
A Probabilistic Quantitative Analysis of
Probabilistic-Write/Copy-Select⋆

Christel Baier, Benjamin Engel, Sascha Klüppelholz, Steffen Märcker,
Hendrik Tews, and Marcus Völp

Institute for Theoretical Computer Science and Institute for Systems Architecture
Technische Universität Dresden, Germany

{baier,klueppel,maercker}@tcs.inf.tu-dresden.de,
{engel,tews,voelp}@os.inf.tu-dresden.de

Abstract. Probabilistic-Write/Copy-Select (PWCS) is a novel synchro-
nization scheme suggested by Nicholas Mc Guire which avoids expensive
atomic operations for synchronizing access to shared objects. Instead,
PWCS makes inconsistencies detectable and recoverable. It builds on the
assumption that, for typical workloads, the probability for data races is
very small. Mc Guire describes PWCS for multiple readers but only one
writer of a shared data structure. In this paper, we report on the formal
analysis of the PWCS protocol using a continuous-time Markov chain
model and probabilistic model checking techniques. Besides the origi-
nal PWCS protocol, we also considered a variant with multiple writers.
The results were obtained by the model checker PRISM and served to
identify scenarios in which the use of the PWCS protocol is justified
by guarantees on the probability of data races. Moreover, the analysis
showed several other quantitative properties of the PWCS protocol.

1 Introduction

Control mechanisms for shared data is a central task for the design of parallel
systems. Various protocols to ensure exclusive access to shared data have been
developed by the operating system community. Most prominent are sophisticated
locking schemes. These, however, became more and more complex. Moreover,
scalability turns out to be problematic because atomic operations and cache
synchronization between an ever growing number of cores became more and
more expensive [MCS91].

At a recent Real-Time Linux Workshop, Nicholas Mc Guire proposed a
promising idea to exploit the increasing complexity of modern manycore sys-
tems for synchronizing shared objects [Gui11]. Rather than avoiding inconsis-
tencies at all cost by locking objects or updating their state with increasingly

⋆ This work was in part funded through the DFG project QuaOS, the CRC 912 Highly-
Adaptive Energy-Efficient Computing (HAEC), the EU under FP-7 grant 295261
(MEALS), the DFG/NWO-project ROCKS, the cluster of excellence cfAED (center
for Advancing Electronics Dresden) and by the EU and the state Saxony through
the ESF young researcher group IMData 100098198.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236369514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


more expensive atomic operations, Mc Guire proposed to not synchronize read-
ers and writers at all. Instead, he proposed to explicitly allow data races on the
shared object but to make inconsistencies from ongoing writes detectable. As
such, Mc Guire’s protocol is an instance of a new class of algorithms that make
use of the randomness that is inherent in complex modern computer architec-
tures. This randomness is caused by differences in the content of the core-local
caches and by arbitration at the hardware level, which together induce small,
but almost unpredictable differences in the execution time. In the approach of
Mc Guire, writers are viewed as fault injectors that access the shared data items
probabilistically. Instead of single data items that are protected by some locking
scheme, Mc Guire’s approach deals with a fixed number of replicas of the shared
objects (called “copies” in [Gui11]) that are written and read in reversed order.
The idea is that, thanks to the inherent randomness of the writers, the proba-
bility for a reader to find at least one consistent replica is sufficiently high. For
this reason, Mc Guire used the notion Probabilistic-Write/Copy-Select, PWCS
for short, for his approach. Mc Guire reports in [Gui11] on measure-based exper-
iments illustrating that PWCS is indeed a promising approach that outperforms
most locking schemes in high-end cache coherent systems. Moreover, PWCS
makes no special assumptions on the memory consistency model except that
modifications will eventually propagate to prospective readers.

In this paper, we report on a formal analysis of Mc Guire’s protocol using
probabilistic model checking techniques. We designed a continuous-time Markov
chain (CTMC) to model the PWCS protocol, using exponential distributions
as a formalization of the inherent randomness of complex systems observed by
Mc Guire. While [Gui11] only addresses the case of a single writer and multiple
readers, we analyzed the protocol for multiple writers. This requires the consid-
eration that the replica of shared data items can be in three modes: consistent,
currently modified (by precisely one writer) or damaged (concurrently modified
by two or more writers). We identified a series of quantitative measures that
serve to evaluate the adequacy of the PWCS protocol and that address different
aspects. From the readers perspective, guarantees on the success rate and the
required time to find at least one consistent replica are most relevant. The aver-
age repairing time provides a formal criterion for the usefulness of the implicit
repairing mechanism of damaged replica, given by the possibility that eventu-
ally some writer modifies the damaged replica without being interfered by other
writers. These and other quantitative measures have been formalized as quan-
titative queries using continuous stochastic logic (CSL) [ASSB00,BHHK03] and
its extension for reasoning about rewards (CSRL) [BHHK00] and analyzed using
the model checker PRISM [KNP04,KNP09]. The model checking results indeed
confirm Mc Guire’s observations.

At its current stage, it is too early to give affirmative answers to the ap-
plicability of PWCS. But both, Mc Guire’s measure-based evaluation and our
quantitative analysis, give evidence in the potential of PWCS-like protocols that
make use of the inherent probabilism in complex systems to avoid the draw-
backs of standard locking schemes or other coordination mechanisms relying on

2



a deterministic protocol or explicit probabilistic algorithms (e.g., using random
number generators).

Related work. Probabilistic model checking was already used in various ap-
plication areas, ranging from distributed randomized algorithms over energy
management, communication, gossiping and cryptographic protocols to network
on chip design and system biology. See e.g. the homepages of the model check-
ers PRISM [KNP04,KNP05,KNP09], MRMC [KZH+11] or the CADP tool set
[CGH+10]. Most related to our approach are case studies that address the quan-
titative analysis of non-randomized mutual exclusion protocols where stochastic
distributions were used to model the delay or duration of actions. Examples
are the case studies performed by Mateescu and Serwe with the CADP toolbox
[MS10] and a series of classical mutual exclusion algorithms and our recent work
on a simple spinlock protocol using PRISM and MRMC [BDE+12b,BDE+12a].
The timing behavior of standard mutual exclusion protocols using mathematical
reasoning with stochastic distributions was also investigated by the algorithm
community, see e.g. [GM99].

2 Probabilistic-Write/Copy-Select

In [Gui11], Mc Guire presented two alternative implementations of PWCS [Gui11]
projected objects, which differ in the type of token they use for making object
inconsistencies detectable: tag-based consistency tokens complement the object
with a pair of version numbers that have to match for the data to be read consis-
tent; hash-based consistency tokens on the other hand store a hash of the data,
which up to collision uniquely identifies the consistent states of the object.

Writes proceed by first marking the object inconsistent, either by increment-
ing the version of the end tag or, in case of hashes, by simply modifying some
part of the object to cause a mismatch between the stored hash and data. Af-
ter the modification completes, the begin tag is incremented to mark the data
consistent again. In case of hashes, consistency is established automatically once
the stored hash and all modifications become visible.

Readers match this operation by taking a copy of the object and its consis-
tency token. More precisely, they first copy the begin tag and then the data into
a private buffer. After that, they match the buffered begin tag with the end tag
stored in the object to determine whether they have read a consistent version.
If not they retry or follow some other back-off strategy. Replicas of the object
are used to further reduce the chance of a reader finding an inconsistent object.

To enforce the order in which end tag, data and begin tag become visible,
fences have to be used on modern processor architectures possibly in combination
with some delay loop or packet ordering scheme to ensure that the respective
updates become visible in the desired order. Hashes further relax these hardware
dependencies because no matter in which order the data and tags are read or
written, once all data plus the corresponding hash arrives at a reader, it will find
its copy to be consistent.

3



Mc Guire does permits only one writer process. Here, we extend PWCS and
consider multiple writers that may modify all replicas of the object concurrently.
It may therefore happen that some replicas get damaged because different writers
succeed in storing parts of their data. In this case, the stored data and the
hash do not match, which allows a reader to recognize an inconsistency. Note
that tags would not allow for a reliable damage detection. In contrast to our
model, a reader cannot distinguish between a damaged replica and a temporarily
inconsistent one that is currently updated by a single writer. We assume that a
damaged replica becomes consistent again, and is thus implicitly repaired, when
a single writer can modify it without others interfering.

3 Stochastic model of PWCS

To model the PWCS protocol we use exponential distributions for representing
the inherent randomness in an explicit way. This leads to a continuous-time
Markov chain (CTMC), which then serves as basis for the formal analysis using
the CTMC engine of the PRISM model checker. The CTMC is obtained in a
compositional way, using CTMCs with action labels for each writer and each
reader. The replica are represented by a non-stochastic transition system that
synchronize with the writers to change their states.

3.1 Preliminaries

We briefly summarize the relevant principles of continuous-time Markov chains.
Further details can be found in textbooks on Markov chains, see e.g. [Kul95,KS60].

If S is a finite set then a distribution on S is a function ν : S → [0, 1] with
∑

s∈S

ν(s) = 1. For U ⊆ S, ν(U) is a shortform notation for
∑

s∈U

ν(s).

The CTMCs we use here are tuples M = (S,Act , R, µ) where S is a finite
state space, Act a finite set of action names and R a function of the type R :
S × Act × S → R≥0, called the rate matrix of M. The last component µ is a
distribution on S specifying the probabilities for the starting states. If ν is a
distribution on S then we write Mν for the CTMC (S,Act , R, ν) that results
from M by replacing the initial distribution µ with ν.

We write s
λ:α
−→ s′ if R(s, α, s′) = λ > 0 with the intuitive meaning that M

has a transition from state s to state s′ with action label α and rate λ. The value
λ specifies the rate of an exponential distribution. That is, the probability for the

transition s
λ:α
−→ s′ to be ready for firing some time in the interval [0, t] is 1−e−λt.

Thus, the average delay of this transition is 1/λ. If R(s, α, s′) = 0 then M cannot
move from s to s′ via action α. The choice between several enabled transitions
in state s relies on the race condition. Thus, the time-abstract probability to

fire a particular transition s
λ:α
−→ s′ in state s is P (s, α, s′) = λ/E(s) where

E(s) denotes the exit rate of state s, i.e., the sum of the rates of all outgoing

transitions of state s. The probability that s
λ:α
−→ s′ will fire within t time units

is then P (s, α, s′) ·
(

1− e−E(s)·t
)

.

4



Paths in a CTMC are sequences of consecutive transitions augmented by
the time points when they are taken. The quantitative analysis using the logics
CSL [ASSB00,BHHK03] relies on the standard σ-algebra on infinite paths and
probability measure (see e.g. [Kul95,KS60]). To specify measurable sets of infinite
paths, we will use LTL-like notations, such as ♦T (“eventually T”) where T ⊆ S
denotes the set of all infinite paths that contain at least one T -state. Similarly,
U denotes the until-operator and U≤t the time-bounded until with time bound
t. To formalize measurable sets of paths in a state-based logical framework, we
will also use state predicates and propositional formulas built upon them as a
symbolic formalism for sets of states. The state predicates and their meanings
will be obvious from the names of the states in our model.

For our analysis, we are chiefly interested in the long-run behavior, i.e., the
system behavior when time tends to infinity and when the system is in equilib-
rium. For this purpose, we deal with the steady-state distribution θ : S → [0, 1]
where θ(s) represents the average fraction of time to be in state s on the long-run.
Formally, θ(s) is defined by

θ(s) = lim
t→∞

θ(s, t)

where θ(s, t) denotes the probability for M being in state s at time instant
t. For finite CTMCs, function θ is well-defined and it is indeed a distribution
on S. Long-run probabilities refer to the probability measure obtained for the
CTMC Mθ where the original initial distribution µ of M is replaced with the
steady-state distribution θ.

Suppose now that U is a set of states such that θ(U) > 0. Conditional long-
run probabilities under condition U refer to the long-run behavior of M when
starting in one of the U -states. These are obtained by using the probability
measure of the CTMC MU

θ = Mν where ν is the distribution on S given by
ν(s) = 0 if s ∈ S \ U and ν(s) = θ(s)/θ(U) if s ∈ U . If Π is a measurable set of
infinite paths, then the conditional long-run probability for Π under condition U
is the probability measure of Π in the CTMC MU

θ and denoted by Pr
(

Π
∣

∣U
)

.
We will also study reward-based properties formalized using the logic CSRL

[BHHK00]. These require an extension ofM by a reward function rew : S → R≥0

where rew(s) specifies the reward to be earned per time unit when staying in
state s. For finite paths one can then reason about the accumulated reward.
Suppose π is a finite path where the underlying state sequence is s0 s1 . . . sn
and let t0 = 0 and ti the time point where π takes the i-th transition. The
accumulated reward of π is:

Rew(π) =

n−1
∑

i=0

(

ti+1 − ti
)

· rew(si)

Suppose U is a set of states with θ(U) > 0 and Pr
(

♦T | U
)

= 1. The condi-
tional long-run accumulated reward for eventually reaching T under condition
U is defined as the expected value of the random variable that assigns to each
infinite path in ♦T the accumulated reward of the shortest prefix that ends in

5



a T -state under the probability measure in the CTMC MU
θ . It is denoted by

AccRew
(

♦T
∣

∣U
)

. In the analysis of the PWCS-protocol, we will deal with the

reward function that assigns value 1 to all states. In this case, AccRew
(

♦T
∣

∣U
)

can be interpreted as the average amount of time to reach T from U on the
long-run.

For the quantitative analysis of the PWCS-protocol, we will consider several
instances of Pr

(

Π
∣

∣U
)

and AccRew
(

♦T
∣

∣U
)

, including those where U is given
a set of actions rather than a set of states. In those cases, U is identified with
the set of states that can be entered via taking some transition with an action
label in U .

3.2 Modeling the PWCS-protocol

The CTMC for the PWCS-protocol will be obtained by composing CTMCs for
the writers and readers and ordinary (non-stochastic) transition systems for the
replica. For the synchronization of the writers with the replica, we use CSP-like
notations for actions: !a for the sending of a signal by some writer and ?a for the
matching receive action by the replica. Since all state changes of the replica are
triggered by the writers, the action alphabet of the replica consists of actions of
the form ?a where the corresponding send action !a is in the action alphabet of
some writer. The other actions of the writers and all actions of the readers are
executed in an interleaved way. Since only the sending actions are augmented
with rates, the rate for the synchronization of ?a and !a in the composite CTMC
is the rate of the sending action !a in the CTMC of the writer. This corresponds to
the following SOS-rules to combine the CTMCs for the writers and the readers
with the transition system for the replica to obtain a CTMC for the PWCS-
protocol:

s
λ:α
−→ s′

〈s, x〉
λ:α
−→ 〈s′, x〉

w
λ:!a
−→ w′, r

?a
−→ r′

〈w, r, y〉
λ:a
−→ 〈w′, r′, y〉

In the first rule, s
λ:α
−→ s′ stands for a transition of some writer or reader, while

x stands for the tuple consisting of the local states of all other components.

In the second rule, w
λ:!a
−→ w′ and r

?a
−→ r′ stand for a transition of some

writer and replica, respectively. Here, y stands for the tuple consisting of the
local states of all readers and all other writers and replica.

Replicas. The replicas themselves are interpreted as shared data objects among
the readers and writers and behave according to the control-flow diagram shown
in Fig. 1. We abstract away from the concrete values stored in the object, and
only represent the three possible modes of a replica: it can be either consistent,
currently modified, or damaged. Therefore, the model for the kth replica consists
of the three locations consistentk, currently modifiedk, or damagedk. An integer
variable wk keeps track of the number of writers that are currently writing the
kth replica. The edges in the control-flow diagram partly refer to the counter
variable wk by means of a guard or an assignment. The usual unwinding of the
control-flow diagram yields a transition system where each state consists of a

6



consistentk currently modifiedk damagedk

wk := 0 ?writing startedk

wk := 1

?writing finishedk

wk := 0

?writing startedk

wk := 2

if wk = 0 then
?writing startedk

wk := 1

?writing startedk

wk := wk+1

if wk > 0 then
?writing finishedk

wk := wk−1
Fig. 1. Control-flow diagram for the kth replica

location and a value for the counter variable wk and where the transitions are
labeled by some receive action ?a (without any reference to the counter variable).

Each replica is assumed to be initially consistent and no writer is currently
actively writing. In Fig. 1, the transitions writing startedk and writing finishedk

stand for sets of transitions writing started i
k and writing finished i

k, 1 ≤ i ≤ I
which synchronize with the respective actions triggered by any of the writers.
That is, whenever some writer starts operating on the kth replica, which is in-
dicated by the synchronous action writing started i

k, the replica changes its loca-
tion, where it is now considered to be under modification and the counter variable
wk is increased accordingly. Similarly, the synchronous action writing finishedk

indicates the end of a write operation on the kth replica. A replica is said to be
damaged if more than one writer is operating on the replica at the same time. A
replica can only become consistent if one writer can successfully write its data
without interference from another writer. We mark a damaged replica as cur-
rently modified once a single writer starts modifying the replica exclusively. If
it succeeds writing the replica without interference from another writer, we con-
sider the replica to be repaired and hence consistent. We say a writer interferes
with another reader or writer if it writes a replica that is concurrently read or
written by this other process.

Readers. Fig. 2 shows the CTMC formalizing the operational behavior of the
jth reader. For each transition we assign a rate of an exponential distribution.
The jth reader is initially in the state idlej before it starts reading the replica in
the order of decreasing indices. The delay of the transition from the idle state to
the state reading jK is exponentially distributed with rate κ. Intuitively, κ defines
the “read rate” of an individual reader, which can be understood as the average
number of reading requests per time unit in state idlej . The transition from
state readingjk to state check j

k with action reading finished j
k fires with rate δ. In

states check j
k the reader checks whether or not the read of the kth replica was

successful. The read operation is successful if the replica was found consistent
at the beginning of the read and there was no interference from a concurrent
write operation of some writer. For the latter, the jth reader has access to the
shared boolean variables corrupted j

k. The variables corrupted j
k are set to false

7



success j

error j

idle j

readingj
1 check j

1

readingj

K−1
check j

K−1

...
...

readingj

K check j

K
κ : reading started j

K

δ : reading finished j
1

ρ : reading started j
1

δ : reading finished j

K−1

ρ : reading started j

K−1

δ : reading finished j

K

σ : return to read idlej

ν : return to read idlej

Fig. 2. CTMC for the jth reader

whenever a transition with action reading started j
k is fired and set to true by

the writers as specified in the next paragraph of this section. In case that the
replica was found consistent and no writer was writing the replica concurrently,
the jth reader changes its state to successj , from where it returns to state idlej

with rate σ. Otherwise it proceeds reading the next replica with rate ρ ∈ R>0.
If the reader could not find a consistent replica without interference from a
writer, the reader moves to the state error j . The transition from error j to idlej

can be understood as a high-level representation of some error handling which
is modeled here stochastically using an exponential distribution with rate ν.
(Also the original PWCS protocol proposed by Mc Guire does not consider any
concrete policy for the error handling.) In the following, we say a reader is in a
read cycle if it is in some state other than idlej and define the term write cycle
accordingly.

Writers. The writers are modeled by the CTMC shown in Fig. 3. The ith

writer starts in its initial state idlei and changes its state to writing i1 with rate
γ ∈ R, while firing the send action !writing started i

1 synchronously with the
matching receive action ?writing started i

1 by the first replica. Hence, the writer
starts writing the first replica when it enters the location writing i1. Once the
writer has started, it will write all replica in the order of increasing indices (i.e.,
in reversed order of the readers). When the write operation of the kth replica
(k ∈ N) is finished, the writer changes its state to ready i

k with the synchronous
action writing finished i

k and rate λ before continuing with the next replica. The
time to access the next replica is exponentially distributed with rate µ ∈ R.
After the writer has finished writing the last replica it changes back to state
idlei via action return to write idlei with rate η. We assume that the effect of
firing writing started i

k will be that the shared variables corrupted j
k are set to

true for all readers (i.e., 1 ≤ j ≤ J). This is to “inform” the readers which are
currently reading the kth replica about the interfering write operation. We have
introduced this signaling mechanism because the interfering write may corrupt

8



idlei writingi
1 ready i

1

writingi
2 ready i

2

...
...

writingi
K ready i

K

γ : !writing started i
1 λ : !writing finished i

1

µ : !writing started i
2

λ : !writing finished i
2

µ : !writing started i
K

λ : !writing finished i
K

η : return to write idlei

Fig. 3. CTMC for the ith writer

the data the reader retrieves from the replica. Concurrent reads may retrieve
corrupt data even though the replica may be consistent before and after the
write.

To obtain the PRISM model, we did some technical modifications on the
CTMC models presented above. Action labels have been encoded as variables.
This enables references to actions in the state-labeled logics CSL and CSRL.
Furthermore, we identify the last ready-state ready i

K with the idle-state idlei.

4 Quantitative Analysis

We now proceed to the quantitative analysis of PWCS. There are several in-
teresting questions to ask about PWCS when one seeks to use it in a specific
scenario. For example, what is the likelihood to read a consistent object, how
many replicas have to be read for that and how long does it take on average.
The following queries, which we have model checked, give answers to these ques-
tions and insights into the balance between repair and damage that we found to
be crucial for the performance of PWCS in the presence of multiple concurrent
writers.

Queries. To obtain deeper insight in PWCS and have analyzed the following six
queries. The writer index 1 ≤ i ≤ I and reader index 1 ≤ j ≤ J are arbitrarily
chosen but fixed.

Q1: “Probability to successfully read a replica (on the long run)”: The jth reader
successfully reads a replica, when it finds one consistent replica during its
read cycle without interference. That is, the reader starts its read cycle when
performing the first read action reading started j

K and reaches location idlej

via successj (rather than via error j). Formally, the task is to compute:

Pr
(

¬error j U idlej
∣

∣ reading started j
K

)

Q2: “The p ∈ [0, 1] time-quantile for a successful read (on the long run) within
time bound t”:

9



min
{

t : p ≤ Pr
(

¬error j U≤t idlej
∣

∣ reading started j
K

)}

In this query we are interested in the minimum time bound t such that the
probability to successfully read a replica on the long run (cf. Query Q1) is
above a certain threshold p.

Q3: “Fraction of time in which all K replica are damaged”: While all replicas
stay damaged, readers have no chance to successfully read a single replica.

θ
(

damaged1 ∧ . . . ∧ damagedK

)

For this query we will investigate the effect on the model checking outcome
when increasing the number of replicasK present in the model, as this should
raise the probability of finding a consistent replica for the readers.

Q4: “Average time (on the long run) for repairing a damaged replica”: In this
query we are interested in the average repair time once a replica becomes
damaged. For the computation we annotate all states of the model with re-
ward 1 and compute the following conditional long-run accumulated reward:

AccRew
(

♦ consistentk
∣

∣ just damagedk

)

Here, just damagedk is a shorthand notation for the transition in which a sec-
ond writer starts operating on the kth replica, i.e., the transition from loca-
tion currently modifiedk to location damagedk with an action writing started i

k

(cf. Fig. 1).
Q5: “The p ∈ [0, 1] time-quantile for repairing a damaged replica (on the long

run) within time bound t”: In this query we are interested in the minimum
time bound t such that the probability to successfully repair a damaged
replica on the long run (cf. Query Q4) is above a certain threshold p.

min
{

t : p ≤ Pr
(

♦
≤t consistentk

∣

∣ just damagedk

)}

Q6: “The probability to write at least c consistent replica within one write cycle
where c ≤ K.”: We say that the ith writer successfully writes at least c
replicas in one write cycle if on the path through the cycle there are at
least c indices ℓ = ℓ1, . . . , ℓc, where wℓ = 0, writing started i

ℓ is executed and
followed by writing finished j

ℓ without interfering writes on the ℓth replica by
any of the other writers.

Pr
(

Πc

∣

∣ writing started i
1

)

Here, the set Πc consists of all infinite paths that have a finite prefix that
meets the constraints imposed above.

5 Evaluation

We have evaluated PWCS for the three different scenarios depicted in Table 1:
Scenario 1 (frequent reads and writes) is a worst-case setup for PWCS where
readers and writers access the shared object as fast as they can. Scenario 2

10



Scenario 1 Scenario 2 Scenario 3

time rate time rate time rate

idle time (writer) 1 γ = 1 20 γ = 0.05 200 γ = 0.005
idle time (reader) 1 κ = 1 2 κ = 0.5 20 κ = 0.05

parameters common to all scenarios

time rate

write duration 2 λ = 0.5
read duration 1 δ = 1
other 0.01 µ = ρ = σ = ν = 100

Table 1. Parameters for the three evaluated scenarios.

(frequent reads/moderate writes) characterizes a read-most data structure where
writers access the object only every 10th read access in average. Scenario 3
(moderate reads/occasional writes) is a setup where both readers and writers
access different parts of fine-granular synchronized objects or where the times
to access objects are significantly smaller than the computation phases between
subsequent accesses. Due to the cache-agnostic nature of our CTMC model and
because we are primarily interested in the synchronization behavior of one se-
lected reader, we will instantiate our model with one reader (i.e., J = 1) and
vary the number of writers I between 1 and 5. For the queries Q1, Q3 and Q5,
we vary the number of replicas K between 1 and 5. For the remaining queries we
fix K to 5. All times are average durations relative to the average read duration.

The computations were carried out on an Intel Core i7 2640M @ 2.8GHz.
For our parameter sets, the model sizes ranged from 13 states (I = K = 1) up
to approximately 50 million states (I = K = 5). By applying PRISM’s built-in
symmetry reduction, we were able to reduce the state space significantly to about
0.65 million states. Using PRISM’s sparse engine, we observed model checking
times between a fraction of a second and 6 minutes (Q1, I = K = 5). To ob-
tain the long-run probabilities and accumulated rewards, we applied our PRISM
extension [BDE+12b] that calculates the weighted sums using the steady-state
distribution θ. For Q2 we approximated the time-quantile by sampling with a
period of 0.25 time units. In order to compute property Q6 efficiently, we trans-
lated it into a nested PCTL query that yields a compact Rabin automaton for
the converse property: “The probability to write at most c damaged replicas
where c ≤ K”.

Reader Performance (Queries Q1 – Q2). Figs. 4(a), 4(c) and 4(e) show
the probability to read a consistent replica in the three analyzed scenarios. For
Scenario 2 and 3, we clearly see that as few as four respectively two replicas
suffice to reach success rates over 95% even if replicas are damaged by interfering
writers. In the worst case Scenario 1, reads are still successful in over 45% of all
cases once the number of replicas exceeds the number of writers.

Query Q2 projects the Q1 results into the time domain. Figs. 4(b), 4(d)
and 4(f) show the probability of reading the shared object successfully within
the time bound t. Recall, the average time to read a replica is one time unit.

11



1 2 3 4 5
no. of replica K

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(a) Q1: frequent reads/writes

0 2 4 6 8 10 12
time bound t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(b) Q2: frequent reads/writes

1 2 3 4 5
no. of replica K

0.75

0.80

0.85

0.90

0.95

1.00

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(c) Q1: freq. reads/mod. writes

0 2 4 6 8 10 12
time bound t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(d) Q2: freq. reads/mod. writes

1 2 3 4 5
no. of replica K

0.75

0.80

0.85

0.90

0.95

1.00

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(e) Q1: mod. reads/occ. writes

0 2 4 6 8 10 12
time bound t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(f) Q2: mod. reads/occ. writes

Fig. 4. Results for the Queries Q1 and Q2

As expected, additional writers cause more replica to be inconsistent. The time
to find a consistent replica increases with the number of writers. There are two
important points to notice. First, if we take the average write duration multiplied
by the number of writers plus the average time to read a replica (i.e., 3, 5, 7, 9 and
11 time units for 1, . . . , 5 writers, respectively) the probability to have read the
object successfully is well over 90% for Scenario 2 and well over 99% for Scenario
3 and 2 or more writers. Another point to notice is the gap between the curves
and probability 1. In particular for Scenario 1, the 4-writer curve approaches
62% but never reaches 1. Part of this gap can be explained by writers currently
modifying the replica, which renders the replica temporarily inconsistent. To
better grasp the influence of damage on this gap, we have analyzed queries Q3
to Q6.

12



1 2 3 4 5
no. of replica K

40

50

60

70

80

90

100

110

120

av
er

ag
e 

re
pa

ir 
tim

e 
t 2 writers

3 writers

4 writers

5 writers

(a) Q4: mod. reads/occ. writes

0 50 100 150 200 250 300 350 400
time bound t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 p

2 writers

3 writers

4 writers

5 writers

(b) Q5: mod. reads/occ. writes

1 2 3 4 5
no. of replica K

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

pr
ob

ab
ili

ty
 p

2 writers

3 writers

4 writers

5 writers

(c) Q3: mod. reads/occ. writes

1 2 3 4 5
no. of replica written consistently c

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

pr
ob

ab
ili

ty
 p

2 writers

3 writers

4 writers

5 writers

(d) Q6: mod. reads/occ. writes

Fig. 5. Results for the Queries Q3 – Q6

Replica Damage (Queries Q3 – Q6). Fig. 5 shows the results for queries
Q3 to Q6. Due to the limited space, we present only the results for Scenario 3.
However, we confirmed that the results for Scenario 2 follow the same trend.
Q3 shows that in a system with only a single replica, the likelihood that it is
damaged is below 4%. The probability that all replicas are damaged further de-
creases when the number of replicas is increased. Queries Q4 (Fig. 5(a)) and Q5
(Fig. 5(b)) address the time a replica stays damaged. In both figures, we see a
superposition of two effects: more writers damage a replica with higher probabil-
ity but the higher write rate reduces the time before a replica gets repaired. Q6
confirms these observations by answering the question how likely it is to write c
consistent replicas out of 5 replicas. Over 99% of all writes manage to produce
at least one replica, which explains the high success rate of readers.

From these observations, we can conclude: (1) PWCS preserves a high chance
of finding the shared object consistent as long as the number of replica exceeds
the number of writers. (2) Special precautions to avoid damage or to make
damage distinguishable from temporary inconsistencies are not justified.

Experimental Confirmation. To confirm our findings about damaged repli-
cas, we have implemented an element-wise PWCS-protected array. We vary the
size of the array to adjust read and write rates. Fig. 6 shows the results for queries
Q1 and Q6. All measurements were taken on an Intel Xeon X5650 @ 2.67GHz
(hyperthreading disabled). The array remains in the shared L3 cache throughout
our benchmark. The measurements confirm the analytical results except in the
one replica case in Q1. We attribute this deviation to interference from the cache

13



1 2 3 4 5
no. of replica K

0.75

0.80

0.85

0.90

0.95

1.00

pr
ob

ab
ili

ty
 p

1 writer

2 writers

3 writers

4 writers

5 writers

(a) Q1: mod. reads/occ. writes

1 2 3 4 5
no. of replica written consistently c

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

pr
ob

ab
ili

ty
 p

2 writers

3 writers

4 writers

5 writers

(b) Q6: mod. reads/occ. writes

Fig. 6. Measurement results for the Queries Q1 and Q6

coherence protocol, which prior to writing invalidates copies of the replica of all
other readers and writers. Our model does not take cache effects into account.

Notice that we do not give graphs for Q4 and Q5 because both queries are
very hard to measure, since they require global knowledge and very tight syn-
chronized clocks. Moreover, the operations to gather and distribute this infor-
mation from the damaging writers to the repairing writer would influence the
measurement code such that they conceal the actual effect we would like to
measure.

6 Conclusions

This work presented a quantitative analysis of Probabilistic-Write/Copy-Select
(PWCS) using continuous-time Markov chains and probabilistic model-checking
techniques implemented in the model checker PRISM. PWCS is a new synchro-
nization protocol based on the implicit-randomness induced by the complexity of
todays many-core systems. In our analysis, we were able to confirm Mc Guire’s
measure-based experiments: few replicas suffice to maintain a high probability
(> 95%) of finding a consistent replica. We established these results for the com-
mon situations where reads dominate the shared object accesses. In addition, we
also confirmed these findings for more exceptional scenarios with frequent writes.

We extended PWCS and considered multiple, parallel writers without ad-
ditional synchronization. Our analysis revealed a high probability of repairing
damaged replicas within reasonable time bounds. This high repair rate trans-
lates into a low probability (< 4%) to actually damage the object by damaging
all its replicas.

A particularly interesting point of our formal analysis is that it revealed
insights in the behavior of PWCS that evade measurement-based investigations.
We consider this as a general advantage of probabilistic-model checking and plan
to investigate further low-level algorithms that exhibit very short runtimes and
where the instrumentation-induced interfere conceals the quantities to measure.
In addition, we plan to look into further variants of PWCS and, more generally,
into implicit-randomness based stochastic algorithms.

14



References

ASSB00. A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Model checking
continuous-time Markov chains. ACM Transactions on Computational
Logic, 1(1):162–170, 2000.

BDE+12a. C. Baier, M. Daum, B. Engel, H. Härtig, J. Klein, S. Klüppelholz,
S. Märcker, H. Tews, and M. Völp. Chiefly symmetric: Results on the
scalability of probabilistic model checking for operating-system code. In
SSV 2012, volume 102 of EPTCS, pages 156–166, 2012.

BDE+12b. C. Baier, M. Daum, B. Engel, H. Härtig, J. Klein, S. Klüppelholz,
S. Märcker, H. Tews, and M. Völp. Waiting for locks: How long does it usu-
ally take? In FMICS 2012, volume 7437 of LNCS, pages 47–62. Springer,
2012.

BHHK00. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical
characterisation of performability properties. In 27th International Collo-
quium on Automata, Languages and Programming (ICALP), volume 1853
of LNCS, pages 780–792. Springer, 2000.

BHHK03. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model check-
ing algorithms for continuous-time Markov chains. IEEE Transactions on
Software Engineering, 29(6):524–541, 2003.

CGH+10. N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, and W. Serwe.
Leveraging applications of formal methods, verification, and validation.
In 4th International Symposium on Leveraging Applications (ISoLA (2)),
volume 6416 of LNCS, pages 128–142. Springer, 2010.

GM99. E. Gafni and M. Mitzenmacher. Analysis of timing-based mutual exclusion
with random times. In 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 13–21. ACM, 1999.

Gui11. N. Mc Guire. Probabilistic write copy select. In 13th Real-Time Linux
Workshop, pages 195–206, Oct. 2011.

KNP04. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: a hybrid approach. STTT, 6(2):128–142,
2004.

KNP05. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model check-
ing in practice: case studies with prism. SIGMETRICS Performance Eval-
uation Review, 32(4):16–21, 2005.

KNP09. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: probabilistic
model checking for performance and reliability analysis. SIGMETRICS
Performance Evaluation Review, 36(4):40–45, 2009.

KS60. J. Kemeny and J. Snell. Finite Markov Chains. D. Van Nostrand, 1960.
Kul95. V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman &

Hall, 1995.
KZH+11. J.-P. Katoen, I. S. Zapreev, E. Moritz Hahn, H. Hermanns, and D. N.

Jansen. The ins and outs of the probabilistic model checker MRMC. Per-
formance Evaluation, 68(2):90–104, 2011.

MCS91. J. Mellor-Crummey and M. Scott. Scalable reader-writer synchronization
for shared-memory multiprocessors. In PPOPP’91, pages 106–113. ACM,
April 1991.

MS10. R. Mateescu and W. Serwe. A study of shared-memory mutual exclusion
protocols using CADP. In 15th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS), volume 6371 of LNCS, pages 180–
197. Springer, 2010.

15


	A Probabilistic Quantitative Analysis of Probabilistic-Write/Copy-Select
	Introduction
	Probabilistic-Write/Copy-Select
	Stochastic model of PWCS
	Preliminaries
	Modeling the PWCS-protocol

	Quantitative Analysis
	Evaluation
	Conclusions


