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ABSTRACT

The acquisition of data and its analysis has become a common yet critical task in many areas of modern
economy and research. Unfortunately, the ever-increasing scale of datasets has long outgrown the ca-
pacities and abilities humans can muster to extract information from them and gain new knowledge.
For this reason, research areas like data mining and knowledge discovery steadily gain importance.
The algorithms they provide for the extraction of knowledge are mandatory prerequisites that enable
people to analyze large amounts of information. Among the approaches offered by these areas, clus-
tering is one of the most fundamental. By finding groups of similar objects inside the data, it aims to
identify meaningful structures that constitute new knowledge. Clustering results are also often used
as input for other analysis techniques like classification or forecasting.

As clustering extracts new and unknown knowledge, it obviously has no access to any form of ground
truth. For this reason, clustering results have a hypothetical character and must be interpreted with
respect to the application domain. This makes clustering very challenging and leads to an extensive
and diverse landscape of available algorithms. Most of these are expert tools that are tailored to a single
narrowly defined application scenario. Over the years, this specialization has become a major trend
that arose to counter the inherent uncertainty of clustering by including as much domain specifics as
possible into algorithms. While customized methods often improve result quality, they become more
and more complicated to handle and lose versatility. This creates a dilemma especially for amateur
users whose numbers are increasing as clustering is applied in more and more domains. While an
abundance of tools is offered, guidance is severely lacking and users are left alone with critical tasks
like algorithm selection, parameter configuration and the interpretation and adjustment of results.

This thesis aims to solve this dilemma by structuring and integrating the necessary steps of cluster-
ing into a guided and feedback-driven process. In doing so, users are provided with a default modus
operandi for the application of clustering. Two main components constitute the core of said process:
the algorithm management and the visual-interactive interface. Algorithm management handles all
aspects of actual clustering creation and the involved methods. It employs a modular approach for al-
gorithm description that allows users to understand, design, and compare clustering techniques with
the help of building blocks. In addition, algorithm management offers facilities for the integration
of multiple clusterings of the same dataset into an improved solution. New approaches based on en-
semble clustering not only allow the utilization of different clustering techniques, but also ease their
application by acting as an abstraction layer that unifies individual parameters. Finally, this com-
ponent provides a multi-level interface that structures all available control options and provides the
docking points for user interaction.

The visual-interactive interface supports users during result interpretation and adjustment. For this,
the defining characteristics of a clustering are communicated via a hybrid visualization. In contrast
to traditional data-driven visualizations that tend to become overloaded and unusable with increasing
volume/dimensionality of data, this novel approach communicates the abstract aspects of cluster com-
position and relations between clusters. This aspect orientation allows the use of easy-to-understand
visual components and makes the visualization immune to scale related effects of the underlying data.
This visual communication is attuned to a compact and universally valid set of high-level feedback that
allows the modification of clustering results. Instead of technical parameters that indirectly cause
changes in the whole clustering by influencing its creation process, users can employ simple com-
mands like merge or split to directly adjust clusters.

The orchestrated cooperation of these two main components creates a modus operandi, in which
clusterings are no longer created and disposed as a whole until a satisfying result is obtained. In-
stead, users apply the feedback-driven process to iteratively refine an initial solution. Performance
and usability of the proposed approach were evaluated with a user study. Its results show that the
feedback-driven process enabled amateur users to easily create satisfying clustering results even from
different and not optimal starting situations.
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W e live in the age of information. Of course this is hardly news, as it has been around for
several decades. While it is debatable, whether it started with the invention of the transistor,

the introduction of the home computer or the emergence of the Internet, it is a fact that it perme-
ates and defines every part of modern life. Due to constant progress in science and engineering, the
agents of this age have become legion. Computers, smart phones, sensors, and embedded systems
are ubiquitous and found their way into schools, homes, industry, and everywhere else. There, they
fuel an ongoing massive trend for digitalization and data collection that has become one of the most
essential characteristics of this age. Nearly every imaginable aspect can and is measured, stored and
made available as data. With this development, data and information have become resources for to-
day’s work that are as crucial as coal, steel, and oil in the prior age of industrialization. In contrast to
those diminishing natural materials, the deposits of data are constantly growing.

While data itself is already valuable, it is only capitalized to the full extent by obtaining knowledge
from it. Although human capabilities for data analysis and knowledge extraction are remarkable,
they simply cannot match the vast scale of available data. As science and industry already start to
prepare for Exascale computing, the average human cannot even process datasets of several kilobytes,
e.g. a table with 10000 rows and 10 columns. To solve this problem, research areas like machine
learning, data mining, and knowledge discovery have been established and provide tools that can
process amounts of data that cannot be analyzed manually. The methods and algorithms developed
in this field are designed to automate, emulate, and augment the different ways of human reasoning
in order to allow the extraction of useful knowledge from data. Along with these tools, data scientists
and analysts emerged as a new class of professionals skilled in their application.

One of the most basic approaches that humans use to gain understanding is grouping. When facing a
complex and unknown situation that includes many elements, humans typically observe it and try to
find similarities in their appearance and/or behavior. Based on this, elements are arranged into groups.
From these, new knowledge can be derived, based on the assumption that similarity of elements
indicates a semantic connection or functional dependency. With this approach, even complex issues
can be partitioned, explored, and comprehended. Due to these characteristics, this approach is also
used for data analysis in which it is represented by the technique of clustering. It describes the problem
of partitioning a set of objects into groups, called clusters, so that objects in the same cluster are
similar, while objects in different clusters are dissimilar.

Although this problem seems to be clearly defined, its solution is extremely challenging due to two
main reasons. The first one is the variable and subjective character of similarity. While there exists a
multitude of functions to determine this feature, each one is based on a different notion of similarity.
For this reason, the similarity between objects depends on the employed measurement function. Fur-
thermore, simply obtaining a value for the similarity between objects is not enough to decide whether
they are similar enough to be grouped together or not. For this decision, a threshold must be defined.
Unfortunately, the perception of similarity is very individual and depends on the application domain,
experience, and subjective attitude. Obviously, it is hard to model such a frame for decision making
in an algorithm.

The second big challenge of clustering is working with the unknown. As mentioned earlier, we want
to extract new and useful knowledge from the data. While every identified cluster structure must be
considered as new knowledge, it is not guaranteed that it is actually useful. Since clustering aims to
acquire new knowledge, there is no ground truth available that could be used to validate its findings.
Therefore, clustering results can be considered as proposals that must be validated in the application
domain from which their underlying data originates.

Over the years, a multitude of clustering algorithms has been proposed [40]. All of them share the
characteristic of being not versatile or robust, meaning that certain algorithms and parameterizations
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only suit certain datasets and will yield poor results otherwise. In order to tackle the mentioned chal-
lenges to a certain degree, specialization has become a trend in clustering. More and more algorithms
are designed specifically for a narrow and clearly defined application scenario. By introducing do-
main experts and background knowledge, similarity measurement and thresholds can be tailored to
the task and even result validation is possible to a certain degree. On the downside, this trend towards
customization is very costly and the reusability becomes nearly non-existent.

In addition to these traditional clustering algorithms, higher-order approaches that work with mul-
tiple clusterings have been proposed. Alternative clustering creates multiple clustering solutions for
a dataset and thus can provide several views on complex data. Subspace clustering addresses high-
dimensional data and identifies subspaces that are interesting for clustering. In doing so, it tackles
two problems. The first one is also known as curse of dimensionality and manifests in distance mea-
sures becoming less meaningful with an increasing number of dimensions. The second one is that it
becomes more and more unlikely that a single meaningful clustering solution can be found in a space
defined by a large number of attributes. The third main approach based on multiple clusterings is
ensemble clustering, which tackles the challenge of robustness and versatile application by integrating
a set of multiple traditional clusterings into a single consensus clustering result.

In summary, contemporary clustering offers a wide selection of specialized tools that are clearly aimed
at experts. This is an unfavorable situation, as large amounts of data are accumulated in more and
more application domains, by which clustering becomes a necessary technique for analyzing this data.
With the evolution from a niche application in research to a widespread analysis technique, new users
come into contact with clustering. Thus, formerly neglected topics like usability and applicability be-
come important issues. At present, users that want to apply clustering have two choices: either they
hire experts and set up a multi-year project to develop a customized clustering solution, or they em-
bark on a journey of trial-and-error by trying to build a fitting solution from existing techniques. This
thesis focuses on changing this current state by evolving clustering into a feedback-driven process.

1.1 CONTRIBUTION

In general we can state that clustering suffers from an abundance of tools and a lack of guidance on
how to use them. In order to create a clustering, users must choose a suitable algorithm and execute
it with fitting parameters. Both actions have crucial impact on the result and can lead to useless
clusterings if not performed correctly. After creation, the user has to examine the obtained result and
decide whether its clusters are feasible or not. If the outcome is not satisfying, parameters or algorithm
must be changed to create an improved result. Again, a certain level of understanding is necessary to
effectively carry out these tasks. Current clustering practice is mainly focused on clustering creation
and considers all of the mentioned actions as individual tasks. Due to this loose coupling of actions
and the arbitrariness of their execution, clustering is a hardly accessible technique for amateur users.

The main contribution of this thesis is to present a way out of this dilemma by dismissing current
clustering practice and replacing it with a novel integrative structure that reorganizes the clustering
procedure as a whole. The design of said structure strongly emphasizes the user and aims to relieve
him from the complex and technical aspects of clustering, to allow a focus on working with the clus-
tering. To achieve this, the necessary actions for clustering are no longer considered as autonomous
steps, but as parts of a bigger picture. Thus, they are tightly coupled and integrated into a structured
process that provides users with a default procedure to follow. Our process is not meant to be a fixed
clustering algorithm that can handle all possible datasets, but defines a tool that allows the easy and
versatile application of existing techniques. We will use abstraction and simplification to create our

1.1 Contribution 11



Figure 1.1: Outline of a feedback-driven clustering process.

process as a template, providing certain core characteristics that can be realized in different ways to
ensure versatility. To reach our goals, we develop a new form of interaction that allows users to un-
derstand the obtained clustering results and improve them via natural feedback instead of technical
parameters. Such an interaction also requires new approaches for actual clustering creation. These
must be able to handle the variety of existing clustering algorithms and furthermore must provide an
interface that can translate user feedback and implement it in the clustering result. Subsequently, we
give a summary of the contributions made in this thesis.

• We give a detailed overview and assessment of the existing techniques that make up contem-
porary clustering practice. We concentrate on the main classes of clustering algorithms and
introduce some of their representatives to convey an impression of the existing diversity. In
addition, we describe existing ways for the evaluation of results. All introduced techniques are
assessed in terms of applicability and usability. This includes aspects of versatility, robustness,
configuration, complexity, and support for users. From our assessment we derive the main con-
sequences users face in contemporary clustering.

• We define a template for a versatile clustering process. This includes the description of the main
tasks and requirements that are necessary to realize a holistic and user-friendly application of
clustering. The process provides two main functions. The first one is to handle clustering cre-
ation in its entirety which includes algorithm description and specification, options for the in-
tegration and management of existing clustering techniques, and the development of a control
interface that accepts and implements feedback coming from the user. The second main func-
tion is the provision of an interaction interface which communicates the characteristics of the
clustering result to the user and offers direct feedback actions that allow the improvement of
the current result. Our process tightly couples and attunes both functions in order to allow a
seamless application.

• We propose a modular approach for the description and design of clustering algorithms. The
general concept of clustering algorithms is broken down into its basic components, from which
building blocks are derived. This modular structuring eases understanding and allows the com-
parison of algorithms on a block-to-block level. Furthermore, it enables users to construct new
clustering algorithms or modify existing ones by simply assembling/switching sets of blocks.

• We propose new approaches for the integration of existing clustering techniques into our pro-
cess. For this, the concept of ensemble clustering is used as a starting point because it allows
the combination of multiple results into a single final solution, which in addition often improves
overall quality. We expand this concept and propose techniques for the controllable integration
of multiple results. Due to our proposed control options, these integration methods also act as
an abstraction layer for the management of multiple different clustering algorithms.

12 Chapter 1 Introduction



• We introduce a multi-level control interface that collects and structures the control options offered
by our modular algorithm description and our proposed integration techniques. Via these levels,
the interface creates docking points for user interaction.

• We define a compact set of universally valid feedback options for the adjustment of a clustering.
For this we take the users point of view, abstract the most basic adjustments for a clustering,
and convert them into feedback. While traditional adjustments are made by changing the cause
of a clustering, i.e. the parameters used during its creation, our feedback directly represents the
effects a user wants to establish in the result. In addition to this direct character, usability is
improved by keeping feedback fixed and independent from the underlying algorithms.

• As existing approaches for clustering interpretation either provide too much or too little infor-
mation, we propose a novel hybrid visualization concept that represents a middle way between
these extremes. Our visualization presents not the whole dataset, but concentrates on the basic
aspects that are necessary for the interpretation of a clustering’s characteristics. The displayed
information is organized over different views that allow a systematic examination of the result
without overburdening the user. Communication as a whole is designed with our feedback in
mind and supports the user in deriving appropriate actions for clustering adjustments. Due to
the focus on certain aspects and the distribution of information over several views, our pro-
posed concept does not suffer from high-dimensional or high-volume data and can be realized
with simple and familiar visual components.

• To assess the improvements that our clustering process provides, we conduct a user study. Per-
formance is evaluated by letting users carry out different clustering tasks, while usability is rated
with the System Usability Scale questionnaire.

1.2 OUTLINE

The outline of this thesis and the main parts of our desired feedback-driven clustering process are
depicted in Figure 1.1. It starts with Chapter 2, in which we give an overview on the current clustering
practice and assess existing techniques. In the following Chapter 3, our process and its main tasks are
defined. After this, Chapter 4 covers the realization of the necessary methods for clustering creation.
This includes the introduction of our approaches for modular algorithm description and clustering
integration, as well as the specification of the control interface. During Chapter 5, we focus on the
design of user interaction which includes the description of feedback, our visualization concept, and
their coupling.

In Chapters 4 and 5 all algorithms and methods that are necessary to fulfill the tasks and require-
ments defined in Chapter 3 are proposed. This allows the fully operational realization of our process
in Chapter 6. An exemplary application of it is described in a step-by-step fashion, using a small ex-
ample scenario. In addition, we present further ways for the adaptation of our process to different
scenarios. Since the contributions of this thesis are focused on the user, a small user study is con-
ducted for the purpose of evaluation. Chapter 7 describes the setting of this study and its results
regarding performance and usability. At last, this thesis is concluded in Chapter 8.

1.2 Outline 13
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Figure 2.1: Steps of Contemporary Clustering.

T he contemporary clustering practice usually requires the completion of the four steps shown
in Figure 2.1. Each one of them requires the user to make different decisions that have a strong

influence on the final result. To provide a general definition, we describe these steps as: Selection of
an algorithm. Configuration of the algorithm and subsequent execution. Interpretation of the obtained
result. Adjustment of algorithm and parameters to improve result quality.

All of these steps are demanding, even for experts with experience in clustering. Therefore, they
form a substantial challenge for inexperienced amateur users. All problems that occur during their
completion, typically result from the enormous amount of possible choices and the general lack of
background-knowledge. Let us regard algorithm selection as an example, in which the user is con-
fronted with a multitude of available algorithms. To choose the optimal algorithm for the particular
task, the user must be aware of all existing clustering techniques and their functionality. Furthermore,
the user must know which one of them is the best fit for the dataset that should be analyzed. Basi-
cally, these problems recur during algorithm configuration, when similarity measures and parameters
must be chosen and also during result interpretation when the user must select a method for cluster
validation.

Contemporary clustering practice provides different approaches for the creation of a clustering, in
which one or more of the mentioned steps are addressed in different ways and with different priority.
In the course of this chapter, we introduce several of them and describe some of their associated
algorithms. Our descriptions are complemented with an assessment of the handling of each step and
the resulting implications for the user. Research in clustering is mostly focused on the development of
new clustering methods and their enhancement. Therefore, the first three sections of this chapter will
mainly address clustering creation and thus deal with the algorithm selection and configuration step.
Our descriptions cover traditional clustering, multi-solution clustering, and ensemble clustering. In
the fourth section, we discuss the more user-centered steps of result interpretation and adjustment.

2.1 TRADITIONAL CLUSTERING

We use the term traditional clustering to subsume all clustering techniques which comply with the
following mode of application: one algorithm is executed using one set of parameters, generating one
clustering solution for the given data. Later in this chapter, we introduce approaches that differ from
this application mode in some points, which is why the term ’traditional’ is used for differentiation.
The area of traditional clustering contains the bulk of available clustering algorithms. In order to
structure it, we divide it into three main classes: partitional, density-based and hierarchical methods.
Please note that this division is neither fixed nor universally valid, as the diversity of the field allows
for many other.
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2.1.1 Partitional Clustering

Members of this class use the following basic approach to group a set of n objects into k clusters:
Each of the k clusters is represented by a so-called prototype. To assign each object to a cluster,
the similarities between objects and prototypes are determined by employing a similarity/distance
measure like the euclidean distance. In doing so, a n × k similarity matrix is constructed. Following
this similarity evaluation, each object is assigned to the prototype with the highest similarity and its
corresponding cluster. The initialization of prototypes often incorporates random factors and thus is
most likely not optimal. Therefore, most partitional algorithms iteratively optimize prototypes with
regard to a specific objective function.

The best known member of this class of algorithms is k-means. Although it was developed more
than fifty years ago by [61], [53], and [50] it is still the most popular and most used clustering al-
gorithm due to its simplicity and ease of implementation. K-means works as follows: assuming
a set of d-dimensional objects P = pi, i = 1, . . . , n, k-means partitions P into k clusters C =
cj , j = 1, . . . , k so that the squared error between a cluster’s prototype and its assigned objects is
minimized. The prototype of a cluster cj is defined as the mean µj of its objects therefore the squared
error is defined as:

J(cj) =
∑

pi∈cj

‖xi − µj‖2 .

In order to minimize the sum of squared errors over all clusters, k-means works in an iterative fashion.
After generating an initial set of k prototypes, the following steps are repeated: (i) assign each object
to the most similar prototype/cluster, (ii) update prototypes as mean of their assigned objects. These
two steps are repeated until the clusters stabilize, i.e. their prototypes do not change during update or
a pre-specified number of iterations is reached.

To execute the k-means algorithm, the user needs to configure several parameters: the number of
clusters k, an initialization for the prototypes, and a stopping criterion for the iteration. Furthermore,
the utilized distance metric can be considered as an additional parameter. All of these configuration
choices have a critical impact on the clustering result. To illustrate this impact we prepared a toy
dataset and some example clusterings that are shown in Figure 2.2. The first two clusterings were
generated with the same value for k but different prototype initializations—in this case: seed val-
ues for a random generator drawing the initial prototype positions—and show very different results.
While the clustering in Figure 2.2(a) identifies a cluster in each quadrant—an adequate yet not opti-
mal solution—the result shown in Figure 2.2(b) incorrectly groups all objects of the upper quadrant
into the same cluster and furthermore splits the single cluster located in the lower right quadrant.
Even if we use the correct number of clusters—which is 7 in our example—to set k, an improper
initialization can still lead to a non-satisfying result like the one depicted in Figure 2.2(c), where the
clusters in the lower left quadrant are not separated correctly. Structures with arbitrary shape are a
general problem for algorithms of the partitional class that are inherently designed to detect convex
spherical clusters. This characteristic makes it ultimately impossible for k-means to correctly identify
the ’L-shaped’ cluster in our example. To conclude, we illustrate the influence of the stopping crite-
rion in Figure 2.2(d). So far, a fixed number of 4 iterations was used as a stopping criterion for all
our clusterings. Regarding our small example, this is sufficient as the centroids stabilize early. For
the clustering in Figure 2.2(d) we used the same configuration as in Figure 2.2(c) but stopped the
optimization process after just 2 iterations, resulting in a clustering with considerable differences to
the former result.

What makes the configuration of k-means even more challenging, is the fact that there exists no re-
liable analytical way to determine optimal or even feasible choices for its parameters. In practice,
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(a) k=4. (b) k=4.

(c) k=7. (d) k=7.

Figure 2.2: K-means Clustering Results for Different k and Cluster Initializations.

different configurations are tested by running k-means repeatedly while varying one or more parame-
ters. From the results obtained during this ’trial and error’ procedure the one that appears to be most
meaningful to a domain expert is chosen.

These shortcomings have been addressed by several variations of the k-means algorithm. One of the
earliest approaches that tackles the problem of finding the right value for k is ISODATA[8]. This
method is able to adjust the number of identified clusters after each iteration of the algorithm. The
adjustment is made by either: deleting too small clusters, combining similar clusters or dividing het-
erogeneous clusters. Each of these options is selected with regard to pre-specified thresholds, thus the
extended functionality comes at the cost of multiple additional parameters. Another approach to this
issue is the x-means algorithm [57] that increases the number of centroids in an iterative fashion. This
is done by running conventional k-means until convergence in a first step. After that, the algorithm
splits the existing centroids and runs k-means again. The newly added centroids are rated using the
Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC) and are only kept if this
score is improved. Further approaches in this direction are g-means [36] and pg-means [22] which use
gaussian mixtures to model the data/clusters and statistical tests like the Kolmogorov-Smirnov test for
scoring added centroids.

In addition to algorithms which use centroids as prototypes, there is a sizable group of methods which
employ medoids as prototypes. A centroid is defined as the average of a set of objects and thus exists
as a virtual point in the datasets feature space. In contrast, a medoid is an actual object of the dataset
which means that medoids are not calculated, but selected. Apart from that, medoid-based algorithms
also try to minimize an objective function. The best known representative of this group of algorithms
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is k-medoids [45] and its most common realization Partitioning Around Medoids (PAM) [46]. Further
variants of this algorithm are CLARA [46] and CLARANS [55] both of which combine the idea of PAM
with sampling-techniques to allow the fast clustering of large datasets.

2.1.2 Density-based Clustering

Algorithms belonging to this class define clusters as areas of high density in d-dimensional space,
which are separated by areas of lower density. Based on this definition, density-based clustering meth-
ods try to identify dense regions inside a dataset and connect them to clusters. To take care of this
task, different algorithms utilize different ways to model density and connections.

As an example, we introduce DBSCAN by Kriegel et al.[21]. This algorithm models density by using
two parameters ε and minPts, with ε defining the size of a neighborhood around each data object
and minPts specifying the number of objects that must be located in this neighborhood in order to be
qualified as a high-density region. Each object that satisfies the given density requirements is called a
core object and thus is considered as part of a cluster. To form clusters these core objects are connected
by evaluating the overlap of their ε-neighborhoods, i.e. if two core objects are located in each other’s
ε-neighborhood they are connected and are members of the same cluster. To execute DBSCAN the
user has to specify a density threshold via the parameters ε and minPts. Again, algorithm configuration
has a vital influence on the obtained result, which can be seen in the example clusterings for our toy
dataset, illustrated in Figure 2.3.

We start by choosing a relatively big ε and a small minPts, thus specifying a low density that results
in the clustering depicted in Figure 2.3(a). This clustering clearly separates the four main populated
areas of our toy dataset from each other and in doing so is quite similar to the first result obtained with
k-means in Figure 2.2(a). By further raising the threshold for high-density areas, different results can
be produced. For the clustering depicted in Figure 2.3(b) ε was halved while minPts was not changed,
which leads to the correct identification of the ’L-shaped’ and rectangular cluster in the lower left
quadrant. In Figure 2.3(c) the value of minPts was quadrupled to increase the density threshold. In
doing so the obtained clustering detects two clusters in the upper right quadrant that were connected
by a small bridge of objects in former results. However, this configuration also has a negative side as
it breaks up the clusters in the lower left into smaller parts as the core-objects located there are no
longer connected using the given parametrization. Besides the changes in the discovered structures,
higher density-thresholds also lead to an increasing amount of objects that are neither in a dense
region nor connected to one. These objects are treated as noise and depicted by dots without coloring
in Figure 2.3. In general, it is a problem of DBSCAN that the density threshold is defined globally and
is thus valid for the whole dataset. This can be seen in Figure 2.3(d), where the configuration allows
a correct identification of clusters in the upper half, but simultaneously classifies the structures in the
lower half as noise.

Density-based clustering methods like DBSCAN possess many beneficial characteristics. They are
able to identify clusters of arbitrary shape much better than partitional clustering methods and are
furthermore able to handle noise by filtering objects in low density regions. In addition, they do
not need a pre-specified number of clusters. On the downside, they are susceptible to the curse of
dimensionality as high-dimensional data spaces are often sparsely populated, which hinders the dif-
ferentiation between high- and low-density regions. Furthermore, some configurations can lead to
the so-called ’single-link’ effect, which means that otherwise separated object accumulations that are
linked by small object strings are identified as one cluster because the dense areas are connected al-
though the linking objects may be of low significance. Like partitional clustering algorithms, optimal
configuration is a problem. While it is beneficial that the number of clusters must not be pre-specified,
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(a) ε=1.0, minPts=5. (b) ε=0.5, minPts=5.

(c) ε=0.5, minPts=20. (d) ε=0.4, minPts=20.

Figure 2.3: DBSCAN Clustering Results with Different Densities.

the density threshold itself is a complex composite of ε and minPts. If we perceive density as objects
per unit of volume, it is possible that different configurations of ε and minPts, specifying the same
density, lead to different clustering results. Nonetheless, configurations that specify different densi-
ties can also result in the same clustering. Although some heuristics for parametrization exist, the
task remains challenging and obtaining feasible parameters is not guaranteed.

Again there exist variations of this algorithm that deal with some of its shortcomings. One problem
of DBSCAN is its singular global density threshold. Although all clusters exceeding this threshold are
detected, there can be problems if the variance in cluster-densities above the global threshold is high.
This holds especially for hierarchical clusters, e.g. a set of high-density clusters located inside a con-
nected region of lower density that still exceeds the global density threshold. An algorithm that tries
to tackle this issue is Ordering Points To Identify the Clustering Structure (OPTICS) [3]. This approach
generates an ordering of the points of a dataset with concepts from DBSCAN, i.e. core-objects and
reachability-distance, by employing the parameters ε and minPts. The produced ordering contains
information on the local densities and thus the clustering structure inside the data, but generates no
explicit clustering solution. Actual clustering extraction can be done interactively using a reachability
plot or automated by analyzing the different degrees of steepness throughout the reachability plot to
find the different cluster regions.

In addition, the class of density-based clustering algorithms consists of a variety of methods, each one
providing an individual answer to its two basic problems: ’How to identify dense regions?’ and ’How
to connect dense regions?’. The DENCLUE algorithm [37], for example, utilizes kernel functions to
model density and hill climbing to connect dense regions, while SNN[20] employs the probability
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density of points for density-modeling and a shared nearest neighbor graph for connection. Further
algorithms are based on Wavelet Transformation [59], physical laws like the Yukawa potential [6] or
a grid structure [65].

2.1.3 Hierarchical Clustering

In contrast to the two algorithm classes described so far, this class of clustering algorithms does not
produce a single clustering result, but a hierarchy of clusters from which different clustering solutions
can be extracted. Such a hierarchy is often presented as a tree structure, a so-called dendrogram. The
root of the dendrogram contains a single cluster that includes all objects of the dataset, while each
leaf corresponds to a singleton cluster with just one object. The construction of a dendrogram is
the main task of hierarchical clustering algorithms and can be conducted in two ways. One way
works in a bottom-up or agglomerative fashion and thus starts working at the leaf-level and uses all
singleton clusters of a dataset as input. Starting from there, the two most similar clusters are identified
and merged into a new cluster, which forms a new node in the dendrogram and substitutes both
parent clusters during further similarity calculations. This merging procedure is repeated until only
one cluster remains that represents the root of the dendrogram. In contrast, the second approach
to dendrogram construction works in a divisive way by starting at the root and iteratively splitting
the most heterogeneous cluster into two new clusters until only singleton clusters remain, i.e. the
leaf-level is reached. Examples for these two approaches are the agglomerative nesting and divisive
analysis[46] algorithms. To determine the similarity between clusters any distance measure can be
used. Hierarchical clustering algorithms evaluate the similarity between groups of objects and not
between a pair of objects. Therefore, the similarity measurement can be carried out in different ways,
by assuming that the distance between two clusters corresponds to the: (i) maximum, (ii) minimum,
or (iii) average element-to-element distance between the clusters.

• complete-linkage: the distance between two clusters corresponds to the maximum element-to-
element distance between both clusters

• single-linkage: the distance between two clusters corresponds to the minimum element-to-
element distance between both clusters

• average-linkage: the distance between two clusters corresponds to the mean element-to-element
distance between both clusters

In order to generate an actual clustering result from the dendrogram, it needs to be cut at a specified
height, thus collapsing into disconnected sub-trees that represent the clusters. The granularity of
the clustering is influenced by the cutting height. While a cut near the root will produce a coarse
clustering with few, but large clusters, a cut near the leaf-level will produce a finer grouping with
many, but small clusters. Besides the employed distance measure and mode, the cut is the third
parameter that must be specified by the user. In Figure 2.4 some example clusterings are depicted.
These were generated with agglomerative nesting, using the Euclidean distance and average-linkage.
The resulting dendrogram with two example cuts are shown in Figure 2.4(a) and Figure 2.4(a), while
Figure 2.4(b) and Figure 2.4(c) show the clustering result for cut A and cut B, respectively.

Hierarchical Clustering algorithms have two main challenges: (i) determination of the intra-/inter-
group similarity in order to make the decision to split/merge clusters and (ii) how to extract a final
clustering solution from the generated dendrogram. Subsequently some algorithm variants that ad-
dress these issues are described. All of them work in an agglomerative fashion. The CURE[27] algo-
rithm mainly addresses the issue of inter-cluster similarity calculation. One way to determine this
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(a) Dendrogram with cut A. (b) Result for cut A.

(c) Dendrogram with cut B. (d) Result for cut B.

Figure 2.4: Agglomerative hierarchical clustering examples.

similarity is evaluation of the distances between all objects by means of single-, average- or complete-
linkage. Another way is to generate a centroid per object group and use the centroid to centroid
distances for merging decisions. Both approaches have their strengths and weaknesses: centroids are
fast to compute, but can only roughly approximate a group of points, while the calculation of pairwise
distances is costly and makes the algorithm susceptible to noise. Therefore, the authors of CURE use
a compromise between both approaches by selecting a group of well scattered objects as representa-
tive for each cluster. These objects are then shrunken towards the cluster centroid by a user-defined
fraction, allowing a much better approximation of the cluster’s shape. In contrast to the agglomera-
tive nesting algorithm, CURE does not output the dendrogram, but a single clustering solution. The
algorithm stops its merging procedure if a user-specified number of clusters is reached. A variation of
CURE is CURD[52], which uses a density based approach inspired by DBSCAN to generate a cluster-
specific number of representatives. An additional agglomerative algorithm is CHAMELEON [42] that
measures the similarity between clusters with a dynamic model. CHAMELEON relies on a k-nearest
neighbor graph and the measures of inter-connectivity and closeness for its merging decisions. The
user has to specify thresholds for both measures and if these cannot be fulfilled the merging procedure
stops and the latest clustering is exported as a result.

2.1.4 Assessment

This section shows that the field of traditional clustering offers a wide selection of algorithms that
is ever growing. This makes the steps of algorithm selection and configuration a huge challenge for
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amateurs and even experienced users. The provided algorithm examples were chosen in order to il-
lustrate the predominant trend of specialization and variation which focuses on the creation of new
algorithms with minor changes, e.g. via a switch of the distance measure or addition of a parameter.
Typically, this is done to tailor algorithms for specific application scenarios, which leads to the prob-
lem that an optimal algorithm selection can only be made if each method’s suitability for the task at
hand is known. Besides selection, the setup of parameters is a non-trivial and algorithm-specific task.
As reliable analytic ways for parameter determination are virtually non-existent, support for this step
is only provided by heuristics, rules of thumb or a data-mining expert’s assistance. This also affects
the adjustment step, as adjustments are made via switching of algorithms and/or re-parametrization.
All these problems lead to cluster-analysis becoming a trial-and-error procedure.

2.2 MULTI-SOLUTION CLUSTERING

As previously described, traditional clustering often leads to multiple iterations in which different
parameters or algorithms are tried until a satisfactory result is obtained. This practice implicitly gen-
erates multiple clustering solutions for the analyzed dataset. The concept of multi-solution clustering
takes up this characteristic and utilizes it explicitly, whereas the mode of application changes to: one
algorithm is executed using one set of parameters, generating multiple clustering solutions for the
given data. The algorithms of multi-solution clustering can be divided into two main classes: alterna-
tive and subspace clustering methods.

2.2.1 Alternative Clustering

The main goal of this class is to provide alternative clustering solutions to the user. To create different
alternatives, at first an initial clustering result is determined, using a traditional clustering algorithm.
Based on the information contained in this initial clustering, alternative solutions are generated so
that these alternatives are dissimilar to the initial solution.

As an example for alternative clustering, we describe the COALA [5] algorithm. Given a Clustering
C with k clusters this method generates a dissimilar alternative S also having k clusters. In their
approach, the authors use instance-based ’cannot-link’ constraints to express this dissimilarity. These
are derived from the initial clustering and are employed in the construction of the alternative. Such
a constraint can be expressed as a pair of data objects (xi, xj) with i 6= j. A clustering satisfies
this constraint, if xi and xj are not located in the same cluster. During a preliminary process, COALA
generates one cannot-link constraint for each pair of objects which are members of the same cluster in
C. In order to reach the maximum degree of dissimilarity fromC, the alternativeS must place as many
objects as possible in different clusters that were in the same cluster in C. Although this approach
seems plausible, strict adherence can lead to meaningless solutions, as a clustering that maximizes
dissimilarity most likely does not comply with the general requirements of clustering, namely similar
objects belong to the same cluster while clusters are dissimilar. This means besides being dissimilar,
an alternative clustering must also satisfy a certain quality that is, in the case of COALA, expressed by
the similarity of a pair of objects. The two goals of dissimilarity and quality can be inversely related,
for which case COALA offers a parameter ω to control the trade-off between both goals.

We illustrate COALA’s method of operation using the small example shown in Figure 2.5. In Fig-
ure 2.5(a), we can see the starting point of the method: a dataset of 10 objects for which a clustering
solutions C exists. The initial object assignments are represented by the data object’s shape, showing
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(a) Initial clustering. (b) Singleton clusters. (c) Clusters after first merge.

(d) Clusters after 8th merge. (e) Alternative for large ω. (f) Alternative for small ω.

Figure 2.5: COALA example.

thatC consists of k = 2 clusters, thus the sought after alternative also has two clusters. COALA works
in a similar way as the previously introduced hierarchical clustering algorithms, which means each
object is initially placed in its own cluster and the clusters are iteratively merged until k is reached. In
each iteration two candidate cluster pairs for the merge are identified: one for the quality goal having
the smallest distance (dqual) of all pairs and one for the dissimilarity goal having the smallest distance
and fulfilling the cannot-link constraints (ddiss). The decision between both candidates is based on an
inequation: if dqual ≤ ω · ddiss the quality pair is merged, else the dissimilarity pair. In Figure 2.5(b)
we can see the initial cluster structure as well as the quality and dissimilarity candidates. As dqual

is much smaller than ddiss a quality merge is made. This procedure is repeated until the clustering
only contains 2 clusters. The influence of ω can be described as follows: Choosing a high value for ω
favors the quality goal, as the mentioned inequality is fulfilled more often. The alternative clustering
shown in Figure 2.5(e) is obtained by using a large ω in our example. In contrast, a small ω priori-
tizes dissimilarity and would lead to the alternative clustering presented in Figure 2.5(f). Regarding
our example, a too strong focus on quality is unfavorable as the obtained alternative and the initial
clustering are identical. In this case, the dissimilarity goal must be prioritized to obtain a useful alter-
native. However, the trade-off between both goals must be adjusted individually for each application
scenario.

Further examples for alternative clustering techniques include, but are not limited to: CAMI [14],
which utilizes expectation maximization and mutual information to model quality and dissimilarity;
or CIB [26] which is based on the information bottleneck principle.

2.2.2 Subspace Clustering

Subspace clustering techniques especially address high-dimensional datasets. The more features a
dataset has, the harder it gets to generate clustering solutions that satisfy the goals of intra-cluster
similarity and inter-cluster dissimilarity to an equal degree over all dimensions. In fact, clusters can
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(a) Wealth subspace. (b) Health subspace.

Figure 2.6: Different subspaces of a dataset.

be observed in different subsets of the feature space. Such combinations of dimensions are called sub-
spaces. By clustering the dataset according to these subspaces, different clusterings are obtained. The
interpretation and accordingly the meaning of these clustering solutions depends on the respective
dimensions and can differ between subspaces. Let us assume a customer dataset of a health insurance
company as an example. It contains a large amount of features describing demographic, financial, and
medical data. In Figure 2.6 two possible subspaces of this dataset are depicted. The first subspace
contains dimensions that describe the wealth of a customer. A clustering of this subspace is shown
in Figure 2.6(a) and consists of three clusters that represent different wealthy customers. Another
grouping of customers can be made using the health subspace depicted in Figure 2.6(b). As the rele-
vant features for this subspace are weight and blood pressure, clusters could represent different risk
groups regarding diseases of the cardiovascular system. The object shapes in this figure still repre-
sent the cluster assignment obtained for the wealth subspace and show the differences between both
subspaces from the viewpoint of object similarity. We can see that different meaningful clusterings
can exist in different subspaces of high-dimensional datasets. The identification of such clusterings
and subspaces is the goal of subspace clustering. One of the first subspace clustering algorithms is
CLIQUE [1], which detects subspace clusters by dividing the dataspace into a grid of cells having an
equal size in each dimension. A cluster is represented by a set of adjacent cells that exceed a specified
population threshold and are thus considered as dense. The identification of subspace clusters is done
in a bottom-up fashion, based on a monotonicity definition stating that: if a collection of points S is
a cluster in a k-dimensional space, then S is also part of a cluster in any (k − 1)-dimensional pro-
jection of this space. Accordingly the algorithm starts by determining the dense cells of each single
dimension. By joining these one-dimensional dense cells, two-dimensional cells are generated that
are again filtered using the population threshold. In this fashion k-dimensional cells are created from
(k − 1)-dimensional dense cells until no more dense cells can be found and the algorithm stops. A
major concern in the area of subspace clustering is combinatory diversity, i.e. the number of possi-
ble subspaces to examine. To tackle this issue, approaches like FIRES [49] still start by identifying
one-dimensional base clusters, but then employs selection techniques based on cluster overlap and
similarity, to merge only the most promising candidates. Thus, a much better scalability is achieved.
In contrast to CLIQUE, whose a priori mode of operation leads to an exponential runtime complexity,
FIRES scales at most quadratic with respect to the number of dimensions. Another representative of
this group of algorithms is DensEst [54] that uses 2d histograms and their correlations to estimate the
potential of candidate subspaces.
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2.2.3 Assessment

Regarding the four steps of the clustering process, multi-solution clustering only differs in one. During
algorithm selection and configuration the same problems already known from traditional clustering
occur. But in contrast, benefits in the adjustment step can be observed. As the user is presented with
multiple solutions in the first place, the chances increase that some of them are satisfactory straight
away. In such a case the user would select the most appropriate solution and would not need to make
actual adjustments to the result.

2.3 ENSEMBLE CLUSTERING

As previously described, traditional clustering often leads to multiple iterations in which different
parameters or algorithms are tried until a satisfactory result is obtained. This practice implicitly gen-
erates multiple clustering solutions for the analyzed dataset. The concept of Ensemble clustering takes
up this characteristic and utilizes it explicitly, whereas the mode of application changes to multiple al-
gorithms that are executed using multiple sets of parameters, generating multiple clustering solutions
that are combined into one final robust clustering.

This utilization of different traditional clustering algorithms with different parameter values aims to
tackle the problem of some algorithms or parameterizations failing to work with certain datasets.
The set of these multiple clusterings is called ensemble, while the final clustering solution generated
from it is called consensus-clustering. Therefore, this approach is also called consensus-clustering.
Approaches of this class can be divided into: pairwise-similarity approaches and approaches based on
cluster-labels. At this point we focus on the pairwise-similarity approaches, as it is more relevant for
our work.

2.3.1 Pairwise-Similarities

In order to generate a single consensus-clustering from an ensemble, a so-called consensus function
is needed. This function uses the information regarding cluster assignment of all ensemble members
and incorporates them into a new clustering. Algorithms working on the basis of pairwise similarities,
model the cluster assignments by evaluating the grouping of each object-pair over the whole ensemble
[25, 62]. There are two cases of pairwise similarity: (i) a pair objects is part of the same cluster or (ii)
a pair of objects is part of different clusters. For each clustering of the ensemble, these similarities are
represented in the form of a so-called co-association matrix.

Let us assume the small example of a clustering-ensemble with four clusterings for a dataset consisting
of 10 objects, as shown in Figure 2.7. All clusterings differ in number of clusters or cluster composi-
tion as they are generated using, e.g. different parameters. In Figure 2.7(d), the local co-association
matrix for clustering C4 is shown. A cell containing 1 shows that the respective pair of objects is
located in the same cluster, e.g. (p4, p5), while a 0 indicates that an object pair is assigned to different
clusters. For the generation of the consensus clustering, at first a global co-association matrix is built
by adding up all local matrices and then normalizing each cell using the ensemble size. Thus, the
global co-association matrix contains the relative frequency with which each pair of objects is located
in the same cluster. For our example, the global co-association is depicted in Figure 2.8(a), as the
ensemble contains four clusterings, the resulting values are multiples of one quarter. Based on this
matrix, different consensus functions can be employed to extract the final solution.
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(a) Clustering C1. (b) Clustering C2. (c) Clustering C3.

(d) Clustering C4. (e) Co-association for C4.

Figure 2.7: An Example Clustering-Ensemble.

For our example, we use a very simple function based on [25], which aims to generate a consensus-
clustering that shows minimal dissimilarities to all clusterings of the ensemble in terms of pairwise
similarities. This basically means that if a pair of objects is located in the same cluster in the majority of
the ensemble it should also be part of the same cluster in the consensus solution. Vice versa, this also
holds for object pairs mostly located in different clusters. To achieve these goals, we simply remove all
cells from the co-association matrix that contain a value smaller than 0.5 and use the remaining cells
to generate the clustering. In Figure 2.8(a), the cells that fulfill the filter requirement are highlighted
by a bold outline. These cells show that (p1, p2, p3), (p4, p5) and (p6, p7, p8, p9) are members of
the same clusters in at least fifty percent of the ensemble, thus forming the clusters of the consensus
clustering depicted in Figure 2.8(b).

An alternative way to generate the consensus-clustering is to interpret the co-association matrix as
an edge-weighted graph, use an algorithm for graph-partitioning like METIS [44, 43] to cut edges
with a weight smaller 0.5 and build the consensus clusters from the disconnected subgraphs. Further
approaches and examples of consensus functions can be found in [25, 62].

2.3.2 Cluster-Labels

Besides the pairwise-similarity approaches, there are other techniques which are only working with
the cluster labels provided by the ensemble. These techniques are often less time-consuming as they
do not generate co-association matrices, thus saving the necessary quadratic complexity. There exist
various algorithms in this class [38, 62], e.g. HGPA [62] which works on a hypergraph consisting of
vertices that represent the objects of the dataset and hyperedges that represent clusters. Contrary
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to an edge that connects two vertices, a hyperedge can connect an arbitrary number of vertices. In
HGPA, such a hyperedge connects all members of a cluster. To extract a consensus solution from the
hypergraph, the HMETIS partitioning algorithm [41] is used to cut the minimal number of hyper-
edges necessary to break the hypergraph down into disconnected components that eventually form
the consensus clusters.

Another example for ensemble-clustering using cluster-labels is Ensemble-Merging [38]. This method
assumes that each clustering of the ensemble has the same number of clusters k and that each of
these clusters is represented by a centroid. Through grouping of similar centroids of the ensemble,
k global centroids are generated which are then used during a final assignment of dataobjects that
results in the consensus clustering. Further techniques—e.g. probabilistic approaches—can be found
in [11, 51].

2.3.3 Assessment

Ensemble clustering features some interesting benefits for the algorithm selection and configuration
steps. One the one hand, the use of multiple algorithms and parameter values relieves users from
the necessity of finding the single optimal algorithm-parameter combination. On the other hand,
ensemble clustering determines more robust results and thus leads to an expanded applicability. Un-
fortunately, these benefits come with a huge drawback concerning adjustments. If adjustments are
necessary due to an unsatisfactory result, the user not only has to decide on switching one algorithm
or one set of parameters, but has to configure a whole set of algorithms including new choices like
ensemble size and algorithm composition.

2.4 CLUSTERING INTERPRETATION

While the previous sections dealt mostly with the algorithmic side of the clustering practice, this
section focuses on the ways of communication between the clustering algorithms and the user. Basi-
cally, there are two directions for this communication: (i) from algorithm to user, which is covered
by the result interpretation step and (ii) from user to algorithm in the form of the adjustment step.
We discuss both steps in combination, as they fundamentally depend on each other. During result

(a) Global co-association. (b) Consensus Clustering.

Figure 2.8: An Example Consensus Clustering.
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interpretation, the user evaluates and decides whether a clustering solution is satisfying or not. In the
latter case, it is necessary to identify what makes the clustering unsatisfactory and derive what must
be done to improve the result, i.e. what adjustments must be made. We start our discussion with
available techniques for result interpretation, which can be divided into the two main areas of quality
measures and visualization.

2.4.1 Quality Measures

The methods of this area try to answer the question ’How good is the obtained clustering?’. Answering
this question is nearly impossible as there is no universally valid definition of clustering quality. As a
result of this situation, multiple quality metrics exist [16, 18, 58]. One extremely popular approach to
clustering quality that is often used in publications to evaluate the performance of the proposed algo-
rithm, is comparison to a known solution. This known solution is usually built by application-domain
experts, who manually label the data, and is considered optimal. The quality of a clustering solution is
then measured by quantifying the deviation from this gold standard, e.g. by using the Rand Index [58].
Obviously this approach is not usable in real-world applications, as the optimal clustering of a dataset
is typically unknown, which is the fundamental reason to use clustering in the first place. Therefore,
most quality measures are based on the general goals of clustering, namely high intra-cluster simi-
larity and high inter-cluster dissimilarity. Typically, a quality measure models these two goals and
uses the ratio between them to express quality. Examples for such quality measures are Dunns Index
[18] or the Davis Bouldin Index [16]. Each of these methods uses an individual definition of clustering
quality, thus their expressiveness depends on the clustered data, the employed algorithm and param-
eters and the application scenario in general. This lack of universality means that quality measures
can only be applied for an absolute result interpretation in well-known scenarios and in combination
with application domain knowledge. Otherwise, they can only be used for orientation or the relative
comparison of clustering results. In addition, the coarse granularity of quality measures makes them
inappropriate for the derivation of adjustments, as typically whole clusterings or clusters are mapped
to a single numerical value, which means information concerning the actual cluster structures is lost.

2.4.2 Visualization

The human being has exceptional visual perception capabilities that can be addressed for result in-
terpretation by employing visualization techniques. Via graphical presentation of the dataset and the
obtained cluster assignments it is possible to communicate fine grained information about the iden-
tified structures to the user. Displaying the raw dataset and its assignment to the identified groups
allows the user the subjective interpretation of the obtained result without the bias added by the spe-
cific definitions of quality measures. As the user is often an expert of the application domain, he/she
possesses background-knowledge that permits the evaluation of the clustering solution.

We already used a visualization technique in Section 2.1 regarding traditional clustering, by depicting
clustering results as scatterplots, e.g. in Figure 2.2. These plots show each data object, its location
in the two-dimensional space of our example dataset and its cluster assignment. Although scatter-
plots are a very convenient technique for the interpretation of our small examples, their usefulness
suffers when it comes to large-scale datasets. Data-driven techniques like scatterplots always display
all objects of a dataset, which can be a problem for high-volume data as there may be too many ob-
jects for the available display space leading to occlusions and other unfavorable effects. Besides that,
the biggest problem is the presentation of an arbitrary number of dimensions on a two-dimensional
medium like a computer monitor or this book. In addition to these technical problems, most humans
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(a) scatterplot matrix (b) parallel coordinates

Figure 2.9: Visualizations of the Iris dataset.

have problems with grasping high-dimensional spaces as our physical universe just spans three di-
mensions. Two general approaches for displaying clusterings of high-dimensional data are depicted
in Figure 2.9 using the four-dimensional Iris dataset [24] as example (cluster assignment indicated by
color). In Figure 2.9(a), a so-called scatterplot matrix is shown. This technique displays a scatterplot
for each two-dimensional projection of the data’s attribute space and arranges these plots according to
the attribute pairings. While the simplicity of this approach is beneficial, there are significant draw-
backs: (i) the matrix size scales quadratic with respect to the number of dimensions and (ii) only
two-dimensional plots are used, making it hard to recognize structures with higher dimensionality.

A technique which tries to address these drawbacks are parallel coordinates [39] which are shown in
Figure 2.9(b). The horizontal lines in this plot represent the dimensions of the dataset while each
vertical line represents an object of the dataset. The vertical object-line intersects each horizontal
dimension-line at a position that represents the location of the object in the range of the respective di-
mension. While this visualization technique allows the identification of high-dimensional structures,
it tends to get confusing for high-volume data, as the number of vertical lines increases.

Besides such general visualization approaches, there are also methods designed for displaying clusters
in high-dimensional spaces. An example for this group of methods is the Heidi Matrix [64] visualiza-
tion that shows clusters and their overlap in different subspaces of the data, using k-nearest-neighbor
(k-NN) relationships. To generate the Heidi Matrix, first all possible subspaces of the dataset are iden-
tified. Next, the k-NN’s are computed for each object of the dataset in each subspace. Subsequently
a bitvector whose length corresponds to the number of subspaces is generated for each object pair
(p, q). If p and q are k-NN’s in a certain subspace, its respective bit is set to 1. All object pairs are
grouped and ordered depending on their cluster assignment. Finally, each object pair is visualized as
a pixel, whose color is defined by the previously generated bitvector. To illustrate the interpretation
of a Heidi Matrix we use the example shown in Figure 2.10. On the left we can see a scatterplot of a
two-dimensional dataset with five clusters, on the right the corresponding Heidi image is shown. The
blocks along the main diagonal are called intra-cluster blocks while the remaining blocks are called
inter-cluster blocks and show the overlap of their adjacent clusters. As an example lets look at clus-
ters C2 and C3 in Figure 2.10(a) that overlap along the vertical dimension 1, whereas this overlap
is shown by a colored ribbon in the inter-cluster blocks between C2 and C3. The ribbon spans the
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(a) Example scatterplot (b) Heidi matrix

Figure 2.10: Heidi Matrix Visualization example.

Figure 2.11: Heidi Matrix for Migrant Boats dataset.

whole width and height of the block, showing that cluster overlap is complete. The color of the rib-
bon is assigned to the dimension 1 in the legend, thus indicating the subspace in which the overlap
takes place. We can also observe a small ocher ribbon betweenC1 andC4 showing that both clusters
partially overlap in dimension 0, i.e. the x-axis of the scatterplot. Although the Heidi Matrix forms
an interesting visualization approach for clusterings, its visual presentation is not easy to understand
and tends to get more complicated for datasets of larger scale as shown in Figure 2.11 for the migrant
boat data set of VAST 2008 Data Challenge.

Again, the techniques described here only present a small extract of all available methods. A short
overview on the diversity of visualization techniques is given in [47]. There also exist different varia-
tions of the proposed techniques, which are designed with optimization or specialization in mind. For
example, the authors of [66] enhance the parallel coordinates design by integrating multidimensional
scaling plots and changing the curvature of lines to reduce cluttering. Furthermore, parallel coordi-
nates and scatterplots are combined with other visualizations in [63] for the specific task of finding
and visualizing subspaces, which allows the interpretation of alternative clusterings.
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2.4.3 Adjustments

In contrast to the previous steps, little can be said regarding approaches to the adjustment of cluster-
ings. In general, it is accepted that adjustments are made by changing the clustering algorithm or the
algorithm-specific parameters. The problem with this approach is that the user must explicitly know
how the clustering algorithm works and how its work is influenced by each parameter. Otherwise, it
is not possible to achieve the intended adjustment. An opposite approach to this very technical low-
level way of adjustment is proposed in [7]. In their highly theoretical work the authors propose two
high-level parameters split and merge, with which the user can adjust a clustering. They prove that
each clustering C can be adjusted into an arbitrary Clustering C ′ just by the subsequent splitting and
merging of clusters and present some observations regarding upper bounds for the necessary number
of split and merge steps. This approach can only be seen as a proof of concept as the assumed setting
was very limited, i.e. the dataset was of small volume and only one-dimensional while the known
optimal solution was presented to the user in order to allow the selection of the appropriate adjust-
ment steps. Nonetheless, this approach shows a way of adjusting clusterings that is very interesting
for non-expert users.

2.4.4 Assessment

Similar to the algorithm-centered steps of selection and configuration the area of result interpretation
offers a variety of techniques. Quality measures are easy to interpret, but lack a universally valid no-
tion of quality. Again, this makes selection of a technique challenging, as the choice of an unsuitable
quality measure can effectively prevent that a satisfying result is recognized as such. Furthermore,
quality measures compress all structural information of a clustering into a single numerical value,
which means detailed information is lost. Visualizations do not suffer from this problem as they do
not explicitly express quality, but present the whole clustering and leave its interpretation completely
to the user. While this makes selection a less critical problem, there are other drawbacks. Visualiza-
tions are typically data-driven and communicate raw information on the dataset and clustering. As
volume and dimensionality of the data increase, they communicate more information than the user
can process/comprehend, which makes interpretation harder or even impossible.

2.5 CONSEQUENCES

This chapter gave a brief overview of the current clustering practice and its four basic steps. We
described several available approaches with their associated methods and outlined the existing lim-
itations regarding applicability and usability for non-expert users. In general, we can state that the
combination of a lack of background-knowledge and the vast amount of choices for clustering algo-
rithms, parameters and interpretation methods is responsible for the main problems concerning the
creation of a clustering. Thus, the described clustering practice is carried out in an iterative fashion
that includes—more or less random—variations during each step which effectively leads to a ’trial-
and-error’ mode of operation. Needless to say, this has a negative influence on result quality, run-
time/number of iterations and ultimately user satisfaction. In summary, we can state that four major
challenges arise from the contemporary clustering practice:

• Fragmentation & Rigidity: Although numerous algorithms are available, they are typically
specialized and not versatile as they capture only singular facets of the data.
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• Decoupled Workflow: The execution of the four necessary steps is not orchestrated. Each step
forms a separate domain and is not considered as part of a bigger picture.

• Challenging Interaction: Available approaches for the communication of the result are either
too compact or too vast, which makes it hard to understand and adjust a clustering. In addition,
the implementation of adjustments requires knowledge of the inner workings of an algorithm,
as parameters do not directly influence the result, but its creation.

• Absence of Guidance: Typically, users are left alone with decisions, reasoning and algorithm
control. This prevents the meaningful application of clustering, especially for amateur users.

To tackle these challenges, it is necessary to completely reconsider the current practice of clustering.
The individual steps must be tightly coupled and clustering itself must be evolved into a process that
integrates existing approaches and covers all tasks regarding clustering creation and user interaction
in an end-to-end fashion. By addressing usability and algorithms in a holistic fashion, such a process
allows the versatile and meaningful application of clustering regardless of user experience.
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I n the previous chapter we assessed the state of contemporary clustering and its challenges for
inexperienced users. Most of these challenges arise from a nearly complete absence of structure

for the actual practice of clustering. The four steps introduced in Chapter 2 merely describe a generic
course of action that leads to a clustering result. They state what needs to be done, but give no infor-
mation on how to do it. Thus, the execution of clustering becomes a serious challenge for any user.
Even though the 4-step practice is very generic and can be flexibly applied in many scenarios, its re-
alization is often very specific and rigid. Typically each step is implemented by choosing an existing
method or developing a custom solution for the task at hand.

The goal of this thesis is to change this state. We want to substantiate the abstract 4-step model and
develop a structured process template that can be realized in a system and provides users with a de-
fault procedure for clustering. Thus, freeing them from most of the low-level and scenario-specific
tasks that are normally necessary in order to execute clustering. For that purpose, we need to specify
tasks and create structures for the integration of algorithm selection and configuration as well as result
interpretation and adjustment. The guiding principle during development is to find a compromise be-
tween rigid predefinition and flexible adaptation. Our clustering process implements said principle
through a fixed modus operandi that incorporates versatile components. Users can use a steady and fa-
miliar working environment when performing a clustering, and can still adapt to different application
scenarios.

The template for our versatile clustering process has to implement two major tasks: The handling of
algorithms and the interaction between user and clustering. Algorithm handling must take care of
clustering creation and has to ensure broad applicability. This task is implemented in a component
that manages the variety of clustering algorithms and their related aspects. Similarly the interaction
between user and clustering is realized in a component that communicates clustering results and
offers a universally valid set of controls for adjustment of the clustering. Both major tasks and the
components that realize them, are integrated into an iterative process model that will enable the stable
and user-friendly execution of clustering. In the following chapter, we will describe the different tasks
in more detail and derive the requirements that their implementation must satisfy.

3.1 HANDLING OF ALGORITHMS

The first and foremost task our process needs to execute is the actual creation of a clustering. For
this, it is necessary to tackle algorithm selection and configuration. As both affect clustering cre-
ation, we combine them into a single component that will manage all algorithm related aspects.
From our assessment of contemporary clustering, we know that selecting a configuration of clus-
tering algorithms is challenging due to the quantity of available methods and the different degrees of
application-specialization. Since we aim for versatility, the algorithm management must be able to
deploy arbitrary clustering algorithms and handle their configuration. Besides the challenges arising
from the variety of clustering methods, we already mentioned the shortcomings of single-execution
clustering. Typically, a single algorithm execution with a single set of parameters will not result in
an optimal clustering result, which is why the summarization of different results is desirable. Based
on these needs, we state the first task that the algorithm management must tackle as: integration of
arbitrary clustering algorithms, different parameterizations and multiple solutions into a clustering
result.

While integration mainly focuses on the output of the algorithm management, there is also an input
that must be considered. This input is a set of algorithms and parameters that is either initially chosen
according to the characteristics of the data / application-scenario, or results from modifications made
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during the result adjustment step. Since the algorithm management integrates different algorithms, it
would be necessary to provide this input with multiple algorithm-specific formats. This must be pre-
vented as it represents exactly those low-level tasks we want to keep away from the user. In order to
reach our goal of providing a universally valid set of controls, the second task of the algorithm manage-
ment can be defined as: provision of a control interface that is able to implement initial configurations
and subsequent modifications of a set of algorithms.

To create such an interface, we need to understand how various algorithms work and how they differ.
This requires a way to abstract and generalize from different methods in order to find similarities.
Understanding the workings of clustering is mandatory when algorithms are selected or modified for
a particular dataset. Currently, the presentation of clustering algorithms in research papers and books
is either highly descriptive or implementation specific. Both levels are not useful to us as the former
is too vague while the latter is too detailed. As a solution to this problem, we state the third task of
the algorithm management as: provision of a facility for algorithm description that is a compromise
between the conceptual and the implementation level.

3.2 INTERACTINGWITH THE CLUSTERING

Besides the creation of a clustering result, our process needs to handle result interpretation and adjust-
ment. During result interpretation, the clustering result is communicated to the user, who interprets
it, decides if and how the result should be changed, and derives modifications of algorithms / param-
eters that are forwarded during the result adjustment step. These two steps take care of the whole
interaction between clustering procedure and user, which is why we combine them into a single com-
ponent, responsible for interacting with the clustering.

Our assessment of contemporary clustering showed that there are two basic approaches for result
interpretation: quality measures and visualizations. Quality measures have a pretty coarse granular-
ity that omits information regarding cluster structures. Furthermore, their use is limited to relative
comparisons between clusterings, as there is no universally valid definition of clustering quality that
would allow an absolute rating. In contrast, visualizations offer structural information in a fine gran-
ularity, which can lead to overwhelmingly complex displays of information that cannot be interpreted
effectively anymore. Both approaches have individual benefits: Quality measures summarize clus-
tering characteristics, while visualizations present structures inside the data very detailed. As there
are also serious drawbacks, choosing an existing quality measure or visualization technique to inter-
act with the clustering is not an option. In our process we need a compromise between the coarse
and fine-grained display of information. Therefore, a novel hybrid-visualization must be developed,
whose subject will neither be the single object and its location inside the feature space, nor the clus-
tering as a whole. The focus will be on the cluster-level in between those extremes. We want the
hybrid-visualization to be visually simple and readable, which means that complex high-dimensional
displays must be prevented. This requires the development of measures that characterize identified
structures and are unaffected by dimensionality. As this hybrid-visualization concept forms the core
for the whole interaction with the clustering, we denote the respective process component as visual-
interactive interface.

Besides the visualization concept for result interpretation, it is necessary to develop a way of result
adjustment that can be incorporated into the hybrid-visualization. We already stated that the algo-
rithm management integrates a variety of algorithms, which would require the user to provide result
adjustments in an algorithm-specific way. This is a very demanding and specific task for the user that
we want to ease greatly. Therefore, the second task of the visual-interactive interface is to provide a
compact and default set of high-level feedback operations that allow result adjustments regardless of
the underlying clustering algorithms. Instead of parameters for a function, these high-level feedback
operations should describe the actual change the user intends to realize in the clustering result.
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Figure 3.1: Template of the versatile clustering process.

3.3 ITERATIVE REFINEMENT

At the beginning of this chapter we mentioned that our process template should realize a default
modus operandi for clustering. The modus operandi we know from contemporary clustering practice
is build around the concept of single execution, thus its scope is limited to the one-time creation
of a single clustering result for a set of data. Due to this straightforward procedure, adjustments to
the result can only be made by executing an additional iteration with modified parameters and/or
algorithm. Modification of a result is effectively realized by discarding the existing result and creating
a completely new one. This makes adjustments unintuitive and impractical for the user. Assume the
following example: during result interpretation a user concludes that only a single cluster of the result
needs modification. Based on this, parameters are derived that hopefully influence the clustering
algorithm to yield a result that implements the intended changes. This means that local changes
are implemented indirectly through a global rebuilding, which always poses the risk that undesired
changes are introduced into formerly satisfying parts of the result.

With our process we want a more direct and local character for the result adjustments. For that
purpose, we define the modus operandi of our process as iterative refinement that allows the direct ap-
plication of local changes without rebuilding the whole clustering result. In contrast to the repeated
rebuilding, this approach is more continuous and enables users to adjust clustering results in a step-
by-step fashion until they are satisfied with the outcome. This principle has a fundamental impact on
the development of our clustering process. Figure 3.1 depicts the assembly of the described compo-
nent into our clustering process. The algorithm management and the visual-interactive interface are
connected via interfaces that pass on information about the clustering result and adjustments. At the
center, we find the iterative refinement that is used to successively adjust the clustering result to the
user’s liking by utilizing the functions provided by both major components.

3.4 SUMMARY

In this chapter, we introduced the basic concept of a versatile clustering process. We created a tem-
plate by defining components and identifying the tasks that they need to perform in order to realize
our process idea. Two major components were described: the algorithm management that handles all
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Figure 3.2: Screenshot of a prototypical process implementation.

aspects of clustering creation and the visual-interactive interface that provides a way for interaction
between the user and the clustering. All components are embedded into an iterative process model
that enables the step-wise refinement of a clustering result instead of its complete recalculation. Until
now we only provided a template and some requirements. In the following chapters we will introduce
algorithms and components for the actual realization of these concepts. To give you a glimpse of what
to expect, Figure 3.2 shows a screenshot of a prototypical implementation of our process template that
was assembled with our proposed methods and techniques.
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T he genesis of a clustering is a complex task that involves the selection, configuration, exe-
cution, creation, and adaptation of different algorithms. Our proposed algorithm management

is the first essential component of our clustering process and handles all aspects regarding algorithms
and clustering creation. In doing so, it does not represent a new technique for actual clustering, but
provides a framework that eases and improves the application of existing methods. As outlined before,
the algorithm management has to fulfill three main tasks.

The first one is to define a way of algorithm description that can be used to understand and compare
clustering techniques. Basically, knowledge of the inner workings of a variety of clustering algorithms
is what experience in the area of clustering is mostly about. For our algorithm management we de-
velop a modular approach for description that consists of a basic template and a set of building blocks.
Different algorithms are described by fitting different combinations of blocks into the template. With
this, algorithms can be compared by means of their shared building blocks and modified by exchang-
ing or adding blocks.

Second, integration handles the variety of available algorithms and combines the different clustering
results they produce into a single solution, which constitutes the starting point for iterative refine-
ment. Integration is carried out in two stages. At first, a set of clusterings is produced by using
multiple traditional clustering techniques and parameterizations. In a second step, the structural in-
formation provided by the members of this set is aggregated into the initial clustering. For this, the
algorithm management utilizes specific techniques of which we describe two.

The production and integration of clustering results are vital parts of our clustering process, which
means users must be able to control them. Unfortunately, steps like algorithm selection and config-
uration constitute considerable challenges for the user, which puts us into a dilemma. On the one
hand, algorithm management must relieve users from complex interactions and keep away much of
the technical details of clustering. On the other hand, users must be in charge of the clustering pro-
cess. This issue is addressed in the third and final task of the algorithm management, which is to
provide an understandable control interface that is easy to use. Our provided interface is structured
into multiple levels and contains understandable options for influencing the most important parts of
clustering production and integration.

Please note that our algorithm management basically describes a conceptual template that defines
certain tasks. This means, all subsequently introduced methods constitute options for fulfilling these
tasks and realizing the whole component, but no exclusive or final solution.

Parts of the material in this chapter have been developed jointly with Wolfgang Lehner, Dirk Habich,
Markus Dumat and Peter Volk. Section 4.2.1 is based on [34] and [33], which are both available via
Springerlink. The algorithm proposed in Section 4.2.2 was published in [32] and [29].

4.1 ALGORITHM DESCRIPTION

In order to understand an unknown clustering algorithm we naturally turn to its description. Typi-
cally algorithm descriptions in literature contain a verbal part that illustrates an algorithms method
of working by using the author’s words. This verbal part is often accompanied by an implementation
description based on the syntax of a specific programming language. Both parts have benefits and
drawbacks: The verbal description excels when it comes to communicating the idea of an algorithm
and its mode of operation, but utterly depends on the author’s narrative skills. These can vary, which
means that verbal descriptions are not consistent and can change for each individual author. In con-
trast, implementation descriptions that use the same programming language offer a certain degree of
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consistency. This consistency is lost if different programming languages are used, which is a draw-
back of this description style. In addition, implementation descriptions often contain parts that do
not directly concern the algorithm, but its effective implementation on a specific platform, e.g. data-
structures or procedure calls. Thus, two descriptions of the same algorithm in the same programming
language can differ if different data-structures are used. In summary we can state: While there are
ways to create understandable algorithm descriptions, existing approaches are not consistent as they
lack a common vocabulary.

There are two main reasons to seek consistency: It eases understanding and allows the comparison
of algorithms on the basis of their descriptions. Especially the latter is interesting when an algorithm
is selected for clustering. In contemporary clustering practice a rough categorization was established
in an attempt to provide a way for high-level description and algorithm comparison. Different classes
of clustering algorithms have been introduced to organize the multitude of existing methods, e.g.
density-based and hierarchical algorithms. Unfortunately these classes are neither explicitly defined
nor clearly differentiated from each other, which makes categorization very vague. The goal of this
categorization is to identify similar clustering methods and to aid algorithm selection by providing
statements like: algorithms of class X are suitable for datasets showing characteristic Y . However,
due to the ambiguity of categorization such statements are generally imprecise.

All these issues are relevant to our clustering process. In order to handle the multitude of available
clustering algorithms, we need an universal option for their description. A unified and consistent
view on clustering algorithms will enable users to better understand their functionality. In the course
of this section we present a novel approach to algorithm description. Starting from the archetype of
clustering algorithms, we derive definitions and building blocks, which will constitute a consistent
vocabulary for description.

4.1.1 Extracting the Essentials of Data Clustering

For our approach, we concentrate on the core of traditional clustering, i.e. the grouping of objects.
We ignore the areas of pre-processing and post-processing that cover tasks like feature selection, data
cleansing or noise reduction. Our goal is to disassemble clustering algorithms in order to identify
their essential components. We begin by assuming the following general definition of data clustering:

"Data clustering is the partitioning of a set of points into groups—so-called clusters—in a way
that similar points are put in the same cluster, while dissimilar points are located in different
clusters."

According to this definition, every clustering algorithm can be described as: "An algorithm that parti-
tions a set of points into clusters, so that points in the same cluster are similar, while points located in
different clusters are dissimilar." In this extremely abstract description, we can identify certain funda-
mental tasks that have to be performed in order to generate a clustering. The first fundamental task is
pointed out in the first part as the grouping of points. In the latter part we find that this grouping is not
performed at random, but follows some constraints. As points are not arranged arbitrarily, the second
task of a clustering algorithm is to explicitly choose those points that should be grouped together. The
criterion for the selection of the points for a group is their similarity. That means, an algorithm needs
to measure the similarity of the points, which states its third task.

The three tasks we identified are interdependent and must be performed in sequence, as grouping
cannot be done without choosing points or measuring similarity in advance. From the identified tasks
and their sequential dependence we derive the phases of a clustering algorithm that form the frame
for further building blocks:
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• evaluation - During this first phase the similarity between all points or between all points and
a set of references is measured.

• selection - In this phase the points that are eligible to be grouped together are selected according
to the algorithms specification.

• association - During this phase the previously chosen points are associated with a cluster.

• optimization - This phase contains support tasks for the previous phases like parameter adjust-
ments, iteration control or re-calculation of centroids.

The fourth phase is not directly derived from the clustering definition above, but originates from an-
alyzing existing algorithms that often feature optimization tasks like parameter adjustment or target
function maximization, which lead to multiple iterations of the first three phases. The optimization
phase is mainly concerned with improving the result generated by the preceding phases. Therefore
we consider it as optional, while the other phases are mandatory. Every clustering algorithm requires
an evaluation, selection and association phase in order to complete the three fundamental cluster-
ing tasks identified earlier. Thus, we refer to this three-phase sequence as the core of a clustering
algorithm.

The defined phases of a clustering algorithm specify a frame that needs to be fitted with additional
building blocks in order to describe an algorithm. To find these blocks, we analyze each phase and
look for its basic elements. We start with the evaluation phase, which is responsible for similarity
measurement. In order to determine the similarity of two objects, a dedicated function is needed. In
data clustering there are two general approaches to similarity measurement: similarity functions and
distance functions. While the former express the degree of similarity the latter describe the amount of
dissimilarity between objects. For clustering both can be used on the assumption that low dissimilarity
corresponds to high similarity and vice versa. Since most of the clustering algorithms we encountered
employ distance measures we assume that similarity is expressed via distances for the remainder of
this chapter. With this we can define the distance measure as the first basic element of the evaluation
phase. In general, a distance measure uses at least two inputs and produces one output value. The
first input is made up of the points which are to be clustered. The second input contains the objects
to which the first input is compared to in terms of similarity. Hence, we use the term references for
it. References can occur in different forms. On the one hand, there exist algorithms like DBSCAN
[21] that calculate all point-to-point distances and effectively use points also as references. On the
other hand, approaches like k-means [50] employ a special set of representatives/centroids as second
input for distance computation. After thorough research we found that references can appear in
three forms: a clone of points, a subset of points or a set of objects that is disjoint from points but
shares its domain. As the distance measure is a basic element of the evaluation phase, so are its two
inputs. Naturally the next basic element has to be the output of the distance measure as it contains the
similarity information that is needed in successive phases. We label this element as distances, which
leaves us with a total of four basic elements for this phase. These allow a more detailed definition of
the evaluation task. In essence, during evaluation the distance measure is used to create a relation
between points and references that represents their similarity and is explicitly expressed in the form
of distances. It is important to mention that besides the distance values itself, evaluation also provides
relational information in the form of point-distance-reference triples.

Next, we regard the selection phase. It uses the point-distance-reference triples generated by eval-
uation as an input and chooses the points which are eligible to be grouped together. According to
our initial clustering definition it is desired that only those points which are similar overcome the
selection process and enter association. In order to extract these points, it is necessary to define the
requirements that are needed to acquire the status ’similar’. Furthermore, all incoming points must
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be tested on whether they fulfill said requirements or not. This is achieved by using filters, which
are the basic element of this phase. Basically the selection phase utilizes a filter cascade to test each
incoming point-distance-reference triple and only passes on those that comply.

After selection, we examine the association phase, which is the final phase of the mandatory core of
a clustering algorithm. The input of association are the point-distance-reference triples that passed
selection and must now be grouped in order to create a clustering. This clustering forms the output of
this phase and is one of its basic elements. Like the distances from evaluation, a clustering is made up
of relations, i.e. the affiliation between points and clusters. To create these, the association phase has
to transform point-distance-reference triples into point-cluster tuples. Transformation is handled by
the next basic element, which we denote as association function. For some algorithms a simple substi-
tution is already sufficient to create a clustering, e.g. the association function of k-means assumes the
references as clusters and effectively creates point-cluster tuples by removing the distance from the
incoming point-distance-reference triples. However, not all clustering techniques work that way. Let
us regard DBSCAN, where at first a core-object is associated with its neighborhood–by creating point-
reference tuples–before the actual clusters are formed on the basis of overlapping neighborhoods. A
direct creation of point-cluster tuples like in k-means is not possible in DBSCAN, because the clusters
are not known in advance. Considering this issue, we introduce the basic element adjacencies as a
stopover between the association function and the final clustering. With it, we describe the associ-
ation phase as follows: incoming point-distance-reference triples are transformed by the association
function into adjacencies, which are then transformed into the clustering. The transition from adja-
cencies to clustering often differs for individual algorithms and can be done in a variety of ways. This
is why we do not appoint further basic elements for it on this conceptual level. Doing so would result
in a large set of basic elements and contradict our goal of finding only fundamental components. We
will address this problem in the next section.

After finishing the core, only the optimization phase is left to consider. The problem of variety ex-
plained just now for a part of the association phase, applies to this phase as a whole. As optimization
can involve tasks like parameter adjustment, updates to points or references, iteration, etc. the deriva-
tion of a minimal set of basic elements is not feasible at this point. As stated before, we will solve this
problem in the next section by moving to a different level of abstraction.

4.1.2 Formal Description

So far, we identified the essential tasks common to each clustering algorithm and derived a universal
frame made up of the three core phases: evaluation, selection, association and the optional optimiza-
tion. Furthermore, we defined the basic elements to fit into this frame: points, references, distances,
filters, adjacencies, clustering, distance measure, and association function. The descriptions we pro-
vided are only abstract and verbal at the moment. In order to realize our description concept, it is
necessary to concretize the basic elements. We decided to use mathematical definitions, which al-
lows us to make general and clear descriptions, which can act as a formal intermediate between the
abstract verbal and the implementation-specific description.

The set of basic elements can be separated into two groups, which we denote as actors and interactions.
The set of actors corresponds to the objects with which a clustering algorithm works and contains
points, references, distances, adjacencies and clustering. For their formal representation we utilize
matrices as they are a practical approach to describe all of our actors with the same structure.

When it comes to the formal definition of a dataset for clustering, existing literature generally uses
multi-dimensional vectors to express the location of data points inside a feature-space. According
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to this approach, we can define the basic element points as a set P of f -dimensional vectors #»p =
{p0, . . . , pf} where (0 ≤ j ≤ f) and with n = |P |. This set can be described as a matrix P by inter-
preting each vector #»pi as a row pi,∗ of said matrix. The resulting matrix P has n rows and f columns.
As the set of references can either be a subset of P or just share the same domain, we can describe it
in a similar way. The corresponding set of vectors R contains k elements #»r = {r0, . . . , rf} where
(0 ≤ j ≤ f) and is interpreted as matrix Rk×f .

While P and R express values of features per point, the remaining actors are instantiations of re-
lations between objects, e.g. point-distance-reference triples or point-cluster tuples. For the formal
description of these actors, matrices are especially convenient as the objects involved in a relation
correspond to a row and column pair which addresses the matrix element that holds the value of the
actual relation. To exemplify this idea, we define the basic element distances as a matrix D with n
rows and k columns, where n is the number of points and k is the number of references. Each ele-
ment dij ofD relates to a point/row pi,∗ of P and a reference rj,∗ ofR. Thus, the value dij represents
the distance between pi,∗ and rj,∗. This description can be smoothly translated to the point-cluster
tuples that make up the clustering. Point-cluster tuples express the binary relation between a point
and a cluster, thus the clustering can be described as a binary matrix C with n rows and a number of
columns determined by the number of clusters found. A value of 1 at cij indicates an existing relation
between the point pi,∗ and the cluster c∗,j , while 0 states the opposite. Accordingly, we can define
adjacencies as a binary matrix A that has the same dimensions as D.

Choosing matrices for the descriptions of actors, makes functions the natural choice for the formal
representation of the interactions: distance measure, filter and association function. As an example, we
define a general function for the distance measure dist. It takes a pair of rows (pi,∗, rj,∗) from P and
R as arguments and assigns a scalar value to it that represents the distance between the corresponding
objects. The abstract function dist is defined as:

dist : Mn×f ×Mk×f →Mn×k

(P,R) 7→ D

dij = function(pi,∗, rj,∗)

Regarding the formal description of filters we face some challenges. A filter checks, whether a matrix
or one of its elements fulfills certain conditions and passes them on or sorts them out accordingly.
Thus, a filter is similar to an if-then statement. In order to describe this behavior with mathematical
functions, it is necessary to break down the task and establish some conventions. The defining part
of each filter is its condition. In mathematical terms, it can be described as a function with the co-
domain 0, 1 that represents the results false and true. A simple threshold condition that is satisfied by
all numbers smaller 10 is defined as:

threshold : R→ {0, 1} , X 7→ XI

xI =
{

1, if x < 10
0, otherwise.

Adopting this form of notation for each condition would be pretty extensive, so we settle for a mini-
mized version that only denotes the condition leading to true, i.e. 1, as the function name. Thus, the
notation of the preceding definition of threshold() is reduced to 〈x < 10〉.
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With this convention done, we have to look into the consequence of a filter. While elements that ful-
fill the provided condition are left untouched, those who fail have to be sorted out or rather deleted.
Actual deletion of elements or matrices cannot be expressed with a mathematical function. There-
fore, we have to find a workaround for this issue. Let us regard k-means, where the selection phase
chooses the minimal point-cluster distance for each point. Assume a row d2,∗ = (d21, d22, d23, d24),
of D whose components show the distances between point p2,∗ and the four centroids of R. The ap-
propriate filter has to sort out all components that are not minimal. Without the chance of removal,
it is necessary to define a neutral element to which all inputs that fail the condition are mapped.

For our scenario we state this neutral element as 0. This choice has the benefit that all of the mathe-
matical functions we use naturally accept this neutral element and we do not need to specify explicit
handling instructions. Unfortunately in the area clustering 0 can become a problem when it comes
to handling distances, because a distance of 0 expresses identity. In such cases 0 should not be ig-
nored but treated as regular value. In our scenario this can only happen in two situations: either
when points have duplicates or the particular algorithm procedure leads to a distance measurement
between a point and itself. In order to use 0 as a neutral element and focus on functions we make the
assumption that P and R are free of duplicates. This takes care of situation one while situation two
can be easily resolved by algorithm-specific handling. If duplicates must be considered we propose
−1 as a fully valid neutral element. However this requires additional dedicated instructions for every
building block. Based on these assumptions we select 0 as neutral element, which allows us to define
the minimum filter as:

minFilter : M1×k →M1×k

(D, 〈x = min(D)〉) 7→ DI

dI
ij = 〈x = min(D)〉 (dij) · dij

Assuming d23 as the minimum of d2,∗, the filtered row becomes dI
i,∗ = (0, 0, d23, 0). This approach

requires that subsequent functions are aware of 0 as the neutral element and treat it accordingly. In
summary, we describe filters as composite of a variable condition and a fixed consequence realized by
a function that maps to the neutral element. In the context of clustering algorithms, a filter cannot
exist without a condition.

The execution of filters during the selection phase creates a modified version of the initial distance
matrix that we denote as DI . It is passed on to the association phase, where it is processed by the
association-function. The goal of this function is the transformation of distances into adjacencies, i.e.
the point-distance-reference triples that made it past the selection phase are converted into point-
reference tuples. Basically, this means that DI is transformed into a binary matrix, where a value of
1 represents an adjacency. The selection phase already filtered out all object pairs that have no con-
nection. These non-existent adjacencies have already been mapped to 0, so only the task of mapping
every non-zero value to 1 remains. Based on this, we define the association function assoc as

assoc : Mm×n →Mm×n

DI 7→ A

aij = sgn(dI
ij)

where sgn() is the sign function. This function is quite convenient as it keeps the neutral element 0
and maps all positive values to 1. Although sgn() can yield−1 for negative inputs, this does not need
to be considered in our setting as distances are always positive.
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Now we possess three items that can be used for the formal description of our basic elements. These
are matrices to describe all of our actors, functions for interactions, and conditions for filters. Besides
covering the description of actors and interactions, these items enable us to close the gaps in the
association and optimization phase we mentioned in Section 4.1.1. Those gaps were induced by the
diversity of actions a clustering algorithm can conduct there. We assume that our formal description
concepts are universal enough to handle this diversity and describe any functionality that can occur
in an algorithm.

Although we identified basic elements and items for their description, we have not clearly defined
our actual building blocks. The sole application of the formal description items is not an option, as
they are too general. An algorithm created by combining matrices, functions, and conditions will not
necessarily be able to perform the tasks essential for data clustering. Likewise, the basic elements
cannot function as building blocks alone, due to the limitations regarding variety that we outlined.
So in order to create a working vocabulary of building blocks we have to use both proposed groups
in unison. Effectively this means that each basic element and each item for description constitutes
a building block. To illustrate how both groups are interrelated, consider matrices, functions and
conditions as performers, while the basic elements define roles for these performers. Some of these
roles are mandatory and must be performed in order to create a proper clustering algorithm, e.g. the
role of distance measure must be taken by a function. In Section 4.1.1 we introduced the core of a
clustering algorithm that acts as a frame to fit our building blocks into. Now we are able to fill this
frame and work out a detailed algorithm core.

• evaluation - This phase requires at least 4 building blocks: one function playing the role of
distance measure and three matrices acting as points, references and distances.

• selection - This phase consists of at least one filter with its respective condition.

• association - For this phase 3 building blocks are mandatory: two matrices acting as adjacencies
and clustering, as well as an association function.

Beyond that, arbitrary clustering functionality can be added to each of these phases, including opti-
mization, by utilizing the existing building blocks.

We present our building blocks in a pseudocode notation. The respective syntax is introduced in
the following. Matrices are denoted with single capital letters, e.g. D for the distances. Additional
designation is done in the subscript and superscript of the letter. To distinguish different matrix
versions we use the superscript: DI and DII are versions of D after 1 and 2 function applications,
while Dx and Dx+1 designate the versions of D that are in effect for the current and next iteration
of the algorithm, respectively. With the subscript, matrices can be described in more detail, e.g. DR

denotes the distances between all references R.

The first pseudocode block introduces the syntax for functions. We use infix notation for the ele-
mentary functions: addition, subtraction, multiplication and entry wise multiplication, while prefix
notation is used for all other functions.

A ◦B → C . infix example: entry wise product
function(A)→ AI . prefix example: single input function
function(A,B)→ CI . prefix example: double input function
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The mandatory role of the distance measure is designated by adding the prefix dist. to the function
name. This is necessary as different algorithms employ different distance functions. The role of
association function is taken by the already defined function assoc() in all upcoming examples, which
is why we keep the simple function name. Notation of the conditions is not so straightforward as
conditions can occur in two contexts: as an input for filter functions and as standalone block. The
following pseudocode shows the notation for both cases

filter(M, 〈cond〉) . input for filter
if cond then function . standalone use

In both applications the condition itself is denoted as Boolean expression 〈cond〉 which is sufficient
for its utilization as part of the filter. In standalone use a condition affects the control flow of the al-
gorithm. To illustrate this, we embed 〈cond〉 in an if-then block, where the consequence contains the
action that is executed if the condition is met. Besides standalone conditions, we have not discussed
the description of the control flow. In our considerations so far this area did not really manifest, al-
though it is crucial for almost every clustering algorithm. Because of that, we introduce the loop as an
additional basic element. Incorporating loops into our scenario is delicate as they cannot be described
as functions, which means we have to define them outside the mathematical domain. In order to
describe clustering algorithms we basically need two types of loops: a for-each loop for element-wise
traversal of datasets or clusterings and a repeat-until loop for conditioned iterations. These two loops
are denoted with the following pseudocode:

for each element of M do
〈body〉

end for→M I

repeat with A
〈body〉

until cond output→B

At the top we find the block for the for-each loop, which is generally used to traverse datasets or
clusterings by element. The opening statement of the loop specifies the traversed matrix M and the
element/granularity of traversal: row, column or component. In our scenario, element-wise traversal
is done by splitting up the source matrix into element-matrices—rows, columns or components at
the beginning of the loop. After the split, the elements are processed individually according to the
instructions of the 〈body〉. As we need a single matrix as output, the processed elements must be
re-assembled at the end of the loop, e.g. row-matrices are appended. This re-assembly is implicitly
assumed and not denoted. The loop output is denoted with the assignment after end for.

In addition to the described functionality, we use for-each loops for the actual removal of rows and
columns from matrices. Sometimes this is inevitable, when clustering algorithms delete references
or clusters during optimization. With filters we introduced mapping to the neutral element 0 as a
means to tackle deletion. While this works well and is necessary for the clear definition of functions,
the handling of whole rows and columns of zeros can become challenging and lead to problems, e.g.
if empty clusters occur in C. Some of those issues could be tackled by introducing constraints to
each function to ignore all-zero rows/columns. But this would be complex and not an overall solution.
Our described for-each loop provides an elegant way to solve this problem. With the insertion of
an appropriate condition before matrix reassembly at the end of the loop, we prevent zero element-
matrices from entering the output matrix. Since loops are defined outside the mathematic formalism
anyway, adding row/column removal here provides us with a convenient tool without compromising
the formal description of the remaining building blocks.
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The repeat-until loop is used to represent conditioned loops. This kind of loop is used to control algo-
rithm iterations or the minimization/maximization of target functions like the sum of squared errors
in k-means. The stopping condition for the loop is always specified after the closing until statement.
A repeat-until loop has one or more input matrices—denoted in the opening statement—which are
continuously processed from iteration to iteration and an output matrix that is obtained when the
loop finishes. This output matrix can be either a processed version of the input or an assembly of
element-matrices generated during the loop. The particular type of output can be derived from the
instructions of the 〈body〉 of the loop.

Now that we have described the last of our building blocks and their syntax, we move on to the
next section, in which we demonstrate how clustering algorithms are transcribed using the proposed
vocabulary.

4.1.3 Transcription of Algorithms

The description of algorithms with our building blocks may be unfamiliar at first as it requires to think
in terms of matrices and does not offer well-known structures like maps or control flow elements
like recursion. However, this limitation is necessary to reach consistency and we will illustrate the
application of our building blocks by translating several well-known clustering algorithms. We start
with the partitioning algorithms k-means[50] and its variant ISODATA [8]. After that, we proceed with
the density-based DBSCAN [21] and conclude our examples with the hierarchical method AGNES[46].
During our descriptions, we refer to lines of pseudocode by putting the corresponding line numbers
in brackets.

k-means

For our first transcription we choose the best-known clustering algorithm in existence: k-means [50,
53], which is shown in Algorithm 1. We start by going through all of our proposed core phases. First
comes evaluation, where the similarities between the dataset and the initial cluster centroids are
calculated. We already stated that this phase requires at least four building blocks: three matrices and
one function. The dataset to be clustered is represented by the points matrix P while the references
are contained in matrixR, whose k rows represent the initial centroids. The last matrix is the distance
matrixD that contains the distances between P andR calculated with the distance measure. For our
k-means translation, this mandatory role is taken by the euclidean distance. We adapt it to our matrix
setting as function dist.L2 which is defined as:

dist.L2 : Mn×f ×Mk×f →Mn×k

(P,R) 7→D with dij =

√√√√ f∑
l=1

(pil − rjl)2

where pi,∗ and rj,∗ are rows of their respective matrices. The resulting matrix D is used as input for
the following selection phase. The goal of the selection phase is to decide which points are similar
and should form clusters. In k-means each object is assigned to its nearest cluster, so selection must
find the minimal distance for each object. This handling of each object is realized in a for-each loop
that traverses D in a row-wise fashion (6).

50 Chapter 4 Algorithm Management



Algorithm 1 k-means
1: repeat with Rx

2: phase Evaluation
3: dist.L2(P,Rx)→ D .Mn×f ×Mk×f →Mn×k

4: end phase
5: phase Selection
6: for each di,∗ of D do
7: filter(di,∗, 〈dij = min(di,∗)〉)
8: end for→DI

9: end phase
10: phase Association
11: assoc(DI)→ A .Mn×k →Mn×k

12: A→ C
13: end phase
14: phase Optimization
15: updt(CT , P )→ Rx+1 .Mk×n ×Mn×f →Mk×f

16: end phase
17: until Rx = Rx+1 output→ C

Due to the evaluation phase each row di,∗ contains all distances between a point pi,∗ and all rows of
R. The loop body contains a filter function that keeps the minimum element dij from each row and
maps all remaining elements to 0. At the end of the loop the processed rows are re-assembled into the
filtered matrixDI that is passed on to the association phase. For k-means, association is pretty simple
as the minimum cluster distance for each object also states its cluster assignment. Thus, we apply the
already defined function assoc and turn DI into the binary adjacency matrix A. Since k-means uses
the references ofR as cluster representatives, matrixA already contains the final cluster assignments
and is simply adopted as C (12).

Now that the core phases are finished and a clustering result was generated, k-means enters its op-
timization phase. Here, the centroids/references are updated for the next iteration of the algorithm.
Each centroid is recalculated as the arithmetic average of all points that are currently assigned to it. In
our setting this means, we have to use the information stored inC and P to create a new version ofR
with the correct dimensions. We realize the update by using the matrix-multiplication as a template
and C and P as its input. Matrix C contains the point-cluster assignments and has the dimensions
n×k with k being the number of references/centroids. The second input P has the dimension n× f
with n being the number of points and f being the number of features of the dataset. By multiplica-
tion, we use the binary character of C to select parts of P and create an updated version of R. The
new version must inherit the dimension of k× f . Matrix multiplication ofC and P requires that the
number of columns of C matches the number of rows in P , which is not the case as k 6= n. To solve
this, we transpose C to CT which not only establishes the required match of columns and rows, but
also guarantees that the result has the desired dimension k × f . The function used for calculation of
the update is defined as:

updt : Mk×n ×Mn×f →Mk×f (4.1)

(CT , P ) 7→ Rx+1 (4.2)

rij =
∑n

l=1 cil · plj∑n
l=1 cil

(4.3)
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with ci,∗ being a row of CT and p∗,j being a column of P . In CT each cluster is represented by a
binary row. The function uses this row to select those rows ofP that are assigned to the corresponding
cluster. During matrix multiplication, each row ofCT is multiplied with every column ofP . Thus, the
members of the cluster are selected in each feature represented by p∗,j . These selections are summed
up for each feature and divided by the number of cluster members that are obtained by summing up
all binary elements of ci,∗. This results in an updated row/centroid of Rx+1.

The iteration of k-means is described, by surrounding the whole algorithm with a repeat-until loop
that works by continuously updating the references/centroids of Rx. At the end of each iteration,
the stopping criterion is evaluated before the loop is restarted (17). In our transcription we choose
Rx = Rx+1 as stopping condition, i.e. the algorithm quits if the references/centroids no longer
change and stabilized clusters can be assumed. Further possible stopping conditions are: reaching a
fixed number of iterations or meeting the predefined threshold of a quality measure.

ISODATA

The ISODATA algorithm was introduced as a variant of k-means that is not bound by a fixed number
of clusters k, but adapts this number during execution [8]. This adaptation is done by removing,
splitting, and merging centroids after each iteration. Each of these actions is triggered in reference to
5 user-defined parameters that the algorithm introduces as:

- kD the number of desired clusters.

- θN minimal cluster size, below which clusters are removed.

- θC minimal centroid-to-centroid distance, below which centroids are merged.

- θE maximal standard deviation inside a cluster, above which clusters are split.

- L number of merges allowed per iteration.

Due to the number of parameters and the substantial adjustment procedure, ISODATA is a much
more complex algorithm than k-means. As a result, its description with our building blocks becomes
quite extensive, which is why we break it up in three parts to improve traceability. The three parts
are: trunk, split branch and merge branch. The description of the trunk part is shown in Algorithm 2.
It is easy to see that the core of ISODATA—evaluation, selection, and association phase—is identical
to the previously described k-means. Everything that distinguishes ISODATA is concentrated in its
optimization phase, which is considerably larger in comparison with k-means. Although optimization
strongly differs for both algorithms, its main goal remains the update of centroids/references for the
next iteration.

The optimization phase begins in the trunk part, where the removal of small clusters is done (15-18).
We already know that each column of clustering matrix C represents a cluster. In order to sort out
clusters that are too small, a for-each loop is used for the column-wise traversal of C. A filter block
in the body of the loop checks if a cluster exceeds the minimum size θN . If the sum of a column
is too small, i.e. the cluster has not enough members, said filter maps all elements of the column to
zero. Subsequently we deploy a standalone condition to prevent columns that only contain zeros from
entering the reassembly of the result matrixCI . For the remaining clusters, new centroids/references
are created with the known function updt(). Similar to its application in k-means, we use the transpose
of CI and P as input and calculate an updated reference matrix RI (19).
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Algorithm 2 ISODATA trunk
1: repeat with Rx

2: phase Evaluation
3: dist.L2(P,Rx)→ D .Mn×f ×Mk×f →Mn×k

4: end phase
5: phase Selection
6: for each di,∗ of D do
7: filter(di,∗, 〈dij = min(di,∗)〉)
8: end for→DI

9: end phase
10: phase Association
11: assoc(DI)→ A .Mn×k →Mn×k

12: A→ C
13: end phase
14: phase Optimization
15: for each c∗,j of C do
16: filter(c∗,j , 〈

∑n
l=0 clj > θN 〉)

17: if
∑n

l=0 clj > 0 then → cI
∗,j of C

I

18: end for→ CI

19: updt((CI)T , P )→ RI .MkI×n ×Mn×f →MkI×f

20: if x mod 2 = 1 ∨ k ≤ kD/2 then ↗ split branch
21: if x mod 2 = 0 ∨ k > 2kD ∨ x = xΩ then ↗ merge branch
22: end phase
23: until x = xΩ output→ C

At this point, the algorithm branches to either perform splitting or merging. The split branch is
executed if the current iteration is odd or the current number of clusters k is less or equal half the
desired number of clusters kD (20). Merging is performed if one of the following conditions is met:
the current iteration is even, the current iteration is the last iteration or k is larger than two times kD

(21). We describe the branching with two standalone conditions that reference each of the respective
branches. Like k-means, the whole trunk part is surrounded by a repeat-until loop that describes
the ongoing iteration of the algorithm. But this time, the stopping criterion is defined as reaching a
predefined number xΩ of iterations.

After regarding the trunk part, we deal with the branch of ISODATA that is responsible for splitting
clusters. At first, we regard the original splitting process proposed in [8]. There are three conditions
that matter when it comes to the execution of a cluster split. There is a main condition that is fulfilled,
if a cluster exceeds the standard deviation threshold θE in at least one dimension. Furthermore, two
additional constraints ϕ1 and ϕ2 are considered. The first constraint ϕ1 is met if a cluster exceeds a
size of 2θN + 2 and in addition has an average point-centroid distance that is higher than the average
point-cluster distance of the clustering. The second constraint ϕ2 is fulfilled if the current number of
clusters k is less or equal half of the desired number of clusters kD. If the main condition and either
ϕ1 or ϕ2 are satisfied, the cluster is split into two new clusters. To realize this, the initial cluster
centroid is duplicated, before 1 is added or subtracted in the dimension with maximal standard de-
viation. This addition/subtraction of offsets is necessary to differentiate the duplicates. Transcribing
the splitting procedure with our matrix-based building blocks, requires the completion of three main
tasks: condition handling, centroid duplication and offset addition. Subsequently we describe how
these tasks are implemented. The final transcribed split branch is shown in Algorithm 3.

As a first step, we address condition handling by calculating the necessary values like standard devia-
tions and average point-cluster distances (2 − 5). By multiplying CI and RI that were generated in
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the trunk part, we create a helper matrixHn×f . As a result of multiplication, each row ofH contains
the centroid to which the corresponding row inP is assigned. AsH andP have the same dimensions,
we can use matrix subtraction to calculate the distance from each point to its centroid in each dimen-
sion. The resulting matrix HI and the transpose of CI are used to compute the standard deviations
with the function sigma defined as:

sigma : Mk×n ×Mn×f →Mk×f

((CI)T , HI) 7→ S

sij =

√√√√∑n
l=1 cil · (hI

lj)2

(
∑n

i=1 cil)− 1

that results in a matrix S, whose rows si,∗ contain the standard deviation per dimension for each of
the k clusters. The same inputs are used to calculate the average point-centroid distance per cluster
with the function avgDist defined as:

avgDist : Mk×n ×Mn×f →Mk×1

((CI)T , HI) 7→ D

di1 =
∑n

l=1

√∑f
j=1 c

I
il · (hI

lj)2∑n
l=1 c

I
il

which yields the column matrix Davg. Basically, both functions use (CI)T for the cluster-wise se-
lection of rows from HI , which is an approach we already used in updt(). The selected values are
squared and summed up before the root is extracted and the results are normalized. After that, the
cluster sizes are calculated by applying the aggregation function agg defined as:

agg : Mm×n →M1×n

CI 7→ CII

cII
1j =

m∑
l=1

cI
mj

which results in a row-matrixCII that contains the size of each cluster (6). These sizes are necessary
to obtain the average point-cluster distance for the whole clustering. According to [8] this value is
computed as the weighted average of the average distances per cluster that uses the respective cluster
sizes as weights. To execute this calculation, we can employ updt() again and specify CII and Davg

as its input. The resulting 1× 1 matrix DI
avg contains the overall average distance.

With the calculated matrices and given parameters we are able to evaluate the main condition as well
as ϕ1 and ϕ2. These three conditions have different characters and relations with each other. The
main condition and ϕ1 address actual cluster characteristics, while ϕ2 considers the global variables
k and kD. Furthermore, the additional constraints have an ’or’ relationship. In our setting, this means
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Algorithm 3 ISODATA split branch
1: phase Optimization
2: CI ·RI → H .Mn×kI ×MkI×f →MnI×f

3: H − P → HI

4: sigma((CI)T , HI)→ S .MkI×n ×Mn×f →MkI×f

5: avgDist((CI)T , HI)→ Davg .MkI×n ×Mn×f →MkI×1

6: agg(CI)→ CII .Mn×kI →M1×kI

7: updt(CII , Davg)→ DI
avg .M1×kI ×MkI×1 →M1×1

8: filter(Davg,
〈
davg(ij) ≤ DI

avg

〉
)→ Hcond1

9: filter(CII ,
〈
cII

ij < 2θN + 2
〉

)→ CIII

10: (CIII)T +Hcond1 → HI
cond1

11: if k > kD/2 then O1×f → Hcond2
12: if k ≤ kD/2 then Z1×f → Hcond2
13: HI

cond1 ·Hcond2 → Hcond .MkI×1 ×M1×f →MkI×f

14: sgn(Hcond)→ HI
cond

15: subst(HI
cond, S, θE)→ SI

16: for each si,∗ of SI do
17: filter(si,∗, 〈sij = max(si,∗)〉)
18: end for→ SII

19: agg((SII)T )→ SIII .Mf×kI →M1×kI

20: (SIII)T ·O1×kI → Hsplit .MkI×1 ×M1×kI →MkI×kI

21: Hsplit ◦ I → HI
split

22: for each hI
i,∗ of HI

split do

23: if
∑
hI

ij > θE then

[
1
1

]
→Mclone

24: if
∑
hI

ij ≤ θE then
[
1
]
→Mclone

25: Mclone · hI
i,∗ → hII

i,∗
26: end for→HII

split

27: sgn(HII
split)→ HIII

split

28: for each sII
i,∗ of SII do

29: if
∑
sII

ij > θE then

[
1
−1

]
→Moffset

30: if
∑
sII

ij ≤ θE then
[
0
]
→Moffset

31: Moffset · sII
i,∗ → (hoffset)i,∗

32: end for→Hoffset
33: sgn(Hoffset)→ HI

offset

34: HIII
split ·RI → Rsplit .MkII×kI ×MkI×f →MkII×f

35: Rsplit +HI
offset → Rx+1

36: end phase
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HI
cond1

0
|c2|
d̄3
0

(a)

→

Hcond

0 0 0 0
|c2| |c2| |c2| |c2|
d̄3 d̄3 d̄3 d̄3
0 0 0 0

(b)

→

HI
cond

0 0 0 0
1 1 1 1
1 1 1 1
0 0 0 0

(c)

→

SI

s11 s12 s13 s14
θE θE θE θE

θE θE θE θE

s41 s42 s43 s44
(d)

→

SII

0 0 s13 0
θE 0 0 0
θE 0 0 0
s41 0 0 0

(e)

→
SIII

s13 θE θE s41
(f)

→

Hsplit

s13 s13 s13 s13
θE θE θE θE

θE θE θE θE

s41 s41 s41 s41
(g)

→

HI
split

s13 0 0 0
0 θE 0 0
0 0 θE 0
0 0 0 s41

(h)

→

HII
split

s13 0 0 0
s13 0 0 0
0 θE 0 0
0 0 θE 0
0 0 0 s41
0 0 0 s41

(i)

→

HIII
split

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

(j)

Hoffset

0 0 s13 0
0 0 −s13 0
0 0 0 0
0 0 0 0
s41 0 0 0
−s41 0 0 0

(k)

→

HI
offset

0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0
1 0 0 0
−1 0 0 0

(l)

Figure 4.1: Matrix sequence for the split branch.

56 Chapter 4 Algorithm Management



HIII
S

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

·

RI

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

→

Rsplit

r11 r12 r13 r14
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44
r41 r42 r43 r44

(a) Centroid duplication.

Rsplit

r11 r12 r13 r14
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44
r41 r42 r43 r44

+

HI
offset

0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0
1 0 0 0
−1 0 0 0

→

Rx+1

r11 r12 r13 + 1 r14
r11 r12 r13 − 1 r14
r21 r22 r23 r24
r31 r32 r33 r34

r41 + 1 r42 r43 r44
r41 − 1 r42 r43 r44

(b) Offset addition

Figure 4.2: Execution of centroid splitting.

that if ϕ2 holds, ϕ1 does not matter anymore and vice versa. We model this behavior in the following
way. First, we construct a filter matrix Hcond1 that captures all centroids failing ϕ1. If ϕ2 holds, this
matrix is neutralized and only the main condition is evaluated. If ϕ2 does not hold, we have to ensure
that all centroids referenced by Hcond1 also fail the main condition. This is necessary, as a centroid
cannot be split if neither ϕ1 nor ϕ2 is satisfied.

To handle ϕ1 in Algorithm 3, we employ filters that select those cluster sizes and average distances
that are not high enough to fulfill the given constraints (8, 9). The resulting matrices Hcond1 and
(CIII)T are added and form a column-matrix HI

cond1 where each row having a value greater 0 indi-
cates a corresponding centroid/row that does not fulfill ϕ1. Later on we want to use this information
for element-wise manipulation of S, so we need to expand the k×1 column-matrixHI

cond1 to a k×f
matrix that matches S. With this expansion we also want to consider ϕ2. In order to add the required
number of columns to HI

cond1, it is multiplied with a 1 × f matrix. If ϕ2 holds, we multiply HI
cond1

with a zero matrix Z1×f , which results in a k × f matrix of zeros and effectively discards all infor-
mation regarding ϕ1. In doing so, we realize the ’or’ relationship of ϕ1 and ϕ2. In the opposite case,
HI

cond1 is multiplied with a row-matrix of ones O1×f , which produces a k × f matrix. Each row of
this matrix that contains elements greater 0, corresponds to a cluster that fails ϕ1. This matrix named
Hcond is transformed into a binary matrix with the sign function (14).

In the next step we have to ensure that each cluster that fails ϕ1 also fails the main condition. For this
purpose, we substitute the standard deviations of these clusters with values that will not exceed θE

and effectively prevent them from being split. As substitution value λ we choose θE as only standard
deviations exceeding this threshold will trigger a split. The function for this task subst() is defined as:

subst : Mk×f ×Mk×f →Mk×f (4.4)

(H,S, λ) 7→ SI (4.5)

sI
ij = |hij − 1| · sij + (hij · λ) (4.6)

and results in a matrixSI . A value greater 0 at position (ij) inHI
cond will result in an element sI

ij with
the value θE in SI . In contrast, a zero element in HI

cond means that the corresponding component
from S is taken over to the new matrix. If ϕ2 holds, HI

cond becomes a zero matrix and subst() does
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not change S, which is the behavior we desired. To exemplify the steps taken so far, we show a
sequence of example matrices in Figure 4.1(a)-(d) that assume 4 clusters/centroids. In the top row
we see a matrixHI

cond1 that indicates two clusters that fail ϕ1, as the cluster size |c2| and the average
point-centroid distance d̄3 do not exceed the required thresholds. The next three examples show the
mentioned steps of expansion, binary transformation and substitution of S under the assumption that
ϕ2 does not hold. To prepare the final handling of the main condition, we use a for-each loop that
traverses the rows of SI . A maximum filter is applied to each row and leads to a matrix SII that only
contains the maximal standard deviation for each row/cluster (16− 18). An example SII is depicted
in Figure 4.1(e).

Now we are able to address the actual centroid splitting. Our basic idea for this task is to use matrix
multiplication with a modified identity matrix to duplicate certain rows of R. The multiplication of
a k × k identity matrix I with the k × f matrix R will obviously result in the same matrix R. If I is
modified by duplicating its first row, the multiplication with R results in a (k + 1) × f matrix RI .
This new matrix has an additional row, which is a duplicate of the first row of R. The construction
of the modified identity matrix for splitting requires some preparation, so we begin by aggregating
the transpose of SII into a k × 1 column matrix SIII with agg() (19). Next, (SIII)T is expanded
to a k × k matrix Hsplit by multiplication with a row-matrix of ones 01×k. Afterwards, we create
the element-wise product of Hsplit and an identity matrix Ik×k. The resulting HI

split is a diagonal
matrix, where the single non-zero element of each row represents the maximal standard deviation of
its corresponding cluster (21). Examples for the evolution from SIII to HI

split are shown in Figure
4.1(f)-(h).

To check the main condition and implement duplication, we iterate over the rows of HI
split using a

for-each loop (22− 26). For each row the main condition is evaluated by checking if its sum exceeds
θE . If this condition is met, the row is duplicated by multiplication with a 2× 1 matrix of onesO2×1

(23). Rows that fail are multiplied with O1×1 and left unchanged (24). Through this, the particular
rows of the result matrix HII

split are created (25) and re-assembled at the end of the loop (26). The
obtained result is transformed into the binaryHIII

split by applying the sign function. Examples for both
matrices are shown in Figure 4.1(i) and Figure 4.1(j).

We can use the same approach again, for the creation of the +1/ − 1 offsets in the dimensions with
maximal standard deviation (28−33). The matrixSII already contains these elements. It is traversed
row-wise and each row that meets the main condition is duplicated by multiplication with a given 2×1
matrix (29). Only small modifications to this duplication matrix are required to create the necessary
offsets. Rows that do not exceed θE are multiplied with a 1×1 zero matrix and become a single row of
zeros. At the end of the loop, the processed rows are re-assembled into the result matrixHoffset which
is transformed intoHI

offset by applying the sign function (31− 33). In Figure 4.1(k) and Figure 4.1(l)
examples for these matrices are shown. The final steps of the splitting branch are the multiplication
of HIII

split and RI to get the duplicated centroids Rsplit, and the subsequent addition of HI
offset . With

this, the updated references Rx+1 for the next iteration are created and the split branch is finished.
Examples for the final operations are shown in Figure 4.2.

With the description of the split branch finished, we discuss the remaining merge branch of ISO-
DATA. According to [8], the merging procedure evaluates inter-centroid distances and merges pairs
of clusters that have a distance smaller θC . The user-defined parameterL limits the number of cluster
pairs that can be merged during one iteration of the algorithm. Merging is implemented by first sort-
ing all centroid pairs according to their distance and then combining them, starting with the small-
est distance. Fusion of two clusters is done by calculating the weighted average of their centroids,
whereas the cluster sizes are used as weights. If a cluster was part of a merge, it cannot take part in
further merges during the current iteration. To translate this procedure into our matrix-based setting,
we reuse the previously introduced idea of changing the number of clusters by multiplication with a
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Algorithm 4 ISODATA merge branch
1: phase Optimization
2: dist.L2(RI , RI)→ DR .MkI×f ×MkI×f →MkI×kI

3: filter(DR,
〈
dR(ij) < θC

〉
)→ Hdist

4: IkI×kI → Hmerge

5: repeat with Hx
dist, H

x
merge

6: filter(Hx
dist,

〈
hx

dist(ij) = min′(Hx
dist)

〉
)→ HI

dist

7: HI
dist + (HI

dist)T → HII
dist

8: sgn(HII
dist)→ HIII

dist

9: HIII
dist +Hx

merge → Hx+1
merge

10: agg(HIII
dist)→ Hrem .MkI×kI →M1×kI

11: OkI×1 ·Hrem → HI
rem .MkI×1 ×M1×kI →MkI×kI

12: HI
rem + (HI

rem)T → HII
rem

13: sgn(HII
rem)→ HIII

rem

14: OkI×kI −HIII
rem → HIV

rem

15: HIV
rem ◦Hx

dist → Hx+1
dist

16: until
∑
Hx+1

dist = 0 ∨ (x+ 1) > L output→HI
merge

17: agg(CI)→ Hsize .Mn×kI →M1×kI

18: OkI×1 ·Hsize → HI
size .MkI×1 ×M1×kI →MkI × kI

19: HI
size ◦HI

merge →M

20: distinct(M )→Mdistinct

21: updt(Mdistinct, R
I)→ Rx+1 .MkII×kI ×MkI×f →MkII×f

22: end phase

modified identity matrix. In contrast to the split branch, this time we need to reduce the number of
clusters. Let us assume an identity matrix I forR. We add up the first and second row of I and replace
each of them with the calculated sum. This results in a matrix, whose first row now has a 1 as first
and second element and whose number of rows is reduced by one. Multiplication of this modified I
and R will result in a matrix with one row less than R and a first row that is the sum of the first two
rows from R. Besides this merging, our transcription has to ensure the correct order of merges and
must exclude already merged centroids from further processing. The fully transcribed merge branch
is shown in Algorithm 4.1.3. For exemplification, we again provide a sequence of example matrices in
Figure 4.3.

The merge branch begins with the calculation of the inter-centroid distances DR. We implement
it, by using the filtered references RI from the trunk part as inputs for the already known euclidean
distance. Condition handling is done with a filter that removes all distances larger θC . The resulting
matrix Hdist contains only those distances that can lead to a merge (3). We also initialize Hmerge as
identity matrix for RI , which will become the modified identity matrix for merging later. Next, it is
necessary to establish the right processing sequence for the pair distances. Since actual sorting is not
possible with our building blocks, we employ a repeat-until loop that continuously picks the minimum
distance for processing (5 − 9). The loop works on two matrices: Hdist is used for realization of
the processing sequence while Hmerge will collect the pairs of centroids that should be merged. At
the beginning of the loop, a filter is deployed to select the minimum entry from Hx

dist, which is the
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DR

d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35
d41 d42 d43 d44 d45
d51 d52 d53 d54 d55

(a)

→

Hdist

0 d12 0 d14 0
d12 0 0 0 0
0 0 0 0 0
d41 0 0 0 d45
0 0 0 d54 0

(b)

→

HI
dist

0 d12 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(c)

→

HII
dist

0 d12 0 0 0
d12 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(d)

→

Hx+1
merge

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(e)

Hrem

1 1 0 0 0
(f)

→

HI
rem

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

(g)

→

HIV
rem

0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

(h)

→

Hx+1
dist

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 d45
0 0 0 d54 0

(i)

HI
merge

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 1 1

(j)

→

HI
size

|c1| |c2| |c3| |c4| |c5|
|c1| |c2| |c3| |c4| |c5|
|c1| |c2| |c3| |c4| |c5|
|c1| |c2| |c3| |c4| |c5|
|c1| |c2| |c3| |c4| |c5|

(k)

→

M

|c1| |c2| 0 0 0
|c1| |c2| 0 0 0
0 0 |c3| 0 0
0 0 0 |c4| |c5|
0 0 0 |c4| |c5|

(l)

Figure 4.3: Matrices for one iteration of the merge branch.

working version ofHdist in the loop. As 0 is used as neutral element, we have to modify the minimum
condition in order to prevent the selection of zero values. Thus, min’() of a matrix M refers to the
smallest entry of M that is still greater than 0.

Filtering yields a matrix HI
dist that contains only one non-zero element. Due to the previous filtering

according to θC , the position (ij) of this minimum indicates the centroids to be merged. In order to
merge centroids i and j, we need a single row with a 1 at position i and j in our modified identity
matrix. To do this, we add HI

dist and its transpose to retain symmetry. This addition results in matrix
HII

dist, which is transformed into a binary matrix and added to Hx
merge in order to create Hx+1

merge

(8, 9). In doing so, Hx
merge becomes an adjacency matrix for centroids. It starts out as I with each

centroid on its own and is modified throughout the loop by adding pairwise associations. Example ma-
trices for the steps described so far, are shown in Figure 4.3(a) through (d), where d12 is a minimum
component smaller θC which indicates that centroids 1 and 2 can be merged.

After identification of the first pair for merging, Hx
dist must be modified for the next iteration of the

loop to prevent the selection of already processed centroids from further merges. If centroids i and
j are merged, all elements of their corresponding rows and columns in Hx

dist are set to zero. This
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Hselect

Σ1 Σ2 Σ3 Σ4 Σ5
(a)

HII
select

1 0 0 0 0
(b)

mi,∗

|c1| |c2| 0 0 0
(c)

Hfilter

|c1| |c2| 0 0 0
|c1| |c2| 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(d)

Mx+1

0 0 0 0 0
0 0 0 0 0
0 0 |c3| 0 0
0 0 0 |c4| |c5|
0 0 0 |c4| |c5|

(e)

Mdistinct

|c1| |c2| 0 0 0
0 0 |c3| 0 0
0 0 0 |c4| |c5|

(f)

Figure 4.4: Extraction of distinct rows.

guarantees that no centroid pair containing i or j gets selected by the filter again. In order to realize
this removal, HIII

dist is aggregated into a binary row matrix Hrem. Each of its elements with a value
of 1, indicates a column that took part in the last merge (10). Next, Hrem is expanded to a square
matrix HI

rem that has elements with value 1 throughout all columns that are to be removed. In the
next two lines, HI

rem is made symmetric by adding its transpose, before sgn() is applied to make it
binary again. The resulting HIII

rem contains a 1 in every element that has to be removed from Hx
dist.

This matrix is inverted by subtracting it from a matrix of ones with matching dimensions, which yields
HIV

rem. This matrix is multiplied element-wise withHx
dist to createHx+1

dist for the next iteration of the
loop. Our described procedure only leaves those distances in Hx+1

dist that are still valid candidates for
merges. The whole loop ends either ifHx+1

dist only contains zeros, which means all centroids have been
processed, or if the iteration count x+ 1 exceeds L, which means the number of allowed merges for
the current iteration is reached. Example matrices for this part are shown in Figure 4.3(f)-(i).

After the loop finishes, the weights for averaging must be integrated. For this, we use the agg() func-
tion on CI to create a row-matrix of cluster sizes Hsize. Expansion is used, to match the dimensions
of this row-matrix to HI

merge. By applying element-wise multiplication of HI
size and HI

merge, we
construct the merge matrix M that contains the merged pairs and their respective weights. Example
matrices are presented in Figure 4.3 (j)-(l).

Although matrix M contains all necessary information for the calculation of the merged centroids,
it still has the same number of rows as RI due to duplicates. Carrying out the centroid update by
multiplication with the current M , leads to correct centroids, but does not reduce their number
correctly. In order to tackle this issue, we have to get rid of the duplicate rows ofM . For this purpose,
we define the subroutine distinct which extracts all unique rows of a matrix. The subroutine is basically
a modified repeat-until loop and is depicted in Algorithm 5.

The input matrixM of the subroutine enters the loop as working versionMx that is modified during
iterations. Processing starts by aggregatingMx into a row matrix of cluster sizesHselect (2). A maxi-
mum filter is deployed to select the biggest cluster and results in HI

select(3). Subsequent application
of sgn() leads to the binary HII

select (4). These steps are executed to implement a processing order
for the rows of Mx as the for-each loop cannot be used here. By multiplying HII

select with Mx, a
particular row ofMx is extracted and becomes the first rowmi,∗ of result matrixMdistinct. Example
matrices for these steps are shown in Figure 4.4 (a)-(c), where the first unique row of example matrix
M from Figure 4.3 is extracted. After getting a distinct row, all of its duplicates must be eliminated
from Mx. For this, we first use sgn() to create a binary row (mi,∗)I , whose transpose is multiplied
with mi,∗ to create a square filter matrix Hfilter. By subtracting it from Mx, the processed row and
its duplicates are set to zero, which effectively excludes them from further processing in the loop.
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The resulting matrix Mx+1 enters the next iteration, where the next unique row is extracted. When
Mx+1 becomes a zero matrix, all unique rows have been extracted and the loop ends with the output
of the re-assembled Mdistinct. Examples of Hfilter, Mx+1 and the final Mdistinct can be found in
the bottom row of Figure 4.4.

Algorithm 5 Distinct Function: distinct(M)
1: repeat with Mx

2: agg(Mx)→ Hselect

3: filter(Hselect,
〈
hselect(ij) = max(Hselect)

〉
)→ HI

select

4: sgn(HI
select)→ HII

select

5: HII
select ·Mx → mi,∗ of Mdistinct

6: sgn(mi,∗)→ mI
i,∗

7: (mI
i,∗)T ·mi,∗ → Hfilter

8: Mx −Hfilter →Mx+1

9: until
∑
Mx+1 = 0 output→Mdistinct

10: output Mdistinct

When the subroutine finishes, the only task left is create the updated centroids by executing updt()
(21). The function usesMdistinct andRI as input and calculatesRx+1 as weighted averages with the
information from both inputs. After that, the merge branch is completed and the main loop in the
trunk part begins its next iteration with Rx+1.

DBSCAN

So far, our described examples belong to the class of partitioning algorithms. In contrast, our next
example DBSCAN [21] is a density-based clustering algorithm. This class of methods defines clusters
as dense regions in space that are separated by regions of lower density. DBSCAN uses two user-
defined parameters ε and minPts to define a density threshold. With ε a neighborhood is defined
around each point p. If this neighborhood contains at leastminPts additional points, p is considered
as member of a dense area, i.e. a cluster and is labeled as core-object. Each core object is associated
with all members of his neighborhood. In order to create clusters, core-objects with overlapping ε-
neighborhoods are merged. Typically, this merging is done recursively, i.e. if p is a core-object each
member of its ε-neighborhood is checked for the density condition and linked to p.

The fully transcribed version of DBSCAN is shown in Algorithm 6. Although the evaluation phase
looks identical to the previously described algorithms, DBSCAN is different in this phase. While
k-means and ISODATA work with distances between all points and a small set of representatives,
DBSCAN calculates the distances between all points, which means P = R. As the selection phase
requires row-wise traversal again, we use a for-each loop (7 − 11). Before we start with the actual
selection, we have to apply a small fix to D. As P = R, D contains the distances between all points,
i.e. the main diagonal only contains values of 0 as it represents the distance between identical points.
Since 0 is treated as a neutral element, the association ignores the corresponding points which leads
to incorrect clusters. To solve this, we multiply an appropriate identity matrix with the scalar ε

2 and
add the result toD (5−6). With this, we can guarantee that the main diagonal will be populated after
selection. Now we move on to the body of the loop. First, the loop uses a filter to remove all distances
that are bigger than the ε-neighborhood (8). Next, we have to check the number of members in
each neighborhood, which requires some preparation. First, we use sgn() to make the current row
dI

i,∗ binary, which eases member counting (9). A second filter is deployed to neutralize all binary
rows whose sum of components does not exceed minPts i.e. the required neighborhood size (10). If
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Algorithm 6 DBSCAN
1: phase Evaluation
2: dist.L2(P,Rx)→ D .Mn×f ×Mn×f →Mn×n

3: end phase
4: phase Selection
5: ε

2 · I
n×n → II

6: D + II → DII

7: for each di,∗ of DII do
8: filter(di,∗, 〈dij < ε〉)
9: sgn(di,∗)→ dI

i,∗

10: filter(dI
i,∗,
〈∑n

j=0 d
I
ij ≤ minPts

〉
)

11: end for→DIII

12: end phase
13: phase Association
14: assoc(DIV )→ A
15: resolveT (A)→ C
16: distinct(C )→ Cdistinct

17: CT
distinct → Cdistinct

18: end phase

Algorithm 7 Resolve Transitivity Function: resolveT (M)
1: repeat with Mx

2: Mx ·Mx →M I

3: sgn(M I)→Mx+1

4: until Mx = Mx+1 output→Mx+1

a neighborhood has not enough members, all elements of the corresponding row are mapped to 0.
With the selection phase done, association starts with the familiar application of assoc() (14).

After that, we face a novel challenge as assoc() only associates each core-object and its ε-neighborhood.
But in order to get the final clusters, overlapping ε-neighborhoods must be merged. We cannot utilize
the originally proposed solution by recursion, as our matrix based building blocks do not offer this.
Overlapping neighborhoods manifest inA in the form of transitive associations, e.g. a12 = 1; a23 = 1
shows that points 1, 2, 3 are associated, but the connection of 1 and 3 is indirect as the explicit a13 = 1
is missing. To solve this issue, we create a subroutine resolveT that resolves transitivity and thus con-
nects overlapping ε-neighborhoods (15). The subroutine is based on a repeat-until loop and is pre-
sented in Algorithm 7. It resolves transitivities by repeated multiplication of the input matrix with
itself. After each multiplication the result is transformed into a binary matrix Mx+1, which becomes
the input for the next iteration. If neither M nor Mx+1 change anymore, transitivity has been re-
solved completely and has been replaced by direct associations. The output C contains the final
clusters. Example matrices for this association are shown in Figure 4.5, where the first three columns
of Ax show the indirect cluster assignment of p1, p2 and p3. Although these points form a cluster,
the direct adjacency of p1 and p3 is missing. After multiplication, all adjacencies are explicit inAx+1.
While this solves the problem of merging overlapping ε-neighborhoods into clusters, it also leads to a
new problem, as C now contains duplicate columns/clusters. Since all adjacencies are explicit now,
each member of a cluster is associated with every other member of this cluster, i.e. a cluster with 4
members manifests in 4 identical columns in C.

To get rid of the duplicates, we use the distinct subroutine that was already used in the merge branch
of ISODATA. Matrix C is used as input and the resulting matrix Cdistinct contains only the unique
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final clusters identified by DBSCAN (16). At the end of the association phase, Cdistinct is transposed
as we want clusters to be represented in columns. After the association phase is completed, DBSCAN
ends as it has no optimization phase or global loop.

AGNES

We have already described partitioning and density based clustering methods with our building blocks.
To complete the three big classes of clustering algorithms, we chose a hierarchical method as our last
example. Hierarchical Clustering seeks to create a hierarchy of clusters, from which a clustering so-
lution is derived. There are two general strategies to create this hierarchy. Agglomerative approaches
start by putting each point in its own cluster and build up a hierarchy by successively merging pairs
of clusters. In contrast, the divisive approach starts with one cluster that contains all points and con-
structs the hierarchy by splitting it up into new clusters repeatedly. In this section, we transcribe the
Agglomerative Nesting (AGNES) algorithm [46] which is a simple representative of the first strategy.
This algorithm is a little different from the ones we transcribed so far as it actually starts with an
initial clustering—each point in its own cluster—and creates not one, but a set of clusterings. Each
clustering forms a level of the cluster hierarchy later on. We implement this behavior with our build-
ing blocks, by employing a global loop that outputs one clustering/hierarchy-level after each iteration.
Actual dendrogram construction and hierarchy handling is not covered as we consider these tasks out
of scope for our setting. The fully transcribed AGNES is shown in Algorithm 8, where we use the
single-linkage criterion for the determination of distances between clusters. Example matrices are
shown in Figure 4.6.

In the first line we initialize the clustering C as an n × n identity matrix, which assigns each point
of the dataset to its own cluster. After that, the evaluation phase uses the familiar euclidean distance.
Like for DBSCAN, P = R also holds for AGNES, which means the dataset itself acts as reference.
The upcoming phases of selection and association are surrounded by a repeat-until loop, which imple-
ments the repeated output of clusterings, necessary to build the hierarchy-levels. AGNES terminates
if the hierarchy is finished and all objects are part of the same cluster. As only one pair of clusters is
merged in each iteration, the loop has to be iterated (n− 1)-times.

Upon entering the selection phase it is necessary to modify the distance matrix before applying filters.
AGNES does not use representatives/centroids for distance measurement between clusters. Instead,
the set of distances between all members of two clusters is evaluated. As there exist different ways to
do this, the linkage criterion is used to specify which distance is selected to describe the similarity of
both clusters. For our transcription we choose single-linkage, i.e. the distance between two clusters
corresponds to the minimum distance between their members. After evaluation,D contains not only
the desired inter-cluster distances, but also the uninteresting intra-cluster distances. These must be
removed to ensure the correct execution of selection. To realize this, we use the current clustering and

Ax

1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

→

AI

2 2 1 0 0 0
2 3 2 0 0 0
1 2 2 0 0 0
0 0 0 2 0 2
0 0 0 0 1 0
0 0 0 2 0 2

→

Ax+1

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 1 0 1

Figure 4.5: Resolving Transitivity for DBSCAN.
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Algorithm 8 AGNES with minimum linkage.

1: Cx → In×n

2: phase Evaluation
3: dist.L2(P,Rx)→ D .Mn×f ×Mn×f →Mn×n

4: end phase
5: repeat with Cx

6: phase Selection
7: On×n − Cx → H
8: H ◦D → DI

9: filter(DI ,
〈
dI

ij = min′(DI)
〉

)→ DII

10: end phase
11: phase Association
12: (assoc)(DII)→ Atemp

13: Atemp +AT
temp → AI

temp

14: AI
temp + Cx → A

15: resolveT (A)→ Cx+1

16: distinct(C x+1 )→ Cdistinct
17: CT

distinct → Cdistinct

18: end phase
19: until x = n− 1 output→{Cdistinct}

subtract it from a matrix of ones O with matching dimensions (7). In doing so, the obtained matrix
H contains a 0 in each component that represent a pair of points inside a cluster. After element-wise
multiplication ofH andD all intra-cluster distances have been set to 0 in the distance matrixDI (8).
A filter with the zero-awaremin′() condition is used to select the smallest inter-cluster distance. The
resulting DII is passed on to association and contains only a single non-zero component. Examples
for the first four matrices Cx, H,DI and DII are shown in Figure 4.6 (a)-(d).

Association starts with the familiar assoc() function, resulting in binary matrixAtemp where a compo-
nent aij with value 1 indicates the merge between the two clusters that contain the objects referenced
by i and j. To restore the symmetric character of association in AGNES we add Atemp and its trans-
pose. After that, we add Cx in order to establish the new connection in the current clustering. We
already used this approach in the merge branch of ISODATA. As the linkage criterion uses only a single
object-to-object association to merge two clusters, we face the issue of indirect/transitive assignment
again. Like with DBSCAN, we solve this by deploying the resolveT subroutine with A as input (15).
This results in the clustering Cx+1 that will be used for the next iteration. As with DBSCAN, the res-
olution of transitivity leads to duplicate columns in Cx+1 which is solved again by application of the
distinct subroutine (16). The resultingCdistinct represents the unique clusters of the current iteration
and a level of the clustering hierarchy. Examples for the different adjacency and clustering matrices
are shown in Figure 4.6 (e)-(h).

While duplicate columns must be eliminated in Cdistinct, it is necessary to keep them in the working
matrix Cx in order to ensure the complete removal of intra-cluster distances from D during the
further selection phases. After the end of the association phase, the algorithm enters its next iteration
in the selection phase. Evaluation must not be repeated, as no changes to P or R occur, which also
leavesD unchanged. Only the removal of intra-cluster distances changes with the evolution ofCx+1.
After the selection and association phase are repeated (n − 1) times, all objects are located in one
cluster and AGNES terminates. Our proposed transcription of AGNES with single-linkage can also be
modified for other linkage types. Maximum/complete linkage can be realized by adding a row-wise
filtering to the selection phase. The implementation of average linkage requires additional building
blocks in evaluation and the inclusion of the evaluation phase into the surrounding loop, as average
calculation must be done on D in each iteration.
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Cx

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

→

(a)

H

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

→

(b)

DI

0 d12 d13 d14
d21 0 d23 d24
d31 d32 0 d34
d41 d42 d43 0

→

(c)

DII

0 0 0 0
0 0 d23 0
0 0 0 0
0 0 0 0

→

(d)

Atemp

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

→

(e)

AI
temp

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

→

(f)

A,Cx+1

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

→

(g)

(Cdistinct)T

1 0 0
0 1 0
0 1 0
0 0 1

(h)

(DI)x+1

0 d12 d13 d14
d21 0 0 d24
d31 0 0 d34
d41 d42 d43 0

(i)

Figure 4.6: AGNES matrix sequence.

4.1.4 Summary

With our proposed building blocks, we developed a vocabulary for algorithm specification that is
based on functions and matrices. The utilization of a mathematical syntax allows descriptions that
are consistent and formal, but not overly specific like programming languages. Our building blocks
still allow recognition of the abstract tasks an algorithm performs. Thus, our algorithm description
represents a hybrid between the two extremes of verbal- and implementation-centered description we
introduced at the beginning of this section.

Furthermore, the transcription of our example algorithms uncovered the existence of several descrip-
tion blocks that are used by multiple algorithms, e.g. removal of duplicates and resolution of tran-
sitivity. If such blocks or subroutines occur very often, they can be integrated in the vocabulary as
higher-order building blocks, which makes transcriptions easier. For the description of four different
algorithms we only needed to define the seven functions: dist.L2(), sigma(), assoc(), avgDist(), updt(),
agg(), subst() as well as the two subroutines: resolveT() and distinct(). Obviously, many of these nine
building blocks e.g. agg() will find use in further algorithm transcriptions. In addition to this, our
building blocks can be used to evaluate the similarity between algorithms to a certain degree. Figure
4.7 shows a comparison of the descriptions made for DBSCAN and AGNES. Identical building blocks
are highlighted in blue. It is easy to see that both methods are very similar. Evaluation and Associa-
tion phase are nearly identical. Association differs only in two lines that are necessary to handle the
iterative character of C in AGNES. The main differences between both methods, are located in the
selection phase. This kind of block-wise view could also lead to the easy modular creation of new
algorithms. For example, a new clustering algorithm could be created, by using DBSCAN as base and
switch its selection phase with that of k-means. An additional potential use-case for our description
vocabulary is optimization. Transcriptions of algorithms could act as intermediate programs that can
be transformed into runnable programs by platform- or language-specific compilers.

66 Chapter 4 Algorithm Management



Figure 4.7: Similarities of DBSCAN and AGNES.

4.2 INTEGRATION

In order to provide versatility and manage the variety of available clustering algorithms, our clustering
process needs the ability if integration. On the one hand this means that it must be able to work
with different algorithms and different parameterizations. On the other hand, it must abandon the
single-execution paradigm of traditional clustering and aim to integrate different single-execution
results into a single, more robust solution. Shifting the focus of working to sets of multiple clustering
configurations also has a beneficial impact on algorithm selection and configuration. These steps
are no longer restricted to find a single optimal combination of algorithm and parameters, which
puts less pressure on the user. After gathering these requirements for the integration task, we found
the concept of ensemble clustering to be the natural choice for its realization. So far, the character of
existing approaches for ensemble clustering is passive and rigid. They are simply used for the posterior
aggregation of a set of clustering results, while the actual working focus stays with the traditional
clustering algorithms. To implement our integration task, the role of ensemble clustering must be
emphasized. It must become the focal point for working with the data, while traditional clustering
is shifted to a subordinate position. To achieve this, it is necessary to develop novel approaches for
ensemble clustering, of which we introduce two in this section.

4.2.1 Flexible Clustering Aggregation

In Section 2.3, we outlined ensemble clustering methods based on pairwise similarities. For a dataset
P , consisting of n points {p1, · · · , pn} different clusterings with varying algorithms and parameters
are created. These results {C1, · · · , Ce} form a clustering ensembleE which is aggregated to form a
consensus solution C̄. Consensus is generated by evaluating the similarity of cluster assignments for
each pair of points in each clustering of E. This similarity can take on two values: a+ for pairs with
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equal cluster assignments, and a– for pairs with different assignments inC. With these binary values,
co-association matrices are created for all clusterings. These are summed up and averaged to construct
a global matrix that contains the relative frequency of a+ for each pair of points throughoutE. Those
pairs that are clustered together in at least half of E are used to create the consensus solution C̄.

While this approach has many benefits, it also exhibits the passive and rigid character we mentioned
earlier. The aggregation process itself is not controllable and thus works in a quasi-autistic fashion.
The construction of C̄ can only be influenced indirectly by modifying the traditional clustering algo-
rithms that make up E. In order to use this type of ensemble clustering for our integration task, we
must establish a way for direct control of the aggregation. By developing a flexible clustering aggre-
gation approach, we can relocate the focus of working to the level of ensemble clustering. In order
to achieve flexibility and direct control, we first regard the aggregation input, where we introduce
additional information. This allows the expansion of pairwise similarity values, which also improves
their accurateness in general. By utilizing these enhancements, we revise the aggregation itself and
establish direct control options.

Input Enrichment

Pairwise similarity values like a+ and a– for (pi, pj) are created by evaluation of their cluster labels.
Identical labels cause a+, while different labels lead to a–. Such an approach requires absolute labels
that represent the exclusive assignment to a cluster and are created by almost all traditional clustering
algorithms. For further reference, we denote this type of assignment as crisp. Due to their nature,
crisp assignments lead to a loss of fine-grained information regarding the similarities of an object
to the clusters in general. A crisp label only states the cluster to which an object has the highest
similarity and thus discards all similarities to other clusters. This becomes an issue if an object has
an equal degree of similarity to multiple clusters. In such a situation, cluster affiliation becomes
effectively undecidable and any crisp assignment would be inaccurate. To overcome this issue, soft
clustering techniques like fuzzy c-means [10] and refinement techniques for crisp clustering results like
a-posteriori [68] have been developed. Instead of a scalar label, cluster membership is indicated by a
vector that contains the degree of similarity of an object to each cluster. Thus, soft cluster assignments
contain more fine-grained information than their crisp counterparts. The utilization of this additional
information during aggregation is the key to realize our flexible approach and fulfill the requirements
of our integration task. We denote soft cluster assignments as vectors #»ai with elements ail, describing
the relation between pi and the l-th cluster of C.

In order to construct a consensus clustering from soft assignments, it is necessary to determine the
similarity of a pair of vectors. A simple solution for this task is to assume that pi and pj are mem-
bers of the same cluster if their assignments #»ai and #»aj are identical. However, this strict condition
would greatly reduce the occurrence of a+ pairwise assignments. Therefore, the constraint is eased
from identity to similarity of assignment vectors. This principle is already employed by some existing
ensemble clustering concepts for soft input sets [28, 68]. Both approaches use well-known distance
measures—e.g. the euclidean distance in [28]—to calculate the similarity between vectors and derive
pairwise-similarities. If the calculated similarity exceeds a certain threshold, the respective pairs are
considered as a+ or else as a–. The major problem of these approaches is the use of common distance
measures. We illustrate this problem by assuming the following example: a clustering C with k = 2
and a set A of 11 assignment vectors #»ai, 0 ≤ i ≤ 10 that represent different soft assignments, satis-
fying

∑k
l=1 ail = 1, 0 ≤ ail ≤ 1, and ∀ail = i/10. As we want to examine pairwise similarities,

we generate 121 vector pairs ( #»ai,
#»aj) via the Cartesian product A × A. We start by applying the L2

norm, i.e. the euclidean distance toA×A. In Figure 4.8(a), the obtained results are shown. A vector
pair ( #»ai,

#»aj) is specified via its position on the #»vi- and #»vj -coordinate axes, while the corresponding

68 Chapter 4 Algorithm Management



(a) L2-norm (b) correlation coefficient (c) covariance

Figure 4.8: Different Distance Measures Applied to two-dimensional Vectors.

z-value represents the L2 distance for this pair. For example, the pair #»ai
T = (1, 0) and #»aj

T = (0, 1)
in the left corner of Figure 4.8(a) has a distance of

√
2. When measuring the distance between two

vectors, L2 only considers their norm, but not their direction, which is a major drawback in our sce-
nario. It is possible that pairs #»ai; #»aj have identical L2 distances, regardless of pi and pj actually being
members of the same cluster or not. For example, the pair #»ai

T = (0.1, 0.9) and #»aj
T = (0.3, 0.7) is

located in cluster 2, i.e. the pairwise similarity is a+. Assuming #»ai
T = (0.6, 0.4) and #»aj

>(0.4, 0.6),
shows that both points are members of separate clusters and their pairwise similarity is a–. Although
both examples have different pairwise similarities their distances are equally measured at

√
0.08 with

L2. Obviously this leads to incorrect decisions in the construction of C̄, especially if thresholds or
clustering algorithms are employed to evaluate pairwise similarities.

To overcome this issue, we examine distance metrics that take the direction / composition of vec-
tors into account. At first, we look at the Pearson correlation coefficient (%) assuming a+ for positive
and a– for negative linear dependency between #»ai and #»aj . In Figure 4.8(b), two pairs of separated
planes are depicted, which illustrate the results of our experiment. Examination of vector pairs and
their corresponding %, confirms our assumption about the relation between the value of %( #»ai,

#»aj) and
pairwise-similarity. The correlation coefficient offers two advantages: direction awareness and a di-
rect relation between the pairwise similarity and the algebraic sign of the %-value. Further inspection
of Figure 4.8(b) shows gaps between the planes, which originate from pairs including at least one
vector with zero variance (σ2 = 0). The Pearson correlation coefficient is defined as the ratio of the
covariance of two vectors and the product of their standard deviations. Therefore, σ2 = 0 leads to a
division by zero, which makes % undefined. To avoid this problem, said division is excluded from %,
which leaves the covariance. Results for the application of covariance as distance measure are shown
in Figure 4.8(c). The depicted behavior is similar to % but has no undefined areas and shows contin-
uous distance values. The two previous experiments have shown that assignment vectors with zero
variance result in a special behavior of % and covariance. While % is not defined for these cases, the
covariance yields zero.

From the clustering point of view, assignment vectors with zero variance are an interesting phe-
nomenon. Such an assignment is defined as #»ai,∀ail|ail = 1

k and states that the respective object
pi has an equal degree of similarity to all clusters of C. Basically, this makes determination of an
explicit cluster affiliation impossible for this object. From now on, we refer to this special kind of
assignments as fully balanced assignments. As it is impossible to decide to which cluster an object pi

with a fully balanced assignment belongs, it is also not possible to determine the pairwise similarity
of any pair containing pi.

4.2 Integration 69



Undecidable Pairwise Assignments

The existence of fully balanced assignments and the resulting issue of undecidable pairwise similarity,
requires the expansion of the present notion of pairwise similarity. Until now, existing ensemble
clustering approaches assume that pairwise similarity is dyadic, i.e. has two values: a+ and a–. To
handle object pairs with undecidable assignments, an additional value must be defined for these cases.
We denote this value as a?, thus making pairwise-similarity triadic. In order to correctly determine
the pairwise similarity for any pair (pi, pj) in a clustering, we need to know whether #»ai or #»aj are fully
balanced. Typically, this is the case if each component of #»ai equals 1

k , but there is also an additional
form of undecidable assignment that occurs with vectors having multiple maximum components.
Assume an object pi with #»ai

> = (0.4, 0.4, 0.2) for a clustering with k = 3 clusters. Although we
can state, that pi is not a member of cluster 3, it is impossible to specify whether the object effectively
belongs to cluster 1 or 2. Therefore, this kind of assignment is undecidable too, and we denote it
as balanced assignment. However, a vector #»ai

> = (0.6, 0.2, 0.2) containing multiple equal, but not
maximum components ail still shows a clear cluster association.

Based on this observation, we define a function balanced( #»ai) that tests if the cluster assignment of
an object pi is fully balanced or balanced.

balanced( #»ai)
{

false if ∃!ail ∈ #»ai(ail = max( #»ai))
true otherwise

(4.7)

If #»ai contains exactly one maximum component, a clear cluster affiliation exists and balanced( #»ai)
returns false. Otherwise, multiple maximal components exist and indicate a balanced or fully balanced
assignment. Besides testing of decidability, it is necessary to evaluate whether two objects pi and
pj belong to the same cluster of C. We assume that each pi belongs to the cluster to which it has
the strongest degree of similarity, i.e. we regard the maximum component of #»ai. If the maximum
components of two assignment vectors #»ai,

#»aj are located in the same dimension, pi and pj belong to
the same cluster. In contrast, objects with maximum components in different dimensions of #»ai are
also members of different clusters. We define a co-occurrence function co−occur( #»ai,

#»aj) that states
if a pair of objects (pi, pj) is located in the same cluster or not:

co − occur( #»ai,
#»aj)
{

true if ∃l(ail = max( #»ai) ∧ ajl = max( #»aj))
false otherwise

(4.8)

By combination of the two proposed functions, it is possible to define a function pSim that determines
the pairwise-similarity of any object pair in a given clustering C:

pSim( #»ai,
#»aj)


1 if (¬balanced( #»ai) ∧ ¬balanced(aj)) ∧ co− occur( #»ai,

#»aj)
−1 if ¬co− occur( #»ai,

#»aj)
0 otherwise.

(4.9)

If none of the involved objects features an undecidable cluster assignment and if both objects are
clearly related with the same cluster of C, pSim returns 1 which signifies a+ for pi and pj . The
pairwise assignment a– is indicated by pSim resulting in −1, in which case it is not relevant if the
pair of objects contains undecidable assignments. Assume a clustering with 3 clusters: a balanced
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Figure 4.9:
→
vi with Different Significances.

assignment #»ai = (0.4, 0.4, 0.2) and a clear assignment #»aj = (0.1, 0.1, 0.8). Although it is impossible
to state to which cluster pi belongs, it is definitely not the cluster pj belongs to. The result 0 indicates
a? and is only obtained for object pairs that co-occur and contain undecidable assignments. With
pSim the problems described at the beginning of this section are solved and pairwise similarity can be
correctly determined for any arbitrary object pair.

Scoring Reliability

By definition, all values of our triadic pairwise similarity are absolute, which means that all pairwise
similarities are equal regarding their significance. In the following section, we propose that in the
context of our scenario, the calculated pairwise similarities for certain pairs of objects, can have dif-
ferent levels of reliability. Consider the example shown in Figure 4.9, which shows a clustering with
k = 3 clusters and their respective centroids c1, c2 and c3. The gray lines mark the borders of the
area of influence each cluster has. An object located on those lines or at its intersection points has an
equal degree of similarity with all adjacent clusters and thus a balanced or fully balanced assignment,
respectively. The two depicted objects p1 and p2 have a very strong relation with c1 and only neg-
ligible similarity with the remaining clusters. If our function pSim is applied to the pair (p1, p2) it
results in 1 resp a+. Regarding the third object p3, we can state that it still has the strongest degree of
similarity with c1, but also shows a nearly equal similarity with c2 and c3, which brings its assignment
#»a3 close to being a fully balanced assignment. Application of pSim to (p1, p3) correctly determines
that both objects belong to the same cluster c1. However, comparing both pairwise similarity results,
we would intuitively say that a+ stated for (p1, p2) looks more reliable.

This rather subjective way of evaluating the reliability of pairwise similarities takes two properties into
account: First, the explicitness of cluster assignments #»ai and #»aj , i.e. their dissimilarity to the fully
balanced assignment. Second, the component-wise similarity of both assignment vectors. The degree
of satisfaction of these requirements constitutes our notion of reliability. In the example depicted in
Figure 4.9 the pairwise similarity of (p1, p2) exhibits a clear relationship to c1 and high component
wise similarity thus the determined a+ is very reliable. Further examples of pairs that maximize both
relevant criteria can be found at the corners of the planes shown in Figure 4.8. It is plausible to assume
that, starting from these locations, reliability decreases when approaching the middle of the plane or
one of its bisectors—the gray lines in Figure 4.9—where balanced or fully balanced assignments are
located. The covariance partly shows this desired behavior in Figure 4.8(c) with high values at the
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corners and low or zero values in the middle of the plane. Based on this observation, we derive a
scoring function score( #»ai,

#»aj), using the covariance as a template:

score( #»ai,
#»aj) =

k∑
l=1

(
|ail −

1
k
| · |ajl −

1
k
|
)

(i 6= j, 1 ≤ l ≤ k) (4.10)

For scoring, this function considers the component-wise distance from the fully balanced assignment
and the similarity of the respective assignment vectors. If a pairwise similarity obtains a high score
via this function, it has also a high reliability. With the proposed function, reliability values can only
be evaluated in relation to other reliability scores. It is possible to state that the pairwise similarity
a+ for (p1, p2) is more reliable than for (p1, p3) but we cannot determine whether each of these
values is reliable on an absolute scale. Absolute statements require the normalization of results to
a fixed range. For our approach we want score to result in 1 if a pairwise similarity has maximum
reliability. To achieve this, we examine those pairs for which maximum reliability occurs and derive a
normalized functionnscore [34]. We begin by examining the most reliable a+. Assuming a clustering
with k = 3 clusters, this case is given for a pair of pi and pj with assignments #»ai

T = #»aj
T = (1, 0, 0).

For simplification we assume that components like ail = 1 and ail = 0 can occur, although the strict
definition for soft cluster assignments demands ∀ail|0 < ail < 1. With this, both assignment vectors
are identical and also identical to the centroid to whose cluster they are assigned. Applying score to
this pair of assignment results in:

(|1− 1
3 | · |1−

1
3 |) + (|0− 1

3 | · |0−
1
3 |) + (|0− 1

3 | · |0−
1
3 |) = 2

3 (4.11)

This shows that the maximum reliability actually depends on the number of existing clusters, which
is a consequence of the characteristics of soft assignments. With increasing k the components of the
fully balanced assignment 1

k decrease in value, thus the distance values from the fully balanced case
change. In case of a maximum a+, the pair of assignment vectors each have a single component with
value 1 in the same dimension, while all remaining components are 0. Thus, the reliability score is
made up of one summand |1 − 1

k |
2 and k − 1 summands |0 − 1

k |
2. Summarized, the maximum

reliability of a+ with respect to k is defined as k−1
k .

Let us now examine a– with maximum reliability. Assuming the same setting as before, such a case
occurs for a pair of assignment vectors that have a single component with a value of 1 that is located
in different dimensions, e.g. #»ai

T = (1, 0, 0) and #»aj
> = (0, 0, 1). For this pair score yields:

(|1− 1
3 | · |0−

1
3 |) + (|0− 1

3 | · |0−
1
3 |) + (|0− 1

3 | · |1−
1
3 |) = 5

9 (4.12)

Again, the maximum score depends on k, the maximum reliability of a– consists of 2 summands
|1− 1

k | · |0−
1
k | and k − 2 summands |0− 1

k |
2, which can be summarized to 3k−4

k2 . This shows that
the maximum reliability of a pairwise similarity is also affected by the kind of similarity present for
the pair that is evaluated. This means we have to find a way to integrate the result of pSim into our
normalization function, which is done by defining pSimNorm as:

pSimNorm( #»ai,
#»aj) = pSim( #»ai,

#»aj) · score( #»ai,
#»aj)

norm ;

norm =


k−1

k if pSim( #»ai,
#»aj) = 1

3k−4
k2 if pSim( #»ai,

#»aj) = −1
1 if pSim( #»ai,

#»aj) = 0

(4.13)
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(a) t = 0 (b) t = 0.3
Figure 4.10: Results of pSimNorm with and without Filtering.

whose result contains all the information we need regarding the pairwise-similarity of two objects. If
the result is positive, the similarity of the pair is a+ while a negative result indicates a–. The normal-
ized reliability of the pairwise similarity is expressed via the absolute value of the result. Our function
yields 0 for pairs that contain undecidable assignments and are thus classified as a?. Following our
interpretation an undecidable pairwise similarity always has a reliability of zero, but reliability is ac-
tually not important for a? as it stays undecidable no matter what reliability score is obtained.

Controlling our Approach

In order to make ensemble clustering controllable, we integrate our proposed expansions into the
aggregation procedure. The idea described by Gionis et al. in [25] is adopted as basic consensus pro-
cedure. Using our function pSimNorm, we determine the pairwise similarities of every object pair
in all clusterings of E. When deciding on the pairwise similarity for (pi, pj) in the consensus result
C̄, we employ a majority decision and choose the pairwise similarity occurring the most for (pi, pj).
If no majority can be identified, e.g. due to equal occurrences of different pairwise similarities, we
assume a? for the corresponding pair in the consensus clustering because the final assignment is ef-
fectively undecidable. Although this method allows the construction of a consensus solution, it still
lacks an option for control.

We introduce such an option by utilizing the provided reliability scores to filter all pairwise similari-
ties. For this, a simple filtering function is defined that maps all results of pSimScorewhose absolute
values do not exceed a certain threshold t to 0. With t a lower bound for reliability is specified that
a pairwise similarity needs to pass in order to be reliable enough to be considered in the aggregation.
All pairwise-similarities that do not satisfy this constraint are assumed as undecidable and become
a?. With filtering, it is possible to create an area of undecidability that allows us to mark not only
balanced/fully balanced assignments as a?, but also those assignments in their proximity.

In Figure 4.10(a), the results of our function pSimNorm for the experimental setting from the be-
ginning of this section are shown. We observe the desired behavior of maximum reliability scores
at the plane’s corners. Take for example the left corner with #»ai

> = (1, 0) and #»aj
> = (1, 0), the

pairwise-similarity for this pair is a+ with maximum reliability, so pSimNorm yields 1. The relia-
bility drops linearly towards zero as pairs approach the planes middle and its bisectors. Located at the
center of the plane we find the pair #»ai

> = (0.5, 0.5) and #»aj
> = (0.5, 0.5), which contains two fully

balanced assignments and is thus undecidable, i.e. pSimNorm yields zero. When filtering is applied
with a threshold of t = 0.3 an area of undecidability forms around the center of the plane and its
bisectors, which is illustrated by the flat gray region in Figure 4.10(b). None of the object pairs in this
area satisfies the filtering criterion, and hence they are classified as a?.
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Figure 4.11: C̄ Using Existing Pairwise Consensus Procedure.

So far, we proposed a way to determine a pairwise similarity value for each pair and an option to
control the amount of a? via reliability filtering with t. In doing so, we divide our clusterings into
stable cores made up of a+ and a– with high reliability that are robust against t and surrounding areas
of undecidable a?. These areas are the key to aggregation adjustments. To illustrate the workings of
our control method, we again use the synthetic dataset introduced in Section 2. This data contains 2
clusters which are very close, but not linked and two cluster pairs connected via bridges of different
length and width. Figure 4.11 depicts the consensus clustering, obtained by employing the consensus
procedure introduced in [25]. The clustering-ensemble was generated using k-means with different
parameterizations. Due to the characteristics of the dataset, it is very unlikely that single runs of
k-means will produce the optimal clustering, even if many iterations with different parameters are
made. The obtained consensus result shows five clusters, of which c1, c2, and c5 might be divided
further while the remaining two clusters should be merged. As this aggregation result is not optimal
and requires adjustments, traditional aggregation approaches, force the user to: (i) modify parame-
ters/algorithms of E, (ii) recreate E and the consensus solution, and (iii) evaluate C̄ again until the
desired adjustments occur.

With our approach, we use the same setup as before, but change the underlying clustering algorithm
to FCM [10], a soft clustering version of k-means that produces the necessary soft cluster assignments.
Concerning the handling of a?, we have to regard two alternatives since we cannot determine if un-
decidable pairs are in the same cluster or not. Therefore, we define two strategies: one mapping a? to
a+ and another one that maps it to a–. With this, we can control aggregation and adjust its result by
modifying t and the handling of a?, without changing E. We start by choosing a? → a+ and increase
the threshold t. When reaching t = 0.1, the result shown in Figure 4.12(a) is obtained, where the two
clusters in the lower right have been fused. This fusion is caused by points located along the border
between both former clusters. Having nearly equal affiliations to both clusters, the pairwise similari-
ties typically have a low reliability. Therefore, many of them become a? when filtering is applied. Due
to the mapping of a? to a+, both clusters are connected. If t increases further, more clusters connect
which will ultimately result in the unification of all points in a single cluster.

Next, we use a? → a– and start to increase t again. Until t = 0.4 the consensus result C̄ does not
change. At this point, an additional cluster forms that contains all objects the algorithm was unable
to assign to a cluster because they are labeled as a? or a– in all ofE. Those objects are put into a noise
cluster for convenience and presentation. Actually, each object is a singleton cluster for itself since no
affiliations to other objects or existing clusters can be determined, which is a novel trait that cannot
occur in existing aggregation approaches. Increasing t also leads to an increase of noise, especially
in areas that are equally influenced by multiple clusters. When t = 0.8 is reached, the aggregation
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(a) Result for t = 0.1 and merge (b) Result for t = 0.8 and split

Figure 4.12: Several Aggregation Results.

result depicted in Figure 4.12(b) is obtained, where noise is marked by circles without coloring. We
notice that the clusters in the upper quadrants were divided by the noise. The reason for this division
are clusterings of E that found multiple clusters in that area. With stronger filtering, more a– occur
along the border of those clusters and change the distribution of pairwise similarities throughout E
until the multi-cluster partitioning takes hold in the consensus solution.

4.2.2 Frequent Groupings

Our flexible aggregation approach presents an implementation of our integration task that is based on
pairwise similarities. The underlying idea of this approach is to perform a majority decision on cluster
assignments. Although this brings many benefits, working with object pairs, i.e. the smallest group-
ings possible, can lead to certain drawbacks. As they present the basic elements for the construction of
C̄ it is possible that characteristics of larger structures are lost due to aggregation on this fine-grained
level. Problems can for example arise from transitive effects. Assume an object pair (p, q) that occurs
in the same cluster in half of E and a second pair (q, r) that occurs in the other half of E. Such a
setting can lead to (p, q, r) being placed in the same cluster of the consensus solution, even if (p, r)
never occurs in the same cluster in the whole ensemble. Due to the nature of majority decisions, all
structural features that do not occur in the majority of clusterings are omitted although they might
occur in a still considerable fraction. For these reasons we propose an alternative approach for con-
sensus clustering, named frequent groupings. In contrast to the flexible clustering aggregation, where
the most frequent pairwise assignments form C̄, the frequent groupings approach identifies groups of
objects that occur frequently in E and combines them into C̄.

The Frequent Groupings Concept

Clusters of a consensus solution are sets of objects that are frequently assigned to the same clus-
ter throughout the underlying clustering-ensemble E. To exemplify this, we use the small running
example depicted in Figure 4.13. It is based on a dataset P = {p1, . . . , p9} of nine objects in a two-
dimensional feature space. For P , a clustering-ensemble E = {C1, C2, C3, C4}with four clusterings
is created. Each one, exhibits a different number of clusters and a different cluster composition. In
order to identify sets of objects that occur together frequently, the similarity of cluster assignments of
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(a) Clustering C1 (b) Clustering C2

(c) Clustering C3 (d) Clustering C4

Figure 4.13: The clustering-ensemble of the running example.

objects must be evaluated throughout the ensemble. Our previously described aggregation approach
implemented this by counting the co-occurence of object pairs. In contrast, the goal of frequent
groupings, is the identification of larger groups of objects that frequently occur together in E. This
problem definition is very similar to the task of frequent itemset mining [2], which is why we turn to
this concept to derive the initial concept for our approach.

Frequent itemset mining assumes a set of n items I = {i1, i2, . . . , in} and a set of transactions
T = {t1, . . . , tm}. Each transaction has a unique id and contains a subset of I. A set of itemsX ∈ I
is called frequent if its support exceeds a given threshold. The support ofX is defined as the fraction of
transactions of T that containX . At this point, the analogy to ensemble clustering becomes apparent.
While frequent itemset mining tries to identify items that co-occur in many transactions, ensemble
clustering searches for objects occurring together in the majority of clusters. Subsequently we map
the concepts of I, T and support to the domain of ensemble clustering in order to describe a method
that allows the identification of frequent-groupings.

While the analogy of items I and the objects of the dataset is easy to see, matching of the transaction
concept is intricate. As T is a set of transactions that contain elements of I, an intuitive equivalent
to T could be the clustering-ensemble E. In this case, the multiple clusterings of E would represent
transactions, containing elements of the dataset. Typically, each clustering assigns all objects of a
dataset to a cluster. If we assume the analogy of transaction and clustering, each transaction contains
all items of P . This mapping completely prevents ensemble clustering as it effectively states that all
objects occur together in each clustering. Thus, identification of prevalent groups of objects is made
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Figure 4.14: Structure of the frequent-groupings generated from the running example.

impossible. For this reason, we translate T as the set of clusters from all members of the clustering-
ensemble. With this each cluster becomes a transaction, which is fitting as each of them contains a
subset of the data. Based on this mapping, the support of a set of data objects X shows the fraction of
clusters in the clustering-ensemble, in which X occurs. If support(X ) exceeds a certain threshold
we callX a frequent-grouping. A high support ofX also shows that this set of objects is robust because
it was identified as part of the same cluster in many clusterings, regardless of the employed algorithm
and/or parameters.

In terms of our running example, P acts as itemset while the clustering-ensemble E provides a set
of 14 clusters/transactions. As transactions are required to have unique identifiers we label them in a
specific format, e.g. c1.2 marks cluster 2 of clustering C1. To simplify the calculation of support we
make the following assumption: each pi ∈ P is assigned to exactly one cluster in each Ci ∈ E. With
this, an object can at most occur in one cluster, i.e. transaction per clustering. For the group of objects
(p1, p2, p3) from our running example this means a support of 0.75. The three objects occur in the
three clusters c1.1, c2.2, and c4.1, which makes three out of the four clusterings that constitute E.

In order to create frequent-groupings, we have to specify a threshold for the support that is used to
decide whether a group of objects occurs frequently or not. Following the assumptions of [25] we
regard a set of objects as frequent, if it occurs at least in 50% of the clustering-ensemble. For our
example this is given with two clusterings. The frequent-groupings obtained from the example are
depicted in Figure 4.14 in the form of a graph structure. Each node represents a frequent-grouping
and contains its associated objects as well as its support. Edges indicate subset/superset relations
between different nodes. To build this structure, we initially create and insert a node for each cluster
found in the ensemble. If a node already exists in the graph structure it is not inserted again, but the
support of the existing node is increased by one e.g. the objects {x1, x2, x3} are contained in the
clusters c1.1, c2.2, and c4.1, thus only one node with a support of three is generated. All nodes that
are not frequent, i.e. have a support less than two are filtered—e.g. c3.2—and displayed in a faded
grey. For each remaining frequent-grouping a new set of nodes that contains all of its possible subsets
is created. At last, all nodes that are not closed are filtered. This means that each node that has a direct
superset with the same support is removed from the graph. Eventually this procedure leads to the nine
frequent-groupings fg1, . . . , fg9 displayed in Figure 4.14. Please note that the described procedure
only illustrates the formation of the depicted graph structure for our example. There already exist
sophisticated methods for mining closed frequent itemsets that can be applied to generate frequent-
groupings more efficiently [67].

If the obtained frequent-groupings are interpreted as clusters, a consensus clustering can be generated
by combination of different clusters. This combination must ensure that each object of P is assigned
to a cluster. As frequent-groupings overlap, multiple alternative combinations can be produced. In
our running example, six alternative consensus clusterings can be created and are shown in Table 1.
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Actual construction of these alternatives is described in the following section. The possibility to create
multiple C̄ is a novelty in comparison with existing aggregation approaches. With it, our approach
incorporates the idea of alternative clustering we introduced in Chapter 2. The idea of alternative
clustering is to create a clustering result with a traditional clustering algorithm and successively con-
struct alternative solutions that are dissimilar to the initial clustering. In contrast, our alternatives
are not created with dissimilarity to an initial solution in mind. They naturally result from the fre-
quent groupings concept. Furthermore, the alternative solutions generated with our approach feature
a certain degree of robustness. For each cluster of an alternative, a support-defined consensus exists
throughout the ensemble. Thus, our approach represents a hybrid between alternative and ensemble
clustering that combines the benefits of both domains, namely alternative results and robustness.

Complete Extraction of Alternative Consensus Clusterings

With the basics of frequent groupings described, we move on to specify ways for their identification
and the creation of alternative clustering solutions. For the purpose of illustration we use a running
example again. It consists of a synthetic two-dimensional dataset, containing ca. 1.500 points and
is depicted in Figure 4.15(a). The roman literals shown at each corner of the scatterplot are used
to reference the quadrants of the feature space. Although this is still a compact setting its scale is
large enough to prevent manual processing—as in the introductory example—, but small enough
to be comprehensible. We create a clustering ensemble of 10 different clusterings by using the k-
means clustering algorithm with k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and a different initialization for each
run. The dataset was crafted in order to provide structures that are hard to identify for partitioning
algorithms like k-means e.g., the non-spherical clusters in quadrant III .

We already mentioned, the parallels of our frequent-groupings approach and the generation of frequent-
itemsets in Section 4.2.2. Therefore, we examined existing algorithms for frequent-itemset mining in
order to identify an efficient method for generating frequent-groupings. In our example scenario, the
size of I—1500 objects—is considerably higher than the size of T , which contains the 69 clusters
from the clustering-ensemble. We assume that in most clustering scenarios, the number of objects
will be higher than the number of clusters, and thus chose to employ the CARPENTER algorithm[56]
for the extraction of frequent-groupings, as it is optimized for such a setting. CARPENTER works
by enumerating transactions and intersecting them. It also utilizes different pruning techniques to
optimize its runtime.

In order to use CARPENTER for the computation of frequent-groupings, we extended the algorithm
so that the particular support value is stored with each frequent-grouping. For our running example,
we applied this method using a minimum support of 50% and obtained a set of 72 frequent-groupings.
From these, we want to generate multiple clustering alternatives, which is done by interpreting the
frequent-groupings as clusters that are combined into a clustering where each element ofP is included
in exactly one frequent-grouping/cluster. In a valid clustering alternative all clusters are disjoint and

A1 {x1, x2, x3} {x4, x5} {x6} {x7, x8, x9}
A2 {x1, x2, x3} {x4, x5} {x6, x8} {x7, x9}
A3 {x1, x2, x3} {x4, x5} {x6} {x8} {x7, x9}
A4 {x1, x3} {x2} {x4, x5} {x6} {x7, x8, x9}
A5 {x1, x3} {x2} {x4, x5} {x6, x8} {x7, x9}
A6 {x1, x3} {x2} {x4, x5} {x6} {x8} {x7, x9}

Table 4.1: Alternative consensus clusterings of the running example.
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(a) Scatterplot of the data. (b) Connected components / stem clusters per quadrant.

Figure 4.15: Running example for our scenario.

their union contains the complete underlying dataset. Other definitions of clustering alternatives
are possible, e.g. objects can have soft assignments with multiple clusters, but are not considered
in our approach. The decision problem of combining frequent-groupings in a way that the given
conditions are satisfied, is also known as the exact cover problem which belongs to the class of NP-
complete problems.

Extraction Procedure As a method to find all solutions of an exact cover problem, Donald E. Knuth
proposed Algorithm X[48]. This algorithm works with an incidence matrix, representing the specific
problem of exact cover and uses a recursive, depth-first search with backtracking to find all possi-
ble solutions. Knuth also proposes a concept for the efficient implementation of Algorithm X called
Dancing Links (DLX)[48], which we use to build all clustering alternatives. Application of DLX to
the running example resulted in a very high number of alternative clusterings. With an input of 72
frequent-groupings the algorithm produces about 570.000 different valid clustering alternatives. Tak-
ing the scale of our example into account, it is safe to assume that the bulk of generated alternatives
will be very similar.

The extent of this behavior results from the degree of overlap between the clusters of ensembleE and
between the derived frequent groupings. In this context, very small and almost complete overlaps
are critical as these are responsible for the creation of very small groupings. Assume a setting with
E containing 2 clusterings and two clusters: c1.1 with 300 points and c2.1 with 305 points. If both
clusters have a nearly complete overlap of, e.g. |c1.1 ∩ c2.1| = 298, three frequent groupings would
be identified: a single large one that represents the intersection of 298 points with a support of 100%
and two very small groupings with 2 and 7 objects that represent the remaining points of the clusters,
respectively, and have a support of 50% each. Now, we assume a very small overlap of |c1.1∩ c2.1| =
10, again three frequent groupings are formed: one with 10 points for the intersection that has a
support of 100% and two larger ones with 290 and 295 objects and a support of 50%. Considering
the number of clusters and the fact that frequent groupings are also created from intersections of
frequent groupings, the number of sets that contain only few points can get quite high. As the number
of very small frequent-groupings increases, so does the number of clustering alternatives as more
combinations are possible. In addition, the created results are likely to exhibit a high similarity as
they only differ in the assignment of few objects. Typically it is desirable to extract only interesting C̄
from the vast amount of possible alternatives. In order to reduce the number of generated alternatives
and identify distinctive solutions, we introduce three straightforward methods:
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Filtering: One possible approach is to prevent the formation of very small frequent-groupings before
the actual alternatives are build. On the one hand, this reduces the number of components that are
available for the construction of clusterings. On the other hand, the minimal frequent-grouping size is
increased and generated alternatives become more dissimilar and potentially more interesting. There
are two issues that need to be addressed: First, frequent groupings with very high overlap must be
eliminated. This can be achieved by merging of such groupings into a single grouping. After this, the
graph is rebuild and the number of small groupings decreases as the causing overlaps are no longer
present. Second, small overlaps can be removed from the graph by deleting groupings that do not
exceed a certain size. Unfortunately, filtering is troublesome to implement as optimal thresholds for
size and overlap must be determined. In addition, each removal of a frequent grouping can lead to
a situation in which it is not possible to cover each element of the dataset with a frequent-grouping.
As a precaution, continuous tests for coverage are necessary. Furthermore, complex optimization
decisions can emerge, e.g. if multiple groupings do not satisfy the thresholds, but not all of them can
be removed without violating the coverage criterion.

Scoring: Another way of finding interesting alternatives is the application of quality or similarity mea-
sures to the generated alternatives. In doing so, all obtained solutions are ranked by a certain score
and presented as a top-k list. For this approach, one or more appropriate measures for clustering-
similarity and/or clustering-quality must be selected, which is challenging as the number of available
metrics is high and their applicability in different settings is often unclear. Due to the high number of
clusterings, the calculation of these measures needs significant computation effort. Furthermore, the
top-k ranking requires the identification of an optimal k.

Greedy Top-k Selection: This approach is somewhat similar to the described Filtering, as it tries to limit
the number of clustering alternatives by reducing the number of frequent-groupings. Instead of re-
moving the smallest groupings, all frequent-groupings are sorted by their two essential characteristics,
size and support, in descending order. From this sorting, the top-k frequent-groupings are chosen as
input for the construction of clustering alternatives. If the value for k is chosen randomly, it cannot
be guaranteed that the selected groupings will cover the whole dataset and one valid clustering can be
constructed. In order to ensure at least one valid result, we used a kind of brute-force approach. Be-
ginning with k = 1 DLX is executed and if no result is returned, k is incremented and the algorithm is
run again. This is repeated until at least one clustering is returned. Although this approach is not very
elegant, it can narrow the generated alternatives down to a number in the single digits. However, after
continued testing we found the effectiveness of this method to be highly unpredictable and strongly
dependent on the underlying clustering-ensemble. We applied the described procedure to the dataset
from our running example and used different ensemble configurations. Some configurations returned
10 or less alternatives, while other configurations returned much larger result sets with up to 300.000
clustering alternatives.

All in all, the presented approaches have considerable drawbacks and do not offer an optimal way
to reduce the number of possible results to a compact set of interesting clustering alternatives. For
this reason, and the ensuing lack of user-friendliness, we do not consider complete extraction as the
primary option for integration in our algorithm management.

Directed Extraction of Alternative Consensus Clusterings

Pure algorithmic extraction of all possible clustering alternatives proved to be not optimal due to
various issues. So, we need to find an alternative to the automated all-at-once approach for the creation
of clustering alternatives. For inspiration, we look back at our flexible clustering aggregation, where
a starting solution is created that can be refined further by the user. We adapt this modus operandi
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Figure 4.16: Frequent-groupings and clustering alternatives for quadrant 4 of the running example.

for our frequent groupings by providing an initial clustering alternative that acts as starting point for
extraction. From this clustering further alternatives are successively created under the direction of
the user. Guidance for this directed extraction is provided by the relationships contained in the graph
structure of frequent-groupings, to which we refer as fg-graph from now on. Before we describe the
directed extraction in detail, we introduce an example to illustrate our proposed methods.

The running example is based on the 72 frequent groupings that were generated from the running
example in the previous section. All these groupings have a support of at least 50% and form the fg-
graph shown in Figure 4.15(b) which consists of 4 connected components. Each of these components
represents one quadrant of the example dataspace. This one-to-one correspondence is a coincidence
that results from the clustering-ensemble used in our running example. Different ensemble configura-
tions also lead to different connected components. A more detailed view of the connected component
for quadrant IV of our running example is depicted in Figure 4.16. The display is similar to the graph
we already described in Figure 4.14, but due to its larger size and complexity some changes had to
be made. Again, each node represents a frequent-grouping and shows its attributes according to the
pattern id : [support] : size. As the groupings have grown in size, the list of individual members is
removed and only the number of members is displayed. To increase readability, the nodes are placed
according to their support with the lowest at the top and the highest at the bottom. Thus, groupings
that just satisfy the minimal support requirement and occur in 5 of 10 clusterings are found at the top
tier, while groupings that occur in all clusterings of the ensemble are located at the lowest tier of the
graph structure. Again, edges indicate subset/superset relations.

Constructing the Starting Point In order to establish our directed extraction procedure, we first
have to construct a clustering solution that acts as starting point for the subsequent creation of clus-
tering alternatives. We begin this construction with the connected components of the fg-graph. Each
of these components contains all frequent groupings and thus all possible alternative cluster assign-
ments for a part of the dataset. Based on those properties we also refer to connected components as
stem clusters, because like stem cells they can differentiate into multiple cluster configurations. All
stem clusters are disjoint and their union contains all objects of the dataset. Based on this, a clustering
solution could be simply derived by adopting each stem cluster as a cluster. However, such a clustering
would not be a valid result as it does not represent the occurrence of clusters in E correctly. Instead,
it just unites a set of overlapping frequent groupings. In order to create a valid initial clustering, each
stem cluster must be transformed into an explicit configuration of clusters.

With the frequent grouping concept, a clustering alternative can be created from an initial solution
by substitution of an initial frequent-grouping with its subsets. Therefore, the frequent groupings of
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Figure 4.17: Transformation algorithm with starting point fg71.

the initial clustering should have a high number of subsets in order to ensure a maximum of possible
alternatives. To ensure this, we select those nodes of a stem cluster that have no superset as clusters of
the initial clustering. Due to this characteristic and their position in the fg-graph, we also refer to them
as roots. Typically, roots are few in number and contain high quantities of objects. Initial clustering
created from them, will normally feature a small number of big clusters. The stem cluster in Figure
4.16 has 5 roots, namely fg71, fg70, fg48, fg65, and fg55. In order to find explicit cluster configurations
for the stem cluster, we apply a transformation algorithm to each of these roots. The transformation
algorithm traverses the frequent groupings graph in a top-down fashion, starting at a provided root.
Each run results in one explicit configuration, which means that the number of roots also determines
the maximum number of alternative configurations for the stem cluster. If a stem cluster has exactly
one root, then this root represents its single most general configuration and becomes a cluster for the
initial clustering. Further transformation is not necessary in this case. If multiple roots exist, each
one is processed by the following algorithm:

1. Select a root. (In the first iteration the root is provided. In further iterations the root with the
highest size is selected.)

2. The selected root becomes a cluster for the configuration.

3. Mark the successor set of the selected root.

4. Delete all nodes from the graph that are not part of the current root’s successor set but have
a path into it. This is done to remove all remaining groupings that overlap with the selected
cluster.

5. Delete the current root and its successor set.

6. If the graph contains no more nodes, the algorithm terminates and outputs the resulting cluster
configuration. Otherwise the algorithm is repeated from step one.

The process of this algorithm is illustrated in Figure 4.17. It starts with the first of the four roots fg71,
which is selected and becomes the first cluster of configuration A1. The successor set of fg71 is marked,
which is depicted by a frame in Figure 4.17. Nodes are deleted according to step 4 and marked by a
cross in the figure. After the successor set of fg71 is deleted only one connected component remains.
The single root of this connected component is fg65, which is selected for the second iteration of our
algorithm. After this iteration, the graph contains no further nodes and our algorithm terminates.
The resulting cluster configuration A1 contains the two clusters fg71 and fg65. This configuration is
created again, when the algorithm starts from root fg65. Applied to root fg70, the algorithm yields the
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Figure 4.18: Fg-graph with initial clustering and weighted edges.

alternative configuration A2= {fg70 , fg64 , fg5}. Further executions for roots fg48 and fg55 result in
identical configurations, which we summarize as A3= {fg48 , fg55 , fg60 , fg47}. These results prove
the predictability of our algorithm. From 5 roots of the stem cluster, 5 configurations are created of
which 3 are unique. All unique configuration alternatives are shown in Figure 4.16, where they are
marked with different symbols and colors.

After the differentiation into explicit clusters is done, a compact list of alternatives exists for each stem
cluster. To create an initial clustering alternative that covers the whole dataset, one configuration
must be selected for each stem cluster. As multiple initial clusterings are possible, we need to decide
which one should be used as starting point for the directed extraction. One way to approach this
decision, is to present the configurations for each stem cluster to the user and let him/her select
one. However, this method is troublesome for the user especially if the number of stem clusters
increases. Hence, we use a simple ranking to select a single configuration. Our goal is to find a
starting solution that offers a maximum of possible alternatives, so we evaluate each configuration by
counting the members of the successor sets of its frequent groupings. For our example this ranking
yields 16 for A1, 13 for A2 and 12 for A3, which means A1 is selected as it offers the most potential
for further alternatives. The reason for this is, that A1 only contains root nodes while the remaining
configurations also contain frequent groupings that are placed on lower tiers of the graph, which
reduces the number of subsets.

Directing the Extraction Now that we are able to derive an initial clustering, we turn to the ac-
tual extraction. The first extracted clustering alternative is always given by the initial clustering. This
initial clustering is represented as a selection of nodes in the fg-graph. In order to create an alter-
native clustering, each of these nodes can be substituted with the subsets indicated by the edges of
the fg-graph. With this in mind, our method of alternative creation can be pictured as a downward
motion along said edges that starts at the nodes of the current clustering. This increases the number
of clusters, as one grouping is always substituted with multiple subsets. Directed extraction is real-
ized by giving the user control over this downward motion and thus allowing him/her to influence
the extracted alternative. While this approach is easy to understand in theory, its actual application is
challenging. There are two main issues that need to be addressed. First, the range of the downward
motion must be considered, i.e. it must be decided, which subsets of a node are used for its substitu-
tion. Second, substitution cannot be done by only replacing a node of the fg-graph with its subsets. It
has to adhere to the exact coverage criterion, which means that each object must be located in exactly
one cluster of a clustering.
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Figure 4.19: Extracted alternative with small f.

A simple and straightforward approach to the selection of subsets for substitution would be to choose
the direct child of each initial node. However, this has some drawbacks. On the one hand, a node
typically has multiple direct successors that can overlap. In this case, not all child nodes can be used
for substitution due to the exact coverage constraint and hence the selection problem remains. On
the other hand, the utilization of direct successors limits the effective range for each extraction to
one hop in the fg-graph. This is disadvantageous, as subsets that differ only slightly from their initial
nodes cannot be skipped in order to prevent alternatives with high similarity to the initial clustering.
To enable a wider range selection and provide an estimation of the extracted alternative’s similarity,
we introduce edge weights to the fg-graph. These are calculated as

ω = 1− nchild
nparent

where nchild is the size of the subset and nparent is the size of the initial frequent grouping. This ratio
indicates how much of the initial node is kept in the subset after substitution. By subtracting this
ratio from 1, we get the fraction of objects that are covered by different nodes and thus an estimate
on the difference to the initial clustering. The estimates expressed by these weights are rough and can
be inaccurate, but are a sufficient indicator for similarity between initial and extracted solution. In
Figure 4.18 the fg-graph for our running example is depicted with its respective edge weights and the
initial clustering A1.

During directed extraction, the user specifies a value f between 0 and 1 to indicate how different
the extracted alternative should be. Small values translate into a short downward motion in the fg-
graph, while large values allow a higher range and are more likely to create alternatives with high
dissimilarity to the initial solution. The process of selecting a frequent grouping for substitution of an
initial node works as follows. Starting from the initial node, a path is created by successive selection
of edges according to their weight. The provided f acts as a budget for traveling along this path and
is consumed in each step. At each node, the edge with the highest weight—less or equal the current
f—is chosen, f is reduced by this weight and we follow the selected edge to the next node, where the
whole procedure is repeated. If f reaches zero or all outgoing edges of the current node have a weight
that exceeds f , the path creation is finished and the current node/frequent grouping is selected as
substitute for the initial node.

After the selection is finished, the clusters of the initial solution are substituted with the chosen fre-
quent groupings. In order to create a valid clustering alternative, exact coverage must be assured.
Substitution fixes certain clusters for the new clustering solution, but as these are subsets of initial
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Figure 4.20: Extracted alternative with large f.

clusters, there is a remainder of objects that must also be assigned to clusters. For this assignment, we
resort to the fg-graph and employ the transformation algorithm from the previous section again. To
exemplify its course of action, we use our running example. We assume that the user wants to extract
an alternative that is only slightly different from the initialA1 and sets the value of f to 0.1. In Figure
4.19 the corresponding extraction procedure and its result are shown. Subset selection starts at the
nodes fg71 and fg65 of A1. Node fg71 has two outgoing edges, of which only the one leading to fg69
can be taken with the given f . We move to this node and decrease f by 0.008 after which we cannot
go further since f is too small to follow any of the outgoing edges. Path-finding terminates and fg69 is
chosen as substitute for fg71. The same procedure is applied to fg65. The small f only allows to take
the low-weight edge to fg64, where selection stops as f is depleted. With the selection of substitutes
finished, we complete the new clustering alternative by applying our transformation algorithm. Dur-
ing the construction of an initial solution, the transformation algorithm was provided with a single
starting node and selected further nodes for processing during execution. This time, the algorithm
begins by processing all substitute nodes, before it continues to work independently. In our example,
the algorithm starts by making fg69 and fg64 the first clusters of the new alternative. After that, their
successor sets are selected—depicted by the red frames in Figure 4.19—and all nodes that have a path
into these successor sets, but are not part of them, are removed. At last, fg69 and fg64 are removed
along with their successor sets. With the substitute nodes processed, the algorithm starts to work
autonomously to complete the clustering. Like before, it does so by selecting the largest remaining
root of the graph. In our example, only fg5 and fg2 remain in the graph. Both nodes are roots as they
have no superset, but they are also leafs as they have no successors. Because of its larger size, fg5 is
selected first, becomes a cluster and is removed after running through the known process steps. Sub-
sequent, fg2 is selected as the last cluster. The transformation algorithm terminates and produces the
alternative clustering {fg69 , fg64 , fg5 , fg2}. As intended, the small value of f results in a clustering
that is very similar to A1. The two big initial clusters remain mostly unchanged and two very small
clusters are introduced that only cover a total of 4 objects.

In order to extract a clustering alternative with higher difference, f is increased to 0.7, which allows
a bigger range for substitute selection. The extraction is illustrated in Figure 4.20. Starting at fg71, the
edge with the highest weight covered by f leads to fg47. There, the remainder of f is used to make a
last hop to fg46. At this node f becomes insufficient and fg46 is chosen as substitute. From fg65, se-
lection finds a path to fg60 which becomes the substitute as it is a leaf node and has no further subsets.
The following application of the transformation algorithm adopts both substitutes as new clusters and
removes their successor sets and linked nodes as before. After this is done, the remaining fg-graph
contains three root nodes fg5,fg48 and fg55. Since these nodes neither have overlapping successor sets
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(a) Initial clustering (b) Alternative with f = 0.1 (c) Alternative with f = 0.7

Figure 4.21: Scatterplots of clustering from the running example.

nor paths into the successor set of a different root, the transformation successively adopts them as
clusters. The whole procedure results in the clustering alternative {fg46 , fg60 , fg5 , fg48 , fg55}. For
the purpose of better illustration, the initial clustering and the two extracted alternatives are shown as
scatterplots in Figure 4.21. We can see that the directed extraction works as desired. Small values for
f lead to alternatives that exhibit only negligible changes in cluster assignment in comparison with
the initial clustering. In contrast, the clustering alternative in Figure 4.21(c) that was extracted with
f = 0.7 shows a significant change in cluster composition.

Ways of direction So far, we described the specification of f as the only way to direct the extrac-
tion of alternative clusterings. Already, this enables users to extract different alternatives with differ-
ent similarities to the initial clustering. The described extraction procedure is a top-down approach
with an initial solution located at the upper tiers of the fg-graph. The user-guided downward mo-
tion/substitution creates alternative clusterings by increasing the number of clusters. In this, we find
a resemblance to the direct control options of the flexible clustering aggregation. While subset substi-
tution corresponds to the split handling strategy, the reliability threshold t corresponds to f . Actually,
our concept of directed extraction can be further adapted to provide the same control semantics as
the flexible clustering aggregation.

By applying directed extraction in a bottom-up fashion, it is possible to emulate the merge strategy
and create alternatives by reducing the number of clusters. For this a different starting solution must
be created that contains initial frequent groupings with many supersets. A convenient initial cluster-
ing for bottom-up extraction can be created by selecting all leaf-nodes of the fg-graph. These have only
supersets and fulfill the coverage criterion. The selection of substitutes via edge weights and the com-
position of clustering alternatives with our proposed transformation algorithm still works smoothly
in this altered setting.

User control can be expanded, by allowing not only the definition of selection range, but also its di-
rection for each cluster of the initial solution. In doing so, the user gains full control and can create
alternatives by merging and/or splitting certain parts of the initial solution. However, such a modus
operandi requires an adjusted initial solution. It should contain initial clusters that have subsets as
well as supersets, in order to provide options for combining and dividing clusters. While substitute
selection and combination are realized as before, the sequence in which directions are given must
be considered. The creation of an alternative by simultaneously issuing a superset substitution and a
subset substitution for different initial clusters might result in a collision, as substitutes can overlap.
One possible solution to this issue would be the introduction of methods for collision detection and
handling. But this complicates the whole extraction procedure. The problem can be solved easier,
by sequential execution of multiple substitution. Assuming the described scenario, where a superset
substitution and subset substitution are issued in parallel, the extraction changes as follows. The si-
multaneous application is unraveled by first executing the superset substitution, which results in an
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alternative clustering with a reduced number of clusters. This clustering can act as an intermediate
and is used as initial clustering for the still pending subset substitution, which finally leads to a clus-
tering that incorporates both desired changes. Switching the initial clustering between these steps is
not a problem, as any valid clustering derived from the fg-graph can act as starting point for directed
extraction.

4.2.3 Summary

Via integration, our process becomes versatile and can manage a variety of clustering algorithms. In-
stead of sticking to the traditional single-execution paradigm, integration works with sets of multiple
clustering configurations. For the realization of this task we chose the concept of ensemble clustering
and evolved it from a passive post-processing technique into an active and controllable method for
working with the data. We described two novel methods that are able to fulfill the task of integration.

The first one—flexible clustering aggregation—works on the fine-grained level of object pairs. In or-
der to create it, we incorporated soft cluster assignments into ensemble clustering and subsequently
expanded the existing pairwise similarity concept. By developing a score for the reliability and han-
dling strategies for undecidable pairwise assignments, we established a way for direct control of the
aggregation procedure. Thus, the aggregation itself becomes the point of action for working with
the clustering. As desired, adjustments to the consensus result can be executed without touching the
underlying clustering ensemble.

As a second technique we proposed frequent groupings which realizes integration in a more coarse-
grained way. While pairwise approaches construct a consensus solution from object pairs that occur
together in the majority of the clustering ensemble, frequent groupings identify prevalent sets of ob-
jects and create a consensus by combination. This allows the construction of multiple robust clus-
tering alternatives and tackles some drawbacks of pairwise methods. Our approach also fulfills the
remaining requirements for our integration task. It features control options that are similar to the
flexible clustering aggregation and allows direct adjustments of the consensus clustering. With this, it
can act as a focal point for clustering execution and does not require the user to directly interact with
the underlying clustering ensemble.

4.3 CONTROL INTERFACE

Controlling the clustering process is the major issue during the execution of a clustering analysis.
It is the point of interface between user and algorithm, and thus has a crucial impact on the whole
course of the clustering creation. As described in Chapter 2, control over the clustering is algorithm
specific and often very challenging. In this section, we will describe the realization of the control
interface for our algorithm management. This will somewhat differ from the previous descriptions.
While the implementations of algorithm description and integration are done by methods that can
exist on their own, the control interface is derived from them. Its character depends not only on the
capabilities offered by the remaining elements of the algorithm management, but also on the used
modus operandi. Subsequently are some basic characteristics that allow us to characterize a control
interface are introduced and the control options provided by our clustering process are described.

Regarding the application of control, we can state that it can be issued at different points. Hence, each
control interface offers different levels of control to a user. Control can also address different areas of
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the supervised process, i.e. it has a certain scope of effect. Furthermore, control decisions made on a
certain level can be enforced in different ways and thus express an individual character. Since one of
the most important concerns of our work is smooth application of control by users, we also consider
usability related characteristics of control. These contain the support available to the user and the
minimal level of experience a user needs to work with the interface.

Our versatile clustering process strongly differs from the traditional clustering practice. Single algo-
rithm execution and parametrization have been replaced by an ensemble of clusterings that is pro-
cessed by our controllable integration. In addition, we established iterative refinement as the modus
operandi of choice for our process. All these changes lead to a novel control interface that consists of
the three levels depicted in Figure 4.22.

The primary level of this new interface is provided by our integration task and contains the control
options offered by our proposed ensemble clustering methods. Our desired modus operandi requires
that the control that is enacted on this level must have a local scope. This is a considerable contrast to
traditional clustering, where control is enacted by changing individual algorithm parameters, in order
to modify the clustering as a whole. These modifications have an indirect character that affects the
functioning of the clustering algorithm and thus influences the created result. Our control options
focus on the local scope, which means modifications are applied to individual clusters instead of the
whole clustering. This can be implemented smoothly with frequent groupings and the flexible clus-
tering aggregation. Frequent grouping can naturally realize control on the cluster level. As the whole
approach works on the granularity of frequent groupings, i.e. clusters, it does not matter whether the
available control options are applied to a set of frequent groupings or to a single frequent grouping.
To enable the cluster scope for the flexible clustering aggregation, small adjustments are necessary.
So far, all issued control decisions like filtering or a?-handling where applied to all object pairs of
the clustering. In order to limit the area of effect to individual clusters, we select all object pairs
of the particular cluster and apply the control decisions only to this subset. If we recall the control
options of both ensemble approaches, we see that they are identical. Both offer an option to reduce
the number of clusters—a? 7→ a+ or superset substitution—an option to increase the number of
clusters—a? 7→ a– or subset substitution—and a value that represents the force with which these op-
tions should be enacted—t resp. f—that runs between 0 and 1. In contrast to traditional control, the
character of these options is direct as they specify an effect and not its cause, which greatly eases ad-
justment. Let us assume that a user works with DBSCAN and wants to reduce the number of clusters
with its traditional means of control. To realize that, his intention must be translated into appropriate
values for ε and minPts, which requires full understanding of DBSCAN’s functionality. By using
the primary level of our control interface, translation into algorithm specific parameters is not neces-
sary. In fact, integration acts as an abstraction layer for the algorithms of the ensemble. Regardless
of the employed clustering techniques and their individual parameters, the user can adjust the result
with the same general set of control options. This also renders the variety of additional methods for
parameter selection unnecessary. Typically, each algorithm offers some kind of heuristic approach
to choose suitable parameters. However, this does not guarantee optimal parameters and still leaves
most of the decision for the user. All in all, the primary level of our control interface supports the
user significantly by offering local, direct, and constant options for result adjustment. Effective han-
dling of traditional algorithms and their control interfaces requires at least an intermediate level of
experience. With our proposed setting, the necessary qualifications are lowered and even novices are
enabled to use our control interface effectively.

The secondary level of our new interface partially resembles traditional control. It deals with the con-
figuration of the clustering ensemble, i.e with the parameterization of a set of traditional algorithms.
Like its traditional counterpart, this level has a global scope and an indirect character. But in contrast,
it offers more support. Traditional control puts vital focus on finding an optimal set of parameters.
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Figure 4.22: Overview of our control interface and its levels.

The parametrization of our clustering ensemble can be regarded as a sort of recipe to get a good start-
ing point that can be refined further on the primary level. Due to this, parameter selection is no longer
a do or die task. It is sufficient to use a fixed set of general parameter values, e.g. a set of parameteriza-
tions that result in 5 clusterings with 2, 4, 6, 8 and 10 clusters. Basically, each parameterization that
results in a non trivial clustering, i.e. a clustering with more than one and less than n clusters, can
be considered as valid addition to the ensemble. The size of the ensemble can be varied depending
on the application context, but has no influence on the clustering quality [23]. Besides parameter
selection, we also have to consider ensemble composition. As multiple algorithms are used simulta-
neously it becomes possible to create heterogeneous ensembles. In order to decide which algorithms
should be combined, our building blocks for algorithm description can offer support. By comparing
building block descriptions, the similarity of available algorithms can be assessed and ensembles can
be configured accordingly. Although the second level of control seems to be challenging, its impact is
softened by integration. The goal of ensemble configuration and composition is to provide its input
clusterings. Even if the results turn out to be not optimal, there is still the primary level which allows
the refinement of the solution. If more quality is desired, experts could create several broadly usable
configurations that would provide a stock of initial recipes. All these possibilities should enable even
novice users to work on this level of control.

Although it might not seem obvious at first, there is an additional level of control that is more extensive
and detailed than the previous two. Customization of algorithms allows to control a clustering result
by specific adaptation of the method that creates it and forms our tertiary level of control, i.e. the
secondary level of traditional control interfaces. As any kind of modification can be introduced to
the algorithm, the scope and character of this level can only be described as individual. Therefore,
it is mainly a domain for clustering experts. However, our approach for algorithm description can
provide some support. In Section 4.1 we outlined the potential for creating new clustering algorithms
by interchanging modules of existing building block descriptions. If this could be realized, it should
allow users with intermediate experience access to this level of control.

In summary, our new control interface takes advantage of all the capabilities offered by our imple-
mentations of integration and algorithm description. Three levels of control offer a multitude of
adjustment options and support the user during their application. The primary level directly inter-
faces with the ensemble clustering methods of integration and realizes the modus operandi that was
desired for our clustering process. By using a compact and stable set of three direct and understand-
able parameters, integration acts as an abstraction layer for control and liberates users from dealing
with individual clustering algorithms and their parameters. The more technical secondary level gives
users control over the clustering ensemble. Taking advantage of the nature of ensemble clustering and
our approach for algorithm description allows us to provide support for inexperienced users. Even the
third level that addresses the expert domain of algorithm customization can be made more accessible
by utilizing our building blocks approach.
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4.4 SUMMARY

Algorithm management is responsible for the handling of all algorithm related tasks in our clustering
process. This includes coping with the variety of existing algorithms and creation as well as modifi-
cation of a clustering result. The realization of this goal requires the accomplishment of three tasks.
First, a consistent way for algorithm description must be provided. For this, we identified the main
phases and basic elements common to every clustering algorithm. By using a mathematical syntax
based on matrices and functions, we created a set of building blocks for the consistent description of
clustering algorithms. Our approach represents an intermediate between verbal and implementation-
specific algorithm presentation and was illustrated during the transcription of several well-known
clustering methods. Besides consistent descriptions, our approach also enables the comparison of
algorithms and outlines the possibility of modular algorithm creation.

As a second task, algorithm management must be able to integrate different algorithms and clustering
results into a final consensus solution. To accomplish this, we took the concept of ensemble cluster-
ing, and developed it from a passive post-processing method to a controllable focal point for the exe-
cution of clustering. We introduced two novel ensemble techniques. Flexible clustering aggregation
is based on soft cluster assignments and the evaluation of pairwise assignments. Frequent groupings
are derived from frequent itemset mining and create multiple alternative consensus solutions by com-
bining groups of objects that often occur together. Both techniques offer equivalent control options
that allow the adjustment of clustering results.

Offering a general interface for control is the third and final task of the algorithm management. It
is realized by using the capabilities of the previous two tasks. The proposed interface contains three
levels. On the primary level the user interacts with the ensemble techniques from integration. By
using the universally valid set of three control options that they provide, users can directly control
the clustering result and refine it iteratively. The second level of control deals with the configuration
of the clustering ensemble that builds the foundation for the creation of the consensus clustering.
Despite the technical nature of this level, our approaches for algorithm description and integration
can be used to support the user in working on this level. This is also true for the expert driven tertiary
control level that addresses algorithm customization.

With all our proposed methods and solutions, we can successfully realize the algorithm management
and thus implement the first of our principles for a versatile clustering process. Now that the handling
of algorithms is covered, we move on to the next chapter, in which we will discuss the interaction
with the user. For this, we will create a visual-interactive interface that will work in unison with the
proposed algorithm management.
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Figure 5.1: Overview of the visual-interactive interface.

W orking with a clustering means to interact with the algorithms that produce it. We
already outlined this at certain points during this thesis. While the algorithm management

takes care of all aspects of clustering creation, the visual-interactive interface provides a solution for
the communication and interaction between users and the clustering. In doing so, it handles the
steps of result interpretation and adjustment, which makes it the second essential part of our versatile
clustering process. Although the technical and methodical approaches of the algorithm management
play an important role, the usability and applicability of our proposed process strongly depend on this
interface. While clustering creation is mostly hidden from users, the solutions for interpretation and
adjustment are in plain sight and present the focal point for working with the clustering.

An overview of our visual-interactive interface is given in Figure 5.1. Basically, it has to fulfill two
main tasks. The first one is to provide an option for interaction that allows direct result adjustments.
We realize this with a universal set of 4 high-level feedback operations: merge, split, refine, and re-
structure. These define an easy-to-use way for the user to address the underlying control interface
of the algorithm management. From a user’s view, feedback operations are fixed and independent
from the techniques employed, as the control interface realizes the algorithm-specific mapping. The
second task of our interface is to inform the user about the clustering itself and its relevant character-
istics, which is a prerequisite for interaction and adjustment. To communicate this information, we
introduce a hybrid visualization concept that is based on the visual information seeking mantra [60]
and combines the benefits of traditional data-driven visualizations and quality measures. By focusing
on the cluster level and the two basic characteristics of composition and relations, our approach pro-
vides clear and simple presentations of information. We designed the hybrid visualization concept as
a template that can be realized in different visualizations to improve versatility. Both components—
visualization as well as feedback—are tightly integrated and attuned to each other, to allow users the
holistic handling of result interpretation and adjustment. In the following sections, we give a detailed
description of our high-level feedback before we introduce the hybrid visualization concept and two
of its implementations.

Parts of the material in this chapter have been developed jointly with Wolfgang Lehner and Dirk
Habich and were published in [31], [30] and [33].
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5.1 HIGH-LEVEL FEEDBACK

Although the control interface of the algorithm management offers three levels that can be used for
the adjustment of the clustering result, it is not directly accessed by the user. The control options on
each level are still technical and algorithm-specific to a certain degree, which makes them unsuitable
for inexperienced users. For our clustering process we aim to establish a set of easy-to-understand
feedback operations that is universally valid. These feedback options are abstract commands rather
than specific parameters and are a fixed part of the visual-interactive interface. While a user issues
a command, it should be of no concern to him, which actual algorithms are working underneath.
Therefore, we must not only define our abstract commands, but also describe how they are mapped
to the different levels of control offered by the algorithmic platform.

The idea of control via parametrization is deeply ingrained in the area of clustering and alternative
approaches to interaction are not very common. An interesting, yet very theoretical approach was
proposed in [7]. The authors show that a clustering can be transformed into any target solution by
splitting and merging pairs of objects. Although their setting is only one-dimensional and provides
the desired solution as guidance, the interaction approach itself is compelling due to its abstractness
and expressiveness. The basic idea of this approach also builds the foundation for clustering with con-
straints. With methods like [15], the user provides ’must-link’ and ’cannot-link’ constraints for certain
pairs of objects as additional parameters. These influence clustering creation and ensure that the re-
spective objects are part of the same or different clusters, respectively. In summary, both approaches
utilize the most basic decision of clustering to realize control and provide an option to group similar
objects and separate dissimilar ones.

Based on this, we start the definition of our high-level feedback. In contrast to existing approaches,
our feedback is aimed at clusters instead of objects, which makes its application more convenient for
the user. We already mentioned that the general definition of clustering calls for high intra-cluster
similarity in combination with high inter-cluster dissimilarity. Thus, a cluster must be adjusted if its
members are too heterogeneous or if it is too similar to another cluster. This leads to our first two
feedback commands merge and split that embody the base decision of clustering mentioned earlier.
While these two options already allow many adjustments to a clustering result, we complement them
with the feedback commands refine and restructure to provide the user with more convenience and ver-
satility. In the following, we define each of our 4 universal commands and describe their integration
with the different methods offered by the algorithm management.

merge If clusters are not well separated or if the created partitioning wrongly divides a natural
accumulation of points in the data, the merge command is used for adjustment. With it, two separate
clusters can be united into a single cluster. By choosing this option, a user reduces the number of
clusters and states that the two merged clusters are too similar to justify a stand-alone existence. The
goal of this adjustment is to create a new cluster with improved separation and homogeneity.

split This command is used for the adjustment of clusters with high internal heterogeneity. These
occur if a clustering algorithm concentrates points with too many dissimilarities in the same cluster.
By applying the split command to a cluster, a user decides that its members are not similar enough to
be grouped together and breaks it up into more groups. The goal of this further division is to create a
set of smaller clusters that better fit the data and feature an improved intra-cluster similarity.
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refine Typically, clustering suffers from outliers in the dataset that manifest as loosely distributed
points, slim chains of objects between large accumulations of points, small isolated object groups far
away from the main cluster structures, etc. With the refine command, users can remove such outlying
points from the scope of the clustering and relocate them to a global noise cluster. Basically, refine is
a more specialized form of the split command. While the split command splits a cluster up and creates
multiple new clusters, refine splits certain points off a cluster and labels them as noise, which excludes
them from further adjustment steps.

restructure The three feedback commands merge, split and refine can be used to adjust the clusters
of the consensus solution. Thus, they are implemented via the primary level of the algorithm manage-
ment’s control interface and established by using the information stored in the clustering ensemble.
While this is a direct and convenient way to enact control, the potential for adjustments is dictated by
the clusterings and clusters of the underlying ensemble. This can become a problem in some situa-
tions, when the ensemble does not contain the structural information necessary for the realization of
the selected adjustments. Assume a consensus clustering, where result interpretation indicates that
a certain cluster c should be split. Now assume that due to an inappropriate selection of clustering
algorithms and parameters, each clustering of the ensemble locates all members of c inside a single
cluster. This effectively prevents splitting via the primary level, as we cannot establish a split if not
even one clustering of the ensemble sub-divides c. Such a case poses a dead end for the user as it is
impossible to make adjustments with the given commands.

In order to escape such a situation, we have to adjust the clustering ensemble, i.e. address the sec-
ondary level of control. For this, we introduce the restructure command. With restructure the user can
trigger a recursion of the clustering process on a selected cluster. This means that a new clustering en-
semble and consensus solution are created for the members of the selected cluster and that this setting
becomes the new scope of the clustering process. All remaining clusters from the parent clustering
process are omitted and become inaccessible for the user. By creating a new ensemble for a subset
of the data, new potential for adjustments on the primary control level become available and can be
utilized by applying merge, split or refine. When the user is satisfied with the result for this part of the
dataset, he can reintegrate this recursion back into the parent clustering. This is done by replacing the
original cluster with the clusters created during the recursion. The reassembled clustering can then
be adjusted like before, although merging between original clusters and restructured clusters is not
allowed anymore, as these originate from disjoint ensembles. Besides escaping the mentioned trap
situations, restructure can be used to execute a focused analysis of interesting parts of the dataset, for
which the initial ensemble does not contain enough detail. As restructure addresses the clustering
ensemble, it is implemented via the second control level. After selecting the target cluster, the user
can select a particular ensemble configuration/recipe or apply the initial configuration to the subset
of the data again.

This last command completes our universal set of high-level feedback commands. Our
visual-interactive interface now provides the user with an easy-to-use facility for interacting with the
clustering result that offers a wide range of adjustments. In the following, we will describe the imple-
mentation of our feedback commands in the algorithm management in more detail. This is necessary
because merge, split and refine address the primary level of control, i.e our methods for integration.
As both of the methods we proposed for integration work on different granularities, we have to pro-
vide individual mappings. The restructure command is not affected by this and is only realized in the
described way.
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5.1.1 Mapping to the Flexible Clustering Aggregation

The mapping of our abstract commands to the parameters of our flexible clustering aggregation can
be made in a straightforward fashion. To realize a merge, the user has to provide the two clusters
that should be combined, by selecting them in the visualization. With this, the relevant object pairs
are identified and a? 7→ a+ is chosen as handling strategy for undecidable pairwise assignments.
Although complete parameterization requires the specification of a reliability threshold, we omit this
input as it is not necessary in this context. When we apply these parameters to the whole clustering,
the threshold makes sense as it can be used to merge only certain clusters. As mentioned in the
description of the control interface, the scope of the primary level is local and, thus, affects only
certain clusters, which partly nullifies the threshold’s necessity. Even if the user provides a threshold,
it is possible to ultimately force the merge of two clusters by setting t = 1.0, which effectively makes
all pairwise assignments undecidable. Because of those reasons, we relieve the user from specifying t
and use it at its maximum internally.

The mapping of split is done in a similar way. The user has to provide the target cluster for splitting
and a value for the threshold t. While the selected cluster is used to determine the relevant pairs, t
is used for reliability filtering. The actual splitting is done by choosing a? 7→ a– for the handling of
undecidable pairwise assignments. Depending on the value of t, the results of split may vary. Although
the splitting behavior depends on the individual characteristics of the underlying ensemble, we can
assume a general rule for choosing t. Typically, satisfying splits are obtained with values for t from the
range [0.2− 0.8] which represents the middle part of the full range for t. Splits with smaller t have a
lower chance to actually divide the cluster, while higher values often produce a substantial amount of
noise i.e. objects that cannot be assigned to any cluster.

To complete the mapping, we consider refine, which can also be easily mapped to the flexible cluster-
ing aggregation. The user selects the cluster he wants to refine and again specifies the familiar value
between 0.0 and 1.0. Based on the soft assignments created during flexible clustering aggregation,
all objects whose assignment to the current cluster does not exceed the user-specified threshold are
relocated to the global noise cluster.

5.1.2 Mapping to Frequent Groupings

The implementation of feedback via our frequent groupings approach is a little more complicated in
general, due to its more coarse granularity and the fg-graph. This already begins with the realiza-
tion of the merge command. While flexible clustering aggregation works on the pair level and offers
almost complete freedom when it comes to cluster merges, frequent groupings substitute whole clus-
ters and are thus bound by certain constraints. To merge two cluster, i.e. frequent groupings, the
fg-graph is searched for a superset that contains both clusters, which is used to substitute the two
original frequent groupings. In contrast to the pairwise approach that can merge any pair of clusters,
cluster substitution is bound by the fg-graph and has three possible outcomes: (i) a superset grouping
that contains exactly both original clusters exists, (ii) a superset grouping that contains both original
clusters and additional clusters exists, and (iii) there is no common superset. This means that not
all clusters can be merged and that the merge result can be more than the simple unification of the
two supplied clusters. To address this, we have to modify the user input. In order to prevent the user
from selecting two clusters that cannot be merged, the fg-graph is checked in advance and only those
clusters that are covered by a common superset are made available as choices in the visual-interactive
interface. In addition, the user has to provide a value between 0.0 and 1.0 for the range budget f .
This value is used to select a merge result if more than one superset, containing both original clusters,
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Figure 5.2: fg-graph for a refine implementation.

exist. A higher value for f translates into a farther upward movement in the fg-graph and will typically
result in a merge with larger extent as bigger supersets are selected for substitution.

The implementation of split with frequent groupings is quite similar. The user-selected cluster is
further divided by substitution with its subsets. Again, a value for f must be supplied to define the
range of the downward motion in the fg-graph that is used to select the subsets for substitution. In
contrast to the flexible clustering aggregation, points can always be assigned to a cluster regardless
of the value chosen for f . Nonetheless, an equivalent to noise can occur in the form of very small
frequent groupings/clusters with member counts in the single digits. With flexible clustering aggre-
gation, noise occurs in the form of single objects that have no associations with other points, which
makes automatic identification and relocation to a global noise cluster possible. This is mainly due
to the fact that t represents a threshold for filtering on a given scale, while f defines the maximal
weight/length of a path inside the fg-graph. Although this may seem like a noticeable difference, it
has little to no impact on the interaction/behavior of the adjustments made. From a user’s point of
view, f and t are identical as they have the same domain and express the force with which the chosen
adjustment is enforced.

Mapping the refine command to frequent groupings is complicated, as the introduction of noise dis-
agrees with our goal of exact coverage. We handle this problem by assuming that noise forms a global
cluster itself and adds to the coverage of objects from an algorithmic point of view. Regarding the
implementation of refine, we want to keep things consistent and let the user provide a target cluster
and a measure of force between 0.0 and 1.0. While soft cluster assignments express the strength of
association between object and cluster and, thus, allow the straightforward removal of noise with low
degrees of association, the frequent groupings concept is limited to the information contained in the
fg-graph. We already know that outliers/noise manifest as very small clusters in this approach, which
means refine is aimed towards the removal of these small clusters. Since refine is a variant of split, we
implement it similar to the split operation and extend it with an option for the removal of noise. For
exemplification, we recall the example from Section 4.2.2 where we introduced directed extraction.
The fg-graph shown in Figure 5.2 is based on said example and illustrates how a refine is carried out
for the cluster represented by fg71. We already described the character of f as the range for substitute
selection, which expresses the amount of difference that can be expected after the split is carried out.

This means, a split carried out with f = 0.5 tries to split up the original cluster and assign at most
50% of its members to new clusters, according to the available frequent groupings. For refine, we
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Figure 5.3: Result of the refine adjustment.

assume that f indicates the percentage of points that should be split off the cluster as noise. Basically,
refine substitutes a frequent grouping with only one of its subsets to get a refined version of the original
cluster. Again, the visualization must provide information regarding the estimated amount of noise
in the cluster, in order to determine f . In our example, the current clustering contains two clusters
represented by fg71 and fg65. The user decides to refine fg71 and remove around 1% of its members
as noise by specifiying f = 0.01. The substitution algorithm starts and selects fg69 as a replacement.
Due to the local scope we desire on the primary control level, no further root nodes are processed
and the algorithm starts to complete the clustering by establishing exact coverage. This is where our
changes for refine take effect. After executing all necessary steps, the algorithm would normally select
fg5 as an additional cluster to cover the remaining members of the original fg71. But during a refine,
only the direct substitute of the original cluster is kept, while all remaining subsets from its successor
set that could be used for exact coverage are relocated to the noise cluster.

The result of the refine command is shown as a scatterplot in Figure 5.3. The two clusters are shown
with colored circles, while the three members of fg5 are left blank to mark them as noise. Please note
that the amount of noise that can be removed with frequent groupings via refine, strongly depends on
the underlying ensemble and the fg-graph created from it.

5.2 HYBRID VISUALIZATION CONCEPT

Besides interaction, communication of information about the clustering is a main task of our visual-
interactive interface. Only if the user comprehends the structures that where identified in the data,
result interpretation and evaluation are possible. This is also the basic requirement for the derivation
of appropriate feedback and interaction with the clustering result via our proposed high-level feed-
back. Although there is a strong dependence between these two tasks, they are generally addressed as
separate issues. In contrast, our hybrid visualization concept approaches them in an integrated way,
which means that our employed form of communication is attuned to our feedback commands. In
doing so, we are able to support result interpretation as well as the enactment of adjustments.

During our description of contemporary clustering practice in Chapter 2, we introduced visualiza-
tions and quality metrics as common approaches for result interpretation. Typically, visualizations for
clustering are data-driven and create a visual element for each object of the dataset. The object’s in-
dividual attributes are expressed via its position and/or shape on the screen, while its color represents
cluster assignment. Using this approach, all raw information provided by the data and the clustering
is communicated to the user as a whole. This offers an unparalleled richness of details and cluster
structures that the user can utilize for the precise interpretation of the result. However, there are
also inherent limitations that can lead to problems. First, data-driven visualizations maintain a 1 : 1
mapping between data points and visual elements. For high volume datasets, this leads to an increase
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of displayed information and can cause an ’overload’ for the user. This effect is also known as visual
clutter and puts strain on the user that can severely impair interpretation. If the human visual sys-
tem encounters multiple objects, visual brain activity is actually reduced [17] as perception capacity
is limited and objects compete for detailed examination. Although this problem is known and solu-
tion attempts were proposed for certain visualizations [4, 19], it remains a serious challenge. The
second big problem of data-driven visualizations is dimensionality. Screens as the medium for display
offer two dimensions, while human senses and thinking are designed for three-dimensional space.
These limits strongly conflict with the large number of dimensions that datasets can feature. Most ap-
proaches try to scale down the information to fit the available means by reducing dimensions and/or
employing complex visual metaphors for displaying the data. As a consequence, result interpretation
becomes more challenging for the user.

The opposite of this situation is given with the result-driven quality metrics. Instead of depicting all
elements and their assignment, these approaches use the available information as input for a specific
function, whose calculated result represents a certain aspect of the clustering. By aggregating the clus-
ter information into a single value, datasets of arbitrary volume and dimensionality can be compressed
into a simple representation. However, due to this, large amounts of details are omitted. Furthermore,
the usefulness of these measures is limited as there is no universal definition of clustering quality.

With our hybrid-visualization approach we want to establish a middle way between the two existing
approaches to result interpretation. For this, we adopt the best of both worlds. On the one hand,
we desire the compressed, aspect-oriented character of quality measures that ignores volume and di-
mensionality. On the other hand, we want a reasonable level of detail regarding the cluster structure,
similar to what data-driven visualizations offer. To achieve this goal, we first have to decide on the
granularity of visualization, i.e. the entities that should be displayed. Regarding this property, both
existing approaches are located at the borders of the scale. While single data objects form the most
fine-grained level, the whole clustering states the choice with maximum coarseness. Between these
extremes, we decide to use the cluster level as our subject for visualization. Clusters are a reasonable
compromise as they allow the communication of a respectable degree of detail without overstraining
the user with too much information. Using clusters as visual elements is also a convenient way to
prevent clutter. Typically, the number of identified clusters is orders of magnitude smaller than the
number of objects in the dataset and can be easily managed by humans. With this, our visualization
concept is not directly affected by the volume of the processed data.

Now that we have defined the subject of our visualization approach, we have to decide what kind of
information we want to display. Due to the mentioned issues regarding dimensionality and volume,
raw information per point is not an option. In order to obtain a clearly arranged and understandable
visualization we use the aspect-orientation from quality measures as a starting point and expand this
concept. Users must be enabled to interpret the result, identify clusters that need adjustment, and
derive appropriate feedback options like split or merge. Traditional approaches do not support this
complete spectrum of tasks as they focus purely on description. Typically, mathematical or statistical
properties are measured, combined and finally presented to the user as an expression of quality. In
general, the underlying notion/model of quality is not directly disclosed to the user as it is often very
complex. For example, the Davis Bouldin Index [16] uses a function to measure scatter within a
cluster and a distance metric to express cluster separation. Both aspects are measured for the whole
clustering before their ratio is incorporated into the final result. In doing so, the user is left with an
obscure score that expresses ’what’ level of quality is present but does not offer a way to reason ’why’
it is like this.

In order to support interpretation as well as adjustment, we need to identify understandable aspects
that do not only describe structures but also can be used in a systematic way to decide, whether these
structures are satisfying or not and why. To find such aspects, we regard the general definition of
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clustering and derive two basic abstract characteristics. The first one is composition, which is used
to describe the homogeneity and thus expresses how similar the members of each cluster are. The
second aspect is relations which represents the separation of clusters, i.e. their similarity. Using both
aspects in concert creates a small and easy-to-understand system for the evaluation of structure and
the identification of appropriate feedback, e.g. if relations are satisfying but composition is not, the
split or refine command could be used to improve intra-cluster homogeneity. In addition, these two
aspects can be realized with a variety of measures. As long as it is clear what aspect the measure
represents, the user will know how to incorporate it into his decision process.

With this setup, our hybrid visualization concept allows us to introduce more detail by unraveling the
traditional single-display visualization into multiple views. Each of these views covers a certain facet
of the clustering and is linked to the remaining views. A facet can illustrate composition and relations
in an individual way by employing variable sets of measures, as long as these measures express our
basic properties and are calculated on the granularity of clusters. This means that values captured for
each point must be aggregated while values calculated for the whole clustering must be disaggregated.

The utilization of multiple views brings up the question of meaningful design and especially connec-
tions. To solve it, we use the visual information-seeking mantra: "Overview first, zoom and filter, then
details on demand." proposed by Shneiderman [60] as a guideline. The mantra already indicates that
views can express different aspects of a clustering on different scopes. By adhering to this approach,
the character of our hybrid visualization changes from a traditional single-view that passively displays
all information, to an interactive interface where interpretation is done by actively browsing a com-
posite of multiple views. In summary, our concept provides not the actual visual-interactive interface,
but a template for its implementation. In the following two sections we describe how this approach
can be applied in a versatile fashion. We introduce two different realizations of our template, that are
both able to work with the algorithm management but are aimed at different platforms and offer a
different feature set.

5.3 VISUALIZATION I: LARGE SCREEN

Our first attempt at implementing the hybrid visualization concept is designed with desktop comput-
ers in mind. For the display of information, large stationary screens are used, while user interaction
is realized with keyboard and mouse commands. This platform allows the utilization of multiple win-
dows and provides enough resources to execute the algorithm management and the visual-interactive
interface on one machine.

In order to visualize the composition and relations of clusters, we need sources that provide the nec-
essary information. Our visual-interactive interface attaches directly to the integration part of the
algorithm management, which makes the consensus clustering and the dataset natural candidates to
fill this role. The values displayed by our visualization are derived by refining the raw data provided
by these sources. Refinement starts with the calculation of centroids for the clusters of the consensus
solution that are necessary to obtain inter-centroid distances and further values. Based on those cen-
troids, the points of the dataset and their cluster assignment, we can subsequently calculate the soft
cluster assignments. These assignments are used to express composition and relations of clusters. On
their basis we calculate the reliability score, introduced with flexible clustering aggregation, that con-
tributes to the description of cluster composition. The set of derived information is completed with
histograms for each cluster and dimension of the dataset and with the minimal object-object distances
between each pair of clusters.
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Figure 5.4: Overview showing clusters and inter-cluster distances.

Our visualization displays the derived information with simple visual components that allow users
to easily interpret a clustering result and derive the appropriate feedback operations for iterative re-
finement. Our visualization consists of two windows: a primary window that displays the main visu-
alization and a secondary one that keeps track of iterative refinement by listing the issued feedback
operations and the resulting clusterings. In the following, we focus on the description of the primary
window and its three views, as the secondary windows is only a visual listing.

5.3.1 Overview

The entry point of our visualization is defined by the overview. An exemplary depiction of it is shown
in Figure 5.4. The subject of this presentation are the two most general characteristics of the consen-
sus clustering: its composition, i.e. the partitioning of data into clusters, and the relations between
these clusters. For the illustration of composition we use a circle, which forms the dominant element
at the center of the view. It consist of differently colored segments that represent the clusters. The
angle of each circle segment is proportionate to the size of the corresponding cluster. All in all, this
resembles a pie-chart, which is a natural way of illustrating the partitioning of a whole and should be
familiar to all users.

The relations between the clusters are expressed through the distances between them. As clusters
are sets of objects, we must define the distance similar to the linkage constraint from hierarchical
clustering. For the overview, distance between two clusters will be measured as the distance between
their centroids. To depict these relations, we use a circular radar-like gauge located on the left of the
main circle. It depicts each centroid as a dot whose color matches its respective circle segment. The
illustration of distances is based on a distance graph, whose vertices are given by the centroids, and
whose edges represent the Euclidean distance between centroids in the full-dimensional data space.
The edges are not drawn in order to prevent visual cluttering. With this, the overview provides the
user with a visual summary of the clustering result and allows a first evaluation of the partitioning and
the relations between clusters. Since the overview works with clusters instead of points, it can handle
high-volume, high-dimensional datasets without problems.
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Figure 5.5: Cluster description view of the red cluster.

5.3.2 Cluster Description

More information on a specific cluster can be obtained by selecting it, which implements the ‘zoom
and filter’ step of the visualization mantra. Selection is done by using the mouse to rotate the main
circle until the desired cluster segment intersects the small arrow on the horizontal axis in the right
part of the view. As soon as a cluster is selected, the cluster description view is depicted and additional
information regarding the cluster is displayed. An example of this view is depicted in Figure 5.5, where
the red cluster from our running example is selected.

The selected cluster’s composition is shown by the row of histograms on the right. All histograms
feature the interval [0.0− 1.0] with ten bins of equal width. From the left to the right, they show the
distribution of: (i) soft assignment values, (ii) reliability scores for all object-centroid pairs, and (iii)
reliability scores for all object-object pairs of the selected cluster. The signatures of these histograms
indicate certain cluster states. If a cluster is homogeneous and very compact, the soft assignments of
its member to its centroid approach 1. This is also the case for both reliability scores. This manifests
in histograms, where the number of objects per bin rises with increasing bin value, and the highest
value bin on the right has the highest population. Let us regard the signature of the example depicted
in Figure 5.5. The histograms show that many of the object-centroid and object-object pairs have only
an average reliability. This can either indicate that the objects of the cluster are not very similar or
that there are other clusters nearby that influence the selected cluster objects.

To complete such assumptions, the relations between clusters have to be examined. For this purpose,
the two ’pie-chart’ gauges and the arcs inside the main circle are used. The smaller gauge shows the
degree of ’self-assignment’ of the selected cluster, while the other one displays the degree of ’shared
assignment’ and its distribution among the remaining clusters. These degrees are calculated from
the soft cluster assignments as follows: each soft assignment is a vector with a sum of 1.0, consist-
ing of components ranged between 0.0 and 1.0 that indicate the relative degree of assignment to a
certain cluster. As each vector-dimension corresponds to a cluster, the degree of self-assignment is
calculated by summing up all components in the dimension corresponding to the selected cluster.
This sum is then normalized to get the percentage of the total possible assignment that goes to the
cluster itself. Accordingly, the shared assignment is generated in the same fashion for each remaining
cluster/dimension. The target and strength of these outgoing relations between the selected cluster
and others is described by the color and size of the shared-assignment slices. To better illustrate these
pairwise relations, they are also displayed by arcs that connect the respective clusters and express the
strength of the relation via their stroke width. If a cluster is well separated and not influenced by
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Figure 5.6: Cluster description with activated distance indicators.

others, it shows a very high degree of self-assignment with no outstanding relations to other clusters.
In contrast, the example in Figure 5.5 shows that the selected cluster has a noticeable relation to the
blue cluster. This supports the merge assumption and furthermore indicates the other cluster that
should be part of a possible merge.

Further insight of relations can be obtained by examination of the inter-cluster distances. The radar-
like gauge introduced in the overview only shows the distance between the centroids of clusters.
Clusters can be pictured as a cloud of points in multi-dimensional space. Only considering the dis-
tance between centroids does not take their spacial extent into account. Although two centroids seem
to be separated by a significant distance, their corresponding clusters can still be connected if they
are stretched in space. To clear this issue, the user can overlay the cluster description view with
additional distance indicators. These express the ratio of centroid-to-centroid distance and the mini-
mum object-to-object distances between the selected and the remaining clusters. An example of this
‘details-on-demand’ feature is shown in Figure 5.6. If the distance ratio approaches 1, the respective
clusters are well separated and the colored bars of the indicator are distant. In our example, this is
the case for all clusters except the blue one, where both bars nearly touch each other. This shows that
the minimal object distance between the clusters is much smaller than the centroid distance which
hints that both clusters are somehow connected. By utilizing the trinity of centroid distances, foreign
assignments and distance indicators, the relations between clusters can be comprehensively analyzed.
In our example, it is save to state, that the red and blue clusters could be combined. To double-check,
the blue cluster is selected and shows similar relations to its red counterpart.

The cluster description view also allows to evaluate whether or not a cluster should be partitioned
further. Such clusters can be identified on the basis of their histograms. If their most populated
bin is located in one of the medium-significance bins, this indicates a strong heterogeneity in the
cluster. This is emphasized by a reduced degree of self-assignment. Since these characteristics can also
indicate a strong influence by nearby clusters, relations must be examined. If these show no prevalent
relation to a specific cluster and indicate a clear separation in terms of inter-centroid distances and
distance indicators, the cluster becomes a candidate for splitting. However, there is still a chance that
these characteristics are caused by other reasons, e.g. non-spherical clusters. To gain more certainty,
an examination of the cluster in the attribute view is advised.

Besides the communication of cluster characteristics, this view also provides the facilities for issuing
feedback to the algorithm management. In Figures 5.5 and 5.6 an array of four buttons is placed
to the right of the main circle. Each of these buttons triggers a feedback operation for the selected
cluster. A merge is issued by pressing the (+) button and selecting the second cluster for the merge.
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Figure 5.7: Attribute view indicating a split for the violet cluster

Splitting is done with the (÷) button and refine via (−). Both buttons require the specification of a
threshold/force value between 0.0 and 1.0, which is realized with a dial displayed after pressing one
of the buttons. The last feedback option restructure is issued for the selected cluster by pressing (∗).

5.3.3 Attribute View

The attribute view is a part of the ’details on demand’ level and shows information on the distribution
of cluster members in the different dimensions of the dataset. In contrast to the previous moves, the
user must explicitly change to this view for a particular cluster. The attribute view occupies the center
of the main circle and masks all other information like histograms or the different relation displays.
Furthermore, it locks the selected cluster and must be left in order to select a different cluster.

In order to design this view, we looked at attributes in terms of clustering. We can state that an at-
tribute with unimodal distribution—denoted as Φ—is not desired for clustering, because the objects
of the dataset cannot be clearly separated in this dimension. In contrast, bi- or multi-modal distribu-
tions are interesting, since they can be used for the separation of objects. When we look at attributes
on the cluster level, this is inverted. Regarding a cluster, it is desirable that all of its attributes have
unimodal distributions, since this shows high intra-cluster homogeneity. A multimodal distribution
of an attribute would imply that the cluster can be further separated in this dimension. Generally, we
desire the following: On the dataset level, attributes should be dissimilar to Φ, while on the cluster
level, they should resemble it as closely as possible. These are the basics for our attribute view.

To calculate the similarity to Φ, we use a straightforward approach. We generate histograms for
each attribute on the dataset and cluster level. In each histogram, the bins that are local maxima
are selected. Starting at these bins, we iterate over the neighboring bins to the left and right. Each
neighboring bin that contains a smaller or equal number of objects than the current one is counted
and becomes the reference bin for comparison with its next neighbor. The examination stops for
each direction, if a neighboring bin has more elements than its predecessor. In doing so, we assume
each local maximum as the mode of an unimodal distribution and collect all objects that belong to it
by assuming a bell-shaped curve. From all unimodal distributions, we select the one that covers the
maximum number of objects and display the points and bins not covered by this distribution in the
attribute view.

Figure 5.7 depicts the attribute view for the violet cluster of our example. There are two hemispheres
and a band of numbers between them. The band shows the attributes of the dataset, ordered by
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our computed values, and is used to select an attribute for examination. The small hemisphere on the
right shows the global behavior of attributes. Each curve represents an attribute, while for the selected
attribute, the area under its curve is colored. The hemisphere itself consists of two 90-degree scales:
the upper one displays the percentage of objects and the lower one the percentage of bins that can be
fitted under Φ. The start and end point of each curve show the respective values for the attribute on
these scales. If all objects and bins fit under Φ, a simple vertical line is drawn and no color is displayed
in the hemisphere. The larger hemispherical display on the left works in the same fashion, but shows
the attribute limited to the selected cluster.

In Figure 5.7 the second attribute, i.e. the y-axis of our dataset, is selected. We can see a large col-
ored area, showing that roughly 50% of the objects and bins do not fit under Φ for this cluster. If the
selected cluster also shows split characteristics in the cluster description view, the user may consider
to split this cluster. The attribute view was designed with the goal of fast and easy interpretability of
dimensional data. More color in the left hemisphere indicates a higher potential for further partition-
ing of the cluster in this attribute. In addition, the amount of color in the right hemisphere shows the
usefulness of the selected attribute for clustering on the dataset level.

5.3.4 Summary

We introduced and described a first materialization of our hybrid visualization concept. In accor-
dance with the visualization mantra, our approach features an overview, a ’zoom and filter’ cluster
description view, and ’details on demand’ in the form of distance indicators and the attribute view. By
focusing on the cluster-level, we can visualize clusterings regardless of volume and number of dimen-
sions of the underlying dataset. To express the characteristics of composition and relation of clusters,
we use different distances, soft assignments and the reliability scores from our flexible clustering ag-
gregation. Our approach allows users to derive appropriate feedback operations for each cluster, while
using understandable and familiar visual components like pie charts and histograms for the realization
of all views.

5.4 VISUALIZATION II: SMALL SCREEN

After extensive testing of our desktop-based visualization, we came to several conclusions. First, we
realized that the distribution of the time invested in the execution of clustering analysis is unbalanced.
User interaction and the issuing of adjustments typically takes a short amount of time, while the com-
putations necessary for their implementation usually take much longer. Depending on the size of the
underlying dataset, the computational part can require hours to finish. During this time users are
effectively condemned to idleness, which is why we reconsidered the used platform. While the size
of desktop monitors is beneficial for visualizations, it also is a factor that makes work stationary. In
order to improve accessibility and convenience of use, we selected smart devices as the platform for
a mobile implementation of our visualization. This choice brings two major benefits: First, smart de-
vices offer touch-screens and various sensors, that can be used to make interaction much more direct
and intuitive. Second, smart devices are small and nearly omnipresent, which allows users to con-
veniently access the visual-interactive interface wherever and whenever they want. Unfortunately,
these features come at the price of a greatly reduced display area. In order to exploit the benefits and
adapt to the small screen of this new platform, we need to design a completely new visualization.
The limited processing power of hand-held devices also requires the implementation of the main pro-
cess components in a client-server architecture. While a high-performance server runs the algorithm
management, the smart device only handles the visual-interactive interface.
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Figure 5.8: View architecture of the mobile visualization.

As smart devices offer only a small image area and are not intended to run multiple windows, we first
have to re-think our view structure. In adherence to the Shneidermann mantra, we build a sequence
of four views for: the process, the clustering, the cluster, and the attributes. With each view, the
level of detail that is displayed gets finer. In contrast to our large screen visualization, these views are
clearly separated in order to emphasize their different contexts. Furthermore, our first visualization
attempt neglected the process character and only allowed the comparison of clusters by successive
selection. To improve this, we introduce two tracks that run parallel to the main view sequence. The
compare track allows comparisons on each level of detail, while the history track provides the user
with information regarding the changes in comparison with the previous clustering result. Our view
structure and the possible transitions between views are shown in Figure 5.8.

Subsequently we will describe each view and the information it displays in detail. We basically keep
the information sources that were already used for our large screen visualization. At certain points we
will complement them by introducing additional derived values.

5.4.1 Process View

This view acts as the entry view of the visualization and depicts how the iterative refinement pro-
gresses by showing issued feedback and the adjusted results. An example of this view is shown in
Figure 5.9 and shows a sequence of three clustering results. Each clustering is represented as a small
segmented circle that represents the number and relative size of all identified clusters. In addition,
information regarding the executed adjustments is displayed. The leftmost clustering represents the
initial consensus clustering. The two colored lines and the "+" symbol next to it show that the user
decided to merge the blue and purple clusters. The next clustering of the sequence illustrates the
result of this adjustment and has a reduced number of clusters. An arrow in its center indicates the
new cluster created by the merge. At this point of the iterative refinement, the user decides to divide
the green cluster and issues a split. Its result forms the last clustering of the depicted example se-
quence. Again, arrows indicate the new clusters that result from the split. With each issued feedback
operation, the sequence is expanded and thus the whole refinement process is recorded. Users can
trace back their adjustments and review the information for each step. Furthermore, this view allows
to undo a particular chain of adjustments. Assuming a sequence of n steps, the user can enter an
arbitrary step k with 0 ≤ k ≤ n, and issue a different adjustment. In doing so, all steps that follow
k are undone and replaced with the newly created k + 1. The process view is the only view that does
not use our two additional tracks, as we have not considered comparison and a change-history on the
process level in our implementation. Although, these could be used to support collaborative analysis
in future versions.
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Figure 5.9: Process view showing a sequence of three steps.

5.4.2 Clustering View

The clustering view forms the next level of detail after the process view. It is used as an entry point for
accessing individual clusterings created during the process of iterative refinement. Examples for this
view and its versions on the compare and history track are shown in Figure 5.10. We start with the
description of the main clustering view depicted in Figure 5.10(a). Like the overview of our desktop-
centric visualization, all clusters and their sizes are represented as circle segments with different sizes
and colors. For the display of the relations between clusters, we use a modified approach. In our pre-
vious visualization, we used a distance graph to show the distances between centroids. Unfortunately,
this approach becomes inaccurate if the number of dimensions of the underlying dataset increases.
This is due to the fact that the graph is projected into two-dimensional space for display. To exemplify
this problem, assume a dataset with 5 dimensions and 4 clusters, all having the same distance to each
other. For correct representation of this setting on a plane, it would be necessary to draw 4 points
and connect each of them with all other points, using only straight lines of the same length, which
is not possible. In order to solve this issue, we compute all distances between the cluster centroids.
We then calculate a minimum spanning tree from the resulting distance graph and use it to order the
segments of the circle. With this, adjacent segments express that the distance to the corresponding
clusters is relatively small. In addition to this ordering, the actual distances between adjacent clusters
are displayed with lines of different length that emanate from the main circle. Two thin additional
rings are added to represent the minimum/maximum distance between centroids and act as reference
for the evaluation of relations between the clusters.

From the main view, the user can switch to the compare track by performing a downward slide ges-
ture. This brings up the quick compare view depicted in Figure 5.10(b). We can see that an outer
and inner halo is added to the main circle. For each segment, the outer halo summarizes cluster com-
position, while the inner halo shows a glimpse of the relations towards other clusters. The measures
necessary for this representations are part of the cluster view and will be described in detail in the
following section. These halos allow a quick assessment of composition and relations for all clusters.
This is done by evaluating the extent of the halo of each segment. Large halos indicate that the respec-
tive characteristic is unsatisfactory and adjustments should be applied to the corresponding cluster.
In addition to providing an overview on cluster character and providing hints regarding feedback ap-
plication, this view allows the easy visual communication of refinement progress. A clustering that
needs heavy adjustment is represented with extensive halos and gets a wide and blurred silhouette. If
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(a) main view

(b) quick compare (c) structural changes

Figure 5.10: Examples for the clustering view and its track-variants.

appropriate adjustments are applied, the halos are reduced and the circle silhouette becomes slim and
sharp.

By performing an upward slide gesture, the user leaves the compare track and gets back to the main
view, from where the history track can be accessed with an additional upward slide gesture. An ex-
ample for this view is depicted in Figure 5.10(c) and shows the changes between the current and the
previous version of the clustering that where induced by the applied adjustment. In our example, a
split was applied with a force of 0.8 to increase the number of clusters in the current clustering. The
issued feedback operation is displayed at the center of the main circle. A smaller inner circle depicts
the size and position of the originating cluster in the former clustering. Arrow indicators show that
42% and 32% of the former green cluster’s members were relocated to two new clusters, while the
remaining objects were assigned to the noise cluster. With this easy-to-understand overview, users
can track the structural changes caused by each adjustment.

5.4.3 Cluster View

After getting a general overview of the clustering, users can select an individual cluster to get more
detailed information on it. Touching a circle segment in the clustering view triggers an animation that
brings up the corresponding cluster view. This view realizes the "zoom and filter" level of Shneider-
manns mantra and is illustrated in Figure 5.11(a). In our example, the yellow-green cluster is selected
and displayed as a circle on the right. The right side of the view provides the cluster id, the number
of cluster members, and information on cluster composition in form of two histograms. In the main
cluster view, both histograms are identical and express the self-assignment of the selected cluster by
showing the distribution of its respective soft assignments. Relations are shown in the left part of the
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(a) main view

(b) feedback menu

Figure 5.11: Example cluster view and adjustment application.

view, where each remaining cluster is represented by a circle. Similar to our large screen visualization
we use soft assignments and distances to express them. Again, soft assignment values towards each
cluster are aggregated and visualized with circle segments of different size and connecting lines with
different stroke weight. Centroid-to-centroid distances are reflected in the placement of circles either
near or far from the selected cluster’s circle. The distance indicators we introduced in our former
implementation were integrated in the connecting lines and are displayed as orthogonal lines that
become more prominent as clusters become closer. In addition, the circle diameter is used to express
the size of each cluster in comparison with the selected cluster, whose size is added as a thin gray
reference circle. Clusters that are bigger than this reference are also emphasized with an increased
stroke weight. All in all this enables users to easily appraise cluster characteristics and derive the
appropriate feedback/adjustment.

The cluster view also acts as a point of interaction for the application of feedback operations. When
a user decides to adjust the selected cluster, a long tap is used to bring up a menu with our four high-
level feedback commands. The user picks the command of his choice, provides additional parameters,
like force, and finally executes the specified adjustment. Figure 5.11(b) illustrates an example for the
issuing of a merge. The respective command is shown as a square button overlaying the selected
cluster, the merge partner was already selected and is also marked with a square overlay. All necessary
selections are made and the execute button that triggers the adjustment is unlocked.

In addition to the main view, the compare and history track views exist and can be accessed with the
same slide gestures used in the clustering view. An example for the compare track of the cluster view
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(a) pairwise comparison

(b) cluster changelog

Figure 5.12: Examples for the cluster view and its track variants.

is shown in Figure 5.12(a). This view is used to make pairwise comparisons between clusters. For
this, we basically mirror the main view and place a second cluster representation face-to-face with the
selected cluster. To allow comparison of both cluster compositions, one of the histograms is switched
to show the self-assignment of the other cluster. Relations between both clusters and all remaining
clusters are visualized like in the main view, with the exception of centroid-to-centroid distances. As
all clusters that are not part of the chosen pair must be aligned between both selected clusters, variable
distances cannot be used.

The history track of the cluster view is depicted in Figure 5.12(b) and shows the transformation of
the selected cluster. For this view, the presentations of the current and previous cluster versions
are joined at their corresponding circles and create a janus-faced display. A vertical line separates
a major part of the display area and marks the corresponding cluster versions. Changes in cluster
size can be read from the difference in size between the two semicircle components at the center.
The composition of both cluster versions is again shown with the two histograms on the right. The
presentation of relations to other clusters does not change. In our example we can see the aftermath
of a split operation. The former large green cluster was split into two new clusters. The current green
cluster is roughly half the size of its former self, because a large portion of its members was reassigned
to its new light blue sibling. Changes in relations occur mostly due to the introduction of an additional
cluster. We can also see that the newly created siblings are very close to each other which indicates
that further adjustment might be necessary.

In the former section, we introduced the compare track for the clustering view and its halos. These
halos are created from parts of the information represented in the cluster view. The outer halo that
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represents composition is made up of concentric circle segments that correspond to the bins of the soft
assignment histogram. The segment for the highest value bin is closest to the main circle segment,
while the radii of the remaining segments increase as the bin value decreases. The population of
each bin determines the transparency of the corresponding segment, i.e. an empty bin results in an
invisible circle segment. All this leads to the described character of the outer halo, where populated
low value bins lead to a wide and blurry silhouette. The inner halo is created using a similar approach
based on the shared assignment of each cluster. The degree of assignment to each other cluster is
again visualized as a concentric circle segment. This time, the value of a relation is used to determine
the distance to the main circle, i.e. strong relations become distant segments that widen the silhouette
and thus indicate a need for adjustment.

5.4.4 Attribute View

The attribute level constitutes the last station of our view sequence and offers the most fine-grained
information in our visualization. It is accessed by dragging the selected cluster’s circle to the right
edge of the cluster view. In contrast to our previous views the attribute view itself is more complex as
information for every dimension must be displayed for the cluster. For this reason, the attribute view
contains several facets that act as overview, zoom-and-filter, and details-on-demand levels for its own
scope. However, the attribute view as a whole takes the details-on-demand position in the context of
our visualization. An example of this view is show in Figure 5.13(a).

In general, the view can be divided into three horizontal ribbons. The top ribbon acts as overview
for all dimensions of the selected cluster, and shows an array of vertical bars that are connected with
horizontal lines. Each vertical bar represents a dimension and summarizes its distribution by adding
gaps to the bar. For this we use an approach similar to the attribute view of our large screen visual-
ization. Again, we identify local maxima in the histograms of each dimension and look for the largest
unimodal distribution. If all members of a cluster fit under a single distribution, the corresponding
bar is complete. If the distribution is bimodal, a gap is created to split the bar according to the ratio
of objects covered by the two unimodal distributions. Distributions, where more than two unimodal
distributions can be found, result in only one additional gap. With this, the bar is divided according to
the ratio of objects covered by the largest, second largest, and remaining unimodal distributions. This
allows to quickly evaluate if the cluster can be split in certain dimensions.

The horizontal lines between the bars visualize the relations between dimensions. As a measure for
relations, we use the statistical independence, which we measure between all pairs of dimensions.
The calculated values are normalized to a range from 0 to 1, which is divided into three equal parts
that are each represented with one horizontal line. The number of lines between two bars expresses
the degree of independence between both dimensions. One line corresponds to a small value v with
0 ≤ v ≤ 0.33, while three lines show strong relations with 0.66 < v ≤ 1. These values are also used
to sort the bars in a way that places dimensions with strong independence next to each other. Groups
of statistically independent dimensions are of interest as they typically present promissing subspaces
for clustering [54]. In order to get more information on one of the dimensions from the top ribbon,
users can scroll the array of bars using a slide gesture and select a single dimension by placing it under
the gray selection frame. Details on the selected dimension are shown on the middle bar and contain
dimension name, minimum and maximum values as well as two histograms. The first one shows the
distribution of cluster members in the selected dimension, while the second one shows the global
distribution and overlays the range occupied by the selected cluster. In our example we can see that
the cluster has nearly an unimodal distribution in the selected dimension and is located at the right
edge of the global dimension’s range. The bottom ribbon, again, provides an overview regarding the
cluster’s location in multidimensional space. We use a presentation similar to parallel coordinates
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(a) Main view.

(b) Compare-track

Figure 5.13: Examples for the attribute view.

and depict the cluster as a horizontal line that cuts the vertical lines, i.e. dimensions, at a point that
corresponds to the cluster centroid’s location in the range of the particular dimension. In addition, we
use colored boxes on each vertical line to show the range a cluster occupies. The presence of multiple
colored boxes indicates that other clusters intersect with the selected one in this dimension, which
can be interpreted as a hint towards further adjustment.

Like in all our views, the compare track is accessed with a downward slide and is shown in Figure
5.13(b). We can see that the ribbon configuration has changed. An additional bar ribbon has been
added at the top and displays the dimensions of another cluster for comparison. Interpretation is
similar to the main view, although some components were added. The dimensions of both clusters
are connected with vertical lines that express the overlap of strongly connected groups of dimensions
between clusters. Assume a set of dimensions [D6, D8, D10] that is connected with three lines in
the selected cluster and a set [D4, D5, D6, D8, D9] with equally strong relations in the other cluster.
Both sets intersect in [D6, D8] which would be visualized with three vertical lines on top of the bars
for D6 and D8, illustrating that this subspace is shared by and has equally strong relations in both
clusters. Like in the main view, a single dimension can be selected by scrolling. Details for this
dimension are shown at the bottom ribbon with three histograms, of which the first two depict the
local distribution for both clusters, while the third shows the location of the cluster pair on a global
scale. This information can be used to find overlaps between clusters and derive appropriate actions.
Cluster overlap is also shown in the bar arrays. Each dimension of the other cluster which overlaps
with the selected cluster, is framed in the selected cluster’s color.
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(a) changes in spacial extent

(b) changes in local distribution

Figure 5.14: History track of the attribute view.

We complete our description of the attribute view by regarding its history track that is depicted in Fig-
ure 5.14. In contrast to the views introduced so far, this history track has two display modes. This is
necessary because adjustments cause changes in a clusters position and extent in global dimensional
space, as well as changes in the local composition and relations of dimensions. Figure 5.14(a) shows
the first global mode. Like on the compare track, the ribbon configuration has changed. The two rib-
bons at the bottom use our parallel coordinates display to illustrate the location of the current cluster
and its previous version in the dimensional space of the whole dataset. In our example we can see that
the current cluster is created by splitting up the former light blue cluster, which of course leads to a
decrease in the range size occupied in each dimension. Furthermore this resolved some overlaps with
other clusters and, thus, made a contribution to separation. Similar to the compare track, we use the
top ribbon to display histograms for the currently selected dimension. Our example shows that the
applied adjustment sharpened the cluster profile. While data distribution in the previous version was
trimodal with distinguished peaks, the current distribution only has two very similar peaks. Thus, the
change also improved the overall cluster composition. Using a slide gesture, the user can switch to
the local mode of the view, shown in Figure 5.14(b). There, we replaced the two bottom ribbons with
our familiar bar arrays that give an overview of the composition and relations of all dimensions. We
can easily see that the split operation results in a general improvement of the composition. Local dis-
tributions have become unimodal or have reduced their number of peaks, which indicates an increase
in intra-cluster similarity. No changes in relations can be observed, which means no new interesting
subspaces have emerged.
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5.5 SUMMARY

The visual-interactive interface is the vital component of our clustering process, as it constitutes the
main point of interaction for the user. Its control and communication facilities are always in plain
sight, while the workings of the algorithm management are mostly hidden. A clustering analysis with
our process can only be successful, if users can easily interpret and adjust the provided clustering
results. For this purpose, we introduced a compact and universally applicable set of four high-level
feedback options. Despite their small number, these options provide users with a mighty tool for
cluster refinement. Even if the underlying algorithms change, feedback stays fixed from the user’s
point of view, as all necessary mappings to the algorithm management are made internally.

In order to communicate the result itself and enable users to interpret it, we proposed a novel hybrid
visualization concept. Designed as a middle way between data-driven visualizations and result-driven
quality measures, it combines the best traits of both existing approaches. The core of our concept
is the focus on the cluster level as the subject of visualization and the communication of the two
abstract aspects of composition and relation. This aspect orientation and the focus on clusters makes
our approach immune to high dimensionality and clutter induced by high-volume data. To ensure a
reasonable level of detail for the communicated information, our concept unravels traditional single-
display visualization into a multi-view structure. Each view uses several measures to cover certain
aspects of the clustering result and users browse these views to interpret it.

Per definition, our concept does not specify a visualization technique but provides a template for its
construction. We described two implementations of this template and illustrated the adaptability of
our concept. Our first visualization is aimed at stationary desktop platforms that offer large screens
and conventional input. It offers three simple and clear views that allow result interpretation and
fully support all of our feedback commands. For our second visualization, we choose smart devices
as a platform. Besides convenient access at any time, these offer touchscreens as a very intuitive
tool for interaction. To adapt to this platform, we redesigned our view structure and added features
for cluster comparison and tracking of changes, which better accommodate the process character of
our iterative refinement. Furthermore, the application of feedback was directly integrated into the
visualization. With all this, we provide users with a powerful tool that is still convenient to use and
easy to understand.
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6
PROCESS APPLICATION

6.1 A Guided Tour to
Iterative Refinement

6.2 Learning by Doing -
Process Adaptation

6.3 Summary



A t this point, we posses all the parts that are necessary to realize the template of our versatile
clustering process, introduced in Chapter 3, and put it to use. For this, we start by assembling

an implementation of our process concept. Because of its modular character and the fact that we
described different options that can fulfill the necessary tasks, we can already create different process
variants. For this chapter, we choose a process configuration aimed at inexperienced users.

Starting with the algorithm management, we select the flexible clustering aggregation to perform in-
tegration, as it is a little more approachable than frequent groupings. As we address inexperienced
users, we also limit control options to the primary level. This means, users have no access to en-
semble configuration or the creation/adaptation of clustering algorithms, as these actions require a
higher level of experience. All high-level feedback commands are mapped in accordance to these reg-
ulations. However, we must provide the restructure command that requires access to the secondary
level of control. This is done by fixing the ensemble configuration, i.e. if a user applies the restructure
command on a certain cluster, the initial ensemble configuration is applied to the respective subset of
the data. In doing so, the full set of feedback options is provided without user access to the secondary
level. For the realization of the visual-interactive interface, we use our small screen visualization for
smart devices.

Figure 6.1: Initial clustering for the example dataset.

Our actual application setting uses a synthetic dataset comprising 1500 points, distributed in 2 di-
mensions. Such a small setting is ideal for explanatory purposes, as we can still use scatterplots to
display the clustering results for reference. The employed ensemble contains 10 clusterings that were
created with k-means. Values for k range from 2 to 15 and each clustering features a different seed for
centroid initialization. A scatterplot of the resulting initial clustering is shown in Figure 6.1. In the
following sections, we give an exemplary description of our process’s execution and illustrate how it
can be easily adapted to cope with a variety of scenarios.

6.1 A GUIDED TOUR TO ITERATIVE REFINEMENT

We illustrate the execution of our process in form of a tour, by describing the individual actions a user
takes during the iterative refinement of a clustering. This illustration is arranged into a sequence of
steps and focuses on images that show what the user sees during the course of the process. Each step
features figures of the views that are crucial for interpretation and derivation of appropriate feedback,
as well as complementary remarks.
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(a) Compare track of the clustering view. (b) Comparison of merge candidates.

Figure 6.2: Starting point of the clustering process.

Step 1: This is the initial result provided by algorithm management and presented to the user at
the start of the clustering process. To get a quick overview and appraise the situation, the compare
track of the clustering view shown in Figure 6.2(a) is used. There, our attention is drawn towards the
purple and blue clusters, where the inner and outer halos have their peak extension. Both clusters
are relatively small and have a low centroid-to-centroid distance. This is also depicted in the lower
right quadrant of Figure 6.1. We select the purple cluster and bring up its cluster view that shows a
dominant relation to the blue cluster, as well as an unsatisfactory composition. All of this strongly
indicates a merge adjustment, but before we issue it, we bring up the compare track shown in Figure
6.2(b) to double-check with the potential blue merge partner. The view confirms our assumption.
Both clusters share a dominant relation with each other and express close proximity via the distance
indicators. Simultaneously, they are clearly separated from the remaining clusters. In addition, their
composition histograms indicate that their self-assignment is not very strong. Thus, we issue the
merge command that leads us to the next step.

Step 2: As can be seen in Figure 6.3(a), the merge operation fused both small original clusters into
a new purple one. The slimmed down halos already show the success of the adjustment. To get
more details on the change, we check the history track of the corresponding cluster view shown in
Figure 6.3(b). The new cluster has doubled in size due to the assimilation of all former blue members.
Histograms illustrate that composition has improved greatly, while relations are now balanced and
show a clear separation. Now, we move on to adjust the yellow-green cluster, which is located in the
upper right of Figure 6.1. Its cluster view depicted in Figure 6.4(a) shows good separation but only
mediocre composition, which makes this cluster a typical split candidate. To confirm this, we switch

(a) Compare-track of the clustering-view. (b) Changes induced by the merge.

Figure 6.3: Results of the merge adjustment.
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(a) Cluster-view. (b) Attribute-view showing the distribution along dimen-
sion y.

Figure 6.4: Views indicating a split adjustment.

to its attribute view shown in Figure 6.4(b). There we find an unimodal distribution in dimension
x, but a clearly bimodal distribution in dimension y, which indicates that the cluster can be divided
further along this dimension. We issue the split and derive a value for its force from the composition
histogram, using a rule of thumb. During our work on the flexible clustering aggregation, we found
that a good force value can often be obtained by searching for a point of steep rise in bin size. In our
example this point is situated between the 7th and 8th bin, so we set force to 0.7 and execute the split.

Step 3: The views shown in Figure 6.5, depict two new clusters. On the compare track of the
clustering view, slim halos illustrate improvements to composition and relations. The history track
tells us, that the former cluster was nearly divided in half and that a small amount of noise was created
during the process. Satisfied by this result, we examine the green cluster next. In the scatterplot of
Figure 6.1, this cluster occupies the upper left quadrant. Judging by the views in Figure 6.6, it has a
character similar to the yellow-green cluster we just split. Relations to other clusters are weak, which
indicates clear separation. Composition is only mediocre and a detailed check of the attribute view
reveals bimodal tendencies in both dimensions. Although, these are less pronounced in comparison to
the previous split candidate, we decide to issue a split. Following our rule of thumb, we again choose
a force of 0.7.

Step 4: This time, our adjustment did not have the desired effect. Figure 6.7(a) shows, that the
former cluster remains intact, with roughly a tenth of its points being relocated to the noise cluster.

(a) Compare track of the clustering view. (b) Changes induced by the split.

Figure 6.5: Results of the split adjustment.
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(a) Cluster view. (b) Attribute view.

Figure 6.6: Views indicating a split adjustment.

Halos on the compare track still indicate the original unfavorable characteristics, so we decide to redo
this step. We switch back to the process view, select the previous clustering and head to the cluster
view of the original green cluster, where we issue the split again, but this time use an increased force
of 0.8. With this, the existing step 4 is removed and replaced with the newly calculated step 5.

Step 5: The repetition of the split adjustment works as desired and two new clusters are created.
The proportional distribution of original cluster members is depicted in Figure 6.7(b). By looking at
the halos on the compare track, we find that both new clusters have improved in comparison with
the original green cluster. However, the still considerably wide inner halo of the new yellow-green
cluster indicates a need for further adjustment. The main cluster view reveals a pretty strong relation
to its sibling, which is why we compare both clusters as depicted in Figure 6.8(a). A certain prox-
imity between clusters that result from a split is normal, since they descend from the same parent.
However, in our example the relation is noticeable and furthermore accompanied by distance indi-
cators showing very little distance between the members of both clusters. The reason for this can
be found by closer examination of the composition histograms. While the orange one is nearly ideal,
the yellow-green one shows a group of 4 scarcely populated bins below the assignment value of 0.7.
These objects with weak affiliation to the cluster are most likely small noise structures, e.g. thin object
chains that disturb the expression of relations. To solve this issue, we apply the refine command with
a force of 0.7 to remove said structures, i.e. all objects located below the 8th bin.

(a) Compare track showing a failed split. (b) Successive split with increased force.

Figure 6.7: Results of a repeated split adjustment.
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(a) Comparison of the two newly created clusters. (b) Comparison after refine adjustment.

Figure 6.8: Improvement of cluster relation with the refine command.

Step 6: After the completion of the refine adjustment, the history track of the clustering view shows
that about 10 percent of the original members where split off the cluster. Regarding our updated
compare track shown in Figure 6.8(b), we see that the tail of bins was removed as desired. The
strength of the relation between the sibling clusters decreased and the distance indicators show a
better separation. Satisfied with our results, we move on to the remaining red cluster shown in the
bottom right of Figure 6.1 that is still in need of adjustment. Its cluster and attribute view, depicted
in Figure 6.9, show the familiar characteristics of a split candidate. Similar to the green cluster, the
distribution of members in each dimension is bimodal but not very pronounced. Taking our previous
experiences into account, we issue a split with an increased force of 0.7, although our rule of thumb
would recommend only 0.6.

Step 7: Despite the increased force, no new clusters were created. Looking at Figure 6.10, we can
see that more than a third of the cluster members are relocated to the noise cluster, but no mean-
ingful partitioning is established. Checking the history track of the cluster view reveals only minimal
changes in composition and relations but no real improvements. Like before, we redo this step and
increase force to 0.8.

Step 8: Again the cluster is not split up. This time, nearly 80% of the cluster cannot be assigned
to any cluster and are relocated to noise. The inability to establish a propoer split originates from the
ensemble. In this case, the majority of clusterings identifies only one cluster in this particular area
of the dataset. Thus, no additional structural information that could be accessed through integration

(a) Cluster view. (b) Attribute view.

Figure 6.9: Views expressing the characteristics of a typical split candidate.
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(a) Clustering after the split. (b) Cluster changes after the split.

Figure 6.10: Failed split attempt.

is provided. To get out of this dead end, we have to use the restructure commmand on the cluster.
With this, a new set of clusterings is created for the corresponding subset of the data. As stated in the
beginning, the same ensemble configuration that was already used for the initial solution is applied
again. This frees the user from working on the secondary level of control and allows the adjustment
to be made by simply pressing a button. Due to the range of k and the reduced data range, we can
expect more structural detail from the new ensemble.

Step 9: The operation results in a new clustering with two clusters, which is depicted in Figure
6.11(a). Using the compare track of the cluster view shown in Figure 6.11(b), we can see that one has
a pretty good composition, while the other shows an unsatisfying histogram. Unfortunately, relations
do not contribute much to the interpretation in this case, because there are only two clusters. Thus,
there is only one bilateral relation, that we cannot evaluate as no further relations exist for reference.
We are now faced with the question of how to proceed. Since we only have four feedback options, we
can use the exclusion principle. A merge is out of the question due to two main reasons. First, it would
get us back to where we came from, i.e. the original red cluster, which needed adjustment. Second,
one of the obtained clusters has a good composition and the distance indicators—the only meaningful
measure for relation in this two-cluster setting—shows reasonable separation. Using refine would
only be appropriate for the already well defined smaller cluster but not the other, which basically
leaves split.

Although this seems an option, the attribute view kind of contradicts this idea. Figure 6.12(a) shows
its compare track, where we can see that the bigger pink cluster overlaps with the red cluster in each

(a) Newly created clustering. (b) Comparison of the two new clusters.

Figure 6.11: Results of the restructuring.
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(a) Cluster comparison on the attribute level. (b) Result of further split adjustments.

Figure 6.12: Adjustment of the restructured clusters.

dimension. Furthermore, it covers the full range of the global dimension in contrast to its more local
sibling. The histogram shows a nearly uniform distribution which makes further division unlikely.
To illustrate what happens if this adjustment is applied nonetheless, we issued a sequence of two
splits. The first yields a larger and a smaller child, of which the large is divided further due to its
characteristics. The resulting clustering features six clusters and is illustrated in Figure 6.12(b). All
in all, it is not a satisfying result: nearly a quarter of all objects is assigned to the noise cluster, half of
the clusters are very small and probably insignificant due to the already reduced size of the dataset.
Despite all adjustments, halos show that all clusters need adjustment. Even the well formed cluster
that was left untouched is compromised due to the increased number of clusters in its proximity. As
no improvement is gained we discard the steps and go back to the initial clustering of step 9. The
failure of split also rules out the option of another restructure, which means we have to accept the
current state as we cannot improve it. With this, we move on to the last step of the tour.

Step 10: With restructure, we created a new branch of our process for a subset of the original data.
In order to interpret the structures found in the context of the whole clustering, we have to get them
back to the trunk of the process. For this we use the integrate command, which is the counterpart of
restructure. At the moment, we just allow a branching depth of one, i.e. after a restructure is issued, it
cannot be applied again before the created branch is incorporated into the trunk. As integrate replaces
restructure in the feedback menu, the number of available commands remains constant.

After integration is finished, our process comes to an end with the final clustering result shown in
Figure 6.13(a). Most of the clustering is in good shape, with the two newly integrated clusters being
the exception. As both are located near the purple cluster, they influence it, which results in an
increased outer halo. However, regarding our available options and the experience gained during
process execution, we can assume that the current clustering states the best result possible under the
circumstances.

To get a better idea of said circumstances, we depict the final result with a scatterplot in Figure 6.13(b).
There we can see how our final clusters are located in the dataset. The three clusters on the right side
are the result of the first two steps of our guided tour. The purple one was created with the merge
in step 1, while the green and yellow ones were obtained via the split in step 2. All these clusters
are spherical and thus can be identified with k-means. In contrast, the clusters on the top left that
made up the original green cluster we split during steps 3 and 4, have a more problematic structure.
Although both clusters can be distinguished as separate groups, their direct adjacency makes it hard
for algorithms like k-means to separate them. However, with our approach we were able to separate
them, although the yellow-green cluster was reduced down to a compact core. The reason for this is
our employed relation measure, from whose point of view both clusters are not clearly separated due
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(a) Clustering view of the final result. (b) Scatterplot of the final result.

(c) Complete process sequence.

Figure 6.13: Final results of our exemplary process application.

to their proximity. Due to this, the yellow-green cluster was reduced to its compact core, which im-
proved its composition and separation. Regarding the clusters in the lower left, it is easy to understand
that restructure had to be applied there. Due to their shape, k-means is effectively unable to separate
them. Only the combination of multiple clusterings via integration, allowed their identification. This
also shows that our decision to keep a solution that was not perfect but could not be improved further
under the given conditions, was correct. All adjustments taken during our exemplary application are
summarized in Figure 6.13(c), using the process view. This view allows the involved user to retrace
his actions and furthermore enables other users to understand the adjustments that lead to the final
result.

6.2 LEARNING BY DOING - PROCESS ADAPTATION

The compact and direct nature of our feedback operations allows users to apply appropriate adjust-
ments and resolve unclear situations, using the principle of exclusion. However, as seen in our ex-
ample, we can run into dead ends that we cannot escape in a satisfying way, using only the primary
level of control. In such cases, we typically have to accept certain compromises regarding the result.
Although this lets our process look limited at first sight, it is actually not a drawback. During iterative
refinement, we do not only gain information from the clustering result, but also from the course of
action itself. The way in which adjustments are applied and results are produced, provides us with
knowledge that can be used to adapt and improve our process. So every time we run into a dead end,
i.e. conclude the clustering process with an unsatisfying result, we can follow a train of thought that
is defined by the modular character of our process and its components. Subsequently, we present a
short guide on how this is done.
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If we hit a dead end on the primary level of control, there are three possibilities to escape it. The
first one is ensemble configuration, i.e. the secondary level of control for the algorithm platform.
Our example from the previous section shows that certain structures inside the data cannot be iden-
tified by certain algorithms. This prevents satisfactory result adjustments and can only be resolved
by employing a different ensemble configuration. Inevitably, we are confronted with the question of
algorithm and parameter selection. These tasks can be done more or less sophisticated, depending
on the available level of experience. However, if user experience is low and no expert is available,
we suggest the following essential configurations. We know that there are certain algorithm families
that share certain traits, which designate them for certain data characteristics. Unfortunately, this
classification is extensive and variable. Thus, maintaining an ensemble configuration for each class
is not really feasible. For this reason, we used our building blocks approach to find the most basic
difference between clustering algorithms that can be used to create a taxonomy. Our examination
starts with the different phases of an algorithm. Optimization and association are too individual and,
thus, cannot be used for our classification. Selection is also sorted out as there are unlimited options
for filters and conditions, which leaves evaluation. The defining parts of this phase are the distance
measure and its inputs. While the function itself is too variable, we find our desired basic difference
in the relation between its inputs, i.e. points and references. There are two options: either points and
references are identical or not. Based on this, we can create two base classes that divide all existing
clustering algorithms. Now we can create one ensemble configuration for each class, which should
provide enough versatility to tackle most datasets. Our proposed configuration for the class in which
references and points are not equal is k-means. For the second class we suggest DBSCAN. The selec-
tion of parameters for both configurations is greatly eased by the structure of our process. As we use
ensembles, single parameterizations do not have a critical influence. As long as a parameterization
creates a non-trivial clustering, i.e. a result with more than one and less than n clusters, it contributes
useful structural information that can be exploited during integration and iterative refinement.

The second way to escape a dead end is to switch the method of integration. Changing the way in
which the structural information from the ensemble is combined, also changes how adjustments are
realized. Thus, previously impossible improvements can be enabled. Due to the modular character of
our process, this switch—e.g. from flexible clustering aggregation to frequent groupings—is easy to
perform and does not even require a re-calculation of the ensemble.

The third and last escape option is located in the hybrid-visualization. Result interpretation strongly
depends on the measures used to present cluster composition and relations. In our small screen
visualization we employed soft assignments for this task. These were designed with spherical clusters
in mind, which means from their point of view freeform structures like the L-shaped cluster from our
example will never be considered as decent clusters. This issue can cause phantom dead ends, where
a valid cluster exists but the user is not able to recognize it as such, due to biased measures. As our
visualization concept is also modular, this issue can be fixed by introducing a different point of view
by employing alternative measures to present composition and relations. We suggest a measure aimed
at freeform clusters to complement the already used soft assignments.

These three options provide a large potential for adaptation of our process. When a user encounters a
dead-end situation they should be used in the following order: First, the point of view in the visualiza-
tion should be changed to clear potential mismatches during interpretation. Second, the method of
integration should be changed, as this can enable new options without changing the existing ensem-
ble. Third, the ensemble configuration should be switched. These options should be able to resolve
almost any issue a user may encounter.
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6.3 SUMMARY

The components described in the previous chapters enabled us to put together a realization of our
clustering process. It was used on a small example dataset to exemplify the procedure of iterative
refinement in the form of a guided tour. In the course of our description we regarded every action
taken by the user and illustrated each step with the corresponding view from our mobile visualization.
Particular attention was given on the derivation of appropriate feedback operations and the resolution
of unclear situations. In addition to this, we considered the aspect of process adaptation to different
settings. For the event of iterative refinement being stuck in a dead-end situation, we proposed a
simple course of action that utilizes the modular character of our process to adapt it, and escape
the consequences. Options for changing ensemble configuration, switching integration methods, and
introducing alternative points of view into the hybrid-visualization make our clustering process highly
versatile.
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7
EVALUATION

7.1 User Study Setup

7.2 Application Results

7.3 Usability Results

7.4 Summary



O bjective and meaningful evaluation is the Gordian knot of clustering. Typically, it is aimed
at result quality or runtime performance to rate how good and/or fast an algorithm performs.

In contrast to other data mining techniques like classification or frequent itemset mining, clustering
knows no ground truth that can be used to assess and compare performance. Basically, clustering
tries to discover previously unknown knowledge by identifying structures in the data. With this, a
clustering result must be considered more as a hypothesis rather than a fixed statement. Therefore,
result evaluation and validation must be done separately and in accordance with the application do-
main from which the processed dataset originated. Despite these characteristics, there exists an un-
derstandable desire for quality measurement in order to emphasize the benefits of a newly proposed
approach in comparison to existing work. This lead to the establishment of two particular evaluation
procedures for traditional clustering algorithms that are widely used in the contemporary clustering
practice. The first one involves a dataset with a known gold standard regarding its partitioning. This
gold standard acts as ground truth for comparison and can be generated by either creating synthetic
data with ’handmade’ clusters, or using realistic data that is partitioned by a domain expert. Based
on this, the performance of different algorithms is rated by comparing the results they produce with
the gold standard solution. The second approach does not create such a gold standard, but employs
quality measures like Dunn’s Index [18] to score the performance of different algorithms in a relative
fashion.

Unfortunately, both approaches do not always produce fully reliable results. As mentioned earlier,
quality measures are scenario-specific and are based on a specific model of cluster quality. If this
model does not fit the distribution of the underlying data or the cluster model of the used algorithm,
quality measures become unreliable [35]. Working with a dataset and a gold standard can introduce
a bias to evaluation because algorithm parameterization can be optimized with the optimal solution
in mind. This does not represent a realistic application setting, in which the ground truth is un-
known and cannot be utilized for modifications. Although they lack objectivity and resilience, these
approaches still constitute the most common way of evaluation in the area of clustering.

Regarding the evaluation of our clustering process, we have to rethink the existing procedures. Al-
though our process ultimately produces a clustering result, whose quality is of interest, it is not its
single main goal. The focus of our process is to provide a versatile and easy-to-use way to create and
modify clusterings. In doing so, it does not define new clustering algorithms, but provides a platform
for the application of existing ones. Due to this situation, it is more suitable to assess the journey than
the reward, i.e. we focus our evaluation on the production of the clustering. An optimal way to do this,
would be to make an implementation of our process available to users in various application domains
and let them work with it. The performance of our approach could then be measured via feedback
regarding usability, cross-validation of obtained results by domain experts, and the knowledge or pub-
lications that emerge during its application. Unfortunately, this is not possible in the timeframe of
one thesis, as such a deployment requires the release of an implementation that is nearly a market
ready product. Development of the necessary methods and their prototypical implementations took
several years. Realization of this evaluation approach would at least require an additional two years for
completing the implementation and giving the community time to work with it. Since these time re-
quirements cannot be satisfied, we use a scaled down version of this evaluation approach and execute
a small user study.

7.1 USER STUDY SETUP

As already mentioned, the goal of our process is to provide an easy and usable way for producing clus-
terings. In order to measure how well this goal is achieved we execute a user study that consists of
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(a) Starting solution A. (b) Starting solution B. (c) Starting solution C.

Figure 7.1: Starting solutions for the user study.

two main tasks, which the probands have to complete. The first one is to actually work with an imple-
mentation of our process. For this we use the setting from Chapter 6 again. Our mobile visualization
is used as visual-interactive interface, while the flexible clustering aggregation handles integration in
the algorithm management. We also use the same dataset, as it is synthetic and we know its opti-
mal partitioning, which allows us to rate the quality of results to a certain degree. With the first task
we want to show that our approach of interaction and iterative refinement enables users to create a
satisfying clustering solution from a variety of situations, even if the starting point is not optimal.

For this, three different ensembles based on k-means were configured to create different starting
solutions for iterative refinement. Scatterplots of the resulting initial clusterings are shown in Figure
7.1. From left to right, the three ensembles were designed as follows. Solution A originates from the
same ensemble already used as an example in the previous chapter. For solution B, the underlying
ensemble is configured with small values for k. This not only reduces the number of clusters, but
also the degree of structural information available for split operations. Assuming solution A as a
baseline, solution B constitutes a more difficult starting point. It requires more adjustment steps,
which also include multiple restructure operations to get additional information for the clusters at
the top. In contrast, solution C offers an easier starting point as it only requires users to adjust the red
and green clusters on the left. We divided the 15 probands that took part in our study in three groups
by randomly assigning 5 users to each ensemble/starting solution. To assess the performance of our
process we examine the obtained results and also monitor the number of issued adjustments and their
sequence in order to assess how users were able to solve the task.

Before the test persons actually started working with the system, they were given a short tutorial on
its application. This included a 15 minute demonstration and a handout illustrating the gestures used
to control the visual-interactive interface. All probands were monitored during their work and could
request help on controlling the system.

In the second task, our test users were asked to provide feedback regarding the usability of our process.
To measure the perceived usability we use the widely popular System Usability Scale(SUS) [12]. The
SUS is a simple questionnaire with ten questions. Each one is represented by a five-point Likert
item that allows answers on a scale ranging from strongly disagree to strongly agree. Assessment of the
provided answers results in a single score that can be used to rate the usability of the evaluated system.
Figure 7.2 shows the SUS questionnaire.

7.2 APPLICATION RESULTS

Subsequently, we present the final clustering results that were created by the probands of each of our
three groups. For the purpose of illustration we provide scatterplots of all solutions and present some
statistics regarding the number of applied adjustments and how often feedback options were revoked
using the redo feature.
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System Usability Scale

         
© Digital Equipment Corporation, 1986.

         Strongly       Strongly 
         disagree         agree

1. I think that I would like to
   use this system frequently

2. I found the system unnecessarily
   complex

3. I thought the system was easy
   to use                      

4. I think that I would need the
   support of a technical person to
   be able to use this system

5. I found the various functions in
   this system were well integrated

6. I thought there was too much
   inconsistency in this system

7. I would imagine that most people
   would learn to use this system
   very quickly

8. I found the system very
   cumbersome to use

9. I felt very confident using the
   system

10. I needed to learn a lot of
   things before I could get going
   with this system 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 7.2: SUS questionnaire.
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(a) Result 1. (b) Result 2. (c) Result 3.

(d) Result 4. (e) Result 5.

Figure 7.3: Refined clusterings for group A.

7.2.1 Group A

Figure 7.3 depicts the results obtained from starting solution A. We can see that the adjusted cluster-
ings are in general pretty good. All users correctly used merge to combine the two initial clusters in
the lower right quadrant. Furthermore, the split feedback was used to divide the clusters at the top.
Regarding the adjustment of the red cluster in the bottom left users had different opinions, which was
expected. As mentioned in Chapter 6, this cluster cannot be adjusted perfectly with the employed
process configuration. By applying restructure, the cluster is divided into two new clusters. From
the user’s point of view, one of these shows an improved composition while the other’s composition
and relation get worse. In this situation the test users made different decisions. Two regarded the
improvement of one cluster as sufficient and kept the adjustment which leads to results 1 and 3. The
other two judged that no improvement was achieved and decided to go back to the previous mediocre
version of the cluster. Regarding the adjustment of said cluster, result 5 shown in Figure 7.3(e) con-
stitutes an outlier. The test person also used restructure and decided to take it back. In contrast to the
remaining users, the proband did not accept the reverted cluster state and applied a split with strong
force that relocated more than 70% of its members to noise. Due to this, the cluster was reduced
to a small core which naturally lead to an improvement composition and relation. Although all par-
ticipants were informed that major amounts of noise disprove a successful adjustment, the proband
stayed with his decision.

Next, we examine the number of adjustments that were applied to reach the presented solution. We
already ran through this example in the previous chapter and introduced a corresponding adjustment
sequence, which is used here as reference. Figure 7.4 illustrates the adjustment sequences for each
clustering created in group A. The sequences that lead to the results 1 to 4 are pretty close to the
reference and range from 5 to 8 adjustments. In general, they contain the mandatory merge and split
operations, but differ regarding the restructure feedback. Although each user issued this operation,
only two kept it for its improvements. Again, result 5 states an outlier as it contains 13 adjustments.
However, the difference mostly lies in the number of applied refine operations—6 in this case—which
represents the individual degree of fine-tuning users are willing to employ. The number of redo’s, i.e.
adjustments that were taken back, ranges from 1 to 6 with an average of 3.
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(a) Reference from Chapter 6.

(b) Adjustments leading to result 1.

(c) Adjustments leading to result 2.

(d) Adjustments leading to result 3.

(e) Adjustments leading to result 4.

(f) Adjustments leading to result 5.

Figure 7.4: Adjustment sequences for group A.

7.2.2 Group B

Now we examine the results from the ’difficult’ group. As before, scatterplots of all obtained cluster-
ings are shown in Figure 7.5. Like with group A before, we can see that the major adjustments were
applied, despite the disadvantageous starting situation. All of the test users correctly identified the
need to split and restructure the top clusters and achieved similar results. Like before, the adjustment
of the red cluster in the lower left proved challenging. In contrast to the previous group, all users
decided to keep the cluster as one. Some applied the restructure command, but took it back. Again,
one user applied split/refine commands to greatly reduce cluster size as can be seen in Figure 7.5(b).

As expected, our test users needed to apply more feedback operations to reach a satisfying solution
than in the previous group. Due to this, adjustment sequences become very long, which is why we
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(a) Result 1. (b) Result 2. (c) Result 3.

(d) Result 4. (e) Result 5.

Figure 7.5: Refined clusterings for group B.

result adjustments redo merge split refine restructure integrate
1 8 7 3 1 0 2 2
2 14 1 4 4 2 2 2
3 14 1 7 2 1 2 2
4 18 0 8 3 3 2 2
5 16 3 8 3 1 2 2

Figure 7.6: Adjustment sequences for group B.

use a shortened notation for their description. The table in Figure 7.6 shows the number and type
of adjustments issued for each result. Furthermore, it lists how many redo operations were used
to withdraw unsuccessful adjustments. Please note that the adjustment column contains only the
number of kept adjustments and does not account for the number of withdrawn steps. All test persons
started by applying a split to the large initial cluster at the top. With this, two new clusters were
created in the top left and right quadrant. In order two refine these clusters further, it was necessary
to apply the restructure operation to each of them. While all users did this, a notion of randomness
was introduced during restructuring of the top left green cluster. This randomness originates from a
safeguard that we implemented in our restructure operation. When the initial ensemble configuration
is applied to a smaller subset of the data, there is a small chance that the different resulting clusterings
overlap in a way that leads to a clustering solution with only one cluster. In this situation, the focus
on pairwise assignments during flexible clustering aggregation causes transitive effects that connect
all clusters of the ensemble. Should this case occur, our safeguard starts a loop that randomizes initial
centroid positions and reduces the values for k until a solution with more than one cluster is obtained.
In our example this safeguard is activated during processing of the green cluster and causes restructure
to produce different numbers of clusters. This requires users to issue a different amount of merges
to refine this region of the dataset. Despite this randomness, the final results show that all probands
were able to handle the situation with the tools provided by our process and arrived at the same
conclusions. Restructuring of the top left cluster was not affected by this issue and was identical for
all users. Please note that this issue is not present in our frequent groupings approach.
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(a) Result 1. (b) Result 2. (c) Result 3.

(d) Result 4. (e) Result 5.

Figure 7.7: Refined clusterings for group C.

result adjustments redo merge split refine restructure integrate
1 11 0 4 2 1 2 2
2 4 5 2 2 0 0 0
3 2 7 0 2 0 0 0
4 1 1 0 1 0 0 0
5 15 4 5 3 4 2 2

Figure 7.8: Adjustment sequences for group C.

In general the performance of group B was quite good. Due to the mentioned reasons the number of
applied adjustments ranges from 8 - 18, which is considerably higher than group A. This was expected
and originates from the more difficult starting solution. Again, all test persons performed the same
major adjustments—split of the top cluster and two restructures on its descendants—and differed
only in the treatment of the red cluster and the number of issued refine commands. Interestingly, the
number of redo’s was a little lower, ranging from 0 to 7 with an average of 2.4.

7.2.3 Group C

The starting solution for group C was intended as an easy starting point that only requires the ad-
justment of the two clusters on the left. To our surprise, the test users of this group struggled quite
a bit during the refinement of the starting solution, which resulted in considerably different adjust-
ment sequences. The final results for this group are shown in Figure 7.7. Again, we can see that all
users correctly adjusted the top left cluster while the red cluster was treated differently. Like before,
three ways for its treatment could be observed. In the first three results, users issued split or refine
operations to improve the cluster. Due to the configuration of ensemble C, this actually leads to the
creation of two new clusters in result 1 and 3. The remaining two users choose to leave the cluster as
one—Result 4—or applied the restructure command—Result 5—to further improve it.

134 Chapter 7 Evaluation



While users of the previous two groups naturally created very similar adjustment sequences, the mem-
bers of group C worked in a very individual fashion as can be seen in Figure 7.8. One user started with
an unnecessary merge that was not indicated by the visualization at all. Subsequently, he applied
merge operations to basically restore the initial cluster configuration, before he applied the obvious
adjustments. This resulted in a high adjustment and redo count. Another user issued the two nec-
essary splits, but employed too much force. This lead to some poorly separated child clusters that
were merged again, finally producing result 2. The third user only kept the two necessary split ad-
justments, but played around with the force value which lead to a high redo count. User four was the
most efficient and only used one split to improve the result. Finally, the fifth user took a totally differ-
ent approach and used the whole palette of feedback operations. His adjustments produced result 5,
which is shown in Figure 7.7(e) and constitutes the most accurate partitioning of group C. All in all,
this group showed the most variability in the refinement procedure with an adjustment count ranging
from 1 to 15 and a redo count ranging from 0 to 7 with an average of 3.4. Although we do not know
what caused the diversity in this group, we were pleased to see that, regardless of the way they took,
our process guided all users to similar final results.

7.3 USABILITY RESULTS

After each proband was finished working with the clustering, he/she filled out the provided SUS ques-
tionnaire. In order to calculate the total usability measure, each answer is evaluated and provides a
score from 0 to 4. For each sheet, these scores are summed up and multiplied with 2.5 to get a final
score that ranges from 0 (negative) to 100 (positive). This scale is very intuitive and can be used for
the relative comparison between different approaches, stating which one is better in terms of usabil-
ity. However, an absolute judgment on usability cannot be made with this score. In order to solve
this issue, several approaches to establish an absolute scale have been made. Mostly, these analyze a
large number of SUS surveys, assume the most frequent score as average and build an absolute scale
around it. In this section, we use the absolute scale proposed in [9] as a reference for our scores. The
authors added a seven-point Likert item as the eleventh question to nearly 1000 SUS surveys. The
additional question ’Overall, I would rate the user-friendliness of this product as’ offers the choices:
Worst Imaginable, Awful, Poor, OK, Good, Excellent, and Best Imaginable. Based on the survey re-
sults, the authors assigned a score range to each of these classes.

Average usability scores from our user study are shown in Figure 7.9. We can see that the overall
score for our approach is 72.7. According to the absolute scale from [9], this puts out approach in the
’Good’ class, which is defined with a mean score of 71.4 and a standard deviation of 11.6. On closer
inspection, we found that scores vary considerably between the different groups. As shown in Figure
7.9 group B has the lowest average score of 68. A reason for this could be the higher difficulty of the
corresponding starting solution. Users had to perform a high number of adjustments during iterative
refinement, i.e. reaching the intended goal was more tiresome than in the other groups. Maybe this
had a negative impact on the perceived usability. The highest score of 78.5 was obtained from group A
and could be placed in the ’Excellent’ class of the absolute scale which has a mean of 85.5 and a stan-
dard deviation of 10.4. Again, the reasons for this could be located in the ensemble/starting solution.
The lower average number of adjustments and the general conformity of adjustment sequences in this
group show that users could easily deal with the given setting. Located between these extremes, we
find group C with an average score of 71.5 that fits the diverse character of this group.

In order to identify the areas of our approach that still need improvement we closely examined the
provided answers. Figure 7.10 shows the average scores for each of the 10 questions. We can see
that most of the scores are larger or equal 3, which is pretty good considering a maximal value of
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Figure 7.9: Total SUS scores from our user study.

Figure 7.10: Average score per question.

4. However, questions Q1, Q7, and Q10 fall short of this mark and provide the three weakest scores.
Question 1 is given as ’I think that I would like to use this system frequently’, which was hard to answer
as nearly all of our probands do not work in the area of clustering. The two remaining questions
consider how much people need to learn in order to use the system. The lower scores for these
points show that our short verbal introduction did not communicate the operating instructions for
our process in an optimal way. This issue could be improved by adding some sort of on-screen help
that would provide user support.

All in all, the obtained SUS scores indicate a very good usability for our process. However, many of
our test persons noted that the SUS questionnaire was lacking some features. For example, many
users liked the overall interaction concept, but were not fully satisfied with the implementation of
some gestures. These users criticized that they had no option to justify their ratings. Other probands
missed a rating option for ’Fun of use’. Interestingly, we observed that several users treated working
with our process as a game. Successful cluster improvements made them happy and motivated them
to further adjust the clustering. They were also eager to obtain the optimum of each cluster and were
disappointed when they could not reach this goal. This characteristic has significant potential for
the further development of our process. Gamification of our process could be used to increase user
engagement and motivation which could lead to better usability and result quality.

7.4 SUMMARY

Due to the character of clustering, meaningful evaluation is a big challenge. Traditional clustering
algorithms are typically evaluated solely with regard to result quality. This is problematic as clustering
aims to uncover unknown knowledge and, thus, knows no ground truth. Because of this, evaluation
results are often unreliable. Furthermore, this approach is unfitting as our process does not define a
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new clustering algorithm, but a versatile and easy-to-use clustering procedure. For an optimal eval-
uation we would have to release an implementation of our process to the community. Users from
different application domains would then work with our approach and provide feedback regarding
usability and their obtained results. As such an evaluation would be too complex and time-consuming
for the scope of this thesis, we carried out a small user study in order to assess the core features of our
approach. In a first task, we let users apply our process to an exemplary scenario. Test persons were
divided into three groups and each was given a different clustering ensemble and starting solution
for the same dataset. The obtained clustering results show that our process enables users to produce
correct clusterings even from different disadvantageous situations. As a second task we used the SUS
questionnaire to rate the overall usability of our process. Although it was rated as good, we closely
examined the provided answers and identified minor flaws as well as ways to clear them out.
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8
CONCLUSION AND OUTLOOK



T he abundance of data in modern life and its continuous collection have made data-mining
and knowledge discovery challenging, but mandatory tasks. Out of all data-analysis approaches,

clustering is one of the most fundamental techniques for the extraction of unknown knowledge. By
partitioning a set of objects into groups according to their similarity, structures that represent pos-
sible semantic connections are identified. Although the concept of clustering is clearly defined, its
solution is extremely challenging due to the variable character of similarity, its subjective perception,
and the absence of a ground truth, which is inherent when extracting new knowledge. To deal with
these uncertainties, specialization has been a formative trend in clustering-algorithm design for the
last years. Narrowing down the application scenario allows to incorporate domain specifics into the
clustering algorithm which often leads to improved performance, but greatly reduces versatility and
increases development costs.

For these reasons, contemporary clustering offers a multitude of specialized tools, whose application
requires a high-level of expertise. As large amounts of data emerge in more application domains,
clustering has become a widespread analysis technique and new users must utilize it. With this de-
velopment, characteristics like usability and applicability have gained importance. The application
of clustering in its current state requires amateur users to either hire experts or try building a fitting
solution by trial-and-error. This thesis aims to solve this dilemma by structuring and integrating the
necessary steps of clustering into a guided and feedback-driven process.

To reach this goal, we first gave a brief overview of contemporary clustering and its basic steps. We
described different available approaches to clustering and some of their associated methods. During
an assessment of these existing techniques, we outlined their limitations regarding applicability and
usability for non-expert users. We came to the conclusion that a lack of background-knowledge and
the vast amount of necessary critical decisions are the main problems emerging during the creation
of a clustering. These issues also lead to an iterative mode of operation in which more or less random
variations are introduced during each step with a negative influence on result quality and user sat-
isfaction. To tackle these challenges, we completely reconsidered the current practice of clustering.
Individual steps were tightly coupled and evolved into a basic concept of a versatile clustering process.
Its template contains two major components: the algorithm management that handles clustering cre-
ation and the visual-interactive interface for user interaction. Both work in concert to allow users
the iterative refinement of a clustering. These defined requirement were realized by proposing novel
methods and techniques.

For the algorithm management three major tasks were defined. First, a modular approach for the de-
scription and design of clustering was proposed. We defined the characteristic phases of each cluster-
ing algorithms and its basic building blocks. These were refined into a vocabulary, based on functions
and matrices. Its mathematical syntax provides a consistent way of description that is formal, but not
too specific and still allows the recognition of the abstract tasks an algorithm performs.

Second, we proposed integration techniques to make our process versatile and enable it to incorporate
a variety of clustering algorithms. We dismissed the traditional single-execution paradigm and choose
the concept of ensemble clustering, which works with sets of multiple clustering configurations. We
evolved it from a passive post-processing technique into an active and controllable method and de-
scribed two novel integration methods: Flexible clustering aggregation works on the fine-grained
level of object pairs and incorporates soft cluster assignments, an extended pairwise similarity con-
cept, as well as a scoring function for reliability. With this, a way of direct control over the aggregation
procedure was established and made it the focal point of action for working with the clustering. The
frequent groupings approach was proposed as a more coarse-grained technique to realize integration.
It constructs a consensus solution by identifying and combining prevalent sets of objects. This allows
the construction of multiple robust clustering alternatives and tackles some drawbacks of pairwise
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methods. Similar to the flexible clustering aggregation it allows direct adjustments of the consensus
clustering and does not require users to deal with the underlying clustering ensemble.

As clustering creation is a vital part of our process, users must be able to control it. To relieve users
from complex interactions and keep away most technical details, an understandable and easy-to-use
control interface was proposed. It structures all available control options into multiple levels and acts
as connection point for the visual-interactive interface, which is the second major component of our
process. It constitutes the main point of interaction between the user and our clustering process and
consists of two parts: high-level feedback for result adjustment and a hybrid visualization concept
for result interpretation. The high-level feedback contains four commands: merge, split, refine, and
restructure. In contrast to the variable technical parameters of traditional clustering, our feedback is
universally valid and describes direct effects in the clustering result. To achieve independence from
the underlying algorithms, specific mappings between our feedback and the methods of the algorithm
management were described.

In order to enable users to interpret the clustering result and derive appropriate adjustments, a hy-
brid visualization concept was proposed. It was designed as a middle way between overly detailed
data-driven visualizations and too general result-driven quality measures. The concept focuses on
the cluster level and communicates two abstract aspects: composition and relations. While composi-
tion represents the homogeneity of clusters, relations show their separation. In addition, traditional
single-display visualization was unraveled into multiple views that communicate a reasonable level of
detail without overburdening users. These characteristics make our approach immune to high dimen-
sionality and clutter induced by high volume data.

As the hybrid visualization concept itself is not an actual visualization, but a template its construc-
tion, we developed two implementations of it to illustrate the capabilities of our concept. The first
visualization was aimed at stationary desktop platforms with large screens and conventional input.
It provides users with three simple and clear views for result interpretation and fully supports our
high-level feedback. The second implementation was aimed at the small screens of smart devices and
takes advantage of the intuitive touch-based input they provide. The view structure was redesigned,
while features for cluster comparison and the tracking of changes were added. With all this, users are
provided with a tool that is powerful, but still convenient to use and easy to understand.

Finally, all proposed components were assembled into a realization of our clustering process. A small
example dataset was used to exemplify the application of iterative refinement. During this guided
tour, every action and its corresponding visualization views were examined and described. Further-
more, the derivation of appropriate feedback operations and the resolution of unclear situations were
discussed. In case the iterative refinement gets stuck in a dead-end situation, a simple adaptation
approach can be utilized to modify our approach. Taking advantage of the modular character of our
clustering process, it contains options like changing ensemble configuration or switching integration
methods to ensure a high degree of versatility.

To evaluate the overall performance and usability of our process, a user study was designed and carried
out. It consisted of two tasks that were performed in succession. First, users had to apply the proposed
process in one of three exemplary scenarios. While each scenario used the same dataset, different
clustering ensembles were employed to create varying starting solutions. Although some of these
initial situations were more challenging than others, our clustering process enabled users to produce
correct clusterings. In the subsequent second task, users had to fill out a SUS questionnaire to rate
the perceived usability of our process. The obtained results showed a very good overall usability and
pointed out some minor issues that can be easily fixed.

In this thesis we introduced a template for a feedback-driven clustering process and proposed the
necessary components to realize it. With it, amateur users are enabled to easily create and adjust
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clustering results. Our process-centric approach to data clustering is still a novelty and this thesis
only describes possible options to implement it. For these reasons, there is a lot of potential for
further research regarding optimization and the addition/expansion of features. In this section, we
will name a few research questions for the whole process and its core components.

We begin with the algorithm management and its building blocks approach for algorithm design. At
the moment its main focus is description and specification. In the future we also want to consider the
efficient execution of these descriptions on different platforms. For this, our unique matrix data model
and matrix functions offer various interesting opportunities. Already, a lot of usable related research
exists in different domains. For example, efficient large matrix computation has a long tradition as an
area of research in high-performance computing. Furthermore, graphic cards and CUDA are strongly
geared to matrix processing and seem to be an ideal target architecture for our approach. Besides these
hardware-centric approaches, research activities in the database community try to enhance database
systems by integrating mathematical constructs. For example, SciDB [13] is a native array DBMS that
combines data management and mathematical operations. With this, it mixes statistical and linear
algebra operations with data management operations. As this work demonstrates, such an approach
brings several advantages from the perspective of application as well as performance.

The visual-interactive interface also holds different options for future research. In Chapter 6 we al-
ready mentioned that result interpretation strongly depends on the measures used to present clus-
ter composition and relations. Until now, we employed soft assignments for this task, which were
designed with spherical clusters in mind. Our example has shown that this technique has trouble
working with freeform clusters. Therefore, the development of measures aimed at this kind of clus-
ter, states an interesting research question. As density based clustering methods like DBSCAN [21]
and DENCLUE [37] already contain ways to model freeform clusters, these techniques could be an
interesting starting point for this research.

While we do not see a need to expand our high-level feedback options, researching different scopes
for their application is an interesting goal. Limiting the application of feedback to a certain set of
dimensions could provide a way for integrating functionality from the area of subspace clustering and
improve the analysis of high-dimensional datasets.

When looking at the process itself, collaboration is an obvious area for further research. With our
proposed approaches, the clustering process itself has become traceable and comparable. This means
users that work on the same dataset can share and compare their adjustment sequences in order to
get feedback and new ideas for further refinement. To support this it is necessary to develop concepts
for the comparison of processes, the annotation of certain steps, and the creation of different process
branches to track alternative courses of action.
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