
Feature-Based Configuration Management of
Reconfigurable Cloud Applications

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Medieninf. Julia Schroeter
geboren am 01. Juli 1981 in Bautzen

Betreuender Hochschullehrer
Prof. Dr. rer. nat. habil. Uwe Aßmann

(Technische Universität Dresden)

Externer Gutachter
Prof. Dr. Vander Alves

(Universidade de Braśılia, Brasilien)

Tag der Verteidigung
11. April 2014

Dresden im Dezember 2013

b

Abstract

A recent trend in software industry is to provide enterprise applications in the cloud that
are accessible everywhere and on any device. As the market is highly competitive, customer
orientation plays an important role. Companies therefore start providing applications as a service,
which are directly configurable by customers in an online self-service portal. However, customer
configurations are usually deployed in separated application instances. Thus, each instance is
provisioned manually and must be maintained separately. Due to the induced redundancy in
software and hardware components, resources are not optimally utilized. A multi-tenant aware
application architecture eliminates redundancy, as a single application instance serves multiple
customers renting the application. The combination of a configuration self-service portal with a
multi-tenant aware application architecture allows serving customers just-in-time by automating
the deployment process. Furthermore, self-service portals improve application scalability in terms
of functionality, as customers can adapt application configurations on themselves according to
their changing demands. However, the configurability of current multi-tenant aware applications
is rather limited. Solutions implementing variability are mainly developed for a single business
case and cannot be directly transferred to other application scenarios.

The goal of this thesis is to provide a generic framework for handling application variability,
automating configuration and reconfiguration processes essential for self-service portals, while
exploiting the advantages of multi-tenancy. A promising solution to achieve this goal is the
application of software product line methods. In software product line research, feature models
are in wide use to express variability of software intense systems on an abstract level, as features
are a common notion in software engineering and prominent in matching customer requirements
against product functionality.

This thesis introduces a framework for feature-based configuration management of reconfigurable
cloud applications. The contribution is three-fold. First, a development strategy for flexible
multi-tenant aware applications is proposed, capable of integrating customer configurations
at application runtime. Second, a generic method for defining concern-specific configuration
perspectives is contributed. Perspectives can be tailored for certain application scopes and
facilitate the handling of numerous configuration options. Third, a novel method is proposed to
model and automate structured configuration processes that adapt to varying stakeholders and
reduce configuration redundancies. Therefore, configuration processes are modeled as workflows
and adapted by applying rewrite rules triggered by stakeholder events. The applicability of the
proposed concepts is evaluated in different case studies in the industrial and academic context.

Summarizing, the introduced framework for feature-based configuration management is a foun-
dation for automating configuration and reconfiguration processes of multi-tenant aware cloud
applications, while enabling application scalability in terms of functionality.

c

d

Acknowledgements

First of all, I like to thank my supervisor, Uwe Aßmann, for his invaluable feedback, encouragement
and support of my thesis over the past years.

I also thank my colleagues in the Software Technology Group at the Technische Universität
Dresden, who have taken a great part of this Ph.D. journey with me. Special thanks to Christoff
Bürger, Sebastian Götz, Sven Karol, Georg Püschel, Jan Reimann, and Christoph Seidl for
reviewing chapters of my thesis and providing valuable feedback. I thank Katrin Heber, who
took many time-consuming administrative tasks off my hands.

Additionally, I give thanks to my managers at SAP, Ralf Ackermann, Michael Ameling, Steffen
Göbel, and especially Uwe Kubach, without which this collaborative project could not have been
established. I thank my colleagues at SAP lab for many inspiring conversations, especially in the
INDENICA project context. In particular, thank you, Andreas Rummler for regularly discussing
my research topic.

Furthermore, I like to thank the fellow researchers, I met at conferences and in workshops for
their valuable feedback and inspiring talks on my and related research topics. Special thanks to
Vander Alves for the good and intense discussions. I thank the people I collaborated with during
the last years, especially Malte Lochau for the fruitful cooperation and manifold support. In
addition, thank you, Stephan Mennicke, Dirk Muthig, and Karsten Saller.

In addition, I thank the students I supervised, Mabel Joselin Brun Chaperon, David Gollasch,
Xi Luo, and Tim Winkelmann, who contributed to this work by means of their final theses. I
like to thank the teams of Misys IBS and Achievo, were I learned how to apply model-driven
software development in practice.

Special thanks to my friends, who supported me during the last years by spending quality time,
and my family for their advice and support of my academic education. Most of all, I thank my
husband Olaf for being endlessly patient, loving and kind.

I further acknowledge the financial support of my doctoral project #080949335 provided by the
European Social Fund, Federal State of Saxony and SAP.

e

f

Publications

This doctoral thesis is based on the following peer-reviewed publications ordered by date, start-
ing with the most recent.

[1] Dirk Muthig and Julia Schroeter. A Framework for Role-Based Feature Management in
Software Product Line Organizations. In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13 (1), New York, NY, USA, August 2013. ACM Press.

[2] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Multi-Perspectives on Feature Models.
In Proceedings of the 15th International Conference on Model Driven Engineering Languages
& Systems, MODELS ’12, pages 252–268. Springer Berlin Heidelberg, October 2012.

[3] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and Malte Lochau. Dynamic Config-
uration Management of Cloud-Based Applications. In Proceedings of the 16th International
Software Product Line Conference, SPLC ’12 (2), pages 171–178, New York, NY, USA,
September 2012. ACM Press.

[4] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Conper: Consistent Perspectives on
Feature Models. In Joint Proceedings of co-located Events at the 8th European Conference
on Modelling Foundations and Applications, ECMFA ’12, pages 55–58. Technical University
of Denmark DTU, July 2012.

[5] Julia Schroeter, Sebastian Cech, Sebastian Götz, Claas Wilke, and Uwe Aßmann. Towards
Modeling a Variable Architecture for Multi-Tenant SaaS-Applications. In Proceedings of
the 6th International Workshop on Variability Modeling of Software-Intensive Systems,
VaMoS ’12, pages 111–120, New York, NY, USA, January 2012. ACM Press.

[6] Julia Schroeter. Towards Generating Multi-Tenant Applications. In Pre-Proceedings of the
4th Summer School on Generative and Transformational Techniques in Software Engineering
and 4th Software Language Engineering 2011 – Students’ Workshop, GTTSE/SLE ’11, July
2011.

Further publications related to the thesis.

[7] Malte Lochau, Stephan Mennicke, Julia Schroeter, and Tim Winkelmann. Extended Version
of Automated Verification of Feature Model Configuration Processes Based on Workflow
Petri Nets. Technical report, Technische Universität Braunschweig, January 2013.

[8] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Extended Version of Multi-
Perspectives on Feature Models. Technical report, Technische Universität Dresden, December
2011.

g

Further peer-reviewed publications indirectly related to this thesis.

[9] Uwe Aßmann, Andreas Bartho, Christoff Bürger, Sebastian Cech, Birgit Demuth, Florian
Heidenreich, Jendrik Johannes, Sven Karol, Jan Polowinski, Jan Reimann, Julia Schroeter,
Mirko Seifert, Michael Thiele, Christian Wende, and Claas Wilke. DropsBox: The Dresden
Open Software Toolbox. - Domain-Specific Modelling Tools beyond Metamodels and Trans-
formations. Journal of Software and Systems Modeling (SoSyM), pages 1–37, November
2012.

[10] Karsten Saller, Sebastian Oster, Andy Schürr, Julia Schroeter, and Malte Lochau. Reducing
Feature Models to Improve Runtime Adaptivity on Resource Limited Devices. In Proceedings
of the 16th International Software Product Line Conference, SPLC ’12 (2), pages 135–142,
New York, NY, USA, September 2012. ACM Press.

[11] Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and Uwe Aßmann. Elucidative
Development for Model-Based Documentation. In Proceeding of the 50th International
Conference on Objects, Models, Components, Patterns, volume 7304 of TOOLS ’12, pages
320–335. Springer Berlin Heidelberg, June 2012.

[12] Sebastian Götz, Max Leuthäuser, Christian Piechnick, Jan Reimann, Sebastian Richly, Julia
Schroeter, Class Wilke, and Uwe Aßmann. Entwicklung Cyber-Physikalischer Systeme am
Beispiel des NAO-Roboters. In Proceedings of Chemnitz Linux-Days 2012. Universitätsverlag
Chemnitz, March 2012.

[13] Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter, Christian Wende, Claas
Wilke, and Uwe Aßmann. NaoText: A Role-Based Language for Collaborative Robot
Applications. In Proceedings of the 1st International Workshop on Software Aspects of
Robotic Systems, ISoLA ’11, October 2011.

h

Contents

The Need for Reconfigurable Cloud Applications and Automated Configuration Man-

agement 1

I. Context and Preliminaries 7

1. State of the Art of Cloud Applications 9

1.1. Origin of Cloud Terminology . 9
1.2. The Cloud Computing Stack . 10
1.3. Recent Business Models for Cloud Services . 11
1.4. Deployment Models of Cloud Services . 12
1.5. Characteristics of Cloud Computing and Cloud Applications 14
1.6. Stakeholders Participating in the Configuration Process 23
1.7. Access Control in Shared Cloud Environments 25
1.8. Challenges in Providing Reconfigurable Cloud Applications 27
1.9. Benefits for Cloud Computing by Applying Software Product Line Engineering . 29
1.10. Summary . 29

2. Software Product Lines – Foundations and Related Work 31

2.1. Mass Customization and Product Lines . 31
2.2. Software Product Line Engineering . 32
2.3. Feature Modeling . 35
2.4. Derivation of Variant Configurations . 41
2.5. Feature Model Satisfiability . 45
2.6. Dynamic Software Product Lines . 47
2.7. Configuration Management in Software Product Lines 50
2.8. Requirements for Automated Configuration Management of Cloud Applications . 52
2.9. Summary . 53

II. Configuration Management Based on Feature Models 55

3. Configuration Management Framework for Reconfigurable Cloud Applications 57

3.1. Example of a Video Information System . 57
3.2. Configuration Artifacts of Reconfigurable Cloud Applications 60
3.3. Feature-Based Configuration Management . 62
3.4. Automated Configuration Management Activities 66
3.5. Demarcation from Related Work . 67
3.6. Summary . 69

I

Contents

4. A Flexible Architecture for Reconfigurable Cloud Applications 71

4.1. Software and Product Line Architecture . 72
4.2. Characteristics of Reconfigurable Cloud Applications 74
4.3. Developing a Flexible Architecture for Reconfigurable Cloud Applications 76
4.4. Background on Multi-Quality Auto-Tuning Architecture 77
4.5. Architectural Multi-Tenancy Extensions . 83
4.6. Discussion . 88
4.7. Demarcation from Related Work . 89
4.8. Summary . 90

5. Multi-Perspectives 91

5.1. Views Separate Concerns . 94
5.2. Perspectives Reduce the Configuration Space . 94
5.3. Illustrative Example for Multi-Perspectives . 95
5.4. Multi-Perspective Terminology . 97
5.5. Feature Models with Group-Cardinality . 99
5.6. Views and Perspectives on Feature Models . 102
5.7. View Composition . 104
5.8. Relations between Feature Models, Views, and Perspectives 106
5.9. View Model . 107
5.10. Multi-Perspective Model . 110
5.11. Consistency of Multi-Perspective Models . 112
5.12. Multi-Perspectives in Software Product Line Engineering 118
5.13. Customization on Feature Model Level . 119
5.14. Best Practices in Modeling Views and Perspectives 119
5.15. Applying Multi-Perspectives to Support Staged Configuration 121
5.16. Demarcation from Related Work . 124
5.17. Summary . 124

6. Adaptive Staged Reconfiguration Workflows 127

6.1. Illustrative Example for Adaptive Staged Reconfiguration Workflows 128
6.2. Modeling Adaptive Staged Reconfiguration Workflows 129
6.3. Extended Feature Models . 130
6.4. Access Control on Extended Feature Models . 136
6.5. Specialization Tree . 144
6.6. Staged Reconfiguration on Extended Feature Models 155
6.7. Workflow Adaptation for Dynamic Stakeholder Management 160
6.8. Adaptive Staged Reconfiguration Workflows in Software Product Line Engineering176
6.9. Demarcation from Related Work . 176
6.10. Summary . 178

7. Configuration Management Tool Suite PUMA 179

7.1. Model Based Domain-Specific Languages . 180
7.2. EFeatureText – Textual Language for Extended Feature Models 184
7.3. RBACText – Textual Language for Role Based Access Control on Extended

Feature Models . 194
7.4. FMAnalysis – Utilities for Feature Model Analysis 200
7.5. Conper – Consistent Perspectives and Views . 202

II

7.6. DyscoGraph – Dynamic Staged Configuration through Graph Rewriting 214
7.7. Summary . 221

8. Conclusion and Future Work 223

8.1. Contribution . 223
8.2. Future Work . 224

III. Appendix 249

A. Translation of Extended Feature Model in Constraint Satisfaction Problem 251

B. EFeatureText: Extended Feature Model Language 255

B.1. Concrete Syntax of EFeatureText . 255
B.2. SAP Business ByDesign Example . 257
B.3. Video Information System Example . 262
B.4. Extended Document Management System Example 265
B.5. Yard Management Example . 268

C. RBACText: Role Based Access Control Language 271

C.1. Concrete Syntax of RBACText . 271
C.2. Example of an Access Control Model for a Yard Management Application 272
C.3. Outline View . 273

D. MText: Textual Language for Mapping Viewgroups to Features 275

D.1. Concrete Syntax of MText . 275

III

IV

List of Figures

1.1. The cloud computing stack, related business models, and example services. . . . 10
1.2. Various types of services are provided in the cloud consumable on heterogenous

devices. 16
1.3. The cloud application Business ByDesign is configurable in a self-service portal. . 19
1.4. Three-layer data access restriction in multi-tenant aware applications. 21
1.5. Multi-instance application deployment. 21
1.6. Multi-tenant single-instance application deployment. 22
1.7. Configurable multi-tenant aware single-instance application. 23
1.8. Common stakeholders involved in the configuration of a cloud application. 24
1.9. The four levels of RBAC displayed as Venn diagram. 26
1.10. Schematic representation of RBAC concepts. 27

2.1. Domain engineering and application engineering. 33
2.2. Representation of a feature model in the notation of a feature diagram (adopted

from [CE00]). 35
2.3. An excerpt of the feature model representing the Business ByDesign application. 36
2.4. A complete configuration of the Business ByDesign feature model excerpt. 42
2.5. Configuration decisions made in a staged configuration process step-wise decrease

the amount of unbound variability. 43
2.6. Two views on the Business ByDesign feature model applied in a staged configuration

process. 44
2.7. An example staged configuration workflow comprising two stages in UML activity

diagram notation. 45
2.8. Classification of feature model transformation processes. 47
2.9. Applying processes from Software Product Line engineering on the configuration

of a cloud application. 49

3.1. A variable video information system modeled as components. 58
3.2. Configuration of customer A of the video information system. 58
3.3. Configuration of customer B of the video information system. 59
3.4. Feature configuration artifacts in the problem space are instantiated by software

artifacts in the solution space . 61
3.5. An example feature model for the video information system. 62
3.6. Concepts and their relation in the configuration management framework for

reconfigurable cloud applications. 63
3.7. The conceptual configuration management framework for reconfigurable cloud

applications is based on prevailing SPL concepts. 65

4.1. Example architecture of multi-tenant aware reconfigurable cloud applications. . . 75
4.2. Overview of the integral parts of the MQuAT architecture (adopted from [GWS+10]). 78

V

List of Figures

4.3. Excerpt of the metamodel for CCM structure models. 80
4.4. Layers of the runtime environment THEATRE and related component managers. 82
4.5. Multi-tenant extensions of the cool component model. 84
4.6. Multi-tenant extensions of the metamodel for CCM variation models. 85

5.1. The cloud application Business ByDesign offers different editions with varying
amount of pre-configured functionality. 92

5.2. Views represent feature packages and perspectives assemble pre-configured appli-
cation editions. 93

5.3. A perspective reduces the configuration space and is assumed as an explicit
deselection of features, and a feature model filter. 95

5.4. A multi-perspective model for a sample document management product line. . . 96
5.5. The perspective for viewpoint SpecialUser filters features and constraints unrelated

to this viewpoint. 96
5.6. Relation between the terminology applied in the multi-perspective approach. . . 97
5.7. Views and a perspective on a feature model. 100
5.8. Formal concepts on views, feature models, and variant configurations. 107
5.9. A view model captures the relationship between viewgroups and defines viewpoints

that collect viewgroups. 108
5.10. A multi-perspective model consistently pre-configures a feature model by deriving

perspectives. 111
5.11. A multi-perspective model with two inconsistent viewpoints vp2 and vp3, and one

consistent viewpoint vp1. 113
5.12. Changing the relation between viewpoints and viewgroups in the view model yields

a consistent multi-perspective model. 113
5.13. Views of a staged configuration workflows are expressed by viewgroups in a view

model. 122
5.14. Features of the Business ByDesign application are grouped in three configuration

views. 123

6.1. Configuration stakeholders in the document management system example. 128
6.2. Conceptual models combined in an adaptive staged reconfiguration workflow. . . 129
6.3. Metamodel for attributed group-cardinality based feature models. 131
6.4. Feature model with attributes of a variable document management system. . . . 133
6.5. Feature configuration operations change the configuration state of a feature. . . . 135
6.6. Configuration states of an attribute depend on configuration operations on attribute

values and on the configuration state of the related feature. 136
6.7. Schematic representation of RBAC on feature models. 137
6.8. Metamodel for restricting access on feature and attribute configuration operations.139
6.9. Executing a staged configuration workflow leads to a single complete variant

configuration. 143
6.10. Input for a specialization action in the staged configuration workflow are a feature

model and a role defined in the access control model. 143
6.11. A forked staged configuration workflow forms a specialization tree. 145
6.12. Modeling a specialization tree as activity diagram. 146
6.13. Metamodel for staged configuration workflows forming specialization trees. . . . 147
6.14. The lifecycle of an action (adopted from [RW12]) in a staged configuration workflow.149

VI

List of Figures

6.15. Specialization tree definition and execution for the document management system
example. 151

6.16. Complete variant configuration of User A.1 of the variable document management
system. 154

6.17. The lifecycle of an action is extended with a reconfiguration transition. 156
6.18. Input for a specialization action to support reconfiguration are a feature model, a

role defined in the access control model, and a log. 157
6.19. Reconfiguration of stakeholder Customer A of the document management example.159
6.20. Changing a role in the access control model causes the workflow engine to adapt

the configuration workflow by applying a corresponding rewrite rule. 161
6.21. Initial specialization tree definition used for adaptation. 162
6.22. Rewrite rule for inserting a concrete role into the access control model. 164
6.23. Rewrite rule for assigning a concrete role as a member to a role group in the access

control model. 164
6.24. Rewrite rule for inserting a specialization action in the workflow model and

instantiating required relations. 165
6.25. Rewrite rule for inserting a transition to a predecessing fork node in the workflow

model if role belongs to first stage. 165
6.26. Rewrite rule for inserting a transition to a predecessing fork node in the workflow

model if new role belongs to a role group in the access control model. 165
6.27. Rewrite rule for inserting a group and adding ownership to the new role in the

access control model. 166
6.28. Rewrite rule for inserting a transition and a successor fork node in the workflow

model if the role is owner of a role group. 166
6.29. Rewrite rule for inserting transition and successor flow final node if role added to

last stage in the workflow model. 166
6.30. Initial specialization tree definition of the document management example used

for adaptation. 167
6.31. Resulting specialization tree after integrating stakeholder Customer A. 168
6.32. Rewrite rule for disabling an action in the workflow model. 170
6.33. Rewrite rule for removing logs indirectly related to a removable role. 171
6.34. Rewrite rule to remove the flow final node and transitions in the last stage. . . . 171
6.35. Rewrite rule for removing succeeding control and data flow transitions. 171
6.36. Rewrite rule for removing the role group where the removable role is owner. . . . 171
6.37. Rewrite rule for removing predecessing control and data flow transitions by

evaluating role group membership. 172
6.38. Rewrite rule for removing predecessing control and data flow transitions in the

first stage. 172
6.39. Rewrite rule for removing specialization action and relation to removable concrete

role. 172
6.40. Rewrite rule for removing the group membership relation. 172
6.41. Rewrite rule for removing inheritance relation to the parent role and delete the role.173
6.42. Specialization tree of the document management example before removing stake-

holder Customer A. 174
6.43. Specialization tree of the document management example after removing stake-

holder Customer A. 175

VII

7.1. The PUMA tool suite comprises the tools Conper, FMAnalysis, and DyscoGraph
integrated in Eclipse. 180

7.2. The tool suite PUMA comprises various EMOF-based domain-specific languages
to model configuration management concepts. 182

7.3. The metalevels of a language specification applying EMF and EMFText. 182
7.4. Graphical and textual notation of extended feature models applied in the PUMA

tool suite. 190
7.5. Graphical and textual notation of access control on extended feature models

applied in the PUMA tool suite. 198
7.6. Architecture of FMAnalysis utilities. 200
7.7. Tool architecture of Conper. 203
7.8. Metamodel of the hierarchical view model. 205
7.9. View model applied in the document management system example. 205
7.10. Metamodel of the mapping model for mapping features to viewgroups. 206
7.11. Screenshot of the multi-perspective editor. 208
7.12. Varying the number of viewpoints. 210
7.13. Feature models with varying sizes. 211
7.14. Tool architecture of DyscoGraph. 215
7.15. Screenshot of a variable yard management application. 217
7.16. Stage model for the yard management system. 218
7.17. Stage Metamodel. 218
7.18. Initial specialization tree of the yard management example. 219
7.19. Specialization tree after integrating stakeholder ApplicationProvider. 219
7.20. Execution of the specialization action of stakeholder Reseller A showing corre-

sponding configuration view. 220

B.1. Outline of the BusinessByDesign domain feature model. 261
B.2. Outline of the feature model of a video information system example. 264
B.3. Outline of a partial feature model configuration of the yard management example. 270

C.1. Graphical notation for RBACText illustrated on the yard management example. 274

VIII

List of Tables

1.1. Comparison of common business models in the cloud adopted from [Jam12]. . . . 11
1.2. Cloud deployment models. 13
1.3. Overview of levels of resource sharing classified by the type of the shared resources. 15
1.4. Configuration options of cloud applications. 20

2.1. Unified modeling of feature decomposition relations applying group cardinality
(adopted from [RBSP02]). 38

2.2. Classification of cloud and SPL concepts regarding customer configuration and
product instance multiplicities. 49

3.1. Software component types and their implementations in the video information
system example. 59

3.2. Grouping features of the video information system example according to concerns. 64
3.3. Automating configuration management activities for reconfigurable applications

in the problem space by applying the configuration management framework. . . . 66
3.4. Comparing SPL-based configuration management approaches for cloud applications. 68

4.1. Characteristics of reconfigurable cloud applications and corresponding architectural
concepts. 74

5.1. Terminology of the multi-perspective approach. 98

7.1. Comparison of textual DSLs for feature models 193
7.2. Metrics of the limited Business ByDesign feature model. 201
7.3. Feature models applied in the performance evaluation of Conper. 209

A.1. Rules for translating an extended feature model into a Constraint Satisfaction
Problem. 252

B.1. Metrics of Business ByDesign feature model. 257
B.2. Metrics of the video information system feature model. 262
B.3. Metrics of document management system feature model. 265
B.4. Metrics of yard management feature model . 268

IX

X

Listings

4.1. Example contract for the VLC media player implementation of the component
type video player. 81

4.2. Component type constraints expressed in OCL. 86
4.3. Component instance constraints expressed in OCL. 87
4.4. Quality constraints expressed in OCL. 87

6.1. Example of an access control model defining roles and their permissions on
configuration operations of a document management system. 140

6.2. Executed configuration operations of the role Application Provider. 152
6.3. Executed configuration operations of role Customer A. 153
6.4. Executed configuration operations of role User A.1. 153
6.5. Example of an initial adaptive access control model of the document management

system. 167
6.6. Access control model after integrating stakeholder Customer A. 168
6.7. Access control model of the document management example before removing

stakeholder Customer A. 174
6.8. Access control model of the document management example after removing

stakeholder Customer A. 175

7.1. Concrete syntax rule for the FeatureModel metaclass. 185
7.2. Example for the application of the concrete syntax rule for the FeatureModel

metaclass. 185
7.3. Concrete syntax rule for the Feature metaclass. 185
7.4. Example for the application of the concrete syntax rule for the Feature metaclass.186
7.5. Concrete syntax rule for the Group metaclass. 186
7.6. Example of the application of the concrete syntax rule for the Group metaclass. . 186
7.7. Concrete syntax rule for the NumericalDomain and the Interval metaclasses. . 186
7.8. Concrete syntax rule for the DiscreteDomain and the DomainValue metaclasses. 187
7.9. Example application of the concrete syntax rules for the NumericalDomain and

Interval metaclasses, as well as for the DiscreteDomain and the DomainValue
metaclasses. 187

7.10. Concrete syntax rule for the Attribute metaclass. 187
7.11. Example of the application of the concrete syntax rule for the Attribute metaclass.188
7.12. Concrete syntax rules for the Imply and Exclude metaclasses. 188
7.13. Examples of applying the concrete syntax rules for the Imply and Exclude meta-

classes. 188
7.14. Concrete syntax rules for the AttributeConstraint and AttributeReference

metaclasses. 189

XI

7.15. Example of applying the concrete syntax rules for the AttributeConstraint and
AttributeReference metaclasses. 189

7.16. Complete configuration of the extended feature model specification of the Business
ByDesign excerpt in textual EFeatureText notation. 191

7.17. Concrete syntax rule for the AccessControlModel metaclass. 195
7.18. Example for applying the concrete syntax rule for the AccessControlModel

metaclass. 195
7.19. Concrete syntax rule for the FeatureOperation metaclass. 195
7.20. Example for applying the concrete syntax rule for the FeatureOperation metaclass.196
7.21. Concrete syntax rule for the AttributeValueOperation metaclass. 196
7.22. Example for applying the concrete syntax rule for the AttributeValueOperation

metaclass. 196
7.23. Concrete syntax rule for the AttributeOperation metaclass. 196
7.24. Example for applying the concrete syntax rule for the AttributeOperation

metaclass. 196
7.25. Concrete syntax rule for the Role metaclass. 197
7.26. Example for applying the concrete syntax rule for the Role metaclass. 197
7.27. Concrete syntax rule for the Subject metaclass. 197
7.28. Example for applying the concrete syntax rule for the Subject metaclass. 197
7.29. Concrete syntax rule for the Group metaclass. 198
7.30. Example for applying the concrete syntax rules for the Subject metaclass. 198
7.31. Feature model specification of the document management system example written

in EFeatureText. 203
7.32. Concrete syntax rules for the mapping model. 206
7.33. Textual mapping language to assign document management features to business

concern-related viewgroups. 207
7.34. Derived perspective of the customized view point as a partial configuration. . . . 212
7.35. Derived perspective of the customized view point as a filtered feature model. . . 213
7.36. Access control model defining stakeholder roles and their permissions in the yard

management system example. 218

B.1. Concrete syntax of textual language EFeatureText. 255
B.2. Extended feature model specification of the Business ByDesign example written

in EFeatureText. 257
B.3. Extended feature model specification of the yard management system example

written in EFeatureText. 262
B.4. Extended feature model specification of the document management system example

written in EFeatureText. 265
B.5. Extended feature model specification of the yard management system example

written in EFeatureText. 268

C.1. Concrete syntax of textual language RBACText. 271
C.2. Specification of Role Based Access Control on the yard management system

example written in RBACText. 272

D.1. Concrete syntax of textual language MText. 275

XII

List of Abbreviations

ANSI American National Standards Institute . 26
ANTLR Another Tool for Language Recognition . 183
ASP Application Service Provider . 11
AWS Amazon Web Services . 27
BDD Binary Decision Diagram . 46
BPEL Business Process Execution Language . 68
BPMN Business Process Model and Notation . 45
CCM Cool Component Model . 79
CSOP Constraint Satisfaction Optimization Problem 81
CSP Constraint Satisfaction Problem . 46
CRM Customer Relationship Management . 11
CVL Common Variability Language . 34
CVM Compositional Variability Management . 194
DSL Domain-Specific Language . 180
DSPL Dynamic Software Product Line . 32
EBNF Extended Backus-Naur Form . 183
EIA Electronic Industries Alliance . 50
EMF Eclipse Modeling Framework . 180
EMOF Essential Meta Object Facility . 181
FAMILIAR Feature Model Script Language for Manipulation and Automatic Reasoning . 193
FDL Feature Description Language . 193
FODA Feature Oriented Domain Analysis . 35
GPL General Purpose Language . 180
HUTN Human-Usable Textual Notation . 183
IaaS Infrastructure as a Service . 11
IDC International Data Corporation . 1
IDE Integrated Development Environment . 179
INCITS International Committee for Information Technology Standards 26
IT Information Technology . 9
JWT Java Workflow Tooling . 215
MDA Model-Driven Architecture . 181
MDSD Model-Driven Software Development . 35
MIT Massachusetts Institute of Technology . 10
MQuAT Multi-Quality Auto-Tuning . 77
MOF Meta Object Facility . 181
NIST National Institute of Standards And Technology 10
OCL Object Constraint Language . 39
OCR Object Character Recognition . 95
OMG Object Management Group . 181

XIII

List of Abbreviations

OVM Orthogonal Variability Modeling . 34
PaaS Platform as a Service . 11
PDF Portable Document Format . 95
PLA Product Line Architecture . 73
Prolog Programmation en Logique . 46
PUMA Product Line Utilities for Multi-Tenant Aware Applications 6
QCL Quality Contract Language . 79
QoS Quality of Service . 18
RBAC Role Based Access Control . 6
SaaS Software As A Service . 11
SAT Satisfiability . 46
SCArVeS International Workshop on Services, Clouds and Alternative Design Strategies for

Variant-Rich Software Systems . 3
SCM Software Configuration Management . 51
SOA Service-Oriented Architecture . 199
SoC Separation of Concerns . 77
SLA Service Level Agreement . 17
SMT Satisfiability Modulo Theories . 46
SPL Software Product Line . 3
SPLC International Software Product Line Conference 31
SPLOT Software Product Line Online Tools . 202
THEATRE The Auto-Tuning Runtime Environment . 79
TVL Textual Variability Language . 194
UI User Interface . 179
UML Unified Modeling Language . 38
VaMoS International Workshop on Variability Modelling of Software-Intensive Systems 71
VSL Variability Specification Language . 194
XMI XML Metadata Interchange . 183
XML Extensible Markup Language . 183

XIV

The Need for Reconfigurable Cloud

Applications and Automated Configuration

Management

The great thing is the start – to see an opportunity for service, and
to start doing it, even though in the beginning you serve but a single
customer – and him for nothing.

— John Collier

More and more enterprise applications are provided as services in the cloud, as there is a strong
demand for accessing applications everywhere on heterogenous devices. In a recent report, the
International Data Corporation (IDC) expected for the next years that applications in the cloud
are a booming market [GAB+13]. The IDC market analysis predicts that much more customers
use cloud services in the next years, and double their expenses from $47,4 billions in 2013 up
to $107 billions in 2017. Especially for small and medium-sized companies the trend towards
renting services in the cloud is beneficial, as renting a service is cheaper than running an own
data center.

However, many enterprise solutions offered by large software vendors are too expensive, and the
range of functions of those solutions is too wide for small and medium-sized companies. Thus,
providers of enterprise applications address these demands by offering customizable applications.
These applications must be highly configurable to meet diverse customer requirements. An
example for a configurable cloud application is SAP Business ByDesign1, an application for
enterprise resource planning and customer relationship management. This application provides a
self-service portal for customers to configure the application and receive a corresponding cost
estimate. In the portal, customers choose among diverse functionality by explicitly selecting
and deselected application features. For instance, a customer can choose from different mar-
keting and sales functionality and defines a number of employees that will use the application.
According to the configuration the estimated costs per month are calculated and presented to
the customer. Eventually, a request is sent to the provider for instantiation the application
accordingly. The request is processed manually, where an application instance is deployed per
requesting customer.

However, the demands of the customers change. Therefore, a cloud application must be scalable
in terms of functionality to address the changing requirements of customers. A challenge is to
offer self-service portals where customers configure and reconfigure their application subscription
without further provider interaction, while their configuration becomes instantly available. Self-
service portals, such as the solution configurator for Business ByDesign2, enable customers to

1http://www.sapbydesign.com/
2https://www.sapconfigurator.com

1

http://www.sapbydesign.com/
https://www.sapconfigurator.com

The Need for Reconfigurable Cloud Applications and Automated Configuration Management

configure applications on their own. However, a derived configuration is sent to a support team
of the application provider for instantiating an application manually, which delays application
provisioning and produces extra costs.

A study conducted by Hurwitz & Associates reports that manual configuration errors impact
the productivity of developers and other people involved in application provisioning, and causes
a significant delay in rolling out the application [Hur10]. The study confirms that application
downtime is often caused by configuration errors. In addition, the study reveals that downtime
of web applications costs companies up to $72,000 per hour. A recent Gartner report confirmed
that most of the service outages are caused by configuration and change errors introduced by
people and processes [CS10].

Through 2015, 80% of outages impacting mission-critical services will be caused by
people and process issues, and more than 50% of those outages will be caused by
change, configuration, release integration and hand-off issues.

As a consequence, configuration management and the provisioning process must be automated to
prevent manual errors and to accelerate the instantiation of customer configurations. Furthermore,
an application that is available just-in-time reduces the decision threshold of customers to try out
an application. This further demands for an application architecture that supports the automatic
integration of customer configurations.

A multi-tenant aware application and platform architecture supports automated provisioning, as
multiple customers access a single shared application instance. The following figure exemplifies
how to combine a self-service portal and a reconfigurable multi-tenant aware application. In
this example, a provider offers a configurable application as a service together with a self-service

Configuration self-service portal and multi-tenant aware application architecture allow for
just-in-time provisioning of customizations.

2

portal for tailoring the application. However, the requirements of customer A and customer B on
the application functionality varies. The self-service portal enables customers to independently
subscribe for, and unsubscribe from, a service and to tailor the application without further
assistance of the provider. Both customers A and B subscribe for a customized version of the cloud
application. Moreover, users of customer A access only the tailored application functionality
defined by the configuration of customer A, where the same holds for users of customer B.
However, current multi-tenant aware applications lack customizability.

Research Objectives

Two central questions are to be answered by this thesis. First, how to develop customizable
cloud applications which scale in terms of functionality? Second, how to achieve just-in-time
availability of tailored applications?

A structured analysis of existing cloud applications reveals a strong demand for scalable ap-
plications, which are configurable and reconfigurable in self-service portals, and provisioned
just-in-time, as explained in Chapter 1. Based on these findings, challenges in automating appli-
cation configuration processes, and the just-in-time provisioning of configured applications are
identified. Subsequently, methods from Software Product Line (SPL) engineering are investigated
for their applicability to meet the identified challenges. SPL methods are a well-established
foundation to cope with variability as explained in Chapter 2. However, the methods are to be
extended to explicitly address the challenges in scalable cloud applications.

Three main requirements in applying SPL methods are identified. First, a flexible application
architecture supporting just-in-time provisioning of configured and reconfigured applications
is required. Second, a self-service portal demands for a method for explicitly tailoring the
configuration space prior the configuration process due to explicit concerns. Third, as not all
stakeholders of a self-service portal are known beforehand, a structured and adaptive configuration
process with reconfiguration support is required. These main requirements are explained in detail
in Section 2.8.

The recent workshop International Workshop on Services, Clouds and Alternative Design Strate-
gies for Variant-Rich Software Systems (SCArVeS)3 reveals that SPL engineering is applicable
to cope with variability in cloud applications. This thesis proposes an SPL-based configuration
management framework for scalable and reconfigurable cloud applications. The conceptualized
framework is implemented prototypically and evaluated empirically.

3http://www.iese.fraunhofer.de/en/events/scarves2012.html

3

http://www.iese.fraunhofer.de/en/events/scarves2012.html

The Need for Reconfigurable Cloud Applications and Automated Configuration Management

Contribution

The focus of this work is on expressing variability, automating configuration and reconfiguration
processes, while further important issues regarding application and data security, network
communication, as well as persistence issues are out of scope of this work.

The contribution of the thesis is a framework for managing configuration and reconfiguration of
cloud applications by applying SPL methods. The table on the bottom of this page summarizes
the main contributions of this thesis and related publications, while the figure on the next page
illustrates these concepts.

Contribution a) is a method for developing flexible applications supporting customer constraints
in the application architecture. The method extends a self-adaptive application architecture with
functional variability and multi-tenancy constraints on accessing functionality. A development
strategy is presented in Chapter 4. In SPL engineering, functional variability comprising
configuration parameters are uniformly specified on abstract level to define all derivable application
configurations while abstracting from implementation details [PBvdL05].

Contribution b) is the concept of multi-perspectives for tailoring the configuration space explicitly
according to a set of concerns. Views on the configuration parameters separate concerns, while
perspectives aggregate multiple views to narrow the configuration space. Hence, perspectives allow
for a concise definition of concern-specific pre-configurations. In addition, a perspective allows
for expressing customized functionality on an abstract level. For instance, if a customer requests
particular customer-specific functionality not available to other customers, the functionality
is only visible in the perspective of the requesting customer. If further customers request the
same functionality, the availability restriction can be revoked. In addition, explicit information
about customized functionality is imported for application maintenance, as customizations are
required to function properly after updating the application. Multi-perspectives are introduced
and formalized in Chapter 5.

Contribution c) refers to the concept of adaptive staged reconfiguration workflows for automating
structured, adaptive configuration, and reconfiguration processes. Adaptive staged reconfigura-
tion workflows are presented in Chapter 6 as a special class of staged configuration workflows

Overview of the contributions of this thesis, addressed requirements and related publications.

Contribution Explanation Publications

a) Flexible application
design

Chapter 4 [SCG+12]

b) Multi-perspectives Chapter 5 [SLW11, SLW12a, SLW12b]
c) Adaptive staged con-

figuration workflows
Chapter 6 [Sch11, SMM+12, LMSW13, MS13]

d) Tool suite PUMA Chapter 7 https://github.com/extFM/extFM-Tooling

4

https://github.com/extFM/extFM-Tooling

introduced by Czarnecki [CHE04]. A staged configuration workflow allows to derive a single
variant configuration in multiple steps, where various pre-defined stakeholders are involved in
the configuration process. In contrast, in a staged reconfiguration workflow, multiple variant
configurations can be derived at the same time, and the workflow can be adapted at runtime to
integrate or remove stakeholders supporting dynamic stakeholder management. Hence, partial
configurations of particular stakeholders are reused. Furthermore, the workflow supports recon-
figuration of partial configurations. Various application configurations, where all configuration
parameters are assigned, result from a single workflow. The derived variant configurations
correspond to configuration contexts in the multi-tenant aware application instance.

Contribution d) refers to the tool suite PUMA, which is available open source and hosted in
the repository https://github.com/extFM/extFM-Tooling at Github. PUMA comprises tools
and languages to express configuration management related concepts, depicted in the figure
above the dotted line and explained in Chapter 7. In particular, reference implementations
for the concepts of contributions b) and c) are provided. The concepts of perspectives and an

Configuration management overview of reconfigurable cloud applications

5

https://github.com/extFM/extFM-Tooling

The Need for Reconfigurable Cloud Applications and Automated Configuration Management

efficient consistency check algorithm are implemented in the tool Conper presented in Section 7.5.
Adaptive staged configuration workflows are implemented in the tool DyscoGraph presented in
Section 7.6. The concepts of multi-perspectives and adaptive staged configuration workflows are
evaluated empirically on case studies in this chapter.

A detailed overview of the concepts of the configuration management framework proposed in
this thesis is given in Chapter 3, and explained by example, while the Chapters 1 and 2 explain
the background of cloud applications and SPL engineering.

Outline

The outline of this thesis is as follows. In Chapter 1, the state of the art in cloud applications
and the context of cloud computing is explained. Subsequently, Chapter 2 explains concepts and
methods of SPL engineering, that are related to reconfigurable cloud applications. In addition,
open challenges are discussed in combining SPL engineering and cloud applications. Requirements
for automating the configuration of cloud applications are identified as well.

Chapter 3 introduces the conceptual configuration management framework to automate the
configuration of cloud applications based on SPL methods meeting the identified requirements.
Chapter 4 proposes a development method for flexible cloud applications comprising multi-
tenancy and a component-based self-adaptive application architecture. In addition, Chapter 5
introduces multi-perspectives and provides a formalization of views and consistent perspectives
on feature models. Chapter 6 explains how to automate the configuration and reconfiguration
of cloud applications by extending staged configuration concepts. In this chapter, adaptive
staged reconfiguration workflows are introduced and explained by example. Adaptive staged
reconfiguration workflows combine Role Based Access Control (RBAC), staged configuration
concepts, and graph rewrite rules to automate the configuration of cloud applications while
reducing redundancies of configuration decisions.

Furthermore, the tool suite Product Line Utilities for Multi-Tenant Aware Applications (PUMA)
is introduced in Chapter 7. The tool suite comprises reference implementations for multi-
perspectives and adaptive staged reconfiguration workflows developed in this work to evaluate
these concepts for applicability. Finally, Chapter 8 summarizes this work and gives an outlook
for future research regarding the SPL oriented development of cloud applications.

6

Part I.

Context and Preliminaries

7

1. State of the Art of Cloud Applications

Computing may someday be organized as a public utility just as the
telephone system is a public utility. . . . The computer utility could
become the basis of a new and important industry.

— John McCarthy, 1961

Cloud computing and cloud applications become more and more important in industry. A represen-
tative study commissioned by KPMG and Bitkom reports that 37% of German companies applied
cloud computing in the year 2012, and further 29% plan and discuss its utilization [KPMG13].
This chapter provides an overview of cloud computing in general, while explaining the state of
the art in cloud applications and identifying specific research challenges for reconfigurable cloud
applications.

The terms cloud and cloud computing are often used nowadays with different meanings in
mind. This chapter clarifies their meaning and explains characteristics of cloud applications
combining desktop application functionality with the flexibility of a web application. Cloud-
specific technologies and architectural paradigms are explained that build the basis for cloud
applications. In addition, cloud technologies imply new business models by providing resources
and applications as services on the Internet. In turn, business models and corresponding business
concerns drive the design of cloud applications. For instance, a large group of customers is reached
by providing configurable applications varying in function and price. Even more customers are
attracted by providing scalable applications that scale fast in terms of functionality according to
current customer demands. Hence, providing applications with scalable functionality demands
for a reconfigurable application design and a concise variation management which is focus of this
thesis.

1.1. Origin of Cloud Terminology

The term cloud originates from the long term use of a cloud-like shape as a metaphor for the
Internet to abstract from network devices and connections in presentations and publications.
Thus cloud is defined as follows.

Definition 1.1 (Cloud). Cloud is a general term for providing on-demand services on the Internet
while abstracting from particular computing resources and network connections.

Actually, the idea of shared Information Technology (IT) services is not new. In 1961, John
McCarthy described the idea of providing computing resources as services in a speech given at

9

1.2. The Cloud Computing Stack

the Massachusetts Institute of Technology (MIT). He named the concept utility computing and
explained it as follows [BKNT11].

If computers of the kind I have advocated become the computers of the future,
then computing may someday be organized as a public utility just as the telephone
system is a public utility. [. . .] The computer utility could become the basis of a new
and important industry.

The key idea of utility computing is that customers pay only for resources actually used [Par66].
Thus, utility computing is the predecessor of modern business models based on service provisioning
in modern cloud computing. As various services are built on top of each other, cloud computing
is often described as a stack.

1.2. The Cloud Computing Stack

In the definition of cloud computing given by National Institute of Standards And Technology
(NIST), the cloud computing stack comprises infrastructure, platform and application layers, as
depicted in Figure 1.1 [MG11]. The infrastructure layer constitutes the basic layer in the cloud
computing stack. It comprises physical resources, such as servers, network connections, and
further hardware devices. Hardware virtualization technologies, load balancing and frameworks
for elasticity and scalability allow for abstracting from particular resources. A distributed server
cluster is built by combining multiple server nodes. The platform layer is located above the
infrastructure providing operating system, middleware and application runtime environment. At
this layer, frameworks abstract from system resources providing defined interfaces. Example
frameworks at this layer are identity management and persistence. The application layer comprises
cloud applications that reside partially or completely in the cloud. Cloud applications integrate
cloud services to implement application features interacting with system resources via interfaces
provided at the platform layer.

Figure 1.1 The cloud computing stack, related business models, and example services.

10

1. State of the Art of Cloud Applications

For offering resources and services on each layer of the cloud computing stack, new business
models are defined.

1.3. Recent Business Models for Cloud Services

Based on a pay-as-you go subscription basis, customers are only charged for the amount and
time utilizing resources. Customers allocate resources on-demand instead of running their own
data centers, shifting the operation risk to the provider. Hence, customers are not responsible
for installing, hosting, or maintaining cloud services [BKNT11]. Table 1.1 summarizes the most
common business models comprising Software As A Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS) [Jam12].

How these business models are related to the layers of the cloud computing stack explained
in Section 1.2 is depicted in Figure 1.1. The SaaS business model refers to the application
level, implying that business applications are provisioned over the Internet as services [Ma07].
SaaS application providers are the successors of Application Service Providers (ASPs) [BLB+00],
where the SaaS business model is based on the ASP business model. A SaaS application consists
of various, loosely coupled services and components. On-demand SaaS applications are less
expensive than on-premise solutions as not the application itself is sold, but rather a license.
Such applications reach a larger market segment than on-premise solutions as customers do not
have to bear the risk of hosting the application in house. Another advantage from a customer’s
point of view is that full costs of using an application can be calculated in advance due to a
fixed price model, where a monthly fee is paid per desktop license, for instance. Furthermore,
providers have lower maintenance cost as SaaS applications are not installed in customer data
centers, but on provider servers [Wat05]. Thus, more and more providers of business applications
migrate their standard software into the cloud. For instance, Microsoft’s office suite comprising
spreadsheet and word processors is available on-demand as Office 365 1 providing further social
network integration. A further example of a SaaS application is SAP Business ByDesign2, a

1http://office.microsoft.com
2http://www.sapconfigurator.com

Table 1.1 Comparison of common business models in the cloud adopted from [Jam12].

Business Model Service Provider Service Customer Provisioning

Software as a Service
(SaaS)

Application provider Tenants and applica-
tion users

Business application

Platform as a Service
(PaaS)

Platform or infras-
tructure provider

Application devel-
oper

Middleware, operat-
ing system, runtime
environment, frame-
works

Infrastructure as a Ser-
vice (IaaS)

Infrastructure
provider

System developer Computing time,
storage

11

http://office.microsoft.com
http://www.sapconfigurator.com

1.4. Deployment Models of Cloud Services

Customer Relationship Management (CRM) application for small and medium size companies.
Some providers of SaaS applications offer underlying frameworks as PaaS services. For instance,
Salesforce provides the CRM application Sales Cloud3 as a SaaS application and the underlying
platform Force.com4 as PaaS.

Marc Benioff, founder of Salesforce, coined the term PaaS for the business model of providing
platform services. PaaS abstracts from the physical layers and provides middleware, application
containers and platform services to application developers at the platform level. Further services
offered at this level are, for instance, identity management, persistence, load balancing and
performance isolation. Thus, application developers do not need to take care of installation and
maintenance of the middleware and platform services. Due to information hiding, developers
access provided middleware frameworks via defined interfaces. Further examples of PaaS offerings
are Google App Engine5 and Amazon Elastic Compute Cloud (Amazon EC2)6.

The IaaS business model refers to the infrastructure level of the cloud computing stack, providing
fundamental services such as storage and computing capacities to system developers that have
full control of the installation of operating system, middleware and applications. Examples for
IaaS offerings are Microsoft Windows Azure7, Amazon Web Services8, and IBM SmartCloud
Enterprise9. Further X as a Service business models have been proposed, but are not discussed
here as they are out of scope of this work. This work focusses on the provisioning of SaaS
applications and their dependencies on platform and infrastructure resources. Depending on the
domain and purpose of a SaaS application, various deployment models are to be distinguished
that are further explained in the following.

1.4. Deployment Models of Cloud Services

Public, private, hybrid, and community cloud are to be distinguished according to the location
of the cloud infrastructure and access restrictions on the provisioned services. Each deployment
model aims at different concerns and has different access scopes, as depicted in Table 1.2 [MG11].

1.4.1. Public Cloud

Services in a public cloud are available to various customers. Using a public cloud is convenient
for highly available and distributed web applications that perform computationally intensive
calculations and therefore have varying workload, such as event web sites or applications with
complex mathematical calculations. A public cloud infrastructure is often spread over multiple

3http://www.salesforce.com/sales-Cloud
4http://www.force.com
5https://appengine.google.com
6http://aws.amazon.com/ec2
7http://www.windowsazure.com
8http://aws.amazon.com
9https://www.ibm.com/de/smartcloud

12

http://www.salesforce.com/sales-Cloud
http://www.force.com
https://appengine.google.com
http://aws.amazon.com/ec2
http://www.windowsazure.com
http://aws.amazon.com
https://www.ibm.com/de/smartcloud

1. State of the Art of Cloud Applications

Table 1.2 Cloud deployment models.

Deployment Model Deployment Location Accessibility

Public cloud World wide Services publicly available to inde-
pendent customer

Private cloud Organization wide Inside an organization
Hybrid cloud Combining public and private

cloud
Critical parts processed inside an or-
ganization, others in a shared public
cloud infrastructure

Community cloud Multiple organizations Multiple authorized organizations
share artifacts of common interest

countries. Thus, it cannot currently be guaranteed that data in a public cloud does not leave a
certain country. Hence, sensitive data, where legal restrictions necessitate that the data does not
leave a particular country, cannot be processed in a public cloud [MH10].

1.4.2. Private Cloud

A private cloud differs from a public cloud mainly in the access restriction on resources and in the
location of the infrastructure. The infrastructure is hosted in-house of an organization and is only
accessed inside the organization, where infrastructure and platforms to realize load balancing
are similar to the public cloud. Thus, the organization guarantees that data is processed in a
particular country. However, the data center hosting the private cloud is probably not as scalable
to the number of requests as a public cloud as there are less computer nodes available. A private
cloud is more cost intensive as an organization cannot benefit from sharing resources with other
organizations compared to a public cloud.

1.4.3. Hybrid Cloud

A hybrid cloud combines advantages of a public and a private cloud. Infrastructure processing
sensitive data is hosted by the organization itself and protected against access from outside,
whereas public cloud services are integrated to benefit from scalability and elasticity of the
public cloud infrastructure on high load peaks. Particular cloud services are further explained in
Section 1.5.3.

1.4.4. Community Cloud

In a community cloud the infrastructure is hosted by potentially multiple organizations, and
is only accessed by authorized organizations being members of that particular community. A

13

1.5. Characteristics of Cloud Computing and Cloud Applications

community cloud aims at sharing resources, as well as community-specific data. For instance,
flight information is offered to different airlines in a community cloud and any participating
airline provides its own data and consumes data of other members.

As SaaS applications aim at serving various different customers, they are usually deployed in a
public or community cloud. Such a publicly available SaaS application demands for a sophisticated
customer management especially if it is configurable and multi-tenant aware, as explained in
Section 1.5.6. In contrast, SaaS applications deployed in a hybrid and private cloud are available
to a single customer, thus having less strict requirements on customer management.

1.5. Characteristics of Cloud Computing and Cloud Applications

Cloud computing is a paradigm for providing computing resources as services over the Internet
consumable on heterogenous devices. New web technologies allow shifting complex computerized
calculations into a server cluster [HM05]. The NIST defines cloud computing as follows.

Definition 1.2 (Cloud Computing [MG11]). Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.

Cloud computing is applicable for complex calculations in a server grid and platforms with
anticipated and unanticipated workload peaks [FE10].

The main characteristics of cloud computing are explained in the following, which are scalability,
elasticity, resource sharing and resource provisioning as a service.

1.5.1. Scalability and Elasticity

Scalability in the cloud refers to the ability of a system to handle growing amounts of workload
and to improve data throughput on-demand. From a business view, it is an important property of
cloud services and is depicted by Scale fast or fail fast. Successful cloud services start by serving
a small amount of users. On increasing demand, the services scale to handle up to hundreds of
thousands of users simultaneously, and scale down on decreasing demand. Scalability is realized
technically on infrastructure level, where horizontal and vertical scaling are to be distinguished.
Horizontal scaling is also known as scaling out which implies that more nodes are added to
the server grid if currently allocated resources are not sufficient and nodes are removed if no
longer needed. Virtualization technologies are applied to abstract from potentially heterogeneous
resources to enable horizontal scalability. In contrast, vertical scaling, also called scaling up,
denotes that a single server node is enhanced with resources, such as main memory [JOP11].

Beside scalability in terms of users concurrently accessing a service, functional scalability is
important for cloud applications. Especially, enterprise applications with small and medium

14

1. State of the Art of Cloud Applications

size companies need to be scalable in terms of functionality to always satisfy the demands of
their customers. However, companies grow and shrink according to the current market situation
and their functional requirements on enterprise applications scale accordingly. Most enterprise
applications are provided as an all-in-one solution which does not completely cover customer
requirements. Applications that are configurable can only be configured once at design time but
are not to be changed during runtime. Most of the current available enterprise cloud applications
are not variable at runtime regarding functionality and quality. However, cloud applications
could reach a larger market segment and create a unique selling point opposite of conventional
applications by providing scalability in terms of functionality and quality.

Elasticity is the capability of a system to allocate resources according to requests and service
demands. The system scales transparently conveying the illusion of unlimited resources. The
capacity adjusts over time allowing for handling rarely occurring peak periods with high server
loads. For instance, high workload leads to an allocation of many resources, where low workload
leads to a release of these resources making them available for other services. This is achieved by
offering transparent load balancing [JOP11].

From a customer’s point of view, cloud computing offers unlimited storage and computing
resources. Customers can flexibly allocate and release resources depending on their varying
business demands [AFG+09]. Cloud computing is beneficial for providers as resources are shared
among customer instances, thus enabling a cost efficient utilization of resources.

1.5.2. Resource Sharing

Resource sharing plays a central role in cloud computing enabling economics of scale. Customers
share hardware and software resources at all levels of the cloud computing stack explained
in Section 1.2, where the particular resource location is hidden from the customers [MG11].
Different kinds of resource sharing are to be distinguished according to the resource types
hardware, application instance and data as summarized in Table 1.3. Virtualization is based on
technologies at infrastructure level enabling sharing of server hardware and network resources
among system users. At platform level, middleware components, application frameworks and
containers are shared between different customers. Depending on the cloud deployment model
explained in Section 1.4, infrastructure and platform resources are shared inside a company in a
private cloud scenario, and together with several organizations otherwise.

Table 1.3 Overview of levels of resource sharing classified by the type of the shared resources.

Classification Hardware and Platform Application Instance Data

Virtualization x - -
Multi-tenancy x x -
Knowledge Sharing - - x
Community Multi-tenancy x x x

15

1.5. Characteristics of Cloud Computing and Cloud Applications

Virtualization is the foundation for resource sharing at business application level. At this
level, either single application functionality or a whole application instance is shared among
different customers. An architectural paradigm to realize resource sharing in cloud applications
is multi-tenancy, which is explained in detail in Section 1.5.5.

Furthermore, data can be shared between various customers of the same community. The sharing
of data is called knowledge sharing. Combining data sharing with sharing of the application
instance and hardware resources leads to community multi-tenancy according to the community
cloud deployment model, as explained in Section 1.4.4.

1.5.3. Cloud Services

In the cloud, resources are provisioned as services and, thus, shared between service consumers.
They are consumed by end-users on heterogenous devices, such as laptops, tablet computers,
smartphones and smart televisions, as depicted in Figure 1.2. Cloud services comprise any
kind of hardware and software resource. For instance, hardware is offered in terms of storage,
computation, and network connections, while software is offered as small apps and web-based
enterprise applications. Data is also offered as a service, comprising community knowledge and
collected big data. An analyst from IDC defines cloud services as follows.

Definition 1.3 (Cloud Service [IDC09]). Cloud services are consumer and business products, ser-
vices and solutions delivered and consumed in real-time over the Internet.

Figure 1.2 Various types of services are provided in the cloud consumable on heterogenous
devices.

16

1. State of the Art of Cloud Applications

Examples of cloud services are applications, knowledge, communication platforms, computation
power, network infrastructure, and storage capacity, to name but a few. A service in the cloud
is available almost in real time over the Internet, often easily accessible by customers without
detailed IT knowledge, where customers are companies and end-users. Cloud services are highly
scalable in amount and time and associated to infrastructure, platform and application resources
related to the layers of the cloud computing stack explained in Section 1.2. The billing of the
services is based on the resource consumption enabling new business models, as discussed in
Section 1.3. Cloud offerings enables customers to subscribe and unsubscribe on a self-service
base without further assistance of the provider.

Self-Service Portals

Cloud providers offer online self-service portals available 24 hours a day, where customers can
sign up for a service that is instantly available without any delay in deploying the system.
Customers that are supposed to serve themselves, better understand the value of the product
and are more willing to test a service as the entry barrier is low [CMRD13]. Examples for SaaS
applications providing self-service portals are the collaboration application 37signals10 and the
CRM application Zoho11.

An advantage of cloud applications combined with a SaaS business model could be to offer
functional scalability by means of self-service portals to the customers. Thus, customers are
enabled to extend or decrease their service subscription according to their current demands.
A requirement for this approach is an architecture capable of provisioning the reconfigured
application just-in-time.

A challenge in providing a self-service portal in practice is the compliance of the available
application with country-specific law and legal restrictions.

Legal Restrictions

In many cases, not all services are offered in all countries due to country law. Furthermore,
customers may only use cloud services if providers guarantee that customer data is neither
stored, nor processed in countries with different applicable laws. For instance, the European
data protection directive is valid Europe wide, but interpreted differently in each European
country [95/46/EC]. Thus, a service agreement between provider and customer has to be signed.
Such a contract is called Service Level Agreement (SLA) defining the provided function volume,
non-functional qualities that must be met by the service, as well as support and responsibilities
of the contractors [Ver99]. SLAs can be defined as follows.

Definition 1.4 (Service Level Agreement). A Service Level Agreement is a contract between
provider and customer that defines guaranteed quality levels of a service and support modalities.
10http://37signals.com
11http://www.zoho.com

17

http://37signals.com
http://www.zoho.com

1.5. Characteristics of Cloud Computing and Cloud Applications

Within the private sector, SLAs are signed to guarantee a certain service quality level, to define
contract conditions, and to specify support modalities to satisfy customer needs. SLAs are not
agreements about costs, but describe measurable quality attributes of the application and are
commonly referred to as Quality of Service (QoS) aspects [Ver99, KL03]. Examples of these
attributes are availability, reliability, performance and security levels. Furthermore, an SLA
explicitly specifies exclusion of service liability. The contract contains an agreement of how to
deal with operational problems covering, for instance escalation strategies, help desk provisioning,
hot-line, and agreed severity levels. Terms of use are a relevant legal aspect of a service agreement
varying between customers. Beside the content of an SLA, further aspects may be variable in a
configurable cloud application, as explained in the next section.

Automating the compliance with SLAs enables applications to scale not only in functionality
but also in quality. Such a scalable application is variable with respect to different configuration
parameters, which are explained next.

1.5.4. Configuration Capabilities

Cloud applications are configurable to address varying customer requirements. An example of a
configurable cloud application is SAP Business ByDesign12 offering various configuration options
as a self-service to customers. Business ByDesign is an information system targeting small and
medium size organizations in different domains. The application is highly configurable comprising
various enterprise management components, such as executive management support to identify
organization goals, financial management components for controlling, CRM and human resource
management to administer customers and staff, as well as project management, and supply chain
management, to name but a few.

A customer can choose from different application functionality and configure the number of
users, as exemplified in the screenshot in Figure 1.3. Business ByDesign is provided as a SaaS
application and the price for the SaaS offering is calculated-based on the customer’s feature
selection. The application features are grouped in a configuration wizard according to their
category. For common use cases, a feature pre-selection is also available. Additionally, if a
customer selects a feature that has further dependencies to other features, a menu appears
notifying the customer that further features need to be selected or deselected.

In general, variability of SaaS applications can be classified in different categories. Various
categories of variability are identified in cloud applications as adopted from [SZG+08, Nit09]
and shown in Table 1.4. Depending on the application domain, the degree of configurability
varies, and thus not all variability categories listed are configurable in an application. Most of
the currently available applications are rarely configurable as enabling configuration options
causes further costs.

Besides configurability, multi-tenancy is an important characteristic of cloud applications and is
explained in the next section.

12http://www.sapconfigurator.com

18

http://www.sapconfigurator.com

1. State of the Art of Cloud Applications

Figure 1.3 The cloud application Business ByDesign is configurable in a self-service portal.

1.5.5. Multi-Tenancy

Multi-tenancy is said to be the key success factor for sustainable cloud applications due to resource
sharing capabilities, where configurable and multi-tenant aware applications address even a
larger profiting market segment [Aik11]. Integrating various specifications given in literature,
multi-tenancy is defined as follows [Aik11, CCW06, BZ10].

Definition 1.5 (Multi-Tenancy). Multi-tenancy is an architecture paradigm for platforms and
applications serving multiple customers at the same time while guaranteeing isolated system
access. Customers are referred to as tenants in this context and are logically separated, but
physically integrated in a multi-tenant environment.

Hence, multi-tenancy comprises two main concepts, (i) the sharing of system resources and data
between application users, and (ii) restricted user access on resources, application functionality
and data with respect to an affiliated tenant. Not only hardware resources, but also application
functionality and potentially data is shared among the tenants, as explained in Section 1.5.2.

Tenants share the same application instance, where performance, control flow and data flow of
the users of these tenants are isolated [CCW06]. Thus, a multi-tenant aware application is a
special form of a multi-user web application. In multi-user and in multi-tenant applications,
control and data flows between users are separated. This is achieved by a session management

19

1.5. Characteristics of Cloud Computing and Cloud Applications

Table 1.4 Configuration options of cloud applications.

Configurability Description

User interface The user interfaces of an application vary according to the expert
level of a user. Moreover, different human machine interactions
are available, such as textual input and voice input. Furthermore,
the branding for different companies changes the look and feel of
the user interface. Country-specific internationalization support
changes the displayed language and currency.

Features Applications vary in the amount and type of functionality. For in-
stance, the amount of functionality in a freely available version of a
business application is limited, whereas the commercial application
is not.

Business processes Business processes, rules and tasks implemented in an application
vary depending on customers. Besides the results of a process can
be the same while process steps vary.

Quality The offered QoS comprising security, performance and availability
may vary. Service quality is contracted in an SLA.

Data management The persistence of data varies and data objects may have different
attributes in different applications. In a particular context, the
precisely measured data value is needed, whereas in another context
a coarse grained value abstracted in an equivalence class is sufficient.

Access control The access control policies are configurable. They specify who is
allowed to access and interact with the system.

Usage context The ways of interacting with a system may vary. A cloud appli-
cation can be accessed via a smart-phone application, a web site,
and a client application on a desktop.

Reports The scope of reports varies in an application according to the user
creating a report. The content of a report depends further on
security policies and relevant data.

to handle the data and control flow of different users accessing the application concurrently by
enabling stateful communication. Furthermore, load balancing methods are applied to guarantee
that users of each tenant do not influence their application performance [CA82].

The difference between multi-user and multi-tenancy is in the data access. In multi-user
applications, a user accesses restricted user-specific data, as well as shared application data
available to the public. In contrast, a further permission layer is inserted in between these two
in a multi-tenant application. The access on data is therefore restricted on three levels in a
multi-tenant aware application, as depicted in Figure 1.4.

Data is partitioned into user-specific data, shared restricted tenant-specific data and publicly
available shared data. Hence, tenant-specific data is access restricted to users of a particular tenant,
while this data is shared among all users of the tenant. For multi-tenant aware applications

20

1. State of the Art of Cloud Applications

Figure 1.4 Three-layer data access restriction in multi-tenant aware applications.

users are identified at application login and associated with a tenant to enable data access
restrictions. Additionally, depending on the application type the amount of restricted and shared
data varies.

Sometimes multi-tenant applications are confused with multi-instance applications. Figures 1.5
and 1.6 visualize the difference between single-instance multi-tenancy and multi-instance appli-
cations. Common to both scenarios is the sharing of hardware among customers realized by a
virtualization layer on top of the physical infrastructure. In multi-instance scenarios as displayed
in Figure 1.5 a virtual machine and operating system is deployed per customer and thus, the
application instances of the customers A, B, and C are separated as well. Hence, resources
between the customers are only shared on the hardware and platform level. The applications in
such scenarios equal common on-demand applications and are not multi-tenant aware.

Figure 1.5 Multi-instance application deployment.

21

1.5. Characteristics of Cloud Computing and Cloud Applications

A multi-instance approach combines the advantages of cloud storage and computing with
conventional on-demand applications. The approach does not scale as for every new tenant, a
dedicated virtual machine must be deployed. Furthermore, maintenance costs are high, as every
application instance must be maintained separately [CC06].

Multi-tenancy enables scalable and efficient applications and is exemplified in Figure 1.6. Ef-
ficiency means resources are allocated for the customers according to their demand and the
presence of further tenants is transparent for each customer. A multi-tenant application is
scalable in terms of the number of concurrent accesses to an application. For example, the single
software instance depicted in the figure serves all three customers A, B, and C and their users.
The application is efficient, as for customer A accessing the application instance, the concurrent
utilizations of customers B and C are transparent. Moreover, the application scales with respect
to the number of served customers.

To achieve scalability and efficiency, appropriate methods are implemented in the underlying
platform. Applications with one database per tenant and a shared database for all tenants are to
be further distinguished. An application with a shared database has the highest efficiency and
is referred to as pure multi-tenancy [CCW06]. However, optimization methods for enhancing
scalability and resource efficiency of multi-tenant applications are out of scope of this work.
Furthermore, customers may be concerned about security and service availability of a configurable
multi-tenant application. These properties are relevant for operating an application, but are
considered out of scope of this work. This thesis rather focuses on application scalability in terms
of functionality and quality.

Figure 1.6 Multi-tenant single-instance application deployment.

22

1. State of the Art of Cloud Applications

1.5.6. Configurable Multi-Tenant Aware Applications

In general, different customers have different application requirements, as discussed in Sec-
tion 1.5.4 and exemplified in Figure 1.7. In the visualized scenario, customers A, B, and C have
their own requirements and thus varying configurations incorporated in the single application
instance as an extension to the multi-tenant application depicted in Figure 1.6. An analysis of
applications available on the market reveals that configuration options of current multi-tenant
aware applications are rather limited [Cha13]. It is an open challenge to provide highly config-
urable multi-tenant aware SaaS applications as they require for a comprehensive management of
configurations for a large number of diverse customers.

Due to resource sharing, configuring the application on source-code level is complex, error-prone
and does not scale [BZ10]. Hence, the focus of this work is to apply configuration management on
an abstract level with automated evaluation of configuration options that can be easily integrated
in a self-service portal. In configuration management, various stakeholders with varying authority
are to be considered as their configuration decisions influence each other.

1.6. Stakeholders Participating in the Configuration Process

Generally, the set of stakeholders comprises organizations, particular groups and individuals.
They are separated into two categories in terms of business of a company according to the ISO
10006:2003 standard for quality management in projects [ISO 10006]. Internal stakeholders

Figure 1.7 Configurable multi-tenant aware single-instance application.

23

1.6. Stakeholders Participating in the Configuration Process

are directly involved in a business inside the company, such as employees, and management.
In contrast, external stakeholders are affected by business decisions of the company, such as
customers, suppliers, and shareholders. Adopted from the ISO 10006:2003 standard [ISO 10006]
a stakeholder is defined as follows.

Definition 1.6 (Stakeholder [ISO 10006]). A stakeholder is an individual, group or organization
having an interest in a particular project or are involved in the project.

In general, multiple different stakeholders participating in the configuration process of multi-
tenant aware SaaS applications can be identified [AFG+09]. The stakeholders have varying
configuration responsibilities that further may have interdependencies. Stakeholders actually
involved in the configuration depend on the domain of the SaaS offering and according to the
application context.

Figure 1.8 exemplifies common stakeholders. In this example, a resource provider is offering
infrastructure and platform services, and an application provider offers application functionality.
Customers that subscribe for the SaaS offering are therefore referred to as tenants. Users access
the application and use the provided application functionality. Users are employees or further
customers of a tenant. In other scenarios the set of involved stakeholders may differ. For instance,
particular providers may be further distinguished, such as infrastructure provider and platform
provider. Furthermore, a platform provider may have different experts for parts of the platform,
such as a database expert and a security expert. In a different scenario a multi-layered tenant
structure may be defined, such as the SaaS application is customized and rented to tenants,
which incorporate own customers as their tenants that have further customers, and so forth.

Figure 1.8 Common stakeholders involved in the configuration of a cloud application.

24

1. State of the Art of Cloud Applications

Particular stakeholders of a cloud application are often not known beforehand. For instance,
customers and their users sign up for the service during application runtime, where the application
provider is already known during setup of the application. Thus, responsibilities and configuration
opportunities of stakeholders are identifiable by stakeholder types. For instance, the configuration
possibilities of all customers are equal, and identifiable by the type tenant. Hence, concrete
customers A and B are identified as tenants during application runtime.

Configuration decisions of stakeholders potentially influence each other. For instance, if a resource
provider chooses a particular application container, only compatible application functionality is
available to a tenant. Furthermore, between tenant and provider a tenancy contract is signed in
the context of an SLA to specify offered functionality, as well as the QoS level that should be
fulfilled. However, configuration decisions of some stakeholders are independent. For instance,
all tenants have the same configuration opportunities, while concrete tenants are mutually
independent from other tenants in conducting configuration decisions. Such independent tenant
configurations are integrated on architectural level and multiple tenants share the same hardware
and software resources. Here, the integration on architectural level is considered out of scope of
the configuration process.

However, some stakeholders have more influence in the configuration process than others and
each stakeholder is restricted to particular configuration decisions. This can be achieved by
applying access control mechanisms.

1.7. Access Control in Shared Cloud Environments

In multi-user environments, especially relevant in shared cloud environments, operations on a
system need to be restricted to prevent unauthorized actions and misuse. Mechanisms of access
control ensure this and are defined as follows [Ben06].

Definition 1.7 (Access control [Ben06]). Access control aims at limiting the access on system
resources, services and information to authorized entities only, whereas an entity may be a person
or a computer process.

In Computer security, access control covers authorization to specify access rights, identification
and authentication to verify the identity of a subject, access approval to grant or reject access
during operation, and auditing and logging to control performed actions and to identify security
violations. A subject is an actor performing an operation on the system, whereas a subject may
be a person or a computer process. The operation is performed on an object in the system being
a hardware or software resource [SV01]. In modern multi-user systems, RBAC is the prevailing
paradigm for restricting the access on system resources as it is the best representation of processes
from the real world [FKC07].

25

1.7. Access Control in Shared Cloud Environments

1.7.1. Role Based Access Control

Since its introduction in 1992, RBAC became a common access control mechanism in business
applications. System access is restricted via roles reflecting job functions. The generic concept of
roles abstracts from individuals and increases durability since job functions in a company do not
change as often as individuals.

Initially, the formal model of RBAC was introduced by Ferraiolo and Kuhn in 1992 [FK92] to
administer security in large networks. Sandhu et al. proposed a software framework for RBAC
in 1996 [SCFY96]. Both models were incorporated in 2000 by the NIST to eventually create
the unified NIST RBAC model [SFK00]. Subsequently, the NIST standard was adopted by the
International Committee for Information Technology Standards (INCITS)13 of American National
Standards Institute (ANSI) and released as the standard ANSI INCITS 359-2004 [INCITS 359]
in 2004. The standardization emphasizes the practical relevance of RBAC to manage user
rights in enterprise software. For instance, RBAC is applied in the enterprise application SAP
R3 [SAP09].

Due to the evolution of RBAC, four levels are distinguished as shown in the schema in Figure 1.9,
which is adopted from [SFK00]. Each level comprises different functionality, where RBAC0
contains basic concepts, RBAC1 and RBAC2 are two separate extensions of the basic concepts,
and RBAC3 comprises all concepts of the other three levels. The basic model RBAC0 embodies
the fundamental concepts of roles, permissions, objects, subjects and their relations.

Figure 1.10 depicts the main concepts of RBAC. A role represents a job function in an organization
owning a set of permissions. A subject is an active entity that performs operations, and may
be a human user of the system or a computer process. An object is a passive entity used or
consumed during operation execution. It is further categorized into time, information, resource,
and processor entities. A permission represents an authorized interaction between a subject and
an object. Furthermore, a hierarchy among roles in RBAC is additionally defined as a partial
order relationship in RBAC1.

The role hierarchy may be assumed as multiple inheritance relation, where child roles inherit
permissions from parent roles. The role hierarchy defines an inheritance relation as known from

13www.incits.org

Figure 1.9 The four levels of RBAC displayed as Venn diagram.

26

www.incits.org

1. State of the Art of Cloud Applications

Figure 1.10 Schematic representation of RBAC concepts.

object-oriented modeling [RBP+91]. It reflects a relationship among roles specifying that a role
inherits permissions from other roles. The role hierarchy does not have circular relationships and
the association between roles is transitive. Moreover, constraints are added in RBAC2 as another
extension to RBAC0 to separate duties. Finally RBAC3 as a top group includes the concepts of
the other three levels [SFK00].

The combination of RBAC and self-service portals enables access control of different stakeholders
in particular cloud services. For instance, the online marketing company HubSpot Inc.14

applies RBAC to offer end users direct access to the management console of Amazon Web
Services (AWS)15, as well as to the Cloud Control Panel of Rackspace Inc.16.

Early on, portals didn’t give you a lot of controls – they allowed everybody to
access everything. Now it’s possible to offer adequate access without giving everybody
the keys to the kingdom.

said Jim O’Neill, chief information officer at Cambridge about self-service portals applying
RBAC [Par13].

1.8. Challenges in Providing Reconfigurable Cloud Applications

One of the benefits of cloud computing is scalability, as explained in Section 1.5.1, where service
subscriptions are easily changed, and resources are flexibly scaled up and down according to
14http://www.hubspot.com
15http://aws.amazon.com
16http://www.rackspace.com

27

http://www.hubspot.com
http://aws.amazon.com
http://www.rackspace.com

1.8. Challenges in Providing Reconfigurable Cloud Applications

customer demands. Especially enterprise applications require scalability on application level
with respect to application functionality. Customers, such as small and medium-sized companies,
require the ability to change their configuration according to their current business situation.
Smaller companies choose a limited range of functionality with the ability to scale up by adding
more functions later on. In contrast, if a company requires less functionality due to business
reasons, the application must scale down.

Moreover, a self-service portal enables customers to configure and reconfigure an application
on themselves without the need for interacting with the provider. Thus, customers are served
24 hours a day, as explained in Section 1.5.3. A configured and reconfigured application must
be available to the customer just-in-time without a manual deployment step conducted by the
provider. Thus, automated provisioning of tailored cloud applications demands for an application
architecture, capable of instantiating a configuration just-in-time and supporting reconfiguration
if configuration parameters change. As explained in Section 1.5.5, a configurable multi-tenant
aware application architecture is suitable, where new and changed configurations can instantly
be integrated in a running application instance without further manual interaction.

To analyze, if SaaS applications deployed on public cloud infrastructures are multi-tenant aware,
customizable, and support just-in-time provisioning, a structured empirical analysis of cloud
applications available on the market was conducted [Cha13]. The analysis shows that only
20% of the observed 85 SaaS applications are multi-tenant aware, and these applications offer
severely limited configuration options to the customers. The functionality of the applications
is customizable by integrating plug-ins on source code level. None of the observed applications
enables customers to configure application functionality directly on an abstract level as a self-
service. Additionally, most of the configurability and customizability solutions implemented in
state of the art applications are not reusable in other application scenarios as they are realized
ad hoc for a particular purpose. Hence, stakeholders involved in the configuration process are
also fixed and implemented in a pragmatic way.

The lack of configurability can be ascribed to the absence of (i) consistent variability and
configuration management and (ii) a flexible multi-tenant aware architecture being capable of
adapting to different tenant configurations while software and hardware resources are shared. A
challenge is to provide a generally applicable approach to automate the configuration of various
applications supporting different numbers and different types of stakeholders concisely.

Configurable SaaS applications with varying integrated tenant configurations require for unified
variability definition of application functionality and configuration parameters, as discussed in
Section 1.5.6. A tenancy contract between application provider and tenant defines general terms,
such as the duration of the tenancy. In addition, properties on how to provision application
support are provided. Moreover, technical conditions, such as the provisioned application
functionality are specified. A tenancy contract further defines QoS guarantees, such as adhering
levels of availability, security, and geographical or legal restrictions of the application. Tenants
have varying requirements on functionality and QoS, the variability of both must be handled.
Another challenge is in the provision of a multi-tenant aware architecture that supports variability
among different tenant configurations, while sharing hardware and software resources among
tenants of the same application instance.

28

1. State of the Art of Cloud Applications

The identified challenges can be addressed by applying methods from SPL engineering.

1.9. Benefits for Cloud Computing by Applying Software Product

Line Engineering

SPL engineering aims at developing various similar products at the efficiency of a single product
by reusing established software components. In the embedded systems domain, SPL engineering is
already well accepted and widely applied to develop various customized products by reusing single
artifacts. Prominent examples are the automotive industry in general, as well as the highly variable
Linux kernel [TH02, SSSPS07]. Applying SPL engineering methods in information systems, and
especially in the cloud computing domain, is a recent trend in software development [MA02,
Mie10].

Well accepted techniques from SPL engineering are of interest for different areas of cloud
computing as the recent SCArVeS workshop17 reveals. Generally, SPL engineering offers various
tangible and intangible benefits to an organization. Compared to traditional single system
development, measurable benefits are higher product quality, faster time-to-market, higher
productivity, and cost savings. Additionally, not directly measurable intangible benefits are
customer and professional satisfaction [Coh03].

Benefits from a system architect point of view are improved maintainability of an application and
its variations. Variability is expressed explicitly on different levels of detail and the dependencies
between configuration parameters are modeled uniformly.

From a customer point of view, the application of SPL leads to customizable cloud applications
at lower service costs. Configuration processes are simplified and feasible by customers in
self-service portals. Hence, customized applications are available just-in-time without manual
provider interaction. Additionally, SPL methods support the provision of customizable cloud
applications scalable in terms of functionality according to customer demands. Furthermore, as
various software components are reused, SPL engineering increases reliability of the applications
functionality and correctness.

In the next chapter, SPL engineering is introduced with special focus on methods that address
the challenges in providing reconfigurable cloud applications discussed in the previous section.

1.10. Summary

This chapter classifies the scope of this thesis by explaining the context of cloud computing.
Therefore, an overview of the state of the art in current cloud applications available on the
market is provided. Common terminologies applied in cloud computing are introduced and
conventional definitions are given. Different cloud-specific business models are discussed that are
17http://www.iese.fraunhofer.de/en/events/scarves2012.html

29

http://www.iese.fraunhofer.de/en/events/scarves2012.html

1.10. Summary

closely related to the cloud computing stack defined by NIST. The business model SaaS is often
used to refer to cloud applications in related work. Hence, the terms SaaS application and cloud
application are often used interchangeably as these applications are provided as services.

Customer orientation plays a central role in provisioning cloud applications as services. Especially
enterprise customers demand for applications tailored to their business. Therefore, various
configuration options of applications are discussed. However, configurable cloud applications
have specific demands on separating the stakeholders involved in the provisioning process.
Typical stakeholders involved in the provisioning of configurable cloud applications are identified
and RBAC as a common concept for restricting access on resources in shared and distributed
environments is explained. Furthermore, the characteristics of multi-tenancy as a common
architectural paradigm for shared cloud applications are observed and the characteristics of
configurable multi-tenant aware applications are observed.

Main characteristics of applications in the cloud are discussed and narrowed to concepts related
to this thesis. Service and customer orientation, availability on demand, scalability, just-in-time
provisioning, and resource sharing are identified as important properties of cloud applications
relevant in this thesis. However, further important characteristics regarding security algorithms,
application performance, and network access are out of scope of this thesis.

Additionally, benefits of providing self-service portals for signing up for a service are explained.
An overview of deployment models for cloud applications is given to point out that especially
public available applications demand for a self-service configuration portal, where customers can
configure a service without further interaction of the application provider. However, various legal
restrictions are discussed especially applying for self-service portals.

Further challenges in automating the configuration and provisioning of customized applications
are identified and benefits on addressing the identified challenges by applying SPL engineering are
highlighted. The application of SPL engineering on applications in the cloud is being explicitly
observed in the next chapters.

30

2. Software Product Lines – Foundations and

Related Work

Any customer can have a car painted any colour that he wants so
long as it is black.

— Henry Ford, 1909

Product line engineering enables reuse in a predictable way and allows for managing variation
and maintaining variants efficiently [WL99, PBvdL05]. The concepts of first building a reuse
infrastructure to derive products at a large scale are transferred from the manufacturing domain
to software development introducing the term Software Product Line. Hence, SPL engineering
aims at creating customer-specific product variants from a common reusable set of core assets
with the efficiency of mass production [CN01]. Especially in the embedded systems domain, SPL
engineering is a prevailing discipline, as product line concepts known from manufacturing are
homogenously applicable for reusable software and hardware assets.

Research has been conducted in the area of SPLs for over 20 years and it is practically applied
in several companies [KCH+90, LSR07]. For instance, the Bosch Group applies SPL engineering
to create a product family of washing machines. Further companies, such as Ericsson AXE and
Boing, successfully apply SPL engineering and are therefore listed on the SPLC Hall of Fame1.
However, the application of SPLs is not only limited to embedded systems.

Many approaches presented at the annual International Software Product Line Conference
(SPLC)2 reveal that software-intense systems benefit from SPL engineering. In addition, SPLs
are also applicable to information systems available on the Internet as a special form of software-
intense systems [BFK+99]. As most cloud applications are information systems based on specific
cloud technology, methods from SPL engineering build a good foundation for configuration man-
agement of those applications. Hence, this chapter explains general concepts of SPL engineering
with special focus on methods related to the challenges of reconfigurable cloud applications
identified in the previous chapter.

2.1. Mass Customization and Product Lines

The origin of SPL engineering in the manufacturing domain is referred to as mass customiza-
tion. Mass customization and product line are common notions used in the manufacturing
domain expressing that individually adapted products are created with the efficiency of mass
products [Pil06]. A definition given by Davis in 1987 defines mass customization as follows.

1http://splc.net/fame.html
2http://splc.net

31

http://splc.net/fame.html
http://splc.net

2.2. Software Product Line Engineering

Definition 2.1 (Mass customization [Dav87]). Mass customization is the large-scale production
of goods tailored to individual customers’ needs.

Hence, an assembly line to produce cars, whose components are individually chosen, is considered
as a form of mass customization. Individually developed products cover unique customer
requirements. However, these products are more expensive than standard products. Therefore,
paradigms of mass customization and product line engineering from the manufacturing domain
are transferred to the software development process to create software families and reduce
production costs [WL99].

2.2. Software Product Line Engineering

In 1968, McIlroy proposed to adopt mass customization techniques to software engineering to
create reusable software components [McI68]. As a consequence, component-based software family
engineering emerged. Software family engineering assumes that there exists more commonality
than variability in a family of software systems [Par76]. This variability is expressed in terms of
features. Feature is a general notion in software engineering reflecting a stakeholder requirement
and user visible functionality of a product. Various meanings of the term feature exist [CHS08,
AK09]. A feature is defined as follows.

Definition 2.2 (Feature [CE00]). A feature is a distinguishable characteristic of a concept (e.g.,
system, component, and so on) that is relevant to some stakeholder of the concept.

The term Software Product Line was coined to describe a software family and is defined in terms
of features as follows.

Definition 2.3 (Software product line [CN01]). A Software Product Line is a set of software-
intensive systems sharing a common, managed set of features that satisfy the specific needs of a
particular market segment [. . .] and that are developed from a common set of core assets in a
prescribed way.

The terms mass-customized software, software family, software factory and SPL are often used
synonymously for individual products derivable in a mass-efficient way with a strong focus on
reuse [WL99, CE00, PBvdL05]. SPL engineering is a process to create software infrastructures
and architecture to derive similar products of the same domain. These products have more
in common than they vary. The knowledge about variability and the explicit specification of
variability is essential in SPLs. According to Bosch et al. [BFG+02], variability in an SPL occurs
in two dimensions. Variability in space corresponds to the variant space that defines all possible
configuration variants described statically by a variability model. In contrast, variability in time
refers to changes either in the variant space or in a single variant configuration over time in
order to adapt to new or changed requirements. Changes in derived variant configurations are
considered as reconfiguration in terms of a Dynamic Software Product Line (DSPL), as explained
in Section 2.6. In contrast to evolutionary changes, the configuration space remains unchanged.

32

2. Software Product Lines – Foundations and Related Work

Changes in the variant space are evolutionary changes on core assets, such as modifying, adding
or removing features from the SPL. Such evolutionary changes altering the variant space are out
of scope of this work.

In SPL engineering, creating reusable assets and defining an SPL infrastructure is separated
from the derivation of particular products by means of domain and application engineering, as
explained in the following.

2.2.1. Domain Engineering and Application Engineering

The software family is established in terms of all derivable product configurations in domain
engineering, whereas individual variants are derived according to a variant configuration in
application engineering [CE00]. Domain engineering focuses on identifying and describing
commonality and variability among products of the same domain. Hence, the variant space is
defined in domain engineering and a reusable SPL infrastructure for deriving products is developed.
The results of the domain engineering process are a constraint model describing the full product
variant space and reusable software artifacts [GFd98]. In contrast, application engineering aims
at deriving valid configurations that satisfy the domain constraint model. Application engineering
utilizes the infrastructure to derive variants. Thus, the result of the application engineering
process is a complete variant configuration and the corresponding product [PBvdL05]. Figure 2.1
depicts the relation between domain engineering and application engineering and the comprising
SPL processes and their resulting artifacts as adopted from [PBvdL05].

Neighbors describes an early approach towards domain engineering on building reusable software
assets of the same domain [Nei80]. The approach is implemented in a tool called Draco. In Draco,
knowledge for constructing software is organized in various reusable domains and variability is
classified in terms of generalization as domain independent, domain dependent, and application

Figure 2.1 Domain engineering and application engineering.

33

2.2. Software Product Line Engineering

dependent. In general, domain engineering means to design for reuse and is a process to create
software artifacts, specify variability and commonality, as well as constraints valid for artifacts
in the domain [CE00]. The domain engineering process contains the sub processes of domain
analysis, domain design and domain implementation. Domain analysis comprises planning,
identification and scoping of a particular domain. This activity explicitly specifies products
that will be part of the product line and which are not. Furthermore, variable and common
functionality of these products are defined. Variability modeling is part of the domain analysis to
explicitly specify commonality and variability among product variants of the same product family.
The resulting variability model defines the configuration space of the product family [WL99].
Additionally, the domain design process results in a domain architecture reflecting product family
requirements. Domain implementation is a process to set up a variability infrastructure and
implement variable assets.

Application engineering is the process to create a single product utilizing the SPL infrastructure
and reusing domain assets. The product complies to the product family specification created
during domain engineering and is developed cost-efficiently in a way similar to a supply chain.

In practice, the processes of domain engineering and application engineering cannot be separated
strictly, as product enhancements are requested frequently by customers and a changeable
infrastructure is essential to react on market demands. Thus, reactive and agile SPL engineering
emerged to handle such changes [DPAG11], but are out of scope of this work.

2.2.2. Problem and Solution Space

Orthogonally to domain and application engineering, SPL concepts are further split up into
problem and solution space [CE00]. In the problem space, concepts independent from a particular
implementation technology are defined. Application requirements and reusable artifacts are
specified. Functional and behavioral requirements on an application are described on an abstract
level. Variability among functional and behavioral application requirements is modeled formally
by means of a variability model. Common approaches of variability models are Orthogonal
Variability Modeling (OVM) [PBvdL05], feature models [KCH+90], decision models [SJ04],
Common Variability Language (CVL) [HWC12], and propositional formulae [Bat05].

In the solution space, technology dependent parts for realizing applications are specified. For
instance, these parts comprise design models, source code, and documentation. In addition,
concrete implementations of reusable and variable artifacts are specified, as well as a variable
reference architecture combining these software assets. A reference architecture prescribes
commonalities and variabilities among all variant configurations of the product family by means
of a predominant architectural style and design rules [Bos00].

A prominent approach to define a variability model in the problem space is feature modeling.
The applicability of feature models to represent variability of SaaS applications is stated in
literature [WZ11]. The notion of features and dependencies among features is intuitive for
customers. This notion is therefore applicable in configuration self-service portals where customers
configure applications themselves, as discussed in Section 1.5.3.

34

2. Software Product Lines – Foundations and Related Work

2.3. Feature Modeling

In the early 1990s, the Feature Oriented Domain Analysis (FODA) study introduced feature
modeling as a requirements engineering method to specify an application domain and to de-
scribe variability and commonality in products of a company’s product portfolio in terms of
its features [KCH+90]. Ever since, feature models are widely used in SPL engineering. For in-
stance, in generative programming [CE00], feature-oriented programming [Bat04], delta-oriented
programming [SBB+10] and software factories combined with Model-Driven Software Develop-
ment (MDSD) [GS03].

Depending on the application context, several extensions to the original FODA feature model
language have been proposed to enhance the expressiveness of feature models [BSRC10]. In the
original FODA case study, the notion feature diagram refers to the graphical representation of
a feature model in a tree-like hierarchical structure with a single root node representing the
application [KCH+90]. A schematic feature diagram in the notation introduced by Czarnecki
and Eisenecker [CE00] is shown in Figure 2.2. This representation is commonly used in literature
to visualize the relation between features. Therefore, a feature model is sometimes referred to as
feature tree. In this work, the notion of feature model is used to comprise feature diagram and
feature tree. A feature model is defined as adopted from [CE00] as follows.

Definition 2.4 (Feature Model). A feature model defines meaningful feature combinations and
represents the configuration aspect of the reusable software.

A feature model formally describes the relations between features as a result of the domain
engineering phase [LKL02]. Each node in the hierarchical structure represents a feature of the
application. As an example, the Business ByDesign application offered by SAP, and introduced
in Section 1.5.4, can be represented as a feature model. Hence, each functional unit of the
application is interpreted as a feature.

Figure 2.2 Representation of a feature model in the notation of a feature diagram (adopted
from [CE00]).

35

2.3. Feature Modeling

2.3.1. Illustrative Example of a Feature Model

The SAP Business ByDesign application is chosen to illustrate the concepts of feature models. By
analyzing the configuration wizard provided on the web3, a feature model with 78 features and 23
cross-tree constraints on those features is extracted manually. These features represent variable
functionality of a Business ByDesign application. An excerpt of the feature model containing
19 features and four cross-tree constraints is applied in the following to explain feature model
concepts and depicted in Figure 2.3. The complete feature model is included in the Appendix in
Section B.2.

The root feature named Business ByDesign represents the variable application. The relationship
between child features and their parent is a decomposition relation constituting imply constraints.
Thus, the presence of a child feature in a configuration requires the presence of its parent.

In this example, the root feature Business ByDesign has five direct child features, which
are Marketing, Purchasing, Supply Chain Setup Management, Project Management, and
Product Development. Additional require and exclude cross-tree constraints constitute an im-
plication graph with further semantics [CW07]. For instance, the feature Campaign Management
requires the feature Market Development, while the feature Basic Project Planning excludes

3https://www.sapconfigurator.com

Figure 2.3 An excerpt of the feature model representing the Business ByDesign application.

36

https://www.sapconfigurator.com

2. Software Product Lines – Foundations and Related Work

the feature Product Engineering. Concepts that cannot be expressed by an implication graph
are parent-child relations, group relations, and complex cross-tree constraints written in proposi-
tional logic.

According to the FODA definition, child features of a parent feature can either be solitary or
grouped. A solitary relationship refers to the child’s dependence on its parent feature, being
either optional or mandatory. Hence, an optional child may be included, whereas a mandatory
child must also be included in a configuration if a parent feature is included. In the example
in Figure 2.3, the feature Payment and Liquidity Management is an optional feature, whereas
Product Engineering is a mandatory feature. The grouped relationship is defined between
multiple child features and a single parent feature. In addition to the parent child relation,
feature groups express dependencies among sibling features. In the initial FODA study, only
alternative relationships between features in a group were introduced. An alternative relationship
expresses that one of the grouped features must be chosen, but not both at the same time.
According to the Business ByDesign example, the features Project Planning and Execution
and Basic Project Planning are contained in an alternative group.

Later on, or feature groups are introduced, defining that at least one feature of the group must
be contained in a configuration if the parent is included [CE00]. For instance, the features
Market Development and Campaign Management are contained in an or group. In the FODA
study, attributes that further classify features, such as cost and a description, are already
mentioned [KCH+90].

Industrial size feature models can contain up to thousands of features [STB+04, LP07, BSL+10]
and thus contain rather complex dependencies and constraints. The described feature model
concepts are not sufficient in all application areas. Features are only selectable or deselectable in
an application. They cannot model enumerated application qualities and numerical configuration
parameters. The modeling of numerical configuration parameters is required, to express variable
SLAs of cloud applications, for instance, as explained in Section 1.5.3.

Various extensions to FODA feature models have been proposed in literature to address the
reuirements of the different application domains. In the following, extensions relevant for
expressing variability knowledge of cloud applications are explained.

2.3.2. Feature Model Extensions

Several extensions to the described feature model concepts exist [BSRC10]. To model configuration
knowledge of cloud applications, extending feature models with group cardinality, attributes with
discrete domains, and complex constraints, is promising.

Group-cardinality

To generalize the relationship of grouped and solitary features without distinguishing between
alternative and or feature groups, Riebisch introduced the concept of group cardinality inspired

37

2.3. Feature Modeling

Table 2.1 Unified modeling of feature decomposition relations applying group cardinality
(adopted from [RBSP02]).

Decomposition Relation Group Cardinality Number of Features in Group

Optional Feature 0..1 1
Mandatory Feature 1..1 1
Or Group 1..n n
Alternative Group 1..1 n
Optional Group 0..n n
Mandatory Group n..n n

by Unified Modeling Language (UML) multiplicities [RBSP02]. The group cardinality is specified
by its multiplicity comprising a lower and an upper bound defining how many elements of the
group must be at least and at most contained in a variant configuration. Table 2.1 depicts
how the decomposition relations optional, mandatory, or, and alternative are expressed using
group-cardinality. The optional solitary feature relation is a special case of an optional group
relation, where the same holds for the mandatory relation, accordingly. Group cardinality have
the advantage that solitary and grouped features are modeled in the same way. Hence, formalism
and tools do not need to explicitly cope with special cases as solitary and grouped features are
unified.

Attributes over Finite Domains

Attributes are assumed as scalar variables with a particular data type equal to a discrete or
continuous domain [SRP03, BTRC05]. To model the non-functional configurability of SaaS
applications, features are enhanced by sets of attributes. Different notions of attributes are
proposed. In general, an attribute is a property with a name and a value further characterizing a
feature [CBUE02, BTRC05]. A predefined domain is assigned to an attribute specifying potential
attribute values and various attributes share the same domain. For instance, a feature User
Interface has an attribute Background Color with the domain values light blue, dark
blue, and green of the domain Color.

The cost of a feature is another attribute relevant for features used in pricing of SaaS applica-
tions. Furthermore, quality attributes, e.g., reliability and availability, in SaaS applications are
associated with SLAs, as explained in Section 1.5.3. The values of such attributes are classifiable
by enumerations when using symbolic values. For instance, availability may be classified in
low, medium, high, very high. An enumeration allows for effective analysis of constraints
on attribute values [MS98].

Domains are distinguishable in discrete and continuous domains. A discrete domain may be
represented by integer numbers, whereas a continuous domain is represented by real numbers. In

38

2. Software Product Lines – Foundations and Related Work

the Business ByDesign example in Figure 2.3, the mandatory feature Stakeholders contains two
attributes Employees and Users. Both attributes can assign a value between 10 and 10000.

In the figure, a notation for attributes is used similar to the notation introduced by Bena-
vides [BTRC05]. Features with attributes are represented similar to classes in UML class
diagrams. In this notation, the rectangle used to represent a feature is split to contain an area
for listing attributes and their domain.

Feature models comprising attributes over discrete domains are reducible to feature models
without attributes. For instance, the attribute User in the Business ByDesign example can be
transformed into a feature with an alternative group comprising all potential domain values
represented as child features. Hence, tools and formalism applicable on feature models without
attributes are reusable for such attributed feature models. In contrast, attributes over continuous
domains are more expressive. Thus, feature models with attributes over continuous domains are
not reducible to feature models only comprising features. Additionally, a feature model contains
further complex cross-tree constraints among features, attributes, and their domain values. As
constraints on infinite continuous domains are in general undecidable, only attributes with finite
domains are considered in this work.

Complex Feature Model Constraints

A feature model constrains the relations between features, attributes and domain values. In
general, constraints describe complex combinatorial problems declaratively. A constraint is
defined as follows as adopted from [Coh90].

Definition 2.5 (Constraint [Coh90]). A constraint declaratively specifies a relation between logical
variables of different domains.

As such, a constraint defines allowed value combinations for these variables. Feature model
constraints typically describe static dependencies between features, attributes and domain values.
A logical expression is referred to as constraint. An expression is unary, binary, and n-ary,
depending on the number of contained variables [RN09]. A unary expression restricts the
value of a single variable, e.g., x > 2. A binary expression defines a dependency between the
values of two variables, e.g., x 6= y. A n-ary expression defines dependencies between three or
more variables, e.g., max(a1, a2, . . . , ak). The combination of such expressions forms complex
constraints. For instance, complex constraints on features and attributes based on Object
Constraint Language (OCL) have been introduced in [SRP03]. Various types of constraints exist
regarding their purpose and application context [Coh90]. Some examples of constraint types are
shown in the following.

• propositional logic, e.g., ∨,∧,→, 6

• relational operators, e.g., equality = and inequalities 6=,≤,≥, >,<

39

2.3. Feature Modeling

• arithmetic constraints define a relation R between two expressions e in the form e1Re2,
where R ∈ {=, 6=,≤,≥, >,<} and at least one expression contains operators o ∈ {+,−, ∗, /}

• conditional, e.g., if e1 then e2 else e3

• combinatorial, e.g., min, max, sum

The discussed constraints are absolute constraints defining that a violation of one constraint
prohibits a valid solution. If it is important for some reason to not only find a valid, but
an optimal solution, preference constraints are used to specify preferred solutions. Preference
constraints are encoded in cost functions, which are applied to find an optimal solution regarding
costs, but are out of scope of this work.

In general, a feature model defines hierarchical constraints, group constraints and cross-tree
constraints, which can be classified into the discussed constraint types. Considering the tree
structure of the feature model, hierarchical constraints are implies relations between child and
parent features. Group constraints are assumable as arithmetic constraints. Cross-tree constraints
comprise the binary require and exclude relations between features as originally proposed in
FODA and further complex attribute constraints.

In the Business By Design example a require constraint is defined between the feature Campaign
Management and Market Development indicated by the directed dashed line in Figure 2.3.
A further exclude constraint is defined between the features Basic Project Planning and
Product Engineering. As attribute constraints unary and binary relational constraints between
attributes and domain values are to be considered. In a unary constraint, an attribute a is
put in relation with a literal value v ∈ D contained in the attribute domain D such as a rel v
with rel ∈ {=, 6=,≤,≥, >,<} for numerical Integer domains and rel ∈ {=, 6=} otherwise. For
instance, be an attribute color defined over the domain LightColors = {yellow, orange, white}.
A unary constraint could be defined as color 6= yellow specifying that the attribute should not
be yellow. An example for a constraint on an attribute memberCount defined over the Integer
domain Members = {1, . . . , 100} can be specified as memberCount > 50. Additionally, binary
constraints are defined similarly except that, instead of a literal value, a second attribute is
inserted in the constraint and the domains of both attributes are comparable. For instance, the
constraint color 6= background expresses that attribute color should not have the same value
as attribute background. In the Business ByDesign example, a relational cross tree constraint
is defined on the User and Employee attributes. This constraint ensures that the number of
employees must be greater or equal to the number of users.

A feature model describes the variability of products of an application domain in terms of
constraints among features. The specification of a variability model in the domain engineering
phase and the derivation of configurations in the application engineering phase is distinguished,
according to the definition in Section 2.2.1.

40

2. Software Product Lines – Foundations and Related Work

2.4. Derivation of Variant Configurations

Based on the constraints specified by a feature model, valid variant configurations are derivable
in a specialization process. Specialization is defined as follows.

Definition 2.6 (Specialization [CHE04]). Specialization is a transformation process with the goal
to bind variability specified by a feature model. Input and output of the transformation is a feature
model, such that the set of the configurations denoted by the resulting feature model is a subset of
the configurations denoted by the former feature model.

A stakeholder specifies a variant configuration in a specialization process by selecting and
deselecting features from the feature model obeying variability constraints [CE00]. If the feature
model includes attributes, then assigning attribute values is part of the process as well. The
result of a specialization process is a complete configuration where all variability is bound. The
feature model of the Business ByDesign example shown in Figure 2.3 defines various complete
configurations as explained in the following.

2.4.1. Illustrative Example of a Variant Configuration

A specialization process leads to a valid complete variant configuration. Based on the Business
ByDesign feature model explained in Section 2.3.1, a possible complete variant configuration is
depicted in Figure 2.4. Red crosses and light gray feature names mark deselected features, while
check marks highlight selected features in the complete configuration. Hence, in the example
complete configuration, 9 features are deselected and 10 features are selected. Selected features
are highlighted by a check mark in the figure, while deselected features are greyed out and marked
with a cross. Furthermore, the two attributes have assigned values.

The exemplified complete configuration comprises the root feature Business ByDesign, as well
as the further selected Marketing feature together with its child features Market Development
and Campaign Management. The root feature generally represents the application itself and
must always be selected in a valid complete configuration. Additionally, the Supply Chain
Setup Management feature and its child feature Supply Chain Design are included in the
variant configuration. The feature Project Management and its child features Basic Project
Planning and Payment and Liquidity Management are further included together with the
attributed feature Stakeholders. Furthermore, the two attributes of the feature Stakeholders
are set. In this example, the value of the Employees attribute is 100, and the value of the Users
attribute is 15. The functionality represented by the selected features is available in the tailored
application instance.

In contrast, the deselected features are grayed out in the figure and are not available in
a derived application configuration. Deselected features are Purchasing and its child fea-
tures Self-Service Procurement and Purchase Request and Order Management, as well as
Execution Design, Production Models, Project Planning and Executions, Expense and

41

2.4. Derivation of Variant Configurations

Reimbursement Management, and the feature Product Development together with its child
feature Product Engineering.

A complete configuration can be derived in a single step or in multiple steps. The incremental
process of deriving variant configurations in multiple steps is operationally described by means of
staged configuration [CHE04, CHH09, RSPA11a]. Stages can be associated with different phases
of a configuration process and with different stakeholders.

2.4.2. Staged Configuration

The key concept of staged configuration is to derive a complete variant configuration in multiple
ordered specialization steps. Hence, the chronology of configuration decisions is stipulated. Each
stage in a staged configuration process consists of a set of specialization steps, where in each
specialization step a single configuration decision is conducted. Staged configuration is defined
as follows.

Definition 2.7 (Staged Configuration [CHE05b]). Staged configuration is a step-wise specializa-
tion process to transform a feature model until a complete variant configuration is reached.

Figure 2.4 A complete configuration of the Business ByDesign feature model excerpt.

42

2. Software Product Lines – Foundations and Related Work

Figure 2.5 Configuration decisions made in a staged configuration process step-wise de-
crease the amount of unbound variability.

Figure 2.5 illustrates a staged configuration process. The feature model on the left side is the
input for the staged configuration process and describes the complete configuration space. This
feature model, where no variability is bound, is input for the first stage. The output of each stage
is a transformed feature model with reduced variability. Each transformed feature model must
obey feature model constraints and is input for the subsequent stage. In each stage, configuration
decisions are conducted in multiple specialization steps. Allowed configuration decisions of a
stage are specified in a configuration view.

A configuration view shows a stakeholder-specific part of the feature model relevant for conducting
configuration decisions. In the figure, configuration views are highlighted with a gray area around
configurable features. By conducting configuration decisions, the degree of the unbound variability
decreases, until in the final stage n, a complete configuration is reached where all variability is
bound. Configuration decisions conducted in a stage cannot be reverted in subsequent stages.
The amount of variability bound per stage depends on the assigned views and differs therefore.
The stages 1 and 2 that are not final as they result in partial configurations, where variability is
still left.

According to the Business ByDesign example in Figure 2.3, different views can be defined
comprising the configuration operations of differing features. Figure 2.6 shows two sample views
for two different stakeholders conducting configuration operations.

One view is entitled view 1, where belonging features are highlighted with a dark gray background,
while features belonging to the second view entitled view 2 are highlighted with a light gray
background. Hence, a resulting staged configuration process comprises two ordered stages, with a
view assigned to each stage. Assuming that configuration operations are conducted first in view
1 followed by operations in view 2, the result of the first stage is a partial configuration with
variability left, as exemplified in Figure 2.6, while the result of the second stage is a complete
configuration similar to the configuration in Figure 2.4. Staged configuration processes are
modeled and automated by workflows.

43

2.4. Derivation of Variant Configurations

Staged Configuration Processes and Workflows

Staged configuration is formally modeled as process and automated by a workflow [MCdO07,
Hub12]. As such, a process is defined as follows.

Definition 2.8 (Process [WfMC99]). A process is a formalized view of a business process, repre-
sented as a coordinated (parallel and/or serial) set of process activities that are connected in
order to achieve a common goal.

Workflow modeling aims at automating the execution of formally defined business processes and
is defined as follows.

Definition 2.9 (Workflow [WfMC99]). A workflow is the automation of a business process, in
whole or part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.

Figure 2.6 Two views on the Business ByDesign feature model applied in a staged configura-
tion process.

44

2. Software Product Lines – Foundations and Related Work

Figure 2.7 An example staged configuration workflow comprising two stages in UML activity
diagram notation.

In literature, staged configuration processes based on extended feature models are formalized and
automated as workflows [CHE05b, MCdO07, KOD10, MSDLM11, HCH09, AHH11]. Different
languages exist to define a workflow, such as Business Process Model and Notation (BPMN)4

and UML activity diagrams [DtH01]. A benefit of UML activity diagrams is that they provide a
graphical notation for specifying workflows, as well as execution semantics [Fah08].

Figure 2.7 depicts a UML activity representing the sample staged configuration workflow for the
Business ByDesign example explained before. The views depicted in Figure 2.6 can be mapped
to stages. The view view 1 is dedicated to stage 1, while view 2 is dedicated to stage 2,
highlighted by the same background color. Hence, the staged configuration workflow comprises
two stages, separated by swim lanes. Each stage contains a configuration action that applies the
associated view for conducting configuration operations. The purpose of each action is to reduce
the variability of the feature model. The feature model is input and output of these actions, as
depicted by action pins. The result of stage 1 is a partial configuration whereas the result of
stage 2 must be a complete configuration where all variability is bound.

By applying feature models in an SPL-based configuration process, the satisfiability of feature
model constraints is to be guaranteed. A feature model is satisfiable if at least one valid variant
configuration can be derived. Satisfiability of a feature model can be checked by applying
constraint programming, as discussed in the next section.

2.5. Feature Model Satisfiability

Regarding the concepts of a feature model, constraint programming methods are applicable
to analyze the satisfiability of a feature model. Constraint programming describes complex
combinatorial problems declaratively and is applicable to check the satisfiability of a feature
model [BRCT05]. In a constraint program, relations between variables are stated as constraints
and evaluated by a solver. Constraint programs find assignments of variables that fulfill the
specified constraints [RN09]. The satisfiability of a feature model is analyzed by translating
feature model concepts into adequate logic representations. Depending on the type of vari-

4http://www.omg.org/spec/BPMN/2.0/

45

http://www.omg.org/spec/BPMN/2.0/

2.5. Feature Model Satisfiability

ables used to express the feature model constraints, different solvers are used to check the
satisfiability [SDM+11].

Typical constraint program representations of relations in a feature model are Programmation
en Logique (Prolog), Binary Decision Diagram (BDD), Constraint Satisfaction Problem (CSP),
and Satisfiability Modulo Theories (SMT). Applying the respective solvers to the constraint
program verifies the satisfiability of the translated feature model. Basic feature models containing
features and cross-tree constraints expressed in propositional logic are represented as a set of
Boolean variables and associated constraints [Man02, Bat05]. For such feature models with
Boolean domains, Satisfiability (SAT) and BDD solvers are applicable, as well as Prolog [MWC09,
BTRC05, ZYZJ08, Seg08, Bat05].

A common approach to checking the satisfiability of feature models with discrete attribute
domains is by translating the feature model into a CSP and using CSP solvers to reason on the
model [BRCT05, WDS09, MSDLM11, KOD10]. Additionally, feature models with attributes
over infinite discrete and continuous domains are checked by applying SMT solver [XHSC12].

For feature models containing attributes over finite domains, as applied in this work, a CSP
solver is suitable. Therefore, the following section explains in detail how to apply a CSP solver
to check the satisfiability of extended feature models. The application of other solvers is out of
scope of this work.

A CSP defines a set of variables and a set of constraints, where each variable has a domain
containing its possible values [Tsa93]. A CSP is solved by identifying a consistent assignment of
variables that satisfies all constraints. Checking the satisfiability of a feature model is a CSP,
where a valid variable assignment equals a valid variant configuration of the feature model. If at
least one valid variable assignment exists, the feature model is satisfiable.

A basic feature model containing binary imply and exclude cross-tree constraints is a Boolean
CSP [BRCT05]. When transforming an attributed feature model into a CSP, attributes are
considered as variables with finite domains and associated with a certain feature. The worst case
runtime complexity of solving finite-domain CSPs is exponential with respect to the number of
variables. In most cases, CSP solvers are much faster as they comprise special search algorithms.
Thus, CSP solvers scale for large feature models as shown in literature [MSD+12].

Applying a CSP solver allows reasoning on feature models. For instance, the number of derivable
variant configurations can be computed, as well as core features included in all variant configura-
tions and dead features contained in none of the derivable variant configurations [TBD+08]. A
CSP solver checks a given partial configuration and determines whether feature model constraints
remain satisfiable. Based on a conflict in a partial configuration, a CSP is applied to suggest error
resolving sets of features that need to be selected or deselected to solve the conflict [WSB+08].

46

2. Software Product Lines – Foundations and Related Work

2.6. Dynamic Software Product Lines

A Dynamic Software Product Line (DSPL) is a special kind of SPL, where the configuration
space describes the states of an adaptive reconfigurable application [HHPS08]. In contrast to
statically configured applications of an SPL, the configuration of a deployed application is changed
dynamically during application runtime in a DSPL. At a point in time, a complete configuration
represents the current state of the application. If requirements change during application runtime,
the deployed application is reconfigured. In a DSPL reconfiguration is defined as follows.

Definition 2.10 (Reconfiguration [GH04]). Reconfiguration in a DSPL is the process of switching
between configurations of an already deployed application during runtime caused by changed
requirements.

In DSPLs several processes that transform a feature model are to be distinguished. Specialization
processes occur in SPLs, as explained in Section 2.4. Additionally, in DSPLs further reconfigura-
tion and generalization processes occur. Figure 2.8 classifies these processes. The feature model
on the left side defines the configuration space by constraining feature combinations. Based on
this model, product variants are derived in a specialization process, as explained in Section 2.4.
A complete configuration as visualized on the right side satisfies all feature model constraints
and represents a valid product variant of the SPL. The specialization process may be conducted
in a single step, where a complete configuration is directly derived from the feature model, and
in multiple steps forming a staged process with intermediate configurations.

Various staged configuration approaches propose to derive a product in multiple steps, as discussed
in Section 2.4.2. The result of each stage is a partial configuration that does not contradict
feature model constraints and includes still unbound variability. Each subsequent stage further
specializes the partial configuration until all variability is bound in the final stage resulting in a

Figure 2.8 Classification of feature model transformation processes.

47

2.6. Dynamic Software Product Lines

complete configuration. In contrast, the inverse process of specialization is generalization and is
specified as follows.

Definition 2.11 (Generalization). Generalization is a transformational process with the goal to
release bound variability specified by a feature model. Input and output of the transformation is a
feature model, such that the set of the configurations denoted by the resulting feature model is a
superset of the configurations denoted by the former feature model.

In a generalization process bound variability is released and thereby the number of derivable
variants is increased. Generalization occurs in DSPLs as previous configuration decisions are
revoked. Additionally, reconfiguration occurs in complete variant configurations by switching
from one configuration to another or in partial configurations where changes are propagated to
subsequent stages. Reconfigurations of complete variant configurations is a central concept in
DSPLs, as explained before.

In general, DSPL approaches are applied in various areas where reconfiguration of an application is
required during runtime, such as self-adaptive systems and ubiquitous computing [BSBG08, LK06].
As reported recently, cloud applications are a further application area for DSPLs [BGP12].

2.6.1. Reconfigurable Cloud Applications are Dynamic Software Product Lines

Software information systems also benefit from SPL and DSPL engineering in terms of an efficient
variability management [BFK+99]. Most applications provided in the cloud are information
systems. A configurable cloud application can be regarded as a product family in SPL engineering
where each customer configuration is presumed as a product variant. The customization of a
cloud application is assumed as a DSPL as requirements of customers may change and thus,
their tenant configurations are to be reconfigured accordingly during application runtime. Thus,
the domain and application engineering phases of an SPL as visualized in Figure 2.1 are adopted
to the configuration of cloud applications as shown in Figure 2.9. Domain engineering in an SPL
equals a SaaS engineering phase, where the configuration options and the shared artifacts of a
cloud application are specified. The configuration options of the SaaS application in the cloud
equal the variability in a product portfolio. Therefore, the SaaS analysis phase is performed
to define the configuration scope of the application in terms of features. Furthermore, in the
SaaS design phase, the application architecture is defined and the multi-tenant aware shared
infrastructure is specified. Commonly, a configurable SaaS application will be deployed in a
public or community cloud. In the SaaS implementation phase, shared software and hardware
assets are specified and implemented. Additionally, in the implementation phase, shared assets
are implemented.

The application engineering process of an SPL, in which a particular application is derived per
customer, equals the SaaS customization process of a multi-tenant aware cloud application. In
the SaaS customization process the requirements of a customer are evaluated and a suitable
tenant configuration is created. Such a tenant configuration is not an application on its own, but
integrated into the multi-tenant aware single-instance SaaS application.

48

2. Software Product Lines – Foundations and Related Work

2.6.2. Cloud Applications and Software Product Lines

As discussed previously reconfigurable cloud applications can be perceived as a specific type of
SPL. However, their concepts differ. Aligning different types of cloud applications and SPLs
leads to the comparison in Table 2.2. The concepts of SPLs, DSPLs, and cloud applications
are classified in terms of the number of customers, related variant configurations and the
number of deployed product instances. In an SPL, each customer has one configuration and a
corresponding product instance. A configurable multi-instance SaaS application equals an SPL,
as per customer one configuration is derived and a corresponding product instance is deployed per

Figure 2.9 Applying processes from Software Product Line engineering on the configuration
of a cloud application.

Table 2.2 Classification of cloud and SPL concepts regarding customer configuration and
product instance multiplicities.

Category Customer Configuration Product instance

Software product line 1 1 1
Configurable multi-instance SaaS applica-
tion

1 1 1

Multi-tenant aware SaaS application m 1 1 (shared by all
customers)

Dynamic software product line 1 n 1
Reconfigurable multi-instance SaaS appli-
cation

1 n 1

Reconfigurable multi-tenant aware SaaS
application

m n 1 (shared by all
customers)

49

2.7. Configuration Management in Software Product Lines

customer. However, a multi-tenant aware SaaS application differs, because multiple customers
share the same configuration and the same product instance. In a DSPL, each customer has
multiple configurations of the same product instance, where one configuration is active at a time.
Additionally, a reconfigurable multi-instance SaaS application equals a DSPL, as per customer
multiple configurations are derived, but only one at a time is active in the related product
instance. Moreover, in a reconfigurable multi-tenant aware SaaS application, multiple customers
have a configuration at a time that is integrated into a shared single product instance. Similar
to a DSPL, configurations change according to changing customer requirements.

Changes in a variant configuration are a potential source of error. To prevent errors in configura-
tions by managing and explicitly tracing configuration information, the discipline of configuration
management emerged. Generally, configuration management copes with configurability and
changes in configurations of a product or a system.

2.7. Configuration Management in Software Product Lines

Configuration management is a discipline dealing with changes and evolution of products and
systems. The system engineering process defines the demand for tracing configuration information
of configurable items in a system and the ability to guarantee consistency of a product’s
properties with respect to product requirements and is defined by ANSI and Electronic Industries
Alliance (EIA) in the standard ANSI/EIA-649-B as follows [EIA-649-B].

Definition 2.12 (Configuration Management [EIA-649-B]). Configuration Management is a tech-
nical and management process applying appropriate resources, processes, and tools to establish
and maintain consistency between the product requirements, the product, and associated variant
configuration information.

In other words, configuration management aims at planning, controlling and documenting changes
to assure the quality of products. According to the ANSI/EIA-649-B standard main activities of
this process are

• configuration management planning for planning (i) what configuration items to control,
(ii) when to control a variant configuration, and (iii) how to change a variant configuration,

• configuration identification for specifying controlled functional and physical configuration
properties,

• configuration control monitoring what changes are made to a configuration when and how,

• configuration status accounting determining and reporting the configuration status of any
configuration item, and

• configuration verification and audit guaranteeing that configuration items are configured
correctly and the complete configuration is consistent with respect to the specification.

50

2. Software Product Lines – Foundations and Related Work

Generally, a variant configuration is allowed to change after reaching a baseline. A baseline
is a product version that reaches major product requirements. The intention of configuration
management is to keep variable system artifacts manageable throughout their lifecycle, starting
with their design, implementation, test, build, release and finally maintenance. Hence, this process
is applicable to various domains ranging from industrial engineering to software engineering.

In software engineering, Software Configuration Management (SCM) is a discipline of planning
and managing evolutionary changes of a software system and its parts [IEEE 828-2012]. SCM
deals with dependencies and relations among variable software parts and defines the variant
space to describe variation in space, while further coping with changes of a product in terms of
product versions considering variation in time by means of a version space [CW98]. Hence, SCM
has a strong focus on the implementation phase and is therefore often equated with collaborative
version control of source code artifacts [Bab86]. However, version control and traceability of
source code artifact changes over a period of time are not considered in this thesis.

An important aspect of configuration management is the management of variation in time to
maintain the integrity of configuration changes in a variable product. Hence, configuration
management is an important multi-dimensional management process in SPL engineering coping
with variations in time and space [NCB+13].

In SPL engineering, the variant space is modeled explicitly, as explained in Section 2.2.1, and thus
a part of SCM. SCM in SPL engineering does not only manage the variation of a single product,
but with the variation of all derivable products and therefore shared artifacts [YR06, Tha12].
In addition, configuration options of shared core product line assets as part of the domain
engineering are managed, and on the other hand the compliance of derived products with respect
to specifications is managed in the application engineering.

In SPL engineering, a product changes in time, either caused by evolutionary changes of core
assets implying the variant space to change accordingly or by reconfiguration in a DSPL leaving
the variant space constant.

This thesis assumes a cloud application as a DSPL without changing variant space, as explained in
Section 2.6.1. As discussed in Section 1.9, the application of SPL methods on cloud applications
is beneficial to cope with variation in application functionality.

Main configuration management activities listed above can be automated or at least supported
by automation for cloud applications by applying SPL methods as further explained in the next
chapters. For instance, functional variation of a cloud application is described in a unified feature
model, as explained in Section 2.3 in the problem space. However, open research questions in
applying SPL methods on cloud applications remain. In the following, requirements for applying
methods from SPL engineering for automating configuration management of cloud applications
are summarized.

51

2.8. Requirements for Automated Configuration Management of Cloud Applications

2.8. Requirements for Automated Configuration Management of

Cloud Applications

As explained in Section 1.5.1 cloud applications demand for functional scalability with respect
to functionality and quality. Hence, cloud applications must be reconfigurable. They demand
for automated configuration management to ensure the correctness of configurations and recon-
figurations, as well as to omit manual interaction in providing applications. Hence, providing
self-service portals enables various stakeholders to conduct configuration operations on their
own. The result of the configuration decisions can the be available just-in-time by automating
configuration management, as motivated in Section 1.8.

Methods from SPL engineering combined with a multi-tenant application architecture are
applicable to automate configuration management. However, different requirements for a concise
configuration management approach applying such methods are identified in the previous chapters
and summarized in the following.

Requirement 1 (Flexible cloud application architecture). Reconfigurable cloud applications that
are scalable in terms of functionality and quality require a flexible software architecture that
supports reconfiguration at runtime, as well as just-in-time provisioning of tailored applications.

A flexible software architecture supports variability in two dimensions, (i) among space with
respect to customer configurations, and (ii) among time regarding changes in each single customer
configuration. Furthermore, mechanisms are to be provided to restrict the user access and
gain access to different functionalities and resources according to the specified requirements. In
addition, customer configurations may change and trigger adaptation of the application instance
at runtime.

Feature models are suitable to express the parameterized variability of cloud applications as
identified in Section 1.8. Quality constraints, such as performance, and the server location can
be expressed by attributes and related value domains. However, a unified model describing
variability and meaningful configuration variations may be rather complex and extensive for a
SaaS application. For instance, the feature model of the Business ByDesign application, depicted
in Figure 2.3, contains 78 features and 23 cross-tree constraints. The feature model restricts
configuration operations by introducing further, not always obvious, dependencies between
features.

Requirement 2 (Consistent configuration space tailoring). Prior to conducting particular man-
ual configuration operations, a consistent and automated tailoring of the configuration space is
required.

Business reasons, such as selling features in packages induce the feature model to be meaningfully
partitioned while respecting feature dependencies. Furthermore, due to legal restrictions, as
discussed in Section 1.5.3, a large amount of functionality may not be available in a certain
country. Hence, the configuration space must be tailored efficiently by obeying feature model
constraints prior to conducting manual configuration decisions.

52

2. Software Product Lines – Foundations and Related Work

Requirement 3 (Adaptive staged reconfiguration processes). Various different stakeholders are
to be flexibly integrated in the configuration of SaaS applications, where the configuration options
of stakeholders are restricted properly. Configurations conducted by specific stakeholders are
reusable as pre-configurations for further stakeholders, while reconfiguration decisions of partial
configurations are propagated to depending stages.

Varying stakeholders are involved in configuring SaaS applications with differing configuration
permissions, as discussed in Section 1.8. However, in an open cloud-environment, not all
stakeholders are known beforehand. For instance, how many customers and which customers
will subscribe for a SaaS application cannot be predicted. Thus, the configuration process must
be flexibly modifiable and scalable to handle stakeholders dynamically. Stakeholders, such as
providers, create pre-configurations independently reused by several other stakeholders, such
as tenants. Therefore, a mechanism to consistently create and handle such pre-configurations
in the configuration process is required. In general, stakeholders are only allowed to conduct
configuration decisions that lead to valid variant configurations. Thus, the configuration process
must not lead to deadlocks.

Configuration decisions conducted during the configuration process are evaluated to ensure the
derivation of valid complete configurations. As stakeholder objectives may change, for instance, if
a tenant decides to rent different functionality, the tenant’s partial configuration is changed and
subsequent configurations, such as user configurations are reconfigured. Hence, a scalable configu-
ration and reconfiguration process that adapts automatically to the stakeholders participating in
the configuration process of an application is required. Beside the identified requirements, further
demands covering a scalable and elastic cloud infrastructure, the implementation of the user
interface of a self-service portal, as well as a multi-tenant aware persistence service, and network
communication. These aspects are important for the provisioning of enterprise applications, but
are out of scope of this work.

2.9. Summary

This chapter explains fundamental concepts of SPL engineering and mass customization and
provides an overview of their applicability to cloud computing. The common SPL engineering
phases of domain and application engineering are described and how they are transferable to
cloud applications. From the variety of SPL approaches proposed in literature, selected concepts
related to the configuration of cloud applications are presented. An overview of variability
modeling technique applied in SPL engineering is given. Especially, feature modeling as a
common technique is discussed. To model the customizability of applications in the cloud,
particular extensions to the initially proposed FODA feature models are explained. These
extensions comprise group-cardinality and attributes with finite domains.

Moreover, the derivation of variant configurations based on feature models is presented and
how the variant configuration can be conducted by multiple participating stakeholders in a
staged configuration process. Each stage results in a partial configuration of the feature model,
which needs to be checked for satisfying feature model constraints. Different methods to ensure

53

2.9. Summary

feature model satisfiability are discussed, while for extended feature models with attributes,
applying a CSP solver is promising. Thus, the translation of extended feature models into CSP is
explained. Furthermore, relations between applications in the cloud and DSPLs are established.
A central concept of DSPLs is reconfiguration. A DSPL in general expresses the states of an
application and reconfiguration is applied to switch from one state to another. This is similar in
an SPL for configurable multi-tenant aware applications Moreover, the SPL describes all possible
configurations of all tenants, as well as all possible reconfigurations of a single tenant.

This chapter further introduces the discipline of configuration management focussing on the
integrity of configuration changes by planning, controlling, and documenting configuration changes.
Thus, configuration management is an important process in SPL engineering. However, open
research questions in applying methods from SPL engineering for automating the configuration
management of reconfigurable cloud applications remain. These questions lead to the requirements
identified in Section 2.8. Hence, a configuration management framework for cloud applications is
presented in the following chapters to address the requirements.

54

Part II.

Configuration Management Based on

Feature Models

55

3. Configuration Management Framework for

Reconfigurable Cloud Applications

The hardest single part of building a software system is deciding
precisely what to build.

— Frederic Brooks, 1987

Reconfigurable cloud applications require configuration management to cope with variation. The
previous chapter revealed the applicability of SPL methods to model variation and to prevent
errors in automating configuration and reconfiguration processes. For instance, feature models
concisely specify variability and commonality among application configurations, as shown by the
example in Section 2.3.1. In addition, staged configuration concepts are appropriate to structure
configuration processes and derive valid application configurations accordingly, as exemplified in
Section 2.4.1.

However, the requirements identified in Section 2.8 regarding a variable application architecture, a
concise definition and reuse of pre-configurations, as well as adaptivity of configuration processes
are not yet addressed in SPL engineering. This chapter provides an overview of a feature-based
configuration management framework proposed in this thesis that extends SPL methods to
address the particular requirements of reconfigurable cloud applications.

The next section introduces a video information system as an example for a reconfigurable cloud
application to illustrate the concepts.

3.1. Example of a Video Information System

An example of a component-based video information system is introduced in this section to
explain the concepts of the proposed framework for reconfigurable cloud applications. In a
hypothetic cloud scenario, a customizable and video portal depicted in Figure 3.1 is offered by an
application provider to various customers. The system can be rented and tailored by customers
to provide video content to several users. The video portal is multi-tenant aware to serve multiple
customers by a single application instance to ease maintenance. A user of the application can
access a tailored application to stream videos.

In this scenario, the application comprises several component types visualized in a graphical
notation adopted from UML component diagrams. Some component types are mandatory for a
video portal, while other types are optional highlighted by different background colors of the
component types in the figure. Customers choose different subsets of these types. Mandatory

57

3.1. Example of a Video Information System

Figure 3.1 A variable video information system modeled as components.

Figure 3.2 Configuration of customer A of the video information system.

component types required in all customer configurations are Video player, Decoder, Data
provider, and an abstract Stream processor. Hence, these component types contain core
functionality of the video information system. In addition, optional component types comprise
a Video manager offering a user interface to add or remove videos from the library, a Water
marker component type to add a customer-specific watermark to a video, and a Subtitle type
to overlay videos with subtitles. In terms of multiplicities, each mandatory component type must
be contained in a configuration exactly once, while optional component types can be contained
zero or one time. Moreover, the component types Water marker, Subtitle, and Decoder inherit
from the mandatory but abstract Stream processor component type as shown in the figure.
This abstraction enables customers to select an arbitrary combination of the inheriting component
types.

Each of the inheriting component types provides a decoded video. However, only the Decoder
component type decodes an encoded video received from the Data provider, while the other two
component types require an already decoded video. In a customer configuration, any combination
of these three component types is allowed, but the Data provider component type must be at
least contained as visualized by the gray background of this component type in the figure.

58

3. Configuration Management Framework for Reconfigurable Cloud Applications

Figure 3.3 Configuration of customer B of the video information system.

Table 3.1 Software component types and their implementations in the video information
system example.

Software Component Type Implementation

Video player VLC media player, AVS video player
Decoder Free, Commercial
Data provider URL, File
Water marker Transparent, Classic
Subtitle Single language, Multi language
Video manager Basic, Standard, Professional

Two customers A and B of the application with different configurations are assumed. The
configuration of customer A is depicted in Figure 3.2. This configuration only contains mandatory
components according to the specification in Figure 3.1. The configuration of the second customer
B is shown in Figure 3.3 and further contains the Water marker and Subtitle component types.

Moreover, component ports define required and provided functionality of the component types.
In addition, each component type defines a set of qualities in terms of component properties
characterizing how the provided functionality is fulfilled. For instance, the Video player
component type has the property Frame rate describing how fast a video is being played
expressed by the number of frames per second. The Water marker component type has a
Boolean property Anti aliasing to specify whether overlay water marks are smoothed in a
decoded and streamed video.

Each component type that is not abstract, has potentially many implementations. The imple-
mentations of the component types in this example are listed in Table 3.1. All implementations
of a component type provide the same functionality, but differ in their internal implementation
and in their provided and required qualities. For instance, a Video player component type

59

3.2. Configuration Artifacts of Reconfigurable Cloud Applications

is implemented by the VLC media player and the AVS video player. Both implementations
play a video stream, but provide different frame rates and video resolutions.

Furthermore, customers may have requirements regarding the quality of the provided application.
For instance, customer A requires strong hardware encryption, high application availability, and
the application to run only on servers located in the European Union due to legal restrictions.
In contrast, customer B does not specify any restriction regarding quality.

Different configuration artifacts to represent these concerns are distinguished in a cloud application.
Artifacts developed by applying an SPL-based configuration management approach are explained
in the following section.

3.2. Configuration Artifacts of Reconfigurable Cloud Applications

Reconfigurable cloud applications that are scalable in terms of functionality and quality com-
prise different configuration artifacts on varying levels of abstraction. Figure 3.4 depicts the
configuration artifacts of a reconfigurable cloud application developed by applying an SPL-based
configuration management in combination with a multi-tenant aware architecture.

In SPL engineering, problem and solution space are distinguished, as explained in Section 2.2.2.
Hence, the different configuration artifacts are assigned to these spaces in the figure. Configuration
artifacts in the problem space are on a higher level of abstraction than in the solution space.

In the proposed SPL-based approach, the configuration space of a reconfigurable application
is described by means of a feature model. Based on this, customers define constraints on the
availability of software and hardware components for users in feature model configurations.
Hence, configuration artifacts in the problem space are partial and complete configurations of a
feature model constraining functionality and quality of a cloud application. In the solution space,
artifacts comprise software and hardware components, their instances and quality contracts.

For instance, variability of the video information system example, explained in Section 3.1,
can be represented conceptually as a feature model to abstract from component types and
implementations. Figure 3.5(a) depicts an example feature model of the video information
system. The root feature represents the application, while features on the first level represent
component types and features on the second level represent variable component instances. Hence,
the extended feature model contains 20 features and describes 3456 valid configurations. A
configuration of this feature model defines which component types and implementations are
available for selection during runtime. For instance, if both child features VLC media player
and AVS video player are selected, the final decision which one to choose is conducted at
application runtime by evaluating the user request. If only one of the two implementations is
selected, only this implementation is available for users.

Introducing further features and attributes in the feature model enables customers to define quality
constraints. As explained before, the quality constraints of customer A regarding the availability
and location of servers, as well as the encryption standard can be expressed by attributed

60

3. Configuration Management Framework for Reconfigurable Cloud Applications

Figure 3.4 Feature configuration artifacts in the problem space are instantiated by software
artifacts in the solution space

features as visualized in Figure 3.5(b). In this figure, features representing component types
and implementations are left out, as indicated by the three dots. However, as the specification
of quality constraints is not required, the corresponding features are modeled as optional. To
model that only one value has to be selected for availability and encryption, both are modeled as
feature attributes.

To constrain the server location, many values can be selected denoted by the or feature group
containing the US to represent the United States, EU to represent the European Union, as well
as AS to represent Asia. This is one possible representation of quality constraints in a feature
model. The complete extended feature model is included in Appendix B.3. Although the model
only comprises 26 features, 2 attributes and no cross-tree constraints, 387072 different complete
configurations are derivable from the feature model.

While customer configurations are logically separated in the problem space, their realizations
become physically dependent in the solution space, as they are integrated in a single application
instance. The process of instantiating tenant configurations in the solution space from configura-
tions in the problem space can be automated. Hence, a mapping between problem and solution
space is specified as model transformation [KKL+98, TCPB07, HW07], but is considered out of
scope of this work as it depends on a particular application implementation.

61

3.3. Feature-Based Configuration Management

(a) Component types and component implementations are modeled as features.

(b) Quality related requirements are modeled as attributes and features.

Figure 3.5 An example feature model for the video information system.

Reconfiguration occurs if the demands of customers, as well as their users change. Reconfiguration
changes both the feature model configuration in the problem space as well as the current tenant
context in the solution space. Changes are reported top down, such that reconfiguration in a
customer configuration in the problem space triggers changes in the related tenant context in the
solution space.

The described configuration artifacts are to be concisely modeled and built in automated
configuration management introduced in the next section.

3.3. Feature-Based Configuration Management

Adopting SPL-based configuration management methods to reconfigurable cloud applications
allows for automating the provision and reconfiguration of customized applications. Section 2.7
illustrates how configuration management in SPLs copes with the variation of product configura-
tions. The configuration management framework proposed in this thesis manages variation by
comprising methods for modeling variability and adaptive reconfiguration processes. However,
the main focus of this thesis is on generic configuration management methods in the problem
space. A discussion on how to develop flexible application architectures in the solution space
is given that suite the configuration management methods applied in the problem space. The
division of problem and solution space is taken up in Figure 3.6 to visualize the application of
the proposed configuration management concepts.

62

3. Configuration Management Framework for Reconfigurable Cloud Applications

Figure 3.6 Concepts and their relation in the configuration management framework for
reconfigurable cloud applications.

A feature model defines the configuration space of a reconfigurable cloud application in terms
of features, qualities and their dependencies. For instance, the configurability of the video
information system introduced in Section 3.1 is expressed by means of a feature model as
visualized in Figure 3.5. However, enterprise cloud applications comprise a large number of
configuration parameters expressed in a feature model, while common application scenarios
often require the same configuration parameters, as explained by Requirement 2 in Section 2.8.
Application providers therefore offer pre-configured editions for common scenarios.

Multi-perspectives are introduced to define consistent pre-configurations by comprising various
concerns. Hence, they meet Requirement 2. Multi-perspectives allow for grouping features
according to specific concerns. In the video information system example, pre-configurations can
be defined according to professional and basic functionality, for instance. In this example, the
features of the video information system are grouped according to business concerns. Table 3.2
shows the concerns main, professional, basic, and advanced functionality, as well as quality related
features, and mandatory and optional component types and the assigned features.

In addition, concerns overlap and features are related to various concerns. A multi-perspective
combines various of these concerns in a concise pre-configuration applicable for further configura-
tion. The perspective guarantees that the dependencies defined in the feature model are still
satisfiable. For instance, selecting the concerns main functionality and professional functionality
listed in the table above leads to a pre-configured feature model containing 15 selectable features,
while 48 complete configurations are still derivable. The concepts of multi-perspectives are
explained in detail in Chapter 5 and implemented in the tool Conper explained in Section 7.5 as
part of the PUMA tool suite.

A perspective constitutes the basis for further configuration steps leading to complete config-
urations. The derivation of a variant configuration is conducted in multiple steps by various
involved stakeholders. Staged configuration concepts based on views and configuration workflows
structure configuration processes and prioritize stakeholders of cloud applications. However,
in a cloud scenario, not all stakeholders involved in the configuration workflow are known at
application design time, and cannot be modeled beforehand according to Requirement 3. For
instance, the two customers A and B are not known during application design time in the video

63

3.3. Feature-Based Configuration Management

Table 3.2 Grouping features of the video information system example according to concerns.

Concern Related Features

Main functionality Video information system, Decoder, Video manager, Data
provider, Video player, Water marker, Free codec, URL,
Subtitle, Single language subtitle

Professional functionality AVS video player, Commercial decoder, Transparent water
marker, Multi language subtitle, Professional video manager

Basic functionality VLC media player, File data provider
Advanced functionality AVS video player, Classic water marker, Standard video

manager, Multi language subtitle
Quality related features Availability, Hardware encryption, Server location, EU, US,

AS
Mandatory component types Video player, Decoder, Data provider
Optional component types Water marker, Subtitle, Video manager

information system. Both signed up to use the video information system during application
runtime. Furthermore, configuration steps with different impact are to be distinguished.

While the configuration operations conducted by customers only influences their users, config-
uration operations conducted by providers have a global influence. For instance, in the video
information system, assuming that the server infrastructure is modeled in the feature model as
well, a resource provider restricts the availability of server nodes in the European Union due to
local maintenance operations. Hence, the feature European Union is not available for selection in
customer configurations. If the maintenance operations are finished, the resource provider enables
the availability of server nodes again, which must propagated to all configuration stakeholders
conducting downstream configuration operations.

The concept of adaptive staged reconfiguration workflows meets Requirement 3 and extends staged
configuration. Staged configuration allows to specify and automate the derivation of variant
configurations in multiple stages where various stakeholders are involved. These concepts are
extended to handle stakeholders dynamically and to model the influence of stakeholder by means
of a specialization tree. A specialization tree enables reuse of partial stakeholder configurations
and automate reconfiguration at different configuration stages. Reconfiguration decisions are
propagated along the directed configuration paths of the workflow.

Methods of Role Based Access Control (RBAC) are applied on extended feature models to
restrict the access on configuration operations and define configuration views used in the staged
configuration workflow. Combining staged configuration with an event-based adaptation engine
allows for transforming the configuration workflow during runtime. A sequence of rewrite rules is
applied to integrate a stakeholder dynamically in the configuration workflow as not all stakeholders
can be defined before executing the workflow. Furthermore, stakeholders can be removed from
the configuration workflow during runtime. For instance, customers subscribe and unsubscribe

64

3. Configuration Management Framework for Reconfigurable Cloud Applications

from an application offered as a service. The results of the staged configuration workflow are
multiple complete variant configurations where all feature model variability is bound.

In addition, satisfiability of feature models, as well as of partial feature model configurations
are checked by translating an extended feature model or a partial configuration into a CSP
and executing a CSP solver accordingly. CSP checks are executed on partial feature model
configurations during workflow execution to validate conducted configuration operations. The
concept of adaptive staged reconfiguration workflows is explained in detail in Chapter 6 and
implemented in the tool DyscoGraph explained in Section 7.6 as part of the PUMA tool suite.

The explained concepts belong to the problem space and abstract from implementation details
related to the solution space. However, in the solution space a flexible application architecture
is required according to Requirement 1 defined in Section 2.8. The architecture should be
capable of integrating customer configurations to restrict the access on system resources and
application functionality accordingly. Each complete configuration related to a customer in the
problem space corresponds to a tenant variant and a set of customer-specific constraints in
the solution space. These constraints restrict the access on system resources and application
functionality at runtime for the users of a particular customer. By applying a multi-tenant
aware application architecture, a complete configuration can be integrated in an already running
application. Hence, the configuration becomes available for a customer just-in-time. The same
holds for reconfigurations. A development method for a multi-tenant aware architecture based
on a self-adaptive architecture is explained in Chapter 4.

Figure 3.7 summarizes the main contributions of the proposed configuration management frame-
work and their foundations. Boxes with a gray background depict common methods and

Figure 3.7 The conceptual configuration management framework for reconfigurable cloud
applications is based on prevailing SPL concepts.

65

3.4. Automated Configuration Management Activities

paradigms that build the basis of the configuration management framework. Based on these
foundations, new concepts developed in this work are represented by boxes with a white back-
ground color. In addition, the introduced concepts support the main configuration management
activities explained in Section 2.7.

3.4. Automated Configuration Management Activities

The five main configuration management activities comprise planning, identification, control, sta-
tus accounting, and verification of configuration changes. Table 3.3 shows how the problem space
related concepts of the proposed feature-based framework support the explained configuration
management activities.

Summarizing, the proposed configuration management framework allows for a concise variation
management in the problem space. Variable concepts are abstracted from implementation

Table 3.3 Automating configuration management activities for reconfigurable applications in
the problem space by applying the configuration management framework.

Configuration Management Activity Automation

Configuration management planning to define
what, how and when configurations will be
controlled

Plan an adaptive staged configuration work-
flow and configuration relevant business con-
cerns covered in a multi-perspective model.

Configuration identification to specify con-
trolled configuration items

Functional and quality properties of a cloud
application are configuration items modeled
as features and attributes and their relations
in a feature model.

Configuration control monitors what changes
are made, when and how

Multi-perspective models and adaptive staged
configuration workflows ensure continuous in-
tegrity of configuration items. Configuration
changes are automatically evaluated against
constraints defined in the feature model to
identify allowed and disallowed changes.

Configuration status accounting to determine
and report the configuration status of any con-
figuration item

The current status of all configuration items is
persisted in each partial and complete feature
model configuration.

Configuration verification and audit to guar-
antee that configuration items are configured
correctly.

The requirements, dependencies and bound-
aries of each configuration item are explicitly
defined in the feature model. The continuous
check of configuration changes based on the
feature model definition ensures the correct
configuration of each configuration item.

66

3. Configuration Management Framework for Reconfigurable Cloud Applications

technologies. In addition, tenant constraints in a multi-tenant aware single instance application
provide the basis for managing variation in the solution space.

3.5. Demarcation from Related Work

Approaches applying methods from SPL engineering in the area of cloud applications to manage
application variability are proposed in literature [Mie10, RA11]. The approaches have similar
objectives of handling variability of multi-tenant aware applications, but vary in focus and the
proposed realizations. Table 3.4 compares concepts presented in this work with these approaches.
A systematically conducted literature study revealed differences in the following criteria chosen
for comparison

• (i) the type of variability model applied to specify the application configurability,

• (ii) the support of concern-specific pre-configurations,

• (iii) if a structured configuration process can be modeled,

• (iv) the considered configuration stakeholders,

• (v) if partial configurations can be reused,

• (vi) the support of configuration at runtime,

• (vii) reconfiguration at runtime,

• (vii) multi-tenancy on architecture level,

• (viii) the kind of application architecture applied, and

• (ix) if an implementation of the proposed concepts is provided.

An SPL-based development environment for SaaS applications applying OVM for modeling
application variability is proposed by Mietzner [Mie10]. Overlapping concerns on the variability
model are not considered in this approach. Structured configuration processes for customers can
be defined in the workflow language BPEL. However, only tenants are considered as stakeholders
conducting configuration operations in the configuration process. The approach does not support
reconfiguration nor the reuse of pre-configurations. The application architecture applied in this
approach is service oriented and multi-tenant aware. However, the architecture does not support
configuration and reconfiguration at runtime. An implementation of the proposed concepts is
provided in the tool suite Cafe.

Rühl and colleagues outline an approach for handling the variability and managing configuration
of multi-tenant aware SaaS applications [RA11]. This work proposes to apply a proprietary
catalog to specify application variability without explicitly modeling overlapping concerns on the

67

3.5. Demarcation from Related Work

Table 3.4 Comparing SPL-based configuration management approaches for cloud applica-
tions.

Characteristic Mietzner et al.
[Mie10]

Rühl et al. [RA11] This thesis

Variability model OVM Proprietary catalog Extended feature
model with at-
tributes over finite
domains

Overlapping con-
cerns on the vari-
ability model

- - +

Structured config-
uration process

Customization flow
defined in Business
Process Execution
Language (BPEL)

Single step configura-
tion

Adaptive staged con-
figuration workflow

Configuration
stakeholder

Tenants only Tenants only Various stakeholders

Reuse of partial
configurations

- - +

Configuration at
runtime

- + +

Reconfiguration - - +
Multi-tenancy + + +
Implementation Tool suite Cafe - Tool suite PUMA

variability model. An application is configured by a tenant in a single step without the need for
a structured configuration process as there are no other stakeholders considered. Moreover, the
reuse of pre-configurations and reconfiguration of the application is out of scope of this work.
A variable service-oriented and multi-tenant aware application architecture is assumed without
providing more details on the architecture.

Concluding, these approaches focus on the variability management of SaaS applications in the
cloud, but apply a different variability model and have another focus than this thesis. Based on
methods from SPL engineering, the configuration management framework proposed in this work
offers generic methods in the problem space. These methods comprise the definition and execution
of structured configuration workflows by means of an adaptive staged reconfiguration workflows
and the definition and derivation of consistent pre-configurations by means of multi-perspectives.

Hence, the focus of this work is on configuration and reconfiguration processes during application
runtime. Furthermore, based on a self-adaptive architecture, a development method for multi-
tenant aware and reconfigurable cloud applications is proposed that is convenient for feature-based
configuration management.

68

3. Configuration Management Framework for Reconfigurable Cloud Applications

3.6. Summary

The configuration management framework introduced in this chapter allows for realizing cloud
applications scalable in terms of functionality and quality. Hence, cloud applications can be
configured and reconfigured in a self-service portal without the need for manual interaction while
the changes are available just-in-time in the application instance. Well-established methods from
SPL engineering are applied in the framework to cope with variability and manage changes to
configuration artifacts automatically.

Feature models are common in SPLs to concisely define the configuration space of an application in
terms of features and their dependencies. In addition, staged configuration concepts focus on the
structured derivation of complete variant configurations where different configuration stakeholders
are involved. The framework extends these methods to address the specific requirements for
reconfigurable cloud applications summarized in Section 2.8. For instance, the new concept
of multi-perspectives allows for defining concise concern-specific pre-configurations on feature
models prior to a configuration process. In addition, staged configuration is extended to support
the reuse of pre-configurations for various dynamic stakeholders and to support reconfiguration
and is realized via adaptive staged configuration workflows. Moreover, a development method for
flexible application architectures is proposed enabling the automated integration of configuration
changes into the application instance at runtime. The method combines multi-tenancy with a
self-adaptive component-based architecture.

Hence, the three main parts of the framework are a development method for flexible application
architectures, multi-perspectives, and adaptive staged configuration workflows. While the devel-
opment method can be assigned to the solution space, multi-perspectives and adaptive staged
configuration workflows are related to the problem space. This chapter gives a comprehensive
overview of the functional interaction between these parts. How to develop flexible multi-tenant
aware architectures is explained in the next chapter, while the problem space related parts are
explained in the subsequent chapters.

Summarizing, the configuration management framework proposed in this chapter is a foundation
to manage variability of reconfigurable cloud applications, and to support configuration and
reconfiguration processes on an abstract level by means of SPL methods.

69

70

4. A Flexible Architecture for Reconfigurable

Cloud Applications

Stay committed to your decisions, but stay flexible in your approach.

— Tom Robbins

Concepts presented in this chapter are published in a paper at the International
Workshop on Variability Modelling of Software-Intensive Systems (VaMoS) [SCG+12].

This chapter observes main characteristics of reconfigurable cloud applications with respect
to their architecture that are relevant for automated feature-based configuration management.
Furthermore, architectural concepts are identified that implement these characteristics and a
corresponding example architecture for reconfigurable cloud applications is discussed.

As summarized by Requirement 1 in Section 2.8, a reconfigurable cloud application requires a
flexible and modular architecture capable of handling variability in various dimensions, (i) among
stakeholders sharing resources, and (ii) within a stakeholder configuration due to reconfiguration
changes. In addition, different types of stakeholders are identified in the context of reconfigurable
cloud applications, as explained in Section 1.6. For instance, resource providers offer the
infrastructure and computing platform comprising server nodes, network communication, storage,
and databases, as infrastructure and platform services. Application providers utilize these services
to deploy a cloud application on top. Customers are interest groups or companies renting tailored
application functionality and users affiliated to specific customers use the cloud application.
These stakeholders have different and even contradictious requirements. A user demands a high
quality of the application in terms of availability and performance. In contrast, resource and
application providers intent to minimize operating costs by optimizing resource utilization while
maximizing profit.

Resource utilization can be optimized by applying a multi-tenant aware architecture, as explained
in Section 1.5.5. Furthermore, multi-tenancy allows for just-in-time provisioning of tailored
customer configurations and reconfigurations as the application instance is already running
and does not need to be set up and deployed explicitly. However, a multi-tenant aware cloud
application must not be shut down to integrate new configurations or to reconfigure according
to changing demands because the application instance is shared among customers. Hence, an
adaptive application architecture is required supporting reconfiguration at application runtime.

In addition, multi-tenancy comprises two main concepts, (i) resource and data sharing among
application users, and (ii) user access restriction on resources, functionality, and data with
respect to an affiliated tenant company. While resource and data sharing is similar to multi-user
applications, the restriction on runtime variable functionality and application data differs. Tenant

71

4.1. Software and Product Line Architecture

companies and their users have varying requirements on the functionality of the application and
on the infrastructure where their data is processed according to legal restrictions, as explained in
Section 1.5.3.

The focus of this work is on architectural concepts for dynamically restricting the user access on
application functionality and resources with respect to tenant companies and user requirements.
This chapter describes a method for developing reconfigurable cloud applications based on a
self-adaptive architecture [SCG+12]. Multi-tenant extensions of the architecture regarding access
restrictions on functionality and resources are proposed that are evaluated at runtime to adapt
an application automatically to the requirements of a tenant and its users. For a common
understanding, concepts of software architectures are explained first.

4.1. Software and Product Line Architecture

In the context of software and system engineering, the notion of architecture is ambiguous.
An empirical study identified the following key understandings of architecture within software
organizations [Smo02]. Hence, architecture is

• a blueprint defining the structure of an implemented system,

• literature to document software solutions and to function as a reference for future develop-
ment,

• a language for common terminology and understanding of the structure of a system regarding
communication between stakeholders, and

• a decision about system structure with respect to business concerns.

However, any of these architecture metaphors are relevant to successfully develop software and
these metaphors do not occur solely in organizations. They can be considered as important
aspects of a system considered during system development. In addition, the understanding of
architecture differs between stakeholders and their roles in a company [Zac87]. While data base
experts have a data-centric understanding of architecture, the architectural view of an operational
board is defined in monetary terms with respect to costs and benefits of architectural decisions.
The ISO/IEC/IEEE 42010:2011 standard continues on the different aspects of architecture by
providing a definition as follows [ISO 42010].

Definition 4.1 (Architecture [ISO 42010]). Architecture is a set of (system) fundamental con-
cepts or properties of a system in its environment embodied in its elements, relationships, and in
the principles of its design and evolution.

According to this definition, an architecture captures the essential parts of a system, while a
system is build of a variety of resources and entities of different type. Hence, fundamental parts
of a system can be physical and structural components, as well as functional and logical elements.

72

4. A Flexible Architecture for Reconfigurable Cloud Applications

A common understanding is that architecture describes the structure of a system in terms of
components and their relationship [SDK+95]. Due to the modular design of components they
are reusable in different systems. However, architecture does not define what a component is,
rather than the rational of the components and their structure.

For products of the same domain, a so called reference architecture is specified to describe the
variations between the products and to cope with complexity while reducing the development
costs. Adopted from the ISO/IEC/IEEE 42010:2011 standard on software engineering a reference
architecture is defined as an architectural framework for a particular application domain serving
as a template for instantiating concrete architectures [ISO 42010]. Hence, a reference architecture
comprises conventions, principles and practices for the description of architectures established
within a particular application domain. A Product Line Architecture (PLA) is a reference
architecture implementing variability and commonality to capture the high level design of
derivable products of a certain domain [PBvdL05]. To specify variability and commonality in a
PLA, often the notation of components is applied, as components enable the modularized reuse
of functionality.

4.1.1. Product Line Architecture

A PLA describes variability among products with a strong focus on reuse. In SPL engineering the
two phases of domain and application engineering are distinguished, as explained in Section 2.2.1.
Following a component-based SPL approach, component engineering is part of the domain
engineering phase. Components encapsulate reusable functionality in individual building blocks
also called core assets. The way how core assets are composed is defined by a PLA. Component
properties, their interfaces and interactions of the application are defined by means of structural,
behavioral and functional models in a PLA. Subsequently, components are assembled and
integrated in application engineering to constitute a product [WL99].

However, in common SPL approaches, a single product is derived per configuration, as explained
in Section 2.6.2. The PLA defines how to compose a stand-alone product instance for a given
configuration. In contrast, in an SPL-based reconfigurable multi-tenant aware PLA, multiple
configurations are derived but integrated into a single product instance at the same time. Logically
independent configurations in the problem space become physically dependent in the application
instance in the solution space, as discussed in Section 3.2. These configurations constrain the
access of users as each user of the system is affiliated to a tenant.

For cloud applications in general, a commonly applicable reference architecture cannot be defined
due to varying business concerns and therefore different applicable cloud concepts, as explained
in Chapter 1. Hence, this work does neither propose an enterprise architecture framework nor a
complete PLA for reconfigurable applications as both are domain-specific and depend on business
decisions that drive the particular application functionality and system structure. However, the
focus of this work is on how to realize resource variability at runtime with respect to tenant
configurations constraining the access of their users. A solution is proposed retaining tenant
and user requirements. The solution is based on a self-adaptive architecture to address the
requirements of reconfigurable cloud applications.

73

4.2. Characteristics of Reconfigurable Cloud Applications

In the next section characteristics of reconfigurable cloud applications are described and architec-
tural concepts applicable in a PLA to address them are explained.

4.2. Characteristics of Reconfigurable Cloud Applications

As identified in Chapter 1, a reconfigurable cloud application has the following characteristics.
The application design is modular to enable reuse and compose parts according to customer
requirements. A reconfigurable cloud application scales in two dimensions. First, in terms of
functionality and quality to serve customers according to their functional and quality demands.
Second, in terms of concurrent user access and the number of tenants, as explained in Section 1.5.1.
Resources of the application and underlying infrastructure are to be shared to save development
and maintenance costs, as explained in Section 1.5.2. The application requires a self-service
administration portal for configuration and reconfiguration. In addition, configuration and
reconfiguration of the application are to be automated to omit manual interaction according to
Section 1.5.3.

The characteristics of reconfigurable cloud applications and architectural styles implementing
them are summarized in Table 4.1. A component-based application design is convenient for
developing modular applications accessed over the Internet [ABGK02], and hence, applicable for
cloud applications. Variability and thus scalability in terms of functionality and quality is realized
by defining contracts between components to achieve loose coupling between components.

Adapting and reconfiguring an application during runtime requires a robust architectural style
referred to as self-adaption. As explained previously, different stakeholders with different
objectives are involved in the provision and configuration of a cloud application. The system can
be optimized to fulfill the often contradictious stakeholder objectives by applying a self-adaptive
approach. Furthermore, resources between customers can be utilized efficiently by applying
a single-instance multi-tenancy approach. Eventually, customers can be enabled to perform
configuration and reconfiguration on their own while the changes become available just-in-time,
which can be achieved by applying an SPL-based configuration approach with an automated
configuration derivation.

Table 4.1 Characteristics of reconfigurable cloud applications and corresponding architectural
concepts.

Application Characteristic Architectural Concept

Modular Loosely coupled components [GTL00]
Variable in terms of functionality and quality Components with contracts [BJPW99]
Adaptation and reconfiguration at runtime Self-adaptation [Lad99]
Optimized resource utilization Multi-tenancy [CC06]
Customer-specific (re)configuration in a self-
service portal and changes available just-in-time

Automated SPL derivation process [WL99]

74

4. A Flexible Architecture for Reconfigurable Cloud Applications

A multi-tenant aware reconfigurable cloud application copes with variability at runtime in
two dimensions, (i) among customers, and (ii) within a single customer configuration due to
reconfiguration changes. Furthermore, reconfiguration and adoption to stakeholder requirements
is performed during application runtime, as well as integration and decommissioning of customers.
Frameworks proposed in literature for dynamically adaptive systems address most of these
requirements [GKR+06, MBJ+09]. These frameworks define systems, which adapt automatically
to requirement changes or usage contexts at runtime.

An example application architecture comprising the explained characteristics is depicted in
Figure 4.1. The block diagram shows the different layers of the architecture. The example
architecture contains the three layers infrastructure, platform, and application according to the
NIST definition explained in Section 1.2, as well as a presentation layer on top and a further
cross-cutting management layer. The infrastructure layer provides network, servers, and storage
as services. These services are a basis for the platform layer which provides foundation services
to access the underlying infrastructure services, as well as a multi-tenant aware database to
separate tenant-specific data from each other as described in Section 1.5.5. Subsequently, the
platform services are consumed by software components on the application layer.

Software components are also multi-tenant aware as their functionality is shared. Furthermore,
these components are reconfigurable in terms of component binding as different customers have
different application configurations causing varying control flows. In addition, the presentation
layer consumes services provided by the application layer to display an application front end to

Figure 4.1 Example architecture of multi-tenant aware reconfigurable cloud applications.

75

4.3. Developing a Flexible Architecture for Reconfigurable Cloud Applications

the application users and to offer a self-service administration front end to tailor an application.
A further management layer cross-cuts all four stacked layers. This layer manages the services of
all four layers and comprises configuration management to automatically handle changes, and
tenant management to identify and assign system resources to tenants. Furthermore, a system
monitor observes the system utilization, and adaptation and reconfiguration of the services are
controlled. Session management enables stateful communication to separate control and data
flow of users.

This layered architecture reflects the defined characteristics and is the basis for developing a flexible
architectures for reconfigurable applications. Furthermore, reconfigurable cloud applications
under the following infrastructure conditions are considered. A cloud infrastructure comprises
a server cluster with distributed server nodes. Server nodes communicate with each other and
if a node fails applications are automatically transferred to another server. Additionally, the
server cluster is horizontally scalable and server nodes are dynamically utilized, as explained in
Section 1.5.1. Furthermore, resources in the cloud are instrumented to measure their quality at
any time.

The components of an application are distributed over multiple physical nodes in the server
cluster. In addition, at design time of the application not all customers and their users are known.
Hence, it is impossible to model all potential customers and their users in advance.

The next section explains requirements for developing reconfigurable cloud applications capable
of restricting the user access according to multi-tenancy constraints.

4.3. Developing a Flexible Architecture for Reconfigurable Cloud

Applications

A component-based application architecture with a modular design is a good foundation for PLAs,
as discussed previously. Each component has a design time and a runtime representation [Szy98].
A modeling language is appropriate to precisely specify an application at design time, while
at runtime these models are applied to optimize stakeholder objectives. Hence, further design
time and runtime requirements on an architecture for reconfigurable cloud applications regarding
application variability at runtime and constraining the access on resources and functionality are
distinguished. The design time requirements are listed below.

• Modeling Software and Hardware Components Customers have constraints on functionality,
as well as on the underlying hardware resources. To automatically compute these constraints,
components must be modeled uniformly in a convenient notation. Hence, a modeling
language for specifying reconfigurable cloud applications is required to define software
and hardware components and their relations. While software components may depend
on software or hardware components, hardware components may only rely on hardware
components. The application provider models the application architecture, while the
resource provider models the hardware infrastructure, both in the same modeling language.

76

4. A Flexible Architecture for Reconfigurable Cloud Applications

• Specification of Qualities Customers and users have constraints on the quality of software
and hardware components. Hence, a language for modeling applications must be capable
of expressing qualities and their dependencies.

• Modeling Tenant Configurations Each application customer has an own application con-
figuration. Hence, modeling of tenant configurations is required. A tenant configuration
comprises a unique identifier for a customer, a set of software and hardware components
and customer-specific constraints on application qualities on the level of hardware and
software components.

The following runtime requirements are to be addressed by an applicable architecture.

• Self-Optimizing Runtime Environment A flexible architecture of reconfigurable cloud
applications requires a runtime environment that is self-adaptive. Hence, the runtime envi-
ronment must reason about infrastructure, software components, and tenant configurations
to optimize and adapt itself regarding the software component distribution according to
tenant configurations. In addition, the runtime environment must scale to multiple users as
a multi-tenant aware application is a special form of a multi-user application, as explained
in Section 1.5.5. Hence, in the runtime environment control and data flow between users of
the application must be separated and are further restricted by a user’s tenant affiliation.

• Quality Monitoring The qualities defined at application design time must be monitored to
reason on software and hardware components, as well as on tenant configurations. However,
only qualities that change during runtime need to be measured periodically.

• User Management To balance the objectives of a user and the affiliated tenant, tenant
configurations and user requests are to be managed appropriately.

• Reconfiguration of Tenant Configurations A cloud application must be scalable in terms of
functionality and quality. Customer requirements change and thus their tenant configura-
tions change accordingly.

In the following, concepts of Multi-Quality Auto-Tuning (MQuAT) are explained that address
the identified requirements and mark this architecture eligible for implementing reconfigurable
multi-tenant aware applications.

4.4. Background on Multi-Quality Auto-Tuning Architecture

MQuAT is a reference architecture for self-adaptive systems. The MQuAT architecture is devel-
oped in the cool software project1 as a component-based software architecture for implementing
self-adaptive and self-optimizing applications [GWS+10]. Component-based architectures are
loosely coupled and support Separation of Concerns (SoC) on implementation level, where each
software component encapsulates a set of semantically related functions [McI68]. Thus, MQuAT

1http://www.cool-software.org/

77

http://www.cool-software.org/

4.4. Background on Multi-Quality Auto-Tuning Architecture

as a component-based architecture is convenient to build reusable software assets for variant
configurations in the solution space of SPLs [CE00].

DSPLs and configurable cloud applications respectively, further demand a reconfigurable ar-
chitecture, as explained in Section 2.6. MQuAT as an auto-tuning architecture is eligible to
implement DSPLs by supporting application reconfiguration at runtime if changes occur during
operation. Internal changes in the application instance and external changes in the application
environment are therefore considered. For this purpose, MQuAT comprises a control loop to
monitor the system, detect changes, decide how to react to the changes, and act by executing the
decisions [DDF+06]. Hence, a centralistic monitoring and measuring unit observes the system.
In contrast to agent-based systems, where each agent optimizes local knowledge, the optimization
unit has a global view on the entire system [GWCA11]. In MQuAT contracts between hardware
and software components in terms of qualities are defined.

A further characteristic of the MQuAT architecture is its auto-optimizing capability towards
multiple system qualities in terms of objectives. The approach was initially intended for energy
auto-tuning, but iteratively extended to support multi-objective optimization. For instance,
MQuAT finds the optimal configuration of a system providing best performance while saving at
most energy. Objectives are often contrary and different strategies for optimizations are discussed
in [Göt13], which are out of scope of this work.

4.4.1. Essential Parts of the Multi-Quality Auto-Tuning Architecture

The MQuAT architecture comprises a design time part providing a development method for
self-optimizing systems and applications and a runtime part for realizing self-optimization during
system and application operation, as depicted in Figure 4.2.

Figure 4.2 Overview of the integral parts of the MQuAT architecture (adopted
from [GWS+10]).

78

4. A Flexible Architecture for Reconfigurable Cloud Applications

The design time part comprises a component model to define conceptual properties of components
and characteristics of component relations. In MQuAT, the component model contains the
Cool Component Model (CCM) to define component types, their properties, and the Quality
Contract Language (QCL) to specify relations between components in terms of quality contracts.
Hence, the CCM defines component types, their behavioral states, variations among component
implementations, and describes the runtime state of a system. The language QCL is a language
to define quality contracts between components regarding required and provided non-functional
properties. Furthermore, implementations of CCM component types are defined in QCL contracts.
Summarizing, the development time part comprises a functional model providing the operation
specification and a structural model defining exposed properties of the component.

The runtime part comprises The Auto-Tuning Runtime Environment (THEATRE), a quality-
aware runtime environment that implements a reconfiguration control loop and provides a global
monitoring unit to observe the system. Pre-conditions specify assumptions that must be fulfilled
to execute a method correctly while post-conditions are fulfilled after executing the method.
This concept is the foundation for QCL, an expressive contract language for specifying contracts
between CCM components with respect to quality attributes. The contracts are evaluated during
runtime in THEATRE. If a contract is not meet by the current system configuration, components
that fulfill the contract are chosen and reconfiguration is initiated.

A specification of THEATRE and the MQuAT architecture is given in [Göt13]. In the following,
design time and runtime parts are explained relevant for reconfigurable cloud applications.

4.4.2. Design Time Declaration of the Cool Component Model and Quality

Contracts

The structure and instantiation of IT infrastructures and applications is defined in CCM in
a component-based type system. The syntax of CCM is described in a schema following a
metamodeling approach to separate the component definition from a specific implementation
technology, while CCM models are interpreted at runtime. The CCM metamodel covers various
aspects of quality-efficient self-optimizing systems. CCM comprises a structure model that defines
component types and their interfaces with respect to functionality and quality attributes, and a
variation model that describes the runtime state of a system.

An excerpt of the structure model is depicted in UML class diagram notation in Figure 4.3.
The figure shows supported component types in a structure model, which are user, software
and hardware component types. Software and hardware components can be hierarchically
structured, as visualized by the composite pattern in the figure. Hence, the component types
described in the video information system example in Section 3.1 can be modeled as software
component types in a CCM structure model. Furthermore, the structure model describes hardware
components. For instance, a CCM structure model typically contains a Server component type
comprising further hierarchically structured hardware component types such as a CPU, HDD, and
RAM. Software components can be organized hierarchically as well. In addition, a component type
defines required and provided functionality by means of ports and defines quality attributes by
means of component properties, as exemplified in Section 3.1. For instance, a Data provider
component provides functionality in terms of Video Lists, Encoded Videos, Subtitles, and

79

4.4. Background on Multi-Quality Auto-Tuning Architecture

Figure 4.3 Excerpt of the metamodel for CCM structure models.

Markings, while specifying the quality Bit rate to specify data transmission. The specification
of component properties in a component type makes component implementations comparable
at runtime. All implementations of the same component type provide the same functionality,
but differ in the property values in the provided and required interfaces. Each component type
can be instantiated by multiple implementations which are described by means of component
instances in QCL contracts. In a QCL contract software implementations and hardware resource
instances are defined referring to the corresponding component types in the structure model.

The variation model describes the runtime state of a system by modeling deployed component
implementations and their location. A component instance comprises information, where this
instance is currently deployed, and offers a value for each quality property defined by the referring
component type. Different types of component properties are distinguished, which are static-
instance, monitored, and calculated. Static instance properties represent invariants, such that the
value of these properties is constant for each component implementation. Monitored properties
are measured by instrumenting the system, and a property is calculated, if the value of this
property is computed-based on the values of other properties. Variation models and corresponding
structure models describe the current state of a system and potential alternatives.

To reason about the optimality of a system, information about how components depend on
each other must be specified. In CCM component dependencies are expressed by means of QCL
contracts. Component instances have potentially multiple internal behaviorial states described
by modes in a QCL contract. For instance, a CPU can run in various performance modes with
varying resource utilization and thus differing frequency. Hence, modes differ in terms of their
required and provided quality properties. A contract is defined per component instance declaring
such implementation modes, where modes reflect different levels of user satisfaction. Each mode
declares required component types and defines constraints on the minimal and maximal values
of quality properties of these component types. In addition, the minimum and maximum values
of the provided quality properties are defined.

Listing 4.1 depicts an example contract for the VLC media player implementation of a Video
player component type according to the example in Section 3.1. In this example, the declaration
of further hardware component types such as CPU and Network in a structure model is assumed.
The contract defines three modes for the VLC media player implementation, which are fluent,
hesitent, and slideshow. Each mode declares a provided frameRate value for the related
quality property defined by the VideoPlayer component type. In the mode fluent, the minimum
provided frameRate is defined as 25 Frames/s. Furthermore, requirements on quality properties
of other hardware and software component types are defined.

80

4. A Flexible Architecture for Reconfigurable Cloud Applications

1 contract VLCMediaPlayer implements VideoPlayer {
mode fluent {

3 // required hardware components
requires resource CPU {

5 max cpuLoad = 50 percent
min frequency = 2 GHz

7 }
requires resource Network {

9 min bandwidth = 10 MBit/s
}

11 // required software components
requires component Decoder {

13 min dataRate = 50000 Bit/s
}

15 // provided qualities
provides min frameRate 25 Frames /s

17 }
mode hesitent { ... }

19 mode slideshow { ... }
}

Listing 4.1 Example contract for the VLC media player implementation of the component
type video player.

Regarding the architectural requirements defined in Section 4.3, CCM and QCL fulfill the first
two defined design time requirements. Thus, the structure and variation model of CCM enables
the precise declaration of software and hardware components in a unified modeling language,
while dependencies between qualities of the component types are declared as contracts in QCL.
However, the third design time requirement to model and manage tenant configurations is not
yet supported in CCM and QCL. Extensions to the architecture are explained in Section 4.5 to
address this requirement.

Beside the described design time part containing CCM and QCL, MQuAT comprises a runtime
part, which contains the quality-aware runtime environment THEATRE which is described in
the following.

4.4.3. Quality-Aware Runtime Environment

As explained before, THEATRE is a quality-aware runtime environment for self-optimizing
systems and part of MQuAT. The environment implements a control loop including the phases
collect, analyze, decide and act [DDF+06]. In the first phase, information about the current
state of the system is collected. In THEATRE hierarchically structured resource managers apply
profiling techniques to collect information about component instances. The collected information
is analyzed in the second phase, while the results of the analysis are evaluated in the third phase
to decide how to proceed and draw up a plan. The analysis in THEATRE is conducted by
evaluating QCL contracts and decisions are made by negotiating contracts to find the optimal
system configuration and define an adaptation plan. Contract negotiation is implemented as a
Constraint Satisfaction Optimization Problem (CSOP). A CSOP generator is part of the global
control loop manager to generate the optimization problem. A CSOP solver is applied that

81

4.4. Background on Multi-Quality Auto-Tuning Architecture

solves this optimization problem leading to an target configuration plan by differentiating current
and requested system state. The resulting plan is eventually executed in the fourth phase of the
control loop. Hence, in the act phase in THEATRE, components are migrated by applying a
component-based reconfiguration and adaptation technique [Göt13].

Three layers are distinguished in THEATRE according to the component types User, Hardware,
and Software defined in the CCM structure model. Figure 4.4 visualizes the three layers. Both,
hardware and software layer contain hierarchically structured component managers. These
managers observe the system and provide information about existing components and their
properties. Resource managers monitor hardware components on the hardware layer and control
them. For instance, a resource manager is capable of shutting down a server, while another
is responsible for scaling the frequency of a CPU. The topmost manager in the hierarchy of
resource managers is called global resource manager. On the software layer, control loop managers
are aware of available software component types, their implementations and their mapping to
hardware components. Hence, control loop managers and resource managers exchange their
knowledge about the current system. The topmost manager in the hierarchy of control loop
managers is called global control loop manager. In addition, control loop managers implement
the control loop described before.

On the user layer, context analyzer collect information about user requests in terms of functionality
and quality. For instance, users playing videos from the video information system explained in
Section 3.1 request different video resolutions according to their device. A user accessing the
system with a smart phone has a limited network bandwidth and requires the video to be played
in a smaller resolution than a different user with a desktop computer. Such information about
user requests are collected by context analyzer and provided to the global control loop manager
to optimize the system accordingly.

Regarding the requirements for an appropriate architecture for reconfigurable cloud applications
defined in Section 4.3, the THEATRE runtime environment supports some of the runtime

Figure 4.4 Layers of the runtime environment THEATRE and related component managers.

82

4. A Flexible Architecture for Reconfigurable Cloud Applications

requirements. The first and the second runtime requirement are addressed by providing a self-
optimizing runtime environment implementing a control loop and monitoring the qualities of the
system components by means of component managers. However, the current implementation of
THEATRE is intended for optimizing user requests without constraining tenant requirements.

Summarizing, the MQuAT architecture comprising the design time specifications CCM, QCL, as
well as the runtime environment THEATRE addresses four out of seven requirements identified
for a flexible architecture for reconfigurable cloud applications. Hence, in the next section
extensions to the architecture are proposed to address the remaining requirements with respect
to multi-tenant constraints on functionality and resources.

4.5. Architectural Multi-Tenancy Extensions

The current MQuAT architecture is not multi-tenant aware. To support multi-tenancy, customer
management and the modeling of customer constraints on functionality and resources are to
be integrated. Hence, the structure and variation model definition of CCM are extended with
multi-tenancy concepts to model tenant configurations, and the runtime environment THEATRE
is extended to manage tenants at runtime. Moreover, multi-tenant-specific platform services
are required to identify a user and the affiliated tenant and to compute to which components a
user has access. Hence, platform services such as access control and a multi-tenant aware data
base are to be realized as mandatory components of an application. In addition, modeling these
services as software components enables their reuse in different applications. However, state of
the art frameworks are applicable and are therefore not further discussed in this approach.

In the following the required extensions to CCM are explained in detail followed by a discussion
of the extensions to the runtime environment THEATRE and a proposal how to express customer
constraints regarding functionality and quality [SCG+12].

4.5.1. Multi-Tenant Extensions of the Cool Component Model

A customer defines constraints on component types and instances in terms of functionality and
qualities in a reconfigurable cloud application. To model this information in CCM, structure and
variation model need to be extended.

The extended CCM structure model specification to model customer configurations is depicted
in Figure 4.5. Introduced metaclasses and relations to support multi-tenancy are highlighted
with a gray background while metaclasses of the original structure model are white. A customer
is represented by the metaclass Tenant defining a unique identifier of the corresponding cus-
tomer, while the metaclass Tenant Configuration models a particular customer configuration.
Customers can have multiple configurations expressed by the relation with a many multiplicity
between both metaclasses. Customer constraints regarding application functionality and qualities
are represented by the metaclass Tenant Constraint contained by a Tenant Configuration.
A reconfigurable multi-tenant aware application is modeled by the metaclass Application

83

4.5. Architectural Multi-Tenancy Extensions

Figure 4.5 Multi-tenant extensions of the cool component model.

which refers to multiple mandatory and optional Software Component Types. The concept that
multiple customers share the same application instance is expressed by the relation between
Application and multiple Tenant Configurations.

Modeling the example of a video information system in the extended CCM structure model,
an Application represents the video information system. In addition, the component types
of the system shown in Figure 3.1 as well as their ports and connections are defined by means
of Software Components and referenced by the Application. Both customers A and B are
modeled as Tenants with a unique identifier. For each customer a Tenant Configuration is
specified referencing the corresponding Constraints. Customer A only requires the mandatory
components, but not the optional. Assuming customer A to have further quality requirements.
As explained before, the customer requires strong encryption, high application availability, and
the application to run only on servers located in the European Union due to legal restrictions.
Functional and quality requirements are expressed as Tenant Constrains. The same holds for
the requirements of customer B. These constraints can be expressed by means of OCL constraints,
as discussed in Section 4.5.2.

However, which component types are optional and mandatory is implicitly given by a feature
model in the problem space as illustrated in Figure 3.5(a) for the video information system.
Hence, this information does not need to be modeled explicitly in CCM.

Furthermore, customers can change their application configuration according to their chang-
ing requirements. If a customer changes a configuration, a new customer related Tenant
Configuration is defined while the current tenant configuration is declared to be obsolete.

Moreover, the variation model is extended accordingly as it defines instances for types in the
structure model. Variation models express the runtime state of a system. Hence, for a multi-
tenant application, they must be enabled to express currently active tenant configurations. The
extended metamodel of multi-tenant aware variation models is depicted in Figure 4.6. The
metaclasses Tenant Context and User Context, as well as further references are introduced
to model multi-tenant access on functionality and resources at runtime. These multi-tenancy
extensions are highlighted in the figure with a gray background and dotted lines while model
elements of the original variation model are white. Referenced elements from the structure model
and QCL are highlighted by dashed lines and dashed frames. These elements are additionally

84

4. A Flexible Architecture for Reconfigurable Cloud Applications

Figure 4.6 Multi-tenant extensions of the metamodel for CCM variation models.

marked with an annotation similar to a UML-profile to depict their origin. Each User has
potentially multiple User Contexts. A UserContext defines the functional and quality related
user requirements. The metaclass Tenant Context is introduced to model instances of Tenant
Configurations defined in the structure model at runtime. Tenant Constraints of a Tenant
Configuration are evaluated at runtime to define subsets of available component types, instances
and related quality contracts. Quality contracts implying unavailable software implementation
are filtered. Hence, a Tenant Context is related to Users currently accessing the system, as
well as a subset of available Software Component Instances, Hardware Component Instances,
and Contracts. Those referenced subsets are subsequently applied for negotiating contracts in
the decide phase of the control loop in the runtime environment.

A Tenant Context for a customer references only Hardware Component Instances that fulfill
the customers quality requirements. According to the video information system example in
Section 3.1, the Tenant Context of customer A only contains highly available servers located in
the European Union and offering strong hardware encryption. In addition, referenced Software
Component Instances of this Tenant Context are implementations of the mandatory Component
Types without implementations of optional Component Types. For customer B no constraints
in server locations are defined, and therefore the referenced Hardware Component Instances
are not filtered. Although a Tenant Context constrains the available instances for a User of
this tenant, which particular instances are chosen by Users depends on the user’s requirements
defined in the corresponding User Context. If a user requests a video in this example, the user
specifies a video frame rate which is stored in the User Context and subsequently considered in
the decide phase of the control loop.

Moreover, if a tenant configuration is declared obsolete while an updated tenant configuration is
active, the Tenant Context is updated accordingly. However, requests of users are evaluated
according to the new Tenant Context.

Summarizing, the proposed extensions of the CCM structure and the variation models meet
the requirement of concisely managing tenants, users, their requirements, and reconfiguration
changes of their requirements as defined in Section 4.3.

85

4.5. Architectural Multi-Tenancy Extensions

4.5.2. Tenant Constraints

The requirements of customers must be expressed in a convenient constraint language. Require-
ments can be separated into functional and quality related requirements, both constraining
component types and instances defined in CCM. Functional requirements directly refer to soft-
ware component types and component implementations, such that a customer directly requires
or excludes a software component type or implementation.

Functional constraints on software component types and implementations are expressed by means
of propositional formulae [Bat05]. The definition of available and unavailable components can be
specified in the following ways

• subtractive by assuming that always all components are contained while a constraint
language explicitly declares excluded components,

• additive by assuming the opposite that no components are contained except the ones that
are explicitly specified by a constraint language, and

• explicit by defining the containment state explicitly per component.

The first two approaches are handy as most of the information about available components is
given implicitly, although the third approach is most explicit. In this work, the first approach is
applied, as it is more natural for customers to define, which functionality should not be included
than vice versa [Kru13].

The customer requirements are instantiated as Tenant Constraint in the structure model, as
explained in Section 4.5.1. Three types of constraints can be defined, which are constraints on
software component types, constraints on software component instances, and quality constraints.
How to express these constraints by means of OCL [OMG2012] is explained in the following.

Constraints on Software Component Types

Customers can define constraints on software component types. For instance, in the video
information system example, customer A directly excludes the optional component types Water
marker, Subtitle, and Video manager from the related tenant context, while requiring the
mandatory component types Video player, Stream processor, Decoder, and Data provider.
Hence, an OCL expression for component types is defined and one constraining component
implementations. For customer A in the video information system example, the constraint on
component types could be defined, as depicted in Listing 4.2.

context Application inv: self. SoftwareComponentTypes -> select (c| not(c.name=’
Water marker ’) or not(c.name=’Subtitle ’) or not(c.name=’Video manager ’))

Listing 4.2 Component type constraints expressed in OCL.

86

4. A Flexible Architecture for Reconfigurable Cloud Applications

Hence, only excluded component types are specified in this expression. Evaluating this constraint
leads to a subset of available software component types and also excludes the implementations of
unavailable component implementations.

Constraints on Software Component Instances

If customer A further constraints the implementations of the required component types, such
that the AVS video player implementation of the Video player component type should not
be available, the related OCL constraint is depicted in Listing 4.3.

1 context VideoPlayer inv: self. Implementations -> select (not(name=’AVS video
player ’))

Listing 4.3 Component instance constraints expressed in OCL.

Hence, the specified OCL constraint in this listing selects all component implementations except
the AVS video player implementation.

Constrains on Quality Properties

Quality requirements constrain software and hardware component types and corresponding
instances. These constraints are specified with respect to component properties. Hence, the
particular constrained components are computed by evaluating the constraints. For instance,
customer A has the quality requirements that only servers located in the European Union are
utilized with a strong encryption and high availability. To express this constraint, a Server
component type must be specified in the system with the properties Location and Availability.
Furthermore, encryption components are required on each involved server with a long security
key as a parameter of the encryption component. The quality related constraint of customer A
is expressed in OCL, as depicted in Listing 4.4.

1 context Server inv: self. Location =’EU’
context Server inv: self. Availability =’high ’

3 context Server inv: self. ComponentTypes -> exists (c | c.Type = ’Encryption ’ and c
. SecurityKey = ’long ’)

Listing 4.4 Quality constraints expressed in OCL.

The OCL constraint on qualities is evaluated to filter hardware and software component instances.
Depending on the properties defined in a system, further quality constraints can be expressed. In
general, a customer is not required to specify any of the constraint types. For instance, customer
B in the video information system example only specifies component type constraints.

Summarizing, the definition of tenant constraints in OCL addresses the design time requirement
identified in Section 4.3 of modeling tenant constraints.

87

4.6. Discussion

4.5.3. Multi-Tenant Extensions of the Runtime Environment

As explained before a tenant configuration defines constraints on component types and instances.
These constraints are evaluated at runtime in THEATRE. Therefore, the runtime environment
is extended to restrict the search domain of the contract negotiation process according to tenant
constraints. The CSOP generator has to be extended to evaluate the tenant constraint prior to
contract negotiation in the decide phase of the control loop. Constraints are evaluated sequentially
starting with the constraint on component types, followed by the constraint on implementations,
and finally by evaluating the OCL quality constraint. Hence, hardware and software component
types and their instances are pre-filtered and fewer constraints are to be defined in the CSOP
for negotiating contracts accordingly. However, the evaluation of quality constraints leads to
mandatory components reflected by additional constraints in the CSOP.

In a multi-user scenario, the global control loop manager has to take resource sharing into account
in the decide phase and their effects on provisioned qualities. The other phases of the control
loop, which are collect, analyze and act are to be changed accordingly.

Summarizing, the proposed extensions of the THEATRE runtime environment meet the run-
time requirement of concisely managing tenants and evaluating user requests regarding tenant
constraints as defined in Section 4.3.

4.6. Discussion

The proposed multi-tenancy extensions to the MQuAT architecture allow for constraining user
access with respect to functional and quality related requirements of customers. The explained
concepts support functional variability among customers on architectural level and restrict user
access on customer-specific data and functionality accordingly. Hence, the extended MQuAT
architecture can be integrated into an SPL-based configuration management approach.

In a multi-tenant aware application, further requirements on resource sharing and multi-user
contract negotiation arise, but are considered out of scope of this work. As explained in
Section1.5.5 resource sharing is a central element of a multi-tenant application architecture. The
user access must be isolated and users should not influence each other. These requirements are
not particularly multi-tenant specific, but rather related to multi-user environments, as discussed
in Section 1.5.5. For instance, to identify a user and the corresponding tenant, each software
component type contains a parameter user id. This identifier is used to resolve the related
tenant id from the database storing user and tenant affiliations. Furthermore, this identifier is
applicable to access user- and tenant-related data in the system, as explained in Section 1.5.5.
Resource sharing can be achieved by state-of-the-art frameworks for session management and
load-balancing mechanisms.

Required platform and management services such as authorization, authentication, a multi-tenant
aware data base, and session management are required at runtime, as explained in Section 4.2.
These services can be modeled as MQuAT component types and components.

88

4. A Flexible Architecture for Reconfigurable Cloud Applications

A current limitation of the MQuAT architecture is that contract negotiation is not yet multi-user
aware and hence cannot handle the request of multiple users at the same time. Thus, contract
negotiation in a multi-user scenario is not yet covered. For a robust and comprehensive PLA for
reconfigurable cloud applications further research is required. The explained MQuAT extensions
focus on how to model customer-specific constraints in the solution space. As explained before,
multi-tenancy comprises two concepts, resource sharing as in multi-user environments, and access
restriction on resources. The proposed extensions of MQuAT focus on the latter concept by
restricting the access on functionality and resources of a single user of a customer by introducing
tenant constraints. The explanations in this chapter show that self-adaptive architectures are in
general applicable to implement reconfigurable cloud applications.

4.7. Demarcation from Related Work

Related to this work are approaches proposing architectures for variable multi-tenant aware
cloud applications, as well as self-adaptive systems.

Koziolek provides an architectural style for implementing multi-tenancy as an extension of the
multi-tier architectural style [Koz11]. In this approach, required components and connectors,
as well as data elements of a multi-tenant architecture are described and further constraints
are imposed on these elements. The concepts presented in this work complement the proposed
MQuAT approach in terms of the definition of platform services, for instance to realize load
balancing and the access to a multi-tenant aware database.

A component-based application architecture for configurable multi-tenant aware applications is
proposed by Mietzner [Mie10]. In this work, multi-tenancy and variability descriptors are added
to a service component architecture to allow for customization of an application. An application
is configurable during design time choosing from different component types and implementations.
Although a deployed application is multi-tenant aware, it is no longer configurable. Hence,
all customers accessing the application are served by the same functionality. Furthermore,
reconfiguration during runtime is not considered. In contrast, the architecture based on MQuAT
comprising the multi-tenant extensions is configurable and reconfigurable at runtime.

Wang et al. define a service model for configurable cloud applications based on a service
component architecture [WZL+11]. In this approach, service dependencies are represented by
hyper graphs. The authors propose algorithms to verify the dependencies between services
at design time. The focus of this work is at design time, and variability at runtime is not
considered.

In the DiVa research project, a framework for dynamic adaptive systems is developed [FS09,
MBNJ09]. Systems defined by this framework are adapted automatically according to defined op-
timization goals. Furthermore, the system can be reconfigured with respect to qualities. Although
the framework does not yet support multi-tenancy, an extension similar to the proposed extension
of MQuAT could be possible. DiVa supports qualities with a logic-based optimization approach,
whereas MQuAT in contrast supports numeric qualities and a sub-symbolic optimization. Hence,
the optimization in MQuAT is more fine grained and more expressive.

89

4.8. Summary

In the MUSIC research project, another framework for dynamic adaptive systems is devel-
oped [GKR+06]. The focus in this research project is on defining a component model for
self-adaptive applications running on mobile devices. The component model enables the defini-
tion of component instances and their distribution on currently available mobile devices with
respect to qualities. MUSIC does not yet support multi-tenancy and in contrast to MQuAT, only
mobile devices are supported whereas in MQuAT various user-defined devices can be modeled,
such as servers, desktop computers, and mobile devices.

4.8. Summary

This chapter introduces a development method for reconfigurable cloud applications comprising
different architectural concepts. Particular architectural requirements regarding reconfiguration
and functional variability are identified. Main characteristics of reconfigurable cloud applications
are explained subsequently, as well as architectural concepts implementing these characteristics.
Based on the self-adaptive MQuAT architecture, a potential architecture for implementing
reconfigurable cloud applications is discussed comprising the identified architectural concepts.
Extensions to MQuAT are introduced regarding multi-tenancy constraints to restrict the access
on variable functionality in the solution space. The concepts are illustrated by an example of a
video information system.

As hardware and software components are modeled in MQuAT, customers specify quality
constraints on both, software and underlying infrastructure. Architectures for variable multi-
tenant aware cloud applications consider variability at design time not at runtime, while self-
adaptive architectures handle variability at runtime, but are not multi-tenant aware. Hence, the
architecture-based on MQuAT and multi-tenancy extensions regarding constraints on functionality
and resources presented in this chapter bridges this gab.

This chapter shows that self-optimizing systems such as the multi-tenant aware MQuAT are
convenient to implement reconfigurable cloud applications and address Requirement 1 defined
in Section 2.8. An architecture such as the one proposed, can be uniformly integrated in an
SPL-based approach to automate the derivation and instantiation of customer configurations, as
well as their reconfiguration.

90

5. Multi-Perspectives Simplify Configurations

What we see depends mainly on what we look for.

— John Lubbock

The concepts presented in this chapter are published as a conference paper [SLW12b],
a workshop paper [SLW12a], and a technical report [SLW11].

There is a strong demand to provide configurable applications in the cloud that are tailored by
customers themselves in a self-service portal, as explained in Section 1.8. For complex applications
with a high number of configuration parameters and relations among them, the concise handling
of dependencies among configurations options is as important as the processing of configuration
operations. Additionally, customers vary in their configuration concerns. While some customers
want to configure almost every single application parameters on their own in a self-service-portal,
others are interested in a pre-configuration with a typical selection of application features specific
for a particular application area and a small amount of variability left. For economic reasons
and to prevent customers from getting lost in configuration options, application providers offer
pre-configured editions [Cha13]. Each edition is tailored to a certain application area containing
related features.

Figure 5.1 shows a screenshot1 of Business ByDesign offered as a configurable SaaS application by
SAP AG. In this example, for novice self-service users, team users and advanced enterprise users
corresponding editions are provided. The functionality of the editions is dedicated to supply chain
management, project management and CRM purposes and the amount of functionality varies
between application areas and user types. In Figure 5.1, different thematically related features are
grouped in a package shown in the first row on the left side. For instance, the packages CRM (sales
force automation) and CRM (full scope) group a different amount of CRM functionality.
Grouping features in packages furthermore enable variable pricing strategies [NH02]. For instance,
a popular business model called Freemium is based on feature packages, where basic functionality
is offered for free and users are charged for premium functionality [MdlILG08]. Additionally,
packages efficiently filter out non-relevant features, as well as features that are unavailable for a
certain customer. Further motivation for feature packages are legal restrictions applying in several
countries. As discussed in Section 1.5.3, not all features should be available in all countries.

However, a recent study on the configurability of cloud applications reveals that current solu-
tions supporting packages and editions are developed ad hoc, each for a specific application
purpose [Cha13]. Thus, adapting these approaches to other scenarios, as well as extending them
to support further packages and editions is error prone and costly. Therefore, a generic approach
is demanded for concisely modeling packages and editions with respect to constraints among
configuration parameters.

1http://www54.sap.com/pc/tech/cloud/software/business-management-bydesign/pricing.html

91

http://www54.sap.com/pc/tech/cloud/software/business-management-bydesign/pricing.html

Figure 5.1 The cloud application Business ByDesign offers different editions with varying
amount of pre-configured functionality.

This chapter introduces multi-perspectives on feature models and their formal semantics to provide
a generic approach for defining packages and editions [SLW12b]. The approach constitutes a
conservative extension of feature models providing constructs to declaratively specify concerns
on feature models in a separate model and to define a concern hierarchy for overlapping concerns.
Prior configuration, a set of arbitrary concerns is selected resulting in a pre-configured config-
uration space. Thus, unrelated configuration parameters are filtered and dependencies among
configuration parameters are satisfied.

Hence, multi-perspectives formally specify packages and editions, as depicted in Figure 5.2.
The insinuated feature model on the left side of the figure defines the configuration space by
specifying configuration parameters and their dependencies. Views on the feature model are
defined to reflect particular business and technological concerns by grouping features in packages.
These packages are potentially overlapping because some configuration parameters belong to
the multiple concerns. These views are then aggregated to form a perspective that refines the
feature model and adheres feature model constraints. Thus, a perspective represents an edition
tailored to a specific application area with potentially left variability.

Assuming that the variability of the Business By Design application is described by a feature
model, the following views and perspectives can be defined. In the example in Figure 5.2, the
overlapping views Package Full CRM and Package Sales Force CRM and other view depicted
by three dots are aggregated in perspective Edition Enterprise Standard. Additionally, the
views Package Sales Force CRM and Package Analytics and Reports are aggregated in the

92

5. Multi-Perspectives

Figure 5.2 Views represent feature packages and perspectives assemble pre-configured
application editions.

perspective Edition Team CRM. Hence, both perspectives contain a different set of features. The
approach guarantees that perspectives are well-formed with respect to the feature model structure
and adhere to feature model semantics. Although a perspective narrows the configuration
space according to particular concerns, the approach ensures the derivation of valid variant
configurations from a perspective.

Perspectives refine a feature model which addresses Requirement 2 defined in Section 2.8.
Product variants are derived from the pre-filtered perspective instead of the original feature
model. Thus, a perspective does not introduce new variant configurations, but rather bind
a large amount of variability. Additionally, the filtering of unavailable features, prior to a
customer configuration, reduces the effort for conducting feature constraint analysis during the
configuration process [SOS+12].

Multi-perspectives further support customized application features on feature model level due
to the view concept. If a customer of the Business ByDesign application requires customized
CRM functionality, this functionality is modeled by additional features in the feature model
which are assigned to a customer-specific view. This customer-specific view is only aggregated
in perspectives of that particular customer. Hence, views restrict the availability of features.
Especially the ability to model customizations on feature model level is important for configurable
applications in the cloud as the explicit knowledge of customized features allows for making future
market decisions. For instance, if other customers require the same functionality, customer-specific
functionality becomes public available.

The correctness of the proposed approach with respect to derivable variant configurations is
proven in this chapter and an efficient algorithm for verifying the consistency of the overall
multi-perspective model is provided.

93

5.2. Perspectives Reduce the Configuration Space

5.1. Views Separate Concerns

Views on feature models are an established method to separate concerns and express further feature
relations additional to the dependencies defined by a feature model [ACLF12, HHS+11, CHE05a].
Multi-view approaches on feature models usually partition feature models to different stakeholders
and assume a one-to-one correspondence between a set of views on a feature model and a set of
distinct stakeholders [CHH09, WDS09, HHS+11]. Views are considered to encapsulate a particular
concern and multi-view approaches on feature models aim at Separation of Concerns (SoC). The
methodology of SoC was first mentioned in the 1970s [Par72, Dij76] assuming that a system unit
is decomposable into smaller parts according to certain hierarchical concerns.

The paradigm of SoC is to focus on one aspect of a system at a time to cope with system complexity.
Following this paradigm, the notion of view was introduced to describe a cross-cutting view
on a system-based on a specific interest [FKN+92, NKF03]. Similarly, the ISO/IEC/IEEE
42010:2011, Systems and software engineering standard, as the successor of the standard IEEE
1471, defines a view as a “representation of the whole system from the perspective of a related set
of concerns” [ISO 42010]. Conferring this methodology to feature-based SPLs, a view decomposes
a feature model into a set of features that belongs to a certain concern. In this standard, a view
is explicitly separated from the notion of a viewpoint. A view is defined as, what can be seen, and
a viewpoint is defined as, where to look from. This separation is picked up in this work as well,
such that a viewpoint explicitly defines a view that consistently filters a feature model. Such a
view is called a perspective.

5.2. Perspectives Reduce the Configuration Space

A perspective is a semantic refinement of the feature model, and thus, reduces the configuration
space defined by the feature model. Therefore, a perspective implicitly decreases the number
of derivable products. Hence, at least a single valid product of the original feature model is
derivable form a perspective. Figure 5.3 illustrates that a perspective can be perceived as a partial
configuration and as an explicit filter of the original feature model, both leading to a reduced
configuration space. The difference between both perceptions is that in a partial configuration all
features of the original feature model are contained in a perspective with differing configuration
states, as exemplified in Figure 5.3(a), whereas in a filtered perspective, configuration states are
untouched, but some features are removed, as depicted in Figure 5.3(b).

On perceiving a perspective as a partial configuration of a feature model, the configuration states
of features contained in the perspective are left undecided, where non-contained features are
explicitly deselected. In contrast, when perceiving a perspective as a filter of the feature model,
a perspective yields a new feature model, where features not contained in the perspective are
removed. The latter one is applicable for scenarios, where the feature model describes the product
portfolio of a company and a single configurable product is represented by such a filtered feature
model. However, perspectives semantically refine feature models by aggregating multiple views
and express different stakeholder concerns in the domain engineering process of an SPL. Later
on, in the application engineering process, a perspective is derived from the multi-perspective

94

5. Multi-Perspectives

(a) Features not included in a perspective are dese-
lected in the resulting partial configuration.

(b) Features not included in a perspective are re-
moved from the feature model.

Figure 5.3 A perspective reduces the configuration space and is assumed as an explicit
deselection of features, and a feature model filter.

model in a pre-configuration step prior the configuration of particular variants. To illustrate
how to apply multi-perspectives in a practical scenario, an example of customizable document
management systems is introduced in the next section.

5.3. Illustrative Example for Multi-Perspectives

A typical document management system comprises several features regarding document types,
indexing and searching capabilities. An example SPL for document management systems is
modeled as a feature model illustrated in Figure 5.4 on the right side. The root feature represents
the document management system application and is therefore named DocumentManagement,
while the child features depict variable functionality. Different search and indexing mechanisms for
documents are modeled as features. The management system handles various document formats,
such as plain text, Portable Document Format (PDF), and image types and related Object
Character Recognition (OCR) functionality for extracting and indexing text stored in pictures.
The feature model comprises 23 features and defines 208 derivable variant configurations.

A typical business concern for such information systems is to apply a variable pricing strategy by
selling features in packages at different prices. The pricing strategy is modeled in the view model
depicted on the left side of Figure 5.4. In this scenario, features are grouped in a basic and a
premium line represented by corresponding viewgroups Premium and Basic. In the premium line
there are additional feature packages available depicted by the viewgroups Silver and Gold. The
viewgroup Core represents core features available in both pricing lines. Features mapped to these
viewgroups are highlighted by the same shading. For instance, core functionality is highlighted
with a light gray color comprising 9 features. The function σCore defines the view of core
viewgroup containing the features DocumentManagement, DocumentType, TextType, Indexing,
GeneralIndex, FileNameIndex, Search, GeneralSearch, and FileNameSearch.

As explained previously, features are related to potentially multiple concerns and therefore are
contained in various views. For instance, the feature ImageType is contained in the view depicted
by light gray stripes dedicated to viewgroup Basic and to the view depicted by the light gray
check pattern dedicated to viewgroup Gold. The viewgroup Customized is a singleton viewgroup

95

5.3. Illustrative Example for Multi-Perspectives

Figure 5.4 A multi-perspective model for a sample document management product line.

Figure 5.5 The perspective for viewpoint SpecialUser filters features and constraints unre-
lated to this viewpoint.

holding customized features for the user named SpecialUser according to the explanation in
Section 5.13. In this case, the customized feature is UnicodeTextType as a replacement for the
standard TextType feature. This feature is restricted to the viewpoint of user SpecialUser due
to the viewpoints singleton viewgroup and thus not available for other users.

Currently, there are two viewpoints defined in the view model, one for the SpecialUser and one for
a SilverUser shown in the bottom of the view model and named accordingly Viewpoint SilverUser
and Viewpoint SpecialUser. A viewpoint in this scenario represents a pre-configuration of the
feature model according to a pricing strategy. For instance, the SpecialUser is interested in
buying features from the premium line and from the basic line, while requesting a customized
feature as well. The user’s viewpoint Viewpoint SpecialUser reflects this in the view model. This
viewpoint is therefore related to the viewgroups Core, Basic, Premium and Customized, which
are framed by a thin gray line in the figure.

A user cannot select features that are solely mapped to the viewgroups Silver and Gold. The
features OCR, PDFOCR, and ImageOCR are unavailable to this user, as they are mapped to viewgroup
Gold. In addition the features AuthorIndex and AuthorSearch ae unavailable as well, as they are

96

5. Multi-Perspectives

mapped to viewgroup Silver. Furthermore, features which are solitary mapped to the viewgroup
Gold are not referenced by any viewpoint. Hence, the features OCR, PDFOCR, and ImageOCR are
not derivable in any variant configuration. These features are currently dead. They become alive
when a viewpoint is added that is related to the viewgroup Gold.

Each viewpoint defines a perspective that refines the feature model and thus narrows the
configuration space by filtering unrelated features and constraints. Instead of directly deriving
a variant configuration for the user SpecialUser from the original feature model, a filtered
perspective is instantiated in a pre-configuration step, as depicted in Figure 5.5. Thus, only
features a user is interested in are available for selection in the pre-configured perspective. For
the user SpecialUser the perspective defined by Viewpoint SpecialUser contains 18 features out
of originally 23 as shown in the figure. Filtered features and viewgroups are grayed out. Hence,
features representing OCR functionality and index and search of document author metadata, as
well as corresponding cross-tree constraints are filtered from the resulting perspective. However,
still 55 variant configurations are derivable from the resulting perspective.

As the meaning of views and perspectives is ambiguous, the next section provides an overview of
the applied terminology in the multi-perspective approach.

5.4. Multi-Perspective Terminology

The multi-perspective approach uses the notions of views and perspectives common in various
areas of computer science. However, their meanings differ depending on the application context.
Figure 5.6 illustrates the terminology applied in the multi-perspective approach.

A multi-perspective model MP is visualized by a gray background in the figure comprising a
view model VM depicted on the left side and a feature model FM on the right side. In addition,

Figure 5.6 Relation between the terminology applied in the multi-perspective approach.

97

5.4. Multi-Perspective Terminology

a multi-perspective model contains a mapping σ between viewgroups g of the view model and
views VFM in the feature model.

Views on the feature model are defined on a set of features and related feature constraints and are
framed in the figure on the right side by a dotted line. Views on the feature model can overlap
depicted by overlapping frames. In addition, viewgroups are highlighted by a dotted frame on
the left side of the figure and overlap as well. A viewpoint is related to a set of viewgroups
visualized in the figure by the striped line surrounding all three abstracted viewgroups. Thus, the
views on the feature model related to those viewgroups are aggregated applying the composition
operator ⊕, whose semantic is defined in Section 5.7.

The result of the view composition must be an FM-consistent view VC
FM obeying feature model

constraints. Applying the partial projection function pFM(VFM) on the resulting view VFM leads
to a perspective FMvp which is a feature model with a smaller configuration space than defined
by the original feature model FM. In addition, the terminology applied in the multi-perspective
approach is summarized in Table 5.1.

Table 5.1 Terminology of the multi-perspective approach.

Terminology Description

Multi-perspective
model MP

is the combination of a feature model, a view model, and a mapping
between views on the feature model and viewgroups in the view model.
For instance, the combination of the document management feature
model and the business concern-related view model in Figure 5.4.

Feature model FM defines the configuration space in terms of a feature hierarchy and cross-
tree constraints. In the example in Section 5.3, the feature model defines
the configuration space of document management systems.

View VFM is a concern-specific projection on a feature model containing a set of
arbitrary features and related cross-tree constraints. A view groups
conceptually similar features due to a specific concern. Hence, views
are potentially overlapping as a feature can belong to various concerns.
In the document management system example in Figure 5.4, views are
represented by the shadings in the feature model. Hence, features with
the same shading belong to the same view.

View model VM defines hierarchical relations over viewgroups to express overlapping con-
cerns and captures the dependencies between viewpoints and viewgroups.
In the example in Figure 5.4, the view model depicted on the left side
defines a hierarchy among business related concerns.

Viewgroup g is a node in the view model and hierarchically related to other viewgroups.
A viewgroup is associated with a view on the feature model and represents
a specific concern. In the document management example in Figure 5.4,
the Premium concern is expressed by the corresponding viewgroup, while
features of the feature model related to this concern are highlighted with
a dark gray striped shading.

Continued on next page

98

5. Multi-Perspectives

Table 5.1 – continued from previous page

Terminology Description
Viewpoint vp is defined in the view model and is related to a set of viewgroups

representing concerns. An FM -consistent view on the feature model
results from the aggregation of views associated to these viewgroups.
Applying the projection function pFM on the resulting FM -consistent
view leads to a perspective. A viewpoint is a set of concerns specifying
a partial representation of a feature model by means of a perspective.
In the document management example in Figure 5.4 two viewpoints
SilverUser and SpecialUser related to different customers are defined.

Perspective FMvp is a semantic refinement of the original feature model constituting a
feature model with a reduced configuration space. A perspective is
defined by a viewpoint and results from a projection of the aggregated
viewpoint related views. In the document management example in
Section 5.3, two perspectives are derivable, one per viewpoint. Figure 5.5
shows the perspective on the right side defined by viewpoint SpecialUser.
Features which are filtered out in this perspective are grayed out in the
feature model representation.

This approach defines perspectives and views on group-cardinality based feature models, which
are formally introduced in the next section.

5.5. Feature Models with Group-Cardinality

Various feature modeling techniques exist, as explained in Section 2.3. However, in the multi-
perspective approach, feature models with group-cardinality, as well as require and exclude
cross-tree concerns are considered, as depicted in Figure 5.7. The feature model shown in the
figure contains 15 features, 3 cross-tree constraints on features and, thus defines 136 variant
configurations. The abstract syntax of such feature models is formally defined as follows.

Definition 5.1 (Group-Cardinality Based Feature Model). A feature model FM with group car-
dinality is a 4-tuple (F,≺, λ,Φ), where F is a finite set of features, ≺⊆ F ×F is a decomposition
relation on F , λ : P(F) ⇀ N0 ×N0 is a partial cardinality function assigning intervals to feature
groups, and Φ is a set of propositional formulas over F defining cross-tree constraints.

The cardinality λ(F ′) = (k, l) of feature groups F ′ ∈ dom(λ) defines the minimum and maximum
number of selectable features in a variant configuration. The root feature fr is solely contained in
the root feature group Fr. Hence, a group cardinality λ(Fr) = (1, 1) is assumed. In general, the
four common decomposition types for feature groups are mandatory, optional, alternative, and
or feature groups [CE00]. They are represented by the following cardinality, where n = |F ′|.

• λ(F ′) = (n, n) for mandatory feature groups, such as F ′ = {f1} with n = 1 in Figure 5.7,

99

5.5. Feature Models with Group-Cardinality

Figure 5.7 Views and a perspective on a feature model.

• λ(F ′) = (0, n) for optional feature groups, such as F ′ = {f3} with n = 1 in Figure 5.7,

• λ(F ′) = (1, 1) for alternative feature groups, such as F ′ = {f4, f5} in Figure 5.7, and

• λ(F ′) = (1, n) for or feature groups, such as F ′ = {f8, f9} with n = 2 in Figure 5.7.

A feature model FM is well-formed iff it satisfies all of the following four conditions. FM(F) is
the set of all well-formed feature models over the features in F .

1. The decomposition relation ≺ builds a rooted tree on all features in F . Hence, a unique root
feature fr exists, such that every other feature f ∈ F ∩ {fr} has exactly one predecessing
feature f ′ ∈ F with f ′ ≺ f .

2. The root feature fr is solely contained in the singleton feature group Fr, and does not have
a parent feature. All other features f ′ contained in feature groups F ′ ∈ dom(λ) have the
same parent feature f ′′ under the relation ≺, such that

• ∀F ′ ∈ dom(λ) \ {Fr} | ∃f ′′ ∈ F : f ′′ ≺ F ′.

3. Each feature f ∈ F belongs to exactly one feature group F ′ and feature groups are
non-empty. In other words, F is fully partitioned by the domain dom(λ) of the partial
cardinality function λ, such that

• ∅ 6∈ dom(λ),

• ∀F ′, F ′′ ∈ dom(λ) : F ′ 6= F ′′ ⇒ F ′ ∩ F ′′ = ∅, and

• ⋃
F ′∈dom(λ) F

′ = F.

100

5. Multi-Perspectives

4. The cardinality λ(F ′) = (k, l) of feature groups F ′ ⊆ F define reasonable intervals for child
features, such that k ≤ l and l ≤ |F ′| holds.

In the following, semantics of syntactically well-formed feature models are explained with respect
to the derivation of valid variant configurations.

5.5.1. Feature Model Semantics

The semantics of a feature model FM defines the set of all valid variant configurations. This set
is commonly referred to as variant space. A variant configuration is a subset of selected features
Fvc ⊆ F and is valid, iff

• the root feature fr ∈ Fvc is selected in the configuration,

• for each selected feature f ′′ ∈ Fvc, its parent feature f ′′′ is selected, such that f ′′′ ∈ Fvc
defined by the relation f ′′′ ≺ f ′′,

• the cardinality λ(F ′) = (k, l) of all feature groups F ′ is satisfied, such that k ≤ |F ′s| ≤ l,
where F ′s ⊆ F ′ and F ′s ⊆ Fvc,

• all cross-tree constraints Φ are satisfied on Fvc.

An example for a valid variant configuration of the feature model depicted in Figure 5.7 is
Fvc1 = {fr, f1, f2, f4, f6, f10}.

Cross-tree constraints φ ∈ Φ over features in F are expressed by Boolean propositional formulas
φ ∈ B(F). A feature model is conceptually complete, if Φ only contains implications to express
binary require and exclude constraints between two features f and f ′ [HST+08].

• The require constraint is defined as φrq = f → f ′.

• The exclude constraint is defined as φex = f → f ′.

The set of all cross-tree constraints Φ is interpreted as the logical conjunction ∧
φ∈Φ φ.

The example feature model in Figure 5.7 comprises two require constraints, that are highlighted
by a dashed directed arrow. Feature f7 requires feature f4, which is expressed by f7 → f4, and
feature f5 requires feature f6 which is expressed by f5 → f6.

Additionally, the feature model comprises a binary exclude constraint between features f9 and
f11 visualized in the figure by a dashed bidirectional arrow. The exclude constraint is expressed
by f9 → f11.

101

5.6. Views and Perspectives on Feature Models

The semantical evaluation function

[[·]] : FM(F)→ P(P(F))

defines the variant space by mapping well-formed feature models FM ∈ FM(F) over features F
into the domain of sets of valid variant configurations Fvc ∈ P(F). The domain of sets of valid
variant configurations is [[FM]] ∈ P(P(F)). In addition, the semantical evaluation function [[·]]
defines the maximum set of valid variant configurations, such that

[[FM]] ={Fvc ∈ P(F) | fr ∈ Fvc ∧
(f ′′ ∈ Fvc ∧ f ′′′ ≺ f ′′ ⇒ f ′′′ ∈ Fvc)∧
(f ∈ Fvc ∧ f ≺ F ′ ∧ λ(F ′) = (k, l)⇒ k ≤ |{f ′ ∈ F ′ ∩ Fvc}| ≤ l) ∧
Fvc |=

∧
φ∈Φ

φ}

where f ≺ F ′ : ∀f ′ ∈ F ′ : f ≺ f ′. A variant configuration Fvc contains the root feature fr. For
each contained child feature f ′′, its parent feature f ′′′ is contained, which is defined by f ′′′ ≺ f ′′.
In addition, if a contained feature f comprises a child feature group F ′, the group cardinality
constraint λ(F ′) defining an lower and upper bound (k, l) for the number of contained features is
obeyed. Furthermore, the variant configuration Fvc satisfies all cross-tree constraints Φ.

The variant space defined by [[·]] of the feature model comprising 15 features in Figure 5.7
comprises 136 valid variant configurations. An example variant configuration of this feature
model is F ′vc = {fr, f1, f2, f4, f6, f10}. In contrast, the set of feature F ′′ = {fr, f1, f2, f4, f5, f6}
is not a valid variant configuration. F ′′ is invalid, as the features f4 and f5 must not occur in
the same configuration due to their relation in an alternative feature group.

A feature model FM is satisfiable, if at least one non-empty set of features Fvc ⊆ F exist, that
satisfies the feature relations defined in the feature model [HST+08].

Definition 5.2 (Satisfiable Feature Model). A feature model FM is satisfiable, iff [[FM]] 6= ∅.

Hence, a feature model is satisfiable, if the variant space is not empty. In Section 5.1, views
on feature models are introduced informally. Views on feature models are formally defined in
the next section, based on the formalization of a feature model FM, Any feature model FM
considered in the following sections is assumed to be well-formed and satisfiable.

5.6. Views and Perspectives on Feature Models

A view VFM ∈ VFM is a projection from a feature model FM ∈ FM(F) to a subset of features
FV ⊆ F and corresponding constraints ΦV ⊆ Φ. Hence, a view is defined on an arbitrary set of
features, which do not need to be related by hierarchical and cross-tree constraints. The set of
all possible views on a feature model FM is referred to as VFM.

102

5. Multi-Perspectives

Definition 5.3 (Feature Model View). A view of feature model FM ∈ FM(F) is a pair (FV ,ΦV)
that consists of a subset FV ⊆ F of selectable features, and a subset ΦV ⊆ Φ of constraints,
such that φV ∈ B(FV) for each φV ∈ ΦV .

In Figure 5.7, six views on the feature model are highlighted via different shadings of the features.
For instance, the light gray view comprises the five features fr, f1, f2, f4, and f6. Features can be
projected into multiple views such as feature f10, which is contained in two views, one highlighted
by a wavy line shading, and the other is highlighted by light gray oblique lines.

A perspective is a view that corresponds to a partial tree of the original feature model, which
represents a variability-reduced feature model tree [SLW12b]. Hence, in a perspective feature
model constraints remain satisfiable. In this example in Figure 5.7, the light gray view corresponds
to a valid perspective depicted on the right side of the figure.

The set of valid feature models FM(F) comprises feature models FM(FV) on feature subsets
FV ⊆ F , where FM(FV) ⊆ FM(F). Thus, a perspective FMV ∈ FM(F) for a view VFM ∈ VFM
is defined by the partial projection function

pFM : VFM ⇀ FM(F)

where pFM(VFM) = (FV ,≺V , λV ,ΦV), such that the decomposition function ≺V ⊆ FV ×FV ⊆≺
represents the restriction of ≺ on the feature subset FV . Furthermore, the cardinality function
λV is reduced to the feature subset FV of the view as follows

• if features F ′ are contained in a feature group F ′ ∈ dom(λ) and some of these features
FV are comprised in a view F ′ ∩ FV 6= ∅, then all features not contained in the view are
filtered out of the feature group F ′ ∩ FV ∈ dom(λV), and

• if the cardinality λ(F ′) = (k, l) of the feature group has an upper bound l which equals
the number of features contained in the feature group l = |F ′|, then the upper bound
is refined according to the reduced number of contained features λV (F ′ ∩ FV) = (k, l− |
F ′ \ {FV ∩ F ′} |).

The projection function pFM is partial, as views VFM ∈ VFM exist, where the application of
pFM yields a syntactically ill-formed, and therefore invalid feature model pFM(VFM) 6∈ FM(F).
Moreover, views exist that yield syntactically well-formed feature models, such that pFM(VFM) ∈
FM(F) holds. The resulting perspective pFM(VFM) does not semantically refine the original
feature model FM, such that more variant configurations are derivable from the perspective than
from the original feature model, such as [[pFM(VFM)]] 6⊆ [[FM]]. Hence, the notion of FM-consistent
views is introduced. A view VFM is FM -consistent, iff

• the view is well-formed, such that pFM(VFM) ∈ FM(F),

• [[pFM(VFM)]] ⊆ [[FM]] that is a semantic refinement of the original feature model, and

103

5.7. View Composition

• FMV = pFM(VFM) is satisfiable.

The defined properties of an FM -consistent view lead to Lemma 1. The first property holds,
if the feature selection FV preserves the tree structure of original feature model FM and obeys
feature group cardinality constraints. The second property holds, if cross-tree constraints are
not violated. Hence, cross tree constraints not contained in the view φ ∈ Φ \ Φv only constrain
features F ′ ⊆ F that are likewise not contained in the view. Therefore, F ′ ∩ FV = ∅ is required.
This property is weakened, as in this work only feature models with binary require and exclude
constraints are considered. Thus, only require constraints must be satisfiable by the feature
selection FV of a view VFM. In contrast, exclude constraints cannot be invalidated in a view.
Exclude constrains are either fully supported as both features are present, or one of the excluded
features is not present in the view.

Lemma 1. A view VFM ∈ VFM on a satisfiable feature model FM is FM-consistent, iff

• fr ∈ FV ,

• if f ∈ FV and f ′ ≺ f , then f ′ ∈ FV ,

• if f ∈ FV and f ≺ F ′ with λ(F ′) = (k, l), then |F ′ ∩ FV | ≥ k and

• if f ∈ FV and f → f ′ ∈ Φ, then f ′ ∈ FV , and f → f ′ ∈ ΦV .

The subset of FM-consistent views on a feature model FM is referred to VcFM ⊆ VFM. In contrast,
non-FM-consistent views VFM 6∈ VcFM are called partial views. For instance, features with a
light gray shading in Figure 5.7 comprise an FM-consistent view that satisfies all conditions of
Lemma 1. Hence, this view forms a perspective, as depicted on the right side of the figure. The
other views in the figure are solely non-FM -consistent. However, potentially partial views can be
aggregated into an FM -consistent view, as explained in the following.

5.7. View Composition

For aggregating various potentially non-FM -consistent views, the view composition operator

⊕ : VFM × VFM → VFM,

is introduced. The composition of two views VFM and V ′FM yields a view V ′′FM by combining
feature subsets and constraints of the composed views, such as

V ′′FM = VFM ⊕ V ′FM = (FV ∪ FV ′ ,ΦV ′′).

However, potentially more cross-tree constraints ΦV ′′ are contained in the resulting view than
resulting from the union of the constraints contained in both composed views. Hence, the number
of constraints affecting the set of view features F ′′ is higher than the aggregated constraints of the
composed views, such that |ΦV ′′ | ≥ |ΦV ∪ ΦV ′ |. Thus, the resulting set of cross-tree constraints

104

5. Multi-Perspectives

of the composed view is a subset of the constraints of the original feature model ΦV ′′ ⊆ Φ. A
constraint φ is contained in the composed view V ′′, if both features are contained in this view,
such that φ ∈ ΦV ′′ :⇔ φ ∈ B(FV ′′).

For instance, in Figure 5.7, the FM -consistent view highlighted in light gray Vgray contains
five features and no binary constraints, such that Vgray = {{fr, f1, f2, f4, f6}, ∅}. The non-FM -
consistent view with dark gray stripes Vstripes contains three features and no binary constraints,
such that Vstripes = {{f3, f7, f8}, ∅}. Composing these two views Vgray ⊕ Vstripes yields a new
FM -consistent view Vcomposed = {{fr, f1, f2, f3, f4, f6, f7, f8}, {f7 → f4}}.

The set of features Fcomposed is the result of the union of both feature sets, such as Fcomposed =
Fgray ∪ Fstripes. The resulting view Vcomposed comprises the additional constraint f7 → f4, which
is neither contained in Vgray nor Vstripes. This constraint is added as it is defined on the two
features f4, f7 that are both contained in the feature set Fcomposed of the composed view, such as
φrq ∈ B(Fcomposed). View composition with respect to Boolean constraints is more than the union
of constraint and feature sets to preserve feature model semantics. Feature model semantics
define sets of valid variant configurations in terms of allowed feature combinations.

The following properties of the composition operator are obtained by defining view composition
in terms of conjunction and set union.

Lemma 2. The view composition operator is commutative and associative.

The proof for Lemma 2 follows directly from the definition of the composition operator.

Feature model semantics is generally not compositional due to the cross-tree constraints Φ in
feature models [ACF+09]. Thus, view composition and the derivation of perspectives is not
distributive in terms of feature model semantics due to the binary constraints contained in
views.

Proposition 1 (Non-Distributivity of View Composition). For two arbitrary views VFM, V
′

FM ∈
VFM on a feature model FM, the equation [[pFM(VFM ⊕ V ′FM)]] 6= [[pFM(VFM ∪ V ′FM)]] holds.

The proof for Proposition 1 follows directly from counter-examples addressing non-compositional
feature model semantics due to cross-tree constraints. For instance, the set of derivable variant
configurations of a view composed by applying the composition operator ⊕ on the two views
Vgray and Vstripes differs from the set of derivable variant configurations of a view resulting from
set union of these views. The perspective defined by pFM(Vgray ⊕ Vstripes) is a refinement of the
original feature model as it contains the constraint f7 → f4, which is neither contained in Vgray
nor Vstripes. The set of derivable variant configurations of this perspective is a subset of the variant
configurations derivable from the original feature model FM, such that [[pFM(VFM⊕VFM′)]] ⊆ [[FM]].
From this perspective are 12 variant configuration derivable compared to 136 variants derivable
from the original feature model.

In contrast, composing the two views Vgray and Vstripes by set union does not result in a subset
of derivable variant configuration of the original feature model. For instance, as the constraint
f7 → f4 is neither contained in Vgray nor Vstripes, this constraint is not contained in the resulting

105

5.8. Relations between Feature Models, Views, and Perspectives

view and hence, the perspective defined by pFM(Vgray ∪Vstripes) is not a refinement of the original
feature model. Due to the missing constraint, variant configurations containing only feature f7
without feature f4 are derivable. These variant configurations are not valid according to the
semantics of the original feature model.

As a consequence of ΦV ′′FM
6= ΦVFM ∧ΦV ′FM

, the set of cross-tree constraints ΦV ′′FM
in view V ′′ that

results from the composition of the two views VFM and V ′FM differs from the conjunction of the
cross-tree constraints of the solitary views. Additionally, constraints φ ∈ ΦV ′′FM

∩ Φ exist that are
not contained in each of the aggregated views VFM and V ′FM with φ 6∈ ΦVFM ∪ ΦV ′′FM

, but in the
original feature model Φ.

View composition is closed under FM -consistent views. Hence, the composition of two FM -
consistent views yields an FM -consistent view again. This characteristic is beneficial for checking
the consistency of the overall multi-perspective model efficiently as explained in Section 5.11.2.

Proposition 2 (Closedness of FM-consistent View Composition). VFM ⊕ V ′FM ∈ VcFM holds for
FM -consistent views VFM, V

′
FM ∈ VcFM.

Proof. The well-formed tree structure and feature group constraints are preserved in the resulting
view V ′′FM as both aggregated views VFM, V

′
FM are FM -consistent on the feature model FM and the

composition operation is monotonically non-decreasing on F . For require constraints φ = f → f ′

with f, f ′ ∈ FV ′′, φ ∈ ΦV ′′ is guaranteed as φ is either contained in one of the aggregated views
V, V ′, or in both. Otherwise, one view must have contained f without f ′ which contradicts the
FM -consistency assumption. �

The opposite direction of Proposition 2 does not hold as the aggregation of non-FM -consistent
views may lead to an FM -consistent view. For instance, the result of the composition of all
views in Figure 5.7 is a view on all features and constraints of the original feature model, which
is therefore FM-consistent.

5.8. Relations between Feature Models, Views, and Perspectives

The relations between syntactic and semantic domain concepts of feature models, views and
perspectives are illustrated in Figure 5.8. The circles on the left side represent the view domain,
concepts of the feature model domain are depicted in the middle, and the variant space domain
is represented on the right side. The set-theoretic concepts of views, feature models and variant
configurations are depicted in black color, whereas the new introduced concepts of FM -consistent
views, perspectives and reduced sets of variant configurations are highlighted in gray. In the
middle of the figure, the feature model FM is visualized as a single black dot, which is contained
in the set of all valid feature models FM(F) defined on the set of features F .

The semantic evaluation function [[.]] maps feature models into the domain of sets of variant
configurations. Thus, [[FM]] is the set of all variant configurations defined by the feature model
FM. A valid variant configuration Fvc consists of a set of features F and is a subset of the power

106

5. Multi-Perspectives

Figure 5.8 Formal concepts on views, feature models, and variant configurations.

set P(F), which is the set of all subsets of features. Additionally to this general feature model
concepts, further notions of perspectives and views are depicted in gray color in the figure.

The feature model FM and a perspective FMV on the feature model are contained in the set
of perspectives FM(F cV) which is a subset of FM(F). VFM is the set of all views on the
feature model FM. VcFM is the set of all FM -consistent views and thus a subset of VFM. The
partial projection pFM defines perspectives on a feature model according to FM -consistent views
in VcFM. For instance, the FM -consistent view VFM maps to the perspective FMV , which in
turn semantically refines FM by restricting the set of derivable variant configurations to a
subset [[FMV]].

Views modularize feature models for certain concerns and allow for SoC, as discussed in Section 5.1.
Concerns are potentially interrelated, and thus concern-specific views overlap. Stakeholders are
potentially interested in multiple concerns at once, thus concern-specific views are composed.
In general, view composition is applicable to derive stakeholder-specific perspectives on a given
feature model.

For capturing the relationships between overlapping concerns and perspectives a view model is
introduced in the next section. The concept of a viewpoint is applied to collect multiple, not
necessarily hierarchically related viewgroups to build a perspective. Each viewpoint must define a
valid perspective on the feature model by composing the views defined by collected viewgroups.

5.9. View Model

A view model defines the relations between concerns in a hierarchically structured model. As
shown in the Business ByDesign example in Figure 5.2 concerns and therefore views overlap.
In this example, the view Package Full CRM overlaps with the Sales Force CRM in terms of
features. A view model defines such views and their overlapping in a hierarchical structure.
Therefore, viewgroups representing certain concerns are introduced. Viewpoints collect multiple
viewgroups to define a concern-specific perspective on the feature model. A view model is defined
as follows.

107

5.9. View Model

Definition 5.4 (View Model). A view model VM is a triple (VP, G, ρ), where a finite set of m
viewpoints VP = {vp1, vp2, . . . , vpm}, a finite set of n viewgroups G = {g1, g2, . . . , gn}, and a
relation ρ ⊆ VP×G are specified.

An example view model is depicted in Figure 5.9. Circles denote viewgroups and the lattice
structure visualizes the hierarchical relation on viewgroups. Viewpoints are illustrated by an
eye-like symbol in the figure, where the dashed lines originating from a viewpoint symbol
illustrate viewgroups that are related to a viewpoint. The graphical illustration of a view
model in the figure is inspired by the graphical notation of feature diagrams. Viewgroups
G are hierarchically structured to represent interrelated concerns on a feature model. Each
viewgroup g ∈ G corresponds to a concern. Viewgroups that are lower in the hierarchy comprise
concerns of viewgroups that are further up in the hierarchy. The core viewgroup represents a
core concern, common to all hierarchically related viewgroups, and equal to a root feature in a
feature diagram.

Viewpoints V P define which concerns are aggregated to derive a feature model pre-configuration.
In the view model, ρ defines a relation between viewpoints and viewgroups. Thus, a viewpoint
vp is related to a set of viewgroups Gi ⊆ G, such that ρ(vpi) = Gi = {gi ∈ G | (gi, vpi) ∈ ρ}.
In the figure, the relation between a set of viewgroups and a viewpoint is highlighted by a
frame surrounding related viewgroups and a eye-like symbol naming the viewpoint. For instance,
viewpoint vp2 is related to a set of viewgroups Gvpi

= {gcore, g1, g2}.

Each viewgroup gi is related to potentially multiple viewpoints VPi ⊆ VP, such that ρ(gi) =
VPi = {vpi ∈ VP | (gi, vpi) ∈ ρ}. Thus, all viewpoints VPi that are related to a viewgroup gi
share the same concerns dedicated to that viewgroup. For instance, the viewpoint vp1 is only

Figure 5.9 A view model captures the relationship between viewgroups and defines view-
points that collect viewgroups.

108

5. Multi-Perspectives

related to the core viewgroup gcore, where viewpoint vp2 is related to gcore, g1 and g2. Hence,
both viewpoints have the viewgroup gcore in common.

Additionally, the relation ρ implicitly introduces an hierarchical relation <G ⊆ G × G on
viewgroups, where g <G g′ :⇔ g′ (g defines a predecessor relation among viewgroups via proper
inclusion of their viewpoint sets. The relation <G is a strict partial order, as viewgroups with
equal subsets of viewpoints defined by the relation ρ(gi) = ρ(gj) are distinguished in G by their
indices i and j. Hence, two viewgroups gi and gj are either related under <G or incomparable.
For instance, in Figure 5.9, the viewgroups gcore and g1 are related under <G as both are related
to the viewpoints vp2 and vp3. However, the viewpoint vpcore is related to gcore, but the viewpoint
is not related to the viewgroup g1. Additionally, the viewgroups g4, g2 and gcore are related
hierarchically, such that gcore <G g2 <G g4 holds, whereas g2 and g1 are unrelated under <G.
Viewgroups are incomparable, if they are either disjoint or overlapping, where the latter includes
set equality. The viewgroups g2 and g3 are incomparable as g3 does not have any viewpoint. The
overlapping viewgroup relation uG ⊆ G×G is defined as

gi uG gj :⇔ i 6= j ∧ gi ∩ gj 6= ∅ ∧ gi 6<G gj ∧ gj 6<G gi.

Thus, two viewgroups gi and gj overlap, if they do not represent the same viewgroup indicated
by differing indices i and j and both viewgroups are neither disjoint nor related under <G.
For instance, in Figure 5.9, the viewgroups g1 and g2 overlap, as both are related to the
viewpoints vp2 and vp3. Therefore, g1 uG g2 holds, as the viewpoint is related to both viewgroups
vp2 ∈ ρ(g1)∩ρ(g2). In addition, the overlapping viewgroup relation uG is irreflexive, symmetrical
and non-transitive.

A view model is well-formed, if the hierarchical viewgroup relation <G is closed upwards in G,
such that a unique core viewgroup gcore ∈ G exists with gcore <G g for each viewgroup g ∈ G.
Hence, the core viewgroup represents a single root and any viewpoint is related to the core
viewgroup represented by ρ(gcore) = VP.

The following notations for a view model VM are applied,

• a viewgroup g ∈ G is a direct predecessor of g′ ∈ G, if g <G g′ and there exists no g′′ ∈ G,
such that g <G g′′ <G g′,

• a viewgroup g ∈ G is most specific for a viewpoint vp ∈ VP, if vp is related to g, i.e.,
g ∈ ρ(vp), and there exists no g′ ∈ G with g <G g

′ and g′ ∈ ρ(vp).

Thus, the core viewgroup, which is gcore in Figure 5.9, has no predecessors. The core viewgroup
gcore is unique and collects concerns common to all stakeholders. Any other viewgroup in the
view model has potentially multiple direct predecessing viewgroups due to the overlapping of
viewgroups. For instance, viewgroup g5 has two direct predecessing viewgroups g1 and g4.

The view model further enables viewpoints to have multiple most specific viewgroups. For
instance, the viewgroups g1 and g2 in the figure are most specific for viewpoint vp2. Additionally,
singleton most specific viewgroups gs are applied to assign exclusive properties to viewpoints. A

109

5.10. Multi-Perspective Model

single viewpoint vpi is related to a singleton most specific viewgroup gs, such that ρ(gs) = vpi and
|ρ(gs)| = 1 These viewgroups enable customization on feature model level as further explained in
Section 5.13.

Additionally, a distinction between abstract and concrete viewgroups is made. This definition is
picked up later in Section 5.11.2 to define an efficient algorithm for checking the consistency of
multi-perspective models containing view models. Thus, a viewgroup g ∈ G is

• concrete, if g is most specific to at least one viewpoint vp, and

• abstract, if g is not most specific to any viewpoint vp.

Viewgroup g4 in Figure 5.9 is an example for an abstract viewgroup. Only viewpoint vp3 is
related to this viewgroup and thus ρ(g4) = {vp3}. In turn, the viewpoint vp3 is related to a set
of five viewgroups, such that ρ(vp3) = {gcore, g1, g2, g4, g5}. Viewgroup g4 is not concrete, as for
the viewpoint vp3 exists a viewgroup g5 in ρ(vp3) further down in the viewgroup hierarchy, such
that g5 <G g4. In contrast, the viewgroup g2 is an example for a concrete viewgroup, as g2 is
most specific for viewpoint vp2.

To summarize, a view model specifies hierarchical relationships among concerns in viewgroups.
Each viewpoint is related to a set of viewgroups, where each viewgroup defines a view on the
feature model. A view, and therefore a viewgroup, is dedicated to a concern and collects multiple
features. Thus, a viewpoint in the view model specifies sets of views that are composed in an
FM-consistent view, which is called perspective. A perspective preserves feature model semantics
by imposing a refinement of the configuration space. A multi-perspective model specifies the set
of viewpoints and valid perspectives on the feature model.

5.10. Multi-Perspective Model

A multi-perspective model is a conservative extension to common feature models as it extrinsically
models overlapping views on the feature model. Concern-specific views are defined by viewgroups
in a separate view model, as introduced previously. Combining a feature model and a view model
by mapping feature model views to viewgroups yields a multi-perspective model as visualized
in Figure 5.10. Hence, a multi-perspective model comprises a feature model, a hierarchical
view model and a mapping between views on the feature model and viewgroups in the view
model. A viewpoint in the view model is related to multiple viewgroups representing concerns.
Hence, a viewpoint defines a view on the feature model comprising multiple concerns. This
view defined by a viewpoint is called a perspective. A perspective is a semantic refinement
of the feature model as the number of derivable valid variant configurations is decreased. In
Figure 5.10 three perspectives are defined, each corresponding to a viewpoint in the view model.
A multi-perspective model is defined as follows.

Definition 5.5 (Multi-Perspective Model). A multi-perspective model is a triple (FM,VM, σ),
where FM ∈ FM(F) is a feature model, VM = (VP, G) is a view model, and σ : G→ VFM is
the view mapping function between viewgroups G and views VFM.

110

5. Multi-Perspectives

Figure 5.10 A multi-perspective model consistently pre-configures a feature model by deriv-
ing perspectives.

Every feature of the feature model FM is required to be mapped to at least one view. Thus, for
each f ∈ F exists a viewgroup g ∈ G with σ(g) = (Fg,Φg) such that f ∈ FG. In Figure 5.10,
the mapping function σ is denoted by the same shading of viewgroups and features. Generally,
the mapping between features and viewgroups is n : m, and thus viewgroups are projected in
multiple views accordingly. For instance, feature f10 is mapped to both viewgroups g3 and g2,
where viewgroup g3 additionally maps to feature f11.

Additionally, the mapping between the core viewgroup gcore and features is marked with a
solid grey shading. The resulting view on the feature model is called core view and is FM-
consistent. The other single views defined by σ and represented by different shadings are solely
not FM-consistent. Instead, they are interpreted to refine the core view by individual features
for particular concerns.

A viewpoint refers to an aggregated view Vvp that must be FM-consistent. This view is called a
perspective on the feature model FM.

Vvp = σ(gcore)⊕ σ(g1)⊕ σ(g2) · · · ⊕ σ(gk), where ∀i ∈ N1, i ≤ k : vp ∈ ρ(gi)

111

5.11. Consistency of Multi-Perspective Models

A viewpoint Vvp composes views on the feature model to build a valid perspective. Each view σ(g)
is defined by a viewgroup g related to the viewpoint according to the relation ρ(vp) = Gvp and
∀g ∈ Gvp : σ(g). In Figure 5.10, there are three viewpoints in the view model, entitled vp1, vp2,
and vp3. Each viewpoint defines a valid perspective by aggregating different views, as depicted
in the bottom of the figure. For instance, viewpoint vp2 is related to the viewgroups gcore, g1,
and g2. Thus, the view σ(gcore) defined by the viewgroup gcore contains the features fr, f1, f2, f4,
and f6 as highlighted by a light grey background in the figure. This view is aggregated with two
further views σ(g1) and σ(g2). The features Fg1 = {f3, f7} of view σ(g1) are highlighted with
a dark striped background, while the features Fg2 = {f5, f9, f10} of view σ(g2) are highlighted
with a light striped background.

The set of all perspectives defined by viewpoints VP on a feature model FM in a multi-perspective
model MP is denoted by VMP ⊆ VFM. Hence, the views VMP project multiple perspectives
FMvp = pFM(Vvp) on a feature model. For instance, viewpoint vp2 in Figure 5.10 is related to
the viewgroups g1, g2, and gcore. The resulting view on the feature model defines the perspective
vp2, which is shown in the middle of the lower area of the figure. Eventually, all perspectives are
FM-consistent, and thus preserve the semantics of the original feature model.

The FM-consistency criteria for perspectives are relevant to define the consistency of a multi-
perspective model as described in the next section.

5.11. Consistency of Multi-Perspective Models

A multi-perspective model is required to be consistent. Consistency is defined with respect
to the viewpoints in the view model and their relation to views on the feature model. Each
viewpoint is required to define a perspective which represents a feature model refinement. Hence,
a multi-perspective model MP is consistent, iff all views defined by viewpoints are FM-consistent.

Lemma 3. The multi-perspective model MP = (FM,VM, σ) is consistent, iff VMP ⊆ VCFM.

The proof of Lemma 3 follows directly from the FM-consistency of all views defined by view-
points.

In the example in Figure 5.10, three viewpoints vp1, vp2, and vp3 are defined in the multi-
perspective model. All viewpoints specify FM− consistent views obeying the semantics of the
original feature model. Thus, the three viewpoints specify the three perspectives shown in the
lower area of the figure and the multi-perspective model is consistent.

Changing the mapping of feature f3 from viewgroup g1 to viewgroup g3 in this example renders
two viewpoints inconsistent, as depicted in Figure 5.11. Compared to Figure 5.10, only the
mapping of feature f3 is changed in this example while the structure of the view model and
the feature model remain the same. The views of both viewpoints vp2 and vp3 are inconsistent
in this case. The composed viewpoint views are inconsistent, as the non-contained feature f3
violates the decomposition relation fr ≺ f3 ≺ f8 of the original feature model.

112

5. Multi-Perspectives

Figure 5.11 A multi-perspective model with two inconsistent viewpoints vp2 and vp3, and
one consistent viewpoint vp1.

Figure 5.12 Changing the relation between viewpoints and viewgroups in the view model
yields a consistent multi-perspective model.

The view specified by viewpoint vp1 remains consistent in this example. Both inconsistent
viewpoints vp2 and vp3 become consistent by defining a relation from both viewpoints to
viewgroup g3, such that ρ(g3) = {vp2, vp3}. The resulting multi-perspective model is depicted in
Figure 5.12. The changed relations of the viewpoints vp2 and vp3 are highlighted in the figure
by thick lines surrounding the viewgroups related to these viewpoints. Hence, the resulting
multi-perspective model is consistent as all contained viewpoints are consistent. In addition,
viewpoint vp3 specifies a perspective equal to the original feature model.

Ensuring the consistency of a multi-perspective model is a complex problem due to overlapping
and hierarchically structured viewgroups in the view model.

The consistency of a single viewpoint is determined by performing a depth-first or a breadth-first
search on the view model to collect all related viewgroups of the viewpoint. For instance, in the

113

5.11. Consistency of Multi-Perspective Models

Figure 5.11, the consistency of viewpoint vp2 is checked, by collecting the viewgroups gcore, g1 and
g2. Subsequently the views defined by these groups are aggregated by applying the composition
operator ⊕, as explained in Section 5.7. The result is a single viewpoint view. This viewpoint
view is then evaluated against the consistency criteria of Lemma 1. If the viewpoint view is
FM -consistent, the viewpoint is valid. In this example, the resulting view of viewpoint vp2 is
not FM-consistent as features f8 and f9 are contained but not their parent feature f3. This
consistency check is subsequently repeated for each viewpoint to determine the consistency of the
overall multi-perspective model and can be expressed as a brute-force algorithm, as explained in
the following.

5.11.1. Brute-Force Algorithm Verifying the Consistency of the Multi-Perspective

Model

Algorithm 1 verifies the consistency of a multi-perspective model MP by iterating over all
viewpoints vp ∈ VP specified in the view model VM of the multi-perspective model MP.

The following data structures are applied in the brute-force algorithm.

• Vvp – the aggregated view for viewpoint vp contains a set of features and a set of constraints.

• FMvp – the perspective is derived for the observed viewpoint vp.

• checkConsistency(FMvp, FM) – method to check the consistency requirements according
to Lemma 1 of a perspective which is a view on the feature model imposed by a viewpoint.

• vp.cons – a flag for indicating viewpoint consistency. The flag is set to the return value of
method checkConsistency.

To verify consistency of a multi-perspective model, the brute-force algorithm composes a view Vvp
for each viewpoint vp. The view Vvp is defined by aggregating the set of views σ(g) of (partial)
viewgroups g ∈ G, where ρ(vp) = G. Subsequently, the perspective FMvp for viewpoint vp is
projected from the feature model FM.

Algorithm 1 Brute-Force Consistency Check of a Multi-Perspective Model
1: input: multi-perspective model MP = (FM,VM, σ)
2: for all viewpoints vp ∈ VP do
3: for all viewgroups g ∈ G where vp ∈M(g) do
4: Vvp := Vvp ⊕ σ(g)
5: end for
6: FMvp := pFM(Vvp)
7: vp.cons := checkConsistency(FMvp,FM)
8: end for
9: return true if ∀vp ∈ VP : vp.cons = true

10: return false otherwise

114

5. Multi-Perspectives

The method checkConsistency performs the FM-consistency check of the perspective FMvp ac-
cording to Lemma 1. The FM-consistency check includes the verification of satisfiability of each
reduced feature model represented by a perspective. It is reported in literature that the satisfia-
bility check of a feature model is reducible to SAT, which is presumably NP-complete [Bat05].
In addition, the viewgroup hierarchy in the view model defines set inclusions and overlapping
on viewgroups. Thus, viewpoints related to non-disjoint viewgroups have many viewgroups in
common, which leads to multiple redundant and costly satisfiability checks.

To summarize, the brute-force algorithm works well for multi-perspective models of small size
with respect to the number of features and viewgroups. The algorithm is also applicable to
check single viewpoints for consistency. However, the algorithm does not scale for complex
multi-perspective models with numerous features and viewpoints, as shown in the performance
evaluation described in Section 7.5.4. For complex multi-perspective models, an incremental
algorithm is discussed in the next section.

5.11.2. Incremental Algorithm Verifying the Consistency of the

Multi-Perspective Model

The incremental algorithm is based on the closedness property of the view composition operator
subsumed in Proposition 2. The algorithm incrementally iterates over viewgroups instead of
viewpoints. The following assumptions on a multi-perspective model MP are related to the
closedness property of the view composition operator.

1. The original feature model FM is satisfiable.

2. The FM -consistency of the views Vg of all potential viewgroups gi in separate, ensure
FM -consistency of all aggregated views VVP of every viewpoint vp ∈ VP.

Based on these assumptions, an efficient incremental algorithm for checking the consistency of a
multi-perspective model MP is defined by interpreting view models VM = (VP, G) as acyclic
lattices (Gc,→), where

• nodes g ∈ Gc refer to concrete viewgroups Gc ⊆ G that are directly assigned to at least
one viewpoint, and

• edges g → g′ connect concrete viewgroups g, g′ ∈ Gc, where both viewgroups are in a
hierarchical relation g′ <∗G g and each intermediate viewgroup g′′ ∈ G with g′ <∗G g′′ <∗G g
is abstract, such that g′′ 6∈ Gc.

Algorithm 2 starts with observing the core viewgroup, and incrementally checks further concrete
viewgroups for consistency.

The following data structures are applied in the incremental algorithm.

115

5.11. Consistency of Multi-Perspective Models

Algorithm 2 Incremental Consistency Check of Multi-Perspectives
1: Input: multi-perspective model MP = (FM, (Gc,→), σ)
2: Require: gcore ∈ Gc
3: ∀g ∈ Gc : g.F = σ(g)
4: ∀g ∈ Gc : g.cons = true
5: gcore.cons := checkConsistency(gcore.F, FM)
6: ∀g ∈ Gc : g.done = false
7: gcore.done := true
8: for all g ∈ Gc where g.done = true do
9: for all g′ ∈ Gc where g → g′ do

10: g′.F := g′.F ∪ g.F ∪ Fg→g′

11: g′.cons := checkConsistency(g′.F, FM) ∧ g.cons
12: if ∀g′′ ∈ Gc where g′′ → g′ : g′′.done = true then
13: g′done := true
14: end if
15: end for
16: Gc := Gc \ g
17: end for
18: return true if ∀g ∈ Gc : g.cons = true
19: return false otherwise

• GC ⊆ G – the subset of concrete viewgroups that are most specific to at least one viewpoint.
In addition, the core viewgroup is always required to be contained in GC , even though this
viewgroup might be abstract.

• g → g′ – the viewgroup hierarchy relation considering concrete viewgroups GC only.

• gcore – the unique root viewgroup of the view model

• g.cons – a flag for indicating viewgroup consistency. The flag is set to false (and stays false)
as soon as one potentially inconsistent view of a viewgroup is detected.

• g.done – a flag for indicating that a viewgroup is checked. The flag is set to true if all
predecessing viewgroups of that viewgroup are completely checked. Thus, the traversal
continues at this viewgroup.

• g.F – the set of features in the view of that viewgroup incrementally collected from all
predecessing viewgroups defined by <G.

• checkConsistency(F, FM) – method to check the consistency requirements of a set of
features comprising a view according to Lemma 1.

• Fg→g′ – the union of features is mapped into views of abstract viewgroups g′′ between two
concrete viewgroups g and g′.

116

5. Multi-Perspectives

Algorithm 2 assumes that a viewpoint is solely assigned to the core viewgroup, whose perspective
represents a satisfiable feature model. In the example in Figure 5.10, the viewpoint vp1 is solely
assigned to the core viewgroup gcore. Due to this assumption, the incremental algorithm requires
a satisfiability check only once for the core viewgroup, while all other viewgroups are checked
incrementally. Hence, the algorithm first checks the satisfiability of the perspective that belongs
to viewpoint vp1, which comprises the features fr, f1, f2, f4, and f6. The resulting feature model,
illustrated in the left corner of the figure, is satisfiable as the set of contained features represents a
valid variant configuration. Initially, all concrete viewgroups are marked as unfinished by setting
the flag g.done for each viewgroup g to false. After checking the consistency of the core group,
this group is marked as done by setting its flag gcore.done to true. Subsequently, the algorithm
collects feature sets of the concrete viewgroups that are in a hierarchical relation. Features
assigned to the the previous concrete viewgroup g are combined with the features assigned to the
subsequent concrete viewgroup g′ and joined with features assigned to all intermediate abstract
viewgroups. This joint feature set is assigned to the concrete viewgroup g′.

Subsequently, the algorithm checks concrete viewgroups for FM -consistency by verifying the
conditions of Lemma 1. A concrete viewgroup is directly assigned to a viewpoint, while an
abstract viewgroup is only indirectly assigned to a viewpoint via hierarchical inclusion. For
instance, concrete viewgroups are g1, g2 and g5, where abstract viewgroups are g3 and g4 in the
example in Figure 5.10. Hence, only the hierarchical relations gcore → g1, gcore → g2, g1 → g5,
and g2 → g5 are considered by the algorithm. The hierarchical relation gcore → g1 between the
concrete viewgroups g1 and gcore is direct without intermediate abstract viewgroups. In contrast,
the hierarchical relation g2 → g5 comprises the abstract viewgroup g4. Features assigned to
abstract viewgroups that are contained in the hierarchical relation between concrete viewgroups
are determined.

Thus, via the hierarchical relation g → g′ between concrete viewgroups g, g′, a set of features is
determined by collecting features assigned to the concrete viewgroup g. Feature sets are added
incrementally by evaluating the mapping function σ(g) for each viewgroup g and for all abstract
predecessing viewgroups Fg′→g. The incremental algorithm benefits from the property that the
composition of FM -consistent views results in an FM -consistent view.

The incremental algorithm is an algorithm without backtracking as each viewgroup is checked.
Thus, the performed traversal of the hierarchical relation of concrete viewgroups (Gc,→) has a
complexity equivalent to breath-first-search, where each segment g → g′ is checked based on the
previously conducted steps. Hence, the incremental algorithm is a wavefront algorithm on an
acyclic lattice. The application of the incremental algorithm on a multi-perspective model MP
results in Theorem 1 extending Lemma 3.

Theorem 1 (Multi-Perspective Model Consistency). If the multi-perspective model MP passes
Algorithm 2 successfully, then MP is consistent.

Theorem 1 is proved by induction as follows.

Proof. First, the algorithm always terminates because the construction of (Gc,→) always results
in a finite, connected, directed, and acyclic graph. Therefore, predecessing nodes always exists
for the traversal, and no cyclic traversals may arise. The preservation of FM-consistency can

117

5.12. Multi-Perspectives in Software Product Line Engineering

be shown by induction over the traversal of paths in (Gc,→). The induction starts by ensuring
FM-consistency of the view imposed by the core viewgroup, which is predecessor of any other
viewgroup. In every step, the algorithm incrementally ensures for every edge g → g′ to be
consistency preserving. This is done by assuming the view of g to be already checked as FM-
consistent, which reflects the induction hypothesis, and by verifying that the aggregated views for
the set Fg→g′ preserve FM-consistency. Thus, the incremental traversal ensures concrete views
to preserve FM-consistency, if all their predecessors under <G are FM-consistent. Thereby, the
view of g is aggregated from views of viewgroups under <G via hierarchical inclusions. Moreover,
consistency of overlapping viewgroups is given according to Proposition 2. Thus, views arbitrarily
aggregated for viewgroups g uG g′ also implicitly preserve FM-consistency due to the closedness
of FM-consistent view composition. This property of the view composition operator always holds,
and does not need to be checked explicitly in the algorithm. �

The opposite direction of Theorem 1 does not hold, as the algorithm can produce false negatives
for multi-perspective models that contain viewpoints with consistent views that are aggregated
by inconsistent partial views of concrete viewgroups. As a result, the consistency of all viewpoints
is correctly determined by drastically reducing the number of explicit satisfiability checks in
comparison to the brute-force algorithm.

To apply the multi-perspective approach on an SPL, the domain and the application engineering
processes are extended.

5.12. Multi-Perspectives in Software Product Line Engineering

In SPL engineering, the processes of domain and application engineering are distinguished, as
explained in Section 2.2. The presented multi-perspective approach is integrated into these main
processes. In addition to model commonality and variability of variant configurations in a feature
model, the domain engineering process is extended to extrinsically model reusable stakeholder
concerns on the feature model. As the instantiation of a feature model is independent from the
multi-perspective approach, multi-perspectives are also applicable to existing feature models. To
apply the approach on a feature model, a hierarchical view model is firstly created, and features
are mapped to viewgroups. After that, viewpoints are identified in the domain engineering
process. These viewpoints are intended to derive perspectives in the application engineering
process.

The application engineering process is extended by creating a consistent perspective prior to
variant derivation. Thus, products are not directly derived from the original feature model,
but from a refined perspective. Therefore, the process is extended with an initial step for
defining or selecting a viewpoint in the view model that represents certain stakeholder concerns.
According to the specified viewpoint, a perspective is derived automatically. Finally, instead of
the original feature model, the derived perspective is further refined in the configuration process
to create a variant configuration. Furthermore, the proposed multi-perspective approach allows
for expressing customizations on feature model level.

118

5. Multi-Perspectives

5.13. Customization on Feature Model Level

In most SPL approaches, a product is derived from the SPL, which is then further customized
on source code level [ESSPL10]. As such, there is no information about the customization on
feature model level. This lack of knowledge is inconvenient for the evolution of an SPL, where
features may be modified, removed or replaced.

On a product update, the customizations must be retained, but the impact of the evolutionary
steps is not obvious as feature customizations are untraceable. Customizations for single customers
can only be incorporated into the domain feature model, if their access is restricted.

The proposed multi-perspective approach supports customization on feature model level in terms
of perspectives. For that reason, a special kind of viewgroups is used in the view model to
exclusively assign customization properties to particular viewpoints vp ∈ VP. These viewgroups
are named singleton viewgroups gs ∈ G, as they are related to a single viewpoint, such that
|ρ(gs)| = 1. Such viewgroups are unique in G. For instance, assuming that feature f12 in
Figure 5.10 is customized, the singleton viewgroup g5 restricts the availability of the feature.
Furthermore, g5 is a singleton viewgroup of viewpoint vp3 and thus only contained in the derivable
perspective of that viewpoint shown below in the figure.

Customer-specific features can be added to the original feature model, and are restricted to
a customer’s perspective by mapping the features to a singleton viewgroup of the customer’s
viewpoint. Other viewpoints must not be affected and still remain FM -consistent. Thus, already
derived variant configurations are not invalidated.

Additionally, a customization requested by a single customer may later on be requested by
further customers turning it into a public-available domain feature. The customized feature
initially mapped to the customer’s singleton viewgroup, will be mapped to a different viewgroup
available to further customers. The multi-perspective approach enables traceable customizations
on feature model level in evolutionary scenarios.

5.14. Best Practices in Modeling Views and Perspectives

Multi-perspective models can be constructed in different ways. However, various experiments
revealed best practices in modeling multi-perspectives. As a result, the rules listed below explain
how to create meaningful models with reduced computation complexity [SLW11].

1. Core features are to be mapped to the core viewgroup.
Features that are contained in every derived product are called core features [BSRC10].
All features mapped to the root viewgroup are contained in any derivable perspective as
this viewgroup is related to every viewpoint. In Figure 5.10, core features are the root
feature fr, as well as the two mandatory features f1 and f2. Hence, they are mapped to
the core viewgroup gcore.

119

5.14. Best Practices in Modeling Views and Perspectives

2. Features that should not be available in every perspective are best modeled as optional
features.
Optional features in the feature model can be excluded from particular perspectives by an
appropriate mapping to viewgroups. Furthermore, subtrees of the feature model can be
explicitly excluded from certain perspectives by introducing optional features on a higher
level in the feature model hierarchy. Such features can also be abstract, such that they
do not correspond to a particular implementation, but are used for structuring purposes
only [TKES11].

For instance, in Figure 5.10 features f11, f12, f13 and f14 are modeled as optional features
and assigned to viewgroups further down the viewgroup hierarchy. Thus, they are not
included in every perspective.

3. All viewgroups should be related to viewpoints to prevent dead features
Features that are not contained in a derived product are called dead features [TBD+08].
Therefore, features are dead, if they are not contained in a perspective. If features are
solely mapped to viewgroups that are not related to viewpoints, the features are excluded
from any derivable perspective.

This holds for feature f11 in Figure 5.10, for instance. The feature is solely mapped to
viewgroup g3, which is not referenced by any viewpoint. Hence, f11 is not included in any
of the three derivable perspectives show on the bottom of the figure. Consequently, the
exclude constraint f11 → f9 is not contained in any perspective as, due to the absence of
feature f11, this constraint can never be invalidated.

4. The hierarchies of feature model and the view model should be aligned.
The incremental consistency check algorithm traverses the view model from top to bottom
starting from the core viewgroup. The algorithm works best, if partial views created for
concrete viewgroups are FM -consistent and thus obey feature model semantics. If features
on a lower level in the feature model hierarchy are mapped to viewgroups on a high level
in the view model hierarchy, potentially many partial views are inconsistent, which causes
the algorithm to perform more costly SAT checks.

The mapping of features to viewgroups should reasonably follow the feature decomposition
relation of the feature model. For instance, this holds for the left branch of the view
model in Figure 5.10 comprising viewgroups gcore, g1 and g3 and the features fr, f2, f6,
f7 and f11 of the middle feature branch mapped to these viewgroups. Hence, the root
feature fr, as well as features f2 and f6 in the hierarchical relation, are mapped to the core
viewgroup gcore, while feature f7 is mapped to viewgroup g1 one level lower in the view
model hierarchy. Finally, the lowest feature f11 in this hierarchy is mapped to the lowest
viewgroup g3.

In contrast, viewgroup g4, which is on the same low level as g3, is mapped to the two
features f13 and f14 that are on a high level. This is reasonable as these features do not
have child features, which are mapped to a viewgroup on a higher level in the view model
hierarchy.

120

5. Multi-Perspectives

5. Features of a require relation should be mapped to viewgroups in the same hierarchy.
Both features of a require constraint should be mapped to same viewgroup or to viewgroups
in the same hierarchy in the view model to achieve good performance of the incremental
consistency algorithm. In Figure 5.10, there is a require relation between feature f7 and
f4 and another between features f5 and f6. However, in both cases, the features are not
mapped to the same viewgroups, but to viewgroups in the same hierarchy. Alternatively,
the feature that is required by another feature could be mapped to a viewgroup further up
in the view model hierarchy. Hence, both features are contained in the same view.

6. The selection of a feature can be restricted by excluding it from a perspective.
A feature is excluded from a perspective by assigning it to a viewgroup unrelated to the
viewpoint of the perspective. Due to particular concerns, features should explicitly not be
available for selection. It is reported recently that for business reasons customers rather
define which features should not be included in a product than the define what should be
included [Kru13].

7. A domain feature can be replaced by a customized feature in a perspective.
A domain feature that is not required by another feature in a require cross-tree constraint,
can be replaced by a customized feature. Both features, customized and domain feature,
must share the same ancestor feature in the feature model, and the customized feature is
mapped to the singleton group of the stakeholder’s viewpoint. Additionally, the domain
feature must be mapped to a viewgroup unrelated to the stakeholder’s viewpoint. Thus, in
the resulting perspective, the domain feature will not be available for selection, and instead
be replaced by the customized feature. Replacing a domain feature that is required by
another feature leads to further modification of the feature model.

Domain feature and the replacing customized feature must be added to the same feature
group, and an abstract parent feature must be inserted between this group and the former
ancestor feature in the feature model. In addition, the require constraint must be changed
to point to that abstract feature. Furthermore, the abstract feature must be mapped to
the same viewgroup as the original feature. This concept is illustrated in Section 5.3.

5.15. Applying Multi-Perspectives to Support Staged

Configuration

The multi-perspective approach extends common staged configuration approaches by supporting
overlapping views, and the explicit exclusion of features from manual configuration. A staged
configuration workflow describes the incremental process of deriving valid variant configurations
operationally [CHE04, CHH09, Hub12]. A staged configuration workflow is separated into multi-
ple stages that are associated to potentially overlapping stakeholder-specific views, as explained
in Section 2.4.2. A staged configuration workflow must lead to valid variant configurations, even
if not all features are configurable.

A multi-perspective model can be applied to check, if the defined configuration views allow
to derive variant configurations. To illustrate how, the staged configuration example based

121

5.15. Applying Multi-Perspectives to Support Staged Configuration

on the Business ByDesign case study and introduced in Section 2.4.2 is picked up. The
staged configuration workflow contains two stages, where features are assigned to the corre-
sponding views view1 and view2a as shown in Figure 5.14. Thus, view1 contains the 8 fea-
tures highlighted by a dark gray background, while view2a contains the remaining 11 features
with a light gray background. Views may overlap. The views view2a and view2b both con-
tain the features Product Development, Market Development, Purchase Request and Order
Management, Supply Chain Design, and Product Engineering.

In the example workflow, introduced in Section 2.4.2, two stages and corresponding views are
defined. The first stage stage 1 is related to the view view 1, while the second stage stage
2 is related to view 2 in the given workflow. These stages are represented by the viewgroups
stage1 and stage2a in Figure 5.13 accordingly. The view model depicted in the figure generally
defines a viewgroup per stage.

Features associated to configuration stages are mapped to the viewgroups accordingly. The
same background color of features and viewgroups highlights this mapping. In the visualized
example, no features are mapped to the root viewgroup core and thus the views view1 and viewa2
contained in the workflow are disjunct. In addition, a viewpoint vpfull is defined representing the
overall staged configuration workflow applied in the use case in Section 2.4.2. As the workflow in
this use case has two views, the viewpoint is related to the viewgroups stage1 and stage2a. The
viewgroup stage2b does not belong to the viewpoint vpfull. Hence, features solely dedicated to
such viewgroups, that are not related to the workflow viewpoint, cannot be configured in the
staged configuration workflow represented by this viewpoint.

The aggregated view imposed by a workflow viewpoint must be FM -consistent according to the
consistency requirements defined in Lemma 1. In other words, a staged configuration workflow
is only valid, if the corresponding perspective is valid. In this example, the aggregated view
(viewfull) contains all feature of the original feature model. Thus, the corresponding perspective

Figure 5.13 Views of a staged configuration workflows are expressed by viewgroups in a
view model.

122

5. Multi-Perspectives

Figure 5.14 Features of the Business ByDesign application are grouped in three configuration
views.

of viewpoint vpfull equals the original feature model and is therefore valid. The multi-perspective
model ensures that each workflow definition represented by a viewpoint is valid.

Viewgroups can be reused in other staged configuration workflows by introducing further view-
groups for additional stages and differing viewpoints for other workflows. As such, viewpoint
vppart represents another valid workflow and reuses the viewgroup stage1 of the first workflow,
while introducing another stage stage2b. The corresponding views are view1 and view2b in
Figure 5.14.

Features neither assigned to stage1 nor to stage2b are not selectable in this workflow. Features
that cannot be selected in this example are Campaign Management, Self-Service Procurement,
Execution Design, Production Models, Expense and Reimbursement Management, and fea-
ture Payment and Liquidity Management. Additionally, as stage2b is hierarchically related to
stage1, the configuration view defined by this viewgroup contains the aggregated features mapped
to stage1 and to stage2b.

However, a multi-perspective model does not define an order among configuration stages. An
order can be defined by applying a behavioral workflow model, as explained in Section 2.4.2.

123

5.17. Summary

5.16. Demarcation from Related Work

Extending SPL engineering with multi-perspectives on feature models, as proposed in this work,
is related to work in the area of staged configuration, and in realizing SoC on feature models in
general. For instance, views separate stakeholder configuration decisions in staged configuration
processes [CHE05a, Hub12, HHS+11]. A notion of views on feature models in general, and the
definition of overlapping and reconciled views is given in the notion of category theory by Clarke
and Proença [CP10]. Thus, a view belongs to a stakeholder concern and is a projection on the
feature model that covers a set of features. Therefore, each view realizes one semantic perspective
of a stakeholder. In this thesis, the notion of a perspective is applied to denote a special view
that complies with further consistency properties. As such, a view is any fragment of the feature
model, whereas a perspective is a view that equals a reduced feature model.

Acher and colleagues introduce a decomposition operator to slice feature models according
to particular concerns [ACLF11, ACLF12]. A feature model slice is constructed by explicitly
cutting of features from the feature model. A view is similar to a feature model slice. However, a
perspective in this thesis is constructed by composing views. In contrast to view-based approaches
in SPL engineering presented in literature, the approach proposed in this work aggregates and
integrates views to tailor the variant space. In addition, multi-perspectives define not only
overlapping views, but a hierarchically structure of views.

Other work on views, viewpoints and perspectives presented in literature is at a different level of
abstraction. For instance, Rosenmüller defines the concept of a binding unit, which incorporates
a set of features and is understood as a view from an implementation point of view [RSPA11b].
Pohl an colleagues propose the concepts of external and internal variability to distinguish between
customer and SPL developer related views on the variability of an SPL [PBvdL05]. However,
these views have different levels of abstraction according to stakeholder concerns and are applied
OVM, not on feature models.

Zaid and colleagues propose multi-perspectives to handle the complexity of large systems [ZKT10].
This approach assumes, that a software system consists of various perspective each representing
a specific concern. The method of feature assembly modeling is introduced for separating features
from variability information to reuse features in different applications. Another approach with a
similar understanding of perspectives is presented by Meerkamm [Mee11]. Process variants are
modeled as an SPL and perspectives are introduced on these processes for differing aspects and
on varying abstraction levels. The notion of a perspective in both approaches equals the notion
of a view in this thesis. However, aggregating views is not considered in these works.

5.17. Summary

This chapter introduces multi-perspectives as a conservative extension to convenient feature
models. Potentially overlapping concerns are assumed as hierarchically structured views and
defined in an external model beside the feature model. Prior configuring product variants, a set
of views is selected to tailor the variant space by means of a feature model pre-configuration.

124

5. Multi-Perspectives

A pre-configuration is called a perspective. A perspective composed concern related views and
is specified declaratively as a projecting view on a feature model. Only combinations of views
are allowed to compose a perspective that satisfy feature model dependencies. The defined
consistency criteria prevent the derivation of invalid perspectives.

Multi-perspective models consistently define arbitrary cross-cutting views on feature models.
Those views can reflect various business concerns occurring in cloud scenarios. For instance,
variable pricing strategies based on feature bundles, packages, and editions are widespread in
offering cloud applications, as shown in Figure 5.2. A multi-perspective model is therefore a
good foundation to express such strategies formally. In addition, multi-perspectives address legal
restrictions. As discussed in Section 1.5.3, some features of cloud applications are only available
in certain countries. Thus, the multi-perspective model allows for expressing and restricting
country-specific variability by means of perspectives.

Generally, in a cloud scenario, multiple different stakeholders with different concerns are involved
in provisioning an application, as discussed in Section 1.6. Hence, perspectives are a promising
concept for tailoring the variant space of a feature model for the concerns of various stakeholders.
The concepts are exemplified on different examples.

However, the proposed approach is not restricted to cloud applications, but generally applicable
to scenarios, were SoC and overlapping concerns on feature models are to be expressed, and
filters of the configuration space are appropriate. For instance, multi-perspectives are applicable
to narrow the configuration space of a DSPL to increase performance by filtering unrelated con-
cerns [SOS+12]. Additionally, the multi-perspective approach explicitly supports customization
on feature model level, where customer-specific features are only available in the customer-specific
perspective while hidden from other perspectives.

Moreover, this chapter reveals that consistency of a multi-perspective model can be checked
efficiently by applying the proposed incremental algorithm. Thus, when applying a staged
configuration workflow to configure a cloud application, the multi-perspective model ensures
satisfiability of the configuration workflow, as explained in Section 5.15.

125

126

6. Adaptive Staged Reconfiguration

Workflows Reduce Configuration

Redundancies

The first rule of any technology used in a business is that automation
applied to an efficient operation will magnify the efficiency. The
second is that automation applied to an inefficient operation will
magnify the inefficiency.

— Bill Gates

The concepts presented in this chapter are partially published in a conference
paper [MS13], workshop papers [Sch11, SMM+12], and a technical report [LMSW13].

This chapter introduces the concept of adaptive staged reconfiguration workflows based on staged
configuration workflows that are explained in Section 2.4.2. Adaptive staged reconfiguration
workflows extend these concepts to reduce configuration redundancies by reusing partial feature
model configurations and supporting reconfiguration. Furthermore, the workflow is adaptive to
enable a dynamic management of stakeholders involved in the configuration workflow. Dynamic in
this context means, that stakeholders can be integrated and removed from a staged configuration
workflow during workflow execution. The introduction of adaptive staged reconfiguration
workflows addresses Requirement 3.

Extended feature models with attributes are applicable to express functional and quality variability
of reconfigurable cloud applications. Hence, resources, platform services, application functionality,
qualities, as well as their dependencies are modeled in a feature model [Sch11]. However, different
stakeholders are involved in the configuration and reconfiguration of cloud applications with
different impact of their configuration decisions. Staged configuration processes specify the
dependencies between configuration stakeholders and prioritize their configuration operations as
explained in Section 2.4.2. Each stakeholder has different configuration concerns. For instance,
a resource provider configures resources, while a customer decides among available application
functionality and quality. Each stakeholder requires an own configuration view accessing restricted
configuration operations.

In multi-tenant aware cloud applications, the decisions of particular stakeholders constrain the
configuration operations of multiple depending stakeholders. For instance, if the resource provider
deselects particular servers required by a certain application functionality, then this application
functionality cannot be selected by any customer. Furthermore, if a resource provider decides to
enable the servers again due to finishing server maintenance, all customers are to be notified
of this reconfiguration change. Staged configuration concepts explained in Section 2.4.2 are
extended to model these dependencies and support reconfiguration of partial configurations. A
sub class of staged configuration workflows is introduced therefore, called specialization trees.

127

6.1. Illustrative Example for Adaptive Staged Reconfiguration Workflows

A specialization tree reduces configuration redundancies of multiple specialization processes
by comprising them in a single workflow. Hence, specialization trees allows for reusing partial
configurations and directly propagating reconfiguration changes [SMM+12].

Moreover, not all configuration stakeholders are known at design time of a cloud application.
For instance, customers and their users subscribe for application services at runtime requiring
a dynamic management of stakeholders. Dynamic stakeholder management is implemented
by applying workflow adaptation comprising sequences of rewrite rules to adapt the staged
configuration workflow during execution. An illustrative example is introduced in the following.

6.1. Illustrative Example for Adaptive Staged Reconfiguration

Workflows

An example of a variable document management system is applied to explain the concepts of
adaptive staged reconfiguration workflows. In this example, a document management system
is offered as a reconfigurable SaaS application. Configuration parameters comprise functional
and quality related parameters of the application for indexing and searching different document
types, infrastructure resources, and platform services. Various stakeholders are involved in
configuring the document management system corresponding to the stakeholder types explained
in Section 1.6. Stakeholders and their configuration order are depicted in Fig. 6.1.

Figure 6.1 Configuration stakeholders in the document management system example.

128

6. Adaptive Staged Reconfiguration Workflows

A resource provider is responsible to configure infrastructure and platform services required to
run the application and an application provider pre-configures the application for customers.
Configuration operations of provider-related stakeholders have impact on all customer and user
configuration operations.

Customers can subscribe to the application to offer customized application functionality as a
service to users. In this example, two customers A and B are considered. They constrain the
availability of functionality and quality for their users. Each user bind remaining variability of
a given partial configuration leading to a complete configuration. While three users A.1, A.2,
and A.3 are affiliated to customer A, customer B is related to two users B.1 and B.2. Each
stakeholder conducts configuration operations on the defined configuration parameters until all
variability is bound in the last specialization step. Users subscribe and unsubscribe for the usage
of customer-specific application at anytime. If customers decide to unsubscribe, all their users
are affected and are automatically unsubscribed as well.

Furthermore, every stakeholder can reconfigure the application instance. For example, due to
server maintenance the resource provider marks data centers as currently not available. Hence,
this change is propagated to the other stakeholders and potentially affects their configurations. If
the requirements of customers change, reconfiguration occurs affecting only users of this customer.
How to model this example configuration scenario by defining an adaptive reconfigurable workflow
is explained in the following.

6.2. Modeling Adaptive Staged Reconfiguration Workflows

In general, a model is an abstraction of something complex and applied in different science
contexts for different purposes. In MDSD, models capture the essentials of a specific domain
and abstract from implemented source code [Jac06]. MDSD aims at improving software quality
by deriving software automatically from formally specified models [SVC06]. An adaptive staged
reconfiguration workflow models and automates configuration processes on feature models by
means of a workflow. The workflow can be adapted to integrate and remove configuration
stakeholders during execution the workflow. An adaptive staged reconfiguration workflow is
specified by different structural and behavioral models, as depicted in Figure 6.2.

An extended feature model defines the configuration space and expresses configuration states of
features and qualities of a cloud application. Section 6.3 introduces extended feature models

Figure 6.2 Conceptual models combined in an adaptive staged reconfiguration workflow.

129

6.3. Extended Feature Models

for specifying variability of cloud applications. An access control model defines permissions on
configuration operations of an extended feature model by applying RBAC. RBAC is common in
shared cloud applications and therefore applied to restrict the access on configuration operations
to specific stakeholders. Section 6.4 introduces the concepts of access control models. A staged
configuration workflow orders stakeholders conducting configuration operations.

A specialization tree is a special class of staged configuration workflows for modeling multiple
configuration processes in a single workflow to reduce configuration redundancies [SMM+12].
Dependencies between stakeholders lead to a tree-like structure of the workflow, where each
workflow path leads to a complete variant configuration of the feature model. Section 6.5 explains
the concepts of specialization trees. A concept to support reconfiguration of partial feature model
configurations in a specialization tree is introduced in Section 6.6.

An adaptation engine and a set of adaptation rewrite rules allow for a dynamic stakeholder
management. During executing the specialization tree, sequences of rewrite rules are applied to
integrate and remove configuration stakeholders by adapting the specialization tree. Section 6.7
explains the adaptation of the specialization tree and introduces rewrite rules for dynamic
stakeholder management.

6.3. Extended Feature Models

Configuration parameters of reconfigurable cloud applications are modeled in this approach by
group-cardinality based feature models with attributes over finite domains. The definition of
group-cardinality based feature models given in Section 5.5 is extended with attributes and
the capability of expressing feature and attribute configuration states. The abstract syntax of
extended feature models is defined by a metamodel. The metamodel depicted in UML class
diagram notation in Figure 6.3 defines the structure and well-formedness criteria of attributed
group-cardinality based feature models.

The metaclass FeatureModel represents the root container node of an extended feature model.
This metaclass comprises the root feature of the tree-like feature model. A feature is represented
by the metaclass Feature and further specified by the attributes name and the unique identifier
id. Features represent functional entities with a configuration state. Hence, features are either
selected, deselected or yet undecided in a variant configuration. The configuration state of a
feature is represented by the attribute state of the enumeration type ConfigurationState.

Group-cardinality is a generalization of a unified modeling of features without the need to
distinguish between solitary features, i.e., mandatory and optional features, and groups of
features, i.e., alternative and or relations, as explained in Section 2.3.2. With exception of the
root feature, each feature is modeled in a feature group. A feature group is represented by the
Group metaclass in the metamodel. Features and groups are explicitly modeled as separated
elements instead of choosing a composite pattern. Groups define constraints on the number of
selectable features in the group in terms of a minimum and maximum cardinality, similar to
cardinality in the UML.

130

6. Adaptive Staged Reconfiguration Workflows

Figure 6.3 Metamodel for attributed group-cardinality based feature models.

131

6.3. Extended Feature Models

In extended feature models, attributes further classify features, where each feature allocates zero
or an arbitrary number of attributes, as explained in Section 2.3.2. Feature attributes represented
by the metaclass Attribute express quantifiable configuration properties. In the context of
cloud applications, feature attributes express QoS agreements and numerical application-specific
configuration parameters. Configuration parameters are, for instance, the number of users of an
application, and the database size.

In the document management example, attributes model application qualities, such as the
hardware encryption level and the availability of the application. Features are related to
potentially many attributes as specified in the metamodel. A feature may contain several
attributes, where each attribute is explicitly contained in a single feature. An attribute further
classifies a feature and corresponds to a scalar variable. Hence, a single domain value can be
assigned to an attribute modeled by the selectedValue property of an Attribute. However,
the domain of an attribute can be restricted during a configuration process, such that domain
values become unavailable for assignment. Domain restrictions are modeled by the property
deselectedValues of an Attribute.

A finite discrete domain is assigned to each attribute according to the explanation in Section 2.3.2.
Finite domains are chosen to ensure that attribute constraints are efficiently analyzable by a CSP
solver [PBN+11]. In general, each domain must contain at least one domain value. Both domain
types are defined globally and referenced by the FeatureModel, as globally defined domains are
reusable for different attributes. Numerical and discrete domains are explicitly distinguished
in the metamodel represented by the metaclasses DiscreteDomain and NumericalDomain. In
a numerical domain, elements correspond to Integers, and are therefore ordered. A numerical
domain contains several Integer intervals represented by the corresponding metaclass Interval.

The definition of intervals abstract from solitary domain values by specifying lower and upper
bound of the interval instead of each single domain value. Hence, intervals ease the specification
of large numerical domains in the feature model and allow for an optimized evaluation by a
CSP solver. Discrete domains contain a set of domain values represented by the metaclass
DomainValue. Each domain value is given by a String and a unique Integer index, where indices
do not overlap. The order of index values is applied to compare domain values. Hence, domain
values of discrete and numerical domains are comparable by means of their Integer representation.
In addition, cross-tree constraints on features and attributes are modeled.

A FeatureModel contains all cross-tree constraints on features and attributes. Each cross-tree
constraint inherits from the abstract Constraint metaclass defining the attribute id for each
constraint instance to be uniquely identifiable. Imply and exclude constraints on features can
be represented by the corresponding metaclasses. Both constraint types are interpreted as
logical expressions. Hence, both constraint types inherit from the common abstract metaclass
FeatureConstraint, which references a left and a right Feature operand.

Values of feature attributes are constrained by means of conditional expressions [KOD10].
Attribute constraints are represented by the metaclass AttributeConstraint, which comprises
a relational operator defined by the Relop enumeration and references a left and a right attribute
operand. An attribute operand is specified by means of the AttributeOperand metaclass and
may be either a reference to an attribute, or an attribute value. The introduction of the metaclass

132

6. Adaptive Staged Reconfiguration Workflows

AttributeValue allows to specify constraints on attributes with discrete, as well as numerical
domains. The metaclass is comparable to a DomainValue of a discrete domain. However, in an
attribute constraint a value can be used which is not explicitly specified as domain value.

An instance of the metamodel is depicted in Figure 6.4 representing a feature model of a variable
document management system. In this example, the number of users concurrently accessing
the application instance can be specified by a corresponding attribute. This attribute is
related to a numerical domain represented by an instance of the NumericalDomain metaclass.
The domain comprises a value Interval with numerical values between 1 and 1000 represented
by the corresponding lower and upper bound of the Interval. In an attribute constraint, the

Figure 6.4 Feature model with attributes of a variable document management system.

133

6.3. Extended Feature Models

number of users can be restricted to be lower than 500. This is achieved by modeling this value
as an AttributeValue. However, this value is not directly represented by an instance of the
DomainValue metaclass as the constrained domain of the attribute is numerical. In the example
in Figure 6.4, an attribute constraint is defined to restrict the number of users currently accessing
the application, to be equal or less than the number of users of a database. The corresponding
textual representation of the feature model can be found in Appendix B.4.

An instance of the feature model metamodel defines dependencies between features and attributes
and expresses their current configuration states. Hence, instances are applicable to define the
configuration space of reconfigurable cloud applications. The instance depicted in Figure 6.4,
specifies an attributed feature model for the variable document management example introduced
in Section 6.1. The example feature model comprises 46 features, 4 attributes, and 8 cross-
tree constraints on features and attributes. Application functionality for managing, indexing,
and searching different document types are represented by features. In addition, quality of
service properties, such as application availability, hardware encryption, and the number of users
concurrently accessing the application can be specified.

The feature Quality of Service is related to SLA-specific concerns that are explained in
Section 1.5.3. This feature comprises attributes that represent SLA related configuration
parameters. For instance, the attribute availability represents the application availability and
implicitly specifies the allowed application downtime when the service is not usable.

The domain of this attribute comprises three domain values low, high, and very high. These
domain values are assignable to the attribute and represent the corresponding availability levels.
Furthermore, platform specific features, such as different application servers to deploy the
application and data bases for storing indexed documents are configurable. Server locations are
modeled as well, as cloud applications run in a virtual cloud environment, which is spread over
multiple data centers.

The process of conducting configuration operations on a feature model is referred to as spe-
cialization in the application engineering phase, as explained in Section 2.4. In this process,
configuration operations are conducted that change the states of features and attribute, and
result in partial and eventually complete variant configurations. Configuration operations on
extended feature models are explained in the following.

6.3.1. Configuration Operations on Extended Feature Models

In related work, a variant configuration is often represented as a set of features and qualified
attributes without considering configuration states [BSRC10]. The metamodel depicted in Fig-
ure 6.3 allows for explicitly modeling feature and attribute configuration states. Configuration
states are changed by applying configuration operations on features and attributes. In this
approach, partial and complete variant configurations of an extended feature model are distin-
guished by means of feature and attribute states. In a complete variant configuration, all features
and attributes are in a final state, while in a partial configuration some are still undecided.

134

6. Adaptive Staged Reconfiguration Workflows

Figure 6.5 Feature configuration operations change the configuration state of a feature.

In a complete product configuration, each feature must be either selected or deselected. Hence,
two mutually exclusive configuration operations are defined per feature, select(feature) and
deselect(feature) [LMSW13]. Both operations can only be conducted on a feature that is in the
undecided configuration state.

A feature is in the state undecided, if it is not yet decided whether to include, or discard the
feature from the complete variant configuration. Figure 6.5 applies the notation of a Moore
automaton to depict the configuration states of a feature, and the configuration operations
leading to state transitions. The selected and deselected states are final states of a feature with
respect to a variant configuration. For instance in the document management example, for
feature Search the configuration operations select(Search) and deselect(Search) are specified to
change the configuration state of this feature.

Figure 6.6 depicts the configuration states of an attribute and the state transitions in the
configuration process. An attribute is in the undecided state, if no value is selected yet, in
the state assigned when an attribute value is selected, and disabled, if the attribute feature is
deselected. An attribute further classifies a feature. Hence, an attribute value assigned to an
attribute is only evaluated, if the attribute’s feature is selected. The configuration state of an
attribute depends on the domain values and on the configuration state of the attribute feature.

In contrast to features, attributes are not just selectable or de-selectable for variant configura-
tions [BTRC05]. A finite domain is defined for each attribute specifying a set of values assignable
to the attribute. Configuration operations are defined on the domain values of an attribute. Two
mutual exclusive configuration operations are defined per domain value, select(attribute value)
and deselect(attribute value).

Assigning a domain value to an attribute changes the attribute state to assigned, and is either
achieved by deselecting all domain values except one, or by explicitly selecting an attribute value.
If all domain values are deselected except one, the remaining value is assigned to the attribute.
An assigned attribute has a single domain value assigned and comprises potentially multiple
deselected domain values. The domain of an attribute contains at least one value as defined in
the metamodel for extended feature models. Hence, a domain can never comprise 0 attribute
values which is therefore omitted in Figure 6.6.

135

6.4. Access Control on Extended Feature Models

Figure 6.6 Configuration states of an attribute depend on configuration operations on at-
tribute values and on the configuration state of the related feature.

Attribute states are explained by an example from the document management system. For
instance, feature Quality of Service has the attribute availability. The values of this
attribute are defined by a discrete domain containing three values low, high, and very high.
If the configuration operation deselect(low) is conducted on the availability attribute, the
attribute remains in the undecided state, while the domain value low is in the set of deselected
attribute values, and hence, cannot be assigned to this attribute.

Conducting the same deselect configuration operation on the domain value high implies that the
remaining attribute value very high is assigned to the attribute. Thus, by assigning this value,
the configuration state of the attribute changes to assigned. As an attribute further characterizes
a feature, the attribute value must be assigned, if the feature is selected. The configuration
operation deselect(feature) causes the attribute to be disabled regardless wether it is already
assigned or not.

Summarizing, configuration operations are only applicable if the feature or attribute the configu-
ration should be applied on is in the undecided state. In addition, a configuration operation must
preserve feature model integrity. Hence, after conducting a configuration operation, the resulting
feature model instance must be satisfiable and allow for deriving a valid variant configuration.
Satisfiability can be ensured by applying a CSP solver, as explained in Section 2.5.

The access on configuration operations on features and attributes must be restricted in a
specialization process where multiple stakeholders are involved. In the document management
system example, for instance, users are not allowed to configure QoS-related configuration
parameters. Only customers are allowed to specify these parameters as part of their SLA with
an application provider. The next section discusses how to constrain the access on feature and
attribute configuration operations.

6.4. Access Control on Extended Feature Models

In multi-user environments, and especially in shared cloud environments, operations on a system
need to be restricted to prevent misuse, as discussed in Section 1.7. RBAC concepts are applicable

136

6. Adaptive Staged Reconfiguration Workflows

Figure 6.7 Schematic representation of RBAC on feature models.

to implement a fine-grained security policy for restricting the access on feature models related
information in common SPL tasks [MS13]. Configuration tasks on extended feature models
are restricted by applying RBAC3 paradigms in this work. RBAC3 comprises the concepts
of subjects, roles, permissions on objects, role hierarchy and role constraints. The additional
concepts of role groups and the distinction between abstract and concrete roles are introduced
in this work to model further dependencies between stakeholders participating in configuration
processes of cloud applications. The concepts are schematically depicted in Figure 6.7.

In this work, configuration items of an extended feature model represent RBAC objects. Hence,
RBAC objects are features, attributes, and attribute values. Permissions refer to configuration
operations applicable to these configuration items, as explained in Section 6.3.1. Configuration
operations are select and deselect of a feature or attribute value, and the assignment of an
attribute. For features, permissions on the configuration operations select(feature) and
deselect(feature) are defined, encapsulating feature configuration operations. For attributes,
a permission on the configuration operation assign(attribute) comprises all permissions on the
attribute’s domain values. Hence, instead of specifying all permissions on attribute values, this
permission is applicable. However, permissions are fine-granularly defined on the configuration
operations of attribute values as well. These operations are select(attribute value) and
deselect(attribute value).

An RBAC role has multiple permissions and the same permission is assignable to various
roles. Stakeholders participating in the configuration process of an extended feature model
are represented by roles. The concept of role hierarchy specifies an inheritance relation among
roles, where multiple role inherit the permissions of potentially multiple parent roles. Hence,
a role hierarchy allows for SoC on permissions. Abstract and concrete roles are introduced to

137

6.4. Access Control on Extended Feature Models

distinguish between concrete stakeholders that participate in the configuration process, and
abstract stakeholder types applied to define configuration permissions.

For instance, the configuration stakeholders of the document management system example,
described in Section 6.1, are modeled as roles. As depicted in Figure 6.7, Customer A is modeled
as a concrete role. This role inherits configuration permissions from the abstract role Customer.
Hence, the abstract role Customer encapsulates permissions of all concrete customer roles. The
same holds for the abstract role User and the concrete roles User A1 and User A2. Roles have
different permissions. For instance, in the document management system, the deselection of data
centers is only allowed by resource providers. In addition, users of a customers are not allowed
to change quality of service parameters.

Particular persons or automata play a role to conduct configuration operations on the extended
feature model. These persons or automata are modeled as subjects. Subjects can only be assigned
to concrete roles in the access control model. Hence, a constraint is introduced that abstract
roles cannot be assigned to a subject. According to the document management example, only
the concrete role Customer A can be assigned to a subject, while the abstract role Customer
cannot be directly assigned.

Stakeholders participating in the configuration process, such as User A1 and User A2, are
modeled as concrete roles instead of subjects as beside the inherited permissions from an abstract
parent role, concrete roles can have further permissions directly assigned. In RBAC permissions
are always assigned to roles and not to subjects.

Additionally, the concept of role groups is introduced to define a relation between roles without
inheriting permissions. Role groups represent organizational relations between roles. Each role
group has a single owner role and multiple member roles. A constraint is defined, that roles
participating in a role group must be concrete roles, and an owner of a role group cannot be
member of the same group. In the document management example, the relationship between a
customer and its users is represented as a role group. For instance, role Customer A is the owner
of a role group comprising the users User A.1 and User A.2 in Figure 6.7. The group relation
between concrete stakeholders is relevant for evaluating dependencies in a structured configuration
process as owners of a group are higher proritized in conducting configuration operations than
their members. For instance, the members User A.1 and User A.2 are dependent on the
configuration decisions of their owner Customer A.

Access control concepts on extended feature models are modeled in an access control model.
The structure of access control models and well-formedness criteria are specified by means
of a metamodel. The metamodel is depicted in UML class diagram notation in Figure 6.8.
The metaclass AccessControlModel is the root container of an access control model. This
metaclass comprises the metaclasses Subject, Role and Permission introduced by RBAC.
Structure and relation of these metaclasses are taken from the RBAC specification, as explained
in Section 1.7.1.

138

6. Adaptive Staged Reconfiguration Workflows

Figure 6.8 Metamodel for restricting access on feature and attribute configuration operations.

139

6.4. Access Control on Extended Feature Models

In this approach, RBAC is extended with role groups, the differentiation between abstract and con-
crete roles, and feature model-specific configuration operations. Hence, an AccessControlModel
further contains a set of role groups represented by the metaclass RoleGroup specifying organiza-
tional relations between concrete roles. Each RoleGroup references a set of Roles via a member
relationship and at most one Role via an owner relationship.

Furthermore, configuration operations on referenced features and attributes are defined by
corresponding metaclasses. The select and deselect feature operations are represented by the
metaclass FeatureOperation, where the enumerated attribute type specifies if the feature
operation is a select or deselect operation. Configuration operations on attribute values are
defined similarly by the metaclass AttributeValueOperation but refer to a corresponding
attribute instead of a feature. The AttributeOperation metaclass is defined to abstract from
all configuration operations on attribute values.

An instance of the access control model defining permissions on configuration operations of
the document management feature model is depicted in textual notation in Listing 6.1. This
instance defines permissions on the document management feature model shown in Figure 6.4.
The concrete syntax rules of the textual notation is described in Section 7.3.1. Permissions
on feature and attribute configuration operations of the document management example are
restricted to stakeholders as explained in Section 6.1. Unique element identifiers are depicted in
angle brackets and applied to reference model elements, while element names are specified in
quotation marks.

1 access control on <extended_dms .eft >

3 abstract role " Provider " <Provider >

5 role " Resource Provider " <ResourceProvier > extends Provider {
// deselect data center due to maintenance

7 deselect ESP , deselect GER , deselect NOR , deselect IRL ,
deselect CA , deselect WA , deselect AK , deselect TX ,

9 deselect NE , deselect RUS , deselect IND
}

11 role " Application Provider " <ApplicationProvider > extends Provider {
// root feature of the application

13 select dms ,
// platform services

15 select AppServer , deselect AppServer ,
select HANACloud , deselect HANACloud ,

17 select Virgo , deselect Virgo ,
select DB , deselect DB ,

19 select HANA , deselect HANA ,
select Oracle , deselect Oracle ,

21 select Mongo , deselect Mongo ,
assign DB.users

23 }
abstract role " Functionality Configuration " <FunctionalityConfiguration > {

25 // application functionality
select DocumentType , deselect DocumentType ,

27 select TextType , deselect TextType ,
select ImageType , deselect ImageType ,

29 select PDFType , deselect PDFType ,
select OCR , deselect OCR ,

31 select PDFOCR , deselect PDFOCR ,

140

6. Adaptive Staged Reconfiguration Workflows

select ImageOCR , deselect ImageOCR ,
33 select Indexing , deselect Indexing ,

select MetaDataIndex , deselect MetaDataIndex ,
35 select AuthorIndex , deselect AuthorIndex ,

select TitleIndex , deselect TitleIndex ,
37 select ContentIndex , deselect ContentIndex ,

select GeneralIndex , deselect GeneralIndex ,
39 select FileNameIndex , deselect FileNameIndex ,

select Search , deselect Search ,
41 select MetaDataSearch , deselect MetaDataSearch ,

select AuthorSearch , deselect AuthorSearch ,
43 select TitleSearch , deselect TitleSearch ,

select ContentSearch , deselect ContentSearch ,
45 select GeneralSearch , deselect GeneralSearch ,

select FileNameSearch , deselect FileNameSearch ,
47 select UnicodeTextType , deselect UnicodeTextType

}
49 abstract role " Customer " <Customer > extends FunctionalityConfiguration {

// quality of service properties
51 select QoS , deselect QoS ,

assign QoS. availability ,
53 assign QoS.encryption ,

assign QoS. concurrentusers ,
55 // preferred server location

select EU , deselect EU ,
57 select US , deselect US ,

select AS , deselect AS ,
59 select ESP , deselect ESP ,

select GER , deselect GER ,
61 select NOR , deselect NOR ,

select IRL , deselect IRL ,
63 select CA , deselect CA ,

select WA , deselect WA ,
65 select AK , deselect AK ,

select TX , deselect TX ,
67 select NE , deselect NE ,

select RUS , deselect RUS ,
69 select RUS , deselect IND

}
71 abstract role "User" <User > extends FunctionalityConfiguration

73 role " Customer A" <CustomerA > extends Customer
role " Customer B" <CustomerB > extends Customer

75 role "User A1" <UserA1 > extends User
role "User A2" <UserA2 > extends User

77 role "User A3" <UserA3 > extends User
role "User B1" <UserB1 > extends User

79 role "User B2" <UserB2 > extends User

81 group " Application " <groupApp > of ApplicationProvider has members CustomerA ,
CustomerB

group " Company A" <groupA > of CustomerA has members UserA1 , UserA2 , UserA3
83 group " Company B" <groupB > of CustomerB has members UserB1 , UserB2

85 subject "John Smith" <js> plays UserA1

Listing 6.1 Example of an access control model defining roles and their permissions on
configuration operations of a document management system.

141

6.4. Access Control on Extended Feature Models

Stakeholders introduced in the document management example in Section 6.1 are modeled by
roles in this access control model instance. Configuration operations are assigned to these roles
to restrict their access. For instance, the role Resource Provider is only allowed to deselect
features representing data center locations. The role Application Provider is allowed to select
the root feature of the application and features representing platform services, such as databases
and application server.

In the access control model, all stakeholders of the document management system example,
introduced in Section 6.1, are modeled as concrete roles. Hence, nine concrete roles are defined,
which are Resource Provider, Application Provider, Customer A, Customer B, User A1,
User A2, User A3, User B1, and User B2. In this example, Customer A has the same permis-
sions as Customer B. Hence, a hierarchical role Customer is defined for specifying configuration
operations of all roles representing customers. The same holds for the five users which inherit
their permissions from an abstract role User.

In addition, an abstract role FunctionalityConfiguration is introduced for comprising per-
missions on features representing application functionality. The abstract roles Customer and
User represent application customers and their users. These roles inherit the permissions of the
abstract role FunctionalityConfiguration, which is introduced to encapsulate the permissions
on features representing application functionality.

Particular customers and users of the application are modeled by concrete roles in the access
control model. For instance, the role Customer A represents the corresponding stakeholder
depicted in Figure 6.1. The roles Customer, User, and FunctionalityConfiguration are
abstract and hence, not directly assignable to subjects. Only concrete roles are assignable to
subjects. In this access control model, a subject John Smith is defined playing the role User A1
to conduct configuration operations allowed for this role.

Configuration operation of stakeholders can be prioritized by means of a staged configuration
process, as explained in Section 2.4.2. The next section explains how to integrate the proposed
RBAC concepts into staged configuration processes.

6.4.1. Access Control in a Staged Configuration Workflow

A workflow language is applicable to define the behavior of staged configuration processes,
as explained in Section 2.4.2. Executing the workflow definition leads to a complete variant
configuration.

In configuration processes of cloud applications, multiple stakeholders depend on the partial
configuration of higher prioritized stakeholders. For instance, in the document management
example, explained in Section 6.1, both customers Customer A and Customer B depend on the
configuration decisions of the Application Provider. Thus, the configuration operations of
some stakeholders, such as Resource Provider and Application Provider, have an impact on
the configuration operations of depending stakeholders. Configuration operations of stakeholders
can also be independent of each other. For instance, the configuration operations of Customer A
do not influence the configuration operations of Customer B. The same holds for the subsequent

142

6. Adaptive Staged Reconfiguration Workflows

Figure 6.9 Executing a staged configuration workflow leads to a single complete variant
configuration.

configuration operations of users, which depend on customer pre-configurations. However, the
configuration process results in user-specific variant configurations. Each variant configuration
specifies functionality and quality of the document management application available for the
corresponding user of the application.

Applying staged configuration to the described cloud scenario, a first approach is to model a
workflow per user leading to a complete configuration. A staged configuration workflow can
operationally be specified by means of a UML activity diagram as explained in Section 2.4.2.
Figure 6.9 shows an example staged configuration workflow for deriving a single complete variant
configuration for User A.1 in UML activity diagram notation. The initial node depicts the start
of the workflow, where the activity final node specifies the end. A configuration task performed
by a stakeholder is represented as an action node in the activity diagram. In a configuration
task, multiple configuration operations are conducted on an input feature model. Stakeholder
configuration operations in a configuration task are restricted by applying RBAC in this work.
The permissions are modeled in a access control model, as explained before, and evaluated during
configuration.

Figure 6.10 Input for a specialization action in the staged configuration workflow are a feature
model and a role defined in the access control model.

143

6.5. Specialization Tree

Input for an action node in the staged configuration workflow is a feature model and a stakeholder
role with configuration permissions. Figure 6.10 depicts the input of an action node and the
relation between configuration operations on a feature model, a role in an access control model,
and an action node in the staged configuration workflow model. The set of permissions assigned
to a role defines the stakeholder’s configuration view on the feature model in the corresponding
configuration task. Hence, a stakeholder is only allowed to conduct configuration operations on a
feature model assigned to the corresponding role in the access control model.

However, not all allowed configuration operations are applicable in a configuration task. In-
applicable configuration operations are displayed in gray in the example configuration view
of the action node. In this example, the deselect(F3) configuration operation is inapplicable
as feature F3 is already deselected in the input feature model. Furthermore, configuration
operations on the same attribute and feature respectively are mutually exclusive, for instance,
the deselect(F1) and select(F1) configuration operation in the example in Figure 6.10. A subset
of the applicable configuration operations is conducted in a configuration task changing the
configuration states of features and attributes, as explained in Section 6.3.1. Hence, output of a
specialization action is a refined feature model. In particular, the result of the last action node in
the workflow is a complete variant configuration, where all features and attributes are in a final
configuration state. In addition, action nodes are sequentially ordered in a workflow to prioritize
configuration operations of stakeholders, which are modeled by roles in the access control model.
For instance, configuration stakeholders modeled in the example in Figure 6.9 are Resource
Provider, Application Provider, Customer A and User A.1. Control and data flow between
configuration steps by means of directed transitions between action nodes. The control flow
creates chronological sequences and logical interdependencies between nodes.

For the example of a document management system, depicted in Figure 6.1, five activities repre-
senting staged configuration workflows are to be specified, one per user. However, configuration
steps of stakeholders with global impact, such as the Application Provider are modeled and
executed redundantly. Modeling stakeholder relations in a single staged configuration workflow
instead reduces configuration redundancies by reusing partial configurations of particular stake-
holders. A special class of staged configuration workflows is introduced, enabling the derivation
of multiple complete variant configurations in a single workflow. The workflow class is named
specialization tree, as the underlying workflow structure corresponds to a is a directed tree, which
is introduced in the next section.

6.5. Specialization Tree

Generally, a staged configuration process leads to a single complete configuration by specializing
a particular feature model. This concept is extended by forking to support the derivation of
multiple complete configurations. The concept of a specialization tree is introduced to extend
staged configuration workflows by creating a tree-like structure for reusing partial configurations,
while leading to multiple variant configurations [SMM+12]. Figure 6.11 depicts the concept of
a specialization tree. Specialization trees may have an arbitrary width and depth represented
by dots in the figure. However, the depth of a tree is constant, where the number of stages of
each path equals. This assumption is necessary to evaluate configuration operations conducted

144

6. Adaptive Staged Reconfiguration Workflows

Figure 6.11 A forked staged configuration workflow forms a specialization tree.

in a stage and to identify the final stage after which all variability must be bound in a complete
variant configuration. In each stage, the variability defined by the feature model is further refined
by means of configuration steps. The result of a specialization step conducted in a stage leads
to a partial configuration of the feature model. However, some of these partial configurations
are input for multiple further specialization steps where configuration operations are conducted
independently. Furthermore, the configuration views of configuration steps of the same stage
equal, while configuration steps of a stage are independent.

Definition 6.1 (Specialization Tree). A staged configuration workflow comprising forks without
joins to derive multiple complete variant configurations is a specialization tree.

Modeling a specialization tree as an activity diagram, multiple forks without joins are defined
leading to separated independent configurations as shown in Figure 6.12. The activity diagram
defines the control flow of the specialization tree. The control flow is separated by fork nodes

145

6.5. Specialization Tree

Figure 6.12 Modeling a specialization tree as activity diagram.

leading to separated configuration paths. A fork activates all succeeding paths in the control flow
concurrently and has one incoming control and data flow as well as multiple outgoing flows. Each
action represents a specialization step in a staged configuration process. The UML semantics of
a final node define that the activity is stopped, when one of its final nodes is reached. Therefore,
the notion of a flow final node is applied to represent the end of each staged configuration path
keeping the workflow alive if a variant configuration is derived. Each path between the initial
node and a flow final node leads to a complete variant configuration and thus equals a staged
configuration process in the common sense. Thus, the specialization tree stays alive, when a
complete configuration is derived, such that further complete configurations are still derivable.

The underlying tree of the UML activity diagram representation of the specialization tree is
a connected directed acyclic graph with a single root node. The root node in a specialization
tree is the initial flow node. Each node in the tree is parent of potentially multiple child nodes,
whereas in turn each child node only has one parent node. A leaf node is a node without children.
Leaf nodes in a specialization tree are flow final nodes and an activity final node. Each flow
final node represents the end of a staged configuration process, whereas the activity final node
represents the termination of the staged configuration workflow. One path leading from the root
initial node to one leaf flow final node represents a staged configuration process for deriving
a single complete variant configuration. The structure of a specialization tree definition and
well-formedness criteria are defined by means of a metamodel, as explained in the next section.

6.5.1. Structure of Specialization Tree Definitions

A metamodel for specifying the structure and well-formedness criteria of specialization trees
is shown in Fig 6.13. The syntax is adopted from the UML 2.4.1 superstructure specification
comprising concepts of activity diagrams [OMG2011b]. The root container node comprising
specialization tree concepts is the WorkflowModel metaclass.

146

6. Adaptive Staged Reconfiguration Workflows

Figure 6.13 Metamodel for staged configuration workflows forming specialization trees.

147

6.5. Specialization Tree

The metaclasses Activity, ActivitiyEdge, ActivityNode, InitalNode, ForkNode, FinalNode,
FlowFinalNode, and Action, as well as their relations are taken from the UML specification. An
Activity corresponds to a staged configuration workflow. The ActivityEdge metaclass defines
directed transitions between a source and a target ActivityNode.

An Action corresponds to an executable task. To distinguish configuration tasks that refine
a feature model from a task to control the termination of the workflow, the two metaclasses
SpecializationAction and ControlAction are introduced, which are derived from the Action
metaclass.

The ControlAction is an accept event action, modeled as a singleton and waiting for a cancel
event to terminate the configuration workflow. This action represents an explicit breaking
condition to finish the entire configuration workflow. The workflow will only be terminated by
triggering the ControlAction by an external cancel event. An example for such an external
termination event is the notification that the application server shuts down, where the configurable
cloud application runs on. The SpecializationAction is introduced to execute a configuration
task. A configuration task is executed by a stakeholder represented by a concrete Role defined in
the AccessControlModel. The result of a SpecializationAction is a partial configuration of
the feature model. The WorkflowModel metaclass references an AccessControlModel to assign
Roles to SpecializationActions. Additionally, a state attribute is added to the Action
metaclass to explicitly model the runtime state of actions.

The WorkflowModel comprises a set of ordered Stages partitioning SpecializationActions. A
Stage subsumes multiple SpecializationActions of the same level in the specialization tree,
which are related to concrete stakeholder Roles inheriting from the same abstract Role. This
abstract Role is assigned to the Stage. In other words, a Stage comprises configuration tasks of
stakeholders of the same kind. Succeeding and predecessing relations define an explicit order
among Stages.

A specialization tree is well-formed, if the underlying directed graph is a rooted tree. Exactly
one InitialNode must be specified as a root node. Further well-formedness constraints are
defined between metaclasses inheriting from ActivityNodes and transitions represented by the
metaclass ActivityEdge. An instance of the InitialNode metaclass does not have an incoming
transition as this node indicates the start of a workflow. In contrast, the FinalNode metaclass
representing the termination of the workflow activity and the FlowFinalNode representing the
end of a single staged configuration process do not have outgoing transitions. Each Action has
only one incoming and one outgoing transition represented by an ActivityEdge. A concrete Role
contained in the referenced AccessControlModel is assigned to every SpecializationAction.

A well-formed specialization tree is valid, if each path in the tree between an InitialNode
and a FlowFinalNode represents a staged configuration process leading to a complete variant
configuration.

An instance of the workflow metamodel models a staged configuration workflow by defining
configuration dependencies between stakeholders, and is referred to as specialization tree definition.
A specialization tree definition is executed as a specialization tree instance, where each action
has a current runtime state, as explained in the following section.

148

6. Adaptive Staged Reconfiguration Workflows

6.5.2. Specialization Tree Execution

An Action has an own lifecycle, which can be expressed by means of states, as depicted in
Figure 6.14. Adopted from [RW12], four execution states of an action are distinguished. These
states are disabled, enabled, running and finished and modeled in the workflow metamodel as an
enumeration type ActionState. A configuration task assigned to a SpecializationAction can
only be conducted if the predecessing SpecializationAction is finished.

The state of an Action changes during the execution of a configuration workflow. Initially, an
Action is disabled and the task represented by the Action cannot be executed. Hence, configu-
ration operations cannot be conducted in a disabled SpecializationAction accordingly.

A SpecializationAction is enabled, if the action has no predecessing SpecializationAction,
or if the predecessing SpecializationAction is in a finished state. An enabled action is running,
when a stakeholder starts the configuration task. If a stakeholder completes the configuration task,
the SpecializationAction is finished. If a stakeholder decides to cancel the configuration of a
currently running configuration task, the corresponding SpecializationAction is enabled.

If the state of the SpecializationAction changes to finished, all SpecializationActions,
which are direct successors, are implicitly enabled. The lifecycle of a ControlAction is similar,
except that a ControlAction is running if it receives an external termination event. Changing
the state of the ControlAction to finished terminates the execution of the specialization tree.

A SpecializationAction executes a configuration task to reduce feature model variabil-
ity obeying feature model constraints. Input for the first SpecializationAction in the
staged configuration workflow is an unconfigured feature model instance. The input for
any other SpecializationAction is a partial configuration derived from the predecessing
SpecializationAction. A SpecializationAction is executed by a stakeholder represented

Figure 6.14 The lifecycle of an action (adopted from [RW12]) in a staged configuration work-
flow.

149

6.5. Specialization Tree

by the assigned Role. The permissions of a Role are evaluated to identify allowed configu-
ration operations in terms of RBAC. Allowed operations define a configuration view for the
SpecializationAction. The configuration view presents all allowed configuration operations to
the stakeholder when performing a configuration task. However, not all allowed configuration
operations are applicable to the current partial configuration.

Allowed configuration operations are partitioned into a set of applicable and a set of inapplicable
configuration operations. The current configuration state of features and attributes is evaluated
to identify applicable configuration operations, as explained in Section 6.3.1. Inapplicable
configuration operations are highlighted.

Views of stakeholders can overlap due to the overlapping permissions defined for roles in the
access control model. Hence, a stakeholder can postpone configuration decisions, if the item is
configurable in a succeeding SpecializationAction.

To identify postponable configuration operations, the set of applicable configuration operations
is compared to the configuration operations allowed in succeeding actions. Furthermore, a
stakeholder cannot conduct all allowed operations, as some ConfigurationOperations are
mutual exclusive, for instance the selection and deselection of features, as explained previously.
If a stakeholder finishes the execution of a SpecializationAction, conducted configuration
operations are persisted in a Log and a feature model configuration is derived as output of the
action serving as input for potential succeeding SpecializationActions.

During executing the workflow, the result of a SpecializationAction is either a partial or
complete variant configuration. However, the last SpecializationAction in a path between the
InitialNode and a FlowFinalNode must define a complete variant configuration. Traversing
is defined by following the directed outgoing transition until reaching the descendant node.
If the descendant node is a FlowFinalNode or a FinalNode, the partial configuration of the
SpecializationAction must be complete, and partial otherwise. In the following the definition
and execution of specialization tree definitions are explained by example.

6.5.3. Example Definition and Execution of a Specialization Tree

The definition of specialization trees and their execution is exemplified by the document man-
agement system introduced in Section 6.1. The definition of an example specialization tree for
the document management system is depicted in Figure 6.15. The specialization tree definition
starts with a fork to separate specialization tree from the cancel path comprising an instance of
the control action for terminating the workflow. The definition comprises a specialization action
node per stakeholder role involved in configuration. The roles Resource Provider and Application
Provider are assigned to the specialization actions of the first configuration stage prioritizing
their configuration operations.

A fork after the specialization action related to the Application Provider separates control and
data flow. The specialization action, related to the two roles Customer A and Customer B,
are modeled in two separated transitions in the Customer Stage. Eventually, the User Stage is
the latest stage to bind remaining variability of the partial configurations, as all specialization

150

6. Adaptive Staged Reconfiguration Workflows

actions in this stage are the last of their kind following the directed paths in the specialization
tree. Roles User A.1, User A.2, and User A.3 in this stage depend on Customer A on the prior
stage. In addition, the roles User B.1 and User B.2 depend on configuration decisions of role
Customer B. All stakeholder roles of the User Stage are allowed to independently perform the
same configuration operations specified by the abstract role User.

An example execution of the specialization tree depicted in Figure 6.15 is explained in the
following. The control action is initially enabled during specialization tree execution, waiting for
a terminating event. After executing the control action, the configuration workflow terminates,
which is depicted by the activity final node.

The first stakeholder role conducting configuration operations in the example specialization
tree is the Resource Provider. This role is allowed to deselect features representing data center
locations, as defined in the access control model for the document management system depicted
in Listing 6.1. Initially, the Resource Provider conducts no configuration operations. Hence,
the corresponding specialization action is just finished by this stakeholder, which triggers the
succeeding specialization action of the Application Provider to be enabled. The Application
Provider is allowed to configure features related to platform services. The Application Provider
starts the configuration tasks by selecting the root DocumentManagement feature. In addition,

Figure 6.15 Specialization tree definition and execution for the document management
system example.

151

6.5. Specialization Tree

1 select " Document Management System " <dms >,
select " Database " <DB>,

3 select "SAP HANA" <HANA >,
select " Application Server " <AppServer >,

5 select "SAPA HANA Cloud Platform " <HANACloud >,
select " Server Location " <Location >,

7 deselect " Eclipse Virgo" <Virgo >,
deselect " Oracle 12c" <Oracle >,

9 deselect " MongoDB " <Mongo >,
select DB.users .1000

Listing 6.2 Executed configuration operations of the role Application Provider.

the stakeholder selects the features Database, HANA, ApplicationServer, HANA Cloud, and
ServerLocation, while deselecting Oracle 12c, MongoDB, and Virgo. Furthermore, the stake-
holder assigns the attribute value 1000 to the attribute users of the Database feature. The
conducted configuration operations of the Application Provider are summarized in Listing 6.2.

In the example specialization tree depicted in Figure 6.15, Resource Provider and Application
Provider have already finished their configuration tasks, which is illustrated by the annotation of
the finished state at the corresponding specialization action. However, finishing the configuration
task of the Application Provider triggers the succeeding specialization actions of Customer A
and Customer B to be enabled.

Due to the fork succeeding the specialization action of the Application Provider, the resulting
partial feature model configuration serves as input for both specialization actions in the customer
stage. The configuration operations of the stakeholders Customer A and Customer B are executed
independently without influencing each other. Each specialization action of a customer leads
to a single partial configuration, which is further forked for the users of the customers. In
this example, only Customer A finished the configuration task, while the configuration task of
Customer B is currently running. Hence, specialization actions related to users of Customer A
are enabled, while the specialization actions of users related to Customer B are disabled, until
this stakeholder finishes its configuration task.

Configuration permissions of the Application Provider role and the Customer A role are disjunct
in this example. However, the permissions of the Customer A role and the User A.1 role overlap.
Both roles are allowed to conduct configuration operations on features representing application
functionality. For instance, both roles are allowed to select and deselect the OCR feature. In the
example specialization tree, depicted in Figure 6.15, role Customer A is higher prioritized than
role User A.1.

Assuming that Customer A deselects the OCR feature, User A.1 and all other subsequent
stakeholders cannot conduct a select or deselect operation on this feature. However, Customer A
is not required to decide on selecting or discarding the OCR feature from a configuration. This
decision can be left to succeeding specialization actions, as related roles are allowed to configure
this feature. Hence, in a configuration task, the applicability of a configuration operation is
evaluated, as well as the possibility to discard a configuration decision. All configuration decisions
that cannot be discarded must be conducted in the configuration task to derive a valid variant

152

6. Adaptive Staged Reconfiguration Workflows

select " Quality of Service " <QoS >,
2 select QoS. availability .high ,

select QoS. encryption .strong ,
4 select QoS. concurrentusers .100 ,

select " European Union" <EU>,
6 select "Spain" <ESP >,

select " Germany " <GER >,
8 select " Norway " <NOR >,

deselect " Ireland " <IRL >,
10 deselect " United States " <US>,

deselect " California " <CA>,
12 deselect " Washington " <WA>,

deselect " Alaska " <AK>,
14 deselect "Texas" <TX>,

deselect " Nebraska " <NE>,
16 deselect "Asia" <AS>,

deselect " Russia " <RUS >,
18 deselect "India" <IND >,

deselect "OCR" <OCR >,
20 deselect "PDF OCR" <PDFOCR >,

deselect "Image OCR" <ImageOCR >

Listing 6.3 Executed configuration operations of role Customer A.

1 select " Document Type" <DocumentType >,
deselect "Text Type" <TextType >,

3 select " UnicodeText Type" <UnicodeTextType >,
select "Image Type" <ImageType >,

5 select "PDF Type" <PDFType >,
select " Indexing " <Indexing >,

7 select " MetaData Index" <MetaDataIndex >,
select " Author Index" <AuthorIndex >,

9 select "Title Index" <TitleIndex >,
select " Content Index" <ContentIndex >,

11 deselect " General Index" <GeneralIndex >,
select " FileName Index" <FileNameIndex >,

13 select " Search " <Search >,
select " MetaData Search " <MetaDataSearch >,

15 select " Author Search " <AuthorSearch >,
select "Title Search " <TitleSearch >,

17 select " Content Search " <ContentSearch >,
deselect " General Search " <GeneralSearch >,

19 select " FileName Search " <FileNameSearch >

Listing 6.4 Executed configuration operations of role User A.1.

configuration where all variability is bound. For Customer A, the decisions on the Quality of
Service feature and its attributes, as well as on server location related features must be made,
as subsequent stakeholders in the workflow are not allowed to conduct configuration operations
on these configuration items.

Assuming that Customer A conducts the configuration operations depicted in Listing 6.3, the
resulting partial configuration of the document management system allows for deriving 352
different complete variant configurations.

153

6.5. Specialization Tree

The configuration task of Customer A is already finished in this example and the succeeding
specialization actions are enabled. In addition, role User A.1 already finished the corresponding
configuration task by conducting the configuration operations depicted in Listing 6.4. Hence, the
staged configuration process defined between the initial node and the succeeding flow final node
of the specialization action related to User A.1 is completed.

The conducted configuration operations lead to a complete variant configurations illustrated
in Figure 6.16. Other stakeholders depending on Customer A may decide to conduct different

Figure 6.16 Complete variant configuration of User A.1 of the variable document manage-
ment system.

154

6. Adaptive Staged Reconfiguration Workflows

configuration operations than User A.1. For instance, they may decide to select the Text Type
feature instead of deselecting it as User A.1 did, which leads to different complete configurations.

In addition, Customer B may conduct different configuration operations than Customer A as
both roles are independent in the specialization tree. However, both stakeholders have the same
permissions as their concrete roles have the same abstract parent role Customer. As Customer B
is currently performing a configuration task indicated by the annotation running in Figure 6.15,
succeeding roles in the User Stage cannot start their configuration tasks yet.

By modeling the dependencies between stakeholders in a specialization tree, partial configurations
of stakeholders with high impact are reusable. Another advantage of a specialization tree is the
efficient propagating of reconfiguration changes, as discussed in the next section.

6.6. Staged Reconfiguration on Extended Feature Models

Cloud applications that are scalable in terms of functionality and quality are required to support
reconfiguration. As multiple stakeholders are involved in the configuration process of a cloud
application, as discussed before, reconfiguration changes of a stakeholder are to be propagated
to depending stakeholders. For instance, if customers change the tenancy contract signed with
a provider to adjust the contract to their current demands, users of these customers are to be
notified, and their configurations are changed accordingly. However, these changes are local, as
they only affect users of this particular customer. Other reconfiguration decisions have global
impact. For example, a resource provider needs to disable data centers due to server maintenance,
as explained in the document management example in Section 6.1. Concepts for supporting
reconfiguration and propagating changes of feature model configurations in a specialization tree
are discussed in the following.

6.6.1. Extending the Action Lifecycle

To support reconfiguration, the lifecycle of actions in the workflow is extended with a further
reconfiguration transition, as depicted in Figure 6.17. According to Section 6.5.2 an action is
enabled, if the predecessing action in finished. To support reconfiguration an additional transition
is added, leading from the finished state to the disabled state. This transition is triggered if the
predecessing action sends a reconfiguration event, or if the stakeholder of this action requests
reconfiguration. Subsequently, the reconfiguration task starts and the state of the action changes
to running. After finishing configuration operations, a reconfiguration event is sent to all direct
succeeding SpecializationActions. All succeeding SpecializationActions that are currently
in the finished state are revoked to perform reconfiguration.

Succeeding SpecializationActions in a disabled and enabled state are not affected by reconfig-
uration changes, as no configuration operations are conducted in these actions yet. Therefore,
these actions consume the reconfiguration event without further propagating it to their suc-
ceeding SpecializationActions. A SpecializationAction in a running state replaces the

155

6.6. Staged Reconfiguration on Extended Feature Models

current input partial configuration with the reconfigured partial configuration and conducted
configuration operations are evaluated against the new partial configuration.

The next section discusses how to propagate reconfiguration changes and evaluate configuration
operations to preserve feature model integrity.

6.6.2. Reconfiguration Strategies

Three strategies for propagating reconfiguration changes to depending actions are applicable,
manual, automated and semi-automated.

In a manual strategy, the status of depending specialization actions is changed to enabled.
Additionally, stakeholders assigned to these actions are notified to restart the specialization. The
input for the specialization actions is the changed partial configuration, while already performed
configuration operations are discarded. In complex configuration scenarios this strategy is not
feasible as stakeholders don’t want to execute the same configuration operations multiple times.

Second, an automated strategy could be applied. A policy with respect to a certain criteria
must be specified therefore. For instance, a policy to change as little as possible in the complete
configuration in terms of total number of features, neighboring features, or child features. To
define a fully automated approach, the meaning of similar features must be specified. Additionally,
a metric for analyzing feature similarity must be defined. For instance, a metric based on the
structure of the feature model could define features contained in the same group to be similar.
However, the notion of similarity depends on the application area of the feature model and is
subjective. Thus, it is hard to identify a fully automatic strategy that is applicable in general.
Furthermore, stakeholders may not accept a completely automated reconfiguration, as they will
get a feeling of loosing control of their configuration operations.

Figure 6.17 The lifecycle of an action is extended with a reconfiguration transition.

156

6. Adaptive Staged Reconfiguration Workflows

Third, a semi-automated strategy combines automated and manual concepts. When a recon-
figuration event occurs in a specialization action, the operations previously conducted in this
action are to be evaluated for compatibility with the new input partial configuration. This
is done iteratively by applying each configuration operation in the order they were conducted
previously. Configuration operations are inapplicable if they are in conflict with previously
conducted configuration operations on the same configuration item or if they violate constraints
of the current feature model configuration. To determine if a configuration operation is pre-
viously applied on the same configuration item, the current state of the item is analyzed. To
determine if a constraint is violated in the current feature model configuration, a CSP solver
is applicable [MSD+12]. Inapplicable configuration operations are discarded, where the others
are pre-selected in the configuration view of the configuration stakeholder and a notification is
displayed accordingly to the configuring stakeholder. In the best case, all configuration operations
are applicable, while in the worst case none of them are applicable.

Further input by means of a Log is provided to a SpecializationAction to support semi-
automated reconfiguration depicted in Figure 6.18. A Log contains information about previously
conducted configuration operations. A metaclass Log is defined in the metamodel for staged
configuration workflows depicted in Figure 6.13 to store information about conducted configuration
operations. Each specialization action references a set of Logs. Hence, a Log comprises a
set of ConfigurationOperations defined in the AccessControlModel. They represent the
configuration decisions made in a SpecializationAction during executing the configuration
task of a stakeholder. When starting the task of the SpecializationAction, a Log is instantiated.
Every conducted ConfigurationOperation is recorded in the Log.

A Log equals a configuration memento as it records all configuration operations conducted in a
configuration task. The relation between successor and predecessor logs allows for storing different
configuration mementos of the same SpecializationAction. Thus, a stakeholder can follow

Figure 6.18 Input for a specialization action to support reconfiguration are a feature model, a
role defined in the access control model, and a log.

157

6.6. Staged Reconfiguration on Extended Feature Models

up previously conducted configuration operations. Hence, input of a SpecializationAction is
the recent Log and the partial configuration of the predecessing SpecializationAction. Hence,
if a recent Log exists, each ConfigurationOperation contained in the Log is checked for its
applicability on the input partial configuration of the SpecializationAction. In Figure 6.18,
previously conducted configuration operations select(F1) and deselect(F2) are displayed in bold
face in the configuration view of the SpecializationAction. Inapplicable configuration actions
are visualized in gray. In this example, the configuration action deselect(F2) was conducted in
the previous configuration task, but is no more applicable to the new input feature model as the
feature F2 is already configured. Therefore, this operation is displayed in gray and bold face.

Every SpecializationAction can perform a configuration task multiple times while different
applied configuration operations lead to different partial configurations as outputs.

6.6.3. Example Reconfiguration

To exemplify reconfiguration, the configuration scenario depicted in Figure 6.15 is assumed.
If Customer A requests reconfiguration, this reconfiguration event changes the state of the
corresponding specialization action from finished to disabled. As the predecessing specialization
action of the Application Provider is finished, the state of the action assigned to Customer A
changes to enabled. Hence, the stakeholder Customer A can start the configuration task, which
changes the state of the action to running. Input for this task is the partial feature model
configuration of the predecessing stakeholder Application Provider, a Log comprising previously
conducted configuration operations, and the permission of the corresponding role Customer
A. A configuration view is presented to the stakeholder comprising all allowed configuration
operations defined by permissions of the role. Figure 6.19 shows an excerpt of the configuration
view of Customer A. Previously conducted configuration operations are highlighted in bold
face. Configuration decisions that cannot be postponed to succeeding specialization actions are
visualized by a gray background.

In this example, stakeholder Customer A decides to no longer deselect the features OCR, PDF
OCR, and Image OCR, leaving the decision whether to include or discard those features from a
complete configuration to the succeeding stakeholders. Furthermore, both previously deselected
features United States and California representing server locations are now selected. In addition,
the feature Image Type is selected. Thus, 576 complete variant configurations are derivable from
the output partial configuration of Customer A.

In contrast, the prior partial configuration of this stakeholder allowed to derive 352 complete
variant configurations only. The reconfiguration of Customer A triggers reconfiguration of User
A.1 in this scenario, as this stakeholder already conducted a configuration task. However, this
stakeholder is required to decide on the yet unconfigured three features OCR, PDF OCR, and
Image OCR, while most of the previously conducted configuration operations of this stakeholder
remain applicable to the new input partial configuration. Only the previously conducted select
operation of feature Image Type is not applicable, as the predecessing stakeholder made a decision
on this feature. However, as Customer A selected this feature as well, the change did not influence
the configuration of User A.1. The same configuration operation was conducted at an earlier

158

6. Adaptive Staged Reconfiguration Workflows

point in time. Hence, reconfiguration changes vary in their influence on succeeding specialization
actions and are classified therefore in the next section.

6.6.4. Classification of Reconfiguration Changes

Different types of reconfiguration changes are distinguished with different influence on change
propagation. Reconfiguration changes are described in terms of generalization and specialization,
as classified in Figure 2.8. Hence, generalization changes, specialization changes and switch
changes are to be distinguished. A generalization change describes the transition from a final
state back to the undecided state of a feature or attribute. In the reconfiguration example
explained in Section 6.6.3, generalization changes occurred on the features OCR, PDF OCR,
and Image OCR. The state of these features is changed from deselected to the undecided in the
resulting partial configuration.

For a feature, a specialization change leads from an undecided state to a final state. In the
previous reconfiguration example, a specialization change occurred on feature Image Type. The
state of this feature is changed from undecided to selected state.

In addition, a switch change defines a transition between the final selected and deselected states
of a feature, such that a previously selected feature will be deselected after this change for
instance. In the example explained in Section 6.6.3, a switch change occurred on the features
United States and California leading from a deselected to the selected state.

For an attribute, a specialization change occurs, if the attribute is in the undecided state and
an attribute value is selected or deselected. If an attribute value is selected, the attribute state

Figure 6.19 Reconfiguration of stakeholder Customer A of the document management exam-
ple.

159

6.7. Workflow Adaptation for Dynamic Stakeholder Management

changes to the assigned state. In contrast, if an attribute value is deselected, the value is added
to the set of deselected values without changing the attribute state. A switch change applies on
attributes in an assigned state. The selected value of an attribute is replaced by a different not
yet deselected value.

Summarizing, a generalizing change induces variability, where a specialization change reduces
variability. In addition, a switch change maintains the same amount of variability. Generalization
changes do not influence the applicability of configuration operations already made in subsequent
actions, whereas specialization and switch changes do. However, a generalization change requires
to decide on the configuration item at a later time in the workflow. Hence, a generalization
change is only possible, if the decision can be made by a succeeding stakeholder.

As exemplified in section 6.1, not all stakeholders are known beforehand and can be modeled
in the staged configuration workflow prior execution. Thus, a method to support a dynamic
stakeholder management in staged configuration workflows is explained in the next section.

6.7. Workflow Adaptation for Dynamic Stakeholder Management

Managing stakeholders involved in configuring a cloud application requires adaptation of the
configuration workflow. Hence, a specialization tree definition, as exemplified in Figure 6.15 for
the document management system, cannot always be modeled prior execution. For instance,
customers and users subscribe for the cloud application at application runtime. Hence, cor-
responding roles are to be added to the access control model to define access restrictions on
configuration operations, and related specialization steps are to be added in the specialization tree
to classify the priority of their configuration decisions. These modifications are to be automated to
retain model consistency. An event-based adaptation method by applying graph transformation
techniques is introduced in this section to enable dynamic stakeholder management.

Graph transformation approaches are frequently applied in software engineering, especially in
MDSD [EEKR99]. The metamodel for specialization trees depicted in Figure 6.13 and the
access control metamodel depicted in Figure 6.8 are type graphs, where each specialization tree
definition and access control model are instance graphs [GLR+02]. Hence, rewrite rules can be
defined on the structure of a type graph to transform an instance graph.

A graph rewrite rule r ∈ R consists of a left-hand side LHS and a right-hand side RHS
pattern [Roz97]. The LHS specifies a search graph pattern and therefore pre-conditions to
apply the rule r. The RHS specifies a replacement of this pattern. Hence, applying a rule
r : LHS → RHS on a host graph G replaces the occurrence of LHS in G with RHS yielding a
transformed host graph G. The host graph G in this work is a specialization tree referencing an
access control model. The adaptation of the specialization tree during runtime is depicted as an
UML sequence diagram in Figure 6.20.

A specialization tree instance is adapted during execution according to an adaptation event. An
adaptation event for a dynamic stakeholder management is the insertion and removal request
of a concrete role into the access control model. An event monitor observes the access control

160

6. Adaptive Staged Reconfiguration Workflows

Figure 6.20 Changing a role in the access control model causes the workflow engine to adapt
the configuration workflow by applying a corresponding rewrite rule.

model waiting for adaptation events. If an adaptation event occurs, the monitor forwards this
event to the adaptation engine, which evaluates the event to apply a sequence of rewrite rules to
adapt the structure of the access control model and specialization tree.

6.7.1. Adaptive Specialization Tree Definition

Adaptive specialization trees are defined by means of an initial specialization tree definition,
a corresponding access control model, and an adaptation strategy comprising a set of rewrite
rules. An initial specialization tree definition specifies the initial part of the specialization tree,
while further parts are dynamically generated by applying rewrite rules. A minimal adaptive
specialization tree definition comprises the following nodes and edges,

• an initial node for defining the start of the workflow,

• a fork for separating the control flow between the termination path and the paths related
to staged configuration prcoesses,

• a control action waiting for an external event for terminating the workflow,

• an activity final node specifies a global end of the workflow,

• transitions between the nodes, and

• all sequentially ordered stages.

Figure 6.21 shows a minimal adaptive specialization tree definition. In a specialization tree the
order of stages is fixed, as well as their relation to abstract roles in the access control model.

161

6.7. Workflow Adaptation for Dynamic Stakeholder Management

Figure 6.21 Initial specialization tree definition used for adaptation.

Hence, an initial access control model must specify abstract roles related to stages and their
permissions, while concrete roles are added through graph transformations.

According to the well-formedness criteria of a specialization tree, described in Section 6.5.1, a
minimal specialization tree is well-formed. The specialization tree does not yet explicitly represent
staged configuration processes. Further specialization actions are integrated by applying rewrite
rules as explained in the following.

Graph rewrite rules specify the transformation of an access control model to add and remove
stakeholders and to adapt the specialization tree accordingly. Rewrite rules are defined on a set
of nodes N and edges E of a graph G = (N,E). A specialization tree and a referenced access
control model has a graph structure comprising attributed nodes N and directed labeled edges
E to interconnect nodes. Nodes refer to object instances of metaclasses containing attributes
according to their metamodel specifications. In addition, edges corresponds to references between
object instances. Rewrite rules define the addition and removal of object instances and references,
as well as attribute value assignments in the specialization tree and a referenced access control
model. In the next section, rewrite rules for integrating stakeholders are explained.

6.7.2. Rewrite Rules for Integrating Stakeholders

To integrate a new stakeholder, new objects are instantiated in the access control model and
the specialization tree. In the access control model, concrete roles, their relation to other roles,
groups and the relations to a group are added. In the specialization tree, new control and data
flow structures and the new specialization action related to the new stakeholder are added. Forks
represent adaptation points in the specialization tree.

First, a concrete role is instantiated in the access control model representing the new stakeholder.
Further references are to be introduced modeling the relation of this role to other roles. A
specialization action and related control and data flow structures are to be created in the
specialization tree accordingly. Therefore, a name and id of the new stakeholder role are given,
an abstract role representing a stage is selected, and a concrete role which is the owner of a role
group. In addition, constraints occur on selectable input parameters. Hence, input parameters
are specified in an explicit order as they depend on each other. The input order is as follows.

162

6. Adaptive Staged Reconfiguration Workflows

1. Specifying stakeholder name and identifier. The name and identifier of the new stakeholder
must be defined to instantiate a new role with these values.

2. Selecting an abstract role. The selected abstract role corresponds to a stage where to
integrate the new stakeholder. Prior to selecting an abstract role, the set of selectable
abstract roles is filtered. Only abstract roles that are assigned to stages are available, where
the assigned stage is either the first stage that has no predecessor or a stage where the
predecessor stage comprises at least one specialization action.

3. Selecting a concrete role. The selected concrete role represents a depending configuration
stakeholder which will be the direct predecessor in the configuration process. The previously
selected abstract parent role implies selectable concrete roles. All concrete roles assigned
to specialization actions of the predecessing stage represented by the chosen abstract role
which are owner of a role group are available for selection. However, selecting a concrete
role requires the existence of concrete roles in the predecessing stage. The selection of a
concrete role is omitted, if the new role will be added to the first stage.

The filter constraints implicitly define which specialization actions and control flow structures can
be added in the current structure of the specialization tree. For example, in the specialization tree
of the document management system and depicted in Figure 6.30, only concrete roles inheriting
from the abstract Customer role can be added. Concrete roles inheriting from the abstract User
role can currently not be added, as this would lead to an unconnected specialization tree in the
workflow model.

Rewrite rules to integrate a new stakeholder in the specialization tree are visualized in Figures 6.22
to 6.29. Figures depicting the graph rewrite rules apply a graphical notation of UML object
diagrams to specify the LHS and RHS patterns of the access control and workflow models.

Input parameters of a rewrite rule are highlighted applying an italic font. In addition, a red cross
in the search pattern in the LHS represents a non-existing reference. The dotted line on the
left side frames the search pattern in the instance graph, while the dotted line on the right side
frames the replacement pattern and is similar to the notation applied in PROGRES [RW08].

The following rewrite rules A1 to A8 are specified for stakeholder integration and applied as a
sequence in the given order.

A1 Add a concrete role with given name and identifier to the access control model and insert
an inheritance relation to the specified abstract parent role, as depicted in Figure 6.22.

A2 Define group membership relation between the new concrete role and a different specified
concrete role, as depicted in Figure 6.23.

A3 Create specialization action and relation to concrete role, add the specialization action to
the stage assigned to related abstract parent role, as depicted in Figure 6.24.

A4 Add predecessing control and data flow transitions, if new role assigned to the first stage,
as depicted in Figure 6.25. The stage related to the specialization action of the new role

163

6.7. Workflow Adaptation for Dynamic Stakeholder Management

does not have a predecessor relation to a different stage, which is visualized in the figure
by a red cross on the predecessor reference.

A5 Add predecessing control and data flow transitions to the new specialization action by
evaluating group membership, as depicted in Figure 6.26.

A6 If the specialization action is not added to the last stage, create a new group in the access
control model and define a group ownership relation between the new concrete role and
the new role group, as depicted in Figure 6.27.

A7 Add succeeding control and data flow transitions by evaluating group ownership, as depicted
in Figure 6.28.

A8 If the specialization action is added to the last stage, insert a flow final node, as depicted
in Figure 6.29. The stage related to the specialization action of the new role must not have
a successor relation to a different stage, which is visualized in the figure by a red cross on
the successor reference.

The adaptation engine applies the rewrite rules A1 to A8 as a sequence in the given order. The
first rule returns a reference to the instantiated role, while this role provides input for further
rules. The defined sequence ensures a connected specialization tree. Hence, the specialization
tree grows and shrinks, but always remains connected.

The runtime state of an inserted specialization action depends on the runtime state of the
predecessor specialization action. The runtime state is determined according to the action
lifecycle described in Section 6.5.2.

Figure 6.22 Rewrite rule for inserting a concrete role into the access control model.

Figure 6.23 Rewrite rule for assigning a concrete role as a member to a role group in the
access control model.

164

6. Adaptive Staged Reconfiguration Workflows

Figure 6.24 Rewrite rule for inserting a specialization action in the workflow model and
instantiating required relations.

Figure 6.25 Rewrite rule for inserting a transition to a predecessing fork node in the workflow
model if role belongs to first stage.

Figure 6.26 Rewrite rule for inserting a transition to a predecessing fork node in the workflow
model if new role belongs to a role group in the access control model.

165

6.7. Workflow Adaptation for Dynamic Stakeholder Management

Figure 6.27 Rewrite rule for inserting a group and adding ownership to the new role in the
access control model.

Figure 6.28 Rewrite rule for inserting a transition and a successor fork node in the workflow
model if the role is owner of a role group.

Figure 6.29 Rewrite rule for inserting transition and successor flow final node if role added
to last stage in the workflow model.

166

6. Adaptive Staged Reconfiguration Workflows

6.7.3. Example Application of Rewrite Rules for Integrating Stakeholders

A specialization tree for the document management example, as visualized in Figure 6.15, can
be generated from the initial specialization tree instance depicted in Figure 6.30. In this initial
specialization tree, the order of stages and their relation to abstract roles is specified, as well as
initial nodes, transitions and initially assigned concrete roles. In this example, the sequentially
ordered specialization actions related to the concrete roles Resource Provider and Application
Provider in the Provider Stage are specified. Hence, these concrete roles and all abstract roles
assigned to stages are defined in the initial access control model, which is depicted in Listing 6.5.
The initial access control model further specifies that the application provider is owner of a group
representing the application and an entry point for forking the specialization tree.

Assuming that stakeholder Customer A subscribes for the service of the document management
system, the configuration workflow is adapted. First, a stakeholder role is instantiated in the
access control model and an inheritance relation is added to define that this role inherits from the

Figure 6.30 Initial specialization tree definition of the document management example used
for adaptation.

1 access control on <extended_dms .eft >

3 abstract role " Functionality Configuration " <FunctionalityConfiguration > {...}

5 abstract role " Provider " <Provider >
abstract role " Customer " <Customer > extends FunctionalityConfiguration {...}

7 abstract role "User" <User > extends FunctionalityConfiguration

9 role " Resource Provider " <ResourceProvier > extends Provider {...}
role " Application Provider " <ApplicationProvider > extends Provider {...}

11

group <Application > of ApplicationProvider

Listing 6.5 Example of an initial adaptive access control model of the document management
system.

167

6.7. Workflow Adaptation for Dynamic Stakeholder Management

abstract role Customer by applying the first rule A1. The role is added to a member relation with
the role Application Provider by applying the second rule A2. A corresponding specialization
action is instantiated in the workflow model and assigned to the Customer Stage by applying the
rule A3.

The LHS of rule A4 does not match, as the role belongs to the second stage in the specialization
tree. However, rule A5 is applied, as Customer A is a member of the role group of the Application
Provider. Hence, a predecessing transition of the specialization action of Customer A to the
fork is inserted. The fork splits the control and data flow after the specialization action of the
Application Provider.

Subsequently, the application of rule A6 instantiates a new role group for Customer A in the
access control model. The role group represents configuration dependencies to other roles, which
are instantiated during different applications of the rewrite rule sequence. Due to the instantiated

Figure 6.31 Resulting specialization tree after integrating stakeholder Customer A.

access control on <extended_dms .eft >
2

abstract role " Functionality Configuration " <FunctionalityConfiguration > {...}
4

abstract role " Provider " <Provider >
6 abstract role " Customer " <Customer > extends FunctionalityConfiguration {...}

abstract role "User" <User > extends FunctionalityConfiguration
8

role " Resource Provider " <ResourceProvier > extends Provider {...}
10 role " Application Provider " <ApplicationProvider > extends Provider {...}

role " Customer A" <CustomerA > extends Customer
12

group <Application > of ApplicationProvider
14 group <CustomerA > of CustomerA

Listing 6.6 Access control model after integrating stakeholder Customer A.

168

6. Adaptive Staged Reconfiguration Workflows

role group, rule A7 is applied to add further control structures to the workflow model. The last
rule A8 of this sequence does not transform any model as the LHS of this rule is not matched.

The resulting specialization tree is shown in Figure 6.31, while the resulting access control model
is depicted in Listing 6.6. The group relations between roles in the access control model is
translated into a forking in the specialization tree. The role group with the owner role Application
Provider defined in line 13 in Listing 6.6 has currently one member role Customer A. This role
group is represented in the specialization tree by a fork structure, where the specialization action
related to the owner Application Provider is predecessor of all specialization actions of member
roles.

A fork node is inserted in the specialization tree between the specialization actions of the
Application Provider and Customer A, as depicted in Figure 6.31. Fork nodes in the specialization
tree are adaptation points. For instance, if a second stakeholder role Customer B is instantiated
as a member of this role group, the corresponding specialization action of this stakeholder is
integrated as a successor of the fork node of the specialization action related to role Application
Provider.

Applying the sequence of rewrite rules A1 to A8 to integrate a stakeholder does not interfere with
executing specialization actions in the specialization tree. Hence, the application of integration
sequences is non-destructive. In contrast, applying the sequence of graph rewrite rules to remove
a stakeholder interferes with existing specialization actions. The application of this sequence
causes depending specialization actions to terminate instantly, and to be removed accordingly,
which is referred to as termination by subtraction [Ass00]. The rewrite rules for removing a
stakeholder are explained in the next section.

6.7.4. Rules for Removing Stakeholders

To remove a stakeholder from the staged configuration workflow, the role assigned to this
stakeholder has to be removed, as well as the specialization action in the specialization tree. The
specialization action assigned to the removable role in the specialization tree is observed. All
transitions and nodes in the specialization tree succeeding this specialization action by following
the directed transitions are to be removed. In addition, the reference to the role is removed from
the specialization action, as well as all logs assigned to this action. In the access control model,
all relations to groups and parent roles are to be removed. If the role is owner of a role group,
this role group is deleted accordingly.

Rewrite rules for removing stakeholders roughly correspond to the rewrite rules for integrating
stakeholders but with interchanging LHS and RHS of each rule and applying them in reversed
order. The following rules R1 to R10 for removing a stakeholder from the staged configuration
workflow are specified, and applied as a sequence in the given order. Input for each graph rewrite
rule is the role to be removed.

R1 Instantly terminate the execution of the specialization action referring to the removable
role by setting the state of the action to disabled, as depicted in Figure 6.32.

169

6.7. Workflow Adaptation for Dynamic Stakeholder Management

R2 Logs assigned to the specialization action are to be removed, as depicted in Figure 6.33.

R3 If the specialization action of the removable role is contained in the last stage, the flow
final node and the related transition are removed, as depicted in Figure 6.34

R4 Succeeding control and data flow transitions are removed by evaluating group ownership,
as depicted in Figure 6.35.

R5 If the specialization action assigned to the role is not contained in the last stage, the role
group related to this role is removed from the access control model. In addition, the group
ownership relation between the removable concrete role and the role group is removed
together with the role group. This rule is depicted in Figure 6.36.

R6 Remove predecessing control and data flow transitions from the specialization action by
evaluating group membership, as depicted in Figure 6.37.

R7 Remove predecessing control and data flow transitions, if the removable role belongs to the
first stage, as depicted in Figure 6.38.

R8 Delete specialization action and relation to removable concrete role, and remove the
specialization action from the stage assigned to related abstract parent role, as depicted in
Figure 6.39.

R9 Remove the group membership relation between the removable concrete role and an owner
concrete role of this role group, as depicted in Figure 6.40.

R10 Remove the inheritance relation to the specified abstract parent role and remove concrete
role from the access control model, as depicted in Figure 6.41.

The defined rewrite rules R1 to R10 are applied in the specified order on a stakeholder role to
remove this stakeholder and associated objects from the specialization tree and access control
model. However, removing a stakeholder requires the removal of depending stakeholders. A
stakeholder s2 depends on another stakeholder s1 if the related roles are assigned to specialization
actions comprised in the same directed path and the specialization action of s2 is a descendant
of the specialization action of s1.

Figure 6.32 Rewrite rule for disabling an action in the workflow model.

170

6. Adaptive Staged Reconfiguration Workflows

Figure 6.33 Rewrite rule for removing logs indirectly related to a removable role.

Figure 6.34 Rewrite rule to remove the flow final node and transitions in the last stage.

Figure 6.35 Rewrite rule for removing succeeding control and data flow transitions.

Figure 6.36 Rewrite rule for removing the role group where the removable role is owner.

171

6.7. Workflow Adaptation for Dynamic Stakeholder Management

Figure 6.37 Rewrite rule for removing predecessing control and data flow transitions by
evaluating role group membership.

Figure 6.38 Rewrite rule for removing predecessing control and data flow transitions in the
first stage.

Figure 6.39 Rewrite rule for removing specialization action and relation to removable con-
crete role.

Figure 6.40 Rewrite rule for removing the group membership relation.

172

6. Adaptive Staged Reconfiguration Workflows

Figure 6.41 Rewrite rule for removing inheritance relation to the parent role and delete the
role.

Algorithm 3 Algorithm to recursively remove roles RemoveRoleRecursively(role r)
1: Input: role r
2: a := getSpecializationAction(r)
3: SA := getSuccessorActions(a)
4: for all s ∈ SA do
5: rs = getRole(s)
6: removeRoleRecursively(rs)
7: end for
8: applySequenceRemoveRewriteRules(r)

The adaptation engine applies Algorithm 3 to recursively remove roles. The algorithm applies
the sequence of graph rewrite rules R1 to R10 on all depending stakeholders starting with roles
assigned to most recent specialization actions in the specialization tree.

A depth-first search on the specialization tree is applied to determine depending stakeholder roles
and remove them. Hence, the algorithm takes advantage of the staged configuration workflow’s
underlying tree-structure. In addition, the sequence of rewrite rules R1 to R10 is applied on
each depending role in the same order.

An example of how to apply the algorithm and the defined rewrite rules to recursively remove a
stakeholder is explained in the following section.

6.7.5. Example Application of Rewrite Rules for Removing Stakeholders

Further stakeholders are integrated into the workflow model depicted in Figure 6.31, and related
access control model presented in Listing 6.6. The stakeholders User A1 and User A2 represent
users of Customer A and are therefore inserted into the User Stage. A further stakeholder
Customer B is added to the Customer Stage. Figure 6.42 and Listing 6.7 represent the related
workflow model and access control model instances.

In this example, different stakeholders already finished their configuration tasks depicted by
corresponding annotations in the action nodes, while stakeholder User A1 is currently configuring.
The removal of Customer A implies the removal of depending stakeholders User A1 and User

173

6.7. Workflow Adaptation for Dynamic Stakeholder Management

A2 while the stakeholder Customer B is not affected. Hence, the request to remove Customer A
triggers Algorithm 3.

The algorithm determines succeeding stakeholder roles, which are User A1 and User A2 in this
case. The algorithm is recursively applied on both succeeding roles. The application of the
algorithm on role User A1 first reveals that this role does not have successor roles. Hence, the
recursion stops and the sequence of rewrite rules is applied on role User A1.

Figure 6.42 Specialization tree of the document management example before removing
stakeholder Customer A.

access control on <extended_dms .eft >
2

abstract role " Functionality Configuration " <FunctionalityConfiguration > {...}
4

abstract role " Provider " <Provider >
6 abstract role " Customer " <Customer > extends FunctionalityConfiguration {...}

abstract role "User" <User > extends FunctionalityConfiguration
8

role " Resource Provider " <ResourceProvier > extends Provider {...}
10 role " Application Provider " <ApplicationProvider > extends Provider {...}

role " Customer A" <CustomerA > extends Customer
12 role " Customer B" <CustomerB > extends Customer

role "User A1" <UserA1 > extends User
14 role "User A2" <UserA2 > extends User

16 group <Application > of ApplicationProvider
group <CustomerA > of CustomerA has members UserA1 , UserA2

18 group <CustomerB > of CustomerB

Listing 6.7 Access control model of the document management example before removing
stakeholder Customer A.

174

6. Adaptive Staged Reconfiguration Workflows

Applying the first rule R1 on this role terminates the configuration task of this role by changing
the state of the specialization action back to disabled. Hence, currently conducted configuration
operations in this task are reverted. The second rule R2 deletes potential logs of the role’s
specialization action.

The application of rule R3 on role User A1 removes outgoing edges and the flow final node from
the related specialization action in the workflow model. The application of rules R4 and R5
does not affect the models as the role is not owner of a role group and is related to the last
stage. Subsequently, rule R6 is applied to remove predecessing transitions, while rule R7 does
not remove predecessing transitions as the role User A1 does not belong to the first stage.

Figure 6.43 Specialization tree of the document management example after removing stake-
holder Customer A.

access control on <extended_dms .eft >
2

abstract role " Functionality Configuration " <FunctionalityConfiguration > {...}
4

abstract role " Provider " <Provider >
6 abstract role " Customer " <Customer > extends FunctionalityConfiguration {...}

abstract role "User" <User > extends FunctionalityConfiguration
8

role " Resource Provider " <ResourceProvier > extends Provider {...}
10 role " Application Provider " <ApplicationProvider > extends Provider {...}

role " Customer B" <CustomerB > extends Customer
12

group <Application > of ApplicationProvider
14 group <CustomerB > of CustomerB

Listing 6.8 Access control model of the document management example after removing
stakeholder Customer A.

175

6.9. Demarcation from Related Work

The application of rule R8 removes the specialization action assigned to this role from the
workflow. Rule R9 removes the role User A1 from the role group of Customer A. Eventually,
rule R10 removes the inheritance relation of the role User A1 from the abstract role User and
deletes the role User A1. After finishing the sequence of rewrite rules, Algorithm 3 applies the
sequence on role User A2 and finally on role Customer A.

After removing role Customer A, the algorithm terminates. The resulting workflow model is
depicted in Figure 6.43 and the resulting access control model after applying the rewrite rules is
shown in Listing 6.8.

Only stakeholders Application Provider, Resource Provider, and Customer B remain, while the
stakeholders Customer A, User A1, and User A2 are removed. The stakeholder Customer B is
not affected from removing stakeholder Customer A, as their control and data flow are split by a
fork node.

6.8. Adaptive Staged Reconfiguration Workflows in Software

Product Line Engineering

The processes of domain and application engineering are distinguished in SPL engineering, as
explained in Section 2.2. Adaptive staged reconfiguration workflows are integrated in both.
During domain engineering, an initial specialization tree definition is defined according to
Section 6.7.1. Furthermore, abstract roles and related permissions are defined in a corresponding
access control model referencing a feature model. Abstract roles from the access control model
are related to stages in the specialization tree definition.

During application engineering the specialization tree is executed as a workflow instance to derive
complete variant configurations of the referenced feature model by configuring and reconfiguring
partial configurations. However, the workflow does not terminate after deriving a single complete
configuration. The workflow only terminates if the control action is explicitly invoked by an
external termination event. Furthermore, the specialization tree and the according access control
model are adapted to integrate or remove stakeholders during workflow execution.

6.9. Demarcation from Related Work

In this section, related work in the areas of configuration of cloud applications, staged configuration
workflows, evaluation of partial feature model configurations, and reconfiguration is discussed.

Lytra and colleagues present a case study about the decision-making process of service-based
platforms [LSZ12]. Configuration decisions are clustered into architecture, platform, integration,
and application level, where each level comprises various refinement stages. The focus of
this work is on extracting decision patterns of these levels and modeling their configuration
dependencies in a pattern language. A decision-making process proposed in this work is inspired

176

6. Adaptive Staged Reconfiguration Workflows

by staged configuration comprising a further dimension. However, configuration decisions are
expressed in a decision model, and the result of the decision-making process is a single complete
configuration. Reuse of pre-configurations on particular levels and reconfiguration is out of scope
of the decision-making approach.

An approach for applying staged configuration to configure multiple heterogenous SPLs is
proposed in [Els12]. The author extends staged configuration by introducing build steps to
persist configuration artifacts during the configuration process. Thus, configuration artifacts are
already created without finalizing the configuration process. Moreover, the approach allows for
defining further constraints in each configuration step, which are evaluated in subsequent steps
in conjunction with feature model constraints. Reconfiguration and adaptation of a workflow
instance are not considered in this work.

Other authors introduce a special variability representation based on feature models and apply it
in a cloud service selection process [WKM12]. The authors propose cloud feature models as a
representation form to define selection criteria in cloud services. However, these feature models
are attributed and enriched with abstract features, instance features, and further model elements,
to name but a few. During a cloud selection process, a domain model is extended by adding
further instance features representing instantiations of the abstract features. Furthermore, a
requirements model is defined to make stakeholder requirements explicit by means of a selection
of abstract and instance features, and a restriction of attribute domain values. Applying a
requirements model on a service model yields a variant configuration referred to alternative model.
The proposed approach applies a similar representation of variability compared to the feature
model definition provided in this work. However, the way of deriving a variant configuration
differs. In this approach, a stakeholder can define a requirements model that is matched against a
service model. Furthermore, the process does not support feature model specialization of multiple
stakeholders by means of staged configuration processes and is not intended for reconfiguration
of partial configurations.

Krueger proposes multistage configuration trees to define pre-configurations for certain do-
mains [Kru13]. This approach is similar to the definition of specialization trees in this thesis.
In this approach, feature models are partially configured for certain application domains. The
dependencies between partial configurations are expressed as configuration tree with an arbitrary
depth. A configuration tree is a structural model, whereas a specialization tree is a behavioral
model. Reconfiguration and configuration processes are not defined for configuration trees.

Lee and Kang describe an approach for developing dynamically reconfigurable core assets in
an SPL [LK06]. A feature binding unit comprises features that are related to each other in a
feature model. Hence, features in a binding unit are to be reconfigured together. In addition, a
conceptual model of a reconfigurator is provided to monitor and manage product reconfiguration
at runtime. Strategies for how to perform a reconfiguration in the solution space are provided
according to the relations in a feature binding unit. Furthermore, binding units have different
binding times, such as design time, runtime, and deploy time. These binding times are analyzed
to define reconfiguration strategies for when, how, and which parts of the application should be
reconfigured. The scope of this approach is on how to concisely specify and apply reconfiguration
in the solution space. Hence, this approach can be combined with reconfiguration in staged
configuration workflows in the problem space, as proposed in this thesis.

177

6.10. Summary

6.10. Summary

The adaptive reconfiguration approach proposed in this chapter is based on workflows represented
as UML activity diagrams and incorporates RBAC to authorize configuration decisions on
the feature model as RBAC is a common standard in cloud applications, as explained in
Section 1.7.1. The presented approach allows for defining and executing structured multiple
staged reconfiguration processes by means of a single workflow. Staged configuration concepts
are extended to define specialization trees for modeling configuration dependencies between
stakeholders and reusing partial configurations of higher prioritized stakeholders. Defining a
staged configuration workflow as a specialization tree omits configuration redundancies of staged
configuration processes with the same structure.

The reuse of partial configurations in a specialization tree allows for deriving multiple complete
variant configurations in a single staged configuration workflow. In addition, a specialization
tree allows for propagating reconfiguration changes along directed paths. Hence, the impact of a
reconfiguration change is made explicit in the activity diagram representation. Reconfiguration
changes in a specialization tree have global influence, if induced by high prioritized stakeholders.
In contrast, reconfiguration changes have local influence, if induced by stakeholders with a low
priority in the staged configuration workflow.

An adaptation engine is introduced in this chapter for dynamic stakeholder management. The
adaptation engine applies a sequence of rewrite rules on a specialization tree, and referenced
access control model, to integrate or remove a stakeholder from the staged configuration workflow.
The adaptation is applicable during executing the staged configuration workflow. The concepts
of specialization trees, reconfiguration and adaptation are exemplified in this chapter on a
reconfigurable document management system offered as a cloud application.

Summarizing, the proposed concept of adaptive staged reconfiguration workflows is a generic
foundation for configuration processes, where different stakeholder are involved that cannot be
modeled before executing the configuration process. In addition, a specialization tree reduces
configuration redundancies by reusing partial configurations and propagating reconfiguration
changes following the tree structure.

178

7. Configuration Management Tool Suite

PUMA

Before software can be reusable it first has to be usable.

— Ralph Johnson

Configuration management concepts related to the problem space and presented in the chapters
before, are implemented in the tool suite Product Line Utilities for Multi-Tenant Aware Appli-
cations (PUMA).1 The tool suite provides techniques to model and analyze extended feature
models, to define and evaluate perspectives, and model and execute adaptive staged configuration
processes comprising access restrictions on feature model configuration operations. Figure 7.1
gives an overview of the tools implemented in Java and integrated as plug-ins in the Eclipse2

Integrated Development Environment (IDE). The tool suite follows a model-view-controller
approach to enable reuse of tool components and interchange of models [GHJV95]. Additionally,
a layered software architecture enables SoC and reuse and supports evolving functionality, system
scalability and potential new technologies can be integrated. The tool suite comprises the tools
Conper, DyscoGraph, and FMAnalysis.

Conper implements the concepts of views and perspectives presented in Chapter 5, and Dysco-
Graph implements adaptive staged configuration workflows, as introduced in Chapter 6. In
addition, FMAnalysis is a tool for analyzing extended feature models utilized by Conper and
DyscoGraph. The tools are integrated and accessible via the Eclipse platform and can be used
independently. Interoperability between the tools is given by operating on the same feature
model structure, sharing feature model information, and by providing public interfaces.

The core functionality of the PUMA tool suite is to define, modify, analyze and execute concepts
of multi-perspectives and adaptive staged configuration. Hence, PUMA implements configuration
management concepts related to the problem space. However, the concepts of a flexible application
architecture explained in Chapter 4 are not implemented in PUMA and therefore not evaluated
in this chapter.

The tool suite is implemented as plug-ins to realize low-coupled modules that are easier to
maintain. Hence, each tool comprises several plug-ins to separate model, view and controller
concepts. The application logic on Layer 2 is separated from the presentation on Layer 3 to
enable reuse. On Layer 3 Eclipse offers interfaces to define views and editors integrated into the
Eclipse User Interface (UI) for visualizing and manipulating data. Hence, these multi-perspective
concepts and adaptive staged configuration concepts are visualized on this layer. Furthermore,
editors to model and manipulate these concepts are provided implementing Eclipse interfaces.
Additionally, on Layer 1 an internal tool repository comprises structural models representing

1https://github.com/extFM/extFM-Tooling
2http://www.eclipse.org/

179

https://github.com/extFM/extFM-Tooling
http://www.eclipse.org/

7.1. Model Based Domain-Specific Languages

Figure 7.1 The PUMA tool suite comprises the tools Conper, FMAnalysis, and DyscoGraph
integrated in Eclipse.

data to specify feature models, multi-perspectives, and adaptive staged configuration. Structural
models are loaded into the internal model repository by parsing serialized files on Layer 0.
In addition, technical services such as loading and persisting model files are separated from
application logic to enable reuse and to potentially replace the underlying repository. The
physical representation of the models in the file system on Layer 0 is separated from the logical
representation in the model repository [HL93].

This chapter presents tools and languages comprised in the configuration management suite
PUMA and shows empirical evaluation results.

7.1. Model Based Domain-Specific Languages

PUMA applies the frameworks Eclipse Modeling Framework (EMF)3 and EMFText4 to uniformly
model the concepts of multi-perspectives and adaptive staged configurations. The specific domain
concepts are precisely defined in a model-based Domain-Specific Language (DSL). A DSL is a
formal language that is tailored to a certain domain [Nei84]. In contrast to a General Purpose
Language (GPL), its expressiveness is reduced. Such languages encapsulate domain knowledge
and enable domain experts to understand and express concepts, as well as constraints in a concise
and self-documenting way. Additionally, DSLs enhance reliability and portability of the modeled
information on a higher level of abstraction than source code [VDKV00]. A DSL consists of a
syntactical and a semantical domain and a mapping between both [HR04, SK95]. A syntactical

3http://www.eclipse.org/modeling/emf/
4http://www.emftext.org

180

http://www.eclipse.org/modeling/emf/
http://www.emftext.org

7. Configuration Management Tool Suite PUMA

domain defines the structure and essential tokens of the language, whereas a semantic domain
specifies the meaning of the concepts. The syntactical domain comprises an abstract syntax
represented by a metamodel following the MDSD and a concrete syntax defined by a grammar.
In the following, the focus is on the definition of metamodels and the application of models
in PUMA to concisely specify configuration management concepts presented in the previous
chapters.

Model-Driven Architecture (MDA) is a standard for MDSD defined by Object Management
Group (OMG) for developing software based on models [Obj03]. The MDA proposes the
metalanguage Meta Object Facility (MOF)5 for specifying models. The MOF metalanguage is
applicable to define DSLs. A DSL comprises an abstract syntax describing the structure of the
language and a concrete syntax defining a language notation, either graphical or textual. Essential
Meta Object Facility (EMOF) is a subset of MOF narrowed down to contain essential concepts
for object-oriented modeling by means of concepts known from UML class diagrams [OMG2011b].
A reference implementation and a de-facto standard of EMOF is Ecore [KK02]. Ecore is a part of
EMF and integrated in the technological space of Eclipse and Java [SBPM09]. EMF provides a
graphical modeling notation similar to the notation of UML class diagrams to define the abstract
syntax of a DSL. Well known concepts, such as packages, classes, operations, references, and
attributes, are applied to specify a metamodel in EMF. Hence, the EMF framework provides
convenient tooling to define various model-based DSLs combined with a comprehensive generation
of methods to instantiate models.

The tool suite PUMA comprises different EMOF-based models for defining configuration man-
agement concepts, as depicted in Figure 7.2. All tools of the tool suite rely on feature models as
central models. The feature models applied in the tool suite conform to the metamodel definition
explained in Section 6.3 and depicted in Figure 6.3. Instances of the metamodel represent
unconfigured feature models, partial configurations, or complete configurations. Modeling feature
model configurations similar to unconfigured feature models allows for a unified processing in
the PUMA tool suite. The tool FMAnalysis provides logic-based analysis methods of extended
feature models. For instance, FMAnalysis checks satisfiability of a given feature model. The
tool Conper enhances feature models with a definition of views in a view model hierarchically
structuring concerns. In addition, Conper defines a mapping between features in a feature
model and viewgroups in a view model in a feature-view mapping model. The tool DyscoGraph
defines an access control model that references a feature model. The access control model applies
RBAC concepts to restrict feature model configuration operations to specific roles. Furthermore,
DyscoGraph defines a workflow model that implements staged configuration concepts by defining
serialized specialization actions to configure feature models. The action-role mapping model
defines a mapping between workflow action nodes and roles in the access control model to assign
configuration operations to actions. In addition, this tool comprises a stage model to define a
sequence of stages and to assign specialization actions to these stages. These models comply to
the structure defined by corresponding EMOF metamodels.

5http://www.omg.org/mof/

181

http://www.omg.org/mof/

7.1. Model Based Domain-Specific Languages

7.1.1. Metalevel Hierarchy of Tool Suite Languages

The MDSD specifies a metalevel hierarchy of model-based DSLs. In the sense of MDSD, the
abstract syntax of a language is defined in EMF by a metamodel, as explained before. Based on
this metamodel potentially many concrete syntaxes can be defined. Applying the frameworks
EMF and EMFText seize this idea and allows for specifying language instances in both graphical
and textual notation, and automatically convert the notations into each other.

Figure 7.3 illustrates the metalevels of the DSLs contained in PUMA and defined in EMF and
EMFText. EMOF is applied on Level M3 as a metametamodel by means of the Ecore reference
implementation to define the structure of metamodels. On level M2, an instance of EMOF defines
a metamodel of the language. Subsequently, level M1 represents a model instance following the
structure defined by the metamodel on level M2. However, to visualize a model on level M1, a

Figure 7.2 The tool suite PUMA comprises various EMOF-based domain-specific languages
to model configuration management concepts.

Figure 7.3 The metalevels of a language specification applying EMF and EMFText.

182

7. Configuration Management Tool Suite PUMA

concrete syntax is required, as the metamodel on M2 only defines the structure and thus the
abstract syntax of a language. The EMF framework implicitly generates a tree-like graphical
concrete syntax for each metamodel defined on level M2. This graphical notation is then applied
on level M1 to present Ecore models graphically in a tree-like notation. The graphical notation
generated by EMF can further be customized to apply different icons per syntax element, for
instance. An additional textual concrete syntax is specified according to the metamodel definition
on level M2 in EMFText. EMFText defines textual syntax complying to Human-Usable Textual
Notation (HUTN), since HUTN is an OMG standard for textual notations conforming to abstract
syntax specifications in MOF-based metamodels [OMG2004]. In EMFText the concrete syntax
of a language is defined as a context-free grammar in Extended Backus-Naur Form (EBNF)
notation [HJK+09]. Each textual concrete syntax explicitly defined by EMFText on level M2 is
an instance of the EBNF metasyntax on level M3. EMFText defines a language mapping between
EBNF and EMOF. A model instance corresponding to the abstract syntax of the metamodel
can be instantiated on level M1 in textual notation following the grammar defined in EMFText.
Hence, model instances on level M1 can be represented both, in a graphical tree-like notation
and in a textual notation. To be conceptually complete, there is a further level M0 in the MDA
definition representing a particular system in terms of software objects describing real world
objects abstracted by the instance model on level M1.

Based on the abstract syntax definition, EMF generates a Java representation of a language
and generic methods to traverse model instances [Gro09]. Both EMF and EMFText generate
convenient language editors to instantiate and manipulate models. These editors check the
well-formedness of models with respect to the abstract syntax definition. Further restrictions
on a model to be valid are defined by means of static semantics. For instance, the names of
referenced elements must be already defined. EMFText generates algorithms for evaluating
static semantics by means of static name and type analysis [HJK+13]. Hence, default reference
resolution mechanism is generated by EMFText comprising generated methods to resolve names
that are unique in the model. In PUMA not all reference names are unique, and thus, the
generated methods are further customized in EFeatureText and RBACText to resolve the correct
references. Additionally, the dynamic semantics of the generated languages are implemented
operationally by language interpreters in PUMA.

7.1.2. Serialization of Models in the Tool Suite

A generic exchangeable document format for models is defined in EMF. Models are persisted
in XML Metadata Interchange (XMI) files in the file system. XMI is an interchange format
defined by an Extensible Markup Language (XML) schema [OMG2011a]. EMF generates Java
interfaces from the metamodel definition in Ecore to parse information stored as XMI and to
access model elements. The XMI files are loaded via generated EMF parsers into a model
repository on Layer 1 of the tool suite, as visualized in Figure 7.1. Tools access the model
repository via generated interfaces to process and manipulate models. In turn, generated EMF
printers serialize models as XMI files in the file system. Furthermore, EMFText generates parsers
and a printers to load and persist these models textually using the Another Tool for Language
Recognition (ANTLR)6 parser generator. As EMFText is an extension to EMF, models with

6http://www.antlr.org/

183

http://www.antlr.org/

7.2. EFeatureText – Textual Language for Extended Feature Models

textual notation defined in EMFText are serializable as structured text, as well as XMI files,
while their logical representation in the model repository of the tools equals. In the tool suite,
feature models, multi-perspective mapping models and access control models are also serializable
as text files, since their textual notations are defined in EMFText.

7.1.3. Graphical versus Textual Notation

In general, a graphical notation makes it is easy to comprehend relationships and types in a
model, while a textual notation is compact, and computable by both humans and machines.
Domain experts prefer a textual notation over a graphical representation as they overlook the
described concepts better and are faster in typing than modeling graphically [GP92]. Hence,
providing a textual and a graphical representation for a model is convenient. As discussed above,
the combination of EMF and EMFText allows for both.

The tool suite PUMA comprises three model-based textual DSLs, (1) a DSL to specify extended
feature models with attributes over finite domains, their configuration states, and cross-tree
constraints, (2) a DSL for applying RBAC to define restrictions on feature model configuration
operations, and (3) a DSL to define perspectives by mapping feature models to view models.
The definitions of these DSLs in EMFText are explained in the following.

7.2. EFeatureText – Textual Language for Extended Feature

Models

Various textual DSLs to describe variability have been proposed and a standardization process
for a common textual variability language is conducted. However, the feature model DSLs found
in literature are either not realized in the technology space of Eclipse and EMOF or do nor cover
all feature model constructs considered in this thesis.

The intention of the textual DSL EFeatureText is to provide a comprehensive human and machine
readable self-documenting notation for group-cardinality based feature models with attributes
over finite domains, as introduced in Section 6.3. Furthermore, the textual DSL is integrated in
EMF and Eclipse to easily specify, access and exchange feature models within the PUMA tool
suite. The abstract syntax of the language is implemented in EMF and expressed by an Ecore
metamodel complying to the structure of extended feature models shown in Figure 6.3. The
source code and documentation of EFeatureText comprising examples are provided online in
a Github repository and the related wiki7. EMFText is applied to define the concrete syntax
for the textual notation complying to the metamodel concepts. The textual concrete syntax of
EFeatureText is explained in the following.

7https://github.com/extFM/extFM-Tooling/wiki/Extended-Featuremodelling

184

https://github.com/extFM/extFM-Tooling/wiki/Extended-Featuremodelling

7. Configuration Management Tool Suite PUMA

7.2.1. Concrete Syntax Rules of EFeatureText

For each metaclass in the feature model metamodel a concrete syntax rule is specified to textually
represent the syntax of this metaclass, its attributes and references to other metaclasses. Keywords
are used in these rules as syntactic elements to markup and structure expressions. The following
rules are specified for extended feature models. The root container of a feature model instance is
the FeatureModel. The concrete syntax rule for this metaclass is presented in Listing 7.1. The
left side of the rule specifies the defined metaclass by name and the right side specifies defined
syntax elements.
FeatureModel ::= " featuremodel " name[’"’,’"’] domains * root constraints *;

Listing 7.1 Concrete syntax rule for the FeatureModel metaclass.

A FeatureModel metaclass is defined by the keyword featuremodel followed by the name attribute
defined in apostrophes, containing potentially many Domain classes, a single obligatory root
Feature class and potentially many cross-tree Constraint classes. The star behind referencing
metaclasses denotes that referenced elements occur zero or multiple times. A minimal example of
the definition of a FeatureModel is depicted in Listing 7.2. Note that comments can be inserted
in concrete syntax definitions in a Java-like syntax starting with two slashes.

1 featuremodel " Example Featuremodel "
// definition of domains , root feature , and cross -tree constraints

3 ...

Listing 7.2 Example for the application of the concrete syntax rule for the FeatureModel
metaclass.

Another important element in the feature model metamodel is the Feature. The concrete syntax
rule for Feature metaclasses is presented in Listing 7.3.

1 Feature ::= configurationState [selected :" selected ", deselected :" deselected ",
unbound :""] " feature " name[’"’,’"’] "<" id[] ">" (attributes | groups)*;

3 TOKENSTYLES {
" selected " COLOR #009 E0F , BOLD;

5 " deselected " COLOR #CE0000 , BOLD;
}

Listing 7.3 Concrete syntax rule for the Feature metaclass.

The concrete syntax rule of a Feature starts with a specification of its enumeration attribute
configurationState subsequently followed by the keyword feature, its obligatory attributes
name and id and potentially many containing Attribute and Group classes. As explained in
Section 6.3.1 the configuration state of a feature is either undecided, selected or deselected modeled
by corresponding enumeration literals in the metamodel. For each literal a corresponding textual
representation is given in the concrete syntax to identify the literals by this keyword. The literals
selected and deselected are defined by corresponding keywords. The default configuration state for
features is undecided, and hence represented by an empty string in the concrete syntax rule. For
a better readability, configuration states are highlighted in the textual notation. Hence, colored

185

7.2. EFeatureText – Textual Language for Extended Feature Models

token styles are defined in the concrete syntax specification of EFeatureText causing the keyword
deselected to be displayed in red and the keyword selected displayed in green. The example in
Listing 7.4 depicts example EFEatureText definitions of features with different configuration
states. Feature 1 is undecided, Feature 2 is selected, and Feature 3 is deselected.
feature " Feature 1" <f1>

2 selected feature " Feature 2" <f2>
deselected feature " Feature 3" <f3>

Listing 7.4 Example for the application of the concrete syntax rule for the Feature metaclass.

For the metaclass Group the concrete syntax rule is depicted in Listing 7.5. The Group represents
groups of features having a cardinality to uniformly model optional, mandatory, alternative, and
or feature groups. The definition of the Group metaclass starts with the keyword group followed
by the specification of the attribute id in angle brackets, the lower and upper boundaries of the
group in round brackets and the reference of potentially multiple, but at least one containing
child Feature classes in curly brackets. Lower and upper boundaries of the group are assigned
to the corresponding minCardinality and maxCardinality attributes. As these attributes are
of type integer in the metamodel, the specification of the token INTEGER in square brackets
guarantees that these elements are parsed as numbers and not as strings as it is default for
elements without specified tokens.

1 Group ::= "group" "<" id[] ">" "(" minCardinality [INTEGER] ".." maxCardinality [
INTEGER] ")" "{" childFeatures + "}";

}

Listing 7.5 Concrete syntax rule for the Group metaclass.

An example of the definition of the metaclass Group is provided in Listing 7.6 representing an
alternative feature group with two features.
group <g1> (0..1) {

2 feature " Feature 1" <f1>
feature " Feature 2" <f2>

4 }

Listing 7.6 Example of the application of the concrete syntax rule for the Group metaclass.

An attribute domain is the set of values allowed in an attribute. Attribute domains are either
specified as numerical domains containing intervals of integers or as discrete domains specifying
a set of domain values each having an integer representation to make domain values of both
domain types comparable. Concrete syntax rules for defining the metaclass NumericalDomain
and the referenced metaclass Interval are shown in Listing 7.7.
NumericalDomain ::= " domain " "<" id[] ">" "[" intervals ("," intervals)* "]";

2 Interval ::= lowerBound [INTEGER] ".." upperBound [INTEGER];

Listing 7.7 Concrete syntax rule for the NumericalDomain and the Interval metaclasses.

A NumericalDomain is defined by the keyword domain followed by its attribute id in angle
brackets and potentially multiple but at least one contained Interval classes specified in square

186

7. Configuration Management Tool Suite PUMA

brackets. Additionally, the concrete syntax rules for the metaclass DiscreteDomain and its
referencing metaclass DomainValue are shown in Listing 7.8.
DiscreteDomain ::= " domain " "<" id[] ">" "[" values ("," values)* "]";

2 DomainValue ::= (name [] "=")? int[INTEGER];

Listing 7.8 Concrete syntax rule for the DiscreteDomain and the DomainValue metaclasses.

A DiscreteDomain is defined by the keyword domain followed by its attribute id in angle
brackets and potentially multiple but at least one contained DomainValue classes specified in
square brackets.

An example for defining domains is given in Listing 7.9. The listing shows four example domains.
The first two domains with the id discrete1 and discrete2 are discrete domains each specifying
three discrete values. Each discrete domain value is represented by a name as string followed by
a numerical representation as integer. The latter two domains with id num1 and num2 specify
intervals of integers. Domain num1 contains one interval with a lower bound of 1 and an upper
bound of 5. Domain num2 contains a further interval with a lower bound of 10 and an upper
bound of 100.
domain <discrete1 > [red =1, blue =2, green =3];

2 domain <discrete2 > [left =0, middle =1, right =2];
domain <num1 > [1..5]

4 domain <num2 > [1..5 , 10..100]

Listing 7.9 Example application of the concrete syntax rules for the NumericalDomain and
Interval metaclasses, as well as for the DiscreteDomain and the DomainValue
metaclasses.

The metaclass Attribute is defined by the concrete syntax rule depicted in Listing 7.10. Each
attribute is defined by a name, a referenced domain followed by potentially many deselected
domain values referenced by DomainValue classes and an optional value attribute assignment.
The notation of representing deselected domain values as a comma separated list in curly brackets
starts with the leading keyword without.
Attribute ::= name [] "[" domain [] "]" (" without " "{" deselectedDomainValues [’"’,

’"’] ("," deselectedDomainValues [’"’,’"’])* "}")? (":=" (value[’"’,’"’]))?;

Listing 7.10 Concrete syntax rule for the Attribute metaclass.

An example of the definition of Attribute classes is shown in Listing 7.11. A discrete domain
containing the color values red, blue, green and yellow is specified referenced by the four defined
attributes in this example.

Line 3 in the listing contains the definition of the unconfigured attribute attribute1 which
references domain d1 but does not specify deselected or assigned domain values. In contrast,
attribute attribute2 is set as it has value blue of the referenced domain assigned. Attribute
attribute3 is defined to reference domain d1 but without the domain values red and yellow.
Finally, the attribute attribute4 equals the previous attribute but has the value green assigned.

187

7.2. EFeatureText – Textual Language for Extended Feature Models

1 domain <d1> [red =1, blue =2, green =3, yellow =4]
...

3 attribute1 [d1]
attribute2 [d1] := "blue"

5 attribute3 [d1] without {"red", " yellow "}
attribute4 [d1] without {"red", " yellow "} := "green"

Listing 7.11 Example of the application of the concrete syntax rule for the Attribute
metaclass.

Constraints on feature models are separated into constraints on features and constraints on
attributes. Feature constraints are either imply or exclude constraints expressed by the metaclasses
Imply and Exclude. The concrete syntax definitions of these metaclasses are depicted in
Listing 7.12. Both metaclasses start with the keyword constraint followed by the attribute id
in angle brackets. Left and right operands of both constraints are Feature classes, while the
operator differs. Imply classes are identified by the -> keyword representing an imply operator
while Exlude classes are identified by the <-> keyword.
Imply ::= " constraint " "<" id[] ">" leftOperand [] "->" rightOperand [];

2 Exclude ::= " constraint " "<" id[] ">" leftOperand [] " <->" rightOperand [];

Listing 7.12 Concrete syntax rules for the Imply and Exclude metaclasses.

An example of applying syntax rules for these feature constraint metaclasses is given in Listing 7.13.
In this example three features are assumed with the identifiers f1, f2, and f3. Based on these
features, two constraints are defined applying the concrete syntax rules for Imply and Exclude.
The first constraint with id c1 is an instance of the metaclass Imply identified by the keyword
-> between the left and the right referenced operands. In addition, the Imply class references
feature f1 as a left operand and feature f2 as a right operand. The second constraint with id c2
is an instance of the metaclass Exclude identified by the keyword <-> between the left and the
right referenced operands. The Exclude class references feature f1 as a left operand and feature
f2 as a right operand.
feature " Feature 1" <f1>

2 feature " Feature 2" <f2>
feature " Feature 3" <f3>

4 ...
constraint <c1> f1 -> f2

6 constraint <c2> f3 <-> f2

Listing 7.13 Examples of applying the concrete syntax rules for the Imply and Exclude
metaclasses.

Furthermore, attribute constraints are defined by the metaclass AttributeConstraint and its
referencing metaclass AttributeReference. The concrete syntax rules for both metaclasses are
depicted in Listing 7.14. The syntax rule for the AttributeConstraint starts with the keyword
constraint similar to the syntax rules for Imply and Exclude metaclasses. However, the keyword
is followed by referencing an attribute operand defined by the AttributeOperand metaclass, a
relational operator and a second referenced AttributeOperand. In the metamodel, an operator
enumeration is defined comprising literals representing relational operators on numerical values.

188

7. Configuration Management Tool Suite PUMA

While in the metamodel, a string name is applied, the concrete syntax rule defines a Java-like
notation for the operators. The metaclasses AttributeValue and AttributeReference inherit
from the abstract metaclass AttributeOperand. For each of these metaclasses a syntax rule is
specified, as depicted in the listing. The concrete syntax rule for an AttributeValue defines it to
be either a name of a discrete domain value represented as a string or an integer representation of
a domain value. Furthermore, the AttributeReference is defined by a syntax rule comprising
a reference to a feature id and a reference to an attribute name. The combination of feature id
and attribute name prevents ambiguity in parsing the syntax rule as multiple features can have
attributes of the same name.
AttributeConstraint ::= " constraint " "<" id[] ">" attribute1 operator [equal:"=="

, unequal :"!=", greaterThan :">", greaterThanOrEqual :" >=", lessThan :"<",
lessThanOrEqual :" <="] attribute2 ;

2 AttributeValue ::= (name[’"’,’"’] | int[INTEGER]);
AttributeReference ::= feature []"." attribute [];

Listing 7.14 Concrete syntax rules for the AttributeConstraint and AttributeReference
metaclasses.

Listing 7.15 shows an example of attribute constraints defined by the concrete syntax rule for
AttributeConstraint metaclasses. In this example two features with the identifiers f1 and
f2 are assumed. Both features have two attributes each. The attribute name a1 is used by
both features, however the domains of these attributes differ. Three attribute constraints are
defined by applying the concrete syntax rules introduced above depicted in lines 9 to 11. The
first instantiated constraint has id ac1. It defines a constraint with a relational greaterThan
operator between two AttributeReferences, which are attribute a1 of feature f1, and attribute
a2 of the same feature. The second constraint ac2 defines a lessThan operator between the
two AttributeReferences of attributes with the same name a1 of the features f1 and f2. The
last constraint ac3 defines an unequal constraint between the AttributeReference to attribute
a22 of feature f2 and the DomainValue represented by the string blue.

1 ...
feature " Feature 1" <f1 >

3 a1 [d1]
a2 [d2]

5 feature " Feature 2" <f2 >
a1 [d2]

7 a22 [d2]
...

9 constraint <ac1 > f1.a1 > f1.a2
constraint <ac2 > f1.a1 < f2.a1

11 constraint <ac3 > f2.a22 != "blue"

Listing 7.15 Example of applying the concrete syntax rules for the AttributeConstraint and
AttributeReference metaclasses.

For each textually specified model in the generated EMFText editor a synchronized outline
view visualizing the graphical notation is integrated in the Eclipse UI. An example of a feature
model specification in textual notation following the concrete syntax rules explained above is
depicted on the left side in Figure 7.4 opposed to the rendered graphical notation in the outline
view shown on the right side. The visualized feature model in this figure is named example.
It comprises two attribute domains. The first defined domain with id domain1 is a numerical

189

7.2. EFeatureText – Textual Language for Extended Feature Models

Figure 7.4 Graphical and textual notation of extended feature models applied in the PUMA
tool suite.

domain specifying a value interval between 1 and 10. The second domain with id domain2 is a
discrete domain defining the discrete values A with integer representation 1 and B with integer
representation 2.

In this example, names and identifiers of features equal. It is crucial that identifiers do not
contain white space and are unique, while this restriction does not hold for names. Hence, the
root feature has the name root defined in apostrophes and the id root. This features contains a
group with id g1 of optional features modeled by the lower bound 0 of the group and the upper
bound 3 which equals the number of the contained features. The first feature f1 is selected
containing two attributes. The selected state of the feature is highlighted in the textual notation
by the green color and in the graphical notation by a green tick mark. The first attribute a11 of
feature f1 references domain domain1, while the second attribute a12 references domain domain2.
Furthermore, the first attribute has the domain value 1 assigned represented by a green filled
circle in front of the attribute in the graphical notation. In addition, the domain value 3 is
deselected for attribute a11. Attribute a12 can still be assigned depicted by an empty blue circle
in the graphical notation.

The second feature of the group g1 has id f2 and is yet undecided. This feature contains two
unassigned attributes a21 and a21, both referencing domain domain1. However, a third feature
f3 is contained in the group g1, which is deselected. The deselected state is highlighted in red in
the textual notation and by a red check mark in the graphical notation. In addition, this feature

190

7. Configuration Management Tool Suite PUMA

contains an attribute a31 with domain domain1. As the feature of this attribute is deselected,
the attribute is disabled depicted by a gray icon in the graphical notation. Three cross-tree
constraints are additionally specified in this example. The first constraint with id c1 is a feature
imply constraint between the feature f3 and the feature f1. The second constraint is a relational
less than constraint between attribute a11 of feature f1 and the attribute a22 of feature f2. The
last constraint c3 is an attribute constraint on attribute a12 of feature f1 defining that this
attribute should not equal the domain value B of the attribute domain.

As shown in this example, the textual notation depicted on the left side in Figure 7.4 is more
compact than the graphical tree-like notation depicted on the right side. A domain expert skilled
in the textual notation is faster in defining features, attributes and feature relations textually than
in specifying the domain concepts in a graphical way. Writing concepts textually is usually faster
than graphical editing. However, the graphical notation visualizes elements and configuration
states of the feature model in a reasonable way using icons. For a user of a feature model and
to check the defined relations, a graphical expression makes relations easier to understand. In
addition, a conditional evaluation of feature and attribute states is implemented for the graphical
notation allowing for selecting state-specific icons, as explained in the example above.

The complete concrete syntax is presented in Appendix B together with feature model examples
in textual EFeatureText notation and the corresponding graphical notation applied in the outline
view. An example for specifying an extended feature model in EFeatureText Notation is shown
in the next section.

7.2.2. Business ByDesign Example in EFeatureText Notation

For Business ByDesign the feature model containing 78 features, 2 attributes and 23 cross-tree
constraints is specified in EFeatureText and described in Appendix B.2. An excerpt of the
feature model containing 19 features, 2 attributes and 3 cross-tree constraints is depicted in
FODA notation in Figure 2.3 and described in Section 2.3.1. This feature model is specified
in EFeatureText notation in Listing 7.16. The listing shows a complete configuration of the
Business ByDesign feature model were all features are either selected or deselected and attribute
values are set. The displayed configuration comprises 10 selected and 9 deselected features and
equals the configuration presented in FODA notation in Figure 2.4.

1 featuremodel " Business ByDesign "
domain <Count > [10..10000]

3

selected feature " Business ByDesing " <bbd >
5 group <stakeholderConfiguration > (1..1) {

selected feature " Stakeholders " <Stakeholders >
7 Employees [Count] := "100"

Users [Count] := "15"
9 }

group <modules > (1..5) {
11 selected feature " Marketing " <Marketing >

group <marketingSelection > (1..2) {
13 selected feature " Market Development " <Market_Development >

selected feature " Campaign Management " <Campaign_Management >
15 }

191

7.2. EFeatureText – Textual Language for Extended Feature Models

17 deselected feature " Purchasing " <Purchasing >
group <purchasingSelection > (1..2) {

19 deselected feature "Self - Service Procurement " <SelfService_Procurement >
deselected feature " Purchase Request and Order Management " <

Purchase_Request_and_Order_Management >
21 }

23 selected feature " Supply Chain Setup Management " <
Supply_Chain_Setup_Management >

group <supplychainSetupSelection > (1..3) {
25 selected feature " Supply Chain Design " <Supply_Chain_Design >

deselected feature " Execution Design " <Execution_Design >
27 deselected feature " Production Models " <Production_Models >

}
29

selected feature " Project Management " <Project_Management >
31 group <projectSelection > (1..1) {

deselected feature " Project Planning and Execution " <
Project_Planning_and_Execution >

33 selected feature "Basic Project Planning " <Basic_Project_Planning >
}

35 group <cashFlowSelection > (0..2) {
deselected feature " Expense and Reimbursement Management " <

Expense_and_Reimbursement_Management >
37 selected feature " Payment and Liquidity Management " <

Payment_and_Liquidity_Management >
}

39

deselected feature " Product Development " <Product_Development >
41 group <productSelection > (1..1) {

deselected feature " Product Engineering " <Product_Engineering >
43 }

}
45

constraint <require1 > Campaign_Management -> Market_Development
47 constraint <require2 > Project_Planning_and_Execution ->

Purchase_Request_and_Order_Management
constraint <exclude3 > Basic_Project_Planning <-> Product_Engineering

49 constraint <attr4 > Stakeholders . Employees >= Stakeholders .Users

Listing 7.16 Complete configuration of the extended feature model specification of the
Business ByDesign excerpt in textual EFeatureText notation.

7.2.3. Language Tooling for EFeatureText

The framework EMFText in combination with the EMF framework generates a comprehensive
language tooling comprising a parser, an editor with syntax highlighting and an evaluation engine
for ensuring well-formedness according to the language definition of EFeatureText.

Beside the syntactic well-formedness criteria defined by the structure of the metamodel, further
static semantic rules are to be implemented to guarantee model consistency. For instance, to

192

7. Configuration Management Tool Suite PUMA

ensure the uniqueness of identifiers. The EMF validation framework8 implements static semantics
on model elements. Rules implemented in the validation framework are automatically checked
when manipulating a model in the generated graphical EMF editor and the textual EMFText
editor. For extended feature models, a consistency rule is implemented in Java to check the
uniqueness of identifiers. Another rule is implemented to ensure that deselected domain values
and assigned domain values of an attribute are included in the referenced attribute domain.

EFeatureText files are persisted as text and are identified by the file extension eft. An EFea-
tureText interpreter is manually implemented to apply the language in the PUMA tool suite.
Among others, the interpreter executes configuration operations on extended feature models.

7.2.4. Related Work on Feature Model Languages

Various textual variability models have been proposed in literature [ES13]. Table 7.1 gives an
overview of textual DSLs for feature models found in related work and compares them with
EFeatureText. The languages are compared by (i) their capability of defining attributes, (ii)
support of group-cardinality, (iii) defining relational constraints on attributes, (iv) the definition
of configuration states of features and attributes, and (v) their abstract syntax definition as
EMOF compliant metamodel. An applicable language for the PUMA tool suite is required to
combine these characteristics.

Feature Description Language (FDL) is a textual notation for feature diagrams specified in
FODA with additional or feature groups proposed by van Deursen and Klint [VDK02]. The
language neither supports attributes nor group-cardinality. Another textual language proposed
by Acher is called Feature Model Script Language for Manipulation and Automatic Reason-
ing (FAMILIAR) [ACLF13]. FAMILIAR offers language and tool support for feature models,
manipulation of feature models and analysis. This language focusses on feature models repre-
sented in propositional form and does not cover attribute nor group-cardinality based feature
models. Clafer is a language for specifying metamodels, feature models and combinations of

8http://www.eclipse.org/modeling/emf/?project=validation

Table 7.1 Comparison of textual DSLs for feature models

Language Attributes Group-
Cardinality

Relational
Constraints

Configuration
States

EMOF
metamodel

FDL [VDK02] - - - - -
FAMILIAR
[ACLF13]

- - - - -

Clafer [BCW11] + + + + -
TVL [CBH11] + + + - -
VSL [APS+10] + + - + +
EFeatureText + + + + +

193

http://www.eclipse.org/modeling/emf/?project=validation

7.3. RBACText – Textual Language for Role Based Access Control on Extended Feature Models

both [BCW11]. The language can be used for multi-objective optimizations of feature model
configurations. However the language does not provide an EMOF compliant metamodel. Textual
Variability Language (TVL) is a textual DSL for attributed group-cardinality based feature
models with attributes and relational constraints proposed by Classen et al. [CBH11]. Syntax and
semantics for the language are provided. However, TVL is not based on an EMOF metamodel
definition and does not support the expression of feature configuration states. Variability Specifi-
cation Language (VSL) is a textual specification language for feature models included in the
Compositional Variability Management (CVM) Framework [APS+10]. The language is integrated
in Eclipse and complies to an EMOF metamodel definition. VSL is capable of expressing feature
and attribute configuration states. However, VSL does not support the definition of relational
constraints on attributes.

A further textual DSL for feature models applied in the tool FeatureMapper, developed at the
software technology group at the Technische Universität Dresden, is available in the EMFText
concrete syntax zoo9. The textual notation of EFeatureText is similar to this DSL while the
expresiveness of the languages differ. However, the metamodels of the languages differ, as well
as the concrete syntax rules, especially for the definition of attributes and constraints. In the
language applied in the FeatureMapper, attributes, their domains and constraints are specified
in a String representation. Furthermore, the name of a feature must be unique. In contrast,
the abstract syntax of EFeatureText defines particular finite attribute domains and explicitly
specifies allowed constraints while feature names are separated from unique feature identifiers.
Furthermore, constraints and feature groups are identifiable by a unique identifier as well.

To summarize, EFeatureText provides a human readable notation for specifying group-cardinality
based feature models and attributes together with configuration states. The language is based
on a EMOF metamodel definition and implemented in EMFText. Hence, generated language
tooling can be easily integrated into the Eclipse-based PUMA tool suite.

7.3. RBACText – Textual Language for Role Based Access Control

on Extended Feature Models

The intention of the textual DSL RBACText is to provide a comprehensive language to define
access control restrictions on feature model configuration operations. More information and the
source code of RBACText are provided online in the Github repository and a related wiki10.

RBACText is a scripting language implementing the concepts of applying RBAC on extended
feature models as described in Section 6.4. Configuration operations on features and attributes
as described in Section 6.3.1 are defined textually in RBACText. Hence, the language allows
to define roles and restrict the access on configuration operations on extended feature models.
The abstract syntax of RBACText is defined by the EMOF compliant metamodel depicted in
Figure 6.8 in Section 6.4. A concrete syntax for the textual specification of RBAC concepts in a
human readable and machine interpretable DSL is defined based on this abstract syntax. The

9http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Feature_Models
10https://github.com/extFM/extFM-Tooling/wiki/Role-Based-Access-Control-on-Featuremodels

194

http://emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_Feature_Models
https://github.com/extFM/extFM-Tooling/wiki/Role-Based-Access-Control-on-Featuremodels

7. Configuration Management Tool Suite PUMA

complete concrete syntax specified in EMFText and an example instantiation is included in the
Appendix in Chapter C. In the following the concrete syntax rules of RBACText are explained.

7.3.1. Concrete Syntax Rules of RBACText

For each metaclass in the access control metamodel a concrete syntax rule is specified to textually
represent the syntax of this metaclass, its attributes and references to other metaclasses. Keywords
are used in these rules as syntactic elements to markup and structure expressions. The following
rules are specified for defining role-based access control on extended feature models.

The root container of an access control instance is the AccessControlModel. The concrete
syntax rule for this metaclass is presented in Listing 7.17. An AccessControlModel class
is identified by the keyphrase access control and references a FeatureModel defined in the
concrete syntax by the keyword on followed by the path to the FeatureModel in the Eclipse
workspace. Contained elements of the AccessControlModel are Permissions, Groups, and
Subjects specified in arbitrary order in the following.

1 AccessControlModel ::= " access control " "on" featureModel [’<’,’>’] (roles |
groups | subjects)* ;

Listing 7.17 Concrete syntax rule for the AccessControlModel metaclass.

A definition of an AccessControlModel is exemplified in Listing 7.18. The defined model
references a feature model in textual EFeatureText notation depicted by the file extension eft.
The path to the referenced feature model is relational to the persisted AccessControlModel.
Permissions, roles, groups and subjects are specified according to their concrete syntax rules
explained in the following.

1 access control on <../ path/ feature_model .eft >
// roles , groups and subjects are defined subsequently

Listing 7.18 Example for applying the concrete syntax rule for the AccessControlModel
metaclass.

Permissions on feature models are expressed by means of configuration operations. Configuration
operations are select and deselect of features, assigning attribute values and deselecting attribute
domain values. These operations are expressed as concrete syntax rules as follows. The rule for
a FeatureOperation starts with specifying its type, as depicted in Listing 7.19. The type is
identified by the corresponding keyword, select or deselect, followed by the feature id.
FeatureOperation ::= type[select : " select ", deselect : " deselect "] feature [TEXT

];

Listing 7.19 Concrete syntax rule for the FeatureOperation metaclass.

An example for the FeatureOperation concrete syntax rule is given in Listing 7.20. Two feature
operations are defined for the feature with id feature1 which is assumed to exist in the referenced
feature model. The first operation defines the selection of the feature, while the second operation
in the second line defines the deselection of the feature.

195

7.3. RBACText – Textual Language for Role Based Access Control on Extended Feature Models

1 select feature1 ;
deselect feature1 ;

Listing 7.20 Example for applying the concrete syntax rule for the FeatureOperation
metaclass.

The rule for the AttributeValueOperation metaclass shown in Listing 7.21 equals the rule
for the FeatureOperation metaclass. The referenced attribute value of this metaclass is fully
qualified by the feature id and attribute name each separated by a dot. The definition of
AttributeValueOperations allows for a fine grained specification of access permissions on the
level of attribute domain values.

AttributeValueOperation ::= type[select : " select ", deselect : " deselect "]
feature [] "." attribute [TEXT] "." value[TEXT];

Listing 7.21 Concrete syntax rule for the AttributeValueOperation metaclass.

An example for defining configuration operations on attribute values is visualized in Listing 7.22.
In this example a feature feature1 with an attribute attribute1 is assumed. The attribute
attribute1 references a discrete domain comprising the domain values red and green. The listing
shows select and deselect AttributeValueOperations per domain value.

1 select feature1 . attribute1 .green
deselect feature1 . attribute1 .green

3 select feature1 . attribute1 .red
deselect feature1 . attribute1 .red

Listing 7.22 Example for applying the concrete syntax rule for the AttributeValueOperation
metaclass.

Instead of specifying permissions on each attribute value separately, an AttributeOperation
can be specified to abstract from select and deselect operations on all attribute values of the
attribute’s domain. The concrete syntax rule for specifying an AttributeOperation is visualized
in Listing 7.23. The rule starts with the keyword assign followed by the id of the referenced
feature and the attribute name separated by a dot.

AttributeOperation ::= " assign " feature [] "." attribute [TEXT] ;

Listing 7.23 Concrete syntax rule for the AttributeOperation metaclass.

An example for defining configuration operations on an attribute is visualized in Listing 7.24.
The listing defines an AttributeOperation on the attribute attribute1 of feature feature1. This
rule represents coarse grain access on all domain values of an attribute and can therefore be
assumed as syntactic sugar for avoiding to specify an access control rule per domain value.

1 assign feature1 . attribute1

Listing 7.24 Example for applying the concrete syntax rule for the AttributeOperation
metaclass.

196

7. Configuration Management Tool Suite PUMA

The concrete syntax rule for the metaclass Role is depicted in Listing 7.25. The definition
of a Role starts with specifying its type. A role can be abstract or concrete, as explained in
Section 6.4. The default type of a role is concrete. If the role is abstract, the definition of this role
starts with the keyword abstract. A role is subsequently identified by the keyword role followed
by an optional name and mandatory id definition. The subsequent keyword extends followed
by a comma separated list of referenced Roles expresses that each role references potentially
multiple parent Roles and inherits their permissions. The reference to parent roles is optional
denoted by a question mark and parenthesizing the expression. An optional comma separated
list of potentially multiple referenced Permissions, enclosed in curly brackets, completes the
concrete syntax rule for the Role metaclass.

1 Role ::= type[abstract : " abstract ", concrete : ""] "role" name[’"’,’"’]? id[’<’
,’>’] (" extends " (parentRoles []) ("," parentRoles []) *)? (("{" permissions []
("," permissions [])* "}"))?;

Listing 7.25 Concrete syntax rule for the Role metaclass.

An example for instantiating the metaclass Role is visualized in Listing 7.26. In this example
two roles are defined with different permissions on configuration operations are defined. An
abstract role r1 and a concrete role r2 are defined in this listing. Additionally, the role with
id r1 is parent of the other role with id r2. Hence, role r2 has the permissions assigned to the
parent role, as well as permissions directly assigned.

1 abstract role "Role 1" <r1> { select feature1 , deselect feature1 }
role "Role 2" <r2> extends r1 { assign feature1 . attribute1 }

Listing 7.26 Example for applying the concrete syntax rule for the Role metaclass.

The Subject metaclass is defined by the concrete syntax rule depicted in Listing 7.27 starting
with the keyword subject and followed by an optional name and an id. Each subject plays at
least on role expressed by the keyword plays followed by a comma separated list of roles.
Subject ::= " subject " name[’"’,’"’]? id[’<’,’>’] "plays" (roles [] ("," roles [])*

)?;

Listing 7.27 Concrete syntax rule for the Subject metaclass.

An example for instantiating the metaclass Subject is visualized in Listing 7.28. Two subjects
are defined to play different roles specified by the role identifiers. While the first subject plays
only one role r1, the second subject can play two roles r1 and r2.

1 subject "John Smith" <js> plays r2
subject "Jane Doe" <jd> plays r1 , r2

Listing 7.28 Example for applying the concrete syntax rule for the Subject metaclass.

The concrete syntax rule of the Group metaclass depicted in Listing 7.29 starts with the keyword
group followed by an optional name and an id. Subsequently, the optional group owner Role is
specified starting with the keyword of followed by the referenced group owner id. Each group
references potentially multiple Roles as group members expressed by the keyphrase has members
followed by a comma separated list of referenced member Roles.

197

7.3. RBACText – Textual Language for Role Based Access Control on Extended Feature Models

Figure 7.5 Graphical and textual notation of access control on extended feature models
applied in the PUMA tool suite.

Group ::= "group" name[’"’,’"’]? id[’<’,’>’] ("of" owner [])? "has members " (
members [] ("," members []) *)?;

Listing 7.29 Concrete syntax rule for the Group metaclass.

An example for instantiating the metaclass Group is illustrated in Listing 7.30. A group with
name group 1 and id g1 is instantiated. The member of this group is role r1, while the two
members are r2 and r3.

1 group "group 1" <g1> of r1 has members r2 , r3

Listing 7.30 Example for applying the concrete syntax rules for the Subject metaclass.

For each model specified textually in the generated EMFText language editor according to the
explained concrete syntax rules, a graphical notation is displayed in the outline view. This
graphical notation is generated by EMF, based on the abstract syntax definition in the appropriate
Ecore metamodel. An example for a textual notation of RBACText is depicted on the left side
of Figure 7.5 and opposed to its graphical notation applied in the outline view visualized on the
right side. The graphical notation is customized to present comprehensible icons per metaclass
element. The example refers to the extended feature model definition visualized in Figure 7.4.

In this example, the configuration operations on the feature model are distributed to two roles
r1 and r2. Role r1 is allowed to select an deselect the features root, f2, and f3 and assign
the attributes a21 and a22 of feature f2. In contrast, role r2 is allowed to select and deselect

198

7. Configuration Management Tool Suite PUMA

feature f1 and to assign attribute values to the attributes a11 and a12 of this feature. Note that
for attribute a12 the selection and deselection operations are specified for each attribute value
by instantiating the AttributeValueOperation, while for the other attributes the short form
instantiating the metaclass AttributeOperation is used. Furthermore, a group named Group
with id g1 is defined, where role r1 is the owner and role r2 is the group member. Finally, two
subjects that play roles are specified. One subject has the name Johm Smith with id js playing
the role r1. A second subject with the name Kim Tailor with id kt playing the roles r1 and r2.
A larger example for RBACText can be found in the Appendix C.

7.3.2. Tooling for RBACText

Similar to the EFeatureText language, a parser, editor and evaluation engine is generated by
the EMFText and EMF frameworks according to the abstract and concrete syntax definition of
RBACText. RBACText files are persisted as text and are identified by the file extension rbactext.
The language is interpreted by a manually implemented RBACText interpreter in the PUMA
tool suite. Model instances are programmatically accessed via a controller service. The service
provides interface methods to correctly evaluate the multi-inheritance relation of roles.

Beside the syntactic well-formedness criteria defined by the structure of the access control
metamodel, further static semantics are implemented applying the EMF validation framework.
Those rules are automatically checked when manipulating a model in the generated graphical
EMF editor and the textual EMFTextEditor. For access control models, a rule is implemented
to check the uniqueness of identifiers. A further rule is implemented to check that domain values
assigned to attributes or deselected from an attribute are included in the attribute domain.
Another rule ensures that no cycles are defined in the role hierarchy regarding parent and child
role references. In addition, a member of a group cannot be owner as well. This constraint
is implemented by a corresponding rule in the EMF validation framework. A further rule is
implemented to ensure that the same configuration operation on a feature model element is not
defined multiple times for the same role. A third implemented rule ensures that subjects are not
directly assigned to abstract roles as an RBAC constraint is defined to only assign subjects to
concrete roles.

7.3.3. Related Work on Textual Domain-Specific Languages for Role Based

Access Control

A textual DSL to specify RBAC concepts in the Service-Oriented Architecture (SOA) context is
provided in [HGS+11]. In this work, RBAC containing a context extension is applied to restrict
permissions on web service invocations. The language defines a textual notation to express roles,
subjects, resources, operations, contexts and relations between these elements. However, the
concrete syntax is not provided. In contrast to RBACText, this language is not implemented in
the technological space of Eclipse and EMF and hence not applicable in the tool suite PUMA.
Furthermore, RBACText explicitly models configuration operations on features and attributes,
which are restricted by roles.

199

7.4. FMAnalysis – Utilities for Feature Model Analysis

Figure 7.6 Architecture of FMAnalysis utilities.

7.4. FMAnalysis – Utilities for Feature Model Analysis

Some utility methods for extended feature model are implemented regarding satisfiability analysis,
comparison of variant configurations, and the import of feature models from an online repository.
The architecture of FMAnalysis utilities is depicted in Figure 7.6. The provided methods can be
invoked by a user via context menu commands in the Eclipse IDE and programmatically via
defined interfaces. More information and the source code of the utilities are provided online in
the Github repository and the related wiki11.

Satisfiability of an extended feature model and related partial configurations is analyzable by
translating a feature model into a logical CSP representation and applying a CSP solver, as
explained in Section 2.5. FMAnalysis allows for analyzing satisfiability of a feature model in
EFeatureText notation by applying the Choco12 CSP solver. This solver is available as Java
libraries and was chosen as it is involved in the standard JSR-33113 for Java-based constraint
programming and therefore integrates into the Eclipse and Java technology space. Moreover,
other authors reported the applicability of this solver in literature [BRCT05, MSDLM11, KOD10,
PBN+11]. If the CSP is solvable, the feature model is satisfiable.

The specification of feature and attribute configuration states in the metamodel for extended
feature models depicted in Figure 6.3 unifies the modeling of unconfigured feature models,
partial configurations and complete configurations. Hence, feature model configurations and
unconfigured feature models are expressed by means of an instance of the feature metamodel.
This allows for a checking their satisfiability in a uniform way.

11https://github.com/extFM/extFM-Tooling/wiki/Utilities
12http://www.emn.fr/z-info/choco-solver/
13http://jsr331.org/

200

https://github.com/extFM/extFM-Tooling/wiki/Utilities
http://www.emn.fr/z-info/choco-solver/
http://jsr331.org/

7. Configuration Management Tool Suite PUMA

Table 7.2 Metrics of the limited Business ByDesign feature model.

Metrics Value

Total number of features 19
Unbound features 19
Selected features 0
Deselected features 0

Total number of attributes 2
Assigned attributes 2

Total number of cross-tree constraints 4
Constraint feature coverage 31%
Constraint attribute coverage 100%
Is feature model satisfiable true

Total number of derivable variants 959

Translating an instance of the proposed metamodel is similar to translations described in litera-
ture [BRCT05, MSDLM11, KOD10, PBN+11]. As discussed in Section 2.3.2, group cardinality
enables a unified modeling of solitary and grouped features. Hence, translation rules for solitary
features and special cases of feature groups are omitted in this approach. Further rules are
introduced to translate the configuration states of features and attributes into the CSP. The
translation rules applied in this work are summarized in Appendix A.

The translation rules for converting an Ecore feature model into a Choco CSP representation are
implemented in Java. Hence, a transformative bridge between Choco CSP representation and
Ecore feature model representation is defined in this work.

FMAnalysis is implemented as Eclipe plug-ins and encapsulate the CSP functionality by offering
interfaces to check the satisfiability of extended feature models. As partial feature model
configurations are modeled in PUMA as feature models too, the analysis methods are applicable
on partial configurations as well.

Further analysis methods on extended feature models are available according to the explanation
in [BSTRC05]. For instance, the number of derivable products can be calculated, as well as
the number of features, attributes, and constraints. Hence, given a feature model as input, the
output are feature model metrics as shown in Table 7.2 for the Business ByDesign feature model
in Listing 7.16.

Furthermore, an algorithm is implemented to derive complete variant configurations from a given
unconfigured or partially configured feature model. The configuration variants can be stored
either textually in EFeatureText notation or in XMI conforming to the metamodel definition.
The utilities can be applied to derive and persist all variant configurations or a particular number.
In addition, analysis methods on a set of configurations are implemented. For instance, for a
selected feature, the number of configurations containing this feature can be calculated. Another
algorithm reveals intersecting features of a set of configurations. These methods are relevant for

201

7.5. Conper – Consistent Perspectives and Views

quality assurance of an SPL [Gol13]. For instance, to determine which features are frequently
used in customer configurations and to identify obsolete features not used in configurations.

FMAnalysis provides a method to import feature models from the Software Product Line Online
Tools (SPLOT) repository [SPLOT12]. SPLOT feature models are translated into the extended
feature model representation applied in the PUMA tool suite. A library fo parsing the XML
notation of a SPLOT file and rendering an corresponding Java representation is provided by
SPLOT research14. This library is applied to import a SPLOT feature model. The transformative
bridge for converting this feature model into EFeatureText and persisting in textual and XMI
notation is implemented in Java.

Summarizing, FMAnalysis encapsulates common analysis methods for extended feature models,
as well as partial and complete configurations. Furthermore, feature models from the SPLOT
repository can be imported for evaluating the PUMA tool suite.

7.5. Conper – Consistent Perspectives and Views

The concepts of multi-perspectives discussed in Chapter 5 are implemented in the tool Conper
and integrated as plug-ins in Eclipse [SLW12a]. Conper is a tool for conservatively extending
feature models with perspectives to concisely specify and derive feature model refinements by
means of perspectives. With Conper perspectives are derivable as filtered feature models and as
pre-configurations where features not contained in a perspective are deselected, as explained in
Section 5.2.

Conper is initially developed as an extension to the Featuremapper15 tool and based on the
feature model representation used by the Featuremapper. However, Conper is extended to
support feature models with attributes over finite domains defined in EFeatureText to seamlessly
integrate into the PUMA tool suite. The source code, further information and examples are
available on Github16. The architecture of the tool is illustrated in Figure 7.7.

Conper applies three models, (i) a feature model given in EFeatureText notation or as XMI
corresponding to the metamodel of EFeatureText, (ii) a view model defining the hierarchical
structure of viewgroups and viewpoints given as XMI representation of the corresponding view
metamodel, and (iii) a mapping model defined either in the textual notation of MText or as XMI
file corresponding to the metamodel of MText.

To derive a perspective, a mapping between features of a feature model and viewgroups of a
view model is defined in a textual notation called MText. The mapping model contains relative
references to the feature model and the view model in the Eclipse workspace. These references
are resolved by loading the models into the internal model repository.

14http://gsd.uwaterloo.ca:8088/SPLOT/sxfm.html
15http://www.featuremapper.org/
16https://github.com/multi-perspectives/cluster/wiki

202

http://gsd.uwaterloo.ca:8088/SPLOT/sxfm.html
http://www.featuremapper.org/
https://github.com/multi-perspectives/cluster/wiki

7. Configuration Management Tool Suite PUMA

Figure 7.7 Tool architecture of Conper.

Feature models are defined and modified in the feature model editor provided by the EFeatureText
language tooling. The multi-perspective editor is intended to create and persist the hierarchical
view model comprising viewgroups and viewpoints and to verify and derive perspectives. The
mapping is specified in the generated textual editor of this language.

As an example to illustrate the tool, the variable document management system introduced in
Section 5.3 is implemented in Conper. The feature model of the document management system
specified in textual EFeatureText notation is depicted in Listing 7.31.

1 featuremodel " Document Management System "

3 feature " Document Management System " <dms >
group <DocumentTypeGroup > (1..1) {

5 feature " Document Type" <DocumentType >
group <TypesGroup > (1..4) {

7 feature " UnicodeText Type" <UnicodeTextType >
feature "Text Type" <TextType >

9 feature "Image Type" <ImageType >
feature "PDF Type" <PDFType >

11 }
}

13 group <OCRGroup > (0..1) {
feature "OCR" <OCR >

15 group <OCRTypes > (1..2) {
feature "PDF OCR" <PDFOCR >

17 feature "Image OCR" <ImageOCR >
}

19 }
group <IndexGroup > (1..1) {

21 feature " Indexing " <Indexing >
group <MetaIndexing > (0..1) {

203

7.5. Conper – Consistent Perspectives and Views

23 feature " MetaData Index" <MetaDataIndex >
group <AuthorGroupIndex > (0..1) {

25 feature " Author Index" <AuthorIndex >
}

27 group <TitleGroupIndex > (1..1) {
feature "Title Index" <TitleIndex >

29 }
group <ContentGroupIndex > (1..1) {

31 feature " Content Index" <ContentIndex >
}

33 feature " General Index" <GeneralIndex >
}

35 group <FileIndex > (1..1) {
feature " FileName Index" <FileNameIndex >

37 }
}

39 group <SearchGroup > (1..1) {
feature " Search " <Search >

41 group <MetaSearch > (0..1) {
feature " MetaData Search " <MetaDataSearch >

43 group <AuthorGroupSearch > (0..1) {
feature " Author Search " <AuthorSearch >

45 }
group <TitleGroupSearch > (1..1) {

47 feature "Title Search " <TitleSearch >
}

49 group <ContentGroupSearch > (1..1) {
feature " Content Search " <ContentSearch >

51 }
feature " General Search " <GeneralSearch >

53 }
group <FileSearch > (1..1) {

55 feature " FileName Search " <FileNameSearch >
}

57 }
constraint <c1> MetaDataSearch -> MetaDataIndex

59 constraint <c2> GeneralSearch -> GeneralIndex
constraint <c3> ImageOCR -> ImageType

61 constraint <c4> PDFOCR -> PDFType
constraint <c5> AuthorSearch -> AuthorIndex

63 constraint <c6> TextType <-> UnicodeTextType

Listing 7.31 Feature model specification of the document management system example
written in EFeatureText.

The feature model contains 23 features and 6 cross-tree constraints on features and corresponds
to the example described in Section 5.3. 208 valid variant configurations are derivable from this
document management feature model. How to define a view model and a mapping between
features and viewgroups is explained in the following.

7.5.1. Definition of View Models

A view model defines a hierarchy among potentially overlapping concerns. A metamodel is
applied in Conper to specify view model instances according to the definition in Section 5.9.

204

7. Configuration Management Tool Suite PUMA

Figure 7.8 Metamodel of the hierarchical view model.

Figure 7.9 View model applied in the document management system example.

The metamodel is implemented in Ecore and depicted in Figure 7.8.

The root metaclass of the model is the GroupModel representing a view model. This class
has containment references to a set of Viewgroups and a set of Viewpoints. Each Viewgroup
represents a concern, while its hierarchical relation is defined by the relations childgroups
and parentgroups. To each Viewgroup a set of Viewpoints can be assigned via the members
reference. The opposite of this reference is a groups reference indicating that a Viewpoint
can be assigned to multiple Viewgroups. The three metaclasse GroupModel, Viewgroup, and
Viewpoint inherit a name and id attribute from the abstract metaclass Identifiable to be
identifiable via a name and a unique identifier.

According to the metamodel, the EMF framework generates a graphical editor for instantiating
view models. The generated editor is further extended for visualizing the relation between a

205

7.5. Conper – Consistent Perspectives and Views

given viewpoint and a set of viewgroups. The view model applied in the document management
example explained in Section 5.3 is implemented in Conper and depicted in Figure 7.9.

The mapping between viewgroups and features is specified in a separate mapping model, as
explained in the following section. Hence, mapping and view models are exchangeable and can
be reused in various multi-perspective models.

7.5.2. Mapping Between Feature Model and View Model

A mapping model defines the mappings between features of the feature model and viewgroups
in a view model. The metamodel for instantiating mapping models is defined in Ecore, as
depicted in Figure 7.10. The root metaclass of the model is MappingModel which references a
view model by means of the GroupModel metaclass and an extended feature model by means of
the FeatureModel metaclass.

A MappingModel contains a set of Mappings, each representing a mapping between a single
viewgroup of the view model and a set of features of the feature model. Hence, the Mapping
metaclass references the metaclasses Viewgroup contained in the GroupModel and Feature
contained in the FeatureModel. Each mapping is subsequently interpreted to define a view on a
feature model.

Mappings between features and viewgroups are specified textually in a DSL named MText. The
abstract syntax of the language is defined by the EMOF compliant metamodel depicted in
Figure 7.10, while concrete syntax rules are specified in EMFText. The syntax rules for defining
a mapping model, referencing a feature model and a view model, as well as specifying mappings
is depicted in Listing 7.32.

1 MappingModel ::= " viewmapping " (" featuremodel " featureModel [’<’,’>’]) ("
viewmodel " #1 viewModel [’<’,’>’]) (mappings *);

Mapping ::= "view group" viewgroup [’"’,’"’] " contains " features [’"’,’"’] (","
features [’"’,’"’])*;

Listing 7.32 Concrete syntax rules for the mapping model.

Figure 7.10 Metamodel of the mapping model for mapping features to viewgroups.

206

7. Configuration Management Tool Suite PUMA

A MappingModel is identified by the keyword viewmapping. In addition, the keyword featuremodel
followed by a reference to a FeatureModel in angle brackets specifies the referenced feature
model instance. A GroupModel is defined similarly, beginning with the keyword viewmodel.
Subsequently a set of Mappings is defined.

The concrete syntax rule for the Mapping metaclass starts with the keyword viewgroup followed
by a reference to a Viewgroup to define a mapping between a single Viewgroup and a set of
Features. The keyword contains followed by a comma separated list of Features defines the
referenced Feature instances. Feature and Viewgroup references are specified by their identifier
in quotation marks. The complete specification of the concrete syntax comprising layout directives
for the language printer is included in Appendix D.

Similar to the EFeatureText and RBACText languages, parser, editor and evaluation engine are
generated by the EMFText and EMF frameworks according to the abstract and concrete syntax
definitions of MText. MText files are persisted as text and are identified by the file extension
mtext. The language is interpreted by a manually implemented MText interpreter in the PUMA
tool suite. Model instances are programmatically accessed via a provided controller service.

A mapping between features and viewgroups specified in the textual notation is depicted in
Listing 7.33. The listing shows an example mapping between the feature model of a document
management system and a view model driven by business concerns.

viewmapping
2 featuremodel <../ feature / documentmanagement .feature >

viewmodel <../ viewmodel / documentmanagement .viewmodel >
4

view group "Basic" contains
6 " ImageType " " PDFType " "OCR"

8 view group " Premium " contains
" PDFType "

10 " MetaDataIndex " " TitelIndex " " ContentIndex "
" MetaDataSearch " " TitleSearch " " ContentSearch "

12

view group " Silver " contains
14 " AuthorIndex " " AuthorSearch "

16 view group "Gold" contains
" ImageType "

18 " PDFOCR " " ImageOCR "

20 view group " Customized " contains
" UnicodeTextType "

22

view group "Core" contains
24 " DocumentManagement "

" DocumentType " " TextType "
26 " Indexing " " GeneralIndex " " FileNameIndex "

" Search " " GeneralSearch " " FileNameSearch "

Listing 7.33 Textual mapping language to assign document management features to business
concern-related viewgroups.

207

7.5. Conper – Consistent Perspectives and Views

Figure 7.11 Screenshot of the multi-perspective editor.

A feature model, a view model and a mapping model comprise a multi-perspective model. The
relations between these models are visualized graphically in the multi-perspective editor in
Conper, as explained in the next section.

7.5.3. Multi-Perspective Editor

The multi-perspective editor interprets the mapping model and provides an overview of the relation
between viewgroups and assigned features. In addition, a preview of the perspectives defined
by viewpoints is available by means of highlighting the set of comprised features. Figure 7.11
depicts a screenshot of the multi-perspective editor. The relations between elements in the multi-
perspective model defined for the document management system are shown. Each viewgroup,
viewpoint, and feature is visualized by a node and a corresponding icon.

The editor is capable of highlighting references between elements by double clicking on an element.
For a viewgroup, features referenced by this viewgroup and hierarchically related viewgroups

208

7. Configuration Management Tool Suite PUMA

are highlighted. For a viewpoint, all related viewgroups are highlighted, as well as all features
mapped to those viewgroups. Hence, for a viewpoint a preview of the corresponding perspective
is available.

In Figure 7.11, the dependencies of viewpoint customized are highlighted in green, while the
viewpoint is highlighted in yellow. Hence, viewgroups not assigned to a viewpoint can be easily
identified, as well as unrelated features. Viewpoint customized is not related to the viewgroups
gold and silver. A perspective derived by this viewpoint will therefore not contain the features
Author Search and Author Index assigned to viewgroup silver, as well as the features OCR, Image
OCR and PDF OCR assigned to viewgroup gold.

As shown in the figure, the multi-perspective editor visualizes the relations between viewgroups,
viewpoints, and features in a comprehensive and interactive graphical representation. Conper
offers a graphical editor for creating, visualizing and checking a multi-perspective model for
consistency. Both consistency check algorithms introduced in Section 5.11 are implemented to
check the consistency of a multi-perspective model. In addition, single viewpoints can be checked
applying the brute-force consistency algorithm. For checking the complete multi-perspective
model the efficient incremental algorithm is applied, as explained in Section 5.11.2.

7.5.4. Consistency of Viewpoints

The tool implements the brute-force and the incremental consistency check algorithms as defined
in Section 5.11 to check the consistency of viewpoints. While the incremental consistency check is
applied on multi-perspective models with a consistent core viewgroup, the brute-force algorithm
is applied otherwise. Furthermore, single viewpoints can be checked solely for consistency by
applying the brute-force algorithm.

The performance of both algorithms is evaluated on a set of feature models with varying numbers
of features and cross-tree constraints. The feature model of the document management system
presented before is applied, as well as a feature model of a flood crisis management system
from a FeatureMapper case study [HSS+10]. Further feature models are imported from the

Table 7.3 Feature models applied in the performance evaluation of Conper.

Feature Model Origin Features CTCs CTCR CSP Check
Document Mgt. System own 23 6 52% 10,9 ms
Weather Station SPLOT 23 2 17% 6,3 ms
CD OD Semantic Variability SPLOT 32 4 18% 13,8 ms
Crisis Management Featuremapper 84 0 0% 34,4 ms
Generated 1000 Features SPLOT 1000 100 9% 374,6 ms
Generated 2000 Features SPLOT 2000 100 7% 1121,8 ms
Generated 5000 Features SPLOT 5000 150 5% 4239,1 ms
Generated 10000 Features SPLOT 10000 100 2% 9675,9 ms

209

7.5. Conper – Consistent Perspectives and Views

Figure 7.12 Varying the number of viewpoints.

SPLOT repository including 4 generated feature models with up to 10, 000 features. All feature
models are satisfiable and listed in Table 7.3. The satisfiability of these feature models is checked
by translating each model into a CSP and solving the model utilizing an interface from the
FMAnalysis tool. In addition, applied multi-perspective models are randomly generated. View
models with a maximum depth of 5, and most 3 child viewgroups are generated randomly. In
addition, the mappings between features of feature models and viewgroups of the view model is
generated randomly, as well assigning a maximum number of 5 features to a viewgroup. The
performance is measured on a laptop with an Intel Core i5-2520M CPU comprising 2.5GHz and
8GB RAM running a Windows 7 Professional SP1 64-bit operating system.

In a first experiment, different numbers of viewpoints are generated for the same viewgroup
hierarchy and assigned randomly to the viewgroups. The features of a feature model are mapped
randomly to the viewgroups once. This mapping is reused while only the number of viewpoints
varies. Figure 7.12 shows the time of the performance measure for three different feature models
in relation with a varying number of viewpoints to be checked. The time on the x-axis is displayed
logarithmical. The results are shown in this figure for the feature models CD OD Semantic
Variability, Document Management System, and Weather Station depicted in Table 7.3.

The results of the experiment show that the incremental algorithm performs better for different
numbers of viewpoints compared to the brute-force consistency check . This is due to the fact
that the same paths in the view model are checked multiple times by the brute-force algorithm.

In a second experiment, feature models with different numbers of features are checked while the
same view model is applied. Figure 7.13 visualizes the influence of the number of features in a
feature model on the performance of the consistency algorithms. The time is displayed on the
x-axis logarithmical.

210

7. Configuration Management Tool Suite PUMA

Figure 7.13 Feature models with varying sizes.

The figure shows results for the feature models described in Table 7.3. The experiment reveals
that both algorithms scale with respect to the number of features. However, the performance of
the incremental algorithm is always better, as expensive satisfiability checks are omitted. The
performance converges to the performance of the brute-force algorithm only in the worst case, if
all viewpoints are inconsistent in the view model.

The performance evaluation conducted in the explained two experiments confirms that the
incremental consistency check is efficiently scalable to feature models and view models of different
sizes. Checking the consistency of viewpoints is required to derive valid perspectives, as explained
in the following section.

7.5.5. Derivation of Perspectives

A perspective is derived in Conper either as a partial feature model configuration or as a filtered
feature model, as explained in Section 5.2 and visualized in Figure 5.3. In the first case, features
not contained in a perspective are deselected, as depicted in Figure 5.3(a). In the latter case,
features and related constraints not contained in the perspective are filtered out, as depicted in
Figure 5.3(b).

In the multi-perspective editor, a single viewpoint is selected to derive a perspective. A command
is available in the context menu to trigger the derivation of the corresponding perspective. The
user specifies whether to derive a partial configuration or a filtered feature model.

As an example, the perspective of the viewpoint customized in the document management
example is derived as a partial configuration and as a filtered feature model. The perspective

211

7.5. Conper – Consistent Perspectives and Views

of the viewpoint customized is represented as a partial configuration in Listing 7.34, where
features not contained in the perspective are deselected. In contrast, Listing 7.35 shows the same
perspective by means of a filtered feature model.

1 featuremodel " Document Management System "

3

feature " Document Management System " <dms >
5 group <DocumentTypeGroup > (1..1) {

feature " Document Type" <DocumentType >
7 group <TypesGroup > (1..4) {

feature " UnicodeText Type" <UnicodeTextType >
9 feature "Text Type" <TextType >

feature "Image Type" <ImageType >
11 feature "PDF Type" <PDFType >

}
13 }

15 group <OCRGroup > (0..1) {
deselected feature "OCR" <OCR >

17 group <OCRTypes > (1..2) {
deselected feature "PDF OCR" <PDFOCR >

19 deselected feature "Image OCR" <ImageOCR >
}

21 }

23 group <IndexGroup > (1..1) {
feature " Indexing " <Indexing >

25 group <MetaIndexing > (0..1) {
feature " MetaData Index" <MetaDataIndex >

27 group <AuthorGroupIndex > (0..1) {
deselected feature " Author Index" <AuthorIndex >

29 }

31 group <TitleGroupIndex > (1..1) {
feature "Title Index" <TitleIndex >

33 }

35 group <ContentGroupIndex > (1..1) {
feature " Content Index" <ContentIndex >

37 }
feature " General Index" <GeneralIndex >

39 }

41 group <FileIndex > (1..1) {
feature " FileName Index" <FileNameIndex >

43 }
}

45

group <SearchGroup > (1..1) {
47 feature " Search " <Search >

group <MetaSearch > (0..1) {
49 feature " MetaData Search " <MetaDataSearch >

group <AuthorGroupSearch > (0..1) {
51 deselected feature " Author Search " <AuthorSearch >

}
53

group <TitleGroupSearch > (1..1) {

212

7. Configuration Management Tool Suite PUMA

55 feature "Title Search " <TitleSearch >
}

57

group <ContentGroupSearch > (1..1) {
59 feature " Content Search " <ContentSearch >

}
61 feature " General Search " <GeneralSearch >

}
63

group <FileSearch > (1..1) {
65 feature " FileName Search " <FileNameSearch >

}
67 }

constraint <c1> MetaDataSearch -> MetaDataIndex
69 constraint <c2> GeneralSearch -> GeneralIndex

constraint <c3> ImageOCR -> ImageType
71 constraint <c4> PDFOCR -> PDFType

constraint <c5> AuthorSearch -> AuthorIndex
73 constraint <c6> TextType <-> UnicodeTextType

Listing 7.34 Derived perspective of the customized view point as a partial configuration.

Both representations define the same set of derivable variant configurations but differ in the
contained features and constraints. For instance, the constraints c3, c4, and c5 are removed
from the filtered feature model in Listing 7.35 as the features restricted by these constraints are
not contained.

In addition the features Author Search, Author Index, OCR, Image OCR, and PDF OCR are not
contained in the filtered feature model. In the perspective represented as partial configuration,
these 6 features are deselected, as depicted in Listing 7.34 by the red keyword deselected
representing the feature configuration state.

1 featuremodel " Document Management System "

3

feature " Document Management System " <dms >
5 group <DocumentTypeGroup > (1..1) {

feature " Document Type" <DocumentType >
7 group <TypesGroup > (1..4) {

feature " UnicodeText Type" <UnicodeTextType >
9 feature "Text Type" <TextType >

feature "Image Type" <ImageType >
11 feature "PDF Type" <PDFType >

}
13 }

15 group <IndexGroup > (1..1) {
feature " Indexing " <Indexing >

17 group <MetaIndexing > (0..1) {
feature " MetaData Index" <MetaDataIndex >

19 group <TitleGroupIndex > (1..1) {
feature "Title Index" <TitleIndex >

21 }

23 group <ContentGroupIndex > (1..1) {
feature " Content Index" <ContentIndex >

213

7.6. DyscoGraph – Dynamic Staged Configuration through Graph Rewriting

25 }
feature " General Index" <GeneralIndex >

27 }

29 group <FileIndex > (1..1) {
feature " FileName Index" <FileNameIndex >

31 }
}

33

group <SearchGroup > (1..1) {
35 feature " Search " <Search >

group <MetaSearch > (0..1) {
37 feature " MetaData Search " <MetaDataSearch >

group <TitleGroupSearch > (1..1) {
39 feature "Title Search " <TitleSearch >

}
41

group <ContentGroupSearch > (1..1) {
43 feature " Content Search " <ContentSearch >

}
45 feature " General Search " <GeneralSearch >

}
47

group <FileSearch > (1..1) {
49 feature " FileName Search " <FileNameSearch >

}
51 }

constraint <c1> MetaDataSearch -> MetaDataIndex
53 constraint <c2> GeneralSearch -> GeneralIndex

constraint <c6> TextType <-> UnicodeTextType

Listing 7.35 Derived perspective of the customized view point as a filtered feature model.

7.6. DyscoGraph – Dynamic Staged Configuration through Graph

Rewriting

The tool DyscoGraph combines staged configuration with graph rewriting to model and execute
a set of configuration and reconfiguration processes by means of a single specialization tree, as
explained in Chapter 6.

Hence, DyscoGraph executes a specialization tree to derive multiple variant configurations by
configuring and reconfiguring a given feature model. In addition, DyscoGraph allows for adapting
the specialization tree during runtime by applying graph rewrite rules. The tool therefore
comprises a workflow execution engine and an adaptation engine. The specialization tree is
executed by the workflow engine to conduct staged configuration operations on the referenced
feature model. In addition, an adaptation engine adapts the workflow during execution by
applying rewrite rules to integrate and remove stakeholders. The architecture of DyscoGraph is
depicted in Figure 7.14.

214

7. Configuration Management Tool Suite PUMA

Figure 7.14 Tool architecture of DyscoGraph.

Staged reconfiguration workflows are modeled in EMF utilizing the Java Workflow Tooling (JWT)
framework17. JWT is chosen as it is an official Eclipse project providing various extension
mechanisms to integrate own concepts. The JWT framework is intended for modeling and
executing business processes. The framework provides a graphical editor to define workflows in a
graphical UML like activity diagram notation. Moreover, interfaces are provided to execute the
workflow and adapt the graphical representation.

A JWT workflow in DyscoGraph constitutes a specialization tree to derive multiple variant
configurations. Furthermore, a simulator is implemented in the tool to interpret the workflow
model as a staged configuration workflow to stepwise configure an extended feature model.
Configuration operations, access restrictions, and stakeholders are modeled in an access control
model and specified in textual RBACText notation, as explained in Section 7.3.

Furthermore, JWT allows to integrate own models and concepts by applying aspect weaving.
In DyscoGraph, references to a stage model, an access control model, as well as logs for
specialization actions, are assumed as aspects and woven into the JWT workflow. A stage model
defines predecessor and successor relationships among stages. Stages are applied to partition
specialization actions and to identify search patterns in the rewrite rules for integrating and
removing stakeholders. Logs persist the configuration operations conducted in a specialization
action. Logs are applied during reconfiguration as explained in Section 6.6.2. The access control
model defines configuration views for configuring stakeholders. A view is instantiated by executing
an enabled specialization action via double click.

DyscoGraph implements a semi-automatic reconfiguration strategy to change partial configura-
tions and propagate reconfiguration changes to depending stakeholders in the specialization tree.
17http://www.eclipse.org/jwt/

215

http://www.eclipse.org/jwt/

7.6. DyscoGraph – Dynamic Staged Configuration through Graph Rewriting

Rewrite rules are implemented in Java and modify the specialization tree and the referenced
access control model during executing the staged configuration workflow. An adaptation engine
is implemented to apply a sequence of rewrite rules to integrate or remove a stakeholder. Further
information and the source code of DyscoGraph are provided online in the Github repository
and the related wiki18.

The graph rewrite rules for integrating and removing stakeholders during the execution of
the staged configuration workflow, explained in Sections 6.7.2 and 6.7.4, are implemented in
Java. The request to add or remove a stakeholder triggers the adaptation engine to apply the
corresponding sequence of rewrite rules on the workflow model and the referenced access control
model. After applying a sequence of rewrite rules, the specialization tree remains connected.

The applicability of the implemented concepts is evaluated on a yard management application,
as explained in the next section.

7.6.1. Example Yard Management Application

An example of a variable yard management application is applied to evaluate the applicability of
the concepts of adaptive staged configuration workflows in an industrial project context. A variable
yard management application, in the context of the INDENICA19 project, serves as a basis. The
INDENICA project is a European research project with the focus on variability in service-centric
computing. The goal of the project is to abstract from service heterogeneity in service-oriented
environments. Variability in functional and qualities of service platforms is observed to develop
a virtual service platform abstracting from external services. A yard management application
is developed on the virtual service platform as a case study for INDENICA. Figure 7.15 shows
a screenshot of the yard management application prototypically implemented on the virtual
service platform and integrated into the SAP HANA Cloud platform20. The SAP HANA Cloud
platform abstracts from cloud infrastructure offering application and database services.

The application manages and controls logistics communication of arriving goods at a warehouse.
The main functionality of the yard management prototype covers dock door scheduling and yard
jockey support. Therefore, features for monitoring and coordinating the movement of vehicles
in a yard, scheduling docks and staging areas for vehicles, and planning the jockey tasks to
deliver or receive goods. Variation points are defined in the application to tailor the application
according to customer requirements. For instance, yards vary in their capability of handling
vehicles. Hence, the support for loading of ships and trains is optionally available. Furthermore,
perishable freight requires a special refrigeration dock.

The variability of the application is modeled on an abstract level by means of an extended feature
model. The feature model is visualized in EFeatureText notation in Listing B.5 in Appendix B.5.
Stakeholders involved in the staged configuration workflow comprise an application provider
responsible for configuring platform services, a number of resellers that pre-configure essential
18https://github.com/extFM/extFM-Tooling/wiki/Dynamic-Staged-Configuration
19http://www.indenica.eu/
20http://www.sap.com/pc/tech/cloud/software/hana-cloud-platform-as-a-service/index.html

216

https://github.com/extFM/extFM-Tooling/wiki/Dynamic-Staged-Configuration
http://www.indenica.eu/
http://www.sap.com/pc/tech/cloud/software/hana-cloud-platform-as-a-service/index.html

7. Configuration Management Tool Suite PUMA

Figure 7.15 Screenshot of a variable yard management application.

yard management services, and customers renting the application from these resellers. Hence,
three related stages are defined in a stage model, Provider, Reseller, and Customer as depicted
in the screenshot in Figure 7.16. A corresponding stage metamodel is implemented in EMF
to weave instances of this metamodel into the JWT workflow. The metamodel is depicted in
Figure 7.17. The StageModel contains a set of Stages. Each Stage is identified by an attribute
id, which corresponds to the id of an abstract role in the role model. Hence, a stage is related to
an abstract role by a naming convention. Furthermore, a relationship between successor and
predecessor stages is defined to sequentialize stages.

The access of these stakeholders on configuration operations is restricted by applying RBAC,
as explained in Section 6.4. An related access control model for the yard management system
is defined in RBACText notation and depicted in Listing 7.36. The listing shows the initial
access control model where only abstract stakeholder roles and their permissions are defined.
Subsequently, concrete roles representing particular stakeholders are added and removed by
applying rewrite rules. Appendix C.2 shows an example access control model after integrating
further stakeholders by means of concrete roles and role groups.

In this example, the specialization tree definition starts with a minimal workflow comprising
an initial node, a final node, and the control action to terminate the workflow, as depicted in
Figure 7.18. All concrete stakeholders are integrated in the workflow by applying rewrite rules.

217

7.6. DyscoGraph – Dynamic Staged Configuration through Graph Rewriting

Figure 7.16 Stage model for the yard management system.

Figure 7.17 Stage Metamodel.

access control on <YMS.eft >
2

abstract role " Provider " <Provider > {
4 select YMS ,

select Authentication , deselect Authentication ,
6 select Persistence , deselect Persistence ,

select Connectivity , deselect Connectivity ,
8 select JAAS , deselect JAAS ,

select JDBC , deselect JDBC ,
10 select JPA , deselect JPA ,

select RFC , deselect RFC ,
12 select SOAP , deselect SOAP ,

select REST , deselect REST
14 }

16 abstract role " Reseller " <Reseller > {
select YM , deselect YM ,

18 select YJ , deselect YJ ,
select MC , deselect MC ,

20 select LS , deselect LS ,
assign YM. SchedulingType }

22

abstract role " Customer " <Customer > {
24 select EnableShips , deselect EnableShips ,

select EnableTrains , deselect EnableTrains ,
26 select SpecialDocks , deselect SpecialDocks ,

select Coordinate , deselect Coordinate ,
28 select RoadMap , deselect RoadMap ,

select SatelliteMap , deselect SatelliteMap }

Listing 7.36 Access control model defining stakeholder roles and their permissions in the
yard management system example.

218

7. Configuration Management Tool Suite PUMA

Figure 7.18 Initial specialization tree of the yard management example.

Figure 7.19 Specialization tree after integrating stakeholder ApplicationProvider.

After initializing the workflow, an ApplicationProvider is added to the workflow by specifying
a name for the stakeholder and an abstract role, as depicted in Figure 7.19. The dialog for
specifying the input parameters of a new stakeholder are shown on the right side, whereas the
result of integrating the stakeholder are shown on the left side. As explained in Section 6.7.2,
input parameters for integrating a new stakeholder are a name, an abstract role corresponding
to a stage, and a predecessing concrete role. The ApplicationProvider is the first stakeholder
that is integrated into the staged configuration workflow. Hence, only the abstract role Provider
related to the first stage is selectable. Furthermore, no predecessing stakeholders in terms of
concrete roles exist. Therefore the input parameter of a concrete role is omitted.

The selected abstract role Provider represents the stage in the specialization tree for adding the
new specialization action related to the stakeholder. In addition, the permissions defined for the
abstract role are inherited by the new concrete stakeholder role.

A specialization tree is modeled as a JWT workflow in a graphical notation similar to a UML
activity diagram. DyscoGraph interprets the staged configuration workflow as a staged configu-
ration workflow on an extended feature model referenced by the integrated access control model.
A configuration workflow comprises potentially multiple specialization actions. An annotation
depicts the current runtime state of an action according to the action lifecycle explained in
Section 6.6.1. As the first stakeholder ApplicationProvider in this example did not start the
configuration task yet, the status of this action is enabled.

A specialization action is depicted as a rectangle with rounded corners in the figure. Roles
involved in configuration are modeled in an access control model. A specialization action is

219

7.6. DyscoGraph – Dynamic Staged Configuration through Graph Rewriting

Figure 7.20 Execution of the specialization action of stakeholder Reseller A showing corre-
sponding configuration view.

assigned to a stakeholder role defined in the referenced access control model. A role is visualized
by a human-like icon. A role can execute a specialization action to perform a configuration task
on the referenced feature model.

DyscoGraph provides a configuration view for a stakeholder according to the permissions defined
for a role. These permissions specify a set of configuration operations. In the configuration view,
the configuration operations a stakeholder is allowed to conduct, are represented by check boxes.
Figure 7.20 depicts the configuration view of stakeholder Reseller A in the yard management
example. The displayed configuration operations correspond to the permissions defined in the
access control model for this stakeholder role.

As configuration operations on features are mutual exclusive, these operations are represented as
a radio group, where a stakeholder can only select one of them. Configuration operations on
a feature are select(feature) and deselect(feature). Configuration on attributes are defined by
attribute values which are select(attributevalue) and deselect(attributevalue).

The configuration operations are evaluated if the corresponding partial configuration of the feature
model is satisfiable. The Ok button is disabled, if the partial configuration is not satisfiable. As
the partial configuration is evaluated after conducting a configuration operation, feedback about
a valid configuration step is provided instantly to a configuration stakeholder.

The final stage in this example is the Customer, where concrete roles representing customers
finish the configuration processes by deriving concrete variant configurations. A derived variant
configuration is subsequently transformed into the variation representation applied in the solution
space of the yard management application and persisted as XML file. This file is subsequently
uploaded to the application server. The new configuration is instantly available in the yard
management application.

The case study of a yard management system reveals that DyscoGraph is applicable to model
and simulate adaptive staged reconfiguration processes that are introduced in Chapter 6.

220

7. Configuration Management Tool Suite PUMA

7.7. Summary

The tool suite PUMA, introduced in this chapter, provides reference implementations for the
concepts of multi-perspectives and adaptive staged reconfiguration workflows proposed in this
thesis. Hence, PUMA implements the configuration management framework concepts related to
the problem space.

The tool suite is developed applying an MDSD approach. Abstract syntaxes of structural models
are defined by means of EMOF compliant metamodels applying the EMF framework. This
framework implicitly specifies a concrete syntax for instantiating models in a tree-like graphical
representation, which is further extended to provide a meaningful graphical visualization of the
concepts. Textual DSLs are specified and implemented in the EMFText framework for extended
feature models, access control models, and the mapping definition to create multi-perspectives.

The textual DSLs enable domain experts to define conceptual models rapidly providing a quick
overview of the specified concepts. EFeatureText is a textual DSL for specifying group-cardinality
based features models with attributes. RBACText is a textual DSL for defining access control on
features and attributes of such feature models. MText is a textual DSL for defining the relation
between features and viewgroups to derive filtered perspectives. Tooling is provided for these
languages via a graphical user interface for the implemented DSLs. Various interfaces are defined
to access and manipulate the models programmatically.

Beside the introduced languages and corresponding language tooling, PUMA comprises three
tools to implement the configuration management concepts related to the problem space that
are presented in the previous chapters. These tools are (i) a generic feature model analysis
tool to analyze the satisfiability of an extended feature model, (ii) the tool Conper to specify
concise perspectives and views on extended feature models, and (iii) DyscoGraph to model and
execute adaptive staged configuration processes. The architecture of the tools and comprising
functionalities are explained in this chapter. The tools exchange models and are combined in the
integrated tool suite PUMA. However, the tools are loosely coupled and can be utilized stand
alone.

Different case studies from academic and industrial context are implemented in the tools to
evaluate the applicability of the proposed conceptual configuration management framework.
Furthermore, the performance and scalability of the consistency algorithms proposed in the
multi-perspective approach is measured on feature and view models of different sizes.

Summarizing, the tool suite PUMA is applicable to different scenarios, and provides interfaces
for further extensions. The tool suite is implemented in Eclipse and available as open source.

221

222

8. Conclusion and Future Work

The best way to predict the future is to invent it.

— Alan Kay, 1971

This thesis provides an overview of the state-of-the-art of configurable cloud applications. The
analysis of cloud applications leads to the following requirements. Configurable applications in
the cloud demand for an automated configuration process and application provisioning to serve
customers just-in-time. Customers have different concerns and therefore require pre-configured
applications according to these concerns. As the demands of customers change, reconfiguration
support is essential with respect to functional scalability of a cloud application. Furthermore,
multiple different stakeholders are involved in the configuration and reconfiguration processes of
cloud applications. However, in a cloud environment not all stakeholders participating in the
configuration process are known before application runtime. In addition, a reconfigurable multi-
tenant aware application architecture is required to provision customizations automatically.

A structured analysis of SPL engineering reveals that SPL methods are applicable to address
these requirements. In SPL engineering, concepts related to the problem and solution space
are distinguished. Concepts in the problem space abstract from implementation details in the
solution space.

The SPL concepts of feature models and staged configuration processes are extended in this
thesis to meet the identified requirements in the problem space. Feature models define the
configuration space of an application by means of features and relations among them. Staged
configuration is a method to derive a variant configuration from a feature model in multiple
specialization steps, where each step may be related to a different stakeholder.

8.1. Contribution

The main contribution of this thesis is a feature-based configuration management framework
for reconfigurable cloud applications introduced in Chapter 3. The framework comprises the
concepts of multi-perspectives and adaptive staged reconfiguration workflows in the problem
space, and a development method for reconfigurable multi-tenant aware applications based on a
self-adaptive architecture in the solution space.

A formalization of multi-perspectives is provided in Chapter 5 to concisely define concern-specific
pre-configurations of a feature model. A perspective is a concern-specific pre-configuration
that satisfies feature model constraints. Each concern corresponds to a partial view on the

223

8.2. Future Work

feature model. Combining multiple views yields a perspective. Hence, a perspective comprises
concern-specific configuration parameters, while unrelated parameters are concisely filtered.

Furthermore, an adaptive staged reconfiguration workflow is proposed in Chapter 6 to reduce
configuration redundancies by automating multiple staged configuration processes in a single
workflow by means of a specialization tree. Thus, multiple variant configurations are derivable
from a specialization tree in contrast to conventional staged configuration workflows. This
workflow design has two further advantages. First, concrete partial configurations serve as
reusable pre-configurations. Second, reconfiguration decisions of stakeholders are propagated to
depending stakeholders. In addition, combining a specialization tree with an adaptation engine
enables a dynamic stakeholder management, as stakeholders can be integrated and removed from
the workflow during execution.

Reference implementation of these concepts are provided by means of the tool suite PUMA to
evaluate the applicability of these concepts in different case studies. The tool suite explained in
Chapter 7 is developed following an MDSD approach and comprises the tools Conper, DyscoGraph,
and FMAnalysis.

A self-adaptive architecture is applicable in the solution space to develop reconfigurable cloud
applications. Hence, multi-tenant extensions to the self-adaptive architecture MQuAT are
proposed in Chapter 4 to express variant configurations by means of functional and quality
constraints. However, the proposed extensions require empirical evaluation.

8.2. Future Work

The development and implementation of a multi-tenant aware architecture for reconfigurable
cloud application will be investigated in future studies. For instance, further multi-user capa-
bilities of MQuAT are required. In addition, different architectural strategies for implementing
reconfigurable multi-tenant aware applications are to be discussed in future work. Additional
empirical evaluation of all concepts proposed in this theses on further industrial case studies
would support the evidence of the industrial applicability of the configuration management
framework.

Further research questions remain. In future work, a formalization of multi-perspectives on
attributed feature models will be provided as multi-perspectives are formalized in this thesis for
group-cardinality based feature models without attributes.

Furthermore, configuration states of features and attributes, discussed in Section 6.3.1, can
be formalized by means of a process algebra. Such a formalization allows for model checking
configuration states of features and attribute, as well as configuration operations in a staged
configuration workflow.

In addition, the distribution of configuration decisions to stages may cause deadlocks in the
configuration workflow. To obey lifeness and correctness of a configuration workflow, a trans-
lation of the logical dependencies between configuration decisions into a workflow Petri net is

224

8. Conclusion and Future Work

promising [LMSW13]. The translation of configuration decisions of extended feature models, as
well as the postponing of configuration decisions require further research.

The concepts of multi-perspectives and adaptive staged configuration workflows are not restricted
to cloud applications and therefore applicable to other domains. In future work, benefits are to
be evaluated of applying these concepts to other configuration scenarios, such as multi-product
lines.

Managing the information of feature and variant configurations is essential for quality assurance
in SPL organizations. An interesting research issue is how to conduct quality assurance based
on feature models of a cloud application [Gol13]. In an SPL organization not only the relations
among features are of interest, but also comprehensive information about the current feature
utilization and other feature and product related information. Such information is especially
important in further developing the product line to react on advancements of the market. Based
on this information statistics on feature utilization are derivable for instance to ensure the quality
of the overall SPL by identifying favorite and rejected features. Hence, various SPL information
need to be modeled, managed and restricted to specific responsible organizational stakeholders
by providing adequate views [MS13].

Assuming cloud applications as agile SPLs is a further area for future research regarding
application evolution and runtime updates. Applications in the cloud must quickly react on market
demands requiring changes in functionality. Evolutionary changes require an open configuration
space. The configuration framework proposed in this work assumes a closed configuration space
by means of a domain feature model. The correctness of variant configurations is ensured with
respect to dependencies defined in the feature model. However, to ensure the correct derivation
of variant configurations in an open configuration space requires further research.

Summarizing, the proposed framework is a foundation for developing self-service portals and
automating configuration and reconfiguration of cloud applications. Based on the introduced
concepts, different research directions for future investigations can be identified.

225

226

Bibliography

[95/46/EC] European Union. Directive 95/46/EC of the European Parliament and of
the Council of 24 October 1995 on the protection of individuals with re-
gard to the processing of personal data and on the free movement of such
data. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31995L0046:EN:HTML, 1995. (Cited on page 17)

[ABGK02] Colin Atkinson, Christian Bunse, Hans-Gerhard Groß, and Thomas Kühne.
Towards a General Component Model for Web-Based Applications. Journal
Annals of Software Engineering, 13(1-4):35–69, June 2002. (Cited on page 74)

[ACF+09] Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, and Jean-
Paul Rigault. Modeling Context and Dynamic Adaptations with Feature Models,
volume 9 of MRT ’09, pages 89–98. CEUR, 2009. (Cited on page 105)

[ACLF11] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Slicing
Feature Models. In Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, New York, NY, USA, 2011. ACM
Press. (Cited on page 124)

[ACLF12] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Separation
of Concerns in Feature Modeling: Support and Applications. In Proceedings
of the 11th Annual International Conference on Aspect-Oriented Software
Development, AOSD ’12, New York, NY, USA, 2012. ACM Press. (Cited on
pages 94 and 124)

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. FA-
MILIAR: A Domain-Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming, 78(6):657–681, 2013. (Cited on
page 193)

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report EECS-2009-28, EECS Department, University
of California, Berkeley, 2009. (Cited on pages 15 and 24)

[AHH11] Ebrahim Khalil Abbasi, Arnaud Hubaux, and Patrick Heymans. A Toolset for
Feature-Based Configuration Workflows. In Proceedings of the 15th International

227

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML

Bibliography

Software Product Line Conference, SPLC ’11, pages 65–69. IEEE, 2011. (Cited
on page 45)

[Aik11] Larry Aiken. Why Multi-Tenancy is Key to Successful and Sustainable Software-
as-a-Service (SaaS). Cloudbook Journal, 2, 2011. (Cited on page 19)

[AK09] Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software
Development. The Journal of Object Technology, 8(5):49–84, 2009. (Cited on
page 32)

[APS+10] Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and
Matthias Weber. The CVM Framework – A Prototype Tool for Compositional
Variability Management. In Proceedings of the Fourth International Workshop
on Variability Modelling of Software-Intensive Systems, VaMoS ’10, pages 101–
105. Universität Duisburg-Essen, 2010. ICB-Research Report. (Cited on pages
193 and 194)

[Ass00] Uwe Assmann. Graph Rewrite Systems for Program Optimization. ACM
Transactions on Programming Languages and Systems, 22(4):583–637, 2000.
(Cited on page 169)

[Bab86] Wayne A. Babich. Software Configuration Management: Coordination for Team
Productivity. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986. (Cited on page 51)

[Bat04] Don S. Batory. Feature-Oriented Programming and the AHEAD Tool Suite.
In Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 702–703. IEEE Computer Society, 2004. (Cited on page 35)

[Bat05] Don S. Batory. Feature Models, Grammars, and Propositional Formulas.
In Proceedings of the 9th International Software Product Line Conference,
SPLC ’05, pages 7–20. Springer, 2005. (Cited on pages 34, 46, 86 and 115)

[BCW11] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and Meta-
Models in Clafer: Mixed, Specialized, and Coupled. In Proceedings of the Third
International Conference on Software Language Engineering, SLE ’10, pages
102–122, Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on pages 193 and 194)

[Ben06] Messaoud Benantar. Access Control Systems: Security, Identity Management
and Trust Models. Springer, 2006. (Cited on page 25)

[BFG+02] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink,
and Klaus Pohl. Variability Issues in Software Product Lines. In Revised Papers
from the 4th International Workshop on Software Product-Family Engineering,
PFE ’01, pages 13–21. Springer-Verlag, 2002. (Cited on page 32)

228

Bibliography

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. PuLSE: A Methodology
to Develop Software Product Lines. In Proceedings of the 1999 Symposium
on Software Reusability, SSR ’99, pages 122–131, New York, NY, USA, 1999.
ACM. (Cited on pages 31 and 48)

[BGP12] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Service-Oriented Dynamic
Software Product Lines. IEEE Computer, 45(10):42–48, 2012. (Cited on page 48)

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making Components Contract Aware. Computer, 32(7):38–45, 1999. (Cited on
page 74)

[BKNT11] Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. Cloud Computing:
Web-basierte dynamische IT-Services. Springer, second edition, 2011. (Cited on
pages 10 and 11)

[BLB+00] Keith H. Bennett, Paul J. Layzell, David Budgen, Pearl Brereton, Linda A.
Macaulay, and Malcolm Munro. Service-Based Software: The Future for
Flexible Software. In Proceedings of the 7th Asia-Pacific Software Engineering
Conference, APSEC ’00, pages 214–221. IEEE Computer Society, 2000. (Cited
on page 11)

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000. (Cited on page 34)

[BRCT05] David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. Using Constraint
Programming to Reason on Feature Models. In Proceedings of the Seventeenth
International Conference on Software Engineering and Knowledge Engineering,
SEKE ’05, 2005. (Cited on pages 45, 46, 200 and 201)

[BSBG08] Nelly Bencomo, Peter Sawyer, Gordon S. Blair, and Paul Grace. Dynamically
Adaptive Systems are Product Lines too: Using Model-Driven Techniques to
Capture Dynamic Variability of Adaptive Systems. In Proceedings of the 12th
International Conference on Software Product Lines, SPLC ’08, pages 23–32,
2008. (Cited on page 48)

[BSL+10] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. Variability Modeling in the Real: A Perspective from the Operating
Systems Domain. In Proceedings of the IEEE/ACM international conference on
Automated software engineering, ASE ’10, pages 73–82, New York, NY, USA,
2010. ACM. (Cited on page 37)

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Analysis
of Feature Models 20 Years later: A Literature Review. Journal of Information
Systems, 35:615–636, 2010. (Cited on pages 35, 37, 119 and 134)

229

Bibliography

[BSTRC05] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés.
Using Java CSP Solvers in the Automated Analyses of Feature Models. In
Proceedings of the Generative and Transformational Techniques in Software En-
gineering, International Summer School, GTTSE ’05, pages 399–408. Springer,
2005. (Cited on page 201)

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated Rea-
soning on Feature Models. In Proceedings of the 17th International Conference
on Advanced Information Systems Engineering, CAiSE ’05, pages 491–503.
Springer, 2005. (Cited on pages 38, 39, 46, 135 and 251)

[BZ10] Cor-Paul Bezemer and Andy Zaidman. Multi-Tenant SaaS Applications: Main-
tenance Dream or Nightmare? In Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of
Software Evolution (IWPSE), IWPSE-EVOL ’10, pages 88–92, 2010. (Cited on
pages 19 and 23)

[CA82] Timothy C. K. Chou and Jacob A. Abraham. Load Balancing in Distributed
Systems. Software Engineering, IEEE Transactions on, SE-8(4):401–412, 1982.
(Cited on page 20)

[CBH11] Andreas Classen, Quentin Boucher, and Patrick Heymans. A Text-Based
Approach to Feature Modelling: Syntax and Semantics of TVL. Science of
Computer Programming, 76(12):1130–1143, 2011. (Cited on pages 193 and 194)

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker.
Generative Programming for Embedded Software: An Industrial Experience
Report. In Generative Programming and Component Engineering, volume
2487 of Lecture Notes in Computer Science, pages 156–172. Springer Berlin
Heidelberg, 2002. (Cited on page 38)

[CC06] Frederick Chong and Gianpaolo Carraro. Architecture Strategies for Catching
the Long Tail. Online MSDN Article, 2006. http://msdn.microsoft.com/
en-us/library/aa479069.aspx. (Cited on pages 22 and 74)

[CCW06] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-Tenant Data
Architecture. Online MSDN Article, 2006. http://msdn.microsoft.com/
en-us/library/aa479069.aspx. (Cited on pages 19 and 22)

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000. (Cited on pages V, 32,
33, 34, 35, 37, 41, 78 and 99)

[Cha13] Mabel Joselin Brun Chaperon. Analyse von Konfigurationsmöglichkeiten man-
dantenfähiger SaaS-Anwendungen mittels erweiterter Feature-Modelle. Diploma
thesis, Technische Universität Dresden, June 2013. (Cited on pages 23, 28 and 91)

230

http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx

Bibliography

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configuration
Using Feature Models. In Proceedings of the Third International Software
Product Line Conference, SPLC ’04, pages 266–283, 2004. (Cited on pages 5, 41,
42 and 121)

[CHE05a] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
Cardinality-Based Feature Models and Their Specialization. Journal of Software
Process: Improvement and Practice, 10(1):7–29, 2005. (Cited on pages 94 and 124)

[CHE05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configura-
tion through Specialization and Multi-Level Configuration of Feature Models.
Journal of Software Process: Improvement and Practice, 10(2):143–169, 2005.
(Cited on pages 42 and 45)

[CHH09] Andreas Classen, Arnaud Hubaux, and Patrick Heymans. A Formal Semantics
for Multi-Level Staged Configuration. In Proceedings of VaMoS ’09, 2009.
(Cited on pages 42, 94 and 121)

[CHS08] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in a
Feature: A Requirements Engineering Perspective. In Proceedings of the 11th
International Conference on Fundamental Approaches to Software Engineering,
FASE ’08/ETAPS ’08, pages 16–30, Berlin, Heidelberg, 2008. Springer-Verlag.
(Cited on page 32)

[CMRD13] Kyle Christensen, Michael Moaz, Ed Romson, and Alexandre Dayon. 10
Key Strategies Customer Service Executives Need To Consider Featur-
ing Gartner. Webinar, 2013. https://www.salesforce.com/form/event/
10-key-css-strategies.jsp. (Cited on page 17)

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. (Cited on pages 31 and 32)

[Coh90] Jacques Cohen. Constraint Logic Programming Languages. Communications
of the ACM, 33(7):52–68, July 1990. (Cited on page 39)

[Coh03] Sholom Cohen. Predicting When Product Line Investment Pays. Technical
Report CMU/SEI-2003-TN-017, Software Engineering Institute, 2003. (Cited
on page 29)

[CP10] Dave Clarke and José Proença. Towards a Theory of Views for Feature Models.
In Proceedings of FMSPLE ’10, 2010. (Cited on page 124)

[CS10] Ronni J. Colville and George Spafford. Top Seven Considerations for Configu-
ration Management for Virtual and Cloud Infrastructures. Technical Report
Gartner RAS Core Research Note G00208328, Gartner, 2010. (Cited on page 2)

231

https://www.salesforce.com/form/event/10-key-css-strategies.jsp
https://www.salesforce.com/form/event/10-key-css-strategies.jsp

Bibliography

[CW98] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Con-
figuration Management. Journal of ACM Computing Surveys, 30(2):232–282,
June 1998. (Cited on page 51)

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature Diagrams and Logics:
There and Back Again. In Proceedings of the 11th International Software
Product Line Conference, SPLC ’07, pages 23–34. IEEE Computer Society,
2007. (Cited on page 36)

[Dav87] Stanley M. Davis. Future Perfect: A Startling Vision of the Future We Should
Be Managing Now. Addison-Wesley Longman, Incorporated, 1987. (Cited on
page 32)

[DDF+06] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A Survey of Autonomic Communications. ACM Trans-
actions on Autonomous and Adaptive Systems, 1(2):223–259, December 2006.
(Cited on pages 78 and 81)

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., 1976.
(Cited on page 94)

[DPAG11] Jessica Dı́az, Jennifer Pérez, Pedro P. Alarcón, and Juan Garbajosa. Agile
Product Line Engineering – A Systematic Literature Review. Journal for
Software-Practice & Experience, 41(8):921–941, 2011. (Cited on page 34)

[DtH01] Marlon Dumas and Arthur ter Hofstede. UML Activity Diagrams as a Work-
flow Specification Language. �UML� 2001 The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, pages 76–90, 2001. (Cited on page 45)

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg. Kreowski, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation
Volume 2: Applications, Languages and Tools. World Scientific Publishing Co.,
Inc., 1999. (Cited on page 160)

[EIA-649-B] American National Standards Institute. ANSI/EIA-649-B, Configuration Man-
agement Standard. http://webstore.ansi.org/RecordDetail.aspx?sku=
EIA-649-B, 2011. (Cited on page 50)

[Els12] Christoph Elsner. Automating Staged Product Derivation for Heterogeneous
Multi-Product-Lines. PhD thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2012. (Cited on page 177)

[ES13] Holger Eichelberger and Klaus Schmid. A Systematic Analysis of Textual
Variability Modeling Languages. In Proceedings of the 17th International
Software Product Line Conference, SPLC ’13, pages 12–21. ACM, 2013. (Cited
on page 193)

232

http://webstore.ansi.org/RecordDetail.aspx?sku=EIA-649-B
http://webstore.ansi.org/RecordDetail.aspx?sku=EIA-649-B

Bibliography

[ESSPL10] Christoph Elsner, Christa Schwanninger, Wolgang Schröder-Preikschat, and
Daniel Lohmann. Multi-Level Product Line Customization. In Proceedings
of the 2010 conference on New Trends in Software Methodologies, Tools and
Techniques, SoMeT ’10, pages 37–58, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press. (Cited on page 119)

[Fah08] Dirk Fahland. Translating UML2 Activity Diagrams to Petri Nets for Analyzing
IBM WebSphere Business Modeler Process Models. Informatik-Berichte 226,
Humboldt-Universität zu Berlin, 2008. (Cited on page 45)

[FE10] Borko Furht and Armando Escalante, editors. Handbook of Cloud Computing.
Springer, 2010. (Cited on page 14)

[FK92] David F. Ferraiolo and D. Richard Kuhn. Role Based Access Control. In
Proceedings of the 15th National Computer Security Conference, NCSC ’92,
pages 554–563, 1992. (Cited on page 26)

[FKC07] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control. Artech House, Inc., Norwood, MA, USA, second edition,
2007. (Cited on page 25)

[FKN+92] Anthony Finkelstein, Jeff Kramer, Bashar Nuseibeh, Larry Finkelstein, and
Michael Goedicke. Viewpoints: A Framework for Integrating Multiple Perspec-
tives in System Development. International Journal of Software Engineering
and Knowledge Engineering, 1992. (Cited on page 94)

[FS09] Franck Fleurey and Arnor Solberg. A Domain Specific Modeling Language
Supporting Specification, Simulation and Execution of Dynamic Adaptive
Systems. In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems, MODELS ’09, pages 606–621. Springer,
2009. (Cited on page 89)

[GAB+13] Frank Gens, Margaret Adam, David Bradshaw, Christian A. Christiansen, Laura
DuBois, Alejandro Florean, Phil Hochmuth, Vladimı́r Kroa, Robert P. Ma-
howald, Satoshi Matsumoto, Chris Morris, Tony Olvet, Kelly Quinn, Mary John-
ston Turner, Richard L. Villars, and Melanie Posey. Worldwide and Regional
Public IT Cloud Services 2013–2017 Forecast. Technical Report 242464, Inter-
national Data Corporation (IDC), 2013. (Cited on page 1)

[GFd98] Martin Lo Griss, John Favaro, and Massimo d’Alessandro. Integrating Feature
Modeling with the RSEB. In Proceedings of the Fifth International Conference
on Software Reuse, ICSR ’98, pages 76–85, 1998. (Cited on page 33)

[GH04] Hassan Gomaa and Mohamed Hussein. Dynamic Software Reconfiguration in
Software Product Families. In Software Product-Family Engineering, volume
3014 of Lecture Notes in Computer Science, pages 435–444. Springer Berlin
Heidelberg, 2004. (Cited on page 47)

233

Bibliography

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995. (Cited on page 179)

[GKR+06] Kurt Geihs, Mohammad Ullah Khan, Roland Reichle, Arnor Solberg, Svein
Hallsteinsen, and Simon Merral. Modeling of Component-Based Adaptive
Distributed Applications. In Proceedings of the ACM Symposium on Applied
Computing, SAC ’06, pages 718–722. ACM, 2006. (Cited on pages 75 and 90)

[GLR+02] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.
Transformation: The Missing Link of MDA. In Graph Transformation, volume
2505 of Lecture Notes in Computer Science, pages 90–105. Springer Berlin
Heidelberg, 2002. (Cited on page 160)

[Gol13] David Gollasch. Qualitätssicherung mittels Feature-Modellen. Bachelor thesis,
Technische Universität Dresden, September 2013. (Cited on pages 202 and 225)

[Göt13] Sebastian Götz. Multi-Quality Auto-Tuning by Contract Negotiation. Disserta-
tion, Technische Universität Dresden, Dresden, Germany, 2013. (Cited on pages
78, 79 and 82)

[GP92] Thomas R. G. Green and Marian Petre. When Visual Programs are Harder
to Read than Textual Programs. In Proceedings of ECCE-6 (6th European
Conference on Cognitive Ergonomics), Human-Computer Interaction: Tasks
and Organisation, pages 167–180, 1992. (Cited on page 184)

[Gro09] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional, first edition, 2009. (Cited on page
183)

[GS03] Jack Greenfield and Keith Short. Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’03, pages 16–27, New York, NY, USA,
2003. ACM. (Cited on page 35)

[GTL00] Murali Sitaraman Gary T. Leavens. Foundations of Component-Based Systems.
Cambridge University Press, 2000. (Cited on page 74)

[GWCA11] Sebastian Götz, Claas Wilke, Sebastian Cech, and Uwe Aßmann. Sustainable
Green Computing: Practices, Methodologies and Technologies, chapter Archi-
tecture and Mechanisms for Energy Auto Tuning. IGI Global, 2011. (Cited on
page 78)

[GWS+10] Sebastian Götz, Claas Wilke, Matthias Schmidt, Sebastian Cech, and Uwe
Aßmann. Towards Energy Auto Tuning. In Proceedings of the First Annual

234

Bibliography

International Conference on Green Information Technology, GREEN IT ’10,
2010. (Cited on pages V, 77 and 78)

[HCH09] Arnaud Hubaux, Andreas Classen, and Patrick Heymans. Formal Modelling
of Feature Configuration Workflows. In Proceedings of the 13th International
Software Product Line Conference, SPLC ’09, pages 221–230. ACM, 2009.
(Cited on page 45)

[HGS+11] Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and
Schahram Dustdar. An Integrated Approach for Identity and Access Manage-
ment in a SOA Context. In Proceedings of the 16th ACM symposium on Access
control models and technologies, SACMAT ’11, pages 21–30, New York, NY,
USA, 2011. ACM. (Cited on page 199)

[HHPS08] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic
Software Product Lines. Computer, 41(4):93–95, 2008. (Cited on page 47)

[HHS+11] Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens, Dirk Deridder,
and Ebrahim Abbasi. Supporting Multiple Perspectives in Feature-Based
Configuration. Software and Systems Modeling, 10:1–23, 2011. 10.1007/s10270-
011-0220-1. (Cited on pages 94 and 124)

[HJK+09] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Derivation and Refinement of Textual Syntax for Models. In Model
Driven Architecture - Foundations and Applications, volume 5562 of Lecture
Notes in Computer Science, pages 114–129. Springer Berlin Heidelberg, 2009.
(Cited on page 183)

[HJK+13] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Model-Based Language Engineering with EMFText. In Generative
and Transformational Techniques in Software Engineering IV, volume 7680 of
Lecture Notes in Computer Science, pages 322–345. Springer Berlin Heidelberg,
2013. (Cited on page 183)

[HL93] Hans-Joachim Habermann and Frank Leymann. Repository: Eine Einführung.
Oldenbourg Verlag München, Wien, first edition, 1993. (Cited on page 180)

[HM05] John K. Halvey and Barbara M. Melby. Information Technology Outsourcing
Transactions: Process, Strategies, and Contracts. John Wiley & Sons, 2005.
(Cited on page 14)

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of ”Semantics”? Computer, 37(10):64–72, October 2004. (Cited on page 180)

[HSS+10] Florian Heidenreich, Pablo Sanchez, Joao Santos, Steffen Zschaler, Mauricio
Alferez, Joao Araujo, Lidia Fuentes, Uira Kulesza, Ana Moreira, and Awais
Rashid. Relating Feature Models to Other Models of a Software Product

235

Bibliography

Line: A Comparative Study of FeatureMapper and VML*. Transactions on
Aspect-Oriented Software Development VII, 2010. (Cited on page 209)

[HST+08] Patrick Heymans, Pierre-Yves Schobbens, Jean-Christophe Trigaux, Yves Bon-
temps, Raimundas Matulevicius, and Andreas Classen. Evaluating Formal
Properties of Feature Diagram Languages. IET Software, 2008. (Cited on pages
101 and 102)

[Hub12] Arnaud Hubaux. Feature-based Configuration: Collaborative, Dependable, and
Controlled. PhD thesis, University of Namur, Belgium, 2012. (Cited on pages 44,
121 and 124)

[Hur10] Hurwitz & Associates. The Sources of Web Application Downtime. Technical
report, Phurnace Software, 2010. (Cited on page 2)

[HW07] Florian Heidenreich and Christian Wende. Bridging the Gap Between Features
and Models. In Proceedings of the Second Workshop on Aspect-Oriented Product
Line Engineering, AOPLE ’07, 2007. (Cited on page 61)

[HWC12] Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. CVL: Common
Variability Language. In Proceedings of the 16th International Software Product
Line Conference, SPLC ’12, pages 266–267. ACM, 2012. (Cited on page 34)

[IDC09] International Data Corporation. Defining ”Cloud Services” – an IDC update.
http://blogs.idc.com/ie/?p=422, 2009. retrieved on 2013/05/22. (Cited on
page 16)

[IEEE 828-2012] IEEE Computer Society. IEEE 828-2012 - IEEE Standard for Configuration
Management in Systems and Software Engineering. http://standards.ieee.
org/findstds/standard/828-2012.html, 2012. (Cited on page 51)

[INCITS 359] American National Standards Institute. ANSI INCITS 359-2004, Role Based Ac-
cess Control. http://www.profsandhu.com/journals/tissec/ANSI+INCITS+
359-2004.pdf, 2004. (Cited on page 26)

[ISO 10006] International Organization for Standardization. ISO 10006:2003, Quality Man-
agement Systems – Guidelines for Quality Management in Projects. http:
//www.iso.org/iso/catalogue_detail.htm?csnumber=36643, 2003. (Cited
on pages 23 and 24)

[ISO 42010] International Organization for Standardization. ISO/IEC/IEEE 42010:2011,
Systems and Software Engineering Standard. http://www.iso-architecture.
org/ieee-1471/, 2011. (Cited on pages 72, 73 and 94)

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006. (Cited on page 129)

236

http://blogs.idc.com/ie/?p=422
http://standards.ieee.org/findstds/standard/828-2012.html
http://standards.ieee.org/findstds/standard/828-2012.html
http://www.profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
http://www.profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=36643
http://www.iso.org/iso/catalogue_detail.htm?csnumber=36643
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/

Bibliography

[Jam12] Kris Jamsa. Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business
Models, Mobile, Security, and More. Jones & Bartlett Pub, 2012. (Cited on
pages IX and 11)

[JOP11] Venkata Josyula, Malcolm Orr, and Greg Page. Cloud Computing: Automating
the Virtualized Data Center, chapter Service Life Cycle Management, page 256.
Cisco Press, 2011. (Cited on pages 14 and 15)

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Carnegie Mellon University
Pittsburgh, Software Engineering Institute, 1990. (Cited on pages 31, 34, 35 and 37)

[KK02] Dimitris Karagiannis and Harald Kühn. Metamodelling Platforms. In E-
Commerce and Web Technologies, volume 2455 of Lecture Notes in Computer
Science, pages 182–182. Springer Berlin Heidelberg, 2002. (Cited on page 181)

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software Engineering, 5(1):143–168,
1998. (Cited on page 61)

[KL03] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of Network
and Systems Management, 11:57–81, 2003. (Cited on page 18)

[KOD10] Ahmet Serkan Karataş, Halit Oǧuztüzün, and Ali H. Doǧru. Mapping Ex-
tended Feature Models to Constraint Logic Programming over Finite Domains.
In Proceedings of the 14th International Software Product Line Conference,
SPLC ’10, pages 286–299, 2010. (Cited on pages 45, 46, 132, 200, 201 and 251)

[Koz11] Heiko Koziolek. The SPOSAD Architectural Style for Multi-tenant Software
Applications. In Proceedings of the 9th Working IEEE/IFIP Conference on
Software Architecture, WICSA ’11, pages 320–327, 2011. (Cited on page 89)

[KPMG13] KPMG AG and Bitkom. Cloud-Monitor 2013 - Cloud-Computing in Deutsch-
land – Status quo und Perspektiven. http://www.bitkom.org/files/
documents/Studie_Cloud_Monitor.pdf, 2013. (Cited on page 9)

[Kru13] Charles W. Krueger. Multistage Configuration Trees for Managing Product
Family Trees. In Proceedings of the 17th International Software Product Line
Conference, SPLC ’13, pages 188–197. ACM Press, 2013. (Cited on pages 86, 121
and 177)

[Lad99] Robert Laddaga. Guest Editor’s Introduction: Creating Robust Software
through Self-Adaptation. IEEE Intelligent Systems, 14(3):0026–29, 1999. (Cited
on page 74)

237

http://www.bitkom.org/files/documents/Studie_Cloud_Monitor.pdf
http://www.bitkom.org/files/documents/Studie_Cloud_Monitor.pdf

Bibliography

[LK06] Jaejoon Lee and Kyo C. Kang. A Feature-Oriented Approach to Developing
Dynamically Reconfigurable Products in Product Line Engineering. In Proceed-
ings of the 10th International Software Product Line Conference, SPLC ’06,
pages 140–150, 2006. (Cited on pages 48 and 177)

[LKL02] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. Concepts and Guidelines of
Feature Modeling for Product Line Software Engineering. In Proceedings of
the 7th International Conference on Software Reuse: Methods, Techniques, and
Tools, ICSR-7, pages 62–77, London, UK, UK, 2002. Springer-Verlag. (Cited on
page 35)

[LMSW13] Malte Lochau, Stephan Mennicke, Julia Schroeter, and Tim Winkelmann.
Extended Version of Automated Verification of Feature Model Configuration
Processes based on Workflow Petri Nets. Technical report, TU Braunschweig,
2013. (Cited on pages 4, 127, 135 and 225)

[LP07] Felix Loesch and Erhard Ploedereder. Optimization of Variability in Software
Product Lines. In Proceedings of the 11th International Software Product Line
Conference, pages 151–162, 2007. (Cited on page 37)

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. (Cited on page 31)

[LSZ12] Ioanna Lytra, Stefan Sobernig, and Uwe Zdun. Architectural Decision Making
for Service-Based Platform Integration: A Qualitative Multi-Method Study. In
Proceedings of the Joint Working IEEE/IFIP Conference on Software Architec-
ture and European Conference on Software Architecture, WICSA/ECSA ’12,
pages 111–120. IEEE, 2012. (Cited on page 176)

[MA02] Dirk Muthig and Colin Atkinson. Model-Driven Product Line Architectures.
In Proceedings of the Second International Software Product Line Conference,
SPLC ’02, 2002. (Cited on page 29)

[Ma07] Dan Ma. The Business Model of ”Software-as-a-Service”. In Proceedings of
the IEEE International Conference on Services Computing, SCC ’07, pages
701–702, Los Alamitos, CA, USA, 2007. IEEE Computer Society. (Cited on page
11)

[Man02] Mike Mannion. Using First-Order Logic for Product Line Model Validation. In
Software Product Lines, volume 2379 of Lecture Notes in Computer Science,
pages 176–187. Springer Berlin Heidelberg, 2002. (Cited on page 46)

[MBJ+09] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor
Solberg. Models@Run.time to Support Dynamic Adaptation. Computer, 42:44–
51, 2009. (Cited on page 75)

238

Bibliography

[MBNJ09] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jézéquel. Taming
Dynamically Adaptive Systems Using Models and Aspects. In Proceedings of
the International Conference on Software Engineering, ICSE ’09, pages 122–132.
IEEE Computer Society, 2009. (Cited on page 89)

[MCdO07] Marćılio Mendonça, Donald D. Cowan, and Toacy Cavalcante de Oliveira. A
Process-Centric Approach for Coordinating Product Configuration Decisions.
In Proceedings of the 40th Hawaii International International Conference on
Systems Science, HICSS ’07, page 283. IEEE Computer Society, 2007. (Cited
on pages 44 and 45)

[McI68] Malcolm Douglas McIlroy. Mass-Produced Software Components. In Proceedings
of Software Engineering Concepts and Techniques, 1968 NATO Conference on
Software Engineering, pages 88–98, 1968. (Cited on pages 32 and 77)

[MdlILG08] Jose Luis Maŕın de la Iglesia and Jose Emilio Labra Gayo. Doing Business by
Selling Free Services. In Web 2.0, pages 1–14. Springer US, 2008. (Cited on page
91)

[Mee11] Stephanie Meerkamm. Configuration of Multi-Perspectives Variants. In Busi-
ness Process Management Workshops, volume 66 of Lecture Notes in Business
Information Processing, pages 277–288. Springer Berlin Heidelberg, 2011. (Cited
on page 124)

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing.
NIST Special Publication 800-145, National Institute of Standards and Tech-
nology, Information Technology Laboratory, 2011. (Cited on pages 10, 12, 14
and 15)

[MH10] Mario Meir-Huber. Cloud Computing: Praxisratgeber und Einstiegsstrategien.
Entwickler.Press, 2010. (Cited on page 13)

[Mie10] Ralph Mietzner. A Method and Implementation to Define and Provision
Variable Composite Applications, and its Usage in Cloud Computing. PhD
thesis, Universität Stuttgart, 2010. (Cited on pages 29, 67, 68 and 89)

[MS98] Kimbal Marriott and Peter J. Stuckey. Programming With Constraints: An
Introduction. MIT Press, 1998. (Cited on page 38)

[MS13] Dirk Muthig and Julia Schroeter. A Framework for Role-Based Feature Man-
agement in Software Product Line Organizations. In Proceedings of the 17th
International Software Product Line Conference, SPLC ’13, New York, NY,
USA, 2013. ACM Press. (Cited on pages 4, 127, 137 and 225)

[MSD+12] Raúl Mazo, Camille Salinesi, Daniel Diaz, Olfa Djebbi, and Alberto Lora-
Michiels. Constraints: The Heart of Domain and Application Engineering in

239

Bibliography

the Product Lines Engineering Strategy. International Journal of Information
System Modeling and Design, 3(2):33–68, April 2012. (Cited on pages 46 and 157)

[MSDLM11] Raúl Mazo, Camille Salinesi, Daniel Diaz, and Alberto Lora-Michiels. Trans-
forming Attribute and Clone-Enabled Feature Models into Constraint Programs
over Finite Domains. In Proceedings of the 6th International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE ’11), pages
188–199. SciTePress, 2011. (Cited on pages 45, 46, 200, 201 and 251)

[MWC09] Marćılio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. SAT-Based
Analysis of Feature Models is Easy. In Proceedings of the 13th International
Software Product Line Conference, SPLC ’09, pages 231–240, 2009. (Cited on
page 46)

[NCB+13] Linda M. Northrop, Paul C. Clements, Felix Bachmann, John Bergey, Gary
Chastek, Sholom Cohen, Patrick Donohoe, Lawrence Jones, Robert Krut, Reed
Little, John McGregor, and Liam O’Brien. A Framework for Software Product
Line Practice, Version 5.0. Online Article, 2013. http://www.sei.cmu.edu/
productlines/framework.html. (Cited on page 51)

[Nei80] James M. Neighbors. Software Construction Using Components. PhD thesis,
Department of Information and Computer Science, University of California,
Irvine, 1980. (Cited on page 33)

[Nei84] James M. Neighbors. The Draco Approach to Constructing Software from
Reusable Components. Software Engineering, IEEE Transactions on, SE-
10(5):564–574, sept. 1984. (Cited on page 180)

[NH02] Thomas T. Nagle and Reed K. Holden. The Strategy and Tactics of Pricing.
Prentice Hall, 2002. (Cited on page 91)

[Nit09] Nitu. Configurability in SaaS (Software as a Service) Applications. In Proceed-
ings of the 2nd India software engineering conference, ISEC ’09, pages 19–26,
New York, NY, USA, 2009. ACM. (Cited on page 18)

[NKF03] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. Viewpoints: Meaning-
ful Relationships are Difficult. In Proceedings of the International Conference
on Software Engineering, ICSE ’03, 2003. (Cited on page 94)

[Obj03] Object Management Group. MDA Guide Version 1.0.1, 2003. (Cited on page
181)

[OMG2004] UML Human-Usable Textual Notation (HUTN), version 1.0, 2004. (Cited on
page 183)

[OMG2011a] MOF 2 XMI Mapping, version 2.4.1, 2011. (Cited on page 183)

240

http://www.sei.cmu.edu/productlines/framework.html
http://www.sei.cmu.edu/productlines/framework.html

Bibliography

[OMG2011b] OMG Unified Modeling Language (OMG UML) Superstructure, version 2.4.1,
2011. (Cited on pages 146 and 181)

[OMG2012] OMG Object Constraint Language (OCL), version 2.3.1, 2012. (Cited on page
86)

[Par66] Douglas Parkhill. The Challenge of the Computer Utility. Addison-Wesley
Publishing Company, 1966. (Cited on page 10)

[Par72] David L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, 1972. (Cited on page
94)

[Par76] David L. Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering, 2:1–9, 1976. (Cited on page 32)

[Par13] Beth Pariseau. Self-Service Portals Give IT Control in the Cloud. Web Journal
SearchCloudComputing.com, May 2013. (Cited on page 27)

[PBN+11] Leonardo Teixeira Passos, Thorsten Berger, Marko Novakovic, Krzysztof Czar-
necki, Yingfei Xiong, and Andrzej Wasowski. A Study of Non-Boolean Con-
straints in Variability Models of an Embedded Operating System. In Proceedings
of the 15th International Software Product Line Conference, Volume 2, pages
2:1–2:8, 2011. (Cited on pages 132, 200 and 201)

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer, 2005. (Cited
on pages 4, 31, 32, 33, 34, 73 and 124)

[Pil06] Frank T. Piller. Mass Customization. Gabler Edition Wissenschaft. Dt. Univ.-
Verl., Wiesbaden, fourth edition, 2006. (Cited on page 31)

[RA11] Stefan T. Ruehl and Urs Andelfinger. Applying Software Product Lines to
Create Customizable Software-as-a-Service Applications. In Proceedings of
the 15th International Software Product Line Conference, Volume 2, pages
16:1–16:4. ACM, 2011. (Cited on pages 67 and 68)

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenson. Object Oriented Modeling and Design. Prentice-Hall, 1991.
(Cited on page 27)

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. Ex-
tending Feature Diagrams With UML Multiplicities. In Proceedings of 6th
Conference on Integrated Design & Process Technology, IDPT ’02, Pasadena,
California, USA, 2002. (Cited on pages IX and 38)

241

Bibliography

[RN09] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, NJ, USA, third edition, 2009. (Cited on
pages 39 and 45)

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation Volume 1: Foundations. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1997. (Cited on page 160)

[RSPA11a] Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Combin-
ing Runtime Adaptation and Static Binding in Dynamic Software Product Lines.
Technical Report 02, School of Computer Science, University of Magdeburg,
February 2011. (Cited on page 42)

[RSPA11b] Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Tailoring
Dynamic Software Product Lines. In Proceedings of the 10th International
Conference on Generative Programming and Component Engineering, GPCE ’11,
pages 3–12, New York, NY, USA, 2011. ACM Press. (Cited on page 124)

[RW08] Ulrike Ranger and Erhard Weinell. The Graph Rewriting Language and
Environment PROGRES. In Applications of Graph Transformations with
Industrial Relevance, volume 5088 of Lecture Notes in Computer Science, pages
575–576. Springer Berlin Heidelberg, 2008. (Cited on page 163)

[RW12] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware
Information Systems. Springer, 2012. (Cited on pages VI and 149)

[SAP09] SAP BusinessObjects User Management System Administrator’s Guide, 2009.
(Cited on page 26)

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-Oriented Programming of Software Product Lines. Software
Product Lines: Going Beyond, pages 77–91, 2010. (Cited on page 35)

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, second edition,
2009. (Cited on page 181)

[SCFY96] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-Based Access Control Models. In IEEE Computer, volume 29, pages 38–47.
IEEE Press, 1996. (Cited on page 26)

[SCG+12] Julia Schroeter, Sebastian Cech, Sebastian Götz, Claas Wilke, and Uwe Aßmann.
Towards Modeling a Variable Architecture for Multi-Tenant SaaS-Applications.
In Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS ’12, pages 111–120, New York, NY, USA,
January 2012. ACM Press. (Cited on pages 4, 71, 72 and 83)

242

Bibliography

[Sch11] Julia Schroeter. Towards Generating Multi-Tenant Applications. In Proceedings
of the GTTSE and SLE 2011 Students’ Workshop, July 2011. (Cited on pages 4
and 127)

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.
Young, and Gregory Zelesnik. Abstractions for Software Architecture and Tools
to Support them. IEEE Transactions on Software Engineering, 21(4):314–335,
1995. (Cited on page 73)

[SDM+11] Camille Salinesi, Olfa Djebbi, Raúl Mazo, Daniel Diaz, and Alberto Lora-
Michiels. Constraints: The Core of Product Line Engineering. In Proceedings of
the Fifth IEEE International Conference on Research Challenges in Information
Science), RCIS ’11, pages 1–10. IEEE, 2011. (Cited on page 46)

[Seg08] Sergio Segura. Automated Analysis of Feature Models Using Atomic Sets. In
Proceedings of the 12th International Conference of Software Product Lines,
SPLC ’08, pages 201–207. Lero Int. Science Centre, University of Limerick,
Ireland, 2008. (Cited on page 46)

[SFK00] Ravi Sandhu, David F. Ferraiolo, and D. Richard Kuhn. The NIST Model for
Role Based Access Control: Toward a Unified Standard. In Proceedings of the
5th ACM Workshop on Role Based Access Control. ACM Press, 2000. (Cited on
pages 26 and 27)

[SJ04] Klaus Schmid and Isabel John. A Customizable Approach to Full Lifecycle
Variability Management. Science of Computer Programming - Special issue:
Software variability management, 53:259–284, 2004. (Cited on page 34)

[SK95] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics of Pro-
gramming Languages: A Laboratory Based Approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, first edition, 1995. (Cited on page 180)

[SLW11] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Extended Version of
Multi-Perspectives on Feature Models. In Technical Report TUD-FI11-07-
Dezember 2011. Technische Universität Dresden, December 2011. (Cited on
pages 4, 91 and 119)

[SLW12a] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Conper: Consistent
Perspectives on Feature Models. In Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Applications,
ECMFA ’12, pages 55–58. Technical University of Denmark DTU, July 2012.
(Cited on pages 4, 91 and 202)

[SLW12b] Julia Schroeter, Malte Lochau, and Tim Winkelmann. Multi-Perspectives
on Feature Models. In Model Driven Engineering Languages and Systems -
Proceedings of the 15th International Conference on Model Driven Engineering

243

Bibliography

Languages & Systems, volume 7590 of MODELS ’12, pages 252–268. Springer
Berlin Heidelberg, October 2012. (Cited on pages 4, 91, 92 and 103)

[SMM+12] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and Malte Lochau.
Dynamic Configuration Management of Cloud-Based Applications. In Proceed-
ings of the 16th International Software Product Line Conference - Volume 2,
SPLC ’12, pages 171–178, New York, NY, USA, September 2012. ACM. (Cited
on pages 4, 127, 128, 130 and 144)

[Smo02] Kari Smolander. Four Metaphors of Architecture in Software Organizations:
Finding out the Meaning of Architecture in Practice. In Proceedings of the
International Symposium on Empirical Software Engineering, pages 211–221,
2002. (Cited on page 72)

[SOS+12] Karsten Saller, Sebastian Oster, Andy Schürr, Julia Schroeter, and Malte
Lochau. Reducing Feature Models to Improve Runtime Adaptivity on Resource
Limited Devices. In Proceedings of the 16th International Software Product
Line Conference - Volume 2, SPLC ’12, pages 135–142, New York, NY, USA,
September 2012. ACM Press. (Cited on pages 93 and 125)

[SPLOT12] Software Product Line Online Tools (SPLOT). Project Website http://www.
splot-research.org, April 2012. (Cited on page 202)

[SRP03] Detlef Streitferdt, Matthias Riebisch, and Ilka Philippow. Details of Formalized
Relations in Feature Models Using OCL. In Engineering of Computer-Based
Systems, 2003. Proceedings. 10th IEEE International Conference and Workshop
on the, pages 297–304, 2003. (Cited on pages 38 and 39)

[SSSPS07] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. Is The Linux Kernel a Software Product Line? In Proceedings
of the International Workshop on Open Source Software and Product Lines,
SPLC-OSSPL ’07, Kyoto, Japan, 2007. (Cited on page 29)

[STB+04] Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Müller, Oliver Pertler,
Wolfgang Stolz, and Stefan Ferber. Introducing PLA at Bosch Gasoline Systems:
Experiences and Practices. In Software Product Lines, volume 3154 of Lecture
Notes in Computer Science, pages 34–50. Springer Berlin Heidelberg, 2004.
(Cited on page 37)

[SV01] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access Control:
Policies, Models, and Mechanisms. In Revised versions of lectures given during
the IFIP WG 1.7 International School on Foundations of Security Analysis
and Design on Foundations of Security Analysis and Design: Tutorial Lectures,
FOSAD ’00, pages 137–196, London, UK, UK, 2001. Springer-Verlag. (Cited on
page 25)

244

http://www.splot-research.org
http://www.splot-research.org

Bibliography

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Soft-
ware Development: Technology, Engineering, Management. John Wiley & Sons,
2006. (Cited on page 129)

[SZG+08] Wei Sun, Xin Zhang, Chang Jie Guo, Pei Sun, and Hui Su. Software as a Service:
Configuration and Customization Perspectives. In Congress on Services Part
II, 2008. SERVICES-2. IEEE, pages 18–25, 2008. (Cited on page 18)

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman, Amsterdam, 1998. (Cited on page 76)

[TBD+08] Pablo Trinidad, David Benavides, Amador Durán, Antonio Ruiz-Cortés, and
Miguel Toro. Automated Error Analysis for the Agilization of Feature Modeling.
Journal of Systems and Software, 81(6):883 – 896, 2008. (Cited on pages 46
and 120)

[TCPB07] Pablo Trinidad, Antonio Ruiz Cortés, Joaqúın Peña, and David Benavides.
Mapping Feature Models onto Component Models to Build Dynamic Software
Product Lines. In Proceedings of the 11th International Software Product Line
Conference, SPLC ’07, pages 51–56. IEEE Computer Society, 2007. (Cited on
page 61)

[TH02] Steffen Thiel and Andreas Hein. Modelling and Using Product Line Variability
in Automotive Systems. IEEE Software, 19(4):66–72, 2002. (Cited on page 29)

[Tha12] Cheng Thao. A Configuration Management System for Software Product Lines.
PhD thesis, University of Wisconsin-Milwaukee, 2012. (Cited on page 51)

[TKES11] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
Abstract Features in Feature Modeling. In Proceedings of the 15th International
Conference of Software Product Lines, SPLC ’11, pages 191–200. IEEE, 2011.
(Cited on page 120)

[Tsa93] Edward Tsang. Foundations of Constraint Satisfaction (Computation in Cogni-
tive Science). Academic Press Inc., 1993. (Cited on page 46)

[VDK02] Arie Van Deursen and Paul Klint. Domain-Specific Language Design Requires
Feature Descriptions. Journal of Computing and Information Technology,
10(1):1–17, 2002. (Cited on page 193)

[VDKV00] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages:
An Annotated Bibliography. Sigplan Notices, 35(6):26–36, 2000. (Cited on page
180)

[Ver99] Dinesh C. Verma. Supporting Service Level Agreements on IP Networks. Macmil-
lan Technical Publishing, 1999. (Cited on pages 17 and 18)

245

Bibliography

[Wat05] Bret Waters. Software as a Service: A Look at the Customer Benefits. Journal
of Digital Asset Management, 1:32–39, 2005. (Cited on page 11)

[WDS09] Jules White, Brian Dougherty, and Douglas C. Schmidt. Selecting Highly
Optimal Architectural Feature Sets with Filtered Cartesian Flattening. Journal
of Systems and Software (JSS), 82:1268–1284, 2009. (Cited on pages 46 and 94)

[WfMC99] Workflow Management Coalition. The Workflow Management Coalition Speci-
fication: Terminology & Glossary. http://www.wfmc.org/standards/docs/
TC-1011_term_glossary_v3.pdf, 1999. Document WFMC-TC-1011, Issue
3.0. (Cited on page 44)

[WKM12] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. Cloud Service Selec-
tion Based on Variability Modeling. In Proceedings of the 10th International
Conference on Service-Oriented Computing, ICSOC ’12, pages 127–141, Berlin,
Heidelberg, 2012. Springer-Verlag. (Cited on page 177)

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering:
A Family-Based Software Development Process. Addison-Wesley Professional,
1999. (Cited on pages 31, 32, 34, 73 and 74)

[WSB+08] Jules White, Douglas C. Schmidt, David Benavides, Pablo Trinidad, and
Antonio Ruiz-Cortés. Automated Diagnosis of Product-line Configuration
Errors in Feature Models. In Proceedings of the 12th International Software
Product Line Conference, SPLC ’08, pages 225–234, Washington, DC, USA,
2008. IEEE Computer Society. (Cited on pages 46 and 251)

[WZ11] Erik Wittern and Christian Zirpins. On the Use of Feature Models for Service
Design: The Case of Value Representation. In Proceedings of the 2010 interna-
tional conference on Towards a service-based internet, ServiceWave ’10, pages
110–118, Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on page 34)

[WZL+11] Rui Wang, Yong Zhang, Shijun Liu, Lei Wu, and Xiangxu Meng. A Dependency-
Aware Hierarchical Service Model for SaaS and Cloud Services. In Proceedings
of the IEEE International Conference on Services Computing, SCC ’11, pages
480–487, 2011. (Cited on page 89)

[XHSC12] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. Gen-
erating Range Fixes for Software Configuration. In Proceedings of the 2012
International Conference on Software Engineering, ICSE ’12, pages 58–68,
Piscataway, NJ, USA, 2012. IEEE Press. (Cited on page 46)

[YR06] Liguo Yu and Srini Ramaswamy. A Configuration Management Model for
Software Product Line, 2006. (Cited on page 51)

[Zac87] John A. Zachman. A Framework for Information Systems Architecture. IBM
Systems Journal, 26(3):276–292, 1987. (Cited on page 72)

246

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

[ZKT10] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. Feature Assembly:
A New Feature Modeling Technique. In Proceedings of the 29th International
Conference on Conceptual Modeling, ER ’10, pages 233–246. Springer, 2010.
(Cited on page 124)

[ZYZJ08] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A BDD-Based Approach
to Verifying Clone-Enabled Feature Models’ Constraints and Customization.
In High Confidence Software Reuse in Large Systems, volume 5030 of Lecture
Notes in Computer Science, pages 186–199. Springer Berlin Heidelberg, 2008.
(Cited on page 46)

247

248

Part III.

Appendix

249

A. Translation of Extended Feature Model in

Constraint Satisfaction Problem

An extended feature model containing attributes and group-cardinality, as introduced in Sec-
tion 6.3, is translated into a CSP by applying the rules a) to l) depicted in Table A.1. Most
of the translation rules have been proposed previously in literature. As such, rules a), d), f),
g) are taken from [BTRC05], while rule e) was proposed in [KOD10], and rules h), i) originate
in [MSDLM11]. Translation rules b) and c) express the configuration state of features in a partial
configuration, as proposed in [WSB+08]. The translation rules j) and k) are added to specify the
configuration state of attributes in a partial feature model configuration.

Each feature is represented as a CSP variable with a Boolean domain [0, 1], as stated by translation
rule a), where 0 represents the deselection of a feature and 1 the selection accordingly. A selected
or deselected feature adds an additional constraint to the CSP limiting the feature variable
assignment, as shown in the translation rules b) and c). The relationship between parent and
child feature is translated into an implication constraint, as depicted in translation rule d).

The decomposition relation of grouped features is expressed as sum of all feature variables, as
expressed in translation rule e). This avoids the combinatoric explosion by representing the
constraint as a propositional logic term instead. In contrast to proposed translations in literature,
solitary features are not handled differently from grouped features in the approach proposed
in this work, as both are modeled in a feature group, as discussed in Section 2.3.2. Cross-tree
constraints on features are translated into implication constraints in the CSP, as stated in the
translation rules f) and g).

Each attribute is represented as a CSP variable with the domain either represented as an
enumeration such as [1, 2, 5] or intervals with an upper and lower bound such as [0− 5] depending
on the domain in the feature model as expressed by translation rules h) and i). Thus, each
attribute domain variable contains a mandatory value 0 to express that an attribute is not
assigned or disabled [MSDLM11]. Any other value represents an attribute value assignment.
Thus, the selection of the attribute’s feature leads to the evaluation of the attribute domain
values. In contrast, if the feature is deselected, the attribute has the value 0 assigned. Attributes
are evaluated with respect to an attribute’s feature. Hence, explicitly assigning the attribute
value 0 to an attribute is evaluated correctly if the feature is selected. For deselected features,
the attribute value is irrelevant.

The assignment of an attribute value to an attribute is only evaluated if the attribute’s feature is
selected. This constraint is expressed in the CSP as depicted by translation rule j). Furthermore,
translation rule k) expresses that deselected attribute values are only evaluated if the attribute’s
feature is selected.

251

Cross-tree constraints on two attributes are translated, as expressed by translation rule l). If
two attributes of two different features are constrained in the feature model, a biimplication
constraint on the features is introduced in the CSP to ensure that both features are selected to
evaluate the attribute constraint. Additionally, a constraint on an attribute value is translated
into the CSP according to translation rule m).

Table A.1 Rules for translating an extended feature model into a Constraint Satisfaction
Problem.

Feature model concept Graphical notation Constraint satisfaction prob-
lem representation

a) Undecided feature f f 0 ≤ f ≤ 1

b) Selected feature f +f f = 1

c) Deselected feature f −f f = 0

d) Relation between parent fea-
ture fp and child feature fc

fp

fc

(fc = 1)→ (fp = 1)

e) Decomposition relation with
group cardinality [m,n] be-
tween grouped features f1, . . . ,
fk and their parent feature fp

fp

f1 fk

m, n

(fp = 1)→
(m ≤ sum(f1, . . . , fk) ≤ n)

f) Requires relation between fea-
ture fj and fk

fj fk (fj = 1)→ (fk = 1)

g) Excludes relation between two
features fj and fk

fj fk (fj = 1)→ (fk = 0),
(fk = 1)→ (fj = 0)

h) Attribute values v1, . . . , vi are
specified as enumeration in the
discrete domain D of attribute
a which belongs to feature f

f

a : D = {v1, . . . , vi}
(f = 1)→ (a ∈ {v1, . . . , vi}),
(f = 0)→ (a = 0)

Continued on next page

252

Table A.1 – continued from previous page

Feature model concept Graphical notation Constraint satisfaction prob-
lem representation

i) Attribute values expressed as
integer intervals with upper
and lower bound [vmin, vmax]
in the discrete domain D of
attribute a that belongs to fea-
ture f

f

a : D = [vmin, vmax]
(f = 1)→ (a ∈ [vmin, vmax]),
(f = 0)→ (a = 0)

j) Assigned attribute value v1 of
attribute a with discrete do-
main D and related to feature
f

f

a : D := v1
(f = 1)→ (a = v1)

k) Deselected attribute values
v1, v2 of attribute a with dis-
crete domain D and related to
feature f

f

a : D\{v1, v2}
(f = 1)→ (a 6∈ {v1, v2})

l) Relational constraint on two
attributes a1 and a2, where a1
with domain D1 belongs to fea-
ture f1 and a2 with domain D2
belong to feature f2; domains
D1 and D2 and features f1 and
f2 are not compellingly equal

f1

a1 : D1

f2

a2 : D2

a1 ◦ a2, with
◦ ∈ {=, 6=,≤,≥, >,<},
(f1 = 1)↔ (f2 = 1)

m) Relational constraint on an in-
teger value vi and an attribute
a1 of feature f1 with domain
D1

f1

a1 : D1 — a1 ◦ vi

a1 ◦ vi, with
◦ ∈ {=, 6=,≤,≥, >,<}

253

254

B. EFeatureText: Extended Feature Model

Language

The textual modeling language EFeatureText for defining attributed and group-cardinality based
feature models is implemented in Ecore and EMFText. This language is applied in the tool suite
PUMA to specify feature models textually as explained in Chapter 7.

B.1. Concrete Syntax of EFeatureText

The concrete syntax of this language is specified in EMFText as shown in the following List-
ing B.1.

1 @ SuppressWarnings (tokenOverlapping)
SYNTAXDEF eft // Extended Featuremodel Text

3 FOR <http :// www. tudresden .de/extfeature >
START FeatureModel

5

TOKENS {
7 DEFINE INTEGER $(’0’..’9’)+ $;

DEFINE COMMENT $ ’// ’(˜(’\n ’|’\r ’|’\ uffff ’))* $;
9 }

11

TOKENSTYLES {
13 " INTEGER " COLOR #2 A00FF;

" COMMENT " COLOR # AAAAAA ;
15 ":=" COLOR #009 E0F , BOLD;

" selected " COLOR #009 E0F , BOLD;
17 " deselected " COLOR #CE0000 , BOLD;

}
19

RULES {
21 // syntax definition for container class ’FeatureModel ’

FeatureModel ::= " featuremodel " #1 name[’"’,’"’] !0!0
23 domains * !0 root !0 constraints * ;

25 // syntax definition for features and their configuration state
Feature ::= configurationState [selected : " selected ", deselected : " deselected

", unbound : ""] #1 " feature " #1 name[’"’,’"’] #1 "<" id[] ">"
27 (!1 (attributes | groups))*;

29 // syntax definition for groups
Group ::= "group" #1 "<"id[]">" #1 "(" minCardinality [INTEGER] ".."

maxCardinality [INTEGER] ")"

255

B.1. Concrete Syntax of EFeatureText

31 #1 "{" (!1 childFeatures)+ "}" !0;

33 // syntax definition for attributes and their configuration state
Attribute ::= name [] #1 "[" domain [] "]" ("\\" "{" deselectedDomainValues [’"’

,’"’] ("," #1 deselectedDomainValues [’"’,’"’])* "}")?
35 (#1 ":=" #1 (value[’"’,’"’]))? ;

37 // syntax definition for attribute domains
NumericalDomain ::= " domain " #1 "<" id[] ">" #1 "[" intervals ("," #1

intervals)* "]" !0;
39 Interval ::= lowerBound [INTEGER] ".." upperBound [INTEGER];

41 DiscreteDomain ::= " domain " #1 "<" id[] ">" #1 "[" values ("," #1 values)* "]
" !0;

DomainValue ::= (name [] "=")? #0 int[INTEGER];
43

// syntax definition for cross -tree constraints
45 Imply ::= " constraint " #1 "<"id[]">" #1 leftOperand [] #1 "->" #1 rightOperand

[] !0;
Exclude ::= " constraint " #1 "<"id[]">" #1 leftOperand [] #1 " <->" #1

rightOperand [] !0;
47

AttributeConstraint ::= " constraint " #1 "<"id[]">" #1
49 attribute1 #1

operator [equal : "==", unequal : "!=", greaterThan : ">",
greaterThanOrEqual : " >=", lessThan : "<", lessThanOrEqual : " <="] #1

51 attribute2 !0;

53 AttributeReference ::= feature [] #0 "." #0 attribute [];

55 AttributeValue ::= (name[’"’,’"’] | int[INTEGER]);
}

Listing B.1 Concrete syntax of textual language EFeatureText.

256

B. EFeatureText: Extended Feature Model Language

B.2. SAP Business ByDesign Example

The SaaS application Business ByDesign is designed as a configurable CRM application for small
and medium size companies. To calculate the price of a tailored application, a configuration
self-service portal is offered to customers. The configuration view of this portal presents available
features and the dependencies among them to the customers. A feature model is extracted
from this configuration view. Table B.1 shows the metrics of this feature model. The Business

Table B.1 Metrics of Business ByDesign feature model.

Metrics Value

Number of features 78
Number of attributes 2
Number of cross-tree constraints 23
Constraint feature coverage 37%
Constraint attribute coverage 100%
Is feature model satisfiable true

ByDesign feature model written in EFeatureText is depicted in Listing B.2. The listing shows
the domain feature model that specifies all derivable variant configurations.
featuremodel " Business ByDesign "

2

domain <employeeDomain > [10..10000]
4 domain <userDomain > [10..10000]

6 feature " Customer Relationship Management " <crm > group <stakeholderConfiguration
> (1..1) {

feature " Stakeholders " <stakeholders >
8 employees [employeeDomain]

users [userDomain] }
10 group <modules > (1..17) {

feature " Marketing " <Marketing > group <marketingSelection > (1..2) {
12 feature " Market Development " <Market_Development >

feature " Campaign Management " <Campaign_Management >
14 }

16 feature "Sales" <Sales > group <salesSelection > (1..6) {
feature " Account and Activity Management " <Account_and_Activity_Management >

18 feature " Product and Service Portfolio for Sales" <
Product_and_Service_Portfolio_for_Sales >
feature "New Business " <New_Business >

20 feature " Selling Products and Services " <Selling_Products_and_Services >
feature " Customer Invoicing " <Customer_Invoicing >

22 feature "Sales Planning " <Sales_Planning >
}

24

feature " Service " <Service > group <serviceSelection > (1..4) {
26 feature " Entitlement Management " <Entitlement_Management >

feature " Product and Service Portfolio for Field Service and Repair " <
Product_and_Service_Portfolio_for_Field_Service_and_Repair >

257

B.2. SAP Business ByDesign Example

28 feature " Customer Care" <Customer_Care >
feature "Field Service and Repair " <Field_Service_and_Repair >

30 }

32 feature " Sourcing " <Sourcing > group <sourcingSelection > (1..2) {
feature " Supplier Base Management " <Supplier_Base_Management >

34 feature " Sourcing and Contracting " <Sourcing_and_Contracting >
}

36

feature " Purchasing " <Purchasing > group <purchasingSelection > (1..3) {
38 feature "Self - Service Procurement " <SelfService_Procurement >

feature " Purchase Request and Order Management " <
Purchase_Request_and_Order_Management >

40 feature " Supplier Invoicing " <Supplier_Invoicing >
}

42

feature " Product Development " <Product_Development > group <productSelection >
(1..2) {

44 feature " Product Definition " <Product_Definition >
feature " Product Engineering " <Product_Engineering >

46 }

48 feature " Supply Chain Setup Management " <Supply_Chain_Setup_Management > group
<supplychainSetupSelection > (1..3) {
feature " Supply Chain Design " <Supply_Chain_Design >

50 feature " Execution Design " <Execution_Design >
feature " Production Models " <Production_Models >

52 }

54 feature " Supply Chain Planning and Control " <Supply_Chain_Planning_and_Control
> group <supplychainPlanningSelection > (1..2) {
feature " Demand Planning " <Demand_Planning >

56 feature " Demand Management and Order Confirmation " <
Demand_Management_and_Order_Confirmation >
feature " Exception Monitoring and Control " <Exception_Monitoring_and_Control

>
58 feature " Supply Planning " <Supply_Planning >

feature " Supply Control " <Supply_Control >
60 feature " Logistics Control " <Logistics_Control >

}
62

feature " Manufacturing Warehousing and Logistics " <
Manufacturing_Warehousing_and_Logistics > group <manufacturingSelection >
(1..8) {

64 feature " Inbound Logistics " <Inbound_Logistics >
feature " Outbound Logistics " <Outbound_Logistics >

66 feature " Internal Logistics " <Internal_Logistics >
feature " Inventory Management " <Inventory_Management >

68 feature " Production " <Production >
feature " Quality Assurance " <Quality_Assurance >

70 feature " Tracking Tracing and Identification " <
Tracking_Tracing_and_Identification >
feature "Task Management and Automation " <Task_Management_and_Automation >

72 }

74 feature " Project Management " <Project_Management > group <projectSelection >
(1..1) {
feature " Project Planning and Execution " <Project_Planning_and_Execution >

258

B. EFeatureText: Extended Feature Model Language

76 }

78 feature "Cash Flow Management " <Cash_Flow_Management >
group <cashFlowObligatorySelection > (2..2) {

80 feature " Payables and Receivables Processing " <
Payables_and_Receivables_Processing >
feature "Tax Management " <Tax_Management >

82 }

84 group <cashFlowSelection > (0..2) {
feature " Expense and Reimbursement Management " <

Expense_and_Reimbursement_Management >
86 feature " Payment and Liquidity Management " <Payment_and_Liquidity_Management

>
}

88

feature " Financial and Management Accounting " <
Financial_and_Management_Accounting >

90 group <financialObligatorySelection > (2..2) {
feature " General Ledger " <General_Ledger >

92 feature " Management Accounting " <Management_Accounting >
}

94

group <financialSelection > (0..3) {
96 feature "Fixed Assets " <Fixed_Assets >

feature " Inventory Valuation " <Inventory_Valuation >
98 feature "Payables , Receivables , and Cash" <Payables_Receivables_and_Cash >

}
100

feature "Human Resources " <Human_Resources >
102 group <hrObligatorySelection > (1..1) {

feature " Personnel Administration " <Personnel_Administration >
104 }

106 group <hrSelection > (0..3) {
feature "Time and Labor Management " <Time_and_Labor_Management >

108 feature " Compensation " <Compensation >
feature " Payroll " <Payroll >

110 }

112 feature " Employee Self - Service " <Employee_SelfService > group <
employeeSelection > (1..2) {
feature " Employee Self - Services " <Employee_SelfServices >

114 feature " Management Self - Services " <Management_SelfServices >
}

116

feature " Business Performance Management " <Business_Performance_Management >
group <businessObligatorySelection > (2..2) {

118 feature " Business Insight " <Business_Insight >
feature " Management Support " <Management_Support >

120 }

122 feature " Communication and Information Exchange " <
Communication_and_Information_Exchange > group <
communicationObligatorySelection > (3..3) {
feature " Business Process Management " <Business_Process_Management >

124 feature " People Collaboration , Intranet and External Services " <
People_Collaboration_Intranet_and_External_Services >

259

B.2. SAP Business ByDesign Example

feature " Office and Desktop Integration " <Office_and_Desktop_Integration >
126 }

feature " Compliance " <Compliance >
128 group <complianceObligatorySelection > (1..1) {

feature " Corporate Governance " <Corporate_Governance >
130 }

132 group <complianceSelection > (0..1) {
feature " Foreign Trade Declarations " <Foreign_Trade_Declarations >

134 }
}

136 constraint <c1> Campaign_Management -> Market_Development
constraint <c2> New_Business -> Account_and_Activity_Management

138 constraint <c3> Selling_Products_and_Services -> Account_and_Activity_Management
constraint <c4> Customer_Invoicing -> Account_and_Activity_Management

140 constraint <c5> Entitlement_Management -> Account_and_Activity_Management
constraint <c6> Product_and_Service_Portfolio_for_Sales ->

Field_Service_and_Repair
142 constraint <c7> Customer_Care -> Account_and_Activity_Management

constraint <c8> Field_Service_and_Repair -> Account_and_Activity_Management
144 constraint <c9> Sourcing_and_Contracting ->

Purchase_Request_and_Order_Management
constraint <c10 > Supplier_Invoicing -> Supplier_Base_Management

146 constraint <c11 > Demand_Planning -> Supply_Planning
constraint <c12 > Demand_Management_and_Order_Confirmation ->

Exception_Monitoring_and_Control
148 constraint <c13 > Supply_Planning -> Exception_Monitoring_and_Control

constraint <c14 > Supply_Control -> Purchase_Request_and_Order_Management
150 constraint <c15 > Logistics_Control -> Supplier_Invoicing

constraint <c16 > Inbound_Logistics -> Inventory_Management
152 constraint <c17 > Outbound_Logistics -> Demand_Management_and_Order_Confirmation

constraint <c18 > Internal_Logistics -> Inventory_Management
154 constraint <c19 > Inventory_Management -> Inventory_Valuation

constraint <c20 > Production -> Supply_Control
156 constraint <c21 > Project_Planning_and_Execution ->

Purchase_Request_and_Order_Management
constraint <c22 > Payroll -> Compensation

158 constraint <c23 > stakeholders . employees >= stakeholders .users

Listing B.2 Extended feature model specification of the Business ByDesign example written
in EFeatureText.

B.2.1. Outline View

A graphical notation of the Business ByDesign feature model is generated according to the
textual specification in Listing B.2 as depicted in Figure B.1.

260

B. EFeatureText: Extended Feature Model Language

Figure B.1 Outline of the BusinessByDesign domain feature model.

261

B.3. Video Information System Example

B.3. Video Information System Example

The video information system example applied in Chapter 4 is modeled as a feature model with
attributes. Table B.2 shows the metrics of this feature model. The unconfigured feature model
written in EFeatureText is represented in Listing B.5.

Table B.2 Metrics of the video information system feature model.

Metrics Value

Number of features 26
Number of attributes 2
Number of cross-tree constraints 0
Constraint feature coverage 0%
Constraint attribute coverage 0%
Is feature model satisfiable true

Number of derivable variants 387072

featuremodel "Video Information System "
2 domain <vdomain > [low =1, high =2, very_high =3]

domain <edomain > [low =1, medium =2, strong =3]
4

feature "Video Information System " <vis >
6 group <g1> (1..1) {

feature "Video player " <vp>
8 group <g11 > (1..2) {

feature "VLC media player " <vlc >
10 feature "AVS video player " <avs >

}
12 }

group <g2> (1..1) {
14 feature " Decoder " <dec >

group <g21 > (1..2) {
16 feature "Free Codec" <fc>

feature " Commercial Codec" <cc>
18 }

}
20 group <g3> (1..1) {

feature "Data provider " <dp>
22 group <g31 > (1..2) {

feature "URL" <url >
24 feature "File" <file >

}
26 }

group <g4> (0..1) {
28 feature "Water marker " <wm>

group <g41 > (1..2) {
30 feature " Transparent " <trans >

feature " Classic " <classic >
32 }

}

262

B. EFeatureText: Extended Feature Model Language

34 group <g5> (0..1) {
feature " Subtitle " <st>

36 group <g51 > (1..2) {
feature " Single language " <sl>

38 feature "Multi language " <ml>
}

40 }
group <g6> (0..1) {

42 feature "Video manager " <vm>
group <g61 > (1..3) {

44 feature "Basic" <basic >
feature " Standard " <standard >

46 feature " Professional " <prof >
}

48 }
group <g7> (0..1) {

50 feature " Encryption " <en>
Type[edomain]

52 }
group <g8> (0..1) {

54 feature " Availability " <av>
Type[vdomain]

56 }
group <g9> (1..1) {

58 feature " Location " <loc >
group <g91 > (1..3) {

60 feature " European Union" <EU>
feature " United States " <US>

62 feature "Asia" <AS>
}

64 }

Listing B.3 Extended feature model specification of the yard management system example
written in EFeatureText.

B.3.1. Outline View

According to the textual specification of the model shown in Listing B.3, a tree-like outline is
generated accordingly as depicted in Figure B.2.

263

B.3. Video Information System Example

Figure B.2 Outline of the feature model of a video information system example.

264

B. EFeatureText: Extended Feature Model Language

B.4. Extended Document Management System Example

A typical document management system comprises several features regarding document types,
indexing and searching capabilities. An example SPL for document management systems is
modeled as a feature model. Table B.3 shows the metrics of this feature model.

Table B.3 Metrics of document management system feature model.

Metrics Value

Number of features 46
Number of attributes 4
Number of cross-tree constraints 8
Constraint feature coverage 30%
Constraint attribute coverage 50%
Is feature model satisfiable true

featuremodel " Extended Document Management System "
2

domain <avdomain > [low =1, high =2, very_high =3]
4 domain <encdomain > [low =1, medium =2, strong =3]

domain <amount > [1..10000]
6

feature " Document Management System " <dms >
8 group <DocumentTypeGroup > (1..1) {

feature " Document Type" <DocumentType >
10 group <TypesGroup > (1..4) {

feature " UnicodeText Type" <UnicodeTextType >
12 feature "Text Type" <TextType >

feature "Image Type" <ImageType >
14 feature "PDF Type" <PDFType >

}
16 }

group <OCRGroup > (0..1) {
18 feature "OCR" <OCR >

group <OCRTypes > (1..2) {
20 feature "PDF OCR" <PDFOCR >

feature "Image OCR" <ImageOCR >
22 }

}
24 group <IndexGroup > (1..1) {

feature " Indexing " <Indexing >
26 group <MetaIndexing > (0..1) {

feature " MetaData Index" <MetaDataIndex >
28 group <AuthorGroupIndex > (0..1) {

feature " Author Index" <AuthorIndex >
30 }

group <TitleGroupIndex > (1..1) {
32 feature "Title Index" <TitleIndex >

}
34 group <ContentGroupIndex > (1..1) {

265

B.4. Extended Document Management System Example

feature " Content Index" <ContentIndex >
36 }

feature " General Index" <GeneralIndex >
38 }

group <FileIndex > (1..1) {
40 feature " FileName Index" <FileNameIndex >

}
42 }

group <SearchGroup > (1..1) {
44 feature " Search " <Search >

group <MetaSearch > (0..1) {
46 feature " MetaData Search " <MetaDataSearch >

group <AuthorGroupSearch > (0..1) {
48 feature " Author Search " <AuthorSearch >

}
50 group <TitleGroupSearch > (1..1) {

feature "Title Search " <TitleSearch >
52 }

group <ContentGroupSearch > (1..1) {
54 feature " Content Search " <ContentSearch >

}
56 feature " General Search " <GeneralSearch >

}
58 group <FileSearch > (1..1) {

feature " FileName Search " <FileNameSearch >
60 }

}
62 group <QoSGroup > (0..1) {

feature " Quality of Service " <QoS >
64 availability [avdomain]

encryption [encdomain]
66 concurrentusers [amount]

}
68 group <platformGroup > (2..2) {

feature " Application Server " <AppServer >
70 group <apsgroup > (1..1) {

feature "SAPA HANA Cloud Platform " <HANACloud >
72 feature " Eclipse Virgo" <Virgo >

}
74 feature " Database " <DB>

users[amount]
76 group <dbgroup > (1..1) {

feature "SAP HANA" <HANA >
78 feature " Oracle 12c" <Oracle >

feature " MongoDB " <Mongo >
80 }

}
82 group <LocationGroup > (1..1) {

feature " Server Location " <Location >
84 group <g91 > (1..3) {

feature " European Union" <EU>
86 group <EUDatacenter > (1..4) {

feature "Spain" <ESP >
88 feature " Germany " <GER >

feature " Norway " <NOR >
90 feature " Ireland " <IRL >

}
92 feature " United States " <US>

266

B. EFeatureText: Extended Feature Model Language

group <USDatacenter > (1..5) {
94 feature " California " <CA>

feature " Washington " <WA>
96 feature " Alaska " <AK>

feature "Texas" <TX>
98 feature " Nebraska " <NE>

}
100 feature "Asia" <AS>

group <ASDatacenter > (1..2) {
102 feature " Russia " <RUS >

feature "India" <IND >
104 }

}
106 }

108 constraint <c1> MetaDataSearch -> MetaDataIndex
constraint <c2> GeneralSearch -> GeneralIndex

110 constraint <c3> ImageOCR -> ImageType
constraint <c4> PDFOCR -> PDFType

112 constraint <c5> AuthorSearch -> AuthorIndex
constraint <c6> TextType <-> UnicodeTextType

114 constraint <c7> HANA -> HANACloud
constraint <c8> QoS. concurrentusers <= DB.users

Listing B.4 Extended feature model specification of the document management system
example written in EFeatureText.

The document management system feature model written in EFeatureText is depicted in List-
ing B.4. The listing shows the domain feature model that specifies all derivable variant configu-
rations.

267

B.5. Yard Management Example

B.5. Yard Management Example

The yard management SPL is developed as a prototype in the industrial context of the INDENICA
project1. Table B.4 shows the metrics of this feature model. The feature model of this SPL
written in EFeatureText is represented in Listing B.5. The listing shows a partial configuration
of the yard management SPL.

Table B.4 Metrics of yard management feature model

Metrics Value

Number of features 20
Number of attributes 1
Number of cross-tree constraints 1
Constraint feature coverage 10%
Constraint attribute coverage 0%
Is feature model satisfiable true

Number of derivable variants 1536

1 featuremodel "Yard Management System "
domain <scheduleType > [next =1, fitting =2]

3 selected feature "Yard Management System " <YMS >
group <Authentication_opt > (0..1) {

5 deselected feature " Authentication " <Authentication >
group <JAAS_man > (1..1) {

7 deselected feature "Java Authentication and Authorization Service " <JAAS
>

}
9 }

group <Persistence_man >(1..1) {
11 selected feature " Persistence " <Persistence >

group <PersistenceValue_alt >(1..1) {
13 deselected feature "Java Database Connectivity " <JDBC >

selected feature "Java Persistence API" <JPA >
15 }

}
17 group <Connectivity_man > (1..1) {

selected feature " Connectivity " <Connectivity >
19 group <ConnectivityValue_alt >(1..1) {

deselected feature "RFC" <RFC >
21 selected feature "SOAP" <SOAP >

deselected feature "REST" <REST >
23 }

}
25 group <YM_man > (1..1) {

feature "Yard Management Service " <YM>
27 SchedulingType [scheduleType]

group <EnableShips_opt >(0..1) {
29 feature " Enable Ships" <EnableShips >

1http://www.indenica.eu/

268

http://www.indenica.eu/

}
31 group <EnableTrains_opt >(0..1) {

feature " Enable Trains " <EnableTrains >
33 }

group <SpecialDocks_opt >(0..1) {
35 feature " Special Docks" <SpecialDocks >

}
37 }

group <YJ_man > (1..1) {
39 feature "Yard Jockey Service " <YJ>

group <LS_opt > (0..1) {
41 feature " Location Service " <LS>

group <Coordinate_opt >(0..1) {
43 feature " Coordinate " <Coordinate >

}
45 group <RoadMap_opt >(0..1) {

feature "Road Map" <RoadMap >
47 group <SatelliteMap_opt > (0..1) {

feature " Satellite Map" <SatelliteMap >
49 }

}
51 }

}
53 group <MC_opt > (0..1) {

feature " Mobile Communication Service " <MC>
55 }

constraint <locationcs > LS -> MC

Listing B.5 Extended feature model specification of the yard management system example
written in EFeatureText.

B.5.1. Outline View

According to the textual specification of the model shown in Listing B.5, a tree-like outline of
the partial configuration is generated accordingly as depicted in Figure B.3.

269

Figure B.3 Outline of a partial feature model configuration of the yard management example.

270

C. RBACText: Role Based Access Control

Language

The textual modeling language RBACText is developed for restricting feature model configuration
decisions in terms of Role Based Access Control (RBAC) and implemented in Ecore and EMFText.
The language is applied in the tool DyscoGraph as explained in Section 7.6.

C.1. Concrete Syntax of RBACText

The concrete syntax of the language is specified in EMFText as shown in the following List-
ing C.1.
@ SuppressWarnings (tokenOverlapping)

2 SYNTAXDEF rbactext // role based access control for feature models
FOR <http :// www. tudresden .de/rbac >

4 START AccessControlModel

6 TOKENS {
DEFINE COMMENT $ ’// ’(˜(’\n ’|’\r ’|’\ uffff ’))* $;

8 DEFINE TEXT $(’A ’..’Z ’|’a ’..’z ’|’0’..’9’|’_ ’)+ $;
DEFINE LINEBREAK $ (’\r\n ’|’\r ’|’\n ’)+ $;

10 DEFINE WHITESPACE $ (’ ’|’\t ’|’\f ’)+ $;
}

12

TOKENSTYLES {
14 " COMMENT " COLOR # AAAAAA ;

" assign " COLOR #147 F87 , BOLD;
16 " select " COLOR #009 E0F , BOLD;

" deselect " COLOR #CE0000 , BOLD;
18 " abstract " COLOR #404040 , BOLD;

}
20

RULES {
22 // syntax definition for container class ’AccessControlModel ’

AccessControlModel ::= " access control " #1
24 ("on" #1 featureModel [’<’,’>’]) !0

(roles | groups | subjects)* ;
26

// syntax definition for roles
28 Role ::= type[abstract : " abstract ", concrete : ""] "role" #1 name[’"’,’"’]? #1

id[’<’,’>’] #1 (" extends " #1 (parentRoles []) (#1 "," #1 parentRoles []) *)? #1
(("{" !1 (permissions | tasks) #1 ("," #1 (permissions | tasks))* #1

30 !0 "}"))? !0 ;

271

C.2. Example of an Access Control Model for a Yard Management Application

32 // syntax definition for feature configuration operations
FeatureOperation ::= #4 type[select : " select ", deselect : " deselect "] #1

feature [TEXT] !0;
34

// syntax definition for attribute configuration operations
36 AttributeOperation ::= #4 " assign " feature [] #0 "." #0 attribute [TEXT] ;

38 AttributeValueOperation ::= type[select : " select ", deselect : " deselect "] #1
feature [] #0 "." #0 attribute [TEXT] #0 "." #0 value[TEXT] !0;

40

// syntax definition for subjects
42 Subject ::= " subject " #1 name[’"’,’"’]? #1 id[’<’,’>’] #1 "plays" #1 (roles []

(#1 "," #1 roles [])*)? !0;

44 // syntax definition for groups
Group ::= "group" #1 name[’"’,’"’]? #1 id[’<’,’>’] (#1 "of" #1 owner [])? !0

46 "has members " #1 (members [] (#1 "," #1 members []) *)?;
}

Listing C.1 Concrete syntax of textual language RBACText.

C.2. Example of an Access Control Model for a Yard Management

Application

An example representation of how to apply the language is shown in the following Listing C.2.
The exemplified access control model specifies restrictions on the referenced feature model of a
variable yard management application specified in Listing B.5 and described in Appendix B.5.

1 access control on <YMS.eft >

3 abstract role " Provider " <Provider > {
select YMS ,

5 select Authentication , deselect Authentication ,
select Persistence , deselect Persistence ,

7 select Connectivity , deselect Connectivity ,
select JAAS , deselect JAAS ,

9 select JDBC , deselect JDBC ,
select JPA , deselect JPA ,

11 select RFC , deselect RFC ,
select SOAP , deselect SOAP ,

13 select REST , deselect REST
}

15

abstract role " Reseller " <Reseller > {
17 select YM , deselect YM ,

select YJ , deselect YJ ,
19 select MC , deselect MC ,

select LS , deselect LS ,
21 assign YM. SchedulingType }

23 abstract role " Customer " <Customer > {
select EnableShips , deselect EnableShips ,

272

C. RBACText: Role Based Access Control Language

25 select EnableTrains , deselect EnableTrains ,
select SpecialDocks , deselect SpecialDocks ,

27 select Coordinate , deselect Coordinate ,
select RoadMap , deselect RoadMap ,

29 select SatelliteMap , deselect SatelliteMap }

31 role " ApplicationProvider " <ApplicationProvider > extends Provider

33 role " Reseller A" <Reseller1 > extends Reseller
role " Reseller B" <Reseller2 > extends Reseller

35 role " Reseller C" <Reseller3 > extends Reseller

37 role " Customer 1" <Customer1 > extends Customer
role " Customer 2" <Customer2 > extends Customer

39 role " Customer 3" <Customer3 > extends Customer
role " Customer 4" <Customer4 > extends Customer

41 role " Customer 5" <Customer5 > extends Customer
role " Customer 6" <Customer6 > extends Customer

43 role " Customer 7" <Customer7 > extends Customer
role " Customer 8" <Customer8 > extends Customer

45 role " Customer 9" <Customer9 > extends Customer

47 group " Reseller A Group" <GroupA > of Reseller1 has members Customer1 , Customer2 ,
group " Reseller B Group" <GroupB > of Reseller2 has members Customer3 , Customer4 ,

Customer5 , Customer6
49 group " Reseller C Group" <GroupC > of Reseller3 has members Customer7 , Customer8 ,

Customer9

Listing C.2 Specification of Role Based Access Control on the yard management system
example written in RBACText.

C.3. Outline View

According to the textual specification of a model instance a tree-like outline is generated for the
model as depicted in Figure C.1.

273

Figure C.1 Graphical notation for RBACText illustrated on the yard management example.

274

D. MText: Textual Language for Mapping

Viewgroups to Features

The textual modeling language MText is developed for defining a mapping between viewgroups
and features in a multi-perspective model textually. The language is implemented in Ecore and
EMFText and applied in the tool Conper as explained in Section 7.5.

D.1. Concrete Syntax of MText

The concrete syntax of the language MText is specified textually in EMFText as shown in the
following Listing D.1.

1 SYNTAXDEF mtext
FOR <http :// www. tudresden .de/ viewmapping > <optional /path/to/ myLanguage .genmodel >

3 START MappingModel

5 RULES {
// syntax definition for class ’MappingModel ’

7 MappingModel ::= " viewmapping " !0
#3 (" featuremodel " #1 featureModel [’<’,’>’]) !0

9 #3 (" viewmodel " #1 viewModel [’<’,’>’]) !0!0
(mappings *);

11

// syntax definition for class ’Mapping ’
13 Mapping ::= "view group" #1 viewgroup [’"’,’"’] #1 " contains " !0

#3 features [’"’,’"’] (#1 "," #1 features [’"’,’"’])* !0!0;
15 }

Listing D.1 Concrete syntax of textual language MText.

275

276

	The Need for Reconfigurable Cloud Applications and Automated Configuration Management
	I Context and Preliminaries
	1 State of the Art of Cloud Applications
	1.1 Origin of Cloud Terminology
	1.2 The Cloud Computing Stack
	1.3 Recent Business Models for Cloud Services
	1.4 Deployment Models of Cloud Services
	1.5 Characteristics of Cloud Computing and Cloud Applications
	1.6 Stakeholders Participating in the Configuration Process
	1.7 Access Control in Shared Cloud Environments
	1.8 Challenges in Providing Reconfigurable Cloud Applications
	1.9 Benefits for Cloud Computing by Applying Software Product Line Engineering
	1.10 Summary

	2 Software Product Lines – Foundations and Related Work
	2.1 Mass Customization and Product Lines
	2.2 Software Product Line Engineering
	2.3 Feature Modeling
	2.4 Derivation of Variant Configurations
	2.5 Feature Model Satisfiability
	2.6 Dynamic Software Product Lines
	2.7 Configuration Management in Software Product Lines
	2.8 Requirements for Automated Configuration Management of Cloud Applications
	2.9 Summary

	II Configuration Management Based on Feature Models
	3 Configuration Management Framework for Reconfigurable Cloud Applications
	3.1 Example of a Video Information System
	3.2 Configuration Artifacts of Reconfigurable Cloud Applications
	3.3 Feature-Based Configuration Management
	3.4 Automated Configuration Management Activities
	3.5 Demarcation from Related Work
	3.6 Summary

	4 A Flexible Architecture for Reconfigurable Cloud Applications
	4.1 Software and Product Line Architecture
	4.2 Characteristics of Reconfigurable Cloud Applications
	4.3 Developing a Flexible Architecture for Reconfigurable Cloud Applications
	4.4 Background on Multi-Quality Auto-Tuning Architecture
	4.5 Architectural Multi-Tenancy Extensions
	4.6 Discussion
	4.7 Demarcation from Related Work
	4.8 Summary

	5 Multi-Perspectives
	5.1 Views Separate Concerns
	5.2 Perspectives Reduce the Configuration Space
	5.3 Illustrative Example for Multi-Perspectives
	5.4 Multi-Perspective Terminology
	5.5 Feature Models with Group-Cardinality
	5.6 Views and Perspectives on Feature Models
	5.7 View Composition
	5.8 Relations between Feature Models, Views, and Perspectives
	5.9 View Model
	5.10 Multi-Perspective Model
	5.11 Consistency of Multi-Perspective Models
	5.12 Multi-Perspectives in Software Product Line Engineering
	5.13 Customization on Feature Model Level
	5.14 Best Practices in Modeling Views and Perspectives
	5.15 Applying Multi-Perspectives to Support Staged Configuration
	5.16 Demarcation from Related Work
	5.17 Summary

	6 Adaptive Staged Reconfiguration Workflows
	6.1 Illustrative Example for Adaptive Staged Reconfiguration Workflows
	6.2 Modeling Adaptive Staged Reconfiguration Workflows
	6.3 Extended Feature Models
	6.4 Access Control on Extended Feature Models
	6.5 Specialization Tree
	6.6 Staged Reconfiguration on Extended Feature Models
	6.7 Workflow Adaptation for Dynamic Stakeholder Management
	6.8 Adaptive Staged Reconfiguration Workflows in Software Product Line Engineering
	6.9 Demarcation from Related Work
	6.10 Summary

	7 Configuration Management Tool Suite PUMA
	7.1 Model Based Domain-Specific Languages
	7.2 EFeatureText – Textual Language for Extended Feature Models
	7.3 RBACText – Textual Language for Role Based Access Control on Extended Feature Models
	7.4 FMAnalysis – Utilities for Feature Model Analysis
	7.5 Conper – Consistent Perspectives and Views
	7.6 DyscoGraph – Dynamic Staged Configuration through Graph Rewriting
	7.7 Summary

	8 Conclusion and Future Work
	8.1 Contribution
	8.2 Future Work

	III Appendix
	A Translation of Extended Feature Model in Constraint Satisfaction Problem
	B EFeatureText: Extended Feature Model Language
	B.1 Concrete Syntax of EFeatureText
	B.2 SAP Business ByDesign Example
	B.3 Video Information System Example
	B.4 Extended Document Management System Example
	B.5 Yard Management Example

	C RBACText: Role Based Access Control Language
	C.1 Concrete Syntax of RBACText
	C.2 Example of an Access Control Model for a Yard Management Application
	C.3 Outline View

	D MText: Textual Language for Mapping Viewgroups to Features
	D.1 Concrete Syntax of MText

