
Exact Approaches for Higher-Dimensional
Orthogonal Packing and Related Problems

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor of Philosophy
(Ph.D.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Diplom-Mathematiker, Marat A. Mesyagutov

geboren am 16. Februar 1985 in Ufa

Eingereicht am 23. September 2013.

Die Dissertation wurde in der Zeit von 02/2010 bis 08/2013

im Institut für Numerische Mathematik angefertigt.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236370596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exact Approaches for Higher-Dimensional

Orthogonal Packing and Related Problems

by

Marat A. Mesyagutov

Diploma in Mathematics

Submitted to the Faculty of Mathematics and

Natural Sciences in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Mathematics

at the

Dresden University of Technology

September 23, 2013

Exact Approaches for Higher-Dimensional
Orthogonal Packing and Related Problems

by

Marat A. Mesyagutov

Submitted to the Faculty of Mathematics and
Natural Sciences at the Dresden University

of Technology on September 23, 2013
in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in Mathematics

ABSTRACT

NP-hard problems of higher-dimensional orthogonal packing are considered. We look
closer at their logical structure and show that they can be decomposed into problems of
a smaller dimension with a special contiguous structure. This decomposition influences
the modeling of the packing process, which results in three new solution approaches.

Keeping this decomposition in mind, we model the smaller-dimensional problems in a
single position-indexed formulation with non-overlapping inequalities serving as binding
constraints. Thus, we come up with a new integer linear programming model, which
we subject to polyhedral analysis. Furthermore, we establish general non-overlapping
and density inequalities and prove under appropriate assumptions their facet-defining
property for the convex hull of the integer solutions. Based on the proposed model and
the strong inequalities, we develop a new branch-and-cut algorithm.

Being a relaxation of the higher-dimensional problem, each of the smaller-dimensional
problems is also relevant for different areas, e.g. for scheduling. To tackle any of these
smaller-dimensional problems, we use a Gilmore-Gomory model, which is a Dantzig-
Wolfe decomposition of the position-indexed formulation. In order to obtain a con-
tiguous structure for the optimal solution, its basis matrix must have a consecutive
1’s property. For construction of such matrices, we develop new branch-and-price al-
gorithms which are distinguished by various strategies for the enumeration of partial
solutions. We also prove some characteristics of partial solutions, which tighten the
slave problem of column generation.

For a nonlinear modeling of the higher-dimensional packing problems, we investigate
state-of-the-art constraint programming approaches, modify them, and propose new
dichotomy and intersection branching strategies. To tighten the constraint propaga-
tion, we introduce new pruning rules. For that, we apply 1D relaxation with intervals
and forbidden pairs, an advanced bar relaxation, 2D slice relaxation, and 1D slice-bar
relaxation with forbidden pairs. The new rules are based on the relaxation by the
smaller-dimensional problems which, in turn, are replaced by a linear programming
relaxation of the Gilmore-Gomory model.

We conclude with a discussion of implementation issues and numerical studies of all
proposed approaches.

Thesis Supervisors:
Dr. rer. nat. Guntram Scheithauer
Prof. Dr. rer. nat. Andreas Fischer

i

Zugänge für die exakte Lösung höherdimensionaler
orthogonaler Packungsprobleme und verwandter Aufgaben

von

Marat A. Mesyagutov

Eingereicht an der Fakultät Mathematik und
Naturwissenschaften an der Technischen

Universität Dresden am 23. September 2013
zur Erlangung des akademischen Grades
Doctor of Philosophy in der Mathematik

ABSTRAKT

Es werdenNP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir
untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer
Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst
die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen
führt.

Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in
einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die
als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahli-
gen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben
wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter
geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der
ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Un-
gleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus.

Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems.
Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im
Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-
Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten For-
mulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der
optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher
Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur
Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakter-
istiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen.

Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen
wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue
Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung
der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei
1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation,
2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle
vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die
wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen.

Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlage-
nen Ansätze.

Betreuer:
Dr. rer. nat. Guntram Scheithauer
Prof. Dr. rer. nat. Andreas Fischer

iii

Some parts of the research work presented in this thesis have been published or
submitted and is currently under the reviewing process in the following:

1. Peer-reviewed publications:

[MMBS11] M. Mesyagutov, E. Mukhacheva, G. Belov, and G. Scheithauer. Pack-
ing of one-dimensional bins with contiguous selection of identical
items: An exact method of optimal solution. Automation and Re-
mote Control, 72:141–159, 2011.
[Chapter 1]

[MSB12a] M. Mesyagutov, G. Scheithauer, and G. Belov. LP bounds in various
constraint programming approaches for orthogonal packing. Comput-
ers and Operations Research, 39(10):2425–2438, 2012.
[Chapter 3]

2. Research papers (preprints):

[MSB12b] M. Mesyagutov, G. Scheithauer, and G. Belov. New constraint pro-
gramming approaches for the 3D orthogonal packing. Technical re-
port, Preprint MATH-NM-01-2012, Technische Universität Dresden,
2012.
To be submitted.
[Chapter 4]

[MSB13a] M. Mesyagutov, G. Scheithauer, and G. Belov. A new branch-and-
cut method for the strip packing problem. Technical report, Preprint
MATH-NM-04-2013, Technische Universität Dresden, 2013.
To be submitted.
[Chapter 1]

[MSB13b] M. Mesyagutov, G. Scheithauer, and G. Belov. New branch-and-price
methods for the 1D contiguous bin packing problem. Technical report,
Preprint MATH-NM-06-2013, Technische Universität Dresden, 2013.
To be submitted.
[Chapter 2]

v

Acknowledgments

My first thanks go to my advisor, Guntram Scheithauer, for the support, motivation,
and kindness. I met him firstly while I did my first internship within the university
studies at the Dresden University of Technology at the well-known scientific school of
cutting and packing. After the internship, I realized that I really want to learn the
know-how’s and gain the experience here – that was my motivation for the continuation.
Our sometimes daily meetings always inspired me to work twice, thrice more effective.
His scientific experience and intuition have always guided to a right direction. I value
very much those numerous soft skills which I learned from him as, e.g. to be extremely
precise in details and that not only in math and science.

I would like to thank my advisor, Andreas Fischer. The last phase of the work in
particular could not be possible without his support. The project which I am grateful
to be a part of helped me a lot and broadened my experience and outlook. I am
thankful to him for the fruitful and valuable discussions. Being a type of persons who
dig into details, he carries also about generality – the values I learned.

I am very thankful to my friend and scientific mentor, Gleb Belov. I still do not
know a person who has so much practical and implementation experience in cutting
and packing. Literally, it was sometimes like: "Hey, Gleb, I have a brilliant idea which
can crack this problem". But after explaining him my idea, I found out that he already
tried it and the idea did not work. Gleb is a hard working person. He taught me how
to be goal focused. I would like to thank him for introducing me to the world of hiking.
We spent a lot of time hiking across the beautiful country Germany. I still remember
the great hike experience to the top of the Zugspitze and the Pico del Teide (Spain).

I want particularly thank Elita Mukhacheva, my first teacher and deliberate life
mentor, who played a big role in my life. She introduced me to the problems of cutting
and packing. While I studied at the university, she organized weekly seminars on
combinatorial problems, which I attended with a great interest. At the same time,
I became involved in an effective implementation of some algorithms where I gained
the first experience in this area. Later on, I improved these algorithms and studied
new ones. My first publication with her co-authorship she reiterated multiple times, I
believe this number was between five and ten. She was always supportive and full of
energy. I learned how to be absolutely devoted to any work I do, as she was. The fact
that she was correcting the master thesis of a student of hers just a few hours before
she passed away after a long-lasting illness, says a lot about her.

I am very grateful to Nafisa Yusupova. Being a dean of the faculty at the university,
she held an exciting lecture on the information theory where I firstly met her. Later on,
she initiated that internship where the relationship to the Dresden school has started.
She is an intelligent and very energetic person. I value very much all efforts from her
side to connect the scientists from Russia with other countries. She is one of the fewer
people who do a real work in this direction.

I would like to thank Vadim Kartak for productive talks we had at numerous
meetings. My special thanks go to François Clautiaux for fruitful discussions and
experience sharing at many conferences.

I would like express my appreciation to the colleagues from the Institute of Numer-
ical Mathematics at the university. They were always supportive and kind to me.

vii

I would not be where I am without my smart, interesting and inspiring friends and
those who cares about me and played an important role. I am thankful to everyone
who supported me. Special thanks go to my best friend, Igor, who is always supportive,
understanding and willing to help.

Most importantly, I would like truly to thank my beloved family for their love and
unlimited support. My mother, Fatima, is a wonderful person, whom I love. She
cares about all members of the family and works as a doctor. She has an amazing
merit of treating and wining people’s favour, which I have been learning from her
so far. My grandfather, Buljak, is as my father. His is an example of a person for
me who follows his line. Being a director of a small factory, he taught me how to
achieve results. Despite his non-emotionality, he does everything for the family. My
grandmother, Farida, has selflessly devoted herself to the family. She is a wise and
very kind person. My beloved girlfriend, Liliya, is a marvelous person. She has an
extraordinary combination of intelligence, wisdom, and beauty. I know that I can
always rely on her. I feel lucky to have such an amazing family. I love every one of
them very much and hope that I will always make them proud.

Finally, I would like to acknowledge all the sources of funding that made my re-
search possible (in the order of granting): German Academic Exchange Service (DAAD
research grant1); the Saxon State Ministry of Science and the Arts (Georgius-Agricola
scholarship2); the European Union (Erasmus-Mundus doctoral scholarship3); German
Research Foundation (DFG4).

Marat A. Mesyagutov
Dresden, Aug. 8, 2013

1325 A/06/92734
2518-VO
3EM ECW-L04 TUD 08-134
4Collaborative Research Center 912 "Highly Adaptive Energy-Efficient Computing"

viii

Contents

Introduction 1

1 A Branch-and-Cut Method for the Strip Packing Problem 5
1.1 Introduction . 5
1.2 Strong valid inequalities and facets . 9
1.3 The branch-and-cut algorithm . 28
1.4 Valid linear inequalities . 31
1.5 Valid nonlinear inequalities and linearization 34
1.6 Numerical study . 37
1.7 Conclusions . 37
1.8 Acknowledgments . 38

2 Branch-and-Price Methods for the 1D Contiguous Bin Packing Prob-
lem 41
2.1 Introduction . 41
2.2 The branch-and-price algorithms . 46
2.3 Subcolumns breaking the C1P . 50
2.4 Subcolumns potentially breaking the C1P 57
2.5 Numerical study . 61
2.6 Conclusions . 62
2.7 Acknowledgments . 62

3 Constraint Programming Approaches for Orthogonal Packing 65
3.1 Introduction . 65
3.2 An overview of the algorithm of Clautiaux et al. 68
3.3 Minor modifications . 70
3.4 New branching strategies . 72
3.5 Advanced constraint propagation . 83
3.6 Numerical study . 97
3.7 Conclusions . 103
3.8 Acknowledgments . 103

4 Constraint Programming Approaches for 3D Orthogonal Packing 107
4.1 Introduction . 107
4.2 Modification of the basic algorithm . 110
4.3 Minor modifications . 110

ix

4.4 New branching strategies . 112
4.5 Advanced constraint propagation . 116
4.6 Numerical study . 123
4.7 Conclusions . 124
4.8 Acknowledgments . 125

Summary and Outlook 131

Bibliography 133

List of Tables 139

List of Figures 141

x

Introduction

Cutting and packing problems are NP-hard combinatorial optimization problems,
which arise in context of many real-world applications in industry as well as in service.
Simple in verbal formulation and very hard to solve, cutting and packing problems
have many interdisciplinary contributions from mathematics, management science, op-
erations research, engineering, and computer science. All having a similar logical struc-
ture – large objects must be cut optimally into smaller pieces for cutting, and small
items must be allocated optimally in larger objects for packing, they find their applica-
tions in supply chain management, finance, investment, and transportation. Cutting
and packing problems are also of interest from the theoretical side, since the question
P 6= NP remains still open.

The central problems in the thesis are of two types, optimization and decision. The
former is formulated in a way of finding an optimal configuration. The latter only
asks whether a configuration exists satisfying all given requirements. More specifically,
we consider the following decision and optimization problems. For d-dimensions, d =
2, 3, . . ., consider a set of m d-dimensional items with sizes (w1

i , . . . , w
d
i), i ∈ I :=

{1, . . . , m}:

1. The d-dimensional orthogonal packing feasibility problem (OPP-d) asks whether
all the items can be orthogonally packed into a given container (W 1, . . . ,W d) ∈
Zd

+ where wk
i ∈ {1, . . . ,W

k} for i ∈ I and k ∈ {1, . . . , d}.

2. The d-dimensional strip packing problem (SPP-d) asks for a packing of all the
items into a d-dimensional semi-infinite strip (W 1, . . . ,W d−1) ∈ Zd−1

+ which oc-
cupies the minimal length in W d where wk

i ∈ {1, . . . ,W
k}, wd

i ∈ Z+ for i ∈ I and
k ∈ {1, . . . , d− 1}.

3. The 1-dimensional contiguous bin packing problem (CBPP-1) asks for a packing
of m types of 1D items with a length w1

i and a quantity w2
i , i ∈ I := {1, . . . , m}

into 1D bins with a length W 1 ∈ Z+ in a fixed order which uses the minimal
number of the bins satisfying the following restrictions: 1) Each item of one type
is packed at most once into a bin; 2) Each item of one type is packed contiguously
into a sequence of the bins; where w1

i ∈ {1, . . . ,W
1} for i ∈ I.

For the decision version of the optimization problems the suitable answer would be
"no" if no configuration exists satisfying all the requirements or "yes" with the items
positions in the container which fulfill all the requirements. The answer for the opti-
mization problems would be items positions in the container which realize the optimal
configuration.

1

With the "higher-dimensional" packing in the title of the theses we refer to the
problems with d ≥ 2. Note, the CBBP-1 is not purely 1-dimensional, since the "conti-
guity" constraint and a fixed order of the bins can be interpreted using an additional
dimension.

The thesis consists of four chapters. Each chapter is a separate paper and represents
an independent method for the problem to solve.

Chapter 1 deals with SPP-2. We develop an Integer Linear Programming (ILP)
model and subject it to polyhedral analysis. We determine non-overlapping and density
constraints and prove under appropriate assumptions their facet-defining property for
the convex hull of the integer solutions. We also consider some valid linear and non-
linear inequalities. For the non-linear ones we develop a proper linearization if possible.
Based on the proposed formulation and strong inequalities, we develop a new branch-
and-cut algorithm and study it numerically.

Chapter 2 deals with CBPP-1. We use a Gilmore-Gomory model for the 1D bin
packing problem and use the known fact that, if a column set has a consecutive 1’s
property (C1P), then the corresponding matrix is total unimodular, and thus all the
corners of the polyhedron of its linear programming (LP)-relaxation are integral for the
integer input data. For the construction of such column sets, we develop branch-and-
price algorithms with two strategies: column-, and subcolumn-based enumerations. We
also prove propositions about some characteristics of a specific or an arbitrary column
which breaks the C1P of a given column set. For each of these characteristics, we
develop an algorithm, the output data of which is used in the slave problem of the
column generation thus tightening the bound. Concluding the chapter, we report the
results of a numerical study of the proposed algorithms.

Chapter 3 deals with OPP-2 and SPP-2. We investigate the state-of-the-art con-
straint programming (CP) approaches for OPP-2, in particular the basic fixation strat-
egy (fix at the lower bound or increase the lower bound for the variable domain, also
known as "schedule or postpone") and disjunctive branching strategy, and propose new
dichotomy and intersection strategies. We also propose new pruning rules based on
tightened 1D relaxations of various kinds, e.g. intervals, forbidden pairs, and advanced
bar relaxations. The new pruning rules are adapted into the constraint propagation
process of the CP. Using the dichotomic search procedure, the developed methods for
OPP-2 are transformed for SPP-2. The input data for the bar relaxation is obtained
from the local partial solution, the information from the constraint propagation proce-
dure, and the relative positions of the items in the container. The numerical results
demonstrate the efficiency of the proposed strategies and of the combination of the CP
and the LP-based pruning rules.

Chapter 4 deals with OPP-3 and SPP-3. Inspired by the results from Chapter 3,
we investigate, modify and transform them into solution methods for the 3D case. We
discuss basics of the algorithm and propose some minor modifications as preprocessing
and consideration of raster points. We compare the basic branching strategy with the
most successful according to the one from Chapter 3, disjunctive strategy. We also
propose new pruning rules based on the geometrical and LP-relaxations of four types:
a simple 1D bar relaxation with different stock lengths, a 1D bar relaxation, a 2D slice
relaxation and a 1D slice-bar relaxation with forbidden item pairs. The performed

2

numerical study shows high efficiency of the propagated on 3D approach and of the
geometrical and further relaxed by LP pruning rules.

The summery and outlook follow and conclude the thesis.

3

Chapter 1

A Branch-and-Cut Method for the
Strip Packing Problem

We consider the 2D strip packing problem (SPP-2). Given a set of rect-
angular items, SPP-2 is to find a packing of all items occupying the min-
imal height of the given semi-infinite strip. We develop an Integer Linear
Programming (ILP) model and subject it to polyhedral analysis. We deter-
mine non-overlapping and density constraints and prove under appropriate
assumptions their facet-defining property for the convex hull of the integer
solutions. We also consider some valid linear and non-linear inequalities.
For the non-linear ones we develop a proper linearization if possible. Based
on the proposed formulation and facets we develop a new branch-and-cut
algorithm. Numerical results are presented.
Keywords: linear programming, branch-and-cut, facet-defining inequali-
ties

1.1 Introduction

Let us consider a set of m rectangular items (wi, hi), with i ∈ I := {1, . . . , m}. The
2-dimensional orthogonal strip packing problem (SPP-2) [LMV02] asks for a packing
of items (wi, hi) with i ∈ I without rotations into the semi-infinite strip with width W
which occupies the minimal height. The guillotine constraint [MAVdC10, CJM08] is
not considered. All input data are positive integers, i.e., W ∈ Z+, and wi ∈ {1, . . . ,W}
for i ∈ I, h := {h1, . . . , hm} ∈ Zm

+ . The problem can be formulated also for the 3D case.
If dimension of a problem is not relevant then it will be referenced as SPP further in
this paper.

1.1.1 Modeling and notations

Let H be a feasible upper bound on the optimal value of the height of the strip in SPP-
2. In order to formulate a model we consider the following solution representation.
To the strip we apply a 2-dimensional grid with step 1, each point of which (u, v),
u ∈ U := {1, . . . , H}, v ∈ V := {1, . . . ,W} can be covered by an item i ∈ I.

5

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.1. Introduction

Let us introduce binary variables αu
i , i ∈ I, u ∈ U which indicate in the case

of αu
i = 1 the minimal coordinate u of item i in the packing over the (0, H)-axis.

Analogously, we introduce variables βv
i , i ∈ I, v ∈ V for the packing over the (0,W)-

axis. That means, if αu
i = βv

i = 1 then item i covers the rectangular region {(x, y) : u−
1 < x ≤ u− 1 + hi, v − 1 < y ≤ v − 1 + wi}, and (u, v) is called the allocation point
of item i or coordinates of item i. If one of the variables αj

i , j = u − hi + 1, . . . , u is
not 0, then item i ∈ I intersects the coordinate u ∈ U . To simplify the description we
introduce the following sets:

Hi(u) := {max{1, u− hi + 1}, . . . ,min{u,H − hi + 1}}, u ∈ U ;

Wi(v) := {max{1, v − wi + 1}, . . . ,min{v,W − wi + 1}}, v ∈ V.

Thus, if αu
i = 1 then item i intersects all coordinates k ∈ {u, . . . , u+ hi − 1}. Let

α̃u
i =

∑

k∈Hi(u)

αk
i ; β̃v

i =
∑

k∈Wi(v)

βk
i ; u ∈ U, v ∈ V.

The set of item pairs which fit together in both directions is denoted by

P := {(p, q) ∈ I × I : p < q ∧ wp + wq ≤W ∧ hp + hq ≤ H}.

Let H =
∑

i∈I hi and f be the value (height) of a solution. We obtain the following
Integer Linear Programming (ILP) model of SPP-2:

f → min; s.t. (1.1)
∑

u∈U

αu
i = 1, i ∈ I; (1.2)

∑

v∈V

βv
i = 1, i ∈ I; (1.3)

∑

i∈I

wiα̃
u
i −W ≤ 0, u ∈ U ; (1.4)

∑

i∈I

hiβ̃
v
i − f ≤ 0, v ∈ V ; (1.5)

α̃u
p + α̃u

q + β̃v
p + β̃v

q ≤ 3, u ∈ U, v ∈ V, (p, q) ∈ P; (1.6)

αu
i , β

v
i ∈ {0, 1}, i ∈ I, u ∈ U, v ∈ V. (1.7)

The above formulation has O(m(W +H)) variables and O(m2WH) constraints. Note
the formulation (1.1)-(1.7) can be referred as to a position-indexed formulation of SPP-
2, since we define 0-1 decision variables for every placement position. Such kind of
models were firstly proposed by L.V. Kantorovich for different problems in production
[Kan39].

Lemma 1.1. Model (1.1)-(1.7) is an exact formulation of SPP-2.

Proof. In both directions has to be proven: one-one mapping of a feasible solution and
variable values; one-one mapping of variable values and a feasible solution.

6

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.1. Introduction

From one hand, from a feasible packing, i.e., {(xi, yi) : i ∈ I}, where the xi- and
yi-coordinates are minimal, we obtain the corresponding values of variables:

αj
i =

1, j = xi + 1;

0, otherwise;
βj

i =

1, j = yi + 1;

0, otherwise.

From the other hand, based on variables we can build two graphs Gd = (I, Ed),
d = 1, 2, where

E1 = {(i, j) ∈ I × I : i 6= j, ∃u ∈ U, α̃u
i = α̃u

j = 1};

E2 = {(i, j) ∈ I × I : i 6= j, ∃v ∈ V, β̃v
i = β̃v

j = 1}.

Each of these graphs have the following three properties:

1. G1 and G2 are interval graphs.

2. Each stable set of G1 and G2 are y and x-feasible, respectively.

3. E1 ∩ E2 = ∅.

The first property holds by construction of graphs. The second holds because vari-
ables satisfy constraints (1.4)-(1.5). The last property holds because variables satisfy
constraints (1.6). Since all properties hold then from the Theorem 1 [FSvdV07] follows
the lemma.

Modeling with rotations

We do not allow the rotation of items by 90◦. But it is possible to model the rotations
by introducing additional variables which duplicate αu

i and βv
i , variables au

i and bv
i .

Variables au
i , i ∈ I, u ∈ U , in contrast to αu

i , indicate in case of au
i = 1 the minimal

coordinate u of rotated by 90◦ item i in the packing over the (0, H)-axis. Analogously,
we introduce variables bv

i , i ∈ I, v ∈ V for the packing of rotated by 90◦ item i over
the (0,W)-axis. Similarly to Hi(u) and Wi(v) we introduce the following sets:

Hi(u) := {max{1, u− wi + 1}, . . . ,min{u,H − wi + 1}}, u ∈ U ;

W i(v) := {max{1, v − hi + 1}, . . . ,min{v,W − hi + 1}}, v ∈ V.

Thus, if ak
i = 1 then item i intersects all coordinates k ∈ {u, . . . , u+ wi − 1}. Let

ãu
i =

∑

k∈Hi(u)

ak
i ; b̃v

i =
∑

k∈W i(v)

bk
i ; u ∈ U, v ∈ V.

Assigning a value to variables αu
i , au

i , βv
i , bu

i and f , we obtain the following ILP

7

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.1. Introduction

model of SPP-2 with rotations by 90◦:

f → min; s.t. (1.8)
∑

u∈U

{αu
i + au

i } = 1, i ∈ I; (1.9)

∑

v∈V

{βv
i + bu

i } = 1, i ∈ I; (1.10)

∑

i∈I

{wiα̃
u
i + hiã

u
i } −W ≤ 0, u ∈ U ; (1.11)

∑

i∈I

{hiβ̃
v
i + wib̃

v
i } − f ≤ 0, v ∈ V ; (1.12)

∑

i∈{p,q}

{α̃u
i + ãu

i + β̃v
i + b̃v

i } ≤ 3, (u, v) ∈ U × V, (p, q) ∈ P; (1.13)

f ≥ 0; (1.14)

αu
i , β

v
i , a

u
i , b

v
i ∈ {0, 1}, i ∈ I, u ∈ U, v ∈ V. (1.15)

Further in this paper we consider SPP-2 without rotations.

1.1.2 Overview of solution methods

There exist ILP models [Bea85, Pad00, BB07, BKRS09] for SPP-2 or similar problems
based on different representations of a feasible solution. For some of them, the exact
solution is difficult because of the weak LP bounds, i.e., [Pad00], quadratic number of
intersection variables and/or pseudo-polynomial number of position-indexed variables,
i.e., [Bea85, BB07].

In [HNS08], the problem is considered in the 1D case without connecting inequalities
(1.6). The resulting facet-defining inequalities are subject to study in the 2D case, but
this is not the aim of this paper. In [MMBS11], the 1D case is also considered and
handled by a branch-and-bound with lower bounds based on the LP relaxation of the
decomposed model of the 1D bin packing problem which is solved by column generation
method.

The proposing formulation (1.1)-(1.7) has some of the discussed drawbacks but in
the subsequent we consider some approaches in order to tackle them, see 1.1.4.

1.1.3 Polyhedra, faces and facets

Here we define briefly some notations which are used in the subsequent sections.
Thereby we follow the terminology given in [NW88].

Let γ ∈ Rk. A set of points x1, . . . , xk ∈ Rn is affinely independent if the unique
solution of γT (x1, . . . , xk)T = 0, γT 1 = 0 is γ = 0.

A polyhedron P ⊂ Rn is the set of points that satisfy a finite number of linear
inequalities, that is, P = {x ∈ Rn : Ax ≤ b} with an m × n-matrix A. A polyhedron
P ⊂ Rn is bounded if there exists a constant K such that |xi| < K ∀x ∈ P , i = 1, . . . , n.
A bounded polyhedron is called a polytope.

A polyhedron P is of dimension k, denoted by dim(P) = k, if the maximum number
of affinely independent points in P is k + 1.

8

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

The set {x ∈ Rn : πTx = π0} is called a hyperplane. The set {x ∈ Rn : πTx ≤ π0}
is called a half-space. The inequality πTx ≤ π0 is called a valid inequality for P if it is
satisfied by all points in P , i.e. πTx ≤ π0 ∀x ∈ P .

Let πTx ≤ π0 be a valid inequality for P and let F = {x ∈ P : πTx = π0}. F
is called a face of P , and we say that πTx ≤ π0 represents F . A face F is said to be
proper if F 6= 0 and F 6= P .

A face F of P with dim(F) = dim(P) − 1 is called a facet of P . If πTx ≤ π0

represents a facet of P then πTx ≤ π0 is called a facet-defining inequality.
A set S ⊆ Rn is convex if ∀x, y ∈ S, γ ∈ [0, 1], we have γx + (1 − γ)y ∈ S. Let

x1, . . . , xk ∈ Rn and γ ∈ Rk be given such that γT 1 = 1 then the vector
∑k

i=1 γix
i is

said to be a convex combination of x1, . . . , xk; the convex hull of x1, . . . , xk is the set
of all convex combinations of these vectors.

If πx ≤ π0 and µx ≤ µ0 are two valid inequalities for P ⊆ Rn
+, πx ≤ π0 dominates

µx ≤ µ0 if there exists s > 0 such that π ≥ sµ and π0 ≤ sµ0, and (π, π0) 6= (sµ, sµ0).

1.1.4 Our contribution

In order to solve SPP-2 we investigate the ILP model which is proposed in Section 1.1.
In Section 1.2 we look closer at the non-overlapping constraints, propose general non-
overlapping and density inequalities and prove under appropriate assumptions their
facet-defining property. Based on the proposed formulation and constraints we de-
velop a new branch-and-cut algorithm, Section 1.3. In section 1.4 we consider valid
inequalities which can be applied within the formulation in order to reduce the size of
the branching tree and exclude equivalent solutions. In section 1.5 we consider feasi-
ble constraints which are nonlinear, but in some cases can be approximated by extra
variables and linear constraints. The final part of the paper reports numerical results
and conclusion.

1.2 Strong valid inequalities and facets

In this section we consider four classes of facet-defining inequalities: non-overlapping,
cover and density inequalities. For some classes we show the proof of their facet-defining
property.

Now we give some notations and preliminary information. For the case of SPP-2
in formulation (1.1)-(1.7) let in the following

P := {(α, β) ∈ Rm(W +H)
+ : (1.2)− (1.6) hold}

denote the polyhedron of the continuous relaxation of SPP-2. Furthermore, let

S := {(α, β) ∈ {0, 1}m(W +H) : (1.2)− (1.6) hold}

be the set of feasible solutions, and let conv(S) be the convex hull of S.
In order to get a full description of conv(S) by linear inequalities it is sufficient to

use the facet-defining inequalities. In the following we develop some classes of such
inequalities.

9

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

In order to simplify the following description we introduce the following sets:

Ūi := {H − hi + 2, . . . , H}, V̄i := {W − wi + 2, . . . ,W}. (1.16)

where Ūi and V̄i contain the coordinates of an item i where it cannot be allocated.

Lemma 1.2. Let H := 2H0 + hmax − 1 where H0 is the value of an optimal solution.
In case of SPP-2 in formulation (1.1)-(1.7) we have

dim(conv(S)) = m(W +H)−
∑

i∈I

[wi + hi].

Proof. Any solution (α, β) ∈ {0, 1}m(W +H) fulfills the 2m equalities (1.2)-(1.3). That
means, dim(conv(S)) ≤ m(W + H) − 2m. Last allocation points for an item i are
W −wi + 1 and H − hi + 1, respectively, which equivalent to equations αu

i = 0, u ∈ Ūi,
and βv

i = 0, v ∈ V̄i in the formulation. Herewith, dim(conv(S)) ≤ m(W +H)− 2m−∑
i∈I [|Ui| + |Vi|] or dim(conv(S)) ≤ m(W + H) − 2m −

∑
i∈I [hi − 1 + wi − 1], hence

dim(conv(S)) ≤ m(W +H)−
∑

i∈I [wi + hi].
Further we construct 1 + m(W + H) −

∑
i∈I [wi + hi] affinely independent points.

Let (α, β)0 := (α1
1, . . . , α

H
1 , . . . , α

1
m, . . . , α

H
m, β

1
1 , . . . , β

W
1 , . . . , β1

m, . . . , β
W
m) be an optimal

solution with f := H0 and αki

i := 1, βli
i := 1, and αk

i := 0 for k ∈ U\{ki}, βl
i := 0 for

l ∈ V \{li}, where ki and li are the positions of items in the optimal solution in (0, H)
and (0,W), respectively. For the graphical representation, please refer to Fig. 1.1a.

Let k̄ := H0 +hmax−1. Now we construct the first mH−
∑

i∈I hi points by shifting
of each item over the (0, H)-axis. The shifting is divided into two phases: the first, we
shift an item i along coordinates 1 up to H0 skipping its original ki; the second, we
shift it along coordinates H0 +1 up to H−hi +1. For the first phase we put the rest of
the items after the coordinate k̄, and at the origin for the second phase, Fig. 1.1c-1.1d.
For each s ∈ I:

f := 2H0 + hmax − 1,

αk
i :=

1, i = s, k ∈ {1, . . . , H0} \ {ki};

1, i ∈ I\{s}, k = k̄ + ki;

0, otherwise;

βl
i :=

1, l = li;

0, otherwise.
(1.17)

For each s ∈ I:

f := 2H0 + hmax − 1,

αk
i :=

1, i = s, k ∈ {H0 + 1, . . . , H} \ Ūi;

1, i ∈ I\{s}, k = ki;

0, otherwise;

βl
i :=

1, l = li;

0, otherwise.
(1.18)

where Ui is defined as (1.16). The number of points (1.17) is
∑

i∈I [H0−1] = m(H0−1).
The number of points (1.18) is

∑
i∈I [H − H0 − |Ūi|] =

∑
i∈I [H − H0 − (hi − 1)] =

m(H −H0 + 1)−
∑

i∈I hi. So, the number of points which arise from shifting of items
over the (0, H)-axis is mH −

∑
i∈I hi.

10

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

p

q

r

H0 k̄ H

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

p

q

r

H0 k̄ H

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

p

q

r

H0 k̄ H

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

p

q

r

H0 k̄ H

(d)

Figure 1.1: Feasible shifting of items for construction of affinely independent points
in conv(S): (a) – An optimal solution; (b) – Shifting of item p over the (0,W)-axis;
(c)-(d) – Shifting of item p over the (0, H)-axis. Note for all figures here and further
we draw the strip rotated by 90◦ clockwise.

Now we construct the last mW −
∑

i∈I wi points by shifting of each item over the
(0,W)-axis. While we shift an item i along coordinates 1 up to W −wi +1 skipping the
origin li, we put the rest of the items after the coordinate k̄ over (0, H)-axis, Fig. 1.1b.
For each s ∈ I:

f := 2H0 + hmax − 1,

αk
i :=

1, i = s, k = ki;

1, i ∈ I\{s}, k = k̄ + ki;

0, otherwise;

βl
i :=

1, i = s, k ∈ V \(V̄i ∪ {li});

1, i ∈ I\{s}, l = li;

0, otherwise.

(1.19)

where Vi is defined as (1.16). The number of points (1.19) is
∑

i∈I [W − 1 − |V̄i|] =∑
i∈I [W − 1− (wi − 1)] = mW −

∑
i∈I wi.

Now we show the affinely independence of the introduced points. Firstly, we simplify
the notation. Let ı̂k ∈ {0, 1}H and ̂l ∈ {0, 1}W be the k- and l-th unit vectors, respec-
tively. Hence, we can rewrite each subvector in the initial solution, (α1

i , . . . , α
H
i) as ı̂ki

and (β1
i , . . . , β

W
i) as ̂li. So the initial solution (α, β)0 is equal to (̂ık1, . . . , ı̂km, ̂l1 , . . . , ̂lm)

and the introduced points are as follows, Table 1.1 (note the vectors are written row
by row).

The last mW −
∑

i∈I wi of points are linearly independent from the other points,
since there is only a single ̂l with l ∈ V \{li} in each column. The second part of the
points are linearly independent from the other points, since there is only a single ı̂k

11

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

Table 1.1: m(W + H)−
∑

i∈I [wi + hi]+1 affinely independent points in conv(S): The
table consist of four vertical parts: the first points; the points from consecutively
shifting the values of α variables, (1.17), (1.18); the points from consecutively shifting
the values of β variables. The first part has one point. The second and the third part
has mH −

∑
i∈I hi points. The fourth part has mW −

∑
i∈I wi. The points are written

row by row.

α1
1
...
αH

1

α1
2
...
αH

2

 · · ·

α1
m
...
αH

m

β1
1
...
βW

1

β1
2
...
βW

2

 · · ·

β1
m
...
βW

m

ı̂k1 ı̂k2 · · · ı̂km ̂l1 ̂l2 · · · ̂lm

ı̂k ı̂k2+k̄ · · · ı̂km+k̄ ̂l1 ̂l2 · · · ̂lm k ∈ {1, . . . , H0}\{k1}

ı̂k1+k̄ ı̂k · · · ı̂km+k̄ ̂l1 ̂l2 · · · ̂lm k ∈ {1, . . . , H0}\{k2}
...

...
. . .

...
...

...
. . .

...

ı̂k1+k̄ ı̂k2+k̄ · · · ı̂k ̂l1 ̂l2 · · · ̂lm k ∈ {1, . . . , H0}\{km}

ı̂k ı̂k2 · · · ı̂km ̂l1 ̂l2 · · · ̂lm k ∈ {H0 + 1, . . . , H}\Ū1

ı̂k1 ı̂k · · · ı̂km ̂l1 ̂l2 · · · ̂lm k ∈ {H0 + 1, . . . , H}\Ū2
...

...
. . .

...
...

...
. . .

...
ı̂k1 ı̂k2 · · · ı̂k ̂l1 ̂l2 · · · ̂lm k ∈ {H0 + 1, . . . , H}\Ūm

ı̂k1 ı̂k2+k̄ · · · ı̂km+k̄ ̂l ̂l2 · · · ̂lm l ∈ V \(V̄1 ∪ {l1})

ı̂k1+k̄ ı̂k2 · · · ı̂km+k̄ ̂l1 ̂l · · · ̂lm+k̄ l ∈ V \(V̄2 ∪ {l2})
...

...
. . .

...
...

...
. . .

...

ı̂k1+k̄ ı̂k2+k̄ · · · ı̂km ̂l1 ̂l2 · · · ̂l l ∈ V \(V̄m ∪ {lm})

with k ∈ {1, . . . , H0}\{ki} in each column. For elements from the third part, in each
column there is only a single ı̂k with k ∈ {H0 + 1, . . . , H}\Ūi or it is equal at most to
one element from the second part and/or at most to one element from the fourth part,
which are linearly independent from all points. Thus, the points from the third part
are linearly independent. Thus, the points are linearly and hence affinely independent.

Because constraints (1.2)-(1.6) hold for all points, we have (αk
i , . . . , β

l
i, . . .) ∈ conv(S).

Since the number of points in total is m(W + H)−
∑

i∈I [wi + hi] + 1, the lemma fol-
lows.

1.2.1 Non-overlapping inequalities

Constraint (1.6) handles the case of two items. Generally speaking the case of two
items can be trivially extended on more items. Suppose we have three items p, q, r ∈
I : p 6= q 6= r, which fit into the strip in W -direction. Let us consider some allocations
of these items against each other, see Fig. 1.2.

Obviously if projections of these three items overlap in one direction then they
should not overlap in the other direction, otherwise there is an overlapping of items.
Thus, for u ∈ U , up ∈ Hp(u), uq ∈ Hq(u), ur ∈ Hr(u): αup

p + αuq
q + αur

r = 3 ⇒ βvp
p +

12

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

p q r

u

v

(a)
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

p q

r

u

v

(b)

Figure 1.2: Allocations of three items p, q, r: (a) – Projections of {p, q, r} overlap
in (0,W), but do not in H-direction; (b) – Projections of {p, q} overlap in (0,W),
projections of {p, r} and {q, r} overlap in (0, H).

βvq
q + βvr

r ≤ 1, ∀v ∈ V, vp ∈Wp(v), vq ∈Wq(v), vr ∈Wr(v). So, that follows

αup

p + αuq

q + αur

r + βvp

p + βvq

q + βvr

r ≤ 4, u ∈ U, v ∈ V.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

p q r s

u

v

(a)
0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

p q r

s

u

v

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

p
q

r
s

u

v

(c)
0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

pq

r

s

u

v

(d)

Figure 1.3: Allocations of four items p, q, r, s: (a) – Projections of {p, q, r, s} overlap in
(0,W), but do not in (0, H); (b) – Projections of {p, q, r} overlap in (0,W), projections
of {p, s} and {q, s} overlap in (0, H); (c) – Projections of {s, r}, {q, r}, {p, q} overlap
in (0,W), projections of {q, s} and {p, r} overlap in (0, H); (d) – Projections of {p, q}
overlap in (0,W), projections of {r, s, p} and {r, s, q} overlap in (0, H).

Analogously for 4 items, see Fig. 1.3. So,

αup

p + αuq

q + αur

r + αus

s + βvp

p + βvq

q + βvr

r + βvs

s ≤ 5, u ∈ U, v ∈ V,

where us ∈ Hs(u) and vs ∈Ws(v).
The above idea can be extended for an arbitrary number of items. Let µW and µH

be the maximal numbers of items, which fit in the W -, H-directions, respectively. It

13

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

means that for µ = min{µW , µH} overlapping items’ projections we should apply the
overlapping constraints type (1.6). Let

C := {S ⊆ I :
∑

i∈S

wi ≤W,
∑

i∈S

hi ≤ H}

be the set of subsets of I whose items fit into W - and H-directions. If for an u ∈ U
and M ∈ C

∑

i∈M

αu
i = |M | ⇒

∑

i∈M

βv
i ≤ 1, v ∈ V,

which leads to
∑

i∈M

[αu
i + βv

i] ≤ |M | + 1, u ∈ U, v ∈ V, M ∈ C. (1.20)

In the same manner we get the similar inequality for α̃ and β̃:
∑

i∈M

[α̃u
i + β̃v

i] ≤ |M | + 1, u ∈ U, v ∈ V, M ∈ C. (1.21)

Remark 1.1. The number of (1.20) and (1.21) constraints is O(WH(2m −m)).

Theorem 1.3. Inequalities (1.20) and (1.21) are valid for S.

Proof. We prove the theorem using a contradiction. Let for an u ∈ U , v ∈ V , M ∈ C
the inequality (1.20) does not hold, i.e.:

∑

i∈M

[αu
i + βv

i] ≥ |M | + 2.

It means that there exist at most 2|M | − (|M | + 2) elements αu and βv that are zero.
Therefore, there are at most |M |−2 pairs of αu

k and βv
k , k ∈M where αu

k = 0 or βv
k = 0.

Thus, there exist |M | − (|M | − 2) = 2 pairs where both αu and βv are non-zero. Let
p, q ∈ M , so that p 6= q and αu

p = βv
p = αu

q = βv
q = 1. But this contradicts (1.6) by

αu
p + βv

p + αu
q + βv

q = 4. Therefore, the assumption is incorrect.
Inequality (1.21) is proven in the similar manner.

Lemma 1.4. Let H̄i(u) := Hi(u) \ {u} and W̄i(v) := Wi(v) \ {v}. Inequality (1.21)
dominates (1.20), if

∑

i∈M

[
∑

k∈H̄i(u)

αk
i +

∑

k∈W̄i(v)

βk
i] > 0.

Proof. Let us reformulate the inequality (1.21) as:
∑

i∈M

[αu
i + βv

i] ≤ |M | + 1−
∑

i∈M

[
∑

k∈H̄i(u)

αk
i +

∑

k∈W̄i(v)

βk
i].

If Γ :=
∑

i∈M [
∑

k∈H̄i(u) α
k
i +

∑
k∈W̄i(v) β

k
i] = 0 then inequalities (1.21) and (1.20) are

equal. If Γ > 0 then we have |M |+ 1− Γ ≤ u(|M |+ 1). Let s := 1− Γ
|M |+1

. According

to the definition of a dominating inequality, (1, . . . , 1)T ≥ s(1, . . . , 1)T should hold.
Hence, Γ > 0 follows.

14

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

Remark 1.2. Let us look closer at the (1.20) constraints and discuss their facet-
defining property. Let m = 2, W = H := 20, wi = hi := 5, u = v := 10, and let
(1.20) be satisfied at equality, i.e., α10

1 +β10
1 +α10

2 +β10
2 = 3. But this means that items

1 and 2 will never be allocated at positions 11,. . . ,14 in both (0, H) and (0,W). The
latter means equations in the formulation αu

1 = 0, βv
1 = 0 for u, v = 11, . . . , 14 which

reduces the dimension of the face {(α, β) ∈ conv(S) : α10
1 + β10

1 + α10
2 + β10

2 = 3}.
Hence, inequality (1.20) is not a facet-defining unless wi = hi := 1, i ∈ I.

Since (1.21) dominates (1.20) and the latter is not a facet defining inequality in the
general case, further we consider only (1.21) and prove that (1.21) is a facet-defining
inequality for conv(S).

Theorem 1.5. Let u ∈ U, v ∈ V, M ⊆ I, H := u + 2(H0 +
∑

i∈M hi) + 3hmax − 3,
where H0 is the value of an optimal solution of a problem with items I\M and:

1. ∃p, q ∈M, p 6= q:

hp ≤ u, hq ≤ u, wp ≤ v, wq ≤ v, v +wp − 1 ≤W, v +wq − 1 ≤W. (1.22)

2. ∀i ∈M \ {p, q}:

v − 1 ≥ wi, W − v ≥ wi. (1.23)

3. ∀i ∈ I \M :

wi ≤ v − 1 or wi ≤W − v. (1.24)

Inequality (1.21) is facet-defining for conv(S), i.e., F := {(α, β) ∈ conv(S) :
∑

i∈M [α̃u
i +

β̃v
i] = |M | + 1} is a facet of conv(S).

Proof. The proof is done by constructing of m(W + H)−
∑

i∈I [wi + hi] affinely inde-
pendent points of conv(S) which fulfill the condition

∑
i∈M [α̃u

i + β̃v
i] = |M | + 1.

Without loss of generality we assume p := 1, q := 2, and M := {1, 2, . . . , |M |}. Let
us split H at three points:

k̄ := u+
∑

i∈M

hi + hmax − 1;

k̃ := k̄ +
∑

i∈M

hi + hmax − 1;

k̂ := k̃ +H0 + hmax − 1.

Note that term hmax in the expressions for k̄, k̃, and k̂ is needed for the feasibility of
step 11 (see below). Let H1 :=

∑
i∈M hi.

Further we construct points from a feasible solution which fulfills
∑

i∈M [α̃u
i + β̃v

i] =
|M | + 1. This feasible solution we construct as follows, see Fig. 1.4. Firstly, we
allocate item 1 at position k1 := u − h1 + 1, l1 = v − w1 + 1. The other items
i ∈ M \ {1} we allocate at position v in (0,W) and one after another in (0, H): ki =
u+h1+

∑
2≤j<i hj +1, li = v. Items from I\M we allocate optimally after k̃ at positions

15

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
2 3 4 5

6 7

u

v

k̄ k̃ k̂ H

Figure 1.4: Feasible initial solution for the construction of linear independent points
in {(α, β) ∈ conv(S) :

∑
i∈M [α̃u

i + β̃v
i] = |M |+ 1}. M = {1, 2, 3}, I = M ∪ {4, . . . , 7},

u = v = 3.

k̃ + ki and li where ki and li are their positions in the optimal solution. Let (α, β)0 :=
(α1

1, . . . , α
H
1 , . . . , α

1
m, . . . , α

H
m, β

1
1 , . . . , β

W
1 , . . . , β1

m, . . . , β
W
m) be this feasible solution with

f := H and αki

i := 1, βli
i := 1, and αk

i := 0 for k ∈ U\{ki}, βl
i := 0 for l ∈ V \{li}.

Now we construct m(W + H)−
∑

i∈I [wi + hi] points by shifting of items over the
(0, H)- and (0,W)-axis, respectively, always avoiding their original location. Every
shifting should be processed while

∑
i∈M [α̃u

i + β̃v
i] = |M | + 1 holds. Shiftings over the

(0, H)-axis are divided in five phases as H is divided in five parts by u, k̄, k̃, k̂. Shiftings
over the (0,W)-axis are divided into two phases, since W is divided in two parts by v.
Here are the following fourteen steps:

1. Shift the items i ∈ M \ {1} over the (0, H)-axis after the coordinate u skipping
the origin for every i, see Fig. 1.5.

Let αu−h1+1
1 := 1, βv−w1+1

1 := 1, f := H , and:

βl
i :=

1, i ∈M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

This shifting is divided into four phases, see Fig. 1.5a-1.5d:

(a) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {u+ 1, . . . , k̄ − hi + 1} \ {u+ ki};

1, i ∈M\{1, s}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.25)

(b) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̄ − hi + 2, . . . , k̃ − hi + 1};

1, i ∈M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.26)

16

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
2 3 4 5

6 7

u

v

k̄ k̃ k̂ H

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
23 4 5

6 7

u

v

k̄ k̃ k̂ H

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
23 4 5

6 7

u

v

k̄ k̃ k̂ H

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
23 4 5

6 7

u

v

k̄ k̃ k̂ H

(d)

Figure 1.5: Feasible shifting of items from M \{1} over the (0, H)-axis while
∑

i∈M [α̃u
i +

β̃v
i] = |M | + 1 holds. M = {1, 2, 3}, I = M ∪ {4, . . . , 7}, u = v = 3. The shifting

of item 2 after u is divided in four parts: (a) – First part, item 3 is allocated after k̄;
(b) – Second part, item 3 is allocated at its origin; (c) – Third part, items 4,. . . ,7 are

allocated after k̂; (d) – Fourth part, items 4,. . . ,7 are allocated at their origin.

(c) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̃ − hi + 2, . . . , k̂ − hi + 1};

1, i ∈ M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̂ + ki;

0, otherwise;

(1.27)

(d) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̂ − hi + 2, . . . , H} \ Ūi;

1, i ∈ M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.28)

The number of points which arise through the shiftings (1.25)-(1.28) is
∑

i∈M\{1}[H−

u− 1− |Ūi|] =
∑

i∈M\{1}[H − u− 1− (hi − 1)] = (|M | − 1)(H − u)−
∑

i∈M\{1} hi.

2. Shift the items i ∈ M \ {1} over the (0, H)-axis before the coordinate u, see
Fig. 1.6.

17

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1
2 3 4 5

6 7

u

v

k̄ k̃ k̂ H

Figure 1.6: Feasible shifting of items from M \ {1} over the (0, H)-axis before u while∑
i∈M [α̃u

i + β̃v
i] = |M |+ 1 holds. M = {1, 2, 3}, I = M ∪ {4, . . . , 7}, u = v = 3.

Note that here we change the position of item 1 in (0, H). Let αu
1 := 1, βv−w1+1

1 :=
1, f := H , and for each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {1, . . . , u− hi};

1, i ∈M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i ∈ M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.29)

The number of points which arise through the shifting (1.29) is
∑

i∈M\{1}[u−hi] =
(|M | − 1)u−

∑
i∈M\{1} hi.

3. Shift the items i ∈ M \ {1} over the (0,W)-axis after the coordinate v, see
Fig. 1.7a.

Let αu−h1+1
1 := 1, βv−w1+1

1 := 1, f := H , and for each s ∈M \ {1}:

αk
i :=

1, i = s, k = u;

1, i ∈M\{1, s}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = s, l ∈ {v + 1, . . . ,W − wi + 1}

1, i ∈M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.30)

The number of points which arise through the shifting (1.30) is
∑

i∈M\{1}[W −

v − |V̄i|] =
∑

i∈M\{1}[W − v − (wi − 1)] = (|M | − 1)(W − v + 1)−
∑

i∈M\{1} wi.

4. Shift the items i ∈ M \ {1} over the (0,W)-axis before the coordinate v, see
Fig. 1.7b.

Note that here we change the position of item 1 in (0,W). Let αu−h1+1
1 := 1,

βv
1 := 1, f := H , and for each s ∈M \ {1}:

αk
i :=

1, i = s, k = u;

1, i ∈M\{1, s}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = s, l ∈ {1, . . . , v − wi}

1, i ∈ M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

18

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1

2
3 4 5

6 7

u

v

k̄ k̃ k̂ H

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

1

2

3 4 5

6 7

u

v

k̄ k̃ k̂ H

(b)

Figure 1.7: Feasible shifting of items from M \{1} over the (0,W)-axis while
∑

i∈M [α̃u
i +

β̃v
i] = |M | + 1 holds. M = {1, 2, 3}. I = M ∪ {4, 5}. u = v = 3. Description: (a) –

Shifting of item 2 after v; (b) – Shifting of item 2 before v.

(1.31)

The number of points which arise through the shifting (1.31) is
∑

i∈M\{1}[v−wi] =
(|M | − 1)v −

∑
i∈M\{1} wi.

5. Shift the item 1 over the (0, H)-axis after the coordinate u.

In this case item 2 covers position u and v. Let αu−h2+1
2 := 1, βv−w2+1

2 := 1,
f := H , and:

βl
i :=

1, i ∈M \ {2}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

This shifting is divided into four phases:

(a)

αk
i :=

1, i = 1, k ∈ {u+ 1, . . . , k̄ − h1 + 1};

1, i ∈ M\{1, 2}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.32)

(b)

αk
i :=

1, i = 1, k ∈ {k̄ − h1 + 2, . . . , k̃ − h1 + 1};

1, i ∈ M\{1, 2}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.33)

19

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

(c)

αk
i :=

1, i = 1, k ∈ {k̃ − h1 + 2, . . . , k̂ − h1 + 1};

1, i ∈M\{1, 2}, k = u+ ki;

1, i ∈ I\M, k = k̂ + ki;

0, otherwise;

(1.34)

(d)

αk
i :=

1, i = 1, k ∈ {k̂ − h1 + 2, . . . , H} \ Ū1;

1, i ∈M\{1, 2}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.35)

The number of points which arise through the shifting (1.32)-(1.35) is H − u −
|Ū1| = H − u− (h1 − 1) = H − u+ 1− h1.

6. Shift the item 1 over the (0, H)-axis before the coordinate u:

Let αu
2 := 1, βv−w2+1

2 := 1, f := H , and:

αk
i :=

1, i = 1, k ∈ {1, . . . , u− h1};

1, i ∈M\{1, 2}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i ∈ M \ {2}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.36)

The number of points which arise through the shifting (1.36) is u− h1.

7. Shift the item 1 over the (0,W)-axis after the coordinate v.

Let αu−h2+1
2 := 1, βv−w2+1

2 := 1, f := H , and:

αk
i :=

1, i = 1, k = u;

1, i ∈M\{1, 2}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l ∈ {v + 1, . . . ,W − wi + 1}

1, i ∈M \ {1, 2}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.37)

The number of points which arise through the shifting (1.37) is W − v − |V̄1| =
W − v − (w1 − 1) = W − v + 1− w1.

8. Shift the item 1 over the (0,W)-axis before the coordinate v.

Let αu−h2+1
2 := 1, βv

2 := 1, f := H , and:

αk
i :=

1, i = 1, k = u;

1, i ∈M\{1, 2}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l ∈ {1, . . . , v − w1}

1, i ∈M \ {1, 2}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

20

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

(1.38)

The number of points which arise through the shifting (1.38) is v − w1.

9. Shift item 1 over the (0, H)-axis within coordinates H1(u) skipping its origin in
the initial solution (α, β)0.

Let f := H , and:

αk
i :=

1, i = 1, k ∈ H1(u) \ {u− h1 + 1};

1, i ∈M\{1}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l = v − w1 + 1;

1, i ∈M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.39)

The number of points which arise through the shifting (1.29) is |H1(u)| − 1 =
h1 − 1.

10. Shift item 1 over the (0,W)-axis within coordinates W1(v) skipping its origin in
the initial solution (α, β)0.

Let f := H , and:

αk
i :=

1, i = 1, k = u− h1 + 1;

1, i ∈M\{1}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l ∈W1(v) \ {v − w1 + 1};

1, i ∈ M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.40)

The number of points which arise through the shifting (1.40) is |W1(v)| − 1 =
w1 − 1.

11. Shift every item i ∈ M \ {1} over the (0, H)-axis within coordinates Hi(u). This
differs from the previous step, since items M \ {1} have never been allocated at
positions Hi(u).

Let f := H then for each s ∈M \ {1}:

αk
i :=

1, i = 1, k = k̄ + 1;

1, i = s, k ∈ Hi(u);

1, i ∈ M\{1, s}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l = v − w1 + 1;

1, i ∈M \ {1}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.41)

The number of points which arise through the shifting (1.41) is
∑

i∈M\{1} |Hi(u)| =∑
i∈M\{1} hi.

21

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

12. Shift every item i ∈M \ {1} over the (0,W)-axis within coordinates Wi(v) skip-
ping its origin v. This differs from the step prior to the previous, since items
M \ {1} have already been allocated at position v in the initial solution (α, β)0.

Let f := H then for each s ∈M \ {1}:

αk
i :=

1, i = 1, k = k̄ + 1;

1, i = s, k = u− hi + 1;

1, i ∈ M\{1, s}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

βl
i :=

1, i = 1, l = v;

1, i = s, l ∈Wi(v) \ {v};

1, i ∈M \ {1, s}, l = v;

1, i ∈ I \M, l = li;

0, otherwise.

(1.42)

The number of points which arise through the shifting (1.42) is
∑

i∈M\{1} |Wi(v)|−
1 = −(|M | − 1) +

∑
i∈M\{1} wi.

13. Shift items from I \M over the (0, H)-axis skipping their origin in the initial
solution (α, β)0.

Depending on which part of the condition (1.23) is fulfilled, we let βv−w1+1
i := 1

or βv
i := 1 for i ∈ I \M . Suppose wi ≤ v− 1 for i ∈ I \M , so βv

i := 1 for i ∈M .
Let αu−h1+1

1 := 1, and βv
1 := 1 and αk

1 = βl
1 := 0, otherwise; f := H :

βl
i :=

1, i ∈M\{1}, l = v;

1, i ∈ I\M, l = li;

0, otherwise;

(1.43)

We divide the shifting into five phases as in steps 1-2:

(a) For each s ∈ I \M :

αk
i :=

1, i = s, k ∈ {1, . . . , u− hi + 1};

1, i ∈M\{1}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise;

(1.44)

This shifting is valid since we require (1.22)-(1.23).

(b) For each s ∈ I \M :

αk
i :=

1, i = s, k ∈ {u− hi + 2, . . . , k̄ − hi + 1};

1, i ∈M\{1}, k = k̄ + ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise.

(1.45)

22

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

(c) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̄ − hi + 1, . . . , k̃ − hi + 1};

1, i ∈ M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise.

(1.46)

(d) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̃ − hi + 2, . . . , k̂ − hi + 1};

1, i ∈ M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̂ + ki;

0, otherwise.

(1.47)

(e) For each s ∈M \ {1}:

αk
i :=

1, i = s, k ∈ {k̂ − hi + 2, . . . , H} \ Ūi;

1, i ∈ M\{1, s}, k = u+ ki;

1, i ∈ I\M, k = k̃ + ki;

0, otherwise.

(1.48)

The number of points which arise through the shiftings (1.44)-(1.48) is
∑

i∈I\M [H−

1− |Ūi|] =
∑

i∈I\M [H − 1− (hi − 1)] = |I \M |H −
∑

i∈I\M hi.

14. Shift items from I \M over the (0,W)-axis skipping their origin in the initial
solution (α, β)0.

Let αu−h1+1
1 := 1, βv−w1+1

1 := 1, f := H , and for each s ∈ I \M :

αk
i :=

1, i = s, k = k̃ + ki;

1, i ∈ (I\M) \ {s}, k = k̂ + ki;

1, i ∈M, k = u+ ki;

0, otherwise;

βl
i :=

1, i = s, l ∈ ({1, . . . ,W} \ V̄i(v)) \ {v};

1, i ∈ I \M, l = li;

1, i ∈M, l = v; 0, otherwise.

(1.49)

The number of points which arise through the shifting (1.49) is
∑

i∈I\M [W − 1−

V̄i(v)] =
∑

i∈I\M [W − 1− (wi − 1)] = |I \M |W −
∑

i∈I\M wi.

23

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

Now we calculate the number of points from steps 1-12:

{(|M | − 1)(H − u)−
∑

i∈|M |\{1}

hi}+ {(|M | − 1)u−
∑

i∈M\{1}

hi}+ {(|M | − 1)(W −

v + 1)−
∑

i∈M\{1}

wi}+ {(m− 1)v −
∑

i∈M\{1}

wi}+ {H − u+ 1− h1}+ {u− h1}+

{W − v + 1− w1}+ {v − w1}+ {h1 − 1}+ {w1 − 1}+
∑

i∈M\{1}

hi − {(|M | − 1)−

∑

i∈M\{1}

wi} =

|M |(H +W) + |M | − 1− 2
∑

i∈I\{1}

[wi + hi]− w1 − h1 − |M |+ 1 +
∑

i∈M\{1}

[wi + hi] =

|M |(W +H)−
∑

i∈M

[wi + hi].

Herewith, that gives together with steps 13-14 the number of points:

|M |(W+H)−
∑

i∈M

[wi+hi]+|I \M |(W+H)−
∑

i∈I\M

[wi+hi] = m(W+H)−
∑

i∈I

[wi+hi].

The points are affinely independent for the same reason as the points in the proof
of Lemma 1.2.

Because constraints (1.2)-(1.6) hold for all points, we have (αk
i , . . . , β

l
i, . . .) ∈ conv(S).

Since the number of points in total is m(W+H)−
∑

i∈I [wi+hi], the theorem follows.

1.2.2 Cover inequalities

This section is partially based on [NW88]. In the following we consider cover inequali-
ties and a lifting procedure for their strengthening. We also prove that the lifted cover
inequalities are facet-defining for conv(S).

Definition 1.1. A set C ⊆ I for u ∈ U is a cover if
∑

i∈C wi −W > 0. A cover is
minimal if C\{i} is not a cover for any i ∈ C.

Lemma 1.6. If C ⊆ I is a cover, the cover inequality

∑

i∈C

α̃u
i ≤ |C| − 1 (1.50)

is valid for S for any u ∈ U .

Proof. The proof is similar to Proposition 2.1 in [NW88], p.265.

By Proposition 2.3 in [NW88], p.266, the cases are shown where the cover inequali-
ties are facet-defining for the polyhedron of the 0-1 knapsack problem. For the general
case, a lifting procedure is considered [NW88], p.269, and [Wol98], p.149, which tightens
the cover inequalities so they become facet-defining for general case.

24

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

Strengthening cover inequalities

The idea of strengthening the cover inequalities is to add to the left-hand side of
(1.50) as much as possible items from I\C which are not in the cover with the proper
coefficient πi, i ∈ I\C, while the right-hand side of the inequality remains the same,
i.e.:

∑

i∈C

α̃u
i +

∑

i∈I\C

πiα̃
u
i ≤ |C| − 1 (1.51)

is valid for S.
Now we describe the lifting procedure which returns in case of a minimal cover C

a set of πi values.

Algorithm 1.1 (Lifting). Determination of a lifted cover inequality for a minimal
cover C.
Input data: Minimal cover C.
Output data: (1.51).

(1) Set k = 0. Let R = I\C =: {r1, . . . , r|R|}.
(2) Set k = k+1. Calculate the largest value for πrk

for which the following inequality
is valid:

πrk
α̃u

rk
+

k−1∑

i=1

πri
α̃u

ri
+

∑

i∈C

α̃u
i ≤ |C| − 1,

through the solution of the following 0-1 integer program:

λk = max
k−1∑

i=1

πri
α̃u

ri
+

∑

i∈C

α̃u
i ; s.t. (1.52)

k−1∑

i=1

πri
α̃u

ri
+

∑

i∈C

α̃u
i ≤W − wrk

; (1.53)

α̃u
i = 0, i = rk, . . . , r|R|; (1.54)

α̃u
i ∈ {0, 1}, i ∈ I, u ∈ U. (1.55)

(3) Set πrk
= |C| − 1− λk.

(4) If k = |R| then exit, else go to 1.

1.2.3 Density inequalities

Here we consider only solutions which are in some sense dense. That means that for a
solution which is feasible there exists no item which does not contact from the left-hand
side neither another item nor (0,W) side of the strip.

Let Iu = {i ∈ I : u − hi ≥ 1} for u ∈ U denote the set of items which can end
right before position u and µW be the maximal number of items which fit in W . The

25

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

following inequality prevents allocation of items at a coordinate u if there does not
exist at least one item i which allocation was at the coordinate u− hi, if m > µW :

∑

i∈I

αu
i ≤ µW

∑

i∈Iu

αu−hi

i , u ∈ {2, . . . , H −min
i∈I
{hi}+ 1}. (1.56)

The same holds for the other direction. Let denote Iv = {i ∈ I : v − wi ≥ 1},
v ∈ V , the set of items which can end right before position v and µH be the maximal
number of items which fit in H , if m > µH :

∑

i∈I

βv
i ≤ µH

∑

i∈Iv

βv−wi

i , v ∈ {2, . . . ,W −min
i∈I
{wi}+ 1}. (1.57)

Remark 1.3. Note if m = µW then inequalities (1.56) are incorrect, since from∑
i∈I α

u
i = m should follow

∑
i∈I α

u−hi

i = 0 but it follows
∑

i∈I α
u−hi

i ≥ 1.

Remark 1.4. Note the factors µW and µH before the second sum in (1.56) and (1.57),
respectively, are not reducible in the general case.

Theorem 1.7. Let m ≥ µW + 2. For an u ∈ U , if ∃(α, β) ∈ S:
∑

i∈K(j)

αu
i = µW , j ∈ Iu, K(j) ⊆ I \ {j}, (1.58)

then (1.56) for an u ∈ {2, . . . , H − hmin + 1} is a facet-defining inequality for conv(S),
i.e.,

F := {(α, β) ∈ conv(S) :
∑

i∈I

αu
i = µW

∑

i∈Iu

αu−hi

i }

is a facet of conv(S).

Proof. Let us consider the following equation:
∑

i∈I

αu
i = µW

∑

i∈Iu

αu−hi

i . (1.59)

Since the left-hand side of the equation
∑

i∈I α
u
i ≤ µW due to the definition then there

exist only two types of solutions, namely:
∑

i∈I

αu
i = 0,

∑

i∈Iu

αu−hi

i = 0; (1.60)

∑

i∈I

αu
i = µW ,

∑

i∈Iu

αu−hi

i = 1. (1.61)

The case (1.60) leads to the considerable reduction of the dimension. The case
of (1.61) means that there exists a subset of µW items which are allocated at the
coordinate u and at least one item i which is allocated at the coordinate u−hi. So the
number of the fixed items is µW + 1 and the other items are free to fix. According to
the condition of the theorem we can go through all combinations of items so that every
item becomes free. Hence, analogues to the proof of Lemma 1.2 and Theorem 1.5 we
construct m(W +H)−

∑
i∈I [wi + hi] points under the condition (1.59).

26

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.2. Strong valid inequalities and facets

Remark 1.5. If m := µW + 1 then obviously (1.56) is not a facet-defining inequality,
unless (1.58) holds and hi = 1, H = 2.

Remark 1.6. Note the inequality (1.57) is not facet-defining, since while minimization
of the (1.1) the maximal value of the sum

∑
i∈I β

v
i will be smaller then µH , and the

equation
∑

i∈I β
v
i = µH ∑

i∈Iv
βv−wi

i will have only one single solution, namely βv
i =

βv−wi

i = 0. This is equivalent to additional equation constrains in the formulation
and hense reduction of the dimension of the face {(α, β) ∈ conv(S) :

∑
i∈I β

v
i =

µH ∑
i∈Iv

βv−wi

i }.

Finally for this section, we propose the following theorem.

Theorem 1.8. The proposed in this paper facet-defining inequalities are not the full
description of conv(S).

Proof. We prove the theorem numerically. For the test we took the instance ngcut04
from [MMV03] with the following data:

W = 10, H = 20, m = 7, w = (3, 3, 2, 2, 2, 2, 1), h = (8, 7, 15, 15, 12, 12, 9).

Then we generate all facet-defining inequalities from this section and them to the
formulation of the problem (1.1)-(1.7). Then we have solved the root LP relaxation of
the problem with the primal simplex method and get the following results:

1. The value of the optimal solution of the LP relaxation: 16.2.

2. The values of the variables αu
i :

❅
❅
❅i
u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.67 0.33
2 0.44 0.56
3 1
4 1
5 0.33 0.67
6 1
7 1

α̃u
i values:

❅
❅
❅i
u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 1 1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
6 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1

27

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.3. The branch-and-cut algorithm

3. The values of the variables βv
i :

❅
❅
❅i
v

1 2 3 4 5 6 7 8 9 10

1 0.29 0.71
2 0.40 0.21 0.39
3 0.54 0.46
4 0.35 0.16 0.49
5 0.46 0.01 0.50 0.03
6 0.38 0.15 0.47
7 0.46 0.03 0.50

β̃v
i values:

❅
❅
❅i
v

1 2 3 4 5 6 7 8 9 10

1 0.3 0.3 0.3 0.7 0.7 0.7
2 0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.4
3 0.5 0.5 0.5 0.5
4 0.4 0.4 0.2 0.2 0.5 0.5
5 0.5 0.5 0.5 0.5
6 0.4 0.4 0.2 0.6 0.5
7 0.5 0.5

The optimal solution of the LP relaxation in the root node is not integer within the
margin of rounding error. Hence, the theorem follows.

1.3 The branch-and-cut algorithm

Here we describe the overall algorithm of finding an optimum of SPP-2. The algorithm
is branch-and-cut which is branch-and-bound in which cutting planes are generated
throughout the branching tree. The idea is the same as in branch-and-bound, we
calculate lower bounds for each node and use it as a pruning criteria. In comparison
to the branch-and-bound, in branch-and-cut we invest as much efforts as possible until
the limits allow in order to strengthen the dual bound for the node.

In practice we search for a balance between the number of nodes to process and
the number of cutting planes which are added at each node. From one hand, if we
add to many cutting planes at each node, the optimization becomes slower. From the
other hand, if we add proper cutting planes, we increase the dual lower bound hence
reduce the number of descendant nodes. The other issue is the management of the
branching tree. For the branch-and-bound we store only the bounds for each variable
and processed to the descendants by adding one bound-constraint. For the branch-and-
cut we use a cut-pool in which all generated cuts are stored. So, in addition to keeping
the bounds and the indexes of variables in the basis it is also necessary to indicate
which constraints are needed to reconstruct the formulation at the given node.

28

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.3. The branch-and-cut algorithm

Algorithm 1.2 (Branch-and-cut). The overall optimization algorithm.
Input data: W , m, w = (w1, . . . , wm), h = (h1, . . . , hm).
Output data: optimal solution (α, β)∗ and its value φ.

(1) Initialization:

• node j0 with formulation F j0 := {(1.2)− (1.6)};

• φ = min{f : (α, β) ∈ Rm(W +H)
+ , F j0 holds}, φ =∞;

• incumbent (α, β)∗ = ∅;

• node list N := {j0}.

(2) Node: If N = ∅, go to Exit. Else choose j ∈ N , set N := N\{j} and go to
Restore.

(3) Restore the formulation F j. Set k := 1 and F j,1 = F j.
(4) LP relaxation: Iteration k. Solve

φj,k = min{f : (α, β) ∈ Rm(W +H)
+ , F j,k holds}.

If infeasible, prune and go to Node. Else solution (α, β)j,k and go to Cut.
(5) Cut: Iteration k. In order to cut off (α, β)j,k solve separation problems:

(5.1) NOV-Separation. If found a cut then add the cut to F j,k:

F j,k+1 := F j,k1 ∪ {
∑

i∈M

[α̃u
i + β̃v

i] ≤ |M |+ 1}.

(5.2) CO-Separation. If found a cut then apply Lifting. Add the cut to F j,k:

F j,k+1 := F j,k1 ∪ {
∑

i∈C(u)

α̃u
i +

∑

i∈I\C(u)

πiα̃
u
i ≤ |C(u)| − 1}.

If φj,k ≥ φ, go to Node. If no cuts found OR k > kmax then go to Prune. Else
set k := k + 1 and go to LP relaxation.

(6) Prune: If (α, β)j,k ∈ S, set φ = φj,k, update the incumbent (α, β)∗ := (α, β)j,k

and go to Node, else go to Branching.
(7) Branching: Select a variable αu

i : ǫ < αu
i < 1 − ǫ OR βv

i : ǫ < βv
i
< 1 − ǫ in

(α, β)j,k and create two descendants:

(7.1) node j1 with formulation F j1 := F j,k ∪ {αu
i = 0 OR βv

i = 0},
(7.2) node j2 with formulation F j2 := F j,k ∪ {αu

i = 1 OR βv
i = 1}.

Set N := N ∪ {j1, j2}. Go to Node.
(8) Exit: Return the incumbent (α, β)∗ and the optimal value φ.

In Branch-and-cut for the case when there is no improvement of the LP bound
after addition of cuts within kmax iterations, the algorithm proceeds to the prune and
the branching procedures.

29

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.3. The branch-and-cut algorithm

1.3.1 Separation for non-overlapping inequalities

Now let F be the family of non-overlapping inequalities (1.21) for S, and let us examine
the non-overlapping separation problem for F. Explicitly we are given a nonintegral
point (α, β), i.e., ∃i ∈ I, ∃u ∈ U or ∃v ∈ V :

ǫ < αu
i < 1− ǫ or ǫ < βv

i
< 1− ǫ, (1.62)

for a sufficient small ǫ > 0. And now we wish to know whether this point satisfies all
the non-overlapping inequalities (1.21) which we rewrite in the following form:

∑

i∈M

(α̃u
i + β̃v

i − 1) ≤ 1.

In order to answer the question we check whether there exists a set M ⊆ I for which∑
i∈M(α̃u

i + β̃
v

i
− 1) ≥ 1 + ǫ. Since the set M in this case is unknown, we formulate the

following problem:

M(u, v) := {i ∈ I : α̃u
i + β̃

v

i
− 1 ≥ ǫ}, δ(u, v) =

∑

i∈M(u,v)

[α̃u
i + β̃

v

i
− 1]. (1.63)

Theorem 1.9. (a) If ∀(u, v) ∈ U × V δ(u, v) ≤ 1, then (α, β) satisfies all the non-
overlapping inequalities.
(b) If ∃(u, v) ∈ U ×V δ(u, v) ≥ 1 + ǫ then the inequality

∑
i∈M(α̃u

i + β̃v
i) ≤ |M |+ 1 cuts

off (α, β) by an amount δ(u, v)− 1.

Proof. [Wol98].

Algorithm 1.3 (NOV-Separation). Determination of the most violated inequality
of type (1.21).
Input data: (α, β).
Output data: Most violated inequality of type (1.21).

(1) For u ∈ U if α̃u 6= α̃u−1 (α̃1 6= α̃0):

(1.1) For v ∈ V if β̃
v
6= β̃

v−1
(β̃

1
6= β̃

0
): Solve (1.63) and select (u, v) with the

maximal δ(u, v).

(2) If δ(u, v) ≥ 1 + ǫ then return:

∑

i∈M

(α̃u
i + β̃v

i) ≤ |M | + 1,

else return ∅.

Remark 1.7. The complexity of NOV-Separation is O(mWH).

30

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.4. Valid linear inequalities

1.3.2 Separation for cover inequalities

Now let G be the family of cover inequalities (1.50) for S, and let us examine the cover
separation problem for F. Suppose we are given a nonintegral point (α, β) with (1.62)
and we wish to know whether this point satisfies all the cover inequalities (1.50) which
we rewrite in the following form:

∑

i∈C(u)

(1− α̃u
i) ≥ 1.

In order to answer the question we check whether there exists a set C(u) ⊆ I with∑
i∈C(u) wi > W for which

∑
i∈C(u)(1 − α̃

u
i) ≤ 1 − ǫ. Since the set C(u) in this case is

unknown, we formulate the following 0-1 integer program where the variable γi = 1 if
i ∈ C(u) and γi = 0 otherwise:

ρ(u) = min
∑

i∈I

(1− α̃u
i)γi; s.t. (1.64)

∑

i∈I

wiγi > W ; (1.65)

γi ∈ {0, 1}, i ∈ I. (1.66)

Theorem 1.10. (a) If ∀u ∈ U ρ(u) ≥ 1 then (α, β) satisfies all the cover inequalities.
(b) If ∃u ∈ U ρ(u) ≤ 1− ǫ with optimal solution γ̄ then C = {i ∈ I : γ̄i = 1} is a cover
and the cover inequality

∑
i∈C α̃

u
i ≤ |C| − 1 cuts off (α, β) by an amount ρ(u)− 1.

Proof. [Wol98].

Algorithm 1.4 (CO-Separation). Determination of the most violated cover inequal-
ity.
Input data: (α, β).
Output data: Most violated cover inequality.

(1) For u ∈ U solve (1.64)-(1.66) and select the cover C = {i ∈ I : γ̄ = 1} for the
maximal ρ(u).

(2) If ρ(u) ≤ 1− ǫ return:
∑

i∈C

α̃u
i ≤ |C| − 1,

else return ∅.

Remark 1.8. The complexity of CO-Separation is O(mW 2).

1.4 Valid linear inequalities

Here we describe three classes of valid linear inequalities which are valid for conv(S).
They are not as strong as facet-defining inequalities but they can remove some equiv-
alent solutions in terms of SPP-2. Eventually, when we explore the branching tree we

31

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.4. Valid linear inequalities

want to find one optimal solution and prevent exploring all others which are in some
sense equivalent.

All equations and inequalities are considered as preprocessing and applied in the root
node of the branching tree, i.e., this is equivalent to the extension of the formulation
(1.1)-(1.7) of SPP-2 with these constraints.

1.4.1 Raster points equations

Sometimes there is no use considering all values of U and V for possible allocation
of items. The values which are of interest are called raster points [Sch08]. They are
calculated as follows:

Rw
i := {0 ≤ k ≤W : k =

∑

i∈I\{i}

wiγi, γi ∈ {0, 1}, i ∈ I\{i}}, i ∈ I,

Rh
i := {0 ≤ k ≤ H : k =

∑

i∈I\{i}

hiγi, γi ∈ {0, 1}, i ∈ I\{i}}, i ∈ I.

In the mentioned book, the author proposes an approach of a reduction of the
number of raster points based on a fixed upper bound for the points by consideration
of a reduced set of raster points. Since we minimize f -variable in the formulation (1.1)-
(1.7) and possible allocation points over the (0, H)-axis depend on f then we can apply
the reduction only for Rw

i :

R̃w
i := {max{k ∈ Rw

i : k ≤ W − r} : r ∈ Rw
i }.

In order to exclude the non-raster points from the consideration we extend the
formulation (1.1)-(1.7) by the following equations:

αu
i = 0, i ∈ I, u ∈ U\Rh

i , (1.67)

βv
i = 0, i ∈ I, v ∈ V \R̃w

i . (1.68)

Remark 1.9. Since we extend the formulation by equality constraints we reduce the
dimension of conv(S). It is easy to show using points (1.17)-(1.19) that

dim(conv(S)) = m(W +H)−
∑

i∈I

[wi + hi]−
∑

i∈I

[|V \ R̃w
i |+ |H \R

h
i |].

1.4.2 Symmetry elimination equations

The idea of this elimination is the following. Let (α, β)0 = (α1
1, . . . , α

H
1 , . . . , α

1
m, . . . , α

H
m, β

1
1 ,

. . . , βW
1 , . . . , β1

m, . . . , β
W
m) be an optimal solution with value f := H0 and αki

i := 1,
βli

i := 1, and αk
i := 0 for k ∈ U\{ki}, βl

i := 0 for l ∈ V \{li}, i ∈ I. Let us introduce
the following two operations which transform (α, β)0:

1. (0, H)-symmetrical mapping:

ᾱk
i :=

1, k = H0 − ki;

0, otherwise;
β̄l

i :=

1, l = li;

0, otherwise,
∀i ∈ I.

32

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.4. Valid linear inequalities

2. (0,W)-symmetrical mapping:

ᾱk
i :=

1, k = ki;

0, otherwise;
β̄l

i :=

1, l = W − li;

0, otherwise,
∀i ∈ I.

Both of the transformations yield solutions with the same f = H0. Since it is enough
to find at least one of them we are interested in forbidding the three others. This can
be done by requiring of an item to be allocated in the first half of the packing over the
(0, H)-, and (0,W)-axes, respectively. Numerically it is more effective to apply this for
the largest item.

Let Iw = {i ∈ I : wi = maxk∈I{wk}} be the set of items with the largest width and
Ih = {i ∈ Iw : hi = maxk∈Iw{hk}} be the set of those from Iw with the largest height.
Then for i∗ := argmin{Ih} the following constraints are applied for the formulation:

∑

u∈U∗

αu
i∗ = 1, U∗ := {1, . . . ,min{⌊

H − hi∗

2
⌋+ 1, H − hi∗ + 1}}; (1.69)

∑

v∈V ∗

βv
i∗ = 1, V ∗ := {1, . . . ,min{⌊

W − wi∗

2
⌋+ 1,W − wi∗ + 1}. (1.70)

Remark 1.10. Constraints (1.69)-(1.70) are equivalent to:

αu
i∗ = 0, u = min{⌊

H − hi∗

2
⌋+ 1, H − hi∗ + 1}+ 1, . . . , H − hi∗ + 1; (1.71)

βv
i∗ = 0, v = min{⌊

W − wi∗

2
⌋+ 1,W − wi∗ + 1}+ 1, . . . ,W − wi∗ + 1, (1.72)

the formulation (1.1)-(1.7) extended with. It is easy to show that the face F := {(α, β) ∈
conv(S) : (1.71)− (1.72) hold} has dimension:

dim(conv(F)) = m(W +H)−
∑

i∈I

[wi + hi]− |U \ U
∗| − |V \ V ∗|.

1.4.3 Combination inequalities

Here we use some basic facts for the allocation of items: items with the width laying
in interval (W

2
,W] can not be allocated together at one position in (0, H); at most

two items with the width laying in interval (W
3
, W

2
] can be allocated at one position in

(0, H).
Let for p ∈ V :

Iw
p := {i ∈ I :

W

p+ 1
< wi ≤

W

p
}

be the set of items which sizes are the fractions of p. The following inequalities hold:
∑

i∈Iw
p

α̃u
i ≤ p, u ∈ U, p ∈ V, Iw

p 6= ∅; (1.73)

From the other hand, the following inequalities are also valid:

∑

i∈I∗

p

α̃u
i ≤ p, I∗

p :=
p⋃

j=1

Iw
j , u ∈ U, p ∈ V, I

w
p 6= ∅. (1.74)

33

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.5. Valid nonlinear inequalities and linearization

Remark 1.11. Let us discuss now the dimension of the face F := {(α, β) ∈ conv(S):∑
i∈Iw

1
α̃u

i = 1} based on the combination inequality (1.73) for p = 1, Iw
1 6= ∅, and

an u ∈ U . Equation
∑

i∈Iw
1
α̃u

i = 1 means that the following constraints hold in the
formulation:

1. i∗ := argmin
i∈Iw

1

hi and i ∈ (Iw
1 \ {i

∗}) ∪ {i ∈ I \ Iw
1 : wi > W −min

i∈Iw
1

wi}:

αk
i = 0, k ∈ {max{1, u−hi}, . . . , u−1, u+1, . . . ,min{u+hi∗ , H−hi∗ +1}}.

2. For ī∗ := argmin
i∈Iw

1 \{i∗}
hi and i∗:

αk
i∗ = 0, k ∈ {max{1, u−hi∗}, . . . , u−1, u+1, . . . ,min{u+hī∗, H−hī∗ +1}}.

So, in general case F is not a facet.

1.4.4 Dominating knapsack inequalities

Here we tighten the inequalities (1.4). Let us consider the following question: what is
the maximal occupation of a knapsack with capacity W , if an item i ∈ I is present? In
order to answer to this question we formulate the following 0-1 integer program which
is also known as a subset sum problem, W j := max{

∑
i∈I wiγi :

∑
i∈I wiγi ≤ W, γj =

1, γi ∈ {0, 1}} where W j is maximal occupation.
If the maximal occupation W j is less than W then we can tighten the knapsack

condition by following inequality:

∑

i∈I\{j}

wiα̃
u
i + (W −W j)α̃u

j ≤W, u ∈ U. (1.75)

Lemma 1.11. Inequality (1.75) dominates (1.4) if W j < W − wj.

Proof. If αu
j = 0 then inequalities (1.75) and (1.4) are equal. If αu

j = 1 then we

have W j ≤ u(W − wj). Let s := W j

W −wj
. According to the definition of a dominating

inequality, (w1, . . . , wj−1, wj+1, . . . , wm)T ≥ s(w1, . . . , wj−1, wj+1, . . . , wm)T should hold.
Hence, W j < W − wj follows.

1.5 Valid nonlinear inequalities and linearization

In this section we give some notes for the nonlinear modeling of constraints for SPP-2.
We linearize and apply some of the them within the formulation (1.1)-(1.7).

1.5.1 Non-overlapping inequalities

Here we consider different approaches for the non-overlapping constraints. These con-
straints are similar to (1.20).

34

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.5. Valid nonlinear inequalities and linearization

Let Iα(u) := {i ∈ I : α̃u
i > 0} and Iβ(v) := {i ∈ I : β̃v

i > 0} be the sets of items
which are allocated at u ∈ U and v ∈ V , respectively. The following inequalities are
valid:

|Iα(u) ∩ Iβ(v)| ≤ 1, u ∈ U, v ∈ V,

which leads to
∑

i∈I

[α̃u
i β̃

v
i] ≤ 1, u ∈ U, v ∈ V. (1.76)

Non-overlapping inequalities in a rectangular area with minimal sizes

Based on the idea which was before constraints (1.20), the following inequalities hold:
∑

i∈Iβ(v)

α̃u
i ≤ 1,

∑

i∈Iα(u)

β̃v
i ≤ 1, u ∈ U, v ∈ V. (1.77)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

hmin

wmin

(a)
0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

hmin + 1

wmin + 1

(b)

hmin + 1

wmin + 1

(c)

Figure 1.8: Rectangular areas with sizes: (a) – wmin×hmin; (b) – (wmin +1)×(hmin +1).
(c) – Items which fit into the area with sizes (wmin + 1)× (hmin + 1).

In order to simplify the following description let us define the following sets:

Ĩα(u) = {i ∈ I :
∑

k∈H̃i(u)

αk
i > 0}, Ĩβ(v) = {i ∈ I :

∑

k∈W̃i(v)

βk
i > 0},

where

H̃i(u) = {max{1, u− hmin − hi + 1}, . . . ,min{u,H − hi + 1}},

W̃i(v) = {max{1, v − wmin − wi + 1}, . . . ,min{v,W − wi + 1}}.

Suppose we distinguish a rectangular area with sizes (wmin × hmin), see Fig. 1.8a.
Obviously at most 4 items can fit into this area, see Fig. 1.8c. The same holds for rect-
angular area with sizes increased by 1, see Fig. 1.8b. Hereby the following constraints
hold:

∑

i∈Ĩα(u)

∑

k∈W̃i(v)

βk
i ≤ 4,

∑

i∈Ĩβ(v)

∑

k∈H̃i(u)

αk
i ≤ 4, u ∈ U, v ∈ V. (1.78)

Here is a another formulation of the above observation:

|Ĩα(u) ∩ Ĩβ(v)| ≤ 4. (1.79)

35

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.5. Valid nonlinear inequalities and linearization

Non-overlapping constraints in a rectangular area

Let w̃ := mini∈I{wi : hi = hmin} and kw̃ := max{
∑

i∈I ai :
∑

i∈I wiai ≤ w̃ − 2, ai ∈
{0, 1}}. To simplyfy the following description let us introduce the following sets:

Ûi(u) := {max{1, u− hmin − hi + 2}, . . . ,min{u,H − hi + 1}};

V̂i(v) := {max{1, v − w̃ − wi + 2}, . . . ,min{v,W − wi + 1}};

ÎW (v) = {i ∈ I :
∑

v∈V̂i(v)

βv
i = 1}.

For each rectangular area {(x, y) : u− hmin + 1 ≤ x ≤ u, v − w̃+ 1 ≤ y ≤ v} with
u ∈ U , v ∈ V the following inequality holds:

∑

i∈ÎW (v)

∑

u∈Ûi(u)

αu
i ≤ 2kw̃ + 4. (1.80)

Remark 1.12. Note if hmin = 1 then the right-hand side of (1.80) can be replaced by
kw̃ + 2.

Remark 1.13. Note that the idea can be generalized for any rectangular area. In this
case the inequality would be weaker. If for w1 < w2 ≤ wi with i ∈ I then w1 can
be replaced by w1 + 1 in the rectangular area; h1 can be replaced with h∗ ≥ h1 with
h∗ = max{h : µH = k

h̃
}+ 2.

1.5.2 Left-lowest allocation equation

Here without loss of generality we assume that one of the items is allocated at the
left-lowest position. This results in α1

iβ
1
i = 1 for an i ∈ I:

∑

i∈I

α1
iβ

1
i = 1. (1.81)

Since (1.81) is nonlinear, we consider the following linear approximation. Obviously
(1.81) can be approximated by

∑
i∈I min{α1

i , β
1
i } = 1. In order to linearize it we

introduce new variables γi = min{α1
i , β

1
i }. Herewith we get the following linearization

for (1.81):

∑

i∈I

γi = 1;

0 ≤γi ≤ α1
i ;

0 ≤γi ≤ β1
i ;

γi ≥ α1
i + β1

i − 1.

γi ∈ {0, 1}, i ∈ I.

36

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.6. Numerical study

1.5.3 Lowest allocation

Here without loss of generality we require that when an item has no bottom neighbor
then it is adjacent to the bottom side of the strip.

Let µ(w) := max{|K| : K ⊆ I,
∑

i∈K wi ≤ w−1} be the maximal number of items
which fit in w − 1. The following inequality holds:

∑

i∈I

[
hmin∑

u=1

αu
i

w∑

v=1

βv
i] ≤ µ(w) + 1, w ∈ V. (1.82)

1.6 Numerical study

In this section we discuss numerical experiments for SPP-2 instances from different
sources.

The algorithm was implemented as a multi-threaded application in C++ based on
gcc 4.1.2, on an Intel Xeon X5670 (2.93 GHz) CPU. IBM ILOG CPLEX 12.5 was used
as an LP solver. The test instances, detailed results and source code are available on
the CaPaD website1.

Separation problem CO-Separation from Section 1.3 is solved by the dynamic
programming approach with strong bounds [MPT99], implementation of which was
taken from the personal website2 of D. Pisinger.

In Tables 1.2-1.3 the number of nodes and time are the mean values over the solved
instances. From a rational number we take only the integer part without rounding.

Here are the following implementation issues to consider:

1. Time limit for each instance and method was set to 1800 seconds.

2. Per one iteration we add only one cut which is at most violated. Then the
resolution of the LP relaxation follows.

3. The generated cuts are never deleted from the formulation, even when moving
from one part of the branching tree to a completely other part.

4. We do not consider any methods of stabilization or optimization of the cuts’
generation, since this is not a subject of the research of this paper. Considering
of these steps may result in a better computational behavior of the branch-and-
cut method.

1.7 Conclusions

Here we have proposed and studied a new formulation of the 2D strip packing problem
and a new branch-and-bound method.

The main theoretical and experimental observations of the paper are the following:

1http://www.math.tu-dresden.de/∼capad
2http://www.diku.dk/∼pisinger

37

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.8. Acknowledgments

1. Under appropriate assumptions we proposed two classes of facet-defining inequal-
ities: general non-overlapping and density.

2. Numerical testes show the better stability of the branch-and-cut algorithm. Nu-
merical tests also show the numerical effectiveness of the found inequalities: the
percentage of optimally solved instances from [CJM08] has increased from 85%
to 95%, the solution time has declined by the factor 10. For the instances from
[MMV03] and [Hop00, HT00], the number of optimally solved instances increased
and solution time has declined by the factor 1,9.

3. The found facet-defining inequalities are still not enough to described the convex
hull of feasible integer solutions.

4. The following issues are subject to further study: what is the best cuts’ addition
strategy; further valid and facet-defining inequalities; possibility of extension of
the facet-defining inequalities from [HNS08] for the 2D strip packing problem;
decomposition approach?

1.8 Acknowledgments

We thank David Pisinger for the provided code for the solution of 0-1 knapsack prob-
lems. We appreciate the Academic Initiative of IBM which enables many researchers
all over the world to compare their methods using state-of-the-art IBM ILOG Opti-
mization Software.

38

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.8. Acknowledgments

Table 1.2: Results of the 2D instances from [CJM08]: f – value of the goal function; n1

– number of nodes for the incumbent; t1 – time for the incumbent; n2 – total number of
nodes; t2 – total time; cuts – is the number of added cuts. * The problem 00X23 was
solved optimally by the branch-and-cut method with maxM⊆I |M | ≤ 10, n2 = 5407303,
t2 = 231.

CPLEX, pure (1.1)-(1.7) branch-and-cut
inst opt f n1 t1 n2 t2 opt f n1 t1 n2 t2 cuts
Infeasible instances
00N10 1 22 0 1 415 2 1 22 735 0 6304 0 402
00N15 1 21 388 49 466 53 1 21 10084 5 23611 6 73
00N23 0 21 973 865 - - 0 21 35499 116 - - -
00X23 0 21 2732 1053 - - 0 21 42222 154 -* -* -
02N20 0 22 0 98 - - 1 22 5572 26 18988 22 284
03N10 1 21 0 1 0 1 1 21 215 0 216 0 36
03N15 1 21 494 72 8510 1752 1 21 7076 5 80592 10 599
03N16 0 21 936 117 - - 1 21 56435 12 90487 17 1963
03N17 1 21 22 57 166 98 1 21 2318 7 101953 17 205
04N15 1 22 0 11 7648 493 1 22 8620 2 52069 5 36
04N17 0 21 981 116 - - 1 21 7232 6 15214 9 39
04N18 0 21 900 160 - - 1 21 1858 5 257619 23 173
05N15 1 21 409 92 4786 496 1 21 25470 6 293635 82 2363
05N17 1 21 288 209 10568 1231 1 21 300 4 17020 5 76
05X15 1 21 810 201 18430 1186 1 21 11492 10 82506 20 31
07N10 1 22 0 1 106 6 1 22 4582 1 17400 2 54
07N15 1 21 0 7 977 57 1 21 3423 1 8100 2 2184
07X15 1 21 558 103 987 158 1 21 8924 6 11964 7 75
08N15 1 21 0 6 41 14 1 21 1538 2 2135 2 2103
10N10 1 21 0 1 97 1 1 21 269 0 1835 0 247
10N15 1 22 0 3 6086 51 1 22 1379 1 485540 31 172
10X15 1 21 239 22 291 32 1 21 9108 2 10182 3 8
13N10 1 21 0 3 160 6 1 21 871 1 3820 1 1313
13N15 1 22 0 3 133 11 1 22 703 1 60417 6 282
13X15 1 22 19 13 10931 816 1 22 2757 3 10803 5 68
15N10 1 21 23 4 279 5 1 21 2407 1 5532 1 1188
15N15 1 22 0 4 894 28 1 22 698 1 14266 2 4
mean 21 362 121 3427 309 25 9325 14 66888 11 559
Feasible instances
02F17 1 20 9745 1721 9745 1720 1 20 32846 9 32846 7 799
02F20 1 20 3828 747 3828 747 1 20 698383 353 949132 675 7631
02F22 1 20 1809 539 1809 539 1 20 7992 50 7992 14 5409
03X18 1 20 2103 232 2103 232 1 20 73488 21 73488 17 1253
04F15 1 20 9579 1798 9579 1797 1 20 25223 9 25223 8 709
04F17 1 20 1085 90 1085 90 1 20 51443 30 56412 39 6106
04F19 1 20 3046 1410 3046 1410 1 20 17222 30 773969 287 3535
04F20 1 20 590 294 590 294 1 20 183342 52 340128 156 5062
05F15 1 19 2350 114 2350 114 1 19 12670 8 12670 6 753
05F18 1 20 1860 343 1965 790 1 20 105855 31 105855 27 4734
05F20 1 20 0 14 3 116 1 20 2756 21 2756 6 3604
07F15 1 20 697 106 697 106 1 20 3644 2 3644 1 2362
08F15 1 20 1427 351 4769 1333 1 20 24580 8 28231 7 1327
20F15 1 17 592 63 613 92 1 17 7169 4 7766 2 1942
20X15 1 20 0 8 0 8 1 20 2036 4 2036 2 1727
mean 15 2581 522 2812 626 15 83243 42 161477 83 3130

39

Chapter 1. A Branch-and-Cut Method for the Strip Packing Problem
1.8. Acknowledgments

Table 1.3: Results of the 2D instances from [MMV03] and [Hop00, HT00]: f – value of
the goal function; n1 – number of nodes for the incumbent; t1 – time for the incumbent;
n2 – total number of nodes; t2 – total time; cuts – is the number of added cuts.

CPLEX, pure (1.1)-(1.7) branch-and-cut

inst m W opt f n1 t1 n2 t2 opt f n1 t1 n2 t2 cuts

ht01 16 20 1 20 184 60 184 60 1 20 5127 4 5127 2 1610
ht02 17 20 1 20 839 321 839 320 1 20 10966 5 10966 2 95
ht03 16 20 1 20 270 132 270 132 1 20 2613 4 2613 2 686

cgcut01 16 10 1 23 381 22 381 22 1 23 7720 2 11560 4 3

ngcut01 10 10 1 23 0 0 0 0 1 23 0 0 1364 1 28
ngcut02 17 10 1 30 0 4 66 15 1 30 1268 2 2497 1 327
ngcut03 21 10 - - - - - - 0 28 771072 88 - - -
ngcut04 7 10 1 20 0 0 0 0 1 20 0 0 422 0 3
ngcut05 14 10 1 36 0 2 0 2 1 36 2991 2 30684 8 142
ngcut06 15 10 1 31 608 40 790 45 1 31 4760 1 6538 1 621
ngcut07 8 20 1 20 0 0 0 0 1 20 0 0 0 0 0
ngcut08 13 20 0 33 838 146 - - 1 33 49010 6 56893 6 1209
ngcut09 18 20 - - - - - - 0 50 491526 66 - - -
ngcut10 13 30 1 80 0 36 1582 137 1 80 2364 2 31212 3 2
ngcut11 15 30 - - - - - - 1 52 743638 299 1080259 602 5823
ngcut12 22 30 - - - - - - 1 87 18828 83 2105293 681 3135

C1_1 16 20 1 20 184 238 184 238 1 20 5127 4 5127 2 1610
C1_2 17 20 1 20 839 882 839 882 1 20 10966 4 10966 2 95
C1_3 16 20 1 20 270 448 270 448 1 20 2613 4 2613 1 686

mean 14 0 294 155 386 164 17 0 112136 30 197890 78 946

40

Chapter 2

Branch-and-Price Methods for the
1D Contiguous Bin Packing
Problem

We consider the 1D contiguous bin packing problem (CBPP-1). Given
a set of 1D items, CBPP-1 is to find a packing of all items into the 1D
bins in a fixed order which uses the minimal number of the bins satisfying
restrictions of heterogeneity (each item of one type is packed at most ones
into a bin) and contiguity (each item of one type is packed contiguously
into a sequence of bins). We use a Gilmore-Gomory model for the 1D bin
packing problem and expose additional restrictions due to contiguity. To be
a feasible model, the basis matrix of the solution must have a consecutive
1’s property (C1P). We use the known results of A. Tucker on matrices with
the C1P and develop new branch-and-price algorithms for construction of
such matrices. The algorithms are distinguished by various strategies for
the enumeration of partial solutions. We also prove some characteristics of
partial solutions, which tightens the slave problem of the column generation.
We conclude with the discussion of the numerical results.
Keywords: column generation, branch-and-price, consecutive 1’s property

2.1 Introduction

The 1-dimensional contiguous bin packing problem (CBPP-1) asks for a packing of m
type of 1D items with a length wi and a quantity hi, i ∈ I := {1, . . . , m} into 1D bins
with a length W ∈ Z+ in a fixed order which uses the minimal number of the bins
satisfying the following restrictions:

1. Each item of one type is packed at most once into a bin.

2. Each item of one type is packed contiguously into a sequence of the bins.

All data is integer, i.e., wi ∈ {1, . . . ,W}, hi ∈ Z+ for i ∈ I.

41

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.1. Introduction

Let us reinterpret CBPP-1. Suppose we have a computational resource with a
capacity of W units; m jobs which consume wi units of the resource for hi units of
time. We require that the jobs have to be calculated on the computational resource
without interruption of the job execution. Herewith with obtain the non-preemptive
scheduling problem [CMM03]. This problem is equivalent to CBPP-1.

2.1.1 Modeling and notations

Let us firstly consider the problem of 1D bin packing. A feasible packing of the items
into a bin is represented by the following binary vector:

a := (a1, . . . , am)T ∈ {0, 1}m, (2.1)

where ai = 1 indicates the case when the item i is packed into the bin. Thus we do not
consider a concrete position of each item i in a bin packing as we did in [MSB13a] for
the 1D problems. To keep track of different packing variants of a bin we introduce an
index j and a set J which describe all packings aj := (aj

1, . . . , a
j
m)T ∈ {0, 1}m, j ∈ J .

Note a vector aj represents a feasible packing if:

∑

i∈I

wia
j
i ≤W. (2.2)

For each packing variant aj let us introduce a non-negative integer variable xj which
indicates how often aj is applied. Herewith we obtain according to the [GG61, GG63]
the following Gilmore-Gomory model of the 1D bin packing problem:

∑

j∈J

xj → min; s.t. (2.3)

∑

j∈J

aj
ixj = hi, i ∈ I; (2.4)

xj ∈ Z+, j ∈ J. (2.5)

Through the constraints (2.4) we ensure that each type i of the items is packed exactly
hi times.

The linear programming (LP) relaxation of the problem (2.3)-(2.5) is defined as
follows:

∑

j∈J

yj → min; s.t. (2.6)

∑

j∈J

aj
iyj = hi, i ∈ I; (2.7)

yj ≥ 0, j ∈ J. (2.8)

Since |J | can be very large we use the Dantzig-Wolfe decomposition and solve the
problem by the revised simplex method [DW60].

In [GG63] the solution method for (2.6)-(2.8) is referred as to a column-generation
technique. The problem is split into two: the master and the slave problems. The
master problem is the original problem (2.6)-(2.8) with only a subset of the variables

42

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.1. Introduction

which are currently under consideration. The slave problem is the following 0-1 integer
program also known as a binary knapsack problem:

∑

i∈I

diai → max; s.t. (2.9)

∑

i∈I

wiai ≤W ; (2.10)

ai ∈ {0, 1}, i ∈ I, (2.11)

where di is the dual simplex multiplier for the i-th constraint of (2.7) in the master
problem. The slave problem (2.9)-(2.11) is created to identify a new variable which
will be added into the master problem. The value of the objective function (2.9) is the
reduced cost of the new variable with respect to the current dual variables, and the
feasibility constraint (2.2).

The solution process for the (2.6)-(2.8) problem is as follows. The master problem
is solved from a feasible solution. Herewith we obtain values of the dual simplex
multipliers di for each constraint (2.7) in the master problem. Then we solve the slave
problem with the newly obtained di and get a solution a∗. If 1−

∑
i∈I dia

∗
i ≤ −ǫ with a

sufficiently small constant ǫ ≥ 0 then a variable with a negative reduced cost has been
found. This variable is then added to the master problem and the master problem is
resolved. After the resolution new values of the dual simplex multipliers are generated
and the process is repeated until no variable of a negative reduced cost is found. If the
slave problem returns a solution with a nonnegative reduced cost we conclude that the
solution of the master problem is optimal.

Let J̄x := {j ∈ J : xj > 0} be the set of column indexes which corresponds to the
solution of the integer problem (2.3)-(2.5), i.e., {aj : j ∈ J̄x}. Analogously we define
J̄y := {j ∈ J : yj > ǫ} as a set of column indexes which corresponds to the solution of
the LP relaxation (2.6)-(2.8), i.e., {aj : j ∈ J̄y}.

Now let us go back to CBPP-1. For {aj : j ∈ J̄x} with {xj : j ∈ J̄x} to be a
feasible solution of CBPP-1, both heterogeneity and contiguity constraints have to be
fulfilled. The first restriction is fulfilled because of the definition (2.1) of a packing.
For the contiguity restriction to be fulfilled, the column set {aj : j ∈ J̄x} must have a
consecutive 1’s property (C1P).

Definition 2.1. A binary column set (or matrix) is said to have the C1P (for rows) if
there exists a permutation of its columns that places the 1’s consecutively in every row.

Let us now consider the LP relaxation (2.9)-(2.11), its solution {aj : j ∈ J̄y},
{xj : j ∈ J̄y} and the following fact.

Proposition 2.1. A matrix with the C1P is totally unimodular.

Proof. See the proof of Corollary 2.10 in [NW88], p.544. Note in the book the matrices
with the C1P are called interval and this property appears in the columns.

Thus, for the columns {aj : j ∈ J̄y} in the solution of the LP relaxation (2.9)-
(2.11) with the C1P the corresponding {xj : j ∈ J̄y} is integral. So we restrict
the consideration to the relaxation problem and the column sets with the C1P. Some
characterizations of such column sets are given in Section 2.1.2.

43

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.1. Introduction

2.1.2 Column sets and bipartite graphs

Let C := {cj ∈ {0, 1}m : j ∈ JC} be a column set for an JC := {1, . . . , n}. The
bipartite graph BC := (V C

1 , V
C

2 , EC) associated to the column set C is defined by
V C

1 := I, V C
2 := JC , and EC := {(i, j) ∈ V C

1 × V C
2 : cj

i = 1}, see Fig. 2.1. A
bipartite graph is convex if its half adjacency matrix1 has the C1P. For the column set
on Fig. 2.1a the corresponding bipartite graph, see Fig. 2.1b, is non-convex.

Let (p→ q) for p, q ∈ V C
2 be the set of vertexes from V C

1 ∪V
C

2 , which are in a path
from p to q. Hence, if there does not exist a path from p to q with p, q ∈ V C

2 in BC

then (p→ q) = ∅.
Let N(k) := {i ∈ V C

1 : ck
i = 1} be the closed neighborhood of a node k ∈ V C

2 , see
Fig. 2.1.

A B C D

a 1 1 0 1
b 0 1 1 0
c 0 0 1 1
d 0 0 0 0
e 0 1 1 1

(a)

a

b

c

d

e

A

B

C

D

(b)

Figure 2.1: Column set without the C1P: (a) – A column set; (b) – The corresponding
bipartite graph. The property is broken in the subcolumns of the columns B, C, D
which are marked by the dashed box. Thus, the corresponding bipartite graph is non-
convex. The closed neighborhoods of each vertex is N(A) := {a}, N(B) := {a, b, e},
N(C) := {b, c, e}, and N(D) := {a, c, e}. The bipartite graph has a single asteroidal
triple, namely (B,C,D) because only for these vertexes there exist the paths (B →
C)D := {B, b, C}, (C → D)B := {C, c,D}, and (B → D)C := {B, c,D}.

A characterization of the graphs corresponding to the column sets with the C1P
was given by A. Tucker. The characterization in given in terms of so-called asteroidal
triples (A-triples) [Tuc72] defined as follows.

Definition 2.2. Let BC := (V C
1 , V

C
2 , EC) be a bipartite graph. Vertexes p, q, r ∈ V C

2

with p 6= q, q 6= r, and p 6= r form an A-triple, if (p → q) 6= ∅, (p → r) 6= ∅,
(q → r) 6= ∅, and:

(p→ q) ∩N(r) = ∅ ∧ (p→ r) ∩N(q) = ∅ ∧ (q → r) ∩N(p) = ∅.

On Fig. 2.1b there is only one A-triple, namely (B,C,D). Note in [Tuc72] a common
graph is considered not the bipartite one. We deal with bipartite graphs, so we define
A-triples only for them.

Let (p → q)r be a path from p to q without the closed neighborhood of r: (p →
q)r ∩N(r) = ∅.

The following theorem characterizes convex bipartite graphs.

1We deal with undirected bipartite graphs, therefore only one part of the adjacency matrix is
enough to define the corresponding graph.

44

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.1. Introduction

Theorem 2.2 ([Tuc72, Theorem 6, p.156]). Let BC := (V C
1 , V

C
2 , EC) be the bipartite

graph associated to a column set C. The set C has the C1P if and only if V C
2 contains

no A-triple of BC .

The roles of V1 and V2 are interchanged here compared to [Tuc72]. A direct consequence
of Theorem 2.2 are the following corollaries.

Corollary 2.3. A column set C := {cj ∈ {0, 1}m : j ∈ JC} has the C1P if and only
if the associated bipartite graph BC := (V C

1 , V
C

2 , EC) with V C
1 := I, V C

2 := JC contains
no A-triple.

Corollary 2.4. A column set C := {cj ∈ {0, 1}m : j ∈ JC} does not have the C1P if
and only if the associated bipartite graph BC := (V C

1 , V
C

2 , EC) with V C
1 := I, V C

2 := JC

contains at least one A-triple.

Another Tucker’s characterization of graphs having no A-triple is given in the fol-
lowing theorem.

Theorem 2.5 ([Tuc72, Theorem 7, p.157]). In a bipartite graph BC := (V C
1 , V

C
2 , EC)

the vertex set V C
2 contains no A-triple if and only if BC contains none of the graphs

G1
k, G2

k, G3
k (with k ≥ 1), G4, and G5 as shown in Fig. 2.2.

A direct consequence of Theorem 2.5 is the following corollary.

Corollary 2.6. A bipartite graph BC := (V C
1 , V

C
2 , EC) has at least one A-triple if and

only if BC contains one or more graphs G1
k, G2

k, G3
k, G4, and G5 as a subgraph.

2.1.3 Overview of solution methods

A position-indexed formulation for CBPP-1 is considered in [HNS08] where a branch-
and-cut algorithm based on some facet-defining inequalities is proposed. However,
the proposed model has different drawbacks, the most crucial of which is the pseudo-
polynomial number of position-indexed variables.

In [MMBS11], CBPP-1 is handled by branch-and-bound methods with the lower
bounds based on the LP relaxation of the Dantzig-Wolfe decomposed of the 1D bin
packing problem which is solved by the column generation method. The approach
with the decomposed model is similar to those which are considered in this paper. The
main difference is that here we propose branch-and-price algorithms in contrast to the
combinatorial enumeration algorithms in [MMBS11]. Here we also tighten the column
generation.

2.1.4 Our contribution

In order to solve CBPP-1 we use a Gilmore-Gomory model for the 1D bin packing
problem which was discussed in Section 2.1. In this section we use the know fact that
if a column set has the C1P then the corresponding matrix is total unimodular and
thus all the corners of the polyhedron of its LP relaxation are integer for the integer

45

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.2. The branch-and-price algorithms

...

k

(a) G1
k

ω

µ

υ

a

b

...

k + 1

(b) G2
k

ω

µ

υ
a

...

k + 1

(c) G3
k

υ

µ

ω

(d) G4

υ

A

B
ω

µ

a
b

c

d

(e) G5

Figure 2.2: Forbidden subgraphs. The vertex set V C
2 of a bipartite graph BC :=

(V C
1 , V

C
2 , EC) contains an A-triple if and only if BC contains one of the displayed

graphs as an induced subgraph where black vertexes correspond to vertexes in V C
2 .

Numbers k and k+ 1 refer to the numbers of white vertexes in the right-hand parts of
the first three graphs. In the case of the graph G1

k, any three different black vertexes
build an A-triple. In other cases there is only a single A-triple, namely (υ, µ, ω).

input data. For the construction of such column sets, in Section 2.2 we develop branch-
and-price algorithms with two strategies: column-, and subcolumn-based enumerations.
In Sections 2.3, 2.4 we prove propositions about some characteristics of a specific or
an arbitrary column which breaks the C1P of a given column set. For each of these
characteristics we develop an algorithm the output data of which is used in the slave
problem of the column generation thus tightening the bound. The final part of the
paper reports numerical results and conclusion.

2.2 The branch-and-price algorithms

Here we describe the overall algorithm of finding an optimum of CBPP-1. The algo-
rithm is a hybrid of the branch-and-bound and the column generation methods, i.e.,
throughout the branching tree the column generation is applied for solving the LP
relaxation. The idea is the same as in branch-and-bound, we calculate lower bounds
for each node and use it as a pruning criteria.

In practice, for the branching-and-price, we store the columns which we generate
throughout the optimization process in a column pool. Processing from one node to
the descendants is done by adding a box-constraint for the corresponding variable. So
storing the column indexes for each node is enough to reconstruct the formulation.

46

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.2. The branch-and-price algorithms

As we have shown in Section 2.1.1, the solution of the LP relaxation (2.9)-(2.11)
with the C1P is integral. Thus, our goal now is to enumerate column sets with the
C1P.

The idea of branchings consist in an enumeration of feasible 1D partial packings
having the C1P. On each step all columns with indexes J+ ⊆ J , i.e., {aj : j ∈ J+},
are fixed to appear in the packing while all columns with indexes J− ⊆ J must not
appear, i.e., {aj : j ∈ J−}. The column set {aj : j ∈ J+} is constructed such that
the C1P arise.

Let V be the set of nodes of the branching tree T := (V,E), which are connected
by the edges from the set E. Hereby the sets J+(u) and J−(u) are associated with
each node u ∈ V .

Given a node u ∈ V of the branching tree and having the sets J+(u) and J−(u)
in mind, the master problem of the column-generation method becomes the following
form:

LP(u) : φ(u) =
∑

j∈J

yj → min; s.t. (2.12)

∑

j∈J

aj
iyj = hi, i ∈ I; (2.13)

yj ≥ 1, j ∈ J+(u); (2.14)

yj = 0, j ∈ J−(u); (2.15)

yj ≥ 0, j ∈ (J \ J+(u)) \ J−(u), (2.16)

and the slave problem:

CG(u) :
∑

i∈I

diai → max; s.t. (2.17)

∑

i∈I

wiai ≤W ; (2.18)

∑

i∈I

[ai(1− a
j
i) + aj

i (1− ai)] > 0, j ∈ J−(u); (2.19)

ai ∈ {0, 1}, i ∈ I. (2.20)

where the constraints (2.19) exclude the solutions from J−(u) from the feasible set of
solutions.

Let J̄(u) := {j ∈ J : yj > ǫ} be the set of column indexes which are in the solution
of LP(u). Some of the columns {aj : j ∈ J̄(u)} build together with the columns
with indexes from J+(u) a column set having the C1P. Let J̄+(u) ⊆ J̄(u) be such that
∀j ∈ J̄+(u), J+(u)∪{aj} has the C1P, and J̄−(u) := J̄(u)\ J̄+(u). For testing whether
a column set has the C1P we use the PQ-tree algorithm [BL76].

In the following we introduce two branch-and-price algorithms which are distin-
guished by the branching strategies.

2.2.1 A column-based branching strategy

Here we introduce a column-based branching strategy. The main idea is to construct
the solution having the C1P from the columns of the LP relaxation.

47

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.2. The branch-and-price algorithms

Having the J+(u) and J−(u) sets we solve the LP relaxation and test the columns
whether they build with the columns {aj : j ∈ J+(u)} a column set with the C1P. If
there exists one then we branch on this column. If it does not exist then we tighten
the formulation of the LP relaxation and resolve until a column to branch is found, the
node is pruned considering the bound or it is proven that no column to branch exists.

Algorithm 2.1 (Branch-and-price-cols). A branch-and-price algorithm with the
column-based branching strategy.
Input data: W , m, w = (w1, . . . , wm), h = (h1, . . . , hm).
Output data: optimal solution (A, Y) and its value H.

(1) Initialization:

• node u0, J+(u0) = J−(u0) := ∅.

• incumbent A := ∅, Y := ∅, H :=∞.

• node list N := {u0}.

(2) Node: If N = ∅, go to Exit. Else choose u ∈ N , set N := N\{u} and go to
Restore.

(3) Restore the sets J+(u) and J−(u).
(4) LP relaxation: Solve LP(u) considering J+(u) and J−(u) and obtain the solution

and hence the set J̄(u). For all j ∈ J̄(u) \ J+(u) test by the PQ-tree algorithm,
if J+(u) ∪ {aj} has the C1P. If yes then set J̄+(u) := J̄+(u) ∪ {j}, else set
J̄−(u) := J̄−(u) ∪ {j}.

(5) Prune: If φ(u) ≥ H, go to Node. If the solution {yj : j ∈ J̄(u)} is integral
then set H := φ(u), update the incumbent (A, Y) with A := {aj : j ∈ J̄(u)},
Y := {yj : j ∈ J̄(u)} and go to Node, else go to Branching.

(6) Branching: Having J+(u) and J̄+(u) do:

(6.1) If J̄+(u) \ J+(u) = ∅ then create one node v with:

• J+(v) := J+(u).

• J−(v) := J−(u) ∪ J̄−(u).

Set N := N ∪ {v}. Go to Node.
(6.2) If J̄+(u) \ J+(u) 6= ∅ then set j∗ := argmax{yj : j ∈ J̄+(u) \ J+(u)},

and create node v1:

• J+(v1) := J+(u) ∪ {j∗},

• J−(v1) := J−(u) ∪ J̄−(u),

and create node v2:

• J+(v2) := J+(u),

• J−(v2) := J−(u) ∪ J̄−(u) ∪ {j∗}.

Set N := N ∪ {v1, v2}. Go to Node.

(7) Exit: Return the incumbent (A, Y) and its value H.

As we can see the main drawback of the described strategy is that we may create
a lot of descendants while J̄+(u) \ J+(u) = ∅, see step 6.1 in Algorithm 2.1. For

48

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.2. The branch-and-price algorithms

eliminating this drawback we tighten the column generation by forbidding not only the
columns but subcolumns.

Let us consider the column set on Fig. 2.1 where four columns A, . . . , D, and five
rows a, . . . , e exist. Columns A, B, C together have the C1P. If we join them with the
column D then the obtained column set will not have the C1P. The property is broken
not in the whole matrix, but only in the part marked by the dashed box. Note if there
is a such combination a = 1, b = 0, c = 1 of rows in a column D, the C1P would not
arise despite the values of d and e. So, if we now consider only columns were there is
no such a combination of rows, we reduce the columns which break a priori the C1P.

Let a subcolumn dk be given by an index set Ik ⊂ I and coefficients dk
i , i ∈ Ik. For

a given node u ∈ V of the branching tree we consider a set of subcolumns D(u) :=
{dk : k ∈ K(u)} which breaks the C1P of the column set {aj : j ∈ J+(u)}. Hereby,
if for some j ∈ J and k ∈ K(u): aj

i = dk
i , ∀i ∈ Ik then yj = 0 has to follow which is

realized in the master problem of the column generation by:

∑

i∈Ik

|aj
i − d

k
i | = 0 ⇒ yj = 0, j ∈ (J\J+(u))\J−(u), k ∈ K(u).

The above constraint is nonlinear. For its tackling we remove it from the master prob-
lem and add it to the slave problem CG(u) of the column generation in the following
form:

∑

i∈Ik

[ai(1− d
k
i) + dk

i (1− ai)] > 0, k ∈ K(u), (2.21)

which is herewith tightened.
For construction of subcolumns for a given set of columns having the C1P we

propose two approaches. Suppose for a given u ∈ V we have J+(u) and the column
set {aj : j ∈ J+(u)}. The first approach uses the latter columns having the C1P
and construct the subcolumns which can potentially break the C1P. This approach is
considered in Section 2.4.

Based on u, J+(u) and due to Algorithm 2.1, we solve LP(u) and obtain the set
J̄(u). Afterward we apply the PQ-tree algorithm for each j ∈ J̄(u) \ J+(u) and define
J̄−(u). Now from the columns {aj : j ∈ J̄−(u)} we find the subcolumns which break
the C1P. This is the second approach which is considered in Section 2.3.

2.2.2 A subcolumn-based branching strategy

Here we introduce a subcolumn-based branching strategy. This branching strategy was
firstly discussed in [Bel10]. The main idea of the branching strategy is to branch on the
subcolumns which break the C1P of the current basis solution of the LP relaxation.

Having a basis solution of the LP relaxation we test it for the C1P by the PQ-
tree algorithm [BL76]. If it does not have the C1P then the basis solution contained
one or more submatrices of the types MI , . . . ,MV in [Tuc72], Fig. 3, p.161. Note the
corresponding matrix will contain one or more of the graphs from Fig. 2.2 as a subgraph.
The submatrices of the types MI , . . . ,MV can be found by the algorithms described in
[Dom09], Chapter 3, p.63–78.

49

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

Algorithm 2.2 (Branch-and-price-subcols). A branch-and-price algorithm with
the subcolumn-based branching strategy.
Input data: W , m, w = (w1, . . . , wm), h = (h1, . . . , hm).
Output data: optimal solution (A, Y) and its value H.

(1) Initialization:

• node u0, D(u0) := ∅.

• incumbent A := ∅, Y := ∅, H :=∞.

• node list N := {u0}.

(2) Node: If N = ∅, go to Exit. Else choose u ∈ N , set N := N\{u} and go to
Restore.

(3) Restore the set D(u).
(4) LP relaxation: Let J(u) be the set of columns from the column pool and let

Jd(u) := {j ∈ J(u) : aj
i (1 − dk

i) + dk
i (1 − aj

i) = 0, dk ∈ D(u)} be the set of
indexes of columns from J(u) which contain a forbidden subcolumn from D(u).
Solve the following LP relaxation considering D(u) and Jd(u):

LP’(u) : φ(u) =
∑

j∈J

yj → min; s.t. (2.22)

∑

j∈J

aj
iyj = hi, i ∈ I; (2.23)

yj = 0, j ∈ Jd(u); (2.24)

yj ≥ 0, j ∈ J \ Jd(u), (2.25)

and obtain the solution and hence the set J̄(u). By the PQ-tree algorithm test
if {aj : j ∈ J̄(u)} has the C1P. If yes then goto Prune, else find a submatrix
F (u) := {f1, . . . , fσ(u)} of the types MI , . . . ,MV in {aj : j ∈ J̄(u)}.

(5) Prune: If φ(u) ≥ H, go to Node. If the solution {yj : j ∈ J̄(u)} is integral
then set H := φ(u), update the incumbent (A, Y) with A := {aj : j ∈ J̄(u)},
Y := {yj : j ∈ J̄(u)} and go to Node, else go to Branching.

(6) Branching: Create nodes vk with k = 1, . . . , σ(u): D(vi) := D(u) ∪ {fk}, set
N := N ∪ {vk}. Go to Node.

(7) Exit: Return the incumbent (A, Y) and its value H.

2.3 Subcolumns breaking the C1P

Here we consider an approach of finding the subcolumns of a given column which breaks
the C1P of a given set of columns having the C1P.

Now going back to a node u ∈ V of the branching tree T we can conclude using
Corollary 2.3 that since {aj : j ∈ J+(u)} has the C1P then the corresponding bipartite
graph has no A-triple. The following statement is true.

50

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

Statement 2.7. Let u ∈ V be a node of the branching tree T and let aγ with γ ∈
J \ J+(u). The column set C := {aγ}∪{aj : j ∈ J+(u)} does not have the C1P if and
only if the associated bipartite graph BC := (I, {1, . . . , |C|}, EC) contains at least one
A-triple.

Remark 2.1. An A-triple which exists in BC may contain the vertex γ and may not
contain it as well.

Hereby, if we join the columns {aj : j ∈ J+(u)} with a column aj with j ∈
J̄−(u), the resulting set will not have the C1P and according to Statement 2.7 the
corresponding bipartite graph will have at least one A-triple.

Let JC ⊆ J and C := {aj : j ∈ JC} be a set of columns and let C(Ir, Ic) :=
{aj

i : i ∈ Ir, j ∈ Ic} be the set of the columns from Ic ⊂ JC and the rows from Ir ⊂ I.
The following lemma is true.

Lemma 2.8. If a column set C has the C1P then the set C(Ir, Ic) will also have the
C1P for any Ir ⊂ I and Ic ⊂ JC.

Proof. Let us prove the lemma for elements k ∈ I\Ir and d ∈ JC\Ic. Let C be a set
having the C1P. Due to Theorem 2.2, the corresponding bipartite graph BC has no
A-triple. Let us consider the set C(I\{k}, JC\{d}) and assume that it does not have
the C1P. Due to Corollary 2.4, the corresponding bipartite graph BC(I\{k},JC\{d}) has
at least one A-triple, e.g., (υ, µ, ω) with υ 6= µ, µ 6= ω, and υ 6= ω. It means that
{k, d} ∩ [(υ → µ)ω ∪ (υ → ω)µ ∪ (µ → ω)υ] = ∅, while (υ → µ)ω 6= ∅, (υ → ω)µ 6= ∅,
and (µ → ω)υ 6= ∅. The latter follows that the paths (υ → µ)ω, (υ → ω)µ, (µ → ω)υ

must exist also in the graph BC . Hence, (υ, µ, ω) is an A-triple in BC and due to
Corollary 2.4 the set C does not have the C1P which contradicts the condition that C
has the C1P. Hereby we set I := I\{k}, JC := JC\{d} and repeat the above procedure
until I = Ir and JC = Ic.

Let d∗ be a subcolumn which breaks the C1P of {aj : j ∈ J+(u)} and be given
by an index set I∗ ⊂ I and coefficients d∗

i with i ∈ I∗. If C(I∗, JC) ∪ {d∗} does not
have the C1P then d∗ is called ineligible. An ineligible subcolumn is called minimal if
∄i∗ ∈ I∗:

d̄∗ =

1− di, i = i∗,

di, i ∈ I∗\{i∗},

so that C(I∗, JC) ∪ {d̄∗} does not have the C1P.

Theorem 2.9. If d∗ is a minimal ineligible subcolumn then 1 ≤
∑

i∈I∗
d∗

i ≤ 3 is true.

Proof. Since C(I∗, JC) ∪ {d∗} does not have the C1P then due to Corollary 2.4 the
corresponding bipartite graph contains at least one A-triple. Therefore, due to Corol-
lary 2.6 the bipartite graph contains one or more graphs G1

k, G2
k, G3

k, G4, and G5 as a
subgraph. Since d∗ corresponds to a vertex of the set V2, the number of 1’s in d∗ is a
degree of the corresponding vertex which can be any of V2. Let us calculate minimal
and maximal degrees of vertexes from V2 of G1

k, G2
k, G3

k, G4, and G5, respectively.

51

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

Let us consider the graph G1
k. If we take any υ, µ, ω ∈ V

G1
k

2 with υ 6= µ, υ 6= ω, and
µ 6= ω then there would exist nonempty paths (υ → µ)ω, (υ → ω)µ, and (µ → ω)υ

which means that (υ, µ, ω) is an A-triple. Note if we delete one of the edges which

is incident to a vertex from V
G1

k
2 in the graph then one of the three paths would not

exist and hence no A-triple. So, the minimal and the maximal vertex degree for G1
k

are equal to 2.

Let us consider the graph G2
k. It has such a construction, so that there exists only

one A-triple, namely (υ, µ, ω). Moreover the path (µ → ω)υ must not contain the
vertexes a and b due to the definition of A-triples. So the single path which satisfies
this condition goes through the white and the black vertexes except υ, a, and b. Let d∗

correspond to a black vertex except υ, µ, and ω. The above described path contains
necessarily this vertex. Every such vertex has the degree equal to 4. Actually, if we
delete two edges which make this vertex incident to a and b then the path (µ → ω)υ

would still exist and the A-triple as well. It means that these two edges are excessive
and are not necessary to build the A-triple. It is also obvious that both of the two
edges which outcome from the vertexes υ, µ, and ω are necessary to build the A-triple.
So, the minimal and the maximal vertex degree for G2

k are equal to 2 in order to build
the A-triple (υ, µ, ω).

Let us consider the graph G3
k. The A-triple is constructed only by the vertexes υ,

µ, and ω. We have the same path between µ and ω as in the case of G2
k, the path goes

only through the white and the black vertexes except υ, and a. Let d∗ correspond to
a black vertex except υ, µ, and ω. The edge which makes the vertex incident to a is
actually excessive because the path (µ→ ω)υ does not contain the vertex a. But there
must be at least one black vertex which is incident to a for the existence of the paths
(υ → µ)ω and (υ → ω)µ. It is also obvious that the edge outcomming from υ, µ, and ω
is necessary to build the A-triple. So, the vertex degree for G3

k lies in the interval from
1 to 3 in order to build the A-triple (υ, µ, ω).

Let us consider the graph G4. It obvious that the deletion of an edge in the graph
G4 will break the coherence of the graph G4 which leads to the graph with no A-triple.
So, the vertex degree for G4 lies in the interval from 1 to 2 in order to build the A-triple
(υ, µ, ω).

Let us consider the graph G5. The vertexes υ, µ, and ω create the single A-triple,
so that the paths (υ → µ)ω, (υ → ω)µ, and (µ→ ω)υ are not empty. Let d∗ correspond
to µ or ω. In this case the edges (µ, b) and (ω, b) are excessive because the above
described paths are not empty without these edges, i.e., (υ → µ)ω = {υ,A, c, µ},
(υ → ω)µ = {υ,B, d, ω}, and (µ → ω)υ = {µ, c, A, b, B, d, ω}, so the one outcomming
egde (µ, c) and (ω, d) for µ and ω is sufficient. Let d∗ correspond to A or B. Then the
edges (b, B), and (b, A) are excessive for the same reason, i.e., (υ → µ)ω and (υ → ω)µ

are the same, but (µ → ω)υ = {µ, b, ω}. It is also obvious that there must exist the
edge (υ, a). Therefore, the vertex degree for G5 lies in the interval from 1 to 2 in order
to build the A-triple (υ, µ, ω).

The above implies the validity of 1 ≤
∑

i∈I∗
d∗

i ≤ 3.

Lemma 2.10. If
∑

i∈I∗
d∗

i = 1 then the vertex corresponding to d∗ is contained in one
of the A-triples.

52

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

Proof. Since C(I∗, JC) ∪ {d∗} does not have the C1P then due to Corollary 2.4 the
corresponding bipartite graph contains at least one A-triple. Therefore, due to Corol-
lary 2.6 the bipartite graph contains one or more graphs G1

k, G2
k, G3

k, G4, and G5 as
a subgraph. Since

∑
i∈I∗

d∗ = 1 is minimal then the corresponding vertex is terminal.
In the above described graph all terminal vertexes correspond to the vertexes of the
A-triple.

Theorem 2.11. If a subcolumn d∗ is minimal then the corresponding bipartite graph
contain one of the graphs Ḡ1

k, Ḡ2, Ḡ3, and Ḡ4.

...

k

(a) Ḡ1
k

υ

µ

ω

(b) Ḡ2

υ

µ

ω

(c) Ḡ3

υ

A

B
ω

µ

a
b

c

d

(d) Ḡ4

Figure 2.3: Forbidden subgraphs Ḡ1
k, Ḡ

2, Ḡ4, Ḡ4.

Proof. Since C(I∗, JC) ∪ {d∗} does not have the C1P then due to Corollary 2.4 the
corresponding bipartite graph contains at least one A-triple. Therefore, due to Corol-
lary 2.6 the bipartite graph contains one or more graphs G1

k, G2
k, G3

k, G4 and G5 as a
subgraph.

Let us consider the situation before we add the vertex corresponding to d∗ to the
bipartite graph. In the case of G1

k the graph lacks one of the black vertexes. It is
obvious that connecting of two white vertexes with the vertex degree equal to 1 with
the new vertex will create an A-triple. Moreover, this is the single connection with the
minimal number of edges in order to get an A-triple. Other connections will contain
the mentioned edges. The same is with the graph G4, see Fig. 2.3c.

Let us consider the graphs G2
k and G3

k. There exist only a single A-triple (υ, µ, ω). It
means that there exist the paths (µ→ ω)υ, (υ → µ)ω, and (υ → ω)µ. The second and
the third paths do not contain the edges (b, ω) and (a, µ), and the first path goes only
through the right-hand white vertexes. So, the edges (b, ω) and (a, µ) can be removed.
Hence the graphs G2

k and G3
k are equivalent in the sense of the mentioned paths. So,

let us consider the graph G3
k before we add the vertex corresponding to d∗. The cases

where the graph lacks υ, µ, and ω are obvious. In other case it is enough to add the
edges starting from the white vertexes with the degree equal to 1, see the graph Ḡ2

in Fig. 2.3b. All other possible constructions building an A-triple will contain these
edges.

Let us consider the graph G5. There exists a single A-triple (υ, µ, ω) with the two
different existing paths, see Fig. 2.4. It is obvious that the path (a,B, d, ω) in the
graph G5′

is excessive, so that the graph is equivalent to the graph Ḡ2. Let us consider

53

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

υ

A

B
ω

µ

a
b

c

d

(a) G5′

υ

A

B
ω

µ

a
b

c

d

(b) G5′′

Figure 2.4: Forbidden subgraph G5: different paths.

the graph G5′′

and the situation before we add the vertex corresponding to d∗. In the
case where υ do not exist, any three vertexes of {A,B, µ, ω} can build an A-triple.
That contradicts the assumption that before we add a vertex to the graph it contains
no A-triple. So, υ should be in the graph. In the case of µ or ω there exist only one
possibility to build an A-triple, namely to add the edges (µ, c), (µ, b) or (ω, d), (ω, b),
respectively. In the case of the vertex A, there exist two possibilities. The first one is
to add the edge (A, d), so that an A-triple as in Ḡ1

k arises. The second one is to add
the edge (A, a). The same is with the vertex B.

Lemma 2.12. Let d∗ be a minimal ineligible subcolumn. If there exists an A-triple
containing the vertex corresponding to d∗ then 1 ≤

∑
i∈I∗

d∗
i ≤ 2 is true.

For the proof refer to the next lemma.

Lemma 2.13. If d∗ is a minimal ineligible subcolumn then 1 ≤
∑

i∈I∗
d∗

i ≤ 3 is true.

Proof. Before we add a vertex to the graph the latter does not contain any A-triples.
Since we add the vertex corresponding to the minimal d∗ then due to Theorem 2.11
there arise one or more graphs Ḡ1

k, Ḡ2, Ḡ3, and Ḡ4. Both Lemmas 2.12 2.13 are easy
to prove considering the above mentioned graphs. Correctness of Lemma 2.12 follows
from the fact that the maximal degree of the black vertexes which are contained in
an A-triple is equal to 2. Correctness of Lemma 2.13 follows from the fact that the
maximal degree of a black vertex in all graphs is equal to 3, see Fig. 2.3b.

Let us go back to the column aγ with γ ∈ J̄−(u) and the subcolumn dk with
a minimal size. As noted in Remark 2.1 there exist two possibilities of how an A-
triple arise due to Statement 2.7 in the bipartite graph corresponding to {aj : j ∈
J+(u)} ∪ {aγ}. In the first one, the obtained A-triple contains γ. In the other one,
the obtained A-triple contains only vertexes from V C

2 with C := {aj : j ∈ J+(u)}
where aγ serves only as a connection for the arising paths. In the first case, e.g., when
the terms of Lemma 2.10 are satisfied, it is enough to find A-triples which starts with
γ. For that purpose we use the characterization given in Lamma 2.12. This case is
considered further in Algorithm 2.3. In the second case we apply Algorithm 2.4 which
uses the characterization given in Lemma 2.13.

54

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

Let us consider the case where A-triples contain γ. Based on a set C := {aj : j ∈
J+(u)} we build the corresponding convex bipartite graph Bγ without vertexes and
edges which could be incident to γ, if we would add it to V C

2 . The resulting column
set has the C1P due to Lemma 2.8 and the corresponding graph Bγ has no A-triples
due to Corollary 2.3.

We search for all shortest paths between all two different vertexes of V γ
2 in Bγ, refer

to Algorithm 2.3. Those pairs of vertexes for which there exist a path we consider
as candidates entering to an A-triple together with the vertex γ due to Statement 2.7
and the assumption that the obtained A-triple contains γ. Now we test whether there
exists a path between vertexes of these pairs and γ every time avoiding the closed
neighborhood of the third vertex, respectively. If all three paths exist then (γ, p, q)
builds an A-triple. All vertexes from I which are in these paths correspond to the
desired subcolumn.

Algorithm 2.3 (Subcol-of-a-col-A). Determination of forbidden subcolumns of a
given column in the case when A-triples start with the vertex corresponding to the given
column.
Input data: A node u, the column aγ with γ ∈ J̄−(u).
Output data: D(u).

(1) For each pair of vertexes p, q ∈ V2 with p < q find a shortest path (p → q) from
p to q in

Bγ := (V γ
1 := I\N(γ), V γ

2 := J+(u), Eγ := {(i, j) ∈ V γ
1 × V

γ
2 : aj

i = 1}).

If (p→ q) 6= ∅ then add (p, q) to P0.
(2) For each p, q ∈ V2 with p < q find a shortest path from γ to q without nodes in

the closed neighborhood of p, i.e., find (γ → q)p in

Bp := (V p
1 := I\N(p), V p

2 := J+(u)∪{γ}\{p}, Ep := {(i, j) ∈ V p
1 ×V

p
2 : aj

i = 1}).

If (γ → q)p 6= ∅ then add (γ, q) to Pp.
(3) For each (p, q) ∈ P0:

If (γ, p) ∈ Pq and (γ, q) ∈ Pp then (γ, p, q) forms an A-triple, hence form
a subcolumn d∗ of aγ:
d∗

i = aγ
i , ∀i ∈ Ik with Ik := [(p→ q) ∪ (γ → q)p ∪ (γ → p)q] ∩ I,

add d∗ to D(u), if d∗ /∈ D(u).

Lemma 2.14. Let u ∈ V be a node of the branching tree T , and aγ with γ ∈ J̄−(u).
The algorithm Subcol-of-a-col-A is correct and returns in O(m2(M + logm)) time
a subcolumn of aγ which breaks the C1P, if in the corresponding bipartite graph there
exists any A-triple containing γ.

Proof. The proof of the lemma consists of two parts. Let C+
u := {aj : j ∈ J+(u)} and

C̃ := C+
u ∪{a

γ}. Since C̃ does not have the C1P and due to Statement 2.7 there exists
an A-triple, we should prove that the algorithm finds this A-triple. Secondly, the time
complexity should be calculated.

55

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.3. Subcolumns breaking the C1P

So, due to Corollary 2.6, the graph B
C̃

:= (V C̃
1 , V

C̃
2 , EC̃

) has at least one of the
graphs G1

k, G2
k, G3

k, G4, and G5 as a subgraph. Let G1
k be such a graph. Due to

Corollary 2.3, the bipartite graph BC+
u

has no A-triple. Since the sets V C̃
2 and V C+

u
2

differ only in one element, namely γ, it means that γ builds an A-triple together with

two other vertexes p, q with p 6= q from V C+
u

2 which are in the vertex set of G1
k. Note

there always exists a path (p → q) in BC+
u

which is found on step 1 of the algorithm.
Fig. 2.2a indicates also that there exist the paths (γ → p)q and (γ → q)p which are
found on step 2 of the algorithm. Since all three paths (p→ q), (γ → p)q, and (γ → q)p

exist then (γ, p, q) is found on step 3 of the algorithm. The same can be proved for G2
k,

G3
k, G4, and G5, see Fig. 2.2.

The time complexity is calculated as follows. It performs m2 operations to con-
struct a bipartite graph using a matrix. So, graph Bγ is build in O(m2) time (step 1).
The rest can be done by one run of the Dijkstra’s algorithm or the Floyd-Warshall’s
algorithm (WFI) [CLR90]. The complexity of the Dijkstra’s algorithm is O(|EC | +
(|V1 + V2|) log(|V1 + V2|)) where |EC | is the number of edges and |V1 + V2| = 2m
is the number of vertexes in the graph. Concerning that the maximal number of
items fitting into a bin is M := max{

∑
i∈I ai :

∑
i∈I wiai ≤ W, ai ∈ {0, 1}}, so

the number of 1’s in the whole matrix, thus number of edges is |E| = mM . Hence,
O(|EC|+ (|V1 + V2|) log(|V1 + V2|)) = O(mM + 2m log 2m) and the complexity of step
1 is O(m2(M + logm)). Therefore, the complexity of step 2 is also the same because
the graph Bp can be obtained by a linear modification of Bγ . Since the cardinality
of the set P0 is m

2
(m − 1), and we need a constant time to test whether a path is in

Pp (step 3), the complexity of this step is O(m2). Therefore, Subcol-of-a-col-A’s
complexity is O(m2(M + logm)).

Remark 2.2. M in the formula of Subcol-of-a-col-A’s complexity tends to be
constant, but large. Hence, Subcol-of-a-col-A’s complexity is O(m2 logm).

Let us consider the case, where A-triples do not contain γ. Based on C̃ := C+
u ∪{a

γ}

we build bipartite graph B̃ = (V C̃
1 , V

C̃
2 , EC̃

), which due to Statement 2.7 contains an
A-triple. In order to find this A-triple we compute all shortest paths between two

different vertexes p and q not equal to γ from V C̃
2 in BC̃ each time avoiding the direct

neighborhood of the third vertex r. Herewith, we obtain the set Pr
pq for all p, q and r.

Due to the assumption the obtained A-triple does not contain γ, so for all different p,
q, r and not equal to γ we test whether paths (p → q)r ∈ Pr

pq, (p → r)q ∈ Pq
pr, and

(q → r)p ∈ Pp
qr. If so then p, q, and r build an A-triple. Algorithm 2.4 contains details

of the above algorithm.

Algorithm 2.4 (Subcol-of-a-col-B). Determination of forbidden subcolumns of a
given column in the case when A-triples do not contain γ.
Input data: A node u, the column aγ with γ ∈ J̄−(u).
Output data: D(u).

(1) For each vertex p, q, r ∈ J+(u) with p < q, r 6= p and r 6= q, find a shortest path
(p→ q)r from p to q without the closed neighborhood of γ in

Br := (V r
1 := I\N(r), V r

2 := (J+(u)\{r})∪{γ}, Er := {(i, j) ∈ V r
1 ×V

r
2 : aj

i = 1}).

56

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.4. Subcolumns potentially breaking the C1P

If (p→ q)r 6= ∅ then add (p, q)r to Pr
pq.

(2) For each p, q, r ∈ J+(u) with p 6= q, q 6= r, and p 6= r:
If (p, q)r ∈ Pr

pq and (q, r)p ∈ Pp
qr and (p, r)q ∈ Pq

pr then (p, q, r) forms an
A-triple, hence form the subcolumn d∗ of aγ:
d∗

i = aγ
i , ∀i ∈ Ik with

Ik := [N(γ) ∩ (p→ q)r] ∪ [N(γ) ∩ (p→ r)q] ∪ [N(γ) ∩ (q → r)p],
add d∗ to D(u), if d∗ /∈ D(u).

Lemma 2.15. Let u ∈ V be a node of the branching tree T , and aγ with γ ∈ J̄−(u).
The algorithm Subcol-of-a-col-B is correct and returns in O(m3(M + logm)) time
a subcolumn of aγ which breaks the C1P, if in the corresponding bipartite graph there
exists any A-triple which does not contain γ.

Proof. The time complexity can be calculated as follows. It performs m2 operations
to construct a bipartite graph using a matrix. So, the graph Br is build in O(m2)
time (step 1). The rest can be done by one run of the Dijkstra’s algorithm or the
Floyd-Warshall’s algorithm (WFI) [CLR90]. As it was shown, it takes O(|EC |+ (|V1 +
V2|) log(|V1 + V2|)) = O(mM + 2m log 2m) operations, so the total complexity of step
1 is O(m3(M + logm)). Since the test whether (p, q)r ∈ Pr

pq for any p, q, r is constant,
and we perform this test for each p, q, and r then the complexity of step 2 is O(m3).
Therefore, Subcol-of-a-col-B’s complexity is O(m3(M+logm)+m3) = O(m3(M+
logm)).

Remark 2.3. M in the formula of Subcol-of-a-col-B’s complexity tends to be
constant, but large. Hence, Subcol-of-a-col-B’s complexity is O(m3 logm).

2.4 Subcolumns potentially breaking the C1P

Let u ∈ V be a node of the branching tree T . Let us now answer the following question:
what combinations of elements of a column will break the C1P of C+

u := {aj : j ∈
J+(u)} being joint with a column? In order to solve this problem we perform the
following steps. Firstly, we use the associated bipartite graph B0 := (V1, V2, E0) based
on C+

u and search for every vertex all vertex-disjoint paths to any other vertex. Graph
B0 has no A-triples due to Corollary 2.3.

Definition 2.3. Let (p → q)1 := {t11, . . . , t
1
l }, . . . , (p → q)χ := {tχ1 , . . . , t

χ
l } be paths

from p to q with (p → q)1 = . . . = (p → q)χ. Path (p → q)φ with φ ∈ {1, . . . , χ} is
exclusive if tφj ≤ tfj , f ∈ {1, . . . , χ}\{φ}, j = 1, . . . , l.

So, only exclusive paths are considered.
Let us consider an imaginary column sγ ∈ {0, 1}m represented by a vertex γ when

added to B0. γ is incident to every vertex of V1. We suppose that now γ induces an
A-triple together with the vertexes from V2. Due to Statement 2.7 the set C+

u ∪ {s
γ}

does not have the C1P. Now for every initial and final vertex p, q of the above paths
we determine whether there exist paths (γ → p) and (γ → q) each time avoiding a
direct vertex and edge neighbors of q and p, respectively, and avoiding vertexes from

57

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.4. Subcolumns potentially breaking the C1P

V1, which are in the path (p → q). If all three paths exist then (γ, p, q) is an A-triple.
In such a way all A-triples are searched which can result when an additional column
is added to C+

u .
Now going back to subcolumns we can conclude that items from V1 which were in

the paths (γ → p)q, (γ → q)p, and (p→ q) should correspond to the desired subcolumn.
Moreover, the vertexes from V1 which are in (p → q) correspond to rows with 0 and
vertexes which are in (γ → p)q, (γ → q)p and not in (p → q) correspond to rows with
1 in the subcolumn. Algorithm 2.5 contains details of the above algorithm.

Algorithm 2.5 (Subcols). Determination of forbidden subcolumns.
Input data: A node u, the column set {aj : j ∈ J+(u)}.
Output data: D(u).

(1) Set B0 := (V1 := I, V2 := J+(u), E0 := {(i, j) ∈ V1 × V2 : aj
i = 1}).

(1.1) For each pair of vertexes p, q ∈ V2 with p < q find all exclusive paths from p
to q, i.e., (p → q) in B0. So, we obtain the set Ppq of paths from p to q in
B0.

(1.2) If two paths (p→ q)1 ∈ Ppq, (p→ q)2 ∈ Ppq satisfy V1(p→ q)1 & V1(p→ q)2

then delete (p→ q)2 from Ppq (where V1(p→ q) = {i ∈ V1 : i ∈ (p→ q)}).

(2) Set Bp := (V p
1 := I\N(p), V p

2 := V2\{p}, Ep := {(i, j) ∈ V p
1 × V

p
2 : aj

i = 1}).

(2.1) For all p ∈ V2 and all i /∈ N(p) find for all q ∈ V2\{p} all exclusive paths
from i to q in Bp. So, we obtain set Pp

iq of paths from i to q without the
closed neighborhood of vertex p in Bp.

(2.2) If two paths (i→ q)p
1 ∈ P

p
iq, (i→ q)p

2 ∈ P
p
iq satisfy V1(i→ q)p

1 & V1(i→ q)p
2

then delete (i→ q)p
2 from Pp

iq.

(3) For each nonempty path (p→ q) ∈ Ppq,
for all i1 /∈ V1(p→ q) such that a path (i1 → q)p ∈ Pp

i1q exists,
for all i2 /∈ V1(p→ q) such that a path (i2 → p)q ∈ Pp

i1q exists,
set k = k + 1,

dk
i =

1, i ∈ (V1(i1 → q)p ∩ V1(i2 → p)q)\V1(p→ q);

0, i ∈ V1(p→ q);

with Ik = V1(p→ q) ∪ V1(i1 → q)p ∪ V1(i2 → p)q.

Lemma 2.16. Let u ∈ V be a node of the branching tree T . The algorithm Subcols
is correct. The time complexity tends to be exponential.

Let us consider the following example which uses the algorithm Subcols.

Example 2.1. Let us consider a column set on Fig. 2.5a which has the C1P. Based
on this matrix we build the corresponding bipartite graph, see Fig. 2.5b.

1. Find all exclusive paths between all pairs of the vertexes from V2:
(A→ ∗): (AaB), (AdB), (AaC), (AeC), (AdBaC);
(B → ∗): (BaA), (BdA), (BaC), (BdAeC);
(C → ∗): (CaA), (CeA), (CaBdA), (CaB), (CeAdB), (CaAdB);

58

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.4. Subcolumns potentially breaking the C1P

A B C
1 1 1
1 0 0
0 1 0
1 1 0
1 0 1

a
b
c
d
e

(a)

a

b

c

d
e

A

B

C

γ

(b)

1) 2) 3) 4) 5) 6)
0 0 ∗ ∗ 0 0
1 ∗ 1 ∗ ∗ ∗
1 1 1 1 1 ∗
∗ ∗ 0 0 ∗ 1
∗ 1 ∗ 1 1 1

(c)

Figure 2.5: The Subcols algorithm: (a) – A column set with the C1P; (b) – The
bipartite graph corresponding to the column set in (a); (c) – The columns that would
break the C1P of the column set in (a).

2. Find all exclusive paths between an imaginary vertex γ and the vertexes from V2:
(γ → ∗)A: (γcB);
(γ → ∗)B: (γbA), (γeA), (γeC);
(γ → ∗)C: (γbA), (γcB), (γdA), (γdB);

3. The following vertex triples are suspected to form an A-triple: (γ, A,B), (γ, A, C),
(γ,B, C):

(a) (A→ B)γ + (γ → A)B + (γ → B)A?[
AaB
AdB

]
+

[
γbA
γeA

]
+

[
γcB

]
⇒

{
(abc), (aec)
(dbc), (dec)

}
⇒ (γ, A,B) is an A-triple

1) a = 0, b = c = 1;
2) a = 0, e = c = 1;
3) d = 0, b = c = 1;
4) d = 0, e = c = 1;

(b) (A→ C)γ + (γ → A)C + (γ → C)A?

AaC
AeC

AdBaC

 +

[
γbA
γdA

]
+ ∅;

(c) (B → C)γ + (γ → B)C + (γ → C)B?[
BaC
BdAeC

]
+

[
γcB
γdB

]
+

[
γeC

]
⇒

{
(ace), (ade)
∅

}
⇒ (γ,B, C) is an A-triple

5) a = 0, c = e = 1;
6) a = 0, d = e = 1;

Note subcolumns 2 and 5 are equal. The subcolumns that breaks the C1P are shown
on Fig. 2.5c. So, setting, e.g., a = 0, b = c = 1 leads to an A-triple.

So, the set D(u) := {d1, . . . , d5}, where d1 = d2 = d5 = d6 = {0, 1, 1}, d3 = {1, 1, 0},
d4 = {1, 0, 1}, and I1 = {1, 2, 3}, I2 = I5 = {1, 3, 5}, I3 = {2, 3, 4}, I4 = {3, 4, 5},

59

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.4. Subcolumns potentially breaking the C1P

I6 = {1, 4, 5}. Thus, the constraints to be added into CG(u) are:

a1 + (1− a2) + (1− a3) > 0

a1 + (1− a3) + (1− a5) > 0

(1− a2) + (1− a3) + a4 > 0

(1− a3) + a4 + (1− a5) > 0

a1 + (1− a3) + (1− a5) > 0

a1 + (1− a4) + (1− a5) > 0

If the cardinality of the set Ppq is acceptable then we can improve the algorithm Sub-
cols by using less calls of the "all exclusive paths" procedure, refer to Algorithm 2.6.

Algorithm 2.6 (Subcols’). Determination of forbidden subcolumns.
Input data: A node u, the column set {aj : j ∈ J+(u)}.
Output data: D(u).

(1) Construct the bipartite graph B0 := (V1 := I, V2 := {1, . . . , |J+(u)|}, E0 :=
{(i, j) : j ∈ V2, i ∈ N(j)}).

(2) For each pair of vertexes p ∈ V2, q ∈ V2\{p}: p < q in B0 find all exclusive paths
AllPaths(B0, p→ q) and save these in Ppq.

(3) V1 := I\[(p→ q) ∩ I], V2 := {1, . . . , |J+(u)|, γ},
Eγ := E0 ∪ {(i, γ) : i ∈ I}\{(γ, o), (o, r) : o ∈ (p→ q) ∩ I, r ∈ V2}.
For each pair of vertexes (p→ q) ∈ Ppq build the following two graphs:
Bp := (V1\N(p), V2\{p}, Eγ\{(γ, o), (o, r) : o ∈ N(p), r ∈ V2});
Bq := (V1\N(q), V2\{q}, Eγ\{(γ, o), (o, r) : o ∈ N(q), r ∈ V2});
If there exists a path (γ → p) in Bq and (γ → q) in Bp then (γ, p, q) builds an
A-triple. Then D(u) := D(u) ∪ {d∗} with

d∗

i := 0, i ∈ (p→ q) ∩ I;

d∗
i := 1, i ∈ [(γ → p) ∪ (γ → q)]\[(p→ q) ∩ I];

Algorithm 2.7 (AllPaths). The all paths algorithm: the algorithm is a modification
of the depth-first search (DFS) which stores at every step a list of the traversed vertexes
and the modified incidence matrix.
Input data: Start S, E, and the incident matrix M .
Output data: Set W of all exclusive ways between S and E.

(1) Push node S and matrix M to the stack, Push(S, M).
(2) Restore the current node o and the matrix M from the stack, (o,M)← Pop(). If

o 6= ∅ then all paths from S to E are investigated and goto Exit.
(3) If node o is equal to E then a new path from S to E is found, otherwise restore

the next node: If o = E then store this path W := W ∪ {(S → E)} and goto
2. Else find each node which is incident to o, delete the incidence record between
them in M and push them into the stack: For all j with mj

o = 1 set mj
o = mo

j = 0
and Push(j, M). Goto 2.

60

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.5. Numerical study

Note Algorithm 2.7 has an exponential time complexity and dm2 space complexity
where d is the maximal depth of the tree.

Example 2.2. On Fig. 2.6a there is a bipartite graph which corresponds to a column
set. On Fig. 2.6b a search tree is shown which is build according to the AllPaths
algorithm for finding the all exclusive paths between nodes A and C. So, we have found
the following paths: AaC, AaBbC, AbC, AbBaC. The dashed edges of the tree mark
the cycles.

a

b

c

d

A

B

C

D

(a)

A

ba

B
C

B

C

D

c
b

c
a

C D C

(b)

Figure 2.6: The AllPaths algorithm: (a) – A bipartite graph; (b) – A search tree
which is build for finding all exclusive paths between nodes A and C.

2.5 Numerical study

In this section we discuss numerical experiments for the CBPP-1 instances which are
obtained from SPP-2 from different sources.

The algorithm was implemented as a single-threaded application in C++ based
on Visual Studio 2008, compiler version 9.0.30729, on an AMD Athlon 64 Dual Core
4200+ (2.2 GHz) CPU. IBM ILOG CPLEX 12.5 was used as an LP solver. The test
instances, detailed results and source code are available on the CaPaD website2 and in
[MSB13b].

In Table 2.1 the number of nodes and time are the mean values over the solved
instances. From a rational number we take only the integer part without rounding.

Here are the following implementation issues to consider:

1. The time limit for each instance and method was set to 900 seconds.

2. For obtaining a good performance of the branch-and-price algorithms we limit
the iterations for the algorithms from Sections 2.3, 2.4 by 1000.

3. We do not consider any methods of stabilization or optimization of the column
generation process, since this is not a subject of the research of this paper. Con-
sidering of these steps may result in a better computational behavior of the
branch-and-price method.

2http://www.math.tu-dresden.de/∼capad

61

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.6. Conclusions

4. In Table 2.1 the results for the decision problem of CBPP-1 are shown. The
decision problem asks whether a set of items can be packed into the bins feasibly,
so that the number of used bins does not exceed 20. If so then the instance is
called feasible, otherwise infeasible.

2.6 Conclusions

Here we have proposed and studied news branch-and-price methods for the 1D con-
tiguous bin packing problem.

The main theoretical and experimental observations of the paper are the following:

1. Given a column set with the consecutive 1’s property and a column which breaks
this property it is computationally not very consuming to find all the subcolumns
of the column which break the property. If we the column breaking the consecu-
tive 1’s property is not given, the problem becomes computationally hard.

2. The branching strategy based on the enumeration of the columns behaves on the
whole better on feasible instances where we have to find a solution. On the other
hand the branching strategy based on the enumeration of the subcolumns is of a
beneficial use for the infeasible instances where the infeasibility has to be proven
by increasing the bound.

3. The following issues are subject to further study: can we model (possibly remain-
ing in the linear programming) the 2D strip packing problem using two models
of the 1D contiguous bin packing in a single formulation as we did in [MSB13a]?

2.7 Acknowledgments

We appreciate the Academic Initiative of IBM which enables many researchers all over
the world to compare their methods using state-of-the-art IBM ILOG Optimization
Software.

62

Chapter 2. Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
2.7. Acknowledgments

Table 2.1: Results of the decision version of CBPP-1 on the 2D instances from [CJM08]:
A – Branch-and-price-cols; B – Branch-and-price-subcols; n – total number
of nodes; t – total time.

A B
inst opt n t opt n t

Infeasible instances
00N10 1 1 0 1 1 0
00N15 1 1 0 1 1 0
00N23 1 1 0 1 1 0
00X23 0 - - 0 - -
02N20 1 1 0 1 1 0
03N10 1 84 1 1 27 1
03N15 1 1 0 1 1 0
03N16 1 461 4 1 324 4
03N17 1 1 0 1 1 0
04N15 1 1 0 1 1 0
04N17 1 1 0 1 1 0
04N18 1 1 0 1 1 0
05N15 1 1 0 1 1 0
05N17 1 215 4 1 101 3
05X15 1 1 0 1 1 0
07N10 1 1 0 1 1 0
07N15 1 1 0 1 1 0
07X15 1 80 2 1 79 2
08N15 1 3 0 1 3 0
10N10 1 1 0 1 1 0
10N15 1 1 0 1 1 0
10X15 1 1 0 1 1 0
13N10 1 466 1 1 420 1
13N15 1 1 0 1 1 0
13X15 1 1 0 1 1 0
15N10 1 60 1 1 57 0
15N15 1 1 0 1 1 0
mean 26 53 1 26 40 0
Feasible instances
02F17 1 10371 14 1 17415 24
02F20 1 2350 5 1 7203 15
02F22 1 3201 9 1 8011 20
03X18 1 1280 6 1 1407 7
04F15 1 633 3 1 914 3
04F17 1 131 1 1 135 1
04F19 1 965 4 1 1134 5
04F20 1 318 7 1 510 8
05F15 1 382 2 1 479 2
05F18 1 101 1 1 108 1
05F20 1 415 2 1 813 4
07F15 1 544 2 1 1437 4
08F15 1 54 1 1 60 1
20F15 1 49 1 1 78 1
20X15 1 39 0 1 40 0
mean 15 1389 4 15 2650 6

63

Chapter 3

Constraint Programming
Approaches for Orthogonal Packing

We consider the 2D orthogonal feasibility problem (OPP-2) and the 2D
strip packing problem (SPP-2). Given a set of rectangular items, OPP-2
is to decide whether all items can be orthogonally packed into the given
rectangular container; SPP-2 is to find a packing of all items occupying the
minimal height of the given semi-infinite strip. We investigate the known
Constraint Programming (CP) approaches for OPP-2, in particular the
dichotomy and disjunctive branching strategies and adapt 1D relaxation
bounds based on linear programming (LP) into the constraint propagation
process of the CP. Using the dichotomic search procedure the developed
methods for OPP-2 are transformed for the case of SPP-2. Numerical
results demonstrate the efficiency of the proposed strategies and of the
combination of CP and LP-based pruning rules.

3.1 Introduction

Let us consider a set of m rectangular items (wi, hi), with i ∈ I := {1, . . . , m}. The
2-dimensional orthogonal packing feasibility problem (OPP-2) [FS04a, CJCM08] asks
whether all the items (wi, hi) with i ∈ I can be orthogonally packed into the given
container (W,H) without rotations. The guillotine constraint [MAVdC10, CJM08]
is not considered. All input data are positive integers, i.e., W,H ∈ Z+, and wi ∈
{1, . . . ,W}, hi ∈ {1, . . . , H} for i ∈ I. All problems which are introduced in this paper
can be easily generalized for higher dimensions, so sometimes they will be mentioned
without an indication of the dimension.

In the case when the items cannot be packed into the container, it is enough to
declare a negative response, otherwise the solution is a feasible packing layout with
the items allocated orthogonally and non-overlapped within the container. OPP is a
subproblem in solution methods for orthogonal bin packing (BPP) and knapsack prob-
lems (OKP) [FS04a, BB07, PS07]. OPP is polynomially equivalent to the orthogonal
strip-packing problem (SPP) [Hif98, AVPT09, KIN+09]. The latter problem can be
solved by the dichotomic search, see Section 3.4.8.

65

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.1. Introduction

3.1.1 Formulation of OPP and overview of solution methods

Suppose we have a coordinate system with origin (0, 0) matched with the left bottom
point of the container whose x, y-axis are associated with its W,H-sides, respectively.

Let us introduce sets of variables X := {xi : i ∈ I} and Y := {yi : i ∈ I} which
represent the allocation points for the items in the (0, x)-, (0, y)-directions, respectively.
An assignment of certain values to the variables is feasible in the sense of OPP-2, if
the following constraints are satisfied:

xi + wi ≤ xj ∨ xj + wj ≤ xi∨

yi + hi ≤ yj ∨ yj + hj ≤ yi, (i, j) ∈ I × I : i < j; (3.1)

0 ≤ xi ≤W − wi, i ∈ I; (3.2)

0 ≤ yi ≤ H − hi, i ∈ I; (3.3)

xi, yi ∈ Z+, i ∈ I. (3.4)

It is assured that the items do not overlap, the constraints (3.1), and lie within the
container, the constraints (3.2), (3.3). If there exist values of the variables so that
the constraints (3.1)-(3.4) are satisfied then the instance is called feasible, otherwise
infeasible.

So, the above tiny formulation [CJM08, PS07] is a valid non-linear integer model
of OPP-2. In order to solve OPP-2 in this formulation, some constraint programming
methods are successfully applied, which leads to the best results today [CJM08, SO08,
Sim08, BCDP11, PS07, KMP10]. The approaches can be divided into two groups, the
first one fixes the coordinates of the items [CJM08, SO08, Sim08], the other fixes the
mutual position of the items [PS07, SO08, Sim08, BCDP11].

One of the reasons of the success of the constraint programming paradigm is the
efficient constraint propagation technique. In every node of the search tree it tries to
decide whether the set of the constraints (3.1)-(3.4) is consistent. In other words, it
tries to prove the infeasibility of the current partial solution when certain values are
assigned to some variables or domains of possible values of the variables are restricted.
If an inconsistency of the set of constraints cannot be proven then the procedure tries
to reduce the domain of possible values for the variables.

There exist many ILP models [Bea85, Pad00, BB07, BKRS09] for OPP-2 based
on different representations of a feasible solution. Exact solution of OPP-2 in the
above ILP formulations is difficult because of the weak LP bounds of some models
[Pad00], quadratic number of intersection variables, and/or pseudo-polynomial number
of position-indexed variables [Bea85, BB07] in some models.

Modeling with rotations

Rotation of items by 90◦ withing (3.1)-(3.4) can by modeled by an introduction of
binary variables ri, i ∈ I which indicate in case of ri = 1 that item i is rotated by 90◦.

66

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.1. Introduction

The resulting model is:

xi + wi(1− ri) + hiri ≤ xj∨

yi + hi(1− ri) + wiri ≤ yj (i, j) ∈ I × I : i 6= j; (3.5)

0 ≤ xi ≤ W − wi(1− ri)− hiri, i ∈ I; (3.6)

0 ≤ yi ≤ H − hi(1− ri)− wiri, i ∈ I; (3.7)

xi, yi ∈ Z+, i ∈ I. (3.8)

ri ∈ {0, 1}, i ∈ I. (3.9)

Further in this paper we consider OPP without rotations.

3.1.2 Relaxations and bounds for OPP

In order to decide whether an instance of OPP is infeasible sometimes it is enough
to solve a relaxation. These are of different kinds, i.e., volume bounds, dual-feasible
functions (DFF) [CAVdC10a], conservative scales (CS) [FS04b, BKRS13], 1D bar re-
laxations [Sch99, BKRS09], and relaxations of ILP models. All of the mentioned bounds
are discussed in [BKRS13].

Conservative scales (CS) are modified items sizes such that if the OPP instance is
feasible then it is also feasible with the modified sizes. Thus, the volume bound for the
modified instances is valid for the original instance. In fact, CS are valid inequalities
for a certain 0-1 knapsack polyhedron.

Dual feasible functions (DFFs) produce a subset of CS [BKRS13]. The concept of
DFF has been firstly used to obtain algorithmic lower bounds for bin packing problems
[Lue83]. Most of the methods proposed for computing DFFs are polynomial and rely on
known families of functions [CAVdC10a, CCM07, FS01, FS04b, CAVdC10b]. For the
2D problems, DFFs are rather weak [BKRS13] in contrast to 3D problems. So-called
maximal CS cannot always be obtained by DFFs; corresponding methods are proposed
in [BKRS13].

The 1D bar relaxation [Sch99, BKRS09] is a double relaxation of OPP-2. Firstly, we
divide the container and items into 1D bars with unit thickness. Further we formulate
the minimization problem over the number of used 1D bars which are needed to pack
all the split items without repetition in a single bar. Secondly, we formulate a set-
partitioning model of the above 1D problem, continuously relax it, and solve it by the
column generation method [KZ51, GG61, GG63]. The 1D bar relaxation bound can
be further strengthened [BKRS09] by the additional information, i.e., from a probing
procedure which restricts the set of items combined in the bars.

Up to know, there were only few efforts to use the bar relaxation in an algorithm for
OPP. In [BR13] the 1D bar relaxation bounds were integrated into a modified interval-
graph algorithm from [FS04a]. The bound was also tightened in each dimension using
the overlapping information from the graphs. This extended information was used
in the column generation. The tightened bound was applied in every node of the
branching tree.

67

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.2. An overview of the algorithm of Clautiaux et al.

3.1.3 Our contributions

In order to solve OPP we investigate and modify the state-of-the-art constraint pro-
gramming approaches [CJM08, SO08, Sim08]. We compare some known branching
strategies, e.g., contour, interval, disjunctive, and propose new dichotomy and inter-
section strategies, in Section 3.4. In Section 3.5 we propose new pruning rules based
on the tightened 1D bar relaxations [Sch99, BKRS09] of various kinds, e.g., intervals,
forbidden pairs, and an advanced bar relaxation. The input data for the bar relaxation
is obtained from the local partial solution, the information from the constraint prop-
agation procedure, and the relative positions of the items in the container. The final
part of the paper reports numerical results and conclusion.

3.2 An overview of the algorithm of Clautiaux et

al.

In this section we consider the algorithm of Clautiaux et al. [CJM08] and give some
necessary definitions.

3.2.1 Basic definitions

Clautiaux et al. [CJM08] proposed an algorithm for OPP-2 which solves it as two
scheduling problems. Let be given sets AW := {AW

1 , . . . , A
W
m } andAH := {AH

1 , . . . , A
H
m}

of activities and two types of resources of H and W units. Each of the activities Ad
i

with d ∈ {W,H} and i ∈ {1, . . . , m} has its time interval [startdi , end
d
i) where the

activity Ad
i can occur. startdi designates the earliest point of time where activity Ad

i

can start, and endd
i is the latest point of time where activity Ad

i can end. Each activity
AW

i ∈ AW , AH
i ∈ AH has its level of consumption hi of the resource H , wi of the

resource W , and durations wi, hi, respectively. A schedule is called continuous, if in
the schedule each activity is not interrupted during the execution, and cumulative, if
all activities are consuming the same resource. At every discrete point of time the
resource capacity is limited by a certain value and must not be exceeded.

Let us now superpose each feasible start time point of the activity AW
i with the

variables fromX, and AH
i with the variables from Y then xi ∈ [startWi , end

W
i −wi]∩Z =

[xi, xi] ∩ Z and yi ∈ [startHi , end
H
i − hi] ∩ Z = [y

i
, yi] ∩ Z, i.e., [xi, xi] and [y

i
, yi] are

feasible domains for the variables. If we now assume that xi = y
i

:= 0, xi := W − wi,
yi := H − hi with i ∈ I, both schedules are cumulative and continuous, and if the
constraints (3.1) for the variables from X and Y are satisfied then the model based on
two scheduling problems connected through the constraints (3.1) is a feasible model of
OPP [CJM08].

The formulation of OPP-2 modeled by two scheduling problems is solved by the
branch-and-bound method, i.e., a branching tree T := (V,E) is built. Two nodes
u, v ∈ V differ by the local set of branching restrictions. Based on the kind of branching
restrictions, various branching strategies are possible.

68

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.2. An overview of the algorithm of Clautiaux et al.

3.2.2 Branching strategy

Let u ∈ V be a node of the branching tree T . Node u is also called a subproblem. If a
value is assigned to a variable then the variable is called fixed. Let

Īu
x := {i ∈ I : xi 6= xi}, Īu

y := {i ∈ I : y
i
6= yi},

be the index sets of the unfixed variables from X and Y , respectively. Herewith,
Iu

x := I\Īu
x and Iu

y := I\Īu
y are the index sets of fixed variables.

The original branching strategy [CJM08] is a two-step approach where the variables
from X are fixed first, and the variables from Y are fixed next, see Algorithm 3.1. That
means, if only Īu

x = ∅ then we start to branch on the variables from Y .
An important issue is the selection of a branching variable from the unfixed ones,

steps 1 and 2. It is based on the following observation. If we pack all the large items at
first instead of packing all the items in an arbitrary order then we can rapidly obtain
the inconsistency of the system (3.1)-(3.4), if any, because we do not lose much effort
during the allocation of the small items.

As soon as a variable for branching is selected, it is fixed to the value which is equal
to its lower bound (the first branch) or the lower bound for its domain is increased (the
second branch), see step 4.

For describing the algorithm in a simpler way let us introduce the order of the
variables, so xi ≺ xj ⇔ i < j and yi ≺ yj ⇔ i < j for i, j = 1, . . . , m.

Algorithm 3.1 (FixMin). Creation of two descendants of a node u ∈ V according to
the original branching strategy [CJM08].
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If Īu
x 6= ∅ then set:

P := {xi ∈ X : i ∈ Īu
x , wihi = max{wihi : i ∈ Īu

x}},

and goto step 3.
(2) If Īu

y 6= ∅ then set:

P := {yi ∈ Y : i ∈ Īu
y , wihi = max{wihi : i ∈ Īu

y }},

and goto step 3, else goto Exit.
(3) Select the variable with the smallest lower bound for its domain and then with the

lowest index:

p := min
≺
{p ∈ argmin{p : p ∈ P}}.

(4) Definition of the descendant nodes:

v1: p := p (fixation of the variable);
v2: p := p + 1 (p is fixed later).

69

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.3. Minor modifications

The following statement is true.

Lemma 3.1. The depth of the branching tree by FixMin is O(m(W +H)).

Proof. Each item is tried to be fixed in each feasible position in the (0, x)-direction,
mW possible variants, and in the (0, y)-direction, mH possible variants. Since for
each feasible position we have one branch then the depth of the branching tree is
O(m(W +H)).

3.3 Minor modifications

In this section we consider minor modifications of the original algorithm which are
used either in each node of the branching tree as raster points and local preprocessing
or only in the root node as an initial preprocessing. Let E := (m,W,H,w, h) be an
OPP-2 instance.

3.3.1 Raster points

It is often excessive to consider for a variable p each point from its domain [p, p]∩Z. For
instance, if we have only three activities with the durations 4, 7, 9 then a schedule with
the starting point 5 has never to be considered. The points which are of interest are
called raster points [Sch08] and are calculated, e.g., for the (0, x)-direction as follows:

Rx(N) := {0 ≤ x ≤ N : x =
∑

i∈I

wiai, ai ∈ {0, 1}, i ∈ I}.

In the mentioned book, the author proposes an approach for a reduction of the
number of raster points by the consideration of reduced set of raster points.

R̃x(N) := {max{k ∈ Rx(N) : k ≤ N − r} : r ∈ Rx(N)}.

In order to obtain raster points which are situated to the left and right of a point
α, let us consider the following definitions:

Rx(α,N) := max{β ∈ R̃x(N) : β ≤ α}, Rx(α,N) := min{β ∈ R̃x(N) : β ≥ α}

Similarly, we define Ry(α,N) and Ry(α,N) for the (0, y)-direction. Let designate
Rx(α) := Rx(α,W) and Ry(β) := Ry(β,H).

Further we propose some branching strategies and pruning approaches which use
raster points and a reduced set of raster points, see Sections 3.4.1, 3.4.2, 3.4.3, 3.4.8.

3.3.2 Initial preprocessing

The procedure of an initial preprocessing is performed only once for the root node.
The idea of the procedure is to eliminate some symmetrical and equivalent solutions
which satisfy the constraints (3.1)-(3.4). The results of the procedure are additional

70

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.3. Minor modifications

constraints which are appended to the model (3.1)-(3.4) or replace some of its con-
straints. A similar procedure was proposed in [MMBS11] for the 1D contiguous bin
packing problem (CBPP-1). For further restrictions refer to papers [BM03, CCM07].

In order to eliminate the solutions which are obtained through the symmetry over
the vertical and horizontal lines going over the geometrical center of the container we
apply:

xi∗ ≤
⌊
W − wi∗

2

⌋
+ 1, yi∗ ≤

⌊
H − hi∗

2

⌋
+ 1, i∗ := min{i ∈ Q},

where Q := {i ∈ I : wihi = max{wkhk : k ∈ I}} is the set of the item indexes with
the largest area. Herewith, according to the FixMin strategy the item i∗ is fixed first,
see steps 1 and 3 of Algorithm 3.1. This fact will be used in Section 3.5.3.

Let

Fx := {(i, j) ∈ I × I : i < j, wi + wj > W},

Fy := {(i, j) ∈ I × I : i < j, hi + hj > H}

be the sets of item pairs which do not fit together over the (0, x)-, and (0, y)-directions,
respectively. Then instead of (3.1), the following constraints are applied:

xi + wi ≤ xj ∨ xj + wj ≤ xi, (i, j) ∈ Fy; (3.10)

yi + hi ≤ yj ∨ yj + hj ≤ yi, (i, j) ∈ Fx; (3.11)

xi + wi ≤ xj ∨ xj + wj ≤ xi∨

yi + hi ≤ yj ∨ yj + hj ≤ yi, (i, j) ∈ (I × I)\(Fx ∪ Fy) : i < j. (3.12)

If two items i and j are identical, i.e., wi = wj and hi = hj then we apply the
following constraints:

xi < xj∨

xi = xj∧yi + hi ≤ yj, (i, j) ∈ I × I : i < j, wi = wj, hi = hj.

Instead of (3.2) and (3.3), the following constraints are applied:

0 ≤ xi ≤ Rx(W − wi), i ∈ I; (3.13)

0 ≤ yi ≤ Ry(H − hi), i ∈ I. (3.14)

3.3.3 Local preprocessing

This type of the preprocessing is performed for each node of the branching tree. The
main idea is to reduce the domain of the variables to a possibly small size. In terms of
the constraint programming paradigm the local preprocessing is called constraint prop-
agation [Apt03]. Since for the solution of our model we use ILOG CP (see Section 3.6
for further details), the local preprocessing is done automatically for each node of the
branching tree after its creation.

71

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

3.4 New branching strategies

In this section we review some known and propose new strategies which are based on
different principles. First group of the branching strategies fixes coordinates of the
items or divides the domain of the variables. The other group branches on the mutual
positions of the items, e.g., overlapping relations. The description of the new strategies
uses notations from Sections 3.1, 3.2. For a numerical study of the strategies, refer to
Section 3.6.

Strategies FixMin, FixMinR and Contour from this section fix a variable or
increase the lower bound of its domain in each branch. In that case we will use the
notation of a contour and a block-structure. The related but different notions of the
contour were proposed in [Sch95] for 2D packing layouts. Let u ∈ V be a node of the
branching tree and Iu

x (t) := {i ∈ Iu
x : t ∈ [xi, xi + wi)} be the item set with the fixed

x-coordinate whose x-projection intersects a given point t ∈ [0,W).

Definition 3.1. The X-contour Cu
x corresponding to a node u ∈ V is the graph of the

function:

Cu
x (t) :=

∑

i∈Iu
x (t)

hi, t ∈ [0,W).

Cu
x (t) is a step function with, in general, some discontinuity points in (0,W). Let

the ordered sequence {χu
k}

qu
x +1

k=1 contain exactly all the discontinuity points and the
border values, such that 0 = χu

1 ≤ χu
2 ≤ . . . ≤ χu

qu
x +1 = W , i.e.,

lim
t→χx

k
−0
Cu

x (t) 6= lim
t→χx

k
+0
Cu

x (t) = Cu
x (χx

k), k ∈ {2, . . . , qu
x},

where qu
x + 1 is the number of jump discontinuity points in (0,W) plus two border

points. For convenience, let

Cu
x (W) := lim

t→W −0
Cu

x (t).

Definition 3.2. If C(χx
k) > C(χx

k+1), ∀k ∈ Q
u
x := {1, . . . , qu

x} then the X-contour is
called monotonically decreasing or monotone.

Remark 3.1. Similarly, we define the Y -contour Cu
y corresponding to a node u ∈ V .

Assigned to an interval [χu
k , χ

u
k+1) with k ∈ Qu

x we define a vertical block as the
rectangle [χu

k , χ
u
k+1)× [0, H) lying above Cu

x , see Figure 3.7.

Definition 3.3. The k-th block corresponding to a contour Cu
x is the rectangle [χx

k, χ
x
k+1)×

[Cu
x(χu

k), H), denoted by (χx
k, λ

x
k, ρ

x
k) where λx

k = H − Cu
x (χx

k), and ρx
k = χx

k+1 − χ
x
k.

In terms of scheduling, the k-th block represents the non-used resource during
the period [χx

k, χ
x
k+1). Papers [BSM08, MMBS11] define a related notion of a slice

describing the complete layout in the period [χx
k, χ

x
k+1). Here a block is a part of a

slice.

72

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Definition 3.4. The sequence of the vertical blocks {(χx
k, λ

x
k, ρ

x
k)}qu

x

k=1 is called the ver-
tical block-structure corresponding to a contour Cu

x and is denoted by S‖(u).

Remark 3.2. Similarly, we define the horizontal block-structure S=(u) consisting of
the horizontal blocks {(χy

k, λ
y
k, ρ

y
k)}qu

x

k=1 corresponding to a contour Cu
y .

In the strategies Dichotomy and Interval we change the lower and the upper
bounds for the domain of a variable to branch. A principally different strategy is
Disjunctive. In every branch we fix a mutual item position.

3.4.1 Original branching strategy with raster points

Here we try to heuristically reduce the large branching depth of the FixMin strategy
caused by choosing individual values for the variables. For that purpose we bring the
reduced set of raster points from Section 3.3.1 into FixMin.

In the proposed strategy we change step 4 of Algorithm 3.2 as follows. While a
node u ∈ V of the branching tree is processed, two descendant nodes are created where
in the second descendant v2 we set the lower bound for the variable domain to the next
raster point, see Algorithm 3.2.

Let the type of a variable p ∈ X ∪ Y be determined in the following algorithms by

d(p) :=

x, if p ∈ X;

y, if p ∈ Y.

Algorithm 3.2 (FixMinR). Creation of two descendants of a node u ∈ V according
to the improved FixMin.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1-3) Same as in Algorithm 3.1.
(4) Definition of the descendant nodes:

v1: Same as in Algorithm 3.1;
v2: p := Rd(p)(p+ 1) (p is fixed later).

The worst case depth of the branching tree by FixMinR remains the same as by
FixMin.

Remark 3.3. The X-contour generated by FixMin and FixMinR is, in general,
non-monotonic.

3.4.2 Contour branching strategy

Here we propose a branching strategy which is a modification of the contour concept
[Sch95, MMV03] for the 1D case. This approach is a classical branching strategy, a
modification of which was used in the algorithm [MMBS11] for the solution of CBPP-1.

73

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Similarly to FixMin and FixMinR, the approach starts to fix the variables from
X. After all variables from X are fixed, the approach omits the information concerning
the fixed variables from X, and fixes the variables from Y , see Algorithm 3.3.

The strategy sequentially builds a contour. On each step we select the earliest block
in which at least one item from the unfixed ones can be fixed. Further we decide which
item is fixed within the block (one node for each choice). Additionally, we create a
node in which we demand that none of the unfixed items is fixed within the selected
block, see step 3 of Algorithm 3.3.

Algorithm 3.3 (Contour). Creation of descendants of a node u ∈ V according to
the contour principle.
Input data: A node u ∈ V , block-structures Sx

‖ (u), Sy
‖ (u).

Output data: Descendant nodes v0, . . . , vn.

(1) If Īu
x 6= ∅ then set:

k∗ := argmin{χx
k : ∃i ∈ Īu

x , hi ≤ λx
k}, P := {xi ∈ X : hi ≤ λx

k}.

goto step 3.
(2) If Īu

y 6= ∅ then set:

k∗ := argmin{χy
k : ∃i ∈ Īu

y , wi ≤ λy
k}, P := {yi ∈ Y : wi ≤ λy

k}.

goto step 3, else Exit.
(3) Definition of the descendant nodes:

v0: ∀p ∈ P set p := Rd(p)(χ
d(p)
k∗ + 1).

For j = 1, . . . , |P|:

vj: p = p := χ
d(p)
k∗ .

Some papers [Sch95, MMBS11] discuss anti-symmetry rules for Contour in order
to eliminate vertical and horizontal equivalent solutions, also with respect to identical
items, etc. Here we do not use them.

Lemma 3.2. The depth of the branching tree by Contour is O(m).

Proof. On each depth one item is fixed. Thus, the depth of the tree is O(m).

Remark 3.4. The contour generated by Contour is monotone.

3.4.3 Dichotomy

Here we propose a new branching strategy. The idea is to obtain a well balanced and a
small branching tree. Now, instead of checking each coordinate value from the domain
as by FixMin we try to divide the domain of a branching variable into two intervals.

First of all, on each step we select a variable to branch. Here we either select the
variable as by FixMin or select the variable with the biggest domain over the unfixed
ones which results in two different approaches, see step 3 of Algorithm 3.4. If a variable
g is selected, two branches are created where g is restricted to the first half or to the
second half of the interval [g, g], see step 4.

74

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Algorithm 3.4 (Dichotomy). Creation of two descendants of a node u ∈ V according
to the dichotomy principle.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1-2) Same as in Algorithm 3.1.
(3) Dichotomy(coordinate): Step 3 of Algorithm 3.1.

Dichotomy(interval): Select the variable with the biggest domain and then with
the lowest index:

p := min
≺
{p ∈ argmax{p− p : p ∈ P}}.

(4) Definition of the descendant nodes:

v1 : p := Rd(p)(⌊
p+ p

2
⌋); v2 : p := Rd(p)(⌊

p + p

2
⌋+ 1).

Lemma 3.3. The depth of the branching tree by Dichotomy is O(m(logW +logH)).

Proof. Each item is tried to be fixed in every interval after division in half. The depth
of the branching subtree for an item i ∈ I is equal to the number of divisions in the
(0, x)-direction of the interval xi − xi which is equal in the worst case to W , and H in
the (0, y)-direction. Since the number of divisions of W is logW (for H is logH) and
these divisions are done for each item i ∈ I then the depth is O(m(logW +logH)).

3.4.4 Interval

In [SO08, Sim08] different strategies are discussed. The combination of the naive and
the xtheny strategies from the paper yields the FixMin strategy. The most successful
approach according to that paper is the interval strategy. It was firstly proposed in
[BCDP11] for the perfect square packing problem.

The interval strategy consists in splitting of the domain of the variables from X
into intervals then fixing the values for them, followed by splitting the domain of the
variables from Y , and finally fixing the values for them. The splitting of the domain
for a variable depends on the size of the corresponding item. It should be chosen
small enough so that a mandatory part of the item occurs in each interval. In the
original interval strategy, one third of the item size occurring obligatory in one of
the split intervals, yields the best results [Sim08]. In comparison to interval, here we
use Dichotomy when the intervals are too small to be split, see steps 1 and 2 of
Algorithm 3.5.

Algorithm 3.5 (Interval). Creation of descendants of a node u ∈ V according to
interval principle [Sim08].
Input data: A node u ∈ V , a ratio r (here and further r = 0.3).
Output data: Descendant nodes v0, . . . , vn.

75

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

(1) If Īu
x 6= ∅ then:

Q := {i ∈ Īu
x : xi−xi ≥ ⌈rwi⌉}, P := {xi ∈ X : i ∈ Q, wihi = max

i∈Q
{wihi}}

else goto 2. If Q 6= ∅ then goto step 3, else Dichotomy.
(2) If Īu

y 6= ∅ then:

Q := {i ∈ Īu
y : yi−yi

≥ ⌈rhi⌉}, P := {yi ∈ Y : i ∈ Q, wihi = max
i∈Q
{wihi}}

else goto Exit. If Q 6= ∅ then goto step 3, else Dichotomy.
(3) Select the variable with the greatest domain and then with the lowest index:

p := min
≺
{p ∈ argmax{p− p : p ∈ P}}.

(4) Definition of the descendant nodes:
If d(p) = x then set s := ⌈rwi⌉ with i ∈ Īu

x ∧ xi = p, else set s := ⌈rhi⌉ with

i ∈ Īu
y ∧ yi = p. For j = 1, . . . , ⌈

p−p

s
⌉ create:

vj : p := p+ (j − 1)s; p := min{p+ js− 1, p}.

Lemma 3.4. The depth of the branching tree by Interval is O(m +
m∑

i=1
(log rwi +

log rhi)).

Proof. In the worst case we divide the interval for each item, O(m), and then fix the
items within the intervals according to Dichotomy which are equal in this case to
rwi and rhi, respectively, hence O(m+

∑m
i=1(log rwi + log rhi)).

3.4.5 Disjunctive

This strategy is based neither on the coordinate interval division nor on the assignment
of coordinate variables as before. It is principally another strategy which iteratively
fixes the set of all possible mutual positions for a pair of items.

Let l, r, b, t ∈ N be such l < r < b < t and Rij ⊆ {l, r, b, t} be the set which
represents the possible mutual locations of items i, j ∈ I with i < j, i.e.,

Rij = {l} ⇔ xi + wi ≤ xj , Rij = {r} ⇔ xj + wj ≤ xi,

Rij = {b} ⇔

xi + wi > xj ,

xj + wj > xi,

yi + hi ≤ yj,

Rij = {t} ⇔

xi + wi > xj ,

xj + wj > xi,

yj + hj ≤ yi.

In Figure 3.1a we see the dimensions of an item j. Figures 3.1b-3.1e show by the hatched
areas the feasible locations of the left-bottom corner of the item j for Rij = l, r, b, t,
respectively. Now, we associate with each node u ∈ V the set R(u) := {Rij : i <
j, i, j ∈ I} of relations for the item pairs.

76

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

j

(a) Item j

i

W − wj

H
−
h

j

(b) Rij = {l}

i

xi − wj

H
−
h

j

(c) Rij = {r}

i

xi − wj

H
−
h

j

(d) Rij = {b}

i

xi − wj

y i
−
h

j

(e) Rij = {t}

Figure 3.1: Mutual locations of the items i and j. The areas where the left-bottom
arrangement point of the item j can be allocated are marked by hatching.

In order to prioritize item pairs selected for branching let us introduce a pair or-
dering denoted by the symbol ⊐. Suppose (p, q), (r, k) ∈ I × I: p < q and r < k. So,
(p, q) ⊐ (r, k), iff wphp > wrhr∨ (wphp = wrhr∧wqhq > wkhk)∨ (wphp = wrhr∧wqhq =
wkhk ∧ p < r).

The main idea of the disjunctive strategy [Sim08] is to fix a relation for every item
pair, see Algorithm 3.6. After a pair is selected, see steps 1 and 2, we select a relation
to fix for this pair, step 3. At last, when every item pair got a relation, a packing layout
(item coordinates) can be computed. If the items lie within the container bounds then
the layout is feasible.

Algorithm 3.6 (Disjunctive). Creation of two descendants of a node u ∈ V accord-
ing to the disjunctive principle.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If ∃Rij ∈ R(u) : |Rij| > 1 then set:

P := {(i, j) ∈ I × I : i < j, |Rij| > 1},

else goto Exit.
(2) Select the pair to branch:

(i, j) := min
⊐

{(i, j) : (i, j) ∈ P}.

(3) Definition of the descendant nodes:
Set f := min{k : k ∈ Rij , Rij ∈ R(u)} (note that we assume the ordering
l < r < b < t). Create:

v1 : R(v1) := R(u) ∧Rij = {f}; v2 : R(v2) := R(u) ∧ Rij = Rij\{f}.

Once we have fixed all mutual locations of the items, the domain of variables from
X, Y can still contain not just a single value. It depends on the quality of the local
preprocessing procedure, see Section 3.3.3. Note that the local preprocessing procedure
is preformed for every node after its creation. Several values of a variable from X, Y
can also be feasible for the model. In our case after all relations are fixed we do not
branch variables X, Y to a single value.

The following statement is true.

77

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Rij = {l, r, b, t}

Rij = {l}
Rij = {r, b, t}

Rij = {r}
Rij = {b, t}

Rij = {b} Rij = {t}
le

ft

¬
left

ri
g
h
t

¬
rig

h
t

b
o
tt

o
m to

p

Figure 3.2: Binary branching tree corresponding to Disjunctive.

Theorem 3.5. If ∀i, j ∈ I : i < j, |Rij | = 1 and the system (3.1)-(3.4) holds then the
corresponding OPP-2 instance is feasible.

Lemma 3.6. The depth of the branching tree by Disjunctive is O(m2).

Proof. On each depth of the branching tree we fix one of the constant number of
relations for a pair of items. Herewith, the depth of the tree is not larger than the
number of pairs, O(m2).

3.4.6 Partition

As we can see at the Disjunctive strategy the decision that the projections of two
items are partitioned over the (0, x)-, or over the (0, y)-direction is made only in the
depth of the branches. In some cases it would be better to assert the disjoint state of
the items over one of the axis at first steps. The decision that projections of the items
are disjoint can help, e.g., to strength some of the pruning rules as, i.e., LP-pair (for
the pruning rules refer to Section 3.5).

Let px, py, l, r, b, t ∈ N and Rij ⊆ {px, py, l, r, b, t} be the set which represents the
possible mutual locations of items i, j ∈ I with i < j, i.e.,

Rij = {px} ⇔

[
xi + wi ≤ xj ,
xj + wj ≤ xi,

Rij = {py} ⇔

[
yi + hi ≤ yj,
yj + hj ≤ yi,

Rij = {l} ⇔ xi + wi ≤ xj , Rij = {r} ⇔ xj + wj ≤ xi,

Rij = {b} ⇔ yi + hi ≤ yj, Rij = {t} ⇔ yj + hj ≤ yi.

In Figure 3.3 we show by the hatched areas the feasible locations of the left-bottom
arrangement point of the item j for Rij = px, py, l, r, b, t, respectively. Now we associate
with each node u ∈ V the set R(u) := {Rij : i < j, i, j ∈ I} of relations for the item
pairs. The item pairs have an ordering relation defined by ⊐ as in Section 3.4.5.

Let R := {R ⊆ {px, py, l, r, b, t} : |R| > 1 ∨R = {px} ∨R = {py}} be the set of all
item sets with no or px−py fixed relations. The main idea of the partition strategy is to
decide at first steps that projections of two items without a fixed relation are disjoint
over one of the axis, see Algorithm 3.7. After a pair is selected, see steps 1 and 2,
we assert that the projections of the item pair do not overlap over the (0, x)-direction,

78

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

i

W − wj

H
−
h

j

(a) Rij = {px}

i

xi − wj

y i
−
h

j

(b) Rij = {py}

i

xi − wj

H
−
h

j

(c) Rij = {b}

i

xi − wj

y i
−
h

j

(d) Rij = {t}

Figure 3.3: Possible mutual locations of the items i and j according to Partition.
The areas where the left-bottom arrangement point of the item j can be allocated are
marked by hatching. The size of the item j is depicted in Figure 3.1a. Rij = {l} and
Rij = {r} are depicted in Figure 3.1b and 3.1c.

the first branch, or over the (0, y)-direction, the second branch. When this decision is
made, the further partition is followed in the leafs, see step 3.

Algorithm 3.7 (Partition). Creation of two descendants of a node u ∈ V according
to the partition principle.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If ∃Rij ∈ R(u) : Rij ∈ R then set:

P := {(i, j) ∈ I × I : i < j, Rij ∈ R},

else goto Exit.
(2) Selection of the pair to branch:

(i, j) := min
⊐

{(i, j) ∈ P}.

(3) Definition of the descendant nodes:
If {px, py} ⊂ Rij then

v1 : R(v1) := R(u) ∧Rij = {px}; v2 : R(v2) := R(u) ∧Rij = {py}.

If Rij = {px} then:

v1 : R(v1) := R(u) ∧Rij = {l}; v2 : R(v2) := R(u) ∧Rij = {r}.

If Rij = {py} then:

v1 : R(v1) := R(u) ∧Rij = {b}; v2 : R(v2) := R(u) ∧ Rij = {t}.

For the binary branching tree of the Partition refer to Figure 3.4. The following
statement is true.

Theorem 3.7. If ∀i, j ∈ I : i < j, |Rij | = 1 and the system (3.1)-(3.4) holds then the
corresponding OPP-2 instance is feasible.

Lemma 3.8. The depth of the branching tree by Partition is O(m2).

Proof. We fix at most six relations for every pair which make in sum 6m2 branches.
Herewith the depth of the tree is O(m2).

79

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Rij = {px, py, l, r, b, t}

Rij = {px} Rij = {py}

{l} {r} {b} {t}

le
ft

rig
h
t

b
o
tt

o
m to

p

Figure 3.4: Binary branching tree corresponding to Partition.

3.4.7 Intersection

In contrast to Partition here we propose a branching strategy where we decide
whether an item pair projection intersects one of the axis.

Let ix, īx, iy, īy, l, r, b, t ∈ N and Rij ⊆ {ix, īx, iy, īy, l, r, b, t} be the set which repre-
sents the possible mutual locations of items i, j ∈ I with i < j, i.e.,

Rij = {ix} ⇔

xi < xj + wj,

xj < xi + wi.
Rij = {̄ix} ⇔

[
xi + wi ≤ xj ,
xj + wj ≤ xi,

Rij = {iy} ⇔

yi < yj + hj ,

yj < yi + hi.
Rij = {̄iy} ⇔

[
yi + hi ≤ yj,
yj + hj ≤ yi,

The other mutual positions of the items corresponding to Rij = {l}, {r}, {b}, {t} is the
same as in Partition, see Section 3.4.6.

Figure 3.5 shows by the hatched areas the feasible locations of the left-bottom
arrangement point of the item j for Rij = {ix}, {̄ix}, {iy}, {̄iy}, respectively. For the
other values of Rij refer to Figure 3.3. Now we associate with each node u ∈ V the set
R(u) = {Rij : i < j, i, j ∈ I} of relations for the item pairs. The item pairs have an
ordering relation defined by ⊐ as in Section 3.4.5.

i

xi − wj

H
−
h

j

(a) Rij = {ix}

i

W − wj

H
−
h

j

(b) Rij = {̄ix}

i

W − wj

H
−
h

j

(c) Rij = {iy}

i

xi − wj

y i
−
h

j

(d) Rij = {̄iy}

Figure 3.5: Possible mutual locations of items i and j according to Intersection.
The areas where the left-bottom arrangement point of item j can be allocated are
marked by hatching. Item j size is depicted in Figure 3.1a. Rij = {l}, Rij = {r} are
depicted in Figure 3.1b and 3.1c, Rij = {b}, Rij = {t} are depicted in Figure 3.3c and
3.3d

.

80

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Let

R = {R ⊆ {ix, īx, iy, īy, l, r, b, t} : |R| > 1∨R = {ix}∨R = {̄ix}∨R = {iy}∨R = {̄iy}}

be the set of all item sets with no or one of ix, īx, iy or īy fixed relations. The main
idea of the partition strategy is to decide at first steps that projections of two items
without fixed relations overlap over one of the axis, see Algorithm 3.8.

Algorithm 3.8 (Intersection). Creation of two descendants of a node u ∈ V ac-
cording to the partition principle.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If ∃Rij ∈ R(u) : Rij ∈ R then set:

P := {(i, j) ∈ I × I : i < j, Rij ∈ R},

else goto Exit.
(2) Selection of the pair to branch:

(i, j) := min
⊐

{(i, j) : (i, j) ∈ P}.

(3) Definition of the descendant nodes:
If {ix, īx} ⊂ Rij then:

v1 : R(v1) := R(u) ∧Rij = {ix}; v2 : R(v2) := R(u) ∧Rij = {̄ix}.

If Rij = {ix} then:

v1 : R(v1) := R(u) ∧Rij = {b}; v2 : R(v2) := R(u) ∧ Rij = {t}.

If Rij = {̄ix} then:

v1 : R(v1) := R(u) ∧Rij = {iy}; v2 : R(v2) := R(u) ∧ Rij = {̄iy}.

If Rij = {iy} then:

v1 : R(v1) := R(u) ∧Rij = {l}; v2 : R(v2) := R(u) ∧Rij = {r}.

For the binary branching tree of the Intersection refer to Figure 3.6. The fol-
lowing statement is true.

Theorem 3.9. If ∀i, j ∈ I : i < j ∧ |Rij| = 1 and the system (3.1)-(3.4) holds then
the corresponding OPP-2 instance is feasible.

Lemma 3.10. The depth of the branching tree by Partition is O(m2).

Proof. We fix at most six relations for every pair which make in sum 6m2 branches.
Herewith the depth of the tree is O(m2).

81

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.4. New branching strategies

Rij = {ix, īx, iy, īy, l, r, b, t}

Rij = {ix} Rij = {̄ix}

Rij = {b}

Rij = {t}

{iy} Rij = {̄iy}

Rij = {l}

Rij = {r}

b
o
tt

o
m to

p

le
ft

rig
h

t

Figure 3.6: Binary branching tree corresponding to Intersection.

3.4.8 Solution search of SPP-2

An SPP-2 instance is solved using the corresponding OPP-2 instances. We fix the width
of the OPP-2 container and vary its height. The OPP-2 instance with the container
height equal to a known upper bound is feasible. Once an OPP-2 instance with the
container height h is feasible and the OPP-2 instance with the next possible smaller
container height is not then h is the optimal value.

Since Disjunctive brings very good results for feasible instances, see Section 3.6.1
and 3.6.2 then it is better to have a strategy which searches for an optimum from an
upper bound downwards. So each of instances (W, γ,m,w, h) with γ = H, . . . , Hopt is
feasible except the last one with the height equal to max{r ∈ Ry(H) : r ≤ Hopt − 1}
which is infeasible, see Algorithm 3.9.

Algorithm 3.9 (OptDownwards). Solution search of SPP-2 based on OPP-2 down-
wards from an upper bound.
Input data: An SPP-2 instance (W,m,w, h), upper bound H.
Output data: optimal value Hopt.

(1) Set β := H.
(2) Set γ := max{r ∈ Ry(H) : r ≤ β − 1}. If the OPP-2 instance (W, γ,m,w, h) is

feasible then set β := γ and goto 2, else set Hopt := β and goto Exit.

For the other branching strategies which work equally for the feasible and unfeasible
OPP-2 instances as well, we apply the dichotomy principle in order to increase the
efficiency of the search. The idea is similar to that from Section 3.4.5.

The approach works as follows. We have the interval from a lower to an upper
bound for the optimal height of the container. We divide this interval in two and
obtain a new value of the height by that. Further we test whether the items fit into
the container with the new height. If so then the value of the current height of the
container is the new upper bound, otherwise the new lower bound. The process is
performed until the difference between the lower and the upper bounds becomes 1, see

82

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

Algorithm 3.10. For the solution of the OPP-2 instances (W, γ,m,w, h) we can use one
of the described approaches from Section 3.4.

Algorithm 3.10 (OptDichotomy). Solution search of SPP-2 based on OPP-2 using
dichotomy principle.
Input data: An SPP-2 instance (W,m,w, h), a lower H and an upper H bounds.
Output data: optimal value Hopt.

(1) Set α := H − 1, β := H.
(2) If β−α = 1 then Hopt := β and goto Exit. Set γ := max{r ∈ Ry(H) : r ≤ ⌈α+β

2
⌉}.

If the OPP-2 instance (W, γ,m,w, h) is feasible then set β := γ, else α := γ, and
goto 2.

Remark 3.5. If we stop the optimization process considering, i.e., the time limit, then
the value of β will be an improved upper bound.

3.5 Advanced constraint propagation

In this section we consider different LP-based approaches for the nodes of the branching
tree in order to reduce the search process. Every LP-based approach constructs a
relaxation by the 1D bin packing problem and then its Dantzig-Wolfe decomposition.

One group of the approaches from this section, LP1a and LP1b, uses only infor-
mation concerning the x-coordinates of the fixed items from Iu

x . The second group,
LP-int, is tightened by the information concerning the domain of the coordinate vari-
ables which results from the constraint propagation procedure. The third group, LP1c,
LP-pair, LP-int-pair, uses the information concerning the overlapping of item projec-
tions on the axes. The fourth group, LP-advanced, improves the first group through
extra connecting constraints.

3.5.1 Vertical bar relaxation (LP1a)

Here we propose a pruning rule which uses the information concerning the coordinates
of the fixed items. Herewith, it can be used especially with the branching strategies
which produce a contour, i.e., FixMin, FixMinR, Contour.

Let us consider the partial solution in Figure 3.7 which corresponds to a node u ∈ V .
Items from Iu

x with the fixed x-coordinates give us the information concerning the X-
contour. Based on the X-contour we build the corresponding block-structure Sx

‖ (u)

which was defined in Section 3.4. The items Īu
x are not fixed but we know the intervals

in which they can be fixed. For the LP1a approach we omit the latter information.
The input information for the 1D bar relaxation is constructed as follows. Each

block (χx
k, λ

x
k, ρ

x
k) with k ∈ Qu

x is considered as a set of bins with length λx
k and quantity

ρx
k. In addition to the obtained bins, we also consider one extra type 0 of bins with
χx

0 := W , λx
0 := H , ρx

0 := ∞. In the 2D case each 2D item has a certain geometrical
location. Here we relax this condition and consider instead of 2D items 1D items with
lengths hi and quantities wi where i ∈ Īu

x and Iu
x is the index set of the unfixed items.

83

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

1
2

3

0

H

W

(a) Feasible 2D packing

λx
1

λx
2

λx
3

λx
4

ρx
1 ρx

2 ρx
3 ρx

4

xi xi

χx
4χx

3χx
2

χx
1

0

H

W

(b) X-contour

Figure 3.7: Vertical bar relaxation of the partial solution in the (0, x)-direction corre-
sponding to a node u ∈ V . Items from Iu

x = {1, 2, 3} are marked by hatching. There
exist blocks {(χx

k, λ
x
k, ρ

x
k)} with k = 1, . . . , 4.

The 1D vertical bar relaxation can be described as follows. In order to describe a
packing of the bins with the obtained items let us introduce vertical packing patterns
in the following manner. For each 1D bin of type k ∈ Qu

x ∪{0} let Jx
k denote the index

set of all binary vectors ajk := (ajk
1 , . . . , a

jk
m) ∈ {0, 1}m with

ajk
i = 0, ∀i ∈ Iu

x ,
∑

i∈Īu
x

hia
jk
i ≤ λx

k, j ∈ Jx
k , (3.15)

where the i-th component ajk
i of the vector ajk in the case of ajk

i = 1 indicates the
j-th pattern of type k which contains one 1D item of type i ∈ I. Whether item i’s
x-coordinate is fixed, is indicated in the following model by

δi =

0, if i ∈ Iu
x ;

1, if i ∈ Īu
x .

The main idea of the approach consists in minimizing the number of used bins of
type 0. If at least a small part of that type of the bins is used then there exists no
packing of the residual items Īu

x which fit into the container.

Let us formulate the following continuous relaxation of the set-partitioning model
[KZ51, GG61, GG63] of the 1D multiple-capacity bin packing problem1 (MCBPP-1)
on vectors (3.15) and variables xjk with j ∈ Jx

k and k ∈ Qu
x ∪ {0} which indicate the

1Usually, the 1D multiple stock size cutting stock problem (MSSCSP-1) [WHS07, AV08] is consid-
ered.

84

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

intensity of usage of vertical packing patterns.

z∗
a = min

∑

j∈Jx
0

xj,0, s.t. (3.16)

qu
x∑

k=0

∑

j∈Jx
k

ajk
i x

jk = wiδi, i ∈ I; (3.17)

∑

j∈Jx
k

xjk ≤ ρx
k, k ∈ Qu

x; (3.18)

xjk ≥ 0, k ∈ Qu
x ∪ {0}, j ∈ J

x
k . (3.19)

This problem is called the vertical the bar relaxation. In the subsequent sections we
define several other types of bar relaxation.

The formulation (3.16)-(3.19) is an LP problem which is solved by the column
generation method [KZ51, GG63, GG63, AV08]. The solution process is started from
a initial set of variables (columns) which contains m variables with a large coefficient
in the objective function for each constraint (3.17), and initial dual simplex multipliers
d := (d1, . . . , dm+qu

x
) which are obtained by the execution of the simplex method on the

initial set of variables.

The restricted master problem of (3.16)-(3.19) contains variable pools for each
type of columns. Each iteration consists of the generation of a column (slave problem)
for each pool, its addition into the corresponding pool, and execution of the simplex
method on the restricted master problem.

The generation of a column is aimed to maximize the sum of the dual simplex
multipliers which is done by the solution of the following 0-1 linear programs:

c̄x
0 = 1−max{

∑

i∈Īu
x

diai :
∑

i∈Īu
x

hiai ≤ λx
0, ai ∈ {0, 1}}; (3.20)

c̄x
k = −max{dm+k +

∑

i∈Īu
x

diai :
∑

i∈Īu
x

hiai ≤ λx
k, ai ∈ {0, 1}}, k ∈ Qu

x. (3.21)

Thus, on each step qu
x + 1 slave 0-1 linear programs are solved and the column with

argmin{c̄x
0 , c̄

x
k : k ∈ Qu

x} is considered as a candidate to be appended to the correspond-
ing pool. The variables which correspond to type 0 of bins have the coefficient in the
objective function equal to 1, in contrast to the obtained ones. The column generation
process is performed as long as there exists a column which can improve the value of
the objective function. That means −c̄x

k > ǫ for some k ∈ Qu
x ∪ {0} where ǫ > 0 is a

small enough constant.

Remark 3.6. If problem (3.21) is solved by the dynamic programming method, the
obtained dynamic programming table (DPT) can be used to get the solution of (3.20)
without construction of a second DPT. So, problems (3.20), (3.21) can be solved at
once.

For the coefficient matrix of the formulation (3.16)-(3.19) refer to Table 3.1. There
exist qu

x + 1 pools of variables.

85

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

Table 3.1: Coefficient matrix of the formulation (3.16)-(3.19).

k = 1 k = 2 · · · k = qu
x k = 0

x11 · · · x|Jx
1 |,1 x12 · · · x|Jx

2 |,2 · · · x1,qu
x · · · x

|Jx
qu

x
|,qu

x x1,0 · · · x|Jx
0 |,0

a11
1 · · · a

|Jx
1 |,1

1 a12
1 · · · a

|Jx
2 |,2

1 a
1,qu

x
1 · · · a

|Jx
qu

x
|,qu

x

1 a1,0
1 · · · a

|Jx
0 |,0

1 = w1δ1
...

. . .
...

...
. . .

... · · ·
...

. . .
...

...
. . .

...
...

a11
m · · · a

|Jx
1 |,1

m a12
m · · · a

|Jx
2 |,2

m a1,qu
x

m · · · a
|Jx

qu
x

|,qu
x

m a1,0
m · · · a

|Jx
0 |,0

m = wmδm

1 · · · 1 ≤ ρx
1

1 · · · 1 ≤ ρx
2

. . .
...

1 · · · 1 ≤ ρx
qu

x

3.5.2 Horizontal bar relaxation with a monotone contour (LP1b)

Similarly to LP1a, we propose here a pruning rule which uses the information concern-
ing the fixed items which build a monotone X-contour. Herewith, it can be used with
the Contour branching strategy.

Suppose we have a monotone X-contour. Assigned to an interval [χx
k, χ

x
k+1) with

k = 1, . . . , qx
u−1, we define a horizontal block as the rectangle [0,W)×[H−λx

k, H−λ
x
k−1),

see Figure 3.8.

Definition 3.5. The k-th horizontal block corresponding to a contour Cu
x is the rect-

angle [λx
k,W)× [H − λx

k, H − λk−1), denoted by (χx
k, ω

x
k , σ

x
k) where ωx

k := W − χx
k, and

σx
k := λx

k − λ
x
k−1 if k > 1, and σx

1 := λx
1 if k = 1.

Definition 3.6. The sequence of horizontal blocks {(χx
k, ω

x
k , σ

x
k)}qu

x

k=1 is called the hori-
zontal block-structure corresponding to a contour Cu

x and denoted by Sx
=(u).

The input information for the 1D bar relaxation is constructed as follows. Each
obtained block (χx

k, ω
x
k , σ

x
k) with k ∈ Qu

x is considered as a set of bins with length ωx
k

and quantity σx
k . In addition to the obtained bins, we also consider one extra type 0 of

bins with χx
0 := 0, ωx

0 := W , σx
0 := ∞. As it was done before in Section 3.5.1 here we

consider instead of 2D items 1D items with lengths wi and quantities hi where i ∈ Īu
x

is the set of the indexes of the unfixed items.
The 1D horizontal bar relaxation can be described as follows. In order to describe

a packing of bins with obtained items let us introduce horizontal packing patterns in
the following manner. For each horizontal bin of type k ∈ Qu

x ∪ {0} let Jy
k denote the

index set of all binary vectors bjk := (bjk
1 , . . . , b

jk
m) ∈ {0, 1}m with

bjk
i = 0, ∀i ∈ Iu

x ,
∑

i∈Īu
x

wib
jk
i ≤ ωx

k , j ∈ Jy
k , (3.22)

where i-th component bjk
i of the vector bjk in the case of bjk

i = 1 indicates the j-th
pattern of type k which contains one 1D items of type i ∈ I.

The similar idea to that from Section 3.5.1 underlies the 1D horizontal bar re-
laxation. Let us formulate the following continuous relaxation of the set-partitioning

86

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

1
2

3

0

H

W

(a) Feasible 2D packing

ωx
4

ωx
3

ωx
2

ωx
1

σx
4

σx
3

σx
2

σx
1

χx
4χx

3χx
2

χx
1

xi xi

0

H

W

(b) Monotone X-contour

Figure 3.8: Horizontal bar relaxation of the partial solution in the (0, x)-direction
corresponding to a node u ∈ V with a monotone contour. Items from Iu

x = {1, 2, 3}
are marked by hatching. There exist blocks {(χx

k, ω
x
k , σ

x
k)} with k = 1, . . . , 4.

model of MCBPP-1 on vectors (3.22) and variables yjk with j ∈ Jy
k and k ∈ Qu

x ∪ {0}
which indicate the intensity of usage of horizontal packing patterns:

z∗
b = min

∑

j∈Jy
0

yj,0, s.t. (3.23)

qu
x∑

k=0

∑

j∈Jy

k

bjk
i y

jk = hiδi, i ∈ I; (3.24)

∑

j∈Jy

k

yjk ≤ σx
k , k ∈ Qu

x; (3.25)

yjk ≥ 0, k ∈ Qu
x ∪ {0}, j ∈ J

y
k . (3.26)

This problem is called the horizontal bar relaxation. It is an LP problem which is
solved by the column generation method. In order to solve the relaxation problem the
following slave 0-1 linear programs are solved:

c̄y
0 = 1−max{

∑

i∈Īu
x

diai :
∑

i∈Īu
x

wiai ≤ ωx
0 ∧ ai ∈ {0, 1}}; (3.27)

c̄y
k = −max{dm+k +

∑

i∈Īu
x

diai :
∑

i∈Īu
x

wiai ≤ ωx
k ∧ ai ∈ {0, 1}}, k ∈ Qu

x, (3.28)

where d := (d1, . . . , dm+qu
x
) is the vector of the simplex multipliers. Thus, on each step

qu
x +1 slave 0-1 linear programs are solved and the column with argmin{c̄y

0, c̄
y
k : k ∈ Qu

x}
is considered as a candidate to be appended to the corresponding pool of variables.
Remark 3.6 is also valid here.

The following statement is true.

Lemma 3.11. If z∗
a + z∗

b > ǫ, ǫ > 0 then there exists no feasible packing of items Īu
x

into container (W,H) with fixed items Iu
x .

87

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

Proof. Let us assume the opposite, z∗
a > ǫ and there exists a feasible packing. The

latter means that
∑

i∈Jx
qu

0

a
j,qu

0

i xj,qu
0 > 0 for an i ∈ I. Since the left side of the expression

is positive then from (3.17) follows that wiδi −
∑qu

x

k=1

∑
j∈Jx

k
ajk

i x
jk > 0 for an i ∈ I

which means that not all items are packed into the bins obtained from the container
through the bar relaxation. Hence, the packing is not feasible.

Remark 3.7. Both LP-based pruning rules LP1a and LP1b can be applied separately.
Then it is enough that at least one of the inequalities z∗

a > ǫ, z∗
b > ǫ is valid in order to

prune the current node.

Remark 3.8. Pruning rule LP1b can be applied only for a monotone contour as by
Contour.

In order to demonstrate Remark 3.8 let us consider the 2D packing of items 1, . . . , 7,
where items 6, 7 with w6 = w7 := 4, h6 := 2, h7 := 4 are not allocated, see Figure 3.9a.
The corresponding X-contour of the packing is depicted in Figure 3.9b. Based on theX-
contour we build the corresponding block-structure Sx

=(u) := {(2, 6, 2); (4, 4, 2); (4, 2, 2)}.
According to the above, in order to formulate the horizontal relaxation problem, we
consider these blocks as 1D bins together with bins type 0: χx

0 := 0, ωx
0 := W , σx

0 :=∞.

1

2

3

4

7

6

5

0

H

W

(a) 2D packing

1 4 5

1 4 5

1 2 5

1 2 5

2 3

2 3

3

3

ωx
3

ωx
2

ωx
1

χx
1 χx

2 = χx
3

0

H

W

(b) X-contour

Figure 3.9: Horizontal bar relaxation of the partial solution in the (0, x)-direction
corresponding to a node u ∈ V . Non-monotone X-contour. Iu

x := {1, . . . , 5}, Īu
x :=

{6, 7}.

With accordance to Lemma 3.11, items with length 4 and quantity 6 must be packed
into bins of the first three types so that a packing exists. The number of bins with the
length greater than or equal to 4 is 4 but we need 6. Herewith, z∗

b > ǫ. So, in the case
of non-monotone contour the current node will be pruned despite the fact that there
exists the corresponding 2D packing which fits into the container.

3.5.3 Horizontal bar relaxation with any contour (LP1c)

In order to apply the horizontal bar relaxation as in LP1b also in the case when no
monotone X-contour is given we consider another approach. This approach can be

88

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

applied with FixMin and FixMinR. In this approach we use both the information
concerning the x-coordinate of the fixed items Iu

x and the information concerning the
domain of the variables which are not fixed.

In FixMin and FixMinR, item i∗ ∈ argmin{wihi : i ∈ I} is fixed foremost.
Herewith, i∗ ∈ Iu

x for any node u ∈ V where at least one item is fixed. The information
concerning x-coordinate of i∗ is used in order to define a horizontal bar relaxation.
Here we consider only a reduced contour which consist of item i∗. If 0 < xi∗ < W −wi∗

then at most three blocks result, see Figure 3.10b. So, let {(χx
k, ω

x
k , σ

x
k)}3

k=1 be the
resulting horizontal blocks where χx

1 = χx
2 := 0, χx

3 := xi∗ + wi∗ , ωx
1 := W , ωx

2 := xi∗ ,
ωx

3 := W − xi∗ − wi∗ , σx
1 := H − hi∗ , σx

2 := σx
3 = hi∗ .

We obtain the input information for the 1D bar relaxation as follows. Each block k
is considered as a set of bins with length ωx

k and quantity σx
k together with extra type

4 of bins of length W and unlimited quantity, i.e., χx
4 = 0, ωx

4 = W , σx
4 =∞. Instead

of 2D items we consider 1D items of lengths wi and quantities hi where i ∈ Īu
x .

1
i∗

2

3

0

H

W

(a) 2D packing

i∗

i∗

i∗

i∗

ωx
2 ωx

3

ωx
1

σx
2 = σx

3

σx
1

χx
1 = χx

2 χx
3

xi xi

0

H

W

(b) Partial X-contour

Figure 3.10: Horizontal bar relaxation of the partial solution corresponding to a node
u ∈ V with a non-monotone contour. There exist horizontal blocks {(χx

k, ω
x
k , σ

x
k)}3

k=1.

Principally, the proposed approach is similar to LP1b but it is tightened by the
following observation. Since the allocation of items from Īx

u is restricted by intervals
[xi, xi], the approach can be tightened by generalization of the meaning of constraints
(3.1): If two items i 6= j overlap in their x-projections then their y-projections must
not overlap. It is true for fixed items and unfixed items with obligatory overlapping
parts as well. For that reason let θx

i and θy
i with i ∈ I be defined by

θx
i :=

1, if xi + wi − xi > 0;

0, otherwise,
θy

i :=

1, if y
i
+ hi − yi > 0;

0, otherwise.

θy
i we define here but we will use it later in Section 3.5.5. Let

P u
x := {(i, j) ∈ I × I : i < j, θx

i = 1, xi < xj + wj, xj < xi + wi}

be the set of item pairs which overlap in the (0, x)-direction. Then projections of any
pair from P u

x must not overlap in the (0, y)-direction.

89

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

The 1D horizontal bar relaxation of another type can be described as follows. In
order to describe horizontal packing patterns with P u

x taken into account let us redefine
binary vectors (3.22) in the following manner. For each horizontal bin of type k =
1, . . . , 4, let Jy

k denote the index set of all binary vectors bjk = (bjk
1 , . . . , b

jk
m) ∈ {0, 1}m

with

bjk
i∗ = 0, bjk

i = 0, ∀i ∈ I : (min{i∗, i},max{i∗, i}) ∈ P u
x , k = 2, 3,

∑

i∈I\{i∗}

wib
jk
i ≤ ωx

k , bjk
f + bjk

g ≤ 1, (f, g) ∈ P u
x , j ∈ Jy

k , (3.29)

where i-th component bjk
i of vector bjk in the case of bjk

i = 1 indicates the j-th pattern
of type k which contains one 1D item of type i ∈ I. Note that we also exclude items
from the patterns type 2 and 3 whose x-projections overlap with the x-projection of
item i∗.

The main idea of the approach is the same as in LP1a and LP1b. Let us formulate
the following relaxation problem of MCBPP-1 on vectors (3.29) and variables yjk with
j ∈ Jx

k and k = 0, . . . , 3:

z∗
c = min

∑

j∈Jy
0

yj,0, s.t. (3.30)

3∑

k=0

∑

j∈Jy

k

bj,k
i yj,k = hi, i ∈ I\{i∗}; (3.31)

∑

j∈Jy

k

yjk ≤ σx
k , k = 1, . . . , 3; (3.32)

yjk ≥ 0, k = 0, . . . , 3, j ∈ Jy
k . (3.33)

The formulation (3.30)-(3.33) is an LP problem which is solved by the column
generation method. In order to solve the relaxation problem the following slave 0-1
linear programs are solved:

c̄y
0 = 1−max{

∑

i∈I\{i∗}

diai :
∑

i∈I\{i∗}

wiai ≤ W, ai ∈ {0, 1}}, (3.34)

c̄y
1 = −max{dm +

∑

i∈I\{i∗}

diai :
∑

i∈I\{i∗}

wiai ≤ ωx
k , af + ag ≤ 1,

(f, g) ∈ P u
x , ai ∈ {0, 1}}; (3.35)

c̄y
k = −max{dm−1+k +

∑

i∈(I\{i∗})\P

diai :
∑

i∈(I\{i∗})\P

wiai ≤ ωx
k , af + ag ≤ 1,

(f, g) ∈ P u
x , ai ∈ {0, 1}}, k = 2, 3; (3.36)

where P := {i ∈ I : (min{i∗, i},max{i∗, i}) ∈ P u
x } is the set of items whose x-

projections overlap with the x-projection of item i∗.

Lemma 3.12. If z∗
c > ǫ, ǫ > 0 then there exists no feasible packing of the items Īu

x

into container (W,H) with the fixed items Iu
x .

Lemma 3.13. LP-based pruning rule LP1c can be applied for any X-contour.

Remark 3.9. Pruning rules LP1a-LP1c can be defined also for Y -contour.

90

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

3.5.4 Intervals (LP-int)

In pruning rules LP1a and LP1b we did not exploit the information about the domain of
variables. In the case of LP1c the domains of variables were used in order to obtain the
set of forbidden pairs P u

x which was used in the slave problems. Here we propose further
improvements of the proposed pruning rules which exploit the domain of variables, i.e.,
the results of the constraint propagation procedure.

Let us consider the vertical bar relaxation from Section 3.5.1. The improvements
are the following. Since each variable g ∈ X can be fixed only within its domain
[g, g] ∩ Z then not every item from Īu

x can be packed in an arbitrary block. So, for a
block we obtain the set of items which can be packed into the block. Let us define the
set of items which can be packed into bins of type k by

Ix
k := {i ∈ Īu

x : xi + wi > χx
k ∧ xi < χx

k + ρx
k}, k ∈ Qu

x,

so, that Ix
0 := Īu

x , i.e., items from Īu
x can be packed into bins of type 0.

Let ajk
i = 0, ∀i ∈ Īu

x\I
x
k with j ∈ Jx

k , k ∈ Qu
x, hold for vectors (3.15). Then

we tighten LP-based pruning rule LP1a by introducing the following slave 0-1 linear
programs:

c̄x
k = −max{dm+k +

∑

i∈Ix
k

diai :
∑

i∈Ix
k

hiai ≤ λx
k, ai ∈ {0, 1}}, k ∈ Qu

x. (3.37)

The difference to (3.20) lies in the set of items over which the 0-1 linear programs are
defined, Īu

x for (3.20) and Ix
k for (3.37).

Remark 3.10. Pruning rule LP1a for the Y -contour can be tighten in a similar way
based on the domain of variables from Y .

Another improvement can be obtained through the further division of blocks. For
instance, in the case of vertical bar relaxation, if we have for an item i ∈ Ix

k that
χx

k < xi + wi < χx
k + ρx

k then it should occur in vertical bins at most xi + wi − χx
k

times. Even better is to divide the k-th block into two blocks (χx
k, λ

x
k, xi + wi − χx

k),
(xi + wi, λ

x
k, χk+1 − xi − wi) with different sets Ix

k .

In this way, a more detailed information from the partial solution, corresponding
to u ∈ V , is used. That leads in general to MCBPP-1 with more bin types but a more
tightened pruning rule for OPP.

3.5.5 Forbidden pairs (LP-pair)

This LP-based pruning rule is a generalization of LP1a. It can be used with all strate-
gies, but especially with Disjunctive. Therefore, the further description is oriented
on the application with Disjunctive. The modifications for the other branching
strategies are obvious.

The proposed pruning rule is similar to LP1c. Here we consider bar relaxations in
the (0, x)- and (0, y)-directions. Depending on the direction we forbid certain pairs to

91

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

appear in the packing patterns. One set of pairs can be obtained from the information
concerning the fixed mutual relations as follows:

F u
x := {(i, j) ∈ I × I : i < j ∧Rij ⊆ {l, r}, Rij ∈ R(u)};

F u
y := {(i, j) ∈ I × I : i < j ∧ Rij ⊆ {b, t}, Rij ∈ R(u)}.

Set F u
x contains item pairs which have possible mutual relation that can be assigned to

the left or to the right, and F u
y item pairs that can be assigned to the bottom or the top.

So, projections of items in a pair (i, j) ∈ F u
x must not overlap over the (0, x)-direction,

and (i, j) ∈ F u
y over the (0, y)-direction.

The second and the third set of pairs are obtained from the following observations.
As it follows from inequalities (3.1), if two items i, j ∈ I overlap in the (0, x)-direction,
i.e., (i, j) ∈ P u

x then these items must not overlap in the (0, y)-direction and vice versa.
Let

P u
y := {(i, j) ∈ I × I : i < j, θy

i = 1, yi < y
j

+ hj , yj < y
i
+ hi}

be the set of item pairs which overlap in the (0, y)-direction. The definitions of P u
x and

θy
i were given in Section 3.5.4. From the other hand, if the domains of two items do

not overlap, i.e.,

Gu
x := {(i, j) ∈ I × I : i < j, (xj ≥ xi + wi ∨ xi ≥ xj + wj)},

Gu
y := {(i, j) ∈ I × I : i < j, (y

j
≥ yi + hi ∨ yi

≥ yj + hj)},

then these items cannot overlap over the (0, x)-, (0, y)-directions, respectively.
The input information for the bar relaxations is constructed as follows. Container

(W,H) is considered as a set of 1D bins with length H and quantity W . Instead of 2D
items (wi, hi) we consider 1D items with lengths hi and quantities wi where i ∈ I is the
set of item indexes. Similarly, we define the bar relaxation for the other direction, i.e.,
1D bins with length W and quantity H , and 1D items with lengths wi and quantities
hi are obtained where i ∈ I.

In order to describe the bar relaxations we define vertical and horizontal packing
patterns by analogy to vectors (3.15) and (3.22) from Sections 3.5.1, 3.5.2. Let for each
vertical bin, Jx denote the index set of binary vectors aj = (aj

1, . . . , a
j
m) ∈ {0, 1}m with

∑

i∈I

hia
j
i ≤ H, aj

f + aj
g ≤ 1, (f, g) ∈ F u

1 ∪ P
u
y ∪G

u
x, j ∈ Jx, (3.38)

and let for horizontal bins, Jy denote the index set of binary vectors bj = (bj
1, . . . , b

j
m) ∈

{0, 1}m with

∑

i∈I

wib
j
i ≤W, bj

f + bj
g ≤ 1, (f, g) ∈ F u

2 ∪ P
u
x ∪G

u
y , j ∈ Jy. (3.39)

The similar idea from Section 3.5.1 underlies the following bar relaxations. Let us
formulate the following continuous relaxation of the set-partitioning model of MCBPP-
1 on vectors (3.38), (3.39) and variables xj with j ∈ Jx and yj with j ∈ J j which
indicate the intensity of usage of vertical and horizontal packing patterns, respectively:

92

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

z∗
‖ =

∑

j∈Jx

xj → min, (3.40)

∑

j∈Jx

aj
ix

j = wi, i ∈ I; (3.41)

xj
i ≥ 0, i ∈ I, j ∈ Jx. (3.42)

z∗
= =

∑

j∈Jy

yj → min, (3.43)

∑

j∈Jy

bj
iy

j = hi, i ∈ I; (3.44)

yj
i ≥ 0, i ∈ I, j ∈ Jy. (3.45)

The formulations (3.40)-(3.42) and (3.43)-(3.45) are LP problems which are solved
by the column generation method. In order to solve the relaxation problems the fol-
lowing slave 0-1 linear problems are solved:

c̄x = 1−max{
∑

i∈I

diai :
∑

i∈I

hiai ≤ H, af + ag ≤ 1,

(f, g) ∈ F u
1 ∪ P

u
y ∪ G

u
x, ai ∈ {0, 1}}, (3.46)

c̄y = 1−max{
∑

i∈I

dibi :
∑

i∈I

wibi ≤W, bf + bg ≤ 1,

(f, g) ∈ F u
2 ∪ P

u
x ∪ G

u
y , bi ∈ {0, 1}}, (3.47)

where d := (d1, . . . , dm) is the vector of the simplex multipliers. The following statement
is true.

Lemma 3.14. If for an ǫ > 0 z∗
‖ + ǫ > W ∨ z∗

= + ǫ > H then there exists no feasible
packing of items I into container (W,H).

3.5.6 Forbidden pairs and intervals (LP-int-pair)

The constraint propagation procedure provides information concerning the domains of
the variables. This information was indirectly used in pruning rules LP1c, LP-int, LP-
pair in order to obtain the set of overlapping items or to define the sets of items, which
can be packed into the certain blocks, or to define precisely the sizes of blocks. In the
proposed approach this information is directly used in slave problems of the column
generation method. Herewith, this approach can be considered as an improvement of
LP-pair.

Suppose we have the feasible intervals of values which can be assigned to variables
X. So, while we generate the columns through solution of slave problem (3.47), the
position of the items in the patterns is restricted by that intervals. That condition we
impose in the slave problems of the column generation method. Similar considerations
are also valid for intervals of Y and slave problem (3.46).

Let l be the vector of items sizes, i.e., l := w or l := h, respectively, L the knapsack
capacity, P the set of forbidden pairs of items, [zi, zi] the interval of feasible coordinates
of item i ∈ I, and d the vector of simplex multipliers. Let designate the following

93

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

generalized 0-1 knapsack problem by KP (l, d, L, P, [z1, z1], . . . , [zm, zm]):
∑

i∈I

diγi → max, (3.48)

∑

i∈I

liγi ≤ L, (3.49)

ziγi ≤ zi ≤ ziγi, i ∈ I; (3.50)

zi + li ≤ zj + L(1− uij), ∀i, j ∈ I : i < j; (3.51)

zj + lj ≤ zi + L(1− uji), ∀i, j ∈ I : i < j; (3.52)

uij + uji ≤ γi, i ∈ I; (3.53)

γi + γj ≤ 1 + uij + uji, ∀i, j ∈ I : i 6= j; (3.54)

γi + γj ≤ 1, (i, j) ∈ P ; (3.55)

γi, uij ∈ {0, 1}, ∀i, j ∈ I : i 6= j. (3.56)

The model (3.48)-(3.56) is a simplification for the 1D case of the Padberg model [Pad00]
for orthogonal packing. (3.49) is not relevant for the feasibility of the solution but
improves the solution time for the problem.

Hereby, the LP problems (3.40)-(3.42) and (3.43)-(3.45) are solved by the col-
umn generation method based not on the slave problems (3.46) and (3.47), but on
KP (h, d,H , P u

y , [y1
, y1], . . . , [ym

, ym]) and KP (w, d,W, P u
x , [x1, x1], . . . , [xm, xm]). Let

k∗
x and k∗

y designate the values of an optimal solution of the former and the latter
problems. The column generation is performed until −1 + k∗

x < ǫ and −1 + k∗
y < ǫ,

respectively. Lemma 3.14 holds here.

3.5.7 Advanced bar relaxation with a monotone contour (LP-

advanced)

In this section we consider improvements of the pruning rules LP1a and LP1b. There-
fore, it can be used with Contour. Let be given a monotone X-contour and corre-
sponding block-structures Sx

‖ (u), Sx
=(u). Based on the obtained information we con-

sider both vertical and horizontal bar relaxations as in LP1a and LP1b together as a
single problem. The single LP problem is tightened by connecting constraints which
are explained further.

Let us consider Figure 3.11 in order to describe the approach. From geometric
considerations, the area of an item i ∈ I which is packed in the first vertical block
(χx

1, λ
x
1 , ρ

x
1), i.e., hi

∑
j∈Jx

1
aj1

i x
j1, see Figure 3.11b, is obviously less or equal to the area

of this item which is packed into horizontal block (χx
1 , ω

x
1 , σ

x
1), i.e., wi

∑
j∈Jy

1
bj1

i y
j1, see

Figure 3.11c. Furthermore, the sum of areas of an item which is packed in vertical
blocks {(χx

k, λ
x
k, ρ

x
k)} with k = 1, 2 is less or equal to the area of this item which is

packed into horizontal blocks {(χx
k, ω

x
k , σ

x
k)} with k = 1, 2, etc.

From the other hand, the area of an item which is packed into horizontal block
(χx

qu
x
, ωx

qu
x
, σx

qu
x
), is less or equal to the area of this item which is packed into vertical

block (χx
qu

x
, λx

qu
x
, ρx

qu
x
). Furthermore, the sum of areas of an item which is packed into

horizontal blocks {(χx
k, ω

x
k , σ

x
k)} with k = qu

x , q
u
x − 1 is less or equal to the area of this

item which is packed into vertical blocks {(χx
k, λ

x
k, ρ

x
k)} with k = qu

x , q
u
x − 1, etc.

94

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

1
2

3

0

H

W

(a) Feasible 2D packing

λx
1

λx
2

λx
3

λx
4

χx
1 χx

2 χx
3 χx

4

xi xi

0

H

W

(b) Monotone X-contour: Vertical
blocks

ωx
4

ωx
3

ωx
2

ωx
1

χx
4χx

3χx
2

χx
1

xi xi

0

H

W

(c) Monotone X-contour: Horizon-
tal blocks

Figure 3.11: Advanced bar relaxation of the partial solution in the (0, x)-direction
corresponding to a node u ∈ V with a monotone contour. Items from Iu

x := {1, 2, 3} are
marked by hatching. There exist vertical {(χx

k, λ
x
k, ρ

x
k)} and horizontal {(χx

k, ω
x
k , σ

x
k)}

blocks with k = 1, . . . , 4.

Based on the above geometric observations we can tighten the relaxation problem
by addition of the connection constraints. Let us formulate the following relaxation
problem of MCBPP-1 on vectors (3.15), (3.22) and variables xjk with j ∈ Jx

k , yjk with
j ∈ Jy

k , k ∈ Qu
x ∪ {0}.

95

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.5. Advanced constraint propagation

z∗
d = min

∑

j∈Jx
0

xj,0 +
∑

j∈Jy
0

yj,0, s.t. (3.57)

qu
x∑

k=0

∑

j∈Jx
k

ajk
i x

jk = wiδi, i ∈ I; (3.58)

qu
x∑

k=0

∑

j∈Jy

k

bjk
i y

jk = hiδi, i ∈ I; (3.59)

∑

j∈Jx
k

xjk ≤ ρx
k , k ∈ Qu

x; (3.60)

∑

j∈Jy

k

yjk ≤ σx
k , k ∈ Qu

x; (3.61)

hi

s∑

k=1

∑

j∈Jx
k

ajk
i x

jk ≤ wi

s∑

k=1

∑

j∈Jy

k

bjk
i y

jk, i ∈
s⋃

k=1

Ix
k , s ∈ {1, . . . , s̄}; (3.62)

hi

qu
x∑

k=s

∑

j∈Jx
k

ajk
i x

jk ≥ wi

qu
x∑

k=s

∑

j∈Jy

k

bjk
i y

jk, i ∈
qu

x⋃

k=s

Ix
k , s ∈ {1, . . . , s̄}; (3.63)

xjk ≥ 0, j ∈ Jx
k , k ∈ Q

u
x ∪ {0}; (3.64)

yjk ≥ 0, j ∈ Jy
k , k ∈ Q

u
x ∪ {0}; (3.65)

The formulation (3.57)-(3.65) is an LP problem which is solved by the column
generation method. Let ψi

k and φi
k be defined by

ψk
1 :=

1, if i ≥ k;

0, if i < k;
φi

k :=

1, if i ≥ k − qu
x +m;

0, if i < k − qu
x +m.

In order to solve the relaxation problem the following slave 0-1 linear programs are
solved:

c̄x
0 = 1−max{

∑

i∈Īu
x

diai :
∑

i∈Īu
x

hiai ≤ λx
0, ai ∈ {0, 1}}, (3.66)

c̄y
0 = 1−max{

∑

i∈Īu
x

dm+iai :
∑

i∈Īu
x

wiai ≤ ωx
0 , ai ∈ {0, 1}}, (3.67)

c̄x
k = −max{d2m+k +

∑

i∈Ix
k

(di + ψi
kdi+2m+2qu

x
+ φi

kdi+3m+2qu
x
)ai :

∑

i∈Ix
k

hiai ≤ λx
k, ai ∈ {0, 1}}, k ∈ Q

u
x, (3.68)

c̄y
k = −max{d2m+qu

x+k +
∑

i∈Iy

k

(di+m + ψi
kdi+2m+qu

x
+ φi

kdi+3m+2qu
x
)ai :

∑

i∈Iy

k

wiai ≤ ωx
k , ai ∈ {0, 1}}, k ∈ Q

u
x. (3.69)

96

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

where d := (d1, . . . , d4m+2qu
x
) is the vector of the simplex multipliers. Thus, on each

step 2(qu
x + 1) slave 0-1 linear problems are solved and the column with argmin{c̄x

0 ,
c̄y

0, c̄x
k, c̄y

k: k ∈ Qu
x} is considered as a candidate to be appended to the corresponding

variable pool.
Herewith, there are 2(qu

x + 1) pools of variables which corresponds to each type of
vertical and horizontal bins, see Table 3.2.

Table 3.2: Coefficient matrix of the formulation (3.57)-(3.65).

k = 1 · · · k = qu
x k = 0 k = 1 · · · k = qu

x k = 0
xj1 · · · xj,qu

x xj,0 yj1 · · · yj,qu
x yj,0

aj1
1 · · · a

j,qu
x

1 aj,0
1 = w1δ1

...
. . .

...
...

...
aj1

m · · · aj,qu
x

m aj,0
m = wmδm

bj1
1 · · · b

j,qu
x

1 bj,0
1 = h1δ1

...
. . .

...
...

...
bj1

m · · · bj,qu
x

m bj,0
m = hmδm

1 ≤ ρx
1

. . .
...

1 ≤ ρx
qu

x

1 ≤ σx
1

. . .
...

1 ≤ σx
qu

x

h1ψ
1
1a

j1
1 · · · h1ψ

qu
x

1 a
j,qu

x
1 -w1ψ

1
1b

j1
1 · · · -w1ψ

qu
x

1 b
j,qu

x
1 ≤ 0

...
. . .

...
...

. . .
...

...
hmψ

1
ma

j1
m · · · hmψ

qu
x

m a
j,qu

x
m -wmψ

1
mb

j1
m · · · -wmψ

qu
x

m b
j,qu

x
m ≤ 0

h1φ
1
1a

j1
1 · · · h1φ

qu
x

1 a
j,qu

x
1 -w1φ

1
1b

j1
1 · · · -w1φ

qu
x

1 b
j,qu

x
1 ≥ 0

...
. . .

...
...

. . .
...

...
hmφ

1
ma

j1
m · · · hmφ

qu
x

m a
j,qu

x
m -wmφ

1
mb

j1
m · · · -wmφ

qu
x

m b
j,qu

x
m ≥ 0

The following statement is true.

Lemma 3.15. If z∗
d ≥ ǫ, ǫ > 0 then there exists no feasible packing of items Īu

x into
container (W,H) with fixed items Iu

x .

Remark 3.11. Pruning rule LP-advanced can be tightened by the LP-int approach.

3.6 Numerical study

In this section we discuss numerical experiments for both pure OPP-2 instances from
different sources and SPP-2 instances.

The algorithm was implemented as a single-threaded application in C++ based on
Visual Studio 2008, compiler version 9.0.30729, on an AMD Athlon 64 Dual Core 4200+

97

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

(2.2 GHz) CPU. IBM ILOG CPLEX 12.1 was used as an LP and ILP solver. ILOG CP
1.6 with ILOG Scheduler 6.8 was used as a constraint programming framework. The
test instances, detailed results and source code are available on the CaPaD website2.

The slave problems (3.20)-(3.21), (3.27)-(3.28), and (3.37) were solved by the dy-
namic programming approach with strong bounds [MPT99], implementation of which
was taken from the personal website3 of D. Pisinger. Slave problems (3.34)-(3.36),
(3.46)-(3.47) were solved as the 0-1 knapsack problem with forbidden pairs of items by
our own implementation of a branch-and-bound approach. Slave problem (3.48)-(3.56)
was solved as an ILP problem by the CPLEX software.

Time limit for each instance and method was set to 900 seconds. Here we consider
results for all described branching strategies and the interval graph algorithm from
[BR13]. Note, that we can compare the number of nodes only for the algorithms from
a common group, i.e., FixMin, FixMinR, Contour, Dichotomy, and Interval.
The latter algorithms, interval graph algorithm [BR13], and Disjunctive can be com-
pared with each other on the percentage of the solved instances and solution time. In
Tables 3.3–3.7 the number of nodes and time are the mean values over solved instances.
From a rational number we take only the integer part without rounding.

3.6.1 OPP-2 instances of Clautiaux et al.

The set of 42 instances [CJM08] of OPP-2 is divided into 15 feasible (F) and 27 infeasi-
ble (N) instances. For each instance, the container is a square 20× 20 and the number
of items 10 ≤ m ≤ 23. The name of instances has form wwSm, where ww is the
percentage of waste, S ∈ {F,N,X}, X is a designation of an instance with unknown
solution for the time, when the instances were published.

The problems were generated as follows. Four parameters W,H,m ∈ Z+, ww ∈
{0, 1} are initialized. Then numbers n1, . . . , nm ∈ Z+ are generated so that

∑m
i=1 ni =

WH(1− ww) ∈ Z+. From the obtained numbers, items (wi, hi) are generated so, that
wi is random and hi is determined by wi. All mentioned distributions are uniform.
The generation process for an instance is performed until an "interesting" instance is
generated. An instance is of interest, if a simple heuristic and a DFF-based lower
bound are not able to determine whether the problem is feasible or not.

Columns A, B of Table 3.3 report results of the original and transposed instances
from [CJM08] divided into feasible and infeasible ones. Column s.% indicates the
percentage of solved instances; n indicates the number of nodes which were used in
order to obtain the solution; t indicates the total time for the solution (in seconds).

Obviously, the number of nodes for solution in the case with raster points must be
less or equal than without them. For the infeasible instances of this set, the number
of nodes for both FixMin and FixMinR is equal, since each coordinate t = 0, . . . , 19:
r ∈ R̃y(20). If we transpose the instances (swap width and height) then the number
of nodes for solution changes. Herewith, the selection of the dimension, for which
the assignment is performed firstly is essential. The selection criteria for the primal
direction is not yet clear. We have tested also the efficiency of the branching strategies

2http://www.math.tu-dresden.de/∼capad
3http://www.diku.dk/∼pisinger

98

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

Table 3.3: Instances from [CJM08]: Comparison of the efficiency of the branching
strategies with LP-based pruning rules. The numbers marked by a star are the mean
values over instances which were solved by FixMin, FixMinR, Dichotomy(c), and
Dichotomy(i) branching strategies. Instances: A–original; B–transposed.

A B
Algorithm Infeasible Feasible Infeasible Feasible

s.% n t s.% n t s.% n t s.% n t

FixMin 100 804 1 100 714 0 100 81642 57 100 1446 0
*34679 *27

FixMin+SS3 100 545 1 100 714 0 96 30594 29 100 1440 0
FixMinR 100 804 1 100 504 0 100 62528 45 100 943 0

*33707 *27
FixMinR+SS3 100 545 1 100 504 0 100 56909 48 100 941 0

*29622 *28
FixMinR+LP1 100 241 1 100 500 0 96 178 1 100 940 1
FixMinR+LP-int 100 177 4 100 492 1 96 177 1 100 937 1
Dichotomy(c) 100 704 1 100 440 0 100 49245 36 100 738 0

*30629 *24
Dichotomy(c)+LP1 100 189 1 100 436 0 96 139 1 100 735 1
Dichotomy(c)+LP-int 100 118 3 100 430 1 96 136 1 100 734 1
Dichotomy(i) 100 708 1 100 439 0 100 38658 29 100 1041 0

*21406 *18
Dichotomy(i)+LP1 100 199 1 100 435 0 96 139 1 100 1039 1
Dichotomy(i)+LP-int 100 115 3 100 429 1 96 135 1 100 1037 1
Contour 89 120225 34 100 4209 1 63 149147 45 100 157508 19
Contour+LP1 89 13494 31 100 4089 1 67 33687 118 100 154526 43
Contour+LP-int 67 675 36 100 4022 3 58 1050 171 100 153378 49
Contour+LP-advanced 67 598 40 100 4001 3 58 1029 170 100 153130 51
Interval 96 31466 33 100 1900 0 100 32031 24 100 17911 2
Interval+LP1 96 420 1 100 1709 2 96 70 0 100 17802 8
Interval+LP-int 96 305 2 100 1692 3 96 70 0 100 17798 8
Disjunctive 100 471343 21 100 2790 0 93 4083 0 100 977 0
Disjunctive+LP-pair 100 3029 3 100 591 0 96 57 0 100 864 0
Disjunctive+LP-int-pair 96 95 36 100 401 204 96 47 63 100 849 258
Partition 100 690216 30 100 2916 0 93 4758 0 100 868 0
Partition+LP-pair 100 3772 3 100 620 0 96 109 0 100 758 0
Partition+LP-int-pair 96 162 30 100 410 172 96 98 36 100 747 228
Algorithm [BR13] 96 948 3 100 32 0 96 184 0 100 814 3

with raster points through the enlargement of the physical sizes of the container. If we
multiply a dimension of items by 211 then the original method is able to solve only the
half of them in contrast to the branching strategies with raster points, which solves all
the enlarged instances.

On average, see Table 3.3, Dichotomy is better than FixMin or even FixMinR
with respect to the number of nodes and solution time. LP1 designates the usage of
LP1a and LP1b for Contour, and LP1a and LP1c for the other strategies. Disjunc-
tive becomes especially better for infeasible instances at the cost of slightly increased
time, if LP pruning rules are applied.

99

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

3.6.2 Self-generated OPP-2 instances

We have tested the algorithms according to two scenarios. In the first one, the test set,
containing 630 instances of OPP-2, both infeasible and feasible ones as well, is divided
into three classes with different maximal items side ratios rmax, i.e., rmax = 1, 3, 20.
Each of these classes is further divided into subclasses according to the waste ratio
from 0 to 40 with step 2. Table 3.4 reports results only for packing waste ratios from
0 to 10 with step 2 and from 10 to 40 with step 10, i.e., for 270 instances. Container
is a square with side length 1000. Number of items m = 20.

In the second scenario, the test set contains 450 instances and is divided into five
classes with different number of items for an instance from 10 to 30 with step 5. Here
we present the results for the instances with at least 15 items. For the complete results
refer to the CaPaD website4. Each class is divided into subclasses as in the first scenario,
see Table 3.6. For each of the 450 instances, the ratio of item sides is at most 2.

Every instance was generated [BR13, BKRS13] as follows. The total volume of the
items 109(1−e), where e is the waste volume (%), is separated into m intervals by m−1
uniformly distributed numbers z1, . . . , zm−1 in (0, 109(1−e)). The numbers z1, . . . , zm−1

are sorted and item volumes are set as follows: v1 = z1, vm = 109(1 − e) − zm−1 and
vi = zi − zi−1 for i = 2, . . . , m − 1. If ratio vi/vj of the volumes of some two items
i, j ∈ I was greater than 8000 then the generation procedure restarted. To obtain both
sides of an item, its volume vi, i = 1, . . . , m is factorized with the help of two random
numbers a1 and a2, whose sum is 2. These numbers are calculated in the same way as
the volumes. The sides of item i are set wi = ⌊va1/2

i ⌋ and hi = ⌊va2/2
i ⌋. If item i is in

one dimension larger than 1000 or rmax times the length of another side then volume
vi is factorized again.

The second part of Table 3.4 reports results for the original method [CJM08],
but equipped with raster points, i.e., FixMinR branching strategy, and Dichotomy
branching strategy. Both have almost the same effectiveness, Dichotomy solves 38%
(105) of instances FixMinR solves 38% (103). Moreover Dichotomy solves the men-
tioned instances and needs thereby on 20% less nodes and time than FixMinR. From
the set of 630 instances 310 (49%) were solved by FixMinR, 24 were proven as infea-
sible, and 286 were proven as feasible. Dichotomy has solved 328 instances (52%),
where 24 were proven as infeasible, and 304 as feasible. For the results on the restricted
set of instances refer to Table 3.4.

The last part of the table reports results for Disjunctive branching strategy
and that with the LP bounds LP-pair. Both have the same effectiveness about 91%
(Disjunctive – 247, Disjunctive+LP-Pair – 247) which is clearly higher than of
those of FixMinR and Dichotomy. The application of LP bounds in Disjunc-
tive, i.e., Disjunctive+LP-pair, reduces the number of processed nodes and solu-
tion time by almost 12%. From the set of 630 instances 607 (96%) were solved by
Disjunctive+LP-pair, 58 were proven as infeasible, and 549 as feasible in contrast to
Disjunctive which has solved on 1 instance less.

All instances with smaller waste ratio were very hard to solve for all strategies.
The most difficult were instances with the maximal side ratio 1. Only a half of such

4http://www.math.tu-dresden.de/∼capad

100

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

Table 3.4: Self-generated instances: Comparison of the efficiency of the branching
strategies. Number of instances is 630, W = H = 1000, m=20, maximal side ratio
rmax = 1, 3, 20. The column w.% is the waste ratio (%), s.% is the amount of solved
instances (%). The column n indicates the number of nodes which were used in order
to obtain the solution, t indicates the total time for the solution (in seconds). Al-
gorithms: A–algorithm from [BR13]; B–FixMinR; C–Dichotomy; D–Disjunctive;
E–Disjunctive+LP-pair.

A B C D E
rmax w.% s.% n t s.% n t s.% n t s.% n t s.% n t

1 0 90 1855 4 0 - - 0 - - 50 3623133 289 50 3568171 314
2 20 1 0 0 - - 0 - - 30 5701880 411 30 5455373 469
4 0 - - 0 - - 0 - - 90 2522761 171 90 2504440 183
6 60 29255 105 40 165192 13 40 74343 6 80 609380 39 80 608416 43
8 100 5583 16 40 1206280 113 40 429878 43 100 41719 3 100 41719 3

10 100 2306 7 30 279 0 30 8449 1 100 168 0 100 168 1
20 100 214 2 60 92101 7 60 23124 3 100 176 0 100 176 1
30 100 172 2 60 212355 21 60 138020 16 100 194 0 100 194 1
40 100 116 2 50 3398 0 50 305 1 100 180 0 100 180 1

74 4937 17 31 279934 25 31 - - 83 1388843 101 83 1353204 112
3 0 100 1 0 0 - - 0 - - 60 2176138 171 70 237328 22

2 0 - - 0 - - 0 - - 60 448942 33 60 446017 39
4 30 35169 110 10 184 1 10 116 1 100 704760 52 100 703702 57
6 80 31970 103 0 - - 0 - - 100 861460 53 100 859324 63
8 100 3225 9 40 1107017 65 50 2591289 101 100 32874 2 100 32819 3

10 100 1300 5 80 1206821 78 80 258292 45 100 187 0 100 187 1
20 100 246 2 80 629079 26 80 68125 4 100 175 0 100 175 1
30 100 127 2 80 128507 5 80 22565 1 100 169 1 100 169 1
40 100 136 2 70 1971 0 80 1940345 112 100 189 1 100 189 1

78 9021 29 40 512262 28 42 813455 43 91 469432 34 92 253323 20
20 0 100 1 0 30 1 0 30 1 0 100 15204 2 100 11371 2

2 60 9052 23 20 1 0 20 1 0 90 61291 8 90 61006 9
4 60 23814 65 40 1 0 50 17619 91 100 630827 56 100 630738 60
6 100 15080 40 30 1105395 142 30 25955 12 100 1495 1 100 1495 1
8 100 6145 16 30 11756 1 20 11 0 100 264 1 100 264 1

10 100 519 3 50 908657 57 50 269729 25 100 1712 1 100 1712 1
20 100 182 1 80 207698 10 80 45322 3 100 323 1 100 322 1
30 100 120 1 40 134203 7 40 27043 3 100 142 1 100 142 1
40 100 131 2 70 450004 29 70 59623 5 100 164 1 100 164 1

91 6116 16 43 313079 27 43 49478 15 98 79046 7 98 78579 8
Mean: 81 6668 20 38 360518 27 38 285721 22 91 645774 48 91 561702 47

instances were solved by Disjunctive and Disjunctive+LP-pair, and none of them
by FixMinR and Dichotomy. The same tendency we observe for the second set of
test instances, see Table 3.6.

The effectiveness of Disjunctive and Disjunctive+LP-pair increases while the
waste and maximal side ratio rise. The strategies FixMin, FixMinR and Dichotomy
behave contrarily, namely their effectiveness decreases while the waste ratio rises. From
waste ratio 8% Disjunctive and Disjunctive+LP-pair could solve all instances. For

101

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.6. Numerical study

Table 3.5: Self-generated instances. Algorithms: A–algorithm from [BR13]; B–
Partition; C–Partition+LP-pair.

A B C
rmax w.% s.% n t s.% n t s.% n t

1 0 90 1855 4 40 4041145 281 40 3974547 290
2 20 1 0 30 5667442 327 30 5419262 374
4 0 - - 90 2354947 135 90 2337868 141
6 60 29255 105 80 572515 32 80 571459 34
8 100 5583 16 100 39225 2 100 39225 2

10 100 2306 7 100 122 0 100 122 1
20 100 214 2 100 127 0 100 127 1
30 100 172 2 100 137 0 100 137 1
40 100 116 2 100 122 0 100 122 1

74 4937 17 82 1408420 86 82 1371429 93
3 0 100 1 0 60 2239589 151 70 219305 17

2 0 - - 60 470315 29 60 467245 32
4 30 35169 110 100 691403 43 100 690351 45
6 80 31970 103 100 822701 39 100 820701 44
8 100 3225 9 100 27621 2 100 27570 2

10 100 1300 5 100 139 0 100 139 1
20 100 246 2 100 123 0 100 123 1
30 100 127 2 100 115 1 100 115 1
40 100 136 2 100 126 1 100 126 1

78 9021 29 91 472458 29 92 247296 16
20 0 100 1 0 100 17283 2 100 12171 2

2 60 9052 23 100 1182913 91 100 1182583 92
4 60 23814 65 100 662122 51 100 662032 52
6 100 15080 40 100 1519 1 100 1519 1
8 100 6145 16 100 244 1 100 244 1

10 100 519 3 100 1816 1 100 1816 1
20 100 182 1 100 298 1 100 296 1
30 100 120 1 100 109 1 100 109 1
40 100 131 2 100 116 1 100 116 1

91 6116 16 100 207380 16 100 206765 16
Mean: 81 6668 20 91 696086 44 91 608497 42

these instances the effectiveness of FixMinR and Dichotomy remained on the aver-
age level. For the instances with the bigger waste ratio, Disjunctive and Disjunc-
tive+LP-pair could even solve them using almost constant number of nodes and time.
Thus, Dichotomy is stronger than the original method [CJM08], and Disjunctive
and its combination with LP bounds is even stronger.

3.6.3 OPP-2 instances of Hopper & Turton

Here we consider the waste-free instances from [Hop00, HT00]. These instances are
divided into three classes C, N, T, each having 21, 35, and 35 instances, respectively.
In Table 3.8 we present only results for the original and transposed instances which
were solved by at least one of the algorithms. The first mean value is given only over

102

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.7. Conclusions

instance which were solved by all algorithms. The second one is given over all instances.
In column A we present the results of the slightly improved algorithm from [BR13],
which was kindly provided by the author.

3.7 Conclusions

Here we investigated and modified the state-of-the-art CP approaches for orthogonal
packing problems and adapted LP-based pruning rules of different types into the con-
straint propagation process of the CP.

The main theoretical and experimental observations of the paper are the following:

• The "fix or postpone" strategy is good, if one successfully chooses the "proper"
branching direction. There exist no obvious criteria for the selection of the
"proper" direction.

• The dichotomy branching strategy reduces the number of nodes and time in
comparison to the "fix or postpone" strategy.

• All strategies solve infeasible instances usually slower than feasible ones. It is
explained by the fact that for a feasible instance we only need to find a feasible
solution. In the case of an infeasible instance we have to enumerate much of the
solution space.

• LP-based pruning rules significantly reduce the number of nodes and time for the
solution of infeasible instances.

• In contrast to the conclusions in [SO08, Sim08], the disjunctive branching strategy
brings the best results on average for both infeasible and feasible instances as well.
However, usually it solves feasible instances extremely faster than infeasible ones.
Combination of the disjunctive strategy with LP-based pruning rules improves
the results.

3.8 Acknowledgments

We thank François Clautiaux for the kindly provided code of the original algorithm;
David Pisinger for the provided code for the solution of 0-1 knapsack problems. We
appreciate the Academic Initiative of IBM which enables many researchers all over
the world to compare their methods using state-of-the-art IBM ILOG Optimization
Software.

103

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.8. Acknowledgments

Table 3.6: Self-generated instances: Comparison of the efficiency of the branching
strategies. Number of instances is 450, W = H = 1000, rmax = 2. The column w.% is
the waste ratio (%), s.% is the amount of solved instances (%). The column n indicates
the number of nodes for the CP algorithms, which were used in order to obtain the solu-
tion, t indicates the total time for the solution (in seconds). Algorithms: A–algorithm
from [BR13]; B–FixMinR; C–Dichotomy; D–Disjunctive; E–Disjunctive+LP-
pair.

A B C D E
m w.% s.% n t s.% n t s.% n t s.% n t s.% n t

15 0 70 30944 34 20 52228 111 30 92590 219 100 405957 17 100 388411 22
2 100 4040 4 80 473691 96 80 321576 67 100 25984 1 100 24952 3
4 100 1014 2 100 14065 31 100 4072 9 100 4265 0 100 4199 1
6 100 620 1 100 3824 7 100 1867 4 100 281 0 100 281 0
8 100 162 1 100 882515 71 100 464850 45 100 124 0 100 124 0

10 100 90 1 100 47 0 100 24 0 100 98 0 100 98 0
20 100 86 1 100 27 0 100 15 0 100 101 0 100 101 0
30 100 64 1 100 32 0 100 18 0 100 96 0 100 96 0
40 100 60 1 100 127 0 100 107 0 100 93 0 100 93 0

96 4120 5 88 158506 35 90 98346 38 100 48555 2 100 46483 2
20 0 70 47649 157 30 51 0 50 668702 201 100 2177629 110 90 748190 135

2 100 9646 30 90 642493 77 90 344971 40 100 420320 17 100 417688 81
4 100 4454 12 90 2242836 106 90 622734 34 100 240 0 100 240 0
6 100 839 3 80 50 0 80 34 0 100 1426 0 100 1426 0
8 100 808 3 100 1222948 87 100 673449 56 100 173 0 100 173 0

10 100 624 2 90 29419 2 90 19693 1 100 175 0 100 175 0
20 100 293 2 70 105379 11 80 992271 91 100 171 0 100 171 0
30 100 136 1 70 35280 2 70 20659 2 100 173 0 100 173 0
40 100 183 1 100 397 0 100 318 0 100 191 0 100 191 0

96 7181 23 80 475428 31 83 371425 47 100 288944 14 98 129825 24
25 0 20 12658 69 60 1843387 153 60 1018281 138 90 1913886 95 70 338401 74

2 60 8967 45 30 228 0 30 72 0 100 6281 0 100 6000 2
4 100 13318 88 60 227447 30 60 163268 26 100 270 0 100 270 0
6 100 6580 36 50 4481 0 50 904 0 100 271 0 100 271 0
8 100 2115 10 20 1046538 97 20 558383 70 100 279 0 100 279 0

10 100 1891 9 50 702698 48 50 591568 45 100 269 0 100 269 0
20 100 427 3 40 81423 7 40 54526 5 100 274 0 100 274 0
30 100 254 3 60 760 0 60 343 0 100 270 0 100 270 0
40 100 254 3 80 3669 0 90 1273222 82 100 283 0 100 283 0

86 5162 29 50 434514 37 51 406729 40 98 213564 10 96 38479 8
30 0 0 - - 20 504 1 30 570085 79 100 366645 21 80 155148 78

2 20 15599 182 20 9159 1 30 2137570 250 100 2601328 149 80 3920 2
4 50 13824 130 50 2263726 159 50 767518 72 100 392 0 100 392 1
6 50 7106 81 50 68162 7 50 20546 4 100 392 0 100 392 1
8 90 8258 87 10 96113 7 10 40529 5 100 392 0 100 392 1

10 100 10966 128 20 27837 4 20 12544 2 100 419 0 100 419 1
20 100 2121 20 10 1044759 79 10 475476 45 100 406 0 100 406 1
30 100 2673 30 40 534 0 40 225 1 100 416 0 100 416 1
40 100 537 6 60 2212 0 60 807 1 100 399 0 100 399 1

67 7635 82 31 390333 28 33 447255 51 100 330087 19 95 17986 9
Mean: 89 4762 26 70 291849 26 71 264788 35 99 176242 9 98 46566 9

104

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.8. Acknowledgments

Table 3.7: Self-generated instances. Algorithms: A – algorithm from [BR13]; B–
Partiton; C – Partition+LP-pair.

A B C
m w.% s.% n t s.% n t s.% n t

15 0 70 30944 34 100 370132 15 100 352909 19
2 100 4040 4 100 25248 1 100 24173 2
4 100 1014 2 100 3813 0 100 3752 0
6 100 620 1 100 235 0 100 235 0
8 100 162 1 100 91 0 100 91 0

10 100 90 1 100 66 0 100 66 0
20 100 86 1 100 70 0 100 70 0
30 100 64 1 100 63 0 100 63 0
40 100 60 1 100 58 0 100 58 0

96 4120 5 100 44419 1 100 42379 2
20 0 70 47649 157 100 2184825 100 90 742171 122

2 100 9646 30 100 381132 15 100 378783 73
4 100 4454 12 100 183 0 100 183 0
6 100 839 3 100 1363 0 100 1363 0
8 100 808 3 100 125 0 100 125 0

10 100 624 2 100 128 0 100 128 0
20 100 293 2 100 123 0 100 123 0
30 100 136 1 100 117 0 100 117 0
40 100 183 1 100 130 0 100 130 0

96 7181 23 100 285347 12 98 124791 21
25 0 20 12658 69 90 1939020 90 70 323833 67

2 60 8967 45 100 6874 0 100 6571 2
4 100 13318 88 100 201 0 100 201 0
6 100 6580 36 100 201 0 100 201 0
8 100 2115 10 100 210 0 100 210 0

10 100 1891 9 100 203 0 100 203 0
20 100 427 3 100 192 0 100 192 0
30 100 254 3 100 191 0 100 191 0
40 100 254 3 100 191 0 100 191 0

86 5162 29 98 216364 10 96 36865 7
30 0 0 - - 100 348355 19 80 148984 75

2 20 15599 182 100 2714513 144 80 3594 2
4 50 13824 130 100 296 0 100 296 1
6 50 7106 81 100 298 0 100 298 1
8 90 8258 87 100 295 0 100 295 1

10 100 10966 128 100 324 0 100 324 1
20 100 2121 20 100 300 0 100 300 1
30 100 2673 30 100 306 0 100 306 1
40 100 537 6 100 278 0 100 278 1

67 7635 82 100 340551 18 95 17186 9
Mean: 89 4762 26 99 177346 8 98 44253 8

105

Chapter 3. Constraint Programming Approaches for Orthogonal Packing
3.8. Acknowledgments

Table 3.8: Instances from [Hop00, HT00]: Comparison of the efficiency of the branching
strategies. W,H are the container sizes. The column n indicates the number of nodes
which were used in order to obtain the solution. The column t indicates the total time
for the solution (in seconds). Algorithms: A–algorithm from [BR13]; B–FixMinR;
C–Dichotomy; D–Disjunctive; E–Disjunctive+LP-pair.

A B C D E
Inst. m W H n t n t n t n t n t

C1_1 16 20 20 87 1 63 0 59 0 3529 0 232 0
C1_2 17 20 20 - - 6593 9 4298 6 15393 1 9239 2
C1_3 16 20 20 1590 3 17 0 25 0 1242 0 521 0
C2_3 25 40 15 9528 42 31 0 68 0 36735 2 1511 2
N1a 17 200 200 19 1 40493 139 4476 18 48226 3 30278 3
N1b 17 200 200 11 1 - - - - 8725 0 5724 1
N1c 17 200 200 12 1 - - - - 1520 0 1317 0
N1d 17 200 200 23 1 543 1 403 1 4093 0 2323 0
N1e 17 200 200 23 1 - - - - 34770 2 30533 3
T1a 17 200 200 60 1 67958 253 16490 71 1151 0 942 0
T1b 17 200 200 23 1 543 1 403 1 4093 0 2323 0
T1c 17 200 200 50 1 1318 4 386 1 314 0 314 0
T1d 17 200 200 13 1 81 0 67 0 931 0 931 0
T1e 17 200 200 6 1 3591 12 874 3 952 0 823 0
T2a 25 200 200 21090 102 - - - - 3179720 174 1915659 387

1139 5 11463 41 2325 9 10126 0 4019 0
Mean C1_1-T2b: 2323 11 11021 38 2504 9 222759 12 133511 26

TC1_1 16 20 20 275 1 119 0 99 0 11564 0 1001 0
TC1_2 17 20 20 - - 27 0 38 0 503461 23 428050 95
TC1_3 16 20 20 184 1 26 0 39 0 301 0 253 0
TC2_3 25 15 40 - - 38 0 65 0 - - - -
TC3_1 28 60 30 - - 73056 9 51363 6 - - - -
TC3_3 28 60 30 - - 81169 131 62066 110 341063 17 145112 141
TN1a 17 200 200 8 1 - - - - 3180 0 2849 0
TN1b 17 200 200 14 1 126913 440 55748 202 3371 0 1860 0
TN1c 17 200 200 9 1 104379 417 14233 74 569 0 545 0
TN1d 17 200 200 24 1 75129 228 40147 126 13663 1 1669 1
TN1e 17 200 200 21 1 - - - - 48800 3 40894 3
TT1a 17 200 200 23 1 115 0 104 0 559 0 502 0
TT1b 17 200 200 24 1 75129 228 40147 126 13663 1 1669 1
TT1c 17 200 200 20 1 466 1 188 1 352 0 352 0
TT1d 17 200 200 9 1 64 0 45 0 283 0 283 0
TT1e 17 200 200 13 1 52 0 31 0 1949 0 1704 0
TT2a 25 200 200 - - - - - - 1954947 118 1699767 133
TT2b 25 200 200 18987 124 - - - - 413776 25 243942 104

59 1 38239 131 15078 52 4627 0 983 0
Mean TC1_1-TT2b: 1508 10 38334 103 18879 46 206968 11 160653 29

106

Chapter 4

Constraint Programming
Approaches for 3D Orthogonal
Packing

We consider the 3D orthogonal feasibility problem (OPP-3). Given a
set of rectangular items, OPP-3 is to decide whether all items can be or-
thogonally packed into the given rectangular container. We propose an
approach based on the ideas of the known recent constraint programming
(CP) approaches for OPP-2 and adapt 1D relaxation bounds based on lin-
ear programming (LP) into the constraint propagation process of the CP.
Numerical results demonstrate the efficiency of the proposed strategies and
of the combination of CP and LP-based pruning rules.
Keywords: constraint programming, linear programming, column genera-
tion.

4.1 Introduction

The task under consideration is as follows: m 3-dimensional items with sizes (w1
i , w

2
i , w

3
i)

are to be packed into a container (W 1,W 2,W 3). The input data are:

• container sizes W d ∈ Z+ for d ∈ D := {1, . . . , 3};

• index set of items I := {1, . . . , m};

• items sizes wd
i ∈ {1, . . . ,W

d} for i ∈ I and d ∈ D.

The 3-dimensional orthogonal packing feasibility problem (OPP-3) [BR13] asks whether
all the items can be orthogonally packed into the container without rotations. The
guillotine constraint [MAVdC10, CJM08] is not considered. All input data are positive
integers. This problem can be easily generalized for higher or reduced down to two
dimensions, so sometimes it will be mentioned without an indication of the dimension.

In the case when the items cannot be packed into the container, it is enough to
declare a negative response, otherwise the solution is a feasible packing layout with

107

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.1. Introduction

all items allocated orthogonally and non-overlapped within the container. OPP is a
subproblem in solution methods for orthogonal bin packing (BPP) and knapsack prob-
lems (OKP) [FS04a, BB07, PS07]. OPP is polynomially equivalent to the orthogonal
strip-packing problem (SPP) [Hif98, AVPT09, KIN+09].

4.1.1 Formulation of OPP-3 and overview of solution methods

Suppose we have a coordinate system with origin (0, 0, 0) and axes 1, 2, 3 which are
associated with W 1-, W 2-, W 3-sides of the container, respectively.

Let us introduce sets of variables Xd := {xd
i : i ∈ I} with d ∈ D, which represent

the allocation points for the items in directions 1, 2, 3, respectively. An assignment
of certain values to the variables is feasible in the sense of OPP-3, if the following
constraints are satisfied:

xd
i + wd

i ≤ xd
j ∨ x

d
j + wd

j ≤ xd
i , for at least one d, ∀(i, j) ∈ I × I : i < j; (4.1)

0 ≤ xd
i ≤W d − wd

i , i ∈ I, d ∈ D; (4.2)

xd
i ∈ Z+, i ∈ I, d ∈ D. (4.3)

It is assured that items do not overlap, constraints (4.1), and lie within the container,
constraints (4.2).

Definition 4.1. If there exist values of the variables Xd with d ∈ D, so that constraints
(4.1)-(4.3) are satisfied then the corresponding instance is called feasible, otherwise
infeasible.

Formulation (4.1)-(4.3) is a valid non-linear integer model of OPP-3 which is derived
from that of OPP-2 proposed in [CJM08, PS07]. In order to solve OPP-2 in that
formulation, some constraint programming methods are successfully applied, which
leads to the best results today [CJM08, SO08, Sim08, BCDP11, PS07, KMP10]. The
approaches can be divided into two groups, the first one fixes the coordinates of items
[CJM08, SO08, Sim08], the other fixes the mutual position of items [PS07, SO08, Sim08,
BCDP11]. All described approaches for OPP-2 are discussed in [MSB12a] also together
with some linear programming lower bounds.

One of the reasons of the success of the constraint programming paradigm is the
efficient constraint propagation technique. In every node of the search tree it tries to
decide whether the set of constraints (4.1)-(4.3) is consistent. In other words, it tries to
prove the infeasibility of the current partial solution when certain values are assigned
to some variables or domains of possible values of the variables are restricted. If an
inconsistency of the set of constraints cannot be proven then the procedure tries to
reduce the domain of possible values for the variables.

There exist many ILP models [Bea85, Pad00, BB07, BKRS09] for OPP-3 based
on different representations of feasible solutions. Exact solution of OPP-3 in ILP
formulations in cited papers is difficult because of the weak LP bounds of some models
[Pad00], quadratic number of intersection variables, and/or pseudo-polynomial number
of position-indexed variables [Bea85, BB07] in some models.

108

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.1. Introduction

4.1.2 Relaxations and bounds for OPP

In order to decide whether an instance of OPP is infeasible, sometimes it is enough to
compute a lower bound, e.g., volume bounds, dual-feasible functions (DFF) [CAVdC10a],
conservative scales (CS) [FS04b, BKRS13], or to solve a relaxation, e.g., 1D bar relax-
ations [Sch99, BKRS09], and relaxations of ILP models. All of the mentioned bounds
are discussed in [BKRS13].

The 1D bar relaxation [Sch99, BKRS09] is a double relaxation of OPP-2. Firstly, we
divide the container and items into 1D bars with unit thickness. Further we formulate
the minimization problem over the number of used 1D bars which are needed to pack
all the split items without repetition in a single bar. Secondly, we formulate a set-
partitioning model of the above 1D problem, continuously relax it, and solve it by
the column generation method [KZ51, GG61, GG63]. The 1D bar relaxation bound
can be further strengthened [BKRS09] by additional information, i.e., from a probing
procedure which restricts the set of items combined in the bars.

Up to now, there were only few efforts to use the bar relaxation in an algorithm for
OPP. In [BR13] the 1D bar relaxation bounds were integrated into a modified interval-
graph algorithm from [FS04a]. The bound was also tightened in each dimension using
the overlapping information from the graphs. This extended information was used
in the column generation. The tightened bound was applied in every node of the
branching tree.

In [MSB12a] the 1D bar relaxation bounds were integrated into the constraint
propagation procedure of various constraint programming approaches. The 1D bar re-
laxation starting from simple ones, the 1D bar relaxation on the information obtained
from different types of contour, and completed by sophisticated ones, the 1D bar relax-
ation with forbidden pairs and feasible item allocation intervals, was applied in every
node of the branching tree. This lead in some cases to increased solution time but in
most cases to reduced number of branching decisions, especially for infeasible instances.

4.1.3 Our contributions

Inspired by the results [MSB12a] of the state-of-the-art constraint programming ap-
proaches for OPP-2, we investigate, modify and transform them into solution methods
for OPP-3. We discuss basics of the algorithm in Section 4.2 and propose some mi-
nor modifications in Section 4.3. We compare the basic branching strategy (fix at the
lower bound or increase the lower bound also known as "schedule or postpone") with
the most successful according to [MSB12a] disjunctive strategy in Section 4.4. In Sec-
tion 4.5 we propose new pruning rules based on relaxations [Sch99, BKRS09] of four
types: a simple 1D bar relaxation with different stock lengths, a 1D bar relaxation, a
2D slice relaxation and a 1D slice-bar relaxation with forbidden item pairs. The input
data for the bar relaxations is obtained from the local partial solution, the information
from the constraint propagation procedure, and the relative positions of the items in
the container. Section 4.6 reports numerical results and conclusions.

109

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.2. Modification of the basic algorithm

4.2 Modification of the basic algorithm

In order to simplify the following description we introduce operator "⊕3" as d ⊕3 k :=
(d+ k − 1) (mod 3) + 1.

Similarly to [CJM08, MSB12a] for OPP-2, here we solve the OPP-3 as three schedul-
ing problems. Let be given sets Ad := {Ad

1, . . . , A
d
m} of activities with d ∈ D and three

types of resources of W 1W 2, W 1W 3, andW 2W 3 units. Each of activities Ad
i with d ∈ D

and i ∈ I has its time interval [startdi , end
d
i), where activity Ad

i can occur. startdi desig-
nates the earliest point of time where activity Ad

i can start, and endd
i is the latest point

of time where activity Ad
i can end. Each activity Ad

i ∈ A
d has its level of consumption

wp
iw

q
i of resource W pW q with p := min{d ⊕3 1, d ⊕3 2} and q := max{d ⊕3 1, d ⊕3 2}.

Activities Ad
i ∈ A

d have durations wd
i .

Definition 4.2. A schedule is called continuous, if in the schedule each activity is not
interrupted during the execution, and cumulative, if all activities are consuming the
same resource.

At every discrete point of time the resource capacity is limited by a certain value and
must not be exceeded.

Let us now superpose each feasible start time point of activity Ad
i with variables

Xd then xd
i ∈ [startdi , end

d
i − w

d
i] ∩ Z = [xd

i , x
d
i] ∩ Z, i.e., [xd

i , x
d
i] are feasible domains

for variables. If now we assume that xd
i := 0, xd

i := W d − wd
i with i ∈ I and d ∈ D,

all three schedules are cumulative and continuous, and if constraints (4.1) for variables
from Xd are satisfied then the model based on three scheduling problems connected
through constraints (4.1) is a feasible model of OPP-3.

The formulation of OPP-3 modeled by the three scheduling problems is solved by
the branch-and-bound method, i.e., a binary branching tree T := (V,E) is built. Two
nodes u, v ∈ V differ by the local set of branching restrictions. Based on the kind of
branching restrictions, various branching strategies are possible.

4.3 Minor modifications

In this section we consider minor modifications of the basic algorithm, which are applied
in each node of the branching tree as raster points and local preprocessing or only in
the root node as initial preprocessing.

4.3.1 Raster points

It is often excessive to consider for a variable p each point from its domain [p, p] ∩ Z.
For instance, if we have only three activities with durations 4, 7, 9 then a schedule
with starting point 5 has never to be considered. The points which are of interest are
called raster points [Sch08] and are calculated as follows:

Rd(N) := {0 ≤ x ≤ N : x =
∑

i∈I

wd
i ai, ai ∈ {0, 1}, i ∈ I}, d ∈ D.

110

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.3. Minor modifications

In the book [Sch08], the author proposes an approach of a reduction of the number
of raster points by consideration of a reduced set of raster points.

R̃d(N) := {max{k ∈ Rd(N) : k ≤ N − r} : r ∈ Rd(N)}, d ∈ D.

In order to obtain raster points which are situated to the left and to the right of a
point α, let us consider for each d ∈ D the following definitions:

Rd(α,N) := max{β ∈ R̃d(N) : β ≤ α}, R
d
(α,N) := min{β ∈ R̃d(N) : β ≥ α}

Let Rd(α) := Rd(α,W d). Further we propose some preprocessing, branching strate-
gies and pruning approaches which use raster points and reduced set of raster points.

4.3.2 Initial preprocessing

The procedure of initial preprocessing is performed only once for the root node. The
idea of the procedure is to eliminate some symmetrical and equivalent solutions which
can satisfy constraints (4.1)-(4.3). The results of the procedure are additional con-
straints which are appended to model (4.1)-(4.3) or replace some of its constraints.
Similar procedure was proposed in [MMBS11] for the 1D contiguous bin packing prob-
lem (CBPP-1). For further restrictions refer to papers [BM03, CCM07].

In order to eliminate the solutions which are obtained through the symmetry over
the vertical and horizontal lines going over the middle of the container, we apply

xd
i∗ ≤

⌊
W d − wd

i∗

2

⌋
, d ∈ D, i∗ := min{i ∈ Q},

where Q := {i ∈ I :
∏3

k=1 w
k
i = max{

∏3
k=1w

k
i : i ∈ I}} is the index set of the items

with the largest volume.
Let F d := {(i, j) ∈ I × I : i < j ∧ wd

i + wd
j > W d} be the sets of item pairs which

do not fit together in direction d ∈ D. Then instead of (4.1), the following constraints
are applied.

xk
i + wk

i ≤ xk
j ∨ x

k
j + wk

j ≤ xk
i , for at least one k ∈ {d⊕3 1, d⊕3 2}, (i, j) ∈ F d;

xd
i +wd

i ≤ xd
j ∨ x

d
j +wd

j ≤ xd
i , for at least one d, (i, j) ∈ (I × I)\

3⋃

k=1

F k : i < j.

If two items i and j with i < j are identical, i.e., wd
i = wd

j for all d ∈ D then we
apply the following constraints:

x1
i < x1

j∨

x1
i = x1

j ∧ x
2
i < x2

j∨

x1
i = x1

j ∧ x
2
i = x2

j ∧ x
3
i + w3

i ≤ x3
j , (i, j) ∈ I × I : i < j, wd

i = wd
j , ∀d ∈ D.

Instead of constraints (4.2), the following constraints are applied:

0 ≤ xd
i ≤ Rd(W d − wd

i), i ∈ I, d ∈ D. (4.4)

111

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.4. New branching strategies

If ∃d ∈ D, i, j ∈ I × I: i < j ∧ wd
i + wd

j > W d then set

(i∗, j∗) := argmax{
3∏

k=1

wk
i +

3∏

k=1

wk
j : (i, j) ∈ I × I : i < j, wd

i + wd
j > W d}

and apply the following constraints only for the smallest d:

xp
i∗ + wp

i∗ ≤ xp
j∗ ∨ xq

i∗ + wq
i∗ ≤ xq

j∗ , p := d⊕3 1, q := d⊕3 2.

4.3.3 Local preprocessing

This type of preprocessing is performed for each node of the branching tree. The
main idea is to reduce the feasible domain of variables to the smallest possible size.
In terms of the constraint programming paradigm the local preprocessing is called
constraint propagation [Apt03]. Since for the solution of our model we use ILOG CP
(see Section 4.6 for further details), the local preprocessing is done automatically for
each node of the branching tree after its creation.

4.4 New branching strategies

According to [MSB12a], the branching strategies can be divided into two groups.
First group of branching strategies operates with variable domains. The other group
branches on mutual positions of items. Here we propose two branching strategies. The
first one, FixMin3 fixes item coordinates, the other one, Relations3, branches on
mutual positions of items. Refer to Section 4.6.1 for an experimental study of the
strategies.

4.4.1 Schedule-or-postpone

Let u be a node1 of the branching tree T := (V,E). Node u is also called a subproblem.
If a value is assigned to a variable then the variable is called fixed and the job is
scheduled. Let Īd := {i ∈ I : xd

i 6= xd
i } for d ∈ D be index sets of unfixed variables

from Xd. Herewith, Id := I\Īd are the index sets of fixed variables.
The ideas of the approach are coming from [CJM08] and were also discussed in

[MSB12a]. The transformed strategy is a 3-step approach where the variables from X1

are fixed first, and the variables from X2, X3 are fixed next, see Algorithm 4.1.
An important issue is the selection of a branching variable from unfixed ones, steps

1 and 2. It is based on the following observation. If we pack all large items at first
instead of packing all items in an arbitrary order then we can usually faster obtain
the inconsistency of the system (4.1)-(4.3), if any, because we do not lose much effort
during the allocation of small items.

1Note that here and further we omit the subscript notion of node u in the definition of sets in
order to simplify the description. Note that all sets, which are considered here and further are defined
within node u.

112

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.4. New branching strategies

As soon as the variable for branching is selected, it is fixed to the value, which
is equal to its lower bound (the first branch) or the lower bound for its domain is
increased (the second branch), see step 3.

In order to describe the algorithm in a simpler way let us introduce an ordering
relation on the variables, so xd

i ≺ xd
j ⇔ i < j for i, j = 1, . . . , m, d ∈ D.

Algorithm 4.1 (FixMin3). Adaptation of the branching rule for OPP-2 from [CJM08]
to OPP-3.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If ∃d ∈ D: Īd 6= ∅ then set d = min{k ∈ D : Īk 6= ∅}, and:

P := {xd
i ∈ X

d : i ∈ Īd,
3∏

k=1

wk
i = max{

3∏

k=1

wk
i : i ∈ Īd}},

and goto step 2, else goto Exit.
(2) Select the variable with the smallest lower bound for its domain and then with the

lowest index:

p := min
≺
{p ∈ argmin{p : p ∈ P}}.

(3) Definition of the descendant nodes:

v1: p := p (schedule);

v2: p := R
d
(p+ 1) (postpone).

The following statement is true.

Lemma 4.1. The depth of the branching tree by FixMin3 is O(m(W 1 +W 2 +W 3)).

4.4.2 3-dimensional relations

The branching strategy is oriented on the relation of item pairs (i, j) with i, j ∈ I and
i < j. Let Ri,j := Ri,j(d) ⊆ {lk, l̄k, rk, r̄k : k ∈ D} where the notions lk, l̄k, rk, r̄k imply
the following inequalities:

lk ⇔ xk
i + wk

i ≤ xk
j ,

l̄k ⇔ xk
i + wk

i ≥ xk
j + 1,

rk ⇔ xk
j + wk

j ≤ xk
i ,

r̄k ⇔ xk
j + wk

j ≥ xk
i + 1,

Figures 4.1a-4.1f show by the blue colored volumes the feasible locations of an item
j, for Ri,j = {ld}, {rd} with d ∈ D, respectively. Now, we associate with each node
u ∈ V the set R(u) := {Ri,j : (i, j) ∈ I × I ∧ i < j} of relations for the item pairs.

113

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.4. New branching strategies

x1
x2

x3

b

W 1
W 2

W 3

i

(a) Ri,j = {l1}

x1
x2

x3

b

W 1
W 2

W 3

i

(b) Ri,j = {r1}

x1
x2

x3

b

W 1
W 2

W 3

i

(c) Ri,j = {l2}

x1
x2

x3

b

W 1
W 2

W 3

i

(d) Ri,j = {r2}

x1
x2

x3

b

W 1
W 2

W 3

i

(e) Ri,j = {l3}

x1
x2

x3

b

W 1
W 2

W 3

i

(f) Ri,j = {r3}

Figure 4.1: Mutual locations of the items i and j. The volumes where the item j can
be allocated are marked by the blue color.

In order to prioritize item pairs selected for branching let us introduce a pairs
ordering denoted by symbol ⊐. Suppose (p, q), (r, k) ∈ I × I: p < q and r < k. So,
(p, q) ⊐ (r, k), iff

∏3
l=1 w

l
p >

∏3
l=1 w

l
r ∨ (

∏3
l=1 w

l
p =

∏3
l=1 w

l
r ∧

∏3
l=1 w

l
q >

∏3
l=1 w

l
k) ∨

(
∏3

l=1 w
l
p =

∏3
l=1 w

l
r ∧

∏3
l=1 w

l
q =

∏3
l=1 w

l
k ∧ p < r).

The main idea of the relations strategy in the 3-dimensional case is to fix a mutual
relation for every item pair, see Algorithm 4.2. After a pair is selected, see steps 1, 2,
we select a relation to fix for this pair, step 3. At last, when every item pair got a
relation, a packing layout (item coordinates) can be computed. If the items lie within
the container bounds then the layout is feasible.

In order to simplify the description of the algorithm let us define the set of all item
pairs with no fixed lk or rk relations:

R := {R ⊆ {ld, rd, l̄d, r̄d : d ∈ D} : R = ∅ ∨ {ld, rd : d ∈ D} ∩R 6= ∅}.

114

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.4. New branching strategies

Algorithm 4.2 (Relations3). Creation of two descendants of a node u ∈ V according
to the relations principle.
Input data: A node u ∈ V .
Output data: Descendant nodes v1, v2.

(1) If ∃Ri,j ∈ R(u) : Ri,j ∈ R then set:

P := {(i, j) ∈ I × I : i < j ∧Ri,j ∈ R},

else goto Exit.
(2) Selection of the pair to branch:

(i, j) := min
⊐

{(i, j) ∈ P}.

(3) Definition of the descendant nodes:
If ld /∈ Ri,j ∨ l̄d /∈ Ri,j:

v1 : R(v1) := R(u) ∪ {ld} ∪ {l̄k, r̄k : k = 1, . . . , d− 1}

v2 : R(v2) := R(u) ∪ {l̄d} ∪ {l̄k, r̄k : k = 1, . . . , d− 1}

If rd /∈ Ri,j ∨ r̄d /∈ Ri,j:

v1 : R(v1) := R(u) ∪

{rd} ∪ {l̄k, r̄k : k = 1, . . . , d− 2} ∪ {l̄d−1}, if d ≤ 2;

{ld} ∪ {l̄k, r̄k : k = 1, . . . , d− 1}, if d = 3.

v2 : R(v2) := R(u) ∪

{r̄d} ∪ {l̄k, r̄k : k = 1, . . . , d− 2} ∪ {l̄d−1}, if d ≤ 2;

{rd} ∪ {l̄k, r̄k : k = 1, . . . , d− 1}, if d = 3.

Ri,j = ∅

Ri,j = {l1}

Ri,j = {l̄1}

Ri,j = {r1, l̄1}

Ri,j = {r̄1, l̄1}

Ri,j = {l2, l̄1, r̄1}

Ri,j = {l̄2, l̄1, r̄1}

Ri,j = {r2, l̄1, r̄1, l̄2}

Ri,j = {r̄2, l̄1, r̄1, l̄2}

Ri,j = {l3, l̄1, r̄1, l̄2, r̄2} Ri,j = {r3, l̄1, r̄1, l̄2, r̄2}

Figure 4.2: Binary branching tree corresponding to Relations3.

Once we have fixed all mutual locations of items, the domain of variables from Xd

with d ∈ D can still contain not just a single value. It depends on the quality of
the local preprocessing procedure, see Section 4.3.3. Note that the local preprocessing

115

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

procedure is performed for every node after its creation. Several values of a variable
from Xd can also be feasible for the model. In our case after all relations are fixed we
do not branch variables Xd to a single value.

The following statement is true.

Lemma 4.2. The depth of the branching tree by Relations3 is O(m2).

4.5 Advanced constraint propagation

In this section we consider and propose different pruning rules. Some of them were
discussed in [Sch99, BKRS09]. Each of them is at least a double relaxation (LP-pair
is a triple relaxation). By all of them we relax the 3-dimensionality and go to the 1D
case, so 1D relaxation is obtained. Thereafter, we solve the continuous relaxations of
the set-partitioning formulation [KZ51, GG61, GG63] of the obtained 1D relaxation.

Let us introduce the notation of a contour and a block-structure. Related but
different notions of contour were proposed in [Sch95] for 2D packing layouts. For a
node u ∈ V of the branching tree we assume that items in the d-direction with d ∈ D
are fixed and there are fixed items in the p-direction, p = min{d⊕3 1, d⊕3 2}. Let Id

r be
the set of items whose projection on d-th axis contains a point r ∈ [0,W d). Herewith,
we can decide whether an item projection intersects a chosen point as Id

r = {i ∈ I : r ∈
[xd

i , x
d
i +wd

i)}. Further we introduce δd
r,i which indicates whether an item i’s coordinate

contains point r as follows:

δd
r,i :=

1, if i ∈ Id
r ;

0, otherwise;

The items which are fixed in the d-direction and contains point t can be defined as
follows:

Id
r (t) := {i ∈ Id

r ∩ I
p : t ∈ [xp

i , x
p
i + wp

i), p := min{d⊕3 1, d⊕3 2}},

where set Ip is the set of fixed items over the p-direction, which was defined in Sec-
tion 4.4.1.

Definition 4.3. The Xd
r -contour Cd

r with d ∈ D corresponding to a node u ∈ V is the
graph of the function

Cd
r (t) :=

∑

i∈Id
r (t)

wq
i , t ∈ [0,W p),

p := min{d⊕3 1, d⊕3 2};

q := max{d⊕3 1, d⊕3 2}.

Cd
r (t) is a step function with, in general, some discontinuity points in (0,W p). Let

the sequence {χk}
s+1
k=1 contain exactly all the discontinuity points and the border values,

such that 0 = χ1 < χ2 < . . . < χs+1 = W p, i.e.,

lim
t→χk−0

Cd
r (t) 6= lim

t→χk+0
Cd

r (t) = Cd
r (χk), k ∈ {2, . . . , s},

116

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

where s + 1 is the number of jump discontinuity points in (0,W p) plus two border
points. For convenience, let

Cd
r (W p) := lim

t→W p−0
Cd

r (t).

Assigned to an interval [χk, χk+1) with k ∈ S := {1, . . . , s} we define a block as the
rectangle in [χk, χk+1)× [0,W q) lying above Cd

r , see Figure 4.3.

Definition 4.4. The k-th block corresponding to a contour Cd
r is the rectangle [χk, χk+1)×

[Cd
r (χk),W q), denoted by (χk, λk, ρk), where λk := W q − Cd

r (χk), and ρk := χk+1 − χk.

In terms of scheduling, the k-th block represents the non-used resource of type q in
direction p. Papers [BSM08, MMBS11] define a related notion of slice describing the
complete layout in the period [χk, χk+1). Here a block is a part of a slice.

Definition 4.5. The sequence of blocks {(χk, λk, ρk)}s
k=1 is called the block-structure

corresponding to a contour Cd
r and is denoted by S‖.

Remark 4.1. There exists exactly one block-structure for each d ∈ D.

Further in this section we consider four types of LP-based approaches. The first
one, named LP-cont, uses the information concerning the fixed items. The LP-slice
approach creates a 2D relaxation where we cut the container into slices. The LP-bar
approach creates a 1D bar relaxation where the container is cut into 1D stitches. The
LP-pair approach is a double relaxation where at first, 3D container is cut into 2D
slices and then these slices are cut into 1D bins. All of the relaxations except LP-cont
are tightened with the forbidden item pair sets which are obtained from fixed mutual
locations for items in pairs. Herewith, LP-cont is applied with FixMin3 and the others
are applied with Relations3.

xp

xd

xq

b

b
W p

W d

W q

rχk

χk+1

Figure 4.3: Contour of a packing in p-axis for a fixed d ∈ D and r ∈ R̃d(W d).

117

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

4.5.1 1D bar relaxation from contour (LP-cont)

Here we propose a pruning rule which is applied with FixMin3. Let Id,p
r := {i ∈

Id
r : xp

i = xp
i , p := min{d⊕3 1, d⊕3 2}} be the set of fixed items over axis p with fixed

d ∈ D. Let us consider the partial solution of a node u ∈ V . Items from Id,p
r give us the

information concerning the Xd
r -contour. Based on the Xd

r -contour the corresponding
block-structure S‖ is build.

The input information for the 1D bar relaxation is constructed as follows. Each
block (χk, λk, ρk) with k ∈ S is considered as a set of bins with length λk and quantity
ρk. In addition to the obtained bins, we also consider one extra type 0 of bins with
χ0 := W p, λ0 := W q, ρ0 :=∞. In the 2D case each 2D item has a certain geometrical
location. Here we relax this condition and consider instead of 2D items 1D items with
lengths wq

i and quantities wp
i with i ∈ Īd,p

r , where Īd,p
r := Id

r \I
d,p
r is the index set of the

unfixed items.
The 1D bar relaxation can be described as follows. In order to describe a packing of

the bins with obtained items let us introduce packing patterns in the following manner.
For each 1D bin of type k ∈ S ∪ {0} let Jk denote the index set of all binary vectors
aj,k := (aj,k

1 , . . . , aj,k
m) ∈ {0, 1}m with

aj,k
i = 0, ∀i ∈ Id,p

r ,
∑

i∈Īd,p
r

wq
i a

j,k
i ≤ λk, j ∈ Jk, (4.5)

where the i-th component aj,k
i of vector aj,k in the case of aj,k

i = 1 indicates the j-
th pattern of type k which contains one 1D item of type i ∈ I. Whether item i’s
xp-coordinate is fixed, is indicated in the following model by

δ̃d
r,i :=

0, if i ∈ Id,p
r ;

1, if i ∈ Īd,p
r .

The main idea of the approach consists in minimizing the number of used bins of
type 0. If at least a small part of that type of bins is used then there exists no packing
of residual items Īd,p

r which fit into the container, and hence, subproblem u ∈ V is
infeasible.

Let us formulate the following continuous relaxation of the set-partitioning model
[KZ51, GG61, GG63] of the 1D multiple-capacity bin packing problem2 (MCBPP-1)
on vectors (4.5) and variables yj,k with j ∈ Jk and k ∈ S ∪ {0} which indicate the
intensity of usage of packing patterns as follows:

yd,∗
r = min

∑

j∈J0

yj,0, s.t. (4.6)

s∑

k=0

∑

j∈Jk

aj,k
i yj,k = wp

i δ̃
d
r,i, i ∈ Id

r ; (4.7)

∑

j∈Jk

yj,k ≤ ρk, k ∈ S; (4.8)

yj,k ≥ 0, k ∈ S ∪ {0}, j ∈ Jk. (4.9)

2Usually, the 1D multiple stock size cutting stock problem (MSSCSP-1) [WHS07, AV08] is consid-
ered.

118

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

This problem is called the 1D bar relaxation.
The formulation (4.6)-(4.9) is an LP problem which is solved by the column gen-

eration method [KZ51, GG61, GG63, AV08]. The solution process is started from the
initial set of variables (columns), which contains m variables with a large coefficient
in the objective function for each constraint (4.7), and initial dual simplex multipliers
d := (d1, . . . , ds) determined by a feasible basic solution of (4.6)-(4.9).

The restricted master problem of (4.6)-(4.9) contains variable pools for each type of
columns. Each iteration consists of the generation of a column (slave problem) for each
pool, its addition into the corresponding pool, and execution of the simplex method
on the restricted master problem.

The generation of a column is aimed to maximize the sum of the dual simplex
multipliers which is done by the solution of the following 0-1 linear programs:

c̄0 = 1−max{
∑

i∈Īd,p
r

diai :
∑

i∈Īd,p
r

wq
i ai ≤ λ0, ai ∈ {0, 1}}; (4.10)

c̄k = −max{dm+k +
∑

i∈Īd,p
r

diai :
∑

i∈Īd,p
r

wq
i ai ≤ λk, ai ∈ {0, 1}}, k ∈ S. (4.11)

Coefficients c̄0, c̄k are also called reduced costs. Each column with a negative re-
duced cost can improve the value of the objective function and can be added to the
pool at each step. But we add only the column with the smallest reduced cost, i.e.,
argmin{c̄0, c̄k : k ∈ S}, since that shows the better solution time. Thus, on each step
s+ 1 slave 0-1 linear programs are solved.

The variables which correspond to type 0 of bins have the coefficient in the objective
function equal to 1, in contrast to the obtained ones. The column generation process is
performed as long as there exists a column which can improve the value of the objective
function. That means −c̄k > ǫ for some k ∈ S ∪ {0} where ǫ > 0 is a small enough
constant.

Decision rule LP-cont is applied according to the following lemma.

Lemma 4.3. If ∃d ∈ D and r ∈ R̃d(W d) such that yd,∗
r > ǫ, ǫ > 0 then there exists no

feasible packing of items Īd
r into container with fixed items Ip into container with sizes

(W 1,W 2,W 3).

4.5.2 1D bar relaxation (LP-bar)

Here we consider a pruning rule which is applied with Relations3 and proposed in
[Sch99].

The input information for the 1D bar relaxation is constructed as follows. Let us
consider the 3-dimensional pattern which is divided into the set of 1D bars with length
W d in the selected direction d ∈ D. So, the projection of the W pW q bars has 1×1 unit
area on p0q planes with p := d⊕3 1 and q := d⊕3 2, see Fig. 4.4a. For the 3-dimensional
case the 1D bars must have a fixed 3D allocation. Here we relax this condition and
consider instead of 3D items 1D items with length wd and quantity wp

iw
q
i , where i ∈ I.

The 1D bar relaxation can be described as follows. In order to describe a feasible
packing of the 1D bins with the obtained items let us introduce packing patterns in the

119

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

xp
xp

xd

W q
W p

W d

(a) 1D bar relaxation

xp
xp

xd

W q
W p

W d

(b) 2D slice relaxation

Figure 4.4: 1D bar and 2D slice relaxations. We depict only one 1D bar and one 2D
slice in order to simplify the figure.

following manner. For each 1D bin of type d let Jd denote the index set of all binary
vectors ad,j := (ad,j

1 , . . . , ad,j
m) ∈ {0, 1}m with

∑

i∈I

wd
i a

d,j
i ≤W d, ad,j

f + ad,j
g ≤ 1, (f, g) ∈ F p ∪ F q, j ∈ Jd, (4.12)

where the i-th component ad,j
i of vector ad,j in the case of ad,j

i = 1 indicates the j-th
pattern of type d which contains one 1D item of type i ∈ I; F d is a set of item pairs
which do not fit together in the d-direction (F d is defined in Section 4.3.2). In contrast
to (4.5), here the components of the vector do not depend on the fixed items but on
the fixed mutual relations.

The main idea of the approach is to minimize the number of used 1D bins in order
to pack all the obtained 1D items from I. If this number exceeds the number W pW q of
the available 1D bins then there exist no packing of items from I with the fixed mutual
relations which affect sets F p and F q.

Let us formulate the following continuous relaxation of the set-partitioning model
of BPP-1 on vectors (4.12) and variables yd,j with j ∈ Jd which indicate the intensity
of usage of packing patterns as follows:

yd,∗ =
∑

j∈Jd

yd,j → min, s.t.
∑

j∈Jd

ad,j
i yd,j = wp

iw
q
i ; yd,j

i ≥ 0, i ∈ I, j ∈ Jd, d ∈ D. (4.13)

The formulations (4.13) are LP problems which are solved by the column generation
method. In order to solve the relaxation problems the following 0-1 linear programs
are solved:

c̄d = 1−max{
∑

i∈I

dib
d
i :

∑

i∈I

wd
i b

d
i ≤W d, bd

f + bd
g ≤ 1, (f, g) ∈ F p ∪ F q,

p := d ⊕3 1, q := d ⊕3 2, bd
i ∈ {0, 1}}; (4.14)

Binary variables bi denote the fact that item i ∈ I, is used in the d-th pattern. If
−c̄d ≥ ǫ then the current basis is optimal, otherwise a new column is included.

Decision rule LP-bar is applied according to the following lemma.

120

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

Lemma 4.4. If ∃d ∈ D such that yd,∗−W pW q > ǫ, ǫ > 0 with p := d⊕3 1, q := d⊕3 2
then there exists no feasible packing of items I into container (W 1,W 2,W 3) with fixed
relations R(u).

4.5.3 2D slice relaxation (LP-slice)

The following pruning rule is applied with Relations3 and proposed in [Sch99]. Here
we consider the 3-dimensional pattern which is cut in selected direction d ∈ D into the
set of 2D slices with thickness of 1 unit having W pW q area units where p := d⊕3 1 and
q := d ⊕3 2, see Fig. 4.4b. The set of the 3D items is considered as a set of 1D items
with length wp

iw
q
i and quantity wd

i , where i ∈ I.
In order to describe a feasible packing of the 2D slices with the obtained 1D items

we introduce packing patterns in the following manner. For each 2D slice of type d let
Jd denote the index set of all binary vectors ad,j := (ad,j

1 , . . . , ad,j
m) ∈ {0, 1}m with

∑

i∈I

wp
iw

q
i a

d,j
i ≤W pW q, ad,j

f + ad,j
g ≤ 1, (f, g) ∈ F d, j ∈ Jd, (4.15)

where the i-th component ad,j
i of vector ad,j in the case of ad,j

i = 1 indicates the j-th
pattern of type d which contains one 1D item of type i ∈ I.

Further we omit the condition that each slice has its fixed position and try to
minimize the number of used 2D bins while all the obtained from I 1D items are
packed. Let us formulate the following continuous relaxation of the set-partitioning
model of BPP-1 on vectors (4.15) and variables yd,j with j ∈ Jd which indicate the
intensity of usage of packing patterns as follows:

yd,∗ =
∑

j∈Jd

yd,j → min, s.t.
∑

j∈Jd

ad,j
i yd,j = wd

i ; yd,j
i ≥ 0, i ∈ I, j ∈ Jd, d ∈ D. (4.16)

Formulations (4.16) are LP problems which are solved by the column generation
method. In order to solve the relaxation problems the following 0-1 linear programs
are solved:

c̄d = 1−max{
∑

i∈I

dib
d
i :

∑

i∈I

wp
iw

q
i b

d
i ≤W pW q, bd

f + bd
g ≤ 1, (f, g) ∈ F d

p := d ⊕3 1, q := d ⊕3 2, bd
i ∈ {0, 1}}, (4.17)

where d := (d1, . . . , dm) is the vector of the simplex multipliers.
Decision rule LP-slice is applied according to the following lemma.

Lemma 4.5. If ∃d ∈ D such that yd,∗ −W d > ǫ, ǫ > 0 then there exists no feasible
packing of items I into container (W 1,W 2,W 3) with fixed relations R(u).

Remark 4.2. The experiential study shows that LP-bar prunes non of the subproblems
while the solution of the test instances.

Herewith, we do not present the results of the approaches with LP-bar in Section 4.6.

121

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.5. Advanced constraint propagation

4.5.4 1D slice-bar relaxation with forbidden pairs (LP-pair)

Here we propose a pruning rule which is applied with Relations3. In the subsequent
description we will need extra definitions of item pairs based on different observations.

Let for a fixed d ∈ D and r ∈ R̃d(W d):

Gd,k
r := {(i, j) ∈ Id

r×I
d
r : i < j, (xk

i +wk
i ≤ xk

j ∨x
k
j +wk

j ≤ xk
i)}, k ∈ {d⊕3 1, d⊕32},

be the set of item pairs, which do not overlap over k-th axis.
Sets of item pairs which do not overlap in each direction for a fixed d ∈ D and

r ∈ R̃d(W d), are defined as follows:

F d,k
r := {(i, j) ∈ Id

r × I
d
r : i < j, Ri,j ⊆ {l

k, rk}}, d ∈ {2, 3}.

If an item i has an obligatory part which will have a projection over d-axis then it
is indicated by:

θd
i :=

1, if xd
i + wd

i − x
d
i > 0;

0, otherwise,

The set of overlapping item pairs in k-th axis for a fixed d ∈ D, and r ∈ R̃d(W d) is
defined as follows:

P d,k
r := {(i, j) ∈ Id

r × I
d
r : i < j, θk

i = 1, xk
j + wk

j > xk
i , x

k
i + wk

i > xk
j},

where k ∈ {d⊕3 1, d⊕3 2}.
The input information for the 1D bar relaxations is constructed as follows. For every

d ∈ D and r ∈ R̃d(W d) we have a 2D container (W p,W q) in the section of a plane p0q
going through r, where p := min{d⊕3 1, d⊕3 2} and q := max{d⊕3 1, d⊕3 2}. This 2D
container is considered as a set of 1D bins with length W q and quantity W p. Instead
of 3D items (wd

i , w
p
i , w

q
i) with i ∈ Id

r , which intersect the plane p0q going through r we
consider only 2D items (wp

i , w
q
i). Instead of them we consider 1D items with lengths wq

i

and quantities wp
i where i ∈ Id

r . Similarly, we define the 1D bins for the other direction
q, i.e., 1D bins with length W p and quantity W q, and 1D items with lengths wp

i and
quantities wq

i .
In order to describe the 1D bar relaxations we define vertical and horizontal patterns.

Let for each vertical bin, Jp denote the index set of binary vectors aj := (aj
1, . . . , a

j
m) ∈

{0, 1}m with

∑

i∈I

wq
i a

j
i ≤W q, aj

f + aj
g ≤ 1, (f, g) ∈ F d,p

r ∪ P p,q
r ∪G

d,p
r , j ∈ Jx, (4.18)

and let for horizontal bins, Jq denote the index set of binary vectors bj = (bj
1, . . . , b

j
m) ∈

{0, 1}m with

∑

i∈I

wp
i b

j
i ≤W p, bj

f + bj
g ≤ 1, (f, g) ∈ F d,q

r ∪ P q,p
r ∪G

d,q
r , j ∈ Jy. (4.19)

122

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.6. Numerical study

The similar idea from Section 4.5.1 underlies the following 1D bar relaxations. Let
us formulate for d ∈ D and r ∈ R̃d(W d) the following continuous relaxations of the set-
partitioning model of MCBPP-1 on vectors (4.18), (4.19) and variables yj with j ∈ Jp

and zj with j ∈ Jq which indicate the intensity of usage of vertical and horizontal
packing patterns, respectively:

yd,p,∗
r =

∑

j∈Jp

yj → min, s.t.
∑

j∈Jp

aj
iy

j = wd
i δ

p
r,i; y

j
i ≥ 0, i ∈ I, j ∈ Jd

p . (4.20)

zd,q,∗
r =

∑

j∈Jq

zj → min, s.t.
∑

j∈Jq

bj
iz

j = wd
i δ

q
r,i; z

j
i ≥ 0, i ∈ I, j ∈ Jd

q . (4.21)

Formulations (4.20) and (4.21) are LP problems which are solved by the column
generation method. In order to solve the relaxation problems the following 0-1 linear
programs are solved:

c̄d,p
r = 1−max{

∑

i∈Ir

diai :
∑

i∈Ir

wq
i ai ≤W q, af + ag ≤ 1,

(f, g) ∈ F d,p
r ∪ P p,q

r ∪ Gd,p
r , ai ∈ {0, 1}}; (4.22)

c̄d,q
r = 1−max{

∑

i∈Ir

dibi :
∑

i∈Ir

wp
i bi ≤W p, bf + bg ≤ 1,

(f, g) ∈ F d,q
r ∪ P q,p

r ∪ Gd,q
r , ai ∈ {0, 1}}; (4.23)

where d := (d1, . . . , dm) is the vector of the simplex multipliers.
Decision rule LP-pair is applied according to the following lemma.

Lemma 4.6. If ∃d ∈ D and r ∈ R̃d(W d) such that yd,p,∗
r + zd,q,∗

r −W p−W q > ǫ, ǫ > 0,
p := min{d ⊕3 1, d ⊕3 2} and q := max{d ⊕3 1, d ⊕3 2} then there exists no feasible
packing of items I with fixed relations.

4.6 Numerical study

In this section we discuss numerical experiments for pure OPP-3 instances.
The algorithm was implemented as a single-threaded application in C++ based on

Visual Studio 2008, compiler version 9.0.30729, on an AMD Athlon 64 Dual Core 4200+
(2.2 GHz) CPU. IBM ILOG CPLEX 12.1 was used as an LP and ILP solver. ILOG CP
1.6 with ILOG Scheduler 6.8 was used as a constraint programming framework. The
test instances, detailed results and source code are available on the CaPaD website3

and in [MSB12b].
The slave problems (4.10)-(4.11) were solved by the dynamic programming ap-

proach with strong bounds [MPT99], implementation of which was taken from the
personal website4 of D. Pisinger. The slave problems (4.20)-(4.21) were solved as the

3http://www.math.tu-dresden.de/∼capad
4http://www.diku.dk/∼pisinger

123

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.7. Conclusions

0-1 knapsack problem with forbidden pairs of items by our own implementation of a
branch-and-bound approach.

Time limit for each instance and method was set to 900 seconds. Here we consider
results for the proposed branching strategies and the interval graph algorithm from
[BR13]. Note that the algorithms can be compared with respect the percentage of the
solved instances and solution time but not the number of nodes. In Tables 4.1–4.5 the
number of nodes and time are the mean values over solved instances. From a rational
number we take only the integer part without rounding.

4.6.1 Self-generated OPP-3 instances

There is a lack in the literature concerning the OPP-3 instances. The OPP-3 instances
[BKRS09, BR13] are to our knowledge the single open published instances. They were
generated by similar principles as in [BR13]. Here we test the proposed algorithms on
these instances and compare the results with the interval graph algorithm from that
paper.

The test package consists of 1260 instances of OPP-3, both infeasible and feasible
ones as well. The package is divided into three classes with different maximal items side
ratios rmax, i.e., rmax = 1, 3, 20. Each of these classes is further divided into subclasses
according to the waste ratio from 0 to 40 with step 2. Container is a cube with side
length 1000. Number of items m = 15, 20.

Tables 4.1–4.5 show the number of proven feasible, proven infeasible, and unsolved
instances for each waste class. For the solution of the instances from [BR13], the
authors limited the time up to 1 minute but took a faster computer. We limit the time
by 5 min, so the comparison remains fair.

Since it does not make sense to compare the number of nodes, the efficiency indi-
cators for the algorithms are the number (or ratio) of proven instances and the overall
mean time for the solution.

4.7 Conclusions

Here we proposed constraint programming approaches for 3-dimensional orthogonal
packing problems and adapted linear programming-based pruning rules of different
types into the constraint propagation process of the constraint programming.

The main theoretical and experimental observations are the following.

• The relations strategy is very effective for instances with the maximal relation of
item sides greater than 1, so not cubes.

• On average and in particular the relations strategy is stronger than the algorithm
from [BR13] even without using LP-based pruning rules with the constraint prop-
agation.

• The schedule-or-postpone strategy is very bad at finding a feasible solution, if
there exists at least one.

124

Chapter 4. Constraint Programming Approaches for 3D Orthogonal Packing
4.8. Acknowledgments

• The 1D bar relaxation from a contour increases the efficiency of the schedule-or-
postpone strategy but the overall efficiency remains not sufficient.

• The 2D slice relaxation is very week relaxation, so it prunes non of the subprob-
lems while the solution of the test instances.

• The 1D slice-bar relaxation with forbidden pairs effects instances with a greater
items sizes ratio.

4.8 Acknowledgments

We thank François Clautiaux for the kindly provided code of the original algorithm;
David Pisinger for the provided code for the solution of 0-1 knapsack problems. We
appreciate the Academic Initiative of IBM which enables many researchers all over
the world to compare their methods using state-of-the-art IBM ILOG Optimization
Software.

125

Table 4.1: Self-generated instances: W = H = 1000, rmax = 1, 3, 20, number
of instances is 630 for each m = 15, 20. Column w.% indicates the waste ratio
(%), fe the amount of proven feasible instances, in the amount of proven infeasible
instances, un the amount of unsolved instances, n the number of nodes, and t the
total time for the solution (in seconds).

Algorithm from [BR13] Relations3
m = 15 m = 20 m = 15 m = 20

rmax w.% fe in un n t fe in un n t fe in un n t fe in un n t
1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 2 0 0 9 1 739914 21

2 0 10 0 1 0 0 10 0 1 0 0 10 0 22349 1 0 10 0 1432273 40
4 0 10 0 1 0 0 10 0 1 0 0 10 0 2 0 0 8 2 2 0
6 0 10 0 1 0 0 10 0 1 0 0 10 0 2 0 0 9 1 9720029 257
8 0 10 0 1 0 0 10 0 1 0 0 10 0 364865 10 0 9 1 1505353 39

10 0 10 0 1 0 0 10 0 1 0 0 10 0 989541 25 0 7 3 4615989 121
12 0 10 0 1 0 0 10 0 1 0 0 10 0 3427735 85 0 8 2 1581705 46
14 0 10 0 1 0 0 10 0 1 0 0 10 0 2505817 61 0 6 4 2951354 77
16 0 10 0 1 0 0 10 0 1 0 0 10 0 2 0 0 4 6 13130204 349
18 0 10 0 1 0 0 9 1 1 0 0 10 0 2 0 0 5 5 7570159 199
20 0 10 0 1 0 0 10 0 1 0 0 10 0 3308180 80 0 7 3 2 0
22 0 9 1 1 0 0 9 1 1 0 0 8 2 8096733 196 1 3 6 7807724 216
24 0 10 0 1 0 0 6 4 1 0 0 8 2 2 0 2 3 5 5282384 152
26 1 9 0 8256 16 0 6 4 1 0 1 8 1 3393703 83 2 0 8 2779 0
28 0 10 0 1 0 0 4 6 1 0 0 9 1 6880317 167 3 2 5 209 0
30 1 7 2 8728 16 0 8 2 1 0 1 6 3 1802348 44 0 2 8 2 0
32 1 7 2 4103 7 0 5 5 1 0 3 5 2 4308676 105 4 0 6 6058 0
34 4 4 2 24708 45 0 4 6 1 0 6 3 1 46676 1 6 2 2 614993 21
36 4 5 1 35214 68 0 2 8 1 0 5 3 2 124 0 8 1 1 2686 0
38 4 5 1 14768 26 0 0 10 - - 5 4 1 133 0 10 0 0 373 0
40 6 4 0 21999 38 2 3 5 93325 63 6 4 0 124 0 6 3 1 261 0

21 180 9 5609 10 2 156 52 4667 3 27 168 15 1673683 41 42 98 70 2712593 73
3 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 18 0

2 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 38 0
4 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 712 0
6 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 3240 0
8 0 10 0 1 0 0 10 0 1 0 0 10 0 2 0 0 10 0 785601 22

10 0 10 0 1 0 0 8 2 1 0 0 10 0 37 0 0 10 0 339575 9
12 0 10 0 5504 7 0 5 5 1 0 0 10 0 43 0 0 10 0 1236393 31
14 0 10 0 1 0 0 4 6 1 0 0 10 0 3 0 0 8 2 37375 1
16 0 10 0 1 0 0 3 7 1 0 0 10 0 8 0 1 9 0 651706 17
18 0 10 0 1491 1 0 4 6 1 0 0 10 0 1622 0 2 8 0 2049036 54
20 0 5 5 223 0 0 2 8 1 0 2 8 0 986320 22 6 4 0 48010 1
22 0 6 4 1 0 0 2 8 1 0 0 10 0 5063 0 6 3 1 295161 8
24 0 3 7 1 0 0 0 10 - - 3 7 0 45388 1 9 1 0 916731 26
26 2 4 4 31195 50 0 0 10 - - 5 5 0 4546 0 9 1 0 1826858 52
28 2 3 5 8617 12 0 0 10 - - 6 4 0 6345 0 10 0 0 2788 0
30 4 2 4 37616 73 0 1 9 1 0 7 3 0 2431 0 9 1 0 292 0
32 4 2 4 39973 70 0 1 9 1 0 8 2 0 171 0 9 1 0 1317 0
34 10 0 0 19298 30 0 0 10 - - 10 0 0 152 0 10 0 0 329 0
36 7 2 1 13635 21 0 0 10 - - 8 2 0 272 0 10 0 0 327 0
38 9 0 1 47905 96 0 0 10 - - 10 0 0 16708 0 10 0 0 321 0
40 10 0 0 12282 21 1 0 9 57122 25 10 0 0 179 0 10 0 0 330 0

48 127 35 10369 18 1 80 129 3809 2 69 141 0 50919 1 101 106 3 390293 11
20 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

2 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
4 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
6 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 7 0
8 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

10 0 10 0 10673 13 0 10 0 1 0 0 10 0 1 0 0 10 0 8 0
12 0 10 0 1 0 0 8 2 1 0 0 10 0 1 0 0 10 0 88 0
14 0 10 0 8994 10 0 6 4 1 0 0 10 0 2 0 0 10 0 585 0
16 0 10 0 1090 1 0 6 4 1 0 0 10 0 8 0 0 10 0 40 0
18 0 8 2 12175 16 0 6 4 1 0 0 10 0 308 0 0 10 0 23 0
20 0 8 2 2 0 0 5 5 1 0 0 10 0 988 0 1 8 1 61612 2
22 0 8 2 1 0 0 4 6 1 0 0 10 0 120 0 4 6 0 47949 2
24 0 8 2 1 0 0 7 3 1 0 0 10 0 58 0 1 9 0 303462 9
26 2 4 4 13273 15 0 5 5 1 0 3 7 0 1983 0 3 7 0 46207 2
28 0 6 4 10 0 0 3 7 1 0 1 9 0 3775 0 6 4 0 14729 0
30 0 7 3 1 0 0 2 8 1 0 2 8 0 1484 0 8 2 0 77171 2
32 2 2 6 46266 85 0 4 6 1 0 7 3 0 619 0 5 5 0 21454 1
34 2 4 4 47807 68 0 2 8 1 0 6 4 0 87 0 8 1 1 671 0
36 7 2 1 31620 50 0 0 10 - - 8 2 0 92 0 10 0 0 4180 0
38 4 5 1 12613 18 0 1 9 1 0 5 5 0 1598 0 9 1 0 44280 1
40 5 4 1 16643 27 0 3 7 1 0 6 4 0 75 0 7 3 0 315 0

22 156 32 9580 14 0 122 88 1 0 38 172 0 534 0 62 146 2 29656 1
91 463 76 8519 14 3 358 269 2736 2 134 481 15 575045 14 205 350 75 1044181 28

C
hapter

4.
C

on
strain

t
P

rogram
m

in
g

A
pproaches

for
3D

O
rthogon

al
P

ackin
g

4.8.
A

ckn
ow

ledgm
en

ts

Table 4.2: Comparison of the approaches (m = 15), rmax = 1, 3.

Algorithm [BR13] Relations3 Relations3+LP-pair Relations3+LP-bar FixMin3 FixMin3+LP-cont
rmax w.% fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t

1 0 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
2 0 10 0 1 0 0 10 0 22349 1 0 10 0 22336 12 0 10 0 1 0 0 10 0 1031 0 0 10 0 881 3
4 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
6 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
8 0 10 0 1 0 0 10 0 364865 10 0 9 1 18799 30 0 10 0 27740 4 0 9 1 275078 17 0 8 2 1 0

10 0 10 0 1 0 0 10 0 989541 25 0 8 2 1 0 0 10 0 989541 103 0 9 1 993848 57 0 8 2 1 0
12 0 10 0 1 0 0 10 0 3427735 85 0 7 3 1 0 0 8 2 754147 67 0 7 3 1 0 0 7 3 1 0
14 0 10 0 1 0 0 10 0 2505817 61 0 8 2 1 0 0 9 1 583396 51 0 8 2 1 0 0 8 2 1 0
16 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0
18 0 10 0 1 0 0 10 0 2 0 0 10 0 2 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0
20 0 10 0 1 0 0 10 0 3308180 80 0 8 2 1 0 0 9 1 655918 39 0 8 2 1 0 0 8 2 1 0
22 0 9 1 1 0 0 8 2 8096733 196 0 4 6 1 0 0 7 3 4433651 315 0 4 6 1 0 0 4 6 1 0
24 0 10 0 1 0 0 8 2 2 0 0 8 2 2 0 0 8 2 2 0 0 8 2 1 0 0 8 2 1 0
26 1 9 0 8256 16 1 8 1 3393703 83 1 6 3 33 0 1 7 2 630653 52 0 6 4 1 0 0 6 4 1 0
28 0 10 0 1 0 0 9 1 6880317 167 0 6 4 2 0 0 6 4 2 0 0 6 4 1 0 0 6 4 1 0
30 1 7 2 8728 16 1 6 3 1802348 44 1 5 4 37 0 1 5 4 37 0 0 5 5 1 0 0 5 5 1 0
32 1 7 2 4103 7 3 5 2 4308676 105 3 4 3 93 0 3 4 3 93 0 0 4 6 1 0 0 4 6 1 0
34 4 4 2 24708 45 6 3 1 46676 1 6 3 1 46676 31 6 3 1 46676 4 0 3 7 1 0 0 3 7 1 0
36 4 5 1 35214 68 5 3 2 124 0 5 3 2 123 0 5 3 2 124 0 0 3 7 1 0 0 3 7 1 0
38 4 5 1 14768 26 5 4 1 133 0 5 4 1 132 0 5 4 1 133 0 0 4 6 1 0 0 4 6 1 0
40 6 4 0 21999 38 6 4 0 124 0 6 4 0 124 0 6 4 0 124 0 0 4 6 1 0 0 4 6 1 0

21 180 9 5609 10 27 168 15 1673683 41 27 147 36 4208 4 27 157 26 386774 30 0 148 62 60475 4 0 146 64 43 0
3 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

2 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
4 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
6 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
8 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 2 0 0 10 0 1 0 0 10 0 1 0

10 0 10 0 1 0 0 10 0 37 0 0 10 0 35 0 0 10 0 36 0 0 9 1 700664 34 0 10 0 10523 72
12 0 10 0 5504 7 0 10 0 43 0 0 10 0 18 0 0 10 0 43 0 0 8 2 1 0 0 9 1 1 0
14 0 10 0 1 0 0 10 0 3 0 0 10 0 1 0 0 10 0 3 0 0 7 3 2 0 0 10 0 1 0
16 0 10 0 1 0 0 10 0 8 0 0 10 0 2 0 0 10 0 8 0 0 7 3 10380 0 0 10 0 2 0
18 0 10 0 1491 1 0 10 0 1622 0 0 10 0 1618 1 0 10 0 1621 0 0 6 4 1 0 0 7 3 1 0
20 0 5 5 223 0 2 8 0 986320 22 1 8 1 7503 8 1 8 1 7505 1 0 5 5 2 0 0 7 3 2029 24

The table is continued on the next page.

127

C
hapter

4.
C

on
strain

t
P

rogram
m

in
g

A
pproaches

for
3D

O
rthogon

al
P

ackin
g

4.8.
A

ckn
ow

ledgm
en

ts
Table 4.3: Comparison of the approaches (m = 15), rmax = 3, 20. Continuation.

Algorithm [BR13] Relations3 Relations3+LP-pair Relations3+LP-bar FixMin3 FixMin3+LP-cont
rmax w.% fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t

22 0 6 4 1 0 0 10 0 5063 0 0 10 0 4735 9 0 10 0 5063 1 0 8 2 12063 0 0 8 2 12063 35
24 0 3 7 1 0 3 7 0 45388 1 3 7 0 40067 62 3 7 0 45388 3 0 2 8 1 0 0 3 7 1 0
26 2 4 4 31195 50 5 5 0 4546 0 5 5 0 4482 5 5 5 0 4546 1 0 6 4 1 0 0 6 4 1 0
28 2 3 5 8617 12 6 4 0 6345 0 6 4 0 6335 9 6 4 0 6345 1 0 2 8 1 0 0 3 7 1 0
30 4 2 4 37616 73 7 3 0 2431 0 7 3 0 2430 1 7 3 0 2431 0 0 1 9 1 0 0 2 8 1 0
32 4 2 4 39973 70 8 2 0 171 0 8 2 0 170 0 8 2 0 171 0 0 1 9 1 0 0 2 8 1 0
34 10 0 0 19298 30 10 0 0 152 0 10 0 0 150 0 10 0 0 152 0 0 0 10 - - 0 0 10 - -
36 7 2 1 13635 21 8 2 0 272 0 8 2 0 271 0 8 2 0 272 0 0 1 9 1 0 1 2 7 820 0
38 9 0 1 47905 96 10 0 0 16708 0 10 0 0 16706 58 10 0 0 16708 3 0 0 10 - - 0 0 10 - -
40 10 0 0 12282 21 10 0 0 179 0 10 0 0 179 0 10 0 0 179 0 0 0 10 - - 0 0 10 - -

48 127 35 10369 18 69 141 0 50919 1 68 141 1 4034 7 68 141 1 4308 1 0 113 97 40174 2 1 129 80 1414 7
20 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

2 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
4 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
6 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
8 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

10 0 10 0 10673 13 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
12 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
14 0 10 0 8994 10 0 10 0 2 0 0 10 0 2 0 0 10 0 2 0 0 10 0 3 0 0 10 0 2 0
16 0 10 0 1090 1 0 10 0 8 0 0 10 0 7 0 0 10 0 8 0 0 9 1 3 0 0 10 0 5 0
18 0 8 2 12175 16 0 10 0 308 0 0 10 0 293 1 0 10 0 308 0 0 7 3 1280 0 0 9 1 997 8
20 0 8 2 2 0 0 10 0 988 0 0 10 0 929 2 0 10 0 988 0 0 8 2 1 0 0 9 1 26 0
22 0 8 2 1 0 0 10 0 120 0 0 10 0 14 0 0 10 0 120 0 0 7 3 1 0 0 8 2 5 0
24 0 8 2 1 0 0 10 0 58 0 0 10 0 17 0 0 10 0 58 0 0 6 4 1 0 0 9 1 1 0
26 2 4 4 13273 15 3 7 0 1983 0 3 7 0 1787 3 3 7 0 1983 0 0 3 7 1 0 1 4 5 46973 3
28 0 6 4 10 0 1 9 0 3775 0 1 9 0 3767 2 1 9 0 3775 0 0 4 6 2433 0 0 8 2 1217 6
30 0 7 3 1 0 2 8 0 1484 0 2 8 0 1467 3 2 8 0 1484 0 0 4 6 1 0 0 7 3 4 0
32 2 2 6 46266 85 7 3 0 619 0 7 3 0 585 1 7 3 0 619 0 0 2 8 1 0 0 3 7 591 6
34 2 4 4 47807 68 6 4 0 87 0 6 4 0 85 0 6 4 0 87 0 1 2 7 107 0 0 4 6 7 0
36 7 2 1 31620 50 8 2 0 92 0 8 2 0 78 1 8 2 0 92 0 0 0 10 - - 1 2 7 8063 1
38 4 5 1 12613 18 5 5 0 1598 0 5 5 0 60 0 5 5 0 1598 0 0 3 7 4 0 1 4 5 6160 159
40 5 4 1 16643 27 6 4 0 75 0 6 4 0 63 0 6 4 0 75 0 0 2 8 1 0 0 4 6 1 0

22 156 32 9580 14 38 172 0 534 0 38 172 0 436 1 38 172 0 534 0 1 137 72 192 0 3 161 46 3050 9
91 463 76 8519 14 134 481 15 575045 14 133 460 37 2893 4 133 470 27 130539 10 1 398 231 33846 2 4 436 190 1507 5

128

C
hapter

4.
C

on
strain

t
P

rogram
m

in
g

A
pproaches

for
3D

O
rthogon

al
P

ackin
g

4.8.
A

ckn
ow

ledgm
en

ts

Table 4.4: Comparison of the approaches (m = 20), rmax = 1, 3.

Algorithm [BR13] Relations3 Relations3+LP-pair Relations3+LP-bar FixMin3 FixMin3+LP-cont
rmax w.% fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t

1 0 0 10 0 1 0 0 9 1 739914 21 0 8 2 1 0 0 10 0 1 0 0 8 2 1 0 0 8 2 1 0
2 0 10 0 1 0 0 10 0 1432273 40 0 8 2 1 0 0 10 0 1 0 0 8 2 1 0 0 8 2 1 0
4 0 10 0 1 0 0 8 2 2 0 0 8 2 1 0 0 10 0 1 0 0 8 2 1 0 0 8 2 1 0
6 0 10 0 1 0 0 9 1 9720029 257 0 3 7 2 0 0 8 2 329235 46 0 3 7 1 0 0 3 7 1 0
8 0 10 0 1 0 0 9 1 1505353 39 0 8 2 2 0 0 9 1 2 0 0 8 2 1 0 0 8 2 1 0

10 0 10 0 1 0 0 7 3 4615989 121 0 6 4 2 0 0 8 2 2 0 0 6 4 1 0 0 6 4 1 0
12 0 10 0 1 0 0 8 2 1581705 46 0 7 3 1 0 0 7 3 2 0 0 7 3 1 0 0 7 3 1 0
14 0 10 0 1 0 0 6 4 2951354 77 0 5 5 2 0 0 5 5 2 0 0 5 5 1 0 0 5 5 1 0
16 0 10 0 1 0 0 4 6 13130204 349 0 1 9 2 0 0 2 8 1476112 77 0 1 9 1 0 0 1 9 1 0
18 0 9 1 1 0 0 5 5 7570159 199 0 3 7 2 0 0 3 7 2 0 0 3 7 1 0 0 3 7 1 0
20 0 10 0 1 0 0 7 3 2 0 0 7 3 2 0 0 7 3 2 0 0 7 3 1 0 0 7 3 1 0
22 0 9 1 1 0 1 3 6 7807724 216 0 2 8 2 0 1 2 7 324894 41 0 2 8 1 0 0 2 8 1 0
24 0 6 4 1 0 2 3 5 5282384 152 0 3 7 2 0 0 3 7 2 0 0 3 7 1 0 0 3 7 1 0
26 0 6 4 1 0 2 0 8 2779 0 2 0 8 2779 2 2 0 8 2779 0 0 0 10 - - 0 0 10 - -
28 0 4 6 1 0 3 2 5 209 0 3 2 5 209 1 3 2 5 209 0 0 2 8 1 0 0 2 8 1 0
30 0 8 2 1 0 0 2 8 2 0 0 2 8 2 0 0 2 8 2 0 0 2 8 1 0 0 2 8 1 0
32 0 5 5 1 0 4 0 6 6058 0 4 0 6 6058 6 4 0 6 6058 1 0 0 10 - - 0 0 10 - -
34 0 4 6 1 0 6 2 2 614993 21 6 2 2 614993 70 6 2 2 614993 22 0 2 8 1 0 0 2 8 1 0
36 0 2 8 1 0 8 1 1 2686 0 8 1 1 2686 1 8 1 1 2686 0 0 1 9 1 0 0 1 9 1 0
38 0 0 10 - - 10 0 0 373 0 10 0 0 373 1 10 0 0 373 0 0 0 10 - - 0 0 10 - -
40 2 3 5 93325 63 6 3 1 261 0 6 3 1 261 0 6 3 1 261 0 0 3 7 1 0 0 3 7 1 0

2 156 52 4667 3 42 98 70 2712593 73 39 79 92 29875 4 40 94 76 131315 9 0 79 131 1 0 0 79 131 1 0
3 0 0 10 0 1 0 0 10 0 18 0 0 10 0 16 0 0 10 0 1 0 0 10 0 1515338 67 0 10 0 219 1

2 0 10 0 1 0 0 10 0 38 0 0 10 0 36 0 0 10 0 1 0 0 9 1 252579 15 0 9 1 3970 6
4 0 10 0 1 0 0 10 0 712 0 0 10 0 696 2 0 10 0 648 0 0 9 1 182384 15 0 8 2 2952 38
6 0 10 0 1 0 0 10 0 3240 0 0 10 0 2987 8 0 10 0 3223 1 0 6 4 604379 23 0 7 3 1 0
8 0 10 0 1 0 0 10 0 785601 22 0 9 1 1560 3 0 10 0 1566 0 0 7 3 1 0 0 7 3 1 0

10 0 8 2 1 0 0 10 0 339575 9 0 9 1 8728 32 0 10 0 338355 63 0 3 7 1 0 0 5 5 1 0
12 0 5 5 1 0 0 10 0 1236393 31 0 9 1 4862 15 0 9 1 4947 1 0 3 7 9734 0 0 5 5 22 1
14 0 4 6 1 0 0 8 2 37375 1 0 8 2 37144 91 0 8 2 37375 5 0 3 7 1 0 0 3 7 1 0
16 0 3 7 1 0 1 9 0 651706 17 0 6 4 11306 25 1 9 0 651706 129 0 3 7 1 0 0 4 6 2 0
18 0 4 6 1 0 2 8 0 2049036 54 0 5 5 6154 19 1 7 2 534886 68 0 3 7 1 0 0 5 5 727 11
20 0 2 8 1 0 6 4 0 48010 1 6 4 0 91006 14 6 4 0 48010 5 0 1 9 1 0 0 2 8 589 15

The table is continued on the next page.

129

C
hapter

4.
C

on
strain

t
P

rogram
m

in
g

A
pproaches

for
3D

O
rthogon

al
P

ackin
g

4.8.
A

ckn
ow

ledgm
en

ts
Table 4.5: Comparison of the approaches (m = 20), rmax = 3, 20. Continuation.

Algorithm [BR13] Relations3 Relations3+LP-pair Relations3+LP-bar FixMin3 FixMin3+LP-cont
rmax w.% fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t fe in un n t

22 0 2 8 1 0 6 3 1 295161 8 4 3 3 323126 94 6 3 1 295161 27 0 2 8 1 0 0 3 7 1 0
24 0 0 10 - - 9 1 0 916731 26 7 1 2 17073 1 9 1 0 916731 96 0 1 9 1 0 0 1 9 1 0
26 0 0 10 - - 9 1 0 1826858 52 8 1 1 55229 5 8 1 1 19182 3 0 3 7 1 0 0 3 7 1 0
28 0 0 10 - - 10 0 0 2788 0 10 0 0 9482 1 10 0 0 2788 0 0 2 8 1 0 0 2 8 1 0
30 0 1 9 1 0 9 1 0 292 0 9 1 0 305 0 9 1 0 292 0 0 0 10 - - 0 1 9 1 0
32 0 1 9 1 0 9 1 0 1317 0 9 1 0 20022 1 9 1 0 1317 0 0 2 8 70 0 0 2 8 1 0
34 0 0 10 - - 10 0 0 329 0 10 0 0 334 0 10 0 0 329 0 0 0 10 - - 0 0 10 - -
36 0 0 10 - - 10 0 0 327 0 10 0 0 331 0 10 0 0 327 0 0 0 10 - - 0 0 10 - -
38 0 0 10 - - 10 0 0 321 0 10 0 0 328 0 10 0 0 321 0 0 0 10 - - 0 0 10 - -
40 1 0 9 57122 25 10 0 0 330 0 10 0 0 336 0 10 0 0 330 0 0 0 10 - - 0 0 10 - -

1 80 129 3809 2 101 106 3 390293 11 93 97 20 28146 15 99 104 7 136071 19 0 67 143 160281 7 0 77 133 499 4
20 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

2 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0
4 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 3 0 0 10 0 1 0
6 0 10 0 1 0 0 10 0 7 0 0 10 0 1 0 0 10 0 5 0 0 10 0 544 0 0 10 0 1 0
8 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0 0 10 0 1 0

10 0 10 0 1 0 0 10 0 8 0 0 10 0 6 0 0 10 0 5 0 0 7 3 1409 0 0 8 2 1019 48
12 0 8 2 1 0 0 10 0 88 0 0 10 0 99 0 0 10 0 88 0 0 10 0 44735 3 0 9 1 1 0
14 0 6 4 1 0 0 10 0 585 0 0 10 0 655 0 0 10 0 585 0 0 6 4 6 0 0 7 3 122 6
16 0 6 4 1 0 0 10 0 40 0 0 10 0 36 0 0 10 0 40 0 0 7 3 71 0 0 9 1 26 1
18 0 6 4 1 0 0 10 0 23 0 0 10 0 22 0 0 10 0 23 0 0 7 3 62 0 0 7 3 1 0
20 0 5 5 1 0 1 8 1 61612 2 1 8 1 198123 8 1 8 1 61612 5 0 2 8 1 0 0 6 4 801 68
22 0 4 6 1 0 4 6 0 47949 2 4 6 0 65568 8 4 6 0 47949 5 0 4 6 4 0 0 7 3 396 13
24 0 7 3 1 0 1 9 0 303462 9 0 9 1 451 0 0 9 1 409 0 0 3 7 1 0 0 5 5 1 0
26 0 5 5 1 0 3 7 0 46207 2 2 7 1 5445 1 3 7 0 46207 7 0 3 7 1 0 0 5 5 1 0
28 0 3 7 1 0 6 4 0 14729 0 6 4 0 34678 2 6 4 0 14729 1 0 2 8 1 0 0 4 6 1 0
30 0 2 8 1 0 8 2 0 77171 2 8 2 0 136835 6 8 2 0 77171 4 0 2 8 1 0 0 3 7 1 0
32 0 4 6 1 0 5 5 0 21454 1 5 5 0 29269 1 5 5 0 21454 3 0 0 10 - - 0 3 7 1 0
34 0 2 8 1 0 8 1 1 671 0 8 2 0 639 0 8 1 1 671 0 0 3 7 1 0 0 5 5 1 0
36 0 0 10 - - 10 0 0 4180 0 10 0 0 5952 1 10 0 0 4180 1 0 0 10 - - 0 0 10 - -
38 0 1 9 1 0 9 1 0 44280 1 9 1 0 103436 5 9 1 0 44280 2 0 0 10 - - 0 1 9 1 0
40 0 3 7 1 0 7 3 0 315 0 7 3 0 304 0 7 3 0 315 0 0 1 9 1 0 0 2 8 1 0

0 122 88 1 0 62 146 2 29656 1 60 147 3 27691 2 61 146 3 15225 1 0 107 103 2602 0 0 131 79 119 7
3 358 269 2736 2 205 350 75 1044181 28 192 323 115 28571 7 200 344 86 94204 10 0 253 377 50218 2 0 287 343 198 4

130

Summary and Outlook

The thesis is devoted to the NP-hard problems of higher-dimensional orthogonal pack-
ing and related problems. The main problems we solve here are the two- and three-
dimensional strip packing and feasibility, and the one-dimensional contiguous bin pack-
ing.

Given an NP-hard problem of integer linear programming, it is extremely impor-
tant to find the facets of the convex hull of its integer solutions. In the unlikely case,
if the full description of the convex hull is found, then the problem becomes polyno-
mially solvable. Even if some facets of the convex hull are found, it helps to tighten
the linear programming relaxation, which leads to the better stability, efficiency, and
performance characteristics of the solution methods. Thus, finding the facets is sig-
nificant, both from theoretical and practical perspectives. One successful attempt in
this direction of a search for facets for a particular model of the two-dimensional strip
packing and hence feasibility problems is done in the thesis. We proposed a new integer
linear programming model and found two classes of facets under appropriate assump-
tions. As predicted, the new branch-and-cut approach has better stability, efficiency,
and performance characteristics.

In the discrete optimization the development of models with tighter linear pro-
gramming bounds has a crucial significance, since it impacts the stability, efficiency
and performance characteristics of the solution methods. If possible, Dantzig-Wolfe de-
composition is a classical tool to make an integer linear programming model stronger.
But, it leads to a different formulation where sometimes the properties of the solved
problem are difficult to deliver. In the thesis, we considered this decomposition for the
one-dimensional contiguous bin packing problem and tackled the difficulty related to
the heterogeneity and contiguity constraints. As a result, we came up with new branch-
and-price approaches, which have a very good efficiency, and have a great potential for
the further development and propagation to higher-dimensions.

Nonlinear modeling of the higher-dimensional packing process is more natural and
less complicated. It requires an appropriate modeling tool. Recently, the leading role
of such a tool for discrete optimization problems has been acquiring constraint pro-
gramming. Being a synergy, it inherits the results in mathematics, operations research,
and computer science. One of a few weaknesses of constraint programming is a week
relaxation bound. This we accomplished to excel in the thesis by tightening the con-
straint propagation with the multilevel relaxations – smaller-dimensional relaxation of
the solved problem first, Dantzig-Wolfe decomposition next, and linear programming
relaxation at the end. We proposed new constraint programming approaches for the
two- and three-dimensional strip packing and feasibility problems, which are distin-

131

guished by different solution search strategies and a tightened constraint propagation,
yielding very good numerical results.

Concerning the thesis, the following research directions seem to be of great interest:

• What further facets exist? This question is of highly interest from the theoretical
and practical perspectives. However, we must admit that the number of facet
classes can be polynomially unbounded.

• The propagation of the branch-and-price approach to higher-dimensions can be
possibly done by branchings. Tackling all dimensions in one model leads to
nonlinearity in the constraint set.

The higher-dimensional orthogonal packing and related problems considered in the
thesis remain still very hard, despite our achieved results. It is explained by the fact
that they areNP-hard. Therefore, the following two issues are relevant. From practice,
the effectiveness of a solution method for a problem is always a trade-off between the
generality of the method and a deep investigation of the concrete problem structure.
From theory, we still do not know whether P 6= NP, but in both resolutions of this
problem the modeling issues and exact approaches will remain up-to-date.

132

Bibliography

[Apt03] K. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003. 71, 112

[AV08] C. Alves and J. M. Valério de Carvalho. A stabilized branch-and-price-
and-cut algorithm for the multiple length cutting stock problem. Com-
puters and Operations Research, 35(4):1315–1328, 2008. 84, 85, 118, 119

[AVPT09] R. Alvarez-Valdes, F. Parreño, and J. Tamarit. A branch and bound
algorithm for the strip packing problem. OR Spectrum, 31:431–459, 2009.
10.1007/s00291-008-0128-5. 65, 108

[BB07] R. Baldacci and M. Boschetti. A cutting-plane approach for the two-
dimensional orthogonal non-guillotine cutting problem. European Journal
of Operational Research, 183(3):1136–1149, December 2007. 8, 65, 66, 108

[BCDP11] N. Beldiceanu, M. Carlsson, S. Demassey, and E. Poder. New filtering
for the cumulative constraint in the context of non-overlapping rectan-
gles. Annals of Operations Research, 184:27–50, 2011. 10.1007/s10479-
010-0731-0. 66, 75, 108

[Bea85] J. Beasley. Bounds for two-dimensional cutting. Journal of the Opera-
tional Research Society, 36(1):71–74, 1985. 8, 66, 108

[Bel10] G. Belov. Imposing non-preemptiveness in resource-constrained problems
using linear programming and the consecutive-ones property. In Tagungs-
band 19. Workshop für Diskrete Optimierung, pages 9–12, 2010. 49

[BKRS09] G. Belov, V. Kartak, H. Rohling, and G. Scheithauer. One-dimensional
relaxations and LP bounds for orthogonal packing. International Trans-
actions in Operational Research, 16(6):745–766, 2009. 8, 66, 67, 68, 108,
109, 116, 124

[BKRS13] G. Belov, V. Kartak, H. Rohling, and G. Scheithauer. Conservative scales
in packing problems. OR Spectrum, 35(2):505–542, 2013. 67, 100, 109

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property, in-
terval graphs, and graph planarity using pq-tree algorithms. Journal of
Computer and System Sciences, 13(3):335 – 379, 1976. 47, 49

133

[BM03] M. Boschetti and A. Mingozzi. The two-dimensional finite bin packing
problem. part I: New lower bounds for the oriented case. 4OR: A Quar-
terly Journal of Operations Research, 1:27–42, 2003. 10.1007/s10288-002-
0005-z. 71, 111

[BR13] G. Belov and H. Rohling. LP bounds in an interval-graph algorithm for
orthogonal-packing feasibility. Operations Research, 61(2):483–497, 2013.
67, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 124, 126, 127, 128,
129, 130, 139, 140

[BSM08] G. Belov, G. Scheithauer, and E. Mukhacheva. One-dimensional heuris-
tics adapted for two-dimensional rectangular strip packing. Journal of
the Operational Research Society, 59(10):823–832(10), June 2008. 72, 117

[CAVdC10a] F. Clautiaux, C. Alves, and J. Valério de Carvalho. A survey of dual-
feasible and superadditive functions. Annals of Operations Research,
179:317–342, 2010. 67, 109

[CAVdC10b] F. Clautiaux, C. Alves, and J. Valério de Carvalho. A survey of dual-
feasible and superadditive functions. Annals of Operations Research,
179:317–342, 2010. 10.1007/s10479-008-0453-8. 67

[CCM07] J. Carlier, F. Clautiaux, and A. Moukrim. New reduction procedures
and lower bounds for the two-dimensional bin packing problem with fixed
orientation. Computers and Operations Research, 34(8):2223–2250, 2007.
67, 71, 111

[CJCM08] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint
programming approach for the orthogonal packing problem. Computers
and Operations Research, 35(3):944–959, 2008. 65

[CJM08] F. Clautiaux, A. Jouglet, and A. Moukrim. A new graph-theoretical
model for k-dimensional guillotine-cutting problems. In C. McGeoch, ed-
itor, Experimental Algorithms, volume 5038 of Lecture Notes in Computer
Science, pages 43–54. Springer Berlin Heidelberg, 2008. 5, 38, 39, 63, 65,
66, 68, 69, 98, 99, 100, 102, 107, 108, 110, 112, 113, 139

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Press, Mass, Cambridge, 1990. 56, 57

[CMM03] R. Conway, W. Maxwell, and L. Miller. Theory of Scheduling. Dover
Books on Computer Science Series. Dover, 2003. 42

[Dom09] M. Dom. Recognition, generation, and application of binary matrices with
the consecutive-ones property. PhD thesis, University of Jena, 2009. 49

[DW60] G. Dantzig and P. Wolfe. Decomposition principle for linear programs.
Operations Research, 8(1):101–111, 1960. 42

134

[FS01] S. Fekete and J. Schepers. New classes of fast lower bounds for
bin packing problems. Mathematical Programming, 91:11–31, 2001.
10.1007/s101070100243. 67

[FS04a] S. Fekete and J. Schepers. A combinatorial characterization of higher-
dimensional orthogonal packing. Mathematics of Operations Research,
29(2):353–368, 2004. 65, 67, 108, 109

[FS04b] S. Fekete and J. Schepers. A general framework for bounds for higher-
dimensional orthogonal packing problems. Mathematical Methods of Op-
erations Research, 60(2):311–329, 2004. 67, 109

[FSvdV07] S. Fekete, J. Schepers, and J. van der Veen. An exact algorithm for
higher-dimensional orthogonal packing. Operations Research, 55(3):569–
587, 2007. 7

[GG61] P. Gilmore and R. Gomory. A linear programming approach to the
cutting-stock problem (Part I). Operations Research, 9:849–859, 1961.
42, 67, 84, 109, 116, 118, 119

[GG63] P. Gilmore and R. Gomory. A linear programming approach to the
cutting-stock problem (Part II). Operations Research, 11:863–888, 1963.
42, 67, 84, 85, 109, 116, 118, 119

[Hif98] M. Hifi. Exact algorithms for the guillotine strip cutting/packing problem.
Computers and Operations Research, 25(11):925–940, 1998. 65, 108

[HNS08] J. Hardin, G. Nemhauser, and M. Savelsbergh. Strong valid inequalities
for the resource-constrained scheduling problem with uniform resource
requirements. Discrete Optimization, 5(1):19 – 35, 2008. 8, 38, 45

[Hop00] E. Hopper. Two-dimensional packing utilising evolutionary algorithms
and other meta-heuristic methods. PhD thesis, Cardiff University, 2000.
38, 40, 102, 106, 139, 140

[HT00] E. Hopper and B. Turton. An empirical investigation of meta-heuristic
and heuristic algorithms for a 2D packing problem. European Journal of
Operational Research, 128(1):34–57, 2000. 38, 40, 102, 106, 139, 140

[Kan39] L. Kantorovich. Mathematical methods of organizing and planning pro-
duction. Management Science, 6(4):366–422, July 1960. (translation,
firstly appeared in Russian in 1939). 6

[KIN+09] M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi.
Exact algorithms for the two-dimensional strip packing problem with and
without rotations. European Journal of Operational Research, 198(1):73–
83, 2009. 65, 108

135

[KMP10] R. Korf, M. Moffitt, and M. Pollack. Optimal rectangle packing. Annals
of Operations Research, 179:261–295, 2010. 10.1007/s10479-008-0463-6.
66, 108

[KZ51] L. Kantorovich and V. Zalgaller. Calculation of rational cutting of stock
(in Russian). Lenizdat, Leningrad, 1951. 67, 84, 85, 109, 116, 118, 119

[LMV02] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional
bin packing problems. Discrete Applied Mathematics, 123:379–396, 2002.
5

[Lue83] G. Lueker. Bin packing with items uniformly distributed over intervals
[a,b]. In Foundations of Computer Science’83, pages 289–297, 1983. 67

[MAVdC10] R. Macedo, C. Alves, and J. Valério de Carvalho. Arc-flow model for
the two-dimensional guillotine cutting stock problem. Computers and
Operations Research, 37:991–1001, June 2010. 5, 65, 107

[MMBS11] M. Mesyagutov, E. Mukhacheva, G. Belov, and G. Scheithauer. Pack-
ing of one-dimensional bins with contiguous selection of identical items:
An exact method of optimal solution. Automation and Remote Control,
72:141–159, 2011. 10.1134/S0005117911010127. v, 8, 45, 71, 72, 73, 74,
111, 117

[MMV03] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip
packing problem. INFORMS Journal on Computing, 15(3):310–319, 2003.
27, 38, 40, 73, 139

[MPT99] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45:414–423,
1999. 37, 98, 123

[MSB12a] M. Mesyagutov, G. Scheithauer, and G. Belov. LP bounds in various
constraint programming approaches for orthogonal packing. Computers
and Operations Research, 39(10):2425–2438, 2012. v, 108, 109, 110, 112

[MSB12b] M. Mesyagutov, G. Scheithauer, and G. Belov. New constraint program-
ming approaches for 3D orthogonal packing. Technical report, Preprint
MATH-NM-01-2012, Technische Universität Dresden, 2012. v, 123

[MSB13a] M. Mesyagutov, G. Scheithauer, and G. Belov. A new branch-and-cut
method for the strip packing problem. Technical report, Preprint MATH-
NM-04-2013, Technische Universität Dresden, 2013. v, 42, 62

[MSB13b] M. Mesyagutov, G. Scheithauer, and G. Belov. New branch-and-price
methods for the 1D contiguous bin packing problem. Technical report,
Preprint MATH-NM-06-2013, Technische Universität Dresden, 2013. v,
61

136

[NW88] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization.
John Wiley and Sons, New York, 1988. 8, 24, 43

[Pad00] M. Padberg. Packing small boxes into a big box. Mathematical Methods
of Operations Research, 52(1):1–21, 2000. 8, 66, 94, 108

[PS07] D. Pisinger and M. Sigurd. Using decomposition techniques and con-
straint programming for solving the two-dimensional bin-packing prob-
lem. INFORMS J. on Computing, 19:36–51, January 2007. 65, 66, 108

[Sch95] G. Scheithauer. Equivalence and dominance for problems of optimal pack-
ing of rectangles. Ricerca Operativa, 83(27):3–34, 1995. 72, 73, 74, 116

[Sch99] G. Scheithauer. LP-based bounds for the container and multi-container
loading problem. International Transactions in Operational Research,
6(2):199–213, 1999. 67, 68, 109, 116, 119, 121

[Sch08] G. Scheithauer. Zuschnitt- und Packungsoptimierung: Problemstellungen,
Modellierungstechniken, Lösungsmethoden. Teubner Verlag, Wiesbaden,
2008. 32, 70, 110, 111

[Sim08] H. Simonis. Search strategies for rectangle packing. In of Lecture Notes
in Computer Science, pages 52–66. Springer, 2008. 66, 68, 75, 77, 103,
108

[SO08] H. Simonis and B. O’Sullivan. Search strategies for rectangle packing. In
Proceedings of the 14th international conference on Principles and Prac-
tice of Constraint Programming, CP ’08, pages 52–66, Berlin, Heidelberg,
2008. Springer-Verlag. 66, 68, 75, 103, 108

[Tuc72] A. Tucker. A structure theorem for the consecutive 1’s property. Journal
of Combinatorial Theory Series B, 12:153–162, 1972. 44, 45, 49

[WHS07] G. Wäscher, H. Hausner, and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109–1130, December 2007. 84, 118

[Wol98] L. Wolsey. Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley and Sons, Chichester, 1998.
24, 30, 31

137

List of Tables

1.1 m(W + H) −
∑

i∈I [wi + hi]+1 affinely independent points in conv(S):
The table consist of four vertical parts: the first points; the points from
consecutively shifting the values of α variables, (1.17), (1.18); the points
from consecutively shifting the values of β variables. The first part has
one point. The second and the third part has mH−

∑
i∈I hi points. The

fourth part has mW −
∑

i∈I wi. The points are written row by row. . . 12
1.2 Results of the 2D instances from [CJM08]: f – value of the goal function;

n1 – number of nodes for the incumbent; t1 – time for the incumbent; n2

– total number of nodes; t2 – total time; cuts – is the number of added
cuts. * The problem 00X23 was solved optimally by the branch-and-cut
method with maxM⊆I |M | ≤ 10, n2 = 5407303, t2 = 231. 39

1.3 Results of the 2D instances from [MMV03] and [Hop00, HT00]: f – value
of the goal function; n1 – number of nodes for the incumbent; t1 – time
for the incumbent; n2 – total number of nodes; t2 – total time; cuts – is
the number of added cuts. 40

2.1 Results of the decision version of CBPP-1 on the 2D instances from
[CJM08]: A – Branch-and-price-cols; B – Branch-and-price-
subcols; n – total number of nodes; t – total time. 63

3.1 Coefficient matrix of the formulation (3.16)-(3.19). 86
3.2 Coefficient matrix of the formulation (3.57)-(3.65). 97
3.3 Instances from [CJM08]: Comparison of the efficiency of the branch-

ing strategies with LP-based pruning rules. The numbers marked by a
star are the mean values over instances which were solved by FixMin,
FixMinR, Dichotomy(c), and Dichotomy(i) branching strategies.
Instances: A–original; B–transposed. 99

3.4 Self-generated instances: Comparison of the efficiency of the branch-
ing strategies. Number of instances is 630, W = H = 1000, m=20,
maximal side ratio rmax = 1, 3, 20. The column w.% is the waste ra-
tio (%), s.% is the amount of solved instances (%). The column n
indicates the number of nodes which were used in order to obtain the
solution, t indicates the total time for the solution (in seconds). Algo-
rithms: A–algorithm from [BR13]; B–FixMinR; C–Dichotomy; D–
Disjunctive; E–Disjunctive+LP-pair. 101

3.5 Self-generated instances. Algorithms: A–algorithm from [BR13]; B–
Partition; C–Partition+LP-pair. 102

139

3.6 Self-generated instances: Comparison of the efficiency of the branching
strategies. Number of instances is 450, W = H = 1000, rmax = 2. The
column w.% is the waste ratio (%), s.% is the amount of solved instances
(%). The column n indicates the number of nodes for the CP algorithms,
which were used in order to obtain the solution, t indicates the total time
for the solution (in seconds). Algorithms: A–algorithm from [BR13]; B–
FixMinR; C–Dichotomy; D–Disjunctive; E–Disjunctive+LP-pair. 104

3.7 Self-generated instances. Algorithms: A – algorithm from [BR13]; B–
Partiton; C – Partition+LP-pair. 105

3.8 Instances from [Hop00, HT00]: Comparison of the efficiency of the
branching strategies. W,H are the container sizes. The column n in-
dicates the number of nodes which were used in order to obtain the solu-
tion. The column t indicates the total time for the solution (in seconds).
Algorithms: A–algorithm from [BR13]; B–FixMinR; C–Dichotomy;
D–Disjunctive; E–Disjunctive+LP-pair. 106

4.1 Self-generated instances: W = H = 1000, rmax = 1, 3, 20, number of
instances is 630 for each m = 15, 20. Column w.% indicates the waste
ratio (%), fe the amount of proven feasible instances, in the amount of
proven infeasible instances, un the amount of unsolved instances, n the
number of nodes, and t the total time for the solution (in seconds). . . 126

4.2 Comparison of the approaches (m = 15), rmax = 1, 3. 127
4.3 Comparison of the approaches (m = 15), rmax = 3, 20. Continuation. . . 128
4.4 Comparison of the approaches (m = 20), rmax = 1, 3. 129
4.5 Comparison of the approaches (m = 20), rmax = 3, 20. Continuation. . . 130

140

List of Figures

1.1 Feasible shifting of items for construction of affinely independent points
in conv(S): (a) – An optimal solution; (b) – Shifting of item p over the
(0,W)-axis; (c)-(d) – Shifting of item p over the (0, H)-axis. Note for all
figures here and further we draw the strip rotated by 90◦ clockwise. . . 11

1.2 Allocations of three items p, q, r: (a) – Projections of {p, q, r} overlap
in (0,W), but do not in H-direction; (b) – Projections of {p, q} overlap
in (0,W), projections of {p, r} and {q, r} overlap in (0, H). 13

1.3 Allocations of four items p, q, r, s: (a) – Projections of {p, q, r, s} over-
lap in (0,W), but do not in (0, H); (b) – Projections of {p, q, r} overlap
in (0,W), projections of {p, s} and {q, s} overlap in (0, H); (c) – Pro-
jections of {s, r}, {q, r}, {p, q} overlap in (0,W), projections of {q, s}
and {p, r} overlap in (0, H); (d) – Projections of {p, q} overlap in (0,W),
projections of {r, s, p} and {r, s, q} overlap in (0, H). 13

1.4 Feasible initial solution for the construction of linear independent points
in {(α, β) ∈ conv(S) :

∑
i∈M [α̃u

i + β̃v
i] = |M | + 1}. M = {1, 2, 3},

I = M ∪ {4, . . . , 7}, u = v = 3. 16

1.5 Feasible shifting of items fromM\{1} over the (0, H)-axis while
∑

i∈M [α̃u
i +

β̃v
i] = |M |+ 1 holds. M = {1, 2, 3}, I = M ∪{4, . . . , 7}, u = v = 3. The

shifting of item 2 after u is divided in four parts: (a) – First part, item
3 is allocated after k̄; (b) – Second part, item 3 is allocated at its origin;

(c) – Third part, items 4,. . . ,7 are allocated after k̂; (d) – Fourth part,
items 4,. . . ,7 are allocated at their origin. 17

1.6 Feasible shifting of items from M \ {1} over the (0, H)-axis before u
while

∑
i∈M [α̃u

i + β̃v
i] = |M |+1 holds. M = {1, 2, 3}, I = M ∪{4, . . . , 7},

u = v = 3. 18

1.7 Feasible shifting of items fromM\{1} over the (0,W)-axis while
∑

i∈M [α̃u
i +

β̃v
i] = |M | + 1 holds. M = {1, 2, 3}. I = M ∪ {4, 5}. u = v = 3. De-

scription: (a) – Shifting of item 2 after v; (b) – Shifting of item 2 before
v. 19

1.8 Rectangular areas with sizes: (a) – wmin×hmin; (b) – (wmin+1)×(hmin+1).
(c) – Items which fit into the area with sizes (wmin + 1)× (hmin + 1). . . 35

141

2.1 Column set without the C1P: (a) – A column set; (b) – The correspond-
ing bipartite graph. The property is broken in the subcolumns of the
columns B, C, D which are marked by the dashed box. Thus, the cor-
responding bipartite graph is non-convex. The closed neighborhoods
of each vertex is N(A) := {a}, N(B) := {a, b, e}, N(C) := {b, c, e},
and N(D) := {a, c, e}. The bipartite graph has a single asteroidal
triple, namely (B,C,D) because only for these vertexes there exist
the paths (B → C)D := {B, b, C}, (C → D)B := {C, c,D}, and
(B → D)C := {B, c,D}. 44

2.2 Forbidden subgraphs. The vertex set V C
2 of a bipartite graph BC :=

(V C
1 , V

C
2 , EC) contains an A-triple if and only if BC contains one of the

displayed graphs as an induced subgraph where black vertexes corre-
spond to vertexes in V C

2 . Numbers k and k + 1 refer to the numbers of
white vertexes in the right-hand parts of the first three graphs. In the
case of the graph G1

k, any three different black vertexes build an A-triple.
In other cases there is only a single A-triple, namely (υ, µ, ω). 46

2.3 Forbidden subgraphs Ḡ1
k, Ḡ

2, Ḡ4, Ḡ4. 53
2.4 Forbidden subgraph G5: different paths. 54
2.5 The Subcols algorithm: (a) – A column set with the C1P; (b) – The

bipartite graph corresponding to the column set in (a); (c) – The columns
that would break the C1P of the column set in (a). 59

2.6 The AllPaths algorithm: (a) – A bipartite graph; (b) – A search tree
which is build for finding all exclusive paths between nodes A and C. . 61

3.1 Mutual locations of the items i and j. The areas where the left-bottom
arrangement point of the item j can be allocated are marked by hatching. 77

3.2 Binary branching tree corresponding to Disjunctive. 78
3.3 Possible mutual locations of the items i and j according to Partition.

The areas where the left-bottom arrangement point of the item j can be
allocated are marked by hatching. The size of the item j is depicted in
Figure 3.1a. Rij = {l} and Rij = {r} are depicted in Figure 3.1b and
3.1c. 79

3.4 Binary branching tree corresponding to Partition. 80
3.5 Possible mutual locations of items i and j according to Intersection.

The areas where the left-bottom arrangement point of item j can be
allocated are marked by hatching. Item j size is depicted in Figure 3.1a.
Rij = {l}, Rij = {r} are depicted in Figure 3.1b and 3.1c, Rij = {b},
Rij = {t} are depicted in Figure 3.3c and 3.3d 80

3.6 Binary branching tree corresponding to Intersection. 82
3.7 Vertical bar relaxation of the partial solution in the (0, x)-direction cor-

responding to a node u ∈ V . Items from Iu
x = {1, 2, 3} are marked by

hatching. There exist blocks {(χx
k, λ

x
k, ρ

x
k)} with k = 1, . . . , 4. 84

3.8 Horizontal bar relaxation of the partial solution in the (0, x)-direction
corresponding to a node u ∈ V with a monotone contour. Items from
Iu

x = {1, 2, 3} are marked by hatching. There exist blocks {(χx
k, ω

x
k , σ

x
k)}

with k = 1, . . . , 4. 87

142

3.9 Horizontal bar relaxation of the partial solution in the (0, x)-direction
corresponding to a node u ∈ V . Non-monotone X-contour. Iu

x :=
{1, . . . , 5}, Īu

x := {6, 7}. 88
3.10 Horizontal bar relaxation of the partial solution corresponding to a node

u ∈ V with a non-monotone contour. There exist horizontal blocks
{(χx

k, ω
x
k , σ

x
k)}3

k=1. 89
3.11 Advanced bar relaxation of the partial solution in the (0, x)-direction cor-

responding to a node u ∈ V with a monotone contour. Items from Iu
x :=

{1, 2, 3} are marked by hatching. There exist vertical {(χx
k, λ

x
k, ρ

x
k)} and

horizontal {(χx
k, ω

x
k , σ

x
k)} blocks with k = 1, . . . , 4. 95

4.1 Mutual locations of the items i and j. The volumes where the item j
can be allocated are marked by the blue color. 114

4.2 Binary branching tree corresponding to Relations3. 115
4.3 Contour of a packing in p-axis for a fixed d ∈ D and r ∈ R̃d(W d). . . . 117
4.4 1D bar and 2D slice relaxations. We depict only one 1D bar and one 2D

slice in order to simplify the figure. 120

143

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt ubernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder
ahnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorgelegte Dissertation habe ich am Institut für Numerische Mathematik der
Technischen Universitët Dresden unter der wissenschaftlichen Betreuung von Herrn
Prof. Dr. rer. nat. Andreas Fischer und Herrn Dr. rer. nat. Guntram Scheithauer
angefertigt.

Assurance

I affirm that I have written this dissertation without any inadmissible help from any
third person and without recourse to any aids other than cited; all sources are clearly
referenced. The dissertation has never been submitted in this or similar form before,
neither in Germany nor in any foreign country.

I have written this dissertation at the Institute of Numerical Mathematics, Dresden
University of Technology, under the scientific supervision of Prof. Dr. rer. nat. Andreas
Fischer and Dr. rer. nat. Guntram Scheithauer.

Marat A. Mesyagutov
Dresden, August 31, 2013

	Introduction
	A Branch-and-Cut Method for the Strip Packing Problem
	Introduction
	Strong valid inequalities and facets
	The branch-and-cut algorithm
	Valid linear inequalities
	Valid nonlinear inequalities and linearization
	Numerical study
	Conclusions
	Acknowledgments

	Branch-and-Price Methods for the 1D Contiguous Bin Packing Problem
	Introduction
	The branch-and-price algorithms
	Subcolumns breaking the C1P
	Subcolumns potentially breaking the C1P
	Numerical study
	Conclusions
	Acknowledgments

	Constraint Programming Approaches for Orthogonal Packing
	Introduction
	An overview of the algorithm of Clautiaux et al.
	Minor modifications
	New branching strategies
	Advanced constraint propagation
	Numerical study
	Conclusions
	Acknowledgments

	Constraint Programming Approaches for 3D Orthogonal Packing
	Introduction
	Modification of the basic algorithm
	Minor modifications
	New branching strategies
	Advanced constraint propagation
	Numerical study
	Conclusions
	Acknowledgments

	Summary and Outlook
	Bibliography
	List of Tables
	List of Figures

