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Abstract. Concept-oriented model of data (COM) has been recently defined syntactically by 

means of the concept-oriented query language (COQL). In this paper we propose a formal 

embodiment of this model, called nested partially ordered sets (nested posets), and demonstrate 

how it is connected with its syntactic counterpart. Nested poset is a novel formal construct that 

can be viewed either as a nested set with partial order relation established on its elements or as a 

conventional poset where elements can themselves be posets. An element of a nested poset is 

defined as a couple consisting of one identity tuple and one entity tuple. We formally define 

main operations on nested posets and demonstrate their usefulness in solving typical data 

management and analysis tasks such as logic navigation, constraint propagation, inference and 

multidimensional analysis.  

Keywords: data models; unified models; data analysis; query languages  

 

1 Introduction  

A model can be viewed as a mathematical description of a world aspect (Kaburlasos, 2006). For 

models of data, the primary concern is how to organize a set of elements by choosing an appropriate 

structure which allows us to break one large set into smaller groups so that the data can be 

represented, accessed and analyzed more productively. For a general purpose data model, the key 

problem is in finding the simplest and most natural structure and operations for implementing a wide 

variety of patterns of thought and mechanisms currently existing in data modeling.  

Recently, a new data model has been proposed (Savinov, 2009, 2011b, 2012a, 2014b), called the 

concept-oriented model (COM), with the purpose to unify the existing data modeling methods and 

analysis techniques. It is based on three novel structural principles distinguishing it from other models: 

(i) duality principle assumes that an element is an identity-entity couple; (ii) inclusion principle 

postulates that all elements exist in a hierarchy; (iii) and order principle postulates that all elements 

are partially ordered. The main purpose of the duality principle is to answer the question how elements 

exist and how they are identified. The novelty is that this principle treats identities and entities as two 

symmetric constituents within one element. The main purpose of the inclusion principle and nested 

structure is to answer the question where elements exist. Each element is identified with respect to its 

parent element. Such hierarchical addresses consisting of several segments are analogous to 

conventional postal addresses or URLs. One novel feature is that inclusion relation treats inheritance 

(IS-A) as a particular case of containment (IS-IN) by eliminating the need in having two separate 

relations. The main purpose of partial order is to answer the question what is the meaning of an 

element. It provides a mechanism of semantic characterization where semantics of an element depends 

on its relative position among other elements in a partially ordered set. The main benefit of the 

inclusion principle is that one and the same formal structure can be treated from quite different points 

of view like multidimensional modeling and entity-relationship modeling.  

A data model can be defined in two major ways: syntactically as a language and mathematically as 

some formal setting. Earlier, COM has been defined using its concept-oriented query language 

(COQL) (Savinov, 2006a, 2011a, 2012a, 2014a) which can be viewed as its syntactic embodiment. 

This language is based on a novel construct, called concept (hence the name of the model), which 

generalizes conventional classes and is used for modeling data types. Concepts participate 

simultaneously in two relations: inclusion and partial order. Inclusion generalizes inheritance while 

partial ordering of concepts is a new feature. The main benefit of COQL is that it allows for easily 

formulating complex analytical ad-hoc queries using a novel arrow notation without join and goup-by 

operators as well as without assigning such roles as dimension, measure, fact and cube.  
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The main purpose of this paper is to introduce a formal basis for COM. We propose a new setting, 

called nested partially ordered sets (nested posets), which is a formal embodiment of this model. The 

structure of a nested poset is illustrated in Fig. 1. Elements of nested posets are identity-entity couples 

which are drawn as pairs of two boxes where the rounded (grey) rectangle denotes identity and the 

normal (white) rectangle denotes entity. The nested structure of inclusion relation spreads horizontally 

which means that an element is included in its parent element which is position on the left of it. The 

partially ordered structure spreads vertically and is denoted by upward arrows leading from an element 

to its greater elements. Greater elements are positioned over this element and lesser elements are 

positioned under this element. This structure can be produced from a conventional nested set if we 

additionally assume that its elements are partially ordered. Alternatively, it can be produced from a 

conventional poset by assuming that its members can be (nested) posets themselves.  

 
Figure 1  Structure of a nested partially ordered set. 

2 Motivation and Goals  

COM is an attempt to change the way data is viewed and manipulated by developing a simple and 

natural unified model which reduces a wide variety of existing data modeling methods and patterns to 

a few principles. COM is inspired in large part by deep incongruities between different views and 

approaches to data modeling and analysis (impedance mismatches) shortly outlined below in this 

section.  

Identity vs. entity modeling. One basic belief is that it is entity that should be in the focus of data 

modeling. Therefore, almost all existing data models have a strong bias towards modeling entities 

while identities have been considered important yet secondary elements doomed to remain in their 

shadow. Therefore, identities are either provided by the platform in the form of primitive elements 

(Abiteboul & Kanellakis, 1998; Eliassen & Karlsen, 1991; Kent, 1991; Khoshafian & Copeland, 1986; 

Wieringa & de Jonge, 1995) or they are modeled by means of entity attributes (keys) assigned a 

special role. COM eliminates this asymmetry by making identities and entities equally important parts 

of an element both being in the focus of data modeling. Particularly, we can well create a model 

consisting of only identities (without entities) but in the general case identity modeling and entity 

modeling are supposed to be two equally important orthogonal concerns.  

Value vs. object modeling. Values (transient data passed by-copy) and objects (persistent data passed 

by-reference) have always been considered two separate branches: either we model a value domain or 

we model object types. A typical example is the object-relational model (ORM) (Kim et al, 1990; 

Stonebraker et al, 1990) where user-defined types (sets of values or domains) are described separately 

from relations (sets of tuples). A fundamental question arises: if both domains and relations are sets 

then why to model and manipulate them using completely different constructs? In other words, if in 

mathematics there is only one kind of set then why do we need two different kinds of sets in 

traditional data modeling? COM resolves this problem and eliminates this separation by considering 

only one kind of sets which consist of value-object (identity-entity) couples. In COM, there is a single 

type hierarchy independent of whether a type describes values or objects. As a consequence, attributes 

are typed independent of whether they are of value type or object (records, rows) type. In relational 

terms, both relations and attribute domains are described using a single type hierarchy.  
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Instance-based vs. set-based modeling. In most models the notions of individual elements and sets of 

elements are principally separated. For example, tuples and objects are viewed as individual data 

elements which are not sets (of other tuples and objects). A relation, on the other hand, is a set which 

however is not treated and operated like a normal data element (tuple or object). Object data models 

(Abiteboul & Kanellakis, 1998; Dittrich, 1986) are traditionally more instance-oriented while the 

relational model (Codd, 1970) is set-oriented. The goal of COM is to eliminate these differences so 

that any instance is inherently a set (of other instances) and hence sets are also normal instances. Data 

management is then significantly simplified because it is reduced to maintaining only set membership 

while other interpretations (like having properties or relationships) are interpretations of this relation. 

Ideally, data manipulations should be reduced to only two operations: add an element to a set and 

remove an element from a set (where the set is another element). Another motivation is that any 

element should have a space (set) where it exists because a thing in vacuo outside of any space, 

domain, context or scope is regarded as nonsense. This allows us to bring structure into the space of 

elements which is very important when modeling huge (including web scale) databases where an 

element has a complex identity specifying its location in the global space.  

Transactional vs. analytical modeling. There exist numerous approaches to modeling 

multidimensional data which are mainly driven by the demand from analytical applications and data 

warehouses (Pedersen, 2009). The problem is that the main assumptions and techniques behind 

analytical models are different from those behind transactional models (Conn, 2005). Most 

conventional database systems provide very limited analytical functions (Codd, 1993; Finkelstein, 

1995; Kimball & Strehlo, 1994) while analytical systems are not intended for transactional processing. 

COM is aimed to integrate transactional and analytical views on data and to create a unified data 

model which could be used for both purposes. Creating such a model is driven by the demand from the 

industry where real-time analysis on transactional data is a very acute problem. Many currently 

existing solutions can provide hybrid storage for transactional and analytical operations but the 

problem is that data modeling and querying is still split into two parts.  

The main notion in analytical models is that of dimension but if we ask the question how many 

dimensions a relational schema has then the answer most probably will be that it is not defined. The 

goal of COM in this context is to stop thinking of dimensions as something that is added separately at 

later stages of modeling and system development when it is necessary to solve some specific 

analytical task. We address this problem by rethinking dimensions and dimensionality (degrees of 

freedom) as first-class notions of the model which play a primary role for describing both transactional 

and analytical aspects. In COM, data is thought of as originally existing in multidimensional space 

(Savinov, 2005a) so that we always can say what coordinates this element has and how many 

dimensions this schema has. Also, existing multidimensional models provide weak support for ad-hoc 

agile analytics because they are intended for describing predefined (OLAP) analysis scenarios 

expressed in terms of cubes, dimensions, measures and aggregation types. The goal here is to develop 

an analytics-friendly model which is application-independent and is not restricted by the classical 

OLAP-type of analysis.  

Conceptual vs. logical modeling. The main purpose of conceptual models is to provide richer 

mechanisms and constructs representing complex domain-specific concepts and relationships with the 

goal “to respond to queries and other transactions in a more intelligent manner” (Codd, 1979). 

Semantic relations represented at conceptual level as well as the corresponding queries need to be 

translated to the logical level. It is a highly ambiguous and non-trivial procedure due the existence of 

the semantic gap (Pardillo et al, 2008; Rizzi et al, 2006) between different levels of representation. In 

this context, the goal of COM is to make semantics integral part of the logical data model so that the 

database can be directly used for reasoning about data and maintaining its consistency. In particular, if 

we impose constraints in one part of the database then we want it to automatically infer the result in 

another part of the database without specifying how these constraints have to be propagated.  

Data modeling vs. programming. There exists a well known and deeply rooted incongruity between 

programming and data modeling (Atkinson & Buneman, 1987). COM initially has been developed in 

parallel with a novel approach to programming, called concept-oriented programming (COP) 

(Savinov, 2014c, 2012c, 2008). In particular, concepts (generalized classes) and inclusion (generalized 

inheritance) are used in both COM and COP. Structurally, COM can be defined as COP plus partial 

order. This makes data modeling and programming much closer.  
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3 Model Structure  

3.1 Duality  

3.1.1 Tuples and Dimensions  

In most existing data models, the minimum data unit is a value also called atomic, primitive, system or 

platform-specific value. More complex data elements are produced by means of tuples which are 

treated in their accepted mathematical sense by capturing the notion of an ordered list. They are 

denoted by either angle brackets … or parentheses (…) enclosing their members which are either 

primitive values or other tuples. A tuple consisting of n members is called n-tuple and n is called its 

arity.  

Tuple members are distinguished by their position also called attribute, column, property, slot, 

variable or characteristic. In COM, this member position is referred to as a (simple) dimension. 

Dimension and the member are separated by colon. The tuple where a dimension is defined is called a 

source and the member represented by this dimension is called a destination. If  𝑒 = … , 𝑥: 𝑎, …   is a 

source tuple then x is a dimension and a is a member stored in this dimension. The source of the 

dimension x is denoted as  Src(𝑥) = 𝑒  and its destination is denoted as  Dst(𝑥) = 𝑎.  

A complex dimension is a sequence of simple dimensions  𝑥1. ⋯ . 𝑥𝑘  where each next dimension starts 

where the previous dimension ends:  Src(𝑥𝑖) = Dst(𝑥𝑖−1),  𝑖 = 2,3, … , 𝑘. The number k of 

constituents in a complex dimension is referred to as a rank.  

3.1.2 Identities and Entities  

The described representation by tuples has one general drawback from computer science point of 

view: it does not describe the mechanism of tuple membership, that is, we do not know what it means 

for a tuple to have another tuple as a member. If we assume that tuples are values (composed of other 

values) then we get tuple membership by-value as used in XML, JSON and other message formats. If 

we assume that tuples are included by-reference then any tuple is made up of references (which are 

primitive elements) similar to OOP and there is no possibility to build tuples containing complex 

values. Obviously, both mechanisms are needed in a good data model but the problem is that tuples do 

not allow us to distinguish and freely vary between them.  

To overcome this fundamental limitation, COM introduces two kinds of tuples: identity tuples and 

entity tuples. Identity tuples are always values which are passed only by-copy. They do not have their 

own location, address, reference or any other kind of indirect representation. Rather, the purpose of 

identity tuples is to themselves serve as locations or references. There is no possibility to share an 

identity tuple – it can be only copied. Entity tuples are objects which can be passed only by-reference 

and there is no way to include an entity tuple in another tuple by-value. As a consequence, entity 

tuples are considered persistent elements which are shared among other tuples by storing the same 

reference. Identity tuples are transient data because they represent what can be transferred and hence 

they represent units of data exchange.  

The principled separation of two kinds of tuples and treating them as symmetric elements of the model 

is an important but not sufficient condition for a good representation mechanism. The most important 

assumption made by COM is that these two kinds of tuples are two sides of one thing and identity 

tuples are actually references used to represent entity tuples. More specifically, the duality principle 

postulates that the minimum data unit is a couple of one identity tuple and one entity tuple. To 

distinguish these two constituents, identity tuples are written in angle brackets and entity tuple are 

written in parentheses. One identity-entity couple is referred to as a segment:  

[segment]  𝑠 = … (… ) (1)  

Given a segment s, function  id(𝑠)  returns its identity tuple and function  en(𝑠)  returns its entity 

tuple.  

If segment a is a member in tuple e,  𝑒 = … , 𝑎, … , then only  id(𝑎)  is included in e by-value while  

en(𝑎)  is represented and accessed by-reference. If all entity parts are empty then we can construct 

complex values composed of other values with empty persistent part. If all identity parts are primitive 

references then we get the second extreme case where all data are persistent objects. However, the 
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main advantage of this approach is that we can freely vary what data belongs to transient (non-shared) 

part and what data belongs to persistent (shared) part. Another advantage is that we can unite two 

branches: modeling value domains and modeling relations. COM considers only one type of domains 

where elements are identity-entity couples without the separation between value domains and relations 

as it is done in RM (Codd, 1970) and ORM (Kim et al, 1990; Stonebraker et al, 1990).  

3.1.3 Concepts  

To model segment types, COQL introduces a novel construct, called concept, which is defined as a 

couple of two classes: one identity class and one entity class. Fields of the identity and entity classes 

are referred to as dimensions. Concepts generalize conventional classes and are used precisely where 

classes are used for declaring types of elements. For example, bank accounts can be described by a 

concept which has account number as its identity dimension and current balance as its entity 

dimension:  

CONCEPT Account  
  IDENTITY  
    CHAR(10) accNo  
  ENTITY  
    DOUBLE balance  

Any variable or field of this concept will automatically store an account number and any access to this 

element will be performed using this identity. Note that identity is not a primary key (PK) because PK 

is composed of some attributes of the entity. Here is how a relation type could be defined using 

primary keys:  

RELATION TYPE Account  
  IDENTITY // Empty  
  ENTITY  
    PRIMARY KEY CHAR(10) accNo  
    DOUBLE balance  

Importantly, these are not syntactic differences. An instance of the Account concept has only one 

attribute in its entity (persistent part) and a relation tuple of type Account has two persistent attributes 

one of which is used as a key. COM identities can be viewed as user-defined surrogates (Codd, 1979; 

Hall et al, 1976) which are made part of an element type and which are also used as value types if the 

entity type is empty (Savinov, 2011b).  

If entity class is empty then the identity class describes values because it is not intended to represent 

anything. For example, a currency amount could be defined as the following concept:  

CONCEPT Amount  
  IDENTITY  
    DOUBLE amount  
    CHAR(3) currency // "EUR", "USD" etc.  
  ENTITY // No entity => identity is a value  

Obviously, it is equivalent to user-defined types in ORM. The difference is that concepts are more 

general and can be used to define both identity (value) types and entity (relation) types in combination, 

that is, we can choose which attributes are transient values and which belong to the persistent part 

(object).  

3.2 Inclusion  

3.2.1 Extension and Nested Sets  

In the previous section we answered the question how elements exist by assuming that an element is 

an identity-entity couple and its identity manifests the fact of existence. In this section, we answer the 

question where elements exist. COM assumes that elements are not able to exist in isolation outside of 

any external space, context or scope. Therefore, the inclusion principle postulates that any element is 

included in some other element with respect to which it is identified. Indeed, if identity is an address 

segment then it is reasonable to assume that any address segment is specified with respect to some 

parent address segment just because an address without a reference point is meaningless.  
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COM introduces a new operation, called extension denoted by colon: if a is an element and b is a 

segment then  𝑒 = 𝑎: 𝑏  is extension of a with b. Element a is called a base element and new element e 

is called an extended element. Since the base element can also be an extension of its own base 

element, elements can be represented as a sequence of segments starting from some initial segment 

and ending with the last extension:  𝑒 = 𝑎: 𝑏: ⋯ : 𝑐  where  𝑎, 𝑏, … , 𝑐  are segments. Just as with tuple 

membership, only identity parts are concatenated by-value and this sequence of identities is referred to 

as a complex identity. It is analogous to postal addresses with the main difference that any identity has 

an associated entity.  

Extension is an operator which allows us to produce new elements by extending existing ones. 

Semantically, extensions are interpreted as more specific elements while the base element is 

considered a more general element. It is analogous to inheritance relation with the difference that we 

apply it to couples and elements exist in a hierarchy so that parent entities are shared among their 

children.  

Extension can be also semantically interpreted in terms of set inclusion. The connection between 

extension operator ‘:’ and strict inclusion relation  is established in the set nesting principle:  

[set nesting]  𝑎: 𝑏 ⊂1 𝑎, where  𝑏 ≠   (2)  

Here  ⊂1  denotes immediate inclusion (inclusion of rank 1) and if  𝑒 ⊂1 𝑎  then e (extension) is 

referred to as a sub-element and a (base) is referred to as a super-element. Thus any (non-empty) 

extension of an element is immediately included in it. In other words, to be a member in a set means to 

extend this set. Semantically, to be a member of a set means to be more specific than this set (more 

specific elements are subsets of more general elements).  

This principle allows us to define all elements of the model as extensions of one root element and then 

induce a nested set  𝑅, ⊂ . Conversely, if we take a nested set  𝑅, ⊂   then it can be represented as a 

number of elements each defined as an extension of its immediate super-element. Normally we choose 

one special element R, called the root or the universe of discourse, which does not extend any other 

element (this external context is ignored). Then all elements are uniquely represented as extensions of 

the root R. and all elements are subsets of this universe of discourse. Fig. 2 is an example of a nested 

set graphically represented using tree and Euler diagrams.  

 
Figure 2  Two graphical representations of a nested set. 

3.2.2 Concept Inclusion  

Syntactically, inclusion is declared like inheritance by using the keyword ‘IN’. For example, since 

savings accounts are always identified with respect to their main account my means of additional two 

digits, we use inclusion to describe this relation:  

CONCEPT Savings IN Account  
  IDENTITY  
    CHAR(2) subAccNo  
  ENTITY  
    Amount savBalance  

If we define a variable of this concept  
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Savings savAcc; // = "1234567890":"02"  

then the value stored in it will consist of two segments: main account number and relative savings 

account number. Note that the savBalance dimension contains a value of the user-defined type 

Amount (with currency and balance). Here we see a benefit of duality and concepts: we can freely 

vary the structure of the Amount concept from values to objects or using their mix but all other 

concepts where it is used (like Savings) need not be updated.  

The most important difference from classical inheritance is that elements in COM exist within a 

hierarchy rather than in a flat space. It is a direct consequence of introducing relative identities (like 

savings account number) which distinguish children only in the parent domain rather than in the global 

scope. In our example, one main account may have many savings accounts as well as many other 

possible types of sub-accounts. However, it is still possible to model classical inheritance if children 

do not define their identity. In this case only one child is possible (because they cannot be 

distinguished in the parent context) which is equivalent to classical inheritance. For example, an 

account with special privileges could be defined as follows:  

CONCEPT Privileged IN Account  
  IDENTITY // No identity => inheritance  
  ENTITY  
    Amount bonus // Very large bonuses  

It is essentially an extension of the Account concept as it is treated in object-oriented approaches 

because we simply add an additional attribute to the entity without having a hierarchy of elements. 

The same can be done with value types when entity class is empty. For example, we could define a 

type of amount with date as follows:  

CONCEPT DatedAmount IN Amount  
  IDENTITY  
    Date date  
  ENTITY  

This example is equivalent to the conventional extension of user-defined types but in COM it is only a 

particular case. In the general case, the advantage of inclusion is that it allows for modeling a 

hierarchy where any element is a set of its child elements and all elements have domain-specific 

addresses. Inclusion in COM assumes that IS-A is a particular case of IS-IN which significantly 

simplifies data modeling because fewer relations are used.  

3.3 Partial Order  

3.3.1 Tuple Ordering  

New elements in COM (identity-entity couples) can be constructed either using extension operator ‘:’ 

or tuples  … . Semantically, tuples in COM are interpreted as more specific elements with respect to 

the elements they combine. To guarantee consistency of this semantic interpretation we need to 

impose additional constraints on the structure of tuples. Analogously to extension which induces 

inclusion relation, the representation by tuples induces strict partial order relation ‘<’ according to the 

tuple ordering principle:  

[tuple ordering]  … , 𝑒, …  <1 𝑒  (3) 

Here <1 means ‘immediately less than’ relation (‘less than’ of rank 1) and if  𝑎 < 𝑏  then a is referred 

to as a lesser element and b is referred to as a greater element. According to this principle, tuple 

members are immediately greater than the tuple they are in. And conversely, a tuple is an immediately 

lesser element for all the elements it is composed of. (It is valid for both identity and entity parts.)  

This principle allows us to define all elements as tuples satisfying the conditions of irreflexivity and 

transitivity, and then induce a partially ordered set  𝑅, < . Conversely, if we take a partially ordered 

set  𝑅, <   then it can be represented as a number of tuples combining their immediate greater 

elements. The greatest elements of this poset are primitive values all other elements are directly or 

indirectly composed of. The least elements are not used in any other tuple.  
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An important interpretation of partial order is via set inclusion which is referred to as inclusion by-

reference to distinguish it from inclusion by-value induced by extension operator. It is assumed that 

lesser elements are included in their greater elements.  

It is frequently convenient to consider a lattice of elements which (in finite case) has two special 

elements. The greatest element g, called top, is greater than any other element of the set:  ∀𝑎 ∈ 𝑅,  

𝑎 < 𝑔. The least element l, called bottom, is less than any other element of the set:  ∀𝑎 ∈ 𝑅,  𝑙 < 𝑎. 

The number of immediate greater elements of this element is referred to as arity (also dimensionality, 

intention or valency). Fig. 3 is an example of a poset graphically represented using a Hasse diagram 

where an element is drawn under its immediate greater elements and is connected with them by edges.  

 
Figure 3  An example of a partially ordered set. 

3.3.2 Concept Ordering  

Let us assume that an employee is supposed to work at some department which means that the 

Employee concept has a dimension of concept Department:  

CONCEPT Employee  
    CHAR(64) name  
    Department dept // Greater concept  

This looks like a quite conventional definition but in COM it means that Employee is a lesser concept 

and Department is a greater concept.  

3.4 Concept-Oriented Model  

3.4.1 Inclusion as Order Constraint  

Element participate in two relations simultaneously:  

 inclusion relation  where it has one super-element and a number of sub-elements, and  

 partial order relation < where it has a number of greater and lesser elements  

Yet, semantically they have similar interpretations. Sub-elements just as lesser elements are treated as 

subsets and more specific elements. In other words, given an element we can produce more specific 

elements in two ways: either by extending it or by including it in a tuple. In order to avoid semantic 

contradictions where one element is more specific in one relation and more general in the other 

relation we impose the following constraint:  

[inclusion as order]  ∀𝑎, 𝑏 ∈ 𝑅,  ¬(𝑎 ⊂ 𝑏 ∧ 𝑏 < 𝑎)  (4)  

This principle does not permit elements to reference their sub-elements which is quite natural. If 

concept A is included in concept B, A  B, then it is prohibited to have a dimension of concept A in B. 

For example, we cannot reference a savings account from the main account because 

SavingsAccount is included in Account:  
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CONCEPT Account  
    Savings savAcc // Prohibited  

3.4.2 Type Constraint  

A unique feature of COM is that an extension may well reuse a dimension already existing in its base 

element and then the question is what its possible values are. In other words, what values are possible 

for dimension x if its super-element returns value a for this dimension:  … , 𝑥 = 𝑎, … : … , 𝑥 =? , … . 

In order to restrict possible values of dimensions we impose the following constraint:  

[type constraint]  𝑒 ⊂ 𝑏 ⇒  𝑒. 𝑥 ⊆ 𝑏. 𝑥  (5)  

This principle means that any new extension can only append segments to the values returned by its 

parent. A value returned by a dimension always extends the value returned by the same dimension of 

the super-element. The deeper we go in the inclusion hierarchy, the more specific values are returned 

by dimensions. For example (Fig. 4), if element e is included in b,  𝑒 ⊂ 𝑏, then the value  𝑒. 𝑥  must be 

included in (or equal to) the set represented by this same dimension of its superset,  𝑏. 𝑥. In particular, 

it is possible to have  𝑒. 𝑥 = 𝑑  (as shown in the diagram) or  𝑒. 𝑥 = 𝑐  or  𝑒. 𝑥 = 𝑎  because both d and 

c are included in a.  

At the level of concepts, type constraint means that dimension concept must be included in the concept 

of this same dimension declared by its super-concept. For example, assume that concept C is included 

in concept B which in turn is included in A and all three concepts have one common dimension 

address:  

CONCEPT A  
  ENTITY  
    Country address  

CONCEPT B IN A  
  ENTITY  
    City address  

CONCEPT C IN B  
  ENTITY  
    Street address  

Here type constraint means that concept Street must be included in concept City which in turn 

must be included in Country. If it is not so then this constraint is not satisfied. At the level of 

instances, this dimension will store only an extension part (one segment) with respect to the value 

stored in the parent. Concept A will store only country, concept B will store only city and concept C 

will stored only street of the whole address.  

 
Figure 4  Type constraint. 

3.4.3 Nested Partially Ordered Sets  

We can now define a nested partially ordered set as a set with two binary relations and two constraints:  

Definition 1 [Nested poset]. A nested partially ordered set  𝑅, ⊂, <   is a set R with strict inclusion 

 and strict partial order < relations on its elements which satisfy inclusion as order principle (3) and 

type constraint (4).  

R 
d 

a 

c 

e f b 

a 

x 

Tree diagram Nested Euler diagram 
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Nested posets are good for theoretical study but they hide some properties which are important in 

practical data modeling. In particular, this definition does not say how elements are represented and 

therefore the necessity of two relations is not obvious. For this reason, COM makes accent on 

representational issues by specifying how elements, inclusion and partial order are represented.  

Definition 2 [Concept-oriented database]. A concept-oriented database is a nested poset represented 

according to the following principles:  

 each data element is an identity-entity couple (1)  

 strict inclusion  is induced by extension operator (2)  

 strict partial order < is induced by tuples (3)  

If we assume that elements are concepts then we get a concept-oriented schema. More specifically, a 

concept-oriented schema is a nested poset of concepts where all non-root concepts have one super-

concept, and greater concepts are represented by dimension types.  

 
Figure 5  Example of a concept-oriented schema. 

An example of a concept-oriented schema is shown in Fig. 5 (for simplicity, we do not show the 

separation of identities and entities). One employee belongs to one department (by-reference) and has 

many accounts (by-reference) each having many savings accounts (by-value). In addition, each 

employee works on several work packages (by-reference) each identified within some project. In 

terms of relationship multiplicity, upward and leftward lines mean many-to-one relationships while the 

opposite downward and rightward lines denote one-to-many relationships.  

4 Operations  

4.1 Projection and De-Projection  

Querying data in COM is based on constraint propagation view which assumes that source constraints 

imposed in one part of the database schema can be propagated to another part of the schema. The main 

question is then how concretely constraints are propagated. A novel feature of COM is that constraints 

imposed on one set can be propagated either up (to greater sets) or down (to lesser sets). COM defines 

two operations, projection (denoted by right arrow) and de-projection (denoted by left arrow), which 

use dimensions for constraint propagation.  

Definition 3 [Projection]. Given nested poset R and two its subsets  𝐸 ⊆ 𝑅  and  𝐷 ⊆ 𝑅, projection  

𝐸 → 𝑑 → 𝐷  is defined as an operation that returns elements of D which are greater than elements 

from E along dimension d:  

𝐸 → 𝑑 → 𝐷 = {𝑎 ∈ 𝐷|∃𝑒 ∈ 𝐸: 𝑒 <𝑑 𝑎}  

Definition 4 [De-projection]. Given nested poset R and two its subsets  𝐸 ⊆ 𝑅  and  𝐹 ⊆ 𝑅, de-

projection  𝐸 ← 𝑓 ← 𝐹  is defined as an operation that returns elements of F which are less than 

elements from E along dimension f:  

𝐸 ← 𝑓 ← 𝐹 = {𝑏 ∈ 𝐹|∃𝑒 ∈ 𝐸: 𝑏 <𝑓 𝑒}  

De-projection can be also defined as a set of elements which are projected to this set along the 

specified dimension. These definitions assume that the dimension can be complex. Note also that an 

element can be included in projection only one time even if it has many lesser elements. In terms of 

references, projection returns a set of elements referenced by the source elements and de-projection 

returns a set of elements which reference the source elements.  

Employee  Project  

Account  EWP  

WP  

Department 

Savings  

dept  

wp  emp  owner  
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Figure 6  Projection and de-projection operations. 

Projection and de-projection are used for set-based navigation (Savinov, 2005b) through the partially 

ordered set by moving up and down to greater or lesser elements. We can also project and de-project 

along inclusion hierarchy (horizontally) using ‘super’ as a special dimension name:  

𝐸 → super → 𝐷 = {𝑎 ∈ 𝐷|∃𝑒 ∈ 𝐸: 𝑒 ⊂1 𝑎}  

𝐸 ← super ← 𝐹 = {𝑏 ∈ 𝐹|∃𝑒 ∈ 𝐸: 𝑏 ⊂1 𝑒}  

These operations allow us to get all immediate supersets or all immediate subsets (extensions) for the 

selected elements. A sequence of projection and de-projection operations is referred to as an access 

path. Access paths have a zig-zag form and provide the main means for propagating constraints from 

the source part of the model to the target part using its partially ordered structre. The approach based 

on projection and de-projection is referred to as arrow notation. It can be viewed as a set-based 

analogue of the conventional dot notation.  

In COQL, a set of elements is written in parentheses by specifying its concept (or collection) name 

with constraints separated by bar symbol. For example, (Employee|age<30) is a set of all young 

employees. Projection operation is denoted by right arrow '->' followed by some its dimension name 

which is followed by a target set. For example, all departments for a set of young employees can be 

obtained as follows (Fig. 6):  

(Employee | age<30) -> dept -> (Department)  

De-projection is denoted by left arrow and is applied to the source set followed by a dimension of the 

target set. For example, given a department we can get all its employees:  

(Department | code == "HR") <- dept <- (Employee)  

To demonstrate how simple and natural this approach is let us consider a more complex request 

(Fig. 7) where we need to get all employees of the “DMA” department working on the “COM” project 

but assigned to less than 4 different work packages:  

(Project | code == "COM") <- super <- (WP)   
  <- wp <- (EWP)   
  -> emp -> (Employee | dept.code == "DMA" AND   
     this <- emp <- (EWP) -> wp -> (WP) < 4 )  

This query consists of three major steps leading from Project to EWP and then to Employee. 

However, Employees are selected using an internal access path for computing the number of assigned 

work packages:  

this <- emp <- (EWP) -> wp -> (WP) < 4  

(Comparing a set with a number is a shortcut for the COUNT aggregation function, that is, we 

compare the power of this set with this number.) Note that no joins and no group-bys are used here 

which are the main source of errors in SQL in many other join-based queries.  

code name location 
#15 VA DRS 

#16 SALES WDF 

#17 HR WDF 

#18 RES DRS 

 

empNo dept age 
D012345 #15 45  

C543210 #16 21 

I678901 #16 25 

D121212 #17 28 

D131313 #17 35  

 

Department  

Employee  

Projection 
move up  

De-projection 
move down  
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Figure 7  Example of access path. 

4.2 Constraint Propagation and Inference  

Above we have described a mechanism for constraint propagation along an explicitly specified path 

using projection and de-projection operations. In this section we describe a procedure, called 

inference, which can automatically propagate source constraints to the target. A simple example of 

such type of queries is where we would like to retrieve all employees for a project with no information 

on how it should be done which can be written as follows:  

GIVEN (Project | code == "COM") // Constraint  
GET (Employee) // Result  

Answering such queries especially in the case of complex schemas is a highly non-trivial task because 

the database has to be “smart enough” to understand how to propagate the constraints through the 

model. Approaches relying on formal logic like semantic databases, description logics, and deductive 

databases rely on inference rules. In this case data and knowledge exist separately and are treated 

differently. An alternative approach consists in employing the structure of data for inference like it is 

done in the universal-relation model (URM) (Beeri et al, 1978). COM uses a novel approach which 

also belongs to this category and uses data itself as dependencies for carrying out inference. Its 

distinguishing feature is that it relies on partially ordered structure for that purpose. The basic idea is 

that lesser (more specific) data elements are treated as relationships or dependencies between their 

greater (more general) elements. 

 
Figure 8  Inference in two-dimensional space. 

Let us describe this procedure for the case of two domains where constraints on one domain have to be 

propagated to the other domain. If there is a functional dependency  𝑦 = 𝑓(𝑥), then by choosing some  

𝑥 ∈ 𝑋  we can easily infer the corresponding  𝑦 ∈ 𝑌. If we now choose a subset  𝑋′ ⊆ 𝑋  then the 

subset  𝑌′ ⊆ 𝑌  can be inferred in two steps (Fig. 8a): 1) select  𝑍′ ⊆ 𝑍  where  𝑍′ =
{〈𝑥, 𝑦〉|𝑥 ∈ 𝑋′, 𝑦 = 𝑓(𝑥)} ⊆ 𝑍 = 𝑋 × 𝑌  is a subset of points on the plane Z, and 2) select  𝑌′ ⊆ 𝑌  

where  𝑌′ = {𝑦|〈𝑥, 𝑦〉 ∈ 𝑍′}.  

The crucial observation here is that the sets X, Y and Z are partially ordered according to the tuple 

ordering principle (3) because  𝑧 = 〈𝑥, 𝑦〉. This means that X and Y are greater elements, and Z is a 

lesser element:  𝑍 <𝑥 𝑋  and  𝑍 <𝑦 𝑌  (see Fig. 8b). Therefore, the first step of the procedure is 

actually de-projection of the source set  𝑋′  to the set Z by producing set  𝑍′, and the second step is 

projection of  𝑍′  to Y by producing  𝑌′. If we now choose any dimension path (denoted by star 

symbol) then the inference procedure used in COM is defined as follows:  

1. [De-projection] Source constraints  𝑋′  are propagated down to the set Z using de-projection:   

𝑍′ = 𝑋′ ←∗← 𝑍  
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2. [Projection] Constrained set  𝑍′  is propagated up to the target set Y using projection:  

 𝑍′ = 𝑍′ →∗→ 𝑌.  

In the case of n independent source constraints  𝑋1′, 𝑋2′, … , 𝑋𝑛′  imposed on sets  𝑋1, 𝑋2, … , 𝑋𝑛  the de-

projection is computed as their intersection:  𝑍′ = ⋂ 𝑋𝑖′ ←∗← 𝑍.  

In COQL, inference operator is denoted as '<-*->' which is a composition of de-projection and 

projection connected by arbitrary dimension path (star symbol). Using this operator, the last query 

from the previous section can be rewritten by applying two inference operators:  

(Project | code == "COM")  
  <-*-> (Employee | dept.code == "DMA" AND  
  this <-*-> (WP) < 4  
)  

Here the database finds related employees by propagating the project element down to EWP (lesser 

collection) and then up to Employee. In addition, this operator is used to find a set of work packages 

for the current employee using (again) the EWP collection as a dependency.  

This general inference procedure has several parameters. First, we can choose what dependency Z to 

use for inference. Normally, it is a bottom set in the database containing the most specific elements 

which directly or indirectly connect all other elements. However, complex database schemas may have 

many bottom sets and then we can either use all of them for inference or choose the most appropriate 

one. Second, we can vary de-projection and projection propagation paths. By default, constraints are 

propagated along all dimension paths but in some cases we might want to choose the most appropriate 

dimensions. Third, we can impose constraints representing additional (background) knowledge in the 

query (Savinov, 2006b, 2012b).  

4.3 Product  

Projection and de-projection take existing elements as input and return existing elements as output so 

that no new elements are produced. Yet, sometimes it is necessary to build new elements from existing 

ones. One such operation is the well known Cartesian product which returns new tuples built from the 

elements of the source sets  𝐸1, … , 𝐸𝑛:  

𝐸1 × … × 𝐸𝑛 = {𝑒 = 〈𝑒1, … , 𝑒𝑛〉|𝑒𝑖 ∈ 𝐸𝑖 , 𝑖 = 1, … , 𝑛}  

In COM, this classical operation has new properties. First, the new set (remember that sets are normal 

elements in COM) as well as all its members are lesser elements with respect to the source sets and 

their elements:  

𝐸1 × … × 𝐸𝑛 < 𝐸𝑖,  〈𝑒1, … , 𝑒𝑛〉 < 𝑒𝑖 ∈ 𝐸𝑖,  𝑖 = 1, … , 𝑛  

This property is a consequence of the tuple ordering principle (3). Thus product in COM does not 

produce a completely new isolated set of elements. Rather, new elements become part of the model 

because they are defined in terms of this model (as new lesser elements).  

Second, product consists of identity-entity couples and therefore tuple members belong either to 

identity or entity parts:  

𝐸1 × … × 𝐸𝑛 = {𝑒 = 〈𝑒1, … , 𝑒𝑘〉(𝑒𝑘+1, … , 𝑒𝑛)|𝑒𝑖 ∈ 𝐸𝑖 , 𝑖 = 1, … , 𝑛}  

Formally, this distribution between identity and entity parts has to be specified either explicitly or 

implicitly.  

Third, arity of the product is equal to the number of source sets n. because the elements of the source 

sets are represented by their identities. For comparison, arity in the relational algebra is equal to the 

sum of the arities of the source sets because all the source attributes are included in the result tuple.  

In COQL, product operation is implemented via FOREACH (also denoted by CUBE in some papers) 

statement followed by a sequence of source sets. For example, the following query returns all 

combinations of projects and departments:  
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FOREACH (Project, Department)  

The structure of the return set is specified in the RETURN and additional constraints can be imposed in 

the WHERE statements:  

FOREACH (Project p, Department d)  
WHERE d.address.country == "DE"  
RETURN p.name, p.type, d.name  

This query selects only departments from Germany and returns three dimensions (instead of two 

identities p and d by default).  

This type of query significantly simplifies analytical tasks like OLAP where it is necessary to compute 

some measure for a number of elements (cells of the cube). The measure is computed in the query 

body. For example, assume that EWP collection has a dimension pm which stores the number of person 

months an employee has in a work package. If we want to show total person months for each project 

and department then it can be done as follows:  

FOREACH (Project p, Department d)  
WHERE d.address.country == "DE"  
BODY {  
  Collection cell = p <-* (EWP) AND d <-* (EWP)  
  DOUBLE measure = SUM( cell.pm )  
}  
RETURN p.name, d.name, measure  

The body block is executed for each combination of project and department (instance variables p and 

d contain their identities). The first line finds all EWP elements belonging to the current project and 

department. (We use a shortcut that AND denotes intersection when applied to sets). We use star de-

projection for constraint propagation so that an exact dimension path is not needed. The second line of 

the body finds total person months for the selected elements in the cell collection. Equivalently, the 

body of this query could be written as follows:  

DOUBLE measure = SUM(  
  (EWP | wp.super == p AND emp.dept == d).pm  
)  

First, we select all elements of EWP which belong to the current project and department.  

(EWP | wp.super == p AND emp.dept == d)  

(Here AND is used as usual as a logical conjunctive.) Then one dimension is selected and finally the 

SUM aggregation function computes the total number of person months for this cell.  

5 Discussion  

1) Why duality? The main benefit of the duality principle is that it unites value/identity modeling and 

object/entity modeling. Identities and entities are considered parts of one whole being modeled using 

one construct. Very informally, elements in COM are analogous to complex numbers in mathematics 

which also have two constituents but are manipulated as one whole. One consequence is that we can 

freely vary the “degree of sharing” by placing dimensions to be passed by-value or by-reference in 

identity class or entity class, respectively. As two extreme cases, we can describe a completely 

transient model where all elements are passed by-value (for example, message formats) and a 

completely persistent model where all elements are represented using the same type of platform-

specific identity. This principle resolves the fundamental difficulty of traditional models with the 

necessity to have two kinds of sets: sets of values (domains) and sets of objects or tuples (relations). 

By uniting identities and entities within one thing, COM eliminates this separation and by using only 

one kind of sets. Another consequence of this principle is that identity modeling is not only made 

symmetric to but in many aspects more important than entity modeling. In COM, we first define how 

things in the problem domain are identified and only after that add persistent properties in entity part 

of the elements.  
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2) Why inclusion? The original design goal was to introduce hierarchical addresses for elements based 

on extension operator. The rationale behind our approach is that any address (identity) must have some 

parent address with respect to which it is defined and there can be many child addresses which extend 

this address. As a result, any element in the model gets its own unique hierarchical address which can 

be passed to other elements and then used to access its entity part. In this sense, COM can be viewed 

as a reincarnation of the hierarchical model on a new cycle of development. It is also similar to the 

hierarchical structure in XML documents where children are also included by-value (yet, without 

unique relative identities). By introducing address hierarchies we get two separate mechanisms with 

different design goals: containment and inheritance. Classical inheritance does not use the notion of 

addressing and instances are supposed to exist in a global flat space. On the other hand, containment 

does not employ the conception of reuse. Having two separate relations would make the model more 

complicated and the challenge was to express them within some more general mechanism. Here the 

most important contribution of COM is that it unites containment (with hierarchical address system) 

and inheritance. In COM, to be included in some container and to have an address within some scope 

means to extend it and to inherit its properties (a member of a set is an extension of this set). In terms 

of conceptual modeling, IS-A relation in COM is a particular case of IS-IN relation. Such a 

generalization has even more important consequences in COP (Savinov, 2014c, 2012c, 2008) where it 

underlies the mechanisms of dual methods (each method is defined twice in identity class and entity 

class) and reverse overriding strategy (parent methods can override child methods).  

3) Why partial order? The short answer is that partial order is needed for data semantics where formal 

structure gets some meaning and all elements have formal definitions in terms of other elements. In 

particular, partial order is used for representing hierarchical multidimensional spaces (Savinov, 

2005a). The meaning of an element is defined by its coordinates which in turn are treated as points 

with their own coordinates. It is therefore quite natural to prohibit cycles because points should not 

take themselves as coordinates. Cycles also produce an infinite number of dimensions (paths from 

bottom to top). Another interpretation of partial order is in terms of a generalization-specialization 

hierarchy and cycles in this case should also be avoided (for the same reason they are not allowed in 

inheritance hierarchies). Since the meaning of an element is defined by its greater elements, cycles 

will result in recursive definitions where a term is defined via itself. Also, if a greater element is 

interpreted as a set consisting of its lesser elements then we would like to avoid recursive membership 

where an element is (indirectly) its own member.  

4) Modeling cycles: In many applications strict partial order is a too strong constraint especially in the 

case a element should reference itself. For example, if employees have a manager who is also an 

employee then we get a loop which does not produce any problem in practice. Therefore, self-

references could be permitted in COM and it does not entail any difficulties when treated 

appropriately. Cycles also could be modeled if we introduce the mechanism of inverse dimensions, 

that is, dimensions which represent a lesser element (rather than a greater element by default). For 

example, if employees reference their department and the department references its manager then we 

get a cycle. To resolve this cycle we have to indicate which of these two concepts is more general by 

marking one dimension as an inverse dimension:  

CONCEPT Department // Greater concept  
  ENTITY  
    inverse Employee manager // Inverse dim  

CONCEPT Employee // Lesser concept  
  ENTITY  
    Department dept // Direct (normal) dim 
    Employee assistant // Loop (self-reference)  

Here Department is still greater than Employee because dimension manager is marked as pointing 

down. This information is used for automatic constraint propagation and inference where the system 

has to choose correct direction for constraint propagation (up or down). In the case of precise access 

paths where all dimensions are specified we can use arbitrary structure with cycles.  

5) Why two relations? Semantically, both inclusion and partial order have similar meaning and can be 

used to express typical relationships like containment. Yet, this separation is very important and 

cannot be removed because we need some representation mechanism for elements. The main 
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difference between inclusion and partial order is that inclusion is implemented by-value using 

extension and partial order is implemented by-reference using tuples. If an element is included in its 

parent then it exists there permanently because its identity is defined with respect to the parent 

identity. If an element has a greater element then it also can be thought of as included in it. However, 

this inclusion is temporary and can be changed by changing the reference which points to the greater 

element. If we think of an element as existing in some space then there are two possibilities to define 

it: to include the element in the parent space by-value (as a whole) or to include it in several parent 

spaces by-reference using its dimensions. For example, earlier we assumed that an employee 

references the department where it works, which means that an employee is a member in the space of 

departments:  

CONCEPT Employee  
    CHAR(64) name  
    Department dept // By-reference  

The same semantics could be expressed using inclusion relation if employees are supposed to be 

identified with respect to the parent.  

CONCEPT Employee IN Department // By-value  
    CHAR(64) name  

Here employees cannot (easily) change their department because it is part of their identity. Which 

alternative to choose is a matter of good design and is not defined by the model itself.  

6) Why projection and de-projection: Most models rely on either join or dot notation for data 

connectivity. Formally, nothing prevents COM from using joins. However, joins have several negative 

properties (Savinov, 2012d):  

 Join is a low level operation describing how to get a result rather than what result has to be 

produced.  

 Join has several major purposes which cannot be distinguished from the syntax. For example, 

the join condition WHERE A.id==B.id says almost nothing about the purpose of the query  

 Join is a cross-cutting concern which exposes the internal mechanics of relationships at the 

level of business logic. Writing and maintaining join-based queries is difficult and error-prone 

because any small change in the model structure entails numerous changes all over the 

queries.  

Conventional references and dot notation are free of these drawbacks but they have other problems. 

First, primitive references are not part of the model and there is no way to define domain-specific 

formats. Second, dot notation is more instance-oriented and does not inherently support set operations. 

Therefore, dot notation is used mainly to follow a sequence of references while joins are used for more 

complex manipulations with data. COM proposes a novel approach to querying based on arrow 

notation with the following advantages:  

 Projection and de-projection are set-based operations (in contrast to dot notation)  

 Projection and de-projection are navigational operations (in contrast to join and similar to dot 

notation)  

 Projection and de-projection hide their implementation and queries are more stable with 

respect to model alterations. They describe what has to be retrieved rather than how it has to 

be done  

 Projection and de-projection are semantic operations because they are treated as movements: 

in containment hierarchy, between levels of detail, in general-specific hierarchy  

6 Related Work  

1) Identity and value modeling: Defining an element as an identity-entity couple is a novel feature 

which is absent in other models. Most data and programming models are entity-oriented by providing 

only primitive types for references. In the object-relational model (ORM) (Kim et al, 1990; 

Stonebraker et al, 1990), both values and relations (entities) are considered important for data 
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modeling but they are modeled separately: value domains are described using object-oriented means 

while entities are described using relational methods. In this sense, COM can be viewed as a 

generalization of ORM because this separation is removed so that both values and relation tuples are 

modeled using one construct. Primary keys are similar to COM identities because they both describe 

domain-specific identifiers. The difference is that primary keys are identifying entity properties 

(Eliassen & Karlsen, 1991; Wieringa & de Jonge, 1995) while COM identities are values. OIDs in 

object data models (Abiteboul & Kanellakis, 1998; Dittrich, 1986) are values but they have a 

platform-specific format. Yet, the distinguishing feature of COM is not only the possibility to define 

an arbitrary format of identities but making it together with the corresponding entity using one 

construct.  

2) Modeling hierarchies: Inclusion principle makes COM similar to the hierarchical model (HDM) 

because in both cases elements exist in a hierarchy. The difference is that COM hierarchy is defined in 

terms of domain-specific addresses while HDM defines a hierarchy in platform-specific terms. 

Another important difference is that COM hierarchy generalizes inheritance relation and this feature 

makes it similar to object data models (ODM). However, ODMs use classical treatment of inheritance 

which entails the following asymmetry: classes exist in hierarchy while their instances exist in flat 

space. COM eliminates this asymmetry so that both concepts and their instances exist in hierarchy. It 

is also how inheritance is treated in prototype-based languages where “parents are shared parts of 

children” (Lieberman, 1986). However, COM implements instance hierarchy using identities and 

extension operator while in prototype-based languages the hierarchy is maintained by the compiler 

(each object segment has its own platform-specific reference). What is really new in COM is that it 

unites two views which earlier have existed separately: hierarchy as containment (IS-IN relation) and 

hierarchy as inheritance (IS-A relation). Inclusion makes it possible to introduce relation hierarchies in 

RM (if entities describe relation types). Moreover, modeling relation types and value types is unified 

because one inclusion relation is used simultaneously for both purposes which can be viewed as a 

generalization of ORM.  

3) Partial order: Partial order has been widely used in conceptual modeling but not as a main 

principle but rather as a desirable property. In contrast, COM establishes partial order as one of its 

major principles and then derives other properties as consequences which is a novel approach. The 

only known work where partial order relation is laid at the foundation of data modeling is (Raymond, 

1996) where “partial order database is simply a partial order”. This approach focuses on manipulating 

many different partial orders and relies more on formal logic while COM focuses on manipulating 

elements within one nested poset with strong focus on dimensional modeling and analytical 

operations. Another difference is that it proceeds from the assumption that partial order underlies type 

hierarchies while COM uses inclusion relation for that purpose. COM relies on the principle that 

elements with an absent property are more general and elements with additional properties are more 

specific which is also studied in (Buneman et al, 1991; Zaniolo, 1984). However, this work is 

positioned as an extension of the relational model rather than an independent principle leading to a 

new model.  

4) Multidimensional modeling and analysis: COM is very similar to multidimensional models 

(Pedersen, 2009) because both approaches view data as having many levels of detail and many 

dimensions. The difference is that COM is a general purpose model which can be used for both 

transactional and analytical applications. In contrast, standard OLAP models are designed for concrete 

type of analysis over some translational model. In COM, such OLAP roles as dimension, measure, 

facts and cube are not specified in the model because they are assumed to belong to the application 

level.  

5) Conceptual modeling and semantics: Classical semantic and conceptual models (Hull & King, 

1987) provide richer mechanisms and constructs for representing complex application-specific 

concepts and relationships. COM integrates logical and conceptual modeling by providing semantic 

features as its integral part. The main distinguishing feature is that semantics is represented by 

partially ordering all elements. The meaning of an element is defined by its greater elements which in 

turn have their greater elements so that all definitions are reduced to some basic terms (primitive 

values). In this case semantic relations (like containment, aggregation, generalization and 

classification) are not introduced as independent modeling constructs. Instead, one and the same 

structure (inclusion and partial order) is assigned different semantic interpretations. In terms of (Codd, 
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1979), a reference in COM represents an elementary semantic unit, “atomic semantics”, while 

extension and tuple serve as a means for creating more complex semantic units, “molecular 

semantics”. Another specific feature is that COM has two orthogonal relations: one is implemented 

by-value by extending identities and the other is implemented by-reference using tuples. Two relations 

are also used in (Smith & Smith, 1977) where an element aggregates other elements but at the same 

time it has a more general element. The difference is that COM uses inclusion and partial order 

relations as orthogonal structures instead of aggregation and generalization. COM is also characterized 

as an attributed-oriented and relationship-free model as opposed to fact-oriented models. Instead of 

explicitly introducing relationships, COM assumes that they are represented by lesser concepts 

(Savinov, 2012a).  

6) Navigation and reasoning: Navigational features of COM are similar to those provided in the 

functional model (FDM) (Sibley & Kerschberg, 1977). This similarity is even stronger if we assume 

that partial order is represented by functions (rather than by tuples). De-projection operator in COM is 

analogous to the operator of inversing which is present in many models including FDM (inverse 

functions). Both COM and Description Logics (DL) rely on binary relations for data access and 

reasoning. However, DL uses formal logic which provides much more powerful reasoning 

mechanisms while COM provides more facilities for structuring data and then using these structures 

(rather than inference rules) for data access and inference. A novel feature of COM is that its inference 

mechanism relies on multidimensional treatment of data which is very useful in business intelligence. 

COM is similar to the universal-relation model (URM) (Beeri et al, 1978) because both rely on the 

structure of data for inference and query answering. URM could be obtained from COM by assuming 

that there are only two levels in the partially ordered structure (relations are immediate lesser elements 

for their attribute domains). In this case constraints imposed on attributes are propagated through the 

relations to other attributes. Bottom concept in COM would correspond to the universal relation in 

URM. In this sense, COM can be viewed as a new interpretation of the idea of having a universal 

relation.  

7 Conclusion  

Nested partially ordered sets introduced in this paper serve as a formal basis for the concept-oriented 

model. An element of a nested poset is defined as a couple of identity tuple and entity tuples by 

producing a nice yin-yang style of balance between two sides of one reality — entity modeling and 

identity modeling. Extension operator on elements induces inclusion relation between sets of elements 

which is used for modeling nested sets with a hierarchical address space. Tuples induce partial order 

relation among element which is then used to define projection and de-projection operations. The main 

advantage of the introduced formal setting is that it allows us to rigorously describe structural and 

operational properties of the model by generalizing many existing data modeling patterns and 

techniques.  
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