
Design Space Exploration for Building

Automation Systems

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Ing. A. Cemal Özlük

geboren am 11. Januar 1977 in Ankara, Türkei

Gutachter:
Prof. Dr.-Ing. habil. Klaus Kabitzsch,
Technische Universität Dresden

Prof. Dr.-Ing. Alexander Fay,
Helmut-Schmidt-Universität der Bundeswehr Hamburg

Tag der Verteidigung: 29.11.2013

Dresden, im Dezember 2013

Abstract

In the building automation domain, there are gaps among various tasks related
to design engineering. As a result created system designs must be adapted to the
given requirements on system functionality, which is related to increased costs
and engineering effort than planned. For this reason standards are prepared
to enable a coordination among these tasks by providing guidelines and unified
artifacts for the design. Moreover, a huge variety of prefabricated devices of-
fered from different manufacturers on the market for building automation that
realize building automation functions by preprogrammed software components.
Current methods for design creation do not consider this variety and design
solution is limited to product lines of a few manufacturers and expertise of sys-
tem integrators. Correspondingly, this results in design solutions of a limited
quality. Thus, a great optimization potential of the quality of design solutions
and coordination of tasks related to design engineering arises. For given design
requirements, the existence of a high number of devices that realize required
functions leads to a combinatorial explosion of design alternatives at different
price and quality levels. Finding optimal design alternatives is a hard problem
to which a new solution method is proposed based on heuristical approaches.
By integrating problem specific knowledge into algorithms based on heuristics,
a promisingly high optimization performance is achieved. Further, optimization
algorithms are conceived to consider a set of flexibly defined quality criteria
specified by users and achieve system design solutions of high quality. In order
to realize this idea, optimization algorithms are proposed in this thesis based on
goal-oriented operations that achieve a balanced convergence and exploration
behavior for a search in the design space applied in different strategies. Fur-
ther, a component model is proposed that enables a seamless integration of
design engineering tasks according to the related standards and application of
optimization algorithms.

Acknowledgments

I am grateful to many people who made this thesis possible. I would like to
thank Professor Kabitzsch for his disposition and collaboration, and Professor
Fay for motivation. I would like to thank further my parents Elif and Haydar, my
sister Dilek and my nephew Ekim for their support. My grandmother Nazik has
been at my disposal with her good wishes. My colleagues Bastian, Henrik, Linh,
Matthias and Uwe have been there for support, discussions and collaboration.
I enjoyed working with them. I would like to thank people of Dresden for being
very kind and quite which allowed me to make observations and to concentrate
on research ideas without interruption. I would like to thank Baris and Jens for
making music with me in different times. I would like to thank International
Office of TU Dresden for organizing cultural activities and excursions for PhD
students. Thanks to the city of Dresden and its environment for wonderful
culture and nature, and for hosting the beautiful river Elbe.

Contents

Table Of Contents 1

List of Figures 5

List of Tables 9

List of Algorithms 11

List of Abbreviations 13

1 Introduction 17
1.1 Background . 19
1.2 Motivation . 20
1.3 Goals and Use of the Thesis . 21
1.4 Solution Concepts . 22
1.5 Organization of the Thesis . 24

2 Design Creation for Building Automation Systems 25
2.1 Background . 25
2.2 Engineering of Building Automation Systems 29
2.3 Network Protocols of Building Automation Systems 33
2.4 Existing Solutions for Design Creation 34
2.5 The Device Interoperability Problem 37
2.6 Guidelines for Planning of Room Automation Systems 38
2.7 Quality Requirements on BAS 41
2.8 Quality Requirements on Design 42

2.8.1 Quality Requirements Related to Project Planning 42
2.8.2 Quality Requirements Related to Project Implementation 43

2.9 Quality Requirements on Methods 44
2.10 Conclusions . 45

3 The Design Creation Task 47
3.1 Introduction . 47
3.2 System Design Composition Model 49

2 CONTENTS

3.2.1 Abstract and Detailed Design Model 49
3.2.2 Mapping Model . 51

3.3 Formulation of the Problem . 53
3.3.1 Problem properties . 54
3.3.2 Requirements on Algorithms 56

3.4 Conclusions . 57

4 Solution Methods for Design Generation and Optimization 59
4.1 Combinatorial Optimization . 59
4.2 Metaheuristics . 59
4.3 Examples for Metaheuristics . 62

4.3.1 Simulated Annealing . 62
4.3.2 Tabu Search . 63
4.3.3 Ant Colony Optimization 65
4.3.4 Evolutionary Computation 66

4.4 Choice of the Solver Algorithm 69
4.5 Specialized Methods for Diversity Preservation 70
4.6 Approaches for Real World Problems 71

4.6.1 Component-Based Mapping Problems 71
4.6.2 Network Design Problems 73
4.6.3 Comparison of Solution Methods 74

4.7 Conclusions . 77

5 Automated Creation of Optimized Designs 79
5.1 Introduction . 79
5.2 Design Evaluation . 79
5.3 Component Model . 81

5.3.1 Presumptions . 85
5.3.2 Integration of Component Model 87

5.4 Design Generation . 87
5.4.1 Component Search . 88
5.4.2 Generation Approaches 100

5.5 Design Improvement . 107
5.5.1 Problems and Requirements 107
5.5.2 Variations . 111
5.5.3 Application Strategies . 121

5.6 Realization of the Approach . 122
5.6.1 Objective Functions . 122
5.6.2 Individual Representation 123

5.7 Automated Design Creation For A Building 124
5.7.1 Room Spanning Control 124
5.7.2 Flexible Rooms . 125
5.7.3 Technology Spanning Designs 129
5.7.4 Preferences for Mapping of Function Blocks to Devices . . 132

CONTENTS 3

5.8 Further Uses and Applicability of the Approach 133
5.9 Conclusions . 134

6 Validation and Performance Analysis 137
6.1 Validation Method . 137
6.2 Performance Metrics . 137
6.3 Example Abstract Designs and Performance Tests 139

6.3.1 Criteria for Choosing Example Abstract Designs 139
6.3.2 Example Abstract Designs 140
6.3.3 Performance Tests . 142
6.3.4 Population Size P - Analysis 151
6.3.5 Cross-Over Probability pC - Analysis 157
6.3.6 Mutation Probability pM - Analysis 162
6.3.7 Discussion for Optimization Results and Example Designs 168
6.3.8 Resource Consumption . 171
6.3.9 Parallelism . 172

6.4 Optimization Framework . 172
6.5 Framework Design . 174

6.5.1 Components and Interfaces 174
6.5.2 Workflow Model . 177
6.5.3 Optimization Control By Graphical User Interface 180

6.6 Conclusions . 183

7 Conclusions 185

A Appendix of Designs 189

Bibliography 201

Index 211

4 CONTENTS

List of Figures

1.1 Creation of a Detailed Design by Mapping 22

2.1 Functions in BAS . 26
2.2 Automation Hierarchy According to ISO 16484-2 27
2.3 Communication of Data Points 28
2.4 Engineering by System Integrators between Planning and Imple-

mentation . 30
2.5 Cooperation of Application Engineering and Domain Engineering 32
2.6 Comparison of Various Network Communication Protocols Based

on OSI Reference Model . 34
2.7 Shell Model According to the Standard VDI 3813-1 39
2.8 Constant-Light Control and Automatic Lights 41
2.9 Derivation of Quality Requirements for the Design Generation . 42

3.1 Overview of the New Engineering Approach 47
3.2 Logical and Physical View of System Design Composition Model 49
3.3 Component Hierarchy . 50

4.1 A Timeline of Metaheuristics . 60

5.1 Simplified UML Class Diagram of the Abstract Design 82
5.2 Simplified UML Class Diagram of the Detailed Design 83
5.3 Stepwise Identification of Connection Sensitive Function Blocks

Groups of a Heating Example . 95
5.4 Example Connection Sensitive Function Block Combinations for

a Lighting and Heating Example 96
5.5 Constant-Light Control and Automatic Lights with Reduced and

Enumerated Function Blocks . 97
5.6 Design Generation . 101
5.7 Search Space, Solution Space and Component Space 111
5.8 Rankings Used in Variation Operations 113
5.9 Venn Diagram for the Relationship between Function Block Sets

of Function Block Combinations fbcfp′ and fbcfpindvi in SD-M2 . 115

6 LIST OF FIGURES

5.10 Venn Diagram for the Relationship between Function Block Sets
of Example Function Block Combinations fbcfpindv1 , fbcfp′1 and
fbcfp′2 in SD-M3 . 116

5.11 An Example Floor Plan from the Standard VDI 3813-1 126
5.12 Floor Plan with Segments Oriented (Flexible) Rooms from the

Standard VDI 3813-1 . 126
5.13 Project Structure for VDI 3813 Example Building 127
5.14 Abstract Design Template for Segment Oriented Rooms in Floor

Plan and Project Structure . 128
5.15 Detailed Design Template - Binding-Schema for Segment Ori-

ented Rooms in Project Structure 128
5.16 Abstract Design for a Technology Spanning System - Heating and

Constant-Light Control . 130
5.17 Detailed Design for a Technology Spanning System - Heating and

Constant-Light Control - Binding-Schema 131

6.1 Lighting and Heating in Simplified Form 141
6.2 Occupancy Evaluated Floor Lighting 141
6.3 Generational Distance for Example 1 144
6.4 Spread for Example 1 . 145
6.5 Coverage for Example 1 . 145
6.6 Generational Distance for Example 2 147
6.7 Spread for Example 2 . 148
6.8 Coverage for Example 2 . 148
6.9 Generational Distance for Example 3 149
6.10 Spread for Example 3 . 150
6.11 Coverage for Example 3 . 150
6.12 Generational Distance by P for Example 1 151
6.13 Spread by P for Example 1 . 152
6.14 Coverage by P for Example 1 . 152
6.15 Generational Distance by P for Example 2 153
6.16 Spread by P for Example 2 . 154
6.17 Coverage by P for Example 2 . 154
6.18 Generational Distance by P for Example 3 155
6.19 Spread by P for Example 3 . 156
6.20 Coverage by P for Example 3 . 156
6.21 Generational Distance by pC for Example 1 157
6.22 Spread by pC for Example 1 . 158
6.23 Coverage by pC for Example 1 158
6.24 Generational Distance by pC for Example 2 159
6.25 Spread by pC for Example 2 . 160
6.26 Coverage by pC for Example 2 160
6.27 Generational Distance by pC for Example 3 161

LIST OF FIGURES 7

6.28 Spread by pC for Example 3 . 161
6.29 Coverage by pC for Example 3 162
6.30 Generational Distance by pM for Example 1 163
6.31 Spread by pM for Example 1 . 163
6.32 Coverage by pM for Example 1 164
6.33 Generational Distance by pM for Example 2 165
6.34 Spread by pM for Example 2 . 165
6.35 Coverage by pM for Example 2 166
6.36 Generational Distance by pM for Example 3 167
6.37 Spread by pM for Example 3 . 167
6.38 Coverage by pM for Example 3 168
6.39 Optimization Framework Components and Control Flow 176
6.40 A Simplified UML Model of the Framework 179
6.41 Main Control Window for Setting of Algorithm Parameters . . . 180
6.42 Panel for Selection of Individuals 181
6.43 View for Scalarized Objective Function Values 182
6.44 Multi-Objective View of the Optimization Process 183

A.1 Example 1 - Abstract Design - Constant-Light Control and Au-
tomatic Lights . 189

A.2 Example 1 - A Detailed Design from the True Pareto Front -
Binding-Schema . 190

A.3 Example 2 - Abstract Design - Lighting and Heating Part1 . . . 191
A.4 Example 2 - Abstract Design - Lighting and Heating Part2 . . . 192
A.5 Example 2 - A Detailed Design from the True Pareto Front -

Binding-Schema . 193
A.6 Example 3 - Abstract Design - Occupancy Evaluated Floor Lighting195
A.7 Example 3 - A Detailed Design from the True Pareto Front -

Binding-Schema . 195
A.8 Example 2 with Cloned Repository - A Detailed Design from the

Last Generation of A Randomly Chosen Run 197
A.9 Example 3 with Cloned Repository - A Detailed Design from the

Last Generation of A Randomly Chosen Run 199

List of Tables

2.1 Comparison of Different Branches of Automation Systems 29
2.2 Levels of Device Interoperability 38
2.3 VDI 3813 Symbols Used in the Examples 40

4.1 Comparison of Problems in Section 4.6.1 and 4.6.2 75
4.2 Comparison of Applied Algorithms 76

5.1 Component-Based Mapping between Abstract and Detailed De-
sign Model Types . 86

5.2 Sparse Matrix for Obtaining All Patterns (unfilled) 103
5.3 Example Iterations of Algorithm 6 for Randomly Chosen Func-

tion Block Combinations . 106
5.4 Summary of Variation Operations 121
5.5 Mappings among Functional Profiles and Function Blocks by

Function Block Combinations . 131
5.6 Comparison of Solution Methods including the Proposed Solution

Method for Design Creation Problem 135

6.1 Preferences for Device Mappings by Group Attributes 170
6.2 Average Resource Consumption for Example 2 171

A.1 Example 1 - Detailed Design - Device, Functional Profiles and
Function Block Mappings . 190

A.2 Example 2 - Detailed Design - Devices, Functional Profiles and
Function Block Mappings . 194

A.3 Example 3 - A Detailed Design - Devices, Functional Profiles and
Function Block Mappings . 196

A.4 Example 2 with Cloned Repository - Detailed Design - Devices,
Functional Profiles and Function Block Mappings 198

A.5 Example 3 with Cloned Repository - A Detailed Design - Devices,
Functional Profiles and Function Block Mappings 199

List of Algorithms

1 An Abstract SA Algorithm . 63
2 An Abstract TS Algorithm . 64
3 An Abstract ACO Algorithm . 66
4 An Abstract Elitist EC Algorithm 69

5 Algorithm for Calculation Of Abstract Connection Sensitive Func-
tion Block Combinations . 94

6 Algorithm of Holistic Randomizing Approach Without Precalcu-
lation of All Possible Patterns . 105

List of Abbreviations

ACO Ant Colony Optimization
ADT Abstract Design Template
AUDRAGA Automated Design of Wireless Sensor Networks for Building

Automation Systems
AUTEG Automated Design of Building Automation Systems

BA Building Automation
BACnet Building Automation and Control Networks
BAS Building Automation System
BPC Binding Pair Candidate

C Coverage
CAD Computer-Aided Design
COM Component Object Model
COP Combinatorial Optimization Problem
COTS Components Off-The-Shelf
CSMA Carrier Sense Multiple Access
CSV Component Space Variation

D Directed Variation
DCOM Distributed Component Object Model
DDT Detailed Design Template

EC Evolutionary Computation
ECJ A Java Based Evolutionary Computation Research System
ETS Engineering Tool Software
EVA2 A Java Based Framework for Evolutionary Algorithms

FB Function Block
FBC Function Block Combination

14 List of Abbreviations

GD Generational Distance
GRASP Greedy Randomized Adaptive Search
GUI Graphical User Interface

IEC International Electrotechnical Commission
IFC Industry Foundation Classes
ILS Iterated Local Search
ISO International Organization for Standardization

JCLEC A Software System for Evolutionary Computation Research

KNX Konnex

LNS LonWorks Control Networking Software
LON Local Operating Network

MOCell Cellular Genetic Algorithm for Multi-Objective Optimization
MOCO Multi-Objective Combinatorial Optimization
MOEA Multi-Objective Evolutionary Algorithm
MOGA Multi-Objective Genetic Algorithm

NSGA2 Non-Dominated Sorting Genetic Algorithm 2

OSI Open Systems Interconnection

PC Personal Computer
PLC Programmable Logic Controller
PP Problem Property
PSO Particle Swarm Optimization

R Random Variation
RA Room Automation
RF Radio Frequency

S Spread
SA Simulated Annealing
SD Semi-Directed Variation
SPEA2 Strength Pareto Evolutionary Algorithm 2

List of Abbreviations 15

SSV Solution Space Variation

TS Tabu Search
TSP Traveling Salesman Problem

UML Unified Modeling Language

VDI Verein Deutscher Ingenieure
VLSI Very-Large-Scale Integration

Chapter 1

Introduction

Modern building automation systems (BASs) are large intelligent networks in-
stalled in functional buildings such as office buildings, schools, and hospitals.
The principle motivations are reduction of energy consumption and achieve-
ment of a high level of comfort. As for being energy efficient BASs contribute
to the protection of environment and are employed to control industries such
as lighting, shading, heating, ventilation and air conditioning in a building. A
BAS installation is related to high costs which are compensated after setting
the system in operation after a few years by the amount of saved energy costs.

The installation of building automation systems comprise a chain of indi-
vidual tasks starting from planning, expanding to system integration and in-
stallation followed by commissioning and setting in operation. One of the most
important tasks among these is the system integration for its close relation to
the installation and operation costs. Quality of a system that will be installed
depends on the quality of the components that are planned for the system inte-
gration and on the quality of the automation network that comprises these com-
ponents. Further, system integration does not only have an important impact
on the installation and operation costs, but also on the efforts for maintenance
of the system in its life-cycle.

In system integration, for given requirements, a system configuration
emerges as a software application oriented design of the system with often pre-
fabricated devices. These devices are set in communication relations to form
the functional topology of the building automation system. In the market for
building automation domain, there exists a large variety of devices from dif-
ferent manufacturers. For the achievement of high quality designs in system
integration, this variety must be taken in account which allows a creation of
various design alternatives. These alternatives can be compared to each other
to identify a design with the best quality, if criteria corresponding to the qual-
ity requirements for such a comparison are provided. Hereby, design quality
requirements must be fulfilled at a degree as high as possible. By consideration
of increasing number of devices available on the market, an exponentially grow-

18 Introduction

ing number of design alternatives emerge among which optimal designs would
like to be obtained. This is not trivial and a problem of a high combinatorial
complexity arises. The problem is a multi-objective combinatorial optimization
problem with the task for creation of optimized functional topology designs for
building automation systems.

The objective of this thesis is to develop a method for the generation of
optimized functional topology designs for building automation systems map-
ping specified requirements onto optimized design alternatives. The developed
method takes the design specific characteristics into consideration.

1.1 Background 19

1.1 Background

Automation technologies gain importance increasingly inter alia for saving re-
sources for humans such as energy, time, capital and effort. As the requirements
grow, automation systems become always larger and more complex. In order
to attain the goal of optimal use of resources, especially in large and complex
systems, installation and configuration of such systems, considered as a chain
of tasks, must be performed by effective methods. Further, tasks belonging to
this chain must also cooperate optimally in accordance with each other.

Modern BASs are composed of distributed intelligent components that do
not need central coordinating nodes or computers for function and communica-
tion. There exist wireless and wired BASs as well as hybrid system that consist
of components from both wireless and wired BA technology. Communication
model in wired BAS networks is generally peer to peer and realized over a field
bus.

Components are BAS network nodes that are prefabricated automation de-
vices, with embedded software modules of varying functional types. The build-
ing automation functions are realized by the employed devices that communicate
via network variables implemented on their software modules. The communica-
tion relationships among the device software modules are typically specified in
a software-based design which is the functional topology of a BAS.

The specification of a BAS design for a building is subdivided into designs
for different building structure elements such as room, area, storey. BAS designs
are created based on the requirements defined for individual building structure
elements. For the elements of the same type (e.g. in an office building, 100 office
rooms of an identical floor plan), generally identical requirements are defined.

The principal characteristics of BAS functional topology designs are:

• component-based design architecture with prefabricated devices:
Designs are application oriented and consist of

– physical components such as devices and

– functional components such as software modules.

The intelligence of devices are provided in the logic embedded in the ap-
plications that is represented by algorithms for the realization of BA func-
tions. Applications are provided by the preprogrammed software mod-
ules embedded in the devices. A design represents the binding-schema
of device-specific software modules which is a functional communication
schema of these devices;

• diversity in function coverage of devices: The implementations of
applications on software modules vary by device portfolios of different
manufacturers. Consequently, the distribution of automation functions
onto software modules, thus onto devices, can also be different due to

20 Introduction

the manufacturer specific implementation. Hence, the devices of a man-
ufacturer may provide a different set of functions when compared to de-
vices another manufacturer for serving different user groups to increase
the chances of the manufacturer’s share in the market;

• device interoperability: For valid designs a necessary condition is the
interoperability of devices that are communication partners. This requires
that the software modules of such devices are bound via compatible data
points. These data points allow message passing from the sender to the
receiver ensuring that the messages are semantically identical to both com-
munication partners;

• similar requirement patterns for same type of building structure
elements: Since the requirements exhibit similar patterns for the building
structure elements of the same type, also similar design patterns emerge;

• intermeshed functional connections: The connections among soft-
ware modules are highly intermeshed. Since the designs exhibit scalable
component architecture, one-to-many and many-to-one bindings emerge
frequently among the software modules for the realization of communica-
tion of concerned BA functions.

1.2 Motivation

Current methods for the creation of functional topology designs for BAS are not
capable of creating optimized designs due to two major shortcomings of these
design methods. These are:

• existing device variety of open systems available on the market is not con-
sidered, since a system integrator is used to choosing components of a few
certain manufacturers and evaluation of device interoperability without
tool aid is a complex and time consuming task, and

• criteria for creation of designs are not conceived, that can flexibly be cus-
tomized.

As a result, suboptimal solutions emerge with the devices of a few manufac-
turers from a poor variety, instead of a set of competitive alternative solutions.
Further, results of different tasks related to design engineering such as require-
ment elicitation, planning and design creation are often not in accordance with
each other. A created design may not fulfill the customer’s requirements as
specified in the elicitation phase which requires some iterations of these tasks
and that is related to much additional effort and extra engineering costs.

This explained situation implies that there is a high optimization potential
in the design creation task and for quality of created designs.

1.3 Goals and Use of the Thesis 21

1.3 Goals and Use of the Thesis

If the high optimization potential in the design creation task and for quality of
created designs (as explained in Section 1.2) is considered, following research
question arises:

How can optimized functional topology designs be created
for building automation systems?

In the literature, there exist methods that create optimized system designs for
various domains of engineering applications. These methods must first be in-
vestigated for their suitability for solving the design creation problem. In this
regard, these methods must be capable of automatically creating optimized de-
signs considering the presented principal problem characteristics and finding
optimized design suggestions for the given design optimality criteria. The hy-
pothesis of this dissertation is:

The developed method is suitable for solving the design cre-
ation problem and can automatically create optimized func-
tional topology design suggestions for building automation
systems in reasonable time.

The goal of this thesis is to improve the design creation task for BAS and
to improve design solutions by developing a method for the automated creation
of optimized building automation functional topology designs for given require-
ment specifications from a large number of design suggestions resulting upon
a large variety of design components. This method conceives the creation of
detailed system designs based on functional specification of the system in form
of an abstract design as illustrated in Figure 1.1. Furthermore, this method
must be evaluated using appropriate performance metrics to make a judgment
on its performance in relation with consumed resources such as computation
time, memory usage, processor speed.

The proposed method addresses on the one hand the problem creation of
optimized design suggestions in the presence of potentially large variety of de-
sign components, and on the other hand the modeling of the problem as well
as the evaluation of created designs. For this scope, the structural characteris-
tics of functional topology of system designs are determined in connection with
the competing quality criteria which can guide the design creation method to
optimized design suggestions. Further, this method is conceived based on a
component model that enables a productive coordination of design engineering
tasks according to guidelines provided in standards.

The relevance of the design creation problem is related to the increasing in-
terest and demand of building automation installations. The quality of building
automation installations depend on the quality of building automation system
designs. Optimized building automation system designs can be achieved by us-
ing devices of different manufacturers available in the market. A method for

22 Introduction

the automated creation of optimized designs can be useful to decrease the in-
stallation and maintenance costs. Hence, the automated design creation can be
a useful tool for the planers and system integrators.

Abstract Design

Binding-Schema

sm3

[f4]

sm1

[f1,f2]

sm2

[f3]

sm4

[f5]

sm5

[f6]

device

sm6

[f7]

binding

software

module

sm7

[f8]

field bus

Detailed DesignMapping

f8

f9

f1
f5

f7

f6

f2

f4

function

block

abstract

connection

f3

sm8

[f9]

Figure 1.1: Creation of a Detailed Design by Mapping

1.4 Solution Concepts

The proposed method for the creation of optimized designs consists of:

• representation of the designs containing design components such as func-
tion blocks that depict functions, software modules, devices; relevant prop-
erties and attributes of these components for the design creation, and
communication relationships among components. This representation is
subdivided into two abstraction levels:

– abstract design: a functional model specification of the required BAS
created for a given set of requirements which is defined independent
from platform or manufacturer details, and

– detailed design: a platform and manufacturer dependent specifica-
tion of the required BAS, the major outcome of the design creation
method;

• design optimality criteria which are essential for the quantification for the
suitability of the created detailed designs according to different criteria as
problem solutions;

1.4 Solution Concepts 23

• algorithms that map the abstract designs onto detailed designs by com-
posing detailed designs using the platform and manufacturer specific com-
ponents and that search for optimized detailed designs according to the
optimality criteria.

Moreover, for the mapping of abstract design onto detailed design alterna-
tives, certain knowledge on the components is necessary. The knowledge such as
the identification of components that realize the requirements and various com-
ponent properties which are necessary for the interconnection of components
and the evaluation of created detailed designs are provided by a component
repository.

In this thesis, a design creation method is proposed which considers the
characteristics of the BAS functional topology designs as introduced in Section
1.1. The abstract designs are specified according to the German standard VDI
3813 [The11a, The11b] by the used abstract design generator. Since the cho-
sen component repository consists of component entries that are conform to this
standard, mapping of the abstract design elements (function blocks and abstract
connections) onto detailed design elements (software modules, bindings and de-
vices) is possible. In addition, it is also possible to evaluate the mapped detailed
design alternatives for various objectives such as validity of the design (mapping
of abstract connections onto bindings which requires the interoperability of the
devices), device costs, and additional quality criteria.

The design creation problem is a combinatorial optimization problem with
multiple objectives. Different design candidates can be put in comparison for
these objectives and competitive design solutions are determined using a method
introduced by Vilfredo Pareto. Using this method different trade-off solutions
for different criteria can be achieved. Thus, by handling the design creation
problem with Pareto approach, the problem is identified as a multi-objective
combinatorial optimization problem. Since, there exist a very large number
of design alternatives; the search for optimized designs is an iterative process.
In each iteration, using a population-based approach, new design alternatives
are planned to generate by using problem-specific operations, which are better
than the design alternatives obtained by algorithms that apply a blind search.
Best design alternatives with some diverse solutions are entitled to undergo next
iterations and after a number of iterations, optimized trade-off design solutions
emerge.

The developed design creation method can be employed by planers or system
integrators who can specify standard conform abstract designs. For a given
abstract design, a set of detailed design trade-off solutions as detailed design
suggestions are created. The resulting set of trade-off solutions may further be
limited by the user’s definition of priorities for the design creation objectives.
The user can consider the best solutions and chooses a solution of his favor. The
chosen design solution may be downloaded in the design database of the system
as a system configuration.

24 Introduction

1.5 Organization of the Thesis

This thesis consists of three parts:

1. an introduction to the design engineering in the BA domain and the de-
sign creation problem, a theoretical consideration of the problem and a
presentation of candidate algorithms to solve the problem as well as a
state-of-the-art analysis for candidate solution methods, and choice of an
algorithm;

2. presentation of the proposed solution method for the design creation prob-
lem with problem-specific adaptation of the chosen algorithm accompanied
with highly BA domain relevant practical considerations; and

3. validation of the proposed solution method by performing an empirical
analysis on practical representative problem instances, presentation of
results obtained with different algorithms and parameter settings, and
presentation of the optimization framework that is conceived and imple-
mented to perform the validation followed by conclusions.

In Chapter 2, 3 and 4 the first part is presented. In Chapter 5 the second
part and in Chapter 6, and 7 the third part are presented respectively.

Chapter 2

Design Creation for Building
Automation Systems

This chapter provides the background information for the design creation of BAS
as the main focus handled in this thesis. A basic introduction of the main frame
of the problem in its specific domain is presented including crucial properties of
automation systems for the problem.

2.1 Background

Building Automation Systems, also called Building Automation and Control
Systems (BACS or BAS) attain goals such as reduction of energy production
and consumption, providing maximal comfort, security and a flexible change of
use in functional buildings, e.g. office buildings, schools, hospitals, etc. These
goals are attained by BAS components that realize automation functions from
various industries such as HVAC, lighting, safety alarms, access control, etc.
as illustrated in Figure 2.1 coupled to overall system functions for operation,
maintenance and management. Buildings equipped with BA technologies are
also called intelligent buildings. In such buildings systems with focus on user
requirements are provided to increase the productivity in the working environ-
ment. In the past industries of the building automation were designed and
operated as individual tasks performed isolated from each other. Currently,
building automation industries can be used integrally due to the development
of decentralized communication systems.

Figure 2.2 illustrates the general BAS communication model according to
the international standard ISO 16484-2 [Int04] given by the amount of sys-
tem components present in each level in the automation pyramid for BAS
[The99, KHT00]. This model consists of three levels of automation hierarchy
distinguished by the components assigned to each level for the type of realized
system functions. These functions realize the requirements on various indus-

26 Design Creation for Building Automation Systems

tries1 such as heating, ventilation, air-conditioning (HVAC) , lighting, blinding,
access control, etc. Moreover, the functions are realized using software modules
provided on devices such as sensors, automation stations, management comput-
ers or elements with interfaces connected to the automation system. A software
module or a functional profile [RFK00, BDR00, Int12b] is a software program
implementing one or more functions as an element (component) of a BAS and
communicates with interconnected software modules via interfaces.

Figure 2.1: Functions in BAS [KNSN05]

In the automation pyramid the field level accommodates components that
collect information from the physical environment of the installation location.
This information is transformed into a representation according to a specific
communication protocol and made available for the system to be transmitted
and processed [KNSN05].

The automation level consists of components that autonomously execute the
embedded algorithms to locally control the environments in various building
structure elements e.g. the whole building, a storey or a room. The necessary
information here is provided by communication with the components of the
field level via logical connections. Hereby, the transmitted information can also
be shared globally such as the measured value for the outdoor temperature.

1In the literature industry is also called “aggregate” [DS99] and in the standard VDI 3813-2
[The11b] “trade”.

2.1 Background 27

Information exchange within the same level is called horizontal communication.
Information from the automation level may be transmitted to the management
level e.g. for the storing some process values to perform analysis for e.g. energy
management. The information exchange between different levels is called vertical
communication. The amount of components in the automation pyramid grows
from up to bottom, whereas the amount of accumulated information grows from
bottom to up, such that at the management level data from the whole system are
available. A vertical communication access is performed generally on demand
and is related to the information situated in a single node.

Monitoring and
Operator Unit /

Station

Programming
Unit

Data Interface
Unit

Dedicated
Special
System

Dedicated
Special
System

Data Interface
Unit

Data Processing
Device / Server

Station

Application Specific
Controller

Room
Operation Unit

Controller / Automation
Station / Application
Specific Controller

Local Override /
Indication
Devices

Communication
Interface / Controller /

Application Specific
Controller

Data Interface
Unit

M

Lx

Programming
Unit

Monitoring and
Operator Unit /

StationProcessing
Functions
Network

Management
Functions
Network

Field
Network

M
a
n
a
g
e
m

e
n
t

A
u
to

m
a
ti
o
n
 /

 C
o
n
tr

o
l

F
ie

ld
 D

e
v
ic

e
s

presence temperature
window
contact

luminance sunblindsradiator

Interconnections within functional levels

Interconnections among functional levels

light dimming

Figure 2.2: Automation Hierarchy According to ISO 16484-2 [Int04]

At the management level the available data can be used to invoke alarms for
critical states in case of system faults. Since the processes at the field level are
distributed on many different components with own processors, a simultaneous
processing is carried out with advantages of great importance such as an uninter-
rupted operation of the rest of the system in case, if a failure in a component or
a subsystem occurs and maintenance operations must be performed; reduction
of the risk of system overloading, and reduction of latencies [KNSN05].

In spite of the introduced three level system model in Figure 2.2, as a conse-
quence of growing complexity of requirements on functionality of devices, many
systems in practice show an increasing trend in carrying the functionality and
intelligence of the automation and even management level to the field level, and
employ field devices with controller functions. Currently, most of the buildings

28 Design Creation for Building Automation Systems

with building automation installations comprise control networks for each floor
individually connecting sensors and actuators installed for the rooms.

The application model of a BAS is a logical network of basic data repre-
sentations called data points. The network of data points reflects the inter-
communication of physical processes performed by the devices. Data points
are encapsulated in a node, and depending on the realized functionality, several
data points of a node are aggregated to a software module to provide high-level
system integration. Moreover, this enhances the functional modularity of the
system and even very complex applications can be realized as a composition
of the software modules. The communication of the data points are realized
over the encapsulating nodes that are physically connected to the field bus (cf.
Figure 2.3) [KNSN05]. Each data point is related to the realization of a certain
application e.g. occupancy detection. Data points are in two special forms:
output and input data points. Output data points provide useful data to the
input data points via interconnecting bindings. By bindings among the data
points, thus the system components, the logical communication in the network
is performed for the realization of the corresponding applications.

Figure 2.3: Communication of Data Points

Table 2.1 introduces a comparison among different branches of automation
systems for aspects such as complexity of system design and efficiency of the
design creation. The complexity of an automation system design increases by
growing number of employed devices, and requirements on real-time capability
and operation safety. The existence of design patterns in an automation domain
is particularly of great importance for an effective design creation with focus on
design costs per device.

One of the most important characteristics of BAS is that installations are
very often for large volumes e.g. high-rise buildings or building complexes,
etc. Designs consist of ten thousands of devices [BDR00], which is possible,
since a whole system is divided in subsystems installed e.g. for rooms and for
different industries. Moreover, requirements on BAS related to real-time and
operational safety are lower compared to the process and factory automation,
and automotive engineering. In addition, most of the required functionality can

2.2 Engineering of Building Automation Systems 29

be covered by similar design patterns. Time and financial resources provided
for the design creation are limited for system integrators. In a BAS similar
design patterns can be observed particularly in designs for rooms. Moreover, a
significant portion of automation functions in a building is performed in rooms
and is called room automation (RA). According to that, design of a whole system
is subdivided in the designs for autonomous functional units such as rooms.
Designs of similar patterns correspond to a similar set of requirements and are
in general potential for saving effort in design creation for a whole project by
using inheritance. In practice large buildings of highly complex systems may
contain up to 20 different room automation designs [Kra06].

Due to the huge variety of use cases and high requirements for real-time and
operation safety, the systems of process and factory automation, and automotive
engineering are designed individually.

The size of an office communication network varies often in time, since com-
puters are very often added into or removed from the network. Hence, network
configuration is modified, whereas automation networks remain in the initial
configuration for years, which is created using design tools.

Complexity
No. Devices Capacity Requirements

Efficiency
Patterns Costs Service Life Databases

Building Automation < 2.104 small medium
often medium 10-30 yrs yes

Home Automation < 100 small low
rare small 5 yrs yes

Process and < 1000 small high
Factory Automation rare large 10-30 yrs partially
Automotive < 500 small very high
Engineering rare medium 10 yrs generable
Office < 1000 large low
Communication rare small 10 yrs no

Table 2.1: Comparison of Different Branches of Automation Systems for: (upper
raws) Number of Devices, Network Capacity, and Requirements for Real-time
Capability, Operational Safety; (lower raws) Existence of Design Patterns, De-
sign Costs and Mean Investment for a Device, Service Life Time of Devices,
Existence of Databases for Managing Design Information [Plo07]

2.2 Engineering of Building Automation Systems

In the literature there exist various approaches for the engineering of a BAS.
In [Sch98] the system integrator can assemble various functions to complex BA

30 Design Creation for Building Automation Systems

applications. In [Fis02] a BAS emerges by following a chain of chronologically
ordered tasks, called engineering. Various stakeholders are involved in these
tasks [PDRK11] initiated by requirement elicitation as explained in details in
[Run10, RF11, RFHS10, RDFK08]. In the standard ISO 16484-1 [Int10] for BAS
these tasks start from the planning task, followed by implementation planning,
and commissioning (setting in operation) as illustrated in Figure 2.4. These
tasks include steps inter alia

1. choice of the communication systems;

2. planning of systems for building structure elements such as rooms and
creation of functional descriptions;

3. choice of software modules on devices, if available; unless, implementation
of new software modules, to realize the functional descriptions and services;

4. design of a system network topology and assignment of logical addresses
to devices;

5. specification of communication relationships (bindings) among the system
components, setting appropriate operation parameters; and

6. commissioning.

Planning

Tendering

Implementation Planning

Functional Description

Site Supervision

Specification of Communication

Relationships

Topology of Communication

Systems

Software Application

Development

Binding

Commissioning

DocumentationMounting

Control Circuit

Diagram

Project

Planning

Project

Implementation Time

Figure 2.4: Engineering by System Integrators between Planning and Imple-
mentation [Fis02]

The tasks directly related to the system configuration are printed in ital-
ics in Figure 2.4. System configuration is software application oriented and
particularly related to component choice or implementation, and component
communication.

2.2 Engineering of Building Automation Systems 31

Configuration of BAS is the focus of this thesis and called design creation.
Design creation can be performed off-site without need for an existing plant
by off-site configuration tools. In this task, scale of the system is presumed,
thus realizing devices are selected, applications for devices are developed or
existing applications on devices that realize given requirements in the planning
task are identified and set in communication relationship. A created design can
be downloaded by these tools into the mounted system and devices can be set
in operation in a task called commissioning. At this step devices are assigned
the previously determined logical addresses, communication relationships and
operation parameters.

By a commonly applied installation scenario called the Engineered System,
the separation of design creation task from commissioning reduces the time
spent at the site where the system is mounted. Checking of system operation
for correctness and for correct system scaling is thus performed on the mounted
system. Particularly, in manufacturer spanning system realizations, the system
may not exhibit the desired behavior due to not interoperable function imple-
mentations on communication partner devices. This implies that decisions made
in the design creation task must be revised. This does not only result in ex-
tra financial costs due to retrospective engineering efforts, but also in delay for
handover of the system solution.

By additional facts, design creation is a task of a high relevance for a BAS
installation: According to [KHT00], the cost for design creation is the highest
portion of the total costs of an automation project with 35 percent in its life-
cycle. Moreover, problems related to the design creation are according to a
study of University of Technology Dresden 70% of the problems encountered in
a BAS installation [PV05, KNVT06].

The prefabricated devices of the BAS domain provide various applications
that can be activated and configured via device parameters, which brings the
advantage that the applications can be reused and application development at
the phase of configuration is redundant. Based on this fact device manufacturers
develop devices and bring to market as hardware together with embedded appli-
cations. This implies that the development of devices and applications (Domain
Engineering) is independent of the composition of the applications to create
designs (Application Engineering) as depicted in Figure 2.5. This fact makes a
reduction of the time consumed for the configuration per device possible.

Traditionally, industries are designed separately in most buildings and are
often realized by separate contractors for different domains, who have employed
systems of different manufacturers or even different communication technologies.
This is due to the separate historical development of systems from different do-
mains [Fis02]. Hereby, each manufacturer is specialized for a certain application
field or industry and most manufacturers cannot provide a complete variety of
products that cover all applications that can be required. Moreover, a relatively
small number of manufacturers support multiple industries with own product

32 Design Creation for Building Automation Systems

Figure 2.5: Cooperation of Application Engineering and Domain Engineering
[Unia]

lines [KNSN05]. Such single manufacturer systems (or homogeneous systems
according to [Int04]) are not involved in the interoperability problem among the
components; they are however limited to the functionality supported by only
the manufacturer’s components. As a consequence, only few devices realize each
required function, which implies that the number of alternative devices is very
limited. On the one hand, this leads to offers for system solutions at relatively
high price levels. On the other hand, in case of a system extension due to e.g.
modifications in the building structure, the customers are constrained to use
additional components of the same manufacturers, which leads to a monopoly
of these few manufacturers.

Manufacturer spanning designs are demands of the customer, since by cre-
ation of designs with components from different manufacturers, designs of new
functionalities can be achieved that can be more suitable than the ones real-
ized by currently known designs. Manufacturer spanning design creation allows
furthermore an escape from the monopoly of a certain manufacturer for system
extensions or for maintenance. Based on this, it also provides the installed sys-
tem a significant advantage of being capable of a life time evolution and can
decrease the ownership costs [KNSN05, Fis02].

Moreover, a collective use of components such as sensors is possible by a
holistic consideration of the system consisting of multiple industries. The main
scope hereby is the common usage of components providing information needed
by functions which are realized by multiple industries at the same time, instead
of designing industries separately by using a single component per function.
This approach does not only lead to more economical solutions due to reducing
the number of components, but also to use the resources needed for the sys-

2.3 Network Protocols of Building Automation Systems 33

tem operation more efficiently to take an additional advantage of energy-saving
potential. An example for a commonly used component is an occupancy sen-
sor that can be used by lighting and heating simultaneously, to turn off the
lights and radiator, if the room is unoccupied; and turn them on, if the room
is occupied again. By an efficient use of resources, building operation costs can
be reduced and new functions can emerge. Realization of this concept with
software modules of prefabricated devices is called innovation by combination
[KDP02, RFK00]. Holistic consideration of industries in the design creation
task allows information exchange among the industries which results in a better
proportion of uses/costs. In addition, by combining existing applications, new
applications can emerge and the variety of applications becomes larger leading
to the growth of the market.

For design creation, the interoperability among communicating devices or
systems is an essential condition. Systems were proprietary in the past having
own protocol implementation of the manufacturers. As a consequence, systems
emerged that consist of subsystems from different manufacturers as island so-
lutions that do not cooperate for a common realization of functions. In order
to achieve interoperability among devices from different manufacturers, such
devices must implement identical communication protocols. This is a minimal
and a necessary, however not a sufficient condition for device interoperability.
Further conditions for device interoperability are explained in Section 2.5.

2.3 Network Protocols of Building Automation Sys-
tems

IEC defined terms from incompatibility to interoperability and interchangeabil-
ity for allowing devices of systems from different manufacturers to interoperate
and cooperate using open network communication protocols.

A network communication protocol is an agreement of rules and data formats
by which an unambiguous communication of networked devices is possible. The
most common network communication model is OSI Reference Model [DZ83]
which subdivides the communication of implemented open systems in seven
layers as presented in Figure 2.6. An overview for the communication protocols
of the BAS can be gained in [KNSN05] in which building network protocols for
LON platform [Int12a], BACnet [Int12b], KNX [Int06a, Int06b, Int07a, Int07b,
Int07c, Int07d, Int07e] and EnOcean [EnO] are compared.

The first three protocols support the transmission media twisted-pair, coax-
ial cable, power-line, RF, infrared or fiber optics which implement the CSMA
medium access mechanism. The openness of all four protocols allows diverse
manufacturers to implement own systems. The application and presentation
layers are for the design creation of prior importance, since the representation
of device application profiles and network variables are conceived in this layer.
In functional buildings LON systems are installed more often than KNX sys-

34 Design Creation for Building Automation Systems

Application
Layer

OSI Layers LON BACNet KNX EnOcean

Presentation

Layer

Session

Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Application Layer

Network Layer

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application and
Presentation Layer

Network Layer

Data Link Layer

Physical Layer

Application and
Presentation Layer

Session Layer

Network Layer

Physical Layer

B
V
L
L
 U

D
P
 IP

ISO

8802-2

Type1

ISO

8802

-3

ARC

NET

EIA

485

EIA

232

L
o
n
ta

lk

MS
TP

PTP

Transport Layer

Authentication

Transaction Control Sublayer

Link Layer

MAC Sublayer

Figure 2.6: Comparison of Various Network Communication Protocols Based
on OSI Reference Model [DZ83]

tems and due to the increasing relevance of energy harvesting automation via
wireless systems EnOcean systems gain a growing impact.

2.4 Existing Solutions for Design Creation

There exist graphical data flow programming tools that are developed according
the standard IEC 1131-3 [Int13] and can implement required functions using a
runtime library on the network nodes. This standard is a fundamental guide-
line for modern graphical PLC programming languages. Currently, the design
creation task in the BA domain is supported by system integration tools such
as ETS [KNX], LonMaker [Ech], ALEX [Spe], NL220 [New], etc. These tools
provide utilities for the creation of a physical and logical network topology, as-
signment of logical addresses for components, parameterization of devices via
device plugins, and composition of applications by selecting software modules
provided on the devices and setting them in communication relations via bind-
ings.

For acceleration of design creation in a building project that should consist
of ten thousands of network nodes, tool support is provided (e.g. by the tool
LonMaker) that allows replication of design schemes for rooms or other building
parts (floors, storeys, etc.) with identical automation requirements. Another
practical solution for the facilitation of design creation for large projects is pro-

2.4 Existing Solutions for Design Creation 35

vided by NL220 that introduces a pattern library for designs. By the increasing
number of projects for which the tool is employed, the number of patterns
grows due to the creation of a growing number variants for each initial pattern.
Further, an order for the patterns e.g. following the notion of inheritance or evo-
lution of patterns is not followed and the emerging patterns are associated with
certain device types [PDRK11] limited to the product lines of a few manufactur-
ers. This fact introduces the library scaling problem [Big94] which considerably
complicates the management of such a pattern library. A general approach for
the library scaling problem is proposed in an early work in [CEG+00]. An ap-
proach for requirement engineering of BAS that can generate requirements by
using a few generic composition plans that does not consider storing all possible
solutions in the library is proposed in [PDRK11].

Currently, many tasks required for the creation of designs are performed by
the tool user (the system integrator) manually based on his experience limited
to the devices of a few manufacturers. These tasks concern:

• manual choice of devices from manufacturer catalogs that realize the re-
quired functions,

• identification of realizing software modules on the chosen devices,

• thereby providing a good distribution of functions onto devices such that
the price sum of devices is reasonable,

• determining the input and output data points of the devices (provided on
device software modules) that are related to the required application,

• creation of bindings between output and input data points, if implementing
devices are interoperable; hereby an evaluation of device interoperability is
supported only partially for a chosen pair of output and input data point
by comparing the syntax of network variables.

If the existing device variety on the market is considered, the complexity of
the design creation task for good quality designs is often higher than a system
integrator can manage in a limited amount of time and for limited financial
resources. This complexity grows with the growing variety and multiplicity of
functional requirements.

Nevertheless, there exist further tools provided by device manufacturers and
can automatically perform some of the design creation tasks such as assignment
of logical addresses and component composition. These tools, however, create
designs with manufacturer-specific product lines and do not support manufac-
turer and industry-spanning design creation.

Beyond the listed manually performed steps, there are other shortcomings of
the existing design creation methods for further aspects considering the design
creation in its business process chain:

36 Design Creation for Building Automation Systems

1. accordance with the results of the related tasks: System designs
have been created using the information available in the related tasks of
engineering without support for common definitions and rules to exchange
information. Besides, the results of the individual tasks are used to be ex-
changed as printed documents. In particular, results of related tasks such
as building model made available by the architect and plans for differ-
ent industries conceived for different locations in a building have solely
been handled as such documents, while some of these results have been
available as data that can be interpreted by tools (where available) of con-
sequent tasks. Due to the absence of common terms and rules and due to
a handling of the results as documents different or even conflicting inter-
pretation of same artifacts by roles involved in the related tasks emerged.
This led to a gap between the user requirements and the integration re-
sults, for which in turn a cost intensive and elaborate re-engineering has
been necessary;

2. price and quality: The decisions made in the planning task have of-
ten been subjective and the results of planning have been manufacturer
specific. Additionally, the industries have been planned separately. As
a consequence, designs of different industries are created with multiple
fieldbus technologies for which additional amount of cabling have been
necessary. Moreover, the potential of using common components among
multiple industries has not been used. These two facts have been reason
for an added amount of installation costs. Creation of industry spanning
designs to obtain economical installations and to better profit from an
energy saving potential has not been common.

Moreover, the variety of devices, thus design solutions have often been
limited to the product line of a single manufacturer. Also system integra-
tors have been accustomed to create designs with the devices of a very
limited number of manufacturers. This led to a very limited variety of
design alternatives, and thus to a very narrow scale for design quality and
price sum of devices used in a design;

3. reusability of the system design solutions: Due to the lack of tool
supported data exchange among the individual tasks as mentioned in 1,
associations among the artifacts of the results of the tasks such as planning
results and design creation results have not been available in a data model
or in a data format. This has resulted in the fact that for similar projects,
all tasks had to be performed from the scratch, instead of making the re-
sults of previously performed tasks available and reusing them, which have
caused high costs and have been highly elaborate for the design engineers.
BAS have a high potential for the reuse of existing design creation results,
since system designs of the BAS domain often consist of repeatedly used
patterns (cf. Section 2.1).

2.5 The Device Interoperability Problem 37

Guidelines that introduce common terms, notions and procedures can al-
low derivation of new methods to perform the individual tasks of engineering
in accordance of all roles involved throughout the life-cycle of a building au-
tomation system. Such guidelines can particularly be helpful to eliminate the
shortcomings of the existing design creation methods and to provide a basis for
coordination among the tasks of engineering.

In University of Technology Dresden in Germany [TU] the research project
AUTEG consisting many subprojects was conducted in cooperation with Hel-
mut Schmidt University (University of the Federal Armed Forces Hamburg in
Germany) [HSU] that focused on topics such as requirement engineering, plan-
ning, intelligent component repository, automated design for building automa-
tion systems and control network performance together with partners from the
industry. This project was founded by German Federal Ministry of Economics
and Technology.

Achieved competency in AUTEG project related to BASs including the spec-
ified topics is extended in a follow-up project AUDRAGA that was founded
by German Federal Ministry of Education and Research for automated system
designs and automated device placement for wireless sensor networks and for
hybrid (wired and wireless) systems. Information related to these projects and
project partners can be consulted in the web resource [Unia].

2.5 The Device Interoperability Problem

The task of creation of designs with prefabricated devices of multiple manufac-
turers is confronted with the interoperability problem of the devices that should
intercommunicate and cooperate. This requires further properties or agreements
beyond the communication standards arranged in profiles for various applica-
tions. The properties for device interoperability for communication of two or
more devices to achieve a desired functionality are introduced in Table 2.2.

For two devices to be compatible to each other same communication pro-
tocol must be used by both devices and they should not interrupt each other’s
operation. In addition to this, the notion interconnectable requires the use of
the same services of the protocol for accessing the variables of the application.
If devices are interworkable, they must be able to exchange data and variable
definitions must be the same, thus these definitions must syntactically match.
Hereby, mapping of variables on the communication system must be the same
for both devices. If devices are interoperable, the semantics of the variables and
the application functions are the same, so that they can cooperate for one or
more distributed applications. Devices are interchangeable, if they possess the
same dynamic behavior, which concerns e.g. the update rate of the measured
values or the cyclic time of controllers [DS99]. Marco Eichelberg and Klaus
Kabitzsch et al. explain further details on device interoperability that can be
consulted in [EK10].

38 Design Creation for Building Automation Systems

In
c
o
m
p
a
ti
b
le

C
o
m
p
a
ti
b
le

In
te
rc
o
n
n
e
c
ta

b
le

In
te
rw

o
rk

a
b
le

In
te
ro

p
e
ra

b
le

In
te
rc
h
a
n
g
e
a
b
le

Protocol (Layer 1-7) same same same same same

Protocol mapping and access to variables same same same same

Definition of variables same same same

Semantics of variables and application function same same

Dynamic behavior same

Table 2.2: Levels of Device Interoperability [DS99]

2.6 Guidelines for Planning of Room Automation
Systems

Besides automation functions in rooms, room spanning or system wide functions
such as energy management and optimization functions related to all rooms or to
a group of rooms are frequently parts of a room automation system. According
to experiences gained in the field of RA, as yet, clients, planers, system inte-
grators have often been unclear about the requirements related to the functions
of different tasks of engineering. As a consequence, the concrete realization of
the system integrators has been deviating by large from the client’s imagination
of the system. Clients have frequently been complaining and elaborate reworks
have been inevitable (cf. Section 2.4). Approved technical rules for room au-
tomation have been hitherto missing; in particular there have been no guidelines
to allow the definition of industry spanning and interoperable designs.

Beyond the lack of tool cooperation for different tasks of engineering via
data exchange, the major responsible for this situation has been the lack of the
definition of useful guidelines for all phases of engineering and operation of BAS,
which caused the conception of further standard VDI 3813-1 [The11a] and VDI
3813-2 [The11b] 2. These standards enable a quality improvement of results, in
both planning and execution phases of BAS engineering.

VDI 3813 is the basis for the planned international standard ISO 16484-
4:Applications and provides guidelines for RA by focusing on room utilization
and room control functions. These guidelines allow:

• the definition of functional subsystems for possible structural elements of
a building such as building, floor, corridor, room, etc. according to a
shell model as presented in Figure 2.7 with focus on room as a functional

2University of Technology Dresden, Germany has made an important contribution to the
standard VDI 3813 in cooperation with engineers from the industry.

2.6 Guidelines for Planning of Room Automation Systems 39

autonomous system;

• descriptions for common function semantics of a room automation system
for all roles involved in the engineering and operation tasks;

• representation for the function semantics and function communication re-
lations in form of a communication schema of function blocks with each
function block representing a room automation function with own terms
and notions, and connections among function blocks representing commu-
nication relations;

• an industry-spanning,

• a technology and manufacturer neutral specification of the room automa-
tion functions; and

• the planning of customized systems due to function blocks representing
atomic functions.

Figure 2.7: Shell Model According to the Standard VDI 3813-1 [The11a]

In [The11b] the definition of function blocks include additionally ports that
are represent the data exchanged among components. A port is to be speci-
fied with names that are related with names according to conventions implying
abstract semantics of the data exchange. This abstract semantics is a useful
utility for allowing a specification of software modules of devices that can, as a
consequence, interoperate with each other.

Symbols borrowed from the standard VDI 3813 that are used in the examples
are presented in Table 2.3. These symbols are used to complete functional
schematics of a BAS and do not represent physical end elements in the context
of this thesis.

Sensor function block “present detection” in Table 2.3 detects room occu-
pancy by persons automatically and forwards the information that determines
either the “present” or the “absent” state to other function blocks, the responses

40 Design Creation for Building Automation Systems

of which depend on room occupancy state. Sensor function block “air temper-
ature measurement” is used to measure air temperature in a room, which is
an input information for heating and cooling functions. Sensor function block
“brightness measurement (indoor)” is used to measure illuminance in a room
and to determine illuminance of daylight. This information is required by light-
ing and shading functions. Sensor function block “window monitoring” is used
to detect the open and close state of a window, which is required particularly
in heating and cooling functions [The11b].

Symbol Function

Presence Detection

Air Temperature
Measurement

Brightness Measurement
(Indoor)

Window Monitoring

Actuate Light

Signal Presence

Select Room Utilization
Type

Adjust Temperature
Setpoint

Light Actuator
(Dimming)

Light Actuator
(Switching)

Control Drive Actuator
(Radiator)

Table 2.3: VDI 3813 Symbols Used in the Examples

Operator function blocks “actuate light”, “signal presence”, “select room
utilization type”, “adjust temperature setpoint” in Table 2.3 transform a manual
user actuation to output information required by application functions as input
[The11b].

Actuator function blocks “light actuator (dimming)” and “light actuator
(switching)” in Table 2.3 dim and switch lighting equipment respectively as re-
sponse to input information received from automatic function blocks or from
operator function blocks. A light actuator function corresponds to a lighting
circuit (also called a pool of light). Actuator function block “control drive ac-
tuator” controls valves, air dampers, fans or other control equipment depending
on the input from operator or application functions such as air quality control
or room temperature control [The11b].

In Figure 2.8 a room automation plan for lighting functions in an office room

2.7 Quality Requirements on BAS 41

Figure 2.8: Constant-Light Control and Automatic Lights

is illustrated. The plan for lighting consists of two pools of light, in which the
first pool provides constant-light control of halogen lamps over the desktop.
For comfort and productivity, a constant level of sight in working conditions is
provided by dimming the lamps up or down, depending on the changes of the
indoor light level by the sunlight shining through the windows or sunblinds. The
second pool of light provides the automatic light control of the floor lamp. Both
pools need the information about the room occupancy state for the lamps to be
switched on or off, which can be detected by an occupancy sensor or toggled by
an occupancy push-button. Additionally, the lights are planned to be manually
operable by switches or by switching among different scenes via a scene panel.

The automation plan is given in form of a communication schema with man-
ufacturer and BA technology neutral function blocks interconnected via (incom-
ing and outgoing) ports related to the realized functions. Function blocks in an
automation plan serve as placeholders for implementing devices of specific plat-
forms and manufacturers, and ports are placeholders for the datapoints of the
devices and software modules accordingly. Given a room automation plan, a
system design can be created by determining the devices that implement the
semantics of the function blocks and ports, and setting them in communication
relations via datapoints.

2.7 Quality Requirements on BAS

Quality is defined in ISO 9000 [Int05] as a degree to which a set of inherent char-
acteristics fulfills requirements. The non-fulfillment of a requirement is called
non-conformity. Quality requirements on BAS imply the requirements on qual-
ity, from which the requirements on the quality of the design creation method
can be derived (cf. Figure 2.9). Some of the requirements on a BAS derived

42 Design Creation for Building Automation Systems

from [BBB+04, Spe08, KHT00, MHH07] are:

Quality of Building
Automation System

Quality of Design
Quality of

Automated Design
Generation

implies implies

Figure 2.9: Derivation of Quality Requirements for the Design Generation

• energy efficiency and costs: A BAS installation must serve environ-
mental protection. The installed system must be energy efficient and
reduce the amount of consumed energy in building, and save costs for
building services;

• comfort: The comfort of building inhabitants or building users must be
guaranteed;

• safety: Safe, optimal and a secure operation must be guaranteed;

• maintenance: The effort for maintenance must be low and maintenance
steps must be schedulable by which a long building life time can be pro-
vided. A BAS installation must not be bounded to the product line of a
device manufacturer and must be expandable with low effort;

• acceptance: A BAS must be accepted by the user for aspects such as
usability, ergonomics, aesthetics and installation costs. A comprehensive
overview of the operating state must be provided.

2.8 Quality Requirements on Design

This thesis focuses on functional and function based communication aspects of
RA designs and this section presents the quality requirements related to these
aspects. The requirements on design quality are derived from the requirements
on BAS and from the guidelines presented in the standards ISO 16484-1 [Int10]
and VDI 3813-1 and VDI 3813-1 [The11a, The11b]. These requirements can be
subdivided in requirements related to planning and implementation which are
introduced in Section 2.8.1 and 2.8.2 respectively. Hereby, planning refers to the
tasks corresponding to planning and project implementation refers to the tasks
corresponding implementation illustrated in italics in Figure 2.4.

2.8.1 Quality Requirements Related to Project Planning

A room automation plan reflects the functional requirements specified for a
certain room. In the planning task, a complete and correct transformation of
functional requirements to room automation plans must be provided. According

2.8 Quality Requirements on Design 43

to this, a room automation plan must meet the following quality requirements,
which is essential for the creation of correct and good quality designs:

1. requirement compliance of planning: The sum of function blocks in
a room automation plan must cover the functional requirements and the
specification of each such functional block must be conform to VDI 3813-2
with its ports. For this condition the semantics of specified function blocks
and ports must match the semantics of the same elements provided in the
standard;

2. correctness and completeness of function communication rela-
tions: Function blocks must be connected via semantically matching
ports. This requires in turn the interoperability of the interconnected
function blocks. All communication relations that are necessary and suf-
ficient for the realization of a specific application must be represented as
connections among related function blocks.

2.8.2 Quality Requirements Related to Project Implementation

In order to create valid and good quality designs for a given room automation
plan which satisfies the quality requirements 1 and 2, additionally, following
quality requirements must be met:

3. requirement compliance of implementation: A created design must
contain devices which implement (or cover) in sum all function blocks
specified in a given room automation plan. Each such device must imple-
ment software modules that are associated to semantics that match the
semantics of the covered function blocks by semantically matching ports
to related data points;

4. correctness and completeness of design: The devices that cover the
interconnecting function blocks must be interoperable to realize the con-
nections among the function block ports by bindings among software mod-
ule data points for the correctness of a design. This requires in turn correct
setting of operation parameters for software modules to be adjusted to the
required operation conditions. For the completeness of a design, devices
must have all data points connected by bindings that are necessary and
sufficient for the realization of the required functions;

5. design costs: The price sum of devices used in a design is denoted as
design costs for simplification, although further costs for an installation
result such as wiring. The design costs have an important impact on the
affordability of a design and acceptance by the customers in practice. BAS
installations are required to be as economical as possible for which devices
of low prices that satisfy the rest of the quality requirements ought to be
chosen.

44 Design Creation for Building Automation Systems

In order to enable a design quality evaluation, the introduced requirements
can be quantified. A design can be assigned a degree of fulfillment of the in-
troduced requirements for design quality evaluation. This can be achieved by
quantifying the fulfillment of each requirement. Hereby, fulfillment of require-
ments 1 and 2 is a precondition and is not further considered for a quality
evaluation. Moreover, a quality evaluation for individual design components
can be conceived to determine components with a low degree of fulfillment of
requirements to allow substitutions with better components for improving design
quality.

2.9 Quality Requirements on Methods

For achievement of the goals:

• improvement of the design quality and

• development of an improved design creation method

solution methods must fulfill a set of requirements to eliminate the shortcomings
of the existing design creation methods (cf. Section 2.4):

• solution quality:

– Creation of solutions that fulfill the quality requirements introduced
in Section 2.8 at a high degree must be provided. Hereby, definition of
additional quality requirements can be desired for the consideration
of specific experience or flavor, which must be supported. A large
variety of devices from different manufacturers must be considered
to allow a wide spectrum of design solution alternatives.

– It must be possible to reuse existing solutions for repeatedly used
planning results, which can be the case within the same or different
installation projects.

– Traceability of the design creation solutions must also be provided
to identify the components of the created designs and guarantee the
consistency between specific planning results and the created design
results;

• validity: The solution method must not only provide good quality results
for a specific room automation plan, but also for a variety of plans for
allowing statements about its validity and applicability;

• automation: By growing size of room automation plans, design creation
task becomes more complex, such that a very elaborate and cost intensive
work becomes inevitable. Considered a large device variety for better qua-
lity solutions, this complexity grows much faster for which an automation

2.10 Conclusions 45

of the design creation task becomes inevitable. This implies the need for
conception and implementation of convenient algorithms for which com-
puter interpretable data must be provided;

• efficiency: Good quality designs must be created quickly in a limited
amount of time. The time required for the design creation method should
not be longer than the time spent by the existing manual design creation
methods. Design creation should take no longer than 10 minutes per device
according to [PDRK11];

• comprehensibility and reusability: The evaluation and modification
of designs must be possible without knowledge on implementation. Sim-
ilarly, a flexible extension of quality criteria must also be possible. Fur-
thermore, for ease of use an easy integration of existing design solutions
into the building structure elements with similar requirements must be
provided;

• integration: A seamless integration of the solution method in the busi-
ness process chain for design engineering must be provided for allowing
consistency and a constructive coordination.

2.10 Conclusions

In this chapter engineering for building automation systems is presented. A
comparison of various existing communication protocols for building automa-
tion systems is given. Further, a state-of-the- art analysis is made for existing
solutions for design engineering in the building automation domain. As one of
the most important problems concerned in the design engineering, the device
interoperability problem is introduced with levels of device interoperability. In
addition, existing standards related to planning and implementation of building
automation system projects are presented.

Quality requirements on building automation systems are derived with spe-
cial focus on system design. Since the system design as a task involves project
planning and implementation, quality requirements for the tasks of project plan-
ning and implementation are derived. Based on these requirements, quality re-
quirements on design engineering methods are identified. A formal definition of
the problem and characteristic problem properties, as well as requirements on
algorithms are presented in Chapter 3.

Before the approaches proposed in this thesis concepts, methods that rely
on using design templates or rule-based approaches have been followed. How-
ever, by using optimization algorithms high quality solutions can be obtained
according to the optimization criteria which can be flexibly defined by users.
Moreover, the design creation task can also be optimized. For the solution of

46 Design Creation for Building Automation Systems

the problem, a solution method including optimization algorithms are used that
must be adapted to this specific problem. For the realization

• objective functions and a representation of the problem must be defined;

• approaches for the generation of good initial solutions must be proposed
including design generation strategies and

• algorithms that effectively search for high quality design solutions must
be proposed.

Following a solution method using optimization algorithms arises some impor-
tant research questions:

• Which optimization algorithms are best candidates to solve the design
creation problem?

• How do the used optimization algorithms converge?

• How is the performance for these algorithms and how can the performance
of the algorithms be measured?

• What is the resource consumption (amount of computation time, speed of
processor, required memory amount) of the optimization algorithms?

Some early contributions made to application of optimization algorithms re-
lated to problems in engineering practice were made in [Kab87]. Answers to
these research questions and the solution method followed are presented in the
remainder of the thesis.

Chapter 3

The Design Creation Task

3.1 Introduction

The guidelines in VDI 3813 [The11a, The11b] describe industry spanning and
manufacturer neutral room automation plans which allow manufacturer and in-
dustry spanning design creation with purpose on achievement of good quality
designs. There exists yet no method that can automatically create quality ori-
ented designs from room automation plans. An integration of such a design
creation method into the engineering process according to the requirement for
integration in Section 2.9 can be achieved and designs with improved quality can
be obtained by system integrators or yet by planners using the approaches that
will be presented in this chapter. Based on this, a new approach for engineering
of building automation systems is proposed (cf. Figure 3.1).

building
project

storey0

storey1

storey2

room0.0

room0.1

room0.2

requirements

design

automation plan
generation

design
generation and

optimization

design
deployment

requirement
elicitation

......

component
repository

design
database

room
automation

plan

Automated Creation
of Optimized Designs

Figure 3.1: Overview of the New Engineering Approach

48 The Design Creation Task

Available upstream information such as building structure, electrical plan-
ning can be made available in an open and CAD tool neutral building informa-
tion data such as in the IFC data format [Bui] that can be transferred among
many building information modeling software tools used to plan different in-
dustries by import and export facilities. This information can be used to make
preliminary decisions as feasibility constraints for including or excluding some
requirements prior to the requirement elicitation. Consequently, the planner
can perform dialogs with the customer for the elicitation of requirements in
consideration of the preliminary decisions.

Given the elicited requirements ordered in the building structure, room au-
tomation plans can be created conform to the definition of abstract function
blocks in the standard VDI 3813-2 [The11b]. The availability of a computer in-
terpretable data provided by a suitable representation of requirements allows the
generation of room automation plans by appropriate algorithms. The method
in [RDK09] that uses the approach of Generative Programming can automati-
cally generate automation plans in a given building structure and for specified
requirements, called automation plan generation. Hereby, the generated au-
tomation plans are available as data where for function blocks the underlying
semantics are specified.

The semantics used in the automation plan generation are in accordance
with the domain specific semantics defined in a component repository [DK11].
In particular, common representation and definition of component semantics
are used by the automation plan generation for function blocks, and by the
component repository for the devices and software modules. Thus, for a given
function block, a component search can be performed for devices and software
modules of the desired platforms such as LON, BACNET, KNX and ENOCEAN
[EnO] with matching functional and hardware semantics of the components. The
search results can be retrieved as computer interpretable data. The component
repository allows in addition the evaluation of interoperability among devices,
and delivers necessary information for the creation of bindings among the device
software modules likewise as computer interpretable data for further processing.

The introduced requirements on solution methods in Section 2.9 can be
fulfilled by an efficient method for automated creation of optimized designs
that can create designs of quantifiable quality for given room automation plans
by generation using computer aid and by performing searches in component
repository for interoperable devices that match the specified function blocks.
The method for automated creation of optimized designs in Chapter 5 is the
main focus of this thesis and aims at automating the engineering task whilst
creation of optimized design solution. This method conceives the system design
composition model, and strategies and algorithms for design generation and
optimization.

3.2 System Design Composition Model 49

3.2 System Design Composition Model

The design generation method conceives the use of components and functions
provided by the component repository for the creation of designs that realize
the required room automation plans. Beyond the computer interpretable data
provided, a system design composition model allows the processing of data rel-
evant for the design generation and matching data from automation plan and
component repository used by the algorithms.

Physical view

Component Structure
(Detailed Design)

fp3

fp1

fp2

fp4

fp5

fp6

binding

functional

profile

fp7

fp8

d1

device

Logical view

Functional Structure
(Abstract Design)

fb8

fb9

fb1
fb5

fb7

fb6

fb2

fb4

function

block

abstract

connection

fb3

d2

d3

Figure 3.2: Logical and Physical View of System Design Composition Model

The system design composition model can be reflected in logical and physi-
cal view (cf. Figure 3.2) to provide an overview for the software and hardware
components, as well as the concepts of project planning and project implemen-
tation. There exists a component hierarchy among devices, functional profiles
and function blocks as can be seen in Figure 3.3. Function blocks are realized
by functional profiles and functional profiles are software implementations for
BA functions provided on prefabricated devices.

3.2.1 Abstract and Detailed Design Model

Each design is semantically associated to the originating room automation plan.
Designs and room automation plans are similar for a consideration of structure.
Despite the similarity between a room automation plan and a design realization,
there is a significant amount of difference of information detail contained. Based
on this reason a room automation plan is called an abstract design and the design
is called the detailed design (cf. Figure 3.2).

Definition 3.2.1. Logical Topology Structure: The logical topology struc-
ture of the integrated design approach concerns two design models, each at
different level of abstraction: abstract design and detailed design. It is conve-
nient to define relations among the components of the system design composition

50 The Design Creation Task

Device

Functional Profiles

Function Blocks

...

Figure 3.3: Component Hierarchy

model referring to the set theory, to help the identification of problem class in
Section 3.3.

Definition 3.2.2. Abstract Design: An abstract design (AD) is a func-
tional communication schema conform to standard VDI 3813-2 representa-
tive for all rooms for which the automation function requirements and their
communication relationships are identical and it does not represent the au-
tomation for a specific room necessarily. Hence, it is a function block-based
schema that allows a neutral (technology and manufacturer independent) for-
malized specification of functional requirements. An abstract design is a set
AD = { FB ∪AC } that contains a set of function blocks FB = { fb1, ..., fbm }
and a set of abstract connections AC = { ac1, ..., acn } with m ∈ N de-
noting the number of functions blocks and n ∈ N denoting the number of
abstract connections. Each function block fbi ∈ FB (1 ≤ i ≤ m) pos-
sesses a set of inports INPORT = { inport1, ..., inporto } and a set of out-
ports OUTPORT = { outport1, ..., outportp } (p, o ∈ N). An outport outportx
(1 ≤ x ≤ p) of a function block fbi can be connected to an inport of another
function block fbj (1 ≤ j ≤ m) by an abstract connection in AC.

Definition 3.2.3. Detailed Design: A detailed design DD represents the
component communication schema that is created for the realization of an ab-
stract design. The components are functional profiles and their implement-
ing devices, which are manufacturer and technology specific. A DD contains
a binding-schema BS corresponding to the logical view and a set of devices
DEV = { dev1, ..., devσ } (σ ∈ N) corresponding to the physical view (cf. Fig-
ure 3.2).

A binding-schema is a set BS = { FP ∪BN } that contains a set of func-
tional profiles FP = { fp1, ..., fpr } and a set of bindings BN = { bn1, ..., bnq }

3.2 System Design Composition Model 51

with r ∈ N denoting the number of functional profiles and q ∈ N denoting the
number of bindings. Each functional profile fpk ∈ FP (1 ≤ k ≤ r) possesses
a set of input datapoints INDPOINT = { indpoint1, ..., indpoints } and a set
of output datapoints OUTDPOINT = { outdpoint1, ..., outdpointt } (s, t ∈ N).
An output datapoint outdpointu (1 ≤ u ≤ t) of a functional profile fpk can be
connected to an input datapoint of another functional profile fpl (1 ≤ l ≤ r) by
a binding in BN . Generally, an output data point of a functional profile can be
connected to an input data point of another functional profile of the binding-
schema by a binding, if the devices of both functional profiles are interoperable
with each other for the realized function. A valid binding-schema contains all
necessary bindings for the realization of overall functionality of a desired system.
Criteria about a valid binding-schema are presented in Section 3.2.2.

A functional profile fpk is furthermore related to a set of operation modes
opmode1,fpk , ..., opmodez,fpk (z ∈ N). Each functional profile fpk of a binding-
schema is assigned an operation mode opmodeh,fpk (1 ≤ h ≤ z). The set of
input datapoints and the set of output datapoints on fpk vary upon on a chosen
opmodeh,fpk .

A device devf (1 ≤ f ≤ g, g ∈ N : number of devices in detailed design) has a
price cost and consists of functional profiles grouped by functional profile types.
On each devf , a limited number of functional profiles from each functional profile
type is provided. This limit is called the cardinality of a functional profile type on
device, e.g. a lamp actuator device provides 8 functional profiles of type “lamp
actuator” (fp lamp act1, ..., fp lamp act8), where 8 denotes the cardinality of
the type “lamp actuator”. The cardinalities are thus device specific and can be
different for each functional profile type. There exists for a DD a corresponding
AD from which it is created.

Abstract connections can connect many outports to one inport or one out-
port to many inports; similarly bindings can connect many output datapoints
to one input datapoint or one output datapoint to many input datapoints.

3.2.2 Mapping Model

It is of major importance to provide artifacts that are useful for a transition from
an abstract design to a detailed design, hence from function blocks to functional
profiles and devices and from abstract connections to bindings. The mapping
model allows this transition, thus it is an important contribution for the creation
of detailed design. In addition, the mapping model is an essential step for
fulfilling of the quality requirement requirement compliance of implementation
(cf. Section 2.8.2).

A VDI 3813-2 conform functional profile of a manufacturer can realize one or
more functions depending on its implementation. Thus, in general, many-to-one
mappings from function blocks of an abstract design to functional profiles with
this property are possible. Choice of specific operation mode for a functional

52 The Design Creation Task

profile determines the set of functions that should be realized by the functional
profile. This implies that the functional profile covers a set of function blocks
within the abstract design corresponding to this set of functions, which is called
a function block combination. In other words, each standard conform functional
profile realizes a specific function (block) combination (cf. Definition 3.2.4) for
each of its operation modes.

Definition 3.2.4. Function Block Combination: A function block combi-
nation is an essential element of the mapping model that represents a group of
function blocks. Each of the function blocks in such a group is related to a set of
functional and non-functional requirements that can unambiguously be merged
to common functional requirements and non-functional requirements. Function
block combinations can be mapped to realizing functional profiles in operation
modes specific for the merged functional and non-functional requirements.

Definition 3.2.5. Binding Pair Candidate: An abstract connection in ab-
stract design concerns a function block pair. By mapping function blocks on
functional profiles, function block pairs correspond to functional profile pairs.
Each such functional profile pair (fp1, fp2) with fp1 ̸= fp2 is called a binding
pair candidate (bpc). The mapping model contains a set of binding pair can-
didates BPC, each of which is intended to realize the corresponding abstract
connection and hence, intended to be connected to each other by at least one
binding. In order words, a binding pair candidate denotes a required binding.

Definition 3.2.6. Mandatory Input Data Point: A functional profile may
possess a subset of input data points that must be connected by bindings, in
order to realize the mapped function block combination in a specific operation
mode. Such data points are called mandatory input data points.

Definition 3.2.7. Fitting Functional Profiles: Two functional profiles that
map certain function blocks of an abstract design are called fitting functional
profiles, if they form a binding pair candidate and can be connected to each
other at their output and input datapoints by bindings to realize the required
communication relationships among function blocks implied by abstract connec-
tions. This occurs, if the devices of binding pair candidates are interoperable
for the mapped function blocks.

Definition 3.2.8. Valid and Complete Binding-Schema: A valid and com-
plete binding-schema contains

• only fitting functional profiles (validity), and

• functional profiles with all mandatory input data points connected with
bindings, whereas for the satisfaction of this criterion, some other func-
tional profiles might necessarily be integrated into the binding-schema,

3.3 Formulation of the Problem 53

than the functional profiles that exactly cover the function blocks of the
given abstract design (completeness).

3.3 Formulation of the Problem

Composition of a detailed design for a single abstract design, that is intended
to represent the automation plan of potentially many rooms of the same types
(e.g. office rooms, hotel rooms, conference rooms, patient rooms, classrooms,
etc.) conceives the highest complexity of the design creation for an entire BAS
project. Therefore, it is the core problem and will be called the design creation
problem.

Input: Given an abstract design AD with function blocks FB, abstract con-
nections AC and available devices DEV on the market with functional profiles
FP

FB = { fb1, ..., fbm }
AC = { ac1, ..., acn }
DEV = { dev1, ..., devp }
FP = { fp1, ..., fpo }

, such that each fpi (1 ≤ i ≤ o) is pre-programmed on a host device dev′j
(1 ≤ j ≤ p).

Research Question: Is there a detailed design dd with functional pro-
files FP ′ = { fp1, ..., fpv } on devices DEV ′ = { dev′1, ..., dev′w } (FP ′ ⊂
FP ∧DEV ′ ⊂ DEV) that satisfies the following constraints (cf. Section 2.8.2):

• requirement compliancy: each function block fbg (1 ≤ g ≤ m) of AD
is mapped on a functional profile fph (1 ≤ h ≤ v) that can realize fbg in
a specific operation mode;

• correctness and completeness: { fp1, ..., fpv } forms a valid and com-
plete binding-schema (cf. Section 3.2.2);

and satisfies the criterion:

• costs: the device sum of the prices in detailed design Σwl=1cost(devl) is as
low as possible, where cost : DEV → R is a function that maps a device
on its price cost value.

Definition 3.3.1. Problem Instance: An abstract design AC, which is an
input for the research question, is denoted as a problem instance.

54 The Design Creation Task

3.3.1 Problem properties

It is convenient to identify the most characteristic properties of the design cre-
ation problem which play a key role to enable a search for solution approaches
to practical problems with similar properties. In addition, based on the prob-
lem properties requirements on algorithms can be determined as presented in
Section 3.3.2. The problem properties (PP) are:

PP1. component-based software design: The design creation problem con-
cerns a component-based software design which can specifically called as
function block-based design that follows a top-down approach. Devices
are preprogrammed as components-off-the-shelf (COTS). From the aspect
of software design devices are containers for the functional properties that
have price costs, which must be considered as a criterion for the creation
of optimized function block-based software designs;

PP2. complexity class: The problem can be reduced from the bin packing
problem [Kar72] from the theory of computational complexity, which is
known to be NP-complete. The large number of functional profiles pre-
programmed on devices available on the market that results from a search
in the component repository and the related variety of function block com-
bination assignments for functional profiles increases the number possible
combinations for the solution alternatives. This leads to a combinato-
rial explosion of design alternatives that need to be compared for various
comparison criteria; in order to find the optimal design alternatives. An
exact search would have an exponential time complexity due to the high
degree of freedom in selection among hundreds or even thousands of diffe-
rent manufacturer-specific functional profile alternatives for each function
block in a given abstract design. The problem is a combinatorial optimiza-
tion problem (cf. Definition 4.1.1 and 4.1.2). Moreover, the search for valid
binding-schemata at minimal price sum of devices plays an additional role
on increasing the complexity of the problem;

PP3. constrained nature, intermeshed structure, vertical and hori-
zontal intercomponent dependency: This is the most characteristic
property of the design creation problem which causes the problem to be
distinct compared to all similar problems. There exist two constraints for
the problem one for the existence of mapping of function blocks on func-
tional profiles (cf. Section 2.8.1) and the other one for the validity of the
binding-schema (cf. Section 2.8.2). These constraints additionally make
the problem more complex due to a vertical and a horizontal intercompo-
nent dependency:

• vertical intercomponent dependency: The functional profiles
in a binding-schema that is built by a solution method are required

3.3 Formulation of the Problem 55

to completely map the function blocks of the given abstract design,
which is not a trivial task, since the components exist in a hierarchy
(cf. Figure 3.3). Further, the devices are off-the-shelf components;
hence they possess preimplemented functional profiles that can real-
ize the function blocks. Devices have in addition a limited capacity
for each functional profile type and each device realizes a specific set
of functions by its functional profiles. Due to this fact an arbitrary
mapping of function blocks onto functional profiles results in infeasi-
ble designs. A search for feasible mappings among a high number of
alternatives is a highly complex task;

• horizontal intercomponent dependency: Obtained feasible
mappings of function block onto functional profiles and devices is
a necessary, but not a sufficient condition for achievement of feasible
binding-schemata. Each binding pair candidate (cf. Definition 3.2.5)
related to a binding-schema is required to yield minimum one binding
for which the interoperability of the hosting devices is necessary.

The structure of a binding-schema resembles pipes and filters ar-
chitecture and conceives many-to-one and one-to-many type of in-
termeshed connections among the functional profiles. By this fact
binding-schemata cannot be subdivided as independent sets of func-
tional profile chains, and must be considered as whole. This has
an important impact on the suitability of functional profiles in the
binding-schema concerning the integration of only fitting functional
profiles (cf. Definition 3.2.7). Hence, choice of many feasible function
blocks to device mappings yield to pairs of functional profiles which
do not fit and many binding-schemata with missing bindings emerge.
The search for valid and complete binding-schemata (cf. Definition
3.2.8) among a high number of alternatives is a highly complex task;

PP4. multiple objectives: Many detailed design alternatives can be related
to a low price sum of devices, however for such designs the constraint for
the validity of the binding-schemata (cf. Definition 3.2.8) are often not
fulfilled due to the existence of missing bindings due to the lack of inter-
operability of communication partner devices. Thus, this constraint and
the criterion for the cost of the design are conflicting. The design creation
problem has further quality criteria and it is a multi-objective optimization
problem;

PP5. multi modality: For the problem there is often not a single optimum, but
there are trade-off solutions that compete against each other for different
criteria. Hence, the problem is multi modal.

56 The Design Creation Task

3.3.2 Requirements on Algorithms

From the problem properties presented in Section 3.3.1 and requirements on
a solution method in Section 2.9 following requirements are derived for an al-
gorithm to find solutions to the problem with the specified properties. The
requirements on algorithms (RA) are:

RA1. component-based mapping model and holism: If the business pro-
cess in Figure 2.4 considered, algorithms need a data model to perform
an automated engineering task by creating detailed designs. Such a data
model must contain all necessary elements of the design composition model
to enable the evaluation of detailed designs according to the quality criteria
as given in Section 2.8.2. Moreover, the data model for the designs must
be interoperable with the results of preceding task of planning and the
successor task of commissioning considering import/export relationships.
More precisely, algorithms must be able to integrate a component-based
mapping model as presented in Section 3.2.2 to import abstract designs,
perform transitions into detailed designs and export these in a form that
can be used - as is - by commissioning tools. Therefore, a holistic ap-
proach in the business process chain concerning the design creation task
is required;

RA2. model-based software design: The creation of detailed designs is per-
formed outgoing from an abstract design that conceives reference archi-
tecture in form of a function block-based design, thus it concerns a model-
based design. In addition, a binding-schema is a software design, since
functional profiles are software modules that encapsulate rule-based algo-
rithms of BAS functions;

RA3. heuristics for global search: There is no known specific solution
method of the design creation problem with large number of solution can-
didates which is NP-complete. Moreover, the properties of the optima are
not known. An exact search is not practicable (or intractable), since the
problem is related to a very large design space. A global search cannot be
performed by dividing the problem into subproblems of lower complexity
(e.g. by partitioning of the design space in case of branch and bound) and
finding the global optimal solution from the local optimal solution of these
subproblems. In such cases, metaheuristics can obtain good solutions for
a set of defined objectives. In order to achieve this goal, a search must
be performed that not only searches better solutions in the neighborhood
of good initial solutions, but that is capable to create all feasible solution
candidates in the design space by a global search. Metaheuristics can be
employed to solve this optimization problem based on these properties;

RA4. handling of constraints as soft-constraints: Due to the problem
property of horizontal intercomponent dependency, it is not possible to

3.4 Conclusions 57

prune the search space from infeasible solutions before spanning the com-
plete design space. A chosen algorithm that generates infeasible solutions
must allow them to iteratively improve, rather than forbidding them. This
can be realized by repairing infeasible solutions, where applicable, or map-
ping the degree of infeasibility on penalty values during the evaluation of
solution candidates;

RA5. multi-objective combinatorial optimization: Due to the presence of
multiple criteria for solutions, the algorithm must be capable of distin-
guishing solutions from each other for multiple objectives taking the com-
binatorial nature of the problem in account. Hereby, for a given trade-off
solutions a decision making must be provided to choose the best alterna-
tives. Moreover, a flexible integration of further criteria must be provided;

RA6. goal-oriented search: Integration of system design composition model
presented (cf. Section 3.2) in the methods must be provided for the rep-
resentation of room automation plans and designs. It must be possible
to generate designs and improve them. Hereby, an evaluation of detailed
design components must be provided to include more suitable components
for goal-oriented improvements. Algorithms must integrate operations in-
corporating problem-specific information for a quick convergence to opti-
mal solutions, rather than performing ineffective blind searches. Hereby,
a balance between exploration and exploitation must be provided to avoid
from premature local optimal solutions;

RA7. limited computation time: Algorithms must produce short-time-to-
market solutions, which implies that designs of as good quality as possible
must be generated in a short period of time with limited computational
resources. The solution generation should not take longer than the manual
design creation and be efficient (cf. Section 2.4). Algorithms that require
computer clusters performing computations for weeks and months are out
of consideration for this thesis;

RA8. generality of solution method: Algorithms must provide solutions
for different representative problem instances (cf. Definition 3.3.1) with-
out plan specific adaptations in the solution method. Thus, the solution
method must be generic.

3.4 Conclusions

This chapter introduces a briefly new approach for the engineering of BAS on
the logical level. The logical level of BAS formed of two logical views the ab-
stract and detailed design models following a top-down approach is presented

58 The Design Creation Task

in Section 3.2.1 along with definitions for elements of both models. Further,
the transition from the abstract model to detailed design model, the mapping
model is introduced in Section 3.2.2.

A formal definition of the design creation problem that conceives the research
question is presented in Section 3.3. Moreover, problem properties are presented
that distinguishes the BAS design creation problem from other similar design
creation problems in engineering practice. It is concluded that solution methods
that involve metaheuristics are candidates for the solution of the problem. Based
on the problem properties, requirements on candidate algorithms are identified.
Problem properties and requirements on candidate algorithms enable a search in
the literature for similar problems and candidate solution methods. In Chapter
4, a literature study for similar problems, algorithms and candidate solution
methods are presented.

Chapter 4

Solution Methods for Design
Generation and Optimization

4.1 Combinatorial Optimization

Optimization problems encountered in applied engineering fields or in different
fields of theory concern the choice of a “best ” configuration or a set of param-
eters among a countable number of alternatives to achieve certain goals. For a
combinatorial optimization problem (COP) the choice which must be made are
discrete [AL97].

Definition 4.1.1. Combinatorial Optimization Problem: A combinato-
rial optimization problem is specified by a set of problem instances and it is
formulated as a minimization or a maximization problem.

In the literature, task assignment problem, bin-packing problem, 0-1 knap-
sack problem, set covering problem, vehicle routing problem, traveling salesman
problem [Kar72] are examples of combinatorial optimization problems. These
problems have different instances depending on some specific details.

Definition 4.1.2. Combinatorial Optimization Problem Instance: A
combinatorial optimization problem instance can be represented as a pair (S, c),
where the solution set S is the set of feasible solutions and the cost function c
is a mapping f : S → R. The problem of finding a globally optimal solution
X ∈ S such that f(X) ≤ f(x) for all x ∈ S. Moreover, C = f(X) denotes the
optimal cost and P = {x ∈ S|f(x) = C} denotes the set of optimal solutions.

4.2 Metaheuristics

For the solution of the design creation problem global search methods based on
exact search such as cutting plane and branch and bound algorithms are not
suitable (cf. requirements on algorithms in Section 3.3.2). Thus, metaheuristics

60 Solution Methods for Design Generation and Optimization

can be considered, which are applied for practical multi-objective combinato-
rial optimization (MOCO) problems. Metaheuristics do not guarantee global
optimal solutions in large design spaces; however they are applied for practi-
cal problems to find near-optimal solutions. Metaheuristics are approximate,
usually non-deterministic. They are not problem-specific, but due to the gener-
ality, they allow a problem specific adaptation of algorithms. There are various
metaheuristics available in the literature which can be classified as:

• single-point search (trajectory) methods vs. population-based search
methods,

• nature vs. non nature-inspired,

• constructive vs. improvement methods and

• aggregation-based vs. multi-objective methods.

Figure 4.1: A Timeline of Metaheuristics

In trajectory or single-point search methods, an iterative improvement is per-
formed on a single initial solution. Simulated Annealing (SA) [KGV83], Tabu
Search (TS) [GM86], Greedy Randomized Adaptive Search (GRASP) [FR89]
and Iterated Local Search (ILS) [MOF91] are examples of trajectory methods.
Use of a trajectory algorithm brings the advantage that generally lesser compu-
tational resources are required than population-based search methods. However,
optimization with such algorithms has generally the following disadvantages:

• a single solution is generated and improved. However, the design creation
problem requires multiple trade-off solutions (cf. Section 2.9) for different
objectives;

• the danger of premature convergence is higher. Up the hill iterations may
not be sufficiently of high performance to escape from local optima.

4.2 Metaheuristics 61

In contrast to trajectory methods, population-based methods use a num-
ber of solutions (population) that are intended to be improved simultaneous-
ly. Most frequently used examples for population-based methods in applied
engineering problems are Evolutionary Computation (EC) [FOW66], [Rec73],
[Hol75], Particle-Swarm Optimization (PSO) [KE95], and Ant Colony Opti-
mization (ACO) [Dor92]. Improving multiple solutions simultaneously has the
following advantages:

• simultaneous and continuous improvement : Posterior to a number of it-
erations some solutions may converge prematurely; however, there still
remain other parallel solutions which can potentially be improved in the
next iterations;

• achievement of multiple solution alternatives: A population-based method
can offer multiple solution alternatives within each iteration.

Some single-point and population-based search methods are depicted in Fig-
ure 4.1.

Scientists that proposed nature-inspired metaheuristics mapped phenomena
and artifacts as metaphors on algorithms such as EC, ACO and PSO developed
in inspiration of biological facts; and Simulated Annealing developed in inspi-
ration of physical processes. Moreover, metaheuristics such as GRASP and ILS
are non nature-inspired.

Constructive metaheuristics such as ACO build solutions constructively
whilst optimizing them. Improvement metaheuristics such as EC and PSO
generally build initially complete solutions and improve them in the process of
optimization. Moreover, some metaheuristics can also be designed to optimize
in a constructive manner such as EC.

For many real life problems, multiple decision criteria are point of considera-
tion. A lot of combinatorial optimization problems of this kind involve simulta-
neous optimization of multiple incomparable, conflicting or competing objectives
for a given problem. For example, if the 0-1 knapsack problem is considered,
with an increasing value of items grabbed that is intended to maximize, the
weight of the knapsack increases that is intended to minimize (conflicting objec-
tives).

Problems with multiple objectives can be solved by scalarization of the de-
cision vector in the step for evaluation of solution candidates. Each problem
solution candidate is assigned a set of decision values preserved in the decision
vector. Since to each decision variable a preference-based priority value can be
assigned, the priorities form a priority vector and a dot product of the priority
vector and the decision vector can be calculated to obtain quality of a solution
candidate. Thus, the quality of the optimum is a single value and the method
is called single-objective optimization. In other techniques the decision vector is
not scalarized to a single value, rather, the minimization or maximization is per-

62 Solution Methods for Design Generation and Optimization

formed at each objective separately, which is called multi-objective optimization
(cf. Definition 4.2.1).

Definition 4.2.1. Multi-Objective Optimization: Find a vector x∗ =
(x∗1, ..., x

∗
n) which satisfies the m inequality constraints gi(x) ≥ 0, i ∈ [1,m],

p equality constraints hi(x) = 0, i = [1, p], and minimizes the vector function
f(x) = f1(x), ..., fk(x), where x = (x1, ..., xn) is the vector of decision variables.
The set of all values that satisfy gi, hi defines the feasible region Ω and any
point x ∈ Ω is a feasible solution.

This technique provides the following advantages:

• a set of trade-off solutions as best solutions of each step in an optimization
process, instead of a single best solution,

• a more precise distinction of solutions in contrast to the single-objective
optimization, and thus

• a better diversity of solutions: can be achieved that implies decision vec-
tors with different values corresponding to distinct and complementary
properties of solutions. These solutions may directly or indirectly interact
with each other for combining parts with high quality to form better so-
lutions or may follow a niche to move towards better regions of a search
space.

• allowing achievement of all solutions: in the design space which is partic-
ularly important for a global optimization.

4.3 Examples for Metaheuristics

In this section insights into SA and the TS as examples for single-point; and
ACO and EC as examples for population-based search methods are given.

4.3.1 Simulated Annealing

SA is inspired by the annealing process in metals as proposed in [KGV83] and
[Cer85] as a search algorithm first to solve combinatorial optimization problems
such as VLSI design and the Traveling Salesman Problem (TSP).

In annealing process a metal is heated up to a very high temperature and
then slowly cooled down. If the heating temperature is sufficiently high to
guarantee a random state of the substance and the cooling process is sufficiently
slow to guarantee a thermal equilibrium, then the atoms will form a structure
that enables the energy minimum of a perfect crystal. Hence, the strength of
the crystal is inverse proportional with the speed for the cooling schedule. A
fast cooling process is related to imperfections (or metastable states), which is
not desired.

4.3 Examples for Metaheuristics 63

Similarly, SA starts with a high initial number for iterations and converges
to near-optimal solutions following an implementation of a slow cooling process.
Current energy value of the substance corresponds to the evaluation value of the
current solution. SA always accepts improving solutions and also non-improving
solutions (uphill moves, in case of minimization). By this property, SA is one
of the first algorithms that provides a mechanism to avoid getting stuck in local
optima. Hereby, different approaches for the cooling process can be followed such
as linear, geometric, logarithmic, etc. An abstract SA algorithm is presented in
Algorithm 1.

Algorithm 1: An Abstract SA Algorithm

Input: All possible solution components: S, initial temperature:
TEMPERATURE

Output: A near-optimal solution: s
// number of iterations
temp = TEMPERATURE;
// s: a random or a known good initial solution
s = INIT SOLUTION() ;
while temp > temperature do

while inner loop criterion do
// find a new solution new solution in the neighborhood of s
new solution = PERTURB(s);
// optimization is performed in form of minimization
∆E = COST (new solution)− COST (s);
if ∆E < 0 then

// better solution found
s = new solution;

end
// accept worse solution with probability

else if RANDOM(0, 1) > e
− ∆E

temp then
s = new solution;

end

end
// update temperature
temp = COOLING SCHEDULE(temp);

end

4.3.2 Tabu Search

TS is initially proposed in [GM86] and aimed at escaping local optima by using
a memory explicitly to store the recent visited solutions generated during the
search. This memory is called tabu list and is used to avoid revisiting of recently
visited solutions and to forbid progress towards them. TS performs searches in

64 Solution Methods for Design Generation and Optimization

the neighborhood of a current solution, where this neighborhood, which is called
allowed neighborhood, is allowed to contain only solutions that do not exist in
the tabu list. The best solution of this restricted neighborhood is set as the
current solution and added to the tabu list while removing an existing solution
(generally the oldest solution) in the tabu list in order to keep the length of the
list (called tabu tenure) constant.

For more efficiency solution attributes are rather stored in the tabu list than
complete solutions. These attributes can be implemented as moves, solution
components, or feature differences between solutions. However, this is related
to a loss of information due to the storage of attributes instead of complete solu-
tions. Hence, this can lead to forbidding of solutions which are not yet generated
and may potentially be of good quality. Aspiration criteria are defined that al-
lows a tabu solution to be considered in the allowed neighborhood. The most
common aspiration criterion prefers always better solutions of the search than
the current best solution. An abstract TS algorithm is presented in Algorithm
2.

Algorithm 2: An Abstract TS Algorithm

Input: All possible solution components: S, size of tabu list: L
Output: A near-optimal solution: best solution
// initialize tabu list
tabu list = ∅;
s = GENERATE INITIAL SOLUTION();
best solution = s;
while !termination conditions do

INIT (candidate list);
for all new solution ∈ N(s) do

// N(s): solutions in neighborhood of s
if !CONTAINS(tabu, new solution)
||ASPIRATION CONDITION(s) then

candidate list = candidate list+ new solution;
end

end
new solution = CHOOSE BEST OF (candidate list);
if new solution < best solution then

tabu list =
FEATURE DIFFERENCES(new solution, best solution);
best solution = new solution;
UPDATE(tabu list);
UPDATE ASPIRATION CONDITION();

end

end

4.3 Examples for Metaheuristics 65

4.3.3 Ant Colony Optimization

Foraging behavior of ants inspired Dorigo in his PhD thesis [Dor92] to derive
the fundamentals of ACO. Ants find the shortest path from the nest to the food
source. Each ant deposits a chemical substance called pheromone on the path it
travels which attracts the other ants and evaporates in time. As an indirect form
of communication among ants, this leads the shortest path to emerge. ACO was
first used to solve the TSP problem.

In ACO artificial ants construct complete solutions (pheromone trails) itera-
tively by adding solution components to current partial solutions. For addition
in each intermediate phase of the construction, ants are faced to multiple so-
lution component alternatives with different pheromone values assigned. Ants
choose a component alternative among many alternatives according to a proba-
bility (pij) proportional to its pheromone value and the profit an ant can possibly
achieve.

This probability is usually defined in terms of a state transition, from the
state in which the solution component i was chosen to the state in which the
solution component j will be chosen, as given in (4.1). τij is the pheromone
value associated to the addition of component j in this transition. C is the set
of solution components which are allowed to be added into the current partial
solution, but which are not yet visited. α and β are parameters with which the
weights for the pheromone values τij and problem-dependent heuristic values ηij
can be adjusted in form of a good trade-off. For α = 0 the ACO algorithm finds
solutions that correspond to a concatenation of partial best solutions which
often does not yield to global optima. For β = 0 search will be guided only
by pheromone trails which can lead to the construction of identical suboptimal
tours by ants.

pij =
ταij × ηβij∑

k∈C
ταik × ηβik

, ∀j ∈ C (4.1)

τiπ(l) = τiπ(l) +
1

f(π)
, ∀l ∈ [1, n] (4.2)

τij = (1− ρ)τij , ∀i, j ∈ [1, n] (4.3)

In the beginning before ants build complete solutions, pheromone values are
identical for all solution components. After the solutions are fully constructed,
pheromones values τiπ(l) are updated as given in (4.2) proportional to the quality
(f) of the achieved tour π. Hereby, each ant increments the pheromone associ-
ated with each chosen solution component i depending on its partial heuristic
value within f .

The pheromone values of solution components or paths increase with in-
creasing number of ants visiting them. In order to limit the continuous growing

66 Solution Methods for Design Generation and Optimization

of pheromone values of good solutions and to avoid the convergence towards
local optima, pheromone values τij are decreased (evaporation) by a reduction
rate ρ ∈]0, 1] as given in (4.3) (e.g. after a solution is completed), which is an
implementation of forgetting.

Since artificial ants act decentral as agents, some useful centralized actions
(daemon actions) can optionally be performed, such as application of local
search on constructed solutions to ameliorate them or depositing additional
pheromone on the components of the best solution. An abstract TS algorithm
is presented in Algorithm 3.

Algorithm 3: An Abstract ACO Algorithm

Input: All possible solution components: S, number of trails per
iteration: TRAILS

Output: Near-optimal solution: best solution
// initialize the near-optimal solution
best solution = null;
// initialize solution set
P = ∅;
INITIALIZE PHEROMONE V ALUES(T);
while !termination conditions do

for all a ∈ A: all ants do
// construct ant trails by selecting solution components
// based on pheromone values T and heuristic values H
solution = CONSTRUCT SOLUTION(T,H);
P = P ∪ {solution};

end
// optional daemon activities
for all Pi ∈ P do

Pi = LOCAL SEARCH(Pi);
if best solution == null
||COST (Pi) < COST (best solution) then

best solution = Pi;
end

end
// update pheromones for each Pi ∈ P
UPDATE PHEROMONE ON COMPONENTS(T, P);

end

4.3.4 Evolutionary Computation

EC is an umbrella term for a set of algorithms promoted in the field in Operations
Research, which are also called Evolutionary Algorithms (EA). EC is inspired
by biological evolution, more precisely by the adaptation of living things or
individuals to their environment in order to increase their chance for survival

4.3 Examples for Metaheuristics 67

and reproduction.
The field of EC was first established by Evolution Strategies at Technische

Universität Berlin, Germany by Rechenberg and Schwefel [Rec73], Evolutionary
Programming in San Diego, USA by Fogel [FOW66] and Genetic Algorithms in
Michigan, USA by Holland [Hol75], which evolved independently from each other
for some decades. In the beginning of 90s Genetic Programming was proposed
by Koza [Koz92]. A survey for these algorithms can be found in [DJ06].

In order to achieve the goal of reproduction and survival, the individuals
that form a population evolve; hence adapt themselves to the environment dur-
ing many generations by undergoing phenomena that are characteristic for the
evolution. These are cross-over, mutation and selection. Algorithms in the field
of EC map these phenomena onto operations that can be applied on problem
representations (solution candidates or individuals) to iteratively find solutions
that optimally achieve the intended goals for given problems. An iteration is
called in terms of EC a generation. The adaptation of individuals to their envi-
ronment is quantified by the definition objective functions.

For better adaptation to the environment, hence for better values of objec-
tive functions, in each generation, two or more individuals (parents) may ex-
change information undergoing cross-over by a probability pC to produce new
individuals (children). In addition, some individuals undergo a mutation by a
probability pM to introduce new and valuable information into the population.
Cross-over (also called recombination) and mutation operations are called vari-
ation operations. The created children are evaluated using objective functions.
Selection determines the individuals of each next generation and prevents the
number of individuals in a population (population size) from growing for dealing
with limited computational resources such as memory and computation time.
In this process selection operation prefers the individuals with best values of
objective functions which constitutes an iterative optimization.

Replacement of parent individuals by children individuals using cross-over
and mutation operations is related to the potential risk of losing highly optimized
parents. In order to prevent highly optimized individuals from being forgotten,
a strategy called elitism is developed. This strategy considers both parents and
children in the selection operation and gives a further chance to better optimized
parents over poorly developed children, in order for them to be reconsidered in
a next generation.

Common components of an EC algorithm in general are:

• representation: Solutions may be coded in combinatorial optimization
problems as bit, integer or enumeration strings, tree or graph structures.
Mixed type representations and complex representations are also used de-
pending on characteristics of considered problems. A special care must be
taken for the choice of the representation, since the search capability of
the algorithm, more specifically, of the variation operations depend on the
choice of representation. Algorithms that use too simple representations

68 Solution Methods for Design Generation and Optimization

for complex structured problems which abstract useful problem-specific
information, search blindly, thus ineffectively;

• objective functions: As a common concept for all metaheuristics , in
order to equip algorithms with decision making ability, quantification of
solutions is provided in form of objective functions, where each objective
function can be minimized or maximized to attain certain goals. They de-
pend on problem-specific parameters and reflect the solution quality quan-
titatively for each possible parameter constellation. In Multi-Objective
Evolutionary Algorithms (MOEA) for each solution a decision vector (or
a fitness vector) is conceived with the values of objective functions instead
of a scalar value to enable a search for attaining all optimization goals
simultaneously;

• initialization: A global search can be performed by initial solutions that
are well sampled throughout the whole search space; otherwise the al-
gorithm will tend to perform a local search to which highly explorative
variation operations can aid to escape from getting stuck in local optima.
Some algorithms incorporate special procedures such as a greedy heuris-
tic or single solution based metaheuristics to generate well sampled and
preoptimized initial solutions;

• selection strategy: Selection of individuals of a next generation may
replace parents by children without any condition according to the non-
elitist strategy and with the condition that better individuals replace worse
ones according to the elitist strategy. There are various selection types
such as fitness proportional, ranking-based, tournament, roulette wheel,
stochastic universal sampling, truncation. Further details can be found in
[ES07]. Most recent MOEAs apply a Pareto dominance-based selection
procedure [Deb04];

• reproduction (variation) strategy: Improvement of the individuals in
a population is achieved by variation operations. Parents that undergo
a cross-over operations are determined by a mating (or parent) selection.
In elitist MOEAs parents are cloned before performing variation opera-
tions. Thus, variation operations are applied only on clones which are
children. There are various standard cross-over and mutation operations
for string-based representations N-point, uniform cross-over; for permuta-
tion representations partially mapped cross-over (PMX), edge cross-over
(EX), order cross-over, cycle cross-over etc. [ES07]. Variations determine
the current search strategy in a generation, in which a search can be ap-
plied between intensification and diversification;

• termination criteria: Some practical criteria for the termination of an
EA can be the achievement of the global optima given that their fitness

4.4 Choice of the Solver Algorithm 69

values are known, reaching a computation time limit or limit for number of
fitness function evaluations, observing poor diversity in the population, or
achievement of no improvement in the population for a threshold number
of generations.

An abstract EC algorithm is presented in Algorithm 4.

Algorithm 4: An Abstract Elitist EC Algorithm

Input: All possible solution components: S, population size: L,
mutation probability: pM , cross-over probability: pC

Output: A near-optimal solution: best solution
// initialize population
P = ∅;
P = GENERATE INITIAL POPULATION();
// evaluate objective functions
EV ALUATE(P);
best solution = SORT BY FITNESS V ALUES(P);
while !termination conditions do

// mate parent individuals by probability pC and clone them
// cloned parents are called children
P ′ = MATING AND CLONING(P);
// perform cross-over among children probability pC
CROSS OV ER(P ′);
// mutate individuals by probability pM
MUTATION();
// evaluate objective functions
EV ALUATE(P ′);
// select best individuals from P ∪ P ′ and assign them as new

population
P = SELECTION(P ∪ P ′);

end

4.4 Choice of the Solver Algorithm

Each of the four metaheuristics presented in Section 4.3 can be chosen to solve
the design creation problem, since they fulfill the requirement heuristics for
global search in Section 3.3.2. Due to the advantages of multi-objective op-
timization methods and population-based search a multi-objective population-
based algorithm can be chosen. In the literature there exist multi-objective
ACO, EC and PSO algorithms. Thus a problem-specific adaptation of any of
these multi-objective population based algorithms can satisfy also the rest of the
requirements. However, most study is done and most practical applications exist
for multi-objective EC algorithms. In addition, they are applied in [OPK10a],
[ODK09] and [ORK09] to solve the design creation problem effectively.

70 Solution Methods for Design Generation and Optimization

Thus, Section 4.5 is focused on some multi-objective evolutionary algorithms
(MOEA), particularly which follows special approaches to achieve a better di-
versity and a continuous improvement of solutions.

4.5 Specialized Methods for Diversity Preservation

Elitist MOEA favor solutions with better fitness values which may lead to the
emergence of highly fit solution parts (or genes) that dominate the population.
This phenomenon is called genetic drift. This can result in a permanent decrease
of the diversity in the population. A phase in optimization emerges, where most
or even all of the individuals are identical to each other and the algorithm gets
stuck in local optima without any possibility to make further improvements.
MOEAs in general rely on comparison of individuals by objective functions
value by value based on the notion of Pareto dominance (cf. Definition 4.5.1).

Definition 4.5.1. Pareto Dominance: A vector u = (u1, ..., uk) is said to
dominate a vector v = (v1, ..., vk), if and only if, u is partially better (less, in
case of minimization) than v, i.e. ∀i ∈ [1, k] , ui ≤ vi ∧ ∃i ∈ [1, k]: ui < vi.

There are several MOEAs such as Non-Dominated Sorting Genetic Algo-
rithm 2 and Strength Pareto Evolutionary Algorithm 2 proposed in [DPAM02]
and [ZLT01] respectively that consider the integration of an explicit logic in
the selection operation to preserve the diversity by incorporating density esti-
mation methods, and a MOGA that preserves diversity implicitly in cross-over
operation:

• Non-Dominated Sorting Genetic Algorithm 2 (NSGA2): Popula-
tion of doubled size 2N (union of parents and children) is reduced to N
during the selection. First 2N individuals are sorted in non-dominated sets
of different levels and then N individuals are copied into the population
of the next generation beginning with the non-dominated set of the first
level. If there are too many individuals at the non-dominated set of the
last level that is considered, individuals are sorted according to a crowding-
distance metric. After sorting in this level, individuals with the highest
crowding-distances are preferred to be included in the new population for
preservation of diversity.

• Strength Pareto Evolutionary Algorithm 2 (SPEA2): This algo-
rithm uses both a population and an archive with constant sizes N and
M respectively. At each generation the archive A is updated to contain
the non-dominated individuals from the union of the population and the
archive. If the number of the non-dominated individuals K < M , then
all non-dominated individuals and M −K best-dominated individuals are
copied into the archive of the next generation A′. If K = M , then indi-
viduals of A are replaced by the non-dominated individuals. If K > M , a

4.6 Approaches for Real World Problems 71

sophisticated truncation operation is applied on the set of non-dominated
individuals using the kth-nearest-neighborhood metric to provide a uni-
form spread in the set of non-dominated individuals.

• Cellular Genetic Algorithm for Multi-Objective Optimization
(MOCell) [NDL+09]: Cellular Genetic Algorithm (cGA) defines neigh-
borhoods in a population which are isolated from each other [AD08].
Individuals are mated with their cross-over partners only within the same
neighborhood by which an information exchange throughout the whole
population is avoided. By this approach, different neighborhoods explore
different regions of the search space and the problem of genetic drift involv-
ing the whole population can be prevented. MOCell is the multi-objective
specialization of cGA that uses an archive to store the non-dominated
solutions of a current generation.

Both NSGA2 and SPEA2 are applied successfully in a large variety of prac-
tical engineering problems. These algorithms both allow information exchange
among all individuals in a population in cross-over operations. However, this
may also result in genetic drift in the population and only a low number of so-
lutions belonging to the true Pareto front can be achieved. MOCell is reported
in [NDL+09] to obtain a better spread of non-dominated solutions toward the
true Pareto front than NSGA2 and SPEA2 for instances of example problems
used to test multi-objective optimization methods such as Zitzler- Deb-Thiele
(ZDT) problems [HHBW06], however its random population update strategy
may have negative effects on recombination clusters formed during the evolu-
tion of the population on different problems. NSGA2 and SPEA2 are two of the
most often applied algorithms in engineering practice.

4.6 Approaches for Real World Problems

In the literature, according to my best knowledge, there is no solution method
that solves a problem with properties presented in Section 3.3.1 and at the same
time fulfill all the requirements on algorithms given in Section 3.3.2. Thus,
in this section, rather solution methods that solve real world multi-objective
combinatorial design problems will be considered.

4.6.1 Component-Based Mapping Problems

Erbas proposed in his PhD thesis [Erb06] a solution approach for solving de-
sign space exploration problem for multimedia applications, namely an MJPEG
encoder and JPEG decoder as a system-on-chip. The problem concerns the
mapping of an application model onto an architecture model. The functional
behavior of the application is specified independent from the system architec-
ture. Applications are simulated in a framework called Sesame which enables

72 Solution Methods for Design Generation and Optimization

the creation of a mapping layer consisting of virtual processor components and
evaluation of solution candidates. These components represent the application
processes at the architecture level.

The author claims that number of all possible mappings grows exponentially
and designers usually need a subset of good mapping alternatives, which can be
achieved by a search for optimal mappings. The fitness criteria considered in
the optimization are maximum processing time in the system, total power con-
sumption of the system, and total cost for the architecture. In addition there are
several constraints such as: each node has to be mapped onto a single processor,
each channel in the application model has to be mapped onto a processor or a
memory, and if two communicating nodes are mapped onto the same processor,
then the communicating channels between these nodes have to be mapped onto
the same processor.

Solutions candidates are encoded as bit strings on which two standard vari-
ation operations are applied: one-point cross-over, and bit mutation. For infea-
sible solutions generated by variations repair operations are applied to obtain
feasible individuals by randomly choosing a feasible mapping to handle the con-
straints as soft-constraints. NSGA2 and SPEA2 algorithms are applied with
a population size of 100, mutation probability of 50% and cross-over probabil-
ity of 80%. The algorithms are run on a PC for 50, 100, 200, 300, 500, 1000
generations, and achieved similar results with NSGA2 at a higher convergence
speed than SPEA2. The model used in the tests contains 26 processes, 75-FIFO
channels and 9 bus components.

In [MKBR10] a solution approach for the software design of a business re-
porting system is designed, in which an application model is mapped onto an
architecture model. Application models are specified in UML-like diagrams ac-
cording to the Palladio Component Model specification. Hardware and software
nodes in the diagrams contain annotations for costs, performance (processing
rates) and reliability, which are considered as the quality criteria of the opti-
mization. It is also possible for software developers to specify resource demands
for the software components via annotations, which enable the evaluation of
generated solutions. In addition, constraints exist for the range of processing
rate of servers, allocation of components on servers and component selection for
their feasible option values.

The handled problem instance formulates a search for an optimal system
with one web server, a dispatcher and four replicated reporting servers. There
exist multiple degrees of freedom for the designs that lay in the choice for proces-
sor speed, component selection and allocation of components to the processors.
It is assumed that components providing the same interface provide the same
functionality and can be exchanged.

An exchange of functional profiles in case of design creation problem 3 that
have the same interface (input and output datapoints) do not necessarily provide
the same functionality. In contrast, functional profiles that map the same sets

4.6 Approaches for Real World Problems 73

of function blocks must be exchanged or substituted to obtain design solution
consistent to the given abstract designs. Otherwise, infeasible design solutions
emerge and additional computational effort would be necessary to make them
feasible.

The type of encoding used is an array of enumerations on which also standard
variation operations are applied. NSGA2 is applied with a population size of
60 and optimal results are achieved after 200 generations on a PC. The model
used in the tests contains 12 components and 40 tasks.

In Section 4.6.2 two real world MOCO problems are considered which do not
satisfy the requirement component-based mapping model and holism (cf. Sec-
tion 3.3.2) in connection with the problem property component-based software
design (cf. Section 3.3.1), but which fulfill the requirement goal-oriented search
to a certain extent.

4.6.2 Network Design Problems

Weicker et al. proposed in [WSWW03] an evolutionary multi-objective opti-
mization approach for the problem of base station transmitter placement and
frequency assignment. Placement and assignment problems are considered as
a single integrated problem for the teletraffic of a 9000 m × 9000 m area in
Zürich, Switzerland with a resolution of 500 m for demand nodes and 100 m for
transmitter placement.

The base station transmitters are to be placed optimally in order to achieve
a good coverage of the desired area with sufficiently strong radio signal. Hereby,
each cell of a transmitter must possess a sufficiently number of channels to satisfy
all simultaneous demands (calls). The channels should be assigned avoiding
interference with channels of neighbor cells or within a cell.

The optimization approach aims at minimizing costs for transmitters, chan-
nel interferences and power consumption. Degrees of freedom exist in the num-
ber and power of transmitters and assignment of frequency channels. The prob-
lem model considered for the experiments consists of 288 demand nodes with
505 calls and 128 frequency channels.

The authors chose NSGA2 and SPEA2 as solver algorithms and also pro-
posed an additional algorithm called Steady-State Evolutionary Algorithm with
Pareto Tournaments (stEAPT). Population size (and archive size for SPEA2
algorithm) is 80. Optimization is performed for 800 generations for each of
the three algorithms. A problem-specific representation is defined on which
problem-specific and goal oriented variations are applied. Variations consist of
random and directed mutation operations that remove transmitters or reduce
their power to reduce interference, and a cross-over operation that cuts in two
selected parents the service area in two halves and recombine the fittest halves.
Mutation probabilities applied vary from 60% to 100%, whereas cross-over prob-
abilities vary from 0% to 40%. SPEA2 and NSGA2 turn out to perform better

74 Solution Methods for Design Generation and Optimization

than the proposed stEAPT, particularly regarding the obtained population di-
versity.

Carrano et al. proposed a problem-specific genetic algorithm for design of
electric distribution networks in [CST+06]. In such systems large extensions are
required, where these expansions are done in geographically different locations.
Expansions which are performed in small system fragments does not consider
all combinatorial possibilities of the system and lead to more expensive, less
reliable and more lossy system designs than a globally designed one. Hence, the
approach is concentrated on the global expansion of a 21-node and a 100-node
electric distribution network.

The algorithm used is NSGA2. It considers as objectives the minimiza-
tion of following design parameters: financial costs due to system installation,
maintenance and energy losses, and costs related to system faults (undelivered
energy and restarting procedures), energy losses, investment in new facilities
and distribution lines, average number of faults and average interruption time
in faults. Moreover there exist constraints related to line capacity, voltage level
in load buses, graph connectivity and radiality of the active network, quality
and reliability index.

A problem-specific representation is defined in form of a string of integers
for each substation and a planar tree graph to allow the application problem-
specific and goal oriented variations. Individuals of the start population are
initialized using a greedy approach, rather than randomly, to prune the design
space. Hereby, only a set of neighboring nodes are considered as alternatives for
linking to a given node, so that a connection to too distant nodes never occurs.

Variations consist of various problem-specific mutation operations and cross-
over operations that sort nodes by costs for a substitution by lower cost nodes,
substitute conductors and substations according to their capacity values. Pop-
ulation size is 50 and number of generations is 300. Mutation and cross-over
probabilities are 3% and 80% respectively.

4.6.3 Comparison of Solution Methods

In this section, solution approaches in Section 4.6.1 and 4.6.2 are compared
according to two criteria:

• They solve similar problems with properties as the design creation problem
(cf. Section 3.3.1) and

• fulfill a considerable set of the presented requirements on algorithms (cf.
Section 3.3.2).

Solution methods according to these criteria are introduced in Section 4.6.1 and
4.6.2 respectively. The second criterion is as relevant as the first criterion, since
by choosing an algorithm further questions arise such as:

4.6 Approaches for Real World Problems 75

• How does the algorithm make a global search possible toward promising
regions of design space?

• How good is the algorithm adapted to the problem?

• Is the adaptation sufficiently general for solving any arbitrary problem
instance?

In Table 4.1 problems presented in Section 4.6.1 and 4.6.2 are compared
according to their properties. All four problems possess properties PP2, PP4
and PP5 (cf. Section 3.3.1) and none of them possesses the property PP3, since
a pipes and filters architecture in form of a function-block based design with
intermeshed structure, vertical and at the same time horizontal intercomponent
dependency cannot be observed.

PP1 PP2 PP3 PP4 PP5

[Erb06] + ++ – ++ ++

[MKBR10] + ++ – ++ ++

[WSWW03] - ++ – ++ ++

[CST+06] - ++ – ++ ++

Table 4.1: Comparison of Problems in Section 4.6.1 and 4.6.2
++:full, +: partial, -:no similarity

In both of the problems handled in [Erb06] and [MKBR10], component-
based software design by mapping of requirements on available resources, more
specifically mapping among models of different abstraction levels is considered,
in which there exist constraints and multiple conflicting objectives. However, for
mapping of application models on architecture models, there exist no constraints
related to function realization on the architecture level as in the design creation
problem, since processors and memories in [Erb06] and servers [MKBR10] are
not preprogrammed COTS. Thus, a mapping can be performed arbitrarily and
there is no need to perform a search for them. Moreover, no constraints related
to inter-component dependencies on the architecture level exist such as in the
case of the interoperability problem (cf. Section 2.5). Hence, these important
differences exist, despite the partial similarity to the design creation problem
according to the property PP1.

76 Solution Methods for Design Generation and Optimization

RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8

[Erb06] + ++ ++ ++ ++ - ++ ?

[MKBR10] + ++ ++ ++ ++ - ++ ?

[WSWW03] - - ++ ++ ++ ++ ++ ?

[CST+06] - - ++ ++ ++ ++ ++ ?

Table 4.2: Comparison of Applied Algorithms
++:full, +: partial, -:no satisfaction of requirement; ?:unknown

In [Erb06] and [MKBR10] (cf. Table 4.2) component-based mapping models
are integrated which can potentially enable an input-output consistency and an
automation in the business process chain (RA1) (cf. Section 3.3.2). However,
in none of the both approaches, there is a focused study on this requirement
and no statements are made. Still, it can be assumed that the component-based
mapping models provide a basis to satisfy this requirement. Furthermore, in
both approaches application models as reference architectures are provided to
enable a model-based software design (RA2). In [WSWW03] and [CST+06],
this is not the case.

In all approaches in Table 4.2 metaheuristics to perform a global search
(RA3) are applied for a multi-objective combinatorial optimization (RA5) and
for each of them a PC is used for tests (RA7), and no computer clusters. Con-
straints are handled as soft-constraints (RA4) using repair operations to make
infeasible solutions feasible.

Representations used, on which standard variation operations are applied
in approaches [Erb06] and [MKBR10], are standard (string-based) representa-
tions. In this case, useful problem-specific information is poorly considered in
the representation and the algorithms can only perform a blind search. As a
consequence, computationally expensive repair operations must be applied on a
given infeasible solution to create potentially many feasible solutions and choose
a feasible solution randomly, implying that the problem-specific information is
widely transparent to the search operations of the algorithm.

An effective search towards promising regions of the search space can be pos-
sible by establishing a link between the problem and the algorithm in the varia-
tion operations and a goal-oriented search can be possible (RA6). In [WSWW03]
and [CST+06] algorithms incorporate problem-specific goal-oriented variations
that full this requirement.

In each of [Erb06], [MKBR10] and [WSWW03] the proposed solution method
is examined on a single problem instance and in [CST+06] tests are performed
for two problem instances.

Further, all of the presented approaches have certain shortcomings:

• Problem-specific goal-oriented variations are either not considered, as in
case of [Erb06] and [MKBR10] or they are considered, as in case of
[WSWW03] and [CST+06], however they do not deal with problems pos-

4.7 Conclusions 77

sessing properties of a component-based software design with intermeshed
structure, vertical and horizontal intercomponent dependencies (cf. Sec-
tion 3.3.1);

• In none of the approaches generality of the solution method has been
a point of consideration for which representative problem instances must
have been identified and performance of algorithms could be tested (RA8).

4.7 Conclusions

In this chapter a brief introduction to the type of design creation problem,
combinatorial optimization is presented in Section 4.1. Regarding the conclusion
of Chapter 3 metaheuristics are presented in Section 4.2 and 4.3 that solve
combinatorial optimization problems of a high complexity. Further, arguments
are made for the choice of the solver algorithm in Section 4.4 and 4.5.

In Section 4.6 existing solution methods, which solve problems with similar
properties and which fulfill some of the requirements on algorithms are pre-
sented. In Table 4.1 and 4.2 these approaches are compared with each other
for their similarity to the properties of the design creation problem presented in
Section 3.3.1 and for the fulfilled requirements on algorithms in Section 3.3.2.

None of the presented problems from the literature exactly match the prob-
lem properties presented in Section 3.3.1 and they do not fulfill the requirements
on algorithms in Section 3.3.2 completely. The solution methods in [Erb06],
[MKBR10], [WSWW03] and [CST+06] have important shortcomings for apply-
ing on the design creation problem. Hence, a new solution method for the design
creation problem is conceived in Chapter 5.

78 Solution Methods for Design Generation and Optimization

Chapter 5

Automated Creation of
Optimized Designs

5.1 Introduction

A goal-oriented optimization process is essential for achieving solutions of high
quality. A further impact of such an approach is an algorithm design that con-
siders the information related to the specific problem instance. As many real
life design problems in engineering are subjected to a high complexity, consider-
ation of problem-specific information by solving methods aims at providing the
advantage of reducing the time complexity, quick convergence and obtaining
solutions of improved quality.

There are various concepts followed by a solving method in each of which
problem-specific information can be realized. In these concepts different strate-
gies can be followed.

The solution method that will be employed to solve the design creation
problem must satisfy the requirements from RA1 to RA8 presented in Section
3.3.2. There are four key concepts to respond these requirements and build the
fundamentals of the automated creation of optimized designs:

1. component model focused on the realization of RA1,

2. design evaluation,

3. design generation and

4. design improvement focused on the realization of RA2 to RA8.

5.2 Design Evaluation

For quantification of the suitability of a design as a solution candidate for the
problem, a quality measure is incorporated that is determined upon on the

80 Automated Creation of Optimized Designs

design quality criteria. In terms of evolutionary algorithms this measure is
called fitness. Fitness functions enable a value-based comparison between two
solution candidates and guide optimization algorithm to improve solutions.

For the design creation problem following fitness criteria can be derived from
design quality criteria given in Section 2.8.2:

• abstract design compliance: A solution must represent a binding-
schema with device specific functional profiles covering all function blocks
in a given abstract design, such that each function block is covered by only
one functional profile in a specific operation mode;

• validity and completeness of binding-schema All communication
partner devices in the design must be interoperable for the function blocks
they realize, hence their functional profiles that realize function blocks
must build bindings to realize abstract connections among the function
blocks (cf. Section 3.2.2). However, some of the communication part-
ner devices may only be interworkable (cf. Table 2.2) with syntactically
fitting functional profiles, which do not fit semantically. This can be a
consequence of inter alia incomplete specification of devices in the com-
ponent repository. Thus, for an evaluation it is necessary to distinguish
between interworkable bindings as bindings among interworkable devices
and interoperable bindings as bindings among interoperable devices.

Interoperable bindings are preferred to interworkable bindings, however
some communication partner devices may happen not to build interopera-
ble bindings and only interworkable bindings. Automated design creation
must also allow such detailed design solutions under consideration of a
distinguished evaluation between interoperable and interworkable bind-
ings, rather than forbidding them and ending up with binding-schemata,
in which bindings are missing. In a binding-schema, all mandatory input
datapoints of functional profiles must possess bindings for a correct real-
ization of abstract design. In some cases, extra functional profiles than
the ones that realize the function blocks of the abstract design may need
to be added into binding-schema to complete missing bindings;

• device price costs: Price sum of devices of a detailed design must be
as low as possible. This implies a reasonable price sum for the complete
design of a building project and would help customers’ conviction by saving
him financial resources.

Further criteria that define the optimality level of detailed designs are:

• demand for device communications: Bindings created among func-
tional profiles of two different devices (device external bindings) mean mes-
sages sent between these two devices over the field bus, in case of wired
communication e.g. in LON, KNX etc. In contrast, for device internal

5.3 Component Model 81

bindings no message is sent over the field bus which reduces network traf-
fic load. Therefore, realization of function blocks by the functional profiles
of a same device is preferred, where possible;

• configuration and maintenance: Bindings with functional profiles
from different manufacturers (manufacturer-spanning bindings) are harder
to configure in the commissioning task and to maintain. Designs with
lesser manufacturer spanning bindings are preferred.

5.3 Component Model

In order to satisfy the requirement for a component-based mapping model and
holism (RA1) (cf. Section 3.3.2) and allow an adaptation of algorithms to the
design creation problem, abstract and detailed design models (cf. Section 3.2)
are specified in UML class diagrams 1 in Figure 5.1 and 5.2 respectively. Hereby,
an object-oriented approach is considered rather than an attribute oriented ap-
proach, in order make use of inheritance and encapsulation of the information
elements that belong to each other in the context of abstract and detailed design.
The abstract design model consists of elements that reflect the room automation
planning elements such as function blocks, ports and connections.

The abstract design model is applicable for arbitrary room automation plan
specified according to the standard VDI 3813 [The11a, The11b]. The detailed
design model can be applied for designs made with LON and EnOcean com-
ponents, and other similar platforms with protocols that implement the OSI
reference model [DZ83] application layer for device application profiles and thus
support designs with prefabricated devices and preprogrammed software mod-
ules.

A design generation method can generate detailed designs for a given ab-
stract design. An algorithmic mapping can be performed from the abstract
design to each such detailed design. In order to provide a matching of mapped
components and to emphasize the mapping concept, a comparison of abstract
design model and detailed design model is given in Table 5.1, for certain classes
for which mappings exist or which exist in the detailed design without a direct
counterpart that can be addressed in the abstract design (model components
with “-” entries).

Each room automation plan and each related design for a room in broad
sense also for a storey, corridor or a hall etc. is unique. This implies that the
elements contained such as function blocks and abstract connections, or software
modules, bindings and devices are unique in the complete BAS. Creation of
each such unique room automation plan and design for large volumes such as
buildings with hundreds of rooms individually is a tedious work, particularly if
this must be performed with multiple buildings each individually.

1A reference to UML can be consulted in [BRJ99]

82 Automated Creation of Optimized Designs

A
b
s
tr
a
c
tC
o
n
n
e
c
ti
o
n

in
P

o
rt

:
 I

n
P

o
rt

In
s
ta

n
c
e

o
u
tP

o
rt

:
 O

u
tP

o
rt

In
s
ta

n
c
e

A
b
s
tr
a
c
tD
e
s
ig
n
T
e
m
p
la
te

n
a
m

e
:

 S
tr

in
g

fu
n
c
ti
o
n
b
lo

c
k
S

e
t:

S

e
t

a
b
s
tr

a
c
tC

o
n
n
e
c
ti
o
n
S

e
t:

S

e
t

a
b
s
tr

a
c
tD

e
s
ig

n
T

e
m

p
la

te
In

s
ta

n
c
e
S

e
t:

S

e
t

lo
c
a
ti
o
n
S

e
t:

S

e
t

a
d
d
T

o
L
o
c
a
ti
o
n
()

 :
 v

o
id

re
m

o
v
e
F

ro
m

L
o
c
a
ti
o
n
()

 :
 v

o
id

F
u
n
c
ti
o
n
B
lo
c
k

in
P

o
rt

M
a
p
:

 M
a
p

o
u
tP

o
rt

M
a
p
:

 M
a
p F
u
n
c
ti
o
n
B
lo
c
k
In
s
ta
n
c
e

p
h
y
s
ic

a
lL

o
c
a
ti
o
n
T

y
p
e
:

 P
h
y
s
ic

a
lL

o
c
a
ti
o
n
T

y
p
e

fu
n
c
ti
o
n
B

lo
c
k
T

y
p
e
:

 F
u
n
c
ti
o
n
B

lo
c
k
T

y
p
e

«
in

te
rf

a
c
e
»

F
u
n
c
ti
o
n
B
lo
c
k
L
ib
ra
ry

F
u
n
c
ti
o
n
B
lo
c
k
R
e
fe
re
n
c
e

re
fe

re
n
t:

F

u
n
c
ti
o
n
B

lo
c
k
In

s
ta

n
c
e

F
u
n
c
ti
o
n
B
lo
c
k
T
y
p
e

k
in

d
:

 F
u
n
c
ti
o
n
B

lo
c
k
K

in
d

in
P

o
rt

M
a
p
:

 M
a
p

o
u
tP

o
rt

M
a
p
:

 M
a
p

In
P
o
rt

In
P
o
rt
In
s
ta
n
c
e

O
u
tP
o
rt

O
u
tP
o
rt
In
s
ta
n
c
e

P
o
rt

p
o
rt

N
a
m

e
:

 S
tr

in
g

p
o
rt

T
y
p
e
:

 i
n
t

fu
n
c
ti
o
n
B

lo
c
k
T

y
p
e
:

 F
u
n
c
ti
o
n
B

lo
c
k
T

y
p
e

c
o
rr

e
s
p
o
n
d
s
T

o
S

e
t:

S

e
t

P
o
rt
In
s
ta
n
c
e

a
b
s
tr

a
c
tC

o
n
n
e
c
ti
o
n
S

e
t:

S

e
t

o
ri

g
in

a
lP

o
rt

:
 P

o
rt

fb
:

 F
u
n
c
ti
o
n
B

lo
c
k

a
d
d
A

b
s
tr

a
c
tC

o
n
n
e
c
ti
o
n
()

 :
 v

o
id

re
m

o
v
e
A

b
s
tr

a
c
tC

o
n
n
e
c
ti
o
n
()

 :
 v

o
id

L
o
c
a
ti
o
n

A
b
s
tr
a
c
tD
e
s
ig
n
T
e
m
p
la
te
In
s
ta
n
c
e

a
b
s
tr

a
c
tD

e
s
ig

n
T

e
m

p
la

te
:

 A
b
s
tr

a
c
tD

e
s
ig

n
T

e
m

p
la

te

in
s
ta

n
c
e
L
o
c
:

 L
o
c
a
ti
o
n

p
h
y
s
ic

a
lL

o
c
a
ti
o
n
M

a
p
:

 M
a
p

re
fe

re
n
tM

a
p
:

 M
a
p

in
P

o
rt

fu
n
c
ti
o
n
B

lo
c
k
T

y
p
e

o
u
tP

o
rt

c
re

a
te

s

Figure 5.1: Simplified UML Class Diagram of the Abstract Design

5.3 Component Model 83

O
u
tp
u
tD
a
ta
p
o
in
tI
n
s
ta
n
c
e

B
in
d
in
g

a
C

o
n

n
e

c
ti
o

n
:

 A
b

s
tr

a
c
tC

o
n

n
e

c
ti
o

n

in
p

u
tD

P
I:

In
p

u
tD

a
ta

p
o

in
tI
n

s
ta

n
c
e

o
u

tp
u

tD
P

I:

O
u

tp
u

tD
a

ta
p

o
in

tI
n

s
ta

n
c
e

is
D

e
v
ic

e
In

te
rn

a
l:

b
o

o
le

a
n

D
a
ta
p
o
in
t

d
a

ta
T

y
p

e
:

 S
tr

in
g

fP
:

 F
u

n
c
ti
o

n
a

lP
ro

fi
le

n
a

m
e

:
 S

tr
in

g

n
u

m
b

e
r:

in

t

s
N

V
T

:
 i
n

t

u
N

V
T

:
 M

a
p

s
e

m
a

n
ti
c
T

y
p

e
s
:

 S
e

t

D
a
ta
p
o
in
tI
n
s
ta
n
c
e

b
in

d
in

g
s
:

 S
e

t

d
a

ta
p

o
in

t:

D
a

ta
p

o
in

t

fP
I:

F
u

n
c
ti
o

n
a

lP
ro

fi
le

In
s
ta

n
c
e

a
d

d
B

in
d

in
g

()
 :

 v
o

id

re
m

o
v
e

B
in

d
in

g
()

 :
 v

o
id

D
e
ta
il
e
d
D
e
s
ig
n
T
e
m
p
la
te

a
b

s
tr

a
c
tD

e
s
ig

n
T

e
m

p
la

te
:

 A
b

s
tr

a
c
tD

e
s
ig

n
T

e
m

p
la

te

id
:

 S
tr

in
g

a
llF

u
n

c
ti
o

n
a

lP
ro

fi
le

In
s
ta

n
c
e

s
:

 M
a

p

c
o

s
ts

:
 d

o
u

b
le

d
e

ta
ile

d
D

e
s
ig

n
T

e
m

p
la

te
In

s
ta

n
c
e

S
e

t:

S
e

t

d
e

v
ic

e
In

s
ta

n
c
e

s
:

 S
e

t

lo
c
a

ti
o

n
S

e
t:

S

e
t

a
d

d
T

o
L

o
c
a

ti
o

n
()

 :
 v

o
id

D
e
v
ic
e

m
a

n
u

fa
c
tu

re
r:

S

tr
in

g

fu
n

c
ti
o

n
a

P
ro

fi
le

s
:

 S
e

t

id
:

 S
tr

in
g

p
ri

c
e

:
 d

o
u

b
le

D
e
v
ic
e
In
s
ta
n
c
e

d
e

v
ic

e
:

 D
e

v
ic

e

lo
c
a

lF
u

n
c
ti
o

n
a

lP
ro

fi
le

In
s
ta

n
c
e

s
:

 S
e

t

p
h

y
s
ic

a
lL

o
c
a

ti
o

n
T

y
p

e
:

 P
h

y
s
ic

a
lL

o
c
a

ti
o

n
T

y
p

e

s
e

tP
h

y
s
ic

a
lL

o
c
a

ti
o

n
T

y
p

e
()

 :
 v

o
id

F
u
n
c
ti
o
n
a
lP
ro
fi
le

ty
p

e
:

 F
P

T
y
p

e

d
e

v
ic

e
:

 D
e

v
ic

e

o
p

M
o

d
e

s
:

 M
a

p

in
p

u
tD

a
ta

p
o

in
tM

a
p

:
 M

a
p

o
u

tp
u

tD
a

ta
p

o
in

tM
a

p
:

 M
a

p

m
u

lt
ip

lic
it
y
:

 i
n

t

«
e
n
u
m

e
ra

ti
o
n
»

F
u
n
c
ti
o
n
a
lP
ro
fi
le
::
F
P
T
y
p
e

F
u
n
c
ti
o
n
a
lP
ro
fi
le
In
s
ta
n
c
e

fb
C

o
m

b
in

a
ti
o

n
:

 F
B

C
o

m
b

in
a

ti
o

n

in
p

u
tD

a
ta

p
o

in
tI
n

s
ta

n
c
e

s
:

 M
a

p

o
u

tp
u

tD
a

ta
p

o
in

tI
n

s
ta

n
c
e

s
:

 M
a

p

In
p
u
tD
a
ta
p
o
in
t

In
p
u
tD
a
ta
p
o
in
tI
n
s
ta
n
c
e

is
O

p
ti
o

n
a

l:

b
o

o
le

a
n

is
M

a
n

d
a

to
ry

:
 b

o
o

le
a

n

O
u
tp
u
tD
a
ta
p
o
in
t

F
u
n
c
ti
o
n
a
lP
ro
fi
le
F
a
c
to
ry

g
e

tF
u

n
c
ti
o

n
a

lP
ro

fi
le

()
 :

 F
u

n
c
ti
o

n
a

lP
ro

fi
le

g
e

tD
e

v
ic

e
()

 :
 D

e
v
ic

e

s
e

tO
p

e
ra

ti
o

n
M

o
d

e
()

F
u
n
c
ti
o
n
a
lP
ro
fi
le
In
s
ta
n
c
e
R
e
fe
re
n
c
e

lF
P

:
 l
o

c
a

lF
u

n
c
ti
o

n
a

lP
ro

fi
le

In
s
ta

n
c
e

L
o
c
a
lF
u
n
c
ti
o
n
a
lP
ro
fi
le
In
s
ta
n
c
e

o
p

M
o

d
e

:
 S

tr
in

g

d
e

v
ic

e
In

s
ta

n
c
e

:
 D

e
v
ic

e
In

s
ta

n
c
e

fP
:

 F
u

n
c
ti
o

n
a

lP
ro

fi
le

s
e

tO
p

M
o

d
e

()
 :

 v
o

id

g
e

tO
p

M
o

d
e

()
 :

 S
tr

in
g

F
B
C
o
m
b
in
a
ti
o
n

fB
In

s
ta

n
c
e

s
:

 S
e

t

L
o
c
a
ti
o
n

D
e
ta
il
e
d
D
e
s
ig
n
T
e
m
p
la
te
In
s
ta
n
c
e

d
e

ta
ile

d
D

e
s
ig

n
T

e
m

p
la

te
:

 D
e

ta
ile

d
D

e
s
ig

n
T

e
m

p
la

te

in
s
ta

n
c
e

L
o

c
:

 L
o

c
a

ti
o

n

p
h

y
s
ic

a
lL

o
c
a

ti
o

n
M

a
p

:
 M

a
p

re
fe

re
n

tM
a

p
:

 M
a

p

A
b
s
tr
a
c
tD
e
s
ig
n
T
e
m
p
la
te

in
p

u
tD

a
ta

p
o

in
tI
n

s
ta

n
c
e

o
u

tp
u

tD
a

ta
p

o
in

tI
n

s
ta

n
c
e

c
re

a
te

s

c
h

a
n

g
e

s
O

p
M

o
d

e

d
a

ta
p

o
in

t

d
e

v
ic

e

d
e

v
ic

e

ty
p

e

fu
n

c
ti
o

n
a

lP
ro

fi
le

Figure 5.2: Simplified UML Class Diagram of the Detailed Design

84 Automated Creation of Optimized Designs

According to the quality requirement for reusability (cf. Section 2.9), design
templates are conceived for allowing the reuse of room automation plans for
similar requirements in different building locations. This approach is based on
templates and template instances, and it is provided for all functions in the func-
tion portfolio of VDI 3813-2 [The11b]. E.g. if n rooms must be endowed with
constant-light control and automatic light functions, an abstract design template
(ADT) is created according to the model in Figure 5.1 that contains the au-
tomation plan for these functions and assigned to these rooms as abstract design
template instances (ADTI), where these functions are required. For the realiza-
tion of the ADT s, a detailed design template (DDT) can be created according to
the model in Figure 5.2 and assigned to all n rooms as a detailed design template
instance (DDTI) with a reference (detailedDesignTemplate) pointing to the
corresponding DDT and thus by a further reference (abstractDesignTemplate)
to the related ADT . By this approach the user effort is saved for the creation
of n− 1 similar automation plans and corresponding designs. Further, repeated
storage of identical information is prevented. Non identical room endowments
that deviate from the original detailed design can be achieved by consequent
modifications.

The functions in VDI 3813-2 [The11b] are subdivided in functional ca-
tegories such as sensor, operating, application and actuator functions, each
of which can be modeled as a function block (FunctionBlockType in Fig-
ure 5.1) of the related function type. Manufacturer and platform spe-
cific functional profiles (FunctionalProfile in Figure 5.2) 2 and the func-
tion blocks encapsulate the common properties, parameters, and ports as
well as datapoints correspondingly. In order to allow a reuse of these
types, instances for function blocks (FunctionBlock in Figure 5.1) and func-
tional profiles (FunctionalProfileInstance in Figure 5.2) can be specified.
FunctionalProfileInstance encapsulates the specific operational values.

If abstract designs and detailed designs for a complete building project are
considered, the reuse approach allows a saving of high data amounts in the
BAS design. The approach applies analogous among ports (Port) and port
instances, (PortInstance in Figure 5.1) and datapoints (Datapoint) and data-
point instances (DatapointInstance in Figure 5.2).

Some functions may commonly be used for a group of automation plans.
Typical examples for such functions are sensor functions e.g. outdoor temper-
ature and outdoor luminosity. Such functions are modeled as function blocks
assigned to all common using ADT s, in one certain template as a function block
instance and in the other templates as a reference (FunctionBlockReference in
Figure 5.1). The realizing functional profile (LocalFunctionalProfileInstance
in Figure 5.2) of such a function block is analogously used in a certainDDTI and

2Functional profile is the term for a software module introduced by the application speci-
fications of LonMark Organization [Lon] and EnOcean Alliance [EnO], which will be used for
software module from this stage on.

5.3 Component Model 85

used as a reference (FunctionalProfileInstanceReference) in other DDTIs.
A functional profile realizes one or more functions which implies that one or

more function blocks are realized on a functional profile. A functional profile in
the detailed design can realize various combinations of function blocks depending
on its operation value setting. Each functional profile is assigned a function block
combination (FBCombination in Figure 5.2) (cf. Definition 3.2.4) to denote the
implemented function blocks.

5.3.1 Presumptions

For the design generation method to meet the quality requirements introduced
in Section sec:designquality some presumptions are made:

• complete implementation of design requirements in abstract de-
sign: Function blocks in the abstract design completely cover the func-
tional design requirements as well as other hardware requirements. Each
function block hereby covers a required function and if desired, with hard-
ware requirements on the device that should realize the function. An
abstract design is the unique source of information for the design cre-
ation about the requirements on the system to realize. Hence, an abstract
design that does not completely cover the requirements will lead to non
requirement conform or incomplete detailed designs, or detailed designs
with missing bindings;

• interoperability in abstract design: Communications of functions are
specified via correct abstract connections, which are defined between in-
teroperable function blocks, where the outports and inports are related
to the required function and possess compatible port types according to
VDI 3813-2 [The11b]. Connections among incompatible port types lead
to invalid bindings, thus invalid binding-schemata (cf. Section 3.2.2);

• correct implementation of functions on devices: For mapping an
abstract design on a detailed design, device and functional profile alter-
natives exist. For each function block there exists at least one functional
profile of a device that realizes the functional requirements and hardware
requirements implied by the function block. The functional profile is as-
sociated to a set of input and output datapoints that correspond to the
semantics implied by the inports and outports of the function block. Such
a functional profile can be considered to be conform to standard VDI 3813-
2. Functional profile implementations that deviate from the semantics of
function blocks in this standard are considered as non-conform and may
cause invalid bindings with their binding partner functional profiles. This
yields to invalid binding-schemata;

86 Automated Creation of Optimized Designs

Abstract Design

Model
Comments

Detailed Design

Model
Comments

FunctionBlockType
an unused function

block
FunctionalProfile

an unused functional

profile

FunctionBlock
a template specific

function block

FunctionalProfile

Instance

a template specific

functional profile

FunctionBlock

Instance

a used function block

with the template

assigned to the same

location as itself

LocalFunctional

ProfileInstance

a used functional

profile with the

template assigned to

the same location as

itself

FunctionBlock

Reference

a used function block

referenced from

another template

FunctionalProfile

InstanceReference

a used functional

profile referenced

from another

template

- FBCombination

group of used

function blocks

covered by a used

functional profile

- Device
device type of a

functional profile

- DeviceInstance

used device in a

detailed design

template

AbstractConnection

connector from an

outport instance to an

inport instance

Binding

connector from an

output to an input

datapoint instance

Port a port type Datapoint a datapoint type

PortInstance
a used function block’s

port
DatapointInstance

a used functional

profile’s datapoint

AbstractDesign

Template

an unassigned abstract

design

DetailedDesign

Template

an unassigned

detailed design

AbstractDesign

TemplateInstance

an abstract design

assigned to a location

DetailedDesign

TemplateInstance

a detailed design

assigned to a location

Table 5.1: Component-Based Mapping between Abstract and Detailed Design
Model Types

5.4 Design Generation 87

• assistance of a component repository: For an automated retrieval for
functional profiles and devices that realize given function blocks and re-
lated function semantics assistance of a component repository is provided.
This component repository is designed to contain all design relevant data
about functional profiles and devices from different device manufacturers
world wide and to retrieve this information. Furthermore, it can evalu-
ate interoperability among two given devices for specified functions and
deliver all possible bindings among the functional profiles of the devices
in a reasonable slice of time. This time requirement is crucial for the re-
alization of the efficiency requirement on solution methods (cf. Section
2.9).

5.3.2 Integration of Component Model

The system design component model allows the definition of room automa-
tion plans for varying requirements and resulting designs that can not only be
used within the same project, but also in other building projects. Furthermore,
graphical visualization tools can integrate the abstract design and detailed de-
sign models to illustrate, edit, store the room automation plans and designs to
provide a comfortable process of engineering.

In addition, by using the detailed design model the created designs can be
imported in diagnosis and performance engineering tools [Plo07] for measuring
the network load distribution on nodes. A further use can be provided by
importing the designs in design creation and deployment tools for the physical
topology of the automation network, commissioning and monitoring such as
LonMaker via LNS [Ech] that provides a COM 3 interface or ETS via Falcon
[KNX] that provides a DCOM 4 interface. These uses build the fundamentals
of a holistic approach to design engineering in its business process model.

5.4 Design Generation

By presentation of all presumptions (cf. Section 5.3.1) and prerequisites (cf.
Section 5.2 and 5.3) optimized design detailed designs can be generated for a
given abstract design with the first step of design generation of a single detailed
design which can be considered as a preoptimization step. The design generation
is initiated by identifying alternatives for design components which is realized
by searches in the component repository.

Component Retrieval: For function blocks

FB = {fb1, fb2, ..., fbi} (5.1)

3COM: Component Object Model
4DCOM: Distributed Component Object Model

88 Automated Creation of Optimized Designs

of a given abstract design AD, manufacturer, device and operation mode specific
functional profiles (fp’s) can be retrieved as can be seen in (5.2), where “:”
represents the relation between a function block and realizing functional profile
alternatives.

fb1 : {fpfb1,1, fpfb1,2, ..., fpfb1,α}
fb2 : {fpfb2,1, fpfb2,2, ..., fpfb2,β}
...

fbi : {fpfbi,1, fpfbi,2, ..., fpfbi,ζ}

(5.2)

The sets of retrievals can be denoted in short form as:

FPfb1 = {fpfb1,1, fpfb1,2, ..., fpfb1,α}
FPfb2 = {fpfb2,1, fpfb2,2, ..., fpfb2,β}

...

FPfbi = {fpfbi,1, fpfbi,2, ..., fpfbi,ζ}

(5.3)

5.4.1 Component Search

Some preoptimization steps are necessary for the adaptation of used algorithms
to the problem domain for successfully dealing with the problem complexity
and to obtain near-optimal detailed design solutions for given abstract designs.
These steps are related to the following motivations:

• correct mapping and coverage of function blocks by functional
profiles: In order to obtain optimized detailed design solutions that are
consistent to given abstract designs a correct mapping of function blocks
onto manufacturer and device-specific functional profiles is necessary. It
is convenient to emphasize the problem property component-based soft-
ware design at this point, since mappings must consider the fact that on
devices preprogrammed functional profiles are implemented with device
specific capacity of each for functional profile type. An arbitrary map-
ping of function blocks onto functional profiles, thus onto devices would
lead to detailed design solutions inconsistent to abstract designs, hence to
requirements that have to be met.

Since most devices realize multiple function blocks, correct mapping of
function blocks onto realizing devices must be provided. This is possible,
only if, the mapped function blocks are realized by the functional pro-
files of these devices. In addition, devices must optimally cover function
blocks of a given abstract design implying that each chosen device covers
a maximum possible set of function blocks. On the implementation level,
this corresponds to the optimal coverage of function blocks by functional
profiles. A suboptimal coverage can on one hand lead to selection of more
functional profiles and devices than necessary, which again leads to design

5.4 Design Generation 89

solutions of high price costs. On the other hand, there may be more input
datapoints that require bindings than actually necessary which leads to
incomplete binding-schemata (cf. Definition 3.2.8);

• substitution of matching functional profiles and devices: An op-
timization algorithm will attempt to perform improvements on a created
design by substitution of functional profiles and devices by different al-
ternatives. An arbitrary choice of an alternative functional profile or a
device for substitution would lead to inconsistency between the given ab-
stract design and the generated detailed designs, hence to non requirement
compliant detailed designs.

Such an approach is inefficient, since additional computational cost inten-
sive operations will be necessarily to regain the consistency by repairing
inconsistent (or infeasible) design solutions, only if possible at this pos-
terior stage. If a functional profile that realizes a certain set of function
blocks will be substituted by an alternative functional profile as its coun-
terpart, the counterpart must also realize the exact set of function blocks
(cf. Definition 5.4.1). FBCombination in Figure 5.2 is conceived also to
realize the identification of matching counterparts;

• acceleration of design optimization: Large number of the component
alternatives available in the component repository and related high number
of possible component combinations arise a problem of high complexity.
In order to reduce the number of the components that can be considered
by the optimization algorithm and thus to reduce the problem complexity,
preoptimization steps must consider only relevant components for a given
problem instance. Therefore, for optimization algorithms, functional pro-
files other than the ones retrieved as given in (5.2) are irrelevant and are
out of consideration for the considered problem instance AD.

In addition, repeated searches in the component repository for information
related to functional profiles as presented in the component model (cf.
Section 5.3) after the start of the optimization process would cause an
enormous overhead. A book keeping of retrieved information during the
search in component repository can accelerate the optimization process
until its termination by reducing this overhead to a minimum.

Definition 5.4.1. Matching Functional Profiles: Two functional profiles
fp1 and fp2 are matching, only if the function block combinations (cf. Definition
3.2.4) fbcfp1 mapped by fp1 and fbcfp2 mapped by fp2 are equivalent: fbcfp1 ≡
fbcfp2 .

Component Arrangement: In (5.3) some sets of retrieved functional profiles
can be identical, since some of the function blocks can be from the same function

90 Automated Creation of Optimized Designs

block types and related to an identical set of requirements. In order to reduce
the combinatorial complexity for the following operations, such identical sets of
retrieved functional profiles

FPa1 ≡ FPa2 ≡ ... ≡ FPaf

FPb1 ≡ FPb2 ≡ ... ≡ FPbg

...

FPz1 ≡ FPz2 ≡ ... ≡ FPzh

(5.4)

with a1, a2, ..., af , b1, b2, ..., bg, z1, z2, ..., zh ∈ [1, i] are identified and the corre-
sponding function blocks are grouped in an initial step. Each such group of
function blocks is then represented by a place holder function block fbpholder

(cf. (5.5)), where “
ph−→” represents the relation from a place holder function

block to original function blocks in abstract design, which are represented by
the place holder function block.

fbpholder1
ph−→ {fbFPa1

, fbFPa2
, ..., fbFPaf

}

fbpholder2
ph−→ {fbFPb1

, fbFPb2
, ..., fbFPbg

}

...

fbpholdere
ph−→ {fbFPz1

, fbFPz2
, ..., fbFPzh

}, e ∈ [1, i]

(5.5)

From (5.3) and (5.5) for the union of functional profiles contained in the
union set FPfb1 ∪ FPfb2 ∪ ... ∪ FPfbi with cardinality j, functions block
sets can be obtained in (5.6) which can be realized simultaneously by each
of these functional profiles. This is possible, since each retrieved functional
profile is operation mode specific. Hereby, fbunique denotes a function block
with unique functional profile retrieval results hence ∀ fbunique ∈ FB : fbunique
/∈ {fbpholder1 , ..., fbpholdere}. Set of function blocks realized by each functional
profile fpp (p ∈ [1, j]) in (5.6) is denoted shortly as FBSETp. In (5.6) “⋄”
represents the relation from a functional profile alternative to the place holder
function blocks that can simultaneously be realized by the functional profile
alternative.

fp1 ⋄ {fbpholderfp1,1 , ..., fbpholderfp1,γ , fbuniquefp1,1 , ..., fbuniquefp1,u1}
fp2 ⋄ {fbpholderfp2,1 , ..., fbpholderfp2,δ , fbuniquefp2,1 , ..., fbuniquefp2,u2}
...

fpj ⋄ {fbpholderfpj,1 , ..., fbpholderfpj,ω , fbuniquefpj,1 , ..., fbuniquefpj,uj }

(5.6)

It can be concluded that a functional profile can realize arbitrary combi-
nation of the function blocks in its function block set, only if function blocks
contained in such a combination set allow a merging of their properties. Merging
is possible if

5.4 Design Generation 91

• there is no repetition of function block types (implied room automation
functions);

• non-functional requirements related to function blocks do not conflict with
each other and can be merged to a common set of non-functional attributes
for all contained function blocks. These attributes are:

– chosen BAS technology: wired, wireless, LON, EnOcean, KNX, etc.,

– device manufacturer name, device mounting form type (cap rail, sur-
face mounting, etc.), device mounting location (intermediate ceiling,
ceiling underside, floor, facade, beside door, wall, etc.), device operat-
ing voltage, device price cost (≤, ≥, =), device transmission medium
(twisted pair, power line, etc.), etc.,

– device group label attribute for a group of function blocks to indi-
cate that the function blocks contained in such a group should be
mapped on the same target device, if required, without specification
of a concrete device type.

Such a mergeable set of function blocks is denoted as a mergeable function
block combination and guides the solution method towards optimal solutions
by allowing only feasible mappings and solutions, which are consistent to the
given abstract designs. A mergeable function block combination is called simply
function block combination in the remainder of this thesis.

A set that contains all function block combinations, each of which can be
realized by a functional profile is denoted as a function block combinations set
(FBCOMBSET). For each function block set FBSETp (p ∈ [1, j]) correspond-
ing to a realizing functional profile fpp (fpp ∈ {fp1, ..., fpj} in (5.6)), a set of
function block combinations FBCOMBSETp can be obtained as shown in (5.7)

by performing merging and power set operations, where “
combination

↪→ ” represents
the relation from a function block set to the set of function block combination
sets obtained by building of combinations. Non-mergeable function block sets
are not included in a function block combination set.

FBSET1
combination

↪→ FBCOMBSET1

FBSET2
combination

↪→ FBCOMBSET2

...

FBSETj
combination

↪→ FBCOMBSETj

(5.7)

Each FBCOMBSETp is thus a set containing mergeable function block com-
binations from the power set of FBSETp with all 2nofbs − 1 combinations of
the function blocks in set FBSETp (nofbs: the number of function blocks in
FBSETp). Moreover, in this step, the advantage of reducing the combinatorial
complexity for power set calculations by introducing the notion of place holder

92 Automated Creation of Optimized Designs

function blocks can clearly be seen. Beyond the acceleration of calculations, in
practical cases, where nofbs is greater than 10, computation lasts noticeably
longer and after a certain limit the computation appears not to end. By this
approach, for such cases a power set calculation is thus made possible. Fur-
thermore, many non-mergeable function block combinations are prevented from
being created and number of merge operations is drastically reduced. From

(5.6) and (5.7), (5.8) can be concluded, where “
realizes
↪→ ” represents the relation

between a functional profile alternative and possible function block combina-
tions obtained by combination building, each of which can be realized by the
functional profile alternative.

fp1
realizes
↪→ FBCOMBSET1

fp2
realizes
↪→ FBCOMBSET2

...

fpj
realizes
↪→ FBCOMBSETj

(5.8)

For each function block combination fbcr (r ∈ [1, k])

ALLFBCOMBS =

j∪
o=1

FBCOMBSETo (5.9)

fbcr ∈ ALLFBCOMBS

all possible mapping functional profile alternatives can be obtained in form of a
map in (5.10) from (5.8).

fbc1
realizedby→ {fpfbc1,1, fpfbc1,2, ..., fpfbc1,η}

fbc2
realizedby→ {fpfbc2,1, fpfbc2,2, ..., fpfbc2,θ}

...

fbck
realizedby→ {fpfbck,1, fpfbck,2, ..., fpfbck,ψ}

(5.10)

In (5.10)
realizedby→ represents the relation from a function block combination to

a set of realizing functional profile alternatives. Function block combinations
ALLFBCOMBS = {fbc1, fbc2, ..., fbck} contain place holder function blocks,
which can be replaced by original function blocks in (5.5). After the replacement
(5.11) is obtained.

Set of all function block combinations ALLFBCOMBS contains after the
replacement additional function block combinations and it is referred to as
ALLFBCOMBS′ = {fbc1, fbc2, ...,fbcc} with c − k ≥ 0 denoting the num-

5.4 Design Generation 93

ber of additional function block combinations (cf. 5.11).

fbc1
realizedby→ {fpfbc1,1, fpfbc1,2, ..., fpfbc1,η}

fbc2
realizedby→ {fpfbc2,1, fpfbc2,2, ..., fpfbc2,θ}

...

fbcc
realizedby→ {fpfbcc,1, fpfbcc,2, ..., fpfbcc,ψ′}

(5.11)

From (5.11) functional profiles can be rearranged by implementing devices in a
map for each function block combination in (5.12) and (5.13), since functional

profiles are device and operation mode specific. In (5.12) “
realizedby→ ” represents

the relation from a function block combination to a device map mapdev with
realizing manufacturer-specific devices.

fbc1
realizedby→ mapdevfbc1

fbc2
realizedby→ mapdevfbc2

...

fbcc
realizedby→ mapdevfbcc

(5.12)

For w ∈ [1, c], each mapmapdevfbcw is denoted in (5.13), where “
impl.→ ” represents

the relation from a function block combination specific device in a device map
mapdev from (5.12) to realizing functional profile alternatives preimplemented
on the device, each of which realizes the function block combination.

devfbcw,1
impl.→ {fpdevfbcw,1,1, fpdevfbcw,1,2, ..., fpdevfbcw,1,ϵ}

devfbcw,2
impl.→ {fpdevfbcw,2,1, fpdevfbcw,2,2, ..., fpdevfbcw,2,ρ}

...

devfbcw,d
impl.→ {fpdevfbcw,d,1, fpdevfbcw,d,2, ..., fpdevfbcw,d,τ}

(5.13)

All the relations and calculations presented up to here are independent of the
connections among function blocks. However, some function block combinations
are particularly useful in the design improvement for an accelerated search for
functional profile pairs that yield bindings. Such function block combinations
are built considering the abstract connections among function blocks and called
connection sensitive function block combinations. Connection sensitive function
block combinations FBCCS ⊂ ALLFBCOMBS′ in (5.14) can be obtained by
Algorithm 5, if there exists any.

FBCCS = {fbccs1 , fbccs2 , ..., fbccscsn} (5.14)

In Figure 5.3 an example is presented for the steps performed by Algorithm
5 to help the comprehension. In step 1a and 1b function blocks are determined

94 Automated Creation of Optimized Designs

Algorithm 5: Algorithm for Calculation Of Abstract Connection Sensi-
tive Function Block Combinations
Input: Set of abstract design function blocks: FB, map for connection

pairs in FB with each entry from function block of outgoing side
of the connection to function blocks of the incoming side: MAP1

Output: Set of connection sensitive function block combinations:
FBCCS

// initialize FBCCS
FBCCS = ∅;
// begin step 1a and 1b in Figure 5.3
// collect all function blocks that participate abstract connections from

incoming side
INFBS = COLLECT ALL INCOMING FBS(MAP1);
// collect all function blocks that participate abstract connections from

outgoing side
OUTFBS = COLLECT ALL OUTGOING FBS(MAP1);
// collect function blocks which are in none of the abstract connections

on the outgoing side
ENDFBS = COLLECT ALL END FBS(INFBS,OUTFBS);
// calculate the reverse map for MAP1 in which each entry is from

function block of incoming side of the connection to function blocks of
the outgoing side

// end step 1a and 1b in Figure 5.3
MAP2 = REV ERSEMAP (MAP1);
// step 2-4 in Figure 5.3
for all endfb ∈ ENDFBS do

// calculate connection group starting from endfb adding all
connection partner function blocks from the outgoing side
recursively and build a sensitive function block combination

fbccs = COLLECT CONN GRP (endfb,MAP2);
// add fbccs to FBCCS
FBCCS = FBCCS ∪ {fbccs};

end

that represent initial data sources (sensor and operation functions) and final data
sinks (actuator functions denoted as endfb in Algorithm 5) in a given abstract
design by navigating through function blocks via their abstract connections from
outports to inports and in the opposite direction.

In steps 2 to 4 a stepwise navigation is performed through abstract con-
nections starting from final data sink function blocks (obtained in step 1b) in
the set ENDFBS to their connection partner incoming function blocks in the
opposite direction of abstract connections. The navigation proceeds until the

5.4 Design Generation 95

function blocks determined in step1a are reached. For each data sink function
block function blocks visited in the navigation are grouped. Initial data sources
obtained in step 1a are not included in the group. In the 4. step the final group
emerges that is considered as a connection sensitive function block combination.

: initial data sources and final data sinks

step 1a step 1b

: stepwise identified connection sensitive groups of function blocks

step 2

step 3

step 4

Figure 5.3: Stepwise Identification of Connection Sensitive Function Blocks
Groups of a Heating Example

Examples for connection sensitive function block combinations are illustrated
(fbccs1, fbccs2 and fbccs3) in Figure 5.4 with fbccs3 as the connection sensitive
function block combination calculated in Figure 5.3. There exists at least one
functional profile for each of these function block combinations that can realize
the covered function blocks simultaneously in a specific operation mode. Con-
nection sensitive function block combinations are determined, since a considera-
tion of such combinations can help to accelerate the convergence speed of design
improvement algorithms in variation operations by guiding them towards only
significant mapping alternatives among function block combinations and func-
tional profiles. Two connection insensitive function block combinations among
many other such function block combinations that otherwise would repeatedly
be considered by the variation operations are:

fbcconnins1 = {fb1, fb8}
fbcconnins2 = {fb4, fb9}

According to the example in Figure 5.4 with fbccs1, fbccs2 and fbccs3 abstracted,
a functional profile that maps fbcconnins1 builds a binding pair candidate (cf.
Definition 3.2.5) with the functional profile that maps fb7, which does not

96 Automated Creation of Optimized Designs

fbccs1

fbccs2

fbccs3

fb1 fb2 fb3

fb6
fb4

fb5

fb7 fb8 fb9

fb10

fb11

Figure 5.4: Example Connection Sensitive Function Block Combinations for a
Lighting and Heating Example in Figure 6.1

achieve the desired binding and in many cases, no binding emerges. Further,
such a constellation in this particular example is also semantically incorrect,
since according to this scheme, a functional profile that maps fb1 is required to
build bindings with a functional profile that maps its connection partner fb2 or
with another functional profile that maps both fb2 and its second connection
partner fb3. Connection insensitive function block combinations are not forbid-
den and are also allowed in variation operations. The reason for this is that
there are possibly useful connection insensitive function block combinations e.g.
a function block combination that covers fb1, fb4 and fb7, if they were from
three different function block types and mergeable. However connection sen-
sitive function block combinations assist the variation operations to achieve a
faster convergence to optimal solutions. Hence, both alternatives are considered.

For each function block in the abstract design, all possible function block
combination alternatives it participates can be obtained in form of a map in

(5.15) from (5.12). In (5.15)
containedin→ represents the relation between a function

block and all function block combinations, each of which contains the function
block.

fb1
containedin→ {fbcfb1,1, fbcfb1,2, ..., fbcfb1,ι}

fb2
containedin→ {fbcfb2,1, fbcfb2,2, ..., fbcfb2,κ}

...

fbi
containedin→ {fbcfbi,1, fbcfbi,2, ..., fbcfbi,χ}

(5.15)

5.4 Design Generation 97

Functional profile retrievals and obtained results are saved in a memory to
make this information available throughout the design generation and improve-
ment. This prevents repeated retrievals hence reduces overhead and speeds up
the overall process.

Yet a proper selection of a set of function block combinations can contain
all function blocks of the abstract design FB (cf. (5.1)) without repetition of
any function block. In fact, there can exist many such sets of function block
combinations that can cover the set of function blocks exactly. Each such set of
function block combinations is called a pattern in the context of this thesis and
should not be confused with the usage of the notion of patterns in Table 2.1.
The notion of patterns is highly relevant for the design creation problem, since
with this definition a consistency among given abstract designs and generated
detailed designs can be provided.

In order to help the comprehension of the relations and calculations from
(5.2) to (5.15), the example abstract design in Figure 2.8 is chosen and reillus-
trated with reduced and enumerated function blocks. For the sake of simplifi-
cation sets of retrieved functional profiles are also reduced.

fb3

fb2

fb1

fb4

fb5

Figure 5.5: Constant-Light Control and Automatic Lights in Figure 2.8 with
Reduced and Enumerated Function Blocks

The set of function blocks in Figure 5.5 is:

FB = {fb1, fb2, fb3, fb4, fb5}. (5.16)

Component Retrieval for the Example in Figure 5.5: After a search in
component repository (5.17) is obtained with device and operation mode specific
functional profiles.

fb1 : {fp1, fp2, fp3, fp4}
fb2 : {fp5, fp6, fp7}
fb3 : {fp5, fp6, fp7}
fb4 : {fp1, fp3, fp8, fp9}
fb5 : {fp2, fp3, fp8, fp10}

(5.17)

98 Automated Creation of Optimized Designs

Component Arrangement for the Example in Figure 5.5: It is observed
that the sets of functional profiles for fb2 and fb3 are identical, thus these
function blocks are grouped in (5.18) and refered to as a place holder function
block fbpholder.

fbpholder
ph→ {fb2, fb3} (5.18)

From (5.17) and (5.18) function block sets can be obtained in (5.19) which can
be realized simultaneously by each of these functional profiles.

fp1 ⋄ {fb1, fb4}
fp2 ⋄ {fb1, fb5}
fp3 ⋄ {fb1, fb4, fb5}
fp4 ⋄ {fb1}
fp5 ⋄ {fbpholder}
fp6 ⋄ {fbpholder}
fp7 ⋄ {fbpholder}
fp8 ⋄ {fb4, fb5}
fp9 ⋄ {fb4}
fp10 ⋄ {fb5}

(5.19)

As it can clearly be observed, functional profiles can cover a different number
of function blocks which is a consequence of the device manufacturers’ prefer-
ences on the implementation. After building power sets of function block sets in
(5.19) and merging, (5.20) is obtained, which provides every possible mapping
of function block combinations to device and operation mode specific functional
profiles. Function blocks fb2 and fb3 referred by fbpholder cannot be merged
together to common set of properties due to the repetition of function block
types of functions (both function blocks are from type “Control Via Room Uti-
lization”), thus the function block combination {f2, f3} cannot be created.

fbc1 = {fb1}
realizedby→ {fp1, fp2, fp3, fp4}

fbc2 = {fb1, fb4}
realizedby→ {fp1, fp3}

fbc3 = {fb1, fb5}
realizedby→ {fp2, fp3}

fbc4 = {fb1, fb4, fb5}
realizedby→ {fp3}

fbc5 = {fbpholder}
realizedby→ {fp5, fp6, fp7}

fbc6 = {fb4}
realizedby→ {fp1, fp3, fp8, fp9}

fbc7 = {fb4, fb5}
realizedby→ {fp3, fp8}

fbc8 = {fb5}
realizedby→ {fp2, fp3, fp8, fp10}

(5.20)

5.4 Design Generation 99

Due to the simplicity of this example the advantage of performing the operations
so far on a reduced set of function blocks cannot be shown. The number of
function blocks that yield same retrieval results is only two and this would
not cause a high combinatorial complexity in the power set calculation. In
Chapter 6, design improvement step for Example2 profits from this advantage
by achieving the optimal solutions much faster than when the approach is not
followed.

After replacement of fbpholder by fb2 and fb3 in (5.20), an increased number
of function block combinations in (5.21) is obtained.

fbc1 = {fb1}
realizedby→ {fp1, fp2, fp3, fp4}

fbc2 = {fb1, fb4}
realizedby→ {fp1, fp3}

fbc3 = {fb1, fb5}
realizedby→ {fp2, fp3}

fbc4 = {fb1, fb4, fb5}
realizedby→ {fp3}

fbc5 = {fb2}
realizedby→ {fp5, fp6, fp7}

fbc6 = {fb4}
realizedby→ {fp1, fp3, fp8, fp9}

fbc7 = {fb4, fb5}
realizedby→ {fp3, fp8}

fbc8 = {fb5}
realizedby→ {fp2, fp3, fp8, fp10}

fbc9 = {fb3}
realizedby→ {fp5, fp6, fp7}

(5.21)

After application of (5.12) for the example, (5.22) is obtained.

fbc1
realizedby→ mapdevfbc1

fbc2
realizedby→ mapdevfbc2

...

fbc9
realizedby→ mapdevfbc9

(5.22)

An example for the maps mapdevfbc1 is given in (5.23), in which the indexes
are simplified corresponding to the retrieval results.

dev1
impl.→ {fp1, fp3}

dev2
impl.→ {fp2, fp4}

dev3
impl.→ {fp1, fp2}

(5.23)

100 Automated Creation of Optimized Designs

Furthermore, (5.24) is obtained to denote the participated function block com-
binations for each function block of the example.

fb1
containedin→ {fbc1, fbc2, fbc3, fbc4}

fb2
containedin→ {fbc5}

fb3
containedin→ {fbc9}

fb4
containedin→ {fbc2, fbc4, fbc6, fbc7}

fb5
containedin→ {fbc3, fbc4, fbc7, fbc8}

(5.24)

The information present in (5.21), (5.22), (5.23) and (5.24) is particularly
crucial for the design improvement. Storage of this information in corresponding
data structures not only allows an acceleration of the improvement process, but
also provides the variation operations a utility to access the required information
for the functionality and in the required form (data structure) without the need
to perform any transformation of information representation.

The application of preoptimization steps guarantees correct mappings and
coverage of function blocks by functional profiles and the information on map-
pings can guide optimization algorithms towards near-optimal solutions.

5.4.2 Generation Approaches

After retrieval of all realizing functional profiles from different devices and man-
ufacturers for each function block in the abstract design, there emerges a huge
variety functional profile alternatives with which a high number detailed designs
can be built (cf. Figure 5.6). The design creation can be performed by genera-
tion constructively or by a complete mapping of the required room automation
plan provided on a design, or by substituting devices or functional profiles within
an existing design. The latter approach is handled in Section 5.5 and the first
two approaches is discussed in this section.

5.4 Design Generation 101

Design Design CandidateDesign Design CandidateDetailed Design Candidate

[3,4]

[1]

[2]

[5]

[6,7]

[8]

[9]

Abstract Design

8

9

1
5

7

6

2

4

3

Component

Repository

Design Generation

· device search

· function block

combination building

· component mapping

· creation of bindings

Figure 5.6: Design Generation

For the decision, which function block combination is to map by which func-
tional profile and the order of consideration of function block combinations,
there exist two approaches, constructive and holistic (improving) approach:

• constructive approach: This approach conceives the generation of a
single solution constructively, component-by-component, while optimiz-
ing. Thus, in each step, evaluation of each chosen component for its
measure of suitability in the so far constructed design, a local view for
the evaluation (or a partial evaluation) is considered. Evaluation of the
complete design, a global view for the evaluation is out of consideration
in the constructive approach.

Initially a functional profile is chosen that realizes a function block combi-
nation according to a design quality criterion, e.g. choose functional profile
of the cheapest realizing device. In the next step, connection partners of
the function blocks in the first function block combination are considered.
Function block combinations of the connection partner function blocks are
identified and they are mapped onto functional profiles, if possible from
the previously chosen device, unless from the cheapest possible device. In
this step binding pair candidates are built.

On one hand, choice of the functional profiles from the cheapest devices
may not necessarily yield to valid bindings. On the other hand, due to the
enormous number of functional profile alternatives, it is not practicable to
evaluate interoperability for all possible functional profile alternatives to
find a fitting functional profile for the functional profile chosen in the first
step, that is at the same time on a cheapest possible device. Choosing the
first fitting functional profile or a randomly chosen fitting functional profile

102 Automated Creation of Optimized Designs

may lead to expensive, suboptimal detailed design solutions. Moreover,
even if a state is reached in which most of the function block combinations
are realized by functional profiles of cheap devices and binding pair candi-
dates build valid bindings, if no fitting functional profile can be found for
the last considered function block combination, all previous decisions must
be reviewed. In worst case the procedure has to be restarted from very
beginning. Another constructive approach can be applied by adapting the
approach used in ACO, where ants travel around a given graph to find the
optimal path from the source node to the final node.

In this approach, there must be a fixed set of nodes, each of which is a func-
tional profile that satisfies a function block combination in the abstract
design. However, there are multiple function block combination alterna-
tives to which a single function block may belong. In order to enable such
an approach, there is need to span a graph that connects all possible de-
cisions for functional profile alternatives that satisfy all possible function
block combination alternatives. This implies that there is not a fixed set of
nodes and multiple decision graphs can be constructed instead of a single
one as in the case of ACO solving the TSP. Since there can be thousands
of functional profile alternatives for a function block, each such graph can
contain an extremely high number of nodes. Depending on the number of
different function block combination alternatives, thus number of different
patterns (cf. Section 5.4.1) the number of such graphs can also end up
to be very high. Such a problem-specific setup procedure for the solution
method is itself very complex;

• holistic randomizing approach: This approach is more intuitive than
the constructive approach and is used by the problem-specific multi-
objective evolutionary algorithm to generate the initial population. This
approach conceives a complete mapping of a given abstract design onto
the detailed design alternatives. The approach is subdivided into two dif-
ferent approaches: holistic randomizing approach by precalculation of all
possible patterns and without precalculation of all possible patterns;

– holistic randomizing approach by precalculation of all pos-
sible patterns: In this approach, all possible sets of function block
combinations that can cover the set of function blocks exactly, thus
all possible patterns are calculated.

The problem of obtaining exact covering sets of a given set is called
the exact cover problem [Kar72]. In the literature there exists a vari-
ety of solution methods that solve the exact cover problem. The most
known of these methods is the Algorithm X by Donald Knuth, which
is a recursive, non-deterministic, depth-first, backtracking algorithm.
The algorithm requires the entry of the input data in form of a matrix
with column headers representing the elements of input set and row

5.4 Design Generation 103

headers the subsets of the collection. The matrix is called the sparse
matrix, since for each row node that contains the node represented
by the column header a “1” is inserted and rest places in the matrix
remain empty. The column and raw nodes are doubly linked as cir-
cular links via pointers. By using a technique called Dancing Links
that can uncover and cover the nodes without deletion, Algorithm X
finds all the solutions for an exact cover problem for a given input set
and a collection of subsets. The algorithm performs an exhaustive
search and has successfully been used to solve puzzle problems such
as pentomino and sudoku to efficiently compute all possible solutions.
A detailed explanation of the algorithm is presented in [Knu00].

In order to adapt the dancing links algorithm to the problem of ob-
taining all patterns exactly cover FB, a sparse matrix is prepared
with function blocks and function block combinations (cf. Table 5.2).
Each cell denotes a pair of function block in (5.1) and function block
combination in (5.10). Each such cell is filled with “1”, if the function
block combination contains its paired function block.

fbc1 fbc2 ... fbck
fb1
fb2
...

fbi

Table 5.2: Sparse Matrix for Obtaining All Patterns (unfilled)

By applying the dancing links algorithm, all patterns can be ob-
tained. Experiments done for different abstract designs have shown
that patterns are computed very quickly (in milliseconds) using a
contemporary PC. Application of this approach allows a calculation
of the variety of detailed design solution candidates, which can give
an idea about the complexity of a considered problem instance.

For a problem instance with the number of different patterns M and
an EA with population size N , three approaches can be followed for
these cases:

∗ M = N : an individual is generated corresponding to each pat-
tern starting from pattern with the lowest cardinality (maximum
covering) proceeding with patterns of lower cardinalities in order.

∗ M < N : individuals are generated considering each pattern as
in the first case. Following a rotational order, after all patterns
are considered, the design generation restarts from the pattern
with the lowest cardinality and proceeds similarly.

104 Automated Creation of Optimized Designs

∗ M > N : individuals are generated similar as in the first case
corresponding to N patterns and M −N patterns remain unvis-
ited in the initialization. Optimization algorithm must be able
to generate remaining patterns.

The number of all possible function block combinations obtained af-
ter power set calculations can be very high for some abstract designs
and the sparse matrix can be very large, not only due to the high
number of contained columns and rows, but particularly due to the
high number of contained 1’s. In such situations the dancing links
algorithm can become inconvenient. Performing calculations on a re-
duced set of function blocks and thus function block combinations
can also decrease the combinatorial complexity for dancing links al-
gorithm, only if such a reduction significantly reduces the number of
function blocks to be used in calculations, e.g. down to half of the
original number of function blocks;

– holistic randomizing approach without precalculation of all
possible patterns: In this approach, function block combinations in
(5.11) are randomly chosen ensuring that all function blocks in (5.1)
are exactly covered by the chosen function block combinations. There
emerges a pattern of a random cardinality from which a detailed
design solution candidate can be created. The approach is realized
by Algorithm 6.

Hereby, in each pattern there is a set of function block combinations, each
of which can be mapped to a realizing functional profile alternative. In this
step, a random functional profile is chosen. By iterative application, all
functional block combinations are mapped by chosen functional profiles.

For a list of all selected functional profiles of a solution candidate, a detailed
design can be built (cf. Definition 3.2.3) by determining all binding partner
functional profiles (binding pair candidates), connecting functional profiles by
bindings where possible, and forming a device list from the chosen functional
profiles.

5.4 Design Generation 105

Algorithm 6: Algorithm of Holistic Randomizing Approach Without Pre-
calculation of All Possible Patterns
Input: All possible function block combinations: FBC, set of abstract

design function blocks: FB
Output: A pattern as a set of function block combinations: PAT
// initialize a temporary function block combination set FBCTEMP
FBCTEMP = FBC;
// initialize set of pattern
PAT = ∅;
// initialize set of function blocks which are already added
ADDEDFB = ∅;
while ADDEDFBs! = FBs do

// choose a random function block combination
fbc = CHOOSE RANDOM FBC(FBCTEMP);
// add the chosen function block combination to the pattern that is

being built
PAT = PAT ∪ {fbc};
// add function block set FBfbc of fbc to ADDEDFB
ADDEDFB = ADDEDFB ∪ FBfbc;
// remove all elements in function block combinations that contain

any of ADDEDFB
FBCTEMP = REMOV E FBCS(ADDEDFB);

end

For ease of comprehension of Algorithm 6 the example in Figure 5.5 is re-
considered with related function block combinations in (5.21) and mappings of
function blocks to function block combinations in (5.24). For this example itera-
tions of the Algorithm 6 are presented in Table 5.3 starting by the initialization
of FBCTEMP with the function block combination set {fbc1, ..., fbc9}. Set of
function blocks that are already added (ADDEDFB) is initialized as an empty
set. Column fbc represents the randomly chosen function block combinations
in each iteration from 1 to 4 from the current FBCTEMP . Column FBfbc

represents the set of function blocks covered by fbc that can be obtained from
(5.21). Column fbc′s to remove represents the function block combinations in
FBCTEMP that realize any of the function blocks in FBfbc. These function
block combinations can be obtained from (5.24). Column FBCTEMP repre-
sents current content of the function block combination set in an iteration after
the removals. Column ADDEDFB represents the function blocks which are
already added. In the fourth and the last iteration, the set ADDEDFB is
identical to the set of function blocks FB = {fb1, ..., fb5} and the loop stops.
The union of function block combinations in Column fbc forms the pattern
PAT as the result of the algorithm. As can be seen, this algorithm supports an
exact cover of the function blocks of a given abstract design by suitable choices
of function block combinations.

106 Automated Creation of Optimized Designs

Iter. fbc FBfbc fbc′s to remove FBCTEMP ADDEDFB

init. - - - {fbc1, ..., fbc9} ∅

1 fbc3 {fb1, fb5}
fbc1, fbc2, fbc3, {fbc5, fbc6, fbc9} {fb1, fb5}fbc4, fbc7, fbc8

2 fbc9 {fb3} fbc9 {fbc5, fbc6} {fb1, fb3, fb5}

3 fbc6 {fb4}
fbc2, fbc4, fbc6, {fbc5}

{fb1, fb3, fb4,
fbc7 fb5}

4 fbc5 {fb2} fbc5 ∅ {fb1, fb2, fb3,
fb4, fb5}

Table 5.3: Example Iterations of Algorithm 6 for Randomly Chosen Function
Block Combinations

The holistic approach can often lead to initialization of solutions with missing
bindings and/or an expensive price sum of devices. A normally distributed
randomization of the initialization process aims to start at different regions of
the search space.

Another approach can consider a start with preoptimized solutions by pro-
viding a mapping of function blocks onto functional profiles of cheapest possible
devices or a mapping of function blocks onto devices with maximum possible
coverage. This would lead to a start with a less number of devices. How-
ever, these devices can not necessarily be interoperable for the realization of
the mapped functions, hence there would emerge many missing bindings. Cre-
ation of preoptimized solutions with interoperable devices cannot be performed
by considering each device separately, since interoperability involves a pair of
devices and their functional profiles used in specific operation modes. There
emerges a very high number of operation mode specific functional profile pairs
for evaluation of interoperability. This can turn the preoptimization step to
an exhaustive search, which must be avoided. In addition, it cannot be con-
cluded that the initialization with such preoptimized devices would enable an
optimization start at promising regions of the search space considered globally
for all objectives simultaneously.

A mix of the holistic randomized and holistic preoptimizing approaches can
create a start population by creating half of the individuals with one approach
and the other half with the other approach. Such a mixed approach has been
experimented. Since individuals created by the latter approach have a far bet-
ter start than the individuals created by the first approach, they were not as
competitive as the preoptimized individuals and were quickly dominated, hence
vanished from the population during the steps of design improvement. The re-
maining preoptimized individuals have shown only little improvement and lead
to invalid solutions with many missing bindings, since these solutions were lo-
cated in a very tiny region of the search space and modifications could not lead
them to move to other interesting regions of the search space in a reasonable

5.5 Design Improvement 107

number of generations. Therefore, use of such an approach turns the global
search into a local search and a local search aims at achieving local optimal
solutions. However, the requirement for a global search (cf. Section 3.3.2) must
be fulfilled. By considering these facts and avoiding the mentioned risks in the
holistic randomizing approach with precalculation of all possible patterns, the
concentration is on the holistic randomizing approach without precalculation of
all possible patterns. The main course of design optimization is in the design
improvement step in Section 5.5 and it follows the design generation.

5.5 Design Improvement

Under consideration of motivations listed in Section 5.4.1, algorithms defined
for the optimization must overcome certain problems to improve the generated
detailed designs towards near-optimal solutions. These algorithms are integrated
into the variation operations of the optimization algorithm. Variation operations
must deal with the problems introduced in Section 5.5.1 by approaching to these
problems fulfilling the derived requirements.

Problems of engineering practice are similar to these presented problems to
some extent, thus they are presented with specific paradigms in the building
automation domain, as well as in a general theoretical consideration to provide
a perspective to the readers who are searching for effective solution methods for
their own problems in other problem domains.

5.5.1 Problems and Requirements

The design generation following the holistic approach allows an exact coverage
of the function blocks by the initially generated detailed designs which plays an
important role for abstract design compliancy, however this does not guarantee
the compliancy. Functional profiles that exactly cover the function blocks must
also possess input and output datapoints that realize the inports and outports of
the covered function blocks. Although, this condition is stated in Section 5.3.1
as a presumption, functional profile implementations of some manufacturers de-
viate from the function block definitions in the standard VDI 3813-2 [The11b].
E.g. functional profiles of such manufacturers match functional semantics of
function blocks, however matching of datapoints to ports may not be possible.
If no standard conform alternatives for such components are provided, invalid
detailed designs must be taken in account due to missing bindings in generated
binding-schemata. This is a problem related to the implementation of compo-
nents or incorrect definitions in the component data source and therefore, it is
not addressed by the variation operations.

Problems or challenges that need to be specified by the variation algorithms
of the multi-objective evolutionary optimization method after the generation of
initial solutions and at intermediate steps of the optimization can be subdivided

108 Automated Creation of Optimized Designs

into two problems, domain specific problems and problems related to variation
algorithms:

• domain specific problems:

– missing bindings: Connection partner function blocks covered by
different functional profiles imply bindings between these functional
profiles. However, in some cases no bindings can be created due to the
existence of non fitting functional profiles (cf. Definition 3.2.7). Ad-
ditionally, some mandatory input datapoints of a functional profile
(cf. Definition 3.2.6) in a generated binding-schema may not pos-
sess bindings. This can occur for a functional profile, even if it can
build bindings for all binding pair candidates (cf. Definition 3.2.5), in
which it participates. Non fitting functional profiles and functional
profiles with missing bindings at mandatory input datapoints may
both be encountered, if there are function block combinations in a
pattern chosen to build an individual, that can only be mapped to
such functional profiles;

– expensive devices: The price sums of devices of the initially gener-
ated solutions are usually high. Although, device prices of the optimal
solution are not known, variation algorithms must tend to generate
new solutions by replacement of expensive devices of detailed designs
with cheaper devices;

– low coverage of functional profiles: Devices in a binding-schema
may cover lesser function blocks than they actually can. This re-
sults in more devices to realize an abstract design than necessary.
Variation operations must identify such cases and reduce the num-
ber of devices of such a detailed design by replacing such devices by
alternative devices that can cover more function blocks than existing
devices. Reducing the number of devices can lead to the reduction
of the price sum of devices and device external bindings (cf. Section
5.2). However, the alternative devices may not be interoperable with
their communication partners and that leads to an increase of the
number of missing bindings.

At any step of the optimization, the listed problems may occur in a solu-
tion candidate, and in worst case, they may occur at the same time. It
is clear that variations, which perform blind searches based on random
replacement of functional profiles and devices, are ineffective and would
have a low chance to approach to near-optimal solutions considering the
huge variety of solution candidates. Variation operations that are designed
to directly address each of these problems will have to solve with certain
problems in order to perform a more effective search;

• problems related to variation algorithms:

5.5 Design Improvement 109

– information sharing and social structure: Information sharing
among the individuals of a population in an evolutionary algorithm
is performed by cross-over operations. Hereby, an individual can
mate any other individual in the population and this can make a
contribution to generate further improved solutions by combining
best parts of both individuals which helps a quick convergence of the
optimization. Hence, the social structure hereby is the population
itself. However, in intermediate generations less optimized solutions
may be attracted to better optimized solutions and tend to improve
towards the attraction by receiving highly improved solution parts
or building blocks and genetic drift occurs. Due to genetic drift,
diversity in the population decreases and the evolution process starts
revisiting same few different solutions over many iterations without
considerable improvement;

practical consideration: Functional profiles of interoperable de-
vices and devices with low price costs or with a high coverage of
functional profiles in improved individuals are highly fit individual
parts and attraction points for less improved individuals in a pop-
ulation. Inclusion of such highly fit individual parts will cause less
improved solutions to be more similar to better improved solutions
and in worst case to be identical. As a result, variety of functional
profiles and devices in a population sinks. If this occurs before the
achievement of near-optimal solutions, the optimization algorithm
will get stuck in premature solutions;

– accessibility of solution candidates in the search space:
Poorly designed variation algorithms can generate often infeasible
solutions inconsistent to given problem instances which requires ap-
plication of computational cost intensive repair operations. This is
due to the lack of problem specific information that must be provided
in the variation algorithms. In this case, algorithms turn to perform
a blind search, which is very inefficient and highly non deterministic.
As a result, only poor quality solutions can be achieved in a limited
computation time and final solutions of different runs vary from each
other at a high rate.

Furthermore, a poor construction of variation algorithms cannot
reach at different regions of the search space and thus cannot ex-
hibit a good exploration behavior. In worst case, improvements are
limited to the nearest neighborhood of the initial solutions.

Another important issue is the size of moves that variation algorithms
can consider. If only small moves are performed from one solution
candidate to another, created solutions may be dominated by so far
better optimized solutions and this fact leads to a decrease of the
number of competitive solutions which very probably yields to the

110 Automated Creation of Optimized Designs

prevention of current best solutions from further improvement. Same
result can be encountered, if only large moves are performed. Perma-
nent application of large moves can achieve a premature local optima
that can cause genetic drift and prevent further improvements. Sim-
ilar problems have been addressed by the SA algorithm;

practical consideration: Variation algorithms that generate infea-
sible solutions which are solutions with functional profiles and devices
that do not cover function blocks of the given abstract design are con-
sidered as poorly designed. Such infeasible solutions are achieved, if
function blocks are mapped to functional profiles which can not real-
ize them. Replacement of a single functional profile is considered as
smallest possible move and replacement of multiple functional pro-
files is considered as a large move. Thus, size of a move is determined
by the number of replaced functional profiles. Permanent application
of small moves or very large moves may yield to achievement of pre-
mature solutions that cannot be further improved;

– calculations of component statistics: For generation of improved
solutions some calculations on components can be performed to re-
place current individual parts with better fitting components in form
of a local search. An intensive search for better suiting components
would slow down the algorithm drastically and can introduce prema-
ture local optima as a result of a genetic drift. In worst case, an NP
time complexity can be encountered;

practical consideration: In order to replace non fitting functional
profiles in an individual with fitting functional profiles (cf. Definition
3.2.7), a search can be performed to identify non fitting functional
profiles and replace them with other functional profile pairs and po-
tentially with fitting functional profiles. However, it may be necessary
to perform binding evaluation with all candidates for the replacement
in worst case. Since, there exists a very high number of candidates,
such an attempt would result in an exhaustive search that must be
avoided in variation operations. This case may be encountered also
at an exhaustive search for cheaper devices or devices with a better
functional profile coverage and must be avoided as well.

From these problems, following requirements on the design of variation algo-
rithms can be derived: Variations must address all of the problems and must be
able to

RV1. identify functional profiles with missing bindings and replace them with
different functional profiles,

RV2. identify expensive devices in a design and replace them with other devices
covering the same function blocks,

5.5 Design Improvement 111

RV3. identify devices that can cover more function blocks than the ones they
cover currently and improve the coverage,

RV4. identify candidates for replacement and coverage improvement concerning
functional profiles and devices in RV1-3 quickly,

RV5. keep consistency between the given abstract design and solution candi-
dates, on which they are applied, and avoid infeasible solutions,

RV6. reach any solution of the search space by performing different size of moves
and by introducing diversity.

A multi-objective evolutionary algorithm that possesses variation algorithms
that fulfill these requirements can effectively solve the presented problems.

5.5.2 Variations

Variation operations of an Evolutionary Algorithm (EA) attempt to improve
solutions iteratively by exploration in the search space. Search space, as it
is generally defined, contains all components from which solutions can be cre-
ated, including also solutions potentially with irrelevant components for a given
problem-instance. Such components are functional profiles and devices that do
not cover any of the function blocks in a given abstract design. Solutions that
contain at least one such component is considered an infeasible solution. In
order to introduce clarity to the definition of search space and to indicate the
search regions for variation operations, two nested subspaces are defined within
the search space: solution space and component space as illustrated in Figure
5.7 in form of a Venn diagram.

search space

solution space

component space

problem instance

independent

problem instance

specific

Figure 5.7: Search Space, Solution Space and Component Space

Solution space is the space of all possible problem instance specific detailed
design candidates with each detailed design candidate matching the covering

112 Automated Creation of Optimized Designs

function blocks of a given abstract design. Solution space implicitly contains
the functional profiles and devices which build such detailed design candidates.
Component space is the space of functional profiles and devices contained by
detailed design candidates in a specific iteration of the optimization algorithm,
thus in terms of EA it corresponds to a population.

In an EA exploration or diversification can be achieved by introducing new
individuals to the population. Such individuals contain parts that do not exist
in a current population, thus other devices and functional profiles that do not
exist in the component space. Exploitation or intensification can be achieved by
introducing good fitting components according to some problem specific criteria.
Two variation strategies are introduced that can be classified by their exploring
and exploiting nature:

• component space variation (CSV): aims to modify the distribution of
devices and functional profiles among the individuals without introducing
other devices and functional profiles than the ones that exist in the com-
ponent space (thus without diversification in the gene pool). Hereby, the
main objective is to explore the component space;

• solution space variation (SSV): aims to introduce other devices and
functional profiles than the ones that exist in the component space for
exploration in the solution space (to perform intensification in the gene
pool).

In order to realize requirement RV1-3, three rankings are proposed to iden-
tify certain components in a solution candidate SC: ranking1, ranking2 and
ranking3.

Hereby, SC contains a binding-schema BS and a corresponding set of devices
DEV S. BS contains a set of functional profiles FP .

FP = {fpbs,1, fpbs,2, ..., fpbs,z}
DEV S = {devsc,1, devsc,2, ..., devsc,y}

(5.25)

Binding pair candidates in which a functional profile fpbs,i (i ∈ [1, z]) participate
BPCfpbs,i denote the bindings that fpbs,i is required to build for the realization
of abstract connections. A metric m1 can quantify binding requirement real-
ization rate of an fpbs,i that realizes a set of bindings BINfpbs,i in BS by the
proportion: number of realized bindings divided by number of required bind-
ings. Another metric m2 can quantify functional profile coverage rate of a device
devsc,j (j ∈ [1, y]) in BS by the proportion: number of used functional profiles
of devsc,j (FPdevsc,j) divided by number of all functional profiles in BS.

m1 =
|BINfpbs,i |
|BPCfpbs,i |

m2 =
|FPdevsc,j |

z

5.5 Design Improvement 113

• Ranking1: Functional profiles are sorted in an ascending order according
to the metric m1.This ranking list intentionally contains also functional
profiles that satisfy all required bindings, since variation operations that
make use of this ranking must still be able to achieve improvements in
advanced stages of design improvement with individuals that possess valid
and complete binding-schemata.

• Ranking2: Devices are sorted in a descending order according to the price
costs.

• Ranking3: Devices are sorted in an ascending order according to the
metric m2.

functional

profiles

higher number of

bindings

lower number of

bindings

devices devices

higher price

costs

lower price

costs

lower number of used

functional profiles

higher number of used

functional profiles

Ranking1 Ranking2 Ranking3

Figure 5.8: Rankings Used in Variation Operations

An overview for the introduced rankings is depicted in Figure 5.8 in com-
bination with sorting directions illustrated by arrows. The conceived variation
algorithms are all based on a definition for matching functional profiles (cf. Def-
inition 5.4.1). Only matching functional profiles are exchanged in a cross-over
operation and a functional profile can only be substituted by a matching func-
tional profile. The holistic design generation approach allows the initialization
of detailed design solutions consistent to a given abstract design. By this pre-
condition for the variation algorithms, the consistency is preserved, infeasible
solutions are avoided (cf. RV5). For replacements of functional profiles with
matching other functional profiles, the obtained map in (5.11) can be used, in
order to avoid retrievals from component repository and accelerate the opti-
mization process.

Variation algorithms can be grouped as semi-directed (SD), random (R)
and directed variations (D) with SD, R and D denoting prefixes for individual

114 Automated Creation of Optimized Designs

variation algorithms. Cross-over and mutation algorithms are abbreviated with
C and M correspondingly.

In a semi-directed variation, components that should be replaced are deter-
mined by using one of the presented rankings, however the replacing components
are chosen randomly. The use of rankings helps the algorithm to increase the
probability for the intended specific improvement and the random choice of
replacing components avoids an exhaustive search, thus replacements can be
performed quickly.

Random variation is intended to introduce more diversity in a population
by choosing components for replacements randomly. In a directed variation,
component that should be replaced are determined by using ranking as in a
semi-directed variation, however replacing components are chosen by an efficient
search among a small number of possible candidates, where applicable. Such
an approach for the variation operations specific to the design creation problem
has been presented and successfully tested in [OPK10a].

Mutation Operations:
Mutation operations from SD-M1 to R-M4 are considered that can be applied
on an individual with functional profiles

FPINDV = {fpindv1, fpindv2, ..., fpindvm}

chosen for the mutation according to the mutation probability pM :

• SD-M1-Missing Bindings: A number (rn) of functional profiles with
the lowest values of m1 in ranking1 is randomly chosen and substituted
by another randomly chosen matching functional profile using the map
(5.11). The number rn is chosen randomly from the range [1, m2], where
m is half of the number of functional profiles in the individual rounded
down (variation strategy SSV).

Goal: Non fitting functional profiles can be replaced by fitting functional
profiles to improve the validity and completeness of the individual by al-
lowing both small and larger moves in the solution space without changing
the pattern of the individual.

• SD-M2-Larger FBC: One of the functional profiles fpindvi (i ∈ [1,m])
that maps the function block combination fbcfpindvi mapped by with the
lowest value of m1 in ranking1 is randomly chosen and substituted by
another randomly chosen functional profile fp′ that maps the function
block combination fbcfp′ using the map (5.11), such that fbcfp′ is a set
of higher cardinality than fbcfpindvi , if there exists any such fbcfp′ , such
that fbcfp′ ∩ fbcfpindvi ̸≡ ∅ (cf. Figure 5.9). In order to support design
consistency, the set of covered additional function blocks by fbcfpindvi is

5.5 Design Improvement 115

calculated:

FBadd = fbcfp′ \ fbcfpindvi
= {fbadd,1, fbadd,2, ..., fbadd,n}

Functional profiles of the individual

fpindrem,1, fpindrem,2, ..., fpindrem,p

that map function block combinations

fbcfpindrem,1 , fbcfpindrem,2 , ..., fbcfpindrem,p (5.26)

containing fbadd,j (j ∈ [1, n]) are removed from the individual. The union
of function block sets covered by all function block combinations in (5.26)
is FBunion. At this step there are no functional profiles in the individual
that cover the function blocks of the set difference

FBdiff = FBunion \ FBadd.

Additional functional profiles are added into the individual using the maps
(5.15) and (5.11). Hereby, for each function block in FBdiff function
block combinations of cardinality one is chosen in (5.15) (variation strategy
SSV).

fbadd,1

fbadd,2

fbadd,n

...

fbcfp
FBadd

fbcindvi

fbcfp fbcindvi Ø

......

Figure 5.9: Venn Diagram for the Relationship between Function Block Sets of
Function Block Combinations fbcfp′ and fbcfpindvi in SD-M2

Goal: Non fitting functional profiles can be replaced by fitting functional
profiles to improve the validity and completeness of the individual by
changing the pattern of the individual. The existence of non fitting individ-
uals may be due to an inappropriate coverage of multiple function blocks
by function block combinations of such functional profiles. In addition, an
exploration for different patterns in the solution space is performed that
can guide the optimization to near-optimal solutions.

116 Automated Creation of Optimized Designs

• SD-M3-Smaller FBCs: One of the functional profiles fpindvi (i ∈
[1,m]) that maps the function block combination fbcfpindvi with a cardi-
nality greater than one (|fbcfpindvi | > 1) corresponding to the lowest value
of m1 in ranking1 is randomly chosen and substituted by other randomly
chosen functional profiles fp′1, .., fp

′
o with function block combinations of

cardinality one (∀l ∈ [1..o] fbcfp′l) using maps (5.15) and (5.11), such that
each fbcfp′l is a strict subset of fbcfpindvi (fbcfp′l ⊂ fbcfpindvi), if there
exist any such fbcfpindvi (variation strategy SSV).

In Figure 5.10 function block combination fbcfpindv1 of an example func-
tional profile fpindv1 consists of two function blocks fba and fbb. For the
removal of fpindv1 by substitution, fba and fbb are mapped separately
to two other functional profiles (fp′1 and fp′2 respectively) with function
block combinations fbcfp′1 and fbcfp′2.

fbcfp 1

fba

fbcfp 2

fbb

fba

fbb

fbcindv1

Figure 5.10: Venn Diagram for the Relationship between Function Block Sets of
Example Function Block Combinations fbcfpindv1 , fbcfp′1 and fbcfp′2 in SD-M3

Goal: Similar as the goal of SD-M2 with the difference that the existence
of non fitting individuals may be due to the coverage of single function
blocks by function block combinations of such functional profiles.

• SD-M4-Device Price Cost: One of the devices with the highest price
cost devexp ∈ {devexp1 , devexp2 , ..., devexpq} that covers functional profiles

FPdevexp = {fpexp,1, fpexp,2, ..., fpexp,r}

mapping function block combinations

FBCexp = {fbcfpexp,1, fbcfpexp,2, ..., fbcfpexp,r}

is randomly chosen in ranking2. Each function block combination
fbcfpexp,g (g ∈ [1, r]) is attempted to map on a functional profile of the

5.5 Design Improvement 117

cheapest device using maps in (5.12) and (5.13). If there exist multiple de-
vices with the lowest price cost, one of them is randomly chosen (variation
strategy SSV).

Goal: The aim is to replace devices with high price costs by devices with
lower price costs covering the same set of function blocks to obtain a lower
sum of price costs in the individual. In addition, unvisited devices and
functional profiles can be introduced to the component space by this kind
of exploration in the solution space.

• SD-M5-Device Coverage: One of the devices

devlowc,f ∈ {devlowc1 , devlowc2 , ..., devlowcs}

with the lowest functional profile coverage rate (f ∈ [1, s]) that covers
functional profiles

FPdevlowc,f
= {fplowc,1, fplowc,2, ..., fplowc,t}

is randomly chosen in ranking3. Each functional profile fbcfplowc,d

(d ∈ [1, t]) is mapped to matching functional profiles of other devices
than devlowc,f using the maps (5.12) and (5.13) (variation strategy SSV).

Goal: The aim is to replace devices with high price costs are replaced
by devices with lower price costs covering the same set of function blocks
to obtain a better sum of device functional profile coverage rate in the
individual. This action has the potential to increase the number of device
internal bindings and (not necessarily) also to reduce the sum of device
price costs. In addition, unvisited devices and functional profiles can be
introduced to the component space by this kind of exploration in the
solution space.

• SD-M6-Functional Profile Coverage: A number (rn) of functional
profiles with the lowest values of m1 in ranking1 is randomly chosen and
each such functional profile with function block combination fbc is substi-
tuted by randomly chosen functional profiles with function block combi-
nations from the set of connection sensitive function block combinations
in (5.14). Similar to SD-M2 with the difference that replacing functional
profiles map connection sensitive function block combinations (variation
strategy SSV).

Goal: Similar as SD-M2 with the difference that the integration of func-
tional profiles with connection sensitive function block combinations can
better accelerate the search for choosing the function block combinations
towards valid binding-schemata. This is particularly useful for abstract
designs that contain a very large number of function blocks causing an ex-
ponential growth of function block combinations. This variation operation

118 Automated Creation of Optimized Designs

achieves a faster convergence towards optimal solutions by considering a
reduced number of mapping alternatives among function block combina-
tions and functional profiles.

• D-M1-Device Price Cost: One of the devices with the highest price
cost devexp ∈ {devexp1 , devexp2 , ..., devexpq} that covers functional profiles

FPdevexp = {fpexp,1, fpexp,2, ..., fpexp,r}

mapping function block combinations

FBCexp = {fbcfpexp,1, fbcfpexp,2, ..., fbcfpexp,r}

is randomly chosen in ranking2. Each function block combination
fbcfpexp,g (g ∈ [1, r]) is attempted to map on a functional profile of the
cheapest device in ranking2. If there exist multiple devices with the lowest
price cost, one of them is randomly chosen (variation strategy CSV).

Goal: Similar as SD-M4 with the difference that the focus is on improve-
ment of an individual for the sum of device price costs. This is done
by mapping function block combinations on the functional profiles of a
reduced number of devices without introducing new components to the
component space.

• D-M2-Device Coverage: One of the devices

devlowc,f ∈ {devlowc1 , devlowc2 , ..., devlowcs}

with the lowest functional profile coverage rate (f ∈ [1, s]) that covers
functional profiles

FPdevlowc,f
= {fplowc,1, fplowc,2, ..., fplowc,t}

is randomly chosen in ranking3. Each functional profile fbcfplowc,d (d ∈
[1, t]) is attempted to map to matching functional profiles of other devices
of the individual than devlowc,f using the maps (5.12) and (5.13) starting
from the devices with the highest functional profile coverage rate and
proceeding with devices of lower functional profile coverage rates. Thus,
devices other than devlowc,f in ranking3 are visited in the reverse order
(variation strategy CSV).

Goal: Similar as SD-M5 with the difference that the focus is on improve-
ment of an individual for the device functional profile coverage rate by a
better distribution of function blocks to devices, thus for an increase of
device internal bindings and (not necessarily) a reduction of the sum of de-
vice price costs. This is done by mapping function block combinations on
the functional profiles of a reduced number of devices without introducing
new components to the component space.

5.5 Design Improvement 119

• R-M1 toR-M4: These mutations operations are similar to SD-M1 to SD-
M4 with the difference that the functional profiles in R-M1 to R-M3 and
devices in R-M4 are chosen without consideration of rankings (variation
strategy SSV).

Goal: These mutation operations aim to introduce more diversity into the
component space, in order to attain the same goals in SD-M1 to SD-M5
by performing an exploration in the solution space, which is particularly
useful to avoid premature local optima.

Mutation operations SD-M1, SD-M2, SD-M3 and SD-M6 that make use
of ranking1 choose functional profiles without missing bindings, if applied on
individuals with valid and complete binding-schemata in advanced stages of
design improvement, in order to still contribute to the improvement of designs.
In such cases, SD-M1, SD-M2 and SD-M3 are expected to cause same effects on
improvement as R-M1, R-M2 and R-M3.

Cross-Over Operations:
Cross-over operations from SD-C1 to R-C2 are considered that can be applied
on two mating individuals ind1 and ind2 to combine parts of both individuals
to construct better optimized individuals without introducing new components
to the component space:

• SD-C1-Missing Bindings: A random number of functional profiles (rn)
of ind1 with missing bindings (for values of m1 < 1) (rn chosen in a range
from 1 up to half of the number of functional profiles in ind1) starting from
the functional profiles with the lowest values of m1 and proceeding with
higher values are chosen. If there are no functional profiles with missing
bindings in ind1, rn functional profiles are chosen. These functional pro-
files are exchanged with the matching functional profiles of ind2 (variation
strategy CSV).

Goal: Non fitting functional profiles in ind1 can be replaced by fitting
functional profiles of ind2 and vice versa. This is possible, since a non
fitting functional profile in ind1 can fit in ind2. Hence, after this operation,
both ind1 and ind2 can be improved for the validity and completeness by
an intensification in the component space without changing the patterns
of ind1 and ind2.

• SD-C2-Device Coverage: Functional profiles of ind1 covered by a ran-
dom chosen device from the set of devices with the lowest functional profile
coverage rate in ranking3 are chosen and exchanged with the matching
functional profiles of ind2, if there exist such functional profiles in ind2
(variation strategy CSV).

Goal: By performing this operation, functional profiles can be covered
by a reduced number of devices in both ind1 and ind2, since functional

120 Automated Creation of Optimized Designs

profiles on devices with low device functional profile coverage rate in ind1
can be mapped onto devices with higher functional profile coverage rate
in ind2 to obtain an improvement similar as in SD-M5.

• SD-C3-Device Price Cost: Functional profiles of ind1 covered by a
random chosen device from the set of devices of the highest price cost in
ranking2 are chosen and exchanged with the matching functional profiles
of ind2, if there exist such functional profiles in ind2 (variation strategy
CSV).

Goal: By performing this operation, functional profiles can be covered
by devices with lower price costs in both ind1 and ind2, since functional
profiles on devices with high price costs in ind1 can be mapped onto devices
with lower price costs in ind2 to obtain an improvement similar as in SD-
M4.

• SD-C4-Binding Exchange: All fitting functional profile pairs in ind1
are exchanged with functional profile pairs consisting of matching func-
tional profiles. In a second step, the same operation is performed outgoing
from the fitting functional profile pairs in ind2. (variation strategy CSV).

Goal: Same as the goal for SD-C1 with the difference that this opera-
tion is connection-based and performed based on bindings rather than on
functional profiles and devices.

• R-C1 to R-C2: These cross-over operations are similar to SD-C1 and
SD-C2 with the difference that the selection of functional profiles in R-C1
and devices in R-C2 are random (variation strategy CSV).

Goal: These cross-over operations aim to introduce more diversity into
the component space, in order to explore for better optimized individuals
in the component space, which is also useful to avoid premature local
optima.

In total, a list of 18 variation operations are conceived as summarized in
Table 5.4.

5.5 Design Improvement 121

Variation

Type

Operation Variation

Strategy

Improvement Criterion Pattern

Change

Mutation

SD-M1

SSV

bindings no

SD-M2 bindings yes

SD-M3 bindings yes

SD-M4 device price cost no

SD-M5 device coverage rate no

SD-M6 functional profile coverage rate yes

R-M1 to R-M4 similar as SD-M1 to SD-M4

D-M1

CSV

device price cost no

D-M2 device coverage rate no

Cross-Over

SD-C1 bindings no

SD-C2 device coverage rate no

SD-C3 device price cost no

SD-C4 bindings no

R-C1 to R-C2 similar as SD-C1 to SD-C2

Table 5.4: Summary of Variation Operations

All variation operations require additional recovery operations that remove
bindings of the concerned functional profiles after exchanges or modifications
and attempt to create new bindings. The recovery operations consequently
map new functional profiles onto devices (cf. Section 5.6.2).

5.5.3 Application Strategies

Variation operations presented in Section 5.5.2 can be grouped for different ap-
plication strategies to determine the group that provides the best performance.
Each such group of variation operations must be able to reach any point in the
solution space. In particular, it is interesting to observe the performance of
variation operations with respect to their exploration and exploitation capacity.
These application strategies are:

• R: application of the set of only random variation operations, R-M1 to
R-M4;

• SD/R/D: application of the set of random, semi-directed and directed
variation operations presented in Table 5.4.

At each of these strategies, variation operations are applied in each genera-
tion in the order of a rotating list. Hence, each variation operation once applied,

122 Automated Creation of Optimized Designs

can be reapplied in the optimization process or even in a single generation, if it
is its turn. The rotating list is global for the optimization process and the appli-
cation rates for each variation operation depends on the mutation and cross-over
probability, hence on the number of the individuals that are mutated and the
number of individuals that perform cross-over operations.

5.6 Realization of the Approach

5.6.1 Objective Functions

Objective functions can be derived from the fitness criteria in Section 5.2. By
using the design generation approach in Section 5.4 and variation operations in
Section 5.5.2 that are designed to keep the consistency between solutions and
abstract design, abstract design compliancy for the detailed designs is guaran-
teed in the design generation as well as in the design improvement. Hence,
objective functions are designed corresponding to the remaining criteria: valid-
ity and completeness of binding-schema, device price costs, demand for device
communications, and configuration and maintenance.

For a detailed design solution candidate that contains the set of functional
profiles FP and devices DEV S in (5.25), six objective functions are designed:

• validity and completeness of binding-schema:

F1 = 1−|BIN |/|BPC|, with |BIN |: is related to number of bindings
and |BPC|: number of binding pair candidates,

F2 = (|MAN |−|RMAN |)/|MAN |, with |MAN |: number of manda-
tory functional profile input datapoints and |RMAN |: number of
input datapoints in MAN that possess bindings,

F3 = |EX|/|BPC| + 1 − |BIN |/|BPC|, with |EX|: number of ex-
cessive bindings at functional profile input datapoints;

• device price costs:

F4 =
∑y

i=1 price(devi)/maxprice, with y = |DEV S| and maxprice:
maximum possible device price costs that emerges by mapping each
function block on a separate device with the highest possible price
cost;

• demand for device communications:

F5 = |BINEX|/|BPC|+1−|BIN |/|BPC|, with |BINEX|: number
of device external bindings;

5.6 Realization of the Approach 123

• configuration and maintenance:

F6 = |MSB|/|BPC| + 1 − |BIN |/|BPC|, with |MSB|: number of
manufacturer-spanning bindings (cf. Section 5.2).

|BIN | is calculated in distinction for interoperable and interworking bind-
ings (cf. Table 2.2). Each interoperable binding is evaluated with the value 1,
whereas each interworking binding is evaluated with the value 1−1/(|BPC|+1).
All objective functions are designed for a minimization and normalized to enable
comparisons. The presented objective functions allow an evaluation and thus
comparison of individuals among each other.

5.6.2 Individual Representation

For the evaluation of individuals using the objective functions in Section 5.6.1
a representation is required that contains all necessary design elements such as:

• functional profiles with operation modes together with input and output
datapoints, attribute for implementing devices of functional profiles, at-
tributes for indicating whether an input datapoint is mandatory;

• bindings with attribute, whether a binding is device internal;

• devices with attribute for price costs, manufacturer and platform.

Design elements with identical information content can exist in multiple indi-
viduals, hence information contained in each individual must appear in a unique
representation for distinction and allowing a general reuse of information. Same
functional profiles, datapoints and devices can be contained in multiple indi-
viduals. For distinguishing such design elements, instances are conceived which
are unique for each and every individual which point to the unique information
contained. Explicitly, functional profile instance, device instance and datapoint
instance are conceived and point to functional profile, device and datapoint re-
spectively. This approach is realized by the component model in Figure 5.2.
The representation used for the design generation and improvement is a direct
representation based on this component model and consists of a set of used
functional profile instances in the binding-schema, a set of device instances and
the abstract design for which the individual is generated.

Choice of such a direct representation model with redundant elements al-
lows the application of sophisticated variation operations as presented in Section
5.5.2, since all the necessary information required for such a variation concept
is made available to the operations. Further, number and complexity of recover
operations that must be performed to update the solution candidates after mod-
ifications by variation operations are reduced. For the chosen individual repre-
sentation, after an exchange or a substitution of a functional profile, bindings
of the removed functional profiles are also removed. Further a new functional

124 Automated Creation of Optimized Designs

profile in a modified individual attempts to build new bindings with its partners
by the notion of binding pair candidate (cf. Definition 3.2.5). By application
of this recover operation on all new functional profiles, a new binding-schema
emerges. In a last step an update of device list is calculated for the modified
individual via the set of functional profiles, which is relatively simple, since the
functional profiles are device specific. With the specified cardinality for each
functional profile on its implementing device (cf. Definition 3.2.3), this step
conceives the calculation of the number of devices required to completely cover
the functional profiles and map the functional profiles to implementing devices
within cardinality limits.

5.7 Automated Design Creation For A Building

So far the concentration of this thesis has been on creation of designs for a room
for its being the task with the highest complexity in the creation of a BAS design.
However, if a design creation for a building in practice is considered, there are
further complementary issues of concern: room spanning control, flexible rooms,
technology spanning designs and preferences for mapping of function blocks to
devices.

5.7.1 Room Spanning Control

Function blocks of certain locations may be required to communicate with func-
tion blocks across many different rooms. The most common example for such
a communication is between the sensor function blocks placed on the roof or at
a facade (e.g. wind velocity measurement, precipitation detection) and applica-
tion function blocks required in abstract designs for many different rooms. In
such designs connections are from each of these sensor function blocks, each of
which exists only once in the BAS design for all other communication partners.

On the detailed design level this implies that e.g. a single sensor device
for wind velocity measurement placed on the roof communicates with all other
controller and actuator devices across many rooms in the building. This kind
of a one-to-many communication relation from the abstract design of a room
to abstract designs of many other rooms is represented by using reference func-
tion block instances as mentioned in Section 5.3. Hence, such sensor function
blocks appear only once in their own abstract designs and they are represented
via reference function blocks in other abstract designs, which correspond to lo-
cal functional profile instance and functional profile instance reference on the
detailed design level.

Installation location for sensor devices in room automation are frequently
the same as the location where the function is required, apart from some minor
examples as explained in the case of sensor devices placed on the roof or at
the facades. In contrast, controller and actuator devices may be required to

5.7 Automated Design Creation For A Building 125

install in other locations than where their functions act. Typical examples for
such devices are light actuators which are mounted in sub-distributors (by rail
mounting). Their functional profiles are not used locally in the detailed design
assigned to the installation location, but in detailed designs of other rooms of
e.g. a storey. Each time a functional profile is required, a different functional
instance is used from the device in sub-distributor location.

5.7.2 Flexible Rooms

In current functional buildings buildings room layouts of floors are mostly not
conceived to be flexibly modifiable. However, number and dimension of the
rooms are desired to be modified flexibly and economically. In some of the
modern buildings, room layout of floors can be flexibly changed e.g. in an office
building from a number of individual offices to an open-plan office in time of
operation. In whole area of a floor a number of areas are defined as the base
for locations where the automation plant should be installed. These areas are
divided into a number of segment grids with each segment being the smallest
functional unit (cf. Figure 2.7). The segment grids are individually grouped
into rooms. Rooms that are built by grouping of segment grids are separated
from each other by partition walls.

The possibility of such a modification of room layout of a floor up to the
load-bearing walls has a prior advantage that in case of a room layout modifi-
cation, there is no necessity to change mounting location of the existing room
automation devices in segment grids and the desired functionality is achieved
by adapting the system configuration (by modifying the bindings and occasion-
ally parameter settings of functional profiles), explicitly making the necessary
changes in the corresponding abstract and detailed design. In Figure 5.11 an
example floor plan can be seen, for which in Figure 5.12 areas B1, B2 and B3
with each containing a different number of segments and therein 12 rooms are
defined.

126 Automated Creation of Optimized Designs

Figure 5.11: An Example Floor Plan from the Standard VDI 3813-1 [The11a]

Segment 3 Segment 4 Segment 5 Segment 6

Figure 5.12: Floor Plan with Segments Oriented (Flexible) Rooms from the
Standard VDI 3813-1 [The11a]

A segment typically contains one or more pools of light, a window with
sunblind and window contact, and a radiator, if they exist, which are related
to the realization of the functions light actuator, sunshade actuator, window
monitoring and control driver actuator. The approach of the thesis to enable
segment-oriented designs conceives an abstract design for such a segment that

5.7 Automated Design Creation For A Building 127

contains function blocks which realize these functions. In segments, frequently
a repeatedly used set of functions are allocated. Hence, segments, each of which
contains an identical set of function blocks is represented by one unique abstract
design template (segment abstract design template).

Further, there exist functions which belong to such a room and which are not
allocated in a segment (the difference template). These functions are applica-
tion (e.g. occupancy evaluation, constant-light control, automatic solar control,
temperature control heating, etc.), operator and display functions (e.g. actu-
ate light, select room utilization type), and some sensor functions (e.g. room
brightness measurement, room air temperature measurement, presence detec-
tion) and they are defined in an abstract design template for the room with
each represented as a function block.

Figure 5.13: Project Structure for VDI 3813 Example Building

In Figure 5.13 the design project structure related to the example building
in standard VDI 3813 with areas, segments and rooms is presented. Hereby,
“Room 3” is formed by grouping segments “Segment 3” and “Segment 4”, and
“Room 4” is formed by grouping segments “Segment 5” and “Segment 6” in
area “B1”.

After grouping segments to a room, one can determine which segment ab-
stract design templates should be used and how many times each such template

128 Automated Creation of Optimized Designs

is required in the corresponding grouping. A room abstract design template
emerges by providing the number of required segment abstract design templates
and abstract connection from each segment abstract design template to the dif-
ference template. The room abstract design template can then be used by the
automated design creation approach to create optimized detailed designs.

Difference Template

Segment Abstract Design Template

Figure 5.14: Abstract Design Template for Segment Oriented Rooms in Figure
5.12 and Figure 5.13

Figure 5.15: Detailed Design Template - Binding-Schema for Segment Oriented
Rooms in Project Structure in Figure 5.13

5.7 Automated Design Creation For A Building 129

In Figure 5.14 a segment oriented room abstract design template is given that
should realize constant-light control and automatic lights functions in segment
oriented rooms “Room 3” and “Room 4” in Figure 5.13. Thus, this template
is assigned in project structure in Figure 5.13 to “Room 3”, “Segment 3” and
“Segment 4”, and “Room 4”, “Segment 5” and “Segment 6”. Since the segment
abstract design template in Figure 5.14 is assigned to e.g. segments “Segment 3”
and “Segment 4” in room “Room 3”, thus it is assigned twice in sum in this room
and contains two function blocks, a realizing detailed design for the abstract
design in Figure 5.14 must realize twice each of these two function blocks (in
sum four function blocks). All four function blocks build abstract connections
corresponding to the room abstract design template in Figure 5.14. In Figure
5.15 the detailed design is presented that realizes the segment oriented abstract
design in Figure 5.14 and that is assigned to rooms “Room 3” and “’Room4’.

5.7.3 Technology Spanning Designs

Another important issue is the integration of components from different tech-
nologies using different communication protocols within a detailed design. This
also concerns such components that communicate with each other to realize the
functions of an industry or also industry spanning-functions. Since in such a con-
stellation messages in different protocols are exchanged among devices, gateways
are required to translate such messages from sender devices to receiver devices.

On the logical level, this is realized i.e. by an adapter functional profile of
the gateway device. For a binding from a LON functional profile to an EnOcean
functional profile, adapter functional profile of a LON-EnOcean gateway device
is integrated to translate the network variables of the LON device to EnOcean
device and to enable a correct communication.

The approach for enabling technology spanning designs conceives speci-
fying technology preference for function blocks in an abstract design as a non-
functional requirement, if desired. In the design generation step, function block
combinations are built by grouping only the function blocks of an identical tech-
nology preference, which are covered by functional profiles of the devices from
the same technology. Similarly, the design improvement step, in candidate de-
tailed designs, improvement of devices and functional profiles are performed by
isolating components of different technologies. In variation operations functional
profiles of a technology are substituted or exchanged only by other functional
profiles of the same technology.

An example for a technology spanning system that realizes functions of in-
dustries heating and lighting is presented in Figure 5.16 and 5.17. In Figure
5.16 function blocks that are planned for a realization using EnOcean technol-
ogy are marked with the letter “E” and LON technology with the letter “L”.
Detailed design in Figure 5.17 that realizes the abstract design in Figure 5.16
consists of functional profiles from EnOcean and LON technologies correspond-
ingly. A complete list of these functional profiles is given in Table 5.5 with

130 Automated Creation of Optimized Designs

mapped function blocks.
Communication from EnOcean devices to LON devices is realized via a

EnOcean-LON gateway that provides adapter functional profiles for this pur-
pose. For example, the EnOcean functional profile “7” in Figure 5.17 communi-
cates with the LON functional profiles “3” and “8” via adapter functional profile
of the EnOcean-LON gateway “12”.

E E

E

L L E E
L L E

L

L

E

E

E

E

L

luminance_sensor_indoor

set_scene

set_light

window_contact

occupancy_sensor

set_temperature_setpoint

temp_sensor_indoor

light_act_dimmable_1

light_act_dimmable_2

radiator_act

Figure 5.16: Abstract Design for a Technology Spanning System - Heating and
Constant-Light Control

5.7 Automated Design Creation For A Building 131

E

E

E

E

L

L

L

L

L

L

L

E -> L

Figure 5.17: Detailed Design Realizing the Abstract Design in Figure 5.16 -
Binding-Schema

Functional Profile Function Block Combination

5
set temperature setpoint
temp sensor indoor

10 window contact

7
occupancy sensor
luminance sensor indoor

11 set scene

1 set light

8 occupancy control (1)

2 scene control light

3 constant light control

6

control mode selection
temperature setpoint eva.
occupancy control
temperature control
radiator act

4 light act dimmable 1

9 light act dimmable 2

Table 5.5: Mappings among Functional Profiles in Figure 5.17 and Function
Blocks in Figure 5.16 by Function Block Combinations

132 Automated Creation of Optimized Designs

5.7.4 Preferences for Mapping of Function Blocks to Devices

Another important issue of creation of BAS designs in application practice con-
ceives special preferences for mapping of function blocks to devices. A planer
may specify preferences for some function blocks in an abstract design to be

• from a specific and the same technology: some technologies can be pre-
ferred for providing components with more reasonable device price costs
or due to law for protection of historical buildings e.g. wireless BAS for
the famous Opera Building Semper Opera in Dresden;

• from a specific and the same manufacturer: some device manufacturers
that possess geographically close offices to the building of installation can
be preferred for ease of reachability in case of maintenance in the life-cycle
of an installed BAS;

• or to be mapped onto the same device (also without specifying any par-
ticular device type): some group of function blocks can be desired to be
mapped onto the same device that is planned to be installed at a specific
location in a room e.g. function blocks presence detection and brightness
measurement can be planned to be realized by a same device that should
be installed at the ceiling. Further, function blocks that belong to different
control loops (e.g. light actuators for separate pools of light) are desired
to be mapped on separate functional profiles or separate devices (the lat-
ter case is often required in case of a realization with wireless automation
devices).

These preferences are defined as non-functional requirements attached to
each of such function blocks in a considered abstract design. In the design
generation step, during a component search, only devices and functional profiles
from the specified technologies and/or from the specified device manufacturers
are retrieved from the component repository.

Furthermore, for function blocks that are desired to map onto a same device a
non-functional requirement can be defined as an attribute to mark such function
blocks. The design generation and improvement steps consider this requirement
and create detailed designs that contain devices each mapping all such function
blocks simultaneously by its functional profiles, where applicable.

An example for such a mapping preference is given in Example 2 that is
used for performance tests in Section 6.3. In Appendix A in Table A.2 the
device EasySens SR-MDS 24V Wireless-Ceiling-Multi-Sensor 2 covers function
blocks Occupancy Sensor right, Temperature Sensor right, Luminance Sensor
right and the device EasySens SR-MDS BAT Wireless-Ceiling-Multi-Sensor 13
covers function blocks Occupancy Sensor left, Temperature Sensor left, Lumi-
nance Sensor left which belong to the abstract design given in Figure A.3 and
A.4.

5.8 Further Uses and Applicability of the Approach 133

Thus, function blocks that are desired to be mapped on same devices that
should be installed at the specific locations in the room “right” and “left” receive
non-functional requirements in the step of abstract design creation that point
three of these function blocks (“left” function blocks) onto an anonymous but
same device for “left” installation location and point the other three of the
function blocks (“right” function blocks) to another anonymous but same device
for “right” installation location.

In case, if such non-functional requirements are not defined, detailed designs
of same objective function values would arise that contain various mappings of
function blocks on devices e.g. Occupancy Sensor right, Temperature Sensor left,
Luminance Sensor right onto EasySens SR-MDS 24V Wireless-Ceiling-Multi-
Sensor 2, which are incorrect, since this device after an installation cannot de-
tect presence and measure room brightness at the “right” location and measure
room temperature at the “left” location in the room.

5.8 Further Uses and Applicability of the Approach

The approach for automated creation of optimized designs has various important
uses beyond the uses mentioned in Section 5.3.2:

• documentation and traceability: Many building automation installa-
tions have a lack of documentation. Project documentation is often poor.
In a project with missing documentation of particularly binding-schemata
and mapping of functions to functional profiles and devices, an enormous
additional effort by system integrators is required in case of maintenance
in the life-cycle of a BAS installation. Especially, new components may be
required for integration that should realize additional functions or some
old broken and malfunctioning components might have to be exchanged.
In time traceability reduces and it cannot be determined with reasonable
effort which components were integrated in the past for the realization of
which functions, thus for the realization of which requirements.

Especially in case of a BAS installation with wireless components such
as EnOcean and ZigBee, bindings are assigned by pressing special learn
buttons on devices and a detailed design is then not necessary for such
technologies to build a functioning system. However, due to the lack of a
detailed design, such systems are poorly documented. The proposed com-
ponent model and mapping approach overcomes these lacks by providing
relations in the business process model of a BAS from the requirement
elicitation to the generated detailed designs that are e.g. in case of LON
technology ready for commissioning;

• assistance for testing component standard conformity: Automated
design creation can also be used as a utility for testing conformity of device
functional profile implementations to the standard VDI 3813-2, future ISO

134 Automated Creation of Optimized Designs

16848-4. By the use of the component mapping concept which is presented
in form of a comparison in Table 5.1, functional profile implementations of
device manufacturers can be compared to the function block specifications
in the standard and elements that cannot be mapped in manufacturer de-
vice functional profiles (e.g. functional profiles that implement a number
of room automation functions, but do not completely implement ports of
function blocks in the standard in datapoints) can be identified. Such
functional profiles can be classified as non standard conform and device
manufacturers would gain information about the implementation elements
that cause a violation of standard conformity. This can assist device man-
ufacturer to easily review their implementations to enhance their products.

Further, the approach is

• installation location independent: there is no presumption made on
the installation location (functional buildings and rooms) of devices, and
the approach applies for a realization in any kind of room and functional
building;

• industry independent: there is no presumption made on a support for
functions of specific industries exclusively such as lighting, HVAC, etc.,
and the approach applies for all industries;

• manufacturer and platform independent: there is no presumption
made on specific device manufacturers or platform technologies such as
LON, EnOcean, KNX, and the approach applies for all device manufac-
turers that provide device functional profile implementations conform to
VDI 3813-2 designed for different technologies. Further, the approach also
applies for preferred manufacturers and/or technologies, if there exist any;

• dual modal: an optimized set of devices and an optimized set of func-
tional profiles can also be computed for abstract designs that contain func-
tion blocks with and without abstract connections.

5.9 Conclusions

In this chapter the proposed solution method to the design creation problem as
the core problem of the thesis (cf. Chapter 3) is presented, which is together
with the validation in Chapter 6 the main contribution of this thesis.

For the design creation problem criteria for design evaluation is presented
in Section 5.2. Further, the component problem is conceived in Section 5.3 that
allows design evaluation, the automated design creation and a seamless integra-
tion of the solution method in the business process model for BAS engineering.

In Section 5.4 and 5.5 methods and algorithms are presented for the creation
of optimized designs which is the main focus of this chapter. In these sections

5.9 Conclusions 135

problem-specific information is integrated in the operations of multi-objective
evolutionary algorithms that search for optimized solutions to enable an effective
search and to achieve solutions of high quality.

In Section 5.4 design generation methods are presented with possible alter-
natives that create detailed designs consistent to the input abstract designs. In
Section 5.5 a focus is made on variation operations of MOEAs that enable a
goal-oriented search using rankings based on evaluation of candidate solution
components. Further, strategies for the application of variation operations are
presented.

In Section 5.6 objective functions are presented which are essential for the
evaluation of detailed designs for comparisons among solution candidates, thus
for the design improvement. Based on this, a problem-specific individual rep-
resentation is conceived that enables the application of goal-oriented variation
operations and a seamless integration of the detailed design solutions in the
business process model of BAS.

Beyond the problems confronted in the design creation for a room, there are
further issues of the BAS engineering practice which must be considered in the
design for a whole building. These are presented in Section 5.7 with solutions.
These issues are room spanning, control, flexible rooms, technology spanning
designs and preferences for mapping of function blocks to devices. Further, it is
possible to provide assistance to device manufacturers to test their component
implementations for standard conformity and to determine possible lacks related
to implementations.

The proposed method for the automated creation of optimized designs fulfill
all the requirements on algorithms (cf. Section 3.3.2) as can be seen in Table
5.6.

RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8

[Erb06] + ++ ++ ++ ++ - ++ ?

[MKBR10] + ++ ++ ++ ++ - ++ ?

[WSWW03] - - ++ ++ ++ ++ ++ ?

[CST+06] - - ++ ++ ++ ++ ++ ?

Proposed Method [OPK10a] ++ ++ ++ ++ ++ ++ ++ ++

Table 5.6: Comparison of Solution Methods in Table 4.2 including the Proposed
Solution Method for Design Creation Problem

For the validation of the concepts handled in this chapter, implementations
are prepared and tested for different representative problem instances using
alternative algorithms and evaluated in Chapter 6 by an empirical analysis.

136 Automated Creation of Optimized Designs

Chapter 6

Validation and Performance
Analysis

6.1 Validation Method

For the realization of the concepts of the solution method for the design creation
problem presented in Chapter 5 and testing, whether these concepts satisfy the
requirements on algorithms as presented in Section 3.3.2, a validation method
must be conceived and applied for a performance comparison of algorithms based
on empirical results.

The validation method conceives:

• performance metrics: to quantitatively determine algorithms that ob-
tain best convergence to optimal solutions and that achieve a good explo-
ration in the solution space;

• a choice of representative problem instances: to determine the ca-
pabilities, strength and weaknesses, thus possible limitations of the algo-
rithms in different use cases in terms of performance metrics and compu-
tation time;

• performance tests: to determine the performance of algorithms by per-
formance metrics for representative problem instances at different MOEA
parameter settings and to suggest algorithms with parameter settings that
achieve best performances for different problem instances.

6.2 Performance Metrics

Performance of MOEAs are generally measured considering the criteria for qual-
ity of the solutions and exploration capability of the optimization method. The
latter criterion conceives both the spread of the solutions and the extent of the

138 Validation and Performance Analysis

solutions reached by the variation operations, thus range of values covered by
the solutions.

In the literature, there does not exist a single metric that can measure the
performance of an MOEA simultaneously for all of these criteria. According to
these three criteria performance metrics can be defined:

• generational distance GD(P1, P0): This metric (cf. Formula 6.1) is
used to measure the quality of the solutions of a set P1 by using their
objective function values with respect to a reference set P0 by calculation
Euclidean distances. Hence, smaller values of GD is always better, since
this implies higher quality of the solutions contained in P1 [VL00];

• spread S(P1, P0): This metric (cf. Formula 6.2) is used to determine
the spread of the obtained non-dominated solutions P1 and can be used
for problems with more than two objectives [ZJZ+06]. For this reason it is
called generalized spread. First, the distance from a point to each solution’s
nearest neighbor is calculated [ZJZ+06][DPAM02]. Then, extreme points
in the true Pareto front P0 are calculated, which is used for the calculation
of Euclidean distances between the extreme solutions and the boundary
solutions in P1. A smaller value of S is always better, since this implies
that all extreme points are in P1 and the P1 solutions are uniformly
distributed;

• coverage C(P1): This metric (cf. Formula 6.3) is used to measure the
maximum extent of the solutions P1 in each dimension, thus for each
objective function to estimate the range that P1 spans [ZDT00]. A higher
value implies a better extent and therefore it is always better.

Hereby, solution set P1 is the non-dominated set of solutions, whereas P0 is
the true Pareto front. An explanation for the achievement of P0 is presented
in Section 6.3.3 in tests using the original and cloned repository. Generational
distance can be calculated by the formula in (6.1), where p = 2 and di is the
Euclidean distance between each fitness vector of P1 solutions and the fitness
vector of the nearest solution in P0. The formula implies P1 ≡ P0 ⇔ GD =
0. In the formula for the calculation of the spread S(P1, P0) in Formula 6.2
{e1, e2, ..., em} are extreme solutions in P0.

GD metric is the most directly related metric to the convergence behavior
of an MOEA algorithm and thus for the test results, it is the most important
metric. S and C metrics help to observe the distribution of solutions and the
exploration behavior of algorithms.

GD(P1, P0) =
(
∑n

i=1 d
p
i)

1/p

|P1|
(6.1)

6.3 Example Abstract Designs and Performance Tests 139

S(P1, P0) =

∑m
i=1 d(ei, P1) +

∑
X∈P1 |d(X,P1)− d|∑m

i=1 d(ei, P1) + |P1|d
,

d(X,P1) = min
Y ∈P1,Y ̸=X

∥F (X)− F (Y)∥2,

d =
1

|P1|
∑
X∈P1

d(X,P1)

(6.2)

C(P1) =

√√√√ n∑
1

max{∥xi − yi∥;xi, yi ∈ P1}
(6.3)

Moreover, the computation time spent in the optimization is also important
statistics for making arguments on the efficiency of the solution method.

6.3 Example Abstract Designs and Performance
Tests

6.3.1 Criteria for Choosing Example Abstract Designs

Beyond the problems mentioned in Section 5.5.1, an analysis of design creation
using different abstract designs leads to the conclusion that the abstract designs
can be classified in three categories with respect to the challenges the automated
design creation must deal with:

• high number of function block types and/or high number of func-
tion blocks: Calculations performed in the preoptimization step in Sec-
tion 5.4 may have to deal with abstract designs of a high number of func-
tion block types and/or a high number of function blocks, which may result
in long computation times before the start of the design improvement step.
Moreover, in the design improvement step, the search for functional pro-
files and devices that optimally cover the function blocks and allow the
construction of valid and complete binding-schemata may be a big chal-
lenge for the variation operations to confront due to the high number of
component combinations, particularly from different manufacturers;

• highly intermeshed abstract connections: A high number of many-
to-one, one-to-many type of abstract connections among function blocks
as well as multiple one-to-many connections with shared function blocks
on the “to-side” are particularly difficult to map to bindings, since in such
cases functional profiles of binding pair candidates are parts of many other
binding pair candidates (cf. Definition 3.2.5), and bindings must yield

140 Validation and Performance Analysis

from each such binding pair candidate in the presence of a high number of
component combinations, particularly from different manufacturers. This
implies a high horizontal intercomponent dependency (cf. Section 3.3.1);

• high and varying rate of functional profile coverage: Varying num-
ber of function blocks can be covered by functional profiles, implying that
same function blocks can repeatedly be contained in many different func-
tion block combinations, thus in different patterns. This may also result in
long computation times in the preoptimization step as pointed in the first
criterion. Further, in the design improvement step solutions that yield
to global optima cannot be reached in a reasonable time, if the variation
operations cannot effectively explore toward these solutions.

It should be emphasized that these challenges and the problems presented
in Section 5.5.1 are independent of the location for designs, whether it is a room
in a huge office complex with several building parts, a room in a hospital, or a
room at a school.

6.3.2 Example Abstract Designs

By considering the criteria for choosing example abstract designs for perfor-
mance tests, performance tests are involved with following three abstract design
examples:

• Example1: This is the same abstract design as in Figure 2.8 and an
example for the industry lighting. It concerns a relatively high number
of function block types (11) and a moderate size of function blocks (13).
It contains many-to-one and one-to-many type of abstract connections
among function blocks. The target platform is chosen to be LON and the
maximum functional profile coverage rate in this example is moderate (2).

• Example2: This is an industry-spanning example (with the complete
form in Appendix A in Figure A.3 and A.4) with functions of both indus-
tries lighting and heating. It concerns a relatively high number of function
block types (13) as well as a high number of function blocks (46). It con-
tains many-to-one and one-to-many type of abstract connections. The
target platform is chosen to be EnOcean and the maximum functional
coverage rate in this example is high (5). For the sake of simplicity, a
reduced form of this example with same number of function block types
and 19 function blocks is illustrated in Figure 6.1.

• Example3: Similar to Example1, this example (cf. Figure 6.2) is from
the industry lighting. It concerns a relatively low number of function block
types (5) and a moderate size of function blocks (19). It contains many-
to-one and one-to-many type of abstract connections as well as multiple
one-to-many connections with shared function blocks on the “to-side”.

6.3 Example Abstract Designs and Performance Tests 141

The target platform is chosen to be LON and the maximum functional
coverage rate in this example is low (2).

Figure 6.1: Lighting and Heating in Simplified Form

Figure 6.2: Occupancy Evaluated Floor Lighting

Symbols used in these examples are presented in Table 2.3 and they do not
represent physical system elements. The abstract connections from and to these
symbols do not represent wires, but a reflection of physical communication to
the logical level of design via network variables which are not modified by these
symbols.

142 Validation and Performance Analysis

6.3.3 Performance Tests

As a choice of representative problem instances example abstract designs in Sec-
tion 6.3.2 with two component repositories (original and cloned) are considered.
The purpose for performance testing with two repositories is to find optimal
solutions using the original repository with an analogy of searching needles in
the hay and to search for the optimal solutions in a much larger repository,
thus searching the needles in a hay of a much greater volume. The aim is to be
able to make conclusions on the performance of design improvement algorithm
that they can achieve good results in both cases and the obtained solutions are
near-optimal, and can be used as well optimized BAS designs according to the
identified objective functions in Section 5.6.1.

The used original component repository [DK11] consists of 118 devices and
277 functional profiles from LON and EnOcean technology. Devices in the
original repository are 100 times cloned to form the cloned repository. The
cloned component repository contains also the original devices and functional
profiles. In the cloning operation properties and capacities of the original devices
and functional profiles are worsened to form their clones:

• operation modes of functional profiles are randomly reduced: to enlarge
the range of the first, second and third objective function values;

• price costs of devices are randomly made higher: to enlarge the range of
the fourth objective function values;

• device names are changed: to enlarge the range of the fifth objective func-
tion values;

• functional profile multiplicities of the devices are changed: to increase the
variety of fourth and fifth objective function values;

• device manufacturers are changed by choosing them randomly among a
set of 100 additional device manufacturers: to enlarge the range of the
sixth objective function values.

Performance tests consist of two series of simulations using two MOEAs
NSGA2 and SPEA2 in combination with the variation application strategies R
and SD/R/D in Section 5.5.3:

• tests using the original repository: Automated creation of optimized
designs method is applied on Example1 to 3 using all four combinations of
MOEAs and variation application strategies NSGA2-R, NSGA2-SD/R/D,
SPEA2-R, SPEA2-SD/R/D at a parameter setting population size P = 40,
mutation probability pM = 0.6 and cross-over probability pC = 0.6. For
each of the four algorithms and the parameter setting 30 runs for 300
generations are obtained. The true Pareto front P0 for each example is

6.3 Example Abstract Designs and Performance Tests 143

computed as the set of all non-dominated solutions obtained from all runs
with the algorithms and parameter settings for the respective example
using the original repository. In the design generation and improvement
steps

– 54 devices and 205 functional profiles are considered by using Exam-
ple 1;

– 40 devices and 40 functional profiles are considered by using Example
2;

– 53 devices and 203 functional profiles are considered by using Exam-
ple 3 which are relevant for the search for optimized detailed designs,
thus which belong to the solution space.

The results contain

– plots for average generational distances GD(P1, P0) from the non-
dominated solutions P1 of each run to P0 per generation;

– plots for average spread S(P1, P0) per generation;

– plots for average coverage C(P1) per generation and

– an optimal detailed design example from the true Pareto front of each
of the three example abstract designs Example1 to 3 in Appendix A;

• tests using the cloned repository: Automated creation of optimized
designs method in Chapter 5 is applied on Example1 to 3 using the algo-
rithms NSGA2-SD/R/D and SPEA2-SD/R-D. The reason for not consid-
ering the remaining R algorithms is explained in the results for tests using
the original repository. The objective function value ranges are larger
compared to the tests using the original repository, thus analysis for dif-
ferent parameter setting is significant to apply using the cloned repository.
Hence, the algorithms are applied for analysis with different population
sizes, different mutation and cross-over probabilities. For each of the two
algorithms and for each parameter setting 30 runs for 1000 generations
are obtained. The results contain plots for average generational distance,
average spread and average coverage as in the tests using the original
repository, where the true Pareto front P0 for each example is computed
as the set of all non-dominated solutions obtained from all runs with the
algorithms and parameter settings using the cloned repository. Further,
the results contain near-optimal detailed design examples for Example2
and Example3 in Appendix A. In the design generation and improvement
steps

– 4730 devices and 18830 functional profiles are considered by using
Example 1;

144 Validation and Performance Analysis

– 2853 devices and 2853 functional profiles are considered by using
Example 2;

– 4278 devices and 17199 functional profiles are considered by using
Example 3 which are relevant for the search for optimized detailed
designs, thus which belong to the solution space.

Test Results Using the Original Repository:

Example 1: The true Pareto front P0 for this example consists of 7 non-
dominated solutions. All four algorithms very frequently (in the major part
of the runs) obtain one or more solutions in P0. The SD/R/D algorithms
obtain more solutions in P0 than R algorithms. Plots for GD, S and C contain
four observation points for each algorithm in generations 50, 100, 200 and 300.
Although all values are discrete with respect to the generation number, the
observation points are connected with lines to illustrate the tendency of each
algorithm by growing number of generations.

Figure 6.3: Generational Distance for Example 1

As can be seen in Figure 6.3, SD/R/D algorithms obtain already in gen-
eration 50 much better results than R algorithms. In the next 50 generations
R algorithms manage to obtain closer results to SD/R/D algorithms, however,
SD/R/D algorithms converge overall clearly better. Moreover, NSGA2-SD/R/D
can move all its non-dominated solutions closer to P0 than SPEA2-SD/R/D,
hence NSGA2-SD/R/D achieves for this example the best performance for con-
vergence.

6.3 Example Abstract Designs and Performance Tests 145

Figure 6.4: Spread for Example 1

In Figure 6.4, NSGA2-SD/R/D algorithm obtains the most stable and overall
the best performance for spread followed by NSGA2-R which achieves a better
spread value between 60. and 160. generations, but it achieves worse values for
spread due to loss of uniformity in P1.

Figure 6.5: Coverage for Example 1

In Figure 6.5, R-algorithms cover a larger volume of the objective space than

146 Validation and Performance Analysis

SD/R/D algorithms, which is not surprising, since the used variation operations
explore randomly towards any region of the solution space rather than regions
with near-optimal solutions. NSGA2-R obtains the best coverage value.

Conclusion: NSGA2-SD/R/D is the algorithm with the best performance for
this example, since it shows the best convergence behavior, most stable and best
spread values and good coverage values.

6.3 Example Abstract Designs and Performance Tests 147

Example 2: The true Pareto front P0 for this example consists of 3 non-
dominated solutions. SD/R/D algorithms always obtain this solution between
20 and 100 generations. R algorithms obtain it rarely and between 250 and 300
generations.

Figure 6.6: Generational Distance for Example 2

In Figure 6.6, SD/R/D algorithms converge clearly better than R algorithms.
NSGA2-SD/R/D achieves the best convergence, however SPEA2-SD/R/D fol-
lows it very closely in all observation points.

148 Validation and Performance Analysis

Figure 6.7: Spread for Example 2

In Figure 6.7, SD/R/D algorithms obtain overall the best results for spread.
NSGA2-SD/R/D achieves in average the best results in the end population,
however between 100. and 200. generations the spread worsens indicating a
loss of uniformity in P1. SPEA2-SD/R/D shows a similar loss of uniformity
of solutions between 200. and 300. generations and however NSGA2-SD/R/D
reaches the best value for spread in the 300. generation.

Figure 6.8: Coverage for Example 2

6.3 Example Abstract Designs and Performance Tests 149

In Figure 6.8, SD/R/D algorithms obtain the best results for coverage.
NSGA2-SD/R/D shows overall the best performance for coverage.

Conclusion: NSGA2-SD/R/D is the algorithm with the best performance for
this example, since it shows the best convergence behavior, best final spread
value and the best coverage value.

Example 3: The true Pareto front P0 for this example consists of 17 non-
dominated solutions. All four algorithms frequently obtain at least one of these
solutions between 100 and 300 generations.

Figure 6.9: Generational Distance for Example 3

In Figure 6.9, SD/R/D algorithms converge slightly better than R al-
gorithms. NSGA2-SD/R/D achieves the best convergence, however SPEA2-
SD/R/D converges very closely in all observation points.

150 Validation and Performance Analysis

Figure 6.10: Spread for Example 3

In Figure 6.10, SD/R/D algorithms obtain the best results for spread in all
generations. NSGA2-SD/R/D shows the most stable performance and SPEA2-
SD/R/D obtains the best values.

Figure 6.11: Coverage for Example 3

In Figure 6.11, SD/R/D algorithms achieve the best results for coverage.
NSGA2-SD/R/D obtains overall the best coverage.

6.3 Example Abstract Designs and Performance Tests 151

Conclusion: NSGA2-SD/R/D is the algorithm with the best performance for
this example, since it shows the best convergence behavior, the most stable
performance for spread and the best coverage values. However SPEA2-SD/R/D
obtains very similar results and achieves the best overall performance for spread.

According to the results of the tests using the original repository, for all
three examples SD/R/D algorithms obtain the best results for GD metric and
overall competitive results for S and C metrics. Thus, SD/R/D algorithms are
considered in the performance tests using the cloned repository for population
size, cross-over probability and mutation probability analysis. Test results using
the cloned repository are presented in Section 6.3.4, Section 6.3.5 and Section
6.3.6.

6.3.4 Population Size P - Analysis

Results of this analysis are obtained by tests using population size values P =
40, 60, 80 at a constant probability value for cross-over pC = 0.6 and mutation
pM = 0.6. For SPEA2-SD/R/D algorithm size of archive is chosen to be identical
to the population size P .

Example 1:

Figure 6.12: Generational Distance by P for Example 1

In Figure 6.12 NSGA2-SD/R/D for P = 80 achieves the best performance
in all observed generations. An increase of population size for NSGA2-SD/R/D
algorithm in this example achieves better results, whereas it is not the case for
SPEA2-SD/R/D. It achieves its best results at an intermediate population size
P = 60.

152 Validation and Performance Analysis

Figure 6.13: Spread by P for Example 1

In Figure 6.13 NSGA2-SD/R/D for P = 80 achieves the best values for
spread.

Figure 6.14: Coverage by P for Example 1

In Figure 6.14 SPEA2-SD/R/D for P = 80 achieves the best values for cov-
erage after 350 generations. NSGA2-SD/R/D for P = 80 also achieves a good
performance for coverage.

6.3 Example Abstract Designs and Performance Tests 153

Conclusion: NSGA2-SD/R/D for P = 80 achieves the best performance for
this example, since it shows the best convergence and spread values. It is fol-
lowed by SPEA2-SD/R/D for P = 60, since it obtains similar detailed designs,
good values for spread and also a good performance for coverage.

Example 2:

Figure 6.15: Generational Distance by P for Example 2

In Figure 6.15 SPEA2-SD/R/D for P = 80 achieves overall the best conver-
gence overall followed by SPEA2-SD/R/D for P = 40 and NSGA2-SD/R/D for
P = 60.

154 Validation and Performance Analysis

Figure 6.16: Spread by P for Example 2

In Figure 6.16 NSGA2-SD/R/D for P = 80 achieves the best performance
for spread at all observed generations followed closely by SPEA2-SD/R/D for
P = 80.

Figure 6.17: Coverage by P for Example 2

In Figure 6.17 SPEA2-SD/R/D for P = 80 achieves the best performance
with NSGA2-SD/R/D for P = 60 and SPEA2-SD/R/D for P = 60 following
closely.

6.3 Example Abstract Designs and Performance Tests 155

Conclusion: SPEA2-SD/R/D for P = 80 achieves the best performance for
this example, it achieves the best convergence, good spread and best coverage
values.

Example 3:

Figure 6.18: Generational Distance by P for Example 3

In Figure 6.18 NSGA2-SD/R/D for P = 80 achieves the best convergence
values. It is followed by SPEA2-SD/R/D for P = 80, SPEA2-SD/R/D for
P = 60 and NSGA2-SD/R/D for P = 60.

156 Validation and Performance Analysis

Figure 6.19: Spread by P for Example 3

In Figure 6.19 NSGA2-SD/R/D for P = 80 achieve the best performance
for spread with SPEA2-SD/R/D for P = 40 as second best.

Figure 6.20: Coverage by P for Example 3

In Figure 6.20 SPEA2-SD/R/D for P = 40 achieves the best performance
for coverage. NSGA2-SD/R/D and SPEA2-SD/R/D for P = 80 achieve also
good coverage performances.

6.3 Example Abstract Designs and Performance Tests 157

Conclusion: NSGA2-SD/R/D for P = 80 achieves overall the best perfor-
mance, since it achieves the best values for convergence and spread, and also a
good coverage performance.

6.3.5 Cross-Over Probability pC - Analysis

Results of this analysis are obtained by tests using cross-over probability values
pC = 0.4, 0.6, 0.8 at constant values for population size P = 60 and for mutation
probability pM = 0.6. For SPEA2-SD/R/D algorithm size of archive is chosen
to be identical to the population size P .

Example 1:

Figure 6.21: Generational Distance by pC for Example 1

In Figure 6.21 SPEA2-SD/R/D for pC = 0.6 achieves overall the best per-
formance after 310. generation followed by NSGA2-SD/R/D for pC = 0.6.

158 Validation and Performance Analysis

Figure 6.22: Spread by pC for Example 1

In Figure 6.22 NSGA2-SD/R/D for pC = 0.6 achieves the best performance
for spread with some deterioration. SPEA2-SD/R/D for pC = 0.6 also achieves
a good and a more stable performance for spread.

Figure 6.23: Coverage by pC for Example 1

In Figure 6.23 NSGA2-SD/R/D and SPEA2-SD/R/D for pC = 0.6 achieve
two of the best performance results for coverage with NSGA2-SD/R/D or

6.3 Example Abstract Designs and Performance Tests 159

pC = 0.6 achieving the best coverage values after 880. generation.

Conclusion: SPEA2-SD/R/D for pC = 0.6 achieves overall the best perfor-
mance, since it obtains the best performance result for convergence, good and
stable performance for spread, and a good performance for coverage.

Example 2:

Figure 6.24: Generational Distance by pC for Example 2

In Figure 6.24 NSGA2-SD/R/D for pC = 0.6 achieves the best performance
for convergence with a great difference compared to its nearest competitors.

160 Validation and Performance Analysis

Figure 6.25: Spread by pC for Example 2

In Figure 6.25 NSGA2-SD/R/D for pC = 0.6 achieves the best performance
for spread followed closely by its competitors.

Figure 6.26: Coverage by pC for Example 2

In Figure 6.26 NSGA2-SD/R/D for pC = 0.6 achieves the best overall per-
formance for coverage.

Conclusion: NSGA2-SD/R/D for pC = 0.6 achieves best overall performance,

6.3 Example Abstract Designs and Performance Tests 161

since it achieves the best results for convergence, spread and coverage.

Example 3:

Figure 6.27: Generational Distance by pC for Example 3

In Figure 6.27 SPEA2-SD/R/D for pC = 0.8 achieves the best performance
for convergence.

Figure 6.28: Spread by pC for Example 3

162 Validation and Performance Analysis

In Figure 6.28 SPEA2-SD/R/D for pC = 0.8 achieves the best performance
for spread. However, its uniform distribution worsens after 500. generation
despite an improving convergence (cf. Figure 6.27).

Figure 6.29: Coverage by pC for Example 3

In Figure 6.29 SPEA2-SD/R/D for pC = 0.4 achieves the best performance
for coverage followed by NSGA2-SD/R/D for pC = 0.8 and SPEA2-SD/R/D for
pC = 0.8.

Conclusion: SPEA2-SD/R/D for pC = 0.8 achieves the best overall perfor-
mance, since it achieves the best convergence for convergence and spread, and
a good performance for coverage.

6.3.6 Mutation Probability pM - Analysis

Results of this analysis are obtained by tests using mutation probability values
pM = 0.2, 0.4, 0.6 at constant values for population size P = 60 and for mutation
probability pC = 0.6. For SPEA2-SD/R/D algorithm size of archive is chosen
to be identical to the population size P .

6.3 Example Abstract Designs and Performance Tests 163

Example 1:

Figure 6.30: Generational Distance by pM for Example 1

In Figure 6.30 NSGA2-SD/R/D for pM = 0.4 achieves the best performance
for convergence followed closely by SPEA2-SD/R/D for pM = 0.6.

Figure 6.31: Spread by pM for Example 1

In Figure 6.31 NSGA2-SD/R/D for pM = 0.2 achieves the best performance
for spread following a stable decreasing course.

164 Validation and Performance Analysis

Figure 6.32: Coverage by pM for Example 1

In Figure 6.32 NSGA2-SD/R/D and SPEA2-SD/R/D for pM = 0.6 achieve
the best performances for coverage with NSGA2-SD/R/D for pM = 0.6 slightly
in front.

Conclusion: NSGA2-SD/R/D for pM = 0.4 and SPEA2-SD/R/D for pM = 0.6
achieve overall the best performances, since NSGA2-SD/R/D for pM = 0.4
achieves the best performance for convergence, a good performance for spread
and coverage. SPEA2-SD/R/D for pM = 0.6 achieves the second best perfor-
mance for convergence slightly behind NSGA2-SD/R/D for pM = 0.4, but it
achieves a better performance for coverage.

6.3 Example Abstract Designs and Performance Tests 165

Example 2:

Figure 6.33: Generational Distance by pM for Example 2

In Figure 6.33 NSGA2-SD/R/D for pM = 0.6 achieves the best performance
for convergence followed by NSGA2-SD/R/D for pM = 0.4 and SPEA2-SD/R/D
for pM = 0.6.

Figure 6.34: Spread by pM for Example 2

In Figure 6.34 SPEA2-SD/R/D for pM = 0.4 and NSGA2-SD/R/D for pM =

166 Validation and Performance Analysis

0.6 achieves two best performances for spread. SPEA2-SD/R/D for pM = 0.4
exhibits a greater improvement between 250. and 1000. generations.

Figure 6.35: Coverage by pM for Example 2

In Figure 6.35 NSGA2-SD/R/D for pM = 0.6 achieves the best performances
for coverage with SPEA2-SD/R/D for pM = 0.6 slightly behind.

Conclusion: Overall NSGA2-SD/R/D for pM = 0.6 achieve the best per-
formance, since it achieves the best performance for convergence, spread and
coverage.

6.3 Example Abstract Designs and Performance Tests 167

Example 3:

Figure 6.36: Generational Distance by pM for Example 3

In Figure 6.36 SPEA2-SD/R/D for pM = 0.4 achieves the best performances
for convergence with NSGA2-SD/R/D for pM = 0.4 slightly behind.

Figure 6.37: Spread by pM for Example 3

In Figure 6.37 NSGA2-SD/R/D for pM = 0.4 achieves the best performance
for spread with least deterioration.

168 Validation and Performance Analysis

Figure 6.38: Coverage by pM for Example 3

In Figure 6.38 SPEA2-SD/R/D for pM = 0.4 achieves the best performance
for coverage followed by NSGA2-SD/R/D for pM = 0.6 and pM = 0.4.

Conclusion: SPEA2-SD/R/D and NSGA2-SD/R/D for pM = 0.4 achieve over-
all best performances, since SPEA2-SD/R/D for pM = 0.4 achieves the best
performance for convergence and coverage and NSGA2-SD/R/D for pM = 0.4
achieves the second best performance for convergence and best performance for
spread.

6.3.7 Discussion for Optimization Results and Example Designs

If test results in Section 6.3.4, 6.3.5 and 6.3.6 are considered, the tests do not
concern all triples of chosen parameter settings for P , pC and pM applied with
the two algorithms NSGA2-SD/R/D and SPEA2-SD/R/D. For examples Ex-
ample1 to 3, algorithms and parameter settings that achieve good performances
are identified.

For Example1 one of the best performances is achieved with the algorithm
NSGA-SD/R/D and parameter setting P = 80, pC = 0.6 and pM = 0.6. For
Example2 one of the best performances is achieved with the algorithm NSGA2-
SD/R/D and parameter setting P = 60, pC = 0.6 and pM = 0.6. For Example3
one of the best performances is achieved with the algorithm NSGA-SD/R/D
and parameter setting P = 80, pC = 0.6 and pM = 0.6. For test results with
the cloned repository in Appendix A these algorithms and parameter settings
are chosen.

The tests concern 3 examples for 3 parameter analysis, hence 9 cases for a
comparison between NSGA-SD/R/D and SPEA2-SD/R/D algorithms, if gen-

6.3 Example Abstract Designs and Performance Tests 169

erational distance is considered, which are Example 1 to 3 for P , pC and pM .
In these 9 cases, NSGA-SD/R/D achieves the best performance in 5 cases and
SPEA2-SD/R/D achieves the best performance in 4 cases. Hence, with the
problem-specific adaptation, these algorithms obtain almost indistinguishable
performances. Both algorithms apply a goal-oriented search using rankings in
contrast to NSGA-R and SPEA2-R algorithms and hence achieve better perfor-
mances. Thus, it can be concluded that an adequate problem-specific adaptation
of a chosen algorithm is crucial, if good performances and high quality results
are desired.

Further, the test results imply that an increase of population size, cross-over
probability or mutation probability does not always lead to the best perfor-
mance e.g. if results for Example2 with the cloned repository in Figure 6.15
are considered, a higher population size does not always lead to the best perfor-
mance results, since NSGA2-SD/R/D for P = 60 achieves better results than
NSGA2-SD/R/D for P = 80. For all three examples Example1 to 3 intermedi-
ate rate 0.6 for pC achieves good performances. This is related to the reduced
genetic drift. Further, the highest mutation probability pM = 0.6 achieves good
performances for all three examples.

In Appendix A, in case of Example1 with tests using the cloned repository
individual runs achieve frequently some of the results in the true Pareto front.
Due to this fact for Example1 in Figure A.1 a detailed design example for the
original repository is presented in Figure A.2 with mappings in Table A.1 and in
order to prevent a repetition, a detailed design example for the cloned repository
for Example1 is omitted. Further, optimal detailed design examples obtained
using the original repository that realize Example2 in Figure A.3 and A.4, and
Example3 in Figure A.6 are presented in Figure A.5 and A.7 respectively. Map-
pings for Example2 and 3 among the abstract designs and detailed designs are
presented in Table A.2 and A.3 respectively. In Appendix A in tables devices
and functional profiles are enumerated in each detailed design they belong. The
numbers of devices and functional profiles are attached to their names as suffixes.

In case of Example2 and 3 for tests with the cloned repository some optimal
results are achieved. In Figure A.8 and A.9 two of the achieved near-optimal
detailed designs are presented with abstract design to detailed design mappings
in Table A.4 and A.5 respectively.

If the optimal detailed design example in Figure A.5 with mappings in Table
A.2 and the near-optimal detailed design example in Figure A.8 with mappings
in Table A.4 are compared, mainly 4 devices 7, 17, 22, 24 in Table A.4 are
different from the devices 3, 4, 10, 16 in Table A.2 with identical function block
combinations. Since devices 7, 17, 22, 24 are copies with higher device price
costs, sum of device price costs for detailed design in Table A.4 is approxi-
mately 1,84 % higher than sum of device price costs in Table A.2 which can be
considered as a very good result. It should also be remarked that some of the
runs with the cloned repository also achieve the optimal detailed design result

170 Validation and Performance Analysis

in Table A.4.
The BAS technology for realization of the Example2 in case of both tests

using the original and cloned repository is EnOcean. In order to consider only
EnOcean devices in design generation and improvement steps, function blocks
are assigned an attribute value EnOcean for the attribute of the non-functional
requirement technology platform.

Moreover, some function blocks are desired to be on separate devices or
same devices as explained in Section 5.7.4. Such function blocks are assigned a
corresponding non-functional requirement in form of an attribute as presented
in Table 6.1.

Function Block Group Attribute Device

S Window left dev1

S Wall left dev2

S Window right dev3

S Wall right dev4

Set Temperature Setpoint left dev5

Set Temperature Setpoint right dev6

Temperature Sensor right
dev7Luminance Sensor right

Occupancy Sensor right

S Window middle dev8

S Wall middle dev9

Occupancy Sensor left
dev10Luminance Sensor left

Temperature Sensor left

Table 6.1: Preferences for Device Mappings by Group Attributes

As can be observed function blocks in Table 6.1 are mapped onto the devices
as specified by the non-functional requirements, which implies correct mappings
on function blocks to devices. In case, if these non-functional requirements are
not specified, the design generation and improvement steps allow the creation
of detailed designs with incorrect mappings e.g. function blocks “Luminance
Sensor left”, “Occupancy Sensor right” and “Temperature Sensor right” onto
the same device. Mapping of groups of function blocks “Occupancy Control
right1”, “Control Mode Selection right”, “Temperature Setpoint Evaluation
right”, “Temperature Control right”, “Radiator right” and “Occupancy Con-
trol left1”, “Control Mode Selection left”, “Temperature Setpoint Evaluation
left”, “Temperature Control left”, “Radiator left” onto same devices is quickly
achieved by using the variation operation SD-M6 in Section 5.5.2.

If the optimal detailed design example for Example3 in Figure A.7 with
mappings in Table A.3 and the near-optimal detailed design example in Figure

6.3 Example Abstract Designs and Performance Tests 171

A.9 with mappings in Table A.5 are compared, Table A.5 consists of 1 device
more than Table A.3 and sum of price device costs are approximately 10 %
higher, which can be considered as a good result. This is due to an extra device
and the contained cloned device number 9 in Table A.5 that is 87 Euros more
expensive than its original number 3 in Table A.3. Moreover, on device number
5 in Table A.3 multiple functions are mapped, which are mapped on multiple
devices in Table A.5. Also for this example individual runs in tests with the
cloned repository achieve some of the optimal detailed designs obtained in tests
with the original repository.

6.3.8 Resource Consumption

In order to validate the suitability of the proposed solution method in Chapter
5 for the requirement of limited computation time in Section 3.3.2, an analysis
for average resource consumption in the example of NSGA2-SD/R/D algorithm
is performed. This requires information on processor type and speed, amount
of used memory, amount of computation time and number of fitness evaluations
(number of generations times the number of population size) is necessary. The
algorithm is run using the Example2 on two different computer configurations
with dual core (Intel Core 2 Duo 2 GHz) and quad-core (Intel i7-3770 3.40 GHz)
processors respectively. Size for java heap space for the individual runs is chosen
to be 1GB.

System Component Fitness T
Repository Evaluations

Processor:
original

12000 < 1 min.
Intel Core 2 Duo 18000 < 1 min.
2.0 GHz 24000 1 min.

Ram: 3GB
cloned

40000 6 min.
60000 9 min.

OS: Windows 80000 12 min.

Processor:
original

12000 < 1 min.
Intel Core i7-3770 18000 < 1 min.
3.40 GHz 24000 < 1 min.

Ram: 12 GB
cloned

40000 3 min.
60000 4 min.

OS: Windows 80000 5 min.

Table 6.2: Average Resource Consumption for Example 2

With computer configurations competitive detailed design solutions in Table
6.2 are obtained that include good near-optimal solutions and some optimal
solutions. T represents average time consumption for computation. For each
of 12 cases in Table 6.2 results of component search as presented in Section

172 Validation and Performance Analysis

5.4 and device interoperability evaluations have been cached by performing a
first run, since these steps are related to an overhead caused by an access to the
component repository and this overhead must be minimal for an analysis of time
consumption of computation performed in design generation and improvement
steps.

Although the results obtained using the first computer configuration needed
more time for computation, the requirement for limited computation time in
Section 2.9 could still be fulfilled as in case of the results obtained using the
second computer configuration.

6.3.9 Parallelism

It has been observed that results from multiple runs can be considered to obtain
a better set of optimized solutions containing more optimal solutions and better
near-optimal solutions than an individual run can obtain, however this requires a
significant amount of additional time, if these runs were performed sequentially.

In order to obtain benefits from the multi-core architecture and memory
capacity of the computer configurations and to achieve better solutions at the
same time, multiple runs (e.g. 5 runs) can be performed in parallel in a com-
parable computational time as the computation time required for an individual
run.

A number of runs can be started simultaneously and allowed to run in par-
allel. After aggregation of all optimization results of these runs to a common
set of solutions for each problem-instance, a non-dominated set from all runs
can be obtained. This set can contain more optimal solutions and better near-
optimal solutions. This approach has been tested using the faster computer
configuration in Table 6.2 for 5 simultaneous runs.

It has been observed that the aggregated set of non-dominated solutions con-
tained more optimal solutions and better near-optimal solutions than individual
runs. Hence, an introduction of such an algorithm independent parallelism can
contribute on achievement of better results for the optimization, which can be
applied independent from any given problem.

6.4 Optimization Framework

Many real world problems of engineering practice are related to design synthe-
sis and optimization. These problems concern different instances depending on
the design components and parameters involved in their specifications. For so-
lution of the problems, optimization frameworks meeting certain requirements
are deployed rather than hard-coded and problem-specific adaptations of algo-
rithm implementations. Such optimization frameworks are designed based on a
distinction of conceptual components such as problem specification, algorithm
choice, and presentation of results which cooperate via common interfaces. This

6.4 Optimization Framework 173

allows an extension of a conceptual component independently from the rest and
provides design and code reuse. This is particularly necessary, if

• there are different design problems or problem instances that are required
to be solved;

• the problems are required to be solved with different algorithms along with
different parameter settings and operations to search for an algorithm with
the best performance;

• the optimization results and solutions for different problems and algo-
rithms must be presented;

• and if a setup of a design synthesis and optimization environment with a
relatively little effort is required.

For obtaining high quality optimization results, any chosen solving algorithm
should be adapted to a given problem by using a convenient problem represen-
tation and algorithm operations designed for this representation. Thus, in order
to meet these requirements, a framework design must allow the definition of
problem-specific extensions e.g. problem-specific representation and problem-
specific operations. These extensions must be plugged into the framework by
minimal implementation effort.

Second, it should be possible to approach given problems with different solv-
ing algorithms; each time, by only choosing the algorithm and its problem-
specific operations. Moreover, a generic extension of existing algorithms should
be allowed to special variants according to the framework design specification.

Third, presentation of the optimization results and solutions should also be
plugged into the framework via generic interfaces.

Current optimization frameworks are focused on evolutionary algorithms
such as ECJ [ECJ], EVA2 [Unib], and JCLEC [VRZ+07] exist, which provide
implementation of problem independent optimization operations (e.g. cross-
over, mutation, selection, etc.) designed for general purpose representation
schemes such as string and tree-based representations etc. In these frameworks,
as benchmark problems, mostly standard function optimization problems such
as ZDT function series, Rosenbrock and Rastrigin function; or multiplexer, re-
gression and parity problems [HHBW06] based on general representations are
integrated.

BA design creation problem is a constrained multi-objective combinatorial
optimization problem for assigning one-to-many function blocks to software
modules and also one-to-many functional profiles to interoperable devices in-
cluding generation of a complex logical network with intermeshed connections.
Thus, the problem (cf. Section 3.3.1 and Figure 3.2) and its representation (cf.
Section 5.6.2) is much more complex than in the case of function optimization
or tree representation based problems.

174 Validation and Performance Analysis

The existing frameworks do not provide representations and algorithms with
operations that can be as useful as ready-to-use implementations to solve the
design creation problem. The integration of a problem-specific representation
and operations into the existing frameworks require deep modifications in their
component hierarchies. Definition of different operation variants of the same
operation type and switching between different variants in runtime according
to an algorithm is not provided by design of these frameworks. The proposed
framework is designed to support these features.

6.5 Framework Design

The optimization framework design consists of parts that are provided for dis-
tinct tasks. Information exchange among the tasks is performed via defined
interfaces that are common to both communication sides. Hence, problem spec-
ification with related setup operations, algorithm logic, program flow, display of
results and solutions, and export of solutions are all decoupled from each other
in design and implementation.

6.5.1 Components and Interfaces

The tasks performed by the framework [OPK10b] are accomplished by diverse
components that are integrated in Java packages. The components are imple-
mented as Java classes and interfaces; and can be separated into three groups
for belonging to the optimization framework and information flow direction:

1. input components (gray boxes left to Optimization Control in Figure 6.39)
do not belong to the optimization framework core, provide though neces-
sary information for the design creation and optimization;

2. framework core components (white boxes) cooperate with each other and
with input and output components forming a reusable and extendable
framework design for the application of diverse algorithms to solve different
design problems;

3. output components (gray boxes right to Optimization Control) do not be-
long to the optimization framework core, provide though useful interfaces
to external libraries, the display of optimization results and solutions, an
automated performance analysis and the export of solutions in a file di-
rectory structure.

The input component Component Repository provides components for solu-
tion candidates that can be accessed using a Java interface; and can be retrieved
and stored by the component Problem-Specific Setup. Evaluations for interop-
erability among devices can also be performed by using this interface. The

6.5 Framework Design 175

component Problem specifies the design problem in form of an abstract design
given according to the problem component model. In the problem component
model, both abstract design and solution representation of the room automation
design are defined (cf. Section 5.6.2).

The core component Problem-Specific Setup is designed to decouple input
components from the optimization by caching relevant data for the given design
problem. Problem-Specific Setup is used to build solution candidates in the
optimization. Furthermore, this component can perform some precalculations
(cf. Section 5.4) for number of components and variety present in the component
repository for the estimation of solution space dimension.

In Metaheuristics-Specific Setup, parameters and preferred algorithm type
are read from the framework console GUI based on Java Swing components
(cf. Section 6.5.3). These parameters are e.g. for an EA, population size,
mutation probability, etc. Depending on the choice of algorithm, a specific
workflow type is instantiated with corresponding specific algorithm components
e.g. population, optimization operation types such as cross-over, mutation,
selection type, etc.

176 Validation and Performance Analysis

Problem-Specific Setup

data/component retrieval and

storage

precalculations

Algorithm Workflow

Initialization

Operation1

...

Operationn

Display of Results

plots

optimization statistics

Display of Solutions

representation of

solutions

statistics

Problem

problem specification /
problem component model /
problem criteria

true

Termination

Legend:

Information flow direction

Workflow direction

Optimization

Control

false
Check Termination

Metaheuristics-Specific

Setup

parameters entry/setup

workflow selection

Component Repository

components & component evaluation

Export of Solutions

file export using problem

component model

Input/output components

Core components

Automated Performance

Analysis

simulative analysis of
different algorithms
plots for performance of

algorithms

Figure 6.39: Optimization Framework Components and Control Flow

Optimization Control runs the chosen algorithm without knowing it starting
with the initialization step and proceeding with the optimization iteratively until
a termination criterion is satisfied. It is also possible to run the optimization
control for multiple set of runs, having each set using a different algorithm, to
obtain statistical results, plotting statistics for a comparison of performances of
different algorithms as done in Section 6.3.

The output component Display of Results is designed to provide plots for
convergence of criteria separately, as well as a lower triangle matrix of criterion
pairs (cf. Figure 6.44). The latter is designed for the existence of multiple

6.5 Framework Design 177

criteria for observing convergence towards Pareto front. To draw plots, the
Java chart library JFreeChart [GM] is used. Plots that depict performances of
algorithms in tests in Section 6.3 are prepared using this library.

By Automated Performance Analysis multiple algorithms can be set to run
for a given number of times and parameter settings. This is particularly useful
for performing empirical analysis of different algorithms and obtaining statistical
results. The results e.g. for many runs, average of decision maker’s fitness
calculations of best solutions per generation can be plotted for each algorithm for
a comparison of convergence properties associated to the considered algorithms
(cf. Section 6.3).

Another output component Display of Solutions can present a user chosen
optimization solution from the result set using a listener interface in the frame-
work GUI based on texts or alternatively by using an interface in a GUI with
graphical representation. Export of Solutions can be used to export a chosen
solution as specified problem representation in a file.

6.5.2 Workflow Model

The framework is designed to be a white box framework for design and code
reuse. The framework core components can flexibly be extended for new al-
gorithms by means of the inheritance and a new problem can be defined with
minimal implementation effort.

In Figure 6.40 the component model of the framework is presented in UML.
Hereby, the output components and detailed hierarchy of algorithm workflows
for single and multi-objective optimization are excluded for conciseness. The
input components are illustrated in gray and all problem-specific components
are marked by the prefix Specific in class names.

Program flow is directed by OptimizationControl. First, it performs an al-
gorithm and a problem-specific setup which particularly contains the selection
of the solver algorithm and problem-specific representation, and operations. In
a next step, OptimizationControl initializes solution candidates. Optimization-
Control controls then an algorithm workflow via the abstract class Algorithm-
Workflow without knowing the chosen concrete algorithm. An algorithm work-
flow contains methods to call constituent operations of a solver algorithm e.g.
cross-over, mutation, selection operations of an EA and a method that prescribes
the order of call for these operations. This can be simply done by overriding the
iterate() method of AlgorithmWorkflow. By providing this flexibility, operations
of many algorithms can be defined in own workflow classes including a preferred
order of execution.

The workflow of a general algorithm such as an EA EvolutionaryAlgorithm-
Workflow is modeled as a child of AlgorithmWorkflow and provides default
definitions of standard EA operations e.g. performCrossover() performs binary
tournament selection to determine crossover partners, performMutation() choses
mutant candidates for a given mutation probability randomly, evaluate() assigns

178 Validation and Performance Analysis

weighted sum based fitness values to the solution candidates, and performSelec-
tion() selects the solution candidates of the next generations that have the best
fitness values. A special algorithm workflow can be specialized to implement dif-
ferent algorithm variants. The children NSGA2Workflow and SPEA2Workflow
inherit most operations from the parent class EvolutionaryAlgorithmWorkflow
and override only their specialized operations.

For problems with complex representations that require repair operations
for recovering solution candidates after crossover and mutation, an abstract
method performUpdate() is provided and has to be implemented depending
on the structure of the specific problem representation. Recovering of solution
candidates for the automated creation of optimized designs for BAS is presented
in Section 5.6.2.

SpecificSetup determines a list of problem-specific cross-over, mutation oper-
ations that are related to the problem specific representation. For example, for
the design creation problem problem-specific crossover operations or mutations
(cf. Section 5.5.2) can be applied that select one or several functional profiles
and replace them by other ones with the matching set of covered function blocks.
Any further problem-specific crossover and mutation can be designed and added
to the lists crossoverPerformers and mutators. EvolutionaryAlgorithmWorkflow
or any of its child classes can select an operation from these lists in perform-
Crossover() and performMutation() randomly or according to some strategy.

OptimizationControl can display and export solutions by using the imple-
mentation of interfaces Exportable and Displayable in an Individual. The dis-
player and exporter methods can then be called via AlgorithmWorkflow ’s handle
of Population that aggregates a set of individuals.

The framework is implemented in Java [Ora] programming language fol-
lowing the introduced design concepts and tested for design creation and op-
timization for examples of room automation. Many different algorithms can
be integrated with minimal implementation efforts by means of decoupled op-
timization tasks. Particularly, the generic algorithm workflow concept, and the
simple integration of problem-specific representation and operations point out
the flexibility of framework design based on code and design reuse. A GUI is
also conceived and implemented as presented in Section 6.5.3.

6.5 Framework Design 179

ProblemSpecification

SpecificComponentModel

SpecificSetup

Individual

fitness: Fitness

«interface»

ComponentRepository

Population

SpecificIndividual

«interface»

CrossOverPerformer

crossover(Individual[]) : void

«interface»

Mutator

mutate(Individual) : void

«interface»

Selector

select(Population) : void

AlgorithmWorkflow

initialize() : void

isToTerminate() : boolean

iterate() : void

setup() : void

OptimizationControl

display() : void

export() : void

EvolutionaryAlgorithmWorkflow

evaluate() : void

performCrossover() : void

performMutation() : void

performSelection() : void

performUpdate() : void

OtherAlgorithmWorkflow

NSGA2Workflow SPEA2Workflow

SpecificCrossOver SpecificMutation NSGA2SelectionSPEA2Selection

EAParameters

crossoverPerformers: CrossOverPerformer[]

mutationRate: int

mutators: Mutator[]

noCriteria: int

populationSize: int

selectors: Selector[]

MetaheuristicsParameters

seed: long

setupParameters() : void

«interface»

Displayable

«interface»

Exportable

«interface»

ProblemSetup

setup() : void

Figure 6.40: A Simplified UML Model of the Framework

180 Validation and Performance Analysis

6.5.3 Optimization Control By Graphical User Interface

The GUI that is used to compute optimized detailed design solutions allows
the setting of required parameters of a chosen algorithm (cf. Figure 6.41).
A component search process is performed flowed by all necessary calculations
for a design generation (cf. Section 5.4.2) (component setup) activated by the
button for setup. During this process algorithm parameters can be modified on
GUI, if default parameters should be modified. After completion of component
setup process, optimization process can be started by the start button. Du-
ring the optimization a running algorithm can be paused, stopped, restarted or
resumed. Such an approach for the control of algorithms is inspired by the GUI
for optimization framework ECJ [ECJ].

start stop

assign detailed design to project

component setup

pause

Figure 6.41: Main Control Window for Setting of Algorithm Parameters

If a visualization of the optimized solutions before termination is desired,
the algorithm can be paused, solutions can be inspected (cf. Figure 6.42), and
then resumed or restarted. This is particularly significant, if a high number of
generations are specified and for many generations no improvement is observed,
i.e. if the run should be interrupted before reaching the generation number
limit.

6.5 Framework Design 181

After termination or a halt of the algorithm in an intermediate generation
by stop button, an individual can be selected and submitted to the project as a
detailed design of the given abstract design. In this connection, in the panel in
Figure 6.42 individuals are sorted in Pareto fronts starting from the first front to
the last. Solely, for the visualization and not for a consideration in algorithms,
individuals in each front are sorted according to weighted sum of their objective
values.

Figure 6.42: Panel for Selection of Individuals

For observation of improvement of the solutions online plots are provided
that visualize the fitness values of solutions according to a weighted sum of
objective functions by generations for a specified priority vector as depicted in
Figure 6.43. A selected solution in the panel in Figure 6.42 is automatically
pointed in the weighted sum plot in Figure 6.43 to allow a visual comparison of
the selected individuals to the other in the plot. Further, in a matrix of plots
as depicted in Figure 6.44 with each plot illustrating the improvement of each
pair of objective functions, a multi-objective behavior of the algorithm can be
observed.

182 Validation and Performance Analysis

Figure 6.43: View for Scalarized Objective Function Values

6.6 Conclusions 183

Figure 6.44: Multi-Objective View of the Optimization Process

6.6 Conclusions

For the validation of concept in Chapter 5 implementations are done and an
optimization framework for the engineering of BAS emerged in Section 6.4 and
6.5. This framework is used to perform an empirical analysis of the proposed al-
gorithms in Section 5.4 and 5.5 using two different MOEAs, NSGA2 and SPEA2
with component repositories of a small and a large size. Many algorithm runs
are performed for performance tests and for analysis with different population
sizes, cross-over and mutation probabilities.

In order to prove the genericity of the approaches in Chapter 5 algorithms
with different parameter settings are applied using three types of problem in-
stances as identified in Section 6.3. As a result, algorithms all achieved near-
optimal and in some cases optimal detailed design solutions for all three problem
instance examples, which have been handled in the previous research projects
[Unia] together with the partners from the BAS industry and exist in the BAS
engineering practice. Particularly, Semi-Directed/Random/Directed (SD/R/D)
algorithms that apply goal-oriented approaches achieved better results than
Random (R) algorithms.

Further, it has been validated that well-optimized design solutions can be
created in a limited time span using a slow and a faster computer configuration

184 Validation and Performance Analysis

by applying the solution method for automated design creation in the presence of
ten thousands of design relevant candidate components for practicable examples
from the building automation domain. Results presented in Section 6.3.8 have
shown that algorithms could be run from the start multiple times for parameter
settings with which good optimization results obtained with a slow or a faster
the computer configuration to obtain multiple sets of optimization solutions
P1’s, from which as many optimal results as possible can be obtained, still in a
reasonable time.

Chapter 7

Conclusions

In this thesis a solution method for problem of automated creation of optimized
building automation system designs is presented including tests for validation
of algorithms proposed. First, insights to the design engineering in the domain
of building automation are given in its business process model. Shortcomings of
the current design creation approaches are presented that are limited to system
components from a few manufacturers. Further, in the current situation the
existing optimization potential for the design engineering and for the quality
of the created design solutions are addressed and the respective design quality
requirements as well as requirements on design engineering methods are derived.

A solution that requires device manufacturers to follow new standards to
ensure interoperability of their own components with components of different
manufacturers would presumably not gain an expected acceptance. An alter-
native solution is followed that conceives a search for the devices that can in-
teroperate with each other for the realization of a given building automation
plan. For the realization of the alternative solution there exist yet guidelines in
the standard VDI 3813 (planned to be a part of ISO 16484) that allows a uni-
fied identification of the functionality and logical interfaces of components from
device manufacturers. With the available components on the market, the func-
tionalities and the logical interfaces of which can unambiguously be described
according to this standard, a component search is enabled for the realization of
a given set of functional requirements.

The design engineering is then identified in Chapter 2 as a problem of a high
complexity, if all available components of device manufacturers are considered.
In this context the high complexity is related with the existence of ten thou-
sands of available candidate components for the design engineering as well as
with the problem of device interoperability particularly among the devices of
different device manufacturers. Based on these facts, quality requirements on
a building automation system, quality requirements related to project planning
and project implementation are presented. Further, a formal description of the
design creation problem is given and the most characteristic problem properties

186 Conclusions

are emphasized in order to distinguish the problem from similar design prob-
lems of the engineering practice. Based on the problem properties and quality
requirements on project planning and project implementation, requirements for
candidate algorithms are identified.

With the problem properties given, the type of the problem in theory of
Computational Intelligence is identified in Chapter 3 as multi-objective com-
binatorial optimization. Under consideration of the problem type and require-
ments on algorithms, a state-of-the-art for candidate algorithms is presented in
Chapter 4 , followed by four solution methods for various design problems of the
engineering practice. These practical problems and the corresponding solution
methods are then compared with each other for their similarity to the proper-
ties of the design creation problem. Similarly, proposed solution methods are
compared to each other for the requirements on algorithms. It is concluded that
none of the solution methods fulfill the requirements on algorithms completely.
Thus, the conclusion states that a new solution method for the design creation
problem is required.

A new solution method is proposed in Chapter 5 that allows an automated
creation of optimized designs. For the solution method an automated inter-
operability check for communication partner devices is provided. Four major
contributions of the solution method conceive the criteria for the evaluation of
designs and design components including objective functions, the component
model for abstract and detailed designs, alternative methods for design gen-
eration and design improvement including goal-oriented variation operations.
Moreover, realization of further practical concepts related to the automated de-
sign creation for a building is emphasized. Further uses and applicability of the
solution method is also presented.

For the validation of the solution method, a validation method in Chapter
6 is conceived that involves a test platform including performance metrics and
representative problem instance examples. An empirical analysis for the solution
method is conducted using the proposed algorithms which are tested for their
performances under consideration of performance metrics and the quality of
the design solutions they produce. Considered problem instances and example
design solutions are presented in Appendix of Designs.

A generic optimization framework is conceived in Chapter 6 that enables a
seamless integration of the problem component model and algorithm alterna-
tives for various metaheuristics and their operations by means of an algorithm
workflow-based and modular design. Graphical user interfaces for setting op-
timization algorithms, for observing design improvement process by objective
function plots and for consideration of any intermediate and final design solu-
tions of the optimization process are also implemented and attached to the op-
timization framework via generic interfaces. Tests for validation are performed
using this generic optimization framework.

Tests conducted for three problem instance examples have been performed

187

using a component repository that consists of about 120 devices (original compo-
nent repository) and a larger component repository that is 100 times larger than
the original component repository (cloned repository). Tests with both sizes of
repositories have shown that the proposed algorithms can achieve optimal de-
sign solutions or solutions with high quality which are very close to optimal
solutions, in case of all three problem instance examples. If the practical rele-
vance of the used examples, performance of the algorithms and the quality of
design solutions are considered, it can be concluded that the proposed solution
method is highly practicable and efficient. Further, it makes a very important
contribution for a holistic design engineering in the business process model for
building automation systems.

188 Conclusions

Appendix A

Appendix of Designs

Light

Switch_2

Light

Switch_1

Set

Occupancy

Set

Scene_1

Occupancy

Sensor_1
LuminanceSensorIndoor_1 LightActuatorDimmable_1

LightActuator_1

Figure A.1: Example 1 - Abstract Design - Constant-Light Control and Auto-
matic Lights

190 Appendix of Designs

Figure A.2: Example 1 - A Detailed Design from the True Pareto Front -
Binding-Schema

Device Used Functional Profile Function Block Combination

econtrol lumina RDA2-UN lamp actuator
dimmable 2x 1

LampActuator 3 LightActuator 1
ConstLightCtrl 2 AutomaticLight 1
SceneController 0 SceneControlLight 2
SceneController 12 SceneControlLight 1
LampActuator 9 LightActuatorDimmable 1
ConstLightCtrl 7 ConstantLight 1

econtrol lumina MS3 EB multisensor 2
OccupancySensor 4 OccupancySensor 1
LightSensor 11 LuminanceSensorIndoor 1

econtrol lumina T6 binary switch with
Constant Light Control 3

OccupancyCtrl 10 OccupancyEvaluation 1

Switch 1
LightSwitch 2
Set Occupancy

Switch 6 LightSwitch 1
Switch 8 SetScene 1

Sum of device price costs = 753.00 Euros

Table A.1: Example 1 - Detailed Design - Devices, Functional Profiles and
Function Block Mappings from Abstract Design in Figure A.1 to Detailed Design
in Figure A.2

191

Li
g

h
ti

n
g

 a
n

d
 H

e
a

ti
n

g
 p

a
rt

1

Temperature

Sensor right

Temperature

Sensor left

S
 W

in
d

o
w

le
ft

Lu
m

in
a

n
ce

S
e

n
so

r
le

ft
S

 W
a

ll

le
ft

S
 W

in
d

o
w

ri
g

h
t

Lu
m

in
a

n
ce

S
e

n
so

r
ri

g
h

t
S

 W
a

ll

ri
g

h
t

S
e

t

T
e

m
p

e
ra

tu
re

S
e

tp
o

in
t

le
ft

S
e

t

T
e

m
p

e
ra

tu
re

S
e

tp
o

in
t

ri
g

h
t

W
in

d
o

w

C
o

n
ta

ct
 (

7
)

W
in

d
o

w

C
o

n
ta

ct
 (

6
)

W
in

d
o

w

C
o

n
ta

ct
 (

2
)

W
in

d
o

w

C
o

n
ta

ct
 (

4
)

W
in

d
o

w

C
o

n
ta

ct
 (

1
)

W
in

d
o

w

C
o

n
ta

ct
 (

3
)

W
in

d
o

w

C
o

n
ta

ct

W
in

d
o

w

C
o

n
ta

ct
 (

5
)

LA Window left

LA Wall left

LA Window right

LA Wall right

Radiator right

Radiator left

Figure A.3: Example 2 - Abstract Design - Lighting and Heating Part1

192 Appendix of Designs

Li
g

h
ti

n
g

 a
n

d
 H

e
a

ti
n

g
 p

a
rt

 2
S Window middle

S Wall middle

LA Window middle

Occupancy

Sensor left

Occupancy

Sensor right

LA Wall middle

Figure A.4: Example 2 - Abstract Design - Lighting and Heating Part2

193

Figure A.5: Example 2 - A Detailed Design from the True Pareto Front -
Binding-Schema

194 Appendix of Designs

Device Used Functional Profile Function Block Combination

EasySens Wireless Switch Mini
2-Channel Light aluminium 1

Light switch 18 S Wall left

EasySens SR-MDS 230V
Wireless-Ceiling-Multi-Sensor 2

Multisensor 25
Luminance Sensor right
Temperature Sensor right
Occupancy Sensor right

EasySens Wireless Switch Mini
2-Channel Light pure white glossy 3

Light switch 5 S Wall right

EasySens SRC-DO Lighting 230V 4 Beleuchtung 16 LA Window middle

EasySens SRW01 Window Contact 5 Energiesperre 2 Window Contact

EasySens SRW01 Window Contact 6 Energiesperre 17 Window Contact (4)

SENSOLUX Energy Controller
1-Channel 7

Energy Controller 23
occupancy control right2
AL Wall right
LA Wall right

EasySens SRW01 Window Contact 8 Energiesperre 13 Window Contact (3)

EasySens SRC-DO 230V Typ 4 Heating
On/Off 9

Thermostat Zweipunkt 15

Occupancy Control left1
Control Mode Selection left
Temperature Setpoint Evaluation left
Temperature Control left
Radiator left

EasySens SRC-DO Lighting 230V 10 Beleuchtung 3 LA Wall middle

EasySens SRW01 Window Contact 11 Energiesperre 14 Window Contact (6)

EasySens SR04P Wireless Room
Temperature Sensor 12

Temp.Sensor Setpoint 20 Set Temperature Setpoint left

EasySens SR-MDS BAT
Wireless-Ceiling-Multi-Sensor 13

Multisensor 0
Occupancy Sensor left
Luminance Sensor left
Temperature Sensor left

EasySens Wireless Switch Mini
2-Channel Light anthracite 14

Light switch 9 S Window middle

EasySens Wireless Switch Mini
2-Channel Light aluminium 15

Light switch 4 S Window right

EasySens Wireless Switch Mini
2-Channel Light pure white glossy 16

Light switch 21 S Window left

EasySens SRW01 Window Contact 17 Energiesperre 22 Window Contact (5)

EasySens SR04P Wireless Room
Temperature Sensor 18

Temp.Sensor Setpoint 6 Set Temperature Setpoint right

EasySens SRW01 Window Contact 19 Energiesperre 1 Window Contact (1)

EasySens SRC-DO 230V Typ 4 Heating
On/Off 20

Thermostat Zweipunkt 8

Occupancy Control right1
Control Mode Selection right
Temperature Setpoint Evaluation right
Temperature Control right
Radiator right

EasySens SRW01 Window Contact 21 Energiesperre 19 Window Contact (2)

EasySens SRW01 Window Contact 22 Energiesperre 12 Window Contact (7)

SENSOLUX Energy Controller
1-Channel 23

Energy Controller 11
occupancy control left3
AL Window left
LA Window left

SENSOLUX Energy Controller
1-Channel 24

Energy Controller 7
occupancy control right3
AL Window right
LA Window right

EasySens Wireless Switch Mini
2-Channel Light aluminium 25

Light switch 10 S Wall middle

SENSOLUX Energy Controller
1-Channel 26

Energy Controller 24
occupancy control left2
AL Wall left
LA Wall left

Sum of device price costs = 2450.66
Euros

Table A.2: Example 2 - Detailed Design - Devices, Functional Profiles and
Function Block Mappings from Abstract Designs in Figure A.3 and Figure A.4
to Detailed Design in Figure A.5

195

Occupancy

Sensor_6

Occupancy

Sensor_4

Occupancy

Sensor_2 OccupancySensor_1

OccupancySensor_3

OccupancySensor_5

Light

Switch_1

LightActuator_1

LightActuator_2

LightActuator_3

LightActuator_4

Figure A.6: Example 3 - Abstract Design - Occupancy Evaluated Floor Lighting

Figure A.7: Example 3 - A Detailed Design from the True Pareto Front -
Binding-Schema

196 Appendix of Designs

Device Used Functional Profile Function Block Combination

LON System-M pushbutton 2x 1 OccupancySensor 0 OccupancySensor 5

econtrol lumina RSA4 lamp actuator 4x 2

LampActuator 2 LightActuator 3
LampActuator 4 LightActuator 4
LampActuator 9 LightActuator 2
LampActuator 18 LightActuator 1

econtrol sistema RC2 (Constant Light Control) 3
ConstLightCtrl 7 AutomaticLight 2
ConstLightCtrl 8 AutomaticLight 4
ConstLightCtrl 15 AutomaticLight 3

LON System-M pushbutton 2x 4 OccupancySensor 17 OccupancySensor 1

econtrol lumina MS3 EB multisensor 5

OccupancyCtrl 16 OccupancyEvaluation 1
ConstLightCtrl 3 AutomaticLight 1
Switch 12 LightSwitch 1
OccupancySensor 10 OccupancySensor 6

LON System-M occupancy sensor 6
OccupancyCtrl 14 OccupancyEvaluation 2
OccSnsr 5 OccupancySensor 2

LON System-M occupancy sensor 7
OccSnsr 1 OccupancySensor 4
OccupancyCtrl 11 OccupancyEvaluation 4

LON System-M occupancy sensor 8
OccupancyCtrl 6 OccupancyEvaluation 3
OccSnsr 13 OccupancySensor 3

Sum of device price costs = 846.30 Euros

Table A.3: Example 3 - A Detailed Design - Devices, Functional Profiles and
Function Block Mappings from Abstract Design in Figure A.6 to Detailed Design
in Figure A.7

197

Figure A.8: Example 2 with Cloned Repository - A Detailed Design from the
Last Generation of A Randomly Chosen Run with NSGA2-SD/R/D P = 60,
pC = 0.6, pM = 0.6 - Binding-Schema

198 Appendix of Designs

Device Used Functional Profile Function Block Combination

EasySens SRC-DO 24V Typ 4 Heating
On/Off 1

Thermostat on-off 23

Occupancy Control right1
Temperature Setpoint Evaluation right
Temperature Control right
Control Mode Selection right
Radiator right

EasySens SRW01 Window Contact 2 Energiesperre 25 Window Contact (4)

SENSOLUX Energy Controller
1-Channel 3

Energy Controller 14
occupancy control right2
AL Wall right
LA Wall right

EasySens SRW01 Window Contact 4 Energiesperre 9 Window Contact (1)

EasySens SRC-DO 230V Typ 4 Heating
On/Off 5

Thermostat Zweipunkt 17

Occupancy Control left1
Control Mode Selection left
Temperature Control left
Temperature Setpoint Evaluation left
Radiator left

SENSOLUX Energy Controller
1-Channel 6

Energy Controller 24
occupancy control left2
AL Wall left
LA Wall left

EasySens Wireless Switch Mini
2-Channel Light aluminium clone25 7

Light switch clone25 8 S Wall right

EasySens SRW01 Window Contact 8 Energiesperre 22 Window Contact (7)

SENSOLUX Energy Controller
1-Channel 9

Energy Controller 13
occupancy control right3
AL Window right
LA Window right

EasySens SRW01 Window Contact 10 Energiesperre 0 Window Contact (3)

SENSOLUX Energy Controller
1-Channel 11

Energy Controller 12
occupancy control left3
AL Window left
LA Window left

EasySens Wireless Switch Mini
2-Channel Light aluminium 12

Light switch 16 S Window right

EasySens SRW01 Window Contact 13 Energiesperre 5 Window Contact (5)

EasySens SRW01 Window Contact 14 Energiesperre 6 Window Contact (2)

EasySens Wireless Switch Mini
2-Channel Light anthracite 15

Light switch 11 S Window middle

EasySens Wireless Switch Mini
2-Channel Light aluminium 16

Light switch 18 S Wall left

EasySens SRC-DO Lighting 230V
clone10 17

Beleuchtung clone10 4 LA Window middle

EasySens SR04P Wireless Room
Temperature Sensor 18

Temp.Sensor Setpoint 15 Set Temperature Setpoint left

EasySens SR-MDS 24V
Wireless-Ceiling-Multi-Sensor 19

Multisensor 7
Luminance Sensor left
Occupancy Sensor left
Temperature Sensor left

EasySens SRW01 Window Contact 20 Energiesperre 1 Window Contact

EasySens SRW01 Window Contact 21 Energiesperre 3 Window Contact (6)

EasySens SRC-DO Lighting 230V
clone10 22

Beleuchtung clone10 21 LA Wall middle

EasySens SR-MDS 24V
Wireless-Ceiling-Multi-Sensor 23

Multisensor 19
Occupancy Sensor right
Luminance Sensor right
Temperature Sensor right

EasySens Wireless Switch Mini
2-Channel Light aluminium clone25 24

Light switch clone25 10 S Window left

EasySens SR04P Wireless Room
Temperature Sensor 25

Temp.Sensor Setpoint 2 Set Temperature Setpoint right

EasySens Wireless Switch Mini
2-Channel Light aluminium 26

Light switch 20 S Wall middle

Sum of device price costs = 2495.80
Euros

Table A.4: Example 2 with Cloned Repository - Detailed Design - Devices,
Functional Profiles and Function Block Mappings from Abstract Design in Fig-
ure A.3 and Figure A.4 to Detailed Design in Figure A.8

199

Figure A.9: Example 3 with Cloned Repository - A Detailed Design from the
Last Generation of A Randomly Chosen Run with NSGA2-SD/R/D P = 80,
pC = 0.6, pM = 0.6 - Binding-Schema

Device Used Functional Profile Function Block Combination

LON System-M pushbutton 2x 1
OccupancySensor 4 OccupancySensor 1
Switch 17 LightSwitch 1

LON System-M occupancy sensor 2
OccupancyCtrl 5 OccupancyEvaluation 1
OccSnsr 2 OccupancySensor 2

econtrol lumina RSA4 lamp actuator 4x 3

LampActuator 11 LightActuator 3
LampActuator 12 LightActuator 4
LampActuator 7 LightActuator 1
LampActuator 9 LightActuator 2

LON System-M occupancy sensor 4
OccupancyCtrl 8 OccupancyEvaluation 3
OccSnsr 15 OccupancySensor 4

LON System-M occupancy sensor 5
OccupancyCtrl 10 OccupancyEvaluation 4
OccSnsr 1 OccupancySensor 6

econtrol lumina T6 binary switch with Constant Light Control 6 ConstLightCtrl 13 AutomaticLight 4

LON System-M pushbutton 2x 7 OccupancySensor 3 OccupancySensor 5

LON System-M occupancy sensor 8
OccupancyCtrl 6 OccupancyEvaluation 2
OccSnsr 14 OccupancySensor 3

econtrol sistema RC2 (Constant Light Control) clone6 9
ConstLightCtrl clone6 18 AutomaticLight 1
ConstLightCtrl clone6 0 AutomaticLight 3
ConstLightCtrl clone6 16 AutomaticLight 2

Sum of device price costs = 930.80 Euros

Table A.5: Example 3 with Cloned Repository - A Detailed Design - Devices,
Functional Profiles and Function Block Mappings from Abstract Design in Fig-
ure A.6 to Detailed Design in Figure A.9

200 Appendix of Designs

Bibliography

[AD08] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms. Springer
Publishing Company, Incorporated, 1st edition, 2008.

[AL97] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Opti-
mization. John Wiley & Sons Ltd., 1997.

[BBB+04] S. Baumgarth, E. Bollin, M. Büchel, B. Fromm, A. Karbach,
D. Otto, H. Pärschke, P. Ritzenhoff, G.-P. Schernus, F. Soko-
lik, F. Tiersch, and W. Treusch. Digitale Gebäudeautomation.
Springer, 2004.

[BDR00] A. Bauer, A. Döderlein, and P. Rössler. Fieldbus Systems for Home
and Building Automation. it + ti - Informationstechnik und Tech-
nische Informatik , 42(4):17–23, 2000.

[Big94] T. J. Biggerstaff. The library scaling problem and the limits of
concrete component reuse. In Third International Conference on
Software Reuse: Advances in Software Reusability , pp. 102–109.
1994.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison Wesley, 1999.

[Bui] BuildingSMART International Ltd. International home of
openBIM. http://www.buildingsmart-tech.org. Accessed:
19/02/2013.

[CEG+00] K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde, and
T. L. Veldhuizen. Generative Programming and Active Libraries.
In Selected Papers from the International Seminar on Generic Pro-
gramming , pp. 25–39. Springer-Verlag, London, UK, 2000.

[Cer85] V. Cerny. Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimiza-
tion Theory and Applications, 45(1):41–51, 1985.

202 BIBLIOGRAPHY

[CST+06] E. Carrano, L. Soares, R. Takahashi, R. Saldanha, and O. Neto.
Electric distribution network multiobjective design using a
problem-specific genetic algorithm. IEEE Transactions on Power
Delivery , 21(2):995 – 1005, 2006.

[Deb04] K. Deb. Multi-Objective Optimization using Evolutionary Algo-
rithms. Wiley, 111 River Street, Hoboken, NJ 07030, USA, 2004.

[DJ06] K. A. De Jong. Evolutionary Computation. MIT Press, Cambridge,
MA, 2006.

[DK11] H. Dibowski and K. Kabitzsch. Ontology Based Device Descrip-
tions and Device Repository for Building Automation Devices. In
EURASIP Journal on Embedded Systems, volume 2011, pp. 3:1–
3:17. Hindawi Publishing Corp., 2011.

[Dor92] M. Dorigo. Optimization, Learning and Natural Algorithms. Ph.D.
thesis, Politecnico di Milano, Italy, 1992.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol.
Comp, 6(2):182–197, 2002.

[DS99] D. Dietmar and H.-J. Schweinzer. LON-Technologie Verteilte Sys-
teme in der Anwendung . Hüthig, 1999.

[DZ83] J. D. Day and H. Zimmermann. The OSI reference model. Pro-
ceedings of the IEEE , 71(12):1334–1340, 1983.

[Ech] Echelon Corporation. LonMaker Integration Tool. http://

www.echelon.com/products/tools/integration/lonmaker. Ac-
cessed: 19/02/2013.

[ECJ] ECJ. A Java-based Evolutionary Computation Research Sys-
tem. http://www.cs.gmu.edu/~eclab/projects/ecj. Accessed:
19/02/2013.

[EK10] M. Eichelberg and K. Kabitzsch et al. Interoperabilität von AAL-
Systemkomponenten. Teil 1: Stand der Technik . VDE VERLAG,
Berlin, 2010.

[EnO] EnOcean Alliance. http://www.enocean-alliance.org. Ac-
cessed: 19/02/2013.

[Erb06] C. Erbas. System-Level Modeling and Design Space Exploration
for Multiprocessor Embedded System-on-Chip Architectures. Ph.D.
thesis, University of Amsterdam, Netherlands, 2006.

BIBLIOGRAPHY 203

[ES07] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Com-
puting (Natural Computing Series). Springer, 2007.

[Fis02] P. Fischer. Analyse und Bewertung von Kommunikationssystemen
in der Gebäudeautomation. Ph.D. thesis, Vienna, University of
Technology, Vienna, Austria, 2002.

[FOW66] L. Fogel, A. Owens, and M. Walsh. Artificial intelligence through
simulated evolution. Wiley, Chichester, WS, UK, 1966.

[FR89] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for
a computationally difficult set covering problem. Operations Re-
search Letters, 8:67 – 71, 1989.

[GM] D. Gilbert and T. Morgner. JFreeChart: A Java chart library.
Available: http://www.jfree.org/jfreechart/.

[GM86] F. Glover and C. McMillan. The general employee scheduling prob-
lem: an integration of MS and AI. Comput. Oper. Res., 13(5),
1986.

[HHBW06] S. Huband, P. Hingston, L. Barone, and L. While. A review of
multiobjective test problems and a scalable test problem toolkit.
IEEE Transactions on Evolutionary Computation, 10(5):477–506,
2006.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems . Uni-
versity of Michigan Press, Ann Arbor, MI, 1975. Second edition,
1992.

[HSU] HSU. Helmut Schmidt University (University of the Federal Armed
Forces Hamburg, Germany). http://www.hsu-hh.de. Accessed:
19/02/2013.

[Int04] International Organization for Standardization. ISO16484:2 Build-
ing automation and control systems (BACS) – Part2: Hardware,
2004.

[Int05] International Organization for Standardization. ISO 9000 Quality
management systems – Fundamentals and vocabulary, 2005.

[Int06a] International Organization for Standardization. ISO14543:3-1 In-
formation technology – Home Electronic Systems (HES) Archi-
tecture – Part 3-1: Communication layers – Application layer for
network based control of HES Class 1, 2006.

204 BIBLIOGRAPHY

[Int06b] International Organization for Standardization. ISO14543:3-2 In-
formation technology – Home Electronic Systems (HES) Architec-
ture – Part 3-2: Communication layers – Transport, network and
general parts of data link layer for network based control of HES
Class 1, 2006.

[Int07a] International Organization for Standardization. ISO14543:3-3 In-
formation technology – Home Electronic Systems (HES) Architec-
ture – Part 3-3: User process for network based control of HES
Class 1, 2007.

[Int07b] International Organization for Standardization. ISO14543:3-4 In-
formation technology – Home Electronic Systems (HES) Architec-
ture – Part 3-4: System management – Management procedures
for network based control of HES Class 1, 2007.

[Int07c] International Organization for Standardization. ISO14543:3-5 In-
formation technology – Home Electronic Systems (HES) Architec-
ture – Part 3-5: Media and media dependent layers – Power line
for network based control of HES Class 1, 2007.

[Int07d] International Organization for Standardization. ISO14543:3-6 In-
formation technology – Home Electronic Systems (HES) Architec-
ture – Part 3-6: Media and media dependent layers – Network
based on HES Class 1, twisted pair, 2007.

[Int07e] International Organization for Standardization. ISO14543:3-7 In-
formation technology – Home Electronic Systems (HES) Archi-
tecture – Part 3-7: Media and media dependent layers – Radio
frequency for network based control of HES Class 1, 2007.

[Int10] International Organization for Standardization. ISO16484:1 Build-
ing automation and control systems (BACS) – Part1: Project spec-
ification and implementation, 2010.

[Int12a] International Organization for Standardization. ISO14908:1 Infor-
mation technology – Control network protocol – Part1: Protocol
stack, 2012.

[Int12b] International Organization for Standardization. ISO16484:5 Build-
ing automation and control systems (BACS) – Part5: Data com-
munication protocol, 2012.

[Int13] International Electrotechnical Commission. IEC 61131-3 ed3.0
Programmable controllers - Part 3: Programming Languages, 2013.

BIBLIOGRAPHY 205

[Kab87] K. Kabitzsch. Mikrorechner in der Automatisierungspraxis.
Ausgewählte Probleme der Software- und Hardwaregestaltung .
Akademie-Verlag, Berlin, 1987.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, eds., Complexity of Computeter Com-
putations. Plenum Press, 1972.

[KDP02] K. Kabitzsch, D. Dietmar, and G. Pratl. LonWorks-
Gewerkeübergreifende Systeme. VDE VERLAG, Berlin, Offenbach,
2002.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural Networks,
volume 4, pp. 1942–1948 vol.4. IEEE, 1995.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
Simulated Annealing. Science, Number 4598, 13 May 1983 , 220,
4598:671–680, 1983.

[KHT00] W. Kriesel, T. Heimbold, and D. Telschow. Bustechnologien für
die Automation, Vernetzung, Auswahl und Anwendung von Kom-
munikationssystemen. Hüthig, Heidelberg, 2000.

[KNSN05] W. Kastner, G. Neugeschwandtner, S. Soucek, and H. M. New-
man. Communication Systems for Building Automation and Con-
trol. Proceedings of the IEEE , 93(6):1178–1203, 2005.

[Knu00] D. E. Knuth. Dancing Links. In J. Davies, B. Roscoe, and J. Wood-
cock, eds., Millennial Perspectives in Computer Science, pp. 187–
214. Palgrave Macmillan, England, 2000.

[KNVT06] K. Kabitzsch, J. Naake, V. Vasyutynskyy, and S. Theiss. Unter-
suchung zum Fernzugriff auf Automatisierungstechnik. atp - Au-
tomatisierungstechnische Praxis, 7(48), 2006.

[KNX] KNX Association. ETS4 Engineering Tool Software. http://www.
knx.org/knx-tools/ets4. Accessed: 19/02/2013.

[Koz92] J. R. Koza. Genetic Programming . MIT Press, Cambridge, MA,
1992.

[Kra06] H. Kranz. BACnet Gebäudeautomation 1.4 . Promotor Verlags-
und Förderungsges. mbH, 2. edition, 2006.

[Lon] LonMark International. Guidelines and Specifications. http://

www.lonmark.org/. Accessed: 19/02/2013.

206 BIBLIOGRAPHY

[MHH07] H. Merz, T. Hansemann, and C. Hübner. Gebäudeautoma-
tion Kommunikationssysteme mit EIB/KNX, LON und BACnet .
Hanser, 2007.

[MKBR10] A. Martens, H. Koziolek, S. Becker, and R. Reussner. Automat-
ically improve software architecture models for performance, re-
liability, and cost using evolutionary algorithms. In Proceedings
of the first joint WOSP/SIPEW international conference on Per-
formance engineering , pp. 105–116. ACM, New York, NY, USA,
2010.

[MOF91] O. Martin, S. W. Otto, and E. W. Felten. Large-Step Markov
Chains for the Traveling Salesman Problem. Complex Systems,
5:299–326, 1991.

[NDL+09] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba.
MOCell: A cellular genetic algorithm for multiobjective optimi-
zation. International Journal on Intelligent Systems, 24(7):726–
746, 2009.

[New] Newron System. NL220-TE LonWworks Manager Tool. http:

//www.newron-system.com/NL220. Accessed: 19/02/2013.

[ODK09] A. C. Oezluek, H. Dibowski, and K. Kabitzsch. Automated De-
sign of Room Automation Systems by using an Evolutionary Op-
timization Method. In 14th International Conference on Emerging
Technologies and Factory Automation ETFA 2009 , pp. 1–8. 2009.

[OPK10a] A. C. Oezluek, J. Ploennigs, and K. Kabitzsch. Designing Building
Automation Systems Using Evolutionary Algorithms with Semi-
Directed Variations. In 2010 IEEE International Conference on
Systems, Man, and Cybernetics SMC 2010 . 2010.

[OPK10b] A. C. Oezluek, J. Ploennigs, and K. Kabitzsch. A Generic Frame-
work for Synthesis and Optimization of System Designs in the Ex-
ample of Building Automation Systems. In 2010 IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), pp.
1–4. 2010.

[Ora] Oracle. Java. http://www.oracle.com/technetwork/java. Ac-
cessed: 19/02/2013.

[ORK09] A. C. Oezluek, U. Ryssel, and K. Kabitzsch. Multi-Objective Com-
binatorial Optimization for Designing Room Automation Systems
by Using Evolutionary Algorithms. In 35th Annual Conference of
IEEE on Industrial Electronics. IECON ’09., pp. 3335 –3340. 2009.

BIBLIOGRAPHY 207

[PDRK11] J. Ploennigs, H. Dibowski, U. Ryssel, and K. Kabitzsch. Holistic
Design of Wireless Building Automation Systems. In IEEE Con-
ference on Emerging Technologies Factory Automation, pp. 1–9.
2011.

[Plo07] J. Ploennigs. Control Network Performance Engineering -
Qualitätsorienterter Entwurf von CSMA-Netzwerken der Automa-
tion. Jörg Vogt Verlag, 1. aufl. edition, 2007.

[PV05] J. Ploennigs and V. Vasyutynskyy. AMES-Umfrage in der Ziel-
gruppe ”Gebäudeautomation”, 2005.

[RDFK08] S. Runde, H. Dibowski, A. Fay, and K. Kabitzsch. Integrated
Automated Design Approach for Building Automation Systems.
In IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 1488–1495. 2008.

[RDK09] U. Ryssel, H. Dibowski, and K. Kabitzsch. Generation of Function
Block Based Designs using Semantic Web Technologies. In IEEE
Conference on Emerging Technologies and Factory Automation,
pp. 1–8. 2009.

[Rec73] I. Rechenberg. Evolutionstrategie: Optimierung Technischer Sys-
teme nach Prinzipien des Biologischen Evolution. Fromman-
Hozlboog Verlag, Stuttgart, 1973.

[RF11] S. Runde and A. Fay. Software Support for Building Automa-
tion Requirements Engineering - An Application of Semantic Web
Technologies in Automation. IEEE Transactions on Industrial In-
formatics, 7(4):723–730, 2011.

[RFHS10] S. Runde, A. Fay, A. Heidemann, and P. Schmidt. Engineer-
ing der Automation im Kontext der Bauplanung: Praxis, Defizite
und Ansätzte zur Verbesserung. atp - Automatisierungstechnische
Praxis, 10:36–47, 2010.

[RFK00] T. Rauscher, P. Fischer, and K. Kabitzsch. An Inter-Industry In-
teroperability Concept for Fielbus Objects. it + ti - Information-
stechnik und Technische Informatik , 42(4):38–44, 2000.

[Run10] S. Runde. Wissensbasierte Engineeringunterstützung automa-
tisierter technischer Systeme am Beispiel der Gebäudeautoma-
tisierung . Ph.D. thesis, University of Federal Armed Forces Ham-
burg, Germany, 2010.

[Sch98] B. Schuermann. Structure and Design of Building Automation
Systems. In Proceedings of the International Conference on New

208 BIBLIOGRAPHY

Information Technologies in Science, Education, Telecommunica-
tion and Business, Crimea, Ukraine. 1998.

[Spe] Spelsberg Gebäudeautomation GmbH. ALEX Designer
Suite. http://www.spega.com/produkte/highlights/

alex-designer-suite. Accessed: 19/02/2013.

[Spe08] J. Spelsberg. Weissbuch Gebäudeautomation, 2008.

[The99] The Association of German Engineers (VDI). VDI 3687 Selection
of fieldbus systems by evaluating their performance characteristics
for industrial application, 1999.

[The11a] The Association of German Engineers (VDI). VDI 3813:1 Building
automation and control systems (BACS) - Fundamentals for room
control, 2011.

[The11b] The Association of German Engineers (VDI). VDI 3813:2 Building
automation and control systems (BACS) - Room control functions
(RA functions), 2011.

[TU] TU Dresden. University of Technology Dresden, Germany. http:
//www.tu-dresden.de/en. Accessed: 19/02/2013.

[Unia] University of Technology Dresden, Germany. Automated Design
Of Building Automation Systems. http://www.ga-entwurf.de.
Accessed: 19/02/2013.

[Unib] University of Tübingen, Germany. A Java based framework for
Evolutionary Algorithms. http://www.ra.cs.uni-tuebingen.

de/software/JavaEvA. Accessed: 19/02/2013.

[VL00] D. A. V. Veldhuizen and G. Lamont. On measuring multiobjective
evolutionary algorithm performance. In Proceedings of the 2000
Congress on Evolutionary Computation, pp. 204–211. 2000.

[VRZ+07] S. Ventura, C. Romero, A. Zafra, J. Delgado, and C. Hervas.
JCLEC: a java framework for evolutionary computation. Soft Com-
putation, 12(4):381–382, 2007.

[WSWW03] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer. Evolutionary
multiobjective optimization for base station transmitter placement
with frequency assignment. IEEE Transactions on Evolutionary
Computation, 7(2):189–203, 2003.

[ZDT00] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Com-
putation, 8:173–195, 2000.

BIBLIOGRAPHY 209

[ZJZ+06] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Combin-
ing model-based and genetics-based offspring generation for multi-
objective optimization using a convergence criterion. In IEEE
Congress on Evolutionary Computation (CEC), pp. 892–899. 2006.

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm. In K. C. Giannakoglou
and D. T. Tsahalis and J. Périaux and K. D. Papailiou and T.
Fogarty, ed., Evolutionary Methods for Design Optimization and
Control with Application to Industrial Problems. Athens, Greece,
2001.

210 BIBLIOGRAPHY

Index

Abstract Design, 49
ACO, 61
Ant Colony Optimization, 65
Application Engineering, 31
assistance, 134
automation, 45
automation hierarchy, 25
automation pyramid, 26

BACNET, 48
BACS, 25
BAS, 25
binding pair candidate, 52

cGA, 71
Combinatorial Optimization, 59
communication protocol, 37
component model, 81
component space, 112
component-based design, 54
coverage, 138
cross-over, 109, 113, 114, 119, 120, 122

Detailed Design, 49
device interoperability, 37
device plugins, 34
directed variation, 113
documentation, 133
Domain Engineering, 31

EC, 61, 66, 69
efficiency, 45
ENOCEAN, 48, 81, 129, 130

fitting functional profiles, 52
flexible rooms, 125

generalized spread, 138
generational distance, 138

HVAC, 26

individual representation, 123
integration, 45
interoperability, 32
interoperable, 80
interworkable, 80
ISO 16484, 25, 30

KNX, 48

LON, 48, 81, 129

mandatory input data point, 52
mapping model, 51
Metaheuristics, 60, 61, 68, 69, 76, 77
MOCell, 71
model-based design, 56
MOEA, 68, 137, 138, 142, 183
Multi-Objective Optimization, 57
multimodality, 55
mutation, 114, 119, 122

network node, 34
non-dominated set, 138
NSGA 2, 70

objective functions, 122

Particle-Swarm Optimization, 61
planning, 30
product line, 42

quality evaluation, 44
quality requirements, 44

212 INDEX

random variation, 113
Room Automation, 29
room spanning control, 124

semi-directed variation, 114
Simulated Annealing, 60, 63
soft constraint, 57
solution space, 111
SPEA 2, 71
system integrator, 30

Tabu Search, 60, 63
technology spanning designs, 129
true Pareto front, 138

valid and complete, 53
validity, 44
variations, 111
VDI 3813, 26, 39, 47

