
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

  

 Neurodegenerative Dis 2007;4:164–170 
 DOI: 10.1159/000101841 

 Increased A �  Production Leads to 
Intracellular Accumulation of A �  in 
Flotillin-1-Positive Endosomes  

 Lawrence Rajendran   

 a     Marlen Knobloch   

 c     Kathrin D. Geiger   

 b     Stephanie Dienel   

 a     

Roger Nitsch   

 c     Kai Simons   

 a     Uwe Konietzko   

 c   

  a 
   Max Planck Institute of Molecular Cell Biology and Genetics, and  b 

   Neuropathology, Uniklinikum, 
Techincal University of Dresden,  Dresden , Germany;  c 

   Psychiatry Research, University of Zurich,  Zurich , Switzerland
 

 Introduction 

 The occurrence of intracellular A �  accumulation has 
recently been shown by several groups in different trans-
genic mouse models and in postmortem tissue of Alz-
heimer’s disease (AD) patients  [1–5] . The nature of these 
accumulations, however, and whether they are toxic, 
needs further exploration. Our newly reported transgen-
ic mouse model, the ArcA �  mouse that overexpresses hu-
man APP 695 with the Swedish and Arctic mutations in 
a single construct, showed consistent behavioral deficits 
before the deposition of  � -amyloid plaques. These defi-
cits correlated with a rise in intracellular punctate depos-
its of A � , most prominently in hippocampal, subicular 
and cortical regions  [6] . To further elucidate the subcel-
lular localization of these punctate A �  deposits, we per-
formed immunohistological double-staining with vari-
ous organelle markers including flotillin-1 (reggie-2). 
Flotillin-1 belongs to the prohibitin (PHB) family of pro-
teins that include flotillin-2, stomatins and others  [7, 8] . 
Flotillins are lipid raft associated proteins  [9]  and are 
found at the plasma membrane and in endosomes and 
multivesicular bodies  [10–12] . We provide evidence that 
intracellular A �  accumulates in flotillin-1 positive vesi-
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 Abstract 
 Extracellular accumulation of A �  in  � -amyloid plaques is 
thought to be associated with the neurodegeneration ob-
served in Alzheimer’s disease (AD) patients, although a lack 
of correlation with cognitive decline raised doubts on this 
hypothesis. In different transgenic mouse models A �  accu-
mulates inside the cells and mice develop behavioral deficits 
well before visible extracellular  � -amyloid accumulation. 
Here we show that intracellular A �  accumulates in flotillin-1 
positive endocytic vesicles. We also demonstrate that flotil-
lin-1 is not only associated with intracellular A �  in transgen-
ic mice but also with extracellular  � -amyloid plaques in AD 
patient brain sections. 
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cles and that flotillin-1 is also localized in neuritic  � -am-
yloid plaques of AD patient brains.

  Materials and Methods 

 Transgenic Mice
  In this study, ArcA �  mice previously described in Knobloch 

et al.  [6]  and their wt littermates were used. In brief, tg mice show 
about 6-fold overexpression of human APP695 containing the 
Swe (K670N + M671L) and Arc mutations (E693G) under the con-
trol of the prion-protein promoter, with constant levels of full-
length APP and age-dependent increases in A � .

  Immunostaining and Confocal Fluorescence Microscopy 
 Coverslip-grown Hela cells were fixed with 3.7% paraformal-

dehyde (PFA), washed with ammonium chloride, permeabilized 
with 0.1% Triton X-100 for 5 min, washed with PBS and blocked 
for 1 h with 0.2% BSA/0.2% Fish Skin Gelatin in PBS (blocking 
buffer). Cells were then incubated with primary antibodies (rab-
bit anti-flotillin-1, mouse anti-EEA-1 or mouse anti-giantin or 
mouse anti-Lamp) in blocking buffer for 1 h, subsequently washed 
thoroughly with PBS and the primary signal was detected with 
various fluorochrome (Cy3 or Cy5) conjugated anti-mouse or 
anti-rabbit antibodies. The images were acquired using Zeiss con-
focal microscope, LSM510.

  Immunohistology 
 Mice were anesthetized (10 ml/g BW ketamine/xylaxine) and 

perfused transcardially with PBS. One hemisphere was fixed in 
4% paraformaldehyde and embedded in paraffin. 5- � m sagittal 
sections were cut with a Leica RM 2135 microtome (Bannock-
burn, Ill., USA). Microwave pretreatment (10 min 85   °   C in citrate 
buffer) and 5 min submersions in 95% formic acid (FA) were 
done before immunostaining. After blocking of non-specific 
binding with 4% BSA, 5% goat serum and 5% horse serum at RT 
for 1 h, sections were incubated with both primary antibodies 
overnight at 4   °   C (6E10, Signet, 1:   400; anti-A � 40, Sigma, 1:   200; 
Flotillin-1, BD Biosciences, Germany, 1:   400). After washing 
with PBS, sections were incubated with fluorophore-conjugated 
antibodies for 2 h at room temperature (Cy5, 1:   250, Cy2, 1:   100, 
Jackson) and laser confocal microscopy was performed with a 
Leica TCS SP2.

  Histology and Immunochemistry on Human Autopsy Tissues 
 The cases included 5 control brains (including 1 case with Par-

kinson’s disease) and 6 cases with AD CERAD scores B–C). 5  � m 
thick sections of formalin-fixed and paraffin-embedded autopsy 
tissues of the left hippocampus and/or left parietal cortex of hu-
man brains were deparaffinized, stained with Gallyas silver stain 
 [13]  (reagents from Merck, Darmstadt, Germany) followed by im-
munochemistry for flotillin-1 or control conditions. The slides 
were first immersed in concentrated formic acid for 3 min, rinsed 
with PBS and then cooked in a vapor cooking apparatus (Multi-
gourmet, Braun, Kronberg, Germany) for 20 min in 10 m M  so-
dium citrate with 0.01% Tween, pH 6.5. The primary antibody was 
applied at a dilution of 1/100 overnight at 4   °   C. Development fol-
lowed using the ABC indirect alkaline phosphatase kit rabbit IgG 
(Vector, Burlingame, Calif., USA) and Neu-Fuchsin (Sigma, 
St.Louis, Mo., USA) as a chromogen  [14] .

  Results 

 Intracellular Punctate Deposits of A �  in ArcA �  Mice 
Accumulate in Flotillin-1-Positive Vesicles 
  � -Amyloid plaque deposition and cerebral amyloid 

angiopathy are prominent features in ArcA �  mice be-
tween 9 and 15 months. Behavioral deficits, however, oc-
cur much earlier; these correlate with intracellular punc-
tate A �  deposits revealed by labeling with antibodies di-
rected against the A �  domain and the failure of APP 
C-terminal antibodies to stain these structures  [6] . These 
intracellular A �  deposits are visible from 3 months on-
ward in the hippocampus, subiculum and cortex but are 
undetectable in the cerebellum and brainstem, the latter 
being brain regions unaffected in AD.

  Double-staining of brain sections of 7-month-old 
ArcA �  mice showed intracellular punctate A �  (6E10, 
blue) that were frequently surrounded by flotillin-1 
(green)-positive structures ( fig. 1 ). The flotillin staining 
did not fully encircle the A �  deposits but rather concen-
trated in several patches at the edge of the A �  deposits. 
The 6E10 antibody also detects sAPP � ; therefore, we ad-
ditionally stained with an antibody specific for A �  40  
(insert in upper panel of  fig. 1 ), clearly identifying intra-
cellular deposits as A � .   

  Flotillin-1 Is Associated with Early and Late 
Endosomes in the Endocytic Pathway 
 To further analyze the nature of the flotillin-positive 

vesicles, we characterized these vesicles in a cell culture 
system. We used HeLa cells to colocalize endogenous flo-
tillin with various subcellular markers (fig. 2). Partial 
overlap of flotillin was seen with the early endosomal 
marker, early endosomal antigen-1 (EEA-1) and a signif-
icant overlap with Lamp-1, a marker for late endosomes 
and lysosomes. However, no significant colocalization 
was observed with giantin, a Golgi marker. Colocaliza-
tion of flotillin with several organelle-specific rab-
GTPases showed that flotillin predominantly labeled the 
late endosomes (data not shown), consistent with other 
reports  [11] . We and others have previously shown that 
A �  peptides are found in multivesicular bodies (MVBs) 
and fusion of MVBs with the plasma membrane releases 
a minor amount of A �  in association with exosomes  [15, 
16] . Together these data suggest that intracellular A �  re-
sides in late endosomes/MVBs.
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  Flotillin-1 Is Enriched in Neuritic Plaques of 
AD Patients 
 As a result of MVB fusion with the plasma mem-

brane, the exosomes that contain A �  together with flo-
tillin are released and might participate in  � -amyloid 
plaque formation. We analyzed the distribution of flotil-
lin-1 in brain sections of AD and Parkinson’s disease 
patients and control subjects as described  [16] . Most AD 
cases showed swollen, vacuolated, or tangle-bearing 
neurons with strong flotillin-1-expression ( fig. 3 a). 
There was immunoreaction (IR) in the processes of sin-
gle astrocytes within the gray matter of areas showing 
degenerative pathology ( fig. 3 b). The flotillin-1-positive 

astrocytes consisted mainly of cells with a nucleus slight-
ly increased in size and with less chromatin density, 
pointing towards a partial activation. Diffuse  � -amyloid 
plaques showed mostly no increase of flotillin-IR over 
the matrix background. However, neuritic tangle-bear-
ing plaques often showed increased flotillin-1-IR orga-
nized along the fibrillary component of the plaques 
( fig. 3 c).

  In two of the normal brains flotillin-1-IR was found in 
single astrocytes of the gray matter ( fig. 3 d). The others 
showed only slight diffuse staining of the extracellular 
matrix. Flotillin-1 was usually not detected in neurons, 
oligodendroglia and microglia of normal controls. The 

  Fig. 1.  Flotillin-1 patches surround intracellular A �  aggregates. Brain sections of ArcA �  transgenic mice were 
stained for A �  with the 6E10 antibody (blue) and flotillin-1 (green). Upper panel shows a section of the hippo-
campal CA1 pyramidal soma layer. Enlargement (lower panel) shows patchy flotillin-1 staining surrounding 
intracellular punctate A �  deposits. Insert in upper panel (red) shows staining of intracellular punctae by an 
antibody specific for A �  40 . Scale bar = 20  � m in the upper and 7  � m in the lower panel. 
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case with Parkinson’s disease did not differ from the nor-
mal control cases ( fig. 3 e). Negative reaction controls 
showed no flotillin-1-IR ( fig. 3 f). The cases with AD 
showed two distinct partially overlapping patterns of flo-
tillin-1-IR. There was expression of the protein in patho-
logically altered neurons and in association with neuro-
fibrillary tangles. Diffuse  � -amyloid plaques without 
neurofibrils showed only minimal expression of flotillin-
1. By morphological criteria expression of flotillin-1 in 
astrocyte processes appeared to be associated with astro-
cyte activation. These results show that flotillin-1 is pres-
ent in extracellular  � -amyloid plaques and in tangle-
bearing neurons. 

  Discussion 

 Our present study shows that intracellular A �  accu-
mulates in a subset of endocytic vesicles that are positive 
for the lipid raft-associated protein, flotillin-1. In ArcA �  
mice, which exhibit consistent behavioral deficits before 
the deposition of  � -amyloid plaques, these A � -laden en-
docytic vesicles might be involved in the mechanisms 
causing the cognitive impairment. We and others previ-
ously reported that generation of A �  occurs in early en-
dosomes after endocytosis of APP  [16–19]  where  � - and 
 � -cleavage occurs  [20] . We also showed that A �  produced 
in early endosomes is retrogradely transported to late en-

  Fig. 2.  Colocalization of flotillin-1 with endosom-
al but not with Golgi markers. HeLa cells were 
grown on coverslips and immunostained for en-
dogenous flotillin-1 (red) and endosomal mark-
ers EEA-1 (green, upper panel) and Lamp-1 
(green, middle panel) and Golgi marker Giantin 
(green, lower panel). Scale bar = 10  � m. 
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  Fig. 3.  Flotillin-1 in human autopsy tissues from patients with 
Alzheimer’s disease. Flotillin-1 immunocytochemistry was com-
bined with Gallyas staining for neurofibrillary tangles in  c  and  e . 
 a  Flotillin-1 in tangle-bearing, pathologically altered swollen 
neurons, but not in intact neurons ( * ) of a patient with AD. The 
comparatively low abundance of neurofibrils in this patient ap-
pears noteworthy (AD CERAD age-related plaque score,  b ). Scale 
bar = 40  � m.  b  Different area (parietal cortex of the same patient 
as in  a  with flotillin-positive astrocytes, which are occasionally 
seen in normal brain as well ( d ) and a mostly flotillin-1-negative 

diffuse  � -amyloid plaque ( * ). Scale bar = 40  � m.  c  Neuritic plaque 
in a different patient with AD bearing a high number of neurofi-
brils. (AD CERAD age-related plaque score,  c ). In this case, flotil-
lin-1 is organized along neurofibrillary tangles and partially as-
sociated with  � -amyloid deposits. Scale bar = 25  � m.  d  Normal 
brain with single, flotillin-1-positive (red) astrocyte processes in 
the grey matter of the parietal cortex. Scale bar = 40  � m.  e  Par-
kinson’s disease brain. Flotillin-staining combined with Gallyas 
stain. Scale bar = 80  � m.  f  Negative control with omission of the 
primary antibody. Scale bar = 40  � m. 
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dosomes/MVBs  [16] . As a result of the fusion of MVBs 
with the plasma membrane, the intraluminal vesicles of 
MVBs are released into extracellular space as exosomes. 
We hypothesized that the A �  associated with exosomes 
could act as a nucleation factor for amyloid plaque forma-
tion. Our current work shows that preceding the detec-
tion of extracellular plaque formation, A �  accumulates 
intracellularly in punctate structures that are frequently 
surrounded by flotillin-1 immunoreactivity. We con-
clude that the intracellular A �  structures detected in 
 ArcA �  mice represent membrane-delimited endosomal 
compartments. The fact that we did not observe constant 
increases in intracellular A �  with increasing age of the 
animals would then implicate that intracellularly gener-
ated A �  does not irreversibly accumulate in neurons. A �  
could be removed by degradative pathways (autophago-
somes)  [21]  or even exocytosed via exosomes  [16]  into the 
extracellular space, affecting synaptic transmission  [22, 
23] . What is the significance of intracellular A �  trapped 
in these endosomal structures? MVBs have been shown 
to present an optimal environment for fibrillation of 
Pmel1, an amyloid-forming protein that is involved in 
melanosome biogenesis and melanin polymerization 
 [24] . Though our current study has not provided any ev-
idence for A �  oligomers/fibrils in these vesicles, it is 
tempting to propose that a similar mechanism could ex-

ist whereby intracellular A �  oligomerizes already in 
MVBs. Flotillin-1 could stabilize these compartments or 
could also act as a raft scaffolding protein and thereby 
promote amyloidogenic cleavage in raft domains  [19] . 
Furthermore, flotillin-1 has been shown to interact di-
rectly with APP  [25]  and several groups reported the 
presence of flotillin-1 in  � -amyloid plaques  [26–28] , sup-
ported by our current findings.

  To summarize, A �  is generated in early endosomes 
and is retrogradely transported to the flotillin-1 contain-
ing late endosomes/MVBs. A �  may undergo oligomer-
ization in these raft-enriched structures, stabilized by 
flotillin, and could be subsequently released from the 
cells via exosomes, affecting synapse function. Further-
more, these exosome-associated A �  could form a nucle-
ation center for  � -amyloid plaque formation.
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