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Abstract
Role-based modeling has been investigated for over 35
years as a promising paradigm to model complex, dy-
namic systems. Although current software systems are
characterized by increasing complexity and context-
dependence, all this research had almost no influence
on current software development practice, still being dis-
cussed in recent literature. One reason for this is the lack
of a coherent, comprehensive, readily applicable notion
of roles. Researchers focused either on relational roles
or context-dependent roles rather then combining both
natures. Currently, there is no role-based modeling lan-
guage sufficiently incorporating both the relational and
context-dependent nature of roles together with the var-
ious proposed constraints. Hence, this paper formalizes
a full-fledged role-based modeling language supporting
both natures. To show its sufficiency and adequacy, a
real world example is employed.

Categories and Subject Descriptors I.6.4. [Simu-
lation and Modeling ]: Model Validation and Analysis—
Role-based Modeling; I.6.5. [Simulation and Modeling ]:
Model Development—Formal Modeling

1. Introduction
Charles W. Bachmann was the first researcher to inves-
tigate roles back in the year 1977. He proposed role-
based modeling [1] to capture both context-dependent
and collaborative behavior of objects. Since then, a
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large variety of approaches in different research ar-
eas, ranging from data modeling [1, 16, 23] via con-
ceptual modeling [15, 30] through to programming lan-
guages [3, 5, 19, 26] emerged. More importantly, be-
cause current software systems are characterized by in-
creased complexity and context-dependence [25], there
is a strong demand for new concepts beyond object-
oriented design. Although mainstream object-oriented
modeling languages are good at capturing a system’s
structure, they lack ways to model the systems behav-
ior, as it dynamically emerges through collaborating ob-
jects [27]. In turn, roles are a natural concept capturing
the behavior of participants in a collaboration. More-
over, roles permit the specification of interactions inde-
pendent from the interacting objects. Similarly, more re-
cent approaches use roles to capture context-dependent
properties of objects [19, 23]. The notion of roles can
help to tame the increased complexity and context-
dependence. Despite all that, these years of research
had almost no influence on current software develop-
ment practice.

To enable the practical application of roles, two ma-
jor requirements have to be fulfilled. First, besides the
intuitive semantics underlying the role concept, its no-
tions must be formally specified to create a coherent un-
derstanding of relational and context-dependent roles.
Second, to permit scalability of role-based modeling
languages automatic mechanisms to validate the well-
formedness and consistency are required. Therefore, a
formal model is indispensable. In sum, a major blocking
factor for the practical application of roles is their lack
of a consistent formal model. Thus, this paper provides
a formal model for a role-based modeling language sup-
porting both natures of roles. This allows for the formal
and automatic verification of well-formedness, compli-
ance, and validity of models at design time and their
instances at runtime.
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The paper is structured as follows: Section 2 intro-
duces a small running example used for the remainder
of the paper. Afterwards, Section 3 elaborates on the na-
ture of roles and surveys contemporary role-based mod-
eling languages. The main contribution of this paper, a
formal modeling language for context-dependent, rela-
tional roles, is presented in Section 4 and employed in
Section 5. Section 6 discusses our reference implemen-
tations, classifies our formal model, and its limitations.
Section 7 compares the presented formal model to re-
lated approaches. A brief overview on completed and
future research efforts concludes the paper.

2. Running Example
Before diving into role-based modeling, we first employ
the real world scenario of a small banking application,
extracted from [27]. A bank is a financial institution
that employs consultants and provides banking services
to their customers, who are either persons or compa-
nies. Customers can be advised by consultants, own sev-
eral savings and checking accounts, and perform trans-
actions. Transactions encapsulate the process of trans-
ferring money from exactly one source account to one
target account. They are initiated by a customer, how-
ever, managed and executed by the bank. Additionally,
financial regulations require that consultants should not
advise themselves as a customer and checking accounts
must have exactly one owner whereas savings accounts
can have multiple owners. Furthermore, no account can
be both a checking and a savings account as well as both
the source and target of the same transaction.

3. Nature of Roles
Roles are not a new concept in modeling languages,
however, the only generally accepted feature of roles is
that they can be played by unrelated objects [22, 30].
The role of a customer of a bank, for instance, can
be played by either a person or a company, regardless
of them being related or not. Besides that, [30] and
[22] have shown that there is no common understanding
of roles in the literature. They identified 26 classifying
features attributed to roles, shown in Figure 1. For now,
two of these features are important, because they help
to classify approaches to support either the relational
nature or context-dependent nature of roles, namely
Feature 2 and 19. Additionally, several features indicate
that roles and role models are subject to constraints, e.g.,
Features 6, 16, 17, and 18. Accordingly, the following
discussion is trisected.

3.1 Relational Nature

Modeling languages usually feature some notion of role.
Consider, ER [7] and UML [29], where roles denote the
named ends of relationships or associations.

Either way, they neither have properties (Feature 1)
nor the ability to be played by unrelated objects (Feature
7). In the case of UML, one could argue that this can
be resolved by modeling roles as classes and use inheri-
tance to relate them to their players. This, however, fails
to capture the intended dynamism of roles and results in
exponentially many classes [30]. Several role-based mod-
eling languages [1, 4, 16, 21, 30] introduced roles tied
to relationships as first-class citizens. Hence, these ap-
proaches can represent the advises relationship between
consultants and customers and the latter be played by ei-
ther persons or companies. These languages assume that
all roles and relationships are equally relevant to an ob-
ject’s properties. Thus, there is no notion of context,
scope, or institution on which roles and relationships
depend on. In most approaches (except [4, 16]) relation-
ships cannot play roles themselves. In the banking appli-
cation, the transaction must be modeled as a relation-
ship, but cannot be tied to the specific bank owning this
transaction. This, in turn, prevents reusing the notion of
a financial transaction, as it is now tied to the modeled
bank. To resolve this dilemma it must be understood
that relationships themselves are context-dependent.

3.2 Context-Dependent Nature

To incorporate the missing contextual-dependency of
roles, recent role-based modeling languages [11, 18, 27]
focused on the context-dependent nature. These ap-
proaches introduce some sort of context to encapsulate
the roles relevant to a certain situation or interaction.
Due to the fact that the term itself is massively over-
loaded, several researchers introduced other terms to de-
note the context of a role, e.g., environment [31], insti-
tution [2], ensemble [18], and compartment [22]. Hence-
forth, the term compartment is used because its defini-
tion, as “objectified collaboration with a limited number
of participating roles and a fixed scope” [22], encompasses
all of the other notions. In conclusion, these approaches
capture the contextual dependence of roles by making
the compartments their definitional boundary. For the
banking example, the transaction can be considered a
compartment, as it captures the transfer of money from
a source to a target account. While most of these ap-
proaches assume that roles depend on (some kind of)
compartment (Feature 19) and have properties (Feature
20), only few consider compartments as objects able to
play roles themselves (Feature 22). The latter is crucial
to ensure that the transaction compartment (instance)
can be owned by a bank compartment (instance) man-
aging its creation and execution. Nevertheless, most ap-
proaches relied solely on compartments [2, 11, 27, 31]
and did not include context-dependent relationships be-
tween roles.
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1. Roles have properties and behaviors
2. Roles depend on relationships
3. Objects may play different roles simultaneously
4. Objects may play the same role (type) several times
5. Objects may acquire and abandon roles dynamically
6. The sequence of role acquisition and removal may be

restricted
7. Unrelated objects can play the same role
8. Roles can play roles
9. Roles can be transferred between objects

10. The state of an object can be role-specific
11. Features of an object can be role-specific
12. Roles restrict access
13. Different roles may share structure and behavior

14. An object and its roles share identity
15. An object and its roles have different identities
16. Relationships between roles can be constrained
17. There may be constraints between relationships
18. Roles can be grouped and constrained together
19. Roles depend on compartments
20. Compartments have properties and behaviors
21. A role can be part of several compartments
22. Compartments may play roles like objects
23. Compartments may play roles which are part of themselves
24. Compartments can contain other compartments
25. Different compartments may share structure and behavior
26. Compartments have their own identity

Figure 1: Classifying features of roles, extracted from [22, 30]

3.3 Constraining Role Models

So far the discussion revolved around the nature of
roles in role-based modeling languages and did not cover
their capabilities to specify particular constraints for
roles and relationships. Typically, modeling languages
support various constraints on relationships (Feature
16). Cardinality constraints, for instance, are featured
in most modeling languages, e.g., ER [7] and UML [29].
They limit the number of entities related by a relation-
ship. In our example, the owns checking account rela-
tionship must be constrained with cardinality one on the
customer side and zero-to-many on the checking account
to ensure that checking accounts are owned by exactly
one customer. Intra-relationship constraints [4] represent
mathematical constraints for relations that additionally
constrain relationships. The advises relationship, for in-
stance, can be constrained to be irreflexive ensuring that
persons playing the consultant role cannot advise them-
selves as a customer. Inter-relationship constraints [16]
are constraints between individual relationships (Feature
17). They can be used to define subsets or disjunctions
between relationships. An example for the former is a fa-
ther son relationship required to be a subset of the parent
child relationship. While these constraints limit relation-
ships, there are two kinds of constraints for roles. Role
constraints limit the types of roles that can be played
simultaneously by one object. They include notions to
prohibit or require another role to be played if the other
role is played [28]. In our example, the statement that
an account cannot be a checking account and a savings
account at the same time can be expressed with a role-
prohibition between these roles. Moreover, [22, 31] sug-
gested to employ notions to group and constrain roles to-
gether. In contrast, occurrence constraints [18, 31] limit
the number of roles present in a compartment, i.e., the

number of role instances of a particular type in a com-
partment instance. Consider the transaction compart-
ment that requires the presence of exactly one source
and one target role. Although various role-based mod-
eling languages have introduced different kinds of con-
straints, no approach has included all of them into one
coherent model.

4. A Formal Role-Based Modeling
Language

This section introduces our formal model for Compart-
ment Role Object Models (CROM) [22], Compartment
Role Object Instances (CROI) and Constraint Models
by first defining the underlying ontological foundations;
then introducing their graphical notation; and finally
providing their formal definitions.

4.1 Ontological Foundation

Before providing any formal definition, it is crucial to
classify the different kinds of concepts employed by our
modeling language. Without this distinction, designers
of role-based systems cannot decide whether a concept
should be modeled as either Natural Type, Role Type,
Compartment Type, or Relationship Type. To provide a
clear ontological distinction, three well-established on-
tological properties are used: Rigidity, Foundedness and
Identity [12–14, 24]. The first denotes that instances of
a rigid type belong to that type until they cease to ex-
ist [13, 14]. A person, for instance, can be considered a
rigid type, because you can only stop being a person if
you die. The second describes that instances of a founded
type can only exist if another instance exists at the same
time [12, 13, 24, 30]. The customer of our bank appli-
cation is such a founded type, because a customer can
only exist if the bank exists, as well. The last property
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distinguishes whether instances of a certain type have a
unique, derived, or composed identity [12]. A person, for
instance, has a unique identity throughout its live time,
whereas a customer derives its identity from the person
in that role. The trans relationship, in turn, is identi-
fied by the combined identities of the source and target
accounts.

These three ontological properties are sufficient to
distinguish four kinds of concepts. Natural Types are
rigid, not founded, and their instances carry their own
unique identity. Thus, instances of natural types have
an immutable, independent type and identity. The en-
tities person, company, and account are natural types
in our banking application. Role Types, in contrast, are
not rigid [15], founded and their instances only derive
their identity from their players. As such, role instances
depend on both the identity of their player and a founda-
tional relation to their context [24] (i.e., compartment).
Thus, instances of a rigid type can dynamically adopt
role types by playing its instances. As a result, most
entities in our banking application become role types,
e.g.: consultants, customer, checking account, savings ac-
count. Compartment Types are rigid, founded, and their
instances have a unique identity, hence, their instances
are founded on the existence of participating roles. For
example, both the bank and transaction are consid-
ered compartment types. Relationship Types are rigid,
founded and have a composed identity. They represent
binary relationships between two distinct role types.1
The identity of links (relationship instances) is composed
from the identities of the players of the participating
role. In sum, these concepts form the foundations for
our modeling language.

4.2 Graphical Notation

This section facilitates the graphical notation for CROM
and CROI by illustrating a role model and a possible in-
stance for the banking application. Figure 2a depicts the
example role model. It describes a Bank as a compart-
ment managing Customers, who own CheckingAccounts
and SavingsAccounts. They can be advised by one or
more Consultants. However, the advises relationship is
constrained to be irreflexive, to prohibit self advising
consultants. The Transaction compartment is specified
to orchestrate the transfer of money between exactly two
Accounts by means of the roles Source and Target. More-
over, a unique Target counterpart for each Source has to
exist. This is ensured by the one-to-one cardinality of
the trans relation. Additionally, the role group with 1..1
cardinality enforces that one account cannot be Source
and Target in the same Transaction. Finally, Persons
can play the roles Consultant and Customer ; Compa-

1 Note that each n-ary relationship can be represented with n
binary relationships.

nies only Customer ; and Accounts the roles CheckingAc-
count, SavingsAccount, Source, and Target. Figure 2b,
in turn, shows one possible instance of this model. It
comprises two Persons Peter and Klaus, as well as a
Company Google that play roles in the bank compart-
ment instance. Each role is placed at the border of its
respective player. For brevity, we omitted their individ-
ual attributes. Klaus and Google play the Customer
role. The former owns a CheckingAccount and the latter
owns a SavingsAccount. Besides that, Google is advised
by Peter playing the Consultant role. Additionally, the
model contains one Transaction compartment t where
Account1 and Account2 play the Source and Target
role, respectively. Thus, it represents a transaction from
Google’s savings account to Klaus’s checking account.
This transaction itself plays the role of a MoneyTransfer
within the bank compartment. Intuitively, it is possible
to check that the instance adheres to the intuitive se-
mantics of the role model, however, to formally validate
these models they have to be formalized.

4.3 Type Level

After introducing the ontological foundations and the
graphical notation, we can introduce our formal model,
starting on the type level. For brevity, we omitted the
notion of attributes from these definitions. Nevertheless,
the necessary additions are presented in the Appendix.

Definition 1 (Compartment Role Object Model).
Let NT , RT , CT , and RST be mutual disjoint sets
of Natural Types, Role Types, Compartment Types,
and Relationship Types, respectively. Then a Compart-
ment Role Object Model (CROM) is a tuple M =
(NT,RT,CT,RST,fills, parts, rel) where fills ⊆ (NT ∪
CT ) × RT is a relation, parts : CT → 2RT and
rel : RST → (RT × RT ) are total functions. A CROM
is denoted well-formed if the following axioms hold:

∀rt ∈ RT ∃t ∈ (NT ∪ CT ) : (t, rt) ∈ fills (1)
∀ct ∈ CT : parts(ct) �= ∅ (2)
∀rt ∈ RT ∃!ct ∈ CT : rt ∈ parts(ct) (3)

∀rst ∈ RST : rel(rst) = (rt1, rt2) ∧ rt1 �= rt2 (4)
∀rst ∈ RST ∃ct ∈ CT : rel(rst) = (rt1, rt2) ∧

rt1, rt2 ∈ parts(ct) (5)

In detail, fills denotes that rigid types can play roles of
a certain role type, parts maps compartment types to
their contained role types, and rel captures the two role
types at the respective ends of each relationship type.
The well-formedness rules ensure that the fills-relation
is surjective (1); each compartment type has a nonempty,
disjoint set of role types as its parts (2, 3); and rel maps
each relationship type to exactly two distinct role types
of the same compartment type (4, 5).
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(a) Model

(b) Instance

Figure 2: Compartment Role Object Model and Instance of the banking application

Example 1 (Compartment Role Object Model). Let
B = (NT,RT,CT,RST,fills, parts, rel) be the model of
the bank (Figure 2a), where the idividual components are
defined as follows:

NT := {Person,Company,Account}
RT := {Customer,Consultant,CA,SA,Source,Target,

MoneyTransfer}
CT = {Bank,Transaction}

RST = {own_ca, own_sa, advises, trans}
fills := {(Person,Consultant), (Person,Customer),

(Company,Customer), (Account,Source),
(Account,Target), (Account,CA),

(Account,SA), (Transaction,MoneyTransfer)}
parts := {Bank → {Consultant,Customer,CA,SA,

MoneyTransfer},
Transaction → {Source,Target}}

rel := {own_ca → (Customer,CA),

own_sa → (Customer,SA),

advises → (Consultant,Customer),
trans → (Source,Target)}
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The bank model B is simply created from Figure 2a
in four steps. First, all the natural types, compartment
types, role types, and relationship types are collected
into the corresponding set.1 Second, the set of role types
contained in each compartment type is assigned to the
parts-function. Third, it is specified which natural type
can fill which role type, and finally the rel -function is
defined for the role types at the ends of each relation-
ship type. Thus, CROMs can be retrieved from their
graphical representation. The presented bank model B
is well-formed, because each defined role type is filled
by at least one natural type or compartment type (1),
each compartment type consists of a non-empty (2) and
disjoint (3) set of role types, and each relationship type
is established between two distinct role types (4) of the
same compartment type (5).

4.4 Instance Level

On this level, we distinguish naturals, roles, compart-
ments and links as instances of their respective types.

Definition 2 (Compartment Role Object Instance).
Let M = (NT,RT,CT,RST,fills, parts, rel) be a well-
formed CROM and N , R, and C be mutual disjoint
sets of Naturals, Roles and Compartments, respectively.
Then a Compartment Role Object Instance (CROI)
of M is a tuple i = (N,R,C, type, plays, links), where
type : (N → NT ) ∪ (R → RT ) ∪ (C → CT ) is a
labeling function, plays ⊆ (N ∪ C) × C × R a relation,
and links : RST ×C → 2R

ε×Rε

is a total function (such
that Rε := R ∪ {ε} with ε �∈ R ∪ N ∪ C). Moreover,
O := N ∪ C denotes the set of all objects in i and
Oc := {o ∈ O | ∃r ∈ R : (o, c, r) ∈ plays} the set of
objects played in a compartment c ∈ C. To be compliant
to the model M the instance i must satisfy the following
conditions:

∀(o, c, r) ∈ plays : (type(o), type(r)) ∈ fills ∧
type(r) ∈ parts(type(c)) (6)

∀(o, c, r),(o, c, r′) ∈ plays :
r �= r′ ⇒ type(r) �= type(r′) (7)

∀r ∈ R ∃!o ∈ O ∃!c ∈ C : (o, c, r) ∈ plays (8)
∀rst ∈ RST ∀c ∈ C : (ε, ε) �∈ links(rst, c) (9)
∀rst ∈ RST ∀c ∈ C ∀r ∈ R ∀o ∈ O ∃r̂ ∈ Rε :

rel(rst) = (rt1, rt2) ∧((
(o, c, r) ∈ plays ∧ type(r) = rt1

)
⇔ (

(r, r̂) ∈ links(rst, c)
)) ∧((

(o, c, r) ∈ plays ∧ type(r) = rt2
)

⇔ (
(r̂, r) ∈ links(rst, c)

))
(10)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) ∩R×R :

(r1, ε), (ε, r2) /∈ links(rst, c) (11)

The type function assigns a distinct type to each in-
stance, plays identifies the objects (either natural or
compartment) playing a certain role in a specific com-
partment, and links captures the roles currently linked
by a relationship type in a certain compartment. A com-
pliant CROI has to satisfy the given six axioms that
guarantee consistency of both the plays-relation and the
links-function with the model M. Axioms (7) and (8)
restrict the plays-relation, such that an object is pro-
hibited to play instances of the same role type multiple
times in one compartment and each role has one dis-
tinct player in one distinct compartment. Axiom (10)
ensures that if and only if a role participates in a com-
partment and its role type is linked by a relationship
type, then a corresponding tuple in the links-function
for that compartment exists. To reflect that a role is
not related to any counter role (11), a role can also be
linked to the empty role ε. This ensures that each role
played in a compartment c is presented in the corre-
sponding links(rst, c)-function without forcing this role
to be linked to a counter role. However, because an ob-
ject can play only one role of a certain type in one com-
partment (7), the traditional semantics of cardinality
constraints of relationships is retained in this compart-
ment. This ensures the cardinality constraints only lo-
cally to compartments, i.e., a natural can play a role of
a certain type multiple times if each of them is played in
a different compartment. Hence, ε is introduced to cap-
ture zero-to-one and zero-to-many relationships without
leaving out roles participating in that relationship while
allowing to play roles of the same type multiple times.

Besides, these definitions entail that links(rst, c) = ∅
for each compartment c with a type not containing the
relationship type rst.2

Example 2 (Compartment Role Object Instance). Let
B = (NT,RT,CT,RST,fills, parts, rel) be the well-
formed CROM defined in Example 1; then b = (N,R,C,
type, plays, links) is an instance of that model (Figure
2b), where the components are defined as follows:

N := {Peter,Klaus,Google,Account1,Account2}
R := {Cu1,Cu2,Con,Ca,Sa,S,T,M}
C := {bank, t}

type := {(Cu1 → Customer), (Cu2 → Customer),
(Con → Consultant), (Ca → CA), (Sa → SA),

(S → Source), (T → Target),
(M → MoneyTransfer), (bank → Bank),
(t → Transaction), . . . }

1 Henceforth, SA and CA are abbreviations for SavingsAccount
and CheckingAccount, respectively.
2 A sufficient proof can be found in the Appendix.
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plays := {(Klaus, bank,Cu1), (Google, bank,Cu2),

(Peter, bank,Con), (Account1, bank,Sa),
(Account2, bank,Ca), (t, bank,M),

(Account1, t,S), (Account2, t,T)}
links := {(own_ca, bank) → {(Cu1,Ca), (Cu2, ε)},

(own_sa, bank) → {(Cu1, ε), (Cu2,Sa)},
(advises, bank) → {(ε,Cu1), (Con,Cu2)},
(trans, t) → {(S,T)}}

The CROI b is created, from Figure 2b, by collecting
all the naturals, compartments, and roles accordingly;
mapping their respective types; linking the roles to their
players; and assigning a tuple for each depicted relation-
ship.3 Notably, b must contain a tuple for the roles Cu1

and Cu2 in the own_ca, own_sa and advises relation-
ships regardless of their actual relation to a counter role.
These tuples link those roles to the empty counter role
ε instead. It can be shown that the CROI b is compliant
to the CROM B. Due to space limitations, this proof
had to be omitted. Next, we introduce three auxiliary
functions used to validate both the cardinality and the
intra-relationship constraints.

Definition 3 (Auxiliary Functions). Let RST be the
set of relationship types of a well-formed CROM M,
and i = (N,R,C, type, plays, links) a CROI compliant
to that model M. Then the auxiliary functions pred and
succ, as well as the inverse of the plays-relation for roles
· : Rε → Oε and its extension to the links-function
are defined for r ∈ R, rst ∈ RST , and c ∈ C (with
Oε := O ∪ {ε}):

pred(rst, c, r) :={r′ | (r′, r) ∈ links(rst, c) ∧ r′ �= ε}
succ(rst, c, r) :={r′ | (r, r′) ∈ links(rst, c) ∧ r′ �= ε}

r :=

{
ε if r = ε

o if ∃(o,_, r) ∈ plays

links(rst, c) :={(r1, r2) | (r1, r2) ∈ links(rst, c)}

The first two functions collect all the predecessors or
successors of a given role in a relationship within a spe-
cific compartment instance. For the CROI b (Example 2)
pred(own_ca, bank, Ca) would return the set containing
Cu1. The existence of the next two functions, i.e., the
inverse plays and inverse links-function, is assured by (8)
requiring a unique player and compartment for each role
instance. For the bank instance, links(trans, t) would
return a singleton set with (Account1,Account2) This
function is used later on to evaluate whether a relation-
ship is irreflexive, surjective, acyclic, and so forth [4, 16].

3 For brevity, the types of the naturals were omitted from the type-
function.

4.5 Constraint Level

This section extends the formal model to represent the
various constraints by first introducing Role Groups as a
new construct to specify role constraints; then defining
Constraint Models; and finally specifying when a given
CROI fulfills the imposed constraints.

Definition 4 (Syntax of Role Groups). Let RT be the
set of role types; then the set of Role Groups RG is
defined inductively:

• If rt ∈ RT , then rt ∈ RG, and
• If B ⊆ RG and n,m ∈ N ∪ {∞} with n ≤ m, then
(B, n,m) ∈ RG.

Definition 5 (Atoms Function). Let M = (NT, RT,
CT, RST, fills, parts, rel) be a well-formed CROM; then
atoms : RG → 2RT is a function, defined as:

atoms(a) :=

{
{a} if a ∈ RT⋃

b∈B atoms(b) if a ≡ (B, n,m)

Definition 6 (Semantics of Role Groups). Let RT be
the set of role types of a well-formed CROM M, i =
(N,R,C, type, plays, links) a CROI compliant to M, c ∈
C a compartment, and o ∈ Oc an object playing a role
in c. Then the semantics of Role Groups is defined by
the evaluation function (·)Ic

o : RG → {0, 1}:

aI
c
o :=

⎧⎪⎨
⎪⎩
1 if a ∈ RT ∧ ∃(o, c, r) ∈ plays : type(r) = a

or a ≡ (B, n,m) ∧ n ≤ ∑
b∈B bI

c
o ≤ m

0 otherwise

Role groups constrain the set of roles an object o is
allowed to play simultaneously in a certain compartment
c. In case a is a role type, rtI

c
o checks whether o plays

a role of type rt in c. If a is a role group (B, n,m), it
checks whether the sum of the evaluations for all b ∈ B
is between n and m.

Example 3 (Role Groups). The following role groups
can be extracted from Figure 2a:

bankaccounts :=({CA,SA}, 1, 1)
participants :=({Source,Target}, 1, 1)

The formal representation of role groups directly cor-
respond to their graphical representation. In general, it
can be shown that both Riehle’s role constraints [28]
and any propositional formula are representable with
role groups.4 As such, both role groups represent role-
prohibitions, as they model an exclusive-or. Likewise,
a role-implication from consultant to customer would
be modeled as: ({({Consultant}, 0, 0),Customer}, 1, 2).
4 Our results indicate that the constraint logic covered by Riehle’s
constraints is a proper subset of propositional logic.
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This, in turn, is equivalent to the formula ¬Consultant∨
Customer and thus to the intended semantics of the role-
implication.

Definition 7 (Constraint Model). Let M = (NT,RT,
CT,RST,fills, parts, rel) be a well-formed CROM and
Card ⊂ N×(N∪{∞}) the set of cardinalities represented
as i..j with i ≤ j. Then C = (rolec, card, intra) is a Con-
straint Model over M, where rolec : CT → 2Card×RG

and card : RST → (Card × Card) are total functions,
intra ⊆ RST ×E is a relation with E as the set of func-
tions e : 2D×D → {0, 1}. A Constraint Model is compli-
ant to the CROM M if the following axiom holds:

∀ct ∈ CT ∀(c, a) ∈ rolec(ct) : atoms(a)⊆parts(ct) (12)

The atoms : RG → 2RT function recursively computes
all role types within a given role group.

In detail, rolec collects the set of root role groups for each
compartment type combined with a cardinality limiting
the occurrence of role groups in each compartment, card
assigns a cardinality to each relationship type, and intra
is a relation between relationship types and evaluation
functions mapping a given set of tuples over D × D to
either zero or one. Moreover, (12) ensures that each role
group can only encompass role types that are part of the
same compartment type. Notably, all these constraints
are defined locally to a compartment type, i.e., no con-
straint crosses the boundary of a compartment type.

Example 4 (Constraint Model). Let B be the bank
model from Example 1. Then CB = (rolec, card , intra)
is the constraint model, derived from Figure 2a, where
the components are defined as:

rolec := {Bank → {(1..∞,Consultant),
(0..∞, bankaccounts)},

Transaction → {(2..2, participants)}}
card := {own_ca → (1..1, 0..∞),

own_sa → (1..∞, 0..∞),

advises → (0..∞, 1..∞),

trans → (1..1, 1..1)}
intra := {(advises, irreflexive)}

Here, irreflexive(R) returns 0 if there is a tuple (a, a) ∈ R
and otherwise 1.

A constraint model can be obtained by basically map-
ping the graphical constraints to their formal coun-
terparts: role groups with cardinalities to the rolec-
mapping, relationship cardinality to the card -function,
and intra relationship constraints to the intra-relation.
Because each role group contains only role types of the
same compartment type (12), CB is compliant to the
CROM B. The last step is to define when a given CROI
can be considered valid wrt. a constraint model.

Definition 8 (Validity). Let M = (NT,RT,CT,
RST,fills, parts, rel) be a well-formed CROM, C = (rolec,
card, intra) a constraint model compliant to M, and
i = (N,R,C, type, plays, links) a CROI compliant to M.
Then i is valid with respect to C iff the following condi-
tions hold:

∀ct ∈ CT ∀(i..j, a) ∈ rolec(ct) ∀c ∈ Cct :

i ≤ (∑
o∈Oc

aI
c
o
) ≤ j (13)

∀(o, c, r) ∈ plays ∀(crd, a) ∈ rolec(type(c)) :

type(r) ∈ atoms(a) ⇒ aI
c
o = 1 (14)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) :
card(rst) = (i..j, k..l)∧(
r2 �= ε ⇒ i ≤ ∣∣pred(rst, c, r2)∣∣ ≤ j

) ∧(
r1 �= ε ⇒ k ≤ ∣∣succ(rst, c, r1)

∣∣ ≤ l
)

(15)
∀c ∈ C ∀(rst, f) ∈ intra : links(rst, c) = ∅ ∨

f(links(rst, c)) = 1 (16)

Here, Cct := {c ∈ C | type(c) = ct} denotes the subset of
C containing only instances of type ct ∈ CT .

Each axiom verifies a particular set of constraints. The
first two validate the occurrence and fulfillment of role
groups, such that only those objects (naturals or com-
partments) are checked that play a corresponding role in
the constrained compartment (14), and such that there
are enough of such objects in that compartment (13).
In contrast to them, (15) checks whether relationships
respect the imposed cardinality constraints. Last, (16)
applies the evaluation function to the set of players in a
relationship by instantiating the domain D × D of this
function to Oε×Oε. Finally, the formal model is not only
able to capture the relational and context-dependent na-
ture of roles, but also allows for the validation of various
constraints imposed on these models.

Example 5 (Validity). To prove that the instance b
(Example 2) of the bank model B is valid wrt. the
constraint model CB, each of these axioms must hold.

Proof. For the first axiom (13), we have to investigate
the occurrence of Consultant :

(
(Peter , bank,Con) ∈ plays∧
type(Con) = Consultant

) ⇒ ConsultantI
bank
Peter = 1

=⇒∀c ∈ {bank} : 1 ≤ (∑
o∈Obank

ConsultantI
c
o
)
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and that exactly 2 objects fulfill the participants role
group, firstly Account1:

(
(Account1, t, r) ∈ plays ∧ type(S ) = Source ∧
�(Account1, t, r) ∈ plays : type(r) = Target

)
=⇒SourceI

bank
Account1 = 1 ∧ TargetI

bank
Account1 = 0

=⇒participantsI
bank
Account1 = 1

secondly Account2:

(
(Account2, t, T ) ∈ plays ∧ type(T ) = Target ∧
�(Account2, t, r) ∈ plays : type(r) = Source

)
=⇒SourceI

bank
Account1 = 1 ∧ TargetI

bank
Account1 = 0

=⇒participantsI
bank
Account1 = 1

=⇒∀c ∈ {t} : (
∑

o∈Oc
participantsI

c
o ) = 2

)

Because there exist three naturals Peter, Account1, and
Account2 satisfying the two role constraints Consultant
and participants, respectively, axiom (13) holds for b.

Next, we validate axiom (14). From the previous proof
we have seen that Account1 already fulfills the partici-
pants role group. Thus, we only check the bankaccounts
role group for its fulfillment:

(
(Account1, bank, Sa) ∈ plays ∧ type(Sa) = SA ∧
�(Account1, bank, r) ∈ plays : type(r) = CA

)
=⇒bankaccountsI

bank
Account1 = 1

Likewise, Account2 is checked for the fulfillment of this
role group:

(
(Account2, bank,Ca) ∈ plays ∧ type(Ca) = CA ∧
�(Account2, bank, r) ∈ plays : type(r) = SA

)
=⇒bankaccountsI

bank
Account2 = 1

As a consequence, axiom (14) holds because Peter plays
the Consultant role and each account fulfills both the
bankaccounts and participants role group.

For the next axiom, it suffices to evaluate the follow-
ing expression to validate axiom (15) for the bank model

B with the two compartments bank and t of b.(
∀(r1, r2) ∈ links(own_ca, bank) :

r2 �= ε ⇒ ∣∣pred(own_ca, bank, r2)
∣∣ = 1

)
∧
(
∀(r1, r2) ∈ links(own_sa, bank) :

r2 �= ε ⇒ 1 ≤ ∣∣pred(own_sa, bank, r2)
∣∣)

∧
(
∀(r1, r2) ∈ links(advises , bank) :

r1 �= ε ⇒ 1 ≤ ∣∣succ(advises , bank, r1)∣∣)
∧
(
∀(r1, r2) ∈ links(trans, t) :

r2 �= ε ⇒ ∣∣pred(trans, t, r2)∣∣ = 1 ∧
r1 �= ε ⇒ ∣∣succ(trans, t, r1)∣∣ = 1

)
Next, the links-function is replaced by its definition in
Example 3:(

∀(r1, r2) ∈ {(Cu1,Ca), (Cu2, ε)} :

r2 �= ε ⇒ ∣∣pred(own_ca, bank, r2)
∣∣ = 1

)
∧
(
∀(r1, r2) ∈ {(Cu1, ε), (Cu2,Sa)} :

r2 �= ε ⇒ 1 ≤ ∣∣pred(own_sa, bank, r2)
∣∣)

∧
(
∀(r1, r2) ∈ {(ε,Cu1), (Con,Cu2)} :

r1 �= ε ⇒ 1 ≤ ∣∣succ(advises , bank, r1)∣∣)
∧
(
∀(r1, r2) ∈ {(S ,T )} :

r2 �= ε ⇒ ∣∣pred(trans, t, r2)∣∣ = 1 ∧
r1 �= ε ⇒ ∣∣succ(trans, t, r1)∣∣ = 1

)
It is easy to see that the above conjunction is satisfied
for these tuple sets.

To verify the last axiom (16), it suffices to validate the
inverse of the links function for the advises relationship
type of the bank compartment:

irreflexive(links(advises , bank)) = 1

=⇒irreflexive({(ε,Klaus), (Peter ,Google)}) = 1

Trivially, the tuple set is irreflexive, and thus axiom (16)
is satisfied, as well.

The CROI b is a valid instance of the model B
wrt. the constraint model CB, because it satisfies all
axioms.

Despite of this informal validation, the idea of our
formal model is to support both formal and automated
validation of well-formedness, compliance, and validity.
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5. Complete Walkthrough
After introducing the complete formal model this section
illustrates the process of formally evaluating a given
model instance. To do this formalization of another
example, prove its compliance, and check its validity.

5.1 Graphical Model

Figure 3 shows another possible instance of the bank-
ing model (Figure 2a). It features the Persons Peter
and Klaus playing a Customer role in the bank com-
partment both owning the checking account Ca. More-
over, the Company Google is another customer of the
bank owning the savings account Sa. In addition to that,
the bank manages the money transfer from Account2 to
Account2 within the Transaction t.

In comparison to the first instance (Example 2), this
instance does not encompass a person playing the Con-
sultant role. Hence, this instance apears be not a valid
instance of the bank model B. However, to proof this,
we need to formalize this instance and check if it is com-
pliant to the bank B and valid wrt. the constraint model
CB.

5.2 Formalization

Example 6 (Second Compartment Role Object In-
stance). Let B = (NT,RT,CT,RST,fills, parts, rel) be
the well-formed CROM defined in Example 1; then a =
(N,R,C, type, plays, links) is the second instance of that
model (Figure 3), where the set of naturals is defined as
N = {Peter ,Klaus,Google, Account1, Account2}, the
set of roles as R = {Cu1,Cu2, Cu3,Ca,Sa,S ,T ,M },
and the set of compartments as C = {bank, t}. The other
components are defined, as:

type := {(Peter → Person), (Klaus → Person),

(Google → Company), (Account1 → Account),

(Account2 → Account), (Cu1 → Customer),

(Cu2 → Customer), (Cu3 → Customer),

(Ca → CA), (Sa → SA), (S → Source),

(T → Target), (M → MoneyTransfer),

(t → Transaction), (bank → Bank)}

After defining the type function, the plays-mapping and
links-function are defined as:

plays := {(Klaus, bank,Cu1), (Google, bank,Cu2),

(Peter , bank,Cu3), (Account1, bank,Sa),

(Account2, bank,Ca), (t , bank,M ),

(Account2, t,S ), (Account2, t,T )}

links(own_ca, bank) := {(Cu1,Ca), (Cu2, ε), (Cu3,Ca)}
links(own_sa, bank) := {(Cu1, ε), (Cu2,Sa), (Cu3, ε)}
links(advises , bank) := {(ε,Cu1), (ε,Cu2), (ε,Cu3)}

links(trans, t) := {(S ,T )}
Example 7 (Compliance of the Second Instance). The
instance a = (N,R,C, type, plays, links) is compliant
to the bank model B.

Proof. To show that a is compliant to the bank model B,
we need to proof that the axioms from (6) to (11) hold
for a. For (6), the type conformance of the plays-relation
is checked.

(6) ⇒(
(type(Klaus), type(Cu1))∈fills ∧
type(Cu1)∈parts(type(bank))

)
∧((type(Google), type(Cu2))∈fills ∧
type(Cu2)∈parts(type(bank))

)
∧((type(Peter), type(Con))∈fills ∧

type(Con))∈parts(type(bank))
)

∧((type(Account1), type(Sa))∈fills ∧
type(Sa)∈parts(type(bank))

)
∧((type(Account2), type(Ca))∈fills ∧
type(Ca)∈parts(type(bank))

)
∧((type(t), type(M ))∈fills ∧

type(M )∈parts(type(bank))
)

∧((type(Account1), type(S ))∈fills ∧
type(S )∈parts(type(t))

)
∧((type(Account2), type(T ))∈fills ∧
type(T )∈parts(type(t))

)
⇒(

(Person,Customer)∈fills ∧
Customer ∈parts(Bank)

)
∧((Company ,Customer)∈fills ∧
Customer ∈parts(Bank)

)
∧((Person,Consultant)∈fills ∧
Consultant ∈parts(Bank)

)
∧((Account ,SA)∈fills ∧ SA∈parts(Bank)

)
∧((Account ,CA)∈fills ∧ CA∈parts(Bank)

)
∧((Transaction,MoneyTransfer)∈fills ∧
MoneyTransfer ∈parts(Bank)

)
∧((Account ,Source)∈fills ∧

Source∈parts(Transaction)
)

∧((Account ,Target)∈fills ∧
Target ∈parts(Transaction)

)
As the plays-relation is type conform to the fills-relation
and the parts-function, a fulfills (6).
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Figure 3: Another Compartment Role Object Instance of the banking application

For (7) each object playing multiple roles must be
checked. Thus, only Account2 needs to be checked:

(7) ⇒(
S �=T⇒ type(S ) �= type(T )

) ⇒ (
Source �=Target

)
Consequently, a also satisfies (7).

For (8), we have to ensure that for each role there
exists a unique player and compartment.

(8) ⇒∀r∈{Cu1,Cu2,Cu3,Ca,Sa,S ,T ,M }
∃!o∈O ∃!c∈C : (o, c, r)∈plays

⇒(
(Klaus, bank,Cu1)∈plays

∧ (Google, bank,Cu2)∈plays

∧ (Peter , bank,Cu3)∈plays

∧ (Account1, bank,Sa)∈plays

∧ (Account2, bank,Ca)∈plays

∧ (t , bank,M )∈plays

∧ (Account2, t,S )∈plays

∧ (Account2, t,T )∈plays
)

As for every role there is exactly one tuple in the plays-
relation, axiom (8) is satisfied by a.

For (9), the links-function should never return (ε, ε).

(9) ≡∀rst∈RST ∀c∈C : (ε, ε) �∈ links(rst, c)

⇒(
(ε, ε) �∈ links(own_ca, bank)∧
(ε, ε) �∈ links(own_sa, bank)∧
(ε, ε) �∈ links(advises , bank)∧
(ε, ε) �∈ links(trans, t)

)
⇒(

(ε, ε) �∈{(Cu1,Ca), (Cu2, ε), (Cu3,Ca)}∧
(ε, ε) �∈{(Cu1, ε), (Cu2,Sa), (Cu3, ε)}∧
(ε, ε) �∈{(ε,Cu1), (ε,Cu2), (ε,Cu3)}∧
(ε, ε) �∈{(S ,T )})

Hence, (9) is obviously satisfied.

For (10), the correspondence between the plays-
relation and links-function must be ensured.

(10) ⇒∀rst ∈ {own_ca, own_sa, advises , trans}
∀c∈{bank, t} ∀r∈R ∀o∈O ∃r̂∈Rε :

rel(rst) = (rt1, rt2) ∧((
(o, c, r)∈plays ∧ type(r) = rt1

)
⇔ (

(r, r̂)∈ links(rst, c)
)) ∧((

(o, c, r)∈plays ∧ type(r) = rt2
)

⇔ (
(r̂, r)∈ links(rst, c)

))
⇒∀r∈R ∀o∈O ∃r̂∈Rε :((

(o, bank, r)∈plays ∧ type(r) = Customer
)

⇔ (
(r, r̂)∈ links(own_ca, bank)

)) ∧((
(o, bank, r)∈plays ∧ type(r) = CA

)
⇔ (

(r̂, r)∈ links(own_ca, bank)
))

∧∀r∈R ∀o∈O ∃r̂∈Rε :((
(o, bank, r)∈plays ∧ type(r) = Customer

)
⇔ (

(r, r̂)∈ links(own_sa, bank)
)) ∧((

(o, bank, r)∈plays ∧ type(r) = SA
)

⇔ (
(r̂, r)∈ links(own_sa, bank)

))
∧∀r∈R ∀o∈O ∃r̂∈Rε :((

(o, bank, r)∈plays ∧ type(r) = Consultant
)

⇔ (
(r, r̂)∈ links(advises , bank)

)) ∧((
(o, bank, r)∈plays ∧ type(r) = Customer

)
⇔ (

(r̂, r)∈ links(advises , bank)
))

∧∀r∈R ∀o∈O ∃r̂∈Rε :((
(o, t , r)∈plays ∧ type(r) = Source

)
⇔ (

(r, r̂)∈ links(trans, t)
)) ∧((

(o, t , r)∈plays ∧ type(r) = Target
)

⇔ (
(r̂, r)∈ links(trans, t)

))
Table 1 shows the variable assignments that satisfy

the previous formula (excluding all trivial assignments).
Hence, a fulfills Axiom (10).
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Table 1: Fulfilling variable assignments for Axiom (10)

rst c r o r̂

own_ca bank Cu1 Klaus Ca
own_ca bank Cu2 Google ε
own_ca bank Cu3 Peter Ca
own_ca bank Ca Account2 Cu1

own_sa bank Cu1 Klaus ε
own_sa bank Cu2 Google Sa
own_sa bank Cu3 Peter ε
own_sa bank Sa Account1 Cu2

advises bank Cu1 Klaus ε
advises bank Cu2 Google ε
advises bank Cu3 Peter ε
trans t S Account2 T
trans t T Account2 S

For (11), we have to check all links between two role
instances.

(11) ⇒∀rst∈{own_ca, own_sa, advises , trans}
∀c∈{bank, t} ∀(r1, r2)∈ links(rst, c) ∩R×R :

(r1, ε),(ε, r2) /∈ links(rst, c)

⇒(∀(r1, r2)∈{(Cu1,Ca), (Cu3,Ca)} :

(r1, ε),(ε, r2) /∈{(Cu1,Ca), (Cu2, ε), (Cu3,Ca)}
)

∧(∀(r1, r2)∈{(Cu2,Sa)}
(r1, ε),(ε, r2) /∈{(Cu1, ε), (Cu2,Sa), (Cu3, ε)}

)
∧(∀(r1, r2)∈{(S ,T )}
(r1, ε),(ε, r2) /∈{(S ,T )})

As each conjunction is satisfied, (11) is fulfilled.
Because each of the six axioms is fulfilled, a is proven

to be compliant to the bank model B.

The formalization of the second instance and the
verification of its compliance are only the initial steps
in validating its conformance to the modeled domain.

5.3 Validation

The final step in evaluating a CROI is to check its
validity wrt. to a given constraint model. While the
initial example was a valid instance wrt. CB, the second
instance will be our negative example.

Example 8 (Validity of the Second Instance). The
instance a of the bank model B is not valid wrt. the
constraint model CB.

Proof. To show that a is not valid wrt. the constraint
model CB, it suffices that one of the axioms from (13)
to (16) is violated. Nevertheless, we inspect all violated
axioms to give a detailed explanation of the various

constraints. Initially, we assume that axiom (13) holds
for a and deduce a contradiction:

(13) =⇒ ∀(i..j, a) ∈ rolec(Bank) ∀c ∈ CBank :

i ≤ (∑
o∈Oc

aI
c
o
) ≤ j

=⇒ ∀(i..j, a) ∈ {(1..∞,Consultant), . . . }
∀c ∈ CBank : i ≤ (∑

o∈Oc
aI

c
o
) ≤ j

=⇒ ∀c ∈ {bank} : 1 ≤ (
∑

o∈Oc
ConsultantI

c
o )

=⇒ 1 ≤ (
∑

o∈Obank
ConsultantI

bank
o )

=⇒ (∃o ∈ Obank : ConsultantI
bank
o = 1)

=⇒ ∃(o, bank, r) ∈ plays : type(r) = Consultant

This is violated by the fact that the plays-relation does
not contain any role of type Consultant currently played
in the bank compartment.

Similarly, we assume that Axiom (14) holds for the
CROI a and deduce a contradiction.

(14) =⇒ ∀(o, t, r) ∈ plays

∀(i..j, a) ∈ rolec(Transaction) :

type(r) ∈ atoms(a) ⇒ aI
c
o = 1

=⇒ ∀(o, t, r) ∈ plays

∀(i..j, a) ∈ {(2..2, participants)} :

type(r) ∈ atoms(a) ⇒ aI
t
o = 1

=⇒ ∀(o, t, r) ∈ plays : type(r) ∈ {Source,Target}
⇒ participantsI

t
o = 1

To resolve this implication, we select (Account2, t,S ) ∈
plays as a candidate, as it fulfills the precondition
type(S ) ∈ {Source,Target}.

participantsI
t
Account2 = 1

=⇒ ({Source,Target}, 1, 1)It
Account2 = 1

=⇒1 ≤ (∑
b∈{Source,Target} b

It
Account2

) ≤ 1

=⇒(
SourceI

t
Account2 + TargetI

t
Account2

)
= 1

This is a contradiction, because Account2 plays both
the roles S of type Source and T of type Target in the
compartment t. This, in turn, means that the result of
the last addition is two instead of one. Again, this axiom
is violated by the CROI a.

Finally, let us suppose that axiom (15), ensuring the
cardinality of relationship types, is satisfied by a, then
unrolling the axiom for own_ca ∈ RST in B results in
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the following formula:

(15) =⇒∀c ∈ C ∀(r1, r2) ∈ links(own_ca, c) :

card(own_ca) = (1..1, 0..∞)∧(
r2 �= ε ⇒ 1 ≤ ∣∣pred(own_ca, c, r2)

∣∣ ≤ 1
) ∧(

r1 �= ε ⇒ 0 ≤ |succ(own_ca, c, r1)| ≤ ∞)
=⇒∀c ∈ C ∀(r1, r2) ∈ links(own_ca, c) :

r2 �= ε ⇒ ∣∣pred(own_ca, c, r2)
∣∣ = 1

This entails that this also holds for the bank compart-
ment and the link (Cu3,Ca) ∈ links(own_ca, bank).

=⇒ ∣∣pred(own_ca, bank,Ca)
∣∣ = 1

=⇒ ∣∣{Cu2,Cu3}
∣∣ = 1

This is an obvious contradiction, and thus, a violation
of axiom (15).

Notably, Axiom (16) is the only one satisfied by a,
because the inverse of links(advises , bank) is obviously
irreflexive, as there are no Consultant roles in a.

In conclusion, the CROI a is an invalid instance of
the CROM B wrt. the constraint model CB, because at
least one axiom is violated.

Finally, this example shows the simplicity of the for-
mal model and formal proofs. Despite of that, the proofs
are merely technical and can be automated easily.

6. Discussion
This section indicates the adequacy and sufficiency of
the presented formal model by discussing reference im-
plementations developed as a proof of concept; classify-
ing our approach; and pointing out limitations.

6.1 Reference Implementation

The formal model solely relies on set semantics and first-
order logic. Hence, it is readily applicable for implemen-
tation and thus automation. To prove this, two refer-
ence implementations were developed based on Python5

and Scala6, respectively. These implementations can be
used to create CROMs, CROIs and constraint models, as
well as automatically check their well-formedness, com-
pliance, and validity. The provided implementations di-
rectly correspond to the formal definitions. In particu-
lar, each individual axiom is implemented by means of
all and any functions and generator expressions that
directly correspond to universal and existential quan-
tification in first-order logic. Besides implementing the
banking application, a series of tests have been specified
to check the implemented axioms not only testing posi-
tive and negative cases but also the various combinations

5 https://github.com/Eden-06/formalCROM
6 https://github.com/max-leuthaeuser/ScalaFormalCROM

∀rt ∈ RT ∃t ∈ (NT ∪ CT ) : (t, rt) ∈ fills

(a) Formal

1 def axiom1 ( crom) :
2 return a l l ( any ( ( t , r t ) in crom . f i l l s

for t in ( crom . nt | crom . ct ) )
for r t in crom . r t )

(b) Python
Figure 4: Representation of Axiom (1)

for the 16 axioms. This indicates the orthogonality of the
axioms, i.e. that no axiom entails another. In sum, the
reference implementations can be used to develop and
test other implementations of our formal model, as well
as to investigate specializations and extensions to our
formal model.

As pointed out previously, we translated each axiom
to a function returning a boolean. Figure 4 shows an
example of such a translation, for the first axiom. Ba-
sically, the universal quantification ∀rt ∈ RT is writ-
ten as all( ... for rt in crom.rt ) and the exis-
tential quantification ∃t ∈ (NT ∪ CT ) as any( ...
for t in (crom.nt | crom.ct) ), where crom.nt |
crom.ct computes the union of NT and CT . The fi-
nal test (t,rt) in crom.fills is then embedded into
these generator expressions resulting in Figure 4b. An
excerpt of the Python implementation is presented in
the Appendix.

6.2 Classification

To confirm the adequacy of our formal model to cap-
ture both natures of roles, we apply the 26 features
of roles [22, 30] to our model. Table 2 summarizes the
classification of our approach and compares it to other
related approaches. In fact, only 23 features apply to
modeling languages without operational semantics [22].
As a result, our formal model fully supports 17 features
of roles, whereas only one feature is possible to repre-
sent, namely Feature 24 stating that compartments can
contain compartments. In our model this can be simu-
lated by having the contained compartment play a role
in the container compartment. For instance, the transac-
tion compartment is contained inside the bank compart-
ment, because it is playing the MoneyTransfer role in
the bank (Figure 2 b). In turn, only five features are not
supported by our model. Feature 8, for instance, stating
that roles can play roles could have been easily mod-
eled within our formalization. However, we argue that
there is no difference between a football player playing
the role of a striker or a person playing both roles at
the same time. As it turns out, the underlying rationale
that only football players can be strikers would simply
be modeled as a role constraint. For similar reasons, we
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disregard Feature 21, stating that a role can be part
of several compartments. Although a role is existentially
dependent on a compartment, it would not make sense to
define a role within two compartments. Arguably, while
it makes sense to have a customer role in both a shop
and a bank, they do not have the same properties and
thus can not have the same type. In sum, the presented
formal model supports not only most features of roles
but also both natures of roles.

6.2.1 Limitations

Despite that, the formal model has three known short-
comings. First, the current constraint model does not
encompass inter-relationship constraints (Feature 17).
Consequently, neither subset nor mutual exclusion con-
straints between relationships can be expressed. Never-
theless, these constraints can be added easily by aug-
menting the constraint model adding a relation as well
as compliance and validation rules. Second, the current
constraint model does not permit constraints between
two compartments. This restriction hinders the specifi-
cation of role constraints between compartments, e.g.,
that each account participating in a Transaction com-
partment must also play the role of either a savings or
checking account in a Bank compartment. To integrate
global constraints like these, the notion of role groups,
the constraint model, and their validation must be ex-
tended. This is not trivial, because it includes quanti-
fying over multiple compartment instances within one
constraint. The next shortcoming is the lack of inheri-
tance among natural types, role types, as well as com-
partment types (Features 13, 25). It was left out, because
it entails several semantical issues and unresolved ques-
tions regarding the interaction of natural inheritance and
role inheritance together with family polymorphism [10]
via compartment inheritance. Thus, adding inheritance
must be postponed until these semantical issues can be
resolved. At large, while the last two limitations are in-
curred by major semantical issues, all of them can be
resolved by augmenting the presented formal definitions.

7. Related Work
This section compares related role-based modeling lan-
guages by means of the 26 features of roles [22, 30], in-
troduced in Section 3. A general comparison of these
related role-based modeling languages, is extracted from
[22] and depicted in Table 2. Henceforth, we distinguish
four classes of related approaches wrt. the two natures
of roles they support, namely plain, relational, context-
dependent, and hybrid.

The Generic Role Model for Dynamic Objects [9] be-
longs to the first class, because its roles neither de-
pend on a relationship nor on any kind of compartment.
Hence, the presented formalism focuses solely on the dy-
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�: yes, �: possible, �: no, ∅: not applicable

Table 2: Comparison of role-based modeling languages,
extracted from [22].

namics of the plays-relation between roles and their play-
ers. Besides that, it provided a semi-formal model for the
type and the instance level including an operational se-
mantics based on guarded role transitions. On the down
side, the presented semantics is rather limited.

Next, relational approaches, have already been sur-
veyed in the year 2000 by Steimann [30]. In an effort to
unify and formalize preceding role-based modeling lan-
guages, like [6, 8, 17], he introduced LODWICK as a
unified role-based modeling language [30]. Like our ap-
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proach, its formal model focused on the structure of role
models. Additionally, it supports the definition of n-ary
relations between naturals and includes two disjoint in-
heritance relations. Despite all that its instance model
does not include role instances, and thus cannot capture
the structure and features of roles at runtime. Hence-
forth, we investigate more recent approaches featuring
relational roles. Onto-UML [15] is a top level ontology
including roles. It uses similar ontological predicates to
distinguish Naturals, Roles and Relators for both uni-
versals (types) and individuals (instances). However, the
model lacks a notion of context-dependence and the abil-
ity to let unrelated objects play the same role. Object-
Role Modeling (ORM) 2 [16] is a well-established, fact-
oriented data modeling language. However, it only in-
cludes roles as unnamed places at the ends of relation-
ships connecting entity types [16]. Nevertheless, ORM
supports a large number of constraints for these re-
lationships including role constraints, inter- and intra-
relationship constraints [16]. RSQL [20, 21] is a role-
based query language for a role-based database sys-
tem. It provides a formal data model featuring Natu-
rals, Roles, and Relationship Types on both the type
and instance level. This model has many similarities to
our formalization of CROMs and CROIs, e.g., the no-
tion of ε roles or cardinality constraints for relationships.
Nonetheless, it features neither context-dependent roles
nor other kinds of role or relationship constraints.

In contrast, the next approaches have introduced
context-dependent roles to modeling languages. The E-
CARGO model [31], introduced for computer-supported
cooperative work, distinguishes between several entities
ranging from Agents playing Roles defined in either En-
vironments or Groups. Still, only agents can play roles
and the model only includes occurrence constraints for
roles. The Metamodel for Roles [11] tries to be the most
general formalization of context-dependent roles. Simi-
lar to our model, it distinguishes between Players, Roles,
and Context on the type and the instance level. More-
over, it introduces properties and inheritance for each of
these kinds [11]. Yet, the metamodel is too general to
be useful, because the sets of entities are not required
to be disjoint (on both the type and instance level).
Thus, every definition might effect the same entity, ren-
dering the three distinct inheritance relations useless.
Moreover, each definition is accompanied by a set of un-
specified constraints to capture the desired structure of
the metamodel; things a metamodel should capture at
least. The Information Networking Model (INM) [23] is
a data modeling approach [23] designed to overcome the
inability of data models to capture context-dependent
information. While this approach allows to model nested
Contexts with attributes containing Roles, the various
kinds of relations cannot be constrained [23]. Data Con-

text Interaction (DCI) [27] is a new paradigm beyond
object-oriented design that revolves around the notions
of Data playing Roles in interactions encapsulated in a
Context. Although the paradigm is described both ab-
stractly and by example, its semantics is not formally
specified.

The only hybrid model, to our best knowledge, is pre-
sented in the HELENA approach [18]. It features Ensem-
bles as compartments to capture a collaborative task
by means of roles that are played by Components. An
Ensemble (Structure) contains a set of Role Connectors
that act as directed communication channels between
roles. In particular, HELENA provides formal definitions
for both type and instance level, as well as an oper-
ational semantics based on sets and labeled transition
systems [18]. In contrast to our model, role connectors
are not bidirectional like our relationships. Furthermore,
HELENA only supports occurrence constraints on roles,
and none of the other kinds of constraints.

8. Conclusion
This work is based on the classification of roles by
[22, 30] and the family of role-based modeling lan-
guages, proposed in [22]. However, as our goal was to
provide a comprehensive definition for role-based mod-
eling, the presented model only encompasses simple,
formal definitions for the type and instance level. Ad-
ditionally, it comprises definitions for cardinality and
intra-relationship constraints, as well as the newly in-
troduced role groups. Moreover, we have shown that our
formal model is suitable for both manual and automatic
evaluation of well-formedness, compliance, and validity.
Finally, the provided reference implementations can be
used to apply, further explore, and extend our role-based
modeling language.

In future, we will augment the formal model to include
inheritance for naturals and compartments, as well as
global role constraints. Moreover, our goal is to use the
formal model as a reference to develop a customizable
family of formal role-based modeling languages with full
tool support, e.g.: graphical editor, schema, and code
generators. In fact, our goal is to include these rules into
an integrated development environment for role-based
systems to check the well-formedness of role models as
well as the compliance and validity of their instances.
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Appendix
Definition 9 (Additions to Compartment Role Object
Model). Let M = (NT,RT,CT,RST,fills, parts, rel) be a
CROM, and Attr the set of attribute names. Then N =
(NT,RT,CT,RST,Attr,fills, parts, rel,fields) denotes the
augmented CROM, where fields : (NT ∪RT ∪CT )×Attr →
(NT ∪ CT ) is a partial function assigning a distinct rigid
type to the attribute of an entity type. It is assumed that
fields(t, a) = ⊥ for all undefined attributes a ∈ Attr of
t ∈ (NT ∪RT ∪ CT ).

Definition 10 (Addition to Compartment Role Object In-
stance). Let N = (NT,RT,CT,RST,Attr,fills, parts, rel,
fields) be a well-formed, augmented CROM. Then an aug-
mented Compartment Role Object Instance (CROI) of N
is a tuple j = (N,R,C, type, plays, links, attr) where attr :
(N ∪R∪C)×Attr → (N ∪C) is a partial function assigning
the objects to the respective attributes of the entities. Notably,
an augmented CROI is well-formed wrt. to the CROM N iff
all axioms of Definition 2 as well as the following axiom hold:

∀o ∈(N ∪R ∪ C) ∀a ∈ Attr : fields(type(o), a) �= ⊥
⇒ type(attr(o, a)) = fields(type(o), a) (17)

Theorem 1 (Emptyness). Let M = (NT, RT, CT, RST,
fills, parts, rel) be a well-formed CROM, i = (N, R, C,
type, plays, links) a CROI compliant to M, rst ∈ RST an
arbitrary relationship type, ct ∈ CT an arbitrary compart-
ment type, and c ∈ C an arbitrary compartment; then the
following implication holds:

rel(rst) = (rt1, rt2) ∧ rt1, rt2 ∈ parts(ct) ∧ type(c) �= ct

⇒ links(rst, c) = ∅
Proof. Assume links(rst, c) �= ∅ and let (r1, r2) ∈ links(rst, c).
From (9) we know that either r1 �= ε or r2 �= ε. If r1 �= ε, we
get by (10) that (o, c, r1) ∈ plays for some o ∈ N ∪ C and
type(r1) = rt1. Due to (6) this implies rt1 ∈ parts(type(c))
which contradicts rt1 ∈ parts(ct) ∧ type(c) �= ct. The
same arguments hold for r2 �= ε. Hence, it follows that
links(rst, c) = ∅.
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1 class CROM:
2
3 def __init__( s e l f , nt , rt , ct , r s t , f i l l s , parts , r e l ) :
4 s e l f . nt=f r o z e n s e t ( nt )
5 s e l f . r t=f r o z e n s e t ( r t )
6 s e l f . c t=f r o z e n s e t ( c t )
7 s e l f . r s t=f r o z e n s e t ( r s t )
8 s e l f . f i l l s=f r o z e n s e t ( f i l l s )
9 s e l f . pa r t s=d i c t ( par t s )

10 s e l f . r e l=d i c t ( r e l )
11 a s s e r t mutual_dis jo int ( [ s e l f . nt , s e l f . rt , s e l f . ct , s e l f . r s t ] )
12 a s s e r t to ta l_funct i on ( s e l f . ct , s e l f . pa r t s )
13 a s s e r t to ta l_ func t i on ( s e l f . r s t , s e l f . r e l )
14
15 def wel l formed ( s e l f ) :
16 return s e l f . axiom1 ( ) and s e l f . axiom2 ( ) and s e l f . axiom3 ( ) and \
17 s e l f . axiom4 ( ) and s e l f . axiom5 ( )
18
19 def axiom1 ( crom) :
20 return a l l ( any ( ( t , r t ) in crom . f i l l s for t in ( crom . nt | crom . ct ) ) for r t in

crom . r t )
21
22 def axiom2 ( crom) :
23 return a l l ( l en ( crom . par t s [ c t ] )>0 for ct in crom . ct )
24
25 def axiom3 ( crom) :
26 return a l l ( l en ( [ True for ct in crom . ct i f r t in crom . par t s [ c t ] ] )==1 for r t in

crom . r t )
27
28 def axiom4 ( crom) :
29 return a l l ( crom . r e l [ r s t ] [ 0 ] ! = crom . r e l [ r s t ] [ 1 ] for r s t in crom . r s t )
30
31 def axiom5 ( crom) :
32 return a l l ( any ( s e t ( crom . r e l [ r s t ] ) <= se t ( crom . par t s [ c t ] ) for ct in crom . ct ) for

r s t in crom . r s t )

Figure 5: Implementation of CROM in Python
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1 class CROI:
2
3 def __init__( s e l f , n , r , c , type1 , plays , l i n k s ) :
4 s e l f . n=s e t (n)
5 s e l f . r=s e t ( r )
6 s e l f . c=s e t ( c )
7 s e l f . type1=d i c t ( type1 )
8 s e l f . p lays=s e t ( p lays )
9 s e l f . l i n k s=d i c t ( l i n k s )

10 a s s e r t mutual_dis jo int ( [ s e l f . n , s e l f . r , s e l f . c , s e t ( [ None ] ) ] )
11 a s s e r t to ta l_ func t i on ( s e l f . n | s e l f . r | s e l f . c , s e l f . type1 )
12
13 def compliant ( s e l f , crom) :
14 return crom . wel l formed ( ) and s e l f . axiom6 ( crom) and s e l f . axiom7 ( crom) and \
15 s e l f . axiom8 ( crom) and s e l f . axiom9 ( crom) and s e l f . axiom10 ( crom) and s e l f . axiom11 (

crom)
16
17 def axiom6 ( c ro i , crom) :
18 return a l l ( ( ( c r o i . type1 [ o ] , c r o i . type1 [ r ] ) in crom . f i l l s ) and ( c r o i . type1 [ r ] in

crom . par t s [ c r o i . type1 [ c ] ] ) for o , c , r in c r o i . p lays )
19
20 def axiom7 ( c ro i , crom) :
21 return a l l ( c r o i . type1 [ r_1 ] != c r o i . type1 [ r ] for o_1 , c_1 , r_1 in c r o i . p lays for o , c , r

in c r o i . p lays i f o_1==o and c_1==c and r_1!= r )
22
23 def axiom8 ( c ro i , crom) :
24 return a l l ( l en ( s e t ( [ ( o , c ) for o , c , r_1 in c r o i . p lays i f r_1==r ] ) )==1 for r in c r o i

. r )
25
26 def axiom9 ( c ro i , crom) :
27 return a l l ( (None , None ) not in c r o i . l i n k s [ ( r s t , c ) ] for r s t in crom . r s t for c in

c r o i . c i f ( r s t , c ) in c r o i . l i n k s )
28
29 def axiom10 ( c ro i , crom) :
30 return a l l ( any ( ( ( ( o , c , r ) in c r o i . p lays and c r o i . type1 [ r]==crom . r e l [ r s t ] [ 0 ] ) ==

bool ( ( r , r_1 ) in c r o i . l i n k s [ ( r s t , c ) ] ) ) and ( ( ( o , c , r ) in c r o i . p lays and c r o i .
type1 [ r]==crom . r e l [ r s t ] [ 1 ] ) == bool ( ( r_1 , r ) in c r o i . l i n k s [ ( r s t , c ) ] ) ) for r_1
in c r o i . r e p s i l o n ( ) ) for r s t in crom . r s t for c in c r o i . c i f ( r s t , c ) in c r o i .
l i n k s for r in c r o i . r for o in c r o i . o ( ) )

31
32 def axiom11 ( c ro i , crom) :
33 return a l l ( ( ( r_1 , None ) not in c r o i . l i n k s [ ( r s t , c ) ] ) and ( (None , r_2) not in c r o i .

l i n k s [ ( r s t , c ) ] ) for r s t in crom . r s t for c in c r o i . c i f ( r s t , c ) in c r o i . l i n k s
for r_1 , r_2 in c r o i . l i n k s [ ( r s t , c ) ] i f r_1 != None and r_2 != None )

34
35 def o ( s e l f ) :
36 return s e l f . n | s e l f . c
37
38 def o_c( s e l f , c ) :
39 return [ o for o , c_1 , r in s e l f . p lays i f c_1==c ]
40
41 def r e p s i l o n ( s e l f ) :
42 return s e l f . r | s e t ( [ None ] )

Figure 6: Implementation of CROI in Python
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1 class ConstraintModel :
2
3 def __init__( s e l f , r o l e c , card , i n t r a ) :
4 s e l f . r o l e c=d i c t ( r o l e c )
5 s e l f . card=d i c t ( card )
6 s e l f . i n t r a=f r o z en s e t ( i n t r a )
7
8 def compliant ( s e l f , crom) :
9 return crom . wel l formed ( ) and s e l f . axiom12 ( crom)

10
11 def axiom12 (cm, crom) :
12 return a l l ( atoms ( a ) <= se t ( crom . par t s [ c t ] ) for ct in crom . ct i f ct in cm. r o l e c

for crd , a in cm. r o l e c [ c t ] )
13
14 def v a l i d i t y ( s e l f , crom , c r o i ) :
15 return s e l f . compliant ( crom) and c r o i . compliant ( crom) and s e l f . axiom13 ( crom , c r o i )

and \
16 s e l f . axiom14 ( crom , c r o i ) and s e l f . axiom15 ( crom , c r o i ) and s e l f . axiom16 ( crom , c r o i )
17
18 def axiom13 (cm, crom , c r o i ) :
19 return a l l ( \
20 crd [ 0 ] <= sum( [ eva luate ( a , c ro i , o , c ) for o in c r o i . o_c( c ) ] ) <= crd [ 1 ] \
21 for ct in crom . ct i f ct in cm. r o l e c for crd , a in cm. r o l e c [ c t ] for c in c r o i . c i f

c r o i . type1 [ c]==ct )
22
23 def axiom14 (cm, crom , c r o i ) :
24 return a l l ( eva luate ( a , c ro i , o , c )==1 for o , c , r in c r o i . p lays i f c r o i . type1 [ c ] in cm

. r o l e c for crd , a in cm. r o l e c [ c r o i . type1 [ c ] ] i f c r o i . type1 [ r ] in atoms ( a ) )
25
26 def axiom15 (cm, crom , c r o i ) :
27 return a l l ( \
28 ( cm. card [ r s t ] [ 0 ] [ 0 ] <= len ( c r o i . pred ( r s t , c , r_2) ) <= cm. card [ r s t ] [ 0 ] [ 1 ] ) and \
29 ( cm. card [ r s t ] [ 1 ] [ 0 ] <= len ( c r o i . succ ( r s t , c , r_1) ) <= cm. card [ r s t ] [ 1 ] [ 1 ] ) \
30 for r s t in crom . r s t i f r s t in cm. card for c in c r o i . c i f ( r s t , c ) in c r o i . l i n k s for

r_1 , r_2 in c r o i . l i n k s [ ( r s t , c ) ] )
31
32 def axiom16 (cm, crom , c r o i ) :
33 return a l l ( f ( c r o i . o v e r l i n e_ l i nk s ( r s t , c ) )==1 for c in c r o i . c for r s t , f in cm.

i n t r a i f ( r s t , c ) in c r o i . l i n k s )

Figure 7: Implementation of the Constraint Model in Python
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