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Zusammenfassung
Die Identifikation sprachaktiver Areale ist von höchster
Bedeutung bei der Operation von Tumoren in der Nähe
des vermuteten Sprachzentrums, da das klassische Kon-
zept einer konstanten Lokalisation des Sprachzentrums
sich als unrichtig erwiesen hat und die räumliche Aus-
dehnung dieser Areale eine hohe interindividuelle Vari-
anz aufweisen kann. Einige neurochirurgische Zentren
benutzen deshalb intraoperativ elektrophysiologische
Methoden, die jedoch eine Operation am wachen Patien-
ten voraussetzen. Dies kann sowohl für den Patienten als
auch das Operations-Team eine schwere Belastung bei
diesem mehrstündigen Eingriff darstellen, zusätzlich kön-
nen epileptische Anfälle durch die elektrische Stimula-
tion generiert werden. Alternativ können Modalitäten des
«functional brain imaging» (PET, fMRT, MEG usw.) einge-
setzt werden, die die individuelle Lokalisation sprachakti-
ver Areale gestatten. Die Bildfusion dieser Daten mit
einem konventionellen 3D-CT oder MRT erlaubt den
exakten Transfer dieser Daten in den OP-Situs mittels
Neuronavigation. Während Standards bei elektrophysio-
logischen Stimulationstechniken existieren, die eine per-
manente postoperative Verschlechterung der Sprach-
funktion weitgehend verhindern, bleibt die Relevanz
sprachaktiver Areale bei den neuesten bildgebenden
Techniken bezüglich einer Operations-bedingten Ver-
schlechterung der Sprachfunktion bisher noch unklar.
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Summary
The identification of eloquent areas is of utmost impor-
tance in the surgery of tumors located near speech-elo-
quent brain areas, since the classical concept of a con-
stant localization was proven to be untrue and the spatial
localization of these areas may show large interindivid-
ual differences. Some neurosurgical centers apply intra-
operative electrophysiological methods that, however,
necessitate the performance of surgery in the awake pa-
tient. This might be a severe burden both for the patient
and the operating team in a procedure that lasts several
hours; in addition, electrical stimulation may generate
epileptic seizures. Alternatively, methods of functional
brain imaging (e.g., PET, fMRI, MEG) may be applied,
which allow individual localization of speech-eloquent
areas. Matching of these image data with a conventional
3D-CT or MRI now allows the exact transfer of this infor-
mation into the surgical field by neuronavigation. Where-
as standards concerning electrophysiological stimulation
techniques that could prevent a permanent postopera-
tive worsening of language are available, until now it re-
mains unclear whether the resection of regions shown
to be active in functional brain imaging will cause a per-
manent postoperative deficit.
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Due to the complex cerebral anatomy with closely located
structures, where damages might cause severe neurological
deficits, surgery of brain tumors is characterized by the diffi-
culty to preserve structure and function while removing as
much tumor tissue as possible. In some areas spatial orienta-
tion of the neurosurgeon may be relatively simple, while in
others, especially where landmarks are missing or shifted by a
space-occupying lesion, the orientation might be impaired.
Thus, there is an increased requirement for intraoperative
anatomical orientation for the localization of functionally ac-
tive areas, and, in cases of specific tumors (e.g. low grade
gliomas), for the objective assessment of the radicality of re-
section during surgery.
The significance of specific brain areas for complex functions
remains unknown in many cases. It is hard to foretell if elimi-
nation of a specific area will cause functional deficiency. This
is especially true for areas which might be involved in lan-
guage production. The concepts of an interindividually con-
stant localization of speech-eloquent areas developed in the
last century by Broca [1] and Wernicke [2] had to be rejected
[3], in contrast to the interindividual constant localization of
the sensorimotor area that can often be identified unequivo-
cally by preoperative MRI. Thus, if a tumor was located in or
near speech-eloquent areas, in former times surgery was aban-
doned in order to avoid a reduction of quality of life by severe
aphasia, or the tumor was only partially resected far away
from assumed speech-eloquent areas.
Operative techniques with electrophysiological localization
(‘brainmapping’ or ‘electrical stimulation mapping’) of speech
eloquent areas were first inaugurated by Penfield et al. [4] in
epilepsy surgery. A modified technique is used nowadays in
some neurosurgical centers [5–14] in patients with low-grade
gliomas or other lesions close to potentially speech-eloquent
areas, in order to exactly localize the individual localization of
these areas [15] and to prevent postoperative neurological or
neuropsychological deficits by an intermittent monitoring of
function (electrical stimulation of cortical functional areas and
mapping). This method needs surgery in local anesthesia, a
potentially severe psychological burden both for the patient
and the operating team.
‘Functional neuronavigation’ may be considered as an alterna-
tive to the mapping in the awake patient. Image data of func-
tional brain imaging (fBI), i.e. magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI), and
positron emission tomography (PET), are matched with con-
ventional 3D-MRI or CT (computer tomography), and the
complex matched data set containing information about local-
ization of both the tumor and speech-eloquent areas is trans-
ferred into the surgical field by neuronavigation. However, it
remains unclear whether the resection of presumed eloquent
areas defined by fBI is necessarily accompanied by postopera-
tive deficits.

Intraoperative Stimulation Mapping

Whereas most of the intraoperatively applied electrophysio-
logical methods (‘phase reversal’ for localization of the motor
strip, AEP (acoustic evoked potentials) for monitoring of the
vestibular nerve in case of acoustic neurinoma) can be per-
formed under complete anaesthesia, intraoperative testing of
higher cognitive functions, i.e. language, needs testing in the
awake patient. Reversible loss of neuronal function is generat-
ed by the direct electrical stimulation of cortical areas in-
volved in speech generation, manifesting as complete ‘speech
arrest’ or ‘speech disturbance’ [16]. 
An adequate psychological preparation including neuropsy-
chological testing of the patient is essential for a successful op-
eration. Local anaesthetics (e.g. Bupivacain®, Aventis Phar-
ma, Bad Soden, Germany, or lidocain) are applied in suffi-
cient doses in the area of the planned skin incision, and
surgery is then performed with neuroleptic anaesthesia (fen-
tanyl/propofol). After skin incision and trephination the dura
is opened and the visible cortical surface marked by small
‘tickets’ in order to define the planned electrical stimulation
matrix. The tickets and the results of stimulation mapping are
used for a later definition of a safe resection border (fig. 1). A
constant EEG is desirable for early detection of cortical ictal
activity and in order to individually adjust the threshold for af-
terdischarge. The stimulation itself is performed by a bipolar
‘stimulation forceps’ with a distance of 5 mm between elec-
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Fig. 1. Screenshot of the VectorVision2 navigational system (BrainLAB
AG, Heimstetten, Germany) after matching T2-MRI (left side), speech
activation PET (right middle) and OMF-DOPA-PET (right bottom). Sti-
mulator positions during brain mapping are visualized by blue crosses and
can be compared with speech-activated PET areas. The left upper window
shows the video display from the brain surface (microscope view) with
the various stimulation points being marked by numbers (tickets). In ad-
dition, the tumor contour (target area) below the brain cortex is visualized
in the video display. 



trodes and by applying biphasic square-wave constant current
impulses (2–16 mA) with a frequency of 60 Hz. The current
should be triggered by EEG or should be individually adjust-
ed to an event-related level. A stimulation matrix (grid) with a
distance of 1 cm between the stimulated areas is accepted as
standard. A remarkable limitation for applicable speech-para-
digms is caused by the limited capacity of the patient being
under sedation during surgery. Continuous naming of objects,
presented visually every 4 or 5 seconds (‘object naming’) or
generation of verbs according to the visual or acoustic presen-
tation of nouns (‘verb generation’) have been proven to be
useful. A tested area is marked as essential if a complete
speech arrest is provoked reproducibly (twice in a sequence of
three tests) and not caused by ictal activity. The consequence
of a speech disturbance or hesitation is not unequivocal and
further surgical procedure in these cases is not standardized.
According to Ojemann et al. [3], such an area might be partic-
ipating in language production, but is not considered essen-
tial. In the classical Broca-area inhibition of the motor cortex
might be involved if the patient cannot articulate the leader
phrase (‘This is a …’). A resection border of 1 cm [17] up to 2

cm [3] is regarded to be relatively safe in order to avoid post-
operative deficits, although temporary deficits might also be
seen under acceptance of these borders. The impact of the in-
tensity of the current is unknown, since the spreading of the
electrical stimulus in the individual case as well as the exact
area of the inhibited neurons are not known. The additional
time required for mapping varies between 15 and 45 min de-
pending on the type and the number of the applied paradigms.
In his classical work, Ojemann et al. [3] could not confirm the
former concepts of an interindividually constant anatomical
localization of speech-eloquent areas, as formerly pointed out
by Broca [13] and Wernicke [2], although this group found a
significant accumulation of eloquent areas in the Broca-area.
One of the major findings of this group was that eloquent
areas could be detected in a mosaic-like pattern at multiple
localizations, often in areas smaller than 2 cm and preferen-
tially, but not regularly, close to the dominant Sylvian fissure
[3]. Other electrophysiological mapping-techniques, which
allow the localization of the motor-strip (‘phase-reversal’ [18]
or direct cortical stimulation), can, of course, additionally be
used during the procedure.
In the current situation, brain mapping under local anesthesia
is presumably the safest procedure for the detection of
speech-eloquent areas. On the other hand, such testing in the
awake patient means a strong psychological burden for the pa-
tient and is appropriate only for some selected patients. In ad-
dition, there is the risk of a stimulation-induced general
epileptic seizure, for which reason some groups preoperatively
apply antiepileptic drugs.
An alternative for surgery under local anesthesia is a two-
staged surgery. During the first stage, subdural grids are im-
planted. Postoperatively, speech-eloquent areas can be local-
ized by electrical stimulation [19]. In a second stage, the grids
are removed and tumor-resection is performed under preser-
vation of these areas.

Functional Brain Imaging

The individual localization of eloquent brain areas can be
helpful for planning neurosurgical interventions. With the use
of PET, fMRI, MEG, SPECT (single photon emission CT)
and EEG mapping as different modalities for functional brain
imaging, various parameters including blood perfusion, tissue
metabolism and electromagnetic activity can be measured, vi-
sualized and assigned to certain brain areas.
Magnetoencephalography magnetic source imaging (MEG-
MSI) registers and localizes cerebral magnetic events that are
caused by electrical brain activity. The technique is based on
large-array biomagnetometers (SQUIDS) for neuromagnetic
source localization using dipole source localization algorithms
[20]. The integration of a MEG dipole source into a 3D-MRI
is known as magnetic source imaging (MSI). Changes of corti-
cal magnetic potentials can be evoked by certain stimulation
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Fig. 2. Functional imaging of speech areas in a right-handed normal indi-
vidual using fMRI. Visualization of speech activated areas (lower part)
after evaluation using SPM (upper part). Verb generation was used as a
paradigm in this example.



tasks. Peripheral stimulation of somatosensory tracts, inten-
tion of movements, and visual stimulation can evoke such
changes in cortical activity at the somatosensory, motor, and
visual cortex, respectively. Using this technique functional
areas can be assigned to certain anatomical brain areas in the
individual patient. In addition, the extension of functional
brain areas can be determined by recently developed algo-
rithms combined with suitable activation tasks (paradigms) al-
lowing, for instance, the location of speech areas [21]. 
Functional magnetic resonance tomography (fMRI) is based
on the difference of the paramagnetic activity of deoxyhemo-
globin and the diamagnetic activity of oxyhemoglobin. Corti-
cal activation is followed by a local increase of perfusion with
a rising level of oxygenated blood in the postcapillary venous
system. This results in changing ‘dephasation’ in the vicinity of
the ‘gradient field’ visualized by gradient echo sequences
(FLASH, EPI). The changes are mainly marked in the time-
constant T2 and TR* images that are characterized by the loss
of phase coherence of the spin system. An intensification is
possible by increasing the magnetic field and/or an extension
of the echo time. An averaging of the signal is required for
improvement of the signal-to-noise ratio (SNR, fig. 2). Stan-
dardized statistical procedures are not established yet. Vari-
ous groups managed to exactly map certain functional brain
areas, e.g. sensory and motor cortex, primary visual cortex and
primary auditory cortex and multiple areas for intended
speech in individual patients [43]. 
In positron emission tomography (PET), the application of
fluor-labeled deoxyglucose or radioactively labeled water can
be used to measure the regional glucose metabolism or cere-
bral perfusion, respectively. 
Activation studies can discover functional eloquent brain
areas. As a first step, imaging under silent conditions without
activation is performed followed by activation studies using
specific activation tasks. For localizing speech areas, object
naming or verb generation are used. The tasks lead to an acti-
vation of the specific brain areas that are involved resulting in
an increase of glucose metabolism or cerebral perfusion. A
complex statistical evaluation as required by MEG or fMRI is
usually not necessary according to the favorable SNR. 
The transfer of fBI to the operative site has formerly been
performed only by visual interpolation using anatomic land-
marks (e.g. large veins) on 3D-MRI data sets [22, 23]. 

Functional Neuronavigation

An important development for intraoperative localization are
neuronavigational systems. The principle of neuronavigation
is based on mathematically connecting (‘registering’) the
physical space (operative site) with the virtual image space of
preoperative 3D-CT or MRI. The connection is achieved by
identifying corresponding points in the physical and virtual
space building a transformation matrix. By interpolation, any

point of the operative site can be assigned to a corresponding
image point with usually an acceptable error. In contrast to
frame-based stereotactic techniques, not every image slice of
the 3D-space is identified by the stereotactic localizer but by
interpolation to the 3D-space. 
Usually a pointer is used for the technical realization of
image-guided surgery. The pointer position is continuously
and exactly recognized and visualized in the 3D-image data
set on a computer workstation. Accordingly, the surgeon can
compare the actual pointer position at the operative site with
the corresponding position on the 3D-images visualized on the
computer screen. 
Accuracy is a major concern in using neuronavigational sys-
tems. Various factors influence the total accuracy that results
from adding the errors of the single factors [24]. The first fac-
tor depends on the images themselves. Voxel size and geomet-
ric distortion influence this factor. Geometric distortion is a
common problem in MRI and is caused by inhomogeneity of
the magnetic field, the gradient, and chemical shift. The sec-
ond factor results from the quality of registration. Using skin
markers (fiducials), the accuracy depends on the number of
fiducials and their geometrical arrangement. A rather less im-
portant factor is the technical accuracy of the neuronaviga-
tional device that accounts for a deviation of usually less than
1 mm [25]. The total accuracy resulting from imaging, registra-
tion and technical deviation is known as application accuracy.
In addition, intraoperative factors need to be taken into ac-
count. First, a deviation of the patient‘s head that is fixed in a
headrest during surgery may lead to a ‘positional shift’. Fur-
thermore, a shifting of the brain in relation to the skull that is
used for registration will cause an inaccuracy that has been
termed ‘brain shift’ [26]. Brain shift results from differing
physical-elastic properties of the brain, loss of cerebrospinal
fluid during surgery, and shows topographical differences that
can be related to a certain degree of brain fixation at the skull
base and at the tentorium. Even the positioning of the head
has an influence on the amount of brain shift, which makes
the quantitative evaluation extremely difficult. Brain shift usu-
ally varies between operations and continuously increases
during the surgical intervention. 
The application accuracy reaches 2–3 mm under ‘good’ condi-
tions and may amount to more than 7 mm following a ‘bad’
registration [27]. The individual influences of positional shift
and brain shift are usually negligible at the start of surgery.
However, as the surgical intervention progresses, it may occa-
sionally rise to up to 1–2 cm making the neuronavigational
guidance useless. The brain shift problem has not yet been
solved.
The different functional brain imaging modalities (PET, MEG,
fMRI) can be matched with conventional CT/MRI and in this
way, the individually localized eloquent brain areas can be
transferred to structural (anatomical) imaging data sets. The
resulting complex functional and structural image data set can
be transferred to the operative site using neuronavigation.
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This opens new perspectives for surgical interventions in or
near eloquent brain regions [28] and may become an alterna-
tive to brain-mapping techniques in the future [29–32]. Ac-
cordingly, time-consuming intraoperative neurophysiological
mapping techniques that usually put a great strain on the pa-
tients, may be abandoned one day. Figure 1 demonstrates the
brain mapping techniques for speech localization in a patient
operated under local anaesthesia. Using neuronavigation,
findings of intraoperative electrical stimulation mapping are
comparable to preoperative functional PET images.

Discussion and Perspectives

Since human speech is a complex phenomenon, the results
from functional imaging and intraoperative brain mapping de-
pend on the paradigms that are used for functional activation.
Specific activation tasks involve only certain functional as-
pects and related brain regions. Defining suitable paradigms
for pre- and intraoperative speech testing is still a great chal-
lenge for current neuropsychological research.
As intraoperative electrophysiological techniques for deter-
mining eloquent brain areas are still considered to be the gold
standard by most neurosurgeons, exact comparison with pre-

operative functional imaging is desirable. Due to technical
limitations, a comparative analysis of both methods has only
partially been realized so far [22, 28, 29, 33–42]. A prerequisite
for any scientific evaluation of both methods remains the inte-
gration of the neurophysiological stimulation device in the
neuronavigational system and the visualization of various
stimulation points into the complex image data set. In addi-
tion, the data must be available for retrospective analysis [14].
If eloquent areas that have been determined by preoperative
functional imaging (PET, MEG, fMRI) are found to corre-
spond to results obtained by intraoperative cortical mapping,
brain mapping may become dispensable. At that stage, pa-
tients may be operated under general anesthesia using preop-
erative functional data that are applied to the operative site
using neuronavigational guidance. A key point for radical
tumor resection in eloquent brain areas will be the question if
essential and involved speech areas are distinguishable by pre-
operative functional imaging.
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