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1. Motivation 

The chemical element carbon plays a key role in the 21st century. It is the ubiquitous 

element of life and contributes to the balance of our planet by cycles in organisms, 

ground, water, and atmosphere. However, this element will also become one of the 

earth’s greatest challenges. The term “the new carbon age” is associated with the global 

warming as a result of increasing carbon dioxide emissions and the depletion of fossil 

fuels. In simple words, the global carbon circle has sped up. The increasing carbon 

dioxide concentration in the atmosphere is for the most part caused by the continued 

combustion of fossil fuels for energy generation and will lead to continuous global 

warming. The capture of greenhouse gases by adsorption is a promising way to limit the 

increase of the atmosphere temperature. Furthermore, there is an essential necessity to 

establish renewable alternatives for energy production and to replace the established 

technologies based on coal, oil, and gas. In contrast to the latter, alternative sources, 

such as wind, solar, or hydropower are not independent from time and location. The 

produced “green energy” has to be stored in rechargeable energy storage devices which 

then provide it to the consumer “on demand”. High power and high energy density are 

required for such systems to achieve efficient power grid management but often remain 

unachieved with the established technologies. 

In this context, carbon is both a curse and a blessing as it is also one key component to 

overcome these problems. Especially porous carbon materials are highly attractive in 

many energy and environmentally relevant applications. These materials provide 

desirable properties, such as high specific surface area, high pore volume, 

thermal/chemical stability, beneficial mechanical properties, and high electrical 

conductivity. In consequence, they are promising candidates for the removal of carbon 

dioxide or other environmentally relevant gases from exhaust gas mixtures. 

Furthermore, porous carbons are of outstanding importance in electrochemical energy 

storage devices, such as batteries or electrochemical capacitors. 

As the performance of the materials in these applications is most often depending on 

their structural parameters, precise control over the pore size and the pore geometry 

over a wide range is largely desired. Besides a high specific surface area, pore 

accessibility as well as defined pore sizes are important to achieve because the surface 

must be completely accessible depending on the targeted application. If the porous 

carbons exhibit ink-bottle or wormlike pores as it is the case for many activated carbons, 
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the high surface area is useless because the guest species do not reach the pore interior 

due to the restricted access or too long diffusion pathways. Hence, carbon materials with 

hierarchical pore structure are highly attractive. They combine at least two different 

pore systems of different size which contribute with their individual advantages. While 

smaller pores provide large surface area, larger pores ensure efficient mass transport. 

 

 
Figure 1. Porous carbon materials synthesized within this thesis and the investigated applications as well as 

mechnistical studies. 

 

In this thesis, novel routes for the synthesis of well-defined carbon materials with 

tailored and hierarchical pore architectures are presented (Figure 1). One 

straightforward approach for the synthesis of microporous carbon materials is the 

extraction of metal- or semi-metal atoms from carbide materials. The resulting 

materials, known as carbide-derived carbons (CDCs), can reach specific surface areas as 

high as 3000 m2/g but they are limited to very narrow cavities with random orientation 

and adverse materials transport properties. Templating approaches as well as sol-gel 

methods are used within this thesis to tune these materials with a secondary transport 

pore structure. The synthesis-structure relationships are evaluated in detail and the 
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CDCs are characterized by different methods to investigate different structural 

parameters. 

These novel components show outstanding performance in electrochemical energy 

storage applications. In particular, they are used as electrode materials in 

electrochemical double-layer capacitors (EDLCs) with different electrolyte systems. 

EDLCs are among the most promising technologies for electrochemical energy storage 

because these devices make use of the electrosorption of electrolyte ions on the surface 

of the electrode material and therefore provide high charge/discharge rates and long 

cycle life. Furthermore, the CDCs are utilized as host structures for the active material in 

lithium-sulfur (Li-S) battery cathodes. The Li-S system is a very attractive next-

generation battery due to its extremely high energy density. Besides the electrochemical 

applications, the developed hierarchical CDCs show outstanding performance in the 

adsorption of environmentally relevant gases, such as carbon dioxide and n-butane by 

combination of high uptakes and rapid adsorption kinetics. 

Besides the different approaches towards hierarchical CDCs, a novel scalable and 

straightforward method for the synthesis of mesoporous carbon materials is presented 

within this thesis. The so-called Kroll-Carbons (KCs) are produced by the reductive 

carbochlorination reaction between oxidic nanoparticles and a surrounding carbon 

matrix. The pore structure of the KCs can be precisely adjusted for optimum 

performance in different electrochemical energy storage applications. 

Most of the discussed energy- and environmentally relevant applications are based on 

very complex adsorption phenomena. So far, these fundamental principles remain 

poorly understood. Therefore, some well-defined porous structures are used as model 

materials to achieve a better understanding of these fundamental adsorption processes 

on porous carbon surfaces. They are used for the investigation of the physicochemical 

interaction of electrolyte molecules and gas atoms with the carbon surface based on 

solid-state NMR spectroscopy experiments and the high-pressure adsorption of 129Xe 

coupled with an in-situ NMR technique, respectively. Finally, the well-defined materials 

are characterized with a novel method based on their temperature increase during gas 

adsorption. These experiments allow for new insights into the materials structure and at 

the same time proof the high potential of this new tool for pore analysis. 
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2. State of the Art 

2.1 Porous Carbon Materials 

With ~180 ppm, carbon is only 17th in the list of terrestrial elements` frequency. It ranks 

after barium, strontium, or sulfur. The second-most frequent element, silicon, is 1300 

times as abundant as carbon. Nevertheless, the 6th element in the periodic table of 

elements is among the most important and froms versatile chemical compounds. Carbon 

has the highest tendency to form chemical bonds with similar atoms of all chemical 

elements. Due to its position in the periodic table of elements it forms stable substances 

with more and less electronegative partners. In consequence, it is (with the exception of 

hydrogen) the element with the largest number of known chemical compounds. Millions 

of these compounds are subject of the organic chemistry but only a few element 

modifications and comparably simple structures are in focus of the inorganic chemistry 

and materials science. As carbon dioxide it is part of the carbon cycle with huge 

influence on the global climate and carbonates as well as carbides are among the most 

interesting classes of minerals. 

Carbon allotropes provide a large variety of physical properties. In its transparent, wide 

band-gap semiconducting diamond modification, it is the hardest material on earth 

(microhardness > 100 GPa) and as intransparent, highly electrically conductive graphite 

it is one of the softest (microhardness ~1 GPa). Carbon surfaces can be chemically inert 

(basal planes of graphite) or active (edge planes of graphite). Due to these completely 

opposite properties, a large variety of mechanical, electrical, or chemical properties can 

be combined and this element is one of the most interesting topics in materials science.1 

As one obvious consequence, carbon is the only element that has a major monthly 

scientific journal named after it. The Carbon journal (published by Elsevier Science) 

exclusively publishes papers dealing with carbon and carbon-based materials. 

Moreover, a couple of books are dedicated to solely this element, its structure and 

potential applications.1-3 

Especially carbon nanomaterials, with their structural units on a nanometer scale, are of 

outstanding importance for nanotechnology. Nanodiamonds, carbon whiskers, and 

carbon fibers are not only promising nanostructures for many applications but also 

display excellent tools for studying one- or two-dimensional phenomena. Graphene is a 

two-dimensional carbon nanomaterial consisting of a single graphite layer of sp2 

hybridized atoms.4 The connected benzene rings form a planar honeycomb-type 
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arrangement of atoms with delocalized double bonds leading to extraordinary electrical 

conductivity and the highest tensile strength among all materials known so far. 

Graphene is also the central building block of a large variety of related carbon 

nanostructures. If a single layer is rolled, carbon nanotubes (CNTs)5 are formed and if a 

specific number of the six-rings are replaced by five-rings, the layer is curved to 

fullerene cages, such as C60 (well-known as the “football molecule”).6 Another 

outstanding feature of graphene is its ultra-high specific surface area (SSA) of 

2630 m2/g, if both sides of the plane are considered. In consequence, it is also the basic 

building block of intrinsically porous carbon materials. These are, in most cases and 

from a structural viewpoint, nothing else than highly defective and disordered graphite. 

In contrast to other carbon nanomaterials with large external surface area, such as 

carbon nanotubes, fullerenes, or onion-like carbon (multi-shell fullerenes), porous 

carbons are characterized by a rather defective (amorphous) carbon microstructure and 

a much higher ratio between internal and external surface area. 

Porous carbon materials provide a large SSA and thus a large contact area between 

carbon and the surrounding phase. These materials are crucial components in various 

fields, such as electrochemical energy storage, gas adsorption, and biomedicine. Besides 

a high SSA, these applications require the use of carbon materials with well-defined pore 

size and pore geometry to achieve optimum performance. Commercial porous carbon 

materials are relatively low by cost but exhibit wormlike or bottle-neck structured 

pores.7, 8 The latter hinder efficient mass transport which limits their applicability in 

size-selective applications. This justifies the current attempts to tune the pore size of 

these materials on all levels from micropores (< 2 nm in diameter) to mesopores (2-

50 nm) and macropores (> 50 nm).9, 10 

Macropores and mesopores can be of inter-particular and intra-particular character. For 

instance, carbon materials with high intra-particular pore volume of more than 5 cm3/g 

and SSA as high as 600 m2/g can be obtained by carbonization of phenol/formaldehyde 

PolyHIPEs (see section 2.3.3).11 Macroporous carbon aerogels are another class of open 

cell foams with high internal porosity (see section 2.3.4). They can be obtained by 

catalyzed cross-linking of molecular carbon precursors followed by supercritical drying 

and carbonization.12 The arrangement and connectivity of the primary particles are 

influenced by the type of catalyst and the reaction conditions and therefore the final 

properties of the carbon aerogel can be precisely tuned. Moreover, hard-templating of 
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silica templates with different diameters is a useful concept to obtain well-defined 

macroporous carbons.13 Per definition, a surface curvature is called a pore if its cavity is 

deeper than wide. However, this definition excludes many carbon nanomaterials with 

large SSA arising from inter-particular and external porosity, such as carbon 

nanotubes,14 carbon onions,15 or carbon nanoparticles.16 

Well-defined mesoporous carbon materials can be prepared by the nanocasting 

procedure (see section 2.3.1) as reported by Ryoo and co-workers. Carbon precursors 

(e.g. sucrose) are infiltrated into the pore system of ordered mesoporous silica 

templates followed by carbonization and template removal (Figure 2). The pore 

structure can be precisely controlled by the infiltration and carbonization conditions or 

by the choice of the silica template. The resulting carbon materials are widely known as 

CMKs (Carbons Mesostructured by KAIST) and exhibit narrow mesopore size 

distributions in combination with SSAs of up to 2000 m2/g.17-20 Mesocellular carbon 

foams with larger disordered mesopores up to 24 nm in size can be obtained by 

nanocasting of mesocellular SiO2 foam (MCF) templates with sucrose as the carbon 

source.21 

 

 
Figure 2. Synthesis of CMK-3 and TEM micrograph showing the hexagonal ordered pore structure.17 

 

Ordered mesoporous carbon materials can be obtained by soft-templating (see section 

2.3.2) as well. The endo-template-based synthesis reported by Zhao and co-workers 

uses the co-assembly of triblock co-polymers and resin followed by carbonization and 

in-situ template removal. Carbons with various pore geometries from hexagonal to cubic 

and lamellar structures can be obtained and the in-situ template removal during 

carbonization provides a significant advantage as compared to nanocasting.22 

The large SSA of porous carbon materials is predominantly provided by micropores. One 

major class of microporous carbon materials are activated carbons (ACs).23 Their 

industrial importance is revealed by the production of about half a million tons per 

year.24 The most important feedstocks for these materials are carbon precursors, such 
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as coal, pitch, wood, and coconut shells. The macromolecular systems are then 

transferred to carbon products at temperatures > 500°C under inert conditions. These 

high temperatures cause the evolution of low molecular species due to the 

decomposition of the precursors. Although this process leads to the partial formation of 

micropores, the resulting carbon materials are most often characterized by moderate 

SSA. Additional activation procedures, associated with distinctive weight loss, are 

usually carried out with regard to introduce further pores, widen already existing pores, 

or to modify the surface properties. In general, two major processes for the introduction 

of porosity in ACs are established, denoted as physical and chemical activation.25 All 

activation procedures differ in the fraction of pore sizes they create. Physical activation 

makes use of gaseous oxidation agents, such as carbon dioxide, steam, or air. In 

principle, carbon atoms are etched from the framework by the formation of carbon 

monoxide according to Equation 1 (carbon dioxide activation) and Equation 2 (steam 

activation). 

                (1+x) C(s) + CO2(g) ⇄ 2 CO(g) + x C(s)                                             (1) 

           (1+x) C(s) + H2O(g) ⇄ H2(g)+ CO(g) + x C(s)                                             (2) 

Steam activation is very sensitive towards the formation of narrow pores and has higher 

conversion rates compared to CO2 activation because the molecule is smaller and 

diffuses more rapid into the entire carbon structure. Carbon dioxide oxidation is rather 

associated with the simultaneous growth of micro- and macropores. Activation with 

oxygen or air is highly exothermic and does not result in the formation of well-defined 

products. In contrast to physical methods, chemical activation26 is based on the use of 

inorganic dehydration agents that inhibit the formation of carbon-containing by-

products, such as methanol. Therefore, they lead to higher carbon yields. The most 

common activation agents are zinc chloride, potassium hydroxide, and phosphoric acid. 

The resulting ACs exhibit a relatively well-defined porosity compared to materials 

obtained from physical activation procedures. At the same time, they contain a larger 

amount of functional groups and additional synthesis steps (e.g. washing and drying) are 

necessary. 

Besides the use of carbonized precursor materials, activation procedures are well-

established for the implementation of micropores into carbon nanomaterials with larger 

pores and thus the synthesis of hierarchical materials. Carbon aerogels with large meso- 
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and macropores can be activated with carbon dioxide resulting in significantly increased 

SSA in excess of 3000 m2/g.12 The post-synthesis activation of ordered mesoporous 

carbon materials increases their porosity and thus also their performance in 

electrochemical energy storage applications.27 However, neither chemical nor physical 

activation procedures form very narrowly distributed pores. For applications where a 

well-defined microporosity is required, other synthesis strategies, such as templating 

have to be applied.28, 29 The use of zeolites as templates is a highly attractive way to 

produce carbon materials with monomodal and highly ordered micropores coupled with 

extremely high SSA of up to 4000 m2/g.28, 30 Another very useful approach for the 

generation of micropores apart from classical templating strategies is the carbide-

derived carbon (CDC) method.31 

 

2.2 Carbides and Microporous Carbide-Derived Carbons (CDCs)  

This chapter will focus on the synthesis of CDC materials as well as on their 

structure and applications. As they are the precursors for CDC carbons, the 

structure and synthesis of metal or semi-metal carbides will be discussed prior to 

the carbon materials. 

 

2.2.1 Structure of Metal Carbides 

Carbides are chemical compounds that are formed by carbon and more electropositive 

atoms like metals or the semi-metals boron and silicon.32, 33 Three classes of carbides 

can be distinguished. Salt-like carbides (also referred to as ionic carbides) are formed 

with the electropositive metals and are highly sensitive towards hydrolysis. They are 

built up by metal cations and the anionic carbon units “C4-“, “C22-“, and “C34-“. In 

accordance to their hydrolysis products, the corresponding salt-like carbides are 

denoted as methanides (e.g. Al4C3, Be2C, or Mg2C), acetylides (Na2C2, CaC2, or LaC2), and 

allylenides (Li4C3 or Mg2C3).34 Metallic carbides (also referred to as interstitial carbides) 

are compounds with transition metals, such as titanium or zirconium. Carbon atoms are 

inserted into the octahedral interstices in a close packed metal lattice (Figure 3).32, 35 

The radius of the metal atoms must be larger than approximately 135 pm because the 

ratio dCarbon Atoms/dMetal Atoms must not exceed a value of 0.59 to make incorporation of 

carbon possible. The metallic properties are intact in presence of carbon and therefore 

metallic carbides are electrically conductive. They are refractory and therefore useful as 
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metal coatings in cutting tools.36 If the atom radius is smaller than the critical value, the 

formation of carbides is still possible but with rather complex structures. The third class 

are the so-called covalent carbides of silicon (SiC) and boron (B4C). Due to the strong 

covalent bonds present in these compounds, they stand out by extremely high hardness, 

good heat conductivity, as well as chemical and thermal stability.33, 37 Silicon carbide 

crystallizes in a cubic modification (β-SiC) or rhombohedral/hexagonal polytypes (α-

SiC). The structure of the cubic modification is correlated to the diamond structure as 

every second carbon atom is replaced by a silicon atom resulting in a zinc blende 

structure (Figure 3).33 The α-SiC modification is stable above 1800°C and the cubic 

structure is present at lower temperatures. Silicon carbide is widely applied in abrasive 

machining and cutting tools, as heating element, in steel production, and in electric 

devices. Its high natural resistance against oxidation qualifies SiC as an advanced 

catalyst support for oxidation reactions at high temperatures. Comparable to other non-

oxide ceramics which are not in thermodynamic equilibrium in air,38 silicon carbide 

forms a SiO2 passivation layer on its surface. Even at temperatures as high as 1600°C 

this layer stays thin because of the low oxygen diffusion coefficient in the SiO2. Hence, 

these materials are stable against oxidation even at very high temperatures.35 

 

 
Figure 3. Crystal structures of titanium carbide and silicon carbide (atom sizes are not true to scale).35 

 

2.2.2 Synthesis of Silicon- and Titanium Carbides 

Classical Approaches 

Metal carbides can be produced by either chemical (CVD) or physical vapor deposition 

(PVD) of metal containing precursors according to Equation 3 and Equation 4, 

respectively.39 

                                        TiCl4(g) + CH4(g) → TiC(s) + 4 HCl(g)                                         (3) 

Silicon Carbide

Carbon Si/Ti

Titanium Carbide
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                               Ti(s) + CH4(g) → TiC(s) + 2 H2(g)                                           (4) 

Furthermore, the synthesis of silicon carbide is possible by thermal decomposition of 

trichlorosilane according to Equation 5.34  

                                                               CH3SiCl3(g) → SiC(s) + 3 HCl(g)                                 (5) 

While the direct synthesis from the elements is possible for a number of carbides, 

carbothermal reduction of the metal oxides is the most established method for the 

synthesis of these materials on a large scale.40 Especially for silicon carbide this reaction 

is highly endothermic and therefore very large temperatures are required for the 

industrial production of this material by the so-called Acheson-process according to 

Equation 6.41 

                                                       SiO2(g) + 3 C(s) → SiC(s) + 2 CO(g)                                       (6) 

At ambient pressure, the free Gibbs energy of the overall reduction reaction becomes 

negative at about 1520°C. In consequence, high temperatures are required to achieve 

reasonable conversion rates.40 The mechanism of SiC formation is based on the 

intermediate formation of a gaseous SiO species, i.e. the texture of the resulting carbide 

follows the distribution of the carbon phase in the raw material. 

The carbothermal reduction of TiO2 to titanium carbide is based on a different 

mechanism.42 While the overall reaction is similar, the formation of the gaseous TiO 

species is too slow. Therefore, the carbothermal reduction is based on the CO/CO2 

system according to Equation 7. 

  TiO2(s) + CO(g) → TiO(s) + CO2(g)                                          (7) 

In this way, CO successively exchanges oxygen to carbon in the TiO2 and the formed CO2 

is regenerated at the carbon domains. In contrast to the carbothermal reduction of SiO2, 

the TiC grows into the TiO2 domains and not into the carbon.43 Another difference is the 

lower temperature of approximately 1300°C which is necessary for complete 

carbothermal reduction of TiO2.44 

 

Precursor-Derived Ceramics 

Many of the CDC materials discussed within this thesis are synthesized from carbides 

which are not obtained by the classical carbothermal reduction approach. These porous 
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carbides are synthesized from polymeric precursors. Due to the rapid development of 

the organoelement chemistry in the last years, a large variety of these compounds is 

available. Ceramics obtained from such polymeric precursors are denoted as precursor-

derived ceramics (PDCs).36, 45 The synthesis of PDCs is a multi-step process which starts 

with the formation of the non-volatile precursor polymer from organic monomer units. 

Then, the polymer is formed into the desired shape of the final product which can be 

one-, two-, or three-dimensional. Afterwards, the network is transformed into the 

amorphous covalent ceramic, typically by thermal decomposition (pyrolysis) under 

inert atmosphere. Finally, it is crystallized into the thermodynamically stable phase at 

high temperatures. The major advantage of this route compared to the carbothermal 

reduction approach is the fact that the polymeric precursor already contains the 

chemical information (i.e. metal-carbon bonds) of the desired product in its backbone. In 

consequence, the temperatures for the formation of a carbide phase are significantly 

lower. Furthermore, the molecular character of the polymers enables the precise 

adjustment of the structure and properties of the final ceramic. Hence, more complex 

shapes can be obtained compared to the carbothermal reduction approach.35  

 

 
Figure 4. Structure of selected precursor polymers for the synthesis of PDCs. 

 

Most of the PDCs described so far are based on silicon-containing polymers, such as 

polycarbosilanes, polysiloxanes, polysilazines, or polycarbosiloxanes. Other metals can 

be introduced into the ceramics by using polyborazines, polytitanocarbosilanes, or 

polyaluminocarbosilanes (Figure 4).36 

PolysilazanesPolysiloxanesPolycarbosilanes

Polycarbosiloxanes
Polyborazines Polyureamethyl-vinylsilazanes

(Ceraset)
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Another significant advantage of the PDC route is the comparably high ceramic yield of 

75-85% as the carbon/metal stoichiometry of the polymers is close to the desired 

product and hydrogen is the primary gas evolved during pyrolysis. The emission of 

gaseous silicon- or carbon species can be kept at a minimum if proper control is taken 

over the thermal decomposition process. 

 

Preparation and Chemistry of (Allylhydrido)Polycarbosilanes 

The CDC precursor carbides discussed in this thesis are produced from 

polycarbosilanes. They are a family of polymers characterized by a molecular 

configuration with carbon and silicon atoms covalently bond to one another in 

alternating fashion in the primary chain segments.46 Typically, these methylene-linked 

silicon segments are highly branched with little cyclization.47 The direct bonding of 

silicon and carbon facilitates the formation of near-stoichiometric silicon carbide during 

pyrolysis. 

 

 
Figure 5. Synthesis of the monochloromethyltrichlorosilane (MMTS) (A) and chain growth mechanism 

towards chloropolycarbosilane (B) by the Grignard reaction. 

 

Grignard synthesis is the most common approach to directly link carbon atoms to 

silicon.48 Grignard agents are halogen-organometallic compounds or -segments which 

couple to other molecules containing halogen in the end-segment. The reaction between 

the family of magnesium chloromethanes and chlorosilanes is of special interest for the 

synthesis of polycarbosilanes. The product of the reaction is a monochloro-

methyltrichlorosilane (MMTS) and ionically bonded MgCl2 is removed (Figure 5(A)). 

MMTS is the primary reactive monomer that finally forms polycarbosilanes by 
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continued Grignard reaction (Figure 5(B)). Di- and tri-chlorinated versions of the 

methyl- and silyl reactants can also be used in the reaction mixture. This allows control 

over nature, frequency, content, and length of branching throughout the growing 

polymer molecule. The resulting chloropolycarbosilane has to undergo a treatment with 

an appropriate reducing agent (e.g. CaH2 or LiAlH4) to replace the chlorine atoms against 

hydrogen. 

Within this thesis, one polycarbosilane is used for the synthesis of porous carbides. The 

allylhydridopolycarbosilane49 SMP-10 (purchased by Starfire Systems) contains 

unsaturated allyl side groups, which are probably incorporated into the 

chloropolycarbosilane prior to the replacement of the chloride groups. Although the 

actual procedures for the synthesis and the structure of SMP-10 are kept confidential by 

the manufacturer, it is known that the polymer contains about 15-20% allylic 

substitution leading to its liquid appearance at ambient conditions. However, the 

polycarbosilane is not excessively allylated and the carbon/silicon molar ratio is still 

rather close to one as compared to other polycarbosilanes, e.g. those with large content 

of methyl side groups. 

 

 
Figure 6. Potential reactions of SMP-10 with itself (A), water/moisture (B), and air/oxygen (C). 

 

The liquid state of SMP-10 is accompanied with a couple of advantages for the synthesis 

of silicon carbide materials as it can be cast on various substrates. Furthermore, it can be 
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functionalized and cross-linked at the functional groups.50 Hydrogen atoms attached to 

silicon are chemically not similar to those bonded to carbon atoms because the Si-H 

bond is weaker and hence more reactive. All Si-H containing compounds are able to 

spontaneously generate hydrogen, are hygroscopic, and react with environmental 

oxygen (Figure 6). Hence, they can potentially undergo undesired sidereactions even 

before their thermal decomposition to silicon carbide and these could have negative 

influence on the finally obtained ceramic (e.g. excessive oxygen content). 

 

 
Figure 7. Potential cross-linking mechanism of SMP-10 through the allyl groups initialized by peroxide 

radicals. 

 

Typically, the conversion of SMP-10 to the SiC ceramic includes the curing/cross-linking 

of the polymer to a solid “green-body” and pyrolysis into the ceramic.51 The first step 

can be performed in different ways. If the polymer is subjected to intermediate 

temperatures above ~200°C, some of the allyl groups can break down to free radicals. 

Cross-linking of the polymer takes off spontaneously through the chain reaction of the 

allyl groups. Alternatively, cross-linking can be initialized by generation of free radicals 

by a peroxide species at much lower temperatures (Figure 7). The cross-linking can 

potentially be enhanced by use of allyl- or vinyl-containing organic monomers.50 

Efficient cross-linking can also be achieved by a hydrosilylation mechanism (see section 

2.3.4). During pyrolysis, the cured SMP-10 polymer is subjected to higher and higher 

temperatures leading to the removal of the hydrogen atoms and the formation of an 

amorphous, glassy form of SiC with a high ceramic yield of 72-78%. At temperatures 

above 1250°C, crystallization of the cubic β-SiC phase begins.52 
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2.2.3 Synthesis of CDCs 

Historical Perspective 

High-temperature chlorine treatment of silicon carbide according to Equation 8 was 

patented in 1918 by Otis Hutchins as a method for the production of SiCl4.53 

                                                          SiC(s) + 2 Cl2(g) → SiCl4(g) + C(s)                                             (8) 

This process was widely used for the production of SiCl4 before pure silicon became 

abundantly available due to the growth of the semiconductor industry. While the 

desired product of this conversion (SiCl4 vapor) was collected in a condenser, the 

remaining carbide-derived carbon was disposed. Initially, CDC was regarded as an 

undesired by-product, but later it was realized that it was a new class of amorphous 

carbon. The term “mineral carbon” was introduced according to the absence of 

hydrocarbon species as commonly present in activated carbons and to distinguish CDCs 

from carbons based on organic precursors.54 The observation of carbon nanotube 

growth55 and graphene formation56 during thermal decomposition of silicon carbide 

were two early milestones in CDC synthesis.  

While nowadays the production of SiCl4 is carried out by chlorination of pure silicon, 

CDCs have received considerable attention because the use of different synthesis 

conditions and carbide precursors provides the possibility to precisely tailor the pore 

structure of these carbon materials. CDCs have developed from an undesired by-product 

of SiCl4 synthesis to a solution in applications where a tailored pore structure is 

required.31 Due to the wide variety of available carbide precursors,35 carbon materials 

with different shapes and textures (e.g. monoliths,57, 58 foams,59, 60 biomorphic 

structures,61, 62 powders/nanopowders,16, 63 fibers,64, 65 and thin films66, 67) can be 

designed. CDCs show high potential in applications such as catalysis,59, 68, 69 gas 

storage/gas separation,70, 71 batteries,72, 73 electrochemical double-layer capacitors,10, 74 

linear actuators,75 the adsorption of biomolecules,76-78 and the capacitive deionization of 

water.79, 80 

 

CDC Synthesis Procedure 

Whenever a carbon material is produced from a metal carbide precursor, it is designated 

as carbide-derived carbon. These transformations can be achieved by physical (e.g. 

thermal decomposition)81 or chemical (e.g. high-temperature halogenation)82 processes. 

Electrochemical etching of layered carbides (e.g. Ti3AlC2, Ti2AlC, or Ti3SiC) is a very 
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novel method for CDC synthesis at room temperature.83 However, halogenation of 

carbides at elevated temperatures is the most important technique for CDC synthesis 

due to the precisely controllable porosity and carbon microstructure. In recent years, 

CDC materials have been synthesized from a wide range of binary carbides like B4C, SiC, 

TiC, VC, WC, ZrC but also from ternary carbides like Ti3AlC2, Ti3SiC2 or carbonitrides 

according to the general Equation 9.31 

             x MC(s) + y/2 X2(g) → MxXy(g) + x C(s)                                             (9) 

MC is a metal (M) carbide (C) and X is a gaseous halogen (F2, Cl2, Br2, I2 or mixtures of 

them) or a halogenated compound (HCl or HF) and MxXy a volatile metal halogenide.84 

While fluorination with F2, CoF3 or XeF2 has the drawback to produce mostly highly 

fluorinated carbons at comparably low temperature,85, 86 the formation of CDC can also 

be achieved using Br2 or I2 as the halogenation agent.31 However, high-temperature 

etching of carbides using chlorine gas is the most common technique for CDC synthesis 

due to the low price and relatively easy handling compared to other halogens. 

CDCs obtained by chlorine treatment of carbides are often generalized as amorphous or 

highly disordered porous carbon. However, transmission electron microscopy (TEM) 

studies have identified the presence of a large variety of carbon structures, including 

nanotubes, fullerene-like structures, carbon onions, nanocrystalline diamond, graphitic 

ribbons, and even nano-needles in addition to the commonly obtained amorphous 

carbons and graphite-like structures (Figure 8).31  

 

 
Figure 8. TEM images of various CDC structures (scale bar is 5 nm): disordered porous carbon (A), nano-

diamond (B), onion-like carbon (C), mesoporous carbon (D), carbon nanotubes (E), and graphite (F).31, 84 
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From a thermodynamic point of view, the formation of undesired side-products, such as 

volatile CCl4 has to be considered. This molecule is particularly favored at low 

temperatures and may form instead of solid carbon.87 The optimum temperature range 

(Range III in Figure 9(A)) for the formation of CDC as the only stable carbon-containing 

reaction product, the avoidance of by-products, and an optimal yield is strongly 

dependent on the chlorine-to-carbide ratio (Figure 9(A)). 

 

 
Figure 9. Thermodynamic calculations for the reaction of Cl2 with SiC in different molar ratios (A) and 

thickness over time of the CDC coating of during chlorine treatment of SiC at 700°C (B). TEM micrographs of 

a β-SiC whisker (C), β-SiC whisker with CDC coating (D), the whisker completely transformed to CDC (E), and 

SEM micrograph of the chlorinated whisker (F) showing the conformal transformation.31, 84 

 

Regarding the kinetics of carbide halogenation, a linear increase of the porous CDC layer 

thickness takes place up to a certain width and time. This indicates that the 

transformation rate is under reaction control (Figure 9(B)).88 For longer halogenation 

times and thicker layers, the linear kinetics can be replaced by a linear-parabolic growth 

behavior indicating the onset of a diffusion-controlled mechanism.89 At higher 

temperatures, the area of linear growth of the CDC layer is larger, i.e. the parabolic 

0 200 400 600 800 1000 1200

SiCl4(g)SiC(s)

SiCl4(l)

C(s)

Cl2:SiC = 5:1 Cl2(g)

C(s)

SiCl4(g)

CCl4(l)

SiCl4(l)

Range I Range II Range III

Cl(g)

SiCl4(g)

CCl4(g)

C(s)
SiCl4(l)

Range I Range II Range III

Cl2:SiC = 1:1

Cl2:SiC = 20:1

E
q

u
il

ib
ri

u
m

 a
m

o
u

n
t 

(m
o

l)

CCl4(g)

Chlorination temperature (°C)

1

0

2

1

0

2

E
q

u
il

ib
ri

u
m

 a
m

o
u

n
t 

(m
o

l)

0 200 400 600 800 1000 1200

E
q

u
il

ib
ri

u
m

 a
m

o
u

n
t 

(m
o

l)

0 200 400 600 800 1000 1200

1

0

2

(A) (B)

(C)

(D)

(E)

(F)

120100806040200

Time of chlorination (min)

0

5

10

15

20

25

T
h

ic
k

n
es

s
o

f
C

D
C

 la
ye

r
(n

m
)



                                                                                                                          State of the Art 

__________________________________________________________________________________ 
24 

 

growth starts at the presence of thicker CDC layers. Furthermore, the dimension of the 

carbide precursor significantly influences the reaction rate as densely packed and thick 

carbide particles require longer etching times compared to thin films or nanoparticles.31 

 It is characteristic for the CDC synthesis that the dimensions, shape and volume 

of the carbide precursor are maintained along the chemical transformation and it is 

therefore referred to as a conformal process. One of the most prominent examples of 

this phenomenon is the transformation of β-SiC whiskers to CDC.90 After the linear 

growth of a thin film of CDC on the surface of the ceramic, the whole precursor is finally 

converted to CDC under full conservation of the original shape of the whisker 

(Figure 9(C-F)). 

A significant difference between CDCs and porous carbons obtained by physical or 

chemical activation is their comparably low amount of oxygen-containing surface 

functional groups due to the production in oxygen-free atmosphere. Altough some so-

called “dangling bonds” are saturated with oxygen if the material is exposed to air 

(especially for synthesis temperatures below 1000°C),91 the CDC surface is of a relatively 

hydrophobic nature.92 Significant amounts of chlorine and metal chlorides are captured 

in the pores of CDCs after synthesis and have to be annealed in order to open blocked 

pores and to increase the purity.93 This treatment is carried out at a temperature equal 

or lower compared to the chlorine treatment because it must not negatively influence 

the pore structure of the carbons. The most efficient annealing procedures take place 

under reductive conditions (ammonia or hydrogen flow). In contrast, non-reactive argon 

shows only limited potential for the removal of residual chlorine.94 

 

2.2.4 Pore Structure of CDCs 

The general advantage of the CDC route compared to other synthesis methods for 

carbons is the precise control over the pore size distribution (PSD) by different 

synthesis parameters. The micropore structure of CDCs depends to a large degree on the 

elevated synthesis temperature. Higher temperatures favor the mobility of carbon 

atoms leading to self-organization processes and the preferred formation of larger 

graphene fringes and multi-walled structures. In contrast, rather narrow pores are 

obtained at low synthesis temperatures.87, 95-98 Therefore, the SSAs of many CDCs follow 

a bell-like temperature dependency with a maximum often in the range of 800-1000°C.99 
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Besides the temperature, the carbon distribution within the carbide precursor strongly 

dictates the CDC pore size. Carbons derived from carbides with NaCl structure and 

therefore a uniform first neighbor distribution (e.g. TiC or ZrC) show a rather narrow 

PSD compared to rhombohedral (e.g. B4C), orthorhombic (e.g. Mo2C), or ternary (e.g. 

Ti3SiC2) carbide precursors. If the ternary carbide Ti3SiC2 and the binary carbide 3C-SiC 

are used as precursors, CDCs with different porosities are obtained (Figure 10). The 

material from the binary carbide shows a narrow pore size distribution. The ternary 

carbide has a layered distribution of carbon atoms and the corresponding CDC therefore 

contains a significant amount of mesopores and has higher bulk porosity. Ti3SiC2-CDCs 

also show significant graphitization in contrast to SiC-CDCs.31 

 

 
Figure 10. Dependence of the carbide precursor on porosity and nanostructure of the corresponding carbide-

derived carbons.31 

 

Besides the synthesis temperature and the carbide structure, the PSD of CDCs can be 

influenced by the presence of additional phases in the precursor which are removable 
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by the chlorine treatment. For instance, the use of mixtures of TiC and TiO2 instead of 

pure TiC increases the pore size from 0.6-0.7 nm for CDC obtained by etching of pure TiC 

to 0.8 nm for CDC produced from the carbide/oxide mixture due to a partial carbon 

oxidation.100 The insertion of μm-sized macropore channels into CDCs can be achieved if 

a free metal phase is present in a mechanically mixed Si/SiC precursor system.101  

Chemical (based on KOH, ZnCl2 or H3PO4) or physical (based on steam, carbon dioxide or 

air) post-synthesis activation procedures after the chlorine treatment can be used to 

further increase the SSA of CDCs.102-104 Treatments in CO2 and KOH significantly increase 

the porosity of the CDCs, while sufficient control over the pore size remains 

achievable.105, 106 However, these procedures are associated with a large material burn-

off during oxidation and the advantage of the higher porosity should always be critically 

questioned. In contrast, vacuum annealing of CDCs does not cause sample loss or surface 

modification and therefore provides a suitable alternative for further enhancing the 

porosity of CDCs.92 

 

2.3 Templated Carbides and CDCs  

In recent years, a large variety of templating methods was developed for the 

implementation of a secondary pore system in addition to the CDC micropores. These 

efforts are made to achieve enhanced materials transport properties which are crucial in 

many applications and are often unachieved by purely microporous materials, such as 

most CDCs.9 With regard to establish a secondary pore system of meso- or macropores, a 

porous carbide material needs to be synthesized into which the micropores are inserted 

during the high-temperature chlorine treatment. Different templating approaches for 

that purpose along with the resulting carbides and CDCs will be introduced within this 

chapter. 

 

2.3.1 Hard-Templating Approaches 

The hard-templating concept is also referred to as “nanocasting” because it is 

comparable to a casting process performed on the nanoscale.107 A solid-state template 

acts as a space confinement into which a precursor is infiltrated and transferred to the 

desired product. The structure of the template dictates the structure of the finally 

obtained material as the latter is an inverse replica of the void space present in the 
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template. One can distinguish between exo-108 and endotemplates109 where the 

precursor is filled into the internal- and external porosity, respectively (Figure 11). 

 

 
Figure 11. Synthesis of porous SiC materials by nanocasting of SiO2 exotemplates (A) and endotemplates (B). 

 

While classical hard-templates (e.g. silica or carbon) are removed after thermal 

conversion of the precursor,110, 111 sacrificial templates are decomposed in-situ during 

pyrolysis.112 In case of silica, the removal of the template is mainly conducted by 

dissolution in hydrofluoric acid or sodium hydroxide solution. Carbon templates can be 

removed by oxidation in air or by reduction in ammonia at high temperatures. Thus, 

materials obtained by the nanocasting route have to withstand relatively harsh 

conditions.35 If the template exhibits a periodic regular structure that is conserved 

during the nanocasting procedure, the corresponding replica materials can be ordered 

as well. Ordered mesoporous carbons (OMCs) or ordered mesoporous silicas (OMS) are 

commonly used as the templates but a wide variety of disordered materials, such as 

activated carbons,113 silica nanospheres,109 or silica monoliths114 are also well 

established.  

In terms of pore geometry, ordered mesoporous materials are subdivided into two-

dimensional hexagonal (e.g. CMK-317 or SBA-15115) and three-dimensional cubic 

ordering (e.g. KIT-6116 or CMK-118). The silica templates exhibit micropore connections 

between the mesopore channels that are filled with precursor and thus stabilize the 

structure during the replication process. Without these connections, the replica 

structure would be disordered or at least symmetry degradation could occur.108 

It can be challenging to precisely replicate the template structure due to the volatility of 

the precursors or their decomposition products and due to potentially high volume 

shrinkage during pyrolysis.35 Therefore, complete and homogeneous infiltration of the 
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template with precursor is very important for successful nanocasting. As many 

precursors are solids, they have to be dissolved in appropriate solvents or must be 

melted to enable their diffusion into the template pores. If the precursor is a liquid, it 

can be infiltrated directly. Especially when exotemplates are used, the so-called 

“incipient wetness method” is very efficient. In this technique, the amount of infiltrated 

precursor liquid is chosen equal to the total pore volume of the template. As volume 

shrinkage during pyrolysis can largely inhibit the successful replication of the template 

structure, it is essential for a suitable precursor that it undergoes as little shrinkage as 

possible during the conversion to the desired product. Furthermore, precursors which 

are not volatile under the reaction conditions should be used to avoid migration out of 

the template structure during pyrolysis.35 These circumstances indicate that the number 

of potential precursors for the formation of carbide materials is very limited. 

Ordered mesoporous silicon carbide materials (OM-SiCs) can be obtained if 

polycarbosilane polymers are used as the precursors. Hexagonal and cubic ordered 

structures with SSAs close to 1000 m2/g can be obtained by using SBA-15 and KIT-6 as 

the template, respectively. The variation of the infiltration- and pyrolysis conditions 

further enables to tune the nanoarchitecture of OM-SiCs between tubular and rod-like 

geometry.108 

 

 
Figure 12. Preparation OM-SiC-CDC with hexagonal pore structure by nanocasting and high-temperature 

chlorine treatment as well as TEM micrograph showing the mesoscopic ordering.117 

 

If the OM-SiC material is subjected to high-temperature chlorine treatment, the silicon 

atoms are removed leading to the formation of micropores within the produced CDC 
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nanorods. Due to the conformal carbide-to-carbon transformation, the ordered 

mesopore structure of the precursor is maintained (Figure 12). The resulting OM-SiC-

CDCs reach SSAs close to 3000 m2/g and total micro-mesopore volumes of up to 

2 cm3/g. The mesopore geometry and structure can be adjusted by the symmetry of the 

SiO2 template, the functionalities of the polycarbosilane, the infiltration/pyrolysis 

conditions, and the temperature of the chlorine treatment.70, 117, 118 

OM-SiC-CDCs show outstanding performance in various applications, such as the storage 

of hydrogen (52.2 mg/g (excess) at -196°C and 40 bar), methane (220 mg/g (excess) at 

25°C and 100 bar), and n-butane (870 mg/g (dynamic flow) at 25°C and 80 vol.% n-

butane in nitrogen).118 In the capacitive deionization of water, OM-SiC-CDC shows very 

high gravimetric capacities of 15.0 mgNaCl/gCDC which are significantly beyond those 

reported for other porous carbon materials.79 Both, cubic73 and hexagonal72 ordered 

mesoporous SiC-CDCs are highly attractive candidates to host the active material in 

lithium-sulfur (Li-S) battery cathodes (see section 2.4.2), show good performance as 

electrode materials in EDLCs (see section 2.4.1), and provide good catalytic activity in 

the decomposition of methane for hydrogen production.119 

It is worth to note that OM-SiC-CDCs do not solely show outstanding performances in a 

large variety of applications but also act as suitable model system for sufficient 

understanding of fundamental phenomena in porous carbon materials. Their well-

defined pore architecture including narrowly distributed and directly connected micro-

and mesopores in combination with the high purity allows to deeply investigate 

adsorptive phenomena and to get information about the structure and influence of the 

hierarchical pore architecture. In one recent example, preadsorption of n-nonane prior 

to physisorption of nitrogen at a temperature of -196°C is used to selectively block the 

micropores and to clearly distinguish their contribution to gas adsorption form the 

mesopore system.120 

 

2.3.2 Soft-Templating Approaches 

In contrast to nanocasting, the pore structure of the desired ceramic is dictated by 

soluble structure-directing agents (SDAs) in soft-templating approaches.121 This strategy 

is highly efficient for the introduction of well-defined porosity into ceramics but a more 

sophisticated adjustment of the template molecular assembly and the precursor 

chemistry is necessary. The amphiphilic SDA molecules which are most often cationic, 
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anionic, or non-ionic amphiphilic surfactants self-assemble due to the interplay of 

mostly weak (e.g. van-der-Waals forces and Coulomb interactions), non-covalent, 

attractive, and repulsive forces. The resulting structures (e.g. micelles or liquid crystals) 

are used as templates for the desired ceramics.35 The latter are obtained by pyrolysis of 

precursor molecules that self-assemble around the SDAs. As the nanocasting strategy, 

the soft-templating approach enables the synthesis of ordered mesoporous materials. 

The first example is the well-known hexagonal ordered silica MCM-41 which was 

developed in the early 1990s by the researchers of Mobile.122 Soft-templating 

approaches require compatibility between the SDA and the ceramic precursor to avoid 

phase separation that would not lead to the formation of an ordered structure. The 

formation of the preceramic precursor system can occur by self-assembly of SDA 

molecules which contain the precursor molecules covalently bonded. Alternatively, the 

SDA and the organic precursor are used separately a co-assemble if both are compatible 

with each other (Figure 13). 

 

 
Figure 13. Soft-templating mechanisms for the synthesis of ordered mesoporous carbides.35 

 

In both pathways, the precursor molecules are then cross-linked and subsequently 

transferred to the desired ceramic. Simultaneously, the organic SDA is decomposed and 

forms an ordered pore network. The latter technique can either be used in aqueous 

solution, as known for the synthesis of OMS, or as the so-called evaporation-induced 

self-assembly (EISA) which is most suitable for thin film preparation.123 In the EISA 

approach, the solvent evaporates from a sol consisting of the precursor and the SDA. The 

SDA concentration increases gradually until the critical micelle concentration (CMC) is 

exceeded and micelles start to form. After complete evaporation, the final mesostructure 

is established by the formation of the SDA/precursor composite. The formation of this 
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so-called modulable solid-state period strongly depends on different synthesis 

parameters (e.g. the relative humidity) and can take seconds to several hours. The major 

advantage of the EISA technique is the higher number of potentially suitable solvents 

compared to aqueous sol-gel approaches and therefore a larger variety of accessible 

porous ceramics.35  

 

 
Figure 14. Preparation of OM-CDC with hexagonal pore structure by soft-templating (A) and TEM 

micrograph (B) showing the mesoscopic ordering.124 

 

Free-standing films of ordered mesoporous CDCs can be produced by utilizing the 

amphiphilic triblock copolymer Pluronic F127 as a soft-template for the evaporation-

induced self-assembly (EISA) of the carbon precursor polymer resol with metal-

containing precursors such as tetraethyl orthosilicate or titanium citrate. Carbon and 

metal oxide precursors are decomposed under inert atmosphere and the resulting 

C/SiO2 or C/TiO2 composites are converted to ordered mesoporous C/SiC or C/TiC 

composites by carbothermal reduction. High-temperature chlorine treatment transfers 

these materials structurally conformal into hierarchical OM-CDCs (Figure 14). The 

porosity values are strongly dependent on the temperature of carbothermal reduction 

and the applied ratio of metal precursor/carbon precursor. The temperature of the 

chlorine treatment significantly influences the micropore size whereas the mesopore 

diameters remain unaffected.124, 125 

 

2.3.3 Emulsion Approaches 

In contrast to nanocasting and EISA which are expected to produce carbides with 

ordered pore structures, a large variety of disordered but well-defined materials can be 

obtained by emulsion approaches. In particular, water-in-oil microemulsions50, 126 are 

appropriate systems and due to their strongly hydrophobic character, polycarbosilanes 

are highly suitable as the oil phase. Aqueous nanodroplets, which are stabilized by a 

surfactant, are homogeneously dispersed in the non-polar oil phase and their size is 
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controllable by the water/surfactant ratio (RW).50, 127 The preceramic polymer is then 

solidified and after pyrolysis of the polymer to the carbide, the resulting pore diameters 

correspond to the size of the former micelles. CDC materials obtained after high-

temperature chlorine treatment offer a hierarchical micro-mesopore structure with SSA 

of up to 2480 m2/g and total micro- mesopore volumes as high as 2.0 cm3/g.69 

Furthermore, the microemulsion technique is useful for the in-situ functionalization of 

CDCs since the nanodroplets can serve as reactors for the growth of well-dispersed 

nanoparticles (NPs) with defined size.128 

In a typical microemulsion, the volume of the internal aqueous phase is low in relation 

to the total volume. However, this value can be increased to more than 74 vol.% and the 

resulting formulations are designated as high internal phase emulsions (HIPEs). These 

systems are especially useful to obtain macroporous ceramics. If the continuous oil 

phase is polymerized or cross-linked, a material known as polymerized high internal 

phase emulsion (PolyHIPE) is obtained with the structure of the HIPE transferred to the 

solid state.129, 130 Silicon carbides with characteristic spherical shells of ~2 μm in size 

interconnected by windows of ~200 nm in diameter can be obtained if liquid 

polycarbosilane in combination with cross-linking monomers are used as oil phase 

(Figure 15(A)). After cross-linking, washing of the PolyHIPE, and subsequent pyrolysis, 

SiC ceramics with SSAs of up to 167 m2/g can be produced.131 

 

 
Figure 15. SEM micrographs of a macroporous silicon carbide obtained from PCS PolyHIPEs (A),131 and PCS 

nanospheres from the miniemulsion technique (B).132 

 

One system for the synthesis of polycarbosilane and silicon carbide ceramics with large 

external SSA are so-called miniemulsions (Figure 15(B)).133 Miniemulsions consist of 

larger droplets (50-500 nm) compared to microemulsions and are not 

thermodynamically, but rather kinetically stable systems. The emulsification is achieved 

by the introduction of shearing forces using ultrasonic energy. The size of the generated 
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nanospheres is precisely controllable by the amount of surfactant added to the emulsion 

and the time and intensity of the ultrasonic treatment.134 Hydrophobic co-stabilizers are 

usually added to the oil phase suppressing diffusional degradation (Ostwald ripening) of 

the droplets, keeping them in their initial size, and stabilizing the emulsion. As one 

example, miniemulsions are highly useful for the synthesis of SiC/CeO2 core-shell 

nanostructures with high catalytic activity in the catalytic combustion of methane as 

reported by Borchardt and co-workers.132 

 

2.3.4 Sol-Gel Approaches 

In view of sustainable resource management, sol-gel methods are a highly attractive 

template-free alternative for the synthesis of nanostructured carbides and carbons 

because they do not employ large amounts of chemicals apart from those forming the 

final product. Aerogel materials are usually obtained by cross-linking of inorganic or 

organic gels followed by supercritical extraction of the solvent from the wet gels. Under 

supercritical conditions, there is no distinction between the liquid and the vapor phase. 

In consequence, the capillary forces during solvent removal can be kept at a minimum 

resulting in a highly porous network.12  

 

 
Figure 16. Platinum-catalyzed hydrosilylation reaction for the synthesis of cross-linked PCS aerogels.135 

 

Especially the direct use of polycarbosilanes is a very promising way to synthesize well-

defined ceramics with an aerogel-type pore structure. Polycarbosilane aerogels can be 

obtained by cross-linking polymers that contain Si-H bonds (e.g. SMP-10, see section 

2.1.2) with a cross-linker that exhibits C=C double-bonds (e.g. para-divinylbenzene) in 

highly diluted solution.135, 136 The cross-linking mechanism is based on the 
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hydrosilylation reaction catalyzed by a platinum complex (Figure 16). After pyrolysis at 

maximum temperatures up to 1500°C, carbon-rich monolithic SiC ceramics with high 

SSA of 444 m2/g are obtained. 

 

2.4 Electrochemical Energy Storage 

Due to the rapid technological development, climate change, and population growth, 

energy production and energy storage play key roles for the sustainable development of 

economy and society.137-139 So far, the majority of processes use the conversion of 

chemical energy stored in coal, oil, or gas sources to produce electricity, heat, or light. On 

the one hand, it is a major target to replace these fossil fuels with renewable energy 

sources, such as wind, water or solar power because greenhouse gas emission must be 

decreased to reduce global warming. On the other hand, advanced storage devices for 

the “green energy” are in demand as these sources are no longer independent from time 

and location of energy production. Due to this decoupling of the production from the 

actual energy demand, various technologies for power grid management or power grid 

stabilization based on mechanical, physical, thermal, chemical, and electrochemical 

processes exist or are in development. The latter play a dominating role as they are 

characterized by comparably high efficiency and ease of operation in terms of pressure 

and temperature. Especially batteries138, 140 and EDLCs (also referred to as 

supercapacitors or ultracapacitors)141, 142 play a key role to achieve a reliable, 

sustainable, and safe large-scale use of renewable energy. In general, rechargeable 

batteries, such as lithium-sulfur (Li-S) batteries are used with regard to their relatively 

high energy density.143 In contrast, supercapacitors are applied due to their high power 

density. Hence, the two devices might fulfill complementary functions when they are 

hybridized.137 

 

2.4.1 Electrochemical Double-Layer Capacitors (EDLCs)  

Electrochemical double-layer capacitors are among the most promising technologies for 

electrochemical energy storage. In contrast to batteries, where the energy storage 

mechanism is based on time-consuming redox reactions, the charge storage in EDLCs is 

of purely physical character based on the electrosorption of electrolyte ions on the 

surface of an electrode material. Porous carbon is widely used EDLCs because it offers a 

combination of electrical conductivity, high SSA, and electrochemical stability.10, 144 The 
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purely electrostatic charge separation mechanism in EDLCs leads to very high power 

density, rapid charge/discharge, high efficiency, high cyclability, and a broad operating 

temperature range compared to batteries (Figure 17(A)). At the same time, EDLCs 

provide considerably higher energy densities than solid-state capacitors.145 In the last 

decade, the cost of EDLCs decreased significantly faster than that of batteries and 

progress in the performance improvements of the EDLCs was noticeably more rapid as 

well. However, in comparison to batteries, their energy density is still lower.137  

In contrast to classical EDLCs, so-called pseudocapacitors or redox-supercapacitors use 

rapid and reversible surface redox reactions (usually on a metal oxide, heteroatom-

enriched carbons, or a conductive polymer) for charge storage.146, 147 Pseudocapacitance 

can also originate from redox reactions of the electrolyte species on the surface of 

pristine carbon electrodes. In contrast to classical EDLCs, redox supercapacitors provide 

significantly higher energy densities but their power performance is lower as they suffer 

from the use of time-consuming redox reactions.  

 

 
Figure 17. Ragone plot of specific power vs. specific energy of EDLCs and different battery systems (A) as well 

as schematic representation of the charged state of an EDLC using porous electrodes ((B) with R: resistor; C: 

capacitor).142, 145 

 

In their most simple configuration, EDLCs consist of two porous electrodes (contacted 

by current collectors), which are immersed into electrolyte and separated by an ion-

conducting membrane (Figure 17(B)).142 The electrostatical charge storage in EDLCs 

takes place by reversible adsorption of electrolyte ions on the active materials leading to 

charge separation at the electrode-electrolyte interface according to the classical double 

layer theory of Helmholtz which was later expanded by Gouy, Chapman, and Stern.142 

The specific capacitance (C in F/g) of an EDLC is calculated according to Equation 10. 
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      𝐶 =
𝜀𝑟∙𝜀0∙𝐴

𝑑
                                    (10) 

In Equation 10, εr is the dielectric constant of the electrolyte, ε0 is the dielectric constant 

of the vacuum, A is the electrode surface area, and d is the charge separation distance. 

The specific energy (E in Wh/kg) and specific power (W in W/kg) of an EDLC are given 

by Equations 11 and 12: 

     𝐸 =
𝐶∙𝑈2

2∙3600∙𝑚
                         (11) 

                                                          𝑊 =
𝑈2

4∙𝐸𝑆𝑅∙𝑚
                                              (12) 

Here, U is the operating voltage, m is the total mass of active material, and ESR is the 

equivalent series resistance of the system. Most importantly, the specific energy of 

EDLCs has to be increased to move them closer to batteries (Figure 17(A)). This can be 

achieved by increasing the cell operating voltage, which is limited by the electrolyte 

stability, or by enhancing the specific capacitance which is controlled by the carbon-

electrolyte interface.10 Many nanostructured and high-surface area carbon materials 

with different porous textures including carbon nanotubes (CNTs),14 carbon fibers,65 

carbon onions,15 graphene,148 templated carbons,27 and activated carbons149 were tested 

as electrode materials in EDLCs. 

 

Role of the Electrolyte System in EDLCs 

In general, the electrolytes in EDLCs can be subdivided into three classes, namely 

aqueous, organic, and ionic liquid electrolytes.145 Aqueous electrolytes based on 

dissolved salts, acids, or alkali usually provide high ionic conductivity and are 

comparably low by cost. However, they suffer from the narrow electrochemical stability 

window of water (1.23 V) limiting the achievable energy density according to Equation 

11.63 Organic electrolytes consist of a salt (e.g. tetraethylammonium tetrafluoroborate, 

TEABF4) dissolved in an organic media, commonly propylene carbonate (PC) or 

acetonitrile (AN).145 These electrolytes usually provide a stability window in the range 

of 2.2-3.0 V and the achievable specific energy is significantly beyond that of aqueous 

solutions. In consequence, most of the commercially available systems rely on the use of 

organic electrolytes.137 The third class of electrolytes are room temperature ionic liquids 

(ILs). ILs are molten salts and very promising for the use in EDLCs due to their broad 

electrochemical stability window (2.6-4.0 V) and non-flammability. The latter is of 
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particular importance for their use in mobile applications.150, 151 However, ILs suffer 

from poor ionic conductivity at room temperature and below leading to limited power 

performance compared to organic electrolytes.  

Due to their very large specific surface area, tunable pore size, and controllable surface 

chemistry, CDCs are very attractive electrode materials in EDLCs. In aqueous media, 

they show high gravimetric capacities of up to 196 F/g (TiC-CDC in 1 M H2SO4), 217 F/g 

(TiC/TiO2-CDC in 1 M H2SO4), and 260 F/g (Al3C4-CDC in 6 M KOH).31, 152 In organic 

electrolytes, TiC-CDC shows the highest capacitance of more than 160 F/g (110 F/cm3) 

when TEABF4 in AN is used.74 This significantly exceeds the values of activated carbons. 

If post-synthesis activation with KOH is applied, it is possible to significantly increase 

the gravimetric capacitance to 180 F/g.153 Recent studies on CDCs in IL electrolytes 

report specific capacities up to 160 F/g (85 F/cm3) in ethyl-methylimidazolium-

bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) at 60°C for a TiC-CDC prepared at 

500°C because an optimum pore size is achieved at this temperature.154 N-butyl-N-

methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid can be used as the 

electrolyte even at a temperature of 100°C leading to capacities of 130 F/g.155 Such 

studies are of particular importance for high-temperature applications, e.g. EDLCs 

operating under car hoods. The specific interest in IL electrolytes under these conditions 

arises from their very low vapor pressure even at high-temperatures and non-

flammability providing rather safe operation compared to organic systems. 

 

Role of Pore Accessibility in EDLCs 

The very fast charge-/discharge rates of EDLCs can only be accomplished if the 

electrolyte has fast access to the entire surface area of the electrode material.10 

Therefore, purely microporous carbon materials, including CDCs, often suffer from a 

distinct capacity drop in the high-power regime. This becomes especially obvious in 

EDLCs using microporous CDC thin films as the electrode.66 These electrodes can offer 

very high volumetric capacities of up to 180 F/cm3 if their thickness is in the range of 

several μm. However, if they become thicker, only a small portion of the SSA can be used 

for ion storage due to diffusion limitations within the microporous electrode and the 

high volumetric capacity drastically drops. 

This drawback can be overcome by the use of electrode materials with nm-sized 

particles improving the ion transport. Several reports show that the capacitance 
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increases with decreasing CDC particle size. 30 nm CDC particles show capacitances of 

up to 150 F/g in aqueous electrolyte (1 M H2SO4) and no faradic surface reactions. 

Compared to CDCs with comparable pore structure but larger particle size they exhibit 

better electrochemical activity due to their highly accessible micropores.16 Especially for 

such powdered materials it is importatnt to note that the packing density of the carbon 

particles is an important factor. The empty electrode volume that has to be filled with 

electrolyte must be kept as low as possible to achieve maximum capacities if both 

components (carbon and electrolyte) are considered.   

 

 
Figure 18. Capacitance retention versus current density of OM-SiC-CDC in comparison to commercially 

available activated carbon YP-17D (A), quenched solid density functional theory (QSDFT) pore size 

distribution of OM-SiC-CDC (B), and SEM micrograph showing the typical particle morphology (C).156, 157 

 

Besides the use of such nanosized CDC electrode materials with large external SSA, the 

introduction of internal transport pores is a suitable way to overcome diffusion 

limitations present in purely microporous electrodes. However, strictly mesoporous 

materials do not store sufficient amounts of ions due to their limited SSA and in 

consequence, their capacity is limited. The combination of ordered mesopores and a 

large volume of micropores provided by OM-SiC-CDCs (see secion 3.2.1) is highly 

suitable for the use in EDLC electrodes. High capacity and rapid charge/discharge are 

ensured simultaneously by the large SSA and ordered mesopores, respectively.156-158 

OM-SiC-CDCs reach up to 175 F/g in organic electrolyte (1 M TEABF4 in AN), 200 F/g in 

aqueous electrolyte (1 M H2SO4), and 223 F/g in ionic liquid (IL) electrolyte (1-ethyl-3-

methylimidazolium-tetrafluoroborate (EMI-BF4)).156, 157 Especially the high capacity 

retention at high current densities of OM-SiC-CDC is impressive when compared to 

activated carbon materials used for commercial devices (Figure 18(A)). This advantage 

is related to the hierarchical arrangement of well-defined pores in the CDC 

(Figure 18(B)). While the 1 nm-sized micropores act as reservoirs for ion storage, 
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mesopores of 4 nm in diameter ensure rapid diffusion of electrolyte ions throughout the 

μm-sized particles (Figure 18(C)) and therefore ensure sufficient operation at rapid 

charging/discharging. In a similar way, soft-templated OM-CDCs offer high specific 

capacities of 146 F/g in organic electrolyte due to the micropores drilled on the walls, 

while promising rate capability is a result of the mesopore pathways.125 

 

Ion Adsorption Mechanisms in EDLCs 

From a mechanistical point of view, the capacitance of EDLCs was fully ascribed to the 

formation of an electrochemical Helmholtz double-layer of electrolyte molecules on the 

carbon pore wall for a long time. The carbon pores had to fulfill the requirement that the 

ion with its complete intact solvent shell has to have full access to their interior.10 More 

recent studies report on the significant enhancement of the capacitance when the 

carbon pore size falls below the solvent shell size of the electrolyte ions and the 

formation of a double-layer would not be possible from a theoretical standpoint.74, 159, 160  

 

 
Figure 19. Correlation between the TiC-CDC pore size and capacitance in EMI-TFSI ionic liquid electrolyte.154 

 

The first reports on the anomalous increase were based on experimental 

electrochemical results of TiC-CDC electrodes with the pore size strongly depending on 

the synthesis temperature. In organic electrolyte (TEABF4 in AN), the highest values are 

reached for CDCs with a pore size of 0.7-0.8 nm, approximately corresponding to the 

size of the TEA+ ion (0.67 nm).74 Similar findings are reported for TiC-CDCs using the 

pure EMI-TFSI ionic liquid electrolyte at 60°C or dissolved in AN at room 

temperature.151 In both cases the highest capacitance is obtained when the size of the 
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ions matches the CDC pore size resulting in a volcano-type appearance of the plot of the 

specific capacitance versus the pore size (Figure 19).154 

Although major progress and improvement of EDLCs has been achieved in recent years, 

a detailed understanding of the basic mechanisms in these devices is still lacking. 

Therefore, in-situ characterization and modelling techniques are more and more in 

focus. While the earliest studies are of mainly empirical character (based on 

electrochemical measurements), dilatomery161, 162 as well as spectroscopic,163-166 

electrochemical quartz microbalance,167, 168 and scattering techniques169 (most often 

guided and verified by theoretical modelling methods)170, 171 are widely used today. 

These studies have improved the understanding of ion storage mechanisms in carbon 

pores. 

 

2.4.2 Lithium-Sulfur (Li-S) Batteries  

Compared to EDLCs, rechargeable batteries stand out due to their considerably higher 

energy density. In consequence, they are widely applied for electrochemical energy 

storage in consumer devices (e.g. mobile phones or laptops) and in hybrid electric 

vehicles (e.g. the Toyota Prius, that uses combustion engine combined with a battery). 

However, in the last years, significant developments were made in the area of 

transportation and automotive industry but only very few battery systems achieved 

commercial use so far. Besides the lead acid- and nickel-metal hydride accumulators, 

especially lithium-ion batteries (LIBs) are promising devices due to their high energy- 

and power density.143 Although major progress has been achieved in the development of 

advanced electrode materials with higher capacitance and higher operating voltage, LIBs 

do most often not keep pace with the requirements in terms of capacity, safety, cost, and 

cycling stability.172 

One of the most promising battery systems is the lithium-sulfur (Li-S) battery because of 

the high specific capacity of sulfur of 1672 mAh/g. The theoretical specific energy of 

such a battery setup is more than five times higher than that of commercial LIBs.173, 174 A 

complete Li-S battery could still provide 400-600 Wh/kg. With such a system, a driving 

distance of up to 500 km would become realistic. As another important advantage, the 

Li-S battery contains an intrinsic protection mechanism against overcharging, which 

greatly improves the battery safety.140 Because sulfur is naturally abundant, 

inexpensive, non-toxic, and environmentally friendly, the Li-S battery is a very attractive 
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candidate for the stationary large-scale storage of energy produced by wind-, water-, or 

solar sources. 

 

 
Figure 20. Principle of the Li-S battery. 

 

A typical lithium-sulfur battery consists of a lithium anode and sulfur cathode with a 

separator and the electrolyte salt (most often dissolved in ethers or organic carbonates) 

in between (Figure 20).175 In contrast to LIBs, the Li-S system is not based on the 

classical lithium intercalation but rather on conversion. One sulfur atom accommodates 

a maximum of two lithium ions according to Equation 13. 

              16 Li + S8 ⇄ 8 Li2S                                                        (13) 

The operating voltage of 2.1 V versus Li/Li+ is below the potential of a positive 

intercalation electrode (e.g. LiMnO2 or LiCoO2). However, this disadvantage is 

compensated by the high theoretical specific capacitance of 1672 mAh/g which is the 

highest value known for a solid cathode material. Secondly, the lithium metal anode 

provides a very high theoretical capacitance of 3860 mAh/g.173 

In spite of these considerable advantages, the electrochemistry of the Li-S battery is 

accompanied by significant disadvantages that still hinder the commercialization of this 

promising energy storage system. One of the major problems is caused by the 

electrochemical mechanism itself. Under charged conditions, sulfur is present in the 

standard cyclo-S8 configuration and during discharge a step-by-step reduction by 

lithium ions to Li2S8, Li2S4, Li2S2, and Li2S takes place.173 During charging, the 

corresponding oxidation processes occur. The intermediately formed polysulfide 

species, especially Li2S8 and Li2S4, can easily react with the organic electrolyte or can 
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dissolve into it. This leads to detrimental loss of active material from the cathode and 

decreases the capacity of the battery. Furthermore, polysulfides can migrate to the 

lithium anode and form an electrochemically inactive layer of Li2S2 or Li2S leading to 

further decrease of the battery performance. On the other side, these polysulfides can 

directly react with the anode, form dendrites, and finally cause shortcuts of the battery. 

Moreover, sulfur and its various discharge products show very low electrical and ionic 

conductivity and the internal resistance of the battery is therefore very high. This results 

in high polarization and low energy efficiency. The conductivity of the active material 

becomes even worse during discharge because an insulating layer is formed on its 

surface.173 

These problems force researchers to develop advanced battery components, such as 

electrolytes, binders, current collectors, or protection layers for the anode with regard 

to develop rather stable and reliable Li-S batteries.172 However, the cathode design still 

seems to be the most challenging assignment since the active material has to have 

intimate electrical contact to the adsorption sites of an electronic conductor. One option 

is to coat a conductive carbon- or polymer layer on the sulfur surface but the resulting 

cathodes suffer from very low cycling stability.172 Therefore, in most cases, porous 

carbon materials are used as substrates to host and contact the sulfur due to their high 

electrical conductivity.176, 177 The carbon material has to fulfill numerous requirements. 

There has to be a large contact area between carbon and the active material with regard 

to achieve a high degree of electric conductivity. Furthermore the particle size of the 

sulfur should be < 100 nm to keep both the electron transport and diffusion pathways as 

short as possible. On the other hand the pores in the conductive additive should be as 

large as possible to obtain high pore volumes with regard to achieve high sulfur loadings 

and to lower the area of the electrode with respect to the mass of the active compound. 

Although a high pore-filling degree in the carbon/sulfur composite is desirable it has to 

exhibit some hollow space to allow access for the liquid electrolyte which acts as both 

Li-ion transport medium and a secondary conductive agent within the cathode. Void 

space is also required to balance the volume expansion (~74%) during the conversion of 

S to Li2S because the formation of cracks which would lead to the pulverization of the 

rigid carbon matrix structure has to be avoided. Owing to these numerous requirements, 

several types of porous carbons show only limited performance in Li-S cell cathodes. For 

instance, carbon nanotubes (CNTs)178 or activated carbons179 suffer from low pore 
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volume and/or moderate specific surface area limiting the values of electroactive mass 

that can be accumulated and the contact area between sulfur and carbon, respectively. 

Macroporous carbon materials are less applicable because the diffusion of soluble 

polysulfides from the cathode is not effectively restricted compared to materials with 

smaller pores. One method to avoid this disadvantage of macroporous substrates is the 

use of high-viscosity electrolytes which decrease the solubility of ions and keeps them at 

the cathode.72, 176 

In the most recent studies it was found that especially mesoporous carbon materials can 

display the conductive additive of choice in Li-S cathodes. According to the work of 

Nazar and co-workers, the impregnation of ordered mesoporous CMK-3 with a sulfur 

melt is a method that allows precise control over the ratio of active mass and thus the 

amount of remaining pore volume in the resulting composite. The obtained Li-S battery 

cathode exhibits significantly increased cyclability. The sulfur is immobilized between 

the conductive carbon channels which generate the electric contact resulting in an 

ordered and interwoven carbon/sulfur composite with exceptional electrochemical 

properties at moderate cycling rates.180 A large variety of other mesoporous carbon 

structures also show promising performance as sulfur host structures in Li-S batteries. 

Spherical ordered mesoporous carbon nanoparticles of 300 nm in diameter with 

bimodal mesoporosity exhibit high specific capacity of more than 830 mAh/g after 

100 cycles at a current rate of 1 C which is explained with the very high internal pore 

volume of 2.32 cm3/g.181 Porous, hollow carbon/sulfur composites also show very 

promising electrochemical performance due to large interior void space and 

mesoporous shells with partially graphitic structure.182 A systematic study on the 

optimization of mesoporous carbon (MC) structures for Li-S batteries by Liu and co-

workers shows the importance of high mesopore volume of carbon materials for Li-S 

batteries.177 As their major advantage, mesoporous carbon materials can be loaded with 

large amounts of sulfur which is very important for effective operation of the Li-S 

battery. The amount of carbon substrate within the cathode must be kept as low as 

possible because it does not actively contribute to the capacitance of the battery. 

However, the general problems related to the electrochemistry of the Li-S system cannot 

be fully prevented and polysulfide dissolution still occurs leading to limited cycling 

stability. If infiltrated into microporous carbon materials, sulfur exhibits a higher 

electrochemical activity and cyclability. Even if the pore size of the carbon material falls 
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below the diameter of the cyclo-S8 (~0.7 nm), the active material can be incorporated 

into the host material because it undergoes a structural change into a chain 

configuration. The spatially limited sulfur species show a large interaction with the 

carbon pore walls and the critical effect of the formation of soluble polysulfides is 

effectively suppressed.183 However, the low pore volume of purely microporous carbon 

materials limits the amount of sulfur that can be infiltrated into the host material to 

values below 50 wt.%. This, in turn, limits the capacitance related to the overall cathode. 

In consequence, hierarchical micro-mesoporous carbon materials are optimum host 

structures in Li-S cathodes.176 On the one side, these materials are suitable for the 

storage of large amounts of sulfur due to their high pore volume and they provide a 

large electrochemical contact area for the active species. On the other side, formed 

polysulfides can be adsorbed within the smaller pores and the larger pores provide 

sufficient space for electrolyte and ion transportation.  

 

2.5 Gas Adsorption 

Besides the use in electrochemical energy storage devices (see section 2.4), porous 

carbon materials play a crucial role in gas storage and gas separation processes.184 Due 

to their high SSA and controllable pore volume, they are highly attractive candidates for 

various applications related to the physical adsorption (physisorption) of gas molecules. 

One of the most important areas of research concentrates on the storage of hydrogen for 

energy applications.185 Furthermore, the adsorption of methane and other hydrocarbons 

is highly important as they represent important future clean energy sources.102 Other 

relevant gases are environmentally harmful or toxic (e.g. CO2, SO2, and NO).186 In terms 

of energy consumption, physical adsorption of gases into a porous solid adsorbent is 

highly practicable compared to liquefacation, compression, or storage by reaction with a 

solid material (e.g. the storage of hydrogen in a metal hydride). 

A high gravimetric (cm3 or mol gas per mass of adsorbent) and volumetric (cm3 or mol 

gas per volume of adsorbent) uptake of a porous material is required for efficient gas 

storage.58 Furthermore, the pressure at which the highest storage capacity can be 

achieved is of fundamental importance. However, not only the storage, but also the 

separation of gases by filtration of components from mixtures (e.g. CO2/N2, CO2/H2, and 

CO2/CH4) and the removal of harmful volatile organic compounds from air are of great 

industrial and social importance.71, 187 In contrast to the storage application, filtration 
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does not only require a high capacity of the adsorbent but also high selectivity and 

efficient mass transfer within the porous material because the contact time of the gas 

mixture and the adsorbent is often limited. Therefore, hierarchically structured 

materials are of great importance for gas filtration applications. While the micropores 

lead to high SSAs and therefore high storage capacities, larger meso- or macropores 

ensure rapid diffusion of gas molecules to the adsorption sites. 

Especially ACs are known as adsorbents for many years and are widely applied as filter 

material in gas masks due to their high specific surface areas and relatively low 

production cost. Unfortunately, their internal surface area and pore structure is often 

not well-defined.7 This can be a great disadvantage because the gravimetric and 

especially the volumetric storage capacities are limited. Moreover, the broad pore size 

distribution limits the applicability in size-selective applications. In contrast to ACs, 

CDCs offer rather narrow pore size distributions combined with high SSA as well as 

variable surface chemistry and are attractive candidates as adsorbents. TiC-CDCs exhibit 

outstanding methane storage capacities of up to 14 wt.% at 35 bar and 25°C.58 This 

value can be even increased to 18.5 wt.% at 60 bar and 25°C if post-synthesis activation 

with CO2 is applied.102 KOH activated ZrC-CDCs can store as much as 6.2 wt.% hydrogen 

at -196°C and 20 bar.106 In contrast to powdered materials, TiC-CDC plate monoliths 

show enhanced volumetric adsorption capacities up to 35 g/l hydrogen at -196°C and 

60 bar as well as 219 cm3/cm3 methane at 60 bar and 25°C.58 Polysilesquioxane-based 

CDCs also offer high capacities of up to 5.5 wt.% hydrogen at -196°C and 60 bar and 21.5 

wt.% methane at 25°C and 60 bar even without post-synthesis activation.188 As another 

example of polymer-based materials, OM-SiC-CDCs offer very high storage capacities for 

hydrogen, methane, and n-butane.118 Due to their hierarchical micro-mesopore 

architecture, OM-SiC-CDCs combine the high gravimetric capacities with efficient 

materials transport. This leads to rapid adsorption kinetics making these materials 

attractive candidates for the efficient filtration of hydrocarbon molecules. 
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3. Methods 

3.1 Nitrogen Physisorption 

Physisorption occurs whenever a fluid phase (the adsorptive) gets into contact with the 

surface of a solid (the adsorbent). The molecules adsorbed on the surface are denoted as 

the adsorbate. The forces involved are van-der Waals forces (London dispersion forces) 

and the short-range intermolecular repulsion. While these forces cause non-specific 

molecular interactions, specific interactions take place when polar molecules adsorb on 

polar surfaces. However, as long as no chemical bonds are formed (as it is the case in the 

so-called chemisorption) the process is still regarded as physisorption.189 A 

physisorption isotherm is the plot of the adsorbed amount of fluid as a function of the 

relative pressure p/p0, where p0 is the saturation pressure of the adsorptive at a given 

temperature. Most often, these measurements are performed by volumetric or 

gravimetric methods. The shape of an adsorption isotherm is influenced by the interplay 

and the strength of fluid-fluid and fluid-wall interactions. Furthermore, the adsorption 

isotherm is influenced by the pore size, pore geometry, and surface polarity. In 1985, the 

IUPAC has published a classification of six types of isotherms and proposed to 

distinguish pores by their internal width.190 It has to be noted that this classification is 

currently under revision. Macropores are pores with a diameter above 50 nm and 

mesopores are pores of 2-50 nm. Micropores have diameters below 2 nm and are 

further subdivided into ultramicropores (0-0.7 nm) and supermicropores (0.7-2.0 nm). 

Pores with diameters below 100 nm are also often referred to as nanopores in 

accordance to the general definition of nanomaterials. The standard tool for 

determination of specific surface area and pore size is the physisorption of nitrogen 

measured at -196°C. This method is highly attractive as it is non-destructive, precise, 

and allows the calculation of many material properties. Alternative probe techniques are 

the physisorption of argon at -186°C and carbon dioxide at 0 or 25°C.191 

 

3.1.1 Adsorption Mechanisms 

The adsorption mechanism of the gas molecules depends on the pore size of the 

adsorbent. In non- or macroporous solids, the molecules form a monolayer on the 

surface followed by the occurrence of multilayer adsorption (Figure 21(A)). This 

phenomenon is caused by the interplay of attractive and repulsive forces between the 

pore wall and the gas molecules in dependence of their distance. An adsorption isotherm 
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of type II according to the IPUAC classification is obtained due to the dominant fluid-wall 

interactions at low relative pressure (monolayer formation) followed by the adsorption 

caused by fluid-fluid interaction at higher relative pressure (multilayer formation). In 

microporous materials, the adsorption potentials of the opposite pore walls are 

overlapping and the adsorption is mostly dominated by the interactions between fluid 

and pore wall (Figure 21(B)). In consequence, the narrow micropores of 2-3 molecule 

diameters in width are filled at very low relative pressures (p/p0 < 0.01). Filling of the 

larger micropores can occur at larger relative pressures (p/p0 = 0.01-0.2) because the 

enhancement of the adsorbent-adsorbate interaction in the pore center is very small and 

the increased adsorption is mainly due to asdorbate-adsorbate interactions.189 After 

complete micropore filling, the adsorption isotherm reaches a plateau without further 

uptake of nitrogen.  

 

 
Figure 21. Lennard-Jones potentials (top) and corresponding adsorption-desorption isotherms (bottom) for 

macropores (A), micropores (B), and mesopores (C). 

 

In contrast to micropores, attractive interactions between the fluid molecules strongly 

influence the adsorption behavior in mesopores and multilayer adsorption occurs. With 

the adsorption of more and more multilayers of adsorbate, surface tension and 

curvature effects become more important. At a certain relative pressure of p/p0 > 0.2, 

the thickness of the multilayer becomes too large. The film cannot be stabilized anymore 
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and pore condensation (also referred to as capillary condensation) occurs 

(Figure 21(C)). As the condensation takes place at a pressure below the saturation 

pressure of the bulk fluid (p0), this condensation represents an example of a shifted 

phase transition due to the presence of attractive fluid-wall interactions.189 Capillary 

condensation is associated with the formation of a meniscus over which the vapor 

pressure of the fluid is lowered followed by abrupt condensation and complete filling of 

the pore. A direct relationship between the relative pressure at which condensation 

takes place and the pore diameter (or more precisely the radius of the meniscus rmenisc) 

is given be the Kelvin equation (Equation 14), where γ is the surface tension of the bulk 

fluid, φ is the wetting angle, and VM is the molar volume of the adsorbate. 

                                         𝑙𝑛
𝑝

𝑝0
=

−2𝛾𝑉𝑀

𝑟𝑚𝑒𝑛𝑖𝑠𝑐𝑅𝑇
𝑐𝑜𝑠𝜑         (14) 

 

3.1.2 Hysteresis Loops 

Types of Hysteresis Loops 

Capillary condensation is most often accompanied by the occurrence of hysteresis loops, 

i.e. desorption of the condensed liquid occurs at a relative pressure different from the 

adsorption. The adsorption hysteresis is considered to be an intrinsic property of the 

vapor-liquid phase transition because it is delayed by the existence of metastable 

adsorption states and hindered nucleation of liquid bridges. During adsorption, the 

condensation occurs delayed due to the metastabilities which are associated with the 

nucleation of liquid bridges. In contrast, during desorption, the liquid-vapor interface is 

already present and evaporation takes place in thermodynamic equilibrium without 

nucleation. Four different types of hysteresis loops are distinguished according to the 

IUPAC classification (Figure 22).190 Ordered mesoporous silica materials, such as SBA-15 

or KIT-6 reveal a narrow distribution of uniform, cylindrically-shaped pores which 

cause a type H1 hysteresis.115, 116 Materials with a rather complex pore structure in 

which networks effects (e.g. percolation or pore blocking) are present, give rise to a type 

H2 hysteresis. H3 and H4 hystereses contain a characteristic step-down in the 

desorption branch associated with the hysteresis loop closure. Isotherms with H3 

hysteresis loops are generally attributed to the presence of non-rigid aggregates of 

plate-like particles or assemblies of slit-shaped pores. Such isotherms are usually not 

expected to provide a reliable assessment of the pore size distribution or the total pore 
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volume as they do not exhibit limited adsorption at high relative pressures. Type H4 

hysteresis loops are characteristic for materials which contain a complex network of 

combined micro- and mesopores.  

 

 
Figure 22. IUPAC classification of hysteresis loops.190 

 

As described above, the desorption branch is usually the one which is in thermodynamic 

equilibrium. Therefore, the use of this branch is recommended by IUPAC for pore size 

analysis.190 However, this assumption is only valid for materials which do not exhibit 

pore blocking or percolation effects. Hysteresis phenomena in pore networks with ink-

bottle pores are quite complex and the evaluation of the desorption branch for the pore 

size determination will lead to incorrect interpretation of material properties. In spite of 

this disadvantage, the different mechanisms of desorption from ink-bottle pores can give 

important information about pore connectivity in these materials. In principle, two 

different mechanisms can be distinguished: pore blocking and cavitation.  

 

Pore Blocking and Cavitation 

It is widely known that evaporation of the pore condensate from a network of ink-bottle 

pores is obstructed by the pore constrictions, i.e. the emptying of their interior can only 

occur through the neck.192 In other words, the pore stays filled until the neck empties 

and the relative pressure at which an ink-bottle pore empties depends on the size of its 

neck. The desorption branch is therefore very steep and an H2 hysteresis loop results. 

Conventional H2 hysteresis will also occur if the size distribution of the pores is 

relatively broad but the neck size distribution is narrow (Figure 23(A)). A different type 

of H2 hysteresis, the so-called “inverse H2 hysteresis”, takes place if the pore size 

distribution is narrower compared to the size distribution of the necks. In consequence, 

V
o

lu
m

e 
ad

so
rb

ed

V
o

lu
m

e 
ad

so
rb

ed

V
o

lu
m

e 
ad

so
rb

ed

V
o

lu
m

e 
ad

so
rb

ed

p/p0 p/p0 p/p0 p/p0

Type H1 Type H2 Type H3 Type H4



                                                                                                                                      Methods 

__________________________________________________________________________________ 
50 

 

the desorption branch is less steep then the adsorption branch in such a case 

(Figure 23(B)).189 

 

 
Figure 23. Hysteresis phenomena in ink-bottle pores: Pore blocking with conventional H2 hysteresis in pores 

with uniform neck size (A) and uniform pore size (B) as well as H2 hysteresis caused by cavitation in pores 

with the neck size (W) larger than the critical neck size (C) and pore blocking (D) in pores with W<WCritical.189 

 

If the neck diameter falls below a certain temperature-depending value (estimated to be 

~6 nm for nitrogen at -196°C), the mechanism of desorption from the pore body 

involves cavitation which is the spontaneous nucleation and growth of gas bubbles in 

the metastable condensed fluid (Figure 23(C)). The pore neck remains filled while the 

pore body empties. It is assumed that the tensile stress limit of the condensed fluid, i.e. 

the pressure at which cavitation induced evaporation occurs, does not depend on the 

pore structure of the adsorbent but is rather a universal feature of the adsorptive. 

However, recent work also reveals that the onset of cavitation can also depend on the 

size and geometry of the cavity if its diameter falls below a certain value.193 

  

3.1.3 Pore Size Distribution 

As the physisorption of gases (especially nitrogen at -196°C) is a widely applied 

technique for the characterization of porous materials, many different methods are 

known for the determination of the materials parameters (e.g. SSA, pore volume, or pore 

size distribution). The PSD can be calculated using classical macroscopic 

thermodynamic methods, such as the Barett-Joyner-Halenda (BJH) method,194 which is 

based on the Kelvin equation (Equation 14). As the BJH method makes use of the 

capillary condensation effect, there are also classical methods for the determination of 

the micropore volume, such as the Horvath-Kawazoe approach.195 However, all of them 

make the assumption that the adsorbed liquid has the same thermophysical properties 
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(e.g. triple point, critical point, freezing point) as the bulk fluid. This leads to 

inaccuracies in the pore size and pore volume determination. For instance, it is known 

that the BJH method underestimates the pore size of OMS materials with pore sizes 

below 10 nm by 20-30% because it assumes a flat, nonporous surface and does not 

differentiate between the thermo-physical properties of the adsorbed molecules and the 

bulk fluid.196  

Due to these serious disadvantages, microscopic methods based on the density 

functional theory (DFT) have been developed providing a more realistic description of 

the thermo-physical properties of the adsorbed fluid. Therefore, pore size analysis based 

on non-local density functional theory (NLDFT) methods is more accurate as it takes 

fluid-fluid as well as fluid-wall interactions into account. These approaches are based on 

theoretical model isotherms which are calculated by methods of statistical mechanics.197 

Such isotherms (denoted as “local isotherms”) are calculated by integration of the 

equilibrium density profiles of the fluid in the model pores in dependence of the relative 

pressure. An array of local isotherms calculated for a set of pore sizes with certain 

geometry in a given range for a given adsorbate is called a “kernel”. A kernel can be 

regarded as theoretical reference for a given adsorption system. The calculation of the 

PSD is based on the correlation of these theoretical physisorption isotherms with the 

experimental data by solving the so-called integral adsorption equation (IAE).189 It is 

important to note that the numerical values of a given kernel depend on various 

parameters, such as the gas-gas- and gas-solid interactions as well as the pore geometry. 

The validity of the applied model can be checked by comparison of the calculated NLDFT 

(fitting) isotherm with the experimental data. As the NLDFT methods take the nano-

confinement of the fluid correctly into account, the pore size analysis is much more 

accurate compared to the BJH method as e.g. shown for OMS materials.189 Furthermore, 

this method offers the advantage that the adsorption behavior of the fluid can be 

described over the entire range from micro- to mesopores. 

In-spite of the fact that NLDFT is a suitable method for the calculation of the PSD of a 

variety of ordered and hierarchically structured materials, it does not sufficiently take 

the chemical and geometrical heterogeneities of the pore walls of carbon nanomaterials 

into account. The non-local DFT method assumes a structureless and smooth graphitic 

surface but in porous carbon materials the electron density of the surface is very 

heterogenic with curved pore walls and often many functional groups. In consequence, 
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the theoretical isotherm exhibits multiple adsorption steps related to the formation of a 

monolayer, second layer, and so on. However, these are experimentally not observed. 

This mismatch causes artificial gaps in the pore size distributions because the 

computational scheme fitting the experimental isotherm as a linear combination of the 

theoretical isotherms in individual pores attributes a layering step to a filling step within 

a pore of certain size. This problem can be overcome by the use of the so-called 

quenched solid density functional theory (QSDFT) method.198 This method takes the 

surface heterogeneity of carbon materials correctly into account. The PSDs calculated by 

the QSDFT method do not contain anymore the artificial gaps typical for NLDFT. 

Although QSDFT methods are able to describe the PSDs of porous carbons much more 

accurately, pore blocking and cavitation effects can still cause artifacts if the PSD is 

calculated from the desorption branch of the isotherms. In consequence, advanced 

QSDFT methods have been developed. They calculate the pore size distribution from the 

adsorption branch taking correctly into account the delay in condensation due to 

metastable adsorption states.199 The PSDs calculated from these advanced kernels do 

not reveal the artificial PSD peak. Although it is widely known that the QSDFT method is 

useful for the precise calculation of the PSD of carbon materials with even very complex 

pore structure, the method only leads to accurate results if the pore structure of the 

adsorbent is compatible with the chosen kernel. 

 

3.1.4 Specific Surface Area 

One way to access the specific surface area of a material from the nitrogen physisorption 

measurements is the use of the Langmuir equation.200 This method has the drawback 

that it is not applicable for mesoporous materials because it assumes a monolayer of 

adsorbed molecules. However, this is not the actual situation in a mesopore. For 

substances containing such pores, the calculation of the SSA by the Brunauer-Emmett-

Teller (BET) equation is the more accurate method because it assumes multilayer 

adsorption of a fluid on the pore surface with a different adsorption enthalpy between 

the first and the following layers.201 From the BET equation (Equation 15), where Vads is 

the total adsorbed volume, VMono is the volume of a monolayer, and C is the adsorption 

constant, 
𝑝

(𝑝0−𝑝)𝑉𝑎𝑑𝑠
 is plotted against the relative pressure and the volume of the 

monolayer can be calculated by extrapolation of the line to its intersection with the y-

axis 
1

𝐶∙𝑉𝑀𝑜𝑛𝑜
 or from the slope 

𝐶−1

𝐶∙𝑉𝑀𝑜𝑛𝑜
. 
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𝑝

(𝑝0−𝑝)𝑉𝑎𝑑𝑠
=

1

𝐶∙𝑉𝑀𝑜𝑛𝑜
+

𝐶−1

𝐶∙𝑉𝑀𝑜𝑛𝑜

𝑝

𝑝0
      (15) 

If the VMono is known, the SSA can be calculated according to Equation 16 where Sg is the 

SSA in m2/g, NA is the Avogadro constant (6.022.1023 mol-1), σ is the required surface 

area of a single N2 molecule in dense package (0.162 nm2), VMol is the ideal gas volume 

(2.241.10-2 m3/mol), and mAds is the mass of the adsorbent. 

                                                                𝑆𝑔 =
𝑁𝐴∙𝑉𝑀𝑜𝑛𝑜∙𝜎𝑁2

𝑉𝑀𝑜𝑙∙𝑚𝐴𝑑𝑠
                  (16) 

 

3.1.5 Pore Volume 

Total Pore Volume 

Although many nanoporous materials can be well characterized by nitrogen 

physisorption it has to be noticed that the applicability of this molecule for the 

determination of the pore volume is limited. The accessibility of the smallest pores by 

nitrogen (kinetic diameter: 0.364 nm) is limited. Therefore, alternative adsorptive 

molecules, such as hydrogen, will lead to higher pore volumes. At upper pore sizes, the 

applicability of nitrogen is limited as well. According to the IUPAC standard, the total 

pore volume has to be calculated by the total amount of adsorbed nitrogen at high 

relative pressure (p/p0 = 0.95). This volume is then converted into its liquid volume 

with the assumption that the nitrogen density of the adsorbed phase is equal to its bulk 

density (Gurvich rule).190 As long as solely micro- and mesoporous materials are 

analyzed and the adsorption isotherm shows a plateau at high relative pressures, this 

method can be used. If larger pores are present, the isotherm does not reach saturation. 

In such a case, the total pore volume must be calculated for pores smaller than a certain 

size. 

 

Micropore Volume 

As for the calculation of the pore size distribution, classical macroscopic methods also 

exist for the calculation of the microprobe volume, such as the statistical thickness 

method (t-plot)202 or the use of the Gurvich rule at p/p0 = 0.2. However, in this thesis the 

pore size distributions of the discussed materials were calculated by QSDFT methods. 

Therefore, the micropore volume is mostly calculated according to the cumulative 

QSDFT pore volumes at a diameter of 2 nm. 
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3.2 Thermal Response Measurements (InfraSORP Technology) 

As described in section 3.1, the use of volumetric gas physisorption, especially the 

adsorption of nitrogen at -196°C, is a widely used tool for the characterization of porous 

materials. Important structural parameters can be directly evaluated from the isotherm. 

A major drawback of these methods is the long time that is needed for one experiment. 

 Thermal response measurements are an attractive alternative for the rapid 

characterization of porous materials. The so-called InfraSORP technology is based on the 

optical adsorption calorimetry and measures the time-resolved temperature change 

(thermal response) of the porous adsorbent during adsorption of a test gas due to the 

release of the heat of adsorption (Figure 24).203, 204 Once the maximum temperature is 

achieved, the sample cools down to equilibrium conditions due to the continuous supply 

of test gas (dynamic flow conditions). 

 

 
Figure 24. Setup of the thermal response measurement (A) and time-dependent thermal response curve with 

the integrated area marked in blue (B). 

 

The magnitude of temperature change depends on the heat capacity of the material, the 

number of adsorbed molecules, the amount of heat released by each molecule, the speed 

of adsorption, and the heat transfer properties (convection, conduction, radiation) of 

sample and calorimeter. Thus, the thermal response curve of a porous material contains 

important information about the adsorption capacity which is assumed to be 

proportional to the heat released.205 Furthermore, adsorption kinetics can be directly 

evaluated as the time constant of the optical calorimeter is negligible. Among different 

potential adsorptives, especially n-butane seems to be a very suitable probe molecule 
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due to its high heat of adsorption, low price, and non-toxic character. The saturation 

pressure of n-butane at RT is 2.4 bar and therefore the relative pressure is p/p0 ~0.4 at 

1 bar. Hence, this molecule fills micropores and potentially forms multilayers in 

mesopores at ambient conditions. 

 

3.3 Mercury Intrusion Porosimetry 

As described in section 3.1, nitrogen physisorption cannot be evaluated in terms of the 

total pore volume if the material contains pores which remain unfilled by the adsorptive 

at high relative pressures. In such a case, porosimetry can be applied to get more 

information about the pore structure (e.g. size, volume, and size distribution) as well as 

the bulk- and skeleton density. Porosimetry in general involves the intrusion of a non-

wetting fluid into the pores of a material at high pressure by the use of a porosimeter. 

Mercury is highly attractive for probing pore space by porosimetry because it does not 

wet most substances and does therefore not penetrate pores by capillary action, unless 

it is forced to do so.206 Furthermore, it has a high surface tension and a large contact 

angle. If mercury is forced into the pores, the required pressure is inversely proportional 

to the pore size, i.e. only slight pressure is required to force the liquid into large pores 

but high pressure is required to force it into small pores. The pore size can be 

determined based on the external pressure needed to force the liquid into a pore against 

the opposing force of the surface tension of the liquid. A quantitative relation between 

the pore diameter (dPore) and the applied pressure (P) is given by the Washburn 

equation (Equation 17), where θ is the contact angle of the intrusion liquid and σ is the 

surface tension of the intrusion liquid. 

                                                         𝑑𝑃𝑜𝑟𝑒 =
−4𝜎𝑐𝑜𝑠𝜃

𝑃
       (17) 

By measuring the volume of mercury that intrudes into the material by a certain 

pressure change, the volume of pores in the corresponding diameter range can be 

calculated. 
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4. Experimental Section 

4.1 List of Used Chemicals 

 

Table 1. List of used chemicals. 

Chemical Formula Purity Supplier 

1,3,5 Trimethylbenzene (Mesitylene) C9H12 98% Sigma Aldrich 

Aluminum Oxide Aeroxide Alu 130 Al2O3 > 99.8% Evonik 

Allylhydridopolycarbosilane 

(SMP-10) 
not specified n. s. 

Starfire 

Systems 

Azobisisobutyronitrile (AIBN) C8H12N4 98% Sigma Aldrich 

Cyclohexane C6H12 99.7% Merck 

Ethanol C2H5OH 99% VWR 

Hexadecane C16H34 98% Fluka 

Hydrochloric Acid Solution HCl 37% BASF 

Hydrofluoric Acid Solution HF 35-40% VWR 

Methanol CH3OH 99.8% VWR 

Methylmethacrylate (MMA) C5H8O2 99% Merck 

para-Divinylbenzene (p-DVB) C10H10 80% Sigma Aldrich 

Platinumdivinyltetramethyl-

disiloxane in Xylene 
C8H18OPtSi2 2% Pt Sigma Aldrich 

Pluronic P123 EO20PO70EO20 ~100% Sigma Aldrich 

Polytetrafluoroethylene (PTFE) (C2F4)n 60% in H2O Sigma Aldrich 

Potassiumperoxodisulfate K2S2O8 99% Fluka 

Silicon Dioxide Aerosol 90  

and Aerosol 380 
SiO2 > 99.8% Evonik 

Sodiumhydroxide NaOH Technical VWR 

Sodiumdodecylsulfate (SDS) NaC12H25SO4 99% Fluka 

Sucrose C12H22O11 99% Roth 

Sulfur S8 > 99.5% Sigma Aldrich 

Sulfuric Acid H2SO4 96% Sigma Aldrich 

Tetraethylorthosilicate (TEOS) Si(C2H5O)4 98% Sigma Aldrich 

Titanium Carbide TiC 99% Sigma Aldrich 

Titanium Dioxide P25 and P90 TiO2 99.5% Evonik 
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4.2 List of Used Gases 

 

Table 2. List of used gases. 

Gas Formula Purity Supplier 

Argon 4.6 Ar 99.996% Air Liquide 

Chlorine 2.8 Cl2 99.8% Air Liquide 

Hydrogen 3.0 H2 99.9% Air Liquide 

Carbon Dioxide 4.5 CO2 99.995% Air Liquide 

Nitrogen 5.0 N2 99.999% Air Liquide 

Helium 5.0 He 99.999% Air Liquide 

Methane 5.5 CH4 99.9995% Air Liquide 

n-Butane 3.5 n-C4H10 99.95% Air Liquide 

 

4.3 Materials Synthesis 

4.3.1 Silica and Polymer Templates 

Ordered Mesoporous SiO2 (SBA-15) 

The hexagonal ordered silica SBA-15 was synthesized by dissolving 66.8 g of the triblock 

copolymer Pluronic P123 (EO20PO70EO20, Sigma Aldrich) in 1212 g deionized water and 

38.6 g concentrated aqueous hydrochloric acid solution over night at 35°C in a 2000 ml 

polypropylene bottle under intense stirring. Then, 143.6 g of tetraethyl orthosilicate 

(TEOS, 98%, Sigma Aldrich) were added to the solution and the mixture was stirred at 

35°C for another 24 h. The white suspension was then transferred to a teflon-lined 

autoclave and hydrothermally treated at 130°C for 24 h followed by filtration and 

washing with ~2000 ml deionized water/ethanol (1:1 by volume). For complete 

removal of the structure-directing agent, the SBA-15 was calcinated at 550°C for 5 h in a 

muffle furnace (60 K/h heating rate). The SiO2 yield is 95-98%. 

 

Mesocellular SiO2 Foam (MCF) 

28 g of Pluronic P123 were dissolved in 946 g deionized water and 165.5 g concentrated 

aqueous hydrochloric acid solution over night at 35°C in a 2000 ml polypropylene bottle 

under intense stirring. Then, 28 g 1,3,5 trimethylbenzene (Mesitylene, 98%, Sigma 

Aldrich) were slowly dropped into the mixture under continued stirring. After 2 h, 61.6 g 

TEOS were added to the solution followed by stirring for another 24 h. The white 
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suspension was then transferred to a teflon-lined autoclave and hydrothermally treated 

at 110°C for 24 h followed by filtration, washing and calcination in analogy to SBA-15. 

 

Polymethylmethacrylate (PMMA) Template Spheres by the Miniemulsion Technique 

In a slim 50 ml beaker, 0.25 g hexadecane (98%, Fluka) and 0.15 g 

azobisisobutyronitrile (AIBN, 98%, Sigma Aldrich) were dissolved in 6.2 g 

methylmethacrylate (MMA, 99%, Merck). To this mixture was added a solution of 

0.072 g soduimdedecylsulfate (SDS, 99%, Fluka) in 24 g of deionized water and stirred 

for 10 min. Then, the miniemulsion was prepared by ultrasonicating the mixture for 

2 min using an ultrasound finger Labsonic P (Sartorius) with 0.5 cycles at 90% 

amplitude under cooling with an ice bath. For polymerization, the miniemulsion was 

filtered over glass wool and treated over night at 80°C in a polypropylene bottle. The 

mixture was placed in a petri dish and water was evaporated at 80°C until the polymer 

became completely dry. 

 

4.3.2 Hard-Templated CDCs 

Ordered Mesoporous Silicon Carbide-Derived Carbon (OM-SiC-CDC) 

Hexagonal ordered OM-SiC-CDCs were synthesized by the infiltration of 2 g of the SBA-

15 powder (see section 4.3.1) with a mixture of SMP-10/para-divinylbenzene (4:1 by 

weight) by the incipient wetness method using a spatula and high pressure. The volume 

of the liquid mixture was chosen according to the pore volume of the silica (100 vol.% 

pore filling). The resulting yellow powder was then placed in an alumina boat in a 

horizontal tubular furnace equipped with an alumina tube and purged under flowing 

argon. The temperature was increased to 800°C and maintained there for 2 h (60 K/h 

heating rate). Silica removal was achieved by placing the pyrolyzed material in a mixture 

(150 ml) of deionized water/ethanol/concentrated aqueous hydrofluoric acid (HF) 

solution (1:1:1 by volume) for at least 3 h. After filtration and 3 times of washing with 

large amounts of ethanol, the obtained brown powder (ordered mesoporous silicon 

carbide, OM-SiC) was dried over night at room temperature (RT). For the high-

temperature chlorine treatment, approximately 2 g of the OM-SiC were placed in a 

quartz boat in a quartz tube (inner diameter: 25 mm) in a horizontal tubular furnace and 

purged with 150 ml/min argon for approximately 1 h. Then, the temperature of the 

furnace was raised to 800°C while the argon flow was maintained at the same level 
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(450 K/h heating rate). At 800°C, the gas flow was subsequently changed to a mixture of 

80 ml/min chlorine and 70 ml/min argon. After 3 h at 800°C, chlorine was switched off 

and the CDC was cooled to 600°C under an argon flow of 150 ml/min. Then, the gas flow 

was changed to 80 ml/min hydrogen and the temperature maintained for 1 h. After the 

post-reductive treatment, the samples were cooled to RT under moderate argon flow. 

 

Carbide-Derived Carbon Mesofoams (CDC-MFs) 

2 g of the mesocellular SiO2 foam (see section 4.3.1) was infiltrated with 4.66 g SMP-10 

by the incipient wetness method according to a theoretical pore filling of 100 vol.%. 

Pyrolysis was performed as described above for the OM-SiC-CDCs at different maximum 

temperatures ranging from 700-1300°C. The high-temperature chlorine treatments at 

maximum temperatures of 700 or 1000°C as well as post-reductive treatments under 

flowing hydrogen were also performed similar to the above-described samples. 

 

Carbide-Derived Carbon Monoliths (CDC-Ms) 

The used silica monoliths were provided by Prof. Dr. Bernd Smarsly and Martin von der 

Lehr (Justus-Liebig University Giessen, Institute of Physical Chemistry). 0.93 g of defined 

monoliths were placed into a 25 ml Schlenk tube together with a mixture of SMP-

10/para-divinylbenzene (3:1 by weight) completely covering the pieces. The mixture 

was evacuated for 24 h at room temperature. The PCS loaded monoliths were then dried 

at 80°C for 12 h under air. Pyrolysis of the infiltrated monoliths was performed at a 

maximum temperature of 800°C for 2 h (30 K/h heating rate). Template removal was 

achieved by placing the pyrolyzed material in a mixture (150 ml) of deionized 

water/ethanol/concentrated aqueous hydrofluoric acid (HF) solution (1:1:1 by volume) 

for at least 24 h, washing with ethanol for several times and drying at 80°C over night. 

The high-temperature chlorine treatment at a maximum temperature of 800°C as well as 

the post-reductive treatment under flowing hydrogen were performed similar to the 

above-described samples. 

 

4.3.3 CDCs from Emulsion Approaches 

PolyHIPE-CDCs 

In a 60 ml polypropylene bottle, 4.37 g SMP-10 and 1.71 g para-divinylbenzene were 

mixed under mild stirring to form the oil phase of the high internal phase emulsion 
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(HIPE) with a volume of 6.25 ml including 30 vol.% of the cross-linker. This was mixed 

with 2.13 g Span-80 (Fluka) as surfactant. After 1 min, a solution of 0.346 g K2S2O8 in 

18.75 ml distilled water was added drop-wise to the oil phase by continuously raising 

the stirring rate in order to ensure a homogeneous commingling. The resulting creamy 

emulsion was then held at 80°C for 24 h. The removal of surfactant was achieved by 

soxhlet extraction with a mixture of methanol/water (30:70 by volume) for 24 h. After 

drying at 80°C, the monolithic pieces of the PolyHIPEs were heated in a horizontal 

alumina furnace under flowing Argon to 700, 800, or 1000°C as described above (60 K/h 

heating rate). Finally, they were converted to CDCs by high-temperature chlorination at 

the maximum pyrolysis temperature as described above, followed by the conventional 

hydrogen annealing procedure at 600°C. 

 

CO2 Activation of PolyHIPE-CDCs 

A large amount of PolyHIPE-CDCs was produced at a pyrolysis-chlorination temperature 

of 700°C without the post-reductive treatment under hydrogen. As a reference, 400 mg 

of this material was annealed under the above-described conditions. The CO2 activations 

were performed using 400 mg of the large-batch chlorinated material for each 

experiment. The raw material was placed into a quartz boat inside a quartz tube (inner 

diameter: 25 mm) and purged with flowing argon. The sample was then heated to the 

elevated temperature of activation (450 K/h heating rate) followed by subsequently 

changing the gas flow to 50 ml/min carbon dioxide and annealed. As it is well-known 

that the activation is very sensitive to the temperature of the material, it has to be 

noticed that the given values are those of the furnace. The temperatures of the samples 

can be ~40 K lower. The activated samples were cooled down under flowing argon. 

 

CDC Nanospheres (CDC-NS) 

In a slim 50 ml beaker, 3 g SMP-10 and 2.74 g para-divinylbenzene or 4.2 g SMP-10 and 

1.8 ml para-divinylbenzene were mixed according to volume ratios of 50:50 or 70:30, 

respectively. Then, 250 mg of hexadecane (98%, Fluka) were added. To this was added a 

solution of 0.072 g sodiumdodecylsulfate (SDS, 99%, Fluka) in 24 g of deionized water 

and stirred for 10 min. The miniemulsion was prepared by ultrasonicating the emulsion 

for 2 min using an ultrasound finger Labsonic P (Sartorius) with 0.5 cycles at 90% 

amplitude under cooling with an ice bath. For polymerization, the miniemulsion was 
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filtered over glass wool and 0.1 g of a solution of H2PtCl6 in water (1:1000 by weight) 

was added followed by a treatment at 80°C in a polypropylene bottle over night for 

cross-linking. The miniemulsion with the cross-linked organic phase was then 

transferred to a petri dish and the water phase was evaporated at 80°C. Pyrolysis of the 

dry cross-linked polycarbosilane spheres to silicon carbide materials, high-temperature 

chlorine treatment for the transformation to CDCs (both at a maximum temperature of 

700°C), and the post-synthesis treatment under flowing hydrogen were performed as 

described above. 

 

4.3.4 CDC Aerogels 

Synthesis of CDC Aerogels 

Polycarbosilane aerogels were prepared according to a slightly modified procedure 

previously reported by Sorarù and co-workers.135 A mixture of 1.74 g SMP-10 and 1.62 g 

para-Divinylbenzene was dissolved in 24.9 g cyclohexane and stirred for 10 min at RT. 

40 µl of the hydrosilylation-catalyzing complex platinumdivinyltetramethyldisiloxane 

(~2% Pt in xylene, Sigma Aldrich) were added and the mixture was stirred for another 

5 min at RT followed by hydrothermal treatment in a teflon-lined autoclave at 200°C for 

1 h. After cooling to RT, the bright yellow gel was transferred to a supercritical drying 

autoclave and the solvent was exchanged with liquid CO2 at least twice a day for 5 days. 

The drying was achieved by raising the temperature of the autoclave to 37°C and the 

pressure up to 100-110 bar followed by decreasing the pressure to 1 bar over a period 

of approximately 2 h. The obtained PCS aerogels were pyrolyzed at 700 or 1000°C and 

the high-temperature chlorine treatments were performed at the maximum pyrolysis 

temperature followed by subsequent hydrogen annealing.   

 

CO2 Activation of CDC Aerogels 

CO2 activation of the CDC Aerogels was performed according to the procedure described 

for the PolyHIPE-CDCs (see section 4.3.3) at a maximum temperature of 950°C for 4 h. 

 

4.3.5 CDCs from Sacrificial Templates 

PMMA-templated CDC materials were synthesized by intense mixing of 4.5 g of the 

PMMA template spheres (see section 4.3.1) with 1.5 g SMP-10 in a mortar. The resulting 

yellow powder was subsequently pyrolyzed at a maximum temperature of 800°C for 2 h 
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(30 K/h heating rate). The high-temperature chlorine treatment at a maximum 

temperature of 800°C as well as the post-reductive treatment under flowing hydrogen 

was performed similar to the above-described samples. 

 

4.3.6 Kroll-Carbons 

Kroll-Carbons from TiO2 Templates 

P25 and P90 fumed titanium dioxide nanoparticles (P25 with SSA = 50 ± 15 m2/g and 

P90 with SSA = 90 ± 20 m2/g) were purchased from Evonik (Germany). In-house made 

TiO2 nanoparticles were produced by M. Sc. Tim Biemelt by a flame spray pyrolysis 

process at the Institute of Inorganic Chemistry at the Technical University (TU) Dresden 

according to a procedure described by Madler and co-workers.207 2 g of titania 

nanoparticles were mixed in a petri dish with a 10 ml aqueous solution of 2.5 g of 

sucrose (99%, Roth Chemicals) to which was added 0.03 g 96% sulfuric acid. The 

resulting white dispersion was then left at 100°C for 3 h and at 160°C for another 3 h to 

achieve complete polymerization of the disaccharide. Approximately 2 g of the black 

hydrocarbon/titanium dioxide composite was then placed in a quartz boat inside a 

quartz tube (inner tube diameter 25 mm) in a horizontal tubular furnace and flushed 

with argon. The furnace was heated up to 900°C (300 K/h heating rate) and annealed for 

1 h under constant argon flow. Subsequently, the gas flow was changed to a mixture of 

80 ml/min chlorine and 70 ml/min argon for 2 h while keeping the temperature at the 

same level. The furnace was cooled down to room temperature under argon flow. A 

post-reductive treatment was performed in the same tube with 80 ml/min hydrogen at 

600°C for 2 h. 

 

Kroll-Carbons from Al2O3 Templates 

For the synthesis of Kroll-Carbons based on Al2O3 templates, 2.54 g of Al2O3 

nanoparticles (Aeroxide Alu 130 with SSA = 130 ± 20 m2/g), purchased from Evonik 

(Germany), were dispersed in a solution of 5.0 g sucrose in 80 ml deionized water 

followed by the addition of 8 droplets (~160 mg) of concentrated sulfuric acid. The 

mixture was transferred to a Petri dish and treated for 3 h at 100°C and for another 3 h 

at 160°C. Carbonization and high-temperature chlorine treatment were performed 

similar to the Kroll-Carbons from TiO2 Templates. A post-reductive treatment with 

80 ml/min hydrogen at 600°C for 2 h was also carried out under similar conditions.  
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Kroll-Carbons from SiO2 Templates 

For the synthesis of Kroll-Carbons based on SiO2 templates, 2.0 g of SiO2 nanoparticles 

(Aerosil 380 with SSA = 380 ± 30 m2/g and Aerosil 90 with SSA = 90 ± 15 m2/g) were 

dispersed in a solution of 4.75 g sucrose in 10 ml deionized water followed by the 

addition of 2 droplets (40 mg) of concentrated sulfuric acid. The following synthesis 

steps are performed according to Kroll-Carbons based on TiO2 and Al2O3 templates. 

 

4.3.7 Miscellaneous Carbon Materials 

Synthesis of Microporous CDCs from Polymer Precursors 

The synthesis of microporous CDC materials from polymer precursors was performed 

starting from pristine SMP-10 polymer. Liquid SMP-10 was placed into an alumina boat 

into an alumina tube in a horizontal tubular furnace and purged under flowing argon. 

The temperature was increased to 700 or 1000°C and maintained there for 2 h (60 K/h 

heating rate). High-temperature chlorine treatment at a maximum temperature of 700 

or 1000°C and the hydrogen treatment were performed similar to the CDC materials 

described above. 

 

Synthesis of Microporous CDCs from Titanium Carbide Powder   

Crystalline TiC powder (99%, Sigma Aldrich) with a particle size < 4 μm was used as 

CDC precursor. High-temperature chlorine treatments at different maximum 

temperatures and post-synthesis hydrogen treatments at 600°C were performed as for 

the OM-SiC-CDCs described above (see section 4.3.2). 

 

Synthesis of CMK-3 

In a Petri dish, 2 g of the SBA-15 template (see section 4.3.1) were mixed with a 10 ml 

aqueous solution of 2.5 g sucrose to which was added 0.28 g 96% sulfuric acid. 

Polymerization of the hydrocarbon was achieved by heating the mixture to 100°C for 6 h 

followed by subsequent heating to 160°C for another 6 h. Complete infiltration of 

template pores was achieved by repeating the procedure described above with a 10 ml 

aqueous solution of 1.6 g of sucrose to which was added 0.18 g of 96% sulfuric acid, 

again followed by heating to 100°C and 160°C. Carbonization was carried out under 

flowing argon atmosphere in a horizontal tubular furnace. The material was heated to 

900°C (heating rate: 150 K/h) and annealed for 2 h. Silica removal was achieved by 
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placing the carbonized composite material in a mixture (150 ml) of deionized 

water/ethanol/concentrated aqueous hydrofluoric acid solution (1:1:1 by volume) for at 

least 3 h. After filtration and washing with large amounts of ethanol, the CMK-3 material 

was dried at RT. 

 

4.4 Characterization Methods 

4.4.1 Structural Characterization 

Nitrogen Physisorption 

Prior to all measurements the carbide and carbon samples were degassed under vacuum 

at 150°C over night. Polymeric materials were degassed under vacuum at 50°C to avoid 

structural deformation. Nitrogen physisorption experiments at -196°C were performed 

on a Quadrasorb apparatus (Quantachrome Instruments, USA). Low-pressure isotherms 

were measured on an Autosorb 1C (Quantachrome). The specific surface areas of the 

materials were calculated using the multi-point BET method. The corresponding relative 

pressure range is given at the appropriate position for each material. The total pore 

volume was calculated by the Gurvich rule. The corresponding relative pressure for the 

calculation is given at the appropriate position for each material. The pore size 

distributions were calculated using quenched solid density functional theory (QSDFT) 

method integrated into the ASiQwin 3.00 analysis software (Quantachrome). The 

specific kernel is given at the appropriate position for all PSDs. Micropore volumes were 

calculated from the cumulative pore volumes at a diameter of 2 nm. 

 

Carbon Dioxide and Water Physisorption 

Carbon dioxide physisorption measurements were performed at 0°C on the Autosorb 1C 

apparatus (Quantachrome). Pore size distributions were calculated by applying the non-

local density functional theory (NLDFT, carbon dioxide on carbon) to the carbon dioxide 

physisorption isotherms. 

Water vapor physisorption isotherms were measured at 25°C on a Hydrosorb 1000 

apparatus (Quantachrome). 

 

Raman Spectroscopy 

Raman spectroscopic investigations of the CDC mesofoams (see section 5.2.1), PMMA-

CDCs (see section 5.4), and the Kroll-Carbons from SiO2 and Al2O3 templates (see section 
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5.6.2) were performed by Dr. Christoph Ziegler and M. Sc. Stefan Klosz (Institute of 

Physical Chemistry, Technical University Dresden). The spectra were obtained on a RM-

2000 Raman microscope (Renishaw, United Kingdom) using a Gem532 (532 nm 

wavelength) laser (Laser Quantum, Germany) as the excitation source. 

Raman spectra of the CDC aerogels (see section 5.3) and the carbon materials for the 

fundamental adsorption studies (see section 5.5.1) were performed by B. Sc. Jana 

Schaber (Institute of Bioanalytical Chemistry, Technical University Dresden). The 

spectra were recorded on a Holospec f/1.8 spectrograph (Kaiser Optical Systems, USA) 

at 785 nm excitation wavelength. The spectra were fitted with a 4-band fit (mixed Gaus-

Lorentzian peak fitting). 

 

Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the materials pressed with dry KBr (1:300 by weight) were recorded by 

Dipl. Chem. Florian Wisser (Institute of Inorganic Chemistry, Technical University 

Dresden) by using a Bruker Vertex 70 (Bruker, USA) instrument in transmission mode at 

a resolution of 2 cm−1 with 32 scans. 

 

Scanning Electron Microscopy (SEM) and Electron Dispersive X-ray Spectroscopy (EDX) 

SEM investigations were performed on a Zeiss DSM982 (Carl Zeiss, Germany) at a beam 

voltage of 4 kV. The samples were sputtered with gold prior to analysis. Elemental 

analyses using EDX were obtained as a mean value of 3-5 measurements in a 

magnification of 3000-5000. SEM investigations of the PMMA-CDCs (see section 5.4) 

were performed at the Georgia Institute of Technology (GeorgiaTech, Atlanta, USA) Zeiss 

Ultra60 FE-SEM (Carl Zeiss, Germany) at a beam voltage of 5 kV. 

 

Transmission Electron Microscopy (TEM) 

The samples were prepared by shortly crushing the synthesized powders in a ball mill 

and suspending in ethanol or isopropanol under sonification. The resulting suspension 

was dropped onto a copper grid coated with holey carbon and dried under infrared 

light. The TEM investigations were carried out by Dr. Martin Lohe and M. Sc Giovanni 

Mondin (Institute of Inorganic Chemistry, Technical University Dresden) on a Cs-

corrected JEOL JEM-2010F microscope (JEOL, USA) at an accelerating voltage of 200-

300 kV. The TEM studies of the PMMA-CDC (see section 5.4) were performed at 

GeorgiaTech on a Tecnai G2 F30 (FEI, Netherlands) at an accelerating voltage of 300 kV. 
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Dynamic Light Scattering (DLS) 

DLS measurements of the highly diluted aqueous dispersions were performed at 25°C 

using the Zetasizer Nano-ZS (Malvern Instruments, United Kingdom). 

 

Small-Angle X-ray Scattering (SAXS) 

SAXS measurements were carried out on a Bruker Nanostar (Bruker) with CuKα1 

radiation (λ = 0.154 nm) and a position-sensitive Histar 2D detector. 

 

Wide-Angle X-ray Diffraction (WAXD) 

The measurements were performed in Bragg-Brentano geometry on a PANalytical X’Pert 

Pro (PANalytical, Netherlands) with CuKα1 radiation. 

 

Thermogravimetric Analysis (TGA) 

TGA measurements were performed on a STA 409CD (Netzsch, Germany) in air or argon 

atmosphere with a heating ramp of 5-10 K/min. 

 

Mercury Porosimetry 

Mercury porosimetry of the PolyHIPE-CDCs (see section 5.1.1) and the CDC aerogels 

(see section 5.3) were performed by Dr. Matthias Thommes and Dr. Katie A. Cychosz 

(Quantachrome) on a PoreMaster-60 GT (Quantachrome). The mercury intrusion 

measurement of the CDC monoliths (see section 5.2.2) was performed by Dipl. Chem. 

Martin von der Lehr (Institute of Physical Chemistry, Justus-Liebig-University Gießen,) 

on a Pascal 140/440 porosimeter (Thermo Fisher Scientific, Italy). The PSDs were 

calculated from the mercury intrusion data by applying the Washburn equation. A 

contact angle of 140° was used for the calculation as well as a surface tension of 

480 ergs. 

 

4.4.2 Further Adsorption Measurements 

Gravimetric n-Butane Adsorption 

The measurements were performed with a micro-balance B111 (Setaram, France) in 

combination with a micro-calorimeter TG-DSC 111 (Setaram) at 25°C and atmospheric 

pressure under dynamic conditions (n-butane in nitrogen flow). Prior to all 

measurements, the samples were degassed at 150°C for 16 h in nitrogen flow. 
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Volumetric n-Butane Adsorption 

The volumetric n-butane adsorption measurements were carried out at 5°C on a 

BELSORP-MAX apparatus (BEL, Japan). 

 

n-Butane Breakthrough Measurements 

n-Butane breakthrough measurements were performed at a total gas flow of 20 ml/min 

(n-butane diluted in nitrogen flow). The relative amount of the organic gas was varied 

by mass flow controllers. A cylindrical stainless steel cell (3 cm in length, 1 cm in 

diameter) was used as the adsorption column. Prior to the measurements, all samples 

were flushed with nitrogen for 1 h. Breakthrough curves were recorded by exhaust gas 

detection using a thermal conductivity detector. 

 

High-Pressure Methane and Hydrogen Adsorption Measurements 

High-pressure methane physisorption experiments were carried out at 25°C using a 

magnetic suspension balance (Rubotherm, Germany). The buoyancy corrections were 

performed as described elsewhere.208 The helium measurement prior to the gravimetric 

methane adsorption was used for the determination of the skeleton density. Hydrogen 

adsorption measurements at -196°C were performed on a volumetric BELSORP-HP 

apparatus (BEL). 

 

Thermal Response Measurements (InfraSORP) 

The thermal response of the samples was measured using the previously described 

single-cell optical calorimeter setup (InfraSORP Technology by 

Fraunhofer/Rubotherm).205 Small amounts of powdered sample (5-25 mg) were placed 

in the sample cell and purged with nitrogen until a constant sample temperature was 

observed. When the sample was at constant temperature, it was exposed to a flow of 

70 ml/min of the test gas (carbon dioxide or n-butane) using a mass flow controller. The 

thermal response function was fitted to the measured data using Origin 7.5 software. 

For n-butane adsorption/desorption cycling of the samples (see sections 5.2.2 and 

section 5.5.3), the samples were exposed to the test gas for a certain time. Then, nitrogen 

was passed by the sample cell to remove n-butane from the lines for 90 s. Subsequently, 

the nitrogen flow was subjected to the sample cell for a certain duration initializing 

desorption of n-butane from the samples leading to a decrease of the temperature. In the 
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subsequent cycles, n-butane was adsorbed again on the partially desorbed samples for 

the same time as in the first cycle, lines were flushed with nitrogen for 90 s, and the 

hydrocarbon was desorbed under nitrogen flow for a longer time compared to the prior 

cycles, followed by the repeated adsorption of n-butane, the further increased 

desorption, and so on. 

 

4.4.3 Nuclear Magnetic Resonance (NMR) Spectroscopy Measurements 

Solid-State Magic Angle-Spinning (MAS) NMR 

The solid-state NMR spectroscopy investigations (see section 5.5.1) were performed by 

Dr. Silivia Paasch and Prof. Dr. Eike Brunner (Institute of Bioanalytical Chemistry, 

Technical University Dresden). The carbon samples were loaded with 1 M TEABF4 in AN 

by the incipient wetness method, i.e. the amount of solution was exactly adjusted to the 

available pore volume in order to avoid an excess of solution in the interparticle space 

surrounding the particles of the material. Solid-state 1H, 11B and 13C NMR spectra were 

recorded on a Bruker AVANCE 300 spectrometer using a commercial 2.5 mm double-

resonance (1H, X) MAS NMR probe. During signal acquisition, SPINAL 1H-decoupling was 

applied.209 The MAS frequency was 16 kHz. The spectra were recorded with a recycle 

delay of 3 s for 1H and 11B and 180 s for 13C. Ramped-amplitude cross-polarization 

(CP)210 was applied for the acquisition of 13C{1H} CP MAS NMR spectra.  

 

129Xe NMR 

The 129Xe NMR investigations (see section 5.5.1) were performed by M. Sc. Julia 

Pallmann and Prof. Dr. Eike Brunner (Institute of Bioanalytical Chemistry, Technical 

University Dresden). The experiments were carried out by using a homemade in-situ 

high-pressure apparatus.211 Samples were transferred into the single crystal sapphire 

tube under argon atmosphere. The samples were activated over night using high 

vacuum (10−8-10−7 bar) to prevent artifacts due to surface adsorption of atmospheric 

molecules. The application of relative pressures p/p0 = 1 would require an absolute 

pressure of ~60 bar within the tube at RT. Although the sapphire tube withstands such 

pressures, the tubing connecting the tube inside the magnet with the outside pump rack 

and xenon reservoir does not allow this pressure. However, at the chosen lower 

temperature (237 ± 3 K), a relative pressure of p/p0 = 1 corresponds to ~19 bar. This is 

accessible for the apparatus. After pressurizing the samples, a subsequent equilibration 
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phase of at least 15 min has been deferred. In the case of cooled samples, a further phase 

of minimum 1 h was incorporated for thermal equilibration. All experiments were 

performed using an Avance 300 (Bruker, Karlsruhe, Germany) NMR spectrometer 

coupled with a BIOSPIN SA BCU-Xtreme unit (Bruker). The 129Xe NMR spectra were 

recorded at a resonance frequency of 83.02 MHz using a 10 mm HR probe, a pulse length 

of 6 μs, and relaxation delays of 5 s. Temperature calibration and referencing of the 129Xe 

NMR chemical shift have been performed as previously described.211 

 

4.4.4 Electrochemical Characterization 

Electrode Materials in EDLCs 

The characterization of the CDC nanospheres (see section 5.1.2) and the CDC mesofoams 

(see section 5.2.1) was performed by Dipl. Chem. Katja Pinkert (Institute for Complex 

Materials, Leibniz Institute for Solid State and Materials Research Dresden). The carbon 

materials were suspended in acetone and mixed with a polyvinylidene-difluoride 

(PVDF)-acetone solution, resulting in a carbon:PVDF mixture (95:5 by weight) without 

conductive agent. The slurry was uniformly dropped on a platinum coin current 

collector with a diameter of 12 mm and dried at 80°C for 12 h. Each electrode comprised 

about 5 mg of active material. Two electrodes were assembled in a symmetrical 

electrode configuration, separated by a Whatman GF/D glass microfiber filter (GE 

Healthcare Life Sciences, USA), and soaked with the aqueous electrolyte (1 M H2SO4). 

The sandwich was placed in a Swagelok-type test cell. Electrochemical measurements 

were carried out at 25°C using a multichannel VMP3 potentiostat–galvanostat (Bio-

Logic, France). The capacitance determination of the symmetrical two-electrode cells 

was accomplished by cyclic voltammetry (CV) experiments at different scan rates. Five 

cycles were measured at each potential scan rate and the capacitance was calculated 

from the 5th cycle. The differential specific capacitance for CV plots at different scan 

rates is calculated according to Equation 18, where Cspec is the differential specific 

capacitance in F/g (based on the mass of electroactive material in a single electrode), 

Ispec is the specific response current density at the applied potential step in A/g (based 

on the mass of electroactive material in a single electrode), and ν is the potential scan 

rate in mV/s. 

                                 𝐶𝑠𝑝𝑒𝑐 =
𝐼𝑠𝑝𝑒𝑐

ν
         (18) 
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The integral specific capacitance is calculated according to Equation 19, where Ispec is the 

specific response current density in A/g (based on the mass of electroactive material in a 

single electrode) integrated over the applied potential window V2-V1. 

                 𝐶𝑠𝑝𝑒𝑐 =
1

ν (𝑉2−𝑉1)
 ∫ 𝐼𝑠𝑝𝑒𝑐𝑑𝑉

𝑉2

𝑉1
        (19) 

Galvanostatic charge-discharge (C-D) measurements up to 0.9 V were performed at 

current densities from 1-20 A/g (based on the mass of electroactive material in a single 

electrode). The specific capacitance was calculated according to Equation 20, where 

dV/dt is the slope of the discharge curve in V/s. 

                                                             𝐶𝑠𝑝𝑒𝑐 =
2𝐼𝑠𝑝𝑒𝑐

(
𝑑𝑉

𝑑𝑡
)

           (20) 

Potentiostatic impedance spectroscopy was carried out in the frequency range from 

1 mHz-100 kHz with a 10 mV alternating current (AC) amplitude. The specific 

capacitance was calculated according to Equation 21 where f is the operating frequency 

in Hz, Im(Z) is the imaginary part of the total device resistance in Ω, and m is the mass of 

electroactive material in a single electrode. 

                                                              𝐶𝑠𝑝𝑒𝑐 = (
2

2 𝜋 𝑓 𝐼𝑚(𝑍) 𝑚
)       (21) 

The characterization of the CDC aerogels (see section 5.3.2) and the Kroll-Carbons based 

on silica or alumina templates (see section 5.6.2) was performed at GeorgiaTech. The 

materials were ground into powders in a mortar and were suspended in ethanol under 

mild sonication. A suspension of polytetrafluoroethylene binder (PTFE, 60 wt% in 

water, Sigma Aldrich) was added and the resulting slurry of 5 wt% PTFE and 95 wt% of 

carbon was concentrated by slow evaporation of ethanol at 80°C under constant stirring. 

The highly viscous mixture was then dried on a glass plate and mixed with razor blades. 

When the mass became dry with a rubberlike (clay) consistency, it was rolled to a 

thickness of ~150 μm between aluminum foil sheets using a roll mill. The resulting 

composites were dried over night at 80°C under vacuum.  

For the measurements in the aqueous electrolytes, electrodes of ~1 cm2 (2-3 mg active 

material) were cut out and the device assembly took place under air atmosphere. A high-

purity gold foil (Sigma Aldrich, USA) was used as the current collector and a 

commercially available Dreamweaver Silver separator (Dreamweaver International, 
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USA) was placed between the electrodes. The sandwich was assembled in a beaker-type 

cell configuration and held together using Teflon slabs and screws. Sufficient wetting of 

the porous carbon electrodes with sulfuric acid was ensured by adding an excess of 

electrolyte solution to the beaker followed by a treatment under vacuum at RT for 1 h. 

For the measurements in the ionic liquid electrolyte EMIBF4, (> 98%, IoLiTec Ionic 

Liquids Technologies GmbH, Germany) and the organic electrolyte 1 M TEABF4 in AN, 

the devices were assembled in a stainless steel coin cell configuration in an argon filled 

glovebox. Carbon coated aluminum foil was used as the current collector and the above 

mentioned Dreamweaver product as the separator. In case of the organic electrolyte, a 

GORE membrane (W.L. Gore and Associates, USA) of 25 μm in thickness and with 60% 

porosity was used (4-5 droplets of the electrolyte were used for the wetting of the 

electrodes and the separator and the excess amount was removed during compression 

of the coin cell). 

For electrochemical measurements, aluminum contacts were fixed to the coin cells. CV 

measurements were performed on a Solartron 1480A (AMETEK Advanced 

Measurement Technology, USA) from -0.6-0.6 V (aqueous electrolyte), 0-2.0 V (organic 

electrolyte), or -2.0-2.0 V (ionic liquid electrolyte) at scan rates of 1-1000 mV/s. The 

gravimetric capacitance of each electrode at different scan rates was calculated from the 

CV data according to Equation 22 where dU/dt is the scan rate, m is the mass of active 

material in a single electrode, and I(U) is the total current. 

           𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 2𝐶𝑐𝑒𝑙𝑙 =     (
2

(𝑑𝑈/𝑑𝑡)𝑚
) {∫ 𝐼(𝑈)𝑑𝑈

0.6𝑉

−0.6𝑉
− ∫ 𝐼(𝑈)𝑑𝑈

0.6𝑉

−0.6𝑉
}

1

2

1

1.2𝑉
             (22) 

C-D experiments at charge/discharge current densities of 0.1-20 A/g (based on 

the mass of a single electrode) were carried out with an Arbin SCTS 

supercapacitor testing system (Arbin Instruments, USA). The specific capacitance 

was calculated according to Equation 23 where I is the total current, dU/dt is the 

slope of the discharge curve, and m is the mass of active material in a single 

electrode. 

𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 2𝐶𝑐𝑒𝑙𝑙 = (
2𝐼

(𝑑𝑈/𝑑𝑡)𝑚
)                                          (23) 

EIS measurements were performed on a Gamry Potentiostat (Gamry Instruments, USA) 

from 100 kHz-1 mHz with a 10 mV alternating current (AC) amplitude. 
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Electrode Materials in Li-S Batteries 

Electrochemical characterization of the CDC mesofoams (see section 5.2.1) and the KCs 

from titania templates (see section 5.6.1) were performed by M. Sc. Sören Thieme 

(Fraunhofer Institute for Material and Beam Technology (IWS) Dresden). The carbon/S 

nanocomposites were prepared by combining pristine sulfur (Sigma Aldrich, ≥ 99.5%) 

with finely ground carbon material in a defined C:S weight ratio. After homogenization 

in a mortar, the mixture was transferred into a ceramic crucible and heated to 155°C for 

12 h under air to perform the melt infiltration of sulfur. The cathodes were prepared by 

homogeneously mixing multiwalled carbon nanotubes (MWCNT, NanocylNC 7000 

series) as the conducting agent and poly(tetrafluorethylene) (PTFE, ABCR) binder with 

the carbon/S nanocomposites in a defined weight ratio followed by intensive grinding at 

elevated temperature. The as-prepared self-supporting cathode foil was laminated onto 

a carbon-coated, expanded aluminum current collector (Benmetal, 99.5% with 20% 

Electrodag EB-012). Circular electrode discs (diameter 12 mm, area 1.131 cm2) were 

punched out for electrochemical characterization. 

For electrochemical characterization, the carbon/S composite cathode (working 

electrode), one layer of Celgard 2500 separator (Celgard, USA), and a lithium metal chip 

(Pi-Kem, 99.0%, diameter 15.6 mm, thickness 250 μm) were stacked and subsequently 

sealed airtight in 2016 coin cells. Prior to stacking, the cathode was thoroughly wetted 

with 8 μl liquid electrolyte per mg of sulfur consisting of 1 M lithium-

bis(trifluoromethylsulfonyl)imide (LiTFSI, Sigma Aldrich, 99.95%) and 0.25 M lithium 

nitrate additive (LiNO3, Alfa Aesar, 99.98%, anhydrous) dissolved in a mixture (1:1 by 

volume) of 1,2-dimethoxyethane (DME, Aldrich, 99.5%, anhydrous) and 1,3-dioxolane 

(DOL, Aldrich, 99.8%, anhydrous). The whole cell assembly took place in an argon-filled 

glove box. The long-term stability of the carbon/S composite cathode was investigated 

by galvanostatic cycling at room temperature at different current rates with a Cell Test 

System (BASYTEC, Germany) in a voltage range of 1.8-2.6 V vs. Li/Li+.  

The electrochemical testing of the PMMA-CDCs as Li-S cathode components was 

performed at GeorgiaTech. The S/PMMA-CDC composites and polyacrylic acid (PAA, 

Polysciences) as a binder were mixed in water:ethanol (1:3 by weight) to prepare a 

slurry for casting an electrode. The ratio of S/PMMA-CDC to PAA binder was 85:15 by 

weight. No conductive additives were used. The slurry was stirred at room temperature 

for 1 h and cast on an aluminum foil. After drying overnight at RT under vacuum, coin 
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cells were assembled with 1 M, 3 M, and 5 M LiTFSI in dimethoxyethane (DME):1,3-

dioxolane (DIOX) (1:1 by volume) as electrolyte, a celgard2400 (Celgard) separator and 

a pure Li foil (Alfa Aesar, 99.9%) as anode. 0.2 M LiNO3 (Alfa Aesar, 99.99%) was added 

to the electrolyte as an additive. The cells were equilibrated for 24 h before operation. 

The average sulfur surface loading was ~0.5 mg/cm2. The coin-cells were assembled 

inside an argon-filled glovebox and cycled with different C-rates in the range 3.0-1.2 V 

vs. Li/Li+ in galvanostatic mode using an Arbin battery test system (Arbin Instruments). 

The durability test was carried out at 0.2 C with separate cells. 
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5. Results and Discussion 

The major aim of this PhD thesis was the controlled design of carbon nanomaterials with 

hierarchical pore structures for applications related to gas adsorption and 

electrochemical energy storage. For the synthesis of these materials, several templating 

approaches were applied and a wide range of pore sizes and pore geometries as well as 

different textures on the nanoscale are approachable. In chapters 5.1-5.4, novel carbide-

derived carbon materials with tuned secondary pore sizes in addition to the typical CDC 

microporosity are presented (Figure 25). Their synthesis-structure relationships and 

their potential applications in gas adsorption and electrochemical energy storage are 

discussed. Furthermore, particular interest was pointed on the use of CDCs as model 

materials for a rather detailed understanding of the fundamentals of adsorption 

processes on porous carbon surfaces. The results of these investigations are presented 

in section 5.5. A new class of primarily mesoporous carbon materials (designated as 

Kroll-Carbons, KCs) is described in section 5.6. These materials were produced by the 

reductive carbochlorination reaction between oxidic nanoparticles (fumed titania, 

fumed silica, and fumed alumina) and a surrounding carbon matrix. 

 

 
Figure 25. SEM or TEM micrographs of the CDC structures synthesized within this thesis.  

 

5.1 CDCs from Emulsion Approaches 

Emulsion approaches (see section 2.3.3) are widely used for the synthesis and 

functionalization of nanostructured solids. Within this thesis, two different types of 

emulsions are used for the synthesis of nanoporous carbide-derived carbon materials. 
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High Internal Phase Emulsions (HIPEs) are applied for the synthesis of macroporous 

CDC materials with micro- and mesoporous walls. These carbons offer a combination of 

large capacities with high accessibility of the nanopores and are therefore very 

attractive for the use in hydrocarbon adsorption.212 A post-synthetic activation 

procedure can be applied to further increase their specific surface areas and micropore 

volumes leading to even higher uptakes.213 

Furthermore, miniemulsions were used for the synthesis of uniformly-sized CDC 

nanospheres with diameters of 20-400 nm. These materials are spherically shaped and 

their pore structure can be influenced by the amount of organic cross-linker in the 

miniemulsion. In symmetrical EDLCs in aqueous electrolyte, CDC nanospheres offer high 

gravimetric capacities. 

 

5.1.1 PolyHIPE-CDCs 

Synthesis and Structure  

The PolyHIPEs are produced by cross-linking of the preceramic allylhydrido-

polycarbosilane SMP-10 with the cross-linker para-divinylbenzene in the oil phase of 

high internal phase emulsions (HIPEs). An aqueous solution of the radical initiator 

K2S208 acts as the internal phase and the droplets are stabilized with the surfactant 

Span-80 (Figure 26). 

 

 
Figure 26. Procedure for the preparation PolyHIPE-CDC and photographs of the materials in different 

synthesis stages (scale bar: 1 cm). 

 

After cross-linking of the polymer chains and surfactant removal by a soxhlet extraction 

procedure, the resulting PolyHIPEs are pyrolyzed to silicon carbides (PolyHIPE-SiC) at 
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maximum temperatures of 700, 800, or 1000°C and subsequently converted to 

PolyHIPE-CDCs by high-temperature chlorine treatment at the maximum pyrolysis 

temperature. The monolithic morphology of the PolyHIPEs can be fully maintained over 

the entire synthesis pathway (Figure 26). This allows the production of these CDCs in 

complex shapes without the use of additional binding agents which is most often a 

highly desired property for porous carbon materials. A post-reductive treatment under 

flowing hydrogen is performed to ensure the removal of residual chlorine and metal 

chlorides adsorbed in the pores of the PolyHIPE-CDCs after silicon extraction. In 

consequence, the finally obtained materials show carbon contents of 99.9 wt.% at all 

applied synthesis temperatures. Potential impurities of chlorine, silicon and oxygen are 

below the detection limit (Table 3). 

 

Table 3. EDX analyses of PolyHIPE-SiCs and PolyHIPE-CDCs prepared at different temperatures. 

Material 
Carbon 

(wt.%) 

Silicon 

(wt.%) 

Oxygen 

(wt.%) 

Chlorine 

(wt.%) 

PolyHIPE-SiC-700°C 63.3 28.9 7.8 - 

PolyHIPE-SiC-800°C 56.7 35.8 7.5 - 

PolyHIPE-SiC-1000°C 59.6 29.9 10.5 - 

PolyHIPE-CDC-700°C > 99.9 < 0.1 < 0.1 < 0.1 

PolyHIPE-CDC-800°C > 99.9 < 0.1 < 0.1 < 0.1 

PolyHIPE-CDC-1000°C > 99.9 < 0.1 < 0.1 < 0.1 

 

 
Figure 27. SEM micrographs of the PolyHIPE-SiCs (A-C) and PolyHIPE-CDCs (D-F) prepared at 700°C (A and 

D), 800°C (B and E), and 1000°C (C and F). 
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SEM images of the silicon carbide intermediates before the high-temperature chlorine 

treatment (Figure 27) show the presence of a macroporous network that is typical for 

PolyHIPEs.131 It consists of large pores (voids) in the μm-range. They are interconnected 

by smaller gates (windows) of several 100 nm in diameter. This leads to advanced 

accessibility of the surface area throughout the entire particle and the absence of closed 

pores. Due to the highly conformal character of the high-temperature chlorine treatment 

(i.e. the absence of volume shrinkage or sintering processes), this morphology does not 

change during silicon removal. The carbide-derived carbon materials exhibit a similar 

macroporous structure independent of the elevated synthesis temperature (Figure 27). 

 

 
Figure 28. Raman spectra (A) of PolyHIPE-CDCs prepared at 700°C (red), 800°C (blue), and 1000°C (black) 

and TEM micrographs of PolyHIPE-CDCs prepared at 700°C (B and C) and 1000°C (D and E). 

 

Raman spectra of Poly-HIPE-CDCs (Figure 28(A)) are comparable with those originally 

reported for microporous carbide-derived carbons.82 They are typical for highly 

amorphous carbon materials built-up by mostly disordered carbon fringes. The area and 

intensity of the D-band (associated with the presence of defective graphite domains) and 

therefore the ID/IG ratio increases when the synthesis temperature rises from 700°C to 

1000°C owing to the preferred formation and organization of sp2 hybridized carbon. The 

decreasing full-width at half maximum (FWHM) of the D-band (Table 4) as well as the 

disappearance of the shoulder D2-band also indicate increased structural ordering in the 

CDCs prepared at higher temperatures. 
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Figure 29. TEM micrographs of PolyHIPE-CDCs pyrolyzed at 1500°C and chlorinated at 1000°C. 

 

Table 4. Porosity and Raman data summary of PolyHIPE-CDCs prepared at different temperatures. 

Material 
SSABET 

(m2/g)[a] 

VMicro 

(cm3/g)[b] 

VMicro+Meso 

(cm3/g)[c] 

VMacro 

(cm3/g)[d] 

FWHM 

D-band 

(cm-1) 

ID/IG 

PolyHIPE-

CDC-700°C 
2345 0.73 1.10 7.45 171 1.26 

PolyHIPE-

CDC-800°C 
2201 0.69 1.03 6.99 162 1.31 

PolyHIPE-

CDC-1000°C 
1649 0.58 0.74 5.58 106 1.45 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.01-0.1). 

[b]  Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[c]  Micro- and mesopore volume calculated at p/p0 = 0.95. 

[d]  Macropore volume calculated from mercury intrusion porosimetry (pores > 50 nm). 

 

TEM investigations of the carbon microstructure visualize the highly amorphous 

structure of PolyHIPE-CDC prepared at 700°C (Figure 28(B,C)). When the temperature is 

increased to 1000°C, some parallel arranged fringes can be observed in the carbon 

microstructure indicating the onset of graphitization which is responsible for the higher 

intensity of the D-band. However, because these ribbons are still curved and only 2-4 

layers are stacked. Hence, the presence of a purely graphitic nanostructure can be ruled 

out (Figure 28(D,E)). This difference in the carbon structure is related to the rather 

amorphous character of the silicon carbide precursor at lower pyrolysis temperature 

with longer inter-atomic distances which hinder the formation of graphitic carbon 

crystallites. Moreover, the mobility of the carbon atoms in the reorganization during 

chlorination at 700°C is significantly lower compared to higher temperatures and 

10 nm 5 nm 10 nm
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therefore the preferred formation of amorphous carbon can be observed. In accordance, 

TEM images of a macroporous CDC obtained from PolyHIPE-SiC pyrolyzed at a 

maximum temperature of 1500°C and chlorinated at 1000°C show the presence of 

planar and parallel arranged graphitic carbon domains which are significantly larger in 

stacking number and length compared to the CDCs obtained from the PolyHIPE-SiC 

prepared at 1000°C despite the equal conditions of the chlorine treatment 

(Figure 29).214 

Nitrogen physisorption measurements (Figure 30(A,B)) further underline the 

differences of the carbon microstructures present at different synthesis temperatures 

which significantly influence the micro- and mesoporosity of PolyHIPE-CDCs. Large 

uptakes of nitrogen at low relative pressures are observed for all samples independent 

of the elevated temperature due to the filling of the narrow micropores present in the 

materials. BET SSAs of 2345, 2201, and 1649 m2/g and total micro-mesopore volumes of 

1.1, 1.03, and 0.74 cm3/g are achieved at synthesis temperatures of 700, 800, and 

1000°C, respectively (Table 4). The decreasing micropore volumes and surface areas are 

related to the preferred formation of graphitic carbon and rather narrow micropores at 

higher temperatures. 

 

 
Figure 30. Linear (A) and semi-logarithmic (B) plots of nitrogen physisorption isotherms (-196°C) and 

corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel) 

pore size distributions (C) of PolyHIPE-CDCs prepared at 700°C (red circles), 800°C (blue squares), and 

1000°C (black triangles). 
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Although the walls of PolyHIPE-CDCs predominantly contain micropores, the nitrogen 

adsorption isotherms show hysteresis loops of type H4 indicating the presence of a 

certain amount of mesopores. The step in the desorption branches at a relative pressure 

p/p0 = 0.4-0.5 is caused by the presence of cavitation effects within the pore structure of 

the CDCs because some mesopores are accessible only through the micropores (see 

section 3.1.2). Hence, the condensed nitrogen in these pores does not desorb under 

equilibrium conditions but rather by the formation of vapor bubbles which diffuse out. 

Due to this, the pore size distributions have to be calculated from the adsorption braches 

of the isotherms (see section 3.1.3). As already suggested from the shape of the 

isotherms, the QSDFT-PSDs (Figure 30(C)) show the presence of both micro- and 

mesopores with maxima in the diameter ranges of 0.8-0.9 nm and 2.2-2.3 nm, 

respectively. The meso- as well as the micropores of the PolyHIPE-CDC prepared at 

1000°C are slightly narrower compared to the materials prepared at lower 

temperatures. 

 

 
Figure 31. Mercury intrusion curves (A) and corresponding macropore size distributions (B) of PolyHIPE-

CDCs prepared at 700°C (red circles), 800°C (blue squares), and 1000°C (black triangles). 

 

Due to the interconnected void-window-type pore system, PolyHIPE-CDCs offer 

extremely high pore volumes on the macroscopic scale. This is shown by the large 

amounts of intruded liquid in mercury porosimetry measurements (Figure 31(A)). If 

only the pores above 50 nm are taken into consideration, the materials offer pore 

volumes as high as 7.45, 6.99, and 5.58 cm3/g for synthesis at 700, 800, and 1000°C, 

respectively (Table 4). In combination with the micro- and mesopores, PolyHIPE-CDC 
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prepared at 700°C contains an intrinsic pore volume of more than 8.5 cm3/g. The 

decreasing macropore volumes at higher temperatures are related to more distinctive 

volume shrinkage of the voids and windows during pyrolysis from polymeric PolyHIPEs 

to macroporous SiC materials. The calculated macropore size distributions 

(Figure 31(B)) correspond to the average size of the windows interconnecting the larger 

voids and shows maxima centered at 0.65 and 0.45 μm for synthesis at 700 and 1000°C, 

respectively being in good accordance to the SEM investigations (Figure 27). 

 

Gas Storage Properties 

 

 
Figure 32. Hydrogen physisorption isotherms (-196°C) and ambient pressure (A) and under Gibbs excess 

conditions (B) of PolyHIPE-CDCs prepared at 700°C (red circles), 800°C (blue squares), and 1000°C (black 

triangles). 

 

 
Figure 33. Methane physisorption isotherms (25°C) under Gibbs excess conditions (A) and gravimetric n-

butane physisorption isotherms (25°C) under dynamic conditions (B) of PolyHIPE-CDCs prepared at 700°C 

(red circles), 800°C (blue squares), and 1000°C (black triangles). 
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promising for the storage of hydrogen and hydrocarbons. At -196°C, they store 

0.026 g/g and 0.046 g/g hydrogen at 1 and 30 bar (Gibbs excess conditions), 

respectively (Figure 32 and Table 5). In hydrocarbon storage, the capacities are 0.18 g/g 

methane at 25°C/70 bar (Gibbs excess conditions) and 0.53 g/g n-butane at 

25°C/1 bar/80 vol.% n-butane in nitrogen (Figure 33 and Table 5). These values are 

higher than those reported for the metal-organic framework Cu3Btc2 (HKUST-1) and 

close to the capacities achieved by OM-SiC-CDC and other polymer-based CDCs under 

similar conditions.70, 208 The amounts of gas adsorbed in the pores of PolyHIPE-CDCs 

decrease with increasing synthesis temperature due to the lower micropore volume and 

SSA (Table 4). 

 

Table 5. Gas adsorption capacities of PolyHIPE-CDCs prepared at different temperatures. 

Material 
CH4 (25°C, 70 bar) 

(g/g, excess) 

H2 (-196°C, 30 bar) 

(g/g, excess) 

n-C4H10 (25°C, 80 vol.%) 

(g/g, 1 bar) 

PolyHIPE-CDC-700°C 0.182 0.046 0.53 

PolyHIPE-CDC-800°C 0.174 0.044 0.49 

PolyHIPE-CDC-1000°C 0.157 0.036 0.47 

 

At this point it should be mentioned that the distinctive macropore system of the 

PolyHIPE-CDCs causes relatively low material density. This limits its applicability in gas 

storage where high volumetric uptakes are desired (see section 2.5). Due to the fact that 

these materials combine a high gravimetric capacity with a well-defined transport pore 

arrangement and a monolithic shape, they rather display excellent materials for the 

adsorptive removal of hydrophobic compounds from gas mixtures. However, as the SSA 

and micropore volume of the PolyHIPE-CDCs are still below those of tuned activated 

carbons and CDCs, enhancement of these parameters is still needed. In the following, 

post-synthetic activation of these materials with CO2 as the oxidation agent will be 

described. 

 

CO2 Activation and n-Butane Breakthrough 

Post-synthetic activation of CDCs is a suitable way to further increase their 

nanoporosity. For instance, chemical activation of ZrC-CDC with KOH increases the 

specific surface area of the starting material by 50%.106 Osswald and co-workers 
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presented vacuum annealing as a suitable method to further tune the pore structure and 

potentially the surface functionality of CDCs for a given application.92 

 

Table 6. Porosity data summary and burn off ratios of the PolyHIPE-CDCs after CO2 activation for different 

times at different temperatures. 

Material[a] 
SSABET 

(m2/g)[b] 

VMicro 

(cm3/g)[c] 

VMicro+Meso 

(cm3/g)[d] 

Activation burn 

off (%)[e] 

PH-CDC-after HT-Cl 1579 0.65 0.80 - 

PH-CDC-PR-HT 2223 1.01 1.24 0 

PH-CDC-A-850-2 2215 0.91 1.11 16.5 

PH-CDC-A-850-4 2459 1.01 1.23 25.3 

PH-CDC-A-850-6 2635 1.04 1.36 43.5 

PH-CDC-A-875-2 2655 1.07 1.32 28.8 

PH-CDC-A-875-4 2723 1.07 1.41 46.9 

PH-CDC-A-875-6 2516 0.98 1.32 53.7 

PH-CDC-A-900-2 2543 1.01 1.30 34.6 

PH-CDC-A-900-4 2925 1.13 1.51 54.7 

PH-CDC-A-900-6 2971 1.05 1.56 70.6 

PH-CDC-A-925-2 2984 1.14 1.59 56.3 

PH-CDC-A-925-4 3080 1.14 1.70 74.1 

PH-CDC-A-925-6 3045 1.09 1.77 72.0 

PH-CDC-A-950-2 2968 1.16 1.60 55.0 

PH-CDC-A-950-4 3104 1.09 1.81 79.0 

PH-CDC-A-950-6 2927 1.02 1.83 88.2 

PH-CDC-A-975-2 3033 1.12 1.71 72.2 

PH-CDC-A-975-4 3021 1.08 1.77 76.7 

PH-CDC-A-975-6 3032 0.97 1.96 82.2 

[a] PH: PolyHIPE; HT-Cl: High-temperature chlorine treatment; PR-HT: Post-reductive hydrogen 

treatment; A-X-Y: CO2 activated at X: temperature in °C and Y: time in h. 

[b] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[c]  Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit pores at -196°C, equilibrium branch kernel). 

[d] Micro- and mesopore volume calculated at p/p0 = 0.97. 

[e] Burn off values related to the mass of material after hydrogen treatment. 

 

For the post-synthetic enhancement of the porosity of PolyHIPE-CDCs, physical 

activation with CO2 seems to be most attractive because of the inexpensive and non-
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corrosive gaseous reactant, comparably simple processing, and the absence of an 

additional washing step which would be crucial in a chemical activation procedure.25 

CO2 acts as a relatively mild oxidizer and allows a rather precise control over the 

development of micropores compared to activation with steam or air. Moreover, it is 

known that heating of CDCs in carbon dioxide after the high-temperature chlorine 

treatment is a suitable method for the removal of adsorbed chlorine species.94 

Chlorine-containing PolyHIPE-CDCs (i.e. the materials obtained after high-temperature 

chlorine treatment at 700°C without a post-reductive purification under flowing 

hydrogen) are CO2 activated in the temperature range from 850-975°C and for durations 

from 2-6 h (Table 6). The chlorinated starting material has a SSA of 1579 m2/g and a 

micro- mesopore volume of 0.8 cm3/g (Figure 34(A) and Table 6). EDX measurements 

reveal the presence of more than 11 wt.% chlorine after silicon etching (Table 7). The 

standard post-reductive treatment under flowing hydrogen at 600°C leads to the 

quantitative removal of the halogen species (Table 7) and therefore increases the SSA 

and the micro- mesopore volume to 2223 m2/g and 1.24 cm3/g, respectively 

(Figure 34(A) and Table 6). 

400 mg of chlorine-containing PolyHIPE-CDCs are used for each single batch of 

activation with a constant CO2 flow of 50 ml/min. Due to the partial oxidation of carbon, 

the pore volumes and SSAs of the materials can be significantly increased compared to 

the conventional hydrogen treatment (Figure 34(A) and Table 6). At activation 

temperatures above 900°C, the porosity values increase more than at lower 

temperatures. Compared to the hydrogen-treated sample, a 40% higher specific surface 

area and a 37% higher micro-mesopore volume can be achieved during activation at 

950°C for 4 h and 975°C for 6 h, respectively. This increase in porosity is associated with 

a distinctive weight loss (Table 6). The burn offs are slightly higher compared to 

previous works on physical activation of μm-sized microporous SiC-CDC and TiC-CDC 

particles.25, 104 In contrast, the weight loss observed during activation of the PolyHIPE-

CDCs is nearly equal compared to a previous report on CO2 activation of biomorphic CDC 

structures that exhibit a fibrous macrostructure.105 This higher burn off can be explained 

by the distinctive macropore arrangement present in the PolyHIPE-CDCs and the 

biomorphic materials. These pores allow the oxidation agent to access many possible 

reaction sites in the walls of the CDCs leading to higher reaction rates compared to 

materials that do not have a secondary pore arrangement. 
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Figure 34. Nitrogen physisorption (-196°C) isotherms (A), corresponding QSDFT (nitrogen on carbon with 

slit pores at -196°C, equilibrium branch kernel) pore size distributions (vertical offset) (B) of the PolyHIPE-

CDCs after chlorine treatment, hydrogen treatment, and CO2 activation at 950°C for different durations. 

 

Table 7. EDX analyses of PolyHIPE-CDCs after chlorine treatment, hydrogen treatment and CO2 activation at 

925 and 950°C for 2-6 h. 

Material[a] 
Carbon 

(wt.%) 

Silicon 

(wt.%) 

Oxygen 

(wt.%) 

Chlorine 

(wt.%) 

PH-CDC-after HT-Cl 86.4 11.3 1.1 1.2 

PH-CDC-PR-HT > 99.7 < 0.1 < 0.1 < 0.1 

PH-CDC-A-925-2 95.2 4.5 < 0.1 0.2 

PH-CDC-A-925-4 95.8 3.9 < 0.1 0.2 

PH-CDC-A-925-6 99.8 < 0.1 < 0.1 0.1 

PH-CDC-A-950-2 99.9 < 0.1 < 0.1 < 0.1 

PH-CDC-A-950-4 99.9 < 0.1 < 0.1 < 0.1 

PH-CDC-A-950-6 99.9 < 0.1 < 0.1 < 0.1 

a) PH: PolyHIPE; HT-Cl: High-temperature chlorine treatment; PR-HT: Post-reductive hydrogen 

treatment; A-X-Y: CO2 activated at X: temperature in °C and Y: time in h 

 

At activation temperatures above 900°C, the obtained materials exhibit the largest 

micropores volumes for CO2 treatments of 2 h. At longer activation times, the micropore 

volumes decrease while the total micro- and mesopore volumes rise continuously 

indicating a pore growth towards small mesopores. This observation is reconfirmed by 

the PSDs of the CDCs activated at 950°C for different times (Figure 34(B)). A broadening 

of the PSD as well as a shift to lower relative volume of micropores (< 61%) can be 
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observed for activation for 4 or 6 h. In contrast, the PolyHIPE-CDCs that underwent a 

carbon dioxide treatment for 2 h and the CDC after post-reductive hydrogen treatment 

both exhibit higher relative micropore volumes of 73% and 81%, respectively (Table 6). 

This growth of mesopores can be explained by the higher oxidation rates at higher 

activation temperatures which are also responsible for the increased burn off values.  

It is well-known that the major contribution of gas adsorption capacity in 

nanoporous carbon materials is set by narrow micropores.106 However, the pore 

widening observed is not necessarily a disadvantage because other reports on CDC 

activation show higher gas uptakes due to enhanced specific surface areas even at 

decreased micropore volumes after the oxidation process.25 EDX analyses of the 

PolyHIPE-CDCs activated at 925 and 950°C (Table 7) show the possibility to remove 

chlorine species adsorbed in the carbons after high-temperature chlorine treatment. At 

activation times of 2 h, the CO2 treatments are not suitable for quantitative removal of 

the halogen residuals from the carbons but the detected amounts are significantly below 

the material before activation. If longer activation times are applied, the purity of the 

carbons can be increased to > 99 wt.% rendering the carbon dioxide treatment as a 

suitable method for the removal of chlorine species. No additional oxygen can be 

detected and therefore the appearance of surface oxidation processes during activation 

can be ruled out.  

The absence of large oxygen contents indicates a very hydrophobic surface chemistry of 

the activated PolyHIPE-CDCs without the presence of large numbers of oxygen-

containing functionalities such as hydroxyl- or carboxyl groups. In accordance, the water 

adsorption isotherm of the PolyHIPE-CDC activated at 950°C for 4 h shows a very weak 

adsorbent-adsorbate interaction as the adsorption uptake increases at relative 

pressures p/p0 > 0.8 (Figure 35(A)). This feature is highly desired for the adsorption of 

non-polar gases because it enhances the interaction between the solid and gas phase by 

decreasing the preferential adsorption of water, which decreases the adsorption 

capacity for hydrogen and hydrocarbon molecules. Adsorption of the latter is effectively 

suppressed at low and medium humidity. 

The monolithic morphology of the PolyHIPE-CDCs is converted during the majority of 

the performed activation procedures (Figure 35(B-D)). Materials treated at 950°C (for 2 

or 4 h) or below show only marginal volume shrinkage compared to the parent material 

after high-temperature chlorine treatment. This is related to the fact that the macropore 
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system of this hierarchical CDC ensures rapid diffusion of the activation agent through 

the entire particle. This leads to a very homogeneous oxidation procedure without a 

gradient between the particles peripheries and the centers of the monoliths. In contrast, 

activation of 950°C (for 6 h) or 975°C causes significant volume shrinkage or even 

damage of the monolithic shape as a result of the drastically decreased mechanical 

stability. The PolyHIPE-typical macropore structure of nearly spherical, μm-sized voids 

interconnected by smaller windows of several 100 nm in size is also still intact after the 

CO2 activation procedures, even under relatively harsh conditions (Figure 35(E-G)). In 

consequence, these materials now combine a distinctive macropore arrangement 

leading to rapid mass transfer and a high accessibility of the micro- and mesopores with 

significantly advanced nanopore volume and SSA and monolithic morphology. 

 

 
Figure 35. Water vapor physisorption isotherm (25°C) of the PolyHIPE-CDC activated at 950°C for 4 h (A), 

digital photographs of the silicon carbide precursor (B), the PolyHIPE-CDC prepared at 700°C after hydrogen 

treatment (C), and after CO2 activation for 4 h at 950°C (D) as well as SEM micrographs of the PolyHIPE-CDC 

prepared at 700°C after chlorination (E) and after CO2 activation for 4 h at 950°C (F and G). 

 

The significantly higher SSA and nanopore volumes of the CO2 activated PolyHIPE-CDCs 

lead to increased gravimetric capacities in hydrogen and hydrocarbon storage compared 

to the material that underwent a conventional post-reductive treatment under hydrogen 

atmosphere (Figure 36). The sample activated at 950°C for 4 h displays a good example 

because it shows a very high SSA above 3100 m2/g (Table 6). Moreover, it does not 
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contain chlorine impurities (Table 7) and shows highly hydrophobic surface 

characteristics (Figure 35(A)). The activated material shows a maximum methane 

uptake of 0.214 g/g at 85 bar and 25°C (Gibbs excess). This is a 20% higher value 

compared to the hydrogen treated material. Hydrogen adsorption experiments under 

Gibbs excess conditions show a 19% increase of the maximum storage capacity to 

0.056 g/g at 45 bar and -196°C. These are among the highest gravimetric uptakes for 

CDC materials reported so far. Only KOH activated ZrC-CDCs and CDCs obtained by high-

temperature chlorine treatment of polymer-derived silicon oxycarbide show marginally 

higher uptakes.106, 188 The methane storage capacities of the activated PolyHIPE-CDCs 

are comparable to those reported for CO2 activated TiC-CDCs and OM-SiC-CDCs.70, 102 

 

 
Figure 36. High-pressure Gibbs excess methane (25°C) (A) and hydrogen (-196°C) (B) physisorption 

isotherms of the PolyHIPE-CDC prepared at 700°C after hydrogen treatment (red) and after CO2 activation 

for 4 h at 950°C (blue). 

 

Like the CDCs after chlorination, the CO2 activated materials are characterized by an 

extremely low material density. At a skeleton density of 2.88 g/cm3, the material density 

(including pores) is as low as 0.058 cm3/g. However, due to the higher SSA and 

nanopore volume compared to the parent material, CO2 activated PolyHIPE-CDCs are an 

even more interesting material for the adsorptive filtration of volatile, non-polar organic 

compounds from gas mixtures as they now provide outstanding gravimetric uptakes 

with a distinctive transport pore system. The activated CDCs and the parent material 

after hydrogen treatment are compared in n-butane adsorption under different 

conditions. Gravimetric adsorption isotherms of the organic compound at 25°C under 

constant flow by applying different concentrations of n-butane in nitrogen show a 
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higher adsorption capacity in the activated material independent of the elevated 

concentration (Figure 37(A)). At 77 vol.% n-butane, a 62% higher uptake (0.86 g/g) is 

determined in comparison to the non-activated material (0.53 g/g) due to the enlarged 

specific surface area and higher volume of micro- and narrow mesopores. The 

gravimetric adsorption capacity of the Poly-HIPE-CDCs after activation is comparable to 

those reported for OM-SiC-CDCs70 and one of the highest ever-reported values for 

porous materials. It is about four times higher compared to the metal-organic 

framework Cu3(btc)2 (HKUST-1) and even outperforms the highly porous MIL-101 as 

well as the commercially available activated carbon Sorbonorit 3 under the same 

conditions.187 

 

 
Figure 37. N-butane physisorption isotherms (25°C) (A) and n-butane breakthrough curves at different 

concentrations (25°C, 1 bar, n-butane diluted with nitrogen) (B) of the PolyHIPE-CDC prepared at 700°C 

after hydrogen treatment (red) and after CO2 activation for 4 h at 950°C (blue). 

 

The advanced adsorption capacity of the activated material is also obvious under 

breakthrough conditions (Figure 37(B)). In such a measurement the adsorbent is placed 

in a column and the adsorptive is flowing through this bed. The exhaust gas composition 

is measured over the time. From the step of the breakthrough, the adsorption kinetics 

can be determined and from the time of the breakthrough, the adsorption capacity can 

be determined. These measurement conditions are rather close to actual practice when 

the materials are applied in filter systems. The activated PolyHIPE-CDC shows higher 

capacities independent of the n-butane concentration. The normalized time of 

breakthrough increases especially at high concentrations due to the rather high gas 

uptake. Comparable and high steepnesses of slopes in the curves at the same amount of 
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n-butane in the gas mixture indicate high adsorption rates. Thus, the CO2 activated 

PolyHIPE-CDCs combine a high accessibility of the micropores with significantly 

enhanced gravimetric uptakes in hydrocarbon adsorption. 

 

5.1.2 CDC Nanospheres (CDC-NS) 

Synthesis and Structure 

CDC nanospheres are produced by cross-linking of miniemulsions which consist of SMP-

10 and p-DVB. Hexadecane is used as co-surfactant in the oil phase. It cannot form 

micellar aggregates itself but displays a surface-active agent that acts in addition to the 

surfactant by further lowering the interfacial energy.133, 134 The surfactant 

sodiumdodecylsulfate (SDS) is dissolved in the water phase. Then the phases are mixed 

and ultrasound is used as the source of shearing force to obtain a stable miniemulsion 

(Figure 38). Cross-linking and solidification of the organic nanodroplets is achieved by 

the addition of a platinum species and heat treatment. After removal of the aqueous 

phase by evaporation, the obtained cross-linked PCS nanospheres are pyrolyzed to 

silicon carbide materials and subsequently transformed to CDCs by high-temperature 

chlorine treatment. The pore structure of the CDC-NS is controllable by the ratio of SMP-

10 and p-DVB cross-linker in the oil phase of the emulsion. In this study, the SMP-10/p-

DVB volume ratio is adjusted to 70:30 (CDC-NS-70:30) and 50:50 (CDC-NS-50:50). 

 

 
Figure 38. Preparation and SEM micrograph of CDC nanospheres from miniemulsions. 

 

Thermogravimetric analysis of the cross-linked polycarbosilane nanospheres 

(Figure 39(A)) under air atmosphere show a larger residual mass for the material with 
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the higher SMP-10 content due to the formation of a larger amount of SiO2 instead of 

volatile carbon oxide species. The higher mass gain at 200-400°C is associated with the 

formation of silicon oxide species from the polycarbosilane. In contrast to the polymers, 

the finally obtained CDC-NS show no residual mass as a result of the quantitative carbon 

combustion. However, despite similar heating rates, the CDC-NS-70:30 require larger 

temperatures for complete oxidation compared to the CDC nanospheres with higher 

content of cross-linker. 

 

 
Figure 39. Thermal analysis under air atmosphere with a heating rate of 5 K/min (A) of the polycarbosilane 

nanospheres (straight lines) and the CDC nanospheres (dotted lines) as well as dynamic light scattering 

analysis (B) of the PCS nanospheres synthesized with a SMP-10/p-DVB ratio of 50:50 (blue) and 70:30 (red). 

 

Dynamic light scattering experiments of the cross-linked polycarbosilane nanospheres 

(Figure 39(B)) in aqueous dispersion show that the hydrodynamic diameter of the 

particles is 20-400 nm (polydispersity index: 0.117) and 20-600 nm (polydispersity 

index: 0.197) for SMP-10/p-DVB ratios of 50:50 and 70:30, respectively. The respective 

z-average sizes are 147.0 nm (50:50) and 171.5 nm (70:30). The absence of larger 

particles indicates that the spheres are highly separated and that agglomeration or 

Ostwald ripening does not take place in the kinetically stable miniemulsion system. 

SEM micrographs of the SiC- and CDC nanospheres show the nearly perfect 

spherical shape of the particles (Figure 40) even after the removal of the silicon atoms. 

The diameters of approximately 20-200 nm are slightly below those determined by DLS 

measurements due to the absence of the hydration shell and potential shrinkage during 

evaporation of the water phase or during pyrolysis. The spheres form a relatively dense 

package with a large inter-particular porosity. Furthermore, the CDC-NS-50:50 
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(Figure 40(C)) contain a higher number of defects and partially hollow structures 

compared to the CDC-NS-70:30. The latter show no holes and a rather smooth surface 

(Figure 40(D)). 

 

 
Figure 40. SEM micrographs of the SiC nanospheres (A and B) and CDC nanospheres (C and D) obtained 

from miniemulsions with SMP-10/p-DVB ratios of 50:50 (A and C) or 70:30 (B and D). 

 

In the nitrogen physisorption isotherms of the PCS nanospheres (Figure 41(A)), a large 

uptake and a hysteresis at relative pressure p/p0 > 0.9 can be observed due to the 

adsorption of nitrogen on the outer surface of the nanospheres and the condensation in 

the inter-particular pore system. The SSAs are below 50 m2/g because no pores are 

present within the particles (Table 8). After pyrolysis, the SSA of the SiC nanospheres 

obtained from the microemulsion with the SMP-10/p-DVB ratio of 50:50 is significantly 

higher compared to the material prepared with lower amount of cross-linker (Table 8). 

This can be explained with the evolution of gaseous products during cross-linking which 

is more pronounced if the content of p-DVB in the oil phase is higher. A comparably 

broad hysteresis loop is present in the isotherm of the p-DVB-rich material due to the 

presence of higher internal mesopore volume in these rather defective silicon carbide 

(C) (D)

(A) (B)

500 nm 500 nm

500 nm 500 nm



                                                                                            Results and Discussion 

__________________________________________________________________________________
93 

 

spheres (Figure 41(B)). At the same time, the total pore volumes (including the inter-

particular pores) are comparable (Table 8). 

 

 
Figure 41. Nitrogen physisorption isotherms (-196°C) of the polycarbosilane nanospheres (A) and the silicon 

carbide nanospheres (B) obtained from miniemulsions with SMP-10/p-DVB ratios of 50:50 (blue) or 70:30 

(red). 

 

Table 8. Porosity data summary of PCS-, SiC-, and CDC nanospheres obtained from miniemulsions with 

different SMP-10/p-DVB ratios. 

Material 
SSABET 

(m2/g)[a] 

VMicro 

(cm3/g)[b] 

VMicro+Meso 

(cm3/g)[c] 

PCS nanospheres-50:50 44 n. d. 0.21 

PCS nanospheres-70:30 39 n. d. 0.34 

SiC nanospheres-50:50 120 n. d. 0.23 

SiC nanospheres-70:30 60 n. d. 0.26 

CDC nanospheres-50:50 2347 0.69 1.53 

CDC nanospheres-70:30 2298 0.64 1.67 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[c]  Micro- and mesopore volume calculated at p/p0 = 0.99. 

 

After the high-temperature chlorine treatment, the SSA and total pore volume 

significantly increase to maximum values of 2347 m2/g and 1.67 cm3/g, respectively 

(Table 8). Due to the conformal carbide-to-carbon transformation, the isotherms exhibit 

the same shape as for the silicon carbide nanospheres (Figure 42(A)). Both CDC samples 

contain micropores centered at 0.9-1.0 nm with a minor contribution of pores of 0.6 nm 

in size and contain narrow mesopores (Figure 42(B)). As already suggested from the 

nearly equal SSA values, the micropore volumes are comparable as well (Table 8). Due 

to the rather porous and defective structure within the nanospheres, CDC-NS-50:50 
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additionally contain a minor volume of mesopores of 6-10 nm in size. The step in the 

desorption branch of this material suggests that these pores are located inside the 

nanospheres because they are surrounded by micropores which are responsible for the 

desorption by cavitation. 

 

 
Figure 42. Nitrogen physisorption isotherms (-196°C) (A) and corresponding QSDFT (nitrogen on carbon 

with slit/cylindrical pores at -196°C, adsorption branch kernel) pore size distributions (B) of the CDC-NS-

50:50 (blue) and CDC-NS-70:30 (red). The PSD of the CDC-NS-50:50 is vertical offset by 0.5 cm3/nm/g. 

 

CDC-NS as Electrode Material in Aqueous EDLCs 

CDC-NS are promising candidates for the use as ion storage media in EDLCs, especially 

so-called electrochemical flow capacitors (EFCs). In EFCs, mostly spherical carbon 

materials with high SSA are utilized for charge storage.215 As in classical EDLCs, the 

charge storage takes place in the electric double-layer of charged carbon particles but a 

fluidized carbon-electrolyte slurry is employed as the active material. For charging and 

discharging through the formation of the electrochemical double-layer it is pumped into 

a polarized electrochemical cell and for charge storage it is pumped into reservoirs. In 

spite of the fact that the EFC design seems to be limited to stationary energy storage 

devices, it combines the general advantages of EDLCs and redox flow batteries, namely 

the rapid charging/discharging and the decoupling of energy- and power ratings. As the 

mass of the current collectors, separator and other materials is relatively small 

compared to the mass of the slurry, EFCs offer much higher overall energy density 

compared to EDLCs. 

The characterization in a classical symmetrical 2-electrode EDLC device based on 1 M 

H2SO4 aqueous electrolyte reflects the influence of the pore structure of the nanospheres 
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on their electrochemical performance. Due to their higher SSA and micropore volume, 

CDC-NS-50:50 show higher specific capacitance in cyclic voltammetry at all elevated 

scan rates as compared to the material prepared from the miniemulsion with lower p-

DVB concentration (Figure 43(A-C)). At the lowest scan rate of 2 mV/s, CDC-NS-50:50 

show a capacitance of 174 F/g. 52% of this value can still be utilized at a high scan rate 

of 500 mV/s. In contrast, the CDC-NS-70:30 reach only 32% of its initial specific 

capacitance at this scan rate. This difference is likely related to the additional mesopores 

and defects in the material prepared with a high amount of cross-linker. These 

structural features enhance the ion diffusion within the electrode and lead to higher 

capacitance retentions at high current densities. 

 

 
Figure 43. Cyclic voltammograms at different scan rates of CDC-NS-50:50 (A) and CDC-NS-70:30 (B) as well 

as specific capacities obtained from the CV measurements (C) and galvanostatic charge-discharge tests (D) in 

1 M H2SO4 electrolyte. 

 

The specific capacitances obtained from CV measurements are in accordance with those 

calculated from galvanostatic charge-discharge tests (Figure 43(D)). At a current density 

of 1 A/g, CDC-NS-50:50 and CDC-NS-70:30 provide 175 F/g and 155 F/g, respectively. In 
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accordance to cyclic voltammetry, the capacitance drop at higher current densities is 

larger for the material prepared with less cross-linker. 

The relative frequency-dependent performance of the materials during electrochemical 

impedance spectroscopy (EIS) measurements (Figure 44) also indicates the favorable 

EDLC characteristics for the CDC-NS-50:50 in the low- and mid-frequency area. The drop 

of the capacitance of the CDC-NS-70:30 starts at higher frequency due to insufficient ion 

diffusion properties in the pore system of this material. In contrast, the CDC-NS-50:50 

can operate with higher specific capacities at similar frequencies as a result of the 

enhanced electrolyte mobility in the pore system of this material. 

 

 
Figure 44. Frequency response (A) and Nyquist plots (B) of CDC-NS-50:50 (blue) and CDC-NS-70:30 (red). 

 

In summary, CDC nanospheres provide sufficient electrochemical performance in 

classical EDLC devices. They are promising candidates for the use in electrochemical 

flow capacitors due to their spherical morphology and controllable pore structure. 

 

5.2 Hard-Templated CDCs 

Hard-templating (“nanocasting”) approaches make use of solid-state templates acting as 

space confinement into which a precursor is infiltrated followed by subsequent 

transformation into the desired product and removal of the template (see section 2.3.1). 

In this chapter, the use of the nanocasting approach is described for the synthesis of CDC 

materials with different pore architecture and morphological appearance. On the one 

hand, hierarchical micro-mesoporous CDC mesofoams (CDC-MFs) are produced from 

mesocellular SiO2 foam templates as described in section 5.2.1. The nanostructure and 

porosity of these materials is precisely controllable by the elevated synthesis 
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temperature. CDC-MFs are highly attractive electrode components in electrochemical 

energy storage devices. Their synthesis-structure relationships along with the use in 

electrochemical double-layer capacitors and as host structure for the active material in 

lithium-sulfur battery cathodes will be discussed.52 

On the other hand, micro-meso-macroporous CDCs with monolithic appearance (CDC-

Ms) are prepared by direct nanocasting of silica monoliths using vacuum-assisted 

infiltration of liquid polycarbosilane. The structure of these CDC-Ms along with their n-

butane adsorption properties are described in section 5.2.2.216 

 

5.2.1 CDC Mesofoams (CDC-MFs) 

Synthesis and Structure 

When the nanocasting strategy is applied for the synthesis of nanostructured solids, 

resulting pore sizes are highly uniform and precisely controllable because they are 

dictated by the thickness of the template pore walls. In case of hexagonal structured OM-

SiC-CDC (see section 2.3.1), the resulting mesopore diameter of ~4 nm is in good 

accordance to the size of the walls within the SBA-15 template.117 Despite the highly 

uniform pore structure present in OM-SiC-CDCs, its synthesis is accompanied by the 

disadvantage that the diameter and volume of mesopores is limited when using such 

ordered mesoporous exotemplates with limited pore wall thickness. Moreover, the 

carbon yield per template mass is limited due to the relatively low total pore volume of 

SBA-15. This limits the amount of polycarbosilane that can be infiltrated into the porous 

silica.  

 

 
Figure 45. Preparation of CDC mesofoams. 

 

The use of large-pore silica templates with relatively thick pore walls as the exotemplate 

for the production of hierarchically structured CDCs provides a promising alternative to 

overcome these limitations. CDC mesofoams can be produced by nanocasting of large-

pore mesocellular SiO2 foams (MCFs)217 (Appendix 1) with polycarbosilane precursors. 

MCFs provide higher accessibility for the highly viscous polymeric precursor as 
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compared to ordered mesoporous materials (e.g. KIT-6 or SBA-15) and no co-monomers 

like p-DBV are necessary to achieve homogeneous filling as it is the case for templates 

with smaller pores.118 Moreover, the high pore volume of the template significantly 

increases the carbon yield related to the mass of silica. After infiltration, the 

polycarbosilane is converted to silicon carbide by pyrolysis followed by subsequent 

template removal in HF solution. The obtained mesoporous SiC foams are finally 

converted to CDC-MFs by high-temperature chlorine treatment (Figure 45). 

 

 
Figure 46. Nitrogen physisorption (-196°C) isotherms (A), corresponding QSDFT (nitrogen on carbon with 

slit/cylindrical pores at -196°C, adsorption branch kernel) pore size distributions (B), and small-angle XRD 

patterns (C) of mesoporous SiC foams prepared at 700°C (black), 1000°C (red), and 1300°C (blue). The PSDs 

in (B) are vertical offset by 0.1 cm3/nm/g for SiC 1000°C and 0.2 cm3/nm/g for SiC 1300°C. 

 

As the properties of CDC materials are known to strongly depend on the structure of the 

elevated carbide precursor (see section 2.2.4), a detailed analysis of the latter is crucial 

for a profound understanding of the synthesis-structure relationships. The nitrogen 

physisorption isotherms of the mesoporous SiC foams (Figure 46(A)) show that their 

nanostructure is significantly influenced by the pyrolysis temperature. All isotherms are 

of type IV due to the presence of a distinctive mesopore system independent of the 

synthesis temperature. Adsorption of nitrogen takes place up to high relative pressures 

of p/p0 = 0.95 and is associated with the filling of large mesopores. The PSDs calculated 

from the isotherms show the presence of 4.2 nm and 10.2-12.6 nm-sized pores 

(Figure 46(B)). According to Hyeon and co-workers, the smaller pores correspond to the 

replication of the MCF template pore walls, whereas the larger pores represent the 

spherical pores within the replica structure.21 The SSA and total pore volume of the 

silicon carbide significantly decreases when the pyrolysis temperature is increased from 

700 to 1300°C (Table 9). This is caused by rather distinct shrinkage at higher synthesis 
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temperatures as indicated by the shift of the maxima in the mesopore size distributions 

from 12.6 (700°C) to 10.2 nm (1300°C). At all elevated synthesis temperatures, the 

samples are almost exclusively mesoporous and micropores only contribute slightly to 

the total pore volume (Table 9). 

 

Table 9. Porosity and EDX data summary of the mesoporous SiC foams prepared at different temperatures. 

TPyrolysis (°C) 
SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

d Spacing 

(nm)[d] 

C/Si/O 

(wt.%)[e] 

700 658 0.70 0.11 26.7 58.5/36.3/5.2 

1000 402 0.48 0.03 25.2 45.9/47.9/6.2 

1300 343 0.40 0.02 24.5 45.5/49.3/5.2 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro- and mesopore volume calculated at p/p0 = 0.95. 

[c] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[d] Calculated from the first peak in small-angle XRD patterns. 

[e] Calculated from EDX data. 

 

The peaks in the small-angle X-ray scattering (SAXS) patterns of the mesocellular SiO2 

foams (Appendix 1(B)) and the silicon carbide structures (Figure 46(C)) are not 

associated with the presence of a long-range ordered pore system including any plane or 

space group.217 The constructive scattering is rather caused by the presence of 

uniformly-sized spherical pores (“voids” or “cells”) and spheres present in the template 

and the replica, respectively. According to Kim and co-workers, calculation of the d 

spacing of the lowest order peak allows to estimate the cell diameter by applying the 

Bragg equation.218 In a first approximation, the distance of the centers of two 

interconnected pores can be directly correlated to the d spacing because the X-ray 

scattering occurs due to an electron density contrast between the spherical pores and 

the spherical silicon carbide pore wall structures. The first peaks of the MCF as well as 

the silicon carbide synthesized at 700°C are located at 2θ = 0.33° which corresponds to a 

d spacing of 26.7 nm for both materials and represents the size of the voids. The equal 

positions of the peaks indicate that the replica material prepared at the lowest 

temperature is an ideal copy of the MCF template. The first SAXS peaks of the silicon 

carbides synthesized at 1000 and 1300°C shift to higher 2θ values as a result of the 

decreased cell sizes of 25.2 and 24.5 nm, respectively (Table 9). 
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Figure 47. FTIR spectra (A), wide-angle XRD patterns (B), and TEM micrographs (C-F) of mesoporous SiC 

foams prepared at 700°C (black), 1000°C (red), and 1300°C (blue). The FTIR spectrum of the polycarbosilane 

(green) is shown for comparison in (A). The TEM micrographs correspond to materials obtained at 700°C (C 

and D) and 1300°C (E and F). 

 

Fourier transform infrared (FTIR) spectra and wide-angle X-ray powder diffraction 

patterns (Figure 47(A,B)) further indicate the strong influence of the pyrolysis 

temperature on the structural properties of the mesoporous SiC foams due to different 

decomposition stages of the polymeric precursor and crystallization degrees of the 

resulting materials. The carbide thermally treated at the lowest temperature of 700°C 

shows aliphatic C-H (2920 cm-1), Si-H stretching (2139 cm-1), C=C (1630 cm-1), and 

C=CH2 (1417 cm-1) vibration signals which are characteristic for the polymeric 

polycarbosilane precursor. Their presence is related to the incomplete fracturing of the 

polymeric structure at the lowest synthesis temperature. The atoms in this low-

temperature material only exhibit a short-range order and Bragg reflections 

corresponding to crystalline silicon carbide are extremely broad and of low intensity 

(Figure 47(B)). At higher pyrolysis temperatures, the hydrocarbon and Si-H vibrations 

completely disappear and the resulting materials are ceramics rather than partially 

2Θ ( )
9080

In
te

n
si

ty
(a

rb
. u

n
it

s)

70605040302010

SiC 700 C 

SiC 1000 C

SiC 1300 C

*

* *

(B)

(C)

10 nm

50 nm

(E)

5 nm

5 nm

(D)

(F)

Nanorystalline SiC

ν (cm-1)

In
te

n
si

ty
(a

rb
. u

n
it

s)

500

Polycarbosilane

150025003500

ν(O
-H

)

ν
s (C

-H
)

ν(Si-H
)

ν(Si-C
)

ν(C
=

C
)

δ
(C

=
C

H
2 )

ν
as (Si-O

-C
)

ν
as (Si-O

-Si)

ν(O
-H

)

SiC 700 C 

SiC 1000 C

SiC 1300 C

(A) [*: β-SiC; 29-1130]



                                                                                            Results and Discussion 

__________________________________________________________________________________
101 

 

decomposed polymers. In consequence, the FTIR spectra show the characteristic νs (Si-

C) symmetric stretching vibration signals at high intensity and the Bragg reflections 

corresponding to crystalline β-SiC are observed. Due to the presence of larger 

nanocrystalline carbide domains, the reflections of the sample synthesized at the highest 

pyrolysis temperature of 1300°C show a smaller FWHM and are better resolved than for 

the material obtained at 1000°C. Although all samples exhibit a short-range order due to 

Si-C bonds, pyrolysis at 700°C does not form crystalline areas and interatomic distances 

in this material are hence larger as already indicated by the lower degree of shrinkage 

during thermal conversion of the precursor. 

The incomplete decomposition of the polycarbosilane is further confirmed by EDX 

measurements (Table 9). The carbon/silicon weight ratio decreases at higher 

temperatures owing to a rather complete decomposition of the polymer precursor to 

volatile hydrocarbon species. As porous SiC is known to rapidly form a SiO2 layer on the 

surface, EDX analyses reveal the presence of 5-7 wt.-% oxygen in the mesoporous silicon 

carbides independent of the pyrolysis temperature. 

TEM analyses (Figure 47(C-F)) of the mesoporous SiC materials show the presence of a 

cellular mesopore structure due to the precise replication of the MCF template. The void 

sizes appear to be smaller compared to those of the template (Appendix 1(C,D)) as a 

result of the partial filling of the interior space with precursor. At higher magnification, 

silicon carbide nanocrystals, surrounded by amorphous structures, are observed in the 

material prepared at 1300°C. In contrast, the low-temperature analogue shows no long-

range order or ordered lattice fringes. This confirms the amorphous character of this 

material. 

 

 
Figure 48. SEM micrographs of MCF (A), mesoporous SiC foam (B), and CDC-MF (C) particles. 

 

Nanocasting is a technique for the precise replication of a template structure and hence 

the particle size and -shape of the mesoporous SiC materials is close to the MCFs. The 

selective extraction of the silicon atoms from the carbide materials does also not change 
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the particle texture due to the highly conformal character of the CDC process 

(Figure 48). EDX measurements of the CDC-MFs show complete silicon removal 

independent of the temperature of the chlorine treatment. The carbon contents are 

higher than 99.8 wt.-%. Silicon and oxygen are below the detection limit. 

 

Table 10. Porosity and Raman data summary of CDC-MFs prepared at different pyrolysis-chlorination 

temperatures. 

TPyro-Chlorinat. 

 [°C] 

SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

V<1nm 

(cm3/g)[d] 

FWHM 

D-band 

(cm-1) 

ID/IG[e] 

700-700 2772 2.61 0.53 0.25 173 1.86 

1000-1000 2542 2.33 0.55 0.36 91 2.14 

1300-1000 2384 2.31 0.49 0.34 69 2.20 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro- and mesopore volume calculated at p/p0 = 0.95. 

[c]  Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[d]  Volume of pores > 1 nm calculated from the cumulative pore volume up to a diameter of 1 nm 

(QSDFT method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch 

kernel). 

[e] Calculated from the integrated intensities of the D-band and the G-band. 

 

High-temperature chlorine treatment of the silicon carbide precursors is associated with 

the formation of large micropore volumes within the walls of the mesoporous 

precursors and leads to the formation of highly porous CDC mesofoams with SSAs 

higher than 2700 m2/g and total pore volumes of more than 2.6 cm3/g (Table 10). The 

nitrogen physisorption isotherms (Figure 49(A,B)) show high uptake of nitrogen at low 

relative pressures and a distinct hysteresis loop because the mesopore system of the 

former silicon carbide is still intact. Accordingly, the PSDs (obtained from low-pressure 

nitrogen physisorption isotherms) show the presence of a hierarchical micro-mesopore 

system in the CDC-MFs (Figure 49(C,D)). Mesopores even larger than 10 nm in diameter 

are present and the total micro- and mesopore volume of CDC-MFs is significantly 

beyond the values reported for OM-SiC-CDCs.120 The SSAs decrease with increasing 

pyrolysis-chlorination temperature as it is typical for polymer-based CDCs (see section 

5.1.1). This can be explained by the rather crystalline characteristics of the precursors 

prepared at higher temperatures which lead to CDCs with smaller micropore volumes 

compared to low-temperature precursors (Table 10). The nanocrystalline carbide 
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domains present in these materials are transformed into CDC structures with 

micropores of 0.6 nm in size. In contrast, the surrounding amorphous SiC yields 1.0 nm-

sized micropores. This leads to a bimodal PSD in the micropore range (Figure 49(D)) 

and to higher volumes of pores smaller than 1 nm compared to the CDC-MFs prepared at 

700°C (Table 10). The latter exclusively contains micropores of 1.1 nm in diameter 

explaining the higher total- and micropore volume as well as the higher SSA compared 

to the CDC-MFs prepared at higher temperatures. 

 

Figure 49. Linear (A) and semi-logarithmic (low pressure measurements) (B) plots of nitrogen physisorption 

isotherms (-196°C) and corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C, 

adsorption branch kernel) pore size distributions (C and D) of the CDC-MFs prepared at pyrolysis-

chlorination temperatures of 700°C-700°C (black diamonds), 1000°C-1000°C (red triangles), or 1300°C-

1000°C (blue spheres). 

 

At all elevated temperatures, the peaks in SAXS curves (Figure 50(A)) of CDC-MFs are 

still present after the high-temperature chlorine treatment. However, the uniformly-

sized cages in the CDCs are slightly smaller compared to those of the SiC mesofoams 

resulting in lower d spacings in the range of 21.0-22.6 nm. TEM micrographs of the CDC-

p/p0

A
m

o
u

n
t

ad
so

rb
ed

(c
m

3
/g

)

0 0.2 0.4 0.6 0.8 1.0

400

0

800

1200

1600

2000
(A)

CDC-MF 700 C-700 C
CDC-MF 1000 C-1000 C
CDC-MF 1300 C-1000 C 

0

400

800

1200

1600

2000

10010-110-210-310-410-510-610-7

p/p0

A
m

o
u

n
t

ad
so

rb
ed

(c
m

3
/g

) (B)

Pore diameter (nm)
10 1550

d
V

(d
) 

(c
m

3
/n

m
/

g)

1

2

3

0

CDC-MF 700 C-700 C

CDC-MF 1000 C-1000 C

CDC-MF 1300 C-1000 C 

0.4 0.8 1.2 1.6 2.0 2.4
Pore diameter (nm)

(C)

d
V

(d
) 

(c
m

3
/n

m
/

g)

1

2

3

0

(D)



                                                                                            Results and Discussion 

__________________________________________________________________________________
104 

 

MFs further proof the presence of the uniform arrangement of near-spherical 

mesopores (Figure 50(B,C)). 

 

Figure 50. Small-angle XRD patterns (A) of CDC-MFs prepared at pyrolysis-chlorination temperatures of 

700°C-700°C (black), 1000°C-1000°C (red), or 1300°C-1000°C (blue), and TEM micrographs of CDC-MFs 

prepared at 700°C-700°C (B) and 1300°C-1000°C (C). 

 

Figure 51. Raman spectra (A) of CDC-MFs prepared at pyrolysis-chlorination temperatures of 700°C-700°C 

(black), 1000°C-1000°C (red), or 1300°C-1000°C (blue), and TEM micrographs of CDC-MFs prepared at 

700°C-700°C (B) and 1300°C-1000°C (C). 

 

Raman spectroscopy measurements of CDC-MFs (Figure 51(A)) show a strong 

dependence of the carbon ordering on the elevated synthesis conditions. A sharp 

increase of the ID/IG ratio at higher synthesis temperatures indicates the preferred 

formation of graphitic carbon and increased structural ordering (Table 10). The 

decreasing FWHM of the D-band (Table 10) as well as the disappearance of the shoulder 

D2-band at 1140-1220 cm-1 (Figure 51(A)) further indicate increased graphitization in 

the mesopore walls of the CDC-MFs prepared at higher temperatures. TEM micrographs 

of the CDCs at higher magnification (Figure 51(B,C)) further reveal that the materials 
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prepared at low temperatures consist of mostly disordered sp2 carbon fringes. In 

contrast, the high-temperature analogue forms more graphite stacks during chlorine 

treatment. This represents an additional explanation for the lower micropore volume. 

In summary, CDC-MFs exhibit very high specific surface areas and large micro- and 

mesopore volumes in combination with precise control over the carbon microstructure 

by varying the synthesis temperature. The porosity values of CDC-MFs even surpass 

those of previously reported OM-SiC-CDCs, which show outstanding performance in 

various applications (see section 2.3.1). The advanced infiltration behavior of the MCF 

template particles allows the formation of a distinct mesopore system in the final CDC 

with no directed orientation but a high degree of uniformity throughout the whole 

particle. Its hierarchical pore structure makes this material highly suitable for 

electrochemical energy storage devices, such as EDLCs or Li-S batteries. 

 

CDC-MFs as Electrode Materials in Aqueous EDLCs 

The characterization of CDC-MFs as an electrode material in EDLCs focuses on the 

materials obtained at pyrolysis-chlorination temperatures of 700°C-700°C and 1000°C-

1000°C. The activated carbon YP-50F (Kuraray Chemical, USA), used in commercial 

EDLCs, is evaluated as benchmark material (Appendix 2). 

 

 
Figure 52. Cyclic voltammograms at different scan rates of CDC-MFs prepared at pyrolysis-chlorination 

temperatures of 700°C-700°C (A), 1000°C-1000°C (B), and YP-50F (C) as well as specific capacities obtained 

from the CV measurements (D) in 1 M H2SO4 electrolyte. 
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Cyclic voltammograms of the CDC-MFs in 1 M aqueous H2SO4 electrolyte solution 

(Figure 52(A,B)) are rectangular within the whole potential range of 0-0.9 V 

independent of the synthesis temperature and the applied scan rate. The CDCs do not 

contain large amounts of surface functional groups and are highly uniform. Therefore, 

they show an ideal EDLC behavior. In contrast, side reactions occur for YP-50F as 

evidenced by redox peaks in the potential range of 0.6-0.9 V caused by pseudocapacitive 

interaction between the electrolyte and surface functional groups or impurities present 

in the commercial material (Figure 52(C)). At higher scan rates, these faradic side-

processes are too slow to contribute to the capacitance and the CVs exhibit a rectangular 

shape. CDC-MFs prepared at 700°C show a maximum specific capacitance as high as 

241 F/g at a scan rate of 2 mv/s (Figure 52(D)). This is the highest value ever achieved 

by polymer-based CDCs and surpasses the capacities previously reported for ordered 

mesoporous SiC-CDCs157 by ~20% due to the higher micro-mesopore volume available 

for ion adsorption. Both CDC-MF samples exhibit higher capacities compared to the 

commercially available YP-50F with a maximum of 186 F/g. Due to the significantly 

higher SSA and micropore volume, the capacitance of the low-temperature CDC-MF 

surpasses the values achieved by the material prepared at 1000°C over the entire range 

of scan rates (Figure 52(D)). 

The specific capacities of the materials obtained by galvanostatic charge-discharge 

measurements (Figure 53(A)) are in good accordance to the values determined from 

cyclic voltammetry. The hierarchical CDC synthesized at 700°C provides 241 F/g at a 

low current density of 0.1 A/g. The high capacitance retention of 175 F/g at a current 

density as high as 20 A/g considerably exceeds the capacities of the CDC-MF prepared at 

1000°C (117 F/g) and YP-50F (140 F/g). This remarkable capacitance retention of the 

low-temperature material is related to the presence of larger micropores compared to 

the high-temperature sample in combination with the cellular mesostructure. Both of 

these structural features provide sufficient pathways for ion transportation and hence 

ensure rapid charge-discharge. 

The relative frequency-dependent performance of the materials during electrochemical 

impedance spectroscopy (EIS) measurements (Figure 53(B,C)) also indicates the 

favorable EDLC characteristics of the CDC-MFs prepared at 700°C in the low- and mid-

frequency area. The drop of the capacitance starts at two orders of magnitude higher 

frequencies compared to the high-temperature material (Figure 53(C)). This difference 
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is related to the different micropore sizes in both materials. Micropores present in the 

CDC-MFs prepared at 1000°C are smaller in diameter (0.6-1.0 nm) than in the material 

prepared at 700°C (1.1 nm). These narrow micropores lead to insufficient ion diffusion 

at high frequencies. In contrast, ions still reach the adsorption sites if larger micropores 

are present as it is the case in the CDC-MF prepared at 700°C. This effect is further 

confirmed by the frequency response of the reference material, which contains 

micropores comparable in size to the low-temperature CDC (Appendix 2(B)). In 

consequence, the drop in capacitance occurs at a frequency close to the CDC-MF 

prepared at 700°C. 

 

 
Figure 53. Capacitance retention with current density increase from galvanostatic charge-discharge tests 

(A), Nyquist plots (B), and frequency response (C) of CDC-MFs prepared at pyrolysis-chlorination 

temperatures of 700°C-700°C (black spheres), 1000°C-1000°C (red triangles), and YP-50F (green diamonds). 

 

In summary, CDC-MFs display outstanding electrode materials for aqueous EDLCs with 

high gravimetric capacities and promising high-power performance due to their 

combination of high SSA and the distinctive cellular mesostructure providing sufficient 

ion transport pathways. CDC mesofoams show the highest ever-reported capacities 

among polymer-based CDCs and are redox stable over a wide potential range up to 0.9 V 

due to their high purity and low concentration of surface functional groups.  

 

CDC-MFs in Li-S Battery Cathodes 

Due to the high micro- and mesopore volume, CDC-MFs, particularly when prepared at 

700°C, are highly attractive candidates as sulfur host materials in Li-S battery cathodes. 

They can be infiltrated with large amounts of the active material. Here, a CDC-MF/S 

composite with a C:S ratio of 1:3 (by weight) is discussed. This loading corresponds to a 

theoretical pore filling degree of 56% in the charged- and 100% in the discharged state. 
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After the addition of 10 wt.% binding- and 10 wt.% conducting agent, a cathode with 

60 wt.% total sulfur content and an active material surface loading of 3.61 mg/cm2 is 

obtained. 

 

Figure 54. SEM micrographs (A-C) and wide-angle XRD pattern (D) of the CDC-MF/S cathode as well as 

thermogravimetric analysis under air atmosphere of the CDC-MF/S (1:3) composite and pristine sulfur (E). 

 

The smooth cathode surface contains high inter-particular porosity (Figure 54(A-C)). 

Hence, sufficient electrolyte penetration throughout the active material layer is ensured. 

The wide-angle X-ray powder diffraction pattern (Figure 54(D)) of the cathode shows 

the characteristic broad peak of graphitic carbon due to the use of carbon nanotubes as 

conductive additive. A sharp reflection is caused by the polytetrafluorethylene (PTFE) 

binder. Sulfur is completely infiltrated into the CDC-MF host structure and 

homogeneously distributed on the nanoscale. Hence, no reflections corresponding to 

crystalline sulfur are observed. The sulfur content of 73 wt.% in the CDC-MF/S 

composite is in good accordance to the theoretical value of 75 wt.% as shown by 

thermogravimetric analysis under oxidative conditions (air atmosphere). Complete 

combustion of the active material appears at 500°C which is a much higher temperature 

compared to the pristine sulfur reference (Figure 54(E)). This indicates the strong 

confinement of sulfur within the carbon pore system. The weight loss above 500°C is 

associated with the combustion of the CDC-MF host structure. 
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Figure 55. Discharge capacities of the CDC-MF/S cathode during galvanostatic cycling at 0.1 C (A), 

corresponding voltage profiles of different cycles (B), and cycling stability at various C-rates (C). Higher 

values in (C) correspond to the mass of active material and lower values to the mass of the total electrode. 

 

Galvanostatic cycling of the CDC-MF/S cathode at a constant current rate of 167 mAh/g 

(0.1 C) shows a remarkable initial discharge capacity of 1070 mAh/gSulfur and high 

cycling stability (Figure 55(A)). A capacity of 790 mAh/gSulfur can be utilized after 100 

cycles, i.e. 74% of the initial capacity is reversibly exploited. The sulfur utilization of 

64% is slightly lower than the feasible utilization limit of 75% (1256 mAh/gSulfur) as 

predicted by Akridge and co-workers.219 This is related to the high S/C ratio and the 

high sulfur surface loading caused by the high active layer thickness of 80 μm. The latter 

restrains the initial electrolyte penetration as indicated by the suppressed second 

plateau observed for the first cycle discharge profile (Figure 55(B)). However, after this 

initial activation, a discharge profile with a well-pronounced voltage plateau at 2.05-

2.09 V vs. Li/Li+ is observed over the subsequent cycles. Within the first ten cycles, the 

length of the charge and discharge profiles decreases, followed by the stabilization of the 

sulfur utilization at a stable value of 47%. This result is remarkable as the combination 

of high sulfur loadings and low current rates is known to favor lithium polysulfide 

shuttling and leads to significant loss of active a material and thus decreases the capacity 

during cycling.220 The outstanding performance of the CDC-MFs as sulfur host material 

can be attributed to intimate, long-lasting contact between insulating sulfur and the 

conductive porous carbon structure which provides ideal pore geometry for the use in 

sulfur-containing cathodes. The spherical mesopores can be considered as individual 

reaction compartiments and are well suited for the reversible conversion of sulfur to 

Li2Sn (8 > n > 4 for soluble polysulfides and n = 2, 1 for insoluble polysulfides). At the 

same time, they inhibit the leakage of soluble polysulfides by encapsulation. The 

potential adsorption of polysulfides into the microporous mesopore walls of the CDC-
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MFs reduces shuttling even more and increases the electrochemical contact area 

between conductive carbon and insulating sulfur. Moreover, the hierarchical structure 

of this material provides rapid Li-ion transport throughout the composite particles. In 

consequence, the cathodes show promising rate capability (Figure 55(C)). Capacities 

exceeding 600 mAh/gSulfur are obtained up to high current densities of 2.61 mAh/g 

(0.5 C) even after more than 100 total cycles. At a rate of 1 C the capacity drops. This is 

most likely caused by the high polarization of the plane lithium metal anode. However, if 

the large thickness of the active material layer and the high sulfur content of the cathode 

are considered, the capacities related to the mass of the whole cathode including CDC-

MF, binding agent, and conductive additive of 400 mAh/g at 0.5 C and 200 mAh/g at 1 C 

are impressive. 

 

5.2.2 Hierarchical CDC Monoliths (CDC-Ms) 

Synthesis and Structure 

Monolithic appearance is a highly desired feature of porous materials for practical 

applications because it allows to shape them into a particular form without the addition 

of a binding agent. These additives are associated with the introduction of additional 

mass and can lead to unfavorable modifications of the chemical properties of the 

materials. Furthermore, monolithic appearance can significantly enhance the volumetric 

efficiency of the porous material in a given application.  

As long as CDCs are considered, chlorination of monolithic carbide precursors is so far 

limited to the synthesis of predominantly microporous materials with poor mass 

transfer characteristics.58 CDC monoliths with a hierarchical micro-mesoporous 

structure can be obtained by binder-assisted compression of OMS/PCS composites 

followed by pyrolysis, template removal, and high-temperature chlorine treatment.57 

Within this thesis, binder-free monolithic CDCs with trimodal micro-meso-macropore 

structure obtained by soft-templating or template-free approaches are described for the 

first time (see sections 5.1.1 and 5.3). However, neither PolyHIPE-CDCs nor CDC 

aerogels contain perfectly uniform distribution of macropores and therefore mass 

transport within these materials could be of different magnitude at different positions 

within the monoliths. 

Nanocasting is the method of choice to realize a CDC material with perfectly defined 

pore structure on all hierarchy levels. The direct use of monolithic silica templates 
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further overcomes the need of an additional compression step as described by Wang 

and co-workers.57 Hierarchical meso-macroporous silica monoliths can be obtained by 

spinodal decomposition (also known as Nakanishi-type synthesis) starting form 

tetramethoxysilane as SiO2 precursor.221 These monoliths contain a three-dimensional 

connected structure of 1-2 μm-sized macropores which additionally contain mesopores 

of 5-10 nm in size within their walls. These mesopores are responsible for the high SSA 

of 680 m2/g of the silica templates (Table 11). 

 

Table 11. Porosity data summary of CDC-Ms, the related materials in the different synthesis stages, and a 

microporous CDC reference material.  

Sample 
SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

 Average Pore 

Size(s) (nm) 

SiO2 Monolith[d] 680 1.01 0.002 7.3 

SiC Monolith[e] 365 0.38 0.03 4.8 

CDC Monolith[e] 2662 2.28 0.6 1.0/6.5 

Microporous CDC[f]  2342 1.07 0.94 0.9-1.0 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro- and mesopore volume calculated at p/p0 = 0.99. 

[c] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm. 

[d] PSD calculated with the NLDFT method (nitrogen on silica with cylindrical pores at -196°C, 

adsorption branch kernel). 

[e] PSD calculated with the QSDFT method (nitrogen on carbon with slit/cylindrical pores at -196°C, 

adsorption branch kernel). 

[f] PSD calculated with the QSDFT method (nitrogen on carbon with slit pores at -196°C, equilibrium 

branch kernel). 

 

For the replication to CDC monoliths, these silica materials are cut in disks of ~1 cm 

diameter and 0.5 cm height and infiltrated with SMP-10 under vacuum (Figure 56(A)). 

The resulting yellow composite is then transformed to the silicon carbide replica of the 

SiO2 monolith by pyrolysis and template removal in hydrofluoric acid solution. Finally, 

the SiC is converted to CDC-Ms by silicon etching during the chlorine treatment at 800°C. 

The monolithic appearance of the silica monoliths can be kept intact over the entire 

synthesis pathway (Figure 56(A)). A linear shrinkage of ~20% is observed during the 

conversion from polymer to silicon carbide while the high-temperature chlorine 

treatment is fully conformal, i.e. the texture of the carbide is precisely transformed to 

the carbon. EDX measurements of the CDC-Ms show a carbon content of more than 

99.9 atom% and thermogravimetric analysis under air atmosphere leads to quantitative 
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carbon combustion due to complete removal of silicon during chlorine treatment 

(Appendix 3). 

 

 
Figure 56. Preparation of CDC monoliths along with photographs (scale bar: 1 cm) (A) and nitrogen 

physisorption isotherms (-196°C) of the materials in different synthesis stages. 

 

After pyrolysis and template removal, a monolithic mesoporous SiC material with a SSA 

of 365 m2/g and a micro- and mesopore volume of 0.38 cm3/g is obtained (Figure 56(B)) 

and Table 11). Silicon removal is associated with the implementation of 0.6 cm3/g 

micropores as calculated from the cumulative QSDFT pore volume. The specific surface 

area significantly increases to 2662 m2/g. The well-defined mesopore system provided 

by the silicon carbide precursor is fully recovered as shown by the distinct hysteresis 

loop in the nitrogen physisorption isotherm of the CDC-M (Figure 56(B)). The large 

uptake of nitrogen over the entire range of relative pressure is associated with the 

presence of micro-mesopore volumes as high as 2.28 cm3/g. 

In accordance to the shape of the isotherm of CDC-Ms, the QSDFT pore size analysis of a 

low-pressure measurement (Figure 57(A,B)) shows the presence of micropores of 

1.0 nm in size. The mesopores are narrowly distributed in the range of 3-12 nm and 

centered at a diameter of 6.5 nm. The PSDs obtained from the adsorption and desorption 

branches do not significantly differ in size and volume of the pores (Figure 57(C,D)). 
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These calculations indicate that desorption of nitrogen from the majority of the 

mesopores takes place under equilibrium conditions. Hence, they are highly accessible 

compared to other mesoporous CDCs with similar pore diameters, such as the CDC 

mesofoams (see section 5.2.1). However, the presence of minor cavitation effects cannot 

be ruled out due to the slight step in the desorption branch at p/p0 = 0.42. 

 

 
Figure 57. Linear (A) and semi-logarithmic (B) plots of low-pressure nitrogen physisorption (-196°C) 

isotherms of the CDC-Ms and corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C) 

pore size distributions calculated from the adsorption (C) and equilibrium (D) kernel of CDC-Ms. 

 

 
Figure 58. Mercury intrusion curve (blue) and corresponding relative pore volumes (black) (A) as well as 

SEM micrographs (B and C) of CDC-Ms. 
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The μm-sized pores in the CDC-Ms arise from the replication of the macropore walls 

present in the SiO2 templates and are characterized by mercury intrusion porosimetry 

(Figure 58(A)). The intrusion at low pressures (i.e. at larger pore size) might be related 

to inter-particular spaces. The sharp increase of the intruded volume at a pore size of 

750 nm shows that the macropores in the CDC monoliths are well-defined in size. These 

pores contribute 0.97 cm3/g to the total pore volume of the CDC-Ms. In accordance to 

the nitrogen physisorption experiments (Figure 56(B)), the presence of mesopores 

causes additional intrusion of 1.2 cm3/g mercury in the pore size range of 50-4 nm. If the 

QSDFT cumulative pore volume up to a diameter of 4 nm is taken into consideration 

(Figure 57(C)), the overall pore volume of the CDC monoliths is as high as 3.14 cm3/g. 

The ratio of open meso- and macroporosity of the CDC-Ms obtained from mercury 

intrusion porosimetry is ~76%. This indicates a good accessibility of the microporous 

walls throughout the entire material and the absence of large volumes of closed macro- 

or mesopores.  

The geometry of the large-pore system can be seen in SEM images (Figure 58(B,C)). In 

good accordance with the mercury intrusion measurements, the diameter of the 

wormlike macropores is in the range of 0.5-1.0 μm. They are surrounded by the micro- 

and mesoporous CDC walls. Their thickness of ~1 μm is close to the macropore size of 

the former monolithic silica templates which precisely dictate the pore structure of the 

replica materials within the nanocasting procedure. 

 

n-Butane Adsorption Studies 

The controllable shape as well as the large volume of micro- and mesopores in 

combination with the hydrophobic surface properties and the large volume of micro- 

and mesopores qualifies CDC-Ms as highly attractive materials for the removal of 

hydrophobic organic molecules (e.g. n-butane) from gas mixtures. The presence of the 

hierarchical pore system might further enhance rapid mass transport throughout the 

monoliths. This is equally important as high uptake for effective gas filtration. Compared 

to the PolyHIPE-CDCs, CDC-MFs also provide a trimodal pore system with significant 

contributions of micro-, meso-, and macropores but offer the advantage of a higher 

material density of ~0.3 g/cm3 due to the smaller diameter and thicker walls of the 

macropores. Therefore, a comparably high volumetric adsorption capacity is provided 

while the hierarchical pore structure still ensures efficient mass transfer. 
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The volumetric n-butane physisorption isotherms of the CDC-Ms and a purely 

microporous CDC reference material measured at 5°C (Figure 59(A)) show the same 

shape as the nitrogen physisorption isotherms at -196°C (Figure 57(A)) and 

Appendix 4(A)). The microporous material shows a type I isotherm with complete pore 

filling at low relative pressure. This is followed by the formation of a plateau due to the 

absence of meso- and macropores. In contrast, a type IV isotherm including a narrow 

hysteresis loop is obtained for the CDC-Ms in agreement with the physisorption of 

nitrogen. The SSA and the total pore volume of the reference material are 2342 m2/g 

and 1.07 cm3/g, respectively (Table 11). According to the QSDFT pore size analysis, its 

micropore diameter is centered at 0.9-1.0 nm which is comparable to the micropore size 

of CDC-Ms. 

 

 
Figure 59. Volumetric n-butane physisorption isotherms (5°C) of the hierarchical CDC-Ms (black circles) and 

the microporous CDC reference material (red diamonds) (A) and thermal response measurements of n-

butane adsorption (1 bar, 25°C) in the microporous CDC reference material (red), CDC-Ms (black, 

horizontally shifted by 100 s), and the mesoporous SiC monolith (blue, horizontally shifted by 200 s) (B). 

 

Thermal response measurements (see section 3.2) are used for the determination of the 

adsorption properties of the CDC materials towards n-butane. They are an efficient tool 

for the screening of materials properties, such as SSA, adsorption capacities, and 

adsorption kinetics.205 In the InfraSORP technology, an infrared sensor directly 

measures the temperature increase of the adsorbent caused by the released heat of 

adsorption in a dynamic flow cell when the inert gas (typically nitrogen) is switched to 

the adsorbing gas (e.g. n-butane at 1 bar). The integrated thermal response signal is 

proportional to the n-butane uptake. Under the elevated conditions (1 bar and 25°C), the 

relative pressure of n-butane is p/p0 ~0.4. Hence, a significant amount of gas is also 

adsorbed in the mesopores of the CDC-Ms. In consequence, the mass-related integrated 

p/p0

1.00.80.60.40.20.0
0

Hierarchical CDC Monolith

Microporous CDC

100

200

300

400

500

600

A
m

o
u

n
t

ad
so

rb
ed

(c
m

3
/g

)

(A)

Δ
ϑ

( 
C

)

0

-10

-20

-30

10

20

30

40

50

60

70
(B)

0 200100 300

Time (s)

Microporous CDC
(m = 18.6 mg) Hierarchical CDC 

Monolith (m = 12.2 mg)

SiC Monolith
(m = 16.3 mg)

A/m = 31.5 mg-1 A/m = 45.6 mg-1

A/m = 3.6 mg-1



                                                                                            Results and Discussion 

__________________________________________________________________________________
116 

 

intensity (A/m) of the first thermal response peak has a higher value compared to the 

microporous reference material (Figure 59(B)) which is in accordance to the volumetric 

n-butane physisorption isotherms. Under the elevated conditions, the temperature 

increase due to the adsorption of n-butane in micropores might be higher due to the 

higher adsorption potential compared to mesopores. In consequence, the temperature 

increase and the mass-related integrated intensity of the signal of the mesoporous 

silicon carbide material is far below the CDCs. This is related to its lower specific surface 

area and purely mesoporous structure (Figure 59(B)). The measurements further 

indicate that there is also a significant contribution to the temperature increase from 

adsorption in the mesopore system of the CDC-Ms, especially if the higher specific 

mesopore volume compared to the SiC monoliths is taken into consideration. 

In terms of adsorption kinetics, the InfraSORP measurements demonstrate the higher 

adsorption/desorption rates in the CDC-Ms compared to the microporous reference 

material. This is evident from adsorption/desorption cycles when starting from freshly 

activated materials and systematically varying the equilibration time for desorption. 

After desorption times of 120 and 150 s, the CDC-Ms reach 86% and 88% of their initial 

adsorption capacity, respectively. In contrast, only 74% and 79% of the initial peak area 

are reached by the microporous CDC reference material after equal desorption time 

(Figure 60). This indicates a too slow desorption kinetics for the purely microporous 

system causing incomplete pore emptying and thus a lower signal intensity with 

decreasing equilibration time.  

The larger decrease in temperature during desorption of n-butane from the CDC-Ms 

further indicates a more rapid removal of the molecules in the hierarchical CDC 

structure. These advanced adsorption kinetics in the CDC-Ms are related to the 

additional mesopores which are not present in the microporous CDC and also contribute 

to the n-butane adsorption with advanced accessibility due to their larger diameter. 

Furthermore, the meso- and macropores in the CDC-Ms ensure rapid diffusion of the test 

gas molecules to the micropores where the adsorption mainly takes place. This feature is 

not provided by the purely microporous material. 

These assumptions are further confirmed by the adsorption/desorption cycling of the 

purely mesoporous SiC monoliths (Figure 60). In contrast to the CDCs, the SiC monoliths 

reach 100% of their initial adsorption capacity even after desorption time of 120 s. 

Furthermore, the decrease of the temperature during desorption is larger than the 
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increase during adsorption and equilibrium is reached more rapidly. This indicates 

extremely rapid desorption of n-butane from the SiC monoliths due to their highly 

accessible mesopores. 

 

 
Figure 60. Thermal response measurements of n-butane adsorption (1 bar, 25°C) in the microporous CDC 

reference material (red), CDC-Ms (black, horizontally shifted by 100 s), the mesoporous SiC monolith (blue, 

horizontally shifted by 200 s) in fully activated state (1) and after desorption times of 120 s (2) and 150 s (3). 

 

In summary, the thermal response measurements show the advantage of the pore 

structure of CDC-Ms in terms of rapid mass transfer due to meso- and macropores 

combined with high adsorption capacities provided by micro- and mesopores. This 

hierarchical pore structure along with the monolithic shape and well-defined pore sizes 

is highly desirable for efficient adsorption of hydrophobic organic molecules. 

 

5.3 CDC Aerogels  

 

 
Figure 61. Preparation of CDC aerogels. 

 

Well-defined hierarchical CDC structures can also be synthesized without the use of soft- 

or hard templates when starting from PCS aerogels. These materials can be prepared by 

cross-linking of the preceramic polymer and p-DVB in the presence of a platinum 

catalyst in cyclohexane solution by a hydrosilylation mechanism. This is followed by 
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drying in supercritical carbon dioxide, pyrolysis, and high-temperature chlorine 

treatment (Figure 61).222 Post-synthesis activation with carbon dioxide can be applied to 

further increase the specific surface area as well as the volume of micro- and narrow 

mesopores. Activated and pristine CDC aerogel materials can be used as versatile 

electrode materials in EDLCs based on aqueous and organic electrolytes. 

 

5.3.1 Pore Structure and Carbon Dioxide Adsorption of CDC Aerogels 

Synthesis and Structure 

After drying in supercritical carbon dioxide, the PCS aerogels (produced according to a 

method reported by Sorarù and co-workers)135 offer high porosity with a SSA of 

507 m2/g (Table 12). Linear volume shrinkage of 30 and 40% takes place during the 

conversion from the polymer to silicon carbide at maximum temperatures of 700 and 

1000°C, respectively (Figure 62(A-C)). The nitrogen physisorption isotherm shows the 

shape that is typical for the open-cell pore structure present in all aerogel materials 

independent of the synthesis stage.12 The high uptake of nitrogen at p/p0 > 0.9 is due to 

adsorption in the aerogel macropore system (Figure 62(D)). The larger shrinkage of the 

material at the higher pyrolysis temperature is related to the rather distinct 

crystallization of silicon carbide compared to the low-temperature sample (see section 

5.2.1). In consequence, the decrease of the SSA is higher for the SiC aerogel prepared at 

1000°C (307 m2/g) compared to the material obtained at 700°C (463 m2/g) (Table 12).  

 

Table 12. Porosity data summary of PCS aerogel, as well as of the SiC- and CDC aerogels prepared at 

different temperatures. 

Material 
SSABET 

(m2/g)[a] 

VMicro 

(cm3/g)[b] 

V<0.7 nm 

(cm3/g)[c] 

VMeso+Macro 

(cm3/g)[d] 

PCS aerogel 507 0.03 n. d. n. d. 

SiC aerogel 700°C 463 0.06 0.05 4.56 

SiC aerogel 1000°C 307 0.03 0.003 3.26 

CDC aerogel 700°C 2122 0.50 0.16 8.43 

CDC aerogel 1000°C 1675 0.51 0.21 5.01 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[c] Cumulative volume of pores < 0.7 nm calculated from carbon dioxide physisorption (NLDFT method 

for carbon dioxide on carbon at 0°C). 

[d] Meso- and macropore volume calculated from mercury intrusion porosimetry (pores > ~3 nm). 
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Figure 62. Photographs of PCS aerogel monoliths (A), SiC aerogel monoliths prepared at 700°C (B), and CDC 

aerogel monoliths pyrolized at 700°C and chlorinated at 700°C (C). Linear (D) and semi-logarithmic (E) plots 

of low-pressure nitrogen physisorption isotherms (-196°C) of the PCS aerogel (red) and the SiC aerogels 

pyrolyzed at 700°C (black) and 1000°C (blue). 

 

 
Figure 63. SEM micrographs of the PCS aerogel (A and B), SiC aerogel prepared at 700°C (C and D), and SiC 

aerogel prepared at 1000°C (E and F). 

 

In spite of the shrinkage occurring, the typical aerogel-type shape of the isotherms is still 

present after the carbide formation. The low amount of nitrogen adsorbed at low 

relative pressures indicates the absence of large amounts of micropores in the PCS and 

SiC aerogels (Figure 62(E)). 

The large SSA of these materials is mostly related to the open cell foam morphology 

consisting of interconnected nm-sized primary particles. Due to the lower degree of 
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volume shrinkage at a pyrolysis temperature of 700°C, the particle size is larger and a 

more distinct inter-particular and open porosity can be observed as compared to the SiC 

aerogel obtained at 1000°C (Figure 63) leading to a larger amount of adsorbed nitrogen 

at high relative pressure in the nitrogen physisorption measurement (Figure 62(D)). 

In accordance, SEM images show the presence of the typical open cell foam structure in 

the aerogels (Figure 63). The SiC aerogel prepared at 1000°C shows a lower porosity 

and the diameter of the agglomerated colloidal particles is smaller compared to the low-

temperature analogue. 

 

 
Figure 64. SEM (A-D) and TEM micrographs (E and F) of the CDC aerogels prepared at 700°C (A, B, E, and F), 

and 1000°C (C and D). 

 

The CDC aerogels show the same monolithic appearance as their SiC precursors because 

the high-temperature chlorine treatment is fully conformal and no macroscopic changes 

occur during the carbide-to-carbon transformation (Figure 62(B,C)). As the particle size, 

the macropore structure of the CDC aerogels is also similar to the SiC precursors 

containing rather open porosity in the monoliths prepared at lower temperatures 

(Figure 64(A-D)). Transmission electron microscopy images (Figure 64(E,F)) illustrate 

the amorphous carbon microstructure consisting of mostly disordered sp2 carbon 

fringes. CDC aerogels do not show distinctive graphitic stacking as it is typical for 

polymer-based carbide-derived carbons prepared within the investigated synthesis 

temperature range (see section 5.2.1). 

Nitrogen physisorption isotherms measured at -196°C (Figure 65(A,B)) show the typical 

aerogel-type shape with a large gas uptake at high relative pressures (p/p0 > 0.9) 
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associated with the filling of the large meso-and macropores, which are responsible for 

the very high pore volumes. Silicon extraction during the high-temperature chlorine 

treatment significantly increases the micropore volume compared to the SiC precursors 

as indicated by the larger amount of nitrogen adsorbed in the low pressure area 

(Figure 65(B)). In consequence, the SSAs of the CDCs are as high as 2122 m2/g and 

1675 m2/g for synthesis temperatures of 700 and 1000°C, respectively. These values 

considerably exceed those of the SiC aerogels (Table 12). While the total volume of pores 

with a diameter below 2 nm does not significantly change at higher synthesis 

temperatures (Table 12), the SSAs are strongly dependent on the conditions during 

pyrolysis and silicon extraction indicating their strong influence on the carbon 

microstructure and porosity. 

 

 
Figure 65. Linear (A) and semi-logarithmic (B, low pressure region) plots of nitrogen physisorption (-196°C) 

isotherms of the CDC aerogels prepared at 700°C (green) and 1000°C (red) as well as carbon dioxide 

physisorption (0°C) isotherms (C) of the CDC aerogels and the SiC aerogel precursors pyrolyzed at 700°C 

(black) and 1000°C (blue). 

 

The temperature-dependent structure of the CDC aerogels was additionally 

characterized by carbon dioxide physisorption at 0°C up to atmospheric pressure 

(Figure 65(C)). This technique can be used to particularly investigate the narrow 

micropore structure due to the low relative pressure of CO2 (p/p0 ~0.03) and its small 

kinetic diameter (0.33-0.36 nm). In consequence, large volumes of pores with a diameter 

below 0.7 nm are required for the adsorption of large quantities of this molecule.71 CDC 

aerogels adsorb larger quantities of CO2 compared to the SiC precursors due to the 

presence of higher micropore volumes after the high-temperature chlorine treatment. 
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As the micropore structure is very sensitive to the elevated conditions of the chlorine 

treatment, the CDC sample prepared at 1000°C adsorbs a higher amount of CO2 

compared to the low-temperature material due to the presence of a larger volume of 

narrow micropores. The study of the micropore structure of the CDC aerogels is 

performed by using DFT analysis of combined carbon dioxide (0°C) and nitrogen 

physisorption (-196°C) analysis. With this combination it is possible to accurately 

investigate pore sizes below and above 0.7 nm. As already indicated by the larger uptake 

of CO2 at ambient pressure, the combined PSD shows the presence of a larger amount of 

pores < 0.7 nm in the CDC aerogel obtained at 1000°C (Figure 66(A,B) and Table 12). 

This result is in accordance with the larger uptake of nitrogen in the low pressure region 

(p/p0 < 0.001) compared to the low-temperature material (Figure 65(B)), which is 

associated with the filling of these ultra-micropores. The rather amorphous character of 

the SiC precursor and the lower temperature of silicon extraction cause the presence of 

rather amorphous carbon instead of graphitic nanodomains in the material obtained at 

700°C. This leads to its higher micropore volume, larger micropores, and higher SSA. In 

contrast, a lower SSA but a higher volume of narrow micropores suitable for CO2 storage 

is obtained at higher temperature. 

 

 
Figure 66. Cumulative (A and B) and differential (C) pore size distributions of the CDC aerogels prepared at 

700°C (green) and 1000°C (red) obtained from combined nitrogen physisorption (circles, QSDFT for nitrogen 

on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel) and carbon dioxide (squares; 

NLDFT for carbon dioxide on carbon at 0°C) analysis. The PSD of the aerogel CDC prepared at 1000°C is 

vertical offset by 0.4 cm3/nm/g. 

 

As indicated by the large uptake of nitrogen at high relative pressures, the total pore 

volumes of the silicon carbide precursors increase during the high-temperature chlorine 

treatment as a result of the micropore formation and the decreasing weight due to the 

removal of the silicon atoms. The CDC micropores in combination with the aerogel 
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structure cause extremely low density and at the same time very high total pore volume. 

From the amount of adsorbed nitrogen at a relative pressure p/p0 = 0.99, total pore 

volumes of 7.7 and 4.2 cm3/g are calculated for the CDC aerogels prepared at 700 and 

1000°C, respectively (Figure 65(A)). However, the isotherms do not reach a plateau and 

the amount of adsorbed gas at such high relative pressure can be largely influenced by 

minor temperature variations. DFT methods for pore size analysis fail to operate 

precisely at such high relative pressures and hence the quantitative analysis of the large-

pore system present in the CDC aerogels is not very precise based on the nitrogen 

physisorption data. 

 

 
Figure 67. Mercury intrusion curves (A) and corresponding pore size distributions (B) of the CDC aerogels 

prepared at 700°C (green) and 1000°C (red) as well as the SiC aerogel precursors pyrolyzed at 700°C (black) 

and 1000°C (blue). 

 

Mercury intrusion porosimetry measurements are additionally applied to determine the 

porosity within the SiC and CDC aerogel monoliths (Figure 67(A)). In terms of the total 

pore volume, the mercury intrusion curves show the same trend as the nitrogen 

physisorption measurements. A larger volume of liquid is intruded in the CDCs 

compared to the SiC aerogels. The highly open and well-accessible pore structure 

present in the CDC aerogels causes meso- and macropore volumes as high as 8.43 and 

5.01 cm3/g for the materials synthesized at 700 and 1000°C, respectively (Table 12). 

The micropores present in the materials are not detected by this method and therefore 

the total pore volume of the CDC aerogel prepared at 700°C is close to 9 cm3/g. The 

lower amount of intruded mercury in the carbide and carbon aerogels prepared at 

higher temperatures is likely related to the higher volume shrinkage during synthesis 

associated with the formation of rather dense materials as already indicated by SEM 
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investigations (Figure 64). All aerogels except the CDC material prepared at 700°C show 

the presence of broadly distributed macropores in the range of 0.5-1 μm and a narrow 

maximum centered at 0.025-0.05 μm (Figure 67(B)). The larger pores are formed by the 

open cell foam macrostructure of the aerogels while the maximum centered at smaller 

pore size is related to mercury intrusion in the empty spaces between the agglomerated 

nanoparticles which are in direct contact. The monomodal distribution of pores in the 

CDCs prepared at 700°C as well as the distinct intrusion of mercury at larger pore 

diameter (lower pressure) indicates some structural change of this material (e.g. the 

collapse of the nanoparticle chains) during the mercury intrusion. Therefore, a reliable 

pore size distribution cannot be determined for this material. 

 

Carbon Dioxide Adsorption with the InfraSORP Technology 

Due to their high SSA in combination with the controllable and hierarchical pore 

structure, CDC aerogels are attractive candidates for the rapid adsorption of large 

amounts of carbon dioxide. The benefit of the aerogel-type pore structure appears 

obvious when the carbon dioxide adsorption properties of these CDCs are compared 

with purely microporous reference materials. The latter are prepared by pyrolysis of 

pristine SMP-10 at 700 or 1000°C followed by chlorine treatment at equal temperature. 

Due to their purely microporous structure, both reference materials show a nitrogen 

physisorption isotherm of type I at -196°C (Appendix 5). The micropore volume of the 

microporous CDCs (1.04 cm3/g for the material prepared at 700°C and 0.84 cm3/g for 

the material prepared at 1000°C) is slightly above the CDC aerogels due to the higher 

silicon/carbon ratio before high-temperature chlorine treatment. In accordance, the 

SSAs of the reference materials are slightly above the values obtained for the CDC 

aerogels at the same synthesis temperature. The presence of narrow micropores 

strongly depends on the conditions during pyrolysis and silicon removal. The uptake of 

nitrogen reaches saturation at lower relative pressure in the high-temperature sample 

due to the higher volume of small ultramicropores leading to higher carbon dioxide 

adsorption capacity (Appendix 5) compared to the material prepared at 700°C. At the 

same synthesis temperature, both microporous samples offer slightly higher carbon 

dioxide uptake compared to the CDC aerogels and seem to be the more attractive 

candidates for the adsorptive removal of carbon dioxide on the first view (Appendix 6). 

However, besides a high storage capacity, rapid adsorption kinetics are another 
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important requirement to an adsorbent material and the more compact the material, 

mass transfer restrictions are likely to occur. 

 

 
Figure 68. Thermal response measurements (A and B), corresponding specific thermal responses (C and D) 

as well as thermal rate constants for adsorption process of 1st order (E) of the CDC aerogels prepared at 

700°C (green) or 1000°C (red) and the microporous CDC material prepared at 700°C (black) or 1000°C 

(grey). 

 

Thermal response measurements based on the InfraSORP technology using the 

adsorption of carbon dioxide at 25°C and atmospheric pressure (p/p0 ~0.02) are used to 

investigate the adsorption properties of the CDC aerogels in comparison to the reference 

materials. As for the measurements at 0°C under equilibrium conditions (Figure 65(C)), 

the specific thermal response peak areas of the CDC aerogel and the microporous CDC 

prepared at 1000°C are about 1.3 fold larger compared to the low-temperature samples. 

This indicates their larger uptake at 25°C due to the presence of larger volumes of 

narrow micropores (Figure 68(A-D)). 

The InfraSORP technology allows to measure the temperature increase in real-time (the 

time constant for the optical calorimeter is negliable) and therefore the temperature 

signal can be directly evaluated in terms of adsorption kinetics. Leistner and co-workers 

proposed a thermal response function assuming that the adsorption process follows 

kinetics of first order according to Equation 24 (∆T: measured temperature change, ∆T1: 

maximum adiabatic temperature, k1: thermal rate constant, k2: rate of heat transfer).205 

                                                     ∆𝑇(𝑡) = ∆𝑇1[(1 − 𝑒−𝑘1𝑡) − (1 − 𝑒−𝑘2𝑡)]                                      (24) 

The thermal adsorption rate constant is obtained by fitting Equation 24 to the measured 

thermal response curve (Appendix 7). The fit quality R2 is > 0.998 for all samples except 
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for the microporous CDC prepared at 1000°C with R2 = 0.988. If the model sufficiently 

describes the measured data, integration of Equation 24 should give the same peak area 

obtained by numerical integration of the signal. This is the case for the microporous CDC 

prepared at 700°C and the CDC aerogels prepared at 700 and 1000°C where the peak 

areas (calculation from function vs. numerical integration) show deviations of only 

5.0%, 1.4%, and 4.4% respectively. For the microporous sample obtained at 1000°C a 

much larger deviation of 33% is calculated because the function does not sufficiently 

describe the long term equilibration behavior of the measured data for this material 

containing the narrowest micropores and no transport pore arrangement.   

In accordance to the work of Reucroft and Rivin, the thermal response function can be 

modified by a second process which describes the migration of molecules adsorbed in 

easily accessible larger pores to the stronger adsorption sites in the more narrow 

micropores.223 In consequence, an additional thermal response peak is introduced in 

Equation 24, giving Equation 25 (T2: maximum adiabatic temperature of the migration 

process, k3: thermal rate constant of the migration, k4: rate of heat transfer for the 

migration process). 

      ∆𝑇(𝑡) = ∆𝑇1[(1 − 𝑒−𝑘1𝑡) − (1 − 𝑒−𝑘2𝑡)] + ∆𝑇2[(1 − 𝑒−𝑘3𝑡) − (1 − 𝑒−𝑘4𝑡)]             (25) 

Using Equation 25 for fitting the thermal response of the microporous reference sample 

prepared at 1000°C gives a good quality for entire range of the data (Appendix 8). The 

disappearance of the second peak for the CDC aerogel obtained at 1000°C indicates 

enhanced kinetics in carbon dioxide adsorption due to superior accessibility of the 

micropores provided by the meso-macropore system. Moreover, the obtained overall 

adsorption rate constants k1 show a direct correlation between the pore structure of the 

investigated materials and their adsorption kinetics. Independent of the synthesis 

temperature, strictly microporous CDCs show significantly slower adsorption constants 

(k1 = 1.04/s for synthesis at 1000°C and k1 = 1.28/s for synthesis at 700°C) compared to 

CDC aerogels (k1 = 2.07/s for synthesis at 1000°C and k1 = 3.83/s for synthesis at 700°C, 

Figure 68(E)). For both systems, rather rapid adsorption can be observed in the samples 

prepared at the lower temperature indicating that the presence of larger micropores 

enhances the kinetics as well. 

In conclusion, CDC materials with an aerogel-type pore structure, SSAs of more than 

2100 m2/g, and total pore volumes close to 9 cm3/g can be prepared by hydrosilylation 
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of polycarbosilanes in the presence of a platinum catalyst followed by supercritical 

drying, ceramic conversion and high-temperature chlorine treatment. Due to the 

simultaneous presence of a high volume of micropores with the size controllable by the 

synthesis temperature and the aerogel-type structure of agglomerated nanoparticles, 

CDC aerogels combine high capacities with advanced kinetics in carbon dioxide 

adsorption compared to reference materials without transport pores but comparable 

microstructure. 

 

5.3.2 CO2 Activation and EDLC Performance of CDC Aerogels 

CO2 Activation of CDC Aerogels 

The porosity of the CDC aerogels can be further increased by post-synthetic activation in 

carbon dioxide. With an activation carried out at a temperature of 950°C for the 

duration of 4 h and by using a large batch of CDC aerogel obtained at 700°C as the parent 

material, the specific surface area and the micropore volume can be increased to 

2498 m2/g and 0.63 cm3/g, respectively (Figure 69(A,B)). 

 

 
Figure 69. Linear (A) and semi-logarithmic (B, low pressure measurement) plots of nitrogen physisorption (-

196°C) isotherms and corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C, 

adsorption branch kernel) pore size distributions (C and D) of a CDC aerogel prepared at 700°C (green) and 

the CO2 activated CDC aerogel (black). 

 

During activation, slight widening of the micropores takes place (Figure 69(C,D)). A 

higher volume of larger micropores centered at 0.9-1.0 nm is present in the activated 

material compared to the as-made CDC aerogel. However, in spite of the CO2 activation, 
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the general shape of the isotherm is still similar to the parent material. The large uptake 

at relative pressures (p/p0 > 0.9) indicates that the aerogel-type system is still intact 

even after the oxidation process. This observation is confirmed by SEM investigations of 

the CO2 activated samples, which show the presence of a meso-macropore structure 

comparable to the parent material (Figure 70).  

 

 
Figure 70. SEM micrographs of the CO2 activated CDC aerogel. 

 

 
Figure 71. Water vapor physisorption (25°C) isotherms (A) and Raman spectra of the CDC aerogel prepared 

at 700°C (green), 1000°C (red), and the CO2 activated CDC aerogel (black). 

 

The water vapor physisorption isotherms of the CO2 activated CDC aerogel and the as-

made CDC aerogels obtained at 700°C and 1000°C (Figure 71(A)) show a large uptake at 

medium relative pressures (p/p0 > 0.5 for the as made CDCs and p/p0 > 0.6 for the CO2 

activated sample). The starting point of water adsorption in porous carbon materials is 

influenced by the pore size and the presence of hydrophilic surface functional groups.158 
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The higher relative pressure of the initial adsorption for the activated sample is likely 

related to more hydrophobic surface properties compared to the CDC aerogel obtained 

at 700°C as their micropores are similar in size (Figure 69(C,D)). The similar onset point 

of the vapor uptake of the CDC aerogel prepared at 700°C compared to the material 

obtained at 1000°C is, in view of its larger pore size, likely related to the higher number 

of surface functional groups as it is typical for CDCs prepared at such low temperatures. 

The maximum vapor uptake at high relative pressure which increases from the CDC 

aerogel obtained at 1000°C to the material prepared at 700°C and the CO2 activated 

sample reflects the trend in the micropore and narrow mesopore volumes determined 

by nitrogen physisorption. 

The post-synthesis treatment does not drastically change the carbon microstructure of 

the CDC aerogels. The Raman spectra of all materials are comparable in shape and the 

ID/IG ratios are ranging from 1.55 for the CDC aerogel prepared at 700°C to 1.58 for the 

CO2 activated CDC aerogel (Figure 71(B)). A slightly higher degree of graphitization in 

the CDC aerogel prepared at 1000°C is indicated by the lower FWHM of the D-band of 

117 cm-1 compared to the material prepared at 700°C (133 cm-1) and the activated 

sample (134 cm-1). 

 

EDLC Performance of CDC Aerogels 

The CDC aerogels are tested as electrode materials in symmetrical EDLCs in different 

types of electrolyte systems (Figure 72). Due to the large variety of potential aqueous 

electrolytes, the CDC aerogel prepared at 700°C is used in different electrolytes (1 M 

aqueous solutions of H2SO4, Li2SO4, HCl, and LiCl) to evaluate the optimum system. 

All the cyclic voltammogramms are of nearly perfect rectangular shape over the applied 

potential range of -0.6-0.6 V independent of the elevated scan rate. This indicates the 

absence of a large number of surface functional groups and proofs the high purity of the 

CDC aerogel. In case of the 1 M H2SO4 and 1 M HCl electrolyte, a very minor contribution 

of pseudocapacitive contributions is observed. From both the cyclic voltammogramms 

and the charge-discharge tests it can be concluded that the highest capacitance values 

are achieved in the 1 M H2SO4 solution. At the lowest scan rate (1 mV/s) and current 

density (0.1 A/g), specific capacities of 147 and 151 F/g are achieved, respectively. 

Furthermore, high capacitance retentions at high current densities and scan rates are 

observed in this electrolyte system. The 1 M Li2SO4 electrolyte leads to comparably 
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stable rate performance but the maximum capacitance values are significantly below the 

1 M H2SO4 electrolyte. This is likely related to the diameter of the Li+ cation. Due to its 

larger size, fewer ions can be stored within the pore system of the CDC aerogel and 

lower capacity is achieved. Furthermore, both electrolytes with chloride as the anion 

offer high capacities at low scan rates and current density but fail to operate at higher 

charge-discharge rates. Especially the EDLC based on the 1 M HCl electrolyte can utilize 

only 21% and 10% of its initial capacity of 129 F/g at high scan rates of 500 mV/s and 

1000 mV/s, respectively. 

 

 
Figure 72. Cyclic voltammograms at scan rates of 10 mV/s (A) and 200 mV/s (B) and specific capacities at 

different scan rates (C) as well as specific capacities obtained from galvanostatic charge-discharge tests (D) 

of the CDC aerogel prepared at 700°C in different 1 M aqueous electrolytes. 

 

Electrochemical impedance spectroscopy measurements (Figure 73) underline 

beneficial characteristics of the EDLC operating in the 1 M H2SO4 electrolyte. The abrupt 

drop in capacitance starts at one order of magnitude higher frequency compared to the 

chloride-containing electrolytes (Figure 73(A)). In contrast, only a marginal difference 

can be observed when compared to the EDLC based on the 1 M Li2SO4 electrolyte. In 
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consequence, it can be assumed that the favorable high-rate performance of these 

electrolytes is related to the sulfate-anion rather than to the cations. The Nyquist plots 

(Figure 73(B)) show the presence of higher resistance in the chloride-containing 

electrolytes indicated by the rather distinct semicircle. This additional resistance is 

responsible for the worse high-rate performance of these electrolytes. From these 

measurements it can be concluded that the 1 M H2SO4 electrolyte is favorable for the use 

of the CDC aerogels in aqueous EDLCs as they provide both the highest capacity and 

stability. 

 

 
Figure 73. Frequency responses (A) and Nyquist plots (B) of the CDC aerogel prepared at 700°C in different 

1 M aqueous electrolytes. 

 

Characterization of the three different CDC aerogels in EDLCs based on 1 M H2SO4 

electrolyte clearly reflects the influence of their pore structure on the EDLC performance 

(Figure 74). Compared to the CDC aerogel prepared at 700°C (147 F/g), the CO2 

activated material and the CDC aerogel prepared at 1000°C exhibit slightly lower 

capacities of 135 F/g and 109 F/g, respectively (calculated from cyclic 

voltammogramms at 1 mV/s scan rate). At very high scan rates of up to 1000 mV/s, the 

materials still provide sufficient capacitance due to their aerogel-type pore structure 

with high macropore volume for sufficient ion transportation and nano-sized CDC 

domains which serve for short diffusion pathways to reach the adsorption sites 

(micropores). The specific capacities calculated from charge-discharge tests 

(Figure 74(E)) are in good accordance to the values obtained from CV and also prove the 

outstanding high-power capability of the CDC aerogels. In spite of its higher SSA, the 
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initial capacitance of the activated CDC aerogel is slightly below the CDC aerogel 

prepared at 700°C. This is likely related to the lower amount of surface functional 

groups and hence less contribution of faradic redox reactions to the capacitance of the 

activated material. Independent of the scan rate, the CV of this material is of a more 

rectangular shape compared to the non-activated material (Figure 74(A,C)). At higher 

scan rates, when surface reactions are too slow to contribute to the capacitance, the 

values of the activated material are higher than those for the CDC aerogel prepared at 

700°C according to its higher SSA and micropore volume. 

 

 
Figure 74. Cyclic voltammograms at different scan rates of the CDC aerogel prepared at 700°C (A), the CDC 

aerogel prepared at 1000°C (B) and the CO2 activated CDC aerogel (C) as well as corresponding specific 

capacities (D) and specific capacities obtained from galvanostatic charge-discharge tests (E) in 1 M aqueous 

H2SO4 electrolyte. 

 

From the impedance spectroscopic analyses of the CDC aerogels, it can be concluded 

that the resistance of all materials is relatively low as it is typical for aqueous electrolyte 

systems.145 The material prepared at 700°C has a slightly higher resistance as indicated 

by the capacitance drop occurring at lower frequencies (Figure 75(A)) as well as the 

higher resistance in the Nyquist plot (Figure 75(B)). This could be related to the slightly 

lower conductivity of the CDC aerogel prepared at the lowest temperature of 700°C as 

indicated from the lowest ID/IG ratio of all samples determined by Raman spectroscopy 
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(Figure 71(B)). The electrical conductivity of the carbon material is an important factor 

for the performance in EDLCs, especially at high charge-discharge rates.  

 

 
Figure 75. Frequency responses (A) and Nyquist plots (B) of the CDC aerogel prepared at 700°C (black), the 

CDC aerogel prepared at 1000°C (red) and the CO2 activated CDC aerogel (blue) in aqueous 1 M H2SO4 

electrolyte. 

 

 
Figure 76. Cyclic voltammograms at a scan rate of 50 mV/s (A), specific capacities from cyclic 

voltammogramms at different scan rates (B), specific capacities from charge-discharge tests (C), and 

frequency responses (D) of the CDC aerogel prepared at 700°C (black), the CDC aerogel prepared at 1000°C 

(red), and the CO2 activated CDC aerogel (blue) in organic 1 M TEABF4 in AN electrolyte. 

 

In contrast to aqueous electrolytes, salts dissolved in organic solvents offer the 
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achievable specific energy is significantly beyond that of aqueous solutions. The CDC 

aerogels also show good performance if a 1 molar solution of tetraethylammonium 

tetrafluoroborate (TEABF4) in acetonitrile (AN) is used as the electrolyte. In cyclic 

voltammogramms (Figure 76(A,B)), specific capacities of up to 121 F/g are obtained by 

the CDC aerogel prepared at 700°C at the lowest scan rate of 1 mV/s. The activated 

sample offers comparable capacity values independent of the scan rate while the CDC 

aerogel prepared at 1000°C provides lower capacity due to its slightly lower SSA. 

Charge-discharge measurements, which are most accurate to characterize EDLCs 

under relevant conditions, proof the advanced electron transport properties of the CDC 

aerogels (Figure 76(C)). In principle, an ideal EDLC must deliver the same energy 

independent of the current density. However, even at current densities below 10 A/g, 

capacitance drops often occur for systems which are not optimized for ion adsorption 

(e.g. activated carbons).157 In case of the activated CDC aerogel, more than 100 F/g can 

be achieved at a current density of 100 A/g. Such high capacitance retentions are usually 

only achieved by materials with sufficiently large external SSA, such as carbon onions or 

carbon nanotubes.15 The CO2 activated CDC aerogel provides a combination of 

hydrophobic surface properties, sufficiently large micropores and the aerogel-type 

transport pore system and is therefore optimal for efficient ion transportation. The CDC 

aerogel prepared at 1000°C can also operate at such high current densities but shows a 

lower capacitance and higher capacitance drop due to the lower SSA and smaller 

micropores, respectively. The CDC aerogel prepared at 700°C fails to operate at current 

densities above 80 F/g, likely related to their more hydrophilic surface properties which 

hinder sufficient wetting of the pore system with the non-polar organic electrolyte. 

These trends between the different carbon materials are reconfirmed by the frequency 

responses obtained from impedance spectroscopy analysis (Figure 76(D)). The activated 

CDC aerogel shows the drop of the capacitance at higher frequencies compared to the 

non-activated samples in accordance to its higher capacitance retentions at high current 

density. 

In summary, it has been shown that CDC aerogels are outstanding electrode materials in 

EDLCs in both aqueous and organic electrolyte systems. They simultaneously provide 

high SSA and the aerogel-type pore structure. Hence, high capacities in combination with 

excellent capacitance retentions at high current densities and high scan rates can be 

achieved.  
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5.4 CDCs from Sacrificial Templates 

Various CDC materials with hierarchical pore structure (e.g. CDC mesofoams, see section 

5.2.1), show promising results as conductive sulfur hosts in Li-S battery cathodes. These 

carbons can mitigate polysulfide dissolution via physical adsorption and electrically 

connect nano-sized sulfur, which suffers from low intrinsic electric conductivity. Micro- 

and mesoporous CDCs are advantageous for this purpose as their mesopores provide 

large pore volume for sulfur storage and allow for the rapid ion transport (and thus 

faster charge-discharge rates). At the same time, micropores induce reduced polysulfide 

dissolution and provide high surface area for sufficient electrical contact between the 

active material and carbon.  

However, the syntheses of these advanced CDC structures require the use of hard- or 

soft-templating approaches based on solid-state templates or amphiphilic structure-

directing agents, respectively. The removal of the template requires an additional 

synthesis step in hard-templating routes (often accompanied with the use of extremely 

toxic substances such as hydrofluoric acid). Soft-templating approaches most often 

make use of large amounts of organic solvents and polluting surfactants which end up in 

an evaporated or decomposed state. Sacrificial templating is an attractive alternative as 

no surfactant is needed and the template removal does not require an additional 

synthesis step. The elimination of the pore-forming templates takes place in parallel to 

the thermal conversion of the precursor. 

 

Synthesis and Structure 

Micro- and mesoporous CDC materials (PMMA-CDCs) can be prepared from 

poly(methylmethacrylate) (PMMA) spheres (synthesized by a miniemulsion technique) 

as pore-forming material.224 These PMMA spheres are mixed with polycarbosilane 

polymer precursor followed by simultaneous carbide formation/template removal and 

by a high-temperature chlorine treatment for CDC formation (Figure 77(A)). They 

exhibit a narrow size distribution centered at 90 nm as determined by DLS 

measurements (Appendix 9(A)). SEM images of the PMMA spheres show that the 

polymeric placeholders are of a near-spherical shape and that the single PMMA 

nanoparticles obtained after polymerization and drying are agglomerated and contain 

distinct contact areas. The latter are important for advanced connectivity of the 

mesopores in the finally obtained carbon material (Appendix 9(B)). 
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Figure 77. Procedure for the preparation (A), SEM (B), and TEM micrograph (C) of PMMA-CDC. 

 

 
Figure 78. Raman spectrum (A) and wide-angle XRD pattern (B) of PMMA-CDC as well as nitrogen 

physisorption (-196°C) isotherms (C) of the PMMA-CDC (black circles) and the mesoporous SiC precursor (red 

squares) as well as corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C, 

equilibrium branch kernel) pore size distribution of the PMMA-CDC (D). 

 

The large pores in the CDC materials are comparable in size to the template particles 
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route (Figure 77(B)). TEM studies show the highly disordered microstructure of the 

templated CDC (Figure 77(C)). It mainly consists of randomly oriented sp2 carbon 

fringes and no graphitic nanodomains can be observed as it is typical for polymer-based 

CDCs synthesized at comparable temperatures. 

In accordance, the Raman spectrum of the CDC material (Figure 78(A)) shows the 

characteristic D-band at ~1350 cm-1 which is typical for a disordered carbon structure 

with a high degree of sp2 atoms (i.e. non-parallel curved graphene sheets). The (peak 

height) intensity ratio ID/IG of the D- and G band of 1.26 and the FWHM of the D-band of 

150 cm-1 are close to other CDC structures prepared at comparable temperatures (see 

section 5.3). It is well-known that these carbon materials provide sufficient electric 

conductivity for the use as electrode materials due to their sp2-rich structure. As the 

graphene sheets are highly disordered at the same time and distinct graphitization does 

not take place, the typical graphite (002) peak appears only with moderate intensity in 

the XRD pattern of the CDCs (Figure 78(B)). 

The hierarchical character of the produced CDCs is proven by nitrogen physisorption 

measurements (Figure 78(C)). The high specific surface area of 2434 m2/g and the large 

micropore volume are responsible for the high uptake of nitrogen in the low-pressure 

area (p/p0 < 0.2). A distinct hysteresis loop can be observed at high relative pressure 

(p/p0 = 0.8-0.99) which arises from the larger pores induced by the PMMA template 

particles. This leads to a high total pore volume of 2.64 cm3/g. Furthermore, the absence 

of cavitation or pore blocking effects indicates the high accessibility of the mesopores 

which is favorable for homogeneous infiltration of sulfur and enhanced electrolyte 

penetration. In accordance, the QSDFT pore size distribution shows the presence of 

large mesopores of 10-50 nm combined with micropores of 1.0 nm in size 

(Figure 78(D)). Minor contributions of small mesopores (3.3 nm) are observed as it is 

typical for polymer-based carbide-derived carbons (see sections 5.1.1. and 5.3). As it can 

be seen by the hysteresis loop in the physisorption isotherm, the large mesopores are 

already present in the silicon carbide materials obtained after PMMA decomposition, 

which show a moderate specific surface area of 99 m2/g. In contrast, the micropores are 

inserted during the removal of silicon during high-temperature chlorine treatment. 

The silicon content of the finally obtained CDCs (determined by EDX measurements) is 

below 0.1 atom%. The comparably high oxygen content of the mesoporous silicon 

carbide precursors (~18 atom%) is likely originating from the oxygen-containing 
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groups of the sacrificial template particles. However, this effect does not negatively 

influence the purity of the finally obtained CDCs as they show oxygen content of only 

~0.5 atom%. 

 

PMMA-CDCs in Li-S Battery Cathodes 

The CDCs obtained from PMMA templates simultaneously provide high micropore 

volume and high conductivity. Together with the precisely defined mesopores and the 

facile synthesis scheme, PMMA-templated CDCs are highly suitable materials for hosting 

the electrically insulating sulfur in Li-S battery cathodes. 

 

 
Figure 79. Nitrogen physisorption (-196°C) isotherm (A) and SEM micrographs (B and C) of the PMMA-

CDC/S composite as well as EDX mapping (D) of the sulfur distribution (red). 

 

After the incorporation of ~45 wt.% sulfur into the pore system of the PMMA-CDC, a 

nitrogen physisorption measurement of the S/PMMA-CDC composite proofs the strong 

confinement of the active material into the carbon micropores (Figure 79 (A)). 

Compared to the pristine PMMA-templated CDC, the specific surface area is decreased to 

586 m2/g. The micropore volume remaining after sulfur loading is as low as 

0.068 cm3/g. This shows the preferred adsorption of the active material in the carbon 

micropores and proofs the presence of large electrochemically active surface area. 

However, a relatively high mesoporosity is still available as indicated by the remaining 
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hysteresis loop at high relative pressure. The total pore volume of 1.09 cm3/g serves for 

sufficient Li diffusion to the active material and can balance the volume expansion of up 

to 74% during the conversion of sulfur to Li2S. Scanning electron microscopy 

micrographs of the S/PMMA-CDC powder reveal almost no morphological changes after 

sulfur infiltration (Figure 79(B)). No agglomerated or large sulfur residues on the 

particles` external surface are observed. The uniform distribution of sulfur inside the 

micro and mesopores is confirmed by EDX mapping (Figure 79(C,D)). 

The S/PMMA-CDC cathodes exhibit relatively stable cycling performance and high 

capacity utilization at a current rate of 0.5 C in various electrolyte concentrations (1, 3, 

and 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethoxyethane 

(DME):1,3-dioxolane (DIOX) (1:1 by volume) (Figure 80(A)). The cathode in 1 M 

electrolyte exhibits a high initial discharge capacity of 1209 mAh/gSulfur followed by a 

distinct capacity drop in the first cycles. 44% of the initial capacity is retained after 50 

cycles. The S/PMMA-CDC cathodes in 3 M and 5 M electrolyte exhibit comparable initial 

discharge capacities of 1324 mAh/gSulfur and 1404 mAh/gSulfur, respectively. However, 

these cells exhibit largely improved capacity retention of 55% (3 M electrolyte) and 72% 

(5 M electrolyte) at the end of 50 cycles. Especially within the first ten cycles the 

capacitance drops increase at lower electrolyte concentration. This indicates that the 

polysulfide dissolution is largely suppressed in high-molarity electrolytes due to the 

reduced solubility of polysulfides which is related to the so-called “common ion effect”.72 

The higher concentration of Li-ions in the electrolyte suppresses the solubility of the 

precipitate according to Le Chatelier's principle. Moreover, lower amount of free solvent 

molecules in the electrolyte further reduces polysulfide dissolution. In consequence, the 

unfavorable polysulfide shuttle mechanism is less pronounced as also indicated by SEM 

micrographs of the cathodes after cycling. The electrode cycled in 1 M electrolyte 

solution (Figure 80(B)) shows a significant amount of dissolved polysulfides 

precipitated on the surface of the CDC particles and therefore, many pores are blocked 

by insoluble low order polysulfides. In contrast, in 5 M electrolyte (Figure 80(C)), the 

morphology of S/PMMA-CDC cathode is almost identical with its original state 

(Figure 79(B)). This indicates that the polysulfide dissolution is effectively suppressed in 

high-molarity electrolytes. This observation is reconfirmed by EDX analysis which 

reveals that the cathode cycled in 1 M electrolyte exhibits only 43% of its initial sulfur 

content while the amount of sulfur in the cathode cycled in 5 M electrolyte is still 55% of 
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the initial value. The continued capacity degradation can be explained by precipitation of 

low-order insulating polysulfides on the lithium metal anode. 

In comparison to the purely microporous activated carbon material YP17D, PMMA-CDC 

shows much higher capacities due to the advanced pore structure for the use in Li-S 

battery cathodes. The activated carbon material shows very stable cycling performance 

because the dissolution of polysulfides is suppressed in small micropores but at the 

same time the specific capacitance is significantly lower due to reduced sulfur utilization 

as a result of the increased ionic resistance and incomplete electrolyte accessibility. 

Random, small, and bottle-neck pore structures present in activated carbons derived 

from natural sources (e.g. coconut) can be easily clogged with electrically insulating and 

insoluble low order polysulfides. In contrast to the PMMA-CDC, less sulfur can be 

utilized in high-molarity electrolyte due to the higher ionic resistance and higher 

viscosity. These results clearly indicate the importance of the carbon pore structure on 

the properties as a sulfur host material in Li-S battery cathodes. 

 
 Figure 80. Discharge capacities (A) of the S/PMMA-CDC cathodes at a current rate of 0.5 C in 1 M (blue), 

3 M (red), and 5 M (black) LiTFSI electrolyte in comparison to S/YP17D activated carbon electrodes 1 M 

(green) and 5 M (grey) electrolyte as well as SEM micrographs of the S/PMMA-CDC cathodes after cycling in 

1 M (B) and 5 M (C) electrolyte.  

 

5.5 Fundamental Adsorption Studies Based on Well-Defined Carbons 

As described in the previous sections, polymer-based CDCs can be tailored in their pore 

structure over a wide range. Depending on their appearance, they show excellent 

performance in applications related to gas adsorption or electrochemistry. Besides the 

use in the actual devices, there is also an enormous interest in a better understanding of 
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the principle phenomena within these processes. CDCs and templated carbons can be 

applied as model substances for a better understanding of these fundamental processes 

due to their precisely controllable pore structure. In this chapter, three different 

methods for the investigation of adsorption processes on the surface of CDCs and 

templated carbon are presented. In section 5.5.1, solid-state NMR experiments are 

reported as a useful tool for the investigation of the interactions between carbon-based 

materials and electrolyte solutions on the atomic level. A study on in-situ high-pressure 

129Xe NMR spectroscopy in combination with volumetric adsorption measurements is 

presented in section 5.5.2. The InfraSORP technology is a useful tool for the rapid 

characterization of porous materials based on the optical adsorption calorimetry. 

Carbon materials with different pore sizes and pore hierarchies can be distinguished 

and characterized by this method as reported in section 5.5.3. 

 

5.5.1 Solid-State NMR Spectroscopy Investigations on Ion Adsorption 

Although major progress and improvement of EDLCs has been achieved in recent years, 

a better and more detailed understanding of the basic mechanisms in these devices is 

still lacking. Therefore, especially in-situ characterization and modelling techniques, 

(often based on CDC structures) receive considerable attention.225 While the earliest 

studies are of mainly empirical character (based on electrochemical measurements), in-

situ techniques are more and more in focus (see section 2.4.1). 

The influence of the pore size of the carbon electrode material on the overall 

performance of EDLCs remains a key question. For a long time, the capacitance of EDLCs 

was fully ascribed to the formation of an electrochemical Helmholtz double-layer of 

electrolyte molecules on the carbon pore wall. The carbon pores had to fulfill the 

requirement that the ion with its complete intact solvent shell has to have full access to 

their interior. More recent studies report on the significant enhancement of the 

capacitance when the carbon pore size falls below the solvent shell size of the electrolyte 

ions and the formation of a double-layer would not be possible from a theoretical point 

of view.74 This disagreement and the anomalous increase in capacitance is explained by 

the distortion of the ion solvation shell in aqueous and organic electrolyte solutions and 

a reduction of the coordination number in ILs. This leads to a rather close approach of 

the ions onto the carbon surface and increases the specific capacitance according to 

Equation 10. 
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One very attractive technique for the investigation of the interactions between carbon-

based materials and electrolyte solutions on the atomic level is the nuclear magnetic 

resonance (NMR) spectroscopy.163 It is possible to clearly distinguish between adsorbed 

ions and those in free solution because the ring currents in the π-electron system within 

the carbon pore walls give rise to a shielding effect for spins of atoms located between 

the disordered graphene sheets (i.e. in the pores). Many of these studies make use of 

activated carbon materials with very disordered pore structure but only very few 

concentrate on CDCs and templated carbons as appropriate model substances. 

In this chapter, carbon materials with well-defined porosity, namely two microporous 

TiC-derived carbons (prepared at 600°C and 1000°C), ordered mesoporous SiC-CDC 

(OM-SiC-CDC, see section 2.3.1, in the following denoted as “OM-CDC”), and the 

hexagonal ordered mesoporous carbon CMK-3 (see section 2.1) are characterized with 

1H, 13C, and 11B magic angle spinning (MAS) solid-state NMR after loading with a 1 M 

solution of TEABF4 in AN with regard to establish a correlation between the NMR 

parameters and the pore diameter.226 

 

 
Figure 81. Linear (A) and semi-logarithmic (B, low pressure measurement) plots of nitrogen physisorption 

isotherms (-196°C) and corresponding QSDFT (nitrogen on carbon with slit/cylindrical pores at -196°C, 

adsorption branch kernel) pore size distributions (C and D) of OM-CDC (black), CMK-3 (grey), TiC-CDC-600°C 

(blue), and TiC-CDC-1000°C (red). PSDs are vertical offset. 
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Table 13. Porosity data summary of OM-CDC, CMK-3, and the TiC-CDCs prepared at different temperatures. 

Sample 
SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

Average Pore 

Size(s) (nm) 

OM-CDC 2838 2.05 0.55 1.0/4.1 

CMK-3 1396 1.42 0.1 (0.9)/4.5 

TiC-CDC-1000°C 1652 0.74 0.59 0.8[d] 

TiC-CDC-600°C 1412 0.6 0.54 0.6[e] 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro-and Mesopore volume calculated at p/p0 = 0.95. 

[c] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

[d] Apart from the main pore size, two smaller local maxima in the PSD occur at 1.2 nm and 2.2 nm. 

[e] Apart from the main pore size, a shoulder in the PSD is observed at 1.2 nm. 

 

The TiC-CDCs are produced by high-temperature chlorine treatment of bulk TiC powder 

at different temperatures and in consequence their nitrogen physisorption isotherms 

(Figure 81(A)) are of type I as it is typical for a purely microporous material. As can be 

seen in the semi-logarithmic plots of the isotherms (Figure 81(B)), both materials show 

a high uptake of nitrogen at low relative pressures (p/p0 < 0.1) associated with the 

filling of the micropores. The strongest adsorption of nitrogen takes place in the TiC-

CDC-600°C sample due to the presence of rather narrow micropores when compared to 

TiC-CDC-1000°C and OM-CDC. Accordingly, the QSDFT-PSD of this sample shows the 

presence of micropores with a diameter of 0.6 nm (Figure 81(C) and Table 13). Due to 

the presence of larger micropores, the nitrogen uptake takes place at slightly higher 

relative pressures in the TiC-CDC-1000°C and the total amount adsorbed is increased as 

compared to the material prepared at 600°C. Therefore, the maximum in the PSD is 

shifted to a diameter of 0.8 nm and minor contributions of slightly larger pores are 

present (Table 13). In contrast to these microporous CDCs, CMK-3 and OM-CDC show a 

hysteresis loop at p/p0 = 0.4-0.7 as it is typical for materials with hexagonal ordered 

nanorods. CMK-3 is almost exclusively mesoporous as indicated by the low uptake of 

nitrogen at low relative pressure (Figure 81(B)). It exhibits a low micropore volume of 

0.1 cm3/g (Table 13) which is mostly caused by the presence of random defects on the 

surface and within the carbon nanorods related to the decomposition of the carbon 

precursor. At higher relative pressures, CMK-3 shows high uptake due to the complete 

filling of the 4.5 nm-sized mesopores with nitrogen. In contrast, OM-CDC contains a 

hierarchical pore structure of micro- and mesopores. Hence, it exhibits a higher specific 
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surface area and total pore volume compared to CMK-3. The pore structure of the OM-

CDC can therefore be seen as a combination of CMK-3 and the TiC-CDCs as it contains 

micropores and mesopores centered at 1.0 and 4.1 nm, respectively (Figure 81(D) and 

Table 13). 

 

 
Figure 82. Carbon dioxide physisorption (0°C) isotherms (A) and Raman spectra of OM-CDC (black), CMK-3 

(grey), TiC-CDC-600°C (blue), and TiC-CDC-1000°C (red). 

 

Carbon dioxide measurements at 0°C up to 1 bar (p/p0 ~0.03) additionally show the 

large differences in the micropore structure of the investigated samples (Figure 82(A)). 

Under these conditions, CO2 adsorption is very sensitive to the presence of narrow 

micropores. As a consequence, the highest amount of gas is adsorbed in the pore system 

of the TiC-CDC-600°C due to the presence of the narrowest micropores followed by TiC-

CDC-1000°C and OM-CDC in agreement with their increasing micropore size. CMK-3 

shows the lowest uptake due to the lower micropore volume and relatively large 

micropore diameter of 1.0 nm. 

Another important structural difference between the different carbon materials under 

investigation is their degree of graphitization. Raman spectroscopic investigations show 

the typical appearance for carbon materials with disordered nanostructure including the 

disorder-induced D-band and the graphitic G-band arising from a double-resonance 

process (inter-valley scattering) and in-plane stretching vibrations of sp2-bonded sites, 
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respectively (Figure 82(B)). The increasing intensity of both bands in carbon materials 

prepared at higher temperature indicates an increasing graphitization (i.e., the growth 

and enlargement of the sp2-bonded sites in the pore walls). According to the most 

disordered carbon microstructure (i.e. the lowest degree of graphitization), TiC-CDC-

600°C shows the lowest (intensity related) ID/IG ratio (1.26) of all samples while OM-

CDC (1.43) and CMK-3 (1.43) are comparable in graphitization to TiC-CDC-1000°C 

(1.44). 

 

Figure 83. 11B MAS NMR spectra of the carbon materials and the pure electrolyte solution (A) as well as 11B-
11B exchange spectroscopy (2D EXSY) of TiC-CDC-1000°C loaded with an excess of 1 M TEABF4 in AN 

(according to 1.5 times the total pore volume) measured at a mixing time of 5 ms (B). 

 

Table 14. 11B NMR chemical shifts, diamagnetic shift (∆δ = δBulk – δ) of BF4, and line widths of the bulk 

electrolyte solution and the porous carbons loaded with 1 M TEABF4 in AN. 

Sample δ (ppm) ∆δ (ppm) FWHM (ppm) 

TEABF4 in AN -1.0 - 0.25 

CMK-3 -2.7 1.7 0.45 

OM-CDC -4.6 3.6 1.3 

TiC-CDC-1000°C -7.2 6.2 1.55 

TiC-CDC-600°C -4.7 3.7 1.9 

 

After loading with a 1 M solution of TEABF4 in AN according to the pore volumes of the 

corresponding carbon samples, the 11B MAS NMR spectra (Figure 83(A)) exhibit one 

signal only as it is also the case for the bulk electrolyte solution. Compared to the 
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pristine 1 M TEABF4 in AN, the spectra of the electrolyte solutions in the carbon 

materials show a different chemical shift and larger FWHM (Table 14). The latter 

increases steadily with decreasing pore diameter. This is likely due to the increasing 

immobilization (i.e. stronger adsorption) of the BF4- ions in smaller pores since the 

fraction of ions close to the pore walls becomes larger for decreasing pore diameters. 

The chemical shift of the 11B in all samples is smaller compared to the pure electrolyte 

solution (Figure 83(A) and Table 14). This is due to the fact that the ions are located 

inside the pores and experience the characteristic downfield shift (∆δ = δBulk – δ). The 

latter is caused by the above-described shielding effect of the pore walls affecting the 

adsorbed ions. For the samples with comparable graphitization, the strength of this shift 

is related to the pore diameter. The sample with the largest pores (CMK-3) shows the 

lowest diamagnetic shift and the sample with the smallest pores (TiC-CDC-1000°C) 

shows the largest shift due to a stronger confinement of the ions into the micropores. In 

case of the hierarchical OM-CDC, the signal does not split into two lines as it would be 

expected for ions adsorbed in micropores and mesopores. This can be explained by the 

rapid exchange of BF4- ions between the well-connected pore systems. Otherwise, two 

signals would occur at ~-3 and ~-7 ppm because the pore diameters of OM-CDC (4.1 and 

1.0 nm) are close to the values for CMK-3 (4.5 nm) and TiC-CDC-1000°C (1.0 nm). 

The critical exchange time resulting from the frequency difference between these two 

chemical shifts is ~0.4 ms. Hence, the exchange between the two pore systems must take 

place with a characteristic exchange time below 0.4 ms. This hypothesis is reconfirmed 

by a two-dimensional 11B-11B exchange spectroscopy (2D EXSY) measurement of TiC-

CDC-1000°C loaded with 1 M TEABF4 in AN at a mixing time of 5 ms (Figure 83(B)). In 

this case, the volume of the electrolyte solution added to the carbon material is higher 

than the total pore volume. This results in the additional presence of a relatively broad 

signal at -1.5 ppm and a narrow signal at -1 ppm. As these signals only occur for loadings 

exceeding the internal pore volume and based on the chemical shift, both signals are 

ascribed to BF4- located outside the pores (i.e. in the inter-particle space). The species 

giving rise to the broad signal at -1.5 ppm exchange with the species adsorbed inside the 

pores even at a mixing time of only 5 ms as can be seen from the corresponding cross 

peaks. The broad signal at -1.5 ppm is therefore ascribed to BF4- outside the particles but 

in close contact with the outer surface (i.e. they represent the outer surface layer 

covering the particles). The narrow signal at -1 ppm is ascribed to BF4- in the inter-
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particle space without surface contact. As the ions on the outer surface of the particles 

exchange with the species adsorbed inside the pores under these conditions, the 

averaged signal of OM-CDC due to this effect is reasonable, especially if the fact that the 

exchange processes between narrow and large pores within the pore system of an OM-

CDC particle should be much faster is taken into consideration. The presence of this 

inter-pore exchange process proves the strongly hierarchical character of this material. 

 

 
Figure 84. 1H (A) and 13C (B) MAS NMR spectra of CMK-3 and TiC-CDC-1000°C loaded with AN and 1 M 

TEABF4 dissolved in AN as well as spectra of the pure electrolyte solution. 

 

In accordance with the results of the 11B spectra, 1H (Figure 84(A) and Table 15) and 13C 

((Figure 84(B) and Table 15) MAS NMR investigations of the carbon materials loaded 

with electrolyte solution and the pristine AN solvent without TEABF4 ions show a pore 

size-dependency of the adsorption state of ions into the carbon pores. As already 

observed in the 11B spectra, all signals exhibit a different diamagnetic shift compared to 

the pure electrolyte without carbon. With the exception of TiC-CDC-600°C, the shift 

increases with decreasing pore size (Table 15). The fact that the low-temperature CDC 

does not follow the pore size dependency of the chemical shift is caused by its less 

ordered and less graphitized carbon nanostructure. The carbon atoms in this material 

exhibit a higher degree of sp3 hybridization than in the other samples. Therefore, the 

ring currents in the pore walls are less pronounced leading to a lower diamagnetic shift 

for all signals measured in TiC-CDC-600°C. Besides the chemical shift, the line width of 
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the 1H spectra is also dependent on the pore diameter (Figure 84(A)). It increases with 

decreasing pore diameter again due to the fact that the adsorbed molecules are indeed 

increasingly immobilized in pores of decreasing size. 

 

Table 15. 1H and 13C NMR chemical shifts of AN or AN with 1 M TEABF4 adsorbed in porous carbon samples 

as well as the pure compounds.  

Sample 

1H 

Chemical shift 

13C 

Chemical shift 

δPure AN 

(ppm) 

ΔElectrolyte 

(ppm) 

δPure AN (ppm) ΔElectrolyte (ppm) 

Signal 1 Signal 2 Signal 1 Signal 2 

TEABF4 in AN 1.9 1.9 1.4 118.1 1.4 118.3 

CMK-3 -0.6 0.5 -2.4 114.7 -0.2 116.8 

OM-CDC -3.0 -1.3 -4.6 111.5 -2.1 114.9 

TiC-CDC-

1000°C 
-3.6 -3.4 -4.8 111.4 -4.3 112.1 

TiC-CDC-

600°C 
-1.9 -1.9 -1.9 113.6 -2.0 114.0 

 

Further interesting effects can be seen if the samples loaded with the electrolyte 

solution and pure AN are compared. The diamagnetic shift of the 1H and 13C NMR signals 

of AN is less pronounced in the presence of 1 M TEABF4 especially for CMK-3 and OM-

CDC with the larger pore diameter (Table 15). As it is not very likely that the presence of 

TEABF4 has an influence on the ring currents in the pore walls, it can be assumed that 

the observed effect is due to a decreasing concentration of AN molecules close to the 

pore walls in presence of the electrolyte salt. This would be the case if the BF4- and TEA+ 

ions are not homogeneously distributed within the pores. In the case of a concentration 

gradient (i.e. if these ions tend to reside closer to the walls), the available space for AN in 

the strongly influenced interface layer would be reduced and AN would exhibit a higher 

concentration in the middle of the pore. However, in the narrow pores of the 

microporous CDCs, this model does not apply anymore because the pores are too small 

for such an arrangement and the entire pore volume must be considered as strongly 

influenced by the ring current effects in the walls. Indeed, the chemical shift of AN in 

these materials is almost independent of the presence of TEABF4 (Table 15).  
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According to the proposal of Chmiola and co-workers,74 the solvent shell surrounding 

TEA+ must be strongly perturbed or even ‘‘stripped off’’ inside pores smaller than 1 nm 

as a result of the ion diameter (1.30 nm with AN solvation shell, 0.67 nm without 

solvation shell).142 To further substantiate this idea, the influence of solvent removal on 

the 13C CP (cross-polarization) MAS NMR spectra of CMK-3 and TiC-CDC-1000°C (i.e. a 

large-pore and a narrow-pore sample) is investigated (Figure 85). In all spectra, the 

presence of TEABF4 is detected independent of the presence of the solvent molecules. 

Evacuation of the materials under high vacuum then results in the disappearance of the 

signal related to AN and leads to a significant broadening of both TEA+-signals. In case of 

the purely microporous TiC-CDC-1000°C, the chemical shifts of the TEA+ signals are 

practically independent of the presence of AN, i.e. the presence of the solvent does not 

significantly influence the TEA+ chemical shift. From this it can be concluded that the 

molecules adsorbed in the micropores do not exhibit an unperturbed solvation shell. In 

contrast, in CMK-3, solvent removal leads to a further diamagnetic shift as the removal 

of the solvation shells brings the ions closer to the mesopore walls and they are rather 

strongly influenced by the shielding effect of the sp2 carbon ring forces. These results 

prove that under the elevated conditions, ions adsorbed in mesopores contain their 

solvation shell completely intact while ions at least partially loose the surrounding shell 

in carbon micropores which is an experimental proof for the theory developed by 

Chmiola and co-workers.  

 

 
Figure 85. 13C(1H)CP MAS NMR spectra of TiC-CDC-1000°C (A) and CMK-3 (B) loaded with 1 M TEABF4 in AN 

before (top) and after (down) AN removal. 

 

In summary, solid-state MAS NMR is a highly useful tool for characterization of the 

adsorption state of ions onto carbon nanopores. If well-defined carbon materials with 

different pore sizes and pore architectures are used as model electrode materials, 

important conclusions can be derived from these measurements. i) Only one NMR signal 

(A) (B)(TEA+)

(TEA+)

(AN) (TEA+) 0.6 ppm

1.6 ppm
(TEA+)

(AN)

ppm

20 0 -204060

ppm

20 0 -204060



                                                                                            Results and Discussion 

__________________________________________________________________________________
150 

 

is detected for all nuclei located at molecules adsorbed inside the pore system. This is 

even true for hierarchical carbons with bimodal pore size distribution. That means that 

the adsorbed molecules move and exchange rapidly inside the pores and between the 

different pore systems. ii) The chemical shift of molecules adsorbed in porous carbon 

materials of comparable degree of sp2 hybridization is correlated with the pore size. The 

molecules are increasingly immobilized in smaller pores. (iii) In carbon materials with 

sufficiently large pores, electrolyte molecules tend to reside closer to the pore walls than 

the solvent molecules. Removal of the solvent by evacuation results in a removal of the 

solvent shell and brings the electrolyte molecules into even closer contact with the pore 

walls. (iv) If adsorbed in pores smaller than 1 nm diameter, solvent removal does not 

result in a further increase of the diamagnetic shift. 

 

5.5.2 In-Situ High-Pressure 129Xe NMR Spectroscopy 

The adsorption of gases on the surface of porous materials is the most widely applied 

characterization tool for their characterization. It will likely remain the most frequently 

used technique for textural imaging of porous solids because it enables the calculation of 

important properties such as the specific surface area, total pore volume and pore size 

distribution.189 

One very useful method for the adsorptive characterization of porous materials is the in-

situ 129Xe NMR spectroscopy of adsorbed xenon because it allows the direct 

investigation of the physical state of adsorbed molecules. Xenon is an inert, nonpolar 

spin-1/2 atom with a high NMR sensitivity and a large electron cloud which is very 

sensitive to different interactions with various environments. This results in a wide 

chemical shift range. In consequence, 129Xe NMR spectroscopy, which was firstly 

described in 1980 by Ito and Fraissard,227 offers many parameters that can be correlated 

to structural properties of the porous materials (e.g. the chemical shift, the line width, 

the chemical shift anisotropy, and the longitudinal relaxation time T1). In general, the 

overall chemical shift of adsorbed 129Xe depends on xenon-surface interactions and 

density-dependent xenon-xenon interactions. As the xenon-xenon interaction is 

negligible at low xenon densities, the extrapolation of the chemical shift to relative 

pressure p/p0 = 0 yields the xenon-surface interaction contribution. For porous carbon 

materials, the latter depends on structural parameters such as the concentration of 

acidic groups, strong adsorption sites, heteroatoms, and the average pore size. However, 
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most of the studies on in-situ 129Xe NMR spectroscopy are focused on less-defined 

materials, such as activated carbons and are limited to low relative pressures.228, 229 

In this chapter, 129Xe NMR studies at -36°C up to 18 bar on a series of well-

defined CDC and templated carbon materials, namely OM-CDC, CMK-3, TiC-CDC-600°C, 

and TiC-CDC-1000°C (see section 5.5.1), are described.230 These conditions allow the 

study of adsorption/desorption isotherms up to a relative pressure close to p/p0 = 1. 

The 129Xe NMR spectra measured at a temperature of -36°C and a xenon pressure of 

11 bar show at least two 129Xe NMR signals (Figure 86(A)). The signals at low chemical 

shifts of ~0-20 ppm are due to xenon in the gas phase. The signals of adsorbed xenon 

occur at higher chemical shifts of 100-300 ppm. In addition to the intense signal of 

adsorbed xenon and the gas phase signal, a third signal appears for TiC-CDC-600°C 

(denoted by an asterisk in Figure 86(A)) at ~35 ppm. Its intensity amounts to only 4% of 

the signal of adsorbed xenon at 264 ppm. Due to the low chemical shift and intensity, the 

signal can be attributed to macropores (e.g. pores between the particles). Xenon in these 

macropores interacting with the outer surface of the TiC-CDC-600°C particles would 

give rise to such a chemical shift. 

 

 
Figure 86. 129Xe NMR spectra for isothermal xenon adsorption on OM-CDC, CMK-3, TiC-CDC-1000°C, and TiC-

CDC-600°C measured at -36°C at a xenon pressure of 11 bar (p/p0 = 0.64) (A) as well as 129Xe NMR chemical 

shift for TiC-CDC-1000°C (B) and TiC-CDC-600°C (C) measured at -36°C as a function of relative pressure 

(filled symbols: adsorption; empty symbols: desorption). 
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According to their monomodal pore size distribution, the two microporous CDCs exhibit 

only one signal due to xenon adsorbed in the micropores. The highest chemical shift 

among all samples is observed for gas adsorbed in TiC-CDC-600°C. Such an inverse 

correlation between the chemical shift and the pore size is well-known (e.g. for 

zeolites)231 and therefore indicates that the micropore size of this sample is smaller than 

in TiC-CDC-1000°C. This is in agreement with the nitrogen and carbon dioxide 

adsorption data (see section 5.5.1). It can also be observed that the line width of the 

xenon adsorbed in TiC-CDC-600°C significantly exceeds the line width of the other 

samples (Figure 86(A)). This can be explained by the rather strong adsorption of gas in 

the pores of the low-temperature CDC of 0.6 nm in size which are close to the kinetic 

diameter of xenon (0.44 nm). In addition, despite the well-defined pore size, surface 

inhomogeneities due to the rather amorphous carbon microstructure in this sample (see 

section 5.5.1) can be another reason for line broadening. Finally, xenon clusters of 

different size may be formed within the micropores which would give rise to a chemical 

shift distribution. 

In contrast to the microporous CDCs, two distinct signals are detected for xenon 

adsorbed in the pores of CMK-3 (Figure 86(A)). Signal (1) at ~190 ppm and signal (2) at 

~230 ppm (with an intensity ratio of approximately 90:10) are due to gas adsorbed in 

mesopores (1) and micropores (2). The chemical shift of the micropore signal is lower 

than those observed for the micropores in the TiC-CDCs due to the larger micropores in 

CMK-3 (see section 5.5.1). The intensity ratio of the signals is also reasonable because 

the mesopores represent a more than ten times higher fraction of the total pore volume 

than the micropores.  

The plots of the chemical shift of the xenon adsorbed in the microporous CDCs versus 

the relative pressure of xenon (Figure 86(B,C)) resemble a type I adsorption/desorption 

isotherm. After a steeply increase of the chemical shift up to a relative pressure of 

p/p0 ~0.2, the chemical shift finally levels off at higher pressure and reaches a plateau 

value. Besides the signal intensity, which represents the amount of adsorbed xenon, this 

can also be expected for the chemical shift value as it is correlated with the xenon 

density. Therefore, the plot of the chemical shift versus the relative pressure indeed 

resembles the shape of the adsorption/desorption isotherm. TiC-CDC-600°C, due to its 

smaller average pore diameter, shows a higher chemical shift compared to TiC-CDC-

1000°C over the entire range of relative pressures. As xenon-wall interactions are 
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predominating even if the micropores are completely filled, the “saturation value” of the 

chemical shift of xenon in micropores clearly exceeds the chemical shift of 203 ppm 

observed for liquid xenon at -36°C. 

 

 
Figure 87. 129Xe NMR chemical shifts (A) and intensities (B) of xenon adsorbed in mesopores and micropores 

of CMK-3 measured at -36°C as a function of relative pressure (filled symbols: adsorption; empty symbols: 

desorption) as well as 129Xe NMR spectra of CMK-3 measured during xenon adsorption and during xenon 

desorption at -36°C at 8 bar (p/p0 = 0.46) (C) and 10 bar (p/p0 = 0.58) (D). 

 

In contrast, the final chemical shift values for xenon inside mesopores of CMK-3 is close 

to 200 ppm because the condensed xenon is similar to the bulk liquid (Figure 87(A)). 

For signal (2), the curves resemble a type I adsorption isotherm which is characteristic 

for microporous materials. Over the entire range of relative pressure, the chemical shift 

of this signal is lower compared to the TiC-CDCs due to the larger size of the micropores 

in CMK-3. Compared to the measurement of the signal intensity (Figure 87(B)), the huge 

advantage of the determination of the chemical shift is its inherently high accuracy. At 

the chosen measurement temperature of -36°C, the 129Xe NMR signal intensity 

measurements do not show a hysteresis loop. However, the very sensitive 129Xe NMR 

chemical shift clearly reflects the onset of a hysteresis at p/p0 ~0.4-0.7 (Figure 87(C,D)). 
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While the signal due to mesopores is located at different positions in the spectra of the 

adsorption and desorption measurements, the chemical shift of xenon adsorbed in the 

micropores remains constant independent of the relative pressure. 

 

 
Figure 88. 129Xe NMR EXSY spectrum for isothermal xenon adsorption on CMK-3 measured at -36°C and a 

xenon pressure of 10 bar with 0.5 s mixing time (A) as well as 129Xe NMR chemical shift for OM-CDC (spheres) 

measured at -36°C as a function of relative pressure (filled symbols: adsorption; empty symbols: desorption). 

The data of CMK-3 (triangles and squares) is shown for comparison. 

 

OM-CDC, which contains a significant amount of both micro- and mesopores, shows only 

one signal for adsorbed xenon (Figure 86(A)). The chemical shift of the signal is 

209 ppm, i.e. it is located in between the micropores (230-260 ppm) and mesopores 

(190 ppm) of CMK-3 at 11 bar and -36°C. The presence of two distinct signals for 

mesopores and micropores in CMK-3 shows that the exchange between the two pore 

systems must be slow at the NMR time scale. Accordingly, 2D exchange spectroscopy 

(EXSY) at a mixing time of 0.5 s is unable to detect any exchange between the different 

pore systems (Figure 88(A)). In contrast to CMK-3, the well-interconnected micro- and 

mesopores in OM-CDC obviously allow a fast exchange of adsorbed xenon between 

micro- and mesopores. As a result of this fast exchange, a signal at the averaged chemical 

shift is detected as already observed in the ion adsorption experiments (see section 

5.5.1). This averaged chemical shift is observed over the entire relative pressure range 

(Figure 88(B)). The chemical shift value at the highest relative pressure of 225 ± 3 ppm 

is located between micro- and mesopores which is in line with the assumption of rapid 

exchange between the pore systems in this hierarchical material. Moreover, the 

observed average signal exhibits a lower line width than the other samples under study. 
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This also indicates a high mobility of the xenon and a well-defined pore size and surface 

chemistry of this material. 

 

 
Figure 89. 129Xe NMR spectra of CMK-3 before and after n-nonane preadsorption measured at -36°C at a 

xenon pressure of 11 bar (p/p0 = 0.64) (A) and 129Xe NMR chemical shift for n-nonane loaded CMK-3 

measured at -36°C as a function of relative pressure (filled symbols: adsorption; empty symbols: desorption). 

 

In addition to xenon adsorption in the pristine materials, the effect of n-nonane 

preadsorption on the pore system of CMK-3 is studied. This treatment preferentially 

closes the micropores and makes them inaccessible for other molecules whereas the 

larger pores remain accessible.120 The 129Xe NMR spectrum of CMK-3 after loading with 

the hydrocarbon molecules (Figure 89(A)) proves the quantitative blocking of the 

micropores due to the disappearance of the signal caused by xenon adsorbed in these 

cavities at ~230 ppm. The signal of xenon adsorbed in the mesopores is located at 

higher chemical shift after n-nonane loading. This observation indicates that the 

mesopores are also modified by the hydrocarbon molecules. The pressure-dependence 

of the chemical shift (Figure 89(B)) shows that the hysteresis loop shifts towards 

slightly lower relative pressure compared to the nonane-free material. These 

observations indicate that the mesopores become smaller during n-nonane loading. 

Moreover, the maximum chemical shift value of the xenon adsorbed in the mesopores 

extrapolated to relative pressures of p/p0 = 1 is also slightly larger than before n-nonane 

loading indicating a stronger influence of xenon-wall interactions caused by the 

presence of n-nonane in the mesopores (Figure 89(B)). It is known for hierarchically 

structured materials (especially for those with an ordered mesopore structure), that n-

nonane molecules blocking the micropores in the neighborhood of mesopores can also 
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partly penetrate into the larger pores explaining the shift of the hysteresis loop towards 

lower relative pressure.232 

It can be summarized that in-situ high-pressure 129Xe NMR spectroscopy is a very useful 

method for the characterization of porous carbon materials. The chemical shift 

extrapolated to a relative pressure of p/p0 = 1 can be used for a precise estimation of the 

micropore diameter as shown by the isotherms recorded for the two purely 

microporous TiC-CDCs and the micropores in CMK-3. While xenon adsorbed in the 

micro- and mesopores of CMK-3 causes two different signals due to their spatial 

separation, only one averaged signal can be observed in the strongly hierarchical OM-

CDC as a result of the well-connected pore systems which allow fast exchange of 

adsorbed xenon. Finally, the changes in the spectra after the blocking of the micropores 

with n-nonane provide information about the adsorption state of the hydrocarbon 

molecules in the carbon structure leading to a better understanding of the connectivity 

of micro- and mesopores which is of interest for various applications. 

 

5.5.3 InfraSORP Studies 

A third example for the usefulness of CDCs and templated carbon materials as model 

substances is their characterization by the so-called InfraSORP technology (see sections 

3.2 and 5.2.2). This technique is an efficient tool for the rapid screening of materials 

properties, such as SSA, adsorption capacities, and adsorption kinetics. In the InfraSORP 

technology, an infrared sensor directly measures the temperature increase of the 

adsorbent caused by the released heat of adsorption in a dynamic flow cell when the 

inert gas (typically nitrogen) is switched to the adsorbing gas (e.g. n-butane at 1 bar). So 

far, studies using this technology mainly focused on microporous metal-organic 

frameworks or zeolites.203-205 However, the advanced pore structure of CDCs as well as 

templated carbide- and carbon materials makes them attractive candidates for the 

evaluation of the potential of this novel technology. Furthermore, their use as model 

substances in such measurements can lead to a better understanding of the fundamental 

principles of the thermal response method and finally also to a more detailed image of 

the structure of the materials. 

In this study, three different microporous CDCs as well as three templated carbide and 

carbon materials with mesopores are investigated. Microporous CDCs are obtained by 

chlorine treatment of TiC powder at 600 and 1000°C (see section 5.5.1) and by pyrolysis 
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with subsequent chlorine treatment of the allylhydridopolycarbosilane SMP-10 at 700°C 

(see section 5.2.2). With these synthesis procedures, CDCs with average micropore sizes 

ranging from 0.6 nm to 1.0 nm are obtained (Table 16). Besides OM-CDC and CMK-3 (see 

section 5.5.1), a purely mesoporous OM-SiC is used as templated material with well-

aligned mesopores. In contrast to the mesoporous carbon CMK-3, the carbide structure 

is completely free of micropores (Table 16). 

 

Table 16. Porosity data summary obtained from nitrogen physisorption measurements (-196°C) of the TiC-

CDCs prepared at different temperatures, the microporous (MP) SMP-10-CDC, OM-SiC, CMK-3, and OM-CDC 

used for the thermal response measurements. 

Sample 
SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

Average Pore 

Size(s) (nm) 

TiC-CDC-600°C 1412 0.6 0.54 0.6[d] 

TiC-CDC-1000°C 1652 0.74 0.59 0.8[e] 

MP SMP-10-CDC 2342 1.07 0.94 0.9-1.0 

OM-SiC 979 0.79 0.02 4.2 

CMK-3 1396 1.42 0.1 (0.9)/4.5 

OM-CDC 2838 2.05 0.55 1.0/4.1 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro-and mesopore volume calculated at p/p0 = 0.95. 

[c] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores (TiC-CDCs, MP-SMP-10-CDC, OM-CDC, and 

CMK-3) or with cylindrical pores (OM-SiC) at -196°C, adsorption branch kernel)  

[d] Apart from the main pore size, a shoulder in the PSD is observed at 1.2 nm. 

[e] Apart from the main pore size, two smaller local maxima in the PSD occur at 1.2 nm and 2.2 nm. 

 

 
Figure 90. Volumetric n-butane physisorption isotherms (5°C) of the microporous CDCs (A) and the 
templated mesoporous materials (B) used for the InfraSORP studies. 
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according to their pore size (Figure 90(A)). TiC-CDC-600°C shows the lowest n-butane 

uptake as a result of the lowest micropore volume. In contrast, SMP-10-based CDC 

shows much higher uptake as compared to the TiC-CDCs due to its considerably higher 

micropore volume and pore size. Because of the microporous character of the samples, 

the pores are fully saturated with adsorbate even at very low relative pressures. Hence, 

it can be concluded that under the conditions of the Infrasorp studies (n-butane at 1 bar 

as the test gas and 25°C as the equilibrium temperature corresponding to p/p0 ~0.4) 

complete pore filling will occur. In contrast, the templated samples are not completely 

filled with n-butane at p/p0 = 0.4 according to their mesoporous structure 

(Figure 90(B)). While it can be expected that micropores present in OM-CDC and CMK-3 

will be completely filled during the InfraSORP measurements, the mesopore walls will 

be covered by a mono- or multilayer of adsorbate molecules and a certain volume of 

empty pores will be present in equilibrium of n-butane adsorption. 

 

 
Figure 91. Thermal response measurements (horizontally shifted for better visibility) of n-butane adsorption 

(1 bar, 25°C) of the microporous CDCs (A) and the templated mesoporous materials (B). 
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When these samples are characterized with the InfraSORP technique, the temperature of 

the microporous CDC materials increases significantly during the first adsorption 

process due to the release of the high heat of adsorption of the gas molecules in these 

narrow pores (Figure 91(A)). In contrast, the increase of the temperature is less 

pronounced for the mesoporous samples CMK-3 and OM-SiC (Figure 91(B)). While CMK-

3 is comparable in SSA to the TiC-CDC-600°C and shows even higher uptake of the test 

gas at p/p0 = 0.4 under equilibrium conditions (Figure 90), less heat is released during 

n-butane adsorption in a mesopore as compared to the very narrow micropores in the 

TiC-CDC with their size close to the kinetic diameter of the gas molecules. In terms of the 

temperature maximum, an intermediate situation can be observed in OM-CDC because it 

consists of a combination of micro- and mesopores. 

The decrease in temperature during desorption (i.e. flushing with nitrogen) is also 

strongly influenced by the pore structure of the materials. Adsorption and desorption 

signals of the microporous CDCs are highly asymmetric as the value of temperature 

decrease during desorption is significantly below the increase in adsorption. The SMP-

10-CDC shows the largest decrease of temperature when n-butane is removed indicating 

that the desorption process is more rapid in the sample with the largest micropores. In 

contrast, n-butane removal from the TiC-CDC-600°C with the smallest micropores is 

rather slow. From a thermodynamic point of view, this difference is related to the 

stronger adsorption of the test gas in rather narrow pores (i.e. to the higher adsorption 

enthalpy). In terms of kinetics, the diffusion of the n-butane out of the pore system of 

TiC-CDC-600°C is expected to be slower compared to SMP-10-CDC with the larger pores 

although it can be expected from the n-butane physisorption isotherms that the pore 

volume of all the microporous samples is completely filled with test gas under the 

elevated conditions. In contrast to the microporous samples, the desorption signals of 

the mesoporous materials are rather symmetrical to the adsorption signals and the 

decrease in temperature is more distinct. In case of the purely mesoporous OM-SiC, the 

temperature change during desorption is even higher than during adsorption. The 

adsorption enthalpy of the test gas in large mesopores is much lower and hence, the 

desorption equilibrium is reached more rapidly. Moreover, the mesopores are not 

completely filled under the elevated conditions. Only mono- or multilayer formation 

takes place and capillary condensation can be ruled out. Hence, these samples still 

provide empty mesopores that ensure rapid diffusion of the test gas out of their interior. 
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For the hierarchical OM-CDC it can be concluded that desorption equilibrium is still 

reached slower compared to CMK-3 and OM-SiC due to the presence of high micropore 

volumes. However, at the same time, the decrease of the temperature is much higher as 

compared to the purely microporous samples despite the lower temperature increase 

during adsorption. This underlines the positive effect of the hierarchical micro- 

mesopore system on the adsorption properties of this material with a combination of 

high uptakes and rapid adsorption/desorption rates. 

 

 
Figure 92. Mass-related peak areas (A/m) of n-butane adsorption of the investigated samples after different 

desorption times in relation to the initial peak area ((A/m)0) in fully activated state. 

 

Continued adsorption/desorption cycling with increasing desorption times further 

shows the usefulness of the InfraSORP technique for the characterization of porous 

materials (Figure 92). After the adsorption procedure in the fully activated samples and 

60 s desorption by nitrogen purging, the microporous samples only achieve 35% (TiC-

CDC-600°C), 51% (TiC-CDC-1000°C), and 61% (SMP-10-CDC) of their initial peak area. 

With increasing desorption time, a larger fraction of the adsorbed n-butane is removed 

from the pore system of the carbons. 86% of the initial mass-related peak area is 

achieved by SMP-10-CDC after desorption time of 600 s. In contrast, only 60% of the 

initial A/m value are achieved in TiC-CDC-600°C due to its smaller pore diameter and 

hence slower desorption of the test gas during the nitrogen flow. An intermediate 

situation is observed in the TiC-CDC-1000°C as a result of its pore size centered at 

0.8 nm located between TiC-CDC-600°C and SMP-10-CDC. The results obtained with this 

measuring algorithm render the InfraSORP as a useful technique for the rapid 

estimation of the micropore size of porous materials. The determination of this 
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parameter normally requires long time because it is most often calculated with time-

consuming gas physisorption measurements at very low pressures and with long 

equilibration times. Furthermore, the continued adsorption/desorption cycling 

impressively demonstrates the advantage of the presence of mesopores with regard to 

achieve high adsorption/desorption rates. OM-CDC, OM-SiC, and CMK-3 achieve more 

than 95% of their initial peak area even after 180 s desorption time. This is in 

accordance to the differences in the desorption signals due to the weaker adsorption 

strength of the test gas into the mesopores and the presence of free pore volume in 

these samples ensuring sufficient diffusion pathways for the removal of n-butane. 

In summary, with the model systems presented here, critical issues of this novel method 

are evaluated and structural parameters of the materials can be estimated. However, it 

must be noticed that the use of different gases (e.g. carbon dioxide, sulfur hexafluoride, 

or iso-butane) would lead to even deeper understanding of the mechanisms of gas 

adsorption in porous materials. Measurements with other test gases at different relative 

pressures, different temperatures, with different adsorption enthalpies, polarities, and 

kinetic diameters will lead to further insights in the materials porous structure and the 

corresponding adsorption mechanisms. 

 

5.6 Kroll-Carbons (KCs) 

Porous carbon materials are crucial components in a wide range of applications. Their 

performance is most often a function of their structural properties, such as SSA, pore 

size, and pore geometry. Microporous carbons can be produced over a wide range of 

pore sizes by different approaches (e.g. activation, nanocasting of zeolites, or the 

extraction of metal- or semi-metal atoms from carbides).9 In contrast, well-defined 

mesoporous carbon materials are not produced on a large scale. On the one hand, this 

might be due to the fact that these materials are so far only used in niche applications 

like the filtration of blood for the removal of inflammatory mediators or in academic 

research. One area in which the mesoporous carbon materials seem to be very 

promising is the Li-S battery. However, the cost for the carbon materials hosting the 

active material is till very high and a major problem for the energy storage system. 

Another major reason for the rare implementation of these materials in industrially 

relevant processes is their extremely complex manufacturing. As long as well-defined 

and narrowly distributed pores are required, mesoporous carbon materials have to be 
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produced by very complex synthesis methods. The pioneering work of Ryoo and co-

workers established the highly ordered CMK-family using infiltration of ordered 

mesoporous SiO2 materials with carbon precursors and subsequent template removal 

by etching in hydrofluoric acid or sodium hydroxide solutions (see section 2.1).17 

However, the wet silica etching process has a low time-space yield and up-scaling is 

challenging from an economic and ecological point of view. An advantageous soft 

templating approach for the direct synthesis of mesoporous carbons was developed by 

Zhao and co-workers avoiding the use of a solid template and hazardous chemicals by 

using the evaporation induced self-assembly (EISA) method (see section 2.1).22 

Nevertheless, this procedure suffers from the use of large amounts of solvents and non-

ionic surfactants, which cannot be reused and are thermally decomposed into gaseous 

by-products. Furthermore, this method is limited in terms of precursors since mostly 

synthetic molecules or polymers are used. In contrast to such complex templating 

approaches, physical or chemical activation processes do not allow precise control over 

mesopore sizes and therefore a versatile, low-cost, and scalable process for the 

generation of mesoporous carbons is still not available. 

In this chapter, a new chemical method for the production of mesoporous carbon 

materials with precisely defined pores, high SSA, and high total pore volume is 

presented based on reactive carbochlorination etching of titania, silica, or alumina 

nanoparticles inside a dense carbon matrix. For the first time this chemical conversion, 

known as key-step of the Kroll-process,233 is applied to remove metal oxide templates in 

a solid-gas reaction. Accessibility limitations for occluded silica in liquid HF etching 

processes as present in conventional hard templating approaches are avoided using the 

highly reactive chlorine gas etching at high temperature. This leads to a scalable 

production scheme for mesoporous carbons.234, 235 

 

5.6.1 KCs from TiO2 Templates in Li-S Battery Cathodes 

Synthesis and Structure 

For the production of Kroll-Carbons from TiO2 templates, commercially available titania 

nanoparticles (Degussa P25, measured SSA: 50 m2/g) are mixed with sucrose as a 

natural, renewable, and inexpensive carbon precursor. The hydrocarbon undergoes an 

acid-catalyzed polymerization around the TiO2 nanoparticles and is subsequently 

thermally converted into a carbon network under inert conditions. After rapid heating 
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and short annealing at 900°C, the titanium dioxide template is removed by dosing 

chlorine gas to the TiO2/carbon composite material at 900°C according to Equation 26. 

                                  TiO2(s) + (2+x) C(s) + 2 Cl2(g) → TiCl4(g) + 2 CO(g) + x C(s)                             (26) 

The residual solid carbon represents the Kroll-Carbon (Figure 93). The generated TiCl4 

is removable by distillation and can be reused for the production of titanium dioxide 

nanoparticles by flame pyrolysis or for the production of titanium metal according to the 

Kroll-process. This new strategy uses the TiO2 nanoparticles as both hard- and sacrificial 

template. It is removed directly after the thermal conversion of the carbon precursor 

leading to precise control over the pore structure in the carbon material due to the 

definite replication of the template structure. 

 

 
Figure 93. Preparation of KCs and their use in Li-S battery cathodes. 

 

If flame-derived TiO2 nanoparticles (Degussa P25) are utilized as templates, remarkably 

high specific BET surface areas of 1989 m2/g are achieved as shown by nitrogen 

physisorption measurements (Figure 94(A) and Table 17). The resulting mesopores are 

uniform and highly accessible resulting in a type IV isotherm with a distinctive H1 

hysteresis loop. The overall pore volume is as high as 3.1 cm3/g (Table 17) due to the 

high volume of large mesopores. Hence, this new material is more suitable for the 
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infiltration of large amounts of sulfur as compared to previously described CMK-3,180 

spherical OMC nanoparticles,181 and porous hollow carbon spheres.182 

The QSDFT pore size distribution (Figure 94(B)) shows a multimodal distribution of 

pore diameters with maxima at 1, 4.2, and 18 nm. While the large pores originate from 

the titanium dioxide template particles, the smaller mesopores arise from empty spaces 

between the TiO2 nanoparticles due to incomplete filling of the template voids with 

precursor molecules during infiltration. Additionally, 0.3 cm3/g micropores of 1 nm in 

diameter are generated by the CO evolution in the Kroll reaction in analogy to physical 

activation procedures (Table 17). 

 

 
Figure 94. Nitrogen physisorption (-196°C) isotherms (A) and QSDFT (nitrogen on carbon with 

slit/cylindrical pores at -196°C, adsorption branch kernel) pore size distributions (B) of the KCs obtained 

from different templates. 

 

 
Figure 95. Thermogravimetrical analysis of the KCs from Degussa P25 templates under air atmosphere with 

a heating rate of 5 K/min (A) and wide-angle XRD patterns (B) of the sucrose/P25 composite, carbon/P25 

composite, and the resulting KCs. 

 

EDX analyses indicate a high purity of the KC material (more than 99.5 wt% of carbon) 

while titanium, oxygen, and chlorine are below the detection limit. Thermal analyses 

(Figure 95(A)) confirm this observation as the residual mass is below 1%. This indicates 

a complete conversion of the titanium dioxide template to volatile TiCl4 and CO species. 
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 KCs differ significantly in structure compared CDCs. At the temperature of 

chlorine treatment used for KC synthesis, TiC formation can be ruled out because the 

powder XRD measurements of a sample annealed without chlorine show no carbide 

reflections (Figure 95(B)). After the chlorination, the KCs only show the broad 

characteristic graphite (002) peak at moderate intensity indicating the absence of 

impurities as well as a certain degree of graphitization in the pore walls of KCs. 

 

Table 17. Porosity data summary of mesoporous Kroll-Carbons prepared from TiO2 template particles of 

different size. 

Template 

Template 

SSABET 

(m2/g)[a] 

KC  

SSABET 

(m2/g)[a] 

KC 

VMicro+Meso 

(cm3/g)[b] 

KC  

VMicro 

(cm3/g)[c] 

Degussa P25 50 1989 3.12 0.30 

Degussa P90 100 1979 2.89 0.28 

In-house made TiO2-NPs 152 1872 2.28 0.32 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro- and mesopore volume calculated at p/p0 = 0.99. 

[c] Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical pores at -196°C, adsorption branch kernel). 

 

 
Figure 96. SEM (A-C) and TEM (D and E) micrographs of KCs from Degussa P25 templates.  

 

SEM images of the KCs (Figure 96(A,B)) show the presence of a distinctive arrangement 

of mesopores with block-shaped geometry and a foam-type structure which is 
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responsible for the high internal pore volume of the carbons. The synthesis of this first 

generation of Kroll-Carbons produces micro-to millimeter-sized particles (Figure 96(C)). 

The carbochlorination process shows full macroscopic shape retention since no 

shrinkage of the particle size from the sucrose/TiO2 composite to the KC can be 

observed. The average sizes of the large mesopores in the TEM images (Figure 96(D)) 

are 15 to 25 nm and in good agreement with the nitrogen physisorption analysis. 

Moreover, the mesopore size is very close to the template dimensions (Appendix 10) 

and the presence of some edges and corners of TiO2 nanoparticles (Figure 96(D)) 

confirm the carbochlorination reaction as being highly conformal. TEM images at higher 

magnifications (Figure 96(E)) show the carbon microstructure of the KCs as an 

arrangement of mostly disordered sp2 carbon fringes with low degree of graphitization. 

 Since the performance of porous carbons as key-component in various 

applications such as lithium-sulfur batteries, electrochemical capacitors, and adsorption 

strongly depends on the pore size, it is crucial for any synthetic route to allow control 

over the pore diameter as precise as possible. In addition to Degussa P25, KC synthesis 

can be carried out with a series of template particles with higher specific surface areas 

corresponding to smaller particle size (Degussa P90, measured SSA: 100 m2/g and “in-

house made” TiO2 particles prepared by flame spray pyrolysis, measured SSA: 

152 m2/g). Nitrogen physisorption isotherms clearly show a decreasing diameter of the 

larger mesopores for the carbons prepared from smaller oxide particles as the 

hysteresis loops shift towards lower relative pressures (Figure 94(A)). At the same time, 

the specific surface areas remain at the same level (Table 17). The corresponding QSDFT 

pore size distributions (Figure 94(B)) confirm the decreasing diameter of the large 

mesopores from 18 nm (Degussa P25), to 11 nm (Degussa P90), and 8.5 nm (in-house 

made TiO2 particles) respectively. This analysis illustrates that the novel synthesis route 

allows precise control over the mesopore sizes of KCs. The corresponding total pore 

volumes decrease due to the smaller pore diameters while the micropore sizes and 

micropore volumes stay at the same level (Figure 94(B) and Table 17). Furthermore, it 

is noteworthy that the volume of the smaller mesopores in carbons prepared from the 

smaller in-house particles is significantly lower as compared to the Degussa products. 

This might be related to a rather complete filling of the narrower inter-particular spaces 

with sucrose molecules and is also an explanation for the slightly lower SSA of this 

sample. 
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KCs from Degussa P25 Templates in Li-S Battery Cathodes 

Since Kroll-Carbons from Degussa P25 templates stand out by very high mesopore 

volume and are electrically conductive, they were infiltrated with different amounts of 

sulfur by melt infiltration (Table 18) and the resulting composite structures were 

characterized as Li-S battery cathodes. In the following, the cathodes are denoted as 

KC/S-53, KC/S-60, KC/S-64 and KC/S-72 according to their sulfur content in wt.% 

(Table 18). SEM images illustrate the typical morphology of the as-prepared cathodes 

before electrochemical cycling (Figure 97(A,B)). The cathode surface is smooth but 

reveals a widely open and highly accessible inter-particular porosity throughout the 83-

95 µm thick active material layer. The irregularly-shaped KC/S composite particles of up 

to 20 µm in size reduce the cathode compressibility (density) and lead to a loosely 

packed active layer with interconnected cavities. 

 

 
Figure 97. SEM micrographs (A and B) of the KC/S-64 cathode as well as thermogravimetrical analyses (C) 

of the KC/S composites with different compositions and wide-angle XRD patterns (D) of the KC/S cathodes 

with different compositions, the PTFE binder, and pristine sulfur. 

 

The KC/S weight ratios determined by TGA (Figure 97(C)) are in good accordance with 

the expected values of 33:67 (1:2 composite), 25:75 (1:3 composite), and 20:80 (1:4 
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composite) because the melt infiltration strategy allows precise control over the KC/S 

composite composition. The powder XRD patterns of the KC/S composite cathodes with 

different sulfur contents, pristine sulfur, and partially crystalline 

poly(tetrafluorethylene) (PTFE) binder (Figure 97(D)) show the intense PTFE peak for 

all cathodes but the reflections corresponding to bulk α-sulfur completely disappear 

even at high loadings of 72 wt.% because sulfur is completely melt-infiltrated and well 

dispersed inside the KC framework. KCs effectively suppress the crystal growth of sulfur 

particles due to their high amount of mesopores available for active material storage. 

 

Table 18. Compositions and textural properties of the KC/S cathodes with different sulfur contents. 

Cathode 

KC:S 

composition 

(weight ratio) 

KC/S:MWCNT:PTFE  

composition 

(weight ratio) 

Active layer 

thickness 

(µm) 

S surface 

loading 

(mg/cm2) 

KC/S-53 1:2 8:1:1 95 2.83 

KC/S-60 1:3 8:1:1 85 3.32 

KC/S-64 1:4 8:1:1 89 4.55 

KC/S-72 1:4 18:1:1 83 4.92 

 

The cycling stabilities of KC/S composite cathodes with variable sulfur content are 

characterized by galvanostatic cycling (Figure 98) at a constant rate of 167 mA/g (0.1 C). 

High initial discharge capacities of 1089 mAh/gSulfur (KC/S-53), 1115 mAh/gSulfur (KC/S-

60), 1046 mAh/gSulfur (KC/S-64), and 1038 mAh/gSulfur (KC/S-72) are determined for all 

cathodes. After a distinct capacity decay of maximal 18% within the first 10 

discharge/charge cycles, the KC/S composites exhibit an excellent cycling stability with 

highly consistent capacities of 806 mAh/gSulfur (KC/S-53), 820 mAh/gSulfur (KC/S-60), 

817 mAh/gSulfur (KC/S-64), and 736 mAh/gSulfur (KC/S-72) after 80 cycles. For all 

composites, more than 70% of the initial discharge capacity can be reversibly utilized 

even at very high sulfur loading of 72 wt.% and at a low rate of 0.1 C although this is a 

combination which is known to cause extensive active material loss by lithium 

polysulfide shuttling and rupturing of the electrically conductive carbon backbone.220 

 The KC/S-72 cathode is most suitable for the application in actual energy storage 

systems since the initial discharge capacity of 747 mAh/g per cathode mass (including 

binder and conductive additive) is much higher compared to cathodes with lower sulfur 

content making the high capacity cathode both the more practical and cheaper choice 
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since less host material is needed. Only a slight decrease in the cell discharge voltage is 

observed when the cathode is loaded with such a high amount of sulfur (Figure 98(C)). 

This indicates that sufficient amounts of Li+ ions and electrons can diffuse to all reaction 

sites facilitating the electrochemical conversion of sulfur at the large C/S interface area 

within Kroll-Carbon (Figure 98(D)).  

 

 
Figure 98. Cycling stabilities (measured at 0.1 C) along with coulombic efficiencies (A and B), 

discharge/charge voltage profiles (measured at 0.1 C) of the 10th cycles (C) of the KC/S cathodes with 

different compositions, and C-rate performance (D) of the KC/S-72 cathode (filled symbols represent the 

capacity related to sulfur, empty symbols represent the capacity related to the overall cathode). 

 

Due to the high total pore volume of the KCs, high sulfur loadings are possible and high 

capacities related to the mass of the overall cathode can be achieved. Hence, this novel 

class of mesoporous carbons outperforms many mesoporous materials with promising 

properties as Li-S cathode material produced by classical soft- or hard-templating 

approaches. For instance, the performance of KCs is significantly beyond the well-known 

ordered mesoporous CMK-3 which was identified as promising sulfur host material by 

Nazar and co-workers.180 Li-S cells based on the latter show significantly lower 

capacitance as compared to the KC/S-72 cathode at even lower sulfur loadings. 

Especially when the capacity related to the mass of the whole cathode is considered, the 
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performance of Kroll-Carbon-based electrodes significantly exceeds that of CMK-3.235 

This can be explained by the significantly higher pore volume and specific surface area 

of the KC and therefore a rather complete utilization of encapsulated sulfur due to the 

large C/S interface and sufficient hollow space for electrolyte penetration and volume 

expansion. Even though various mesoporous carbon materials show excellent 

performance as cathode materials in Li–S cells, all of them are derived by classical 

templating approaches and are hence difficult to produce on a larger scale. The Kroll-

process, and especially the reductive carbochlorination, is a valuable new process for 

upscaling the synthesis of mesoporous carbons with well-defined pore size. Even though 

chlorination at high temperatures is a dangerous and toxic process, the low price of 

chlorine and the possibility to reuse the by-product TiCl4 are highly attractive. 

 In summary, the Kroll-type reaction scheme using flame derived TiO2 

nanoparticles as templates results in carbons with high specific surface area and pore 

volumes up to 1980 m2/g and 3.1 cm3/g, respectively. The synthesis process is highly 

versatile and allows for tailoring the pore morphology and diameter in a wide range. 

The novel materials prepared from a commercially available template material (Degussa 

P25) show outstanding performance as sulfur host material in high capacity cathodes 

for lithium-sulfur batteries. Extremely high sulfur contents up to 72 wt.% cause initial 

discharge capacities as high as 747 mAh/gCathode and stable cycling with reversible 

capacities of more than 550 mAh/gCathode. 

 

5.6.2 KCs from SiO2 and Al2O3 Templates as Electrode Material in EDLCs 

Synthesis and Structure  

The reductive carbochlorination reaction for the synthesis of porous KCs can also be 

applied to composites of carbon and Al2O3 or carbon and SiO2. Silica and alumina 

nanoparticulate templates are useful alternatives to titania-based particles as they are 

available in different textures and, sizes. Hence, KCs with different properties can be 

produced. As TiCl4 in case of TiO2 templates (see section 5.6.1), SiCl4 and AlCl3 can be 

produced as useful by-products according to Equation 27 and Equation 28, if silica and 

alumina templates are utilized as the templates, respectively. 

                                    SiO2(s) + (2+x) C(s) + 2 Cl2(g) → SiCl4(g) + 2 CO(g) + x C(s)                            (27) 

                                Al2O3(s) + (3+x) C(s) + 3 Cl2(g) → 2 AlCl3(g) + 3 CO(g) + x C(s)                         (28) 
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In this first study, commercially available silica (Aerosil 380 with SSA = 380 ± 30 m2/g 

and Aerosil 90 with SSA = 90 ± 15 m2/g) and alumina (Aeroxide Alu 130 with SSA = 130 

± 20 m2/g) nanoparticles (purchased from Degussa-Evonik) were utilized as templates. 

After the infiltration of sucrose and carbonization, reductive carbochlorination of the 

oxide/carbon composites at 900°C leads to quantitative removal of the template 

particles and to the formation of KCs with high purity. The carbon content of the 

samples measured determined by EDX is about 99 atom% and potential impurities of 

silicon, aluminum, oxygen, and chlorine are below the detection limit. For the SiO2 

templates, the complete absence of oxidic residuals is surprising as the reductive 

carbochlorination at a temperature as low as 900°C is expected to be too slow to lead to 

sufficient conversion rates. In case of the nanocomposites for the preparation of KCs, the 

contact area between oxide and carbon is very large and therefore the composite is 

more reactive as compared to the bulk starting materials. 

 

 
Figure 99. TEM micrographs of KCs from Alu 130 (A), Aerosil 380 (B), and Aerosil 90 (C) templates. 

 

Due to the complete template removal, KCs offer a highly open mesopore structure as 

shown by TEM measurements (Figure 99). The mesopore sizes increase from values 

below 30 nm in the KCs derived from Alu 130 and Aerosil 380 templates to diameters 

above 40 nm for the KCs obtained from Aerosil 90 particles. Hence, the template 

removal by the reductive carbochlorination reaction is highly conformal and allows 

precise control over the pore sizes of the resulting KCs. 

TEM micrographs at higher magnifications show that the carbon microstructure of these 

KCs consists of an arrangement of mostly disordered sp2 carbon fringes with low degree 

of graphitization in analogy to the KCs based on TiO2 templates (see section 5.6.1) due to 

the equal synthesis temperature (Figure 100(A)). In accordance with the electron 

microscopic investigations, Raman spectra (Figure 100(B)) indicate a highly defective 
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carbon structure with a characteristic D-band at ~1350 cm-1. The shoulder D2-band 

present in all samples and the absence of sharp peaks in the range from 2400-3000 cm-1 

further indicates a low graphitization in the KCs obtained at the elevated temperature of 

900°C. The overall carbon ordering of these carbon materials is close to CDC materials 

obtained in the same temperature range (see sections 5.1.1 and 5.4). It can therefore be 

expected that Kroll-Carbons provide sufficient electrical conductivity for the use in 

electrochemical energy storage devices. Among the different templates, the KCs based 

on Alu 130 particles show a slightly higher amount of graphitic ribbon structures due to 

its higher ID/IG ratio (Table 19) as well as FWHM of the D-band (135 cm-1) as compared 

to the materials based on Aerosil 380 (136 cm-1) and Aerosil 90 (141 cm-1).  

 

 
Figure 100. TEM micrograph of KCs from Alu 130 (A) and Raman spectra (B) of KCs from Alu 130 (blue), 

Aerosil 380 (red), and Aerosil 90 (black) templates. 

 

Table 19. Porosity, Raman, and EDX data summary of Kroll-Carbons prepared from Alu 130, Aerosil 380, and 

Aerosil 90 templates. 

Template 
SSABET 

(m2/g)[a] 

VMicro+Meso 

(cm3/g)[b] 

VMicro 

(cm3/g)[c] 

Carbon 

(wt.%)[d] 
ID/IG 

Alu 130 1867 1.92 0.39 99.1 1.54 

Aerosil 380 1710 3.24 0.32 98.9 1.40 

Aerosil 90 1524 3.25 0.31 99.4 1.24 

[a] Specific surface area calculated using the BET equation (p/p0 = 0.05-0.2). 

[b] Micro- and mesopore volume calculated at p/p0 = 0.99. 

[c]  Micropore volume calculated from the cumulative pore volume up to a diameter of 2 nm (QSDFT 

method for nitrogen on carbon with slit/cylindrical/spherical pores at -196°C, adsorption branch 

kernel). 

[d]  Calculated from EDX data. 
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KCs obtained by using the different SiO2 and Al2O3 particles exhibit high SSAs of up to 

1867 m2/g and total pore volumes exceeding 3 cm3/g (Figure 101(A) and Table 19). 

Because the isotherms of the carbons prepared from the silica templates do not reach 

saturation at p/p0 = 0.99, these values must be regarded as minimum total pore volumes 

and the actual values are expected to be even higher. The distinct uptake of nitrogen at 

low relative pressures (p/p0 < 0.1) is associated with the filling of narrow micropores 

which are likely generated by the CO evolution during carbochlorination as described 

for the titania-templated KCs (see section 5.6.1). The highest micropore volume and SSA 

of the alumina-based material are a result of the higher molar ratio of carbon etching 

and therefore the preferred formation of micropores. QSDFT pore size distributions 

show the presence of 1 nm-sized pores and small volumes of narrow mesopores of 2-

6 nm depending on the template (Figure 101(B)). The latter might be a result of the 

presence of empty spaces between the template nanoparticles which are not entirely 

filled with the carbon precursor during infiltration (see section 5.6.1). The micropores 

are ideally sized for the use of the KCs in EDLCs as they are large enough for fast and 

effective electrosorption of ions and small enough to serve for high surface area 

available for double-layer formation. 

 

 
Figure 101. Nitrogen physisorption (-196°C) isotherms (A) and QSDFT (nitrogen on carbon with 

slit/cylindrical pores at -196°C, adsorption branch kernel)  pore size distributions (B and C) of the KCs 

obtained from Alu 130 (blue), Aerosil 380 (red), and Aerosil 90 (black) templates. PSDs in (B) are vertical 

offset. 
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All KCs show a very distinct and narrow hysteresis loop at high relative pressures 

(p/p0 > 0.7). This indicates the presence of high volumes of uniformly sized mesopores 

for all templates. According to the oxides` particle sizes, the largest mesopores are 

formed in the KCs obtained from Aerosil 90 as the pore condensation occurs at the 

highest relative pressure. Aerosil 380 and Alu 130 templates result in smaller pore 

diameters. No blocking or cavitation effects are observed due to the high accessibility of 

the KC pore system. QSDFT-PSDs in the large mesopore region (Figure 101(C)) show the 

template-induced mesopores centered at 18 and 23 nm for the Alu 130 and Aerosil 380 

templates, respectively. The majority of mesopores present in KCs obtained from Aerosil 

90 are too large to be analyzed by the QSDFT model. The distinct mesopore systems of 

the Kroll-Carbons ensure a high accessibility of the surface area throughout the entire 

particle. The additional micropores are mainly responsible for the high specific surface 

area which is not achievable by classical hard-templating approaches based on oxidic 

hard templates of comparable size.177 

 

 
Figure 102. SEM micrographs of KCs from Aerosil 380 (A and B), Aerosil 90 (C and D), and Alu 130 (E and F) 

templates. 

 

SEM micrographs of the silica-based KCs (Figure 102) show the additional presence of 

macropores already present in the templates which are not infiltrated with the 

precursor. They are responsible for the additional uptake of nitrogen at high relative 

pressures and can serve as ion transport pathways and allow rapid access of the entire 

particle. As already indicated by the saturation of the nitrogen physisorption isotherm 

(Figure 101(A)), such pores are not present in the alumina-based KCs due to a rather 
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dense particle structure and the absence of large meso- or macropores. In the KCs 

derived from Aerosil 90 particles, the large pores can be clearly observed and their size 

of 40-70 nm is significantly higher as for the Aerosil 380-based sample in accordance 

with the nitrogen physisorption experiments. This further proves the precise control 

over the pore sizes provided by the reductive carbochlorination reaction. 

 

Kroll-Carbons as Electrode Materials in EDLCs  

The KCs derived from Alu 130 and Aerosil 90 template particles (corresponding to the 

smallest and largest measures) are characterized as electrode materials in EDLCS based 

on aqueous (1 M H2SO4) and ionic liquid (EMIBF4) electrolytes (Table 20). 

 

 
Figure 103. Cyclic voltammograms at different scan rates of the KCs from Alu 130 (A) and Aerosil 90 (B) as 

well as specific capacities at different scan rates (C), specific capacities obtained from galvanostatic charge-

discharge tests (D), and frequency responses (E) with Nyquist plots (inset in (E)) in aqueous 1 M H2SO4 

electrolyte. 

 

The CV curves of the KCs in 1 M aqueous H2SO4 are rectangular within the applied 

potential range (Figure 103(A,B)). This is indicating the absence of a large number of 

surface functional groups and the high purity of the materials. Specific capacitances as 

high as 135 F/g are obtained at a scan rate of 1 mV/s for the alumina-templated KCs. 

Due to their lower SSA, the KCs from silica templates show a 26% lower value. While 

these are high values, materials with higher micropore volumes but comparable SSA 

exhibit higher specific capacities in the same electrolyte system (see section 5.1.2). This 
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difference is likely related to the lower adsorption potential of the ions in mesopores as 

compared to the rather narrow micropores. This also explains the moderate capacitance 

per surface area of the KCs (Table 20) in this electrolyte system. 7.2 and 6.6 μF/cm2 are 

provided by the KCs obtained from Alu 130 and Aerosil 90 templates, respectively. The 

nearly rectangular shape of the CV curves at high sweep rates indicates very rapid ion 

diffusion in the materials due to their distinctive mesopore system. Specific capacities 

up to 90 F/g can be utilized at a scan rate as high as 500 mV/s (Figure 103(C)). These 

values significantly exceed the capacities of purely microporous carbon materials with 

curved pores that usually exhibit significant capacitance fading at higher scan rates. 

 The values determined by CV measurements are in good accordance with 

galvanostatic charge-discharge experiments (Figure 103(D)) showing specific 

capacitances (at a current rate of 0.1 A/g) up to 134 F/g and 101 F/g for KCs obtained 

from Alu 130 and Aerosil 90, respectively. Charge-discharge measurements are most 

accurate to determine the performance of EDLCs in real applications as an ideal EDLC 

must deliver the same energy independent of the current density applied. KCs provide 

impressive high power characteristics with up to 88% of the initial capacitance retained 

at high current densities of 20 A/g. Such high capacitance retentions are not achievable 

with most commercial activated carbons. These materials, while showing comparable 

SSA usually retain only 50% of their initial capacitance at high current densities in the 

same electrolyte system.157  

Nyquist plots (Figure 103(E)) of the KCs show a nearly vertical line at low frequencies, 

where the contribution becomes almost exclusively capacitive. The EIS measurements 

allow for estimation of the capacitance changes with the operating frequency 

(Figure 103(E)). At low frequencies, the capacitance shows saturation in both materials 

indicating that they reach the equilibrium in ion adsorption. The maximum operating 

frequency (fmax) is set by the frequency at which the capacitance decreases by not more 

than 50%. The Aerosil 90-based KCs can operate at higher frequency (> 1 Hz) compared 

to the Alu 130-based KCs (> 0.2 Hz) due to its larger mesopores leading to enhanced ion 

diffusion. The fmax of the silica-based sample is comparable to previously reported 

hierarchical materials and significantly surpassing the performance of activated carbons 

in the same electrolyte system. 

The equivalent series resistance (ESR) is a very important characteristic of an EDLC 

device including the electrical resistance of the electrodes and the current collector 
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interfaces as well as the portion of the ionic resistance related to the ion transport 

outside the carbon pore channels. It can be determined at very high frequencies when 

the imaginary component of the complex impedance becomes zero (intersection of the 

Nyquist plot with the x-axis). The microstructure of Aerosil 90-derived KC architecture 

allows smaller equivalent series resistance to be attained, likely originating from the 

smaller current collector/electrode contact resistance (Figure 103(E)). 

 

Table 20. EDLC data summary of the KCs determined from the CV measurements at a scan rate of 1 mV/s. 

Template/ 

Electrolyte 

Capacitance per 

KC weight (F/g) 

Capacitance per 

electrode 

volume (F/cm3) 

Capacitance per 

KC SSA 

(μF/cm2) 

Alu 130/1 M H2SO4 135 31.1 7.2 

 Aerosil 90/1 M H2SO4 100 21.1 6.6 

Alu 130/EMIBF4 141 31.1 7.6 

Aerosil 90/EMIBF4 124 26.5 8.1 

 

 
Figure 104. Cyclic voltammograms at different scan rates of the KCs from Alu 130 (A) as well as Cycling 

stabilities during galvanostatic charge/discharge cycling in the potential range -2.0-2.0 V (B), specific 

capacities at different scan rates (C), specific capacities obtained from galvanostatic charge-discharge tests 

at 20 and 70°C (D), and frequency responses (E) with Nyquist plots (inset in (E)) of the KCs from Alu 130 

(blue) and Aerosil 90 (black) in EMIBF4 IL electrolyte. 
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The CV curves of the KC-based electrodes in the IL electrolyte show some 

pseudocapacitive contributions at ~1.7 V in the symmetrical EDLC (Figure 104(A)). 

These peaks can either result from impurities in the EMIBF4 or from reactions of the IL 

with functional groups on the carbon surface. However, these faradic processes do not 

negatively affect the cycle stability of the EDLC showing complete retention of the initial 

capacitance after 10000 galvanostatic charge/discharge cycles in the potential range 

from -2.0-2.0 V (Figure 104(B)). High specific capacitance values of 141 F/g (7.6 μF/cm2 

when related to the carbon surface area) for KCs prepared from Alu 130 and 124 F/g 

(8.1 μF/cm2) for KCs prepared from Aerosil 90 templates are determined from the CV 

measurements at low scan rates ((Figure 104(C) and Table 20). When the rate is 

increased up to 100 or even 500 mV/s, high specific capacitances can be retained and 

the CV curves exhibit a nearly rectangular shape as it is typical for pure EDLCs with low 

electrolyte diffusion limitations. At scan rates of 50 mV/s and higher, redox reactions are 

too slow to contribute to the capacitance leading to the disappearance of the redox 

peaks. 

C-D measurements (Figure 104(D)) at 20°C and a current density of 0.1 A/g in the 

potential range -2.0-2.0 V confirm the values calculated from CV investigations. High 

specific capacitances of 135 and 121 F/g are determined for the KCs from Alu 130 and 

Aerosil 90 templates, respectively. As for the 1 M H2SO4 electrolyte, remarkable 

capacitance retentions of 75% are determined at high current densities of 20 A/g. The 

relative capacitance retentions of KCs significantly surpass those observed for high 

performance polypyrrole-derived activated carbons, and other tuned mesoporous 

materials.236 C-D measurements of the KC-based EDLCs at a high temperature of 70°C 

(Figure 104(D)) show a ~10% increase of the specific capacitance over the entire 

current density range due to the reduction of the viscosity of the electrolyte and an 

increase of its ionic conductivity at higher temperatures. Compared to activated carbons 

with a 20% increase of the capacitance at 60°C, the enhancement of the KC performance 

is moderate due to their enhanced electron transport performance even at room 

temperature. In contrast to the aqueous electrolyte system, EIS measurements of the KC-

based EDLCs in EMIBF4 electrolyte show the presence of the typical 45° segment due to 

the resistance of ions during diffusion into the bulk of electrode particles 

(Figure 104(E)). The ESRs of the KCs are relatively equal due to their high purity and 

similar surface chemistry. Regarding the values of fmax, both of the KCs show promising 
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behavior in the IL electrolyte system (Figure 104(E)). They can operate at frequencies as 

high as 0.15 Hz (KC from Alu 130) and 0.1 Hz (KC from Aerosil 90) being comparable 

with the high values of OM-SiC-CDCs and significantly exceeding those of many activated 

carbons, even in cases where small mesopores are present.157, 236 

 

Table 20. EDLC data summary of the KCs determined from the CV measurements at a scan rate of 1 mV/s. 

Template/ 

Electrolyte 

Capacitance per 

KC weight (F/g) 

Capacitance per 

electrode 

volume (F/cm3) 

Capacitance per 

KC SSA 

(μF/cm2) 

Alu 130/1 M H2SO4 135 31.1 7.2 

 Aerosil 90/1 M H2SO4 100 21.1 6.6 

Alu 130/EMIBF4 141 31.1 7.6 

Aerosil 90/EMIBF4 124 26.5 8.1 

 

If the CV voltage range is extended to -2.5 V-2.5 V for the Alu 130-templated hierarchical 

KC, the specific capacitance reaches even higher values of 174 F/g (at 1 mV/s) because 

the observed surface reactions now fully contribute to the capacitance values 

(Figure 105). However, at higher scan rates the CV still becomes rectangular indicating a 

reasonable stability. In spite of redox contributions present, it is known that the EMIBF4 

ionic liquid can operate in a wide voltage window leading to high energy density. 

 

 
Figure 105. Cyclic voltammograms at different scan rates of the KCs from Alu 130 in the potential range        

-2.5-2.5 V (A) and specific capacities at different scan rates (B). 
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6. Summary and Outlook 

Numerous methods for the targeted synthesis of carbon materials with tailored pore 

systems and for the production of structures with well-defined hierarchical pore 

architectures were developed within this thesis (Figure 106). 

PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 

8.5 cm3/g were prepared by a high internal phase emulsion technique. Especially after 

CO2 activation, which increases the SSA to values above 3100 m2/g, these materials are 

highly promising for the filtration of non-polar organic compounds from gas mixtures. 

Perfectly shaped CDC nanospheres with diameters below 200 nm were obtained from 

miniemulsions. Their pore structure is highly dependent on the emulsion composition 

and their high capacitance in aqueous symmetrical EDLCs (up to 175 F/g) makes them 

promising candidates for electrochemical flow capacitors. 

The nanocasting concept was presented as an efficient approach for the synthesis of CDC 

mesofoam powders and meso-macroporous CDC monoliths. These materials are highly 

versatile in terms of application. Due to their high nanopore volume, well-defined 

mesopores and large SSA, they show outstanding properties as electrode material in 

EDLCs or in Li-S batteries as well as high and rapid uptake in gas adsorption processes. 

 CDC aerogels were produced by pyrolysis and high-temperature chlorine 

treatment of cross-linked polycarbosilane aerogels. These materials can be tailored for 

efficient CO2 adsorption and show outstanding performance in EDLC electrodes at high 

current densities of up to 100 A/g due to the very short electron diffusion pathways 

within the aerogel-type pore system. 

It was further shown that CDCs can be combined with mesopores by the sacrificial 

template method starting from PMMA particles as the pore-forming material. The use of 

highly toxic hydrofluoric acid and large amounts of organic solvents as typical for hard- 

and soft-templating approaches can be overcome. SSAs and total pore volumes of 

2434 m2/g and 2.64 cm3/g are achieved. The PMMA-CDCs show high performance in Li-

S battery cathodes, especially in high-molarity electrolytes. 

The reported CDC synthesis pathways are very attractive with regard to the finally 

obtained products and exhibit serious advantages compared to previously reported 

methods for the production of hierarchical carbon materials and CDCs. As both the 

micropore size and the diameter of the larger pores can be precisely controlled, it is 

highly attractive to further tailor their pore structure for the use in the adsorption of 
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proteins or catalytic conversions which often make use of carbon-supported catalysts. 

However, it must be concluded that  all the discussed materials and synthesis methods 

are all still beyond the approaches for activated carbon production in terms of economic 

and ecological efficiency. Therefore, it can be expected that CDC will likely remain a 

niche product as long as mass-production of devices is considered. 

However, their use as model substances in energy- and environmentally relevant 

applications might be equally important. The questions “How does it work?” and “What 

do we need?” must be clearly answered before any material can be tailored for a specific 

application under the consideration of economic and ecological perspectives. The high 

potential of CDCs and templated carbon materials for this purpose was shown in this 

thesis. These carbons were used as model substances in combination with NMR 

techniques for a better understanding of the fundamentals of adsorption processes on 

porous carbon surfaces. However, such investigations strongly require the use of model 

substances with a tailored and well-defined pore structure to clearly differentiate 

physical states of adsorbed species by the spectroscopic method and hence to 

understand fundamental mechanisms. The characterization of the interaction of 

electrolyte molecules with the carbon surface was performed with solid-state NMR 

experiments. The materials were also studied in the high-pressure adsorption of 129Xe 

using an in-situ NMR technique. Both NMR studies enable the analysis of ions or gas 

atoms adsorbed on the carbon surface on an atomic level and experimentally 

demonstrate different strength of interaction with pores of variable size and 

connectivity. In addition, the novel InfraSORP technology was used for the investigation 

of the thermal response of CDCs and templated carbon and carbide materials during n-

butane adsorption. These well-defined model systems lead to a more profound 

understanding of this technique for the very rapid characterization of porous materials. 

Experiments like these are further expandable with CDCs as the model substances to 

different other topics under discussion, such as the mechanism of the polysulfide shuttle 

in Li-S batteries or the mechanism of water adsorption on porous carbon surfaces. 

In contrast to hierarchical CDCs, which are obtained by quite complex templating 

approaches, and which are therefore not suitable for mass-production, the Kroll-Carbon 

concept is a highly attractive alternative for the synthesis of well-defined carbons on the 

large scale. Within this thesis, first materials were produced with high SSA close to 

2000 m2/g and total pore volumes exceeding 3 cm3/g. The versatility of this method was 
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shown with regard to different template particle dimensions as well as by using various 

types of oxides (silica, alumina, titania) which are all usable for the reductive 

carbochlorination mechanism. Hence, porous carbon materials with various textural 

parameters are approachable. The first generation of KCs shows attractive properties 

for the use in Li-S battery cathodes and as electrode materials in EDLCs. Their use in 

other fields where mesoporous carbon materials are required, such as the adsorption of 

cytokines from blood plasma, is promising. Novel KC structures with even ordered 

mesopore systems can be generated if ordered mesoporous oxides are utilized as the 

template and if the reductive carbochlorination is used for the treatment of ordered 

mesoporous carbon/metal oxide composites obtained by soft-templating. Furthermore, 

composites with atomically dispersed metal oxide domains within a carbon structure 

are attractive precursor systems as they would lead to microporous KCs with even 

higher SSAs and micropore volumes and will therefore expand their fields of potential 

applications. 

 

 
Figure 106. Carbon materials with different textural parameters and synthesized by various techniques 

discussed within this thesis (*: reference material not developed within this thesis; 1: material obtained by 

soft-templating; 2: material obtained by hard-templating; 3: material obtained by high-temperature chlorine 

treatment; 4: material obtained by sol-gel technique; 5:material obtained by sacrificial templating; 6:material 

obtained by reductive carbochlorination). 
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8. Appendix 

8.1 List of Abbreviations 

AC  Activated Carbon 

BET Brunauer-Emmett-Teller 

C-D Charge-Discharge 

CDC Carbide-Derived Carbon 

CMC Critical Micelle Concentration 

CMK Carbon Mesostructured by KAIST 

CV Cyclic Voltammetry 

EDLC Electrochemical Double-Layer Capacitor 

EFC Electrochemical Flow Capacitor 

EIS Electrochemical Impedance Spectroscopy 

ESR Equivalent Series Resistance 

FT Fourier Transform 

FWHM Full-Width at Half Maximum 

HIPE High Internal Phase Emulsion 

IL Ionic Liquid 

IR Infrared 

IUPAC International Union of Pure and Applied Chemistry 

KIT Korean Institute of Science and Technology 

LIB Lithium-Ion Battery 

MAS Magic Angle Spinning 

MCF Mesocellular SiO2 Foam 

n. s. not specified 

NLDFT Non-Local Density Functional Theory 

NMR Nuclear Magnetic Resonance 

NPs Nanoparticles 

OM Ordered Mesoporous 

OMC Ordered Mesoporous Carbon 

OMS Ordered Mesoporous Silica 

p/p0 Relative Pressure 

p-DVB para-Divinylbenzene 

PCS Polycarbosilane 
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PDI Polydispersity Index 

PSD Pore Size Distribution 

QSDFT Quenched Solid Density Functional Theory 

RT Room Temperature 

SBA Santa Barbara Amorphous 

SDA Structure-Directing Agent 

SEM Scanning Electron Microscopy 

SSA Specific Surface Area 

TEM Transmission Electron Microscopy 

VMicro Micropore Volume 

VMicro+Meso Micro- and mesopore Volume 

XRD X-ray Diffraction 

 

8.2 Supplementary Data 

 

 
Appendix 1. Nitrogen physisorption (-196°C) isotherm (A), small-angle XRD pattern (B) as well as TEM (C 

and D) micrographs of the mesocellular SiO2 template used for the synthesis of CDC-MFs. 
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Appendix 2. Nitrogen physisorption (-196°C) isotherm (A) and corresponding QSDFT (nitrogen on carbon 

with slit/cylindrical pores at -196°C, adsorption branch kernel) pore size distributions (B) of YP-50F. 

 

 
Appendix 3. Thermogravimetrical analysis under air atmosphere of the CDC monoliths with a heating rate of 

5 K/min. 
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Appendix 4. Nitrogen physisorption (-196°C) isotherm (A) and corresponding QSDFT (nitrogen on carbon 

with slit pores at-196°C, equilibrium branch kernel) pore size distributions (B) of the microporous CDC 

reference material. 

 

 

 
Appendix 5. Linear (A) and semi-logarithmic (B, low pressure region) plots of nitrogen physisorption 

isotherms (-196°C) of the microporous CDC reference material prepared at 700°C (black) or 1000°C (grey). 
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Appendix 6. Carbon dioxide physisorption isotherms (0°C) of the microporous CDC reference material 

prepared at 700°C (black) or 1000°C (grey). 

 

 

 
Appendix 7. Fitting curves (dotted green lines) of the single peak thermal response function (Equation 24) 

to the measured data (straight black lines). 
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Appendix 8. Fitting curve (blue) of the double-peak (green and red line) thermal response function 

(Equation 25) to the measured data (straight black line) for the microporous CDC reference prepared at 

1000°C. 

 

 
Appendix 9. Dynamic light scattering measurement of PMMA template particles dispersed in water (A) and 

SEM micrograph of dried PMMA template particles (B). 

 

 
Appendix 10. SEM micrograph of Degussa P25 particles. 
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