Π̃ the approximation
error estimate

|u− Π̃u|W1,p(M) ≤ CCM,p

∑

|α|=2

hαM |Dαu|W1,p(ωM ) (3.63)

holds true provided that u ∈ W3,p(ωM ) ∩ C1(M) with p ∈ [1,∞]. Here CM,p is the constant
from Lemma 28.

Proof. Let q ∈ P2(ωM ) denote the polynomial of Lemma 27 with ` = 3. A triangle inequality
gives

|u− Π̃u|W1,p(M) ≤ |u− q|W1,p(M) + |q − Π̃u|W1,p(M). (3.64)

As a polynomial q ∈ P2(ωM ) is preserved by Π̃ on the macro-element M considered, see Lemma
24. Hence, we can use the stability of Π̃ shown in Lemma 28 to get a bound for the second
summand

|q − Π̃u|W1,p(M) = |Π̃(q − u)|W1,p(M) ≤ CCM,p

∑

|α|≤2

hαM |Dα(q − u)|W1,p(ωM ). (3.65)

The first summand is estimated as follows:

|u− q|W1,p(M) ≤ C
∑

|α|≤2

hαM |Dα(u− q)|W1,p(M), (3.66)

which can be proven to hold true by setting v := Dγ(u− q) with |γ| = 1 in

‖v‖Lp(M) ≤ C
∑

|α|≤2

hαM‖Dαv‖Lp(M).

This is in turn the embedding W2,p(M) ↪→ Lp(M) on the reference macro-element and appro-
priate scaling. Collecting (3.64), (3.65) and (3.66) we arrive at

|u− Π̃u|W1,p(M) ≤ CCM,p

∑

|α|≤2

hαM |Dα(u− q)|W1,p(ωM ) ≤ CCM,p

∑

|α|=2

hαM |Dαu|W1,p(ωM ),

due to the special choice of q and Lemma 27.

Remark 26. The absence of abrupt changes in the mesh sizes leads not only to Assumption 1
always being satisfied but also to CM,p ≤ C in (3.63), similar to the results in [2]. If on the
contrary there are abrupt changes in the mesh sizes of arbitrary magnitude then (3.63) can
become useless for p <∞ — an observation that was made in [4], as well.

Remark 27. Inspecting the proofs of Lemma 28 and Theorem 29 one sees that under the same
assumptions the approximation error estimate

‖u− Π̃u‖Lp(M) ≤ CCM,p

∑

|α|=3

hαM‖Dαu‖Lp(ωM ) (3.67)

holds true for p > 1. In fact, the stability estimate

‖Πru‖Lp(M) ≤ CCM,p

∑

|α|≤3

hαM‖Dαu‖Lp(M)

can be established based on the embedding W3,p(Λ) ↪→ C1(Λ) (which holds true for p ≥ 2 in
two dimensions) on the reference macro-element and a scaling argument. Moreover, one can

make use of ‖ψi,j‖L∞(M) ≤ Ch(1,1)
M for (i, j) ∈ IM . If one only has u ∈W2,∞(ωM ) one can still

obtain

‖u− Π̃u‖L∞(M) ≤ C
∑

|α|=2

hαM‖Dαu‖L∞(ωM )

by estimating (3.57) directly.
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Remark 28. Similarly to the situation in which the interpolation operator is defined by local
functionals it is again important that polynomials are reproduced on larger entities. While we
demanded this property for macro-elements in the local setting we need it now on patches of
macro-elements. This seems to be an underlaying principle.

We now turn our attention to second order derivatives. Inspecting the arguments in Theorem
29 for the possibility to prove Lp-bounds for second order derivatives of the approximation

error, we see that stability of Π̃ is crucial.
It is possible to prove

∥∥(Π̃u
)
xy

∥∥
Lp(M)

≤ CCM,p

∑

|α|≤1

hαM ‖Dαuxy‖Lp(ωM ) .

However, it is unclear how to obtain a similar estimate for the other second order derivatives.
We therefore restrict the subsequent study to the case of an isotropic macro-element patch ωM .
These results will be useful in Section 3.7. There we want to apply Π̃ in the fine regions of a
Shishkin mesh close to the corners of the domain where the mesh is uniform.

Assumption 2. Let M ∈Mh denote a macro-element such that the restriction of Mh to the
associated macro-element patch ωM is locally uniform with mesh size hM .

Theorem 30. Based on Assumption 2 the quasi-interpolation operator Π̃ satisfies the approxi-
mation error estimate

∣∣u− Π̃u
∣∣
Wk,p(M)

≤ Ch3−k
M |u|W3,p(ωM ), (3.68)

for u ∈W3,p(ωM ) ∩ C1(M) with p ∈ [1,∞] and k ≤ 2.

Proof. Under Assumption 2 the estimates (3.63) and (3.67) simplify to (3.68) for k ≤ 1 and it
remains to validate this estimate for k = 2.

Let v ∈ C1(M) with vxy|σij ∈ L1(σi,j) for all (i, j) ∈ IM so that Πv is well defined. By
Assumption 2 and the fact that Πv is piecewise biquadratic an inverse estimate yields

‖Π̃v‖W2,p(M) ≤ Ch−1
M ‖Π̃v‖W1,p(M). (3.69)

We proceed as in Theorem 29. By Lemma 27 with ` = 3 there exits a unique polynomial
q ∈ P2(ωM ) such that

3∑

k=0

hkM |u− q|Wk,p(ωM ) ≤ Ch3
M |u|W3,p(ωM ), (3.70a)

2∑

k=0

hkM |u− q|Wk+1,p(ωM ) ≤ Ch2
M |u|W3,p(ωM ). (3.70b)

A triangle inequality implies

∣∣Π̃u− u
∣∣
W2,p(M)

≤ |u− q|W2,p(M) +
∣∣Π̃(q − u)

∣∣
W2,p(M)

. (3.71)

The first summand is easily bounded by (3.70a). For the other one we use the inverse estimate
(3.69), the stability estimates for low order derivatives of Π̃, see Lemma 28 and Remark 27, and
(3.70):

∣∣Π̃(q − u)
∣∣
W2,p(M)

≤ Ch−1
M

∥∥Π̃(q − u)
∥∥
W1,p(M)

≤ Ch−1
M

(∣∣Π̃(q − u)
∣∣
W1,p(M)

+
∥∥Π̃(q − u)

∥∥
Lp(M)

)

≤ Ch−1
M

( 2∑

k=0

hkM |q − u|Wk+1,p(ωM ) +
3∑

k=0

hkM |q − u|Wk,p(ωM )

)
(3.72)

≤ ChM |u|W3,p(ωM ).

Collecting (3.71), (3.70a) and (3.72) the result follows.
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Remark 29. For p < ∞ the constant CM,p in the estimates (3.63) and (3.67) renders them
useless on meshes of Shishkin type or any other mesh with abrupt changes in the mesh sizes.
In this case L∞ estimates are desirable. For second order derivatives we were able to prove a
result of classical type with Theorem 30. In order to prove anisotropic error estimates it might
be necessary to specify additional rules for the choice of the macro-element edges σi,j associated
with the macro-element vertices Xij , (i, j) ∈ IM . Moreover, Theorem 29 shows two things:

• Firstly, it is possible to design useful quasi-interpolation operators that are defined by a
mix of local and non-local functionals. This is particularly true if the element considered
is not of Lagrange type. Extending this idea one might use different entities σi,j for every
component of a quasi-interpolation operator.

• Secondly, by using non-local functionals only for the coefficients of basis functions as-
sociated with higher order derivatives the resulting quasi-interpolation operators of
Scott-Zhang type seem to be very flexible with respect to the choice of the entities σi,j .
Note that in [2] derivatives of adaptations of the Scott-Zhang operator were only proven to
obey anisotropic interpolation error estimates if the entities σi,j were chosen all parallel.

3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates

In this Section we want to summarize our results and those of [13]. To the knowledge of the
author these are the only sources of anisotropic (quasi-)interpolation error estimates for C1

Hermite(-type) interpolation. All estimates are valid on rectangular tensor product meshes
such that the edges of an element K are aligned with the coordinate axes. In all estimates C is
a generic constant that does not depend on u or the mesh.

The work [13] addresses for N ≥ 1 two CN−1 Hermite interpolation operators I12 and I22

into the piecewise Q2N−1 and Q2N functions, respectively. Its main results are the anisotropic
error estimates

|u− I12u|N,K ≤ C
∑

|β|=N
hβK |Dβu|N,K ,

|u− I22u|N,K ≤ C
∑

|β|=N+1

hβK |Dβu|N,K ,

for u ∈ H2N (K) and with hK = (h1,K , h2,K) where hi,K is the size of K in xi-direction.
Inspecting their proofs for N = 2 we see that there is a C1 Hermite interpolation operator

I12 into the piecewise bicubic functions (more precisely the Bogner-Fox-Schmidt element space)
such that

‖Dγ (u− I12u)‖0,K ≤ C
∑

|α|=4−|γ|
hαK ‖DαDγu‖0,K ,

for |γ| ≤ 2 and u ∈ H4(K). We want to emphasize that this result originally obtained by [13]
can alternatively be proven using Apel’s theory and our key observation that two dimensional
divided differences may be used as associated functionals (cf. Corollary 22).

We refer to [13] for a note on the three dimensional case.
In the case of piecewise biquadratic functions we extended the results of [31] to the anisotropic

case using new results on macro-interpolation. If the mesh can be generated as a uniform
refinement of a macro-element mesh Mh, then there is a C1 Hermite interpolation operator Π
into the piecewise biquadratic functions such that (cf. Corollary 21)

‖Dγ (u−Πu) ‖0,M ≤ C


 ∑

|α|=4−|γ|
hαM |DαDγu|0,M +

∑

|α|=3−|γ|
hαM

∣∣∣∣
∫

M

DαDγu(x, y) dxdy

∣∣∣∣




on a macro-element M ∈ Mh for a multi-index γ with |γ| ≤ 2 and u ∈ C2(M) such that
Dγu ∈ H4−|γ|(M).

In order to reduce the regularity required we use non-local information of the interpolant in
order to define the coefficient of the basis function associated with the mixed second derivative,
creating the quasi-interpolation operator Π̃. For its analysis we need Assumption 1 to be
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satisfied. Collecting the results of Theorem 29, Remark 27 we summarize that for p ∈ [2,∞]
and m = 0, 1 the error estimate

|u− Π̃u|Wm,p(M) ≤ CCM,p

∑

|α|=3−m
hαM |Dαu|Wm,p(ωM ) (3.73)

holds true, provided u ∈W3,p(ωM ). Here

CM,p :=

(
measM

minT∈M, T⊂ωM measT

)1/p

≥ 1

and ωM is the associated macro-element patch ωM around M , cf. Definition 5.

In the case of a more regular mesh (more precisely: under Assumption 2) the operator Π̃
satisfies error estimates of classical type even for second order derivatives, see Theorem 30.
Note that the absence of abrupt changes in the mesh sizes implies the validity of Assumption 1
and a simplification of the estimates (3.73) due to CM,p ≤ C, cf. Remark 26.

It would be very interesting to check numerically if there is hope for the Girault-Scott
operator of [31, Section 4] to allow anisotropic interpolation error estimates given only some
W2,p regularity of the function to be approximated. However, certain details in that paper are
unclear — especially the scaling of the true dual basis functions (given only as a brief note) is
questionable.

3.6 An anisotropic macro-element of tensor product type

In Section 3.2 we have seen 1D Hermite interpolation in the space of quadratic C1 splines. The
tensor product of this 1D macro-element with itself created a 2D macro-element and the induced
interpolation operator Π for which we were able to prove certain anisotropic interpolation error
estimates. However, the usage of this operator on for instance a Shishkin mesh (where the
direction of anisotropy and mesh sizes changes abruptly) does not lead to optimal results. The
main reason for this failure is that the C1 operators Π or Π̃ do not satisfy certain L∞-stability
estimates. Based on the usage of derivatives one has for instance on some macro-element
M ∈Mh with sizes hM that

‖Πv‖L∞(M) ≤ C


∑

|α|≤1

hαM‖Dαv‖L∞(M) + h
(1,1)
M ‖D(1,1)v‖L∞(M)


 ,

holds true, i.e. L∞ norms of derivatives appear on the right hand side. Hence, if one wants to
bound the error in the interior with large elements one can no longer use that the interpolant
is small there but has to demand that also derivatives of the interpolant are small. This is
however not true on a Shishkin mesh as already mentioned in the introduction. In order to
remedy this problem we consider the following anisotropic macro-element.

We form a macro of two rectangles and use as degrees of freedom the function value and
the value of a certain first derivate in six points along the boundary of the macro (cf. Figure
3.6). Note that this macro-element can be considered as the tensor product of one dimensional
C1 − P2 macro-interpolation and P2 Lagrange interpolation. Hence, we leave the realm of
C1 macro-elements but preserve the property of a continuous normal derivative across some
macro-element edges. This will be vital in the next section.

More precisely, assuming that, as illustrated in Figure 3.6, the reference macro-element
M̂ := {[−1, 1]× [−1, 0], [−1, 1]× [0, 1]} over the reference domain Λ = [−1, 1]2 is mapped to an
anisotropic one for which the aspect ratio hx/hy is very large we use quadratic C1 splines in y

direction (small side) and P2 in x direction (large side). This space S(M̂) is 12 dimensional
and from (3.4) and

p(x) = p[−1] + p[−1, 0](x+ 1) + p[−1, 0, 1](x+ 1)x ∀p ∈ P2([−1, 1]),
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Figure 3.6: Degrees of freedom of the anisotropic macro-element on the reference macro-element
M̂ (left) and on some anisotropic macro in the world domain (right).

we can obtain the representation

s(x, y) =
3∑

j=1

(
F1j(s)(y + 1)j−1 + F2j(s)(x+ 1)(y + 1)j−1 + F3j(s)(x+ 1)x(y + 1)j−1

)

+ 4
(
F14(s) + F24(s)(x+ 1) + F34(s)(x+ 1)x

)
ψ̂1(y) ∀s ∈ S(M̂).

(3.74)

By Πx we denote the macro-element interpolation operator such that the roles of the sizes hx
and hy of a macro-element M are interchanged, i.e. hx � hy.

The functionals Fij are again defined as two dimensional divided differences:

Fij(s) := s[mi;nj ] with mi =





−1 for i = 1,

−1, 0 for i = 2,

−1, 0, 1 for i = 3,

and nj =





−1 for j = 1,

−1,−1 for j = 2,

−1,−1, 1 for j = 3,

−1,−1, 1, 1 for j = 4.

It is easy to establish the H1-conformity of this macro-element. Moreover, we find that the
y-derivative along the edge y = ±1 of Λ can be expressed by

∂s

∂y
(x,±1) =

∂s

∂y
(0,±1) +

1

2

(
∂s

∂y
(1,±1)− ∂s

∂y
(−1,±1)

)
x

+
1

2

(
∂s

∂y
(−1,±1)− 2

∂s

∂y
(0,±1) +

∂s

∂y
(1,±1)

)
x2.

Hence, if two such macro-elements are combined in y-direction the normal derivative along
the common edge parallel to the x-axis (long side) is continuous. Clearly, this macro-element
induces another interpolation operator Π̂y : C1(Λ)→ S(M̂):

Π̂yu(x, y) :=
∑

i∈{−1,0,1}

∑

j∈{−1,1}

(
u(i, j)ˆ̀

i(x)ϕ̂j(y) +
∂u

∂y
(i, j)ˆ̀

i(x)ψ̂j(y)

)
. (3.75)

Here ˆ̀
i ∈ P2[−1, 1] denotes the quadratic Lagrange basis function that corresponds to the node

i ∈ {−1, 0, 1}, i.e.

ˆ̀−1 := x(x− 1)/2, ˆ̀
0 := −(x+ 1)(x− 1), ˆ̀

+1 := (x+ 1)x/2.

Let M = [x0 − hx/2, x0 + hx/2]× [y0 − hy/2, y0 + hy/2 denote a macro-element. From the
representation (3.75) and the affine reference mapping FM : [−1, 1]→M :

x = x0 + hxx̂, y = y0 + hy ŷ, (3.76)
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it is easy to deduce for the interpolation operator Πyu := Π̂yû ◦ F−1
M with û := u ◦ FM on the

macro-element M in the world domain the stability property

‖Πyu‖L∞(M) ≤ C
(
‖u‖L∞(M) + hy

∥∥∥∥
∂u

∂y

∥∥∥∥
L∞(M)

)
. (3.77)

Remark 30. Note that by construction hy is the length of the small side of the macro-element
M in the world domain. Hence, the first derivative in (3.77) is combined with a small multiplier.

Next we study the approximation properties of this interpolation operator.

Theorem 31. For u ∈ H3(Λ) and a multi-index γ with |γ| ≤ 2 we have the estimates

‖Dγ(u−Πyu)‖0 ≤ C |Dγu|3−|γ| for γ 6= (2, 0) (3.78a)

‖(u−Πyu)xx‖0 ≤ C
(
|uxx|1 + |ux|2

)
(3.78b)

Proof. We shall apply Lemma 18 in order to prove (3.78a). Thus, we set P := Q := P2−|γ|. By
a direct calculation similarly to (3.21) we observe that the additional error component involving
the polynomial q ∈ P2(Λ) vanishes since Πyv = v holds true for any function v ∈ Q2(Λ) ⊃ P2(Λ).
It remains to specify the associate functionals Fγij according to (3.12) for a given differential
operator Dγ with |γ| ≤ 2. We use the same techniques as in Theorem 20. Firstly, it can be seen
by applying the differential operator Dγ to the representation (3.74) of an element s ∈ S(M̂)
that DγS(M̂) can be normed by

∑

(i,j)∈Jγ
|Fij(·)| with Jγ := {(i, j) : i = γ1 + 1, . . . , 3, j = γ2 + 1, . . . , 4}.

Clearly, Fij(u) = Fij(Π
yu) for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4} because the divided differences

are linear combinations of the interpolation data {u(k, `), uy(k, `)}k∈{−1,0,1},`∈{−1,1}. The
associated functionals Fγij for (i, j) ∈ Jγ are listed in Table 3.2. Using Sobolev embeddings like

in the proof of Theorem 20 it is easy to check that Fγij ∈
(
H3−|γ|(Λ)

)′
. Moreover,

Fij(u) = Fγij(D
γu) and Fij(Π

yu) = Fγij(D
γΠyu)

for (i, j) ∈ Jγ . The first identity follows from the techniques in the proof of Theorem 20,

especially (3.33). A simple computation for each basis function in S(M̂) shows the second
identity, due to the linearity of Fij and Fγij . Hence, indeed Fγij(D

γΠyu) = Fγij(D
γu). We shall

demonstrate this procedure for F33. A calculation gives

F33(u) = u[−1, 0, 1;−1,−1, 1] =
1

2

(
u(−1, ·)[−1,−1, 1]− 2u(0, ·)[−1,−1, 1] + u(1, ·)[−1,−1, 1]

)

=
1

2

∫ 1

−1

s1(y)
(
uyy(−1, y)− 2uyy(0, y) + uyy(1, y)

)
dy, (3.79)

where we used (3.33) with s1(y) = (1− y)/4 and from which F
(0,1)
33 and F

(0,2)
33 can be deduced.

Moreover, we may rewrite this identity to obtain

F33(u) =
1

2

∫ 1

−1

s1(y)

(∫ 1

0

uxyy(x, y) dx−
∫ 0

−1

uxyy(x, y) dx

)
dy.

A reinterpretation of this equation according to F33(u) = Fγ33(Dγu) gives F
(1,0)
33 and F

(1,1)
33 . A

computation shows F33(s) = Fγ33(Dγs) for all s ∈ S(M̂) and |γ| ≤ 2, γ 6= (2, 0). Hence, the
estimate (3.78a) is proven.

For γ = (2, 0) it appears impossible to provide the associated functionals by the above
technique. Consider for instance the divided difference F33. Using Taylor expansion it is possible
to rewrite the equation (3.79) to

F33(u) =
1

2

∫ 1

−1

s1(y)

(∫ 0

−1

(1 + x)uxxyy(x, y) dx+

∫ 1

0

(1− x)uxxyy(x, y) dx

)
dy.
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This however comes at the price of demanding higher regularity. Clearly, we have to approach
this problem differently. Let P := {(2, 0), (1, 1), (1, 0)} and q ∈ P (Λ) denote the polynomial
with

∫

Λ

Dα(u− q) dx = 0 ∀α ∈ P .

By Lemma 16 the polynomial q exits and is unique. From Lemma 17 we can deduce by setting
v := (u− q)xx that

‖v‖1 = ‖(u− q)xx‖1 ≤ C|(u− q)xx|1 = C|uxx|1, (3.80)

since
∫

Λ
v dx =

∫
Λ

(u− q)xx dx = 0. Similarly, Lemma 17 implies that for v := (u− q)x we find

‖v‖2 = ‖(u− q)x‖2 ≤ C|(u− q)x|2 = C|ux|2, (3.81)

based on
∫

Λ

Dαv dx = 0 ∀ |α| ≤ 1 ⇔
∫

Λ

Dα(u− q)x dx = 0 ∀ |α| ≤ 1.

Next from (3.78a) for γ = (1, 0) we obtain the following stability estimate

∥∥(Πyv
)
x

∥∥
0
≤ ‖vx‖0 +

∥∥(v −Πyv
)
x

∥∥
0
≤ C‖vx‖2. (3.82)

A triangle inequality implies due to q = Πyq that

∥∥(u−Πyu
)
xx

∥∥
0
≤ ‖(u− q)xx‖0 +

∥∥(Πy(q − u)
)
xx

∥∥
0
. (3.83)

The first summand on the right hand side of (3.83) is estimated using (3.80), while for the
other one we use the inverse estimate

‖sxx‖0 ≤ C‖sx‖0 ∀s ∈ S,

which is easily verified in the four dimensional space D(2,0)S(M̂) over the reference macro-
element. In fact, the optimal constant in this estimate is given by C =

√
3. Hence, by

(3.83),

∥∥(u−Πyu
)
xx

∥∥
0
≤ C

(
|uxx|1 +

∥∥(Πy(q − u)
)
x

∥∥
0

)
.

We finish the proof of (3.78b) by using (3.82) for v = q − u and (3.81).

Using affine equivalence (cf. (3.76) and the proof of Theorem 19) we obtain on a macro-
element M in the world domain the following result.

Corollary 32. For u ∈ H3(M) and a multi-index γ with |γ| ≤ 2 we have the estimates

‖Dγ(u−Πyu)‖0,M ≤ C
∑

|α|=3−|γ|
hαM

∥∥Dα+γu
∥∥

0,M
for γ 6= (2, 0) (3.84a)

∥∥(u−Πyu
)
xx

∥∥
0,M
≤ C

( ∑

|α|=1

hαM‖Dαuxx‖0,M +
∑

|α|=2

hαM
hx
‖Dαux‖0,M

)
(3.84b)

Remark 31. By construction hx denotes the length of the long side of M . Hence, the estimate
(3.84b) is useful even in the anisotropic case.

Before we end this section we prove a suboptimal but useful error estimate for γ = (0, 0).

Lemma 33. Let u ∈ H3(M) then

‖u−Πyu‖0,M ≤ C
∑

|α|=2

(
hαM‖Dαu‖0,M + hαMhy‖Dαuy‖0,M

)
.
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γ dimDγS(M̂) associate functionals

(0, 0) 12 F
(0,0)
ij := Fij i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}

(1, 0) 8

F
(1,0)
2` (v) :=

∫ 0

−1

∂`−1v

∂y`−1
(x,−1) dx, ` ∈ {1, 2}

F
(1,0)
2k (v) :=

∫ 1

−1

∫ 0

−1

sk−2(y)vyy(x, y) dxdy, k ∈ {3, 4}

F
(1,0)
3` (v) :=

1

2

∫ 1

0

∂`−1v

∂y`−1
(x,−1) dx− 1

2

∫ 0

−1

∂`−1v

∂y`−1
(x,−1) dx

F
(1,0)
3k (v) :=

1

2

∫ 1

−1

sk−2(y)

(∫ 1

0

vyy(x, y) dx−
∫ 0

−1

vyy(x, y) dx

)
dy

(0, 1) 9

F
(0,1)
12 (v) := v(−1,−1)

F
(0,1)
1k (v) :=

∫ 1

−1

sk−2(y)vy(−1, y) dy, k ∈ {3, 4}

F
(0,1)
22 (v) := v(0,−1)− v(−1,−1)

F
(0,1)
2k (v) :=

∫ 1

−1

∫ 0

−1

sk−2(y)vxy(x, y) dxdy, k ∈ {3, 4}

F
(0,1)
32 (v) :=

1

2

(
v(−1,−1)− 2v(0,−1) + v(1,−1)

)

F
(0,1)
3k (v) :=

1

2

∫ 1

−1

sk−2(y)
(
vy(−1, y)− 2vy(0, y) + vy(1, y)

)
dy

(1, 1) 6

F
(1,1)
22 (v) :=

∫ 0

−1

v(x,−1) dx

F
(1,1)
2k (v) :=

∫ 1

−1

sk−2(y)

∫ 0

−1

vy(x, y) dxdy, k ∈ {3, 4}

F
(1,1)
32 (v) :=

1

2

∫ 1

0

v(x,−1) dx− 1

2

∫ 0

−1

v(x,−1) dx

F
(1,1)
3k (v) :=

1

2

∫ 1

−1

sk−2(y)

(∫ 1

0

vy(x, y) dx−
∫ 0

−1

vy(x, y) dx

)
dy

(0, 2) 6

F
(0,2)
1k (v) :=

∫ 1

−1

sk−2(y)v(−1, y) dy, k ∈ {3, 4}

F
(0,2)
2k (v) :=

∫ 1

−1

sk−2(y)

∫ 0

−1

vx(x, y) dxdy, k ∈ {3, 4}

F
(0,2)
3k (v) :=

1

2

∫ 1

−1

sk−2(y)
(
v(−1, y)− 2v(0, y) + v(1, y)

)
dy

Table 3.2: Associated functionals Fγi,j for the operator Πy over M̂ with respect to Dγ and
s1(y) = (1− y)/4, s2(y) = y/4.
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Proof. Let q ∈ P 1(Λ) denote the linear polynomial such that

∫

Λ

Dα(u− q)dx = 0 ∀α ∈ P 1 := {(0, 0), (1, 0), (0, 1)}.

Then from Lemma 17 it follows that ‖u− q‖2 ≤ C|u− q|2 = C|u|2. Using this and Πyq = q we
see that

‖u−Πyu‖0 ≤ ‖u− q‖0 + ‖Πy(q − u)‖0

≤ ‖u− q‖2 + C
∑

i∈{−1,0,1}

∑

j∈{−1,1}

(
|Πy(q − u)(i, j)|+

∣∣∣∣
∂Πy(q − u)

∂y
(i, j)

∣∣∣∣
)

≤ |u|2 + C
∑

i∈{−1,0,1}

∑

j∈{−1,1}

(
|(q − u)(i, j)|+

∣∣∣∣
∂(q − u)

∂y
(i, j)

∣∣∣∣
)

≤ |u|2 + C

(
‖u− q‖2 +

∥∥∥∥
∂(q − u)

∂y

∥∥∥∥
2

)
.

From

‖(q − u)y‖2 ≤ ‖q − u‖2 + |(q − u)y|2 ≤ C|u|2 + |uy|2,

the estimate follows on the reference macro M̂ . The assertion of the lemma is again easily
obtained by affine transformation.

3.7 Application of macro-element interpolation on a ten-
sor product Shishkin mesh

As an application of the anisotropic quasi-interpolation error estimates obtained we want to
examine the approximation error of the solution of a reaction-diffusion problem on an anisotropic
mesh. Let u denote the solution of the singularly perturbed linear reaction-diffusion problem

−ε∆u+ cu = f in Ω, u = 0 on ∂Ω, (3.85)

where 0 < ε � 1, 0 < 2(c?)2 ≤ c and c and f are smooth functions on some bounded two
dimensional domain Ω with Lipschitz-continuous boundary ∂Ω. We consider the unit square
Ω := (0, 1)2 with the four edges

Γ1 = {(x, 0) : 0 ≤ x ≤ 1}, Γ2 = {(0, y) : 0 ≤ y ≤ 1},
Γ3 = {(x, 1) : 0 ≤ x ≤ 1}, Γ4 = {(1, y) : 0 ≤ y ≤ 1}.

In the corners of the domain Ω derivatives of u are unbounded, in general. One refers to the
solution components that cause this phenomenon as corner singularities. If we however assume
the corner compatibility conditions

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0, (3.86)

then third derivatives of u are smooth up to the boundary, u ∈ C3(Ω), see, e.g. [29].

The following solution decomposition is taken from [45, Lemma 1.1 and Lemma 1.2]

Lemma 34. The solution u ∈ C3(Ω) of (3.85) can be decomposed as

u = S +
4∑

i=1

Ei + E12 + E23 + E34 + E41. (3.87a)

Here Ei is a boundary layer associated with the edge Γi. Similarly, Eij is a corner layer
associated with the corner that is formed by the edges Γi and Γj. Moreover, there are positive



72 CHAPTER 3. MACRO-INTERPOLATION ON TENSOR PRODUCT MESHES

Ω1

Ω2

Ω3

Ω4Ω0

Ω12

Ω23 Ω34

Ω41

Γ1

Γ2

Γ3

Γ4

λ

Figure 3.7: Domain decomposition (left) and anisotropic mesh ΩN (right) for N = 16, corre-
sponding macro-element triangulation M16 of Ω \ Ω0 as checkerboard and possible choice for
σi,j symbolized by black arrows pointing to the corresponding mesh node Xij .

constants C > 0 such that for all (x, y) ∈ Ω and 0 ≤ i+ j ≤ 3 we have

∣∣∣∣
∂i+jS(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
(
1 + ε1−(i+j)/2

)
(3.87b)

∣∣∣∣
∂i+jE1(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
(
1 + ε1−i/2)ε−j/2e−c

?y/
√
ε (3.87c)

∣∣∣∣
∂i+jE12(x, y)

∂xi∂yj

∣∣∣∣ ≤ Cε−(i+j)/2e−c
?(x+y)/

√
ε (3.87d)

and analogous bounds for the other boundary and corner layers.

Next we introduce a standard domain decomposition. Let N denote a multiple of eight —
N will later denote the number of mesh intervals in each coordinate direction — and define the
transition point

λ := min

{
1

4
,
λ0
√
ε

c?
lnN

}
with λ0 ≥ 3. (3.88)

For our subsequent error analysis we shall make the practical and standard assumption

√
ε ≤ CN−1,

from which λ < 1/4 follows.
For our approximation error analysis we use a standard approach and split the domain into

several subdomains

Ω0 := (λ, 1− λ)2, Ω12 := (0, λ)2,

Ω1 := (λ, 1− λ)× (0, λ), Ω23 := (0, λ)× (1− λ, 1),

Ω2 := (0, λ)× (λ, 1− λ), Ω34 := (1− λ, λ)2,

Ω3 := (λ, 1− λ)× (1− λ, 1), Ω41 := (1− λ, λ)× (0, λ),

Ω4 := (1− λ, 1)× (λ, 1− λ), Ωf := Ω12 ∪ Ω23 ∪ Ω34 ∪ Ω41,

as shown in the left of Figure 3.7.
We use λ to construct a 1D Shishkin mesh as follows: subdivide each of the intervals [0, λ],

[1−λ, 1] into N/4 subintervals, equidistantly. Giving the small grid size h = λ/(N/4−2). Next,
divide the third subinterval [λ, 1− λ] into N/2 subintervals of same size H. Hence, the mesh is
uniform in each of the subintervals [0, λ], [λ, 1− λ] and [1− λ, 1] but it changes from fine to
coarse at the transition points λ and 1 − λ. Remark that since N is a multiple of eight the
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number of subintervals within [0, λ], [1− λ, 1] and [λ, 1− λ] is even. Finally, form the tensor
product of this one-dimensional mesh with itself to obtain our anisotropic Shishkin mesh ΩN

with the mesh nodes {(xi, yj)}i,j=0,...,N .

Note that by the definition of λ in the inner subdomain Ω0 all the layers have declined
such that they can be bounded pointwise by a constant times N−λ0 . This is however not true
for their derivatives. Consequently, it is very challenging to define a C1 (quasi-)interpolant of
u ∈ C3(Ω) in the function space of piecewise biquadratics over ΩN featuring anisotropic error
estimates. We relax this too ambitious objective by defining a quasi-interpolant u? of u, such
that the normal derivative of u? is continuous only across certain edges of ΩN . For this purpose
we shall use the results of the previous sections on macro-element quasi-interpolation.

In Ωf , i.e. close to corners of the domain, we combine four neighbouring elements of equal
shape to form a macro-element M = [xi−1, xi+1]× [yj−1, yj+1] and in Ω1 ∪ Ω3 we combine two
neighbouring elements to get M = [xi, xi+1]× [yj−1, yj+1] as shown in the right of Figure 3.7.
In Ω2 ∪ Ω4 we proceed likewise. We denote the obtained macro-element triangulation by MN .
Note that the mesh ΩN can also be understood as the result of a refinement routine of the
macro-element mesh MN .

The elements of our Shishkin mesh ΩN are axis-parallel rectangles with side lengths

h :=
4λ

N − 8
= O(

√
εN−1lnN) or H :=

2
(
1− 2λ

)

N
∼ N−1. (3.89)

The sizes of a macro-element are equivalent to the sizes of the containing mesh elements.

Close to the corners of the domain, i.e. in Ωf we want to approximate u by the quasi-

interpolant Π̃u, see Subsection 3.5.3. Hence, we have to specify how the macro-element edges
σi,j associated with the macro-element vertices Xij ∈ Ωf are chosen. If we want to satisfy
Assumption 1 on our anisotropic mesh we have to choose carefully whenever Xij lies on one of
the lines x = xN/4 = λ, x = x3N/4 = 1− λ or y = yN/4 = λ, y = y3N/4 = 1− λ where the mesh
sizes change abruptly. Restricted to Ωf our Shishkin mesh ΩN is (quasi-)uniform, hence any
choice that satisfies

σi,j ⊂ Ωf (3.90)

is possible. One may fulfill (3.90) as demonstrated in the right of Figure 3.7. In that Figure a
macro-element edge σi,j is symbolized by an arrow pointing to Xij .

Let us recall the functions ϕi, ψi ∈ C1[0, 1], supported within [x1−2, xi+2], defined by

ϕi(x) :=





1

2
+
x− xi−1

hi−1
+

(x− xi−1)2

2h2
i−1

in [xi−2, xi−1],

1

2
+
x− xi−1

hi−1
− (x− xi−1)2

2h2
i−1

in [xi−1, xi],

1

2
− x− xi+1

hi+1
− (x− xi+1)2

2h2
i+1

in [xi, xi+1],

1

2
− x− xi+1

hi+1
+

(x− xi+1)2

2h2
i+1

in [xi+1, xi+2],

ψi(x) :=





−hi−1

4
− x− xi−1

2
− (x− xi−1)2

4hi−1
in [xi−2, xi−1],

−hi−1

4
− x− xi−1

2
+

3(x− xi−1)2

4hi−1
in [xi−1, xi],

hi+1

4
− x− xi+1

2
− 3(x− xi+1)2

4hi+1
in [xi, xi+1],

hi+1

4
− x− xi+1

2
+

(x− xi+1)2

4hi+1
in [xi+1, xi+2],

x ϕi(x) ϕ′i(x)
xi−2 0 0
xi−1 0.5 > 0
xi 1 0

xi+1 0.5 < 0
xi 0 0

x ψi(x) ψ′i(x)
xi−2 0 0
xi−1 < 0 −0.5
xi 0 1

xi+1 > 0 −0.5
xi 0 0

with hi−1 := xi−1 − xi−2 = xi − xi−1 and hi+1 := xi+1 − xi = xi+2 − xi+1, i.e. hi = h for
i < N/4 or i > 3N/4 and hi = H else. Based on these one-dimensional functions one can define
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the global basis functions in the world domain

ϕi,j(x, y) := ϕi(x)ϕj(y), φi,j(x, y) := ψi(x)ϕj(y),

χi,j(x, y) := ϕi(x)ψj(y), ψi,j(x, y) := ψi(x)ψj(y),
i, j = 0, . . . , N. (3.91)

Now we are able to define our quasi-interpolation operator into the finite element space

V N := {v ∈ H1(Ω) : v|T ∈ Q2(T ) ∀T ∈ ΩN}. (3.92)

As already mentioned, for M = [xi−1, xi+1] × [yj−1, yj+1] ⊂ Ωf , M ∈ MN close to the

corners of the domain we use the quasi-interpolation operator Π̃ from Subsection 3.5.3, i.e.

u?
∣∣
M

= (Π̃u)|M =
∑

k=i−1,i+1
`=j−1,j+1

u(xk, y`)ϕk,` + ux(xk, y`)φk,` + uy(xk, y`)χk,` + ak,`ψk,`.

The coefficients ak,` depend on the direction of σk,` given by (3.57):

ak,` =





∫

σk,`

∂2u(x, y`)

∂x∂y
ψdk(x) dx if σk,` is horizontal,

∫

σk,`

∂2u(xk, y)

∂x∂y
ψd` (y) dy if σk,` is vertical,

with the dual basis functions ψdk obtained in (3.50):

ψdk(x) :=





−h
2
k−1 + 12hk−1(x− xk−1)

2h3
k−1





− 3(x− xk−1)2

h3
k−1

, xk−2 ≤ x ≤ xk−1,

+
9(x− xk−1)2

h3
k−1

, xk−1 ≤ x ≤ xk,

−h
2
k+1 − 12hk+1(x− xk+1)

2h3
k+1





+
9(x− xk+1)2

h3
k+1

, xk ≤ x ≤ xk+1,

− 3(x− xk+1)2

h3
k+1

, xk+1 ≤ x ≤ xk+2.

In Ω0 we use on the element level the standard biquadratic nodal interpolant uI of u. Set
I := {N4 , N4 + 1

2 ,
N
4 +1, N4 + 3

2 , . . . ,
3
4N}. Let `i denote the 1D quadratic Lagrange basis functions,

i ∈ I with

`i(x) =





2

h2
i

(x− xi−1)(x− xi−1/2), xi−1 ≤ x ≤ xi
2

h2
i+1

(xi+1 − x)(xi+1/2 − x), xi ≤ x ≤ xi+1

for i ∈ I ∩ N,

`i+1/2(x) =
4

h2
i+1

(xi+1 − x)(x− xi), for i ∈ I ∩ N, i 6= N,

where xi+1/2 := (xi + xi+1)/2, i ∈ I ∩ N with i 6= N , denotes the midpoint of the interval

[xi, xi+1]. Now for T ⊂ Ω0 we set

u?|T (x, y) := uI |T (x, y) =
∑

i,j∈I
u(xi, yj)`i(x)`j(y), (x, y) ∈ T.

Finally, we need some modified anisotropic macro-interpolation operator in
⋃4
i=1 Ωi to glue

these interpolants together. Let us consider a macro-element M = [xi, xi+1]× [yj−1, yj+1] ⊂ Ω1.
The two elements contained in this macro-element have a long side of length H in x-direction
and a short one in y-direction (with length h). On all of these macro-elements M ⊂ Ω1 that are
not adjacent to ∂Ω0 we use the anisotropic macro-interpolation Πy as introduced and analyzed
in Section 3.6, c.p. (3.75):

u?|M (x, y) = Πyu(x, y) :=
∑

k∈{i,i+1/2,i+1}
m∈{j−1,j+1}

(
u(k,m)`k(x)ϕm(y) +

∂u

∂y
(k,m)`k(x)ψm(y)

)
.
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We use the same interpolation operator for M ⊂ Ω3. In Ω2 ∪Ω4 we use Πx instead. Hence, the
roles of x and y are interchanged, there.

On macro-elements that are adjacent to ∂Ω0 we modify the anisotropic macro-interpolation
operator in order to archive continuity of the normal derivative ∂nu

? across ∂Ω0. Let for
instance M = [xi, xi+1]× [yN/4−2, yN/4] ⊂ Ω1 denote such a macro-element. Then on M the
interpolant u? is of the form:

u?|M (x, y) =
∑

k∈{i,i+1/2,i+1}

( ∑

j∈{N/4−2,N/4}
u(xk, yj)`k(x)ϕj(y)

+
∂u

∂y
(xk, yN/4−2)`k(x)ψN/4−2(y) +

∂(uI |Ω0)

∂y
(xk, yN/4)`k(x)ψN/4(y)

)
.

In the other subdomains we proceed likewise. Since
∂(uI |Ω0

)

∂y

∣∣∣
M∩Ω0

and ∂(u?|M )
∂y

∣∣∣
M∩Ω0

are

quadratic polynomials they are indeed uniquely determined by the values in three distinct

points along the edge where they coincide. Note further that
∂(uI |Ω0

)

∂y (xk, yN/4) is simply a

linear combination of the nodal values u(xk, yN/4), u(xk, yN/4+1/2) and u(xk, yN/4+1). Hence,
this coefficient is well defined along element interfaces due to the continuity of uI .

Summarizing,

u?(x, y) =





(Π̃u)|M (x, y) ∈M ⊂ Ωf ,

(Πyu)|M +

3N/2∑

i=N/2
j∈{N/4,3N/4}

∂(uI − u)

∂y

∣∣∣∣
Ω0

(xi/2, yj) `i/2(x)ψj(y) (x, y) ∈M ⊂ Ω1 ∪ Ω3,

(Πxu)|M +

3N/2∑

j=N/2
i∈{N/4,3N/4}

∂(uI − u)

∂x

∣∣∣∣
Ω0

(xi, yj/2)ψi(x)`j/2(y) (x, y) ∈M ⊂ Ω2 ∪ Ω4,

uI |T (x, y) ∈ T ⊂ Ω0.

By construction the normal derivative of u? is only discontinuous along short edges of
anisotropic elements (type-III edges) and interior edges of Ω0 (type I edges). For some
illustration see Figure 3.8.

Before we analyze u? on the Shishkin mesh ωN let us assign a type to each element edge as
shown in the left of Figure 3.8:

Definition 6. A type-I edge e ⊂ Ω0 is a long edge given as the intersection of two isotropic
elements. An edge that belongs to at least one anisotropic element is of type II if it is a long
one. Otherwise it is short and of type III. A remaining type-IV edge e ⊂ Ωf belongs to two
small and square shaped elements and is close to a corner of Ω. Let E(I) be the set of interior
edges of type I and introduce similar symbols for E(II), E(III) and E(IV ).

First we show that the modification is small in various L2-based norms. By the solution
decomposition (3.87), standard interpolation error estimates and the choice of λ wee find that

|u− uI |W1,∞(Ω0) ≤ |S − SI |W1,∞(Ω0) + |(u− S)− (u− S)I |W1,∞(Ω0)

≤ C
(
H2|S|W3,∞ + |u− S|W1,∞(Ω0) + |(u− S)I |W1,∞(Ω0)

)

≤ C
(
H2ε−1/2 + ε−1/2N−λ0 +H−1N−λ0

)
≤ Cε−1/2N−2.

Here we also used an inverse estimate. Let ω1 denote the strip of macro-elements in Ω1 that
are adjacent to Ω0 then for |α| ≤ 2 it holds

∥∥∥∥D
α

3N/2∑

i=N/2

∂(uI − u)

∂y

∣∣∣∣
Ω0

(xi/2, yN/4) `i/2ψN/4

∥∥∥∥
0,ω1

≤ |u− uI |W1,∞(Ω0)

∥∥∥∥
3N/2∑

i=N/2

`
(α1)
i/2 ψ

(α2)
N/4

∥∥∥∥
0,ω1

≤ Cε−1/2N−2 meas(Ω1)1/2

∥∥∥∥
3N/2∑

i=N/2

`
(α1)
i/2

∥∥∥∥
L∞([xN/4,x3N/4])

∥∥ψ(α2)
N/4

∥∥
L∞([yN/4−2,yN/4])

(3.93)

≤ Cε−1/4N−5/2(lnN)1/2H−α1h1−α2 ≤ Cε1/4−α2/2N−7/2+α1+α2(lnN)1/2−α2 .
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type-I

type-II

type-III

type-III

type-IV

b b b

b b b

b b b

b

b

b

b

b

b

b

b

b

b b b

b b b

b b b

b b b

b b b

b b b

b function value values of first derivatives x-derivative

y-derivative weighted average of xy-derivative on macro edge

Figure 3.8: The normal derivative of u? is discontinuous along the edges of type I and III
highlighted in green (left) and linear functionals of u that enter in the definition of u? in the
various subdomains (right).

For |α| = 2 the L2 norms have to be read as norms in the broken Sobolev space over MN .
Bounds for the other three strips ωi in Ωi for i = 2, 3, 4 that are adjacent to Ω0 follow similarly.

Since the Shishkin mesh is (quasi-)uniform in Ωf and by the choice of the macro-element

edges according to (3.90) the interpolation error estimates for Π̃ simplify to (c.p. Theorem 30)
∣∣v − Π̃v

∣∣
k,M
≤ Ch3−k|v|3,ωM for v ∈ H3(ωM ) and k ≤ 2. (3.94)

Next we estimate the approximation error of u− u?:
Lemma 35. There exists a constant C > 0 such that

‖u− u?‖0 ≤ C
(
N−2 + ε1/4N−2(lnN)2

)
, (3.95a)

ε1/4|u− u?|1 ≤ C
(
ε1/4N−1 +N−2(lnN)2

)
, (3.95b)

ε3/4

( ∑

M∈MN

|u− u?|22,M
)1/2

≤ C
(
εN−1(lnN)2 +N−1 lnN

)
. (3.95c)

If ε1/4 ≤ (lnN)−2, then

‖u− u?‖0 ≤ CN−2, (3.95d)

ε3/4

( ∑

M∈MN

|u− u?|22,M
)1/2

≤ CN−1 lnN. (3.95e)

If |S|3 ≤ Cε−1/4, then

ε1/4|u− u?|1 ≤ CN−2(lnN)2. (3.95f)

Suppose ε1/4 ≤ (lnN)−3 and |S|3 +
∑
i∈1,3 ‖D(3,0)Ei‖0,Ωi +

∑
j∈2,4 ‖D(0,3)Ej‖0,Ωj ≤ C, then

‖u− u?‖0 ≤ CN−3(lnN)3. (3.95g)

Proof. We use the solution decomposition (3.87) several times without mentioning it explicitly
and different techniques in each subdomain.

In Ωf the approximation error is small because the mesh is very fine. We use (3.94):

|u− u?|k,Ωf =
∣∣u− Π̃u

∣∣
k,Ωf

≤ Ch3−k|u|3,Ωf ≤ Ch3−kε−3/2 meas(Ωf )1/2

= Cε(1−k)/2Nk−3(lnN)2−k.
(3.96)
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In Ω0 the Shishkin mesh is coarse but all layer components have declined sufficiently. With
the L∞- stability of the nodal interpolant we get

‖(u− S)I‖L∞(Ω0) ≤ C‖u− S‖L∞(Ω0) ≤ CN−λ0 ≤ CN−3.

Hence, we obtain for the layer components of u and k ≤ 2 with an inverse estimate

|(u− S)− (u− S)?|k,Ω0
≤ |(u− S)− (u− S)I |k,Ω0

≤ |(u− S)|k,Ω0
+ |(u− S)I |k,Ω0

≤ C
(
ε1/4−k/2N−λ0 +H−k‖(u− S)I‖0,Ω0

)
≤ C

(
ε1/4−k/2N−3 +Nk−3

)
.

(3.97)

For the smooth solution component S we estimate

|S − S?|k,Ω0
= |S − SI |k,Ω0

≤ CH2−k|S|2,Ω0
≤ CNk−2 for k = 0, 1 (3.98a)

and

|S − S?|2,Ω0 = |S − SI |2,Ω0 ≤ CH|S|3,Ω0 ≤ Cε−1/2N−1. (3.98b)

Obviously these bounds can be improved to |S − S?|k,Ω0 ≤ CNk−3 if |S|3 < C.
In the remainder of the domain the elements of the Shishkin mesh are anisotropic. For the

smooth part S we use Lemma 33, for instance in Ω1:

‖S −ΠyS‖0,Ω1
≤ C

∑

|α|=2

(
hαM‖DαS‖0,Ω1

+ h
α+(0,1)
M ‖DαSy‖0,Ω1

)

≤ C(H2 + ε−1/2H2h) ≤ CN−2.

(3.99)

If |S|3,Ω1
< C we could improve the estimate to ‖S −ΠyS‖0,Ω1

≤ CN−3 using (3.84a). In the
other subdomains Ωi for i = 2, 3, 4 the smooth part is estimated similarly. For the layer term
E1 Lemma 33 yields

‖E1 −ΠyE1‖0,Ω1 ≤ C
∑

|α|=2

(
hαM‖DαE1‖0,Ω1 + h

α+(0,1)
M ‖Dα+(0,1)E1‖0,Ω1

)

≤ H2‖D(2,0)E1‖0,Ω1 +Hh‖D(1,1)E1‖0,Ω1 + h2‖D(0,2)E1‖0,Ω1

+H2h‖D(2,1)E1‖0,Ω1
+Hh2‖D(1,2)E1‖0,Ω1

+ h3‖D(0,3)E1‖0,Ω1

≤ C
(
N−2ε1/4 + ε1/2N−2 lnNε−1/4 + εN−2(lnN)2ε−3/4

+ ε1/2N−3 lnNε−1/4 + εN−3(lnN)2ε−3/4 + ε3/2N−3(lnN)3ε−5/4

≤ Cε1/4N−2(lnN)2. (3.100)

If ‖D(3,0)E1‖0,Ω1
≤ C this bound can be improved to ‖E1 −ΠyE1‖0,Ω1

≤ CN−3(lnN)3 with
(3.84a). With the same technique one can estimate the layer component Ei on Ωi, i = 2, 3, 4.
The other layer components are small on Ω1, for instance for the corner layer E12 it holds

‖E12 −ΠyE12‖0,Ω1
≤ ‖E12‖0,Ω1

+ (meas Ω1)1/2‖ΠyE12‖L∞(Ω1)

≤ C(meas Ω1)1/2
(
‖E12‖L∞(Ω1) + h‖D(0,1)E12‖L∞(Ω1)

)

≤ Cε1/4(lnN)1/2
(
N−λ0 + ε1/2N−1 lnNε−1/2N−λ0

)

≤ Cε1/4N−λ0(lnN)1/2.

(3.101)

Here we used the stability estimate (3.77). Proceed similarly for all layer components Ej on Ωi
with j ∈ {1, . . . , 4, 12, 23, 34, 41} and i = 1, . . . , 4 with i 6= j. Now collect (3.93) for α = (0, 0),
(3.96), (3.97), (3.98) with k = 0, (3.99), (3.100) and (3.101) to obtain (3.95a).

Next if we want to estimate ε1/4|u− u?|1 it remains to estimate the error on the anisotropic
elements, for instance on Ω1. There the smooth solution component can be bounded with
(3.84a). Let |γ| = 1, then

‖Dγ(S −ΠyS)‖0,Ω1
≤ C

∑

|α|=2

hαM‖Dα+γS‖0,Ω1
≤ CN−2‖S‖W3,∞(Ω1)(meas Ω1)1/2

≤ CN−2ε−1/2ε1/4(lnN)1/2 ≤ Cε−1/4N−2(lnN)1/2.

(3.102)
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The other domains Ωi, i = 2, 3, 4 are treated similarly. From (3.84a) we deduce for the boundary
layer component E1 that

‖D(0,1)(E1 −ΠyE1)‖0,Ω1
≤ C

∑

|α|=2

hαM‖Dα+(0,1)E1‖0,Ω1

≤ C
(
H2‖D(2,1)E1‖0,Ω1

+Hh‖D(1,2)E1‖0,Ω1
+ h2‖D(0,3)E1‖0,Ω1

)

≤ C
(
N−2ε−1/4 + ε1/2N−2 lnNε−3/4 + εN−2(lnN)2ε−5/4 ≤ Cε−1/4N−2(lnN)2.

(3.103)

The derivative with respect to x is better behaved and the same bound holds true:

‖D(1,0)(E1 −ΠyE1)‖0,Ω1
≤ C

∑

|α|=2

hαM‖Dα+(1,0)E1‖0,Ω1

≤ C
(
H2‖D(3,0)E1‖0,Ω1

+Hh‖D(2,1)E1‖0,Ω1
+ h2‖D(1,2)E1‖0,Ω1

)

≤ C
(
N−2ε−1/4 + ε1/2N−2 lnNε−1/4 + εN−2(lnN)2ε−3/4 ≤ Cε−1/4N−2(lnN)2.

(3.104)

Obviously this bound holds also on Ω3 where the anisotropy of the elements is in the same
direction compared to Ω1. In Ω2 (or Ω4) we use inverse estimates and the stability of Πx:

|E1 −ΠxE1|1,Ω2
≤ |E1|1,Ω2

+ Ch−1‖ΠxE1‖0,Ω2

≤ C(meas Ω2)1/2
(
|E1|W1,∞(Ω2) + h−1(‖E1‖L∞(Ω2) + h‖D(1,0)E1‖L∞(Ω2))

)
(3.105)

≤ Cε1/4(lnN)1/2
(
ε−1/2N−λ0 + ε−1/2N(lnN)−1N−λ0 +N−λ0

)
≤ Cε−1/4N−2(lnN)−1/2.

Clearly, this technique can also be applied to estimate Ei, i = 2, 3, 4. The corner layer
components are bounded in exactly the same way. Consider for instance E12 on Ω1:

|E12 −ΠyE12|1,Ω1
≤ |E12|1,Ω1

+ Ch−1‖ΠyE12‖0,Ω1

≤ C(meas Ω1)1/2
(
|E12|W1,∞(Ω1) + h−1(‖E12‖L∞(Ω1) + h‖D(0,1)E12‖L∞(Ω1))

)
(3.106)

≤ Cε1/4(lnN)1/2
(
ε−1/2N−λ0 + ε−1/2N(lnN)−1N−λ0

)
≤ Cε−1/4N−2(lnN)−1/2.

Collecting (3.93) for |α| = 1, (3.96), (3.97), (3.98) with k = 1, (3.102), (3.103), (3.104), (3.105)
and (3.106) yields (3.95b).

Finally, we consider second order derivatives. Unfortunately u? 6∈ H2(Ω). However,
u? ∈ H2(T ) for all T ∈ ΩN and even u? ∈ H2(M) for all M ∈ MN . Hence, we introduce
the abbreviation ‖v‖0,M(V ) := (

∑
M∈M,M⊂V ‖v‖20,M )1/2. Now let |γ| = 2, then by (3.84a) and

(3.84b) we find for instance in Ω1 that

‖Dγ(S −ΠyS)‖0,M(Ω1) ≤ C
( ∑

|α|=1

hαM‖Dα+γS‖0,Ω1
+
∑

|α|=2

hαM
H
‖DαD(1,0)S‖0,Ω1

)

≤ CN−1‖S‖W3,∞(Ω1)(meas Ω1)1/2 (3.107)

≤ CN−1ε−1/2ε1/4(lnN)1/2 ≤ Cε−1/4N−1(lnN)1/2.

Similar bounds hold on Ωi for i = 2, 3, 4. In oder to obtain bounds for the layer components Ei
on Ωi (i = 1, . . . , 4) we use (3.84a) and (3.84b) more careful.

‖D(0,2)(E1 −ΠyE1)‖0,M(Ω1) ≤ C
∑

|α|=1

hαM‖Dα+(0,2)E1‖0,Ω1

≤ C
(
H‖D(1,2)E1‖0,Ω1 + h‖D(0,3)E1‖0,Ω1

)
(3.108)

≤ C
(
N−1ε−3/4 + ε1/2N−1 lnNε−5/4

)
≤ ε−3/4N−1 lnN,

‖D(1,1)(E1 −ΠyE1)‖0,M(Ω1) ≤ C
∑

|α|=1

hαM‖Dα+(1,1)E1‖0,Ω1

≤ C
(
H‖D(2,1)E1‖0,Ω1

+ h‖D(1,2)E1‖0,Ω1

)
(3.109)

≤ C
(
N−1ε−1/4 + ε1/2N−1 lnNε−3/4

)
≤ ε−1/4N−1 lnN,
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‖D(2,0)(E1 −ΠyE1)‖0,M(Ω1) ≤ C
( ∑

|α|=1

hαM‖Dα+(2,0)E1‖0,Ω1
+
∑

|α|=2

hαM
H
‖DαD(1,0)E1‖0,Ω1

)

≤ C
(
H‖D(3,0)E1‖0,Ω1

+ h‖D(2,1)E1‖0,Ω1
+ h2H−1‖D(1,2)E1‖0,Ω1

)

≤ C
(
N−1ε−1/4 + ε1/2N−1 lnNε−1/4 + εN−1(lnN)2ε−3/4

)
(3.110)

≤ C
(
ε−1/4N−1 + ε1/4N−1(lnN)2

)
.

The same technique can be used to bound the error of Ei on the anisotropic part of the Shishkin
mesh along the opposite edge. In Ω2 (or Ω4) inverse estimates and the stability of Πx yield
again:

|E1 −ΠxE1|2,M(Ω1) ≤ |E1|2,Ω2 + Ch−2‖ΠxE1‖0,Ω2

≤ C(meas Ω2)1/2
(
|E1|W2,∞(Ω2) + h−2(‖E1‖L∞(Ω2) + h‖D(1,0)E1‖L∞(Ω2))

)

≤ Cε1/4(lnN)1/2
(
ε−1N−λ0 + ε−1N2(lnN)−2N−λ0 + ε−1/2N(lnN)−1N−λ0

)

≤ Cε−3/4N−1(lnN)−3/2.

(3.111)

The corner layers are handled similarly, for instance E12 on Ω1:

|E12 −ΠyE12|2,M(Ω1) ≤ |E12|2,Ω1 + Ch−2‖ΠyE12‖0,Ω1

≤ C(meas Ω1)1/2
(
|E12|W2,∞(Ω1) + h−2(‖E12‖L∞(Ω1) + h‖D(0,1)E12‖L∞(Ω1))

)

≤ Cε1/4(lnN)1/2
(
ε−1N−λ0 + ε−1N2(lnN)−2N−λ0 + ε−1/2N(lnN)−1ε−1/2N−λ0

)

≤ Cε−3/4N−2(lnN)−1/2. (3.112)

Collect (3.93) for |α| = 2, (3.96), (3.97), (3.98) with k = 2, (3.107), (3.108), (3.109), (3.110),
(3.111) and (3.112) to obtain (3.95c). The other assertions of the Lemma follow easily.

After quantifying the approximation properties of u? we want to study certain traces of
u− u? along interior edges.

Since ΩN is an admissible triangulation two elements T1, T2 ∈ ΩN define traces of a function
v ∈ H1(T1 ∪ T2)∩H2(T1)∩H2(T2) along an interior edge e. We associate a unit normal vector
n with each edge. If e ⊂ ∂Ω is an edge along the boundary we define n as the unit outer normal
to ∂Ω. In a similar manner there are two traces of the normal derivative ∂v

∂n ∈ L2(e). Assuming

n is oriented from T1 to T2 we obtain jumps |[ ∂v∂n ]| of these traces as follows:

[[ ∂v
∂n

]]
:=

∂v

∂n

∣∣∣∣
T1

− ∂v

∂n

∣∣∣∣
T2

∈ L2(e).

Lemma 36. Suppose ε1/4 ≤ (lnN)−2. Then there is a positive constant C such that

‖u− u?‖20,e ≤ CN−5 on a long edge e, i.e. of type I or II, (3.113)
∑

e∈E(III)

‖u− u?‖20,e ≤ Cε−1/2N−5(lnN)2, (3.114)

∑

e∈E(IV )

‖u− u?‖20,e ≤ Cε1/2N−5(lnN)3. (3.115)

Proof. Let e ⊂ Ω \ Ωf denote a long type-I or type-II edge of a possibly anisotropic element.
For instance, on a long edge e ⊂ Ω1 the interpolant Πyv of v is a quadratic polynomial which is
uniquely described by its values in the endpoints and the midpoint of e. Hence, on long edges
Πy coincides with the 1D Lagrange interpolation and we find that

‖(S + E1)−Πy(S + E1)‖20,e ≤ meas(e)‖(S + E1)−Πy(S + E1)‖2L∞(e)

≤ CH H−4‖(S + E1)yy‖2L∞(e) ≤ CN−5.
(3.116)

Any other layer component E := u − S − E1 is estimated using a stability argument of the
interpolation operator involved on a macro-element M that is adjacent to e ⊂M :

‖E −ΠyE‖20,e ≤ meas(e)‖E −ΠyE‖2L∞(e) ≤ CH
(
‖E‖2L∞(M) + ‖ΠyE‖2L∞(M)

)

≤ CH
(
‖E‖2L∞(M) + h‖Ey‖2L∞(M)

)
≤ CN−λ0−1 ≤ CN−7.

(3.117)
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Similarly to (3.116), we estimate the smooth part S on any edge e ⊂ Ω0 in the interior
subdomain:

‖S − SI‖20,e ≤ meas(e)‖S − SI‖2L∞(e) ≤ CH H−4|S|2W2,∞(e) ≤ CN−5. (3.118)

Next we use that all the layer components E := u− S have declined sufficiently. Let T ⊂ Ω0

denote an element that has the edge e, then

‖E − EI‖20,e ≤ meas(e)‖E − EI‖2L∞(e) ≤ CH
(
‖E‖2L∞(T ) + ‖EI‖2L∞(T )

)

≤ CH‖E‖2L∞(T ) ≤ CN−λ0−1 ≤ CN−7.
(3.119)

Collecting (3.116), (3.117), (3.118) and (3.119) gives (3.113).
Now we consider the short type-III edge e of an anisotropic element T for instance in Ω1.

We use the trace Lemma 37 and (3.84a):

‖S −ΠyS‖20,e ≤ C‖S −ΠyS‖0,T ‖(S −ΠyS)x‖0,T +
1

H
‖S −ΠyS‖20,T ≤ CH5|S|23,M

≤ C meas(M)H5|S|2W3,∞(M) ≤ Cε1/2N−2 lnN N−5ε−1 ≤ Cε−1/2N−7 lnN

(3.120)

Here M denotes the macro-element such that T ⊂M . Similarly, we obtain for the layer E1

‖E1 −ΠyE1‖20,e ≤ C‖E1 −ΠyE1‖0,T ‖(E1 −ΠyE1)x‖0,T +
1

H
‖E1 −ΠyE1‖20,T .

Hence, a summation over all type-III edges gives with Young’s inequality
∑

e∈E(III)

‖E1 −ΠyE1‖20,e ≤ Cε−1/2N−5(lnN)2, (3.121)

due to (3.104) and a similar estimate with (3.84a) and ε1/4 ≤ (lnN)−2 for ‖E1 −ΠyE1‖0,Ω1
,

namely

‖E1 −ΠyE1‖0,Ω1
≤ C

∑

|α|=3

hαM‖DαE1‖0,Ω1
≤ C

(
H3‖D(3,0)E1‖0,Ω1

+H2h‖D(2,1)E1‖0,Ω1
+Hh2‖D(1,2)E1‖0,Ω1

+ h3‖D(0,3)E1‖0,Ω1

)

≤ C
(
ε−1/4N−3 + ε1/4N−3(lnN)3

)
.

The other layer components can be estimated like in (3.117). With (3.120) and (3.121) we
arrive at (3.114).

For the short type-IV edges of Ωf close to the corners of the domain we again use the a
trace Lemma and (3.96) to obtain

∑

e∈E(IV )

‖u− Π̃u‖20,e ≤ Cε1/2N−5(lnN)3,

which is (3.115).

Lemma 37. Let T be a rectangle with sides parallel to the coordinate axes and a width in
x-direction of hx. Let ∂Ty denote the union of the two edges parallel to the y-axis having length
hy. Denote by vI ∈ Q2(T ) the nodal interpolant of v ∈ C(T̄ ). Then for v ∈ H3(T ) it holds

∥∥(v − vI
)
x

∥∥
0,∂Ty

≤ C
(
h3/2
x ‖vxxx‖0,T +

√
hxhy‖vxxy‖0,T +

h2
y√
hx
‖vxyy‖0,T

)
. (3.122)

Proof. Lemma 14 and Young’s inequality yield

∥∥(v − vI
)
x

∥∥2

0,∂Ty
≤ C

( 1

hx

∥∥(v − vI
)
x

∥∥2

0,T
+ hx

∥∥(v − vI
)
xx

∥∥2

0,T

)
.

With the well known anisotropic nodal interpolation error estimates for v ∈ H3(T ):
∥∥(v − vI

)
x

∥∥
0,T
≤ C

(
h2
x‖vxxx‖0,T + hxhy‖vxxy‖0,T + h2

y‖vxyy‖0,T
)
,

∥∥(v − vI
)
xx

∥∥
0,T
≤ C

(
hx‖vxxx‖0,T + hy‖vxxy‖0,T

)
,

we complete the proof.
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Lemma 38. Assume |S|3 ≤ C and ε1/2 ≤ (lnN)−2 then there is a positive constant C such
that

∑

e∈E(I)

∥∥∥∥
[[∂(u− u?)

∂n

]]∥∥∥∥
2

0,e

≤ CN−3, (3.123)

∑

e∈E(III)

∥∥∥∥
[[∂(u− u?)

∂n

]]∥∥∥∥
2

0,e

≤ Cε−1/2N−3(lnN)4. (3.124)

Proof. Recall that by construction the normal derivative of u? is continuous across type-II and
type-IV edges, i.e. across long edges of anisotropic elements and within the subdomains close to
the four corners of Ω. Let e ⊂ Ω0 be a type-I edge. Since u? is defined by nodal interpolation
on the the two elements T1 and T2 that share the edge e we find with Lemma 37 that

∥∥∥∥
[[∂(S − SI)

∂n

]]∥∥∥∥
0,e

=

∥∥∥∥
∂(S − SI)

∂n

∣∣∣∣
T1

∥∥∥∥
0,e

+

∥∥∥∥
∂(S − SI)

∂n

∣∣∣∣
T2

∥∥∥∥
0,e

≤ CH3/2
(
|S|3,T1 + |S|3,T2

)
.

Hence,

∑

e∈ENint(Ω0)

∥∥∥∥
[[∂(S − SI)

∂n

]]∥∥∥∥
2

0,e

≤ CH3|S|23,Ω0
≤ CN−3. (3.125)

Next we abbreviate E = u− S. In Ω0 the layer components E are pointwise small and smooth,
hence on a type-I edge e ∈ E(I) we use inverse estimates to obtain

∥∥∥∥
[[∂(E − EI)

∂n

]]∥∥∥∥
0,e

=

∥∥∥∥
[[∂(EI)

∂n

]]∥∥∥∥
0,e

=

∥∥∥∥
∂(EI)

∂n

∣∣∣∣
T1

∥∥∥∥
0,e

+

∥∥∥∥
∂(EI)

∂n

∣∣∣∣
T2

∥∥∥∥
0,e

≤ CH−1/2

(∥∥∥∥
∂(EI)

∂n

∥∥∥∥
0,T1

+

∥∥∥∥
∂(EI)

∂n

∥∥∥∥
0,T2

)
≤ CH−3/2

(
‖EI‖0,T1 + ‖EI‖0,T2

)
.

A summation over all type-I edges then yields

∑

e∈E(I)

∥∥∥∥
[[∂(E − EI)

∂n

]]∥∥∥∥
2

0,e

≤ CH−3‖EI‖20,Ω0
≤ CH−3‖E‖2∞,Ω0

≤ CH−3N−2λ0 ≤ CN−3.

(3.126)

Combining (3.125) and (3.126) we arrive at (3.123).

It remains to estimate the jump of the normal derivative across short edges of anisotropic
elements which are of type III. Let e = T1 ∩ T2 ⊂ Ω1 denote such an edge. We shall first deal
with the case that T1 and T2 are anisotropic elements. Again, we split u into smooth and layer
components and estimate

∥∥|[D(1,0)(S −ΠyS)]|
∥∥

0,e
≤
∥∥D(1,0)(S −ΠyS)|T1

∥∥
0,e

+
∥∥D(1,0)(S −ΠyS)|T2

∥∥
0,e
.

Lemma 14 gives for the smooth part

∥∥D(1,0)(S −ΠyS)|T
∥∥2

0,e
≤ C

(∥∥D(1,0)(S −ΠyS)
∥∥

0,T

∥∥D(2,0)(S −ΠyS)
∥∥

0,T

+
1

H

∥∥D(1,0)(S −ΠyS)
∥∥2

0,T

)

≤ C(H2H +H−1H4)|S|23,T ≤ CN−3|S|23,T .

A summation of all type-III edges then yields

∑

e∈E(III)

∥∥∥
[[ ∂
∂n

(S − S?)
]]∥∥∥

2

0,e
≤ CN−3|S|23,⋃4

i=1 Ωi
≤ CN−3. (3.127)
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With the layer component E1 we proceed in a similar manner

∥∥D(1,0)(E1 −ΠyE1)|T
∥∥2

0,e
≤ C

(∥∥D(1,0)(E1 −ΠyE1)
∥∥

0,T

∥∥D(2,0)(E1 −ΠyE1)
∥∥

0,T

+
1

H

∥∥D(1,0)(E1 −ΠyE1)
∥∥2

0,T

)
.

A summation gives with (3.104) and (3.110)

∑

e∈E(III)

∥∥∥
[[ ∂
∂n

(E1 − E?1 )
]]∥∥∥

2

0,e
≤ Cε−1/2N−3(lnN)4. (3.128)

Any other layer component E 6= E1 can handled similarly as in the interior subdomain Ω0:

∥∥|[D(1,0)(E −ΠyE)]|
∥∥

0,e
≤ CH−3/2

(
‖ΠyE‖0,T1

+ ‖ΠyE‖0,T2

)
.

Hence,

∑

e∈E(III)

∥∥∥
[[ ∂
∂n

(E − E?)
]]∥∥∥

2

0,e
≤ CH−3

(
‖ΠyE‖20,Ω1∪Ω3

+ ‖ΠxE‖20,Ω2∪Ω4

)
≤ Cε1/2N−3 lnN,

(3.129)

as shown in (3.101). In order to estimate the jump of the normal derivative of u− u? across
short interior edges of for instance Ω1 it remains to estimate the jump of the x-derivative of the
term

3N/2∑

i=N/2
j∈{N/4,3N/4}

∂(uI − u)

∂y

∣∣∣∣
Ω0

(xi/2, yj) `i/2(x)ψj(y)

across these edges. With Lemma 14 and (3.93) one easily sees that this term is better behaved

than |[D(1,0)(u−Πyu)]|.
Finally, we consider type-III edges that are shared by an anisotropic element and a small

square shaped one in the subdomains close to the corners of Ω. The common edge is then a
subset of ∂Ωf \ ∂Ω. Let for instance T1 ∈ Ω1 and T2 ∈ Ω12 denote such elements. Then the
normal derivative of u? jumps across the common edge at x = λ. Since

∥∥∥∥
[[∂(u− u?)

∂n

]]∥∥∥∥
0,e

=

∥∥∥∥
∂(u− u?)

∂n

∣∣∣∣
T1

∥∥∥∥
0,e

+

∥∥∥∥
∂(u− Π̃u)

∂n

∣∣∣∣∣
T2

∥∥∥∥
0,e

,

we can estimate the first summand like before and it remains to estimate the second one. We
start off with a trace inequality

∥∥D(1,0)(u− Π̃u)|T2‖20,e ≤ C
( 1

h
|u− Π̃u|21,T2

+ h|u− Π̃u|22,T
)
.

Hence, with (3.94):

∥∥D(1,0)(u− Π̃u)|Ω12
‖20,x=λ ≤ C

( 1

h
|u− Π̃u|21,Ω12

+ h|u− Π̃u|22,Ω12

)

≤ Ch3|u|23,Ω12
≤ Ch3 meas(Ω12)|u|2W3,∞(Ω12)

≤ Cε3/2N−3(lnN)3ε lnNε−3 = Cε−1/2N−3(lnN)4.

(3.130)

Collecting (3.123), (3.127), (3.128), (3.129) and (3.130) we arrive at (3.124) and finish the
proof.

Remark 32. Under additional compatibility conditions on the right hand side f it should be
possible to remove the dependency of the third-order derivatives of the smooth part S on ε in
(3.87b), giving ‖S‖3 ≤ C. However, assuming |S|3 ≤ C is of course weaker than requiring that
all third-order derivatives of u are pointwise bounded uniformly with respect to ε.
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Remark 33. Let e denote a horizontal long edge of an anisotropic macro-element. The interpo-
lation operator Πy features a stability of the form

‖(Πyv)y‖∞,e ≤ C‖vy‖∞,e.

However, this seems to lead only to the estimate ‖(ΠyE1)y‖20,e = O(ε−1) which is not good

enough for our purposes. That is why we use a modification of Π̃ in the definition of u? in
order to match the normal derivatives on both sides of ∂Ω0.
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4
∣∣ Balanced norm results for 2D

reaction-diffusion problems

In the present chapter we seek to obtain numerical approximations to the solution of the
singularly perturbed linear elliptic boundary value problem

−ε∆u+ cu = f in Ω, (4.1a)

u = 0 on ∂Ω, (4.1b)

where Ω is a bounded two dimensional domain with Lipschitz-continuous boundary ∂Ω, 0 <
ε� 1 is a small positive parameter and c is a smooth function that satisfies 0 < 2(c?)2 ≤ c.

A standard weak formulation associated with problem (4.1) reads: find u ∈ V , such that

a(u, v) := ε(∇u,∇v) + (c u, v) = (f, v) ∀v ∈ V. (4.2)

If f ∈ L2(Ω), then problem (4.2) has a unique solution u ∈ V := H1
0 (Ω) which is characterized by

the presence of exponential boundary layers of width O(ε1/2 ln(1/ε)) along the entire boundary
∂Ω. Additionally, internal layers and corner singularities may be present.

We shall consider finite element methods for the approximation of u. It is thus natural to
use L2 based norms to measure their performances. For instance, the Galerkin finite element
method in which V in (4.2) is replaced with a finite dimensional subspace V h ⊂ V is easily
analyzed in the energy norm

‖v‖ε := ε1/2|v|1 + ‖v‖0 for all v ∈ H1
0 (Ω). (4.3)

In fact, the bilinear form in (4.2) has some nice properties. In particular a(·, ·) is coercive in
V (and V h) with respect to the energy norm. Hence, the Galerkin approximation uh is easily
shown to be quasi-optimal in this norm:

‖u− uh‖ε ≤ C inf
vh∈V h

‖u− vh‖ε. (4.4)

Finally, if u has sufficient regularity, the approximation error in (4.4) can be bounded uniformly
with respect to ε by replacing vh with some projection of u onto a spline space on a layer
adapted mesh.

However, we have seen in Chapter 2 that if one aims for information of the solution within
the layer not every norm yields a meaningful result in the case of singular perturbation. In fact,
in the following paragraph we will explain that the energy norm is too weak to capture the
boundary layers.

The behaviour of the solution u of (4.1) is well understood if f is smooth and nicely reflected
in solution decompositions splitting u into a sum of several components. In this introduction
we shall focus on only two of these. While for the smooth solution component S, lower order
derivatives can be bounded pointwise uniformly with respect to ε, a typical boundary layer
component E1 behaves like the function exp(−c̃dist(x, ∂Ω)/

√
ε). Here c̃ is a constant and

dist(x, ∂Ω) is the distance of the point x ∈ R2 to the boundary of Ω. Consequently, measuring
the sum of these components in the energy norm gives

‖S + E1‖ε ≤ ε
(
|S|1 + |E1|1

)
+ ‖S + E1‖0 = O(ε1/4) + ‖S‖0,

because the boundary layer function is of order O(ε1/4) in ‖ · ‖ε. Hence, the predominant
feature of u — the boundary layer — is neglected for ε→ 0, making the energy norm essentially
no stronger than the L2 norm. This failure of the energy norm has been known for some time
but an appropriate treatment for this problem was unknown until recently.
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Remark 34. For the convection-diffusion equation there is no such problem if only exponential
boundary layers are present which are of the form exp(−c̃dist(x, ∂Ω)/ε). If however, the
convection is aligned to certain edges of the domain and characteristic layers arise, then the
corresponding solution components are again suppressed by a too small multiplier. Consequently,
characteristic layers are not well represented in the energy norm. The interested reader is
referred to [25]. There, the authors propose a differently weighted and better suited norm
in which the error of the bilinear streamline diffusion finite element method is analyzed on a
Shishkin mesh.

For instance, if the Galerkin finite element method is applied to (4.1) the situation is delicate:
reducing the multiplier ε1/2 of the H1 semi-norm component of ‖ · ‖ε to ε1/4 yields the so-called
balanced norm ‖ · ‖b with

‖v‖b := ε1/4|v|1 + ‖v‖0 for all v ∈ H1(Ω), (4.5)

whose components are correctly scaled by powers of ε. However, the standard error analysis of
the Galerkin finite element method can no longer be applied due to the lack of coercivity with
respect to this norm. We will see how to circumvent this problem in Section 4.3.

In Section 4.1 we want to sketch the ideas of [42]. This paper was the first to deal with the
particular problem of designing a finite element method for which error estimates in a better
suited norm could be proven. Also, it coined the expression balanced norm. We adapt the
main idea in Section 4.2 to propose a new C0 interior penalty method that features improved
stability properties in comparison with the Galerkin Finite Element Method. At the end of this
chapter we supply numerical experiments, give a brief summary and mention further work in
this field of research.

4.1 The balanced finite element method of Lin and Stynes

It is very easy to show that the solution u of (4.1) satisfies the stability estimate

‖u‖ε = ε1/2|u|1 + ‖u‖0 ≤ C‖f‖0 (4.6)

in the energy norm. In [42] the authors present a nice example which shows that such an
estimate can not hold if the energy norm is replaced by ‖ · ‖b. In fact if one only has f ∈ L2(Ω)
then the exponent of ε can not be reduced without breaking the stability property.

However, if f ∈ C(Ω) ∩ H1(Ω) and Ω is convex then it is possible to obtain a stability
estimate for the solution u ∈ H2(Ω) of (4.1) in a balanced norm (see [42]): By testing the
differential equation (4.1a) with −∆u, integration by parts and using (4.1b), (4.6), Young’s
inequality as well as a maximum principle one gets

ε3/4‖∆u‖0 + ‖u‖b ≤ C
(
‖f‖b + ‖f‖L∞(Ω)

)
. (4.7)

Observe that for a typical boundary layer component E1 it holds ‖∆E1‖0 = O(ε−3/4). Hence,
this norm is in fact balanced and stronger than the energy norm.

Following the derivation of (4.7) it is possible to provide a new variational formulation
of problem (4.1). The idea of testing the differential equation (4.1a) with the Laplacian of a
test function can be traced back to H1-Galerkin methods [21] and has, according to Douglas,
significant practical advantages over other standard approaches, particularly for non-linear
problems [20, 19]. Yet this concept appears to be new in the singularly perturbed case. However,
a direct multiplication of (4.1a) by −ε∆v with v ∈ H2(Ω) being a test function would require
C1-finite elements after a conforming discretization.

In [42] the authors circumvent this difficulty by a mixed finite element framework and we
follow their argumentation: Rewriting (4.1a) as a first-order system yields

p−∇u = 0,

−ε∇ · p+ cu = f.
(4.8)

The first equation of (4.8) is rescaled by a multiplication with ε1/4 resulting in the first-order
system Au = f in Ω with

u =

(
p
u

)
, Au =

(
ε1/4(p−∇u)
−ε∇ · p+ cu

)
and f =

(
0
f

)
, (4.9)



4.1. THE BALANCED FINITE ELEMENT METHOD OF LIN AND STYNES 87

which is equivalent to (4.1a). In order to supply a weak formulation the space H(Ω) is
introduced by

H(Ω) := H(div; Ω)×H1
0 (Ω),

where H(div; Ω) denotes the standard space of vector-valued functions which are in L2(Ω) in
both components and whose weak divergence is in L2(Ω), as well. A weak formulation then
reads: find u = (p u)T ∈H(Ω), such that

B(u,v) := (Au,Ãv) = (f,Ãv) for all v ∈H(Ω), (4.10)

where

v =

(
q
v

)
and Ãv =

(
ε1/4(q −∇v)

1
c (−ε1/2∇ · q + cv)

)
. (4.11)

Similarly to (4.9) one may think of q as corresponding to the gradient of v.
Lin and Stynes then introduce a balanced norm ‖ · ‖b,2 for v ∈H(Ω) of the form

‖v‖b,2 =
(
ε3/2‖∇ · q‖20 + ε1/2(‖q‖20 + ‖∇v‖20) + ‖v‖20

)1/2
. (4.12)

Note that if u = (∇u u)T is measured each component of this norm has indeed the same order
of magnitude and that this norm can be viewed as a translation of the weighted norm on the
left-hand side of (4.7) into the system context. With this norm at hand the analysis of a finite
element method based on (4.10) follows the standard pattern sketched in the introduction.

Theorem 39. The bilinear form B(·, ·) is coercive and bounded with respect to the balanced
norm ‖ · ‖b,2, i.e.

C‖v‖2b,2 ≤ B(v,v) for all v ∈H(Ω), (4.13)

|B(v,w)| ≤ C‖v‖b,2‖w‖b,2 for all v,w ∈H(Ω). (4.14)

The elegant proof in [42] uses only simple ingredients. Let v,w ∈H(Ω) be arbitrary with
v = (q v)T and w = (r w)T . In order to prove (4.14) apply integration by parts to all the
L2(Ω) inner products of a divergence of q or r with v or w. To derive (4.13) additionally the
binomial identities

‖q ±∇v‖20 = ‖q‖20 ± 2(q,∇v) + ‖∇v‖20
are used.

Next (4.10) is discretized by replacing H(Ω) by some finite element subspace V h. The
solution uh = (ph uh)T ∈ V h of the discrete problem

B(uh,vh) = (f,Ãvh) for all vh ∈ V h (4.15)

is unique due to the well-known lemma of Lax-Milgram. Moreover, it is quasi-optimal.

Theorem 40. Let u and uh be the solutions of (4.1) and (4.15), respectively and set u =
(∇u u)T . Then there is a constant C, which is independent of ε, such that

‖u− uh‖b,2 ≤ C inf
vh∈V h

‖u− vh‖b,2.

Proof. Let vh ∈ V h be arbitrary. By Au = f , the conformity of the discretization (i.e. V h ⊂
H(Ω)) and the definitions of B(·, ·) and uh it is easy to establish the Galerkin orthogonality
property

B(u− uh,vh) = 0 for all vh ∈ V h.

This and Theorem 39 are used in a standard argument to get

‖u− uh‖2b,2 ≤ CB(u− uh,u− uh) = CB(u− uh,u− vh) ≤ C‖u− uh‖b,2‖u− vh‖b,2,

from which the result follows.
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By this Theorem error estimates can be obtained by studying the approximation error of a
conforming finite element space V h ⊂H(Ω). Let {Th} denote a family of regular triangulations
of Ω into triangles or rectangles with a maximal element diameter h.

A sufficient condition for H(div; Ω)-conformity is given by continuity of the normal derivative
across inter-element boundaries, which can easily be seen using integration by parts. In fact, let
qh denote a vector-valued function such that each component is polynomial on every element
of Th. Then

(qh,∇ϕ) =
∑

T∈Th
(qh,∇ϕ)T = −

∑

T∈Th
(div qh, ϕ) +

∑

T∈Th
(n · qh, ϕ)∂T

= −
∑

T∈Th
(div qh, ϕ) +

∑

e∈Eh
(|[ne · qh]|, ϕ)e for all ϕ ∈ C∞0 (Ω).

Here Eh is the set of inner edges of {Th}, n is the unit outer normal to ∂T and |[ne · qh]|e denotes
the jump of ne · qh across e = T1 ∩ T2 ∈ Eh, i.e.

|[v]|e = v|T1∩e − v|T2∩e

with ne being the normal vector associated with the edge e pointing from T1 to T2.
For instance, the Raviart-Thomas elements (see e.g. [10]) of index k ≥ 0 fulfill this condition

and their corresponding finite element space RTk,h is therefore a subspace of H(div; Ω).

Remark 35. The continuity of the normal components is not necessary to yield H(div; Ω)-
conformity. For instance, in [9] a technique based on Lagrange multipliers is used to enforce
the continuity weakly, relaxing this condition. Since the vector-valued finite element space is
needed to approximate the gradient of the solution u this remark points into the direction that
any method that follows the approach of Lin and Stynes will have to feature some control over
the jumps of the normal derivative along inter-element edges, cf. the continuous interior penalty
method of Section 4.2.

Let V kh denote the H1(Ω)-conforming finite element space generated by Qk elements if the
mesh cells of {Th} are rectangles. Otherwise use Pk elements. Set V kh,0 := V kh ∩H1

0 (Ω). In [42]
the authors use well-known approximation error estimates [10] for u in the finite element space

V h := RTk,h × V kh,0 ⊂H(Ω),

to obtain the result

‖u− uh‖b,2 ≤ C
(
hk+1|u|k+1 + ε1/4hk|u|k+1 + ε3/4hk|∆u|k

)
, (4.16)

provided u has the regularity required. Moreover, they use a duality argument of Aubin-
Nitsche type to derive a higher-order bound for the L2(Ω) error ‖u− uh‖0 under the additional
assumption that the differential operator of (4.1) enjoys full elliptic regularity:

‖u− uh‖0 ≤ Chε−1/4
(
hk+1|u|k+1 + ε1/4hk|u|k+1 + ε3/4hk|∆u|k

)
. (4.17)

The estimates (4.16) and (4.17) are of classical type and not satisfactory in the case of singular
perturbation because the right hand side blows up for ε→ 0. In fact, typically derivatives of
the solution of (4.1) are bounded sharply by |u|s = O(ε−s/2+1/4) for s ≥ 1. Nevertheless these
estimates show that the method performs well in the regime h < ε1/2, i.e. when the mesh is
very fine globally and there are mesh points inside the layer region. In this case (4.17) proves a
higher rate of convergence in the L2(Ω)-norm.

In order to provide meaningful bounds for the error of the finite element method in the
interesting regime ε1/2 < h Theorem 40 shows that the approximation error is the key. If the
approximation error is small by using a layer-adapted mesh so will be the error of the finite
element method. This will enable one to include coarse elements into the mesh in parts of the
domain avoiding the unrealistic assumption h < ε1/2 (which would in general imply a gigantic
number of degrees of freedom).

In Section 5 of [42] the authors analyze their finite element method on a Shishkin mesh of the
unit square Ω = (0, 1)2 in the regime ε ≤ CN−1. They assume that the data c and f of (4.1) lie
in the Hölder space C4,α(Ω) for some α ∈ (0, 1] and the corner compatibility conditions (3.86)
which guarantee that third derivatives of u are bounded even in the corners of Ω. In this respect
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the authors remark the possibility to extend their analysis to higher order elements by assuming
additional corner compatibility conditions. Without these the authors prove convergence for
lowest-order Raviart-Thomas and bilinear finite elements, i.e. V h := RT0,h × V 1

h,0.
Next, Lin and Stynes describe the solution decomposition and a priori estimates of [45,

Lemma 1.1 and Lemma 1.2] as stated in Lemma 34. Moreover, they construct a Shishkin mesh
similar to the one introduced in Section 3.7 with λ0 := 2 and estimate the approximation error.

Lemma 41. Let uI denote the piecewise bilinear nodal interpolant of u on a Shishkin mesh
with N intervals in each coordinate direction described in Section 3.7. Then there is a constant
C such that

‖u− uI‖b ≤ CN−1 lnN

Proof. Again, the argument follows [42]. An estimate for the L2(Ω) error can be found in [45,
Lemma 2.3]:

‖u− uI‖0 ≤ CN−2.

In order to estimate ε1/4|u−uI |1 the solution is split into u = S+
∑4
i=1Ei+E12+E23+E34+E41

according to Lemma 34. For the smooth component S one obtains by a well-known interpolation
error estimate and (3.87b) that

ε1/4|S − SI |1 ≤ Cε1/4N−1|S|2 ≤ Cε1/4N−1. (4.18)

Next the authors use the well-known anisotropic interpolation error estimate [2]

‖Dγ(v − vI)‖0,T ≤ C
∑

|α|=1

hαT ‖Dα+γv‖0,T (4.19)

for a rectangular axis-parallel element T ∈ Th, a multi-index γ with |γ| = 1 and v ∈ H2(T ).
Consider for instance the boundary layer E1, by (4.19) and (3.87c),

ε1/4

∥∥∥∥
∂

∂y
(E1 − EI1 )

∥∥∥∥
0,Ω1∪Ω3

≤ Cε1/4

(
N−1

∥∥∥∥
∂2

∂x∂y
E1

∥∥∥∥
0,Ω1∪Ω3

+ ε1/2N−1 lnN

∥∥∥∥
∂2

∂y2
E1

∥∥∥∥
0,Ω1∪Ω3

)

≤ Cε1/4
(
N−1ε−1/4 + ε1/2N−1 lnNε−3/4

)
≤ CN−1 lnN. (4.20)

Proceed similarly in Ωh where the mesh is very fine. In the remainder of the domain, Ω0∪Ω2∪Ω4

the mesh is coarse in y-direction and the layer E1 is pointwise small, i.e. |E1| ≤ CN−2. An
inverse estimate yields for instance in Ω0

ε1/4

∥∥∥∥
∂

∂y
(E1 − EI1 )

∥∥∥∥
0,Ω0

≤ ε1/4

(∥∥∥∥
∂

∂y
E1

∥∥∥∥
0,Ω0

+

∥∥∥∥
∂

∂y
EI1

∥∥∥∥
0,Ω0

)

≤ Cε1/4
(
ε−1/4N−2 +N‖EI1‖0,Ω0

)

≤ C(N−2 + ε1/4N−1).

(4.21)

A derivative with respect to x is easier to handle. The estimate (4.19) and (3.87c) yield

ε1/4

∥∥∥∥
∂

∂x
(E1 − EI1 )

∥∥∥∥
0

≤ Cε1/4N−1

(∥∥∥∥
∂2

∂x2
E1

∥∥∥∥
0

+

∥∥∥∥
∂2

∂x∂y
E1

∥∥∥∥
0

)

≤ Cε1/4N−1(1 + ε−1/4) ≤ CN−1.

(4.22)

For the corner layer components we use the same ideas. Consider for instance E12. In Ωh
one obtains

ε1/4
∣∣E12 − EI12

∣∣
1,Ωh
≤ Cε1/4h|E12|2,Ωh ≤ Cε1/4ε1/2N−1 lnNε−3/4

≤ CN−1 lnN.
(4.23)
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In the remainder of the domain this layer component is small again. In Ω0 we proceed similar
to the estimation of E1 in Ω0, while in Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 we additionally use the smallness of
the domain, for instance in Ω1:

ε1/4
∣∣E12 − EI12|1,Ω1

≤ ε1/4
(
|E12|1,Ω1

+
∣∣EI12

∣∣
1,Ω1

)

≤ Cε1/4
(
ε−1/4N−2 + ε−1/2N(lnN)−1‖EI1‖0,Ω1

)

≤ C
(
N−2 + ε−1/4N(lnN)−1 meas(Ω1)1/2‖E1‖L∞(Ω1)

)

≤ CN−1(lnN)−1/2.

(4.24)

Collecting (4.18), (4.20), (4.21), (4.22), (4.23) and (4.24) we finish the proof.

It remains to establish approximation error estimates for the vector-valued component in V h

for the gradient of the solution. The lowest-order Raviart-Thomas element induces a projection

Π0,hq of q ∈
(
H1(Ω)

)2
into the finite element space

RT0,h = {r ∈ H(div; Ω) : (r|T )i ∈ span{1, xi} for i = 1, 2 and T ∈ Th}.

More precisely the projection operator Π0,h is constructed locally on each rectangular element
T ∈ Th by

∫

e

(
Π0,hq|T − q

)
· neds = 0

for every side e of T .

Lemma 42. Let Π0,h∇u denote the projection of ∇u into the finite element space RT0,h on a
Shishkin mesh with N intervals in each coordinate direction as described in Section 3.7. Then
there is a constant C such that

ε3/4‖∇ · (∇u−Π0,h∇u)‖0 + ε1/4‖∇u−Π0,h∇u‖0 ≤ CN−1 lnN.

Proof. We follow [42]. Based on the projection error estimates [1, Remark 4.1]

‖(q −Π0,hq)i‖0,T ≤ C
∑

|α|=1

hαT ‖Dαqi‖0,T for i=1,2,

for q = (q1, q2) ∈
(
H1(T )

)2
, inverse inequalities in RT0,h and stability estimates for each

component of Π0,h the bound of ε1/4‖∇u − Π0,h∇u‖0 is obtained similarly to the proof of
Lemma 41.

To bound the other term the “commuting diagram” property [10] is used, i.e.

∇ · (Π0,hq) = Ph(∇ · q) for all q ∈
(
H1(Ω)

)2
, (4.25)

where Ph : L2(K)→ P0(K) is the local L2-projection onto a constant for which

‖v − Phv‖0,T ≤ C
∑

|α|=1

hαT ‖Dαv‖0,T (4.26)

for v ∈ H1(T ) holds [40, Lemma 2.1 (i)]. Setting q = ∇u in (4.25) one sees that

ε3/4‖∇ · (∇u−Π0,h∇u)‖0 = ε3/4‖∆u− Ph(∆u)‖0. (4.27)

The right hand side of (4.27) is bounded using the solution decomposition of Lemma 34 and
(4.26). First, by (3.87b),

ε3/4‖∆S − Ph(∆S)‖0 ≤ Cε3/4N−1|∆S|1 ≤ Cε1/4N−1. (4.28)

For the boundary layer component E1 the estimate (4.26) and (3.87c) yield

ε3/4‖∆E1 − Ph(∆E1)‖0,Ω1
≤ Cε3/4

(
N−1

∥∥∥∥
∂(∆E1)

∂x

∥∥∥∥
0,Ω1

+ ε1/2N−1 lnN

∥∥∥∥
∂(∆E1)

∂y

∥∥∥∥
0,Ω1

)

≤ CN−1 lnN. (4.29)
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Proceed similarly in Ω3 and Ωh where the mesh is very fine. In the remainder of the domain
the layer component E1 is small:

ε3/4‖∆E1‖0,Ω\(Ω1∪Ω3∪Ωh) ≤ CN−2,

due to (3.87c) and λ0 = 2. Next, let T ⊂ Ω \ (Ω1 ∪Ω3 ∪Ωh) denote a mesh rectangle with sides
of length hx and hy = CN−1 then

∣∣Ph(∆E1)|T
∣∣ =

1

meas(T )

∣∣∣∣
∫

T

∆E1 dxdy

∣∣∣∣ ≤
C

meas(T )
hxε
−1/2N−2,

where we used (3.87c) and the choice of λ again. Consequently,

∥∥Ph(∆E1)
∥∥

0,T
=
∣∣Ph(∆E1)|T

∣∣meas(T )1/2 ≤ Cε−1/2N−2.

Squaring and summing up over all remaining O(N2) rectangles a triangle inequality yields

ε3/4‖∆E1 − Ph(∆E1)‖0,Ω\(Ω1∪Ω3∪Ωh) ≤ C(N−2 + ε1/4N−1). (4.30)

Collecting (4.28), (4.29) and (4.30) gives

ε3/4‖∆E1 − Ph(∆E1)‖0 ≤ CN−1 lnN.

For the corner layer E12 similar arguments give

ε3/4‖∆E12 − Ph(∆E12)‖0 ≤ ε1/4N−1 lnN. (4.31)

In Ωh the mesh is uniform and very fine. Hence, obtaining (4.31) is easy there. For Ω \Ωh it is
useful to apply the argument that led to (4.30) only on the O(N) elements that are adjacent to
Ωh while on the remainder of the domain the layer is very small.

Lemma 43. Let uI := (Π0,h∇u, uI) ∈ Vh = RT0,h × V 1
h,0 denote the interpolant based on the

projection into the lowest-order Raviart Thomas space and bilinear elements on a Shishkin mesh
with N intervals in each coordinate direction. Then there is a constant C such that

‖u− uI‖b,2 ≤ CN−1 lnN.

Proof. Combine Lemmas 41 and 42.

Based on this result and the quasi-optimality of the method convergence follows.

Theorem 44. Consider the solution u of (4.1) with Ω = (0, 1)2 and smooth data, satisfying
the corner compatibility conditions (3.86) and set u := (∇u, u). Let Vh = RT0,h × V 1

h,0 denote
the product of the H(div; Ω)-conforming lowest-order Raviart-Thomas space and the space of
piecewise bilinears on a rectangular Shishkin mesh with N intervals in each coordinate direction.
Then the finite element solution uh from (4.15) satisfies

‖u− uh‖b,2 ≤ CN−1 lnN.

Proof. This main result of [42] follows from Theorem 40 and Lemma 43.

4.2 A C0 interior penalty method

Despite the beauty of the theory of the mixed method of [42] shown in the previous section, it
has some minor drawbacks: It involves the usage of conforming Raviart-Thomas elements and
introduces additional unknowns that bind a great number of degrees of freedom. Moreover,
as a consequence of the correct weighing in (4.10) the symmetry of the problem is sacrificed.
The method presented in this Section allows to use standard finite elements. Additionally, the
method can be modified to conserve the symmetry of the problem (in the constant coefficient
case no modification is needed to achieve this). Still the method yields robust error estimates
in a balanced norm which is quite similar to ‖ · ‖b,2 in (4.12).
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The basic idea is to imitate the technique of Lin and Stynes in a broken Sobolev space and
to supply sufficient control over the jumps of the normal derivative of the approximate solution
along inter-element edges, cf. Remark 35. The presentation follows [61].

Let ΩN denote an admissible triangulation of Ω into rectangles associated with some
discretization parameter N and define the broken Sobolev space

H1,2(ΩN ) := {v ∈ H1(Ω) : v|T ∈ H2(T ) ∀T ∈ ΩN , v = 0 on ∂Ω}. (4.32)

Let EN be the set of interior edges. Since ΩN is an admissible triangulation two elements
T1, T2 ∈ ΩN define traces of a function v ∈ H1,2(ΩN ) along an interior edge e ∈ EN . We
associate a unit normal vector n with each edge. If e ⊂ ∂Ω is an edge along the boundary we
define n as the unit outer normal to ∂Ω. In a similar manner there are two traces of the normal
derivative ∂v

∂n ∈ L2(e). Assuming n is oriented from T1 to T2 we obtain jumps |[ ∂v∂n ]| of these
traces as follows:

[[ ∂v
∂n

]]
:=

∂v

∂n

∣∣∣∣
T1

− ∂v

∂n

∣∣∣∣
T2

∈ L2(e), e ∈ EN .

Testing the partial differential equation (4.1a) with −ε1/2∆v, integrating over each element
T of the triangulation and summing up over all T ∈ ΩN we obtain for v ∈ H1,2(ΩN ) the
variational equation

ε3/2
∑

T∈ΩN

(∆u,∆v)T − ε1/2
∑

T∈ΩN

(c u,∆v)T = −ε1/2
∑

T∈ΩN

(f,∆v)T . (4.33)

Next an application of Green’s theorem to the reaction part gives

ε3/2
∑

T∈ΩN

(∆u,∆v)T + ε1/2(c∇u+∇c u,∇v)− ε1/2
∑

e∈EN

(
c
[[ ∂v
∂n

]]
, u
)
e

= −ε1/2
∑

T∈ΩN

(f,∆v)T .
(4.34)

Adding (4.2) and (4.34) we arrive at a new weak formulation for problem (4.1). It can be
viewed as the scalar version of (4.10) without imposing continuity of the normal derivatives
along inter-element edges. Find u ∈ H1,2(ΩN ), such that

B±(u, v) = L(v) ∀v ∈ H1,2(ΩN ), (4.35)

where the bilinear forms B± : H1,2(ΩN ) × H1,2(ΩN ) → R and the linear functional L :
H1,2(ΩN )→ R are defined as

B±(w, v) := ε3/2
∑

T∈ΩN

(∆w,∆v)T + ε(∇w,∇v) + ε1/2(c∇w +∇cw,∇v) + (cw, v)

+
∑

e∈EN

(
−ε1/2

(
cw,

[[ ∂v
∂n

]])
e
± ε1/2

(
c
[[∂w
∂n

]]
, v
)
e

+
(
σe

[[∂w
∂n

]]
,
[[ ∂v
∂n

]])
e

)
,

(4.36)

L(v) := (f, v)− ε1/2
∑

T∈ΩN

(f,∆v)T , (4.37)

for v, w ∈ H1,2(ΩN ) and σe ≥ 0 for all e ∈ EN . Note that for w ∈ H2(Ω) the last two terms
of the right hand side of (4.36) vanish since |[∂w/∂n]| ≡ 0 on e ∈ EN by a well-known Sobolev
embedding. The introduction of these artificial terms is motivated by symmetrization and
coercivity of the bilinear form. After the discretization the last term penalizes jumps of the
normal derivative across interior edges. It plays an important role with respect to the stability
of the method and renders it a continuous interior penalty method.

Remark 36. In the case of a constant coefficient c the bilinear form B− is symmetric whereas
B+ is asymmetric. If the conservation of the symmetry of the problem is desired in the variable
coefficient case, it might be advantageous to use a piecewise constant approximation cN instead
of c. By doing so the term (∇cw,∇v) in (4.36) vanishes and cN moves inside the jump brackets.



4.2. A C0 INTERIOR PENALTY METHOD 93

In order to carry out the error analysis of the method (4.35) we will introduce the following
adequate norm:

|||v|||2 = ε3/2
∑

T∈ΩN

‖∆v‖20,T + ε1/2|v|21 + ‖v‖20 +
∑

e∈EN

(
σe

[[ ∂v
∂n

]]
,
[[ ∂v
∂n

]])
e
. (4.38)

Note that this norm corresponds to the left hand side of (4.7) in the context of our broken
Sobolev space. Consequently, similarly to the norm (4.12) the norm ||| · ||| is balanced and
stronger than the energy norm or ‖ · ‖b from (4.5).

For our discretization we introduce the FE space

V N := {v ∈ H1,2(ΩN ) : v|T ∈ Q2(T ) ∀T ∈ ΩN}. (4.39)

The use of bilinear elements would result in ∆vN = 0 and (4.33) would not evolve the method.
It should be possible to extend the results to Qk elements with k > 2. However, this requires
even more compatibility conditions of the data.

Lemma 45 (Coercivity). Assume that the following mild condition holds:

c− ε1/2

2
∆c ≥ c0 > 0. (4.40)

Then there exists a positive constant C such that

B+(v, v) ≥ C|||v|||2 ∀v ∈ H1,2(ΩN ). (4.41)

Additionally, let the penalty parameter satisfy

σe ≥ C?
ε

h⊥e
for all e ∈ EN , (4.42)

where C? is a constant and h⊥e denotes the minimal length of all edges orthogonal to e. Then
the symmetric bilinear form B− is coercive in the discrete space V N , i.e.

B−(vN , vN ) ≥ C|||vN |||2 ∀vN ∈ V N . (4.43)

Proof. A straight-forward calculation yields the validity of (4.41) with C = min{1, c0}. Here
we used the identity (∇cv,∇v) = (∆c, v2)/2 which follows from integration by parts.

To prove (4.43) we start off with vN ∈ V N and the identity

B−(vN , vN ) = B+(vN , vN )− 2ε1/2
∑

e∈EN

(
c vN ,

[[∂vN
∂n

]])
e
. (4.44)

We estimate the modulus of the last summand of (4.44). The triangle and the Cauchy-Schwarz
inequality give

∣∣∣2ε1/2
∑

e∈EN

(
c vN ,

[[∂vN
∂n

]])
e

∣∣∣ ≤ 2ε1/2‖c‖L∞(Ω)

∑

e∈EN
‖vN‖0,e

∥∥∥
[[∂vN
∂n

]]∥∥∥
0,e
.

Next the Young inequality yields

∣∣∣2ε1/2
∑

e∈EN

(
c vN ,

[[∂vN
∂n

]])
e

∣∣∣ ≤ ε1/2‖c‖L∞(Ω)

∑

e∈EN

(
µe‖vN‖20,e +

1

µe

∥∥∥
[[∂vN
∂n

]]∥∥∥
2

0,e

)
, (4.45)

where µe > 0 are positive constants on each edge e ∈ EN that will be specified soon. The local
inverse estimate

‖vN‖20,e ≤
75

h⊥e
‖vN‖20,T (e) (4.46)

is well-known. It holds for biquadratic elements on rectangles T (e) with edge e, see e.g. [11].
We want to estimate the first summand of the right hand side of (4.45) against c0

2 ‖vN‖20.
If we substitute (4.46) into (4.45) we achieve this by determining µe in such a way that the
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coefficient of ‖vN‖20,T (e) is bounded by c0/8. Note that each element can only be referred to by
at most four edges. Consequently, we set

µe :=
1

600

c0
‖c‖L∞(Ω)

h⊥e
ε1/2

.

With this choice the coefficient of the last summand of the right hand side of (4.45) amounts to

ε1/2‖c‖L∞(Ω)

µe
= 600

‖c‖2L∞(Ω)

c0

ε

h⊥e
.

Hence, if we set σe according to (4.42) with C? := 1200
‖c‖2L∞(Ω)

c0
we obtain

∣∣∣2ε1/2
∑

e∈EN

(
c vN ,

[[∂vN
∂n

]])
e

∣∣∣ ≤ c0
2
‖vN‖20 +

1

2

∑

e∈EN

(
σe

[[∂vN
∂n

]]
,
[[∂vN
∂n

]])
e
.

From this together with (4.44) the assertion (4.43) follows.

The asymmetric continuous interior penalty method proposed now reads: find uN,+ ∈ V N
such that

B+(uN,+, vN ) = L(vN ) ∀vN ∈ V N . (4.47)

If the bilinear form in (4.15) is replaced with B−(·, ·) we denote the obtained approximate
solution by uN,−. Similarly, one might obtain an approximate solution uN,0 by using the
bilinear form that is created by discarding the first artificial term in (4.36). We shall refer to
this method as incomplete continuous interior penalty method. By the coercivity property of
Lemma 45 the function uN,+ is well defined. Similarly, uN,− and uN,0 are well defined if σe
is chosen appropriately. Subsequently, we shall focus on the asymmetric method (4.47) and
specify variations of the analysis or in the results of the other methods. Note that uN,+ is well
defined due to the coercivity property (4.41).

Since our method (4.15) is consistent and V N ⊂ H1,2(ΩN ) the following identity known as
Galerkin orthogonality holds:

B+(u− uN , vN ) = 0 ∀vN ∈ V N . (4.48)

In every finite element analysis the approximation error comes into play, eventually. In
Section 3.7 we considered this problem for a Shishkin mesh of the unit square Ω = (0, 1)2.

Under the assumptions that the smooth part S of the solution decomposition (3.87) satisfies

|S|3 ≤ C, (4.49)

cf. Remark 32, that the corner compatibility conditions (3.86) as well as the mild condition

ε1/2 ≤ (lnN)−2 (4.50)

hold true we proved the following:

There is a projection u? ∈ V N of u by a quasi-interpolation operator such that

‖u− u?‖0 ≤ CN−2, (3.95d)
∑

e∈E(I)∪E(II)

‖u− u?‖20,e ≤ CN−3, (3.113)

ε1/4|u− u?|1 ≤ CN−2(lnN)2, (3.95f)
∑

e∈E(III)

‖u− u?‖20,e ≤ Cε−1/2N−5(lnN)2, (3.114)

ε3/2
∑

T∈ΩN

|u− u?|22,T ≤ CN−2(lnN)2, (3.95e)
∑

e∈E(IV )

‖u− u?‖20,e ≤ Cε1/2N−5(lnN)3, (3.115)
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∑

e∈E(I)

∥∥∥∥
[[∂(u− u?)

∂n

]]∥∥∥∥
2

0,e

≤ CN−3, (3.123)

∑

e∈E(III)

∥∥∥∥
[[∂(u− u?)

∂n

]]∥∥∥∥
2

0,e

≤ Cε−1/2N−3(lnN)4. (3.124)

Here we summarized the results of the Lemmas 35, 36 and 38 from Chapter 3. For the
definition of the type of an edge and u? we refer to Definition 6 and the beginning of Section
3.7, respectively.

Remark 37. The need to introduce a new projection arises since for our reformulation of the
problem the standard nodal interpolant uI ∈ V N to u appears to be incapable to yield balanced
error estimates that are uniform with respect to ε. The problem is caused by the jump of the
normal derivative of u− uI on long edges of anisotropic elements of ΩN .

Lemma 46. Suppose that (3.86), (4.49) and (4.50) holds true. Then |||u− u?||| ≤ CN−1 lnN ,
if the parameter σe ≥ 0 satisfies

σe ≤ C
{
N(lnN)2 if e is of type I,

ε1/2N(lnN)−2 if e is of type III.
(4.51)

Proof. Combine (3.95d), (3.95f) and (3.95e) with (3.123) and (3.124).

Note that the approximation error is not adversely affected regardless of the choice of σe on
type-II or type-IV edges.

Theorem 47. Consider (4.1) and assume that the corner compatibility conditions (3.86) as
well as the Assumptions (4.49), (4.50) and (4.40) hold true. Moreover, let the penalty parameter
σe be chosen by

σe := σ0





ε if e is of type I or type II,

ε1/2 if e is of type III,

ε3/2 if e is of type IV,

with a sufficiently large constant σ0 > 0. Then the CIP-method approximation uN , i.e. the
piecewise biquadratic FE-function on the rectangular Shishkin mesh defined in Section 3.7 with
N intervals in each coordinate direction satisfies the robust error estimate

|||u− uN ||| ≤ CN−1(lnN)3/2 (4.52)

in the balanced norm ||| · |||.
Proof. Splitting the error into an approximation error η := u− u? and a discrete component
ξ := u? − uN ∈ V N we obtain by Lemma 46:

|||u− uN ||| ≤ |||η|||+ |||ξ||| ≤ CN−1 lnN + |||ξ|||.
It remains to establish a bound for |||ξ|||.

A standard argument using coercivity of B+ and (4.48) gives:

|||ξ|||2 ≤ −CB+(η, ξ) ≤ C|B+(η, ξ)|.
After a triangle inequality we apply the Cauchy-Schwarz inequality to all symmetric terms of
B+(η, ξ) and obtain with Lemma 46:

|B+(η, ξ)| ≤ CN−1 lnN |||ξ|||+
∣∣ε1/2(∇c η,∇ξ)

∣∣+ ε1/2
∑

e∈EN

(∣∣∣∣
(
c η,
[[ ∂ξ
∂n

]])
e

∣∣∣∣+

∣∣∣∣
(
c
[[∂η
∂n

]]
, ξ
)
e

∣∣∣∣
)
.

(4.53)

An inverse estimate and (3.95d) give

∣∣ε1/2(∇c η,∇ξ)
∣∣ ≤ ‖∇c‖L∞(Ω)ε

1/2‖η‖0‖∇ξ‖0 ≤ C
ε1/2

ε1/2N−1 lnN
‖η‖0‖ξ‖0

≤ CN−1(lnN)−1|||ξ|||.
(4.54)
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The last term is estimated against ‖ξ‖0 ≤ |||ξ||| as follows:

ε1/2
∑

e∈EN

∣∣∣∣
(
c
[[∂η
∂n

]]
, ξ
)
e

∣∣∣∣ ≤ ε1/2 ‖c‖L∞(Ω)

∑

e∈EN

∥∥∥∥
[[∂η
∂n

]]∥∥∥∥
0,e

‖ξ‖0,e.

Since every inner edge e ∈ EN belongs to two rectangular elements T1(e), T2(e) ∈ ΩN with sides
perpendicular to e of length h1,⊥, h2,⊥ an inverse estimate yields

‖ξ‖0,e ≤ C min{h1,⊥, h2,⊥}−1/2‖ξ‖0,T1(e)∪T2(e).

Across type-II and type-IV edges the jump of the normal derivative of η vanishes. Thus, the
Cauchy-Schwarz inequality gives with (3.123) and (3.124):

ε1/2
∑

e∈EN

∣∣∣
(
c
[[∂η
∂n

]]
, ξ
)
e

∣∣∣ ≤ ε1/2 ‖c‖L∞(Ω)

∑

e∈E(I)∪E(III)

∥∥∥∥
[[∂η
∂n

]]∥∥∥∥
0,e

‖ξ‖0,e

≤ Cε1/2h−1/2

( ∑

e∈E(I)∪E(III)

∥∥∥∥
[[∂η
∂n

]]∥∥∥∥
2

0,e

)1/2

‖ξ‖0

≤ Cε1/2ε−1/4N1/2(lnN)−1/2ε−1/4N−3/2(lnN)2‖ξ‖0
≤ CN−1(lnN)3/2|||ξ|||.

(4.55)

Finally, we consider

ε1/2
∑

e∈EN

∣∣∣∣
(
c η,
[[ ∂ξ
∂n

]])
e

∣∣∣∣ ≤ ε1/2 ‖c‖L∞(Ω)

∑

e∈EN
‖η‖0,e

∥∥∥
[[ ∂ξ
∂n

]]∥∥∥
0,e

≤ Cε1/2

(∑

e∈EN

1

σe
‖η‖20,e

)1/2(∑

e∈EN
σe

∥∥∥
[[ ∂ξ
∂n

]]∥∥∥
2

0,e

)1/2

≤ C
(∑

e∈EN

ε

σe
‖η‖20,e

)1/2

|||ξ||| ≤ CN−3/2|||ξ|||.

(4.56)

Here the last inequality is due to our choice for σe, (3.113), (3.114) and (3.115). The result
follows from (4.53) with (4.54), (4.55) and (4.56).

Remark 38. Inspecting the proof of Theorem 47 one sees that a similar estimate holds for the
CIP-method based on the bilinear form B− (cf. Lemma 45) if the penalty parameter is chosen
according to

σe := σ0

{
εN if e is of type I,

ε1/2N(lnN)−1 else.

With the same choice for the parameter σe the incomplete CIP-method (in which the non-
symmetric artificial term of (4.36) is removed) gives an optimal approximation, i.e. |||u−uN ||| ≤
CN−1 lnN .

Remark 39. The estimate (4.55) is crude on most edges: The edge perpendicular to a type-I
edge is always long. Hence, one might use H−1/2 instead of h−1/2 in this case. In fact, only
a type-III edge e ∈ Ωf is estimated sharply. This observation fits perfectly to our numerical
experiments in which we observed oscillations in the fine mesh part over Ωf . These are damped
efficiently if we simplify our choice for the penalty parameter to

σe := σ0

{
ε if e is a long (type-I or type-II) edge,

ε1/2 if e is a short (type-III or type-IV) edge.

Note that even without this adjustment we numerically observe first order convergence for the
CIP-method in agreement with Theorem 47. However, the initial rates are slightly smaller then
which accounts for a larger error.
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4.3 Galerkin finite element method

In this section we shall examine the performance of the Galerkin finite element method

ε(∇uN ,∇vN ) + (c uN , vN ) = (f, vN ) ∀vN ∈ V N

for problem (4.1) on the unit square Ω = (0, 1)2. Here V N ⊂ H1
0 (Ω) denotes the space of

bilinear finite elements on the Shishkin mesh ΩN described in Section 3.7 with λ0 = 2 in (3.88).
Alternatively we may consider linear finite elements over a triangulation Ω̃N obtained form ΩN

by drawing diagonals in each mesh rectangle. The presentation follows [61].
As already mentioned in the introduction the analysis of the Galerkin FEM is fairly easy

in the energy norm ‖ · ‖ε defined in (4.3). Assuming that f satisfies the corner compatibility
conditions (3.86) then for the Lagrange interpolant uI ∈ V N of u on Shishkin meshes it holds

‖u− uI‖ε ≤ C
(
ε1/4N−1 lnN +N−2

)
. (4.57)

Actually (4.57) is a mere consequence of Lemma 41 which proved for bilinears that

ε1/4|u− uI |1 ≤ CN−1 lnN and ‖u− uI‖0 ≤ CN−2. (4.58)

Similarly, one may obtain this estimate for linear elements and for the pointwise interpolation
error (see e.g. [64, 43]):

‖u− uI‖L∞(Ω0) ≤ CN−2 and ‖u− uI‖L∞(Ω\Ω0) ≤ C(N−1 lnN)2. (4.59)

Based on the quasi-optimality (4.4) the bound (4.57) implies the error estimate

‖u− uN‖ε ≤ C‖u− uI‖ε ≤ C
(
ε1/4N−1 lnN +N−2

)
. (4.60)

However, we are interested in more meaningful results as the energy norm is too weak. Un-
fortunately it is not clear how to obtain a quasi-optimality result for the balanced norm ‖ · ‖b
defined in (4.38) because in the latter the multiplier of the H1 semi-norm component is reduced
to ε1/4. This implies that the bilinear form a(·, ·) form is not coercive in V (or even V N ) with
respect to ‖ · ‖b.

The key idea to sidestep the coercivity loss is to stick with the energy norm but to use instead
of the Lagrange interpolant a projection that enables one to separate the two components of
the bilinear form. We shall shorty see that the weighted global L2 projection πu ∈ V N of u
defined by

(
c(πu− u), vN

)
= 0 for all vN ∈ V N (4.61)

does this trick. Therefore we first discuss the approximation properties of this projection.

Lemma 48. Let (4.58) and (4.59) be satisfied. Then for the weighted global L2 projection on
a Shishkin mesh it holds

‖u− πu‖L∞(Ω) ≤ C‖u− uI‖L∞(Ω) and ε1/4|u− πu|1 ≤ CN−1(lnN)3/2. (4.62)

Proof. For the maximum-norm bound we use the L∞-stability of the global L2 projection which
holds true on standard layer adapted meshes [54]:

‖u− πu‖L∞(Ω) ≤ ‖u− uI‖L∞(Ω) + ‖π(u− uI)‖L∞(Ω) ≤ C‖u− uI‖L∞(Ω). (4.63)

Consequently, by (4.59),

‖u− πu‖0,Ω0 ≤ C‖u− πu‖L∞(Ω0) ≤ C‖u− uI‖L∞(Ω0) ≤ CN−2. (4.64)

For the other estimate we start off in Ω0. Another triangle inequality yields:

|u− πu|1,Ω0 ≤ |u− uI |1,Ω0 + |uI − πu|1,Ω0 . (4.65)

In Ω0 the mesh is (quasi-)uniform with a mesh size H = O(N−1). Applying an inverse estimate
to the discrete component gives with (4.64) and (4.58) that

|uI − πu|1,Ω0
≤ CN‖uI − πu‖0,Ω0

≤ CN
(
‖uI − u‖0,Ω0

+ ‖u− πu‖0,Ω0

)
≤ CN−1.
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Collecting (4.58), (4.65) and (4.3) we arrive at

|u− πu|1,Ω0 ≤ Cε−1/4N−1 lnN.

In Ω \ Ω0 a similar argument gives

|u− πu|1,Ω\Ω0
≤ |u− uI |1,Ω\Ω0

+ |uI − πu|1,Ω\Ω0

≤ |u− uI |1 +
C

h
‖uI − πu‖0,Ω\Ω0

≤ C
(
ε−1/4N−1 lnN +

meas(Ω \ Ω0)1/2

ε1/2N−1 lnN
‖uI − πu‖L∞(Ω\Ω0)

)
.

Note that meas(Ω \ Ω0)1/2 = ε1/4(lnN)1/2 and furthermore from (4.63) and (4.59) it follows
that

‖uI − πu‖L∞(Ω\Ω0) ≤ CN−2(lnN)2.

Hence, the proof of Lemma 48 is complete.

Remark 40. In [54] it is established that the L2-orthogonal projection onto linear spline spaces
is bounded as an operator in L∞ provided two geometric conditions on the underlaying family
of triangulations are met: The valence of any node and the so called depth of local area growth
with ratio r are bounded uniformly. These conditions are fulfilled on a Shishkin-mesh because
the maximal valence is eight due to the construction of the mesh. Moreover, it can be broken
down into nine uniform sub-triangulations (c.f. the domain decomposition in the left of Figure
3.7) and consequently in each sub-triangulation two triangles have an area ratio of one. This
result holds also for other two-dimensional meshes of Shishkin- or Bakhvalov-type. For the
proof the scaled mass matrix is studied which has some nice properties if linear elements in 2D
are considered. Therefore the proof in [54] is limited to this setting.

For bilinear finite elements the L∞-stability of the global L2 projection follows immediately
from the univariate case [14] without any restrictions on the family of underlaying tensor
product partitions. Moreover, the stability constant C = 9 can sharply be specified [54].

Since the integral kernel c of (4.61) is bounded by 0 < 2(c?)2 ≤ c ≤ ‖c‖L∞(Ω) these results
carry over to the weighted L2 projection.

Now we are able to prove the main result of this section: uniform convergence of the Galerkin
finite element solution in the balanced norm ‖ · ‖b.
Theorem 49. Assume that the Lagrange interpolation error estimates (4.58) and (4.59) are
satisfied. Then there exists a constant C such that

‖u− uN‖b ≤ CN−1(lnN)3/2 (4.66)

where uN is the Galerkin finite element solution obtained on a Shishkin mesh with O(N2) linear
or bilinear elements.

Proof. A triangle inequality and Lemma 48 yield

|u− uN |1 ≤ |u− πu|1 + |πu− uN |1 ≤ ε−1/4N−1(lnN)3/2 + |πu− uN |1. (4.67)

For the discrete component ξ := πu− uN we use coercivity with respect to the energy norm
and Galerkin orthogonality

ε|ξ|21 ≤ ‖ξ‖ε ≤ C
(
ε|ξ|21 + (cξ, ξ)

)
= Cε

(
∇(πu− u),∇ξ

)
+
(
c(πu− u), ξ

)
. (4.68)

Based on (4.61) this yields

|ξ|1 = |πu− uN |1 ≤ C|πu− u|1. (4.69)

Collecting (4.62), (4.69) and (4.67) we arrive at

ε1/4|u− uN |1 ≤ N−1(lnN)3/2.

For the L2-norm error we use ‖u − uN‖0 ≤ ‖u − uN‖ε and (4.60) which proves first order
convergence uniformly in ε. Hence, the proof is complete.
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Remark 41. Given certain additional compatibility conditions one may prove

‖u− uN‖b ≤ CN−k(lnN)k+1/2

for the Galerkin finite element solution uN on a Shishkin mesh formed by Qk elements with
λ0 = k + 1 and k > 1. Note that for a tensor product mesh the L∞-stability of the weighted
L2 projection again follows from the corresponding one-dimensional result, c.f. Remark 40.
Moreover, one may use cut-off functions to conclude such a result in certain regions of the
domain even if the compatibility conditions are violated.

4.3.1 L2-norm error bounds and supercloseness

There are in principle several ways to derive an estimate for ‖u − uN‖0. We may use the
estimate for the energy norm. In the interesting regime

√
ε ≤ CN−1 the bound (4.60) gives

‖u− uN‖0 ≤ CN−3/2 lnN. (4.70)

In order to derive a better estimate one can try to apply some duality argument, also known as
Aubin-Nitsche trick. This was done in [42] for the method of Section 4.1. However, it is unclear
how to bound the energy norm of the solution w of a(w, v) = (u− uN , v) against ‖u− uN‖0 in
such a way that robust second order convergence can be concluded in the singularly perturbed
case.

An approach similar to the derivation of (4.69) involves the H1
0 -projection π?v ∈ V N of

v ∈ H1(Ω) defined by

(
∇(v − π?v),∇vN

)
= 0 for all vN ∈ V N .

For π?u− uN we obtain similarly to (4.68) that

‖π?u− uN‖0 ≤ C‖π?u− u‖0.

Hence,

‖u− uN‖0 ≤ ‖π?u− u‖0 + ‖π?u− uN‖0 ≤ C‖π?u− u‖0.

Unfortunately it is unclear how to estimate the last term. Let us assume that the H1
0 -projection

onto the space of linear or bilinear elements over a family of Shishkin meshes is
(
L∞(Ω),L2(Ω)

)
-

stable, i.e.

‖π?v‖0 ≤ C‖v‖∞. (4.71)

Then we could prove that

‖π?u− u‖0 ≤ ‖π?(u− uI)‖0 + ‖u− uI‖0 ≤ C‖u− uI‖L∞(Ω) ≤ N−2(lnN)2.

Note that in 1D (4.71) holds true for linear elements, because the H1
0 -projection π?v of v

coincides with the nodal interpolant vI of v. This fact can easily be checked using integration
by parts:

(
(u− uI)′, (vN )′

)
(xi−1,xi)

= (u− uI)(vN )′
∣∣xi
xi−1
−
(
u− uI , (vN )′′

)
= 0.

With respect to the two-dimensional case the situation is unclear. The work [26] may be
considered a starting point in which bounds for the inverse of the stiffness matrix (the flexibility
matrix) over non-uniform meshes are obtained.

Finally, one may use a supercloseness result to deduce a bound for the L2-error. Super-
closeness is the terminology for the phenomenon that the difference between the approximate
solution uN and the nodal interpolant uI of the exact solution u is of higher order than the
error itself. Supercloseness results for the reaction-diffusion problem have been obtained in
[38, 82, 81, 23]. However, in [38] the transition point λ of the piecewise uniform anisotropic mesh
is chosen proportional to ε| ln ε| and the other papers consider graded meshes. A supercloseness
result can easily be obtained by applying the techniques of [44, 80]. These papers deal with
convection-diffusion problems.
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Theorem 50. Let the corner compatibility conditions (3.86) be satisfied so that Lemma 34
holds true. Assume ε1/2 ≤ (lnN)−2 and that for the constant in (3.88) it holds λ0 ≥ 2. Then
the bilinear Galerkin FEM approximation uN on the Shishkin mesh of Section 3.7 has the
supercloseness property

‖uI − uN‖ε ≤ CN−2.

Proof. Using the coercivity of the bilinear form a(·, ·) with respect to the energy norm and
Galerkin orthogonality one obtains for ξ := uI − uN :

‖ξ‖2ε ≤ |a(ξ, ξ)| = |a(u− uI , ξ)| ≤ ε
∣∣(∇(u− uI),∇ξ

)∣∣+
∣∣(c(u− uI), ξ

)∣∣. (4.72)

While the reaction term can be bounded by means of the Cauchy-Schwarz inequality and (4.58):
∣∣(c(u− uI), ξ

)∣∣ ≤ ‖c‖L∞(Ω)‖u− uI‖0‖ξ‖0 ≤ CN−2‖ξ‖ε, (4.73)

the diffusion term needs a more sophisticated approach. From the so-called Lin identities (see
e.g. [44, 80, 43, 64]) one can deduce for bilinear elements that

∣∣((v − vI)x, ξx
)
T

∣∣ ≤ Ch2
T,y‖ξx‖0,T ‖vxyy‖0,T ,

where v ∈ H3(T ), T is an axis-parallel rectangular element and hT,y denotes its size in
y-direction. We use this estimate for u in Ωf ∪ Ω1 ∪ Ω3, i.e. whenever hT,y = h is small:

ε
∣∣((u− uI)x, ξx

)
Ωf∪Ω1∪Ω3

∣∣ ≤ Cε2N−2(lnN)2‖ξx‖0,Ωf∪Ω1∪Ω3
‖uxyy‖0,Ωf∪Ω1∪Ω3

≤ Cε1/2N−2(lnN)2‖ξx‖ε,Ωf∪Ω1∪Ω3 .
(4.74)

Here we also used (3.87). In the remainder of the domain Ω0 ∪Ω2 ∪Ω4 the involved grid size is
large. We estimate the components of (3.87a) separately. Yet we obtain for S based on (3.87b)
that

ε
∣∣((S − SI)x, ξx

)
Ω0∪Ω2∪Ω4

∣∣ ≤ CεN−2‖ξx‖0,Ω0∪Ω2∪Ω4
‖Sxyy‖0,Ω0∪Ω2∪Ω4

≤ CN−2‖ξx‖ε,Ωf∪Ω1∪Ω3 .
(4.75)

Proceed in a similar manner with E := E2 + E4. Note that ‖Exyy‖0,Ω0∪Ω2∪Ω4 ≤ Cε−1/4 in
contrast to ‖Sxyy‖0,Ω0∪Ω2∪Ω4 ≤ Cε−1/2. Hence, Exyy is better behaved than Sxyy in this
subregion.

Finally, set E := E1 + E3 + E12 + E23 + E34 + E41. It remains to obtain an estimate for E
in Ω0 ∪ Ω2 ∪ Ω4. We use the smallness of the domain meas(Ω2 ∪ Ω4) = ε1/4 lnN and obtain
with (3.87) that

ε
∣∣((E − EI)x, ξx

)
Ω2∪Ω4

∣∣ ≤ ε‖(E − EI)x‖L∞(Ω2∪Ω4) meas(Ω2 ∪ Ω4)1/2‖ξx‖0,Ω2∪Ω4

≤ Cε1/4N−λ0(lnN)1/2‖ξx‖ε,Ω2∪Ω4
,

(4.76)

because of a stability result for bilinear nodal interpolation:

‖(E − EI)x‖L∞(Ω2∪Ω4) ≤ ‖Ex‖L∞(Ω2∪Ω4) + ‖(EI)x‖L∞(Ω2∪Ω4)

≤ C‖∇E‖L∞(Ω2∪Ω4) ≤ ε−1/2N−λ0 .

In Ω0 the mesh is uniform with mesh size H = O(N−1). Hence, by the Cauchy-Schwarz
inequality and an inverse estimate

ε
∣∣((E − EI)x, ξx

)
Ω0

∣∣ ≤ ε‖(E − EI)x‖0,Ω0‖ξx‖0,Ω0

≤ Cε‖(E − EI)x‖0,Ω0
N‖ξ‖0,Ω0

≤ ε1/2N−λ0‖ξ‖ε,Ω0 .

(4.77)

In the last inequality we used the sharp interpolation error estimate (4.19) and (3.87):

‖(E − EI)x‖0,Ω0 ≤ H(‖Exx‖0,Ω0 + ‖Exy‖0,Ω0)

≤ CN−1
(
ε−1/4N−λ0 + ε−1/2N−2λ0

)

Collect (4.72), (4.73), (4.74), (4.75), (4.76) and (4.77) to obtain the estimate for the x-derivative.
The other derivative with respect to y is bounded similarly.
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Remark 42. Inspecting the proof of Theorem 50 we see that given ‖∇Sxy‖0,Ω\Ωf ≤ Cε−1/4 one

can prove for a bilinear function vN that

ε
∣∣(∇(u− uI),∇vN

)∣∣ ≤ Cε1/4N−2(lnN)2
(
ε1/2|vN |1 + ε1/4‖vN‖0

)
. (4.78)

Here we sharpened (4.75) and also used the extra multiplier ε1/4 in (4.77). Note that this is
the only term estimated against an L2-Norm of ξ. The additional positive powers in ε in the
right hand side of (4.78) are again evidence, that the energy norm is not correctly scaled for
this problem. In fact (4.78) shows that

ε1/2
∣∣(∇(u− uI),∇vN

)∣∣ ≤ CN−2(lnN)2‖vN‖b. (4.79)

The estimate (4.79) raises hope that the Galerkin finite element solution provides some kind
of supercloseness result even in the balanced norm. However, it is not clear how to proceed.

From Theorem 50 we deduce an optimal L2-error estimate.

Lemma 51. Let the assumptions of Theorem 50 be satisfied. Then for the bilinear Galerkin
FEM approximation uN on the Shishkin mesh of Section 3.7 it holds

‖u− uN‖0 ≤ CN−2.

Proof. Combine Theorem 50 and (4.58). Note that if the energy norm was adequate for this
problem we would have obtained a result with the additional factor (lnN)2. Hence, we used
the weakness of the energy norm to our advantage.

4.3.2 Maximum-norm error bounds

In contrast to the energy norm the right balancing of the norm makes it possible to obtain
L∞-error bounds in subregions of the boundary. We study this question in this section.

Firstly, we want to derive a bound for the interior subdomain Ω0. We start off with a
triangle inequality and (4.59):

‖u− uN‖L∞(Ω0) ≤ ‖u− uI‖L∞(Ω0) + ‖uI − uN‖L∞(Ω0) ≤ N−2 + ‖uI − uN‖L∞(Ω0).

In the interior subdomain Ω0 the mesh is (quasi-)uniform with the large mesh size H = O(N−1).
Consequently, an inverse estimate gives

‖uI − uN‖L∞(Ω0) ≤ CN‖uI − uN‖0,Ω0
. (4.80)

For bilinear elements we obtain from Theorem 50:

‖u− uN‖L∞(Ω0) ≤ CN−1.

If linear elements are considered we use (4.70). This yields for
√
ε ≤ CN−1 that

‖u− uN‖L∞(Ω0) ≤ CN−1/2 lnN.

Next we turn our attention to the boundary region Ω1. We use a technique presented in [43,
page 279]. There the author refers to [75, pp. 11, 12].

Let (xi, yj) be any mesh point in Ω1. Using (πu− uN )(xi, 0) = 0 one finds that

∣∣(πu− uN )(xi, yj)
∣∣ =

∣∣∣∣
∫ yj

0

(πu− uN )y(xj , t) dt

∣∣∣∣.

Next, applying an inverse estimate for the modulus of the integrand with respect to x yields

∣∣(πu− uN )(xi, yj)
∣∣ ≤ CN

∫ yj

0

∫ xi

xi−1

∣∣(πu− uN )y(s, t)
∣∣dsdt.

If xi = λ we integrate over (xi, xi+1) instead of (xi−1, xi). Since yi ≤ λ ≤ Cε1/2 lnN a
Cauchy-Schwarz inequality gives

∣∣(πu− uN )(xi, yj)
∣∣ ≤ CN

∫ λ

0

∫ xi

xi−1

∣∣(πu− uN )y(s, t)
∣∣dsdt

≤ CNε1/4N−1/2(lnN)1/2|πu− uN |1.
(4.81)
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Collecting (4.69), (4.62) and (4.81) one arrives at

∣∣(πu− uN )(xi, yj)
∣∣ ≤ Cε1/4N1/2(lnN)1/2|πu− u|1 ≤ CN−1/2(lnN)2. (4.82)

Hence, by (4.82), (4.62) and (4.59)

‖u− uN‖L∞(Ω1) ≤ ‖u− πu‖L∞(Ω1) + ‖πu− uN‖L∞(Ω1) ≤ CN−1/2(lnN)2. (4.83)

Clearly, an analogous result holds true in Ωi, i ∈ {2, 3, 4}.
It might be possible to obtain a similar result in Ωh using certain finite difference arguments

similarly to [74, 75].
Finally, we want to mention that for linear elements Kopteva [34] provided numerical

evidence and a theoretical justification that for the Galerkin finite element method applied to
reaction-diffusion problems one can not expect an error bound better than

‖u− uN‖L∞(Ω) ≤ CN−1 lnN

uniformly in ε without imposing restrictions on the bisection pattern that generated Ω̃N from the
anisotropic mesh ΩN . Note that in her example u ∈ C∞(Ω) and ‖u−uI‖L∞(Ω) ≤ CN−2(lnN)2.

More precisely, if the directions of the diagonals of Ω̃N change in certain regions close to the
boundary a considerable reduction in convergence speed can be observed. Hence, the use
of anisotropic triangulations in general breaks the quasi-optimality property (2.25) in the
maximum norm.

4.4 Numerical verification

In this Section we want to verify our theoretical findings. Consider the test problem

Example 1.

−ε∆u+
(
1 + x2y2exy/2

)
u = f in Ω = (0, 1)2, (4.84a)

u = ud on ∂Ω, (4.84b)

where the data ud and f are chosen in such a way that the exact solution of (4.84) is given by

u(x, y) := x3(1 + y2) + sin(πx2) + cos(πy/2)

+ (x+ y)
(
e−2x/

√
ε + e−2(1−x)/

√
ε + e−3y/

√
ε + e−3(1−y)/

√
ε
)
.

This problem was also studied in [45] and [42] numerically. It fulfills the estimates of Lemma
34. Consequently, (4.58) and (4.59) hold true as well.

In order to permit a comparison with the numerical experiments of [42] we use the same
Shishkin mesh, i.e. we set the constants of (3.88) in Section 3.7 to c? =

√
1/2 and λ0 = 2. In

fact, this gives slightly better results than the choice λ0 = 3 which is required by our theory for
the CIP-method. A similar behaviour is observed for the biquadratic Galerkin FEM and other
test problems considered. We use a standard sixteen-point Gauss-Legendre quadrature rule in
the assembly routines of the stiffness matrix and the load vector and in order to calculate the
L2 based errors on each mesh rectangle. Similarly, we use the corresponding four-point rule
on edges of the triangulation. We adopt the table layout of [42] and present in each table the
errors (lower half) and rates (upper half) for a range of values of ε and N .

First, we examine the accuracy of the Galerkin FEM according to (4.2) and bilinear elements.
In agreement with (4.66) of Theorem 49 Table 4.1 shows uniform and balanced convergence
with respect to the perturbation parameter ε. For very small ε, i.e. ε ≤ 10−8, the error

eN := ‖u−uN‖b =
(
ε1/2|u−uN |21 + ‖u−uN‖20

)1/2
attains same values rounded to two decimal

places. With respect to the discretization parameter N linear convergence up to a logarithmic
factor is observed. The rate of convergence p is calculated using two consecutive discretization
levels (N1, eN1

) and (N2, eN2
):

p =
ln eN1

− ln eN2

ln(N−1
1 lnN1)− ln(N−1

2 lnN2)
.
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N ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12 ε = 10−16
max

ε = 10−2m

0 ≤ m ≤ 8

16 1.47 1.27 0.39 0.39 0.39 0.39 0.39
32 1.35 1.30 0.61 0.61 0.61 0.61 0.61
64 1.29 1.27 0.81 0.81 0.81 0.81 0.81

128 1.24 1.24 0.92 0.92 0.92 0.92 0.92
256 1.20 1.20 0.97 0.97 0.97 0.97 0.97
512 1.18 1.18 0.99 0.99 0.99 0.99 0.99
16 2.02e-1 1.10e-0 2.01e-0 2.01e-0 2.01e-0 2.01e-0 2.01e-0
32 1.01e-1 6.06e-1 1.68e-0 1.67e-0 1.67e-0 1.67e-0 1.68e-0
64 5.07e-2 3.11e-1 1.23e-0 1.22e-0 1.22e-0 1.22e-0 1.23e-0

128 2.53e-2 1.57e-1 7.93e-1 7.92e-1 7.92e-1 7.92e-1 7.93e-1
256 1.27e-2 7.85e-2 4.73e-1 4.72e-1 4.72e-1 4.72e-1 4.73e-1
512 6.33e-3 3.93e-2 2.70e-1 2.70e-1 2.70e-1 2.70e-1 2.70e-1

1024 3.17e-3 1.96e-2 1.51e-1 1.51e-1 1.51e-1 1.51e-1 1.51e-1

Table 4.1: Error ‖u− uN‖b of the bilinear Galerkin FEM on a sequence of Shishkin-meshes.

N ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12 ε = 10−16
max

ε = 10−2m

0 ≤ m ≤ 8

16 2.93 2.67 1.07 1.07 1.07 1.07 1.07
32 2.71 2.64 1.44 1.44 1.44 1.44 1.44
64 2.57 2.55 1.73 1.73 1.73 1.73 1.73

128 2.48 2.47 1.89 1.89 1.89 1.89 1.89
256 2.41 2.41 1.96 1.96 1.96 1.96 1.96
16 1.17e-2 2.42e-1 1.05e-0 1.05e-0 1.05e-0 1.05e-0 1.05e-0
32 2.95e-3 6.89e-2 6.37e-1 6.35e-1 6.35e-1 6.35e-1 6.37e-1
64 7.39e-4 1.79e-2 3.06e-1 3.05e-1 3.05e-1 3.05e-1 3.06e-1

128 1.85e-4 4.51e-3 1.20e-1 1.20e-1 1.20e-1 1.20e-1 1.20e-1
256 4.62e-5 1.13e-3 4.17e-2 4.16e-2 4.16e-2 4.16e-2 4.17e-2
512 1.15e-5 2.83e-4 1.35e-2 1.34e-2 1.34e-2 1.34e-2 1.35e-2

Table 4.2: Error ‖u− uN‖b of the biquadratic Galerkin FEM on a sequence of Shishkin meshes.

Next, we study the performance of the Galerkin FEM with Q2 elements. Again the error is
balanced in the norm ‖ · ‖b and robust convergence of order two can be observed, cf. Table 4.2:
For all test problems the error behaves like

‖u− uN‖b ≤ CN−2(lnN)2

which corresponds to the results of §2 up to a root of a logarithmic factor.

Now we turn our attention to the accuracy of the results of the CIP-method introduced
in Section 4.2. Here we shall consider Q2 elements only. Note that inhomogeneous Dirichlet
boundary conditions alter the CIP-method slightly. More precisely, they give rise to the
additional term

√
ε(c ∂v∂n , ud)∂Ω on the right hand side of (4.37).

According to Remark 39 we set

σe :=

{
ε if e is a long (type-I or type-II) edge,

ε1/2 if e is a short (type-III or type-IV) edge.

In case that the parameters ε and N are such that the mesh used is not of Shishkin type but a
uniform one we use σe := ε on all edges.

One more slight modification is needed in order to facilitate a comparison with the results
of [42]: Lin and Stynes scale the dominant error component that corresponds to the L2 norm
of the Laplacian of the error by the additional constant c1 := 1 + e which is the maximum of c,
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N ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12 ε = 10−16
max

ε = 10−2m

0 ≤ m ≤ 8

16 1.30 1.27 0.47 0.47 0.47 0.47 0.47
32 1.28 1.29 0.68 0.68 0.68 0.68 0.68
64 1.26 1.26 0.84 0.84 0.84 0.84 0.84

128 1.23 1.22 0.94 0.94 0.94 0.94 0.94
256 1.21 1.20 0.98 0.98 0.98 0.98 0.98
16 1.31e-0 1.86e-0 3.24e-0 3.24e-0 3.24e-0 3.24e-0 3.24e-0
32 7.08e-1 1.02e-0 2.60e-0 2.60e-0 2.60e-0 2.60e-0 2.60e-0
64 3.68e-1 5.30e-1 1.84e-0 1.84e-0 1.84e-0 1.84e-0 1.84e-0

128 1.87e-1 2.69e-1 1.17e-0 1.17e-0 1.17e-0 1.17e-0 1.17e-0
256 9.39e-2 1.36e-1 6.93e-1 6.89e-1 6.89e-1 6.89e-1 6.93e-1
512 4.69e-2 6.81e-2 3.95e-1 3.93e-1 3.93e-1 3.93e-1 3.95e-1

Table 4.3: Error |||u− uN ||| of the CIP-method on a sequence of Shishkin meshes with Q2

elements.

N ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12 ε = 10−16
max

ε = 10−2m

0 ≤ m ≤ 8

16 1.46 1.33 0.27 0.27 0.27 0.27 0.27
32 1.35 1.32 0.78 0.78 0.78 0.78 0.78
64 1.29 1.28 1.20 1.20 1.20 1.20 1.20

128 1.24 1.24 1.31 1.32 1.32 1.32 1.32
256 1.20 1.20 1.18 1.19 1.19 1.19 1.19
16 7.54e-1 1.70e-0 5.53e-0 5.60e-0 5.61e-0 5.61e-0 5.61e-0
32 3.79e-1 9.07e-1 4.86e-0 4.93e-0 4.94e-0 4.94e-0 4.94e-0
64 1.90e-1 4.62e-1 3.26e-0 3.31e-0 3.31e-0 3.31e-0 3.31e-0

128 9.50e-2 2.32e-1 1.71e-0 1.73e-0 1.73e-0 1.73e-0 1.73e-0
256 4.75e-2 1.16e-1 8.20e-1 8.25e-1 8.25e-1 8.25e-1 8.25e-1
512 2.38e-2 5.82e-2 4.15e-1 4.15e-1 4.15e-1 4.15e-1 4.15e-1

Table 4.4: Error |||u− uN ||| of the Galerkin FEM on a sequence of Shishkin meshes with Q2

elements.

see [42, (3.5)]. Consequently, we modify the norm (4.38) to

|||v|||2 :=
ε3/2

c1

∑

T∈ΩN

‖∆v‖20,T + ε1/2|v|21 + ‖v‖20 +
∑

e∈EN

(
σe

[[ ∂v
∂n

]]
,
[[ ∂v
∂n

]])
e
. (4.85)

The CIP-method presented appears to be robust in the balanced norm ||| · ||| as shown
by Table 4.3: A uniform first order of convergence can be observed. We also measured the
performance of the biquadratic Galerkin FEM in the norm ||| · |||. These results are shown in
Table 4.4. Rates and errors of both methods are quite similar. The error in the norm ||| · |||
appears to be proportional to N−1 lnN uniformly with respect to ε. However, it is not clear
how to explain this for the Galerkin FEM, theoretically. If ε is very small (i.e. ε ≤ 10−8) the
errors of the CIP-method are slightly smaller. In this regime the error component introduced
by the jump of the normal derivatives along inter-element edges is significantly smaller for the
CIP-method, in fact for N = 256 this error component is 23 times larger for the Galerkin FEM.
For N = 512 this quotient rises over 33.

The mixed method of [42] yields an approximate solution of similar quality which can be
seen by comparing the Tables 4.3 and 4.4 with Table 6.1 of that paper. If

√
ε is small compared

to 1/N the CIP-method performs slightly better for this test problem. In the other case the
mixed method yields slightly smaller errors which are in turn improved by the Galerkin FEM.

Numerically we observe second order convergence for the lower order components of ||| · |||:
If we measure the error of the CIP-method in the norm ‖ · ‖b we obtain results similar to Table
4.2. However, the errors are slightly smaller for the Galerkin FEM: In the interesting regime
ε ≤ 10−4 the quotient of both errors is bounded by 1.7 for the model problem considered.
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N
Q1 elements Q2 elements

ε = 10−4 ε = 10−6 ε = 10−2k, k ∈ {4, . . . , 8} ε = 10−2k, k ∈ {2, . . . , 8}

error rate error rate error rate error rate

12 4.57e-1
0.92
0.97
0.99
1.00
1.00

4.60e-1
0.92
0.97
0.99
1.00
1.00

4.60e-1
0.92
0.97
0.99
1.00
1.00

1.51e-1
1.76
1.90
1.96
1.99

24 3.04e-1 3.05e-1 3.06e-1 6.88e-2
48 1.88e-1 1.89e-1 1.89e-1 2.68e-2
96 1.12e-1 1.12e-1 1.12e-1 9.52e-3

192 6.45e-2 6.48e-2 6.49e-2 3.18e-3
384 3.65e-2 3.67e-2 3.67e-2

Table 4.5: Approximate error ‖ũ4N − uN‖b of the Galerkin FEM on a sequence of Shishkin
meshes with Q1 elements for problem (4.86).

N
‖ · ‖b ||| · |||

ε = 10−2k, k ∈ {2, . . . , 8} ε = 10−4 ε = 10−6 ε = 10−2k, k ∈ {4, . . . , 8}

error rate error rate error rate error rate

12 1.76e-1
1.78
1.91
1.97
1.99

5.85e-1
0.84
0.93
0.97
0.99

5.83e-1
0.84
0.93
0.97
0.99

5.83e-1
0.85
0.93
0.98
0.99

24 7.91e-2 4.02e-1 4.00e-1 4.00e-1
48 3.07e-2 2.54e-1 2.52e-1 2.51e-1
96 1.09e-2 1.52e-1 1.50e-1 1.50e-1

192 3.62e-3 8.83e-2 8.71e-2 8.69e-2

Table 4.6: Approximate errors ‖ũ4N − uN‖b and |||ũ4N − uN ||| of the CIP-method on a sequence
of Shishkin meshes with Q2 elements for problem (4.86).

Similar convergence behavior was observed in numerical experiments for problems with
unknown solutions even if the compatibility conditions (3.86) were violated. In these experiments
the error was approximated following a double mesh principle: For the approximate solution
obtained on a grid associated with the parameter N a reference solution ũ4N is computed
using a refined mesh by performing two uniform refinements of the original grid. Hence, both
grids have the same transition points (namely λ from (3.88)) but while the original grid has
N2 elements the grid for the reference solution consists of 16 times that number (this choice
of refinement lead to a reliable approximation of the error in those cases in which the exact
solution was known).

Moreover, for constant coefficient problems we also used an adaptive quadrature algorithm
to compute all integrals up to a tolerance of 10−10. A comparison of the results showed that the
initial low convergence orders (see e.g. Table 4.1) — a phenomenon that is encountered in most
numerical experiments for layer problems — are due to inexact assembly of the linear system.
This problem gains significance if in the computation of the approximate solution meshes are
used that are not sufficiently layer-adapted.

Example 2.

−ε∆u+ u = 1 in Ω = (0, 1)2 (4.86a)

u = 0 on ∂Ω. (4.86b)

The solution of this problem will contain corner singularities that reduce its regularity.
However, we still observe the same convergence behaviour for both methods. Table 4.5 shows
that the error is balanced in the norm ‖ · ‖b. Linear and quadratic rates of convergence are
observed for Q1 and Q2 elements, respectively.

Table (4.6) shows the quality of the approximate solutions of the CIP-method for test
problem (4.86). Again, the error is balanced in both norms: ‖ · ‖b as well as ||| · |||. Second
order convergence is observed if the error is measured in the balanced version of the H1(Ω)
norm ‖ · ‖b uniformly with respect to the perturbation parameter ε. Comparing the last error
column of Table 4.5 with the first one of Table (4.6) we see that if Q2 elements are used for the
Galerkin FEM as well as for the CIP-method then the errors are of comparable magnitude. In
the stronger norm ||| · ||| the CIP-method appears to be first order convergent uniformly with
respect to ε.
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Figure 4.1: Error uN − u of the CIP-method on a uniform mesh with N = 16, ε = 0.05, σe ≡ 0
(left) and σe ≡ 1 (right)

Finally, we want to address the question how the enhanced stability of the CIP-method
manifests itself in the obtained approximate solution. Therefore we consider the model problem
(4.84) on a uniform mesh.

In Figure 4.1 we see that the approximate solution of the CIP-method without penalty can
tend to large oscillations (left) and is unstable while for σe ≡ 1 one finds a considerable damping
and smoothing of the error. Numerically we observe that the distance of the approximate
solutions of the Galerkin FEM and the CIP-method without penalty tends to zero for ε→ 0:
For N = 16 and ε = 10−16 one has ‖uNGal−uNCIP ‖∞ ≤ 2 · 10−5. Hence, in the interesting regime
ε→ 0 the fate of the Galerkin FEM appears to be bound to the one of an unstabilized CIP
method.

Studying the stability on a Shishkin mesh we change to a different and simpler test problem.

Example 3.

−ε∆u+ u = f in Ω = (0, 1)× (0, 1), (4.87a)

u = ud on ∂Ω, (4.87b)

where the Dirichlet boundary conditions ud and f are chosen in such a way that the exact
solution is given by

u(x, y) :=

(
cos(πx)− e−x/

√
ε − e−1/

√
ε

1− e−1/
√
ε

)(
1− y − e−y/

√
ε − e−1/

√
ε

1− e−1/
√
ε

)
.

Thus, u is characterized by typical exponential boundary layers along the edges x = 0, y = 0
and a corner layer near the origin.

The need to introduce another test problem is caused by the fact that we do not observe
strong oscillations of the errors of both methods close to the layers for Example 1. Note that
the boundary conditions of Example 1 can not be satisfied by piecewise polynomials. The
approximation of the boundary conditions gives rise to an additional error component that
seems to cover the smaller oscillations of the Galerkin FEM along the boundary. Hence, one can
expect the oscillations to emerge once the boundary condition is approximated sufficiently well.

Figure 4.2 shows the error function uN−u for ε = 10−8 using Q2 elements on a Shishkin mesh
with N = 32 intervals in each coordinate direction. The error is characterized by oscillations
within the first rows of anisotropic elements along the critical boundary indicating a stability
problem.

The error uN − u of the CIP-method with Q2 elements, N = 32, ε = 10−8 is shown in
Figure 4.3. In comparison to the corresponding Galerkin error (Figure 4.2) the oscillations in
the layer lose their high-frequency character — the error is smoother but a dominant pointwise
error is dragged from the boundary further into the domain. All these effects can be explained
by the fact that the jump of the normal derivative along inter-element edges is being penalized:
The ability of the approximate solution to fold over these edges is reduced. This also explains
why the pointwise error is increased.
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Figure 4.2: Error uN − u of the Q2-Galerkin FEM, N = 32 and ε = 10−8. The layer region is
plotted with exaggerated width.
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Figure 4.3: Error uN − u of the Q2-CIP-method, N = 32, ε = 10−8. The layer region is plotted
with exaggerated width.
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In this respect we remark that it is well known that any stabilized method on a layer-
adapted mesh cannot have better convergence properties than the underlaying Galerkin method.
Nevertheless practically one prefers stabilized versions: the discrete problems are easier to solve
and oscillations on the discrete solution are damped.

4.5 Further developments and summary

In this chapter we have seen that the energy norm is to weak to yield meaningful results for
singularly perturbed reaction-diffusion problems whenever the behavior of the solution within
the layer is of critical interest. The energy norm is unable to capture the boundary layers which
are the predominant feature of the solutions to these problems. With the balanced method of
Lin and Stynes [42] (see also Section 4.1) and the CIP method of Section 4.2 two methods have
been developed for which error estimates in a suitable balanced norm can be proven. Note that
the bilinear forms of both methods are coercive with respect to the balanced norm in which
even second order derivatives are measured — weighted by appropriate powers of ε.

In contrast to this the bilinear form associated with the Galerkin finite element method
is coercive with respect to the energy norm and it is unclear how to prove coercivity with
respect to a balanced norm (and a subspace of H1

0 (Ω)). Nevertheless it is possible to prove a
convergence result in the balanced norm ‖ · ‖b, see Section 4.3 and [61]. The key idea is the
usage of a projection associated with the reduced problem. This way the components of the
bilinear form decouple and one can use standard energy arguments to estimate the resulting
error terms separately.

This trick in its general form has also been used in the analysis of a bilinear streamline-
diffusion stabilized FEM for a convection-diffusion problem with characteristic layers in a
balanced norm [25]. As mentioned in Remark 34 the characteristic layers are not well represented
in the energy norm. The argument is essentially the same. However, the analysis is more
difficult due to the complicate structure of the projection needed for the trick to work.

Melenk and Xenophontos try to generalize this trick into a different direction. We follow
[78] and study the one-dimensional case. Set Ω := (0, 1). For the construction of a rp-version of
the Galerkin FEM for problem (4.1) a so-called spectral boundary layer mesh is introduced:

ΩS :=

{
{0, 1} for

√
εκp ≥ 1/2,

{0,√εκp, 1−√εκp, 1} for
√
εκp < 1/2.

Note that for all values of the parameters κ > 0, p ∈ N and 0 < ε ≤ 1 the triangulation is
composed of at most three elements. For instance, an increase in p — which will later denote
the polynomial degree over all elements — leads to the two inner mesh points being moved
but no further mesh point is inserted. In contrast to the parameter λ of a Shishkin mesh the
parameter κ has to be sufficiently small, i.e. κ ∈ (0, κ0), where κ0 depends only on the data of
problem (4.1).

Next introduce the finite element space V p := {v ∈ H1
0 (Ω) : v|T ∈ Pp(T ) for all T ∈ ΩS}

and the Galerkin approximation up ∈ V p determined by

a(up, vp) = (f, vp) for all vp ∈ V p.

Moreover, let π : L2(Ω)→ V p denote the projector

(
c(u− πu), vp

)
= 0 for each vp ∈ V p.

Similarly to the proof of Theorem 49 one shows that

|u− up|1 ≤ C|u− πu|1. (4.88)

With the application of inverse estimates in mind the Space V p = V p1 + V pε is decomposed. In
the interesting case in which there are small O(

√
ε) elements in the underlaying mesh ΩS one

sets

V pε := {vp ∈ V p : supp vp ⊂ Ωε},
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with Ωε := (0, κp
√
ε) ∪ (1− κp√ε, 1) denoting the boundary region formed by the two small

mesh cells. Note that in this case the decomposition V p = V p1 + V pε is a direct sum (in the
other case simply set V p1 := V p). Hence, one can decompose πv ∈ V p into components:

πv = (πv)1 + (πv)ε, with unique (πv)1 ∈ V p1 and (πv)ε ∈ V pε .

On the other hand one may introduce the operator πε : H1(Ω)→ V pε by

(
c(u− πεu), vp

)
= 0 for each vp ∈ V pε .

Now the inverse estimates improve to

|vp|1 ≤ Cp2‖vp‖0 for each vp ∈ V p1 , (4.89a)

|vp|1 ≤ C
p2

κp
√
ε
‖vp‖0,Ωε for each vp ∈ V pε . (4.89b)

Assuming

pε1/4√κp ≤ C (4.90)

Melenk and Xenophontos prove the following stability results:

‖(πv)1‖0 ≤ C‖v‖0, ‖(πv)ε‖0 ≤ C
(
‖πεv‖0 + (pε1/4√κp)3‖v‖0

)
, (4.91a)

‖πεv‖0 ≤ C‖v‖0, ‖πεv‖0,Ωε ≤ Cκp
√
ε|v|1,Ωε for each v ∈ H1

0 (Ω). (4.91b)

Remark 43. If the Assumption (4.90) is violated one can use energy norm results [70, 48] to
conclude

ε1/4|u− up|1 ≤ ε−1/4‖u− up‖ε ≤ C
√
κp3/2e−βp,

where C, β > 0 are constants independent of ε and p.

Using the inverse estimates (4.89) and the stability results (4.91) it is possible to estimate
the projection error |u− πu|1.

Lemma 52. Let assumption (4.90) be satisfied. Then there are constants C, β > 0 independent
of ε and p such that

ε1/4|u− πu|1 ≤ Ce−βp.

Proof. Similarly to the proof of Lemma 48 the basic idea is to use the stability of the operator
π and a function with known approximation properties. In contrast to nodal interpolation
Melenk and Xenophontos propose to use an approximation up ∈ V p of u defined in [70, Section
5] which achieves robust exponential convergence, i.e. (see [70, Theorem 5.1]):

|u− up|1 ≤ Cε−1/4e−βp and ‖u− up‖0 ≤ Cε1/4e−βp. (4.92)

Next a triangle inequality yields

|u− πu|1 ≤ |u− up|1 + |up − πu|1. (4.93)

The first summand of the right hand side of (4.93) is bounded using (4.92) and it remains to
estimate the second one. By the projection property πup = up ∈ V p we have based on the
decomposition of V p that

up − πu = π(up − u) =
(
π(up − u)

)
1

+
(
π(up − u)

)
ε
. (4.94)

These terms are estimated separately. For the first one (4.89a) and (4.91a) yield

∣∣∣
(
π(up − u)

)
1

∣∣∣
1
≤ Cp2

∥∥∥
(
π(up − u)

)
1

∥∥∥
0
≤ Cp2

∥∥∥up − u
∥∥∥

0
≤ Cε−1/4e−βp. (4.95)
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In the last step we used (4.92) and (4.90). For the other term in (4.94) one proceeds in a similar
manner. The inverse estimate (4.89b) and the stability estimates (4.91a), (4.91b) give

∣∣∣
(
π(up − u)

)
ε

∣∣∣
1
≤ C p2

κp
√
ε

∥∥∥
(
π(up − u)

)
ε

∥∥∥
0

≤ C p2

κp
√
ε

(
‖πε(up − u)‖0,Ωε + (pε1/4√κp)3‖up − u‖0

)

≤ C
(
p2|up − u|1,Ωε + ε1/4p3√κp‖up − u‖0

)
≤ Cε−1/4e−βp.

(4.96)

The last inequality is due to |up − u|1,Ωε ≤ Cε−βp (cf. [70, (5.8)]), (4.92) and (4.90). Collect
(4.93), (4.92), (4.94), (4.95) and (4.96) to complete the proof.

Theorem 53. Let κ be sufficiently small (independent of ε and p) and assume that (4.90)
holds true. Then the error of the rp Galerkin FEM on a spectral boundary layer mesh satisfies

‖u− up‖b ≤ Ce−βp

where the constants β,C > 0 are independent of ε and p.

Proof. For the L2-norm error the result is known, see [70]:

‖u− up‖0 ≤ ‖u− up‖ε ≤ Ce−βp.

For the term ε1/4|u− up|1 combine (4.88) and Lemma 52.

Corollary 54. Under the assumptions of Theorem 53 the error of the rp Galerkin FEM on a
spectral boundary layer mesh satisfies

‖u− up‖L∞(Ω) ≤ C
√
κpe−βp.

Proof. The proof is similar to the arguments of Subsection 4.3.2. From (4.92) one obtains (see
[70])

‖u− up‖L∞(Ω) ≤ 2‖u− up‖1/20 |u− up|
1/2
1 ≤ Ce−βp.

Hence, the result follows in the interior by an inverse estimate for ‖up − up‖L∞(Ω\Ωε). Finally,
let x ∈ Ωε, for instance x ∈ (0,

√
εκp). Then

|(u− up)(x)| =
∣∣∣∣
∫ x

0

(u− up)′(t) dt

∣∣∣∣ ≤ ε1/4√κp|u− up|1 ≤ Cε1/4√κpε−1/4e−βp ≤ C√κpe−βp.

Obviously, the same argument works if x ∈ (1−√εκp, 1).
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