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On the relationship of maximal
C -clones and maximal clones

Mike Behrisch∗ Edith Vargas-García†‡

7th January 2014

A restricted version of the Galois connection between polymorph-
isms and invariants, called PolD−C InvD, is studied, where the invari-
ant relations are restricted to so-called clausal relations. In this context,
the relationship of maximal C -clones and maximal clones is investig-
ated. It is shown that, with the exception of one special case occurring
for |D| = 2, maximal C -clones are never maximal clones.

1 Introduction
In this paper we continue the investigations from [BV10] and [Var10] concerning
a special set C RD of relations on a finite set D called clausal relations. A clausal
relation is the set of all tuples over D satisfying disjunctions of inequalities of the
form x ≥ d and x ≤ d, where x, d ∈ D = {0, 1, . . . , n− 1}.
Clones are sets of operations on a fixed domain that are closed under composition

and contain all projections. The clones on a finite set D are the Galois closed
sets of operations [BKKR69] with respect to the well-known Galois connection
PolD− InvD induced by the relation “an operation f preserves a relation %” (see
also [Pös79, Pös80]). In other words, every clone F on D can be described by
F = PolDQ for some set Q of relations.
We are interested in describing the structure of clones that are determined by

sets of clausal relations, so-called C -clones. The aim of this paper is to investigate
the relationship of the co-atoms in the clone lattice, known as maximal clones,
and the co-atoms in the lattice of C -clones, the maximal C -clones, which have
been characterised in the doctoral thesis [Var11] of the second author. During the
defence of the latter also the question arose that is answered in this paper.
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2 Preliminaries
Throughout the text, D will denote the finite non-empty set {0, . . . , n− 1} (n > 0),
N the set of all natural numbers including zero, and N+ the set of positive natural
numbers. The symbol P (X) will stand for the power set of a set X.
Let m be a positive integer. An m-ary relation % on D is a subset of the

m-fold Cartesian product Dm. By R(m)
D := P (Dm) we denote the set of all m-ary

relations on D and by RD := ⋃
`∈N+ R(`)

D the set of all finitary relations on D. For
an equivalence relation θ on {0, . . . ,m− 1}, we define an m-ary relation dθ on D
by dθ := {(x0, . . . , xm−1) ∈ Dm | ∀(i, j) ∈ θ : xi = xj} and call it diagonal relation.
The special case dθ = Dm is also called trivial relation. The set of all diagonal
relations together with the empty relation ∅ is denoted by DiagD.
In this section clones that are determined by sets of clausal relations will be

discussed. Next, these relations are defined.
Definition 1. Let p, q ∈ N+. For given parameters a = (a1, . . . , ap) ∈ Dp and
b = (b1, . . . , bq) ∈ Dq, the clausal relation Ra

b of arity p+ q is the set of all tuples
(x1, . . . , xp, y1, . . . , yq) ∈ Dp+q satisfying

(x1 ≥ a1) ∨ · · · ∨ (xp ≥ ap) ∨ (y1 ≤ b1) ∨ · · · ∨ (yq ≤ bq). (2.1)

In this expression ≤ is interpreted as the canonical linear order ≤D on D and ≥
as its dual. ♦

Note that whenever ai = 0 for some i ∈ {1, . . . , p} or bj = n− 1 for some index
j ∈ {1, . . . , q}, then the relation Ra

b is the full Cartesian power ofD, i.e. Ra
b = Dp+q,

because (2.1) is satisfied for any (x1, . . . , xp, y1, . . . , yq) ∈ Dp+q.
Let p, q ∈ N+. We use Rp

q := {Ra
b | a ∈ Dp,b ∈ Dq} to denote the set of all

clausal relations of arity p+ q and C RD := ⋃
(p,q)∈N2

+
Rp
q for the set of all finitary

clausal relations on D.
The following lemma states that the trivial clausal relations are those we noticed

after Definition 1, and that the non-trivial ones can be easily identified by their
parameters a and b.
Lemma 2 ([Var10]). The set C RD can be partitioned as

C RD =
{
Dp+q

∣∣∣ p, q ∈ N+
}
∪̇ C R∗D,

where {Dp+q | p, q ∈ N+} = C RD ∩DiagD are the trivial clausal relations and
C R∗D = {Ra

b | a ∈ (D \ {0})p,b ∈ (D \ {n− 1})q; p, q ∈ N+} are the non-trivial
clausal relations.

For a positive natural number k ∈ N+ we denote by O(k)
D :=

{
f
∣∣∣ f : Dk −→ D

}
the set of all k-ary operations on D and by OD := ⋃

`∈N+ O(`)
D the set of all finitary

operations on D.
Next, we will consider a Galois connection between sets of operations and rela-

tions that is based on the so-called preservation relation. It is the most important
tool for our investigations.
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Definition 3. Let m, k ∈ N+. We say that a k-ary operation f ∈ O(k)
D preserves

an m-ary relation % ∈ R(m)
D , denoted by f B %, if whenever

r1 = (a11, . . . , am1) ∈ %, . . . , rk = (a1k, . . . , amk) ∈ %,

it follows that also f applied to these tuples belongs to %, i.e.
f ◦ (r1, . . . , rk) := (f(a11, . . . , a1k), . . . , f(am1, . . . , amk)) ∈ %. ♦

By definition, to show that a k-ary function f ∈ O(k)
D does not preserve a relation

% ∈ R(m)
D , it suffices to exhibit tuples r1, . . . , rk ∈ % such that

f ◦ (r1, . . . , rk) =: (b1, . . . , bm) /∈ %.

In this case we will say that the equation f ◦ (r1, . . . , rk) = (b1, . . . , bm) witnesses
the fact f 6B%.
For a set of operations F ⊆ OD, we denote by InvD F the set of all relations that

are invariant for all operations f ∈ F :

InvD F := {% ∈ RD | ∀f ∈ F : f B %} .

Similarly, for a set Q ⊆ RD of relations, we denote by

PolDQ := {f ∈ F | ∀% ∈ Q : f B %}

the set of polymorphisms of Q. Occasionally, we will write PolD % for PolD {%},
% ∈ RD, and InvD f for InvD {f}, f ∈ OD.
The operators PolD and InvD define the Galois connection PolD− InvD. Below

we present a restriction of this connection where the relations are clausal relations.
For F ⊆ OD we define C InvD F := C RD ∩ InvD F . The operators

C InvD : P (OD) −→ P (C RD) : F 7→ C InvD F,
PolD : P (C RD) −→ P (OD) : Q 7→ PolDQ

define a Galois connection PolD−C InvD between operations and clausal rela-
tions.
Definition 4. A set F ⊆ OD of operations is called a C -clone if F = PolDQ for
some set Q ⊆ C RD of clausal relations, and a set Q ⊆ C RD is called relational
C -clone if Q = C InvD F for a set F of operations. ♦

Clearly, every C -clone is a clone as it is a set of polymorphisms of some set of
finitary relations.
Every Galois connection gives rise to a pair of closure operators. For the

Galois connection PolD−C InvD, we introduce the following notation.
For any F ⊆ OD and any Q ⊆ C RD we set

〈F 〉C := PolD C InvD F, and [Q]C := C InvD PolDQ.

A C -clone is maximal if it is a co-atom in the lattice of all C -clones. Theorem 5
below states that a C -clone is maximal if it can be written as a polymorphism set
of only one non-trivial clausal relation of arity two.
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Theorem 5 ([Var11]). Let M ⊆ OD be a C -clone. M is maximal if and only if
there are elements a ∈ D \ {0} and b ∈ D \ {n− 1} such that M = PolD R(a)

(b) .

This triggered the question after the relationship of maximal C -clones and max-
imal clones in general. In the next section we will prove the following main theorem.

Theorem 6. If D = {0, 1}, then the only maximal C -clone PolD R(1)
(0) on this set

is the maximal clone PolD ≤2 of monotone functions w.r.t. the linear order 0 ≤2 1.
Any other maximal C -clone (that is on any finite domain D with |D| > 2) fails

to be a maximal clone, hence it is properly contained in some maximal clone.

Another way to state this result is: the maximal clone of monotone Boolean
functions is a C -clone, but no other maximal clone on this and larger finite domains
is one.

3 Proof of the main theorem

3.1 Principle of proof
Since for a clone F the generated C -clone 〈F 〉C is again a clone, if F is maximal we
have two possibilities; either 〈F 〉C = OD is the full clone, or 〈F 〉C ⊂ OD is a maximal
clone and a maximal C -clone at the same time. This is so because F ⊆ 〈F 〉C ⊂ OD

by maximality of F yields F = 〈F 〉C, so F will be a C -clone as well. It has to be
a maximal C -clone, because every other non-full C -clone G ⊇ F would be a non-
full clone above F and so coincide with F by maximality of F as a usual clone.
We are going to show that, apart from the case of the clone of monotone func-

tions defined on the two-element domain, none of the maximal clones will be a
maximal C -clone, that is all maximal clones F will be mapped to the full clone
〈F 〉C = OD by the C -clone closure. Conversely, this means that almost always all of
the maximal C -clones will lie properly below some maximal clone, because every
clone on a finite set D either equals OD or is contained in some maximal clone
(see e.g. [PK79, Hauptsatz 3.1.5, p. 80; Vollständigkeitskriterium 5.1.6, p. 123] or
[Sze86, Proposition 1.15, p. 27]).
To deduce our main result we will adhere to the following strategy. For every

maximal clone F we will try to prove that InvD F does not contain any non-
trivial clausal relations, i.e. C InvD F = C RD ∩ InvD F Lem. 2= {Dp+q | p, q ∈ N+},
whence we get 〈F 〉C = PolD C InvD F = OD .
Besides the mentioned special case we will always succeed in doing so. We will

achieve our goal by exhibiting for each non-trivial clausal relation Ra
b a function

f ∈ F that does not preserve Ra
b. It turns out that we can always find a function

of arity at most three, and in some cases one can even find one function f ∈ F that
does not preserve any non-trivial clausal relation Ra

b, i.e. that does not depend on
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Ra
b. In this respect we may always assume |D| ≥ 2, i.e. n− 1 > 0, in the proofs as

there only exist trivial clausal relations on a singleton domain D.
It is easy to see that every maximal clone can be written in the form PolD %

for some non-trivial relation % ∈ RD. We are going to benefit from the known
description of all maximal clones by Ivo G. Rosenberg ([Ros65, Ros70]) in terms
of the occurring relations % that lists six different types of relations. In what
follows we are going to develop a different proof for each type of relations occurring
in Rosenberg’s theorem presented below. To state this theorem, we need some
auxiliary definitions:
For s ∈ Sym(D) we denote by graph s := {(x, s(x)) | x ∈ D} the graph of the

permutation s. A permutation s is prime if it has only cycles of the same length p,
for some prime p. Note that, in particular, such an s cannot have cycles of length
one, so it has no fixed points.
For a prime p a group G = 〈G; +,−, o〉 is called an elementary Abelian p-group,

if G is a commutative group and satisfies the law x+ · · ·+ x ≈ o where the variable
symbol x occurs p times in the sum. The latter means that every element in G \ {o}
has order p. If G is finite, then, by the fundamental theorem of finitely generated
Abelian groups, G must be isomorphic to a finite direct power of the cyclic group
of order p, so in particular the cardinality of G must be a power of p.
For such a group G, the affine relation %G is defined as

%G :=
{

(x, y, u, v) ∈ G4
∣∣∣ x+ y = u+ v

}
.

For m ∈ N+, an m-ary relation % is totally symmetric if, for every permutation
π ∈ Sym(m), it contains with any tuple a = (a1, . . . , am) ∈ Dm also the permuted
tuple a ◦ π =

(
aπ(1), . . . , aπ(m)

)
. It is totally reflexive if we have (a1, . . . , am) ∈ %

for all a1, . . . am ∈ D satisfying |{a1, . . . , am}| ≤ m− 1.
An element c ∈ D is a central element of % if the relation % contains any tuple

(a1, . . . , am) ∈ Dm where c ∈ {a1, . . . , am}.
A relation % is central if it is totally reflexive, totally symmetric, contains a

central element and is not a diagonal relation.
For h ∈ N≥3 let ιh :=

{
(a1, . . . , ah) ∈ {0, . . . , h− 1}h

∣∣∣ h > |{a1, . . . , ah}|
}
. An

h-ary relation % ∈ R(h)
D is h-regular, if there exists an m ≥ 1 and a surjection

ϕ : D −→ {0, . . . , h− 1}m such that

% =
{

(a1, . . . , ah) ∈ Dh
∣∣∣ ∀j ∈ {1, . . . ,m} :

(
(ϕ(a1))j , . . . , (ϕ(ah))j

)
∈ ιh

}
.

Theorem 7 ([Ros65, Ros70]). A clone F ⊆ OD is maximal if and only if it is
of the form PolD %, where % is a relation belonging to one of the following classes:

1. The set of all partial orders with least and greatest element.

2. The set of all graphs of prime permutations.
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3. The set of all non-trivial1 equivalence relations.

4. The set of all affine relations w.r.t. some elementary Abelian p-group on D
for some prime p.

5. The set of all central relations of arity h (1 ≤ h < |D|).

6. The set of all h-regular relations (3 ≤ h ≤ |D|).

Note that case 4 only occurs if the cardinality of D is a power of a prime p,
because the carrier set of the defining elementary Abelian p-group has to be D.
The proof of the main theorem 6 will be spread over several subsections contain-

ing separate results for the cases listed in Theorem 7.
In the proofs we will see that in some of the cases we will not even need all

the special properties of the relation % given in Theorem 7. For instance, we will
not need the primality of the permutations, the non-triviality of the equivalence
relations and the full concept of h-regularity of an h-regular relation.

3.2 Bounded orders
Functions in PolD�, preserving an order relation � on D, are commonly called
monotone functions (w.r.t. �). This is a special case of the slightly more general
concept of an order preserving function between two arbitrary posets, sometimes
called order homomorphism, where the function is not necessarily between the finite
power of one poset and itself. For notational reasons, it will be easier to formulate
the following lemma in this more general setting, even though we do not need the
full generality of the statement for the proof of Proposition 9.
Order relations with least and greatest element, the first category of relations

mentioned in Theorem 7, are also called bounded.

Lemma 8. If (P ;≤) and (Q;v) are posets, p1, p2 ∈ P are incomparable elements
and (Q;v) is bounded with top element > and bottom element ⊥, then for all values
q1, q2 ∈ Q the partial definition f(pi) := qi (i ∈ {1, 2}) can be extended to an order-
homomorphism.

Proof: We define the homomorphism as follows:

f : P −→ Q

x 7−→


⊥ if x < p1 or x < p2,

qi if x = pi (i ∈ {1, 2}),
> else.

To show that f is indeed a homomorphism, we consider any pair x ≤ y. If y 6≤ p1
and y 6≤ p2, then f (x) v > = f (y) and we are done. If y = pi for some i ∈ {1, 2},

1Here non-trivial means indeed Eq(D) \ {∆D,∇D}, in contrast to what was agreed at the
beginning of Section 2.
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then f (x) ∈ {⊥, qi} and thus f (x) v qi = f (y). The remaining case is x ≤ y < pi
for some i ∈ {1, 2}, whence f (x) = ⊥ = f (y). �

We will apply this lemma in the proof of the following result to the special case
when the order (P ;≤) is a direct power of a bounded order (Q;v).

Proposition 9. Let (D;�) be a bounded order on D with greatest element > and
least element ⊥. If |D| 6= 2, then there are no non-trivial clausal relations in the
clone InvD PolD�. If |D| = 2, then the only non-trivial clausal relation contained
in this clone is R(1)

(0) = ≥D.

Proof: We only consider the case |D| ≥ 2. First we note that always one of the
conditions 0 � n− 1 or 0 � n− 1 will fail as otherwise we had 0 � n− 1 � 0, im-
plying 0 = n− 1 or |D| = 1. It is clear that PolD� = PolD�, and the dual order
(D;�) is again a bounded order on D. As we wish to prove a property of the clone
InvD PolD� = InvD PolD�, we can consider the order � or its dual as we please.
So w.l.o.g. we will consider the case that n− 1 6� 0. We will now consider an ar-
bitrary non-trivial clausal relation Ra

b with a ∈ (D \ {0})p and b ∈ (D \ {n− 1})q.
Using a case distinction (not all cases will be disjoint), we will show that we can
always find a function f ∈ PolD� of arity ` ≤ 2 that does not preserve Ra

b. Hence,
we will prove Ra

b /∈ InvD PolD�.

∃ i ∈ {1, . . . , p} : ai 6= > By Lemma 8 the definition

f(n− 1, ai) := 0 f(0,>) := n− 1

can be extended to an order preserving function w.r.t. � since n− 1 6� 0 and
> 6� ai as > 6= ai. The function f will not preserve Ra

b as witnessed by the
equation f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1) where the tuples r1 and r2
are given as r1 := (n− 1, . . . , n− 1, 0, . . . , 0) and r2 := (ai, . . . , ai,>, . . . ,>).

∃ j ∈ {1, . . . , q} : bj 6= ⊥ Dually to the preceding case, the definition

f(n− 1,⊥) := 0 f(0, bj) := n− 1

can be extended to an order preserving function w.r.t. � since n− 1 6� 0 and
bj 6� ⊥ as ⊥ 6= bj. Again the function f will not preserve Ra

b as witnessed by
f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1) for r1 := (n− 1, . . . , n− 1, 0, . . . , 0)
and r2 := (⊥, . . . ,⊥, bj, . . . , bj).

n− 1 6= > By Lemma 8 the definition

f(n− 1, n− 1) := 0 f(0,>) := n− 1

can be extended to an order preserving function w.r.t. � since n− 1 6� 0
and > 6� n− 1 as > 6= n− 1. Putting r1 := (n− 1, . . . , n− 1, 0, . . . , 0) and
r2 := (n− 1, . . . , n− 1,>, . . . ,>), the function f cannot preserve Ra

b since
f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1).
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0 6= ⊥ Dually as before the definition

f(n− 1,⊥) := 0 f(0, 0) := n− 1

can be extended to an order preserving function w.r.t. � since n− 1 6� 0 and
0 6� ⊥ as ⊥ 6= 0. Again the function f will not preserve Ra

b, witnessed by
f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1) for r1 := (n− 1, . . . , n− 1, 0, . . . , 0)
and r2 := (⊥, . . . ,⊥, 0, . . . , 0).

If none of the presented cases occurs, then we must have ai = > = n− 1 for all
i ∈ {1, . . . , p} and bj = ⊥ = 0 for all j ∈ {1, . . . , q}.
If |D| > 2 then there exists another element c ∈ D \ {0, n− 1}. It will satisfy

bj = 0 < c < n− 1 = ai for all i ∈ {1, . . . , p} and all j ∈ {1, . . . , q}. Then we can
use the unary constant function f with value c, that will trivially preserve� to show
that f 6BRa

b. Namely, we have f ◦ (n− 1, . . . , n− 1, 0, . . . , 0) = (c, . . . , c) /∈ Ra
b al-

though the argument tuple belongs to the relation Ra
b.

Otherwise, we have n = 2, i.e. D = {0, 1}. Because of ⊥ = 0 and > = n− 1 = 1,
the order � coincides with ≤D. We will consider three more cases:

p > 1 We define f ∈ O(2)
D by f (x) := 1 if x = (1, 1), and f (x) := 0 otherwise.

Clearly, f ∈ PolD≤D = PolD�, but f does not preserve Ra
b. Indeed, the

equation f ◦ (r1, r2) = (0, 0, . . . , 0, 1, . . . , 1), where r1 := (1, 0, . . . , 0, 1, . . . , 1)
and r2 := (0, 1, . . . , 1, 1, . . . , 1), witnesses f 6BRa

b.

q > 1 Dually to the preceding case we define f ∈ O(2)
D via f (x) := 0 if x = (0, 0),

and f (x) := 1 otherwise. Again, the function f preserves � = ≤D, but f
does not preserve Ra

b, as witnessed by f (r1, r2) = (0, . . . , 0, 1, 1, . . . , 1) for
r1 := (0, . . . , 0, 0, 1, . . . , 1) and r2 := (0, . . . , 0, 1, 0, . . . , 0).

p = q = 1 The only non-trivial binary clausal relation on D = {0, 1} is

R(1)
(0) = {(1, 1), (1, 0), (0, 0)} = ≥D = � = (�)−1 ∈ InvD PolD�. �

3.3 Non-trivial congruences
If θ ∈ Eq(D) is an equivalence relation on D and f ∈ PolD θ, then θ is called a con-
gruence relation of the algebra 〈D; f〉. This motivates the title of this subsection.
The following proposition shows that, to prove our theorem, we do not need the

assumption that the equivalence relation is non-trivial as stated in Theorem 7.

Proposition 10. For every equivalence relation θ ∈ Eq(D), the clone InvD PolD θ
does not contain any non-trivial clausal relations.
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Proof: We are going to exhibit a function f ∈ Pol(1)
D θ that does not preserve any

non-trivial clausal relation Ra
b. For this we can assume n− 1 > 0. The definition

of f will depend on whether (0, n− 1) ∈ θ or not. In both cases f will satisfy
f(0) = n− 1 and f(n− 1) = 0, which ensures that f cannot preserve any non-
trivial clausal relation Ra

b.
If (0, n− 1) /∈ θ, then we define f ∈ O(1)

D by f (x) := n− 1 if x ∈ [0]θ, and we
put f (x) := 0 otherwise. Such a function f will preserve θ, because it is constant
on all blocks of θ. More explicitly, for every tuple (x, y) ∈ θ, we have [x]θ = [y]θ.
If their common θ-class equals [0]θ, then f ◦ (x, y) = (n− 1, n− 1) ∈ θ, otherwise,
f ◦ (x, y) = (0, 0) ∈ θ.
If, otherwise (0, n− 1) ∈ θ, then we define f ∈ O(1)

D as f (x) := n− 1 if x = 0,
and f (x) := 0 otherwise. To see that f B θ, we consider any tuple (x, y) ∈ θ.
If x = y, also f(x) = f(y), and we are done by reflexivity. If 0 /∈ {x, y}, then
f(x) = f(y) = 0, and (f(x), f(y)) ∈ θ for the same reason. The case that remains
is that 0 ∈ {x, y} and x 6= y. By definition of f we obtain (f(x), f(y)) belongs to
{(0, n− 1), (n− 1, 0)} being a subset of θ. �

3.4 Selfdual functions
Every function f ∈ PolD graph s, where graph s is the graph of a permutation
s ∈ Sym(D) (cf. Subsection 3.1), is called an s-selfdual function. We will give
a simple characterisation of such functions in Lemma 11 below, and at the same
time we will provide a construction for s-selfdual functions f . The crucial point
in both, the characterisation and the construction, is how values of f propagate
along the orbits of the canonical action of the cyclic permutation group 〈s〉Sym(D)
on Dar(f). We will briefly recall the involved notions:
For any set I, every permutation group U ≤ Sym(D) naturally acts on powers

DI by composition

◦ : U ×DI −→ DI

(s,x) 7−→ s ◦ x = (s(x(i)))i∈I .

Especially, this holds for finite powers, i.e. we can apply permutations to tuples.
As usual the orbit of an element x ∈ DI is defined as [x]U := {s ◦ x | s ∈ U}, and
the set of all orbits

{
[x]U

∣∣∣ x ∈ DI
}
partitions DI .

Lemma 11. Let s ∈ Sym(D) and l ∈ N+. For a function f ∈ O(l)
D we have

f ∈ Pol(l)D graph s ⇐⇒ ∀x ∈ Dl : s(f(x)) = f(s ◦ x).
⇐⇒ ∀k ∈ N ∀x ∈ Dl : f

(
sk ◦ x

)
= sk (f (x)) .

If f ∈ Pol(l)D graph s, then for all tuples x ∈ Dl the value f(x) determines the val-
ues

{
f(sk ◦ x)

∣∣∣ k ∈ N}, i.e. the values of f on the whole orbit [x]〈s〉Sym(D)
of the

canonical action of 〈s〉Sym(D) on Dl.

9



Conversely, let T ⊆ Dl be a transversal, i.e. a system of representatives of the
orbits of 〈s〉Sym(D) on Dl, and let f0 : T −→ D be any function. Then we define

f(x) := f0(x), f
(
sk+1 ◦ x

)
:= sk+1 (f (x)) for k ∈ N

and all x ∈ T . In this way a function f : Dl −→ D is completely (well)-defined,
and furthermore, f ∈ Pol(l)D graph s.

Proof: The first mentioned condition is necessary for f B graph s, because for
any x ∈ Dl, one has (xi, s(xi)) ∈ graph s for all 1 ≤ i ≤ l. Thus, from f B graph s
we get (f(x), f(s ◦ x)) ∈ graph s, or s(f(x)) = f(s ◦ x). Conversely, if such an
equality holds, and (xi, yi) ∈ graph s for 1 ≤ i ≤ l, then yi = s(xi), and so one
obtains (y1, . . . , yl) = s ◦ (x1, . . . , xl). Hence

(f (x1, . . . , xl) , f (y1, . . . , yl)) = (f (x1, . . . , xl) , s (f (x1, . . . , xl))) ∈ graph s.

The second equivalent condition follows from the one just shown by induction
on k ∈ N. It is equivalent since the first condition is exactly the special case k = 1.
For the second part, the function f is well-defined since the orbits of the ca-

nonical action of 〈s〉Sym(D) on Dl form a partition of Dl. So every tuple y ∈ Dl

occurs in [x]〈s〉Sym(D)
for exactly one x ∈ T as y = sk ◦ x. By definition we have

s (f (y)) = s
(
f
(
sk ◦ x

))
= s

(
sk (f (x))

)
= sk+1 (f (x)) = f

(
sk+1 ◦ x

)
= f(s ◦ y),

whence f is s-selfdual. �

Proposition 12. For any permutation s ∈ Sym(D) the clone InvD PolD graph s
corresponding to the clone of s-selfdual functions does not contain any non-trivial
clausal relations.

Proof: We are going to exhibit a function f ∈ Pol(3)
D graph s that does not preserve

any non-trivial clausal relation Ra
b. For this we can assume that 0 < n− 1. By

Lemma 11 the partial definition

f(n− 1, 0, n− 1) := 0, f(0, 0, n− 1) := n− 1

can be extended to a function in Pol(3)
D graph s, because the tuples (n− 1, 0, n− 1)

and (0, 0, n− 1) are in different orbits of the canonical action of 〈s〉Sym(D) on
Dl: because 0 6= n− 1, the first two entries of the first tuple differ, whereas the
first two entries of the second tuple coincide. Thus, the first tuple can never
be obtained by applying a power of s to the second one. Consequently, we can
choose a transversal of the orbits containing these two tuples, and then apply
Lemma 11 to construct an s-selfdual function f ∈ O(3)

D . Obviously, f will not pre-
serve any non-trivial Ra

b because f ◦ (r1, r2, r3) = (0, . . . , 0, n− 1, . . . , n− 1) /∈ Ra
b

while the arguments r1 := (n− 1, . . . , n− 1, 0, . . . , 0), r2 := (0, . . . , 0, 0, . . . , 0) and
r3 := (n− 1, . . . , n− 1, n− 1, . . . , n− 1) belong to Ra

b. �
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3.5 Quasilinear functions
Functions f ∈ PolD %G preserving an affine relation %G w.r.t. an Abelian group
G = 〈D; +,−, o〉 (cf. Subsection 3.1) are called quasilinear (w.r.t. G). It is easy
to see that

PolD %G =
⋃

k∈N+

{
f : Dk −→ D

∣∣∣ ∀x,y ∈ Dk : f(x + y) = f(x) + f(y)− f(o)
}
,

where o stands for the tuple (o, . . . , o) ∈ Dk.
The following simple observation directly follows from the definition of an ele-

mentary Abelian p-group.

Observation 13. Any elementary Abelian p-group G = 〈G; +,−, o〉 (where p is
a prime) can be turned into a vector space over the field GF(p) = Zp by defining
the scalar multiplication as · : Zp ×G −→ G via (a, g) 7→ a · g := ∑a

i=1 g.

The following lemma is an auxiliary to be used in the subsequent Proposition 15.

Lemma 14. Let G and H be elementary Abelian p-groups and v1, . . . , vt ∈ G
with t ∈ N+ be linearly independent elements in the associated vector space over
Zp. For any choice of h1, . . . , ht ∈ H, there is a mapping f : G −→ H satisfying

f(x+ y) = f(x) + f(y)− f(oG) for all x, y ∈ G,
f(vi) = hi for all 1 ≤ i ≤ t.

Proof: Since v1, . . . , vt are linearly independent, this list can be completed to a
basis B of G. Hence there exists a unique linear extension of the partial definition

f(vi) = hi for 1 ≤ i ≤ t,
f(b) = oH for b ∈ B \ {v1, . . . , vt} .

By linearity we have f (oG) = oH and f (x+ y) = f (x) + f (y) = f (x) + f (y)− oH
being equal to f (x) + f (y)− f (oG). �

Proposition 15. For any prime number p and any elementary Abelian p-group
G = 〈D; +,−, o〉, the clone InvD PolD %G does not contain any non-trivial clausal
relations.

Proof: We are going to find a function f ∈ Pol(2)
D %G that does not preserve any

non-trivial clausal relation Ra
b. As usual we suppose n− 1 > 0. By Lemma 14 it

will suffice to partially define f on linearly independent vectors of the Zp-vector
space associated with G2 to ensure f ∈ PolD %G. We will distinguish two cases
w.r.t. the relation of o and 0.
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o = 0 We define

f(n− 1, n− 1) := 0, f(o, n− 1) := n− 1.

Obviously, the tuples (n− 1, n− 1) and (o, n− 1) are linearly independent
since n− 1 6= 0 = o. This is enough information to define a function as de-
sired. It will not preserve any non-trivial Ra

b, witnessed by the equation
f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1) for r1 := (n− 1, . . . , n− 1, o, . . . , o)
and r2 := (n− 1, . . . , n− 1, n− 1, . . . , n− 1).

o 6= 0 In this case we let

f(0, o) := 0, f(0, 0) := n− 1.

Again the tuples (o, 0) and (0, 0) are linearly independent since 0 6= o. This
suffices to define a function f ∈ PolD %G as desired. It will not preserve any
non-trivial Ra

b, witnessed by f ◦ (r1, r2) = (0, . . . , 0, n− 1, . . . , n− 1) where
r1 := (0, . . . , 0, 0, . . . , 0) and r2 := (o, . . . , o, 0, . . . , 0). �

3.6 Functions preserving central and h-regular relations
The remaining categories of relations listed in Theorem 7 are central and h-regular
relations. They share the common property of total symmetry and total reflexivity,
and this is, in fact, almost all we need to achieve our goal. The existence of a central
element for central relations is only used for binary relations.

Lemma 16. For m ∈ N≥3 and a totally reflexive m-ary relation % ∈ R(m)
D , the

clone InvD PolD % does not contain any non-trivial clausal relations.

Proof: We are going to exhibit a function f ∈ Pol(1)
D % that does not preserve any

non-trivial clausal relation Ra
b. Let us define f ∈ O(1)

D by f (x) := n− 1 if x = 0 and
f (x) = 0 else. Obviously, we have f 6BRa

b since (n− 1, . . . , n− 1, 0, . . . , 0) ∈ Ra
b,

but f ◦ (n− 1, . . . , n− 1, 0, . . . , 0) = (0, . . . , 0, n− 1, . . . , n− 1) /∈ Ra
b for n− 1>0,

which may be assumed without any loss of generality.
Besides, one can show f B %; consider an arbitrary tuple x = (x1, . . . , xm) ∈ %

and let y := f ◦ x. By definition of f we have im f = {0, n− 1}, so the same
holds for im y = im f ◦ x ⊆ im f = {0, n− 1}, i.e. y ∈ {0, n− 1}m. Since m ≥ 3,
the tuple y has at least two identical entries, so y ∈ % because % is totally reflexive.�

Lemma 17. For every unary relation % ∈ R(1)
D , the clone InvD PolD % does not

contain any non-trivial clausal relations.
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Proof: We are going to construct a function f ∈ Pol(3)
D % that will not preserve any

non-trivial clausal relation Ra
b. Assuming n− 1 > 0 we define

f : D3 −→ D

x = (x1, x2, x3) 7−→


n− 1 if x = (0, 0, n− 1),
0 if x = (n− 1, 0, n− 1),
x1 otherwise.

It fails to preserve any non-trivial Ra
b as the tuples r1 := (n− 1, . . . , n− 1, 0, . . . , 0),

r2 := (0, . . . , 0, 0, . . . , 0) and r3 := (n− 1, . . . , n− 1, n− 1, . . . , n− 1) in the equa-
tion f ◦ (r1, r2, r3) = (0, . . . , 0, n− 1, . . . , n− 1) belong to Ra

b, which is not true for
the resulting tuple. Since f is conservative, i.e. its values are always among the
input arguments, it preserves any unary relation %. �

Lemma 18. For every binary central relation % ∈ R(2)
D , the clone InvD PolD % does

not contain any non-trivial clausal relations.

Proof: A binary central relation % is a reflexive, symmetric relation on D, having
a central element c ∈ D and being different from ∆D and ∇D = D ×D. This
requires D to have at least three elements.
The function f ∈ O(1)

D defined by f (x) := n− 1 if x = 0, f (x) := 0 if x = n− 1,
and f (x) := c otherwise, does not preserve any non-trivial clausal relation Ra

b,
witnessed by f ◦ (n− 1, . . . , n− 1, 0, . . . , 0) = (0, . . . , 0, n− 1, . . . , n− 1) /∈ Ra

b.
It remains to show that f preserves %. If (x, y) ∈ % and x = y, then we have

f(x) = f(y), and (f(x), f(y)) ∈ % by reflexivity. Now let us consider that case that
x 6= y. If {x, y} \ {0, n− 1} 6= ∅, then c ∈ {f(x), f(y)}, so (f(x), f(y)) ∈ % since
c is a central element for %. Otherwise, we have (x, y) ∈ {(0, n− 1), (n− 1, 0)},
and, since (x, y) ∈ %, symmetry of % implies {(0, n− 1), (n− 1, 0)} ⊆ %. There-
fore, (f(x), f(y)) ∈ {(n− 1, 0), (0, n− 1)} ⊆ %, finishing the argument for f B %
and hence completing the proof. �

Corollary 19. For every central relation % ∈ R(m)
D of arity m ∈ N+ and every

h-regular relation σ ∈ R(h)
D (h ≥ 3), the clones InvD PolD % and InvD PolD σ do not

contain any non-trivial clausal relations.

Proof: By definition, every central relation is totally reflexive and totally sym-
metric. It is not hard to show that these properties also follow from the definition
of an h-regular relation. So for at least ternary relations the claim will follow from
Lemma 16. For unary ones, it is a consequence of Lemma 17, and for binary central
relations it is contained in Lemma 18. �

4 Concluding remarks
In this paper we investigated the relationship of maximal C -clones and maximal
clones. We benefited from the known description of all maximal clones by Ivo
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G. Rosenberg, and we showed that, apart from the case of the clone of monotone
functions defined on the two-element domain, none of the maximal clones is a
maximal C -clone.
This means that, opposed to conjectures coming from the Boolean case, the

connection between maximal clones and maximal C -clones is indeed rather loose.
As a consequence of Theorem 6, with the one mentioned exception, every C -clone is
properly contained in some maximal clone. A natural question for further research
would be to characterise which C -clones lie below which types of maximal clones.
With regard to this task we present the following simple lemmas, which settle

the cases of s-selfdual and quasilinear functions, and at least ternary central and
h-regular relations.

Lemma 20. If s ∈ Sym (D) is a permutation without fixed points, then for all
p, q ∈ N+ and Ra

b ∈ Rp
q, we have ca1 ∈ (PolD Ra

b) \ (PolD graph s) where ca1 is the
unary constant with value a1. Thus, in particular no maximal C -clone is a subset
of PolD graph s.

Since prime permutations cannot have fixed points, this result applies to maximal
clones in the second case of Theorem 7.

Proof: It is clear that ca1 ∈ PolD Ra
b. Moreover, it is evident from the defin-

ition of preservation that a function f ∈ O(`)
D belongs to PolD graph s if and only

if s (f (x)) = f (s ◦ x) holds for all x ∈ D` (` ∈ N+). For the unary operation ca1

this condition becomes s (a1) = s (ca1 (x)) = ca1 (s (x)) = a1 for x ∈ D, i.e. that a1
is fixed by s. This is false by assumption. �

Lemma 21. For a finite set D, a prime p, an elementary Abelian p-group G
on D and any pair of elements a ∈ D \ {0} and b ∈ D \ {n− 1}, the inclusion
PolD R(a)

(b) ⊆ PolD %G always fails.

Proof: If PolD R(a)
(b) ⊆ PolD %G for some elementary Abelian p-group G with neut-

ral element o, then for all k ∈ N+ and every f ∈ Pol(k)
D R(a)

(b) , the k-ary function
f − f (o, . . . , o) were a linear function w.r.t. the GF(p)-vector spaces on Dk and D
associated with G. This implied that the set

Ker (f − f (o, . . . , o)) =
{

x ∈ Dk
∣∣∣ f (x)− f (o, . . . , o) = o

}
= f−1 [{f (o, . . . , o)}]

were a subspace of Dk and hence isomorphic to (GF(p))t for some 0 ≤ t ≤ d · k
where n = pd. Thus the cardinality of this kernel would necessarily be a power of
p. Using a case distinction we will exhibit below functions in PolD R(a)

(b) , where this
fails to be the case.
If a < n− 1, we put v0 := a and v1 := a+ 1; for a = n− 1 and b > 0, we define

v0 := b and v1 := b− 1. In both cases, we have n ≥ 3 due to 0 < a < n− 1 or
0 < b < n− 1. If p > 2, let c := 2, otherwise for p = 2 we put c := 3. Since
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n ≥ 3, we may choose a subset A ⊆ D such that |A| = c and o ∈ A. Define
f : D −→ D by f(x) := v0 if x ∈ A and f(x) := v1 otherwise. We observe that
im f = {a, a+ 1} ⊆ {a, . . . , n− 1} or im f = {b, b− 1} ⊆ {0, . . . , b}, thus f B R(a)

(b) .
Moreover, we have f−1 [{f (o)}] = A, and |A| = c, which fails to be a power of p.
The remaining case is a = n− 1 and b = 0, i.e. the relation R(n−1)

(0) , being equal
to ({n− 1} ×D) ∪ (D × {0}). For 2 < p ≤ n we put c := 2, for p = 2 < n we have
n ≥ p2 = 4 and put c := 3. If o 6= 0, we may choose A ⊆ D \ {0} such that |A| = c

and {o, n− 1} ⊆ A. We define f ∈ O(1)
D by f (x) := n− 1 if x ∈ A and f (x) = 0

else. Since n− 1 ∈ A and 0 /∈ A, we have f (0) = 0 and f (n− 1) = n− 1, and so
f ∈ PolD R(n−1)

(0) . Otherwise, if o = 0, we may choose A ⊆ D \ {n− 1} such that
|A| = c and o ∈ A. We define f ∈ O(1)

A by f (x) := 0 if x ∈ A and f (x) := n− 1
else. Due to 0 ∈ A and n− 1 /∈ A, we can infer f (0) = 0 and f (n− 1) = n− 1, so
f B R(n−1)

(0) . In both cases it is f−1 [{f (o)}] = A, and |A| = c is not a power of p.
The only remaining case is p = 2 = n = |D| and the relation R(1)

(0) = ≥D. On
a two-element domain the only maximal C -clone is the clone PolD R(1)

(0) of mono-
tone Boolean functions (see [Var10, Theorem 2.14]), which does not lie below
that of quasilinear Boolean operations, L. This is witnessed, for instance, by
{min,max} ⊆

(
PolD R(1)

(0)

)
\ L. �

Lemma 22. For m ∈ N≥3 and a totally reflexive non-trivial relation % ∈ R(m)
D , we

have ∨D,∧D /∈ PolD %, where ∨D,∧D denote the binary maximum and minimum
w.r.t. ≤D, respectively.

Proof: Since % is non-trivial, we have % ( Dm, and hence there is some tuple
x := (x1, . . . , xm) ∈ Dm \ %. By total reflexivity, the entries x1, . . . , xm are pair-
wise distinct. Choose the unique i ∈ {1, . . . ,m} such that xi is the least element
among x1, . . . , xm w.r.t. ≤D and pick j, ` ∈ {1, . . . ,m} such that |{i, j, `}| = 3. This
is possible due to m ≥ 3. Define y, z ∈ Dm by yk := xi for k = j and yk := xk
else; zk := xk for k = j and zk := xi else. It follows yk ∨D zk = xi ∨D xk = xk for
all 1 ≤ k ≤ m, so ∨D ◦ (y, z) = x /∈ %. This proves ∨D 6B% due to yj = xi = yi,
zi = xi = z` and total reflexivity of %.
For ∧D one chooses 1 ≤ i ≤ m such that xi is largest among x1, . . . , xm. �

Lemma 23. For all a, b ∈ D we have {∨D,∧D} ⊆ PolD R(a)
(b) .

Proof: Let (x1, y1) , (x2, y2) ∈ R(a)
(b) . If x1 ∨D x2 ≥ a we are done. Otherwise, we

have x1, x2 ≤ x1 ∨D x2 < a, so y1, y2 ≤ b, whence y1 ∨D y2 ≤ b. Dually, we either
have y1 ∧D y2 ≤ b or y1, y2 ≥ y1 ∧D y2 > b, i.e. x1, x2 ≥ a and hence x1 ∧D x2 ≥ a.�

Corollary 24. If h ∈ N≥3 and % ( Dh is a central or an h-regular relation, then
the clone PolD % does not contain any maximal C -clone.
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Proof: By Theorem 5 maximal C -clones have the form PolD R(a)
(b) with a, b ∈ D.

By definition, central relations are totally reflexive, and it is not hard to see that
the same property also holds for h-regular relations. Using Lemmas 22 and 23, it
is ∨D ∈

(
PolD R(a)

(b)

)
\ (PolD %), so PolD R(a)

(b) 6⊆ PolD %. �

We leave as an open problem to describe the relationship between maximal
clones and maximal C -clones more precisely, and in particular to examine the
cases belonging to the other maximal clones mentioned in Theorem 7.
The authors think that solving such problems may be helpful in determining

the exact cardinality κ of the lattice of all C -clones on finite sets D of cardinality
at least three, which has been shown to satisfy ℵ0 ≤ κ ≤ 2ℵ0 in [Var10, Proposi-
tion 3.1].
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