
��$���!� +��
�����$ � +������ �,� �-����������$���

�.	/'+	0* �.#)��

+��' 1234�5116

� ����13�45'
������ 5413

��������� �������!����"��
+������ �,� �-����������$���
*������� �,� �-��� .����������
��$���!� +��
�����$
41475���"��8 9�����-
�����::�;���;���"��"��;"�:

����������	
����

�����������������
����������
�����
�

�
���
��������
��
���������������
��

	����
��������

���������� �������!�����"��

#�����$�%������
#�����������

 �������&�"��'����(���

���������

)������*��

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236369418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Selective Core Boosting: The Return of the Turbo Button
Jons-Tobias Wamhoff
Stephan Diestelhorst

Christof Fetzer
Technische Universität Dresden,

Germany
first.last@tu-dresden.de

Patrick Marlier
Pascal Felber

Université de Neuchâtel,
Switzerland

first.last@unine.ch

Dave Dice

Oracle Labs,
USA

first.last@oracle.com

Abstract
Several modern multi-core architectures support the dy-

namic control of the CPU’s clock rate, allowing processor cores
to temporarily operate at speeds exceeding the operational
base frequency. Conversely, cores can operate at a lower speed
or be disabled altogether to save power. Such facilities are no-
tably provided by Intel’s Turbo Boost and AMD’s Turbo CORE
technologies. Frequency control is typically driven by the
operating system which requests changes to the performance
state of the processor based on the current load of the system.

In this paper, we investigate the use of dynamic frequency
scaling from user space to speed up multi-threaded applications
that must occasionally execute time-critical tasks or to solve
problems that have heterogeneous computing requirements. We
propose a general-purpose library that allows selective control
of the frequency of the cores—subject to the limitations of the
target architecture. We analyze the performance trade-offs and
illustrate its benefits using several benchmarks and real-world
workloads when temporarily boosting selected cores executing
time-critical operations. While our study primarily focuses on
AMD’s architecture, we also provide a comparative evaluation
of the features, limitations, and runtime overheads of both
Turbo Boost and Turbo CORE technologies. Our results show
that we can successful exploit these new hardware facilities
to accelerate the execution of key sections of code (critical
paths) improving overall performance of some multi-threaded
applications [11]. Unlike prior research, we focus on perfor-
mance instead of power conservation. Our results further can
give guidelines for the design of hardware power management
facilities and the operating system interfaces to those facilities.

1. Introduction
While early generations of multi-core processors were
essentially homogeneous with all cores operating at the same
clock speed, new generations of CPUs provide finer control
over the frequency and voltage of the individual cores. A major
motivation for this new functionality is to maximize processor
performance without exceeding the thermal design power
(TDP), as well as reducing energy consumption by decelerating
idle cores [4, 33].

Two main CPU manufacturers, Intel and AMD, have
proposed competing yet largely similar technologies for
dynamic voltage and frequency scaling (DVFS) that can exceed
the processor’s nominal operation frequency, respectively
named Turbo Boost [37] and Turbo CORE [3]. While the
former can dynamically adjust the clock speed of individual
cores and also power them down completely, the latter can only
change the frequency and voltage of groups of cores at a time.

Despite the differences in features and implementation of these
technologies, they both allow the system to temporarily boost
the performance of selected cores.

Boosting is typically controlled by hardware and is com-
pletely transparent to the operating system and applications.
Yet, it is sometimes desirable to be able to finely control these
features from an application as needed. Examples include:
speeding up critical sections to reduce the time window during
which other threads have to wait; boosting a high-priority
thread that must meet a nearing deadline; minimizing the
completion and waiting times of algorithms running concurrent
tasks with different computing requirements; or reducing the
energy consumption of applications executing low-priority
threads. Furthermore, workloads specifically designed to run
on processors with heterogeneous cores (e.g., few fast and many
slow cores) may take additional advantage of application-level
frequency scaling. We argue that in all these cases, fine-grained
tuning of core speeds requires application knowledge and
hence cannot be efficiently performed by hardware only.

To meet these needs, we have designed and implemented
a general-purpose library for programmatically controlling
the speed of the cores of CPUs with AMD’s Turbo CORE
and Intel’s Turbo Boost technologies. Both implementations
are subject to several limitations (e.g., some combination of
frequencies are disallowed, cores must be scaled up/down in
groups, or the CPU hardware might not comply with the scaling
request in some circumstances), and the cost of switching
frequencies is subject to important variations depending on the
method used for modifying processor states and the specific
change requested. The publicly available documentation is
scarce, and we believe to be the first to publish an in-depth
investigation on the behavior, performance, and limitations
of these technologies. Based on these findings, we develop
our library, which we named TURBO, to abstract away from
the low-level differences and complexities. In a sense, this
library is the software counterpart of the physical “turbo button”
available in some early personal computers to manually switch
the operating frequency of the processor.

Based on our findings, we provide the following recommen-
dations for processor and operating system designers:

• The control of frequency scaling should be made avail-
able through platform-independent application program
interfaces (APIs) or instructions.

• These APIs or instructions should include the ability to read
or query frequency transition costs for building a cost model
that allows DVFS-aware code to adapt at runtime.

• Ideally, the processor should support frequency scaling
individually for each core. The Intel design allows boosted

1

frequencies only if some cores are inactive, while the AMD
design proved to be more flexible since it allows to keep
cores active at a lower frequency when others are boosted
but the granularity is limited to pairs of cores. Additionally,
for some workloads it would be beneficial to efficiently
set the frequency for remote cores in order to have local
boosting control.

• The frequency transition should be as fast as possible so that
short boosted sections can already amortize the transition
cost.

• The processor should support a more efficient frequency
control from user space, i.e., eliminate the latency that results
from the current requirement to switch into kernel space to
access platform-specific power management devices. The
operating system should also support a kernel parameter that
disables all automatic frequency scaling.

• The frequency transitions should be asynchronous, triggered
by a request and not blocking. Currently, the transition to
a lower frequency blocks the AMD processor core until it
is finished. When moving to a higher frequency, the core
remains operational.

• The integrated voltage controller should support per-core
voltage control to provide higher energy savings with lower
frequencies instead of using the highest voltage for all cores.

• The operating system should keep the current frequency
in the thread context to better support context switches and
thread migrations.

• Ideally, the operating system would expose a new set
of advisory platform-independent APIs to allow threads
to set their desired DVFS-related performance targets.
Furthermore, the operating system kernel (and potentially
a virtual machine hypervisor) would moderate potentially
conflicting DVFS resource requests from independent and
mutually unaware applications.

While the hardware and operating system are currently tuned
to use frequency scaling to boost sequential bottlenecks, our
evaluation shows that manual frequency scaling with additional
application knowledge has great benefit for applications
with heterogeneous workload distributions. With automatic
frequency scaling, these opportunities cannot be fully exploited
and hence, the application is not able to reach the maximum
available performance.

In short, the contributions of this paper are fourfold: (i) a
comparative analysis of Intel’s Turbo Boost and AMD’s Turbo
CORE technologies, including a description of the frequency
and operational configurations of the processors used in our
evaluation (Section 2); (ii) the design and implementation of the
TURBO library that provides primitives for programmatically
controlling the frequency and voltage of the cores from user
space (Section 3); (iii) an in-depth evaluation of transition
latencies and strategies for switching processor states that we
use to derive a simplified model (Section 4); and (iv) four case
studies that show the performance gains and trade-offs with
real-world benchmarks (Section 5).

Package

L3 cache

L2 cache

Module

L1 data cache

Core FPU Core

Module

L1 instr. cache L1 data cache

L2 cache

Module

L1 data cache

Core FPU Core

L1 instr. cache L1 data cache

L2 cache

L1 data cache L1 instr. cache L1 data cache

Core FPU Core
Module

L2 cache

L1 data cache L1 instr. cache L1 data cache

Core FPU Core

Figure 1: Organization of an AMD FX-8120 processor.

2. Hardware Support
With both AMD’s Turbo CORE and Intel’s Turbo Boost,
performance levels and power consumption of the processor
are controlled through two types of operational states:

P-states implement dynamic voltage and frequency scaling
(DVFS), and set different frequency/voltage pairs for operation,
trading off higher voltage (and thus higher power draw) with
higher performance through increased operation frequency.
Additionally, C-states are used to save energy when a core
is idle, with C0 being the normal, non-idle state, and C1-Cn
representing idle states with different levels of power saving
and wakeup latency. C-states trade entry/wakeup latency
for lower power draw while sleeping, entry and exit to deep
C-states can take on the order of milliseconds. The number
and nature of these states differ depending on the processor
and are discussed in the rest of the section.

The operating system can invoke sleep states through various
means such as the hlt and monitor/mwait instructions.
P-states can be controlled from the operating system through
special machine-specific registers (MSRs) that are accessed
through the rdmsr/wrmsr instructions. The operating system
can request a P-state change by modifying the respective MSR.
P-state changes, also, are not instantaneous: current needs to
change and frequencies are ramped, both taking observable
times.

We base our work on AMD’s FX-8120 and Intel’s i7-4770
CPUs, whose characteristics are listed in Table 1.

2.1. AMD’s Hardware

The architecture of the AMD FX-8120 processor is illustrated
in Figure 1. Processor cores are organized by pairs in modules
that share parts of the logic between the two cores. Power draw
of the processor can be controlled via P-states and C-states.
The Turbo CORE hardware extensions are documented as part
of the BIOS and kernel developer’s guide [1].

Our processor supports seven P-states summarized in
Table 2. The two topmost are boosted P-states that are
controlled by the hardware. The remaining five P-states can
be set by the operating system through the MSRs, and the
numbering in software differs from the hardware P-states:
PHW =PSW +NumBoostStates.

The net effect of these changes is that the operating system
cannot directly set the highest available hardware P-state
but instead hardware will automatically boost the frequency
beyond the nominal P-state if operating conditions permit. The

2

AMD FX-8120 Intel i7-4770
Model AMD Family 15h Model 1, codename “Bulldozer” Intel Core 4th generation, codename “Haswell”
Design 4 modules with 2 cores, 2 ALUs, 1 FPU 4 cores with hyper-threading (8 threads)

L1 data cache 8x 16KB, 4-way, write-through, per core 4x 32KB, 8-way, per core
L1 instruction cache 4x 64KB, 2-way, per module 4x 32KB, 8-way, per core

L2 cache 4x 2MB, 16-way, per module 4x 256KB, 8-way, per core
L3 cache 1x 8MB, 64-way, per package 1x 8MB, 16-way, per package

Cache latency 3 cycles L1,⇠18 cycles L2,⇠65 cycles L3 4 cycles L1, 11-16 cycles L2, 30-55 cycles L3
Memory DDR3 1866 MHz, integrated memory controller DDR3 1600 MHz, integrated memory controller

Base frequency 3.1GHz 3.4GHz
Domain frequency range 1.4–4.0GHz (100MHz stepping) 0.8–3.9GHz (100MHz stepping)

Domain voltage range 0.875–1.412V (3.412–24.577W) 1.65–1.86V
Thermal design power 125W 84W

Table 1: Specification of the AMD FX-8120 and Intel i7-4770 CPUs.

Hardware P-state P0 P1 P2 P3 P4 P5 P6
Frequency (GHz) 4.0 3.4 3.1 2.8 2.3 1.9 1.4

Voltage (mV) 1412 1412 1275 1212 1087 950 875

Table 2: Default P-state configuration of AMD FX-8120.

processor determines the current power consumption and will
switch to hardware P1 state, if the total power draw remains
within the thermal design power (TDP) limit, and the operating
system requests the highest (software) P-state. The highest
boosted P-state, hardware P0, is entered automatically if some
cores have furthermore reduced their power consumption by
entering a deep C-state. During a P-state change, the processor
remains active and capable of executing instructions, and
the completion of a P-state transition is indicated in a MSR
available to the operating system.

Due to the pairwise organization of processor cores in
modules, the effect of a P- and C-state change depends on
the state of the neighboring core. While neighboring cores
can control P-states independently, the lowest (i.e., fastest)
P-state of the two cores will apply to the entire module. Since
the wrmsr instruction can only be executed on the current core,
it can only have full control over the frequency scaling if the
other core is running at the highest (i.e., slowest) P-state. The
processor consumes always the voltage defined by the fastest
active P-state (see Table 2).

On selected AMD processors, the number of hardware-
reserved P-states can be controlled by changing
NumBoostStates through a configuration MSR. In our
work we set NumBoostStates = 0 and thus can achieve full
control over boosting. The core safety mechanisms are still
in effect: the hardware only enters a boosted P-state if the TDP
limit has not been reached.

2.2. Intel’s Hardware

Intel’s boosting technology is largely similar to AMD’s. It
mainly differs in the granularity for setting frequencies of
individual cores and the level of control for changing them from
software. Current Intel CPUs use the same frequency for all
active cores. Each core can request different P-states, i.e., fre-
quencies but all cores will run at the highest possible requested
frequency. Modern CPUs in the “Haswell” family can adjust

the performance state with 100MHz steps inside the range of
the operating frequencies. The i7-4770 processor used for our
experiments supports frequencies from 800MHz to 3900MHz
corresponding to 32 P-states, out of which 5 are boosted.

Intel’s Turbo Boost technology supports boosting of some
of the cores. While one can request a boosted P-state for an
individual core, there is no guarantee that it will effectively run
boosted. Indeed, boosted P-states are controlled by hardware.
The maximum boosting ratio can be adjusted depending on the
number of active cores using C-states set with a specific MSR,
and the boost level is determined depending on the current
TDP. Therefore, the more cores are sleeping, the more of the
remaining cores can be boosted.

A main difference in the designs of AMD and Intel’s
technologies is that the granularity of C-states is at the level
of a whole module for the former, whereas the latter allows
powering down individual cores. Another notable difference
is that Intel does not permit that only some of the cores
operate at a slower frequency (i.e., they all run at the highest
requested frequency). The reasoning behind this design choice
is that it is in general more effective to process tasks as fast
as possible, and then put some cores to sleep using C-states.
We argue in this paper that there are benefits in keeping
selected cores operational, albeit at a lower frequency, and that
manipulating P-states can be more efficient in terms of latency
than manipulating C-states. One should also note that the
boosting ratio is higher on AMD processors, with announced
plans to reach frequencies up to 5GHz for boosted cores.

3. Turbo Library
The TURBO library, written in C++, provides components for
low-level and hardware-centric multi-threaded programming.
Our focus is not to provide mechanisms for automatic tuning of
applications but a set of abstractions that make it convenient to
improve highly optimized software based on frequency scaling.
The abstractions allow us to configure the underlying processor
cores and to map workloads to specific cores.

3.1. Architecture and Components

Figure 2 illustrates the components of the TURBO library.
The lowest level presents abstractions for the interfaces of
the underlying AMD and Intel hardware, as well as the Linux

3

Linux kernel

Hardware
abstraction

Topology
- Cores
- Modules
- Packages

PCI-Configuration
- Vendor info
- Boosting config
- NB config

MSR
- P-state setting
- MWAIT config
- HW counters

PerfEvent
- HW events
- OS events

Dynamic
tuning

ThreadControl
- TID, CoreID
- Core migration
- Sleep or wait

P-States
- P-state: fast/base/slow, %
- Boosted P-states: on/off
- Manual/automatic boosting

PerformanceMonitor
- Interval frequency
- Interval C-states
- Duration: cycles, time

Execution
management

ThreadRegistry
- Create thread
- Register thread
- Exit thread

ThreadControl
- Lock (mutex, spinlock), barrier, conditional
- Optionally: performance profiling
- Decorated: P-state transition, core migration, MWAIT

Workload
distribution

Scheduler
- Thread-local and global job queues
- Dispatch jobs onto threads of thread pool

Workload
specification

Jobs
- Types: loop iterations, execute once, exclusive, barrier
- Arguments: input parameters, target CPU

Turbo driver perf_eventACPI driver & sysfs

ProcessorMSRs PMUProcessor cores

Figure 2: Library components for low-level multi-threaded
programming.

operating system. The Linux kernel provides a device driver
that lets applications access MSRs as files under root privilege
using pread and pwrite. We implemented a lightweight
TURBO kernel driver for a more streamlined access to the
processor’s MSRs using ioctl calls. The driver essentially
provides a wrapper for the wrmsr and rdmsr instructions to be
executed on the current processor core. Additionally, it allows
kernel space latency measurements, e.g., for P-state transition
time, with more accuracy than from user space.

The TURBO library needs to be aware of all threads that are
used by an application. Threads can be created or registered
using the thread registry if the application explicitly manages
them. The threads must be pinned to the processor cores
according to the topology of the hardware because the TURBO
library maintains the current configuration of the P-states,
which is specific to a core. When the library migrates threads
to other cores, the cached P-state configuration is updated.

The components for dynamic tuning provide the function-
ality for managing frequency scaling. The library currently
provides different levels of abstraction. The lowest level
captures the hardware interface and allows direct P-state
control. The higher levels provide convenient abstractions
that deal with P-states implicitly, e.g., mutex wrappers
decorated with boosting or jobs with assigned priority. During
initialization, the boosting capabilities can be configured for the
entire processor (for details see Section 3.2). At runtime, the
threads can request the executing processor core to run at the
lowest (fastest), base or highest (slowest) P-state. Alternatively,
the P-state can be specified in percent based on the fastest
P-state. The actual P-state is derived from the selected boosting
setup. The current P-state configuration is cached in the library
in order to save the overheads from accessing the MSRs in
kernel space. If a P-state is requested but is already set or
cannot be supported by the processor policy, then the operation
has no effect. Threads can also request to temporarily migrate

to a dedicated processor core that runs at the highest possible
frequency and always stays fully operational (C0-state).

An important task for highly optimized applications is to
identify sections that can benefit from frequency scaling. There-
fore, the TURBO library provides wrappers for locks, barri-
ers, and condition variables for execution management. The
wrappers can be decorated with profiling capabilities of the
performance monitor, which in turn allows us to measure the
frequency and C-state during an interval defined by the wrapper.
The interval of the wrapper’s states is measured in time and
cycles, e.g., to analyze the properties of a critical sections such
as the average number of cycles or stalls. The performance
monitor uses the aperf/mperf and tsc counters [1] of the
processor and the perf_event facilities of the Linux kernel to
access the processor’s performance monitoring unit (PMU).The
wrappers can also be decorated to implicitly request P-state tran-
sitions, e.g., to run at the lowest frequency while the lock is
busy and at the fastest one while holding the lock.

The workload specification and distribution provide optional
components that can be used as a testbed for heterogeneous
programming with dynamic frequency scaling. The basic entity
of work is a job with properties such as a type, input parameters,
and a target core. The supported types of jobs include: execute
once, run as loop body, execute exclusive on all cores, or
wait on a barrier. Our design goal was to provide an API that
allows developers to communicate precisely what to execute
on which processor core and at which time. This is in contrast
to most parallel frameworks that try to automatically introduce
parallelism without providing control on how a workload is
mapped to the underlying hardware. The scheduler maintains
the constraints of the specified jobs and dispatches them onto
the threads for execution. For that purpose, it uses internal
queues that provide the mapping of work to the processor cores.

All components for the hardware abstraction and dynamic
tuning can be used individually to adapt the TURBO library to
existing infrastructures that use multiple threads or processes.1

3.2. Processor and Linux Kernel Setup

The default configurations of the Linux kernel and AMD
processors contain mechanisms that manage the frequency
scaling automatically. The Linux governor will adapt the
P-states based on the current processor utilization (“onde-
mand”) or based on static settings that are enforced periodically
(“performance”, “powersave”, “userspace”). The boosted
P-states are managed by the processor itself within the TDP.

We must disable the influence of the governors and the
processor in order to gain explicit control of the P-states
and boosting in user space using our library. Note that he
“userspace” governor provides an alternative P-state interface
but introduces higher latencies and gives no control over
boosted P-states. Therefore, we disable the CPU frequency
driver (cpufreq) and turn off AMD’s PowerNow speed
throttling technology in the BIOS. We then set the number of

1Applications that make use of multiple processes are currently not
supported but the library can be extended by keeping all configuration in
memory shared between the processes.

4

boosted P-states to 0 so that the P-state numbering in hardware
and software match (P0HW = P0SW) and disable the application
power management (APM). This allows us to control all avail-
able P-states in software within the processor’s enforced TDP
policy. Changing the number of boosted P-states also changes
the frequency of the tsc counter for AMD processors so we
therefore disable tsc as a clock source for the Linux kernel and
instead use hpet. In a production system, these tweaks will
obviously become unnecessary or be performed automatically.

Each P-state sets a specific voltage and frequency identifier.
Before beginning a frequency transition, the processor sends a
request to the voltage regulator according to the configuration.
The processor has a configurable delay before sending such
requests, which we set to the minimum possible value of 32µs.
During the P-state transition, the processor core remains fully
operational.

The processor additionally applies automatic frequency
scaling for the northbridge [9] that can have a negative
impact on memory access times for boosted processor cores.
Therefore, northbridge P-states are disabled and the chip
always runs at the highest possible frequency.

Linux uses the monitor and mwait instructions to idle
processor cores and allow them to change the C-state.
When another core writes to the address range specified by
monitor, then the core waiting on mwait wakes up. The
monitor-mwait facility provides a “polite” busy-waiting
mechanism that minimizes the resources consumed by the
waiting thread. For experiments, we enable these processor
instructions for user space and disable the use of mwait in
the kernel to avoid progress failure scenarios. Similarly, we
must also disable the use of the hlt instruction by the kernel,
because otherwise we cannot guarantee that at least one core
stays in C0-state. We set the maximum C-state for the Linux
kernel to 0 and use the polling idle mode. Again, these changes
are required in our prototype for the evaluation of mwait,
which requires C-state control from the user space, and should
not be necessary in a production system.

The presented setup highlights the importance of the
configuration of both the hardware and the operating system
for sound benchmarking. All modifications of the Linux kernel
are done using kernel parameters and no changes to its source
code are required. For experiments with our AMD processor,
we used a P-state configuration of P2 for all cores to enforce
the base operational frequency without latencies due to C-state
transitions. We also stopped other sources of unpredictability,
e.g., all periodic cron jobs.

The setup with the Intel processor is similar to AMD. We also
disable the performance governor and the CPU frequency driver
in the Linux kernel. Since Intel has not a fixed range of P-state,
we adapted to match the AMD convention. P0 corresponds
to the maximum boosted state (denoted by “Turbo” in exper-
iments on Intel), P2 is the maximum non-turbo state (“Max”)
and P6 is the minimum frequency state (“Min”). The maximum
boosted state is controlled automatically and depends on 4
criteria: number of active cores, estimated current consumption,
estimated power consumption, and processor temperature. We
did not run experiments with monitor-mwait on Intel because

these instructions cannot be enabled in user-space mode.

4. Evaluation
On top of the TURBO library presented in Section 3, we im-
plemented a set of benchmark applications that profile and con-
figure the underlying processor. The applications measure the
latency of P-state transitions and compare different strategies
for the P-state configuration, both statically and dynamically.

4.1. P-State Transition Latency

We first investigate the overheads that are introduced by
the dynamic control of the frequency scaling. For a better
understanding, we first measure the cost of the different system
calls used for configuration and then investigate the latencies
of P-state transitions in isolation. We present the results for
AMD in Table 3 and for Intel in Table 4.

P-State Mean Deviation
Operation Transition Cycles ns Cycles ns
syscall(getpid) — 939 234 68 17
ioctl(trb) — 1173 293 68 17
pread(msr,mperf) 2 — 2 2391 597 84 21
ioctl(trb,mperf) 2 — 2 1475 368 98 24
pread(msr,pstate) — 3448 862 114 28
ioctl(trb,pstate) — 2541 635 125 31
pwrite(msr,pstate,2) 2! 2 3352 838 130 32
ioctl(trb,pstate,2) 2! 2 2077 519 108 27
wrmsr(pstate,6) 2! 6 28087 7021 105 26
wrmsr(pstate,6)&wait 2! 6 29783 7445 120 30
wrmsr(pstate,0) 6! 0 1884 471 35 8
wrmsr(pstate,0)&wait 6! 0 226988 56747 84 21
wrmsr(pstate,2) 0! 2 23203 5800 36 9
wrmsr(pstate,2)&wait 0! 2 24187 6046 139 34
wrmsr(pstate,2) 6! 2 1898 474 79 19
wrmsr(pstate,2)&wait 6! 2 183359 45839 130 32
wrmsr(pstate,0) 2! 0 1007 251 106 26
wrmsr(pstate,0)&wait 2! 0 94762 23690 138 34
wrmsr(pstate,1) 2! 1 1006 251 130 32
wrmsr(pstate,1)&wait 2! 1 95234 23808 68 17
wrmsr(pstate,2) 1! 2 23597 5899 33 8
wrmsr(pstate,2)&wait 1! 2 24574 6143 138 34
monitor&mwait — 1698 424 95 23
pthread_setaffinity — 26728 6682 49 12

Table 3: Overheads of system calls and latencies of P-state
transitions measured during 100,000 runs (AMD FX-8120).

System calls for device-specific ioctl input/output opera-
tions are only slightly more expensive than regular system calls,
e.g., to get the process identifier. Ioctl calls are easily exten-
sible using the request code parameter. The interface of the
TURBO driver (trb) is based on ioctl, while the Linux MSR
driver (msr) uses a file-based interface that can be accessed
most efficiently using pread and pwrite. Reading the current
P-state is implemented in the Linux kernel using the rdmsr
instruction. The difference in speed between msr and trb
results mostly from additional security checks and indirections
that we streamlined for the TURBO driver. The cost in time for
all system calls depends on the P-state, i.e., reading the current

5

P-State Mean Deviation
Operation Transition Cycles ns Cycles ns
syscall(getpid) — 1246 366 118 34
ioctl(trb) — 1266 372 98 28
pread(msr,mperf) — 1602 471 113 33
ioctl(trb,mperf) — 1351 397 85 25
pread(msr,pstate) — 2236 657 91 26
ioctl(trb,pstate) — 1975 580 92 27
pwrite(msr,pstate,Max) 2! 2 3635 1069 85 25
ioctl(trb,pstate,Max) 2! 2 3299 970 84 24
wrmsr(pstate,Max) 6! 2 6485 8106 103 128
wrmsr(pstate,Max)&wait 6! 2 63366 79207 122 152
wrmsr(pstate,Min) 2! 6 2008 590 50 14
wrmsr(pstate,Min)&wait 2! 6 71998 21175 98 28
wrmsr(pstate,Turbo) 2! 0 2008 590 42 12
wrmsr(pstate,Turbo)&wait 2! 0 311951 90571 381 112
monitor&mwait — 636 163 124 32
pthread_setaffinity — 15784 4642 71 20

Table 4: Overheads of system calls and latencies of P-state
transitions measured during 100,000 runs (Intel i7-4770).

P-state scales with the selected frequency. The presented
measurements were executed at the base operational frequency.

0 50000 100000 150000 200000 250000
10�1

100

101

102

103

104

105

O
cc

ur
re

nc
es

(lo
g

sc
al

e)

P-state transition latency
wrmsr(p,6!2)&wait
wrmsr(p,2!6)&wait
wrmsr(p,2!0)&wait

0 10000 20000 30000 40000 50000 60000 70000 80000
Cycles

10�1

100

101

102

103

104

105

O
cc

ur
re

nc
es

(lo
g

sc
al

e)

P-state configuration latency
wrmsr(p,6!2)
wrmsr(p,2!6)
wrmsr(p,2!0)

Figure 3: Latency for P-state transitions and P-state configura-
tions measured for 100,000 executions (AMD FX-8120).

The TURBO driver also allows us to measure the latencies
of P-state transitions in kernel space, removing the inaccuracy
due to system call overheads. A P-state transition is initiated by
writing the desired value into the P-state MSR of the current pro-
cessor core using wrmsr. We measured the cost of the wrmsr
instruction itself, as well as the latency until the P-state transi-
tion is finished, by busy waiting until the frequency identifier of
the P-state is set in the status MSR. In addition to the averages
in Table 3, Figure 3 shows the distribution for runs on the AMD

processor. Requesting a P-state lower than the current one (i.e.,
going faster) has low overhead in itself, but the entire transition
triggered by the request has a high latency due to the time the
voltage regulator takes to reach the target voltage. Unfortu-
nately, no details are given by the manufacturers. The distribu-
tion shows in log-scale that the latency is at least predictable
and has only few outliers. We observe, in-line with the manuals,
that the core remains fully operational during the transition.

The request to switch to a higher P-state (i.e., going slower)
has almost the same latency as the entire transition, i.e., the
core is blocked during most of the transition. We suspect that
this may be caused by the need to coordinate with the other
core in the module to see if an actual P-state change will occur.
We believe that the handshake with the remote core is slow
and causes the long blocking time. Overall, the transition has
a lower latency because the frequency can already be reduced
before the voltage regulator is finished. If only switching to
a high P-state for a short period, the transition to a lower P-state
will be faster if the voltage was not dropped completely. Note
that the frequency and voltage identifiers are module-wide
settings, i.e., the fastest P-state of both cores determines the
frequency. While a core can only move to a slower P-state if
the other core has already a slower P-state, transitions to faster
P-states can be driven by a single core.

On the Intel CPU, total latency results are very similar: going
to a faster P-state also takes tens of microseconds, depending
on distance between the current and the requested P-state. A
significant different to the AMD system, however, lies in the
faster execution of the wrmsr instruction when transitioning
from a fast to a slow P-state (approx. 2000 cycles, 590 ns). The
AMD system exhibited surprisingly long durations here (up
to 29800 cycles, 7450 ns), and we believe the Intel numbers
are lower because the CPU does not need to perform additional
coordination when switching to a slow P-state.

For the evaluation of P-state configuration strate-
gies in Section 4.2, we show the cost for mwait and
pthread_setaffinity. In the mwait experiment, one core
of a processor module continuously updates a memory location
while the other core specifies the location using monitor and
calls mwait. The core will immediately return to execution
because it sees the memory location changed, so the numbers
represent the minimal cost of executing both instructions. The
pthread_setaffinity function migrates a thread to a core
on a different processor module that is already in C0 state (no
shared L2 cache) and returns when the migration is finished.
Thread migration typically results in many cache misses but
the benchmark keeps only minimal data in the cache.

4.2. P-State Transition Strategies

We evaluate various configuration strategies for P-states using
an application that spends all its time in critical sections.
The critical section is protected by single global spin-lock
implemented as an MCS queue lock [29]. The workload incre-
ments a local counter for a configurable number of iterations
(⇠10 cycles each) and uses only the integer cores (shared FPU
remains idle). While the global lock prevents any parallelism,
the goal of the concurrent execution is to find the length of

6

critical sections that amortizes the P-state transition latency.
Each processor core is assigned to one thread using the

TURBO library. The critical section with the counter iterations
forms a job that is dispatched to each thread using the scheduler.
The P-states and C-states are configured by the application
according to the following static and dynamic strategies:
stat single: The P-states are set statically during the

initialization of the application. Only a single thread
executes critical sections at the given P-state (PCS) while
the other threads run at a possibly different P-state (!Pwait)
in C0-state. This provides the baseline for different P-state
configurations without P-state change request overheads.

stat multi: All threads execute the critical section serial-
ized by the global lock. The P-state is set to the same value
for all threads at the base operating frequency. This shows
the overhead introduced by the global lock.

dyn owner: All threads are initially set to the slowest P-state
and dynamically switch to the fastest P-state while holding
the lock, and back when releasing it.

dyn wait: All threads are initially set to the fastest P-state
and dynamically switch to the slowest P-state while waiting
for the lock, and speeding up when acquiring the lock.

stat migrate: Only six threads on three processor modules
execute critical sections. The remaining module runs at the
fastest P-state and the current lock owner migrates to a core
of the boosted module until it releases the lock.

dlgt owner: Only one thread per processor module is
executing critical sections and delegates the P-state
switching to the thread executing on the neighbouring core.
The strategy is otherwise the same as dyn owner.

dlgt wait: Same delegation strategy as dlgt owner but
adapted for dyn wait instead of dyn owner.

stat mwait: While waiting for the MCS queue lock, the
threads busy wait on a local memory location. We monitor
this location and halt the processor using mwait until the
lock becomes available. All processor cores run initially
at the base operating frequency.
Figures 4 and 5 show the results for all strategies on AMD

and Intel CPUs (except stat mwait that is not supported with
the latter). We run the benchmark for 100 seconds and count
the number of critical sections that were executed. In a second
step, we measure the number of cycles per iteration in the
critical section, that is, how many cycles of real work were
executed. Based on the run time and cycles multiplied by the
number of critical sections executed, we calculate the effective
frequency achieved for doing real work inside the critical
section. The frequency is affected by the P-state configuration
and overheads according to the selected boosting strategy and
synchronization. We ran the measurements both for automated
boosting with the boosted P-states managed by the processor
(Pauto = 2: P2HW = P0SW on AMD) as well as manual boosting
for AMD with all P-states managed in software using the
TURBO library (Pauto = 0: P0HW = P0SW on AMD).

The static strategies execute all critical sections on a single
processor core (stat single). The figure shows for the two
boosting setups the achieved effective frequency when (1) all
other cores run at the slowest P-state and the single core is

boosted, (2) all cores run at the base operating frequency and
(3) all cores run at the slowest P-state. The curves reflect the
optimal performance for the benchmark running at a given
frequency. Overhead is only introduced by locally cached
lock acquisitions. Note that automatic boosting will enter only
P1HW as long as the majority of other cores are in C0-state. Our
manual boosting setup does not suffer from this limitation. The
lock acquisition consumes cycles outside the critical section so
that small workload sizes cannot reach the effective frequency
defined by the selected P-state.

The stat multi strategy shows the synchronization
overhead when multiple threads try to acquire the global lock
that serializes the execution of critical sections among all cores.
All cores run at the base operating frequency. Larger sizes of
critical sections reduce the impact of the lock acquisition and
a performance similar to stat single is achieved.

The dynamic strategies introduce overhead in addition to
the synchronization costs because two P-states transitions
must be requested for each critical section. This overhead
is amortized when the resulting effective frequency of the
critical section is above the operational base frequency of stat
single (starting at⇠100,000 cycles for manual boosting on
the AMD system). On the AMD system, requesting the fastest
P-state for all cores (dyn wait) provides best results, because
threads can reacquire the lock without needing to transition
to a slower P-state. Other threads trying to acquire the lock will
perform their long blocking switch to the slower P-state (see
Section 4.1) when they find the lock acquired before enqueuing
at the MCS lock. Boosting the lock owner (dyn owner) must
perform this transition within its execution loop before it can
acquire the lock in the next iteration.

Both delegating strategies (dlgt owner and dlgt wait)
provide performance close to dyn wait but only half of the
processor cores can be used. In both cases, the slow transition
to the slowest P-state does not halt the execution, in contrast
to dyn owner.

The thread migration provided by the Linux kernel (stat
migrate) is the strategy with the highest overhead. A real-
world benchmark would show worse results because it suffers
from more cache misses on the new processor core than our
synthetic benchmark that keeps only little data in the cache [30].
Additionally, initiating a migration on a slow core will be
executed slowly until the thread reaches the boosted core.

Instead of adjusting the P-states, the stat mwait strategy
performs C-state transitions. It has the benefit of enabling
P0HW for automatic boosting because the P-states are managed
by the processor. Still, the performance does not reach P0HW
due to the high transition latencies. With manual boosting,
changing the C-state leaves the P-state at its original value,
which prevents the boosting.

Comparing these results to the Intel system, we find that on
the Intel machine synchronization overheads are much lower
(see stat multi). In addition, the system is able to boost
already without manual intervention when threads are busy
waiting on the lock variable. Hardware seems to be able to
detect that data-dependent loop and allow boosting with it.
Also, we find that we cannot extract the maximum performance

7

104 105 106 107 108

Size of a critical section (cycles)

0

500

1000

1500

2000

2500

3000

3500

4000

E
ffe

ct
iv

e
pr

oc
es

so
r

fr
eq

ue
nc

y
du

ri
ng

cr
it

ic
al

se
ct

io
n

(M
H

z)

Automatic boosting controlled by processor

stat single Pauto 2 Psw 0�4
stat single Pauto 2 Psw 0�0
stat single Pauto 2 Psw 4�4
stat multi Pauto 2 Psw 0�0
dyn owner Pauto 2 Psw 4�0
dyn wait Pauto 2 Psw 0�4
stat migrate Pauto 2 Psw 0�4
stat mwait Pauto 2 Psw 0�0
dlgt owner Pauto 2 Psw 4�0
dlgt wait Pauto 2 Psw 0�4

104 105 106 107 108

Size of a critical section (cycles)

0

500

1000

1500

2000

2500

3000

3500

4000

Manual boosting in software using Turbo library

stat single Pauto 0 Psw 0�6
stat single Pauto 0 Psw 2�2
stat single Pauto 0 Psw 6�6
stat multi Pauto 0 Psw 2�2
dyn owner Pauto 0 Psw 6�0
dyn wait Pauto 0 Psw 0�6
stat migrate Pauto 0 Psw 0�6
stat mwait Pauto 0 Psw 2�2
dlgt owner Pauto 0 Psw 6�0
dlgt wait Pauto 0 Psw 0�6

Figure 4: Strategies for P-state transitions requests with automatic boosting by the processor and manual boosting in software
using the TURBO library (AMD FX-8120).

103 104 105 106 107

Size of a critical section (cycles)

0

500

1000

1500

2000

2500

3000

3500

4000

E
ffe

ct
iv

e
pr

oc
es

so
r

fr
eq

ue
nc

y
du

ri
ng

cr
it

ic
al

se
ct

io
n

(M
H

z)

Automatic boosting controlled by processor

stat single Pauto 2 Psw 0�4
stat single Pauto 2 Psw 0�0
stat single Pauto 2 Psw 4�4
stat multi Pauto 2 Psw 0�0
dyn owner Pauto 2 Psw 4�0
dyn wait Pauto 2 Psw 0�4
stat migrate Pauto 2 Psw 0�4
dlgt owner Pauto 2 Psw 4�0
dlgt wait Pauto 2 Psw 0�4

Figure 5: Strategies for P-state transitions requests with
automatic boosting by the processor and manual boosting in
software using the TURBO library (Intel i7-4770).

of 3.9 Ghz, likely because not enough cores are in the required
C-state. The dynamic policies (dyn owner & wait) benefit
from the shorter execution time for the fast ! slow P-state
transition. Finally, the delegation policies (dlgt owner &
wait) improve further upon that because of the fully removed
MSR accesses from the critical section execution and the low
synchronisation overheads.

4.3. Cost Model

Based on our experimental results, we derive a simplified and
pessimistic cost model for AMD’s boosting implementation to
guide developers when boosting pays off. We first present a cost
model for boosting sequential bottlenecks that formalizes the

results from Section 4.2. We then specialize it for boosting crit-
ical sections that are not a bottleneck as well as for workloads
that contain periods with heterogeneous workload distributions.

We use for the model hardware P-state numbering (PHW)
and make the following simplifying assumptions: (1) the
application runs at a constant rate of instructions per cycle
(IPC), regardless of the processor frequency; (2) we do
not consider cost related to thread synchronization; (3) the
frequency ramps linearly from a higher P-state (e.g., fP6) to
a lower P-state (e.g., fP0); and (4) the frequency transition to
a higher P-state takes as long as the P-state request.

Assumption (4) is a direct result of our latency measurement,
(1) and (2) allow an estimatation without taking application
specifics into account. We will revisit assumptions (1) and (2)
when looking at actual applications that depend on memory
performance and thus exhibit varying IPC with changing
frequency (due to the changed ratio of memory bandwidth and
latency and operation frequency).

(a)
fP0

Fr
eq
ue
nc
y fP2

fP6

tP2→P6 twait
tP6→P0 tP0→P2tramp tCS

(b)
fP1
fP2

tP2→P1 tP1→P2tramp tCS

Figure 6: P-state configurations for boosting (a) sequential
bottlenecks and (b) critical sections.

For sequential bottlenecks, we follow the strategy dyn
owner described in Section 4.2 and illustrated in Figure 6:
the application threads run normally at the base operating
frequency (fP2), threads wait to enter the critical section in fP6
and execute the critical section boosted at fP0. Boosting will

8

pay off if we outperform the critical section that runs at fP2:
tCS fP0

 tCS fP2
The minimal length tCS for critical sections must be greater

than the combined P-state configuration latencies and the
number of cycles that are executed during the P-State transition
(cyclesramp) to the boosted frequency (fP0):

tCS� tP6!P0+tramp+tP0!P2+
cyclesCS�cyclesramp

fP0
Based on the P-state transition behavior that we observed

in Section 4.2, we can compute the minimal critical section
length as follows:

tCS�
fP0

fP0� fP2
·(tP6!P0+tP0!P2)+

1
2
· fP0� fP6

fP0� fP2
·tramp

The minimal wait time twait to acquire the lock should simply
be larger than the time to drop to fP6: twait� tP2!P6. With our
measured results, on the AMD CPU this equals to a minimal
critical section length of⇠439,369 cycles (⇠110µs). Note that
our cost model reflects a pessimistic result and other strategies
can reach the break even point already earlier (see Figure 4),
e.g., if the transition request is delegated to a thread running
on the other core of the module.

Based on the above cost model for boosting sequential
bottlenecks, we can derive a cost model for boosting critical
sections by one step (i.e., to fP1):

tCS�
fP1

fP1� fP2
·(tP2!P1+tP1!P2)+

1
2
·tramp

We never move below the base operating frequency and
boosting pays off if the critical section is longer than⇠326,450
cycles (⇠82µs).

On the Intel system, the cost model is very similar, but
instead of the long inactive time tP0!P2 at the end of the critical
section, this time is shorter and has an additional frequency
ramp from fP0 to fP2. The net effect is that the length for
critical sections can be shorter.

So far, we looked at the possibility to boost sequential
bottlenecks or critical sections. Another interesting target that
is currently not exposed by means of automatic boosting are
periods of heterogeneous workload distributions. We can apply
our cost model to workloads where one thread temporarily runs
at a higher priority than other active threads or the workload
has an asymmetric distribution of accesses to critical sections
from threads. Typically, such periods are longer because they
combine several critical section, thus improving the chances
of amortizing the cost of switching on boosting. Based on the
presented cost model, we compute the minimal duration of
such periods instead of the critical section length. We present
examples in Section 5.

5. Boosting Applications

We evaluated the TURBO library using several real-world ap-
plications. We chose these workloads to (1) validate the results
from our synthetic benchmarks and the cost model to boost
sequential bottlenecks; (2) highlight gains by using application
knowledge to adjust the core frequencies; (3) show the trade-
offs when the IPC depends on the core frequency, e.g., due to

memory accesses; and (4) outweigh the latency cost of switch-
ing P-states by delegating critical sections to boosted cores.

5.1. Python Global Interpreter Lock

The Python Global Interpreter Lock (GIL) is a well known se-
quential bottleneck based on a pthread_mutex. The GIL must
always be owned when executing inside the interpreter. Its lat-
est implementation holds the lock by default for a maximum of
5ms and then switches to another thread if requested. We are in-
terested in applying some of the P-state configuration strategies
presented in Section 4.2 to see if they provide practical benefits
in such settings. For this evaluation, we use the ccbench appli-
cation that is included in the Python distribution (version 3.4a).

The benchmark includes workloads that differ in the amount
of time they spent holding the GIL: (1) the Pi calculation
is implemented entirely in Python and spends all its time in
the interpreter; (2) the computation of regular expressions
(Regex) is implemented in C with a wrapper function that does
not release the GIL; and (3) the bz2 compression and SHA1
hashing have wrappers for C functions that release the GIL, so
most time is spent outside the interpreter. Table 5 summarizes
the characteristics of the workloads.

1 Thread 2 Threads 4 Threads
Task python native wait python native wait python native
Pi (P) 72694 160 4919 4933 14 14735 4958 18

Regex (C) 116593 160 5533 5556 18 16763 5600 18
bz2 (C) 17 991 10 24 992 34 25 998
SHA1 (C) 6 386 8 12 386 11 12 386

Table 5: Characteristics of the ccbench workload: average
time in µs per iteration spent in the interpreter (python),
executing native code without GIL (native) and waiting for GIL
acquisition (wait) (AMD FX-8120).

We evaluate the following P-state configuration strategies in
Figures 7 (AMD) and 8 (Intel). Base runs at the base operating
frequency and, hence, does not incur P-state configuration
overheads. Dyn waits for the GIL at the slowest P-state, then
runs at the highest P-state while holding the GIL and switches
back to the base operating frequency after releasing the lock.
While workloads Pi and Regex do not scale, Dyn supports
at least execution of the workloads at the boosted frequency.
These results are in line with our synthetic benchmark results
and the cost model in Section 4. For workloads bz2 and SHA1
the performance benefit reaches its maximum at 4 threads
because we pin the threads such that each runs on a different
module, giving the thread full P-state control. When two
threads run on a module, more P-state transitions are required
per package that eliminate the performance benefit at 8 threads.
Own runs all threads at the base operating frequency and boosts
temporarily one step while holding the GIL. This manifests
in a higher throughput when the GIL is held for long periods
but for bz2 and SHA the cost of requesting a P-state transition
is not amortized by the higher frequency. Wait runs at the
lowest possible P-state within the TDP and only switches to the

9

1 2 3 4 5 6 7 8
250

300

350

400

It
er

at
io

ns
/s

Pi calculation (Python)
base
dyn

own
wait

1 2 3 4 5 6 7 8
140

160

180

200

220

Regular expression (C)

1 2 3 4 5 6 7 8
Threads

500
1000
1500
2000
2500
3000
3500

It
er

at
io

ns
/s

bz2 compression (C)

1 2 3 4 5 6 7 8
Threads

5000

10000

15000

20000
SHA1 hashing (C)

Figure 7: ccbench throughput (AMD FX-8120).

1 2 3 4 5 6 7 8

800

900

1000

1100

It
er

at
io

ns
/s

Pi calculation (Python)
base
dyn

own
wait

1 2 3 4 5 6 7 8
340
360
380
400
420
440
460
480

Regular expression (C)

1 2 3 4 5 6 7 8
Threads

1000

2000

3000

4000

5000

It
er

at
io

ns
/s

bz2 compression (C)

1 2 3 4 5 6 7 8
Threads

5000

10000

15000

20000

SHA1 hashing (C)

Figure 8: ccbench throughput (Intel i7-4770).

slowest P-state while waiting for the GIL. This strategy works
well with high contention but introduces significant cost if the
waiting period is too short (see Table 5).

The overall results for Pi and Regex on the Intel CPU,
but we see a performance drop beyond four threads due to
performance crosstalk between software threads running on
hardware threads of the same core. Boosting results are similar
to the ones obtained on AMD.

The same performance interaction is seen for bz2 and
SHA1, but boosting results for these scalable applications are
different: as with our synthetic benchmarks, the Intel CPU
can gain already a lot performance by the automatic boosting
mechanisms. Still, we can improve upon this with application
knowledge with the Wait strategy. On the Intel machine, the
policy does not exhibit the long MSR access latencies and the
associated performance issues as on the AMD CPU.

5.2. Software Transactional Memory

FastLane [40] is a Software Transactional Memory (STM) im-
plementation that processes a workload asymmetrically. The
key idea is to combine a single fast master thread that can never

1 2 3 4 6 8
2
4
6
8

10
12
14
16

Th
ro

ug
hp

ut
(t

xn
s/

us
) RB 8192 5%

Seq
Tiny

FL
FL-BM

1 2 3 4 6 8
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

LL 1024 5%

1 2 3 4 6 8
Threads

5

10

15

Th
ro

ug
hp

ut
(t

xn
s/

us
) SL 1024 5%

1 2 3 4 6 8
Threads

10
15
20
25
30
35
40

HS 1024 5%

Figure 9: FastLane STM integer set benchmarks (AMD
FX-8120).

abort with speculative helper threads that can only commit if
they are not in conflict. The master thread has only a very
lightweight instrumentation and runs close to the speed of an
uninstrumented sequential execution. To allow helper threads
to detect conflicts, the master thread must make the in-place up-
dates performed by its transactions visible (by writing informa-
tion in the transaction metadata). The helpers perform updates
in a write-log and commit their changes after a validation at the
end of the transaction. The benefit is a better performance for
low thread counts compared to other state-of-the art STM imple-
mentations (e.g., TL2 [10] or TinySTM [15]) that typically suf-
fer from the high instrumentation and bookkeeping overhead.

We used integer sets that are implemented as a red-black
tree (RB), a linked list (LL), a skip list (SL), or a hash set (HS)
and perform random queries and updates, as detailed in [15].
The parameters are the working set size and the update ratio.
Either all threads run at the base operating frequency (FL)
or the master always runs at the fastest P-state (FL-BM) and
the helpers at the slowest, except for the helper that runs on
the same module as the master. Moreover, we compare with
TinySTM (Tiny) and uninstrumented sequential execution (Seq)
at the base operating frequency. Our evaluation on the AMD
processor shows in Figure 9 that running the master and helpers
at different speeds (FL-BM) enables high performance gains
compared running all threads at the base operating frequency
(FL). Table 6 shows that the master can asymmetrically process
more transactions when being boosted. While the slow helpers
can have more conflicts caused by the master, the conflict rate
caused by other slow helpers does not change. Dynamically
boosting the commits of the helpers did not show good results
because the duration is too short.

We chose this workload to highlight the importance to
make the P-state configuration accessible from the user space.
It allows developers to expose properties of the application
that would otherwise not be available to the processor. For
applications that contains larger amounts of non-transactional
code, the support to remotely set P-states for other cores would
be very helpful. When a master transaction is executed, it could

10

RB LL SL HS
Nb. threads 2 4 6 2 4 6 2 4 6 2 4 6

FL 63 44 35 68 48 44 68 39 24 56 25 13
FL-BM 64 55 54 70 49 53 68 42 28 56 29 16

Table 6: Commit ratio of the total commits by the FastLane
master (%) for 2, 4, and 6 threads (AMD FX-8120).

slow down the other threads in order to get fully boosted for
a short period.

5.3. Hash Table Resize in Memcached

Memcached is a high performance caching system based on a
giant hash table. While for the normal operation a fine-grained
locking scheme is used, the implementation switches to a single
global lock that protects all accesses to the hash table during the
period of a resizing. The lock is implemented by spinning using
pthread_mutex_trylock because pthread_mutex_lock
would introduce too much latency when the lock is contended.
The resize is done by a separate maintenance thread that move
items from the old to the new hash table and processes a
configurable number of buckets per iteration. Each iteration
acquires the global lock and moves the items in isolation.

Our evaluation was conducted with Memcached version
1.4.15 and the mc-crusher workload generator. We used the
default configuration with 4 worker threads that we pinned on
two modules. The maintenance thread and mc-crusher run on
their own modules. The workload generator sends a specified
number of set operations with distinct keys to Memcached,
which result in a lookup and insert on the hash table that will
eventually trigger several resizes. The hash table is resized
when it reaches a size of 2x ⇥ 10MB. The cache is initially
empty and we insert objects until the 7th resize of 27⇥10MB
(1280MB) is finished.

For the intervals in which the maintenance thread is active,
we gathered for the first (10MB) and the last (1280MB) resize
interval the statistics shown in Table 7: the number of items
that are moved during one iteration (bulk move, configurable),
the rate of set operations during the entire experiment (ops/s),
the length of the resize interval (ms), the number of (stalled)
instructions and the average frequency achieved by the
maintenance thread (freq).

We applied the following strategies during the resizing
period: baseline runs all threads at the base operating frequency,
stat resizer runs the maintenance thread at the fastest P-state for
the entire period, dyn resizer switches to the fastest frequency
only the length of an bulk move iteration and causes additional
transition overheads, dyn worker dynamically reduce the
frequency while waiting for the maintenance thread’s iteration
to finish. The last strategy does not show a performance
improvement because the cost cannot be amortized especially
when the bulk move size gets smaller. The stat resizer shows
the best performance because it reduces the resizing duration.

While the benchmark shows the benefit of assigning
heterogeneous frequencies, an interesting observation is that
the speedup achieved by boosting is limited because the

Bulk Resize 10MB Resize 1280MB
Move Strategy Ops/s ms stalled freq ms stalled freq

10k baseline 535k 16 63% 3099 2937 67% 3099
10k stat resizer 547k 15 82% 3999 2666 88% 4000
10k dyn resizer 547k 15 81% 3980 2691 87% 3987
10k dyn worker 535k 18 82% 3971 3155 88% 3982
100 baseline 529k 24 66% 3099 4021 68% 3100
100 stat resizer 540k 22 86% 3999 3647 90% 3999
100 dyn resizer 508k 30 56% 3259 4799 59% 3252
100 dyn worker 461k 48 60% 3211 7970 60% 3265

1 baseline 237k 770 72% 3099 103389 72% 3099
1 stat resizer 245k 721 94% 3999 98056 95% 4000
1 dyn resizer 209k 893 62% 3112 120430 63% 3113
1 dyn worker 90k 1886 64% 3111 252035 65% 3113

Table 7: Memcached hash table resize (AMD FX-8120).

workload is mainly memory-bound. Compared to baseline,
stat resizer shows only a speedup of the resize interval between
7%–9% while it runs at a 22% higher frequency. The higher the
frequency, the more instructions get stalled due to cache misses
that result from the large working set. The number of stalled
instructions effectively limit the number of instructions that can
be executed faster at a higher frequency. On the other hand, the
high cost of the P-state transitions in the dynamic strategy dyn
resizer is hidden by an decreased number of stalled instructions
but it still cannot outweigh the transition latency. Memcached’s
default configuration performs only a single move per iteration,
which according to our results shows the worst overall duration
of the experiment (ops/s). A better balance between worker
latency and throughput is to set bulk move to 100.

5.4. Delegation of Critical Sections

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8

S
p
ee

d
u
p

Raytrace (car)

 0

 2

 4

 6

 8

 1 2 3 4 5 6 7 8
Threads

Raytrace (balls4)

 0

 2

 4

 6

 8

 1 2 3 4 5 6 7 8

S
p
ee

d
u
p

Threads

Radiosity

All P2
All P4

W P2 R P0
W P2 R P1
W P4 R P0
W P4 R P1

Figure 10: Normalized throughput of SPLASH-2 using RCL
under various static boosting configurations (AMD FX-8120).

We have shown that critical sections need to be relatively
large to outweigh the latencies of changing P-states. Remote
core locking [27] (RCL) is used to dedicate a single processor
core to execute all application critical sections locally. Instead
of moving the token for permission to enter the critical section

11

across the cores, the actual execution of the critical section is
delegated to a designated server.

We leverage this locality property by statically boosting the
RCL server that is responsible for executing all critical sections.
That way, we can also boost small critical sections because
instead of changing P-states, we move execution to the core
with the fast P-state.

We extended the software provided by the original authors
of the paper and experiment with three of the SPLASH-2
benchmarks [41] that the authors identify as containing a
significant amount of critical sections.

We report speedup over the single-threaded baseline P-state
in Figure 10, and find that there is a clear performance advantage
for the boosted case. We show various combinations of worker
P-states (reported as “W Px”) and P-states for the RCL server
core (“R Px”), and contrast these with configurations where all
cores run at nominal (“All P2”) frequency and slower frequency
(“All P4”) for comparison. Note that we do show standard
deviation of 30 trials, but there is hardly any noise visible.

Even though critical sections are short (thousands of cycles)
for the selected benchmarks, and we do not reduce the P-state
for the waiting workers (due to latency reasons), there is enough
TDP headroom for the brief RCL invocations to run even at the
hardware P0 state and we get speedups ranging from 28% (low
thread counts) to 4% at higher thread counts. As expected, the
relative boost is larger if we start from a lower baseline at P4.

Overall, scalability of the benchmarks is good, reserving
one core exclusively for RCL will cap scalability at 7 (worker)
threads. The authors of [27] claim, however, that reserving this
single core pays off in comparison to bouncing spin-locks.

6. Related Work
There exists a large body of related work in the field of dynamic
voltage and frequency scaling (DVFS) that aim at reducing the
power consumption and improving energy efficiency [23, 32].
DVFS is proposed as a mid-term solution to the prediction that,
in future generations of microprocessors, the scale of cores
will be limited by power constraints [13, 6, 16, 2]. In the longer
term, chip designs are expected to combine few large cores for
compute intensive tasks with many small cores for parallel code
on a single heterogeneous chip [39, 22]. As thermal constraints
will prevent powering all cores simultaneously, only the large or
small cores will be powered depending on the current workload.
A similar effect is achieved by introducing heterogeneous
voltages and frequencies to cores of the same ISA [12].

The idea underlying most related work on energy efficiency
using DVFS [17] is that reducing the frequency a little gives
already good energy savings, but the overall performance is
only reduced slightly because it is dominated by memory [25]
or network latencies.

Semeraro et al. [38] propose to use multiple clock domains,
each of with can independently perform voltage and frequency
scaling. Inter-domain synchronization is implemented using
existing queues to minimize latency, and frequency can be re-
duced for events that are not on application’s critical path. The
approach has shown to provide non-negligible energy savings,

and was later extended by profile-based reconfiguration [28].
Another interesting approach to save power is to combine

DVFS with inter-core prefetching [21]. By using cores to
prefetch data into caches, one can improve performance and
energy efficiency, even on serial code, when more cores are
active at a lower frequency.

Choi et al. [7, 8] introduce a technique to decompose
programs into CPU-bound (on-chip) and memory-bound
(off-chip) operations. This workload decomposition method
allows fine tuning of the energy-performance trade-off, with
the voltage/frequency being scaled based on the ratio of the
on-chip to off-chip latencies. Authors have observed important
energy savings with little performance degradation on several
workloads running on a single core.

Hsu et al. [19] propose an algorithm to save energy by
reducing the frequency with HPC workloads. Authors also
present and discuss transition latencies.

A recent study [24] on the Cray XT architecture, which is
based on AMD CPUs and provides fine power measurement
capabilities, demonstrates that significant power savings can
be achieved with little impact on runtime performance when
limiting both processor frequency and network bandwidth. In
the proposed framework, CPU scaling is performed statically
by changing the P-states before the application runs. Authors
conclude by recommending that next-generation platforms
provide fine control over scaling of the different components
of the system to exploit the trade-offs between energy and
performance. Our work goes in the same direction, by
investigating the technical means to finely control the states
of individual cores in modern processors.

While energy efficiency has been widely studied, few
researchers have investigated the use of DVFS to speed up
workloads [18]. It has been shown for a large class of multi-
threaded applications that an optimal scheduling of threads
to cores can significantly improve performance [35]. Isci et
al. [20] propose using a lightweight global power manager for
CPUs with per-core control over voltage and frequency. The
manager can adapt the power levels according to workload
characteristics and, according to authors’ analysis, can perform
as well as an ideal oracle and much better than static scheduling.

Raghavan et al. [34] propose computational sprinting that
allows temporary boosting beyond the TDP based on thermal
capacitance and the assumptions that idle periods for cooling
follow. This technique is intended for interactive applications
with short periods with high computing demands whereas
our focus is on multi-threaded applications mostly found on
servers that run for long periods without much idle time. Here,
thermal boosting is not applicable because on average one
cannot exceed the TDP.

An in-depth evaluation of Intel processors [14] showed that
Turbo Boost provides performance gains only for non-scalable
benchmarks because it does not become fully enabled unless
only a single core is active. This highlights a major design
limitation of Intel’s design for multi-threaded applications.
Further, Turbo Boost is not energy efficient for scalable
workloads due to the high increase in power consumption
without performance benefit. Miyoshi et al. have also observed

12

that older Intel Pentium-based CPUs were more energy
efficient when running at the fastest performance state [31]. A
study of Turbo Boost has shown that the achievable speedup
can be improved by pairing CPU intensive workloads to the
same core [5]. This allows masking delays caused by memory
accesses. In particular, authors exhibit a correlation between
the speedup obtained by boosting and the LLC miss rate (which
is high for memory-intensive applications).

An analysis of DVFS on recent AMD processors with a
memory-bound workload has also shown some limitations. In
particular, the benefits of scaling down frequency for energy
effectiveness is diminished by the increase of static power in
lower voltages [26].

Ren et al. [36] investigate workloads that can take advantage
of heterogeneous processors (fast and slow) and show that
throughput can be increased by up to 50% as compared
with using homogeneous cores. Such workloads represent
interesting use cases for dynamic scaling.

Our TURBO library complements much of the related work
discussed in this section, in that it can be used to implement
the different designs and algorithms proposed in these papers.

7. Conclusion
Recent generations of multi-core processors support fine-
grained dynamic voltage and frequency scaling (DVFS).
These technologies are mainly driven by hardware and the
operating system, and previous research has primarily focused
on exploiting core scaling for energy savings. In this paper, we
have studied the benefits of DVFS for improving performance
of application specific workloads, and also include a thorough
analysis of the low-level costs and characteristics of the DVFS
mechanisms. We have proposed, implemented, and evaluated
a library, named TURBO, that provides programmatic access to
performance states of the cores on AMD and Intel processors.
Our library allows developers to tune the performance of the
system to the properties of their applications (e.g., depending
on the number and duration of critical sections or on the
asymmetry of the workloads), which are not known by
hardware or the operating system.

In our study, we made several interesting findings that
we expect to provide valuable insights to processor and
operating system designers. In particular, we observed that the
frequency transition is sometimes too slow to be amortized with
short boosted sections, frequency control is not sufficiently
accessible from user space, and all frequency transitions should
be asynchronous to let the cores remain operational during
the changes. We have also derived a cost model for reasoning
about when boosting pays off.

Despite the limitations we encountered with DVFS, eval-
uation of our TURBO library on several real-world applications
has shown promising results in terms of performance boost.
As part of future work, we will publicly release our library and
applications so that they can be extended to other processors
and workloads, as well as used by developers to enable
frequency scaling for their applications. We also plan to add
profiling mechanisms for critical sections to identify boosting

targets, and provide better support for asymmetric workloads.

References
[1] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD

Family 15h Models 00h-0Fh Processors, 2012.
[2] S. Borkar and A. A. Chien. The future of microprocessors.

Commun. ACM, 2011.
[3] A. Branover, D. Foley, and M. Steinman. Amd fusion apu:

Llano. Micro, IEEE, 2012.
[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen.

A dynamic voltage scaled microprocessor system. Solid-State
Circuits, IEEE Journal of, 35(11):1571–1580, 2000.

[5] J. Charles, P. Jassi, N. Ananth, A. Sadat, and A. Fedorova.
Evaluation of the intel core i7 turbo boost feature. In Workload
Characterization, 2009. IISWC 2009. IEEE International
Symposium on, 2009.

[6] A. A. Chien, A. Snavely, and M. Gahagan. 10x10: A
general-purpose architectural approach to heterogeneity and
energy efficiency. Procedia Computer Science, 2011.

[7] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and
frequency scaling based on workload decomposition. In
Proceedings of the 2004 international symposium on Low
power electronics and design, 2004.

[8] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and perfor-
mance trade-off based on the ratio of off-chip access to on-chip
computation times. In Proceedings of the conference on Design,
automation and test in Europe - Volume 1, 2004.

[9] P. Conway and B. Hughes. The AMD Opteron Northbridge
Architecture. IEEE Micro, 27(2):10–21, Mar. 2007.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
DISC’06: Proceedings of the 20th international conference on
Distributed Computing, pages 194–208, 2006.

[11] D. Dice, N. Shavit, and V. J. Marathe. US Patent Application
20130047011 - Turbo Enablement, 2012.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a
low-power pipeline based on circuit-level timing speculation.
In Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on, 2003.

[13] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling. In
Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, 2011.

[14] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S.
McKinley. Looking back on the language and hardware
revolutions: measured power, performance, and scaling.
In Proceedings of the sixteenth international conference
on Architectural support for programming languages and
operating systems, 2011.

[15] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In PPoPP

’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. Micro, IEEE, 2011.

[17] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Low
Power Electronics and Design (ISLPED), 2007 ACM/IEEE
International Symposium on, 2007.

13

[18] M. Hill and M. Marty. Amdahl’s law in the multicore era.
Computer, 2008.

[19] C.-h. Hsu and W.-c. Feng. A power-aware run-time system
for high-performance computing. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, 2005.

[20] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. In Microarchitecture, 2006. MICRO-39. 39th
Annual IEEE/ACM International Symposium on, 2006.

[21] M. Kamruzzaman, S. Swanson, and D. Tullsen. Underclocked
software prefetching: More cores, less energy. Micro, IEEE,
2012.

[22] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen.
Single-isa heterogeneous multi-core architectures: the potential
for processor power reduction. In Microarchitecture, 2003.
MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on, 2003.

[23] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan.
Heterogeneous chip multiprocessors. Computer, 2005.

[24] J. H. Laros, III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T.
Vaughan. Energy based performance tuning for large scale high
performance computing systems. In Proceedings of the 2012
Symposium on High Performance Computing, 2012.

[25] M. Laurenzano, M. Meswani, L. Carrington, A. Snavely,
M. Tikir, and S. Poole. Reducing energy usage with memory and
computation-aware dynamic frequency scaling. In Euro-Par
2011 Parallel Processing. Springer Berlin Heidelberg, 2011.

[26] E. Le Sueur and G. Heiser. Dynamic voltage and frequency
scaling: The laws of diminishing returns. In Proceedings of
the 2010 international conference on Power aware computing
and systems, 2010.

[27] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller.
Remote core locking: migrating critical-section execution
to improve the performance of multithreaded applications.
In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 6–6, Berkeley,
CA, USA, 2012. USENIX Association.

[28] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequency
scaling for a multiple clock domain microprocessor. In
Proceedings of the 30th annual international symposium on
Computer architecture, 2003.

[29] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
Trans. Comput. Syst., 1991.

[30] A. Mendelson and F. Gabbay. The effect of seance communi-
cation on multiprocessing systems. ACM Trans. Comput. Syst.,
2001.

[31] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: understanding the
runtime effects of frequency scaling. In Proceedings of the 16th
international conference on Supercomputing, 2002.

[32] K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock,
K. Ishii, T. Nguyen, and J. Burns. A 32-bit powerpc system-on-
a-chip with support for dynamic voltage scaling and dynamic
frequency scaling. Solid-State Circuits, IEEE Journal of, 2002.

[33] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage
scaling on a low-power microprocessor. In Proceedings of the
7th annual international conference on Mobile computing and

networking, pages 251–259. ACM, 2001.
[34] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P.

Pipe, T. F. Wenisch, and M. M. Martin. Computational
sprinting on a hardware/software testbed. In Proceedings of the
eighteenth international conference on Architectural support
for programming languages and operating systems, 2013.

[35] B. Raghunathan, Y. Turakhia, S. Garg, and D. Marculescu.
Cherry-picking: exploiting process variations in dark-silicon
homogeneous chip multi-processors. In Proceedings of the
Conference on Design, Automation and Test in Europe, 2013.

[36] S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploiting pro-
cessor heterogeneity for interactive services. 10th International
Conference on Autonomic Computing, 2013.

[37] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power-management architecture of the intel mi-
croarchitecture code-named sandy bridge. Micro, IEEE, 2012.

[38] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott. Energy-efficient processor design
using multiple clock domains with dynamic voltage and fre-
quency scaling. In High-Performance Computer Architecture,
2002. Proceedings. Eighth International Symposium on, 2002.

[39] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: reducing the energy of mature computations. In Proceed-
ings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems, 2010.

[40] J.-T. Wamhoff, C. Fetzer, P. Felber, E. Rivière, and G. Muller.
Fastlane: improving performance of software transactional
memory for low thread counts. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, 2013.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. In Proceedings of the 22nd annual international
symposium on Computer architecture, ISCA ’95, pages 24–36,
New York, NY, USA, 1995. ACM.

14

