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Abstract
This paper presents a method of parameter identification

for a finite-element model of the human middle ear. The

parameter values are estimated using a characterization

of the difference in natural frequencies and mode shapes

of the tympanic membrane between the model and the

specimens. Experimental results were obtained from

temporal bone specimens under sound excitation (300–

3,000 Hz). The first 3 modes of the tympanic membrane

could be observed with a laser scanning vibrometer and

were used to estimate the stiffness parameters for the

orthotropic finite-element model of the eardrum. A fur-

ther point of discussion is the parameter sensitivity and

its implication for the identification process.

Introduction

Increasingly, the functionality of the human hearing
organ is investigated by the help of models. Two groups of
models are currently utilized. The first group consists of

electroacoustic circuit models which have a long history
based on the close link between acoustic and electrical
engineering [Hudde and Weistenhöfer, 1997; Goode et
al., 1994]. The second group is made up of structural
mechanical models, mainly finite-element models which
gain in importance more and more [Eiber and Kauf,
1994; Wada et al., 1992; Beer et al., 1997; Williams et al.,
1997]. The latter have the advantage that mechanical
functionality is directly related to mechanical parameters,
thus avoiding complicated analogies.

The quality of the model essentially depends on two
factors, the model’s structure which determines its basic
capabilities and the proper choice of parameters. Parame-
ter identification is therefore as important as the structur-
al design. Several mechanical parameters for use in finite-
element models have already been presented by various
authors. Previous investigations had been made in very
different ways. Von Békésy [1949] and Kirikae [1960] for
instance determined Young’s modulus on specially pre-
pared pieces of tympanic membrane. Other authors used
frequency response functions (FRFs) of the entire middle
ear for parameter estimation, where parts of the specimen
were successively removed [Wada et al., 1990]. Funnell
and Laszlo [1982] published a review on mechanical
properties of the eardrum.

Looking at the currently available data, the task of
parameter identification is still present. The advanced
models contain many parameters to describe the middle
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Fig. 1. Finite-element model of the human
tympanic membrane with malleus and liga-
ments (the musculus tensor tympani was
removed for the calculations. CG = Center of
gravity.

ear in more detail, and only a few parameters have been
identified with the required precision. The main problem,
however, arises from the inverse formulation of the pa-
rameter estimation problem. It is in principle an improp-
erly posed problem and there is no unique solution. That
means parameter values can only be validated by compar-
ing measurements and model predictions. For this reason,
we need several comparable investigations and quantities
of comparison with a high content of information.

In this paper, we want to introduce a method of param-
eter identification based on dynamic investigations. The
objective of the work is to estimate material parameters
for a mechanical model of the human middle ear. The
investigations were performed on a submodel consisting
of the tympanic membrane with malleus and ligaments.
The corresponding boundary value problem in the form
of finite elements is presented in detail elsewhere [Beer et
al., 1997] and is not the object of the present work. Quan-
tities of comparison for parameter estimation are natural
frequencies and mode shapes.

In the first section we introduce the parameters of the
model and the numerical results from Beer et al. [1997],
which were used for the identification. The second part
focuses on the experimental work, the measurement of
vibration patterns of the tympanic membrane via laser

scanning vibrometry and the modal analysis to obtain
natural frequencies and mode shapes. The following sec-
tion then presents the parameter estimation method and
deals with problems of identification.

Parameters of the Finite-Element Model

The identification is based on a model consisting of
tympanic membrane, malleus and ligaments. Figure 1
shows the finite-element model where the eardrum is
modeled as a thin curved shell, the malleus as a rigid body
with inertial properties and the ligaments as pipe ele-
ments (with longitudinal, bending and torsional stiffness).
A detailed description of the model is given by Beer et al.
[1997].

The parameters of the model can be divided into 3
groups: geometrical, inertial and stiffness parameters.
Items of the first 2 groups were determined on the basis of
geometric measurements [Drescher, 1995]. The inertial
parameters were calculated with density values from the
literature [Kirikae, 1960] as described elsewhere [Beer et
al., 1997]. The present investigations deal with the stiff-
ness parameters for the eardrum. The eardrum is formed
by shell elements with orthotropic material properties.
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Fig. 2. Modes of the finite-element model with initial parameters (a–c) and final parameters (g–i) and modes from
experimental modal analysis (d–f); view from the tympanic cavity with the malleus positioned downwards; similar
colors mean similar displacements, for mode 3 all areas vibrate in phase, for mode 4 and 5 red and blue areas vibrate
out of phase: d The points of the FRFs of figure 3. 1 = Red line; 2 = green line; 3 = blue line; p.s. = posterior-superior
region; p.i. = posterior-inferior; a.i. = anterior-inferior; a.s. = anterior-superior.
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The two parts pars tensa and pars flaccida are modeled
with different materials, each part having the following
parameters: radial and tangential Young’s modulus (ac-
cording to the fiber arrangement), shear modulus and
Poisson’s ratio. An additional factor RMI enables the
bending stiffness K to be reduced according to the follow-
ing formula:

K = RMI 
E h3

12 (1 – Ó 2)
,

where E is Young’s modulus, h is the thickness and Ó is
Poisson’s ratio [ANSYS®]. Values of the RMI factor are in
the range from 0 to 1.

Since the model has been designed to investigate
dynamic characteristics, we used results of dynamic anal-
yses to identify the parameters. Natural frequencies and
mode shapes were used as quantities of comparison. Fig-
ure 2a–c shows the modes 3–5 of the model which were
calculated with initial parameter values taken from the
literature and previous investigations. Modes 1 and 2 (not
shown here) are mainly vibrations of the malleus in its
suspensions. These modes were not used for parameter
estimation because the three-dimensional malleus vibra-
tion could not be measured with the required accuracy.

Experimental Modal Analysis

Experiments were made on specially prepared tempo-
ral bone specimens. We used 3 specimens (with approxi-
mately the same size and shape) which gave very similar
results. The results for one of these specimens are present-
ed here.

The specimens were taken 48 h post mortem and
stored in saline solution. In order to obtain the same
boundary conditions as for the model, the inner ear as
well as incus and stapes were removed. The specimens
thus consisted of the tympanic membrane, malleus and
ligaments and a part of the auditory canal. Due to the
preparation the tensor tympani muscle was cut and there-
fore also removed from the model. Measurements were
performed within 6 days after death. The specimen was
excited by a sound source placed in the auditory canal. A
microphone just in front of the tympanic membrane sup-
plied the reference signal (sound pressure) for the mea-
surement. The eardrum vibrations were measured with a
laser scanning vibrometer from the side of the tympanic
cavity (Polytec OFV 055 optical scanning head with close-
up unit and OFV 3001 S controller). Measurements were
performed in a frequency range of 300–3,000 Hz with

chirp excitation at about 90 dB sound pressure level. We
obtained FRFs H(jˆ) in the form of displacement versus
sound pressure for about 100 evenly spaced points at the
eardrum (fig. 3):

H(jˆ) = 
Syy(jˆ)
Sxy(jˆ)

.

This calculation of the transfer function compensates
the input noise from the microphone since there was more
noise on the input signal than on the output. The numera-
tor Syy(jˆ) = Y(jˆ) Y(jˆ)* is the auto-spectrum of the
response, and the denominator Sxy(jˆ) = Y(jˆ) X(jˆ)* is
the cross-spectrum between response and reference, with
Y(jˆ) = Fhy(t)j the Fourier transform of the response (dis-
placement) and X(jˆ) = Fhx(t)j the Fourier transform of
the reference (sound pressure); * = complex conjugate
form. The FRFs show 2 resonance regions and indicate a
strongly damped structure. The strong damping causes
higher modes not to appear as resonance peaks in the
FRFs.

Considering these facts we performed a modal analysis
to obtain the natural frequencies and mode shapes in the
measured frequency range. Standard analyses of the com-
mercially available program IDEAS were used for this
purpose. Modal analysis yielded 3 modes with modal
properties of (frequency f/modal damping ˙): mode 3
(908 Hz/10%), mode 4 (1,355 Hz/15%), mode 5
(2,012 Hz/15%), according to the definition of the eigen-
value s = ‰ + j –̂ = –˙ˆ + jˆ!1 – ˙2 with ˆ = 2f. These
modes were assumed to correspond to the calculated
modes 3–5 of the model and were numbered accordingly.
The measured mode shapes were very complex, i.e. the
phase angles between different points took on values
between 0 and 180°, but the modes were forced to real
mode shapes, i.e. phase angles of either 0 or 180°. This
simplification was necessary in order to compare mea-
sured and calculated mode shapes. There is no damping
included in the model so far and even proportional damp-
ing as used in other models [Wada et al., 1992] will not
solve this problem because the measured complex mode
shapes indicate nonproportional damping. At this point
some further investigations are necessary.

The modes obtained from the modal analysis are
shown in figure 2d–f. A small part of the pars tensa and
nearly the whole pars flaccida were hidden by remaining
parts of bone and could not be measured. The mode
shapes are similar to the calculated ones of the model so
that the model’s structure and the initial parameters can
be used as a good basis for parameter estimation.
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Fig. 3. FRFs (amplitude in m/Pa), measured
at different points of the tympanic mem-
brane (see fig. 2d).

Parameter Identification

An important step in the process of parameter identifi-
cation is the investigation of the parameter’s sensitivity,
i.e. how do modifications of parameter values influence
certain results as for instance natural frequencies and
eigenvectors (mode shapes). The aim of these investiga-
tions is to extract those parameters with most influence on
the results because these parameters can be most precisely
estimated. It is seldom possible to estimate all parameters
at once because of numerical problems. Therefore the
parameters with the highest sensitivity are estimated first
and then the others successively. In figure 4 sensitivities
of natural frequencies due to parameter modifications are
shown. Dark squares indicate high sensitivity and white
squares lower sensitivity. The figure indicates that for
instance the ligaments’ Young’s moduli hardly influence
the natural frequencies in contrast to the radial Young’s
modulus of the pars tensa. According to the sensitivity
matrix the parameters for the ligaments can hardly be
obtained. For this reason they were not modified. The
other parameters were successively estimated, first the
radial Young’s moduli and the RMI factors (dark squares
for these parameters at natural frequencies 3, 4 and 5).
The results for the parameters of the pars flaccida are less
reliable because the sensitivity value are low. Further-
more there is only little measurement information since
most of the pars flaccida was hidden.

Fig. 4. Sensitivities of natural frequencies due to modified parame-
ters. Er = Radial Young’s modulus; Et = tangential Young’s modulus;
G = shear modulus; Ó = Poisson’s ratio; RMI = factor to reduce bend-
ing stiffness; p.t. = pars tensa; p.fl. = pars flaccida. The figure shows
sensitivities relative to each other, i.e. the darker the square, the high-
er the sensitivity.
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Table 1. Final set of parameters

Pars tensa
Radial Young’s modulus (Er) 85.7 Nmm–2

Tangential Young’s modulus (Et) 48 Nmm–2

Poisson’s ratio (Ó ) 0.35
Shear modulus (G) 6.2 Nmm–2

RMI 0.78

Pars flaccida
Radial Young’s modulus (Er) 45.6 Nmm–2

Tangential Young’s modulus (Et) 20 Nmm–2

Poisson’s ratio (Ó ) 0.43
Shear modulus (G) 8.5 Nmm–2

RMI 0.29

Only modified parameters are shown. Other parameters of the
model along with a detailed description of the model are given by
Beer et al. [1997].

Similar investigations can be made in terms of the
eigenvectors of the system. These sensitivity values yield
insensitive elements of the eigenvector which are ex-
cluded from the parameter estimation to improve the
condition of the problem. The investigations on parame-
ter sensitivity were all performed with the initial model.

The parameter identification is based on results of
dynamic analyses (modal analysis). The error between
model and specimen is expressed by the vector of resi-
dues. This vector (Ó) is formed from the differences
between measured and calculated natural frequencies
(ˆr) and eigenvectors (ur):

ÓT = (...,ˆrm – ˆr,...,...,ûT
r m – ûT

r,...).

The natural frequencies (ˆr) and eigenvectors (ur) of
the model contain the unknown parameter values. The
index m is used for measured quantities; r is the index for
the mode. The present investigations were performed
with modes 3–5.

We used a weighted least squares approach for the
optimization problem:

Z(p) = vT Gv → Min.

G is a diagonal weighting matrix for the different accu-
racy and reliability of the elements of the residue vector. It
is also used to normalize the elements of the residue vec-
tor since natural frequencies and eigenvectors have differ-
ent units. According to the structure of the residue vector,
the first part of G contains the squared reciprocal of the
largest natural frequency. The second part contains for
each eigenvector the squared reciprocal of the largest ele-

ment of this eigenvector. Zero values were placed in G for
elements that were not utilized for the identification pro-
cess. Since only a few elements (1–5) of each eigenvector
were employed, the weighting matrix contains mainly
zero elements in the second part. All used natural frequen-
cies and elements of the eigenvectors were equally
weighted for reasons of simplification.

Z is a function of the unknown parameter values and it
will have a minimum for an optimal set of parameters.
Since the problem is nonlinear in the parameters, the solu-
tion has to be obtained with iterative methods for nonlin-
ear optimization like gradient methods or stochastic
search methods. Initial parameters for the optimization
problem were taken from the literature and previous
investigations [Beer et al., 1997; Kirikae, 1960]. We used
stochastic methods to scan the parameter space for possi-
ble minima of Z first. Following that gradient methods
were applied to actually obtain the solution. A detailed
description of the different optimization algorithms can
be found in Natke [1983]. The result of the parameter esti-
mation process, the final set of parameters, is shown in
table 1.

Conclusions

We presented a method to identify parameters for a
middle ear model on the basis of dynamic properties (i.e.
natural frequencies and mode shapes). The investigations
were performed on a submodel consisting of eardrum,
malleus and ligaments.

The FRFs measured in a part of the middle ear contain
more characteristics (i.e. clear resonance peaks) than
transfer functions of the whole middle ear. Information
about the system is therefore easier to detect in these func-
tions. Another advantage is the reduced amount of pa-
rameters for submodels, thus improving numerical sta-
bility.

The sensitivity analysis showed the different influence
of the parameters on the dynamic behavior of the model
(fig. 4). It proved to be a good preliminary analysis to the
identification process and helped to increase the accuracy
of the results.

When comparing the parameter values with other
models, the overall shape and structure have to be consid-
ered since they also have a considerable influence on the
mechanical behavior. Different geometries with appro-
priate values for the material parameters lead to a similar
dynamical behavior. The same applies to the boundary
conditions.



Parameters for the Middle Ear Model Audiol Neurootol 1999;4:163–169 169

In conclusion of the present investigations, we consid-
er the following problems as fields for further activities:
(1) including damping into the model as indicated by the
experimental results; (2) the parameters must be evaluat-
ed with results of further measurements; these investiga-
tions should be aimed to get information about the range

for the parameters by measuring very different speci-
mens; (3) parameters for the remaining parts of the model
(especially for the ligaments and joints) must be identified
in order to get a complete model. These investigations can
be performed with other submodels and finally with the
whole middle ear model.
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