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Preface

This thesis essentially comprises three research papers on analytical zero-inertia modeling of free

surface flows and model application under conditions which are characteristic for arid areas. These

papers were, or are going to be, published in the American Society of Civil Engineers’ Journal of

Hydraulic Engineering.1 A copy of the papers can be found in the Appendix B. For this reason,

wider parts of the text and a not insubstantial number of figures and tables were adopted from

the aforementioned publications without any or with only slight modifications. The aim of this

thesis is to present the content of all three papers in a concise and consistent manner. Hence,

some nomenclature used herein differs from that which is used in the papers. Although passing a

thorough peer review process, a very small—but not necessarily negligible—amount of reproduction

errors were found in the published papers, mainly in equations. In case of any doubt, this thesis

represents the corrected version of these mistakes. Furthermore, this thesis is written in American

English in order to maintain consistency with the aforementioned publications.

I am very thankful to everyone who directly or indirectly made a contribution to this work. First

and foremost, I want to express my deeply-felt gratitude to my supervisor Prof. Gerd Schmitz for

his guidance and ongoing support during the years. Gerd Schmitz generously reviewed this thesis

and also acted as an author or co-author for a number of publications I was involved in, including

Philipp et al. (2010). I am also very grateful to Prof. Rudolf Liedl (TU Dresden) who delivered

the theoretical background of the analytical flow models presented herein, as well as helped as a

mathematician during various stages of model development. Rudolf Liedl also co-authored two of

the three papers which contributed to this thesis (Philipp et al., 2010 and Philipp et al., 2012).

I am obliged to Dr. Johannes Cullmann (German IHP/HWRP) for always being such a diligent

supporter, patron, and friend of mine, as well to Dr. Thomas “Eddy” Wöhling (WESS Tübingen)

and Prof. Harald Kunstmann (Universität Augsburg) for helping me in so many ways. Moreover,

Johannes Cullmann and Harald Kunstmann both took care of reviewing this thesis. It should also

be mentioned that Eddy Wöhling acted as a co-author for Philipp et al. (2012).

My colleagues, Dr. Michael Wagner, Dr. Sabine Seidel, Dr. Thomas Krauße, Dr. Peter Stange,

Sebastian Kloß, Ruben Müller, Dr. Niels Schütze, and Dr. Franz Lennartz are acknowledged for

always being willing to help me with the problems I was having regarding this work. In particular,

I thank Dr. Jens Grundmann for co-authoring Philipp and Grundmann (2013) and Stefan Werisch

for going through the manuscript.

1 Philipp et al. (2010), Philipp et al. (2012), and Philipp and Grundmann (2013).
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Abstract

This thesis presents a novel analytical solution strategy for the zero-inertia (ZI) equations of free

surface flow. These equations are utilized herein for routing flood flow in open channels and for

simulating excess rainfall runoff on overland planes. The novel solution approach is shown to be

both accurate and robust, especially under the complicated and intricate conditions of infiltrating

flow on initially dry river beds or soils, e.g., as present in arid and semiarid areas. This is underlain

by comparing modeling results of the novel analytical procedure with those of validated numerical

solutions. Furthermore, it is shown that the analytical ZI model can deliver a process-oriented

portrayal of runoff concentration in the flood-generating parts of the catchment.

Subsequently, the novel analytical ZI model is applied for a real-world water management

problem in the Sultanate of Oman, Arabian Peninsula. Within an integrated flash flood routing

model—which is also presented in this thesis—the novel analytical routing approach helps in

accurately matching the dynamics of advancing and infiltrating ephemeral river flow, established

as a consequence of release from a groundwater recharge dam. The integrated modeling system

houses the aforementioned analytical downstream model and tailor-made, state-of-the-art modeling

components to portray the upstream flow processes, dam operation (including evaporation), and

spillway release flow. The proposed modeling system can aid in rendering a realistic image of

transient transmission losses and dependent flow dynamics. This is of extremely high importance

for water resources assessment, as well as for optimizing recharge dam operation strategies in order

to maximize downstream transmission losses and, thus, groundwater recharge.
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Chapter 1

Introduction

Arid and semiarid areas make up more than one third of global land area (UNEP, 1997). Many arid

and semiarid regions1 face a rapid population growth and, therefore, an increasing water demand.

Groundwater is almost the only renewable freshwater resource and is used to a high degree in the

Middle East and North Africa (MENA) countries. Projections of the World Bank (The World

Bank, 2007) say that available water resources for the MENA region will decrease from 1,100 m3 to

550 m3 per year and per head over the next 40 years. A recent study by Voss et al. (2013) evaluates

freshwater storage trends in the north-central Middle East (transboundary Tigris and Euphrates

basins) using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite

mission. The study shows that total groundwater resources in the 753,960 km2 investigation area

decreased by 121.1 mm (17.3 mm · a−1) from January 2003 to December 2009, mainly attributable

to withdrawals for irrigation purposes.

In some MENA areas, such as the Al Batinah Region in Oman, groundwater withdrawal exceeds

natural replenishment even more strongly, which leads to falling groundwater levels of locally up

to 2,000 mm · a−1 (Haimerl, 2004). Besides the improvement of water use efficiency, increasing

groundwater recharge is of very high importance for a more sustainable water resources management

in arid regions (Kowsar, 1996; Battashi and Rashid, 1998; Bouwer, 2002). Therefore, as the basis of

a sound management and for recharge-improving measures, e.g., groundwater recharge dams, the

magnitude and spatiotemporal dynamics of groundwater recharge need to be estimated.

Lerner et al. (1990) classified groundwater recharge into direct recharge, indirect recharge, and

localized recharge. Direct recharge is the direct vertical movement of water through the soil into the

groundwater (percolation), localized recharge is recharge due to spatially limited concentrations of

surface water, and, finally, indirect recharge is the infiltration and percolation from watercourses.

Especially in arid areas, the scarcity of data and the extreme variability and spottiness of rainfall2

renders the estimation of groundwater recharge a rather cumbersome bundle of problems. It is

feasible, to not only limit the term “direct recharge” to recharge at a specific point, but also include

1 In this work, the term “arid” comprises arid and hyperarid climates. Usually, an aridity index is used to distinguish
different degrees of aridity, e.g., hyperarid, arid, and semiarid. A number of aridity indices are available from the
literature where in general precipitation and potential evaporation are related, but other variables, such as radiation
or temperature, may also be supplemented. An aridity index of 0.5 marks the boundary of humid and (semi)arid
climate, whereas an aridity index of < 0.05 usually indicates hyperarid climate conditions.

2 Spotty, convective storm cells with a diameter of some to 20 kilometers were reported to cause local, highly
concentrated rainfall events in (semi)arid regions of the USA (Arizona), Israel, and Oman (Renard and Keppel, 1966;
Sharon, 1972; Fisher, 1994).
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Figure 1.1: Overview of recharge processes in (semi)arid areas, modified according to Lerner
(1997) and de Vries and Simmers (2002). E: Evaporation; RE: re-evaporation; R: groundwater
recharge. The processes in the gray boxes are addressed in this work. Infiltration from overland
flow is not directly addressed herein, but is considered in model development. The corresponding
box is, therefore, filled in with a lighter gray.

the recharge emerging from smaller-scale infiltrating overland flow processes. Figure 1.1 shows this

classification of surface flow and recharge processes. Eventually, groundwater recharge is driven

by the rainfall–runoff phenomena, which are usually subdivided into three phases, namely runoff

generation, runoff concentration, and flood propagation (cf. Fig. 1.1).

1.1 The Role of Ephemeral River Flow for Groundwater

Recharge

Runoff in ephemeral riverbeds is a common phenomenon in many dryland regions. The riverbeds

(or wadis) are dry throughout most of the year due to intermittent rainfall regimes and the absence

of a continuously flowing water source. Especially in arid regions, convective rainstorms can lead to

torrential downpours and, consequently, pronounced runoff events, called flash floods. Such events

typically show a rapidly rising water level and are often associated with considerable sediment

transport processes. Moreover, a flash flood surging down a channel may form a “wall of water”,

which is connected with highly turbulent flow and discontinuities in the hydraulic process variables,

e.g., flow depth, velocity, and discharge (cf. Fig. 1.2). This surging tendency of an advancing flash

flood wave can be amplified by an initially dry channel bed, causing typically high initial infiltration

losses.

Since there is no direct connection between ephemeral river flow and groundwater, a certain

amount of runoff infiltrates through the permeable riverbeds. This infiltration is often very noticeable

and the phenomenon is referred to as transmission loss, although the water is not lost and can

recharge the groundwater (Sorman and Abdulrazzak, 1993; Shentsis and Rosenthal, 2003; Goodrich

et al., 2004). Transmission losses cause a recession of event-specific flow volumes and discharges

along the watercourse, which can be seen from flow data obtained at a series of gauges, as shown,

for example, in Table 1.1.
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Figure 1.2: Advancing front of a seasonal flash flood wave in an ephemeral river in Southern
Utah, USA. Shot on 08/08/2010 at Wahweap Creek, hours after heavy rain hit the drainage basin.
Wahweap Creek is a western tributary to Lake Powell. Footage courtesy of David O. Rankin.

Table 1.1: Effects of transmission losses on flow volume and peak discharge for a flood event in
Walnut Gulch, Arizona, United States. Data taken from Renard and Keppel (1966).

Catchment area

(km2)

Volume of flood

(103 m3)

Peak discharge

(m3 · s−1)

95 92.3 41.9

114 79.9 27.2

149 40.1 15.6

Some authors, e.g., Rushton (1997), define transmission losses as potential indirect groundwater

recharge, whereas actual recharge is potential recharge minus the amount of water which has

infiltrated but does not contribute to the groundwater. Haimerl (2004) lists typical magnitudes

and values of hydrological processes in Northern Oman (Table 1.2). Although this information

only bears an assumptive character, it becomes clear that foremost infiltration opportunity times

and the wetted infiltrating channel area both control transmission losses and, therefore, indirect

groundwater recharge.

The interdependence of transmission losses and ephemeral river flow is strongly nonlinear.

An increasing flow rate causes an acceleration of flow advance. This leads to an increase of the

wetted channel area and, therefore, transmission losses, which in turn lower the flow rate, flow

volumes, and—finally—decelerate the flow advance. At the same time, infiltration rates might

change. Figure 1.3 exemplarily shows the spatiotemporal development of hydraulic parameters

and infiltration rates for wadi flow under transmission losses, simulated with the modeling system

developed herein.1 Changes in the inflow rate cause changes in the other dependent hydraulic

process parameters (e.g., water depth, wetted cross-sectional area, etc.) and, consequently, total

infiltration. Additionally, infiltration rates change over time, which introduces further nonlinearity.

Special attention should be drawn to the nonlinear recession trajectory of the flow domain (cf.,

1 Simulation results are shown for a hypothetical flood event for Wadi Bani Kharus between Al Abyadh gauging station
and the Sea of Oman (cf. Section 7.2.1). The incorporated Kostiakov-Lewis infiltration model was parametrized with
realistic values but not on the basis of observed transmission losses.
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Table 1.2: Typical scales and values of hydrological processes in Oman’s ephemeral rivers, modified
according to Haimerl (2004).

Process or parameter Typical scale Typical value

Precipitation

Precipitation rate 10−6 m · s−1 100 mm · d−1

Catchment area 108 m2 1,500 km2

Duration 103 s 6 h

Precipitation volume 106 m3 37.6 · 106 m3 †

Surface runoff

Flow velocity 100 m · s−1 3 m · s−1

Wetted cross-sectional area 102 m2 150 m2

Duration 103 s 12 h

Flow volume 106 m3 19.4 · 106 m3 †

Infiltration

Infiltration rate 10−5 m · s−1 2,000 mm · d−1

Wetted channel area 106 m2 15 km2

Duration 103 s 12 h

Infiltration volume 106 m3 15 · 106 m3 †

Evaporation from surface flow

Evaporation rate 10−8 m · s−1 5 mm · d−1

Wetted channel area 106 m2 15 km2

Duration 103 s 12 h

Evaporation volume 104 m3 0.0375 · 106 m3 †

†Values are volumes which were calculated from typical values of

rate, area, and duration of the considered processes (volume =

rate · area · duration).

e.g., lower left subplot of Fig. 1.3b), where wadi infiltration leads foremost to a recession of the

downstream end of the flow domain.1

It can be further seen from Fig. 1.3 that, although the advance of the flow domain is comparably

dynamic (ca. 12 h, until recession begins), the main amount of transmission losses occurs under weak

process dynamics (lower right subplot of Fig. 1.3). However, the initial advance of the infiltrating

flow domain strongly controls the available infiltrating channel area and, therefore, final infiltration

volumes. Such intricate and strongly nonlinear dynamics should be taken into account for the

assessment of indirect groundwater recharge. Clearly, sound groundwater management is only

possible with an exact and event-related simulation of transmission losses and interlinked surface

flow.

1.2 A General Overview of Methods for Estimating Ground-

water Recharge with the Focus on Indirect Recharge

A vast number of techniques and methods for estimating direct and indirect groundwater recharge

are available from the literature. A very profound review of related studies can be found in Lerner

et al. (1990) and Scanlon and Healy (2002). These authors distinguish (a) surface-water based

techniques; (b) unsaturated-zone techniques; and (c) saturated-zone techniques.

1 According to the classification of Walker and Humpherys (1983), this effect is termed “front-end recession”.
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(b) Simulated highly nonlinear spatiotemporal process dynamics for a 32.5 km wadi reach over 48 h
(spatial resolution ∆x = 50 m).

Figure 1.3: Simulated dynamics of wadi flow under transmission losses. An inflow hydrograph (a)
is routed along a nonprismatic channel. The several plots (b) show the spatiotemporal evolution of
flow, wetted cross-sectional area, infiltration rate, water depth, hydraulic radius, actual infiltration
rate, flow width, wetted perimeter, and cumulative infiltration.
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Surface-water based techniques and unsaturated-zone techniques estimate potential recharge,

whereas groundwater methods provide estimates of actual recharge. The available methodology

ranges from physical techniques, e.g., water budgeting and direct measurement of seepage (with

infiltrometers), over miscellaneous tracer methods, to the application of process models1 for the

portrayal of surface and subsurface flows. Table 1.3 gives a comprehensive overview of the discussed

studies with respect to their applicability for estimating indirect recharge. To maintain brevity,

further references can be found in Scanlon and Healy (2002).

Not all methods referred to are applicable for an event-based and spatially/temporally distributed

estimation of transmission losses, which is a precondition for a sound assessment of indirect recharge

from wadi flow under the influence of groundwater recharge dams. Specific conditions which

impede the use of certain techniques are set in italic font in Table 1.3. It becomes clear that the

applicability of a great number of the listed recharge estimation methods for transmission loss

assessment is questionable, attributable to the specifics of the arid scoping area of the present

study: No baseflow is present, rainfall data are scarce and highly uncertain, and the groundwater

flow is highly unsteady due to intense groundwater pumping. Furthermore, a number of methods

only deliver point estimates of recharge, where, at the same time, sophisticated data, e.g., soil

hydraulic properties or water content and matrix potential measurements, need to be supplemented.

Additionally, several methods, e.g., all tracer methods, cannot be applied on an event-related time

scale.

As seen from Table 1.3, surface-water based techniques seem to generally be more appropriate

for transmission loss modeling than unsaturated-zone and saturated-zone methods. Referring to

surface-water techniques, physical techniques and tracer studies expose only a limited applicability

for transmission loss estimation under the problem-specific conditions present in arid and semiarid

areas. Therefore, a hydrologic or hydrodynamic routing approach seems to offer the most suitable

option for the estimation of ephemeral channel recharge if gauging and channel morphology data

are obtainable, which is mostly the case. Numerous surface-water oriented studies related to arid

and semiarid transmission loss estimation are discussed in more detail in Chapter 2.

1.3 A Closer Look at Artificial Groundwater Augmentation

Techniques and the Involved Processes

The shortage of groundwater can be a major restricting factor for socio-economic development

(The World Bank, 2007). Basically, two options arise in order to stop—or at least decelerate—a

progressive groundwater depletion: (a) curtail groundwater extraction; and (b) artificially increase

groundwater recharge. As already outlined, the improvement of water-use efficiency definitely holds

the highest potential in facing an increasing water shortage. Complementarily, the application of

methods known as artificial groundwater recharge can help to relieve the situation. According to

Todd (1959), artificial groundwater recharge is usually defined as “the practice of increasing by

artificial means the amount of water that enters a ground-water reservoir.” Hence, any artificial

system or scheme which increases natural recharge is an artificial recharge system.

Following this definition, artificial groundwater recharge systems have been known for hundreds

of years, e.g., in Iran, India, Israel, and Spain (Garoussi, 1999). The employed methods are

1 Herein, the terms “process model”, “process-oriented model”, and “physically-based model” are used synonymously.
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Table 1.3: Overview of methods for estimating indirect groundwater recharge with respect to
transmission loss (TL) estimation (according to Scanlon and Healy, 2002).

Technique Method Suited

for TL

estim.?

Temp-

oral

scale

Spatial

scale

Accuracy Remarks

S
u
rf

a
ce

-w
a
te

r
te

ch
n

iq
u

es

Channel water

budget
Limited Event Reach

Depending on flow

data quality

Only integral results

for reach

Physical

techniques

Seepage

meters

(Infiltrometers)

Limited
Event–

days
Point

Depending on

number of

sampling sites

Not applicable

during a flow event

Baseflow

discharge
No

Months–

years
Point − No baseflow under

arid conditions

Tracers

Heat as tracer Limited
Event–

years
Point

Depending on

accuracy of unsat.

zone model

Requires inverse

numerical modeling

Isotopes

(e.g., 18O, 2H)
No

Years–

decades

Catch-

ment
− Delivers no recharge

rates

Process

modeling

Watershed

modeling
Limited

Day–

years

Catch-

ment

Limited by rain

data uncertainties
High data demand

Flow routing

(hydrologic/

hydrodynamic)

Yes Event
Point–

reach

Accurate, if

sufficient data are

available

Gauging and

morphological data

required

U
n

sa
tu

ra
te

d
-z

o
n

e
te

ch
n
iq

u
es

Lysimeters No Years Point − Not suited for

recharge estimation

Physical

techniques

Zero flux

plane concept
Limited

Event–

years
Point

Depending on

data quality; point

estimate

High data demand

(water content and

matrix potential)

Darcy’s law Limited
Event–

years

Point–

Area

Depending on

quality of

conductivity field

Recharge set equal to

hydraulic

conductivity

Applied

tracers (e.g.,

dyes, bromide)

Limited
Months-

years
Point Point estimate

Applicable for

recharge rates

> 200 mm · a−1

Tracers

Historical

tracers

(e.g., 3H)

Limited Years
Catch-

ment

Depending on

magnitude of

tracer signal

For recharge rates

10–50 mm · a−1

Environ-

mental tracers

(e.g., Cl)

Limited
Months-

years
Point Point estimate

For recharge rates

< 100 mm · a−1

Process

modeling

Richards’

equation
Limited

Event–

years

Point–

Area

Depending on

data situation and

macropore effects

High data demand

(soil hydraulic

characteristics)

S
a
tu

ra
te

d
-z

o
n

e
te

ch
n
iq

u
es

Physical

techniques

Water table

fluctuation
Limited Years

Catch-

ment

Uncertainty of

pumping data?

Pumping rates need

to be estimated

Darcy’s law Limited
Years–

decades

Catch-

ment

Depending on

quality of

conductivity field

Method assumes no

water extraction

Tracers

Historical

tracers

(e.g., 3H/3He)

Limited
Months–

years

Catch-

ment

Depending on

magnitude of

tracer signal

Recharge rates

estimated only via

age gradient

Environ-

mental tracers

(e.g., Cl)

Limited Years Point Point estimate −

Process

modeling

Groundwater

flow models
Limited Years

Catch-

ment

Uncertainty of

pumping data?

Pumping rates need

to be estimated
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generally classified into direct methods and indirect methods. Direct methods comprise (a) direct

surface recharge; (b) direct subsurface recharge; and (c) combined direct methods (UNEP, 1998).

Whereas direct subsurface recharge techniques aim towards a direct injection of water into the

aquifer via wells, direct surface methods include techniques such as spreading basins, recharge

pits and shafts, ditches, and recharge dams. Indirect methods artificially induce infiltration from

hydraulically connected water bodies onto the land surface by lowering groundwater levels with

pumping equipment. Further literature on various groundwater recharge projects can be found in

Bouwer (2002) and Haimerl (2004), for example.

An efficient method for improving natural recharge from ephemeral rivers is the construction of

groundwater recharge dams. In the last decades, several recharge dams have been erected on the

northern coastal plain of Oman in order to promote recharge of the coastal aquifer system and to

minimize freshwater losses to the sea (MRMEWR, 2007). Such dams span the wadi beds, retain

flood flow, and support a decelerated release of water, typically over several days, which leads to

higher infiltration opportunity times in the downstream wadi sections. Thus, recharge dams have

to be distinguished from structures such as sand dams, where recharge occurs beneath the dam

structure itself (Quilis et al., 2009). Furthermore, recharge dams prevent clogging of the downstream

channel reaches by retaining sediment load. The dams decrease runoff dynamics significantly, since

release rates—typically established by culvert release—are low compared with peak inflow rates.

Therefore, simulating the runoff behavior in ephemeral channels under the influence of recharge

dams requires the consideration of different types of runoff dynamics upstream and downstream of

the dam, particularly for the possibly weak dynamics in the downstream reaches where standing

wave effects can occur under small, though persistent, quasisteady release rates.

Figure 1.4 shows a schematic section of Oman’s coastal plain with a recharge dam, located

in a wadi bed. Groundwater extraction led to a dropping of the original groundwater table and

the groundwater–saltwater interface shifted inland towards the zone of groundwater extraction.

Infiltration below the dam leads to a recharge of groundwater which counteracts the groundwater

drop. However, groundwater uptake is by far not equalized by artificially improved groundwater

recharge, which lets groundwater tables drop further.

The hydrologic dimensioning of a recharge dam requires the determination of the design storage

capacity, the spillway design flood, and the culvert design. The design storage capacity is usually

related to an inflow volume of a certain probability, as well as to a return period. Typically, a

return period of 15 to 30 years is chosen. The spillway design flood is estimated depending on

a specific risk category in which the dam falls. Such risk categories are, for example, defined by

the International Commission on Large Dams (ICOLD). For Oman’s recharge dams, the design

flood is mostly related to a return period of 10,000 years, or 0.5 times the probable maximum

flood (PMF)1, depending on what delivers the higher value (MAF, 1992). The dimensioning of

the culvert outlets is generally carried out in a much less sophisticated way. To prevent malaria

infestation2, the outlets are designed so that they are capable of emptying the reservoir in 12 to 14

days at most by request of the health authorities in Oman (MAF, 1989). This approach should

1 The PMF concept relates the probable maximum precipitation (PMP) via a rainfall–runoff simulation to a specific
flood flow (the probable maximum flood). PMP is defined by WMO (1986) as “[. . . ] the greatest depth of precipitation
for a given duration meteorologically possible for a given size storm area at a particular location at a particular time
of the year, with no allowance made for long-term climatic trends”.

2 For breeding, mosquitoes lay eggs which are potentially infected with plasmodium protists in open water bodies.
The larvae need at least 14 days for maturing.
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Saturated zone

Recharge 
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Evaporation

Evaporation and 
re-evaporation
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Saltwater 
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Groundwater
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Original groundwater table

Sea

Flood flow

Infiltration and recharge

Figure 1.4: Groundwater recharge processes in ephemeral channels downstream of recharge dams.

be supplemented with a hydrodynamic investigation. Assuming a certain downstream wadi reach

with appropriate infiltration characteristics, the question arises of what is a suitable outlet design

for efficiently utilizing the available wadi reach length for groundwater recharge without causing

losses, e.g., to the sea. The same applies for an optimal operation of the culverts with respect to a

preferably high downstream infiltration quota.

Up to this point of the present thesis, vertical processes leading to groundwater recharge have

been distinguished into surface flow, infiltration (or transmission losses), and recharge processes. A

more detailed view of the involved processes, their influencing parameters, and suitable process

models for their simulation is given in Fig. 1.5. The relevant processes which control groundwater

recharge are surface flow, infiltration, evaporation and re-evaporation, percolation and water vapor

transport in the unsaturated zone, as well as groundwater flow. Transmission losses (or potential

indirect recharge, according to Section 1.1) are controlled by the interplay of surface flow, infiltration,

and evaporation, which are further subsumed as surface processes (denoted with a dashed box in

Fig. 1.5). These surface processes are subsequently discussed in more detail. It will get clear that,

compared to channel infiltration and dam evaporation, direct evaporation from wadi flow is small

to negligible (Menk, 1998). Hence, the scope of the recharge-influencing processes investigated in

this study is set to interlinked surface flow and infiltration (solid box in Fig. 1.5).

Surface Flow: According to the nomenclature used in hydraulics textbooks, such as Chow

(1959) or Subramanya (2009), ephemeral river flow can be generally classified as gradually-varied

nonuniform (i.e., ∂u∂x 6= 0) and unsteady (i.e., ∂u∂t 6= 0) flow in a nonprismatic channel. When aiming

at a process-based description of infiltration through a permeable bed, it is most important to

quantify the dynamics of the wetted channel area. In contrast to perennial rivers, two characteristics

of ephemeral river flow render hydrodynamics rather complex: (a) attributable to infiltration (and

evaporation), the flow loses mass and a certain amount of momentum, and (b) a typically pronounced

(i.e., surging) flow occurs over initially dry beds and transmission losses weaken process dynamics,
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Figure 1.5: Involved processes, parameters, and mathematical process models for groundwater
recharge estimation. Modified according to Haimerl (2004).

especially downstream of recharge dams. These findings establish two cardinal demands posed

for a sound process description: (a) accounting for losses of mass and—if necessary—momentum

in the process description, and (b) encountering the shortcomings of common numerical solution

strategies for handling a dry-channel initial condition and significant infiltration losses (Schmitz,

1989; Garcia-Navarro et al., 1999). This thesis presents a modeling framework which is able to meet

the aforementioned specific demands of ephemeral river routing.

Infiltration: Infiltration from free surface flow causes losses which either contribute to ground-

water recharge or re-evaporate into the atmosphere. Infiltration appears at the interface of the

surface and the subsurface. Water moving further downward through the porous soil matrix, driven

by the gravitational force (and, to a certain degree, the matrix potential), establishes percolation

and, consequently, recharge. A certain amount of soil water can be held by the capillary forces

of the soil matrix against gravitation. This water may be transferred further downward with the

next infiltration event, move upwards again due to capillary rise, or be transported as water vapor.

Under matrix flow conditions, infiltration rates are dependent on the initial soil moisture, the soil

hydraulic characteristics, and the upper boundary condition, e.g., given as the pressure head which

results from the depth of ponding surface water. Assuming the depth of the groundwater table

is significantly larger than the ponding water depth1, an application of Darcy’s law shows that

the water depth at the upper soil layer is negligible with respect to initial infiltration rates as,

shown by Bouwer (1982), for example. In turn, the groundwater level does not impact infiltration

rates and, therefore, initial infiltration equals the hydraulic conductivity of the unsaturated zone

under conditions found, e.g., in Oman (Bouwer, 2002). However, infiltration rates typically decrease

1 Which means, e.g., twenty times or more.
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1.3 Groundwater Augmentation Techniques and the Involved Processes

Table 1.4: Typical values of the hydraulic conductivity for various soils. Taken from Bouwer
(1999).

Soil type Hydraulic conductivity

(mm · d−1)

Clays < 100

Loams 200

Sandy loams 300

Loamy sands 500

Fine sands 1,000

Medium sands 5,000

Coarse Sands 10,000

over time due to a decrease in the driving pressure-head gradient, attributable to the downward

movement of the wetting front.

For the coarse upper layers of the thick, unsaturated alluvial soils found in wadi beds, the matrix

gradient does not strongly differ from zero and the initial vertical water movement is mainly, but

not solely, a consequence of gravitation (Scanlon and Healy, 2002). Moreover, as already discussed,

the influence of a transient hydrostatic pressure head on wadi infiltration is assumed to be small

(Bouwer, 1982; Haimerl, 2004).1 Furthermore, infiltration on permeable alluvial material is also

driven by macropore flow processes (Beven and Germann, 1982; Wood et al., 1997). Together

with the limited data situation in arid areas, the applicability of matrix flow models (i.e., models

based on Richards’ equation) for the quantification of infiltration is often precluded. The present

study, therefore, incorporates an empirical Kostiakov-Lewis model for predicting wadi infiltration

(cf. Section 6.1.1.1), whereas the novel modeling approaches developed herein are not restricted to

a specific procedure for the quantification of infiltration losses. The Kostiakov-Lewis model offers a

reliable performance in predicting infiltration rates on various dryland soils, which was shown, e.g.,

by Zolfaghari et al. (2012) who fitted seven empirical infiltration models to field data of (semi)arid

regions in Iran, where the Kostiakov-Lewis approach performed best. Bouwer (1999) gives estimates

of the unsaturated hydraulic conductivity—and, therefore, potential infiltration rates, as outlined

above—for various soils (Table 1.4). For the alluvium covering the beds of Oman’s coastal wadis,

values of some hundred to some thousand millimeters per day are typical (Haimerl, 2004), which is

confirmed by the infiltrometry data used for this thesis, presented in Chapter 7.2.1.

Evaporation and Re-Evaporation: Event-related direct evaporation from wadi flow is neg-

ligible. Infiltrometry tests for Oman showed infiltration rates of some hundreds to thousands

of millimeters per day for the wadi bed alluvium (e.g., MAF, 1990), whereas typical potential

evaporation is 5 to 10 mm · d−1 (Fisher, 1994). In contrast, case studies, e.g., of Strobl and Haimerl

(1999), have estimated reservoir evaporation from Omani recharge dams to be some per cent up

to 20 % of total retained flow volumes. Therefore, dam evaporation is regarded in this study with

respect to a sound assessment of the dam water balance and potential downstream recharge. The

quantification of re-evaporation of infiltrated water from wetted alluvial topsoils in an Omani wadi,

1 If the matrix gradient and the hydrostatic surface potential are neglected, the driving total head gradient is equal to
unity which is often referred to as unit-gradient assumption (Scanlon and Healy, 2002). Consequently, infiltration
rates will be constant under these conditions. However, such a constant-rate approach might be questionable for
transmission loss modeling since infiltration experiments (e.g., Haimerl, 2004; Zolfaghari et al., 2012) often show a
noticeable temporal decline of infiltration rates. This is especially the case if finer material can be found between
coarser fractions of the alluvium, which is generally the rule rather than the exception in arid areas.
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located in the Al Batinah Region, was comprehensively investigated by Haimerl (2004). Although

re-evaporation can consume a significant amount of transmission losses and, therefore, reduce

groundwater recharge (cf. Fig. 1.1), the cited study essentially found by means of field and model

experiments that re-evaporation losses are very small (8 to 16 mm · a−1) if recharge occurs during

temporarily isolated events, which is generally the rule rather than the exception for Northern

Oman. Re-evaporation is, therefore, not considered in the modeling approaches developed herein.

1.4 The Role of Overland Flow for Flash Flood Formation

Overland flow on hillslopes is the driving process of runoff concentration and, therefore, flood

formation in semiarid and arid areas during flood-prone hydro-meteorological situations. Flow on

the surface is affected by topography and micro relief of the catchment, positive and negative mass

(and minor momentum) contributions attributable to precipitation and infiltration, antecedent

wetness conditions, erosion and deposition of soil material, and water supervening from upper parts

of the catchment. The preceding listing illustrates the complex character of surface flow processes

and renders their closed, physically-based description nearly impossible, since the relevant processes

are strongly interconnected as well as highly nonlinear, and available data for such an ambitious

process modeling will always be lacking for real meso-scale catchments in (semi)arid areas.

The concept of sheet flow is commonly used to tackle the aforementioned problems when aiming

at a process-oriented modeling of surface flow. This means that the flowing water on the surface

is considered to be a somehow virtual, moving water body (or sheet of water), traveling down a

characteristically rough slope without considering the real flow conditions in rills and small channels.

Nevertheless, only the average characteristics of the water movement are portrayed this way. For

the one-dimensional case, there are only a few studies (e.g., Tayfur and Kavvas, 1998) that try to

overcome the simplifications of the sheet flow concept towards a more realistic representation of

rill flow, which of course results in a mostly unrealistically high data demand. The same applies

for two-dimensional approaches (e.g., Howes et al., 2006; Liu et al., 2004), which are not only

restricted by the sheet flow assumption, but also demand highly-resolved information on surface

and subsurface characteristics, as well as topography.

Moreover, uncertain rainfall data might not justify the application of process-oriented models

for the simulation of runoff concentration. Especially for drylands, conceptual approaches, such

as more or less lumped nonlinear (leaky) storage models, or even empirical relationships between

spatially-averaged rainfall and gauged ephemeral runoff, can deliver comparably good results

under the rainfall uncertainties typical for arid areas (McIntyre et al., 2007; Al-Qurashi, 2008;

Al-Rawas, 2009). Nevertheless, future developments in Oman encourage the hope for better rainfall

prediction from rainfall radars, spaceborne data (e.g., emerging from the Tropical Rainfall Measuring

Mission, Kummerow et al., 1998), and short-term numerical weather predictions, e.g., in order to

issue a reliable flash flood warning (Grabs, 2012). Under such conditions, only a distributed and

physically-based modeling approach is able to fully exploit a highly resolved precipitation forecast.

1.5 Objectives of the Thesis

Tooth (2000) provides a remarkably comprehensive review on the state of the art in recent dryland

river research, wherein the author outlines a strong demand for a better assessment of transmission
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losses. During the past two decades, a vast number of studies were published on interacting

surface–subsurface processes on the land surface and in river channels, which can be seen strikingly

from the references given in Stanley and Jones (2000), Sophocleous (2002), Morita and Yen (2002),

Wöhling et al. (2004a), and Wöhling and Schmitz (2007). Sophocleous (2002) stated that the

main obstacle for a proper assessment of surface–subsurface processes is the limited understanding

of near-channel and in-channel water exchange processes, which would be the key for a more

sophisticated assessment and management of water resources. The author further calls upon

research on the spatiotemporal dynamics of groundwater recharge processes from open channels.

The study concludes that these efforts demand a physically-based description of flow dynamics.

This thesis essentially develops three process-oriented, i.e., physically-based modeling components,

bundled within an integrated system, which further contributes to an integrated water resources

management (IWRM) toolbox for Oman’s Batinah Region (Grundmann et al., 2012). The central

element of the integrated modeling system is a hydrodynamic free surface flow model which aims

at overcoming the hydrological problem to adequately mimic the propagation of a waterfront on

an initially dry soil, strongly influenced by infiltration. This is, e.g., required for the description

of transient, indirect groundwater recharge resulting from infiltrating flow in ephemeral channels,

influenced by the operation of groundwater recharge dams. Besides the highly nonlinear interplay

of surface flow and infiltration downstream of a recharge dam, the modeling system needs to

consider the effects of dam operation and upstream hydrodynamics to predict the dam inflow.

Thus, upstream hydrodynamics and dam operation are also each portrayed with a physically-based

modeling component within the integrated system.

As a corollary of the intended process-orientated approach, the incorporated model components

have to be coupled in a reasonable manner. This demands a flow-boundary-based coupling of surface

flow and a simultaneous inclusion of transmission losses in the governing process equations. Special

attention has to be drawn on the sound (i.e., stable1 and accurate2) portrayal of advancing dam

release flow in an initially dry channel (cf. Section 1.1), which is challenging for common numerical

solution procedures applied to the governing equations. To cope with the aforementioned demands,

a novel analytical solution procedure of the flow equations is proposed. It is further shown that the

proposed analytical approach can also provide a robust and reliable description of overland flow

processes under infiltration.

1.6 Structure of the Work

This thesis is divided in nine chapters, the first three of which follow a hierarchical structure.

Figure 1.6 provides a representation of the structure of the thesis.

Chapter 2 delivers the state of the art of surface-water based and process-oriented modeling of

transmission losses in ephemeral channels on the basis of a comprehensive review of

the literature. Furthermore, the chapter reviews studies on overland flow modeling with

hydrodynamic approaches, which also unveils a need for improvements.

Chapter 3 presents the theoretical background of common hydrodynamic process models for open

channel and overland flow modeling.

1 The term “stability” is defined in Section 4.2.1.

2 With respect to mass conservation and with respect to matching observed flow dynamics.
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Figure 1.6: Representation of the structure of the thesis.

Chapter 4 covers the theory of numerical and analytical solution procedures for the hydrodynamic

models and their applicability under the governing process characteristics. The need for

innovation is outlined by means of an intercomparison of available modeling approaches

with respect to the specifics of the scoping area of this study.

Chapter 5 presents a novel analytical solution theory of the zero-inertia simplifications of the full

hydrodynamic process description, which is able to fully satisfy the specific demands

of routing advancing and infiltrating dam release flow. Based on the same theory, an

analytical overland flow model is derived which employs the sheet flow analogon of

surface flow.

Chapter 6 carries out a comparison of the proposed analytical models with generally accepted

approaches in order to prove the accurateness and applicability of the novel analytical

modeling concepts.

Chapter 7 shows the inclusion of the analytical zero-inertia approach within the frame of a novel

integrated wadi flow and dam simulation model for the assessment of indirect groundwater

recharge resulting from recharge dam operation for a study area in Northern Oman.

Chapter 8 summarizes the main findings of this thesis and draws conclusions.

Chapter 9 delivers an outlook on issues requiring further research.
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Chapter 2

Literature Review

The literature review carried out for this thesis defines the state of the art of surface-water based

estimation of groundwater recharge from wadi channels. It will become clear that only a process-

oriented modeling concept can provide rigorous and accurate insight into the involved intricate flow

phenomena. Further effort is made to outline the demands and limits of overland flow modeling

in arid areas, where it is shown that infiltrating channel flow and overland flow can be modeled

with the same concepts but, on the other hand, can both involve inconveniences when solving the

governing flow equations by means of numerical procedures.

2.1 Review of Surface-Water Based Studies on the Estima-

tion of Indirect Groundwater Recharge from Ephemeral

Channels

As discussed previously, surface-water based process-modeling techniques hold the highest potential

for the estimation of indirect groundwater recharge from infiltrating ephemeral channel flow. A

number of studies which carried out surface-water based analyses of indirect recharge in (semi)arid

areas are available from the literature. Table 2.1 concisely shows information on the methodology

applied in various publications. The selection attempts to cover all relevant papers of the recent

years in order to deliver an overview of the state of the art of indirect recharge estimation, where a

focus is set on physical and process-oriented methods (cf. Table 1.3). Typically, for all reviewed

studies, the potential indirect recharge is estimated by considering the event-based transmission

losses in an infiltrating wadi reach. All studies which are shown in Table 2.1 focus on the estimation

of transmission losses in dryland areas, comprising the Southwestern United States (Walnut Gulch

Experimental Watershed at Tombstone, Arizona), the Arabian Peninsula (Saudi Arabia, Oman),

Egypt, India, Namibia, Israel, as well as semiarid areas in Australia and Brazil.

Besides flood propagation under transmission losses, roughly half of the publications (11/24)

also address runoff generation and runoff concentration processes. If considered, runoff generation

is modeled with approaches ranging from empirical regression methods (McIntyre et al., 2007;

Al-Rawas, 2009), over the empirical SCS curve number method (e.g., Sorman and Abdulrazzak,

1993; Saber et al., 2009), to semi-distributed and distributed water balance modeling (e.g., Costelloe

et al., 2003; Goodrich et al., 2004). Runoff concentration is described with methods ranging from

15



2 Literature Review

Table 2.1: Overview of selected literature on surface-water based (physical and process-oriented)
estimation of indirect recharge in (semi)arid areas.

Reference Portrayed

R–R

processes

Region RG/RC

model

compo-

nents

RG/RC

model

resolu-

tion

FP ap-

proach

FP

model

TL

model

Walters (1990) FP
USA,

KSA
− − EM GGC REG

Sorman and Abdulrazzak (1993)
RG, RC,

FP
KSA

SCS,

TRAN
SD EM GGC REG

Sharma and Murthy (1994) FP IND − − EM GGC REG

Hughes and Sami (1994)
RG, RC,

FP
− WB,

STO
SD HL STO KL

Sharma and Murthy (1995) FP IND − − HL STO REG

Sharma and Murthy (1996) FP IND − − HL STO LRA

El-Hames and Richards (1998)
RG, RC,

FP
KSA

WB,

KW
SD DY HD RE

Dunkerley and Brown (1999) FP AUS − − EM GGC REG

Shentsis et al. (1999) FP IL − − EM GGC REG

Lange et al. (1999) RC, FP IL REC SD HL MCM CRA

Gheith and Sultan (2000)
RG, RC,

FP
ET

SCS,

UH
SD EM LAG REG

Shentsis and Rosenthal (2003) FP IL − − EM GGC REG

Chapman (2003) FP AUS − − HL STO

CRA,

EXP,

SMD

Costelloe et al. (2003)
RG, RC,

FP
AUS

WB,

STO
DS HL STO REG

Goodrich et al. (2004)†
RG, RC,

FP
USA

WB,

KW
SD DY KW CWB

Haimerl (2004) FP OM − − DY MS RE

Lange (2005) FP NAM − − HL MCM −††
Mudd (2006) FP USA − − DY HD RE

McIntyre et al. (2007)
RG, RC,

FP
OM REG SD EM GGC REG

Al-Qurashi et al. (2008)
RG, RC,

FP
OM

WB,

KW
SD DY KW CWB

Al-Rawas (2009)
RG, RC,

FP
OM REG SD EM GGC REG

Morin et al. (2009) FP NAM − − DY KW CRA

Saber et al. (2009)
RG, RC,

FP

OM,

KSA, ET

SCS,

KW
DS DY KW REG

Costa et al. (2012) FP BR, USA − − DY KW GA

With R–R: rainfall–runoff; RG: runoff generation; RC: runoff concentration; FP: flood propagation; TL: transmission

loss; USA: United States; KSA: Saudi-Arabia; IND: India; AUS: Australia; IL: Israel; ET: Egypt; NAM: Namibia;

OM: Oman; BR: Brazil; SCS: SCS method; TRAN: runoff translation function; WB: water balance; STO: (non)linear

storage model; KW: kinematic wave hydrodynamic model; REC: rainfall excess convolution; UH: unit hydrograph;

SD: semi-distributed; DS: distributed; EM: empirical; HL: hydrologic; DY: hydrodynamic; GGC: gauge to gauge

correlation; HD: full hydrodynamic model; MCM: Muskingum-Cunge method; LAG: empirical lag time formula;

MS: Manning-Strickler approach; REG: regression model; KL: Kostiakov-Lewis model; LRA: “leaky reservoir”

approach; RE: Richards’ equation; CRA: constant rate; EXP: exponential decline; SMD: dependent on soil moisture

deficit; CWB: via remainder term of channel water balance; GA: Green-Ampt infiltration model.
†The study reviews different recharge estimation methods. Only process-oriented methods are regarded for this table.
††Transmission losses were excluded from modeling and derived by comparing modeled to observed hydrographs.
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simple translation functions (Sorman and Abdulrazzak, 1993), over rainfall excess convolution with

empirical catchment response functions (Lange et al., 1999) and the unit hydrograph method1

(Gheith and Sultan, 2000), to conceptual storage models (Hughes and Sami, 1994; Costelloe et al.,

2003), and hydrodynamic overland flow models (e.g., El-Hames and Richards, 1998; Saber et al.,

2009).

Nevertheless, only three of the 24 reviewed studies explicitly assess losses during runoff con-

centration (cf. Fig. 1.1), e.g., by employing a spatially distributed modeling approach (Costelloe

et al., 2003; Saber et al., 2009). Hence, a cell-wise consideration of precipitation, rainfall excess,

and infiltration delivers potential direct recharge during the overland passage. Another possibility

for assessing the direct recharge from overland flow is to include a loss term in the overland flow

equations, as proposed, e.g., by El-Hames and Richards (1998). Especially regarding runoff genera-

tion and concentration, it should be emphasized again that, although a comprehensive modeling of

rainfall–runoff processes in arid areas is a noble goal, the lacking quality and extreme variability of

rainfall data introduces potentially tremendous uncertainties (Fisher, 1994; Wheater, 2002; McIntyre

et al., 2007; Al-Rawas and Valeo, 2009).

For the estimation of indirect recharge, the ephemeral channel flow and the dependent trans-

mission losses need to be regarded. According to Table 1.3, the channel processes are modeled

with routing approaches2, or by using simpler empirical models, such as gauge to gauge correlation

(e.g., applied by Shentsis et al., 1999; Shentsis and Rosenthal, 2003) or empirical lag time formulas

(Gheith and Sultan, 2000). Routing methods can be grouped into hydrologic (conceptual) and

hydrodynamic (physically-based) approaches.3 Typical hydrologic routing models are (non)linear

storage-routing models of a river reach (e.g., Hughes and Sami, 1994; Sharma and Murthy, 1996) or

the Muskingum-Cunge method (Lange et al., 1999; Lange, 2005). Hydrodynamic approaches are

based on the solution of the full hydrodynamic flow equations or their simplifications (cf. Chapter 3)

and were applied, e.g., by El-Hames and Richards (1998), Goodrich et al. (2004), Morin et al. (2009),

and Costa et al. (2012). For the reviewed 24 papers, empirical, hydrologic, and hydrodynamic

models are used similarly frequently for the simulation of flood propagation (empirical: 9/24;

hydrologic: 7/24; hydrodynamic: 8/24).

Simple empirical gauge to gauge correlations deliver only integral values of recharge within

a reach between two considered flow gauges. For deriving a spatially distributed information of

transmission losses along the channel, many authors applied regression models (e.g., Sharma and

Murthy, 1995; Dunkerley and Brown, 1999; Saber et al., 2009) which essentially relate occurring

losses to channel reach length or discharge. Other authors, such as Lange et al. (1999) used constant

loss rates together with hydrologic routing approaches, such as the Muskingum-Cunge method.

Sharma and Murthy (1996) modified a conceptual storage-based routing model with leaky reservoirs,

i.e., a constant or storage-dependent amount of water is lost along the channel.

1 Strictly speaking, the unit hydrograph method also performs a convolution of (excess) rainfall with a hypothetical
unit response (i.e., the unit hydrograph).

2 Fread (1993): “Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of
a flood wave as a function of time (i.e., the flow hydrograph) [. . . ]”

3 More precisely, there is a hydrologic and a hydraulic path to derive routing methods. The hydrologic approach
towards a routing method is to account for the translation and retention of water in virtual storages along a flowpath.
The hydraulic approach considers the forces affecting the movement of a representative body of water. Therefore,
formal similarities or even physical adequateness may exist between hydrologic and hydraulic (i.e., hydrodynamic)
models. For instance, the linear kinematic wave model (cf. Appendix 4.3) is a different form of the Muskingum-Cunge
method (Cunge et al., 1980), and vice versa.
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Morin et al. (2009) also applied constant loss rates together with a hydrodynamic routing

model, which was based on the kinematic wave simplifications of the Saint-Venant equations (cf.

Section 3.2.3). As later shown in this thesis, this constant-rate approach is questionable for modeling

highly dynamic and infiltrating events. Flow observations show that the rising hydrograph of flash

flood events may steepen while the flood wave travels downstream, which is reported, for example,

by Sharma and Murthy (1994), Sharma and Murthy (1995), and Lange (2005). This behavior is

not singularly an intrinsic corollary of the pronounced hydrodynamics, but also a result of intense

initial losses at the wetting wave front. Field studies which quantify the temporal evolution of

infiltration rates after wetting (e.g., Haimerl, 2004) support these findings.

Chapman (2003) presented a methodology to model the impact of recharge on streamflow

recession. The study employs a nonlinear storage routing model in order to validate the applicability

of several assumptions regarding indirect recharge: (a) The recharge is constant; (b) the recharge

has an exponential decline; and (c) the recharge is dependent on the vadose zone moisture deficit

and the dependency is expressed by a semi-empirical function. Although only a small number

of the regarded 28 catchments featured (semi)arid conditions, the work strongly supports the

conclusion that recharge is of transient nature. This finding is essentially no surprise since the main

influencing factors of transmission loss formation, namely infiltration rates, the wetted infiltrating

area, infiltration opportunity times, and soil moisture, are transient.

A way of including transient infiltration during a flow event is the application of infiltration

formulas. Most commonly for this approach, the Kostiakov-Lewis formula is used (e.g., Hughes and

Sami, 1994). If sufficient infiltrometry data are available for parametrization, the Kostiakov-Lewis

model can deliver reliable estimates of infiltration through the permeable channel bed, which is later

shown in this thesis. In contrast, conceptual infiltration models, such as the Green-Ampt model

(e.g., Costa et al., 2012), or process-oriented approaches, such as Richards’ equation (e.g., El-Hames

and Richards, 1998; Haimerl, 2004; Mudd, 2006), can be applied, which raises the demand for

specific soil data, e.g., porosity, conductivity, and water content.

Costa et al. (2012) developed a process-oriented model for assessing in-channel transmission

losses for both hydraulically connected and disconnected streams, considering a possible transition

between the two. Surface flow dynamics were modeled with a kinematic wave approach and

infiltration was described with the Green-Ampt model. The authors point out that the application

of the Green-Amp model under hydraulically disconnected conditions (which is the rule rather than

the exception in arid areas) usually precludes an analytical solution of the infiltration model, which

might exacerbate the coupling of surface flow and infiltration. Moreover, the authors explicitly

state that their approach does not focus on the prediction of in-channel flow dynamics, especially

under hydraulically disconnected conditions. Consequently, their model showed a rather poor

performance regarding the agreement of simulated and observed hydrographs in an arid catchment

in the Southwestern United States (Walnut Gulch Experimental Watershed).

Mudd (2006) coupled a full hydrodynamic surface flow model with a Richards model to quantify

transmission losses. Although the study aims at flash flood modeling in ephemeral channels, no

real-world application was performed. Nevertheless, the numerical analyses carried out in the study

strongly demand the inclusion of losses in the mass balance and the momentum equation of the

incorporated hydrodynamic model for advancing-flow conditions under high transmission losses.

Furthermore, the author showed a way to circumvent numerical inconveniences when modeling
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flow with steep, shock-like gradients over initially dry channel beds by applying a shock-capturing

technique.

Regarding the degree of process orientation, one of the most rigorous investigations was carried

out by El-Hames and Richards (1998) who coupled a full hydrodynamic flow model with Richards’

equation and applied the system for predicting flow hydrographs and transmission losses in Saudi

Arabian wadis. Furthermore, the authors included a semi-distributed catchment model with a

process-oriented overland flow component, which considers a loss term in the continuity equation of

the incorporated kinematic wave model. The modeled hydrographs were mostly in good agreement

with observed ones, even though the application of a matrix flow model (i.e., Richards’ equation) is

problematic for alluvial bed material. Moreover, the authors report of singularity problems when

applying common numerical solution schemes (e.g., finite difference methods) to the flow equations

for overland and channel flow under dry-channel initial conditions. These numerical inconveniences

are stronger for steeper gradients of the flow variables (e.g., water depth) and/or weakening process

dynamics, as they would occur as a consequence of progressive significant infiltration, for example.

Haimerl (2004) is the only author of the listing in Table 2.1 who tried by means of process

modeling to assess transmission losses influenced by artificial groundwater recharge dams. However,

in his study, the hydrodynamics downstream of an Omani dam were only described with an

assumptive steady Manning-Strickler approach, which essentially delivered a value for the flow

duration and a “theoretical flow length”, both of highly assumptive character. Nevertheless, the

study was focused on infiltrometry experiments and their numerical validation and, therefore, gives

sound insight into the governing infiltration processes.

Summing up, the development of a suitable modeling system for ephemeral flow under the

control of a groundwater recharge dam needs to satisfy the following demands, which have not yet

been fulfilled by any available approach at the same time. The model should:

. regard the governing hydrodynamics of the infiltrating flow (i.e., apply a process-oriented

approach);

. include transmission losses in the mass and the momentum balance, where necessary (e.g.,

for advancing flow influenced by strong transmission losses);

. account for a transient development of infiltration after the initial wetting; and

. circumvent numerical issues and singularity problems when modeling advancing free-boundary

flow on an initially dry channel bed under weakening process dynamics.

Especially the last point of the above listing strongly motivates the application of an analytical

solution strategy for the governing model equations. Analytical solutions for open channel flow

models are available for the Saint-Venant equations (e.g., Chalfen and Niemiec, 1986; Wang et al.,

2002; Chung and Kang, 2004) and their simplifications, namely the zero-inertia equations (e.g.,

Schmitz et al., 2002; Fan and Li, 2004) and the kinematic wave model (e.g., Henderson, 1966; Singh,

1996). However, most of the aforementioned approaches introduce assumptions which make them

inapplicable under the outlined problem-specific conditions. The problems for deriving an analytical

hydrodynamic model which is universally applicable are discussed in more detail in Chapter 4.

Consecutively, Chapter 5 presents a novel analytical open channel flow model which satisfies the

afore-listed demands of flow routing under transmission losses in ephemeral channels.
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2.2 Review of Literature on Process-Oriented Overland Flow

Modeling

In arid areas, overland flow is the predominant runoff component during the phase of runoff

concentration, which calls for a process-oriented description (Dunne and Aubry, 1986; Kirkby,

1988). Apart from the very limited knowledge of the process-influencing topography previously

discussed in this work, rainfall and infiltration establish significant source/loss terms which should

be regarded in a physically reasonable manner. Besides using empirical approaches, simple volume

balance models, or conceptual (storage-type) models, overland flow is, therefore, mostly simulated

with hydrodynamic models.

Basically, the same flow models as those for open channel flow can be applied for simulating over-

land flow. The governing equations are either used in a one-dimensional form—which, consequently,

implies the sheet flow analogon (cf. Section 1.4)—or within the frame of a two-dimensional analysis.

The latter approach does not assume a fixed flow network, which renders a two-dimensional model

more suited for erosion studies. When aiming at a one-dimensional model, there are two ways for

reducing the two-dimensional flow problem1 to one spatial dimension: (a) The model elements

are defined in a way that they yield a cascade of one-dimensional flow elements (e.g., Schmid,

1990; Bronstert and Plate, 1997; Bronstert, 1999), or—which is more assumptive—single planes

are used for a lumped representation of the land surface, e.g., as inherent to the widely known

KINEROS model family (Smith et al., 1995), and (b) a routing algorithm is used to determine

a single outflow direction for each flow element2, which is a common method in distributed (i.e.,

cell-wise) one-dimensional overland flow modeling (e.g., Howes et al., 2006; Saber et al., 2009).

Hydrodynamic overland flow modeling incorporates the Saint-Venant equations or their simpli-

fications, namely, the zero-inertia and the kinematic wave approximation (cf. Sections 3.2.2 and

3.2.3). Despite the fact that the kinematic wave approach for overland flow modeling has been

extensively studied (e.g., by Henderson and Wooding, 1964; Ross et al., 1979; Hjelmfelt, 1981;

Hjelmfelt, 1984; Govindaraju et al., 1992; Jaber and Mohtar, 2003; Liu et al., 2004) and a great

number of researchers (e.g., Woolhiser and Liggett, 1967; Zhang and Cundy, 1989; Esteves et al.,

2000) have investigated the usability of one-dimensional and two-dimensional full hydrodynamic

Saint-Venant models for this task, far less has been reported on the validity, limits, and applicability

of the zero-inertia or diffusion wave approximation (which some authors consider synonymous, while

some others do not3).

Morris and Woolhiser (1980) first used the zero-inertia simplification of the full Saint-Venant

equations for overland flow modeling. They showed that the often assumed validity of the kinematic

wave approximation can be harmed under highly subcritical flow conditions (e.g., on a flat and/or

1 In fact, turbulent flow is variable in all three spatial dimensions. Typically, two-dimensional hydrodynamic model
approaches neglect the process variability in one direction by introducing a depth averaging of the variables (cf.
Section 3.2).

2 A widespread algorithm for deriving a one-dimensional flow network is the one proposed by Tarboton (1997). The
paper further lists comprehensive references to other flow-network algorithms.

3 Yen and Tsai (2001) outline the differences between the often synonymously used terms “diffusion wave approximation”
and “zero-inertia approximation”. They state that the term “diffusion wave approximation” includes the class of zero-
inertia waves but is not limited to it. The technique most often used—to neglect the convective and local acceleration
terms of the full dynamic process description (cf. Section 3.2)—should be termed “zero-inertia approximation”
according to the authors. On the other hand, numerous authors (e.g., Govindaraju et al., 1988; Singh, 1996)
call the aforementioned neglecting of terms “diffusion wave approximation”. In this thesis, the term “zero-inertia
approximation” is used.
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very rough terrain). Daluz Vieira (1983) compared 150 simulations on the basis of the Saint-Venant

equations with those obtained by the kinematic wave and the zero-inertia approximation for a range

of flow conditions, rendered by various Froude numbers1 and kinematic wave numbers2. Their study

shows the wide applicability and validness of the zero-inertia approximation for Froude numbers

smaller than 0.5 and kinematic wave numbers greater than 20. As Morris and Woolhiser (1980),

Govindaraju et al. (1988) showed that for Froude numbers < 0.5 and low kinematic wave numbers,

the kinematic wave approximation may fail.

The governing process equations are most often solved numerically. Compared to open channel

flow, surface roughness strongly impacts the overland flow, which can cause problems when applying

standard numerical solution procedures to the flow equations. Many authors report of serious

problems, like attenuation errors, phase errors, and discretization errors, e.g., Wasantha Lal (1998),

Singh (2002), Jaber and Mohtar (2003), and Tsai and Yang (2005), to name only a few. Moreover,

the variability of surface topography lies within the same order of magnitude as the overland flow

depth, which poses further obstacles for numerical solution schemes (Zhang and Cundy, 1989). To

circumvent such problems, there is a vital demand for an analytical treatment of the overland flow

models.

Henderson and Wooding (1964) developed analytical solutions of the KW model. Baiamonte

and Agnese (2010) presented an analytical solution considering Green-Ampt infiltration, based on

the characteristic equations of the KW model (cf. Section 4.1). Mizumura (2006) also applied the

method of characteristics to the KW equations for time-varying excess rainfall rates. By postulating

a sinusoidal rainfall function and by expressing discharge per unit width using a simple parabolic

model, the author was able to derive a closed-form analytical solution which performed quite well

with respect to observed data. Mizumura and Ito (2011a) compared the results of their former model

with solutions obtained from a numerical KW model, which again yielded reasonable results. With

the same strategy, Mizumura and Ito (2011b) expanded their analytical model to accommodate

for moving rainstorms of a constant direction and velocity by shifting the incorporated sinusoidal

rainfall functions in time. The results were again in good agreement with numerical solutions and

reasonably predicted observed overland flows.

However, research on analytical solutions of the zero-inertia equations for overland flow problems

remains limited. Govindaraju et al. (1988) proposed an analytical solution of the zero-inertia

problem for steep slopes under invariant rainfall conditions. Such a steep-slope assumption allows

to apply a zero-depth gradient boundary condition (cf. Section 3.3). This methodology—like in the

case of the research presented herein—leads to nonlinear equations that can be solved by means of

numerical or analytical methods and can deliver a solution for the rising as well as the recession

hydrograph. Govindaraju et al. (1990) and Govindaraju et al. (1992) expanded the aforementioned

1 The Froude number is used to discriminate supercritical and subcritical flows by relating the mass transport velocity
u [LT−1] to wave celerity c =

√
gh [LT−1]:

F =
u

c

with g: acceleration due to Earth’s gravity [LT−2] and h: water depth [L]. If F < 1, the flow is called subcritical, if
F > 1, it is called supercritical. The water depth corresponding to F = 1 is called critical depth.

2 According to Singh (1994), “The kinematic wave number reflects the effect of bed slope, channel length, normal flow
depth, and Froude number”. First proposed by Woolhiser and Liggett (1967), the dimensionless kinematic wave
number for a flow element is defined by

κ =
S0L0

hnF 2

where S0: general slope of the flow element [−]; L0: length of the flow element [L]; and hn: normal flow depth [L].
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concepts to an approximate analytical solution for space-time-varying rainfall input and lateral

inflow for one-dimensional and two-dimensional cases.

Furthermore, the literature shows no evidence of an exact analytical solution of the zero-inertia

equations for milder slopes, where the realistic portrayal of the lower flow boundary is important,

as well as under arbitrarily time-varying (i.e., unsteady) rainfall. A number of authors introduced

and expanded upon a free boundary formulation of the zero-inertia problem, introduced by Schmitz

and Seus (1987), who proposed an exact—not only an approximate—analytical solution to the

problem. The developed models already performed well for a wide range of model applications,

e.g., border and furrow irrigation (Schmitz, 1989; Schmitz and Seus, 1990; Schmitz and Seus, 1992),

coupled one-dimensional surface–two-dimensional subsurface flow (Wöhling et al., 2004b; Wöhling,

2005; Wöhling et al., 2006; Wöhling and Schmitz (2007); Wöhling and Mailhol, 2007), and surge

flow in prismatic and non-prismatic channels over initially dry beds (Schmitz et al., 2002).

As for open channel flow modeling, although analytical solutions of the full hydrodynamic

model for overland flow phenomena are available, such solutions are often derived under restricting

conditions, e.g., constant rainfall rates (e.g., Singh, 1996) or strongly simplified depth-discharge

relationships (e.g., Wang et al., 2002). Such restrictions might consume the advantages of the more

detailed process description of the full hydrodynamic model, compared to the kinematic wave or

zero-inertia model. However, analytical solutions of the flow models are important for benchmarking

numerical solution methods (cf. Section 4.3). In this thesis, a novel analytical solution strategy

for the zero-inertia model is developed, not only for open channel flow in Section 5.1, but also for

setting up an accurate analytical overland flow model, which is outlined in Section 5.2.

2.3 Summary

The literature indicates foremost that an assessment of indirect recharge from infiltrating ephemeral

river flow should be rooted in a sound and physically-based (i.e., hydrodynamic) description of the

flow processes. Attributable to potentially high transmission losses, process variables can span a

wide range of magnitudes under changing dynamics. It was briefly discussed that such conditions

can counteract the application of typical numerical solution procedures for the governing flow

equations. Chapter 4 reviews and discusses the applicable solution procedures for the flow models in

more depth after the hydrodynamic theory is presented in the following Chapter 3. Consequently, in

Chapter 5, this thesis presents an analytical zero-inertia model for advancing surge flow in initially

dry non-prismatic channels with a significant effect of infiltration on the mass and momentum

balance, as well as under potentially weak process dynamics. One further objective of this thesis is

the development and testing of an exact analytical solution of the zero-inertia equations for runoff

phenomena on hillslopes under time-varying rainfall.
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Chapter 3

Principles of Physically-Based

Modeling of Infiltrating Free

Surface Flows

This chapter presents the basic theoretical background of hydrodynamic flow routing in ephemeral

channels. Moreover, the presented approaches can be applied for any kind of free surface flows,

i.e., also for overland flow modeling. The dynamics of an infiltrating flow event are first discussed

with regard to different governing conditions, for example, for furrow irrigation or infiltrating

wadi flow. Consecutively, coming from the full hydrodynamic shallow-water equations for the one-

dimensional case (the Saint-Venant equations), the zero-inertia and kinematic wave approximations

are discussed. The physically-based models are then extended in order to account for losses or

inflows and, consecutively, the consideration of two-dimensional flow geometries in a one-dimensional

model is outlined. The chapter closes with a discussion on the applicability of the hydrodynamic

modeling approaches under the specific conditions of ephemeral river routing and overland flow

routing. The discussion is supplemented with a brief outline of the kinematic shock phenomenon,

which can play a role, particularly for flash flood events.

3.1 Hydraulic Phases of an Infiltrating Flow Event

In furrow irrigation modeling (Walker and Humpherys, 1983; Wöhling, 2005), an infiltrating flow

event on a permeable bed can be divided in four phases, namely, the advance phase, storage phase,

depletion phase, and recession phase (Fig. 3.1a). Flow advance starts if there is an inflow into the

furrow and persists until the flow reaches the lower end of the furrow. More water is applied during

the storage phase which ends when the inflow is decreased. The depletion phase begins when water

moves further down the furrow as the water depth at the inlet decreases. If the inflow ceases, the

recession phase begins, which lasts until all water has infiltrated or left the furrow at the lowermost

end.

Furrow irrigation is mostly carried out by applying surges of water, i.e., the inlet is opened,

the inflow rapidly reaches a quasiconstant value, and is then swiftly cut off after a certain time.

Together with the comparably short length of an irrigation furrow, this methodology usually leads
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Figure 3.1: Hydraulic phases of a flow event (a) in a field furrow; (b) in a natural wadi channel;
and (c) downstream of a recharge dam.
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Table 3.1: Main properties of the flow upstream and downstream of a recharge dam under normal
operational conditions (no spillway operation).

Upstream reach Downstream Reach

Event duration Hours Days

Process dynamics Pronounced Typically weak

Gradients of the dependent variables Steep Smoothed

Typical flow rates (m3 · s−1) 102 100–101

Transmission loss quotas Low–intermediate Intermediate–high

Initial wadi bed state Dry Dry

to a rear-end recession, which means that upper portions of the furrow fall dry when the body of

water in the furrow still moves downwards. If infiltration is pronounced and/or furrow slope is mild,

a front-end recession can occur when the inflow reduces, leading to a ceasing flow, beginning from

the wave tip and moving in the upstream direction (Walker and Humpherys, 1983). Nevertheless,

this front-end recession is of minor interest in furrow irrigation theory and modeling.

Compared to wadi flow, furrow irrigation events are of a short duration; the inflow is cut off

relatively fast, and flow lengths are limited. In contrast, the natural flood inflow to a wadi reach

is highly transient, with a steep rising limb of the hydrograph and a comparably mild recession

(cf. Fig. 1.3a). This leads to a fast advance of the flow and an extended recession phase, mainly

established by front-end recession (Fig. 3.1b). Typically during recession, inflow rates and, therefore,

flow momentum are small. Assuming a free lower boundary and a limited inflow volume, the flow

advance coercively ends if total infiltration exceeds the flow rate, which may be the case a certain

time after the inflow peak has entered the wadi. The recession phase directly follows the advance

phase. Although front-end recession is assumed to be dominant, rear-end recession can occur as

well, which would be observable as a decline in the wetting and traveling flow domain from the lower

and the upper end. Moreover, certain constellations of inflow dynamics, infiltration properties, and

wadi morphology could even lead to a dispartment of one infiltrating flow domains into two or more.

Figure 3.1c shows the advance and recession dynamics in a natural wadi, influenced by dam

operation for an event significantly smaller than the design flood; in other words, all water infiltrates

in the reach downstream of the dam, and the outflow of the dam is not influenced by spillway

operation. Dam operation leads to a weakening of process dynamics downstream of the dam and the

flow event may be prolonged from some hours in the upstream reach to some days in the downstream

reach. Maximum dam outflow and the maximum extent of the infiltrating flow domain more or less

coincide1 and the downstream advance finally ceases during a prolonged dam release. Nevertheless,

infiltration and the connected loss of mass and momentum also impact the advance dynamics of the

downstream flow domain in a transient and nonlinear manner. Hence, a hydrodynamic modeling

concept with included infiltration losses is envisaged for the simulation of wadi flow under dam

operation to estimate potential recharge. Finally, Table 3.1 summarizes main properties of the flow

upstream and downstream of a recharge dam.

1 More precisely, the point in time where recession starts is not directly dependent on the transit of an inflow peak,
but on the relationship of inflow rates and infiltration. The distinction between flow advance and flow recession
cannot, therefore, be provided a priori.
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3.2 Hydrodynamic Models

Unsteady, nonuniform free surface flow can be described by the full hydrodynamic wave (HD)

equations, reflecting the conservation laws of mass and momentum. Usually, the dependent variables

of the equations (e.g., flow velocity, flow area, etc.) are averaged over the water depth.1 For

the one-dimensional case2, the governing equations are referred to as Saint-Venant equations

(de Saint-Venant, 1871; Eagleson, 1970), named after J. C. de Saint-Venant. Keeping the pressure-

gradient and momentum-source/sink term, but neglecting the inertia and acceleration terms in the

momentum equation of the Saint-Venant model, leads to the zero-inertia wave (ZI) approximation

(Hayami, 1951). The kinematic wave (KW) model, reported on thoroughly in the classical paper by

Lighthill and Whitham (1955), neglects all of the aforementioned terms, which implies that friction

slope is parallel to bottom slope.

All three flow models are mathematically expressed as a system of two equations, where one (KW)

or two (HD, ZI) are partial differential equations (PDEs), representing continuity (conservation of

mass) and conservation of momentum. Such a system describes an initial-boundary-value problem.

This means that the solution functions of the PDEs3 are dependent on the initial values of the

considered process variables4 at a specific point in time for all points in space (expressed in the

initial condition, cf. Section 3.3), as well as the temporal evolution of the process variables, given

at specific points in space (boundary conditions, cf. Section 3.3). The solution of the PDEs is,

therefore, only valid for a certain domain in both the spatial and temporal dimension, spanned by

the initial and boundary conditions.

3.2.1 The Saint-Venant Equations (Full Hydrodynamic Model)

Assuming no lateral losses or inflows to the flow domain, the continuity and momentum equations

of the one-dimensional full hydrodynamic (Saint-Venant) model read

∂A

∂t
+
∂Q

∂x
= 0 (3.1)

∂h

∂x
= S0 − Sf −

u

g

∂u

∂x
− 1

g

∂u

∂t
(3.2)

where t: time [T]; x: longitudinal space coordinate [L]; A(x, t): wetted cross-sectional area [L2];

Q(x, t): discharge [L3T−1]; h(x, t): water depth [L]; S0: bottom slope [−]; Sf: friction slope [−];

u(x, t): flow velocity [LT−1]; and g: acceleration due to Earth’s gravity [LT−2].

The Saint-Venant model is widely used for modeling unsteady, nonuniform free surface flows.

Equations (3.1) and (3.2) form a system of quasilinear first-order partial differential equations of

the hyperbolic type5. However, coming from the more general Navier-Stokes equations (Tenman,

1 This simplification is usually referred to as shallow water approximation.

2 This means an additional averaging over the flow width.

3 For example, discharge and water depth as a function of the independent variables space and time.

4 Flow velocity and wetted cross-sectional area, as well as water depth, respectively.

5 Given is a PDE for a function ν(x, t) of two variables. Such an equation has the general form

aνxx + 2bνxt + cνtt + dνx + eνt + fν + g = 0

and the coefficients a = a(x, t), ..., g = g(x, t) are functions of two variables. The PDE is called elliptic if ac− b2 > 0,
parabolic for ac− b2 = 0, and hyperbolic if ac− b2 < 0.
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3.2 Hydrodynamic Models

1977), it is important to review the assumptions made for the derivation of Eqs. (3.1) and (3.2),

since these assumptions constrain the model validness to specific flow phenomena:

. Acceleration of the fluid in the vertical direction is neglected; the vertical pressure gradient is

approximated by a hydrostatic pressure distribution1;

. the flow is assumed to be one-dimensional; all dependent variables are averaged over the

width and depth of the flow;

. bottom slope is small, such that sin(S0) ≈ S0;

. the flowing liquid (water) is assumed to be incompressible; and

. the considered fluid is a Eulerian fluid, i.e., the flow exposes no or only low inner friction

(viscosity). Friction slope is not dependent on flow type, turbulence, or sediment load. The

relationship between friction and the hydraulic variables is expressed with a flow formula (e.g.,

the Manning-Strickler formula).

Especially the last assumption might restrict the validness of the Saint-Venant model applied for

heavily sediment-laden flows as occurring in ephemeral rivers, which is discussed in the closing

section of this thesis. Nevertheless, the listed restrictions do not endanger the model’s applicability

for a wide range of flow processes on natural surfaces, as present in numerous hydraulic and

hydrologic problems.

3.2.2 Zero-Inertia Approximation

As stated before, simplifications of the Saint-Venant equations only address the momentum equation

(3.2). The continuity equation (3.1) remains unchanged for all discussed modeling concepts (HD,

ZI, KW). The diffusion wave or zero-inertia approximation neglects the inertia and acceleration

terms of Eq. (3.2), yielding
∂h

∂x
= S0 − Sf (3.3)

In contrast to the full hydrodynamic model, Eqs. (3.1) and (3.3) now form a parabolic system.

The ZI momentum equation cannot account for pronounced, unsteady, and nonuniform flow

phenomena, since the governing terms are neglected. Nevertheless, a certain degree of nonuniformity

is preserved in the momentum balance through the possible distinction of bed and friction slope.

The model is an adequate substitute for the full hydrodynamic model if the acceleration and inertia

terms are negligible (cf. Section 3.7.1). The portrayal of backwater effects is possible with the ZI

model.

3.2.3 Kinematic Wave Approximation

The kinematic wave approximation additionally neglects the ∂h
∂x pressure-gradient term in Eq. (3.3).

Hence, bottom and friction slope can be assumed parallel, which yields the momentum equation of

the kinematic wave model as

0 = S0 − Sf (3.4)

1 Strictly speaking, this precludes a physically meaningful, closed-form representation of turbulence.

27



3 Principles of Physically-Based Modeling of Infiltrating Free Surface Flows

In turn, together with the continuity equation, this yields a biunique relationship of discharge and

stage (rating curve). Furthermore, any rating curve—expressed, e.g., by a steady and uniform flow

equation like Manning-Strickler1, Chézy, or Darcy-Weisbach—which is coupled to the continuity

equation (3.1) is referred to as a kinematic wave model. As applies for the Saint-Venant model, the

system of Eqs. (3.1) and (3.4) is of the hyperbolic type.

3.2.4 Other Simplifications of the Full Hydrodynamic Model

Two other simplifications of the full dynamic momentum equation are physically reasonable (Ponce

and Simons, 1977). The steady dynamic wave neglects the unsteady 1
g
∂u
∂t term of the full dynamic

model. If the influence of the bottom slope is insignificant (e.g., for great water depths2 or for

zero-slope conditions), the S0 − Sf term can be omitted, leading to a process description applicable

for a gravity wave. These two special cases of flow models are not further regarded in this thesis.

3.3 Initial and Boundary Conditions

Mathematically, the presented hydrodynamic models belong to the class of initial-boundary value

problems, i.e., the governing equations deliver unique solution functions only for a specified initial

state and for a defined evolution of process variables at the model boundaries over time. These two

entities are called initial condition and boundary condition. The initial condition comprises the

values of all dependent variables for the whole solution domain at a fixed point in time. From that

state, the process evolves in a positive temporal direction, constrained by the boundary conditions.

An inflow or stage hydrograph is typically considered as an upper boundary condition, and

a stage–discharge relationship is implemented at the lower model domain. Most often, a steady

stage–discharge relationship is used as a lower boundary condition by assuming the flow is leaving

the model domain at normal depth, i.e., friction slope equals bottom slope and water surface slope3.

This approach leads to a neglecting of unsteady flow characteristics that may be inherent to the

upstream inflow.4 For subcritical flow regimes, such an assumptive lower boundary condition can

influence the upstream results and attenuate their unsteady information.

The afore-discussed philosophy of implementing an upper and a lower boundary condition at

two specific points in space is referred to as a two-point boundary condition. Especially for flow over

initially dry surfaces, the lower boundary can be treated as a moving lower boundary condition,

depicting the location of the interface between a dry and a wetted section of the model domain.5

On the one hand, the formulation of such a boundary condition is straightforward since the process

variables can be set to zero. On the other hand, the actual problem is the determination of the

location of the moving lower boundary condition, which can be quite demanding.

1 Corresponding to its authors Gaspar Gauckler, Robert Manning, and Albert Strickler, the formula is sometimes
referred to as Gauckler-Manning-Strickler formula.

2 For water depths, that are great in relation to wave length.

3 This implies that the depth gradient is zero at the lower boundary, i.e., ∂h
∂x

= 0. Therefore, such a boundary condition
is also referred to as zero-depth gradient boundary condition.

4 A neglecting of unsteady flow characteristics can also be a corollary of a simplified process description. The parallelism
of friction slope, bottom slope, and water surface slope is inherent to the kinematic wave model. Vice versa, a
normal-depth lower boundary condition, therefore, establishes no further simplification of the KW model.

5 If rear-end recession occurs (cf. Section 3.1), a moving boundary condition could also be implemented for the upper
end of the model domain.
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Typically, the flow equations are solved at discrete points in space and time. For weak process

dynamics, such as those typically connected with infiltrating flows, the determination of the moving

boundary location might be very cumbersome and connected with modeling issues in terms of

stability problems, mass balance errors, and an erratic representation of process dynamics (cf.

Wöhling, 2005). Nevertheless, circumventing a moving boundary condition by assuming a spatially

fixed two-point boundary condition introduces other errors. As discussed in more detail in the

subsequent chapter, the solution procedures for the flow equations may fail for a two-point boundary

condition with parts of the model domain being dry. This can be addressed by changing the

dry-channel initial condition to a minimum-flow condition, which indeed helps to obtain a stable

solution, but again introduces errors attributable to an unrealistic characterization of the flow

process. Yielding a stable and accurate solution for advancing flows under weak process dynamics

is, therefore, a major goal of this work.

3.4 Relating Friction and Flow Properties

In the absence of a friction law for unsteady flows, velocity, channel roughness, channel geometry,

and friction slope are commonly related using a steady flow formula of the type

u = KRβS
1
2

f (3.5)

where K: roughness coefficient [L1−βT−1]; R: hydraulic radius [L]; β: exponent of the flow formula

[−] (e.g., β = 2
3 for the Manning-Strickler equation; Strickler, 1923). Eq. (3.5) can easily be

rearranged for Sf and inserted into the desired momentum equation, e.g., Eq. (3.2), (3.3), or (3.4):

Sf =
u2

K2R2β
(3.6)

It should be made clear that such a friction law is only valid for the particular case of a steady and

uniform flow.1 Strictly speaking, neither Sf nor K are known, in fact they have to be estimated

using a series of observed hydrologic flow conditions (stage and/or discharge) along the model

domain, i.e., K is considered as an effective process parameter. However, it is beyond controversy

that K is not invariant to a changing water depth. Moreover, K changes with variations in sediment

load, which particularly applies for ephemeral streams (e.g., Nomicos, 1956; Vanoni and Brooks,

1957; Martin-Vide et al., 1999).

3.5 Accounting for Losses or Gains

A loss or gain of water (e.g., resulting from river confluence, rainfall on a surface, or infiltration

through the riverbed or into the soil) leads to a modification of the flow’s mass balance and

can—additionally—alter the momentum balance significantly. For instance, flow in an ephemeral

river can be strongly impacted by infiltration, such that the loss of mass and momentum should

be regarded in flow modeling. On the other hand, rainfall on a surface can lead to a significant

1 Although specific transformations may allow the application for steady and nonuniform conditions, e.g., shown by
Schmitz (1981).
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3 Principles of Physically-Based Modeling of Infiltrating Free Surface Flows

increase of flowing water over time and space, although the rate of change of flow momentum is

insignificant, looking at a fixed point in space.

The continuity equation (3.1) can be straightforwardly supplemented by a term representing

the volumetric rate of loss/gain to the flow:

∂A

∂t
+
∂Q

∂x
= −qφ (3.7)

where qφ(x, t): rate of positive/negative mass contribution attributable to rainfall or infiltration per

unit length [L2T−1]. For Eq. (3.7), a negative qφ accounts for losses, and vice versa.

Furthermore, the momentum equation can be extended by a term accounting for the loss or

gain of momentum. For example, the momentum equation of the Saint-Venant model, which is

extended in this way, reads

∂h

∂x
= S0 − Sf −

u

g

∂u

∂x
− 1

g

∂u

∂t
+
qφu

gA
(3.8)

where the adding of a positive qφu
gA term means a loss of momentum in terms of a steepening of the

water depth gradient ∂h
∂x . In general, these modifications can be applied disregarding the specific

flow model. The gain/loss rate qφ can be quantified a priori (e.g., as observed rainfall) or included

via a functional relationship (e.g., via an infiltration model). The dependent variables of the flow

might influence qφ, and vice versa. For instance, higher flow rates in a permeable channel lead to a

greater wetted area which increases infiltration. In turn, increased infiltration consumes mass and

momentum, which then lowers flow rates. This requires a specific strategy to couple the surface

flow and the infiltration model, e.g., alternating iterative coupling (cf. Sections 5.1.7 and 7.1.1.1).

Up to this point, the hydraulic variables have been given in a dimension to yield the total flow

[L3T−1]. Alternatively, the the hydraulic variables can be expressed for a unit width of the flow

domain, which is feasible for overland flow modeling. In this case, Q is yielded as specific flow for a

unit width [L2T−1] which particularly requires the yield/loss rate to be given as a volumetric rate

per unit area [LT−1]. In this work, the yield/loss rate per unit area is labeled as q, whereas the use

of qφ indicates the rate given per unit length [L2T−1]. In both cases, the same nomenclature for

the discharge Q is used, whereas the dimension of Q (either [L3T−1] or [L2T−1]) differs depending

on whether the flow equations are expressed for a unit width or the whole cross-sectional area.

3.6 Including Arbitrary Cross-Sectional Geometries

Although the discussed one-dimensional modeling concepts average the considered process variables

for each cross section, it is inevitable to take into account the influence of different cross-sectional

geometries on the flow. Therefore, a one-dimensional description of the underlying two-dimensional

cross-sectional geometry is needed. To obtain unique and characteristic information of the geometry,

at least two functional relationships have to be used. For instance, the wetted cross-sectional area

A and the hydraulic radius R are expressed in terms of the water depth h (Fig. 3.2 illustrates the

used notation):

Ã(x, h) =

ˆ B̃(x,h)

0

h̃(x, y)dy (3.9)
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h(x,y)

B(x,h)

P(x,h)

z

x

y
A(x,h)

Figure 3.2: Illustration of a cross-sectional profile with notation.

R̃(x, h) =
Ã(x, h)

P̃ (x, h)
=

ˆ B̃(x,h)

0

h̃(x, y)dy

ˆ B̃(x,h)

0

√
1 + h̃′(x, y)2 dy

(3.10)

where x: longitudinal space coordinate [L], y: space coordinate perpendicular to the flow at a

specific channel location x [L]; z: vertical coordinate positive upwards [L]; h̃(x, y): depth of water

reaching the cross-sectional coordinate (x, y) [L]; Ã(x, h): wetted cross-sectional area as a function

of water depth h(x, t) [L2]; B̃(x, h): flow width in the channel as a function of water depth h(x, t)

[L]; R̃(x, h): hydraulic radius as a function of water depth h(x, t) [L]; and P̃ (x, y): the wetted

cross-sectional perimeter [L]. For formal reasons, the profile-specific functions h̃, Ã, B̃, R̃, and P̃ are

distinguished from the spatiotemporal functions of the dependent variables h(x, t), A(x, t), B(x, t),

R(x, t), and P (x, t).

The denominator of the right-hand side of Eq. 3.10 contains a first-order derivative of h̃(x, y)

with respect to y. This expression emerges from the integral arc length l [L] of the function f(y) in

an interval [y1, ..., y2], given by

l =

ˆ y2

y1

√
1 + f ′(y)2dy (3.11)

Assuming that the considered cross section is very wide (flow width is much greater than water

depth), the wetted perimeter P can be set equal to the flow width B and, therefore, the hydraulic

radius R equals the water depth h.1

Another practice is expressing the water depth and the hydraulic radius in terms of the wetted

cross-sectional area, i.e., obtaining h̃(x,A) and R̃(x,A), which can be achieved by employing

the inverse function of Ã(x, h) and mapping R̃(x, h) on R̃(x,A). When carrying out the required

integrations numerically on discrete increments—which is feasible since information on cross-sectional

geometry is usually available as discrete coordinate pairs of y and z—a simple lookup table can

be used to map h̃, Ã, and R̃ onto each other. Generally, the profile functions have to be biunique,

1 This practice is mostly referred to as wide channel assumption.
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3 Principles of Physically-Based Modeling of Infiltrating Free Surface Flows

which forbids discontinuities in the morphological data, e.g., caused by bank overboard sections

with a horizontal bottom. Hence, it is indicated to remove discontinuities from the empirical profile

functions or to fit continuous analytical functions to the empirical profile functions. This is done

for the flow models derived and applied herein, where power laws are used for the approximation of

the two profile functions (cf. Section 5.1.2).

3.7 Discussion of the Reviewed Flow Models

The full hydrodynamic model poses the most rigorous concept for modeling one-dimensional flow

phenomena which maintains the highest generality for its application. Nevertheless, three aspects

may motivate using simplifications of the full dynamic model, rather than the full Saint-Venant

equations itself: (a) A numerical solution (cf. Section 4.2) of the zero-inertia and the kinematic wave

model consumes less time and memory since terms of the Saint-Venant equations are neglected;

(b) the numerical solution of parabolic PDEs (ZI model) is less prone to numerical inconveniences,

compared to hyperbolic equations (e.g., the Saint-Venant equations); and (c) the simplified models

are better accessible for analytical solutions (cf. Section 4.3). Therefore, it is important to prove the

feasibility and validity of the discussed flow model simplifications for the processes regarded herein.

3.7.1 Discussion of the Hydrodynamic Modeling Approaches in the Light

of Flow Modeling in Ephemeral Rivers

The afore-presented hydrodynamic models (full hydrodynamic, zero-inertia, and kinematic wave)

combine the same continuity equation (3.1) with a more or less sophisticated momentum equation,

which can be expressed in the form1

Sf = S0︸ ︷︷ ︸
KW

− ∂h

∂x

︸ ︷︷ ︸
ZI

− u

g

∂u

∂x
− 1

g

∂u

∂t

︸ ︷︷ ︸
HD

Apart from the simplifications made for the development of the Saint-Venant model (cf. Sec-

tion 3.2.1), neglecting specific terms of the HD momentum equation further constricts the validity

and applicability of the resulting hydrodynamic models (ZI or HD model). It is subsequently

discussed under which flow conditions one of the aforementioned simplifications is justifiable. This

should finally be reflected by the structure of a modeling system, intended for the simulation of

ephemeral channel flow under transmission losses and influenced by recharge dam operation (cf.

Section 7.1).

Under the zero-inertia simplifications, the change of velocity with distance and the change of

velocity with time (expressed by the so-called inertia terms) are neglected. Thus, the momentum

equation holds no terms significant for nonuniform (i.e., ∂u
∂x 6= 0) and unsteady (i.e., ∂u

∂t 6= 0) flow

conditions, and changes in the kinetic energy of the flow due to local or convective accelerations2

are not regarded. Nevertheless, the conservation of the pressure-gradient term ∂h
∂x accounts for a

1 For brevity, a qφu
gA

term to account for the loss or gain of momentum is omitted.

2 Which implies acceleration or deceleration.
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Table 3.2: Impact of model simplifications on the validity of hydrodynamic models.

Kinematic Zero-inertia Full hydrodynamic

Advection yes yes yes

Attenuation no yes yes

Backwater effects no yes yes

Acceleration and deceleration no no yes

potential divergence of water surface and bottom slope, which lets the zero-inertia model account

for backwater effects and wave attenuation due to dispersion.

Neglecting the inertia terms and the pressure-gradient term (usually referred to as secondary

terms) of the dynamic wave model leads to a balance between gravitational and frictional forces and,

consequently, the full hydrodynamic momentum equation reduces to the kinematic wave momentum

equation, Sf = S0. The consequences of model simplifications on the representation of specific

flow phenomena are briefly summarized in Table 3.2. It becomes clear that, compared to the full

hydrodynamic model, the KW model cannot account for wave attenuation, backwater effects, or

wave acceleration, whereas the ZI model is not able to cover wave acceleration.

Assuming a sufficiently large bottom slope (> 0.001, according to Ponce, 1991), an order of

magnitude reasoning of Eq. (3.2) reveals that the gradient ∂h
∂x is much smaller than S0 or Sf. Taking

typical values of an Omani wadi upstream of a recharge dam (cf. Table 1.2: flow velocity 3 m · s−1;

wetted cross-sectional area 150 m2; flood duration 12 h) and assuming a wetted reach length of

15,000 m1, a wetted channel width of 150 m, a channel slope of 0.008, and a ratio of hydrograph

rise time to recession time of 1 : 2, the following values of the gradients in the full hydrodynamic

momentum equation (3.2) can be calculated:

S0; ∂h
∂x ; u

g
∂u
∂x ; 1

g
∂u
∂t

8.0 · 10−3; 6.7 · 10−5; 6.1 · 10−5; 2.1 · 10−5

where the secondary terms are two orders of magnitude smaller than the channel slope. Miller

(1984) reports the following values for a moderately steep alluvial river

S0; ∂h
∂x ; u

g
∂u
∂x ; 1

g
∂u
∂t

4.9 · 10−3; 9.5 · 10−6; 4.7 · 10−5; 9.5 · 10−6

where the values for the pressure-gradient term and the local acceleration term are even three orders

of magnitude smaller than S0. Hence, neglecting secondary terms seems feasible under the present

hydraulic conditions (which confirms the rule of thumb given by Ponce, 1991), and the kinematic

wave model (which neglects the secondary terms) poses a valid approach for routing pronounced

flood flow in a sufficiently sloping wadi channel reach, as found upstream of the dams regarded in

this study.

Specific for the scoping area of this study (cf. Section 7.2.1), flow resulting from dam culvert

release occurs on somewhat milder slopes around 0.002, and under lower flow velocities, compared

to the upstream reach with slopes around 0.008. This leads to a further decreasing impact of the

inertia terms on the momentum balance and the flow can be assumed to be highly subcritical.

Nevertheless, flow widths decrease disproportionately to flow depths and the flow might infiltrate

1 Which means, the distance between zero-flow conditions and the occurrence location of the given typical values.
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along a limited wadi reach length, which increases the downstream value of the pressure-gradient

term.

Moreover, especially at the downstream end of an advancing and infiltrating flow domain, the

change in the water surface elevation along the spatial direction might be significant and should,

therefore, be regarded in the governing hydrodynamic approach via the ∂h
∂x term. Furthermore, heavy

infiltration—as particularly present at the advancing downstream end of the flow domain—does

consume mass and momentum of the flow. A sound portrayal of the spatiotemporal dynamics of

flow advance is, therefore, essential for an accurate simulation of transmission loss dynamics. For

these reasons, the advancing and infiltrating flow for slopes greater than 0.001 should be modeled

by employing the zero-inertia model, which further regards the loss of momentum attributable

to infiltration via a qφu
gA term in the momentum equation. This leads to an extension of the ZI

momentum equation in the form

Sf = S0 −
∂h

∂x
+
qφu

gA
(3.12)

Infiltration leads further to a decrease of flow volume and, therefore, water depth, which is implicitly

regarded via the pressure-gradient term.

When the advance of the flow domain ceases, the surficial flow volume is continually depleted

by infiltration. At this time, sustained infiltration and the downward movement of the water body

already led to a rectification of the water surface profile and a low advance velocity of the flow

domain is the consequence. Therefore, the ∂h
∂x term and the other secondary momentum terms

can be neglected, which allows the application of the kinematic wave approximations for modeling

the quasisteady receding flow. The concept of modeling flow recession with steady or quasisteady

approaches is often applied in irrigation engineering (cf. Wöhling, 2005). Of course, the consumption

of mass is still accounted for using a continuity equation in the form of Eq. (3.7), which applies for

all routing models applied herein.

A rare condition of recharge dam operation is established by spillway operation. Depending on

the specific design of the spillway, spillway release can cause flow rates in the order of magnitude of

dam inflow rates. Considering the dynamic character of spillway release flow and a minor wave

dispersion tendency, the kinematic wave model seems feasible to act again as a robust modeling

approach to simulate spillway release flow, given that channel slope is sufficiently greater than

0.001, which is always the case for the envisaged study area.

3.7.2 A Suitable Hydrodynamic Model for Overland Flow

Most often, overland flow processes are modeled with the kinematic wave approach (cf. Section 2.2).

Neglecting the inertia terms of the full hydrodynamic model (i.e., applying the zero-inertia ap-

proximations) is justified by the generally low flow velocities associated with overland flow. More

questionable is the often practiced neglecting of the pressure-gradient term. As already mentioned

in Section 2.2, the validity of the kinematic wave approximation can be negatively affected under

specific flow conditions (Morris and Woolhiser, 1980; Daluz Vieira, 1983; Govindaraju et al., 1988).

Related to numerous numerical experiments, Singh (1996) proposes a criterion to check for the

applicability of the kinematic wave simplifications for overland flow modeling:

teS0u

h

!
≥ 171 (3.13)
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where te: duration of the flow event; S0: surface slope; u: flow velocity, averaged over te; h: water

depth, averaged over te.

It can be seen that decreasing flow velocities and increasing flow depths (e.g., resulting from

increased roughness) lead to lower values of the criterion. The same applies for a decreased

surface slope. This means, the flatter and the rougher the surface, the higher the chance the

KW assumptions may fail. To maintain the generality of an envisaged overland flow model, the

zero-inertia approximations should, therefore, be used, which is regarded for the analytical overland

flow model developed in Section 5.2.

3.7.3 On the Portrayal of Shocks with the Kinematic Wave Model

The advection of the kinematic wave is solely a corollary of gravitation (expressed by the channel

slope, and the surface slope, respectively). When traveling along a topographic gradient, the

kinematic wave undergoes a change in shape which is attributable to the nonlinear influence of

friction on the flow. In contrast, the peak flow value of a kinematic wave does not attenuate since

wave attenuation is evoked by the interplay of friction and the pressure-gradient term (zero-inertia

wave) or of friction and the acceleration terms (full hydrodynamic wave), as shown by Ponce et al.

(1978) and Ponce (1982). Furthermore, due to neglecting the pressure-gradient terms of the dynamic

wave, the kinematic wave cannot translate a propagation of momentum in the upstream direction

(which would occur under subcritical flow conditions) and cannot, therefore, be applied under

backwater conditions (cf. Table 3.2).

In Appendix A.4, it is shown that the celerity of a kinematic wave is only dependent on water

depth.1 Thus, points of a wave profile having a larger water depth are propagated faster than more

shallow sections of the wave. Together with the property of neglected dispersion2, and assuming a

sufficiently long flowpath, this can lead to the formation of a surge or a so-called kinematic shock

(Lighthill and Whitham, 1955). Of course, the potential formation of a shock is also included in the

full hydrodynamic wave and the zero-inertia wave models. Nevertheless, the presence of secondary

terms (pressure-gradient term and acceleration terms) leads to wave dispersion and attenuation,

which counteracts shock formation. Consequently, the kinematic wave is per se prone to shock

formation, whereas for the full hydrodynamic or the zero-inertia model, the secondary terms of

their respective momentum equation prevent, or at least delay, the formation of a surge.

Although there is an ongoing controversy about the existence of kinematic shocks in nature3,

flood waves in ephemeral rivers may tend to steepen, as seen from the literature review in Section 2.1,

provided that wave gradients are initially steep and channel slope is sufficiently high. Therefore,

the intrinsic wave steepening tendency of the kinematic wave concept poses—additionally to the

motivation given in Section 3.7.1—a further argument for choosing the KW model for flash flood

routing on pronounced slopes.

1 Assuming no lateral inflows and a prismatic cross-sectional geometry.

2 Hence, the wave does not subside.

3 Which is not further commented on this work. Further reading on the formation and properties of kinematic shocks
can be found, e.g., in Ponce and Windingland (1985), Singh (1996), and Singh (2002).
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3.8 Summary

Hydrodynamic models allow for a realistic simulation of free surface flow processes. Full hydrody-

namic models establish the most rigorous modeling approach. Compared to their simplifications

(ZI and KW models), HD models are mathematically complex and their numerical solution is costly

and may be afflicted with inconveniences. Regarding the specific character of the considered flow

phenomena, the application of simplified models is indicated in order to reduce the complexity of

the governing equations. Furthermore, the ZI and KW models are better accessible for analytical

solutions. Concerning the envisaged modeling system for ephemeral river flow under recharge dam

control, it was shown that the KW model is feasible for portraying pronounced wadi flow and the

ZI approach is needed for a sound description of advancing wadi flow under weak process dynamics

and intense infiltration, as well as overland flow.
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Chapter 4

Solution Procedures for the

Reviewed Flow Models

All presented flow models comprise partial differential equations. In most cases, PDEs are numerically

solved, although analytical solutions might be available for distinct or simplified process conditions.

For their practical applicability, the equations need to be integrated, which is most often carried

out by means of numerical analysis. On the other hand, analytical solution procedures of the

flow equations are of importance as they can deliver reliable solutions for evaluating the quality

of numerical results. Moreover, numerical approaches are prone to failure for complicated and

intricate process dynamics, e.g., as associated with infiltrating runoff on initially dry surfaces.

According to Press et al. (1992) and Munz and Westermann (2012), the physically-based

description of hydrodynamic phenomena and their subsequent numerical (i.e., approximate) solution

introduces three classes of errors:

. Model errors, which are a consequence of neglecting parts of the governing natural process

behavior in the mathematical model (i.e., by depth-integrating the hydraulic variables in

order to obtain the Saint-Venant equations);

. approximation errors (or consistency errors), which emerge if the mathematical model is not

solved exactly but, for example, at a finite number of points under certain approximations

(e.g., considering the differential quotients of the underlying mathematical model to be linear);

and

. truncation errors, which result from the fact that a computer which is used for numerical

computations cannot hold an infinite number of digits, which in turn delimits the precision of

each calculation and, therefore, introduces errors.

Whereas numerical solutions incorporate errors from all three aforementioned sources, analytical

solutions are only prone to model errors, which are, moreover, an issue of mathematical modeling

and not associated with the specific solution procedures for the governing flow models.

This chapter opens with some fundamental ideas on the solution of PDEs on the basis of the

method of characteristics, which allows a qualitative insight into the governing PDEs and their

potential approximate solution. Subsequently, the principles of relevant numerical and analytical

solution procedures for the hydrodynamic equations are discussed. The chapter closes with a
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discussion of the reviewed approaches in the light of flow modeling in ephemeral rivers under

the influence of groundwater recharge dams. It is concluded that the modeling of advancing

and infiltrating wadi flow demands an analytical modeling concept. It is also discussed that

hydrodynamic overland flow modeling benefits from the incorporation of an analytical solution

procedure for the governing equations. This establishes a need for innovation with respect to finding

appropriate analytical solution methods of the regarded process models.

4.1 Method of Characteristics

The method of characteristics was already used prior to the age of digital computers for the solution

of partial differential equations, associated with unsteady flow phenomena (e.g., Massau, 1889).

Abbott (1979) gives a sound introduction to the method’s application in technical hydraulics. The

method can only be applied for solving quasilinear first-order PDEs of the hyperbolic type, like

the Saint-Venant and the kinematic wave equations. At first, the system of PDEs is simplified

in a mathematically exact manner. This essentially comprises a coordinate transformation that

affects the original PDEs in such a way that the derivatives of the solution functions are related

to the directions of a set of two inclined and skewed or straight coordinate curves. These curves

are called forward and backward characteristics or characteristic curves (cf and cb in Fig. 4.1).

The transformation implies that along these characteristics, an original PDE becomes an ordinary

differential equation (ODE), called characteristic equation.

Once such an ODE is found, it can be solved with common solution procedures1 along one

direction of the characteristic curves, and the result can then be transformed back into the solution

domain of the original PDE. An important property of the characteristic curves is that curves of

one set (of forward or backward characteristics) do not intersect, and that each characteristic of

each set intersects with another characteristic of the other set in at no more than one point (P in

Fig. 4.1).

One way of solving the characteristic ordinary differential equations is the application of a

finite difference approximation (cf. Section 4.2.1). By replacing the derivatives in the characteristic

equations with difference quotients (i.e., introducing a spatial and temporal discretization with

the step size ∆x and ∆t), one obtains difference equations, representative for the nodes that are

established by the intersecting characteristics (Fig. 4.1). This way, the function values at point

3 can be calculated using the values at points 1 and 2. Therefore, it is important to assure that

the solution functions at point P are only dependent on the initial values, located at the abscissa

between points A and B. The same applies for all virtual points within the region of dependence RD

of AB. In turn, the solution at point P influences only the solutions within the region of influence

RI.

Due to the fact that only the initially known values of AB are used for the calculation of values

of RD2, the gradient of the characteristics, cf and cb, and the employed spatial discretization step

∆x determine an upper limit for the time step ∆t of an applied numerical solution scheme. Under

1 Which can be numerical approximations, e.g., by applying finite differences (cf. Section 4.2.2), or analytical methods
(cf. Section 4.3).

2 Which means that the method of characteristics can be classified as an explicit procedure (cf. Section 4.2.2).
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Figure 4.1: Forward/backward characteristics and regions of dependence/influence of the underly-
ing PDE.

these restrictions, the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928) is a necessary

condition for a stable (and thus convergent)1 solution. The CFL condition reads

∆x

max(cf,b)

!
≥ ∆t (4.1)

The gradient of the characteristic curves (∂x∂t ) is a measure for the maximum propagation

velocity of the considered process. Physically, this is the maximum of the flow velocity u and of

the wave celerity c =
√
gh, which are not necessarily orientated in the same direction. Defining

this maximum propagation velocity as ĉ = max(u± c), one obtains the definition of the Courant

number C from Eq. (4.1) to

C = ĉ
∆t

∆x
(4.2)

From Eqs. (4.1) and (4.2), it can be directly seen that the temporal and spatial domain should

be discretized2 with respect to ĉ, such that C ≤ 1. Furthermore, it is clear that the spatial and

temporal resolution of a discretization scheme are not independent of each other. Heuristically, C is

a measure for the number of cells of the numerical grid which are passed by the flow within one

time step.

4.2 Numerical Solution Procedures

With the strong advancement of digital computers during and after the Second World War, numerical

analysis and numerical algorithms rapidly evolved. A wide range of scientific computing problems

1 The terms “stability” and “convergence” are defined in Section 4.2.1.

2 A comprehensive explanation of “discretization” is given in Section 4.2.1.
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was discussed and solved by applied mathematicians and engineers, such as three-body problems

in spaceflight, structural analysis, and fluid dynamics. During the decades, computational fluid

dynamics spawned numerous methods for the numerical treatment of a large variety of flow problems,

ranging from one-dimensional open channel flow of water to three-dimensional flow of compressible

fluids, or multiphase systems with complex material and energetic interactions. O’Brien et al.

(1951) and Stoker (1957) were among the first to present a numerical finite difference solution of

the Saint-Venant equations.

Generally, depending on the structure of the flow equations, an appropriate solution procedure

has to be chosen, i.e., the results should, as close as possible, match the exact but unknown solution

of the governing model equations under a preferably low computational effort. A great number of

numerical methods for the solution of PDEs are available. The approaches can be roughly grouped

into three classes: finite difference methods, finite element methods, and finite volume methods. For

this work, a finite difference method is applied in case a numerical solution of the governing flow

equations is desired. Finite difference methods are preferred for one-dimensional problems (Press

et al., 1992).1 Both the finite element and the finite volume methods are not considered for this

study. Finite difference methods have been extensively reported on (for an overview see, e.g., Press

et al., 1992) and a great number of modifications of the technique are available.

4.2.1 Introduction to Finite Difference Methods

The basic idea of all finite difference methods is to replace the partial derivatives of the model

equations with linear finite difference quotients, yielding linear difference equations. These difference

equations can be solved in order to obtain a solution of the original PDEs. As for all numerical

techniques, such a solution delivers only an approximate result at predefined points in space and

time, and, consequently, introduces errors. The decomposition of the continuous solution domain

into a pattern of nodes for which the solution is obtained is called discretization: The modeling

domain—spanned by the independent variables of, e.g., space and time, and housing the solution

functions of the PDE (e.g., flow rate Q = f(x, t), water depth h = f(x, t), etc.)—is divided into

discrete time steps of ∆t and space steps of ∆x. Assuming the governing PDEs to be continuous

and differentiable, the introduced difference operators will converge against the replaced differential

operators for small values of ∆t and ∆x, and, therefore, the approximate finite difference solution

will converge against the analytical (but often unknown) solution of the model equations.

In this context, the underlying mathematical theory (e.g., Richtmyer and Morton, 1967) demands

the fulfillment of three properties: consistency, stability, and convergence. Assuming that the applied

discretization intervals will tend uniformly2 to zero, it is claimed that (cf. Liedl, 1991):

. the difference equations resemble the analytical model equations (consistency);

. the solution of the difference equations remains bounded and the bound must not be dependent

on the discretization step size (stability); and

1 Of course, finite element and finite volume methods are valuable, almost indispensable tools for water resources
research and management. Their strength lies in the flexible adaption of model topology to reality, which is important
if a two-dimensional or three-dimensional process modeling is intended. On the other hand, the required mathematical
background is more sophisticated than for finite difference procedures. For one-dimensional investigations, the
advantages of finite element and finite volume methods are often outweighed by the simple and straightforward
applicability of finite differences.

2 Which means under invariance of ∆t
∆x

.
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. the approximate solution functions of the difference equations converge against the solution

functions of the governing model equations (convergence).

Based on the evident fact that the replacement of the differential quotients by well-posed difference

quotients leads to consistency (cf. Liedl, 1991), the Lax equivalence theorem (Lax and Richtmyer,

1956) states that for linear PDEs with constant coefficients, stability is a necessary and sufficient

condition for convergence. Although an exact definition of stability depends on the context1, it

generally states that a numerical solution procedure (or algorithm) applied for a PDE is insusceptible

to small errors in the driving data. It further says that perturbations that would decay in the

underlying analytical model do not grow in the numerical simulation, but rather decay over time.

In turn, this means that approximation errors and truncation errors do not affect the quality of the

result.

For nonlinear equations, e.g., the Saint-Venant equations, consistency and stability are necessary

but not sufficient conditions for convergence, which renders the Lax equivalence theorem not directly

applicable. The proof of convergence of a specific numerical procedure is, therefore, often carried

out by employing linearized model equations, leading to constant coefficients. This case is covered

by a complete theory (Richtmyer and Morton, 1967) which also implicates the Lax equivalence

theorem. Therefore, the theory states that under the aforementioned conditions, convergence can be

deduced from stability. The latter evokes a great importance for the practical use of finite difference

approximations: Indirectly proving convergence by proving stability is much less arduous than

searching for a direct proof. Especially for strongly nonlinear PDEs (e.g., Richards’ equation), an

exact proof is possible in the fewest cases (Liedl, 1991). However, convergence proofs of numerical

procedures for the solution of the unaltered quasilinear Saint-Venant equations are available (e.g.,

Edenhofer and Schmitz, 1981).

4.2.2 Mathematical Principles of Finite Difference Methods

The first-order temporal partial derivative of an unknown function ν(x, t) should be given by

∂ν

∂t
(t) t ∈ Ω (4.3)

where Ω ⊂ Rn is a spatiotemporal domain with a piecewise smooth boundary. The differential

operator is replaced by a difference quotient:

∂ν

∂t
(t) ≈ ∆ν

∆t
(4.4)

For a specific time t, ∆ν can be evaluated looking in different “directions” of t, i.e., “forward” and

“backward”. This way, three possible variants of the difference quotient read

D− =
∆ν

∆t
=
ν(t)− ν(t−∆t)

∆t
+O(∆t) (4.5)

D+ =
∆ν

∆t
=
ν(t+ ∆t)− ν(t)

∆t
+O(∆t) (4.6)

Dc =
∆ν

∆t
=
ν(t+ ∆t)− ν(t−∆t)

2∆t
+O(∆t2) (4.7)

1 Whether the governing equations are linear or nonlinear, for example.
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Figure 4.2: Approximation of the derivative ∂ν
∂t in t = j by means of difference quotients.

where D− is called backward difference quotient, D+ forward difference quotient, Dc central difference

quotient, and O is the Landau symbol.

Figure 4.2 provides a representation of the approximation of the derivative ∂ν
∂t (t) (i.e., the

tangent of the function ν in t = j) by the various difference quotients (i.e., secants of ν through

j − 1 and j, j and j + 1, and j − 1 and j + 1, respectively). It can easily be shown that for ∆t→ 0,

all three quotients converge against the partial derivative ∂ν
∂t (t). Thus, for a sufficiently small ∆t,

one should obtain a good approximation of the partial derivative using one of the aforementioned

difference quotients. The same can be applied for the spatial derivatives of ν, i.e., ∂ν
∂x (x).

When approximating differential quotients with finite differences, it is of interest how fast

the approximation error approaches zero for decreasing discretization step sizes of ∆t and ∆x,

respectively. This change of the error is characterized by the order of consistency, which can be

expressed using the big O notation with the Landau symbol O (Bachmann, 1894). By applying

a Taylor series expansion to Eqs. (4.5) through (4.7), it can be shown that the backward and

forward quotients exhibit a consistency order of O(∆t) and the central difference quotient of O(∆t2).

Essentially, this means that the error decreases quadratically with decreasing step size for central

differences, but only linearly for forward or backward differences. The same applies for a spatial

discretization, i.e., ∂ν
∂x (x) ≈ ∆ν

∆x .

The discretization of the solution domain for a spatiotemporal problem may be oriented to an

equidistant grid, leading to equidistant nodes in space and time (with constant values for ∆x and

∆t) for which the finite difference equations are evaluated (cf. Fig. 4.3). This procedure yields a

pointwise approximation of the governing PDEs. Hence, the solution can be obtained by solving a

system of equations, holding finite difference equations for each spatiotemporal node. The system

of equations is determined by the initial and boundary conditions, establishing values for nodes of a

cut in the temporal dimension, e.g., for (∀i, j − 1) (initial condition), and in the spatial dimension,

e.g., for (i− 1,∀j) (boundary condition), respectively.
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Figure 4.3: Solution domain of the governing equations and discretization grid (modified according
to MacArthur and DeVries, 1993).

If the numerical solution is obtained using backward differences, the solution of the difference

equations for one specific point in the solution domain can be expressed as a function of already

know solutions. In this case, the solution scheme is called explicit. Appendix A.1 exemplarily shows

the derivation of an explicit first-order finite difference scheme (Euler method) for the kinematic

wave model, related to the nomenclature of Fig. 4.3.

In contrast, both the central and the forward difference quotient involve the terms ν(t+ ∆t) and

ν(x+ ∆x), respectively, which are a priori unknown for the given initial and boundary conditions.

Nevertheless—depending on the physical character of the modeled processes—it could be indicated

to use central or forward differences, rather than backward differences. In this case, the difference

equations for every spatiotemporal node hold initially unknown values, and their system has to be

solved simultaneously. A numerical scheme to solve such a system is called implicit. Appendix A.3

exemplarily presents the widely-used implicit Preissmann scheme. Due to the nonlinearity1 of the

emerging algebraic2 equations, the required simultaneous solution is mostly based upon iteration,

e.g., provided by a fixed-point scheme or the Newton-Raphson method (Ypma, 1995).

To obtain stability (and, therefore, convergence), explicit schemes have to satisfy the CFL

condition; they are conditionally stable (cf. Section 4.1, Eq. (4.1)). As a corollary of the definitions

(4.5) to (4.7), explicit and implicit schemes are equivalent for a sufficiently small discretization of

the space and time dimension. A major advantage of implicit schemes is—although the iteration

means higher computational demand—that the discretization required for a convergent solution

can be much coarser than for explicit methods because the stability of the solution is not liable to

the CFL condition. This usually leads to a better performance of implicit methods with respect to

available computation time and memory.

1 Nonlinearity is not a feature introduced by the applied numerical solution procedure but is inherent to the governing
hydrodynamic equations!

2 According to Cunge et al. (1980), explicit schemes do not lead to a system of algebraic equations, since the solution
for each point can be computed separately.
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Furthermore, not only adjacent temporal nodes have to be taken into account for the formulation

of difference quotients to replace the temporal derivatives. Nodes located further away, e.g., (i, j−2),

are also applicable. In such a case, one speaks of a multi-step scheme. Another possibility is to

use intermediate values with single-step schemes (e.g., half steps, as used for the second-order

Runge-Kutta scheme, cf. Appendix A.2) in order to obtain a higher order method.

The difference of multi-step and single-step schemes with intermediate values is that the former

use and keep the information from previous steps throughout the numerical solution, whereas the

latter discard the previous information before turning to the next calculation step. Compared

with first-order single-step methods, single-step methods with intermediate values and multi-step

schemes tend to possess better stability and, therefore, convergence properties. Nevertheless, the

selection of suitable difference quotients and a solution scheme (i.e., implicit or explicit) strongly

depends on the class and character of the investigated problem, which is discussed in Section 4.4.

4.3 Analytical Solution Procedures

Considering the flexibility and universality of numerical flow models, the question arises: Why

are analytical solutions of the governing equations needed? Arguments that are given in the

literature are: (a) Straightforward model applicability since only physically-based parameters are

needed; (b) the sensitivity and influence of single parameters can often be directly seen from

the computation formulas; (c) the data situation omits the application of numerical methods;

(d) there are no numerical inconveniences (e.g., emerging from approximation and truncation errors);

(e) analytical models can be coupled on an analytical basis; and (f) the analytical solution can serve

as a reference for numerical models, e.g., to quantify the influence of different numerical methods

on the quality of the solution.1

A direct solution of the flow model equations discussed herein is not possible for the general

case. However, there are ways towards an analytical solution of the PDEs. If no direct integration

is possible, strategies to analytically solve the model equations are: to reduce the occurring PDEs

to ODEs (e.g., by finding characteristic curves, cf. Section 4.1) and, consecutively, apply suitable

classical analytical solution methods2, or to apply integral transforms.3 Certain assumptions may

be, therefore, necessary to obtain an analytical solution of the governing PDEs. These assumptions

address (a) the boundary and initial conditions; (b) cross-sectional geometry; and (c) the way

the dependent variables are related, e.g., depending on a chosen stage–discharge relationship. For

illustration, Appendix A.4 shows an analytical solution of the kinematic wave model by obtaining

characteristic solutions and applying a direct integration under the restriction of a very wide

rectangular channel geometry (wide channel assumption).

Based on the literature research carried out for this thesis (cf. Chapter 2), a number of analytical

solutions for overland and open channel flow were found, foremost for the kinematic wave and the

1 Especially considering the last point, (f), it is important to distinguish between the terms “analytical solution” and
“exact solution”. An exact solution is a valid solution of the analytical model equations and can only be obtained
by applying analytical solution methods, whereas every numerical procedure would introduce errors. The term
“analytical solution” is somewhat more general since it only states that the desired solution is obtained by using
analytical calculus. For instance, applying a series approximation to the governing equations can deliver an analytical
solution procedure but will not produce an exact solution of the initial PDEs. Nevertheless, the terms “analytical
solution” and “exact solution” are used synonymously in this thesis.

2 As direct integration, separation of variables, or change of variables.

3 The given statements refer to linear or quasilinear PDEs.
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zero-inertia approximation of the full hydrodynamic model. Attributable to the more complicated

structure of the governing equations, analytical solutions of the full hydrodynamic model were

found less frequently. Common for all approaches is the introduction of assumptions from the

above listing (a–c). Table 4.1 shows literature which incorporates analytical solutions for the KW,

ZI, and HD flow models. The investigated flow processes range from overland flow resulting from

rainfall excess (with or without upper inflow and/or infiltration), over flow in irrigation borders

and furrows, to flow in prismatic and nonprismatic open channels (again with or without lateral

inflow, but no infiltration).

As already mentioned, one way for obtaining an analytical solution of the governing equations is

to simplify the boundary conditions. This can be achieved, for instance, by introducing assumptions

regarding the lower boundary, e.g., applying a zero-depth gradient (i.e., ∂h
∂x = 0) lower boundary

condition (e.g., Govindaraju et al., 1990; Govindaraju et al., 1992). Furthermore, various sources

and sinks of mass and momentum are imaginable to influence the discussed flow phenomena. More

precisely, the flow domain can be charged by flow through the upper boundary and/or lateral

inflows (i.e., through river inflow, overland inflows, or gains from rainfall) and, on the other hand,

the flow may lose mass and momentum, e.g., attributable to infiltration on permeable surfaces.

These source/sink processes are often strongly simplified in the regarded modeling approaches

(i.e., neglected, assumed to be stationary, or described with simplified analytical approaches) in

order to obtain an analytical expression of the flow equations (e.g., Henderson and Wooding, 1964;

Govindaraju et al., 1988; Mizumura, 2006).

Another popular simplification in order to obtain an analytical solution procedure is to assume

regular prismatic cross-sectional geometries (e.g., rectangular cross sections), which is justifiable

for flow over a plane, i.e., overland flow and flow in an irrigation border (Schmitz, 1989; Schmitz

and Seus, 1990) or, e.g., in a regular irrigation furrow (Schmitz and Seus, 1992), but may be

questionable for natural river channels with irregular cross sections and a potentially pronounced

change in channel geometry along the flowpath. By assuming prismatic or very wide geometries, it

is likely possible to apply the method of characteristics and directly integrate the resulting ODEs

(e.g., Henderson, 1966; Chalfen and Niemiec, 1986; Singh, 1996; for the basic methodology, cf.

Appendix A.4).

A more comprehensive approach to include cross-sectional geometries was proposed by Schmitz

et al. (2002) who described the nonprismatic geometry of a natural river with spatially changing

analytical profile functions, based on a flexibly adaptable power law. The concept of their analytical

zero-inertia solution further connects flow properties to a momentum-representative cross section,

which is placed at the upper domain boundary. Furthermore, their solution assumes a free-moving

lower boundary condition, which renders the model favorable for predicting advancing surge flow.

The restriction of their approach is that strongly falling upper boundary conditions are not covered

by the assumptions which were made in model development.

Familiar with the ideas of Schmitz et al. (2002), Wöhling et al. (2004b) and Wöhling (2005)

presented a quite rigorous analytical furrow irrigation model which is able to account for unsteady

inflows and unsteady infiltration losses. Although the model was applied for prismatic furrow

geometries, the approach is basically able to include nonprismatic cross-sectional profiles, utilizing

the respective concepts of Schmitz et al. (2002). Being generally well-suited for simulating advancing

flow under infiltration, again it needs to be stated that the proposed analytical ZI model cannot

account for strongly falling hydrographs and zero-advance conditions. This directs the approach to
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Table 4.1: Overview of selected studies presenting analytical solution methods for the hydrodynamic
models.

Reference Model

class

Flow

process

Cross

sections

Lateral

inflow/

rainfall

Infil-

tration

Upper

inflow

Solution

approach

Henderson and Wooding (1964) KW O WCA S − − MOC, DI

Henderson (1966) KW C P − − US MOC, DI

Singh (1996) KW C P − − US MOC, DI

Mizumura (2006) KW O WCA US − − MOC, DI

Baiamonte and Agnese (2010) KW O WCA US US − MOC, DI

Mizumura and Ito (2011a) KW O WCA US − − MOC, DI

Mizumura and Ito (2011b) KW O WCA US − − MOC, DI

Govindaraju et al. (1988) ZI O WCA S − − ASS†

Schmitz (1989) ZI B P − US US MRXS, DI

Govindaraju et al. (1990) ZI O WCA US − − ASS†

Schmitz and Seus (1990) ZI B P − US US MRXS, DI

Govindaraju et al. (1992) ZI O WCA US − − ASS†

Schmitz and Seus (1992) ZI F P − US US MRXS, DI

Schmitz et al. (2002) ZI C NP − − US MRXS, DI

Fan and Li (2004) ZI C P US − S IT

Wöhling et al. (2004b) ZI F P − US US MRXS, DI

Wöhling (2005) ZI F P − US US MRXS, DI

Chalfen and Niemiec (1986) HD C P − − US MOC, DI

Singh (1996) HD O WCA S − − MOC, DI

Wang et al. (2002) HD†† O WCA US − S MOC, DI

Chung and Kang (2004) HD C P − − US IT

With KW: kinematic wave model; ZI: zero-inertia model; HD: full hydrodynamic model (based on the Saint-Venant

equations); O: overland flow; C: river channel flow; B: flow in irrigation borders; F: flow in irrigation furrows;

WCA: wide channel assumption; P: prismatic cross sections; NP: nonprismatic cross sections; S: steady; US: unsteady;

MOC: method of characteristics; DI: direct integration; ASS: approximate Taylor series solution; MRXS: momentum-

representative cross section; IT: integral transform.
†Although the proposed solution delivers an analytical procedure for the flow computations, the result is not an

exact one, corresponding to the governing flow equations, but an approximate solution.
††The introduced, strongly simplified depth-discharge relationship renders the model equivalent to a KW model.

the application for modeling advancing dam culvert release (cf. Section 3.7.1). However, Wöhling

(2005) accounted for the other phases of a flow event (cf. Section 3.1) by using simplified (i.e., steady

and volume-balance approaches) yet still analytical concepts that turned out to be reasonable under

the problem-specific conditions of furrow irrigation.

In summary, the listing in Table 4.1 supports the finding that inevitably none of the available

analytical solutions retains the generality of the governing flow model PDEs. Therefore, although

the results obtained by an analytical model are at best exact solutions, their validity is constituted

by the restrictions which were made during the mathematical development of the analytical model.

Nevertheless, as discussed initially in this section, analytical solutions are of high importance for

simulating processes where numerical solution schemes are prone to failure or introduce unacceptable

errors, e.g., associated with surge flow modeling in initially dry channels under significant losses, or

overland flow modeling.
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4.4 Discussion of the Reviewed Solution Procedures in the

Light of Flow Modeling in Ephemeral Rivers

As shown in Section 3.1, wadi flow under dam operation features a wide range of magnitudes and

process dynamics, which should be regarded in model development. The flow in the wadi reaches

upstream of a dam is characterized by potentially steep gradients and pronounced process dynamics.

Employing finite differences (cf. Section 4.2.1) offers an appropriate and well-proven method for

solving such initial-boundary-value problems in one spatial dimension (i.e., the afore-presented

one-dimensional hydrodynamic models).

When choosing a certain finite difference scheme, two decisions have to be made: First, appro-

priate difference quotients have to be selected. Second, one has to choose between an explicit or

an implicit formulation of the finite difference equations. The following criteria—which might be

contradictory to some extent—should be balanced by a suitable numerical integration scheme:

. The algorithm should be efficient with regard to the available computational resources;

. exhibit a suitable convergence behavior;

. yield accurate results, i.e., so that numerical errors have a negligible influence on mass balance

and dynamics of the considered process; and

. allow for straightforward implementation, testing, and application.

The use of a higher-order scheme proposes a reduction of the approximation errors and, therefore,

yields a better convergence behavior of the solution scheme, which is additionally conditioned by

the chosen spatial and temporal discretization of the solution domain. Additionally, higher-order

schemes tend to introduce less numerical dispersion1, which might facilitate an accurate simulation

of steep gradients, e.g., associated with flash floods. On the other hand, higher-order schemes

demand more computational resources. According to Press et al. (1992), a second-order or third-

order scheme, therefore, seems to offer a balance of improved convergence, tolerable numerical

dispersion, and computational efficiency. Despite the fact that implicit finite difference schemes

feature greater numerical stability and comparably intermediate computational demand, an explicit

scheme should be chosen for a kinematic wave routing model which is intended for the upstream

reach of the dam and spillway release flow (cf. Section 3.7.1). Explicit schemes introduce less

numerical dispersion and are, therefore, more suited for highly dynamic, shock-prone flows, as

present in sewer networks (Duchesne et al., 2001), associated with dam-break problems (e.g., Delis

and Skeels, 1998; Garcia-Navarro et al., 1999), or—as applies to this work—flash flood routing (e.g.,

Mudd, 2006).

Most important for a sound description of indirect recharge influenced by dam operation is the

accurate and robust process modeling of the advancing, discontinuous culvert release flow in the

downstream wadi sections. Trying to employ numerical schemes to solve the governing equations

is prone to fail for two reasons: (a) The water surface curvature at the tip of the advancing and

1 Numerical dispersion is a corollary of the approximations inherent to a numerical solution scheme and causes a
smoothing of gradients due to averaging physical values in space and time. This adds some dispersion (and, therefore,
wave attenuation) to the solution, which is then added to physical dispersion, represented in the momentum equations
of the full hydrodynamic and the zero-inertia model. In contrast, the kinematic wave momentum equation neglects
physical dispersion.
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infiltrating flow domain is infinitely steep, which causes gradients that cannot be appropriately

resolved by a numerical scheme which approximates gradients over space and/or time. Hence,

convergence problems can occur which leads to errors at best, and to nonconvergence of the applied

scheme, at worst. (b) The advance dynamics can become very weak, as the lower moving boundary

of the flow domain is associated with only a discrete position of the incorporated discretization grid.

This yields errors in the mass balance and restrains a correct simulation of advance dynamics.

A popular strategy to circumvent such shortcomings caused by a numerical solution is the

introduction of a nonzero initial flow in the channel, e.g., applied by Mudd (2006) and Morin et al.

(2009). For comparably high flow rates and low infiltration quotas (as in the wadi sections upstream

of a recharge dam), this assumption causes no greater errors. This looks differently for the high

infiltration quotas associated with dam release flow in the downstream reaches, where an accurate

simulation of the growing extents of the infiltrating flow domain is desired. A lot of research has tried

to challenge equivalent problems, emerging from process-oriented modeling of infiltrating flow in

furrows or borders. Besides the already mentioned nonzero initial flow assumption, literature shows

various approaches trying to cope with the complicated portrayal of discontinuous hydrodynamics

of an advancing wave tip.

When trying to avoid an assumptive nonzero initial flow, the process has to be regarded as

a moving-boundary problem. The shape and the dynamics of the downwards moving tip of the

(typically infiltrating) flow domain have to be portrayed. A possibility of facing the inconvenient

modeling of the wave tip is the simplification of the flow process to a basic volume consideration

and the assumption of an arbitrary water surface shape, mostly represented by a parabola (e.g.,

Kincaid, 1970; Schmitz et al., 1985). Capturing the moving interface between the dry and the

wetted channel with numerical means leads to further errors. For high infiltration quotas, the wave

advance slows down significantly, which makes an adaption of the spatial or temporal discretization

inevitable. For instance, Strelkoff and Katopodes (1977) used a computation grid with a constant

time step. The spatial discretization is adapted to the distance the wave tip travels within each

fixed time step. For a decelerating wave, the spatial discretization is refined, which increases the

required computational effort.

Alternatively, the space step can be kept constant and the time step is adapted to wave advance

dynamics (e.g., Rayej and Wallender, 1985). Since the decelerating wave travels decreasing distances

within a constant time, the time step can be coarsened in case of a constant space step. Nevertheless,

if the time step is altered disregarding the spatial resolution, the underlying numerical scheme is

susceptible to harm the Courant criterion, which is why the aforementioned authors applied implicit

solution schemes. Moreover, changes in the relation of the time and space step produce changes in

numerical dispersion, which might not correspond to the physical character of the flow.

4.5 Summary and Conclusions

Summing up, numerical procedures are generally suited to solve the governing equations of the flow

models discussed herein for a wide range of conditions. Special attention has to be drawn to the

dynamics of the considered processes, which span a wide range for wadi flow in the upstream and

downstream reaches of a recharge dam. The upstream processes and the spillway release flow are

very pronounced and the hydrographs reflect an intrinsic steepening tendency of the flow. Hence,

an explicit finite difference scheme is proposed for the numerical solution of the governing kinematic
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wave model, where the KW model was selected on the basis given in Section 3.7.1. Moreover, to

balance convergence behavior, numerical dispersion, and computational demands, a second-order

solution scheme is proposed.

In contrast, the numerical solution of the flow equations in case of advancing and infiltrating flow

caused by dam culvert release is prone to considerable errors and shortcomings and, therefore, an

analytical procedure is indicated. The same applies for overland flow modeling. It was discussed in

Sections 3.7.1 and 3.7.2 that the ZI model poses a feasible approach for portraying such advancing,

gradually varied flows. As shown in Section 4.3, analytical solutions of the ZI model that account for

initially dry channel conditions via a moving lower boundary condition are available for prismatic

and nonprismatic geometries (Schmitz, 1989; Schmitz and Seus, 1990; Schmitz and Seus, 1992;

Schmitz et al., 2002; Wöhling, 2005).

The aforementioned publications all propose modeling concepts which are based on the definition

of a momentum-representative cross section (that is either fixed at the upstream boundary or travels

with the wave’s center of gravity). Furthermore, the underlying analytical procedures allow for

a direct consideration of an arbitrary losses or yield function in the continuity and momentum

equations, i.e., for the quantification of infiltration, lateral inflows, or rainfall. Moreover, the

presented analytical solution concepts avoid the cumbersome assumption of a nonzero initial flow

and circumvent any arbitrary assumptions on the water surface shape, especially at the wetting

front of the flow domain.

Numerous applications for border irrigation (i.e., infiltrating overland flow), furrow irrigation,

and flow in nonprismatic river channels proved the robustness and accuracy of the employed

analytical ZI modeling procedures. The present thesis follows these concepts and develops a

moving-boundary analytical model for advancing and infiltrating wadi flow, which is based on the

zero-inertia equations for unsteady inflow and losses conditions, and is able to include nonprismatic

geometries. The modeling concepts developed in this thesis are shown to perform well with respect

to accuracy and robustness, not only covering flow in ephemeral wadi channels, but also under

typical overland flow conditions.
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Chapter 5

Novel Analytical Solution

Approaches for the Zero-Inertia

Equations

This chapter presents two analytical solution approaches for the zero-inertia model. First, a

novel solution for open channel flow in permeable nonprismatic channels is derived which is based

upon the extended zero-inertia equations, holding loss terms in the continuity and the momentum

equations (cf. Section 3.5). The analytical solution is obtained under the assumption of a momentum-

representative cross section, as first proposed by Schmitz and Seus (1987), and yields a set of two

nonlinear equations. A space-discrete rather than a time-discrete iteration scheme is employed

for solving the set of equations, which has specific advantages regarding computational effort and

convergence behavior of the underlying solution procedure (cf. Section 4.4). The approach is similar

to the one proposed by Schmitz et al. (2002) but accounts for the loss of mass and momentum

attributable to infiltration. The required calculus is presented in depth in Section 5.1.

Second, the same basic concepts are applied for the more specific case of overland flow under

lateral inflow/losses conditions as a consequence of rainfall and/or infiltration (Section 5.2). A

very wide rectangular cross section is assumed. This simplifies the required calculus and leads to a

set of nonlinear equations, similar to the open-channel case, which is again solved by employing a

space-discrete iterative procedure.

5.1 A Novel Analytical Solution Approach for Zero-Inertia

Open Channel Flow with Infiltration

A surge advancing over a dry wadi bed as a consequence of controlled release from a groundwater

recharge dam represents a free boundary problem. After some time, when aiming for groundwater

recharge, infiltration equals the inflow to the channel and, thus, the flow forms a kind of standing

wave. The numerical treatment of such phenomena generally involves considerable problems. For

avoiding numerical inconveniences emerging from the complex interacting surface/subsurface flow

processes (cf. Section 4.4), an analytical solution of the slightly modified zero-inertia equations
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is subsequently derived. The approach introduces a momentum-representative cross section for

portraying the transient development of momentum and refers to a channel with constant slope and

nonprismatic geometry. The subsequently derived analytical solution is very similar to one given

in Schmitz et al. (2002), but, in contrast, accounts for a permeable channel bed, which allows for

significant infiltration. Due to the mathematical structure of the solution, any arbitrary infiltration

model can be used for quantifying infiltration losses. Moreover, the model does not introduce any

simplifications regarding the description of the water surface shape, especially at the moving wave

front.

5.1.1 Governing Equations

Surging flow in an irregular river bed with water losses through the channel bottom can be described

by the extended zero-inertia equations, consisting of the continuity equation (3.7), holding the −qφ
mass loss term, and the ZI momentum equation (3.3), supplemented by the qφu

gA momentum loss

term (cf. Section 3.5). In the momentum equation (3.3), friction slope Sf is expressed via a uniform

flow formula (cf. Section 3.4):
∂A

∂t
+
∂Q

∂x
= −qφ (5.1)

∂h

∂x
= S0 −

u2

K2R2β
+
qφu

gA
(5.2)

in which t: time [T]; x: longitudinal space coordinate [L]; A(x, t): wetted cross-sectional area [L2];

Q(x, t): discharge [L3T−1]; qφ: volumetric rate of infiltration per unit length [L2T−1]; h(x, t): water

depth [L]; S0: bottom slope [−]; u(x, t): flow velocity [LT−1]; R(x, t): hydraulic radius [L]; K: rough-

ness coefficient [L1−βT−1]; β: exponent of the flow formula [−] (e.g., for the Manning-Strickler

equation β = 2
3 ; Strickler, 1923); and g: acceleration due to Earth’s gravity [LT−2].

The first step towards the analytical solution of the system of Eqs. (5.1) and (5.2) is to multiply

Eq. (5.2) by R2β , yielding

R2β ∂h

∂x
=

(
S0 +

qφu

gA

)
R2β − u2

K2
(5.3)

According to Schmitz and Seus (1990), Schmitz and Seus (1992), and Schmitz et al. (2002), the

inflow boundary is assumed to be a momentum-representative cross section for the specific flow

problem. In this approach, the momentum portrayed by the right-hand side of Eq. (5.3)—which

is neglected in kinematic wave analysis—is continuously represented by the transient amount of

momentum at the inflow boundary (x = 0). This way, the right-hand side of Eq. (5.3) no longer

depends explicitly on x, and Eq. (5.3) can be rewritten as

R2β ∂h

∂x
=

(
S0 +

qφ0u0

gA0

)
R2β

0 −
u2

0

K2
=

(
S0 −

u2
0

K2R2β
0

+
qφ0u0

gA0

)
R2β

0 (5.4)

with R0 = R0(t) = R(x = 0, t), u0 = u0(t) = u(x = 0, t), A0 = A0(t) = A(x = 0, t), and

qφ0 = qφ0 (t) = qφ(x = 0, t). The expression on the right-hand side of Eq. (5.4) can be considered as a

measure of the transient momentum at x = 0, covering contributions from bottom slope, friction,

and infiltration through the river bed.
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5.1.2 Including Nonprismatic Channel Geometries Using Analytical Pro-

file Functions

The arbitrarily varying cross-sectional geometry of a nonprismatic channel is described with the

power laws

h̃(x,A) = h(x, t) = p1(x)A(x, t)p2 (5.5)

R̃(x,A) = R(x, t) = p3(x)A(x, t)p4 (5.6)

with p1(x), p2, p3(x), and p4: geometry parameters for relating water depth h(x,A) and hydraulic

radius of a river cross section R̃(x,A) to the wetted cross-sectional area Ã(x, t). For formal reasons,

the functions describing the cross-sectional geometry, h̃(x,A) and R̃(x,A), have to be distinguished

from the functions h(x, t) and R(x, t) which explicitly relate water depth and hydraulic radius to

the independent variables of space and time.

Schmitz et al. (2002) showed that irregular cross sections of natural river beds can be closely

approximated by adjusting the free parameters p1(x), p2, p3(x), and p4 of Eqs. (5.5) and (5.6) in a

way that the right-hand side of the equations fits the functions h̃(x,A) and R̃(x,A). In particular,

p1(x) and p3(x) account for the nonprismatic character of the river bed and have to be obtained

for every cross section which is included in modeling. The values of p2 and p4 are not dependent

on the space variable and account for some kind of common property, which is most evident for

basic, regular cross-sectional geometries, e.g., p2 = p4 = 1
2 for a triangular, 2

3 for a parabolic, and 1

for a rectangular cross section. The parameters p2 and p4 have to be representative for the whole

channel reach. Therefore, it is feasible to use the functions h̃(x,A) and R̃(x,A) which are most

representative for a reach, or, alternatively, to average the profile functions over all cross sections

along the channel.

The subsequently outlined analytical solution of the ZI equations requires the specification of

the geometry parameters p1(x), p2, p3(x), and p4. Assuming the channel sections to be of a regular

triangular, parabolic, or rectangular type, the values of p2 = p4 are predetermined (1
2 , 2

3 , or 1) and

the values of p1(x) and p3(x) can be straightforwardly estimated by describing the cross-sectional

geometry with an exponential relationship of the form

z(x, y) = hr

(
y

wr(x)

)a
(5.7)

in which z: vertical space coordinate positive upwards [L]; y: horizontal space coordinate perpendic-

ular to the channel axis x [L]; wr(x): half the width of the cross section at a reference water depth

hr [L]; and a: a free cross-sectional shape parameter [−] (a ≥ 1).

Thus, instead of estimating p1, ..., p4 in a way to fulfill Eqs. (5.5) and (5.6), the four parameters

p1, ..., p4 can be analytically related to the two free parameters, a and wr, such that the function

z(x, y) most closely fits the true cross-sectional geometry.1 The portrayal of channel geometry by

the power law Eq. (5.7) is illustrated in Fig. 5.1a. Figure 5.1b–c illustrates the influence of the

parameters wr and a on the representation of channel geometry. It can be seen that wr parametrizes

1 This can be achieved by applying a standard function fitting method, e.g., a least-squares fitting.
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Figure 5.1: Sketches on the portrayal of half of a cross section with the power law Eq. (5.7),
according to Schmitz et al. (2002). (a) Illustration of the representation of cross-sectional geometry
z(x, y) with a power law, holding the two free parameters wr and a; (b) influence of the parameter
wr on z(x, y); (c) influence of the parameter a on z(x, y).

the general channel width and the channel’s lateral slope, whereas a changes the channel shape

from triangular (a = 1), over parabolic (a = 2), to rectangular (a =∞).

For regular channel geometries, Schmitz et al. (2002) deliver the derivation of the following

analytical expressions for p1, ..., p4, which read

p1(x) = hr

(
a+ 1

2ahrwr(x)

) a
a+1

(5.8)

p2 =
a

a+ 1
(5.9)

p3(x) =

(
2a
a+1hrwr(x)

) 1
a+1

2wr(x)

√
1 + 2

(
1− 1

a

)
hr

wr(x) +
(

hr

wr(x)

)2
(5.10)

p4 =
a

a+ 1
(5.11)

For the basic cross-sectional shapes, represented by a = 1, 2,∞ (triangular, parabolic, rectangular),

Eqs. (5.8) to (5.11) yield the relationships shown in Table 5.1. The expressions given therein can be

used to straightforwardly compute the geometry parameters p1, ..., p4 for regular channel shapes.

In contrast, for channel geometries which are not triangular, parabolic, or rectangular, it is

indicated to estimate the parameters p1, ..., p4 with respect to a given empirical function z(x, y)

which can be determined by using channel topography data, e.g., emerging from terrestrial surveying

or a digital elevation model. As already illustrated in Section 3.6, continuous profile functions,
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Table 5.1: Geometric representation of triangular, parabolic, and rectangular cross sections,
according to Schmitz et al. (2002).

Para-

meter/

function

Dimension Triangular

cross section

Parabolic

cross section

Rectangular

cross section

a [−] 1 2 ∞

p1(x) [L1−2p2 ]
√

hr
wr(x) h

1
3
r

(
3

4wr(x)

) 2
3 1

2wr(x)

p2 [−] 1
2

2
3

1

p3(x) [L1−2p4 ]
1

2

√
wr(x)
hr

+ hr
wr(x)

(
hr

6wr(x)2

) 1
3√

1+ hr
wr(x)

+
(

hr
wr(x)

)2 1
2wr(x)+2hr

p4 [−] 1
2

2
3

1

h̃(x,A) [L]
√

hrA
wr(x) h

1
3
r

(
3A

4wr(x)

) 2
3 A

2wr(x)

P̃ (x,A) [L] 2

√(
wr(x)
hr

+ hr
wr(x)

)
A

√
1 + hr

wr(x)
+
(

hr
wr(x)

)2 (
6
hr
wr(x)2A

) 1
3 2wr(x) + 2hr

R̃(x,A) [L]
1
2

√
A

wr(x)
hr

+ hr
wr(x)

(
hr

6wr(x)2

) 1
3√

1+ hr
wr(x)

+
(

hr
wr(x)

)2A 2
3

A
2wr(x)+2hr

as posed by Eqs. (5.5) and (5.6), are needed for a biunique relation of water depth, wetted cross-

sectional area, and hydraulic radius within the hydrodynamic equations. The practical adjustment

of the geometry parameters for a nonprismatic channel with irregular cross-sectional geometries is

shown in Section 6.1.1.2.

5.1.3 Boundary and Initial Conditions

The system of partial differential equations (5.1);(5.4) requires the specification of boundary and

initial conditions. The boundary condition at the fixed upstream boundary (x = 0) is

Q(0, t) = Q0(t) (5.12)

where the ZI assumptions induce the restriction that strongly falling functions of Q(0, t) cannot be

used as an upstream boundary condition (Schmitz et al., 2002). The downstream moving boundary

is located at x = xtip(t). At this moving point, the following conditions apply and have to be

satisfied by the intended analytical solution of the governing equations:

A(xtip, t) = 0 (5.13)
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qφ(xtip, t) = qφtip(t) = 0 (5.14)

u(xtip, t) = utip(t) =
dxtip

dt
(5.15)

where xtip(t) is the transient location of the advancing wave tip and utip(t) is the wave tip’s advance

velocity. Of course, the wetted cross-sectional area A(xtip, t) and the cross-sectional infiltration rate

qφtip(t) equal zero at the advancing wave tip.

In contrast to the often applied assumption of a nonzero initial flow (cf. Section 4.4), the

analytical solution assumes an initially dry channel reach further downstream of the wetting flow

domain. This implies that, for a dry channel, the location of the flow domain has a spatial extent

of zero. The initial condition of the considered flow problem, therefore, reads

xtip(t = 0) = 0 (5.16)

5.1.4 Analytical Solution of the Momentum Equation

Subsequently, the analytical solution of the extended zero-inertia momentum equation (5.4) is

derived. The calculus follows Schmitz et al. (2002), with the difference that the qφu
gA term—which

accounts for a loss of flow momentum attributable to infiltration—is regarded herein. For this

reason, and to be comprehensive, the following derivation is presented in detail. The momentum

equation (5.4) can be rewritten in the form

R2β ∂h

∂x
=

(
S0 −

u2
0

K2R2β
0

+
qφ0u0

gA0

)
R2β

0 = ρ0(t) (5.17)

where ρ0(t) is a measure of the transient amount of momentum at the uppermost cross section at

x = 0 [L2β ], which is influenced by channel slope, friction slope, momentum loss attributable to

infiltration, and the hydraulic radius. Employing the expression of the hydraulic radius, given by

Eq. (5.6), the momentum equation (5.17) is recast1, yielding

p3(x)2βA(x, t)2βp4
∂h

∂x
= ρ0(t) (5.18)

Making use of the relationship of water depth and wetted cross-sectional area, given by Eq. (5.5),

delivers an expression for the spatial gradient of the water depth:

∂h

∂x
=

dh̃

dx
=
∂h̃

∂x
+
∂h̃

∂A

∂A

∂x
=

dp1

dx
(x)Ap2 + p1(x)p2A

p2−1 ∂A

∂x
(5.19)

which is inserted into Eq. (5.18), yielding

dp1

dx
(x)A2βp4+p2 + p1(x)p2A

2βp4+p2−1 ∂A

∂x
= ρ0(t)p3(x)−2β (5.20)

For convenience, the abbreviation

λ = 2βp4 + p2 (5.21)

1 At this point—by relating cross-sectional area and hydraulic radius via the power law Eq. (5.6)—a regular cross-
sectional geometry is assumed, which is a prerequisite for the subsequent calculus. This does not imply the channel
geometry might not change in longitudinal direction, i.e., the geometry can be nonprismatic!
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is introduced, which lets Eq. (5.20) be rewritten as

dp1

dx
(x)Aλ + p1(x)p2A

λ−1 ∂A

∂x
= ρ0(t)p3(x)−2β (5.22)

which is a nonlinear and ordinary Bernoulli-type differential equation.

For linearizing Eq. (5.22), the substitution

Γ = p1(x)
λ
p2Aλ (5.23)

∂Γ

∂x
=

λ

p2
p1(x)

λ
p2
−1 dp1

dx
(x)Aλ + λp1(x)

λ
p2Aλ−1 ∂A

∂x
(5.24)

is introduced which allows recasting Eq. (5.22) to

p1(x)
λ
p2
−1 p2

λ

∂Γ

∂x
= ρ0(t)p3(x)−2β (5.25)

Employing the boundary condition (5.13), Eq. (5.23) can be written as

Γ(xtip, t) = p1(xtip)
λ
p2A(xtip, t)

λ = 0 (5.26)

Using Eqs. (5.21) and (5.26), the general solution of the inhomogeneous differential equation (5.25)

is

Γ(x, t) = − λ

p2
ρ0(t)

ˆ xtip(t)

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ (5.27)

where ξ indicates the integration variable in space direction. Resubstituting A = p
− 1
p2

1 Γ
1
λ yields

the solution of the momentum equation

A(x, t) = p1(x)−
1
p2


− λ

p2
ρ0(t)

ˆ xtip(t)

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
λ

(5.28)

Inserting Eq. (5.21) into Eq. (5.28) and employing the expression for ρ0(t), given by Eq. (5.17), leads

finally to the analytical solution of the momentum equation

A(x, t) = p1(x)−
1
p2





(
1 +

2βp4

p2

)(
−S0 +

u2
0

K2R2β
0

− qφ0u0

gA0

)

R2β
0

ˆ xtip(t)

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ





1
2βp4+p2

(5.29)

5.1.5 Analytical Solution of the Continuity Equation

The continuity equation (5.1) is an inhomogeneous linear PDE in Q. Taking into account the

upstream boundary condition (5.12), Eq. (5.1) can be directly integrated which yields

Q(x, t) = Q0(t)−
ˆ x

0

(
∂A

∂t
(ξ, t) + qφ(ξ, t)

)
dξ (5.30)

57



5 Novel Analytical Solution Approaches for the Zero-Inertia Equations

where the integrand of Eq. (5.30) is obtained by differentiating Eq. (5.29) with respect to t. It has

to be shown further that the downstream boundary condition (5.15) is satisfied by Eq. (5.30). In

order to prove this, the mass balance in the wetted channel section is regarded by comparing the

inflow volume to the channel with the volume of flow in the channel plus the infiltrated volume:

ˆ t

0

Q0(τ)dτ =

ˆ xtip(t)

0

A(ξ, t)dξ +

ˆ t

0

ˆ xtip(t)

0

qφ(ξ, τ)dξdτ (5.31)

where τ indicates the infiltration opportunity time at a channel location x, respectively the

integration variable in time. Equation (5.31) is differentiated with respect to t. Due to the boundary

conditions (5.13) and (5.14), this yields

Q0(t) =

ˆ xtip(t)

0

∂A

∂t
(ξ, t)dξ +A(xtip, t)utip(t) +

ˆ xtip(t)

0

qφ(ξ, t)dξ + qφtip(t) (5.32)

which can be recast as

Q0(t) =

ˆ xtip(t)

0

∂A

∂t
(ξ, t)dξ +

ˆ xtip(t)

0

qφ(ξ, t)dξ =

ˆ xtip(t)

0

(
∂A

∂t
(ξ, t) + qφ(ξ, t)

)
dξ (5.33)

Inserting Eq. (5.33) into Eq. (5.30) delivers

Q(x, t) =

ˆ xtip(t)

0

(
∂A

∂t
(ξ, t) + qφ(ξ, t)

)
dξ (5.34)

and the flow velocity can be expressed as

u(x, t) =
Q(x, t)

A(x, t)
=

ˆ xtip(t)

0

(
∂A
∂t (ξ, t) + qφ(ξ, t)

)
dξ

A(x, t)
(5.35)

Applying L’Hôpital’s rule and performing considerable but straightforward calculus, it can be shown

that the boundary condition (5.15) is satisfied in such a way that

lim
x→xtip

u(x, t) =
dxtip

dt
(5.36)

Thus, the equations (5.29) and (5.30) solve the system (5.1);(5.4) and also satisfy the boundary

conditions (5.12), (5.13), and (5.14). This solution accounts for the hydraulic feedback between the

advance of a surge over an initially dry river bed and water losses due to infiltration across the

continuously extending wetted channel bottom.

5.1.6 Algorithm for the Iterative Solution of the Nonlinear Problem

The solution for Eqs. (5.29) and (5.30) firstly requires evaluating the position of the advancing wave

front xtip(t) and the wetted cross-sectional area A0(t) = A(x = 0, t) at the inflow boundary by

solving a nonlinear system of two equations iteratively. For this purpose, N observation points

(0 < x1 < x2 < ... < xN ) are defined and the arrival time of the wave tip tn for each observation

point, i.e., xtip(tn) = xn (for n = 1, 2, ..., N), and the corresponding wetted cross-sectional area

A0,n = A0(tn) at x = 0 are calculated.
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The first of the above-mentioned nonlinear equations is obtained by setting x = 0 in Eq. (5.29).

Making use of the relationships (5.4) and (5.6) in order to express the hydraulic radius in Eq. (5.29)

yields

A0,n = p1(0)−
1
p2

{(
1 +

2βp4

p2

)

ψn

(
Q0(tn)2

K2A2
0,n

−
(
S0 +

qφ0 (tn)Q0(tn)

gA2
0,n

)
p3(0)2βA2βp4

0,n

)} 1
2βp4+p2

(5.37)

with the abbreviation

ψn =

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ (5.38)

To derive the second nonlinear equation, the wetted cross-sectional area, given by the analytical

solution of the ZI momentum equation (5.29), has to be expressed for t = tn. Dividing Eq. (5.29) by

Eq. (5.37) relates the wetted cross-sectional area at a specific cross section location x to the wetted

cross-sectional area at the inflow boundary, which yields

A(x, tn)

A0(tn)
=

(
p1(x)

p1(0)

)− 1
p2




ˆ xn

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
2βp4+p2

(5.39)

Thus, A(x, tn) can be expressed as

A(x, tn) = A0(tn)

(
p1(x)

p1(0)

)− 1
p2




ˆ xn

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
2βp4+p2

(5.40)

Based on mathematical principles, it holds true that

(
p1(x)

p1(0)

)− 1
p2

=

(
p1(0)

p1(x)

) 1
p2

(5.41)

Using the definitions of Eqs. (5.21), (5.38), and (5.41), Eq. (5.40) can be rewritten as

A(x, tn) = A0,n

(
p1(0)

p1(x)

) 1
p2


1− 1

ψn

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
λ

(5.42)

Equation (5.42) holds an expression for the wetted cross-sectional area along the channel for a

specific time tn, associated with the arrival time of the flow domain at the nth channel cross section.

Therefore, the volume of surface water in the channel at the time tn may be expressed as

ˆ xn

0

A(x, tn)dx = A0,n

ˆ xn

0



(
p1(0)

p1(x)

) 1
p2


1− 1

ψn

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
λ


dξ (5.43)
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With the abbreviation

ωn =

ˆ xn

0



(
p1(0)

p1(x)

) 1
p2


1− 1

ψn

ˆ xn

0

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ




1
λ


 dξ (5.44)

Eq. (5.43) can be written briefly as

ˆ xn

0

A(x, tn)dx = A0,nωn (5.45)

Analogously to Eq. (5.31), the volume balance for a channel reach, cumulative over the time interval

[0, ..., tn], reads
ˆ tn

0

Q0(τ)dτ = A0,nωn +

ˆ tn

0

ˆ xn

0

qφ(ξ, τ)dξdτ (5.46)

Equations (5.37) and (5.46) can be quite straightforwardly rearranged to an iterative procedure

(Appendix A.5 shows the derivation in detail), which accounts for the dynamic influence of infiltration

on the surface flow, given by the two fixed-point equations1

A
(k)
0,n =




λψn

(
Q0(t(k−1)

n )
K

)2

p2p1(0)
λ
p2 + λψn

(
S0 +

qφ0

(
t
(k−1)
n

)
Q0

(
t
(k−1)
n

)
g
(
A

(k−1)
0,n

)2

)
p3(0)2β(
A

(k−1)
0,n

)p2




1
2+λ

(5.47)

t(k)
n = t(k−1)

n +

A
(k)
0,nωn +

ˆ t(k−1)
n

0

ˆ xn

0

qφ(ξ, τ)dξdτ −
ˆ t(k−1)

n

0

Q0(τ)dτ

Q0

(
t
(k−1)
n

) (5.48)

where k = 1, 2, 3, ... denotes the iteration index.2 The iterative scheme is described in more detail

in the subsequent Section 5.1.7. A Taylor series expansion of the left-hand side of Eq. (5.46) around

t
(k−1)
n has been included in order to take the impact of infiltration through the permeable wadi bed

into account. Starting values are provided by the results obtained from the preceding space step,

i.e., A
(0)
0,n = A0,n−1 and t

(0)
n = tn−1. The convergence of the iterative procedure can be assessed

by calculating an iteration convergence criterion and comparing it to a specific iteration precision

criterion ε, e.g., ε = 10−4:

ICC = max




∣∣∣t(k−1)
n − t(k)

n

∣∣∣
t
(k−1)
n + t

(k)
n

,

∣∣∣A(k−1)
0,n −A(k)

0,n

∣∣∣
A

(k−1)
0,n +A

(k)
0,n


 < ε (5.49)

5.1.7 Coupling Surface Flow and Infiltration

As discussed in Section 3.5, surface flow and infiltration are strongly interdependent phenomena.

Such intricate and mutual processes can be modeled using a coupling approach, which includes

1 In order to deliver the comprehensive derivation of Appendix A.5, Eq. (5.47) differs slightly from the corresponding
expression in Philipp et al. (2010).

2 Since the values of k are spread equidistantly, the iterative procedure belongs to the class of fixed-point iteration
schemes. Fixed-point schemes applied to differential equations (as applies for the present case) are also referred to as
Picard iteration schemes (Lindelöf, 1894).
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the flow model and a loss model. Morita and Yen (2002) and Wöhling (2005) give an extensive

overview of literature on coupled physically-based surface–subsurface modeling. If infiltration can

be quantified with a functional relationship which is analytically determinable and differentiable,

this relationship and its derivatives can be directly included in the hydrodynamic equations by

means of mathematical analysis.

As previously shown, the iterative procedure (5.47);(5.48) establishes a fixed-point iteration

scheme for coupling the surface flow and the infiltration model in order to obtain the wetted cross-

sectional area at the inflow boundary A0,n and the wave tip’s arrival time tn at a specific location n,

which allows for a space-discrete solution of the problem. The advantage of the fixed-point scheme

is that no derivatives of the surface flow and the infiltration function are involved. According to

the Banach fixed-point theorem (Banach, 1922), the method converges linearly under the given

problem-specific conditions. The consecutively presented iterative solution procedure for the coupled

surface flow–infiltration model for advancing wadi flow was implemented in MATLAB.

By defining N observation points along the channel, the iteration (5.47);(5.48) is carried out

under an equidistant space step ∆x.1 As already discussed in Section 4.4, this leads to an adaption

of the time step to wave dynamics. The spatial interval (i.e., the number of observation points N)

is chosen according to a desired accuracy of the results and is typically in the range of some ten to

some hundred meters. Wöhling (2005) and Wöhling et al. (2006) comprehensively investigated the

numerical behavior of a comparable iterative procedure for coupled surface–subsurface flow, based

on the analytical solution of the ZI equations for flow in irrigation furrows by Schmitz and Seus

(1992). Both time and space discrete formulations were investigated. They showed that a space

discretization of the problem—as applies for the iterative scheme presented in this thesis—leads to

improved stability and convergence of the iteration procedure and is, therefore, economical with

respect to computational effort.

Herein, the alternating iterative coupling strategy is applied, which is the method of choice

if a more complex functional description of infiltration (e.g., via Richards’ equation) is desired

and/or surface flow and infiltration are strongly interconnected, which is, for example, the case in

irrigated furrows or ephemeral channels with flow under transmission losses. Alternating iterative

coupling means that the flow equations and the loss relationship are solved separately but for

the same discretization step. Surface flow and losses are interlinked via infiltration as an internal

boundary condition. Variables related to the momentum and volume balance are used to check for

convergence with respect to a specific tolerance criterion. Figure 5.2 shows a simplified sketch of

an alternating iterative coupling procedure for one observation location n. When convergence is

obtained, the calculation proceeds to the next observation point, i.e., the next cross section. It is

further assumed that the infiltration rate at one specific point in space and time is only dependent

on the infiltration opportunity time, as also applies for the herein incorporated Kostiakov-Lewis

infiltration model (cf. Section 6.1.1.1).2 Following the concepts outlined by Wöhling et al. (2004b)

1 Consistent with Section 5.1.8, Schmitz and Seus (1992) state: “This, however, must not be confused with the
discretization of differential equations used to gain a numerical solution by replacing infinitely small differentials by
finite differences. A procedure like this would include the well-known numerical effects of attenuation, as well as
phase and discretization errors. Avoiding those undesirable issues was, aside from saving computer time, one of the
main reasons for developing an analytical solution.”

2 It has to be emphasized that choosing the Kostiakov-Lewis model is not a concession made in order to cope with a
potentially inadequate coupling approach. In fact, alternating iterative coupling allows for including any arbitrary
infiltration relationship in the flow model, which is, furthermore, not constricted by the analytical solution strategy
presented in this thesis. In fact, the relatively simple Kostiakov-Lewis infiltration model was selected in order to
account for the specific transmission loss conditions present in ephemeral rivers, as already discussed in Section 1.3.
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Momentum and 
continuity equation 

A0,n

 

and tn

Volumetric infiltration rate and total infiltration

Kostiakov-Lewis 
infiltration model 

qΦ

Infiltration opportunity time

Spatial extent of the flow domain

Wetted cross-sectional perimeter

Regarding one specific observation point n

Surface flow model Infiltration model

Figure 5.2: Principles of alternating iterative coupling.

Algorithm 5.1 General algorithm for the alternating iterative coupling procedure of the analytical
ZI surface flow model and an infiltration model.

1: EPS = 10−4 . Define iteration precision criterion
2: for n = 1 : N do . Loop over space
3: k = 1 . Set iteration counter
4: A

(k−1)
0,n from Eq. (5.47) . Calculate A0,n according to initial conditions

5: t
(k−1)
n from Eq. (5.48) . Calculate tn according to initial conditions

6: repeat
7: τ from tn . Calculate infiltration opportunity time τ
8: P from Eqs. (5.42) and (5.6) . Calculate wetted perimeter P acc. to A0,n and P = A

R
9: qφ from Eqs. (6.1) and (6.2) . Calculate qφ according to P and τ

10: A
(k)
0,n from Eq. (5.47) . Calculate A0,n considering qφ

11: t
(k)
n from Eq. (5.48) . Calculate tn considering qφ

12: ICC from Eq. (5.49) . Calculate iteration convergence criterion
13: k = k + 1 . Update iteration counter
14: until ICC < EPS . Compare ICC with EPS
15: end for

and Wöhling (2005), the incorporated fixed-point iteration scheme comprises four consecutive steps

(Algorithm 5.1 delivers a pseudocode implementation):

Initialization: Within the first iteration (iteration count k = 1), the variables A
(k−1)
0,n and t

(k−1)
n are

evaluated according to the initial condition and values of the inflow hydrograph Q0

(
t
(k−1)
n

)
.

For the following iteration cycles, the values of the variables are updated by employing the

result of the respective preceding iteration cycle.

Infiltration calculation: The cross-sectional infiltration rate qφ is a term in both the momentum

equation (5.47) and the continuity equation (5.48), and is at the same time expressed by

the incorporated infiltration model. Hence, for the current iteration count k, the cross-

sectional infiltration rate qφ = f (τ(x, t)), given by the Kostiakov-Lewis model in form of

Eq. (6.2), is calculated dependent on the infiltration opportunity time τ(x, t) at a predefined

spatial location n, and taking into account the transiently wetted perimeter at each cross
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section, which can be calculated by using Eqs. (5.42), (5.6), and the hydraulic principle

P = A
R . During the advance of the infiltrating flow domain, the infiltration opportunity

time at the upstream boundary equals the total simulation time, thus τ(x0) = t. In the

downstream direction, the opportunity time decreases nonlinearly towards the moving wave

tip, where, finally, the opportunity time equals zero. The total infiltration volume, given by

the term
´ t(k−1)

n

0

´ xn
0

qφ(ξ, τ)dξdτ in Eq. (5.48)1, is calculated by integrating qφ over the wetted

channel reach, i.e., the interval [0, ..., xtip]. Furthermore, for being inserted into Eq. (5.47),

the infiltration volume at the upper boundary qφ0

(
t
(k−1)
n

)
is calculated by employing the

transiently wetted perimeter P0 at x = 0.

Evaluation of A
(k)
0,n and t

(k)
n : A

(k−1)
0,n and qφ0

(
t
(k−1)
n

)
are inserted into Eq. (5.47) and A

(k)
0,n is

calculated. Consecutively, A
(k−1)
0,n and the results of the integration

´ t(k−1)
n

0

´ xn
0

qφ(ξ, τ)dξdτ

are inserted into Eq. (5.48) in order to calculate t
(k)
n . As commonly indicated for the iterative

solution of nonlinear equations, a relaxation is included in order to prevent an overshooting of

the solution or an alternating of subsequent solutions for consecutive observation points n.2

Check for convergence: The first three steps of the procedure yield the values of A
(k)
0,n, A

(k−1)
0,n ,

t
(k)
n , and t

(k−1)
n . Steps two and three are executed until the iteration convergence criterion

(5.49) is not yet fulfilled. After convergence is reached, the scheme turns to the next observation

point, i.e., n+ 1.

After the convergence of the iteration procedure (5.47);(5.48) is achieved, the wetted cross-sectional

area A(x, tn) can be straightforwardly computed from Eq. (5.42). To compute the discharge Q(x, t),

Eq. (5.42) is inserted into Eq. (5.30). This step again includes some numerical integration as well as

again requires a functional relationship for quantifying the infiltration rate qφ(ξ, τ), i.e., established

by the Kostiakov-Lewis model with regard to this work.

5.1.8 Additional Remarks

The boundary conditions given by Eqs. (5.13) to (5.16) are located at the moving interface between

the flow domain and the dry channel. To preserve the concept of a moving lower boundary condition,

the virtual-wave concept of Schmitz and Seus (1992) is applied. This means that the modeling

domain is continuously extended in the downstream direction when the advancing wave tip reaches

the end of the considered channel reach. This concept is presented in more detail in Section 5.2.4,

which addresses the derivation of an analytical ZI model for overland flow processes.

Another remark has to be given concerning the label “analytical model” for the presented

methodology of solving the governing equations. On the one hand, the described calculus yields the

equations (5.37) and (5.46), which deliver an exact analytical description of the zero-inertia flow

problem, without holding any partial derivatives. On the other hand, the solution of the working

equations (5.47) and (5.48) requires some standard numerical techniques.

1 Which is equivalent to Eq. (6.3) for tn = t and xtip = x.

2 In this context, relaxation means to weigh a current approximate solution, e.g., A
(k)
0,n or t

(k)
n , to results from the

preceding observation point where the iteration scheme already converged, e.g., A0,n−1 and tn−1, in such a way that

A
(k)
0,n = rAA

(k)
0,n − (1− rA)A0,n−1

t
(k)
n = rtt

(k)
n − (1− rt)tn−1

where rA,t: relaxation parameter for A0,n or tn, respectively. For practical application, rA,t can be set to 0.8.
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It should be emphasized that those techniques are not applied to the governing PDEs (5.1);(5.2)

of the flow problem—as would be the case for a numerical solution of the ZI equations—and,

therefore, pose no approximation of the process description. Nevertheless, the derived solution

procedure (5.47);(5.48) incorporates an iteration strategy and further requires some numerical

integration regarding Eqs. (5.30), (5.42), (5.47), and (5.48). To be precise, the proposed solution

strategy could be labeled a “semi-analytical solution”. Herein, the terms “semi-analytical” and

“analytical” are used synonymously, without questioning the aforementioned issues.

Besides motivating a space discretization for the solution procedure of an analytical ZI model

very similar to the one presented in this thesis, Wöhling (2005) and Wöhling et al. (2006) further

showed that employing a highly nonlinear functional relationship for the quantification of infiltration

(e.g., Richards’ equation) may cause poor convergence behavior of a linearly converging fixed-point

iteration scheme (e.g., the afore-presented one). Therefore, the authors propose the application

of a second-order convergent scheme, e.g., the nonlinear Newton-Raphson scheme (Ypma, 1995),

which, however, requires the derivatives of the governing equations and leads to a more complex

mathematical model. Nevertheless, the space-discrete fixed-point procedure (5.47);(5.48) with the

Kostiakov-Lewis model for quantifying wadi channel infiltration performed well and exhibited a

good convergence behavior, leading to accurate model results, which is proven in Chapter 6.

5.2 A Novel Analytical Solution Approach for Zero-Inertia

Overland Flow under Time-Varying Rainfall Conditions

Subsequently, an analytical solution of the extended zero-inertia equations is derived for the purpose

of overland flow modeling. Overland flow is a special case of open channel flow in a very wide channel.

Consequently, the proposed analytical zero-inertia model is based on the sheet flow analogon of

surface flow. This means, flow occurs in a very wide rectangular cross section with a uniform water

depth perpendicular to the flow direction. This implies that the width of the cross section is much

greater than the water depth h, such that the hydraulic radius R equals h.

It is intended to set up the analytical ZI overland model for flow over initially dry portions of

a surface. Furthermore, the model should account for changes of the flow attributable to water

originating from rainfall and/or infiltration excess, as well as water supervening from upper parts

of the considered surface element. Model development and the proposed solution strategy can be

carried out analogously to the nonprismatic open-channel case (cf. Section 5.1). Therefore, the

subsequent calculus is not presented in depth, but in a brief and concise manner.

5.2.1 Governing Equations

The ZI equations are derived by neglecting the advective and local inertia terms 1
g
∂u
∂t and u

g
∂u
∂x of

the full hydrodynamic momentum equation (3.2). Additionally, for surface runoff influenced by

rainfall—considering the momentum contribution of the falling rain as insignificant to the flow—the
qu
gA term of the momentum equation (3.8) can be neglected. Applying a uniform friction law to

express the friction slope Sf leads to the ZI equations for overland flow for a unit width, where the

wetted area A equals h:
∂h

∂t
+
∂Q

∂x
= −q (5.50)
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∂h

∂x
= S0 −

u2

K2h2β
(5.51)

where t: time [T]; x: longitudinal space coordinate [L]; h(x, t): water depth [L]; Q(x, t): discharge

per unit width [L2T−1]; q(x, t): rate of positive/negative mass contribution attributable to rainfall

or infiltration per unit surface area [LT−1]; S0: bottom slope [−]; u(x, t): flow velocity [LT−1];

K: roughness coefficient [L1−βT−1]; β: exponent of the flow formula [−] (e.g., Chézy: β = 1
2 ;

Manning-Strickler: β = 2
3 ). For further model development, β is set to 1

2 , i.e., the Chézy law (Chézy,

1776) is used for the quantification of friction losses, in which the Chézy roughness coefficient is

labeled KC.

The q term in the continuity equation (5.50) is signed negative if there is a volumetric loss of

water (i.e., attributable to infiltration) or, vice versa, signed positive for a volumetric gain of water,

e.g., from rainfall. Practically, the value of q can be calculated by relating the volumetric rate of

rainfall qrain [LT−1] and the infiltration rate qinf [LT−1]:

q = (qrain − qinf)





< 0 for qinf > qrain

= 0 for qinf = qrain

> 0 for qinf < qrain

(5.52)

where any arbitrary functional relationship can be used for the quantification of infiltration within

the proposed analytical model.

Analogously to the calculus applied in Section 5.1, the first step for solving the system

Eqs. (5.50);(5.51) is to multiply Eq. (5.51) by h, yielding

h
∂h

∂x
= S0h−

u2

K2
C

(5.53)

Again, the inflow boundary is considered as a momentum-representative cross section and Eq. (5.53)

can be expressed as

h
∂h

∂x
= S0h0 −

u2
0

K2
C

(5.54)

with h0 = h0(t) = h(x = 0, t) and u0 = u0(t) = u(x = 0, t). Schmitz and Seus (1987), Schmitz and

Seus (1990) and Schmitz and Seus (1992) showed that another possible location of the momentum-

representative cross section is the position of the center of gravity of the moving water body. This

approach leads to a physically and mathematically equivalent solution. Herein, the momentum-

representative cross section is placed at x = 0 because the subsequent calculus is more brief and this

location introduces a well-defined coupling location when single-slope models should be cascaded.

5.2.2 Boundary and Initial Conditions

The solution of the system of partial differential Eqs. (5.50);(5.54) requires the specification of

boundary and initial conditions. At the fixed upstream boundary (x = 0), the boundary condition

is

Q(0, t) = Q0(t) (5.55)

with the restriction that strongly falling discharge hydrographs cannot be used as an upstream

boundary condition because of the ZI assumptions (Schmitz et al., 2002). As a consequence,
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the proposed analytical overland flow model covers the rising limb and the plateau part of the

hydrograph (i.e., flow advance). At the moving downstream boundary (x = xtip(t)) the following

conditions have to be satisfied:

h(xtip, t) = 0 (5.56)

u(xtip, t) = utip(t) =
dxtip

dt
(5.57)

where xtip(t) and utip(t) denote the location and velocity of the wave front, respectively. The initial

condition of the flow problem over an initially dry surface is

xtip(t = 0) = 0 (5.58)

5.2.3 Analytical Solution

Schmitz and Seus (1992) have derived the solution of the momentum equation (5.54) for a variety

of regular cross-sectional geometries. In the present wide-channel (rectangular) case, their solution

reads

h(x, t) =

√
2

(
u2

0

K2
C

− S0h0

)
· (xtip(t)− x) (5.59)

Next, the continuity equation (5.50) is solved for Q. Considering the upstream boundary

condition given by Eq. (5.55), a direct integration of the continuity equation yields an expression

for a unit width and a rectangular channel (A = h), similar to Eq. (5.30):

Q(x, t) = Q0(t)−
ˆ x

0

(
∂h

∂t
(ξ, t) + q(ξ, t)

)
dξ (5.60)

where the integrand can be obtained by differentiating Eq. (5.59) with respect to t, and ξ indicates

the integration variable in spatial dimension. Eqs. (5.59) and (5.60) solve the system (5.50);(5.54)

and satisfy the boundary conditions, given by Eqs. (5.55), (5.56), and (5.57).

5.2.4 Algorithm for the Iterative Solution of the Nonlinear Problem

Analogously to the open-channel case (cf. Section 5.1), the solution procedure for Eqs. (5.59) and

(5.60) first requires evaluating the position of the advancing wave front xtip(t) and the water depth

h0(t) = h(x = 0, t) at the inflow boundary—which is not zero in case water emerges from upper

catchment parts and not only laterally from rainfall—by solving a system of two nonlinear equations

iteratively. For this purpose, N observation locations (0 < x1 < x2 < ... < xN ) are defined and the

arrival time of the wave tip for each observation point tn, i.e., xtip(tn) = xn for (n = 1, 2, ..., N),

and the corresponding water depth h0,n = h0(tn) at x = 0 is calculated.

The first aforementioned nonlinear equation is obtained by setting x = 0 in Eq. (5.59):

h0,n =

√√√√2xn

(
(Q0(tn))

2

K2
Ch

2
0,n

− S0h0,n

)
(5.61)
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Following the calculus in Sections 5.1.5 and 5.1.6, the second nonlinear equation is derived from the

volume balance equation (5.60):

ˆ tn

0

Q0(τ)dτ =
2

3
h0,nxn +

ˆ tn

0

ˆ xn

0

q(ξ, τ)dξdτ (5.62)

where ξ indicates the integration variable in space and τ the is infiltration opportunity time at a

location x, or the integration variable in time, respectively.

Rearranging Eqs. (5.61) and (5.62) leads to the space-discrete iteration procedure

h
(k)
0,n =




2xn

(
Q0(t(k−1)

n )
KC

)2

1 + 2xnS0

h
(k−1)
0,n




1
4

(5.63)

t(k)
n = t(k−1)

n +

2
3h

(k)
0,nxn +

ˆ t(k−1)
n

0

ˆ xn

0

q(ξ, τ)dξdτ −
ˆ t(k−1)

n

0

Q0(τ)dτ

Q0

(
t
(k−1)
n

) (5.64)

where k = 1, 2, 3, ... denotes the iteration index. A Taylor series expansion of the left-hand side of

Eq. (5.62) around t
(k−1)
n has been included to take into account the impact of lateral inflow/outflow

from rainfall and/or infiltration, respectively. Starting values are provided by the results obtained

from the preceding space step, i.e., h
(0)
0,n = h0,n−1 and t

(0)
n = tn−1, and the fixed-point scheme

(5.63);(5.64) can be treated according to Section 5.1.7, employing alternating iterative coupling to

take account for gains/losses of water.

After the iteration (5.63);(5.64) has converged, the water depth h(x, tn) can be straightforwardly

computed from

h(x, tn) = h0,n

√
1− x

xn
(5.65)

by making use of Eq. (5.59). Eq. (5.65) is inserted into Eq. (5.60) to compute the discharge per

unit width, Q(x, t). If there is—in addition to or instead of an a priori known lateral inflow—

significant infiltration, this step requires either some standard formula, e.g., Kostiakov-Lewis, or

some problem-specific functional relationship to quantify the infiltration rate q(ξ, τ).

For the iterative solution procedure for the open-channel ZI model (cf. Section 5.1.6), terms of

the involved volume balance equation (5.30) and of Eq. (5.42) had to be integrated numerically.

For the overland case, the volume of moving water atop an overland plane, expressed by the first

integrand in the volume balance equation (5.60), can be calculated by analytical means. Moreover,

Eq. (5.65) contains no integrals at all. Some details on the evaluation of the first integrand of

Eq. (5.60) are given in Appendix A.6.

Since the formulation of the proposed analytical model assumes a free and moving lower boundary,

the concept of the so-called “virtual wave” is used as proposed by Schmitz (1989), Schmitz and Seus

(1990), and Schmitz and Seus (1992). This concept virtually extends the computational domain in

case the moving wave tip reaches the lower boundary of the model domain, which is immediately

the case assuming a homogeneous lateral rainfall input onto the test plane. Thus, the water body

atop the test plane is filled up by the lateral rainfall input, forming a traveling virtual wave tip

beyond the real extensions of the test plane. This traveling virtual wave tip represents the transient

location of the lower boundary conditions (5.56) and (5.57). This way, the virtual wave provides
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Figure 5.3: Schematic sketch of a synthetic overland flow plane under lateral inflow (rainfall) and
an illustration of the virtual wave concept.

flow rate, water depth, and flow velocity along the test plane. Fig. 5.3 gives an illustration of the

virtual wave concept.

5.3 Summary

The presented analytical solution approaches deliver analytical and straightforwardly applicable

routing models for open channel flow in permeable nonprismatic channels and for overland flow.

Due to their mathematical structure and the incorporated iterative solution procedure, the obtained

models are not constricted by numerical imponderables, which are often associated with the

numerical solution of the governing flow equations under the problem-specific conditions regarded

herein, e.g., initially dry channel beds and significant infiltration losses (cf. Section 4.4), or overland

flow on rough and steep surfaces (cf. Section 2.2).

Therefore, the developed analytical nonprismatic channel flow model seems to be ideal for simu-

lating advancing surge flow phenomena downstream of groundwater recharge dams, notwithstanding

the discontinuity when attaining the state of a “standing” wave and—looking at the straightforward

applicability—evaluating reservoir release strategies and culvert design for specific groundwater

recharge problems. The derived analytical overland flow model can represent a valuable element in

a boundary condition coupled, cell-wise surface-runoff modeling environment since it is (a) accurate;

(b) fast in terms of low computational demand; and (c) robust for a wide range of process dynamics.

Besides the expectable accuracy of both models’ results, the proposed space-discrete iterative

solution procedure promises a computationally efficient model application. Model accuracy as well

as computational efficiency is proven in the subsequent chapter with a comparative analysis of

the analytical models with generally accepted numerical solutions. In summary, the two derived

analytical flow models are:
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. robust and accurate;

. computationally efficient; and

. can be coupled with any arbitrary functional relationship for the quantification of losses or

gains within the presented iterative solution scheme.

The iterative solution procedures (5.47);(5.48) and (5.63);(5.64), respectively, are based on evaluating

the advance time of the moving lower boundary of the flow domain, traveling in the downstream

direction. The derived models, therefore, do not cover a zero-advance condition because an advance

velocity converging to zero leads to a nonconvergence of the employed iteration schemes. However,

as subsequently shown in Section 6.1.4, the approach is able to cover quasi-standing wave effects

connected to very low advance velocities, which is, for example, a prerequisite for estimating

culvert release strategies in order to optimally utilize a specific downstream reach length with good

infiltration characteristics for groundwater recharge. If a portrayal of flow recession (cf. Section 3.1)

is desired, other modeling approaches are needed. One aim of this thesis is to develop an event-based

integrated modeling system for wadi flow under dam control. Hence, for the proposed full modeling

system, flow recession is taken into account with a state-of-the art numerical KW hydrodynamic

model, which is coupled to the analytical ZI model as outlined in Section 7.1.1.2.
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Chapter 6

Comparative Studies with the

Novel Analytical Zero-Inertia

Models and Generally Accepted

Approaches

The preceding Chapter 5 delivered two analytical solution procedures for the zero-inertia model for

open channel flow and for overland flow. In this chapter, results of both models are compared to

results obtained by generally accepted numerical approaches in order to evaluate the performance

of the analytical models. Model intercomparison is carried out with respect to mass balance

conservation and the portrayal of process dynamics.

First, the analytical open channel flow model is applied for simulating the advance of an

infiltrating wave in prismatic and nonprismatic channels. For comparison, simulations are carried

out with an implicit finite difference solution of the full hydrodynamic model. Additionally, a first

parameter sensitivity study is performed, which is supplemented by a more comprehensive analysis

of parameter sensitivity in Section 7.2.2. Furthermore, the analytical model’s suitability for the

simulation of virtually standing wave processes is evaluated.

Consecutively, the derived analytical overland flow model is applied to simulate sheet flow from

excess rainfall on an inclined synthetic plane of variable roughness. Numerical results obtained by

the full hydrodynamic model and its zero-inertia and kinematic wave simplifications are used for

intercomparison. Again, mass conservation and a preferably accurate match of process dynamics

are the criteria for model performance assessment.

6.1 Open Channel Flow in Prismatic and Nonprismatic Per-

meable Open Channels

In this section, results of the analytical zero-inertia open channel flow model (cf. Section 5.1) and

the ones obtained from a full hydrodynamic model are compared. The investigation focuses on

permeable prismatic and nonprismatic synthetic test channels, thus, providing a first step towards
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the application of the suggested analytical model for surge flow phenomena over permeable wadi

beds. HEC-RAS (Brunner, 2008) is used as a reference for the full hydrodynamic process description.

The numerical model employs the Preissmann scheme1 (Preissmann, 1961; Cunge et al., 1980;

Chau, 1990) for the solution of the governing equations. Modeling results are compared regarding

predicted arrival times of the flow at specific channel locations. Additionally, the sensitivity of

the cross-sectional parametrization (i.e., p1, ..., p4, S0, KSt) used with the analytical ZI model is

evaluated. Finally, the computational stability of the analytical ZI model is tested.

6.1.1 Test Setup

First, test examples incorporating prismatic and nonprismatic channel geometries are evaluated

using the ZI model. In a second step, the flow is computed for the same input data using the

full hydrodynamic numerical model. Therefore, the infiltration hydrograph is taken from the ZI

calculations and considered as negative lateral inflow for the HEC-RAS model. Wadi transmission

losses are quantified with the Kostiakov-Lewis infiltration model. Details of the test setup are

subsequently presented.

6.1.1.1 Kostiakov-Lewis Infiltration Model

Generally, any arbitrary relationship can be used for the quantification of transmission losses within

the proposed model setup. Specific for infiltration on alluvial material in semiarid and arid areas,

only a portion of infiltration is a consequence of matrix flow; rather, macropore flow also impacts

alluvial infiltration (Beven and Germann, 1982; Wood et al., 1997). Since the data situation omits

the application of typical deterministic macropore and/or matrix flow models, an empirical model

approach is assumed to be appropriate for transmission loss modeling in case infiltrometry data

are available. The empirical Kostiakov-Lewis model (Kostiakov, 1932; Lewis, 1937) is, therefore,

used for the quantification of infiltration losses.2 This way, qφ in Eqs. (3.7) and (3.8), as well as

Eqs. (3.7) and (5.2), respectively, can be calculated by

q(x, t) = kakkτ
(ka−1) + kc (6.1)

where q(x, t): actual infiltration rate3 at a defined channel location x per unit surface area [LT−1];

τ : infiltration opportunity time at x [T]; ka: empirical Kostiakov-Lewis coefficient [−]; kk: empirical

Kostiakov-Lewis coefficient [LT−ka ]; and kc: steady or final infiltration rate [LT−1].

Assuming infiltration is occurring at the wetted perimeter P (x, t), the volumetric infiltration

rate per unit length qφ(x, t) is given by

qφ(x, t) = q(x, t)P (x, t) (6.2)

1 Which is an implicit four-point finite difference scheme. Thus, the scheme theoretically allows information from the
entire reach to influence the solution at a specific point in the solution domain. Details on the Preissmann scheme
can be found in Appendix A.3.

2 Strictly speaking, using the nomenclature of, e.g., Haverkamp et al. (1988), Furman et al. (2006), and Zolfaghari et al.
(2012), the incorporated model is a modified Kostiakov-Lewis model. To keep brevity, the term “Kostiakov-Lewis
model” is herein exclusively used for the modified Kostiakov-Lewis model.

3 Kostiakov-Lewis models (cf. Section 1.3) are mostly given in a form which yields the cumulative infiltration over time.
For this thesis, a temporal derivative of such a form is employed in order to yield infiltration rates. Furthermore, the
herein employed Kostiakov-Lewis parameters are given per unit surface area as, e.g., applied by Furman et al. (2006).
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and the quantity of total infiltrated water along the distance [xn=1, ..., xn=i] can then be calculated

by

I(t) =

ˆ t

0

ˆ xn=i

xn=1

qφdxdt (6.3)

where I(t) is the total cumulative infiltration [L3] (cf. the second term on the right-hand side of

Eq. (5.31)).

As discussed in Section 1.3, wadi infiltration is strongly—but not solely—driven by gravitational

force. Nevertheless, some authors, e.g., Haimerl (2004) have experimentally proven that wadi

infiltration occurs not only vertically, but also with a lateral component. Besides the fact that

for the comparably wide wadi channels regarded in this study the wetted perimeter and the flow

width do not differ much, one has to decide if cross-sectional infiltration qφ should be assumed to

occur orthogonal to the wetted perimeter—as usually practiced in furrow irrigation modeling—or

only along a vertical projection of the flow width. Supported by the results of Haimerl (2004), this

study assumes the former, which is reflected in Eq. (6.2). A more realistic image of infiltration could

allegedly be drawn by employing the two-dimensional Richards’ equation which delivers the flux

and the fluxlines (i.e., the direction of the infiltrating flow) at every point of the wetted perimeter

(Wöhling, 2005). Nevertheless, the application of matrix-flow models may be precluded under the

specific conditions of wadi infiltration.

For the subsequent comparative calculations, the Kostiakov-Lewis model parameters were

adopted from Haimerl and Zunic (2002) who carried out basin infiltrometry tests for Wadi Ahin

(Fig. 6.1) where a noticeable decline of infiltration rates over time was observed. A nonlinear

regression model was used for parameter fitting. Parameters were estimated to ka = 0.864,

kk = 7.7433 ·10−5 m · s−ka , and kc = 1.8033 ·10−5 m · s−1, where the coefficient of determination was

0.9997, which shows a nearly perfect portrayal of observed infiltrometry data by the Kostiakov-Lewis

model.

6.1.1.2 Channel Geometry, Model Parameters, Boundary and Initial Conditions

Prismatic Test Channel: The investigated prismatic test channel with a length of 2,000 m

features uniform parabolic cross sections. Thus, cross-sectional parameters p1(x) and p3(x) do

not vary along the channel. The incorporated values of p1(x) and p2(x) are averaged for available

geometry data of Wadi Ahin.1 According to Schmitz et al. (2002), the parameters p2 and p4 are set

to 2
3 for a parabolic cross-sectional geometry. The spatial discretization of both the analytical ZI

and the numerical HD model is set to ∆x = 100 m. The temporal discretization for the HD model

is ∆t = 5 s and is adaptive for the ZI model due to its specific solution strategy (cf. Section 5.1.6).

As discussed in Section 4.4, numerical flow modeling for initially dry channels can lead to

numerical inconveniences (ranging from considerable mass balance errors to convergence problems)

due to the steep gradients of the dependent process variables at the moving wave front (Schmitz,

1989; Garcia-Navarro et al., 1999). For this reason, the numerical HEC-RAS model is charged

with an initial flow of 0.15 m3 · s−1. The ZI model is operated with a dry-channel initial condition.

Table 6.1 shows the employed geometric data for the prismatic test channel, and Table 6.2 contains

the upper boundary condition.

1 See the subsequent paragraph for the applied methodology for the estimation of p1, ..., p4.
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Figure 6.1: Overview map of Wadi Ahin and Wadi Ahin Dam site (according to Haimerl and
Zunic, 2002 and Haimerl, 2004).

Table 6.1: Geometric data for the prismatic (parabolic) test channel.

Parameter Value

Strickler roughness coefficient KSt (m
1
3 · s−1) 33.33

Channel slope S0 0.002

Cross-sectional parameter p1(x) (m1−2p2 ) 0.2823

Cross-sectional parameter p2
2
3

Cross-sectional parameter p3(x) (m1−2p4 ) 0.1870

Cross-sectional parameter p4
2
3

Channel length (m) 2,000

Profile type parabolic

Spatial discretization ∆x (m) 100

Table 6.2: Upper boundary condition for the prismatic (parabolic) test case.

Time t

(s)

Inflow Q0

(m3 · s−1)

0 0.0

300 0.5

600 1.0

900 1.5

1,800 2.5

2,700 4.5

3,600 4.5
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Table 6.3: Geometric data for the nonprismatic test channel.

Parameter Value

Strickler roughness coefficient KSt (m
1
3 · s−1) 33.33

Channel slope S0 0.002

Cross-sectional parameter p1(x) (m1−2p2 ) variable

Cross-sectional parameter p2 0.5795

Cross-sectional parameter p3(x) (m1−2p4 ) variable

Cross-sectional parameter p4 0.5468

Channel length (m) 2,000

Profile type nonprismatic

Spatial discretization ∆x (m) 200

Nonprismatic Test Channel: A synthetic nonprismatic test channel with a length of 2,000 m

is constructed using selected cross sections of Wadi Ahin (Haller, 2000; Haimerl and Zunic, 2002;

Haimerl, 2004) which are placed every 200 m along the channel (Fig. 6.2). According to Section 5.1.2,

the nonprismatic cross-sectional channel geometry can be portrayed by the geometry parameters

p1(x), p2, p3(x), p4. For instance, these parameters can be simultaneously estimated by minimizing

the residual mean squares, defined by

RMS(h̃) =

ˆ Ã(x)

0

(
h̃(x,A)− p1(x)Ap2

)2

dA (6.4)

and

RMS(R̃) =

ˆ Ã(x)

0

(
R̃(x,A)− p3(x)Ap4

)2

dA (6.5)

for each cross section. This can be achieved by applying an appropriate optimization strategy. For

this work, a MATLAB implementation based on the Nelder-Mead simplex method1 (Nelder and

Mead, 1965) is used. Typically for natural wadi cross sections, the residuals for h̃ and R̃ are small

(i.e., less than one decimeter), which underlines that the natural channel topography can be closely

approximated by adjusting the geometry parameters p1, ..., p4 in Eqs. (6.4) and (6.5). This coincides

with the findings of Schmitz et al. (2002), who applied a similar methodology to fit the geometry

parameters to a natural irregular channel in Bavaria.

In Eqs. (6.4) and (6.5), the functions h̃(x,A) and R̃(x,A) denote the dependencies of both

water depth and the hydraulic radius on the wetted cross-sectional area. The upper limit of the

integration, Ã(x), is selected for each cross section according to an appropriate reference water

depth hr. A pronounced variation of the geometry parameters p1(x) and p3(x) reflects pronounced

morphological changes along the considered reaches of the channel. The maxima of p1(x) are

commonly associated with narrow cross sections (cf. Figs. 6.2 and 6.3 at x = 0 m, 800 m, and

1,400 m), while the minima indicate more gentle lateral slopes of the cross sections (e.g., at 2,000 m).

Applying Eqs. (6.4) and (6.5) for the incorporated cross-sectional data delivers the values of the

constant geometry parameters p2 and p4 to p2 = 0.5795 and p4 = 0.5468. Table 6.3 summarizes

the processed geometric data of the nonprismatic test channel. The temporal discretization for

the HD model is again set to ∆t = 5 s and is adaptive for the ZI model. An initial flow rate of

0.15 m3 · s−1 is applied for the numerical model. The spatial discretization of the HD and the ZI

1 In MATLAB, this implementation is represented by the function fminsearch.
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Figure 6.2: Cross-sectional profiles of the nonprismatic test channel.
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Table 6.4: Upper boundary condition for the nonprismatic test case.

Time t

(s)

Inflow Q0

(m3 · s−1)

0 0.0

180 0.5

360 0.75

540 1.5

1,980 1.5

model is set to ∆x = 200 m. Table 6.4 shows the upper boundary condition applied to the two

investigated models.

6.1.2 Comparison of Flow Dynamics

Model results for the prismatic test case are shown in Fig. 6.4. Modeled arrival times of the full

hydrodynamic and the analytical zero-inertia model show a nearly perfect agreement. Compared to

the HD results, ZI arrival times are underestimated by an average of 0.08 %. The continuously rising

graph of the advance trajectory shows slight deviations from a straight line. This originates from

two effects. Infiltration decelerates the advance of the wave tip, and—in contrast—the increasing

inflow accelerates the advance. This recurs a couple of times during the simulation, namely, when

the inflow rises according to Table 6.2. The results suggest that the analytical ZI model is well

suited for predicting surge flow phenomena under significant infiltration in permeable prismatic

channels.

Figure 6.5 depicts modeling results for the nonprismatic case. The results again reveal a slight

underestimation of the wave tip arrival time by the ZI model, except for location x = 400 m with

an overestimation of about 18 s. In addition to the prismatic case, wave arrival times are influenced

not solely by inflow and infiltration; the changing channel geometry impacts the wave advance as

well. Therefore, the convergence of the model results also evidently validates the representation of

nonprismatic cross-sectional geometries by the proposed profile functions.

6.1.3 Analysis of the Geometry Parameter Sensitivity for the Nonpris-

matic Test Channel

A first sensitivity analysis is performed for the nonprismatic test channel in order to investigate the

sensitivity of the geometry parameters p1(x), p2, p3(x), p4, channel slope, and channel roughness

with respect to relative wave arrival times. A further and more comprehensive sensitivity analysis

addressing the model’s infiltration parameters can be found in Section 7.2.2 which outlines the

implementation of the analytical ZI model within an integrated modeling framework for ephemeral

channel routing under dam control. The initial model parametrization and the boundary conditions

are adopted from the preceding nonprismatic model test. Each basal parameter (Table 6.5) is

altered ±30 %, where one parameter is changed at one time and the remaining other process and

input parameters are kept constant. Consecutively, the arrival times of the various model runs are

compared.

The results of the sensitivity analysis are depicted in Fig. 6.6. Figure 6.6a–f shows the sensitivity

of wave front propagation along the nonprismatic channel for the different altered parameters.

77



6 Comparative Studies with Generally Accepted Approaches

0 500 1,000 1,500 2,000
0

500

1000

1500

2000

2500

3000

Station x (m)

A
rr

iv
a

l 
ti
m

e
 (

s
)

 

 

HEC-RAS

aZI model

Figure 6.4: Wave front propagation in a prismatic (parabolic) test channel for the analytical ZI
model and a full hydrodynamic model (HEC-RAS).
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Figure 6.5: Wave front propagation in a nonprismatic test channel for the analytical ZI model
and a full hydrodynamic model (HEC-RAS).
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Table 6.5: Reference input data used for the sensitivity analysis.

Location x

(m)

p1(x)

(m1−2p2 )

p2 p3(x)

(m1−2p4 )

p4 S0 KSt

(m
1
3 · s−1)

0 0.7040 0.3215

200 0.6240 0.3009

400 0.5833 0.2902

600 0.6147 ...
0.3059 ...

...
...800 0.6775 0.3133

1,000 0.5543 0.5795 0.3335 0.5468 0.002 33.33

1,200 0.5342 ...
0.2959 ...

...
...1,400 0.6033 0.3028

1,600 0.5808 0.3193

1,800 0.5379 0.3004

2,000 0.5379 0.3004

Figure 6.6g shows the effects of positive and negative parameter variations on modeling results for

the lowermost cross section at station +2,000 m. The relative deviations of the resulting arrival

times tvar
arr from the reference tref

arr are calculated by

100
(
tvar
arr − tref

arr

)

tref
arr

(6.6)

Channel roughness, the geometry parameter p3(x), and channel slope exhibit the strongest

influence on arrival times, followed by the geometry parameters p4, p2, and p1(x). An increase

of the values of the Manning-Strickler channel roughness coefficient (i.e., decreased roughness),

channel slope, and the geometry parameters p1(x) and p3(x) leads to a faster wave advance, i.e.,

decreased arrival times. In contrast, an increase of p2 and p4 causes a slower wave propagation.

According to the definition of the model’s geometric parameters, higher values of p1(x) and p3(x)

are related to more narrow cross sections, i.e., flow velocities increase and wave propagation is

accelerated. In contrast, as already stated by Schmitz et al. (2002), increasing values of p2 and

p4 leads to a reduced water depth and a reduced hydraulic radius, which would be the case for a

wider cross section or, consequently, a higher channel friction. These findings indicate the need for

a detailed determination of channel roughness and the hydraulic radius.

6.1.4 Evaluating the Stability of the Analytical Zero-Inertia Model for

Weak Process Dynamics

The most important manageable factor of groundwater recharge dam operation is the rate of culvert

release, considering a certain volume of water stored in the reservoir and a given channel length

with suitable infiltration characteristics. The proposed analytical ZI model can serve as a robust

and accurate tool for the adjustment of culvert release rates to enhance downstream infiltration,

i.e., for a desired wadi reach. For Wadi Ahin (1,054 km2), a groundwater recharge dam is located

about 10 km inland from the sea (cf. Fig. 6.1). A 6.2 km wadi reach downstream of the dam offers

good infiltration characteristics (Haimerl, 2004).

Regarding the design of a recharge dam’s culverts, an important question would be: which

(quasiconstant) dam release rate would lead to a practically standing wave—which means an

infiltration quota of nearly 100 %—within a considered channel reach? For a simulation with the
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Figure 6.6: Results of the Parameter sensitivity analysis for the analytical zero-inertia model for
a nonprismatic channel. (a–f) Absolute deviations of wave front arrival time due to alterations of
geometry parameters, channel slope, and the roughness coefficient; (g) relative deviations of wave
arrival times at the lowermost cross section (station +2,000 m) for parameter alterations of ±30 %.

analytical ZI model, original topographic channel data of lower Wadi Ahin (Haller, 2000; Haimerl

and Zunic, 2002; Haimerl, 2004) are used. The longitudinal slope is 0.006 and channel roughness

is estimated to KSt = 30 m
1
3 · s−1, using tabulated values (Chow, 1959) and a verbal description

of channel bed composition (Haller, 2000). The spatial domain is discretized with a resolution of

∆x = 100 m. The model is charged with a steady upstream inflow rate (representing dam culvert

release), which is incrementally lowered from 2.5 to almost 0.2 m3 · s−1.

Figure 6.7 shows the respective ZI model results. For constant inflow rates around 0.23 m3 · s−1,

the flow barely reaches the lowermost station +6,200 m, which is reflected in an arrival time

converging to infinity (Fig. 6.7b). Although virtually all inflow volume infiltrated (infiltration quota

of 99.23 % for an inflow of 0.23 m3 · s−1), the analytical model yields a stable solution with a mass

balance error of less than 0.1 %. A stronger decrease of the steady inflow rate would lead to a shift

of the standing wave tip towards a more upstream channel location.

6.1.5 Summary

The presented analytical surge flow model, based on the zero-inertia assumptions, offers a new tool

for the simulation of flood wave propagation with infiltration losses through permeable beds. The

analytical model showed its capability for the simulation of a surge traveling down an irregularly
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Figure 6.7: Results of the analytical zero-inertia model for high infiltration quotas, causing
standing wave effects in Wadi Ahin, downstream of Ahin Dam. (a) Infiltration quota for the whole
channel reach as a function of inflow, and (b) arrival time at station +6,200 m as a function of
inflow.

shaped natural permeable stream bed, even under problem-specific restrictions, like an initially

dry channel bed and/or significant transmission losses. Hence, the presented model seems to be

ideal for simulating advancing surge flow phenomena downstream of groundwater recharge dams,

notwithstanding the discontinuity when attaining the state of a “standing” wave and—looking at the

straightforward applicability—evaluating reservoir release strategies and culvert design for specific

groundwater recharge problems.

Test runs for prismatic and nonprismatic permeable channels showed excellent agreement with

the full dynamic solution. Model applicability, therefore, seems not to be severely constricted by

the underlying assumptions. Although the assumption of a spatially constant slope and an averaged

roughness coefficient is obviously relying on the specific channel morphology, this apparently does

not represent a serious restriction for model application for surge flows over alluvial wadi beds.

The proposed approach circumvents any numerical imponderables which are potentially associated

with free boundary value problems, and offers the possibility of incorporating nonprismatic channel

geometries. Moreover, any arbitrary relationship for the quantification of infiltration losses through

the channel bed can be coupled with the surface flow model, as already shown in Section 5.1.7.

6.2 Overland Flow on a Plane

In this section, results of the developed analytical zero-inertia overland flow model (aZI model;

cf. Section 5.2) are compared with results obtained by numerical solutions of the Saint-Venant

equations (nHD model), the zero-inertia (nZI) model, and the kinematic wave approximation (nKW

model). This is done by modeling surface runoff produced by excess rainfall on a synthetic test

plane with a specific roughness, as typically examined by numerous authors (e.g., Schmid, 1986;
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Di Giammarco et al., 1995; Tsai and Yang, 2005). The results are compared with respect to mass

balance errors, hydrograph shape, and computational efficiency of the considered approaches.

6.2.1 Test Setup

The test setup for the model intercomparison study is presented in this section. This comprises

the characteristics of the employed synthetic overland flow plane, the specific parametrization of

the incorporated numerical models and the analytical model, as well as the boundary and initial

conditions.

6.2.1.1 Characteristics of the Synthetic Test Plane

For model intercomparison and the assessment of the proposed analytical zero-inertia overland flow

model, the flow over a synthetic impervious test plane as proposed by Schmid (1986) (cf. Fig. 5.3)

is simulated. This specific test plane is selected because modeling results of a kinematic wave

model implementation for the mentioned test plane (Schmid, 1986) are available, which allows

the opportunity to check first for the validness of flow models incorporated in the analysis. The

considered synthetic test plane features the following parameters: rectangular domain, length of 80 m;

width of 20 m; surface slope of 15 degrees. In order to keep consistency with Section 5.2.1, the Chézy

law is applied for quantifying friction slope Sf, i.e., β is set to 1
2 in Eq. (3.6). The comparative model

simulations are carried out for Chézy roughness coefficients of KC = 2.0, 5.0, 10.0, 20.0 m
1
2 · s−1.

6.2.1.2 Specifics of the Model Setups

Numerical Full Hydrodynamic Model (nHD Model): The employed full hydrodynamic

model is based on the Saint-Venant equations with a source term in the continuity equation,

i.e., Eqs. (5.50) and (3.2). The equations are solved using a Preissmann finite difference scheme

(Preissmann, 1961; Chau, 1990), which employs a fixed-point iteration scheme for the simultaneous

solution of the resulting system of algebraic equations. The nHD model’s spatial discretization

is set to ∆x = 0.5 m and a time step of ∆t = 2 s is applied. The spatiotemporal resolution is

selected on the basis of a prerequisite sensitivity analysis, which revealed—depending foremost on

the magnitude of the inflow rate—that greater values of ∆x and ∆t provoke a declined convergence

behavior of the incorporated iteration scheme or, finally, lead to numerical instabilities which avoids

a convergent solution.1

Numerical Zero-Inertia Model (nZI Model): Equations (5.50) and (3.3) form the incorpo-

rated zero-inertia model. The employed numerical solution scheme for the ZI model is also based

on the Preissmann scheme as proposed by numerous authors for the one-dimensional case (e.g.,

Bronstert and Bárdossy, 2003). As applies for the herein discussed numerical solutions of the

full hydrodynamic model and the kinematic wave model, it is crucial to discretize the solution

domain with an appropriate resolution in time and space to circumvent numerical errors. For

consistency, the spatial and temporal discretization for the test scenario calculations is, therefore,

set to ∆x = 0.5 m and ∆t = 2 s.

1 As outlined in Appendix A.3, the Preissmann scheme establishes an implicit solution scheme for the governing
equations. The spatiotemporal discretization is, therefore, not constricted by the CFL condition (Eq. (4.1)). However,
this does not imply that, for practical application, an inappropriate discretization may not lead to noticeable
numerical errors (cf. Section 4.2.2).
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Numerical Kinematic Wave Model (nKW Model): A one-dimensional kinematic wave

model of surface flow (e.g., as proposed by Schmid, 1986) is implemented. The model incorporates

the kinematic wave equations with a source term in the continuity equation, i.e., Eqs. (5.50) and

(3.4). The governing equations are also solved with the aforementioned Preissmann finite difference

scheme. The time step of the nKW model is set to ∆t = 2 s and the spatial discretization is set to

∆x = 0.5 m to prevent numerical instabilities and convergence problems and to keep consistency

with the other incorporated numerical model setups.

Analytical Zero-Inertia Model (aZI Model): The analytical ZI model, given by Eqs. (5.50)

and (5.51), is implemented according to Section 5.2. A fixed-point iteration scheme is applied for the

iterative solution of the governing nonlinear equations (5.63);(5.64). According to Wöhling (2005),

using a linearly converging fixed-point scheme for the iterative solution of Eqs. (5.63);(5.64) may not

lead to satisfactory convergence rates at any time.1 An algorithm of higher-order accuracy can help

to improve the convergence behavior of the iterative solution procedure. Wöhling (2005) suggests

the Newton-Raphson method (Ypma, 1995), which is of second-order accuracy, but demands the

derivatives of the governing equations. However, the fixed-point scheme employed herein performs

well under the investigated conditions. The number of iteration loops till convergence for each

iteration run is typically less than 30, depending on convergence rate, the value of the selected

iteration precision criterion, and the relaxation parameters rA,t (cf. Section 5.1.7), which are set

to rA,t = 0.8. The synthetic test plane is discretized with a spatial resolution of ∆x = 0.5 m.

Corresponding to the analytical solution procedure, the model time step is adaptive.

6.2.1.3 Boundary and Initial Conditions of the Test Scenarios

Four model-test scenarios with different upper boundary conditions are selected for the comparative

model analysis. According to Fig. 5.3, the upper boundary condition is—as is usual for sheet

flow modeling—given by a lateral inflow q(t) to the model domain (i.e., rainfall). Additionally,

the incorporation of a time-variable inflow Q(0, t) at the uppermost model boundary at x = 0 is

possible.2 To maintain brevity, no model results for inflow via the upper boundary are shown. The

maximum inflow rates are set to qmax = 20, 45, 90, 120 mm · h−1, linearly rising from zero to the

maximum value within 10 minutes and staying constant for the next 40 minutes (Table 6.6). The

selected inflow rates span a wide range of magnitudes, leading to a noticeable flow over the plane.

For all included models, a zero-flow initial condition is applied for all spatial nodes of the solution

domain at t = 0. This does not endanger a numerical solution of the problem since the lateral

boundary condition affects all spatial nodes for all time steps beyond t = 0.

Furthermore, for the numerical models, a zero-depth gradient (i.e., ∂h
∂x = 0) is used as the

downstream boundary condition. Infiltration is not taken into account to assure model comparability.

The coupling of an infiltration model with the specific surface flow models would pose a source of

uncertainties since the coupling strategies would differ, e.g., due to different temporal discretization

strategies and the nonlinear dependency of surface and subsurface flow. If the inclusion of infiltration

1 As discussed in Section 5.1.8, nonconvergence problems are mainly associated with a highly nonlinear relationship of
flow properties and a loss term (e.g., occurring when describing infiltration with Richards’ equation). For the case of
overland flow, rainfall is considered as a source term. Since surface flow has no physical effect on rainfall and, thus,
the source term is a priori determined, the aforementioned statement does not apply.

2 Which would be indicated when cascading surface runoff elements for a distributed overland flow modeling.
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Table 6.6: Lateral inflow rates q(t) to the model domain for the test scenarios 1–4.

Time t

(min)

Scenario 1

(mm · h−1)

Scenario 2

(mm · h−1)

Scenario 3

(mm · h−1)

Scenario 4

(mm · h−1)

0 0.0 0.0 0.0 0.0

1 2.0 4.5 9.0 12.0

2 4.0 9.0 18.0 24.0

3 6.0 13.5 27.0 36.0

4 8.0 18.0 36.0 48.0

5 10.0 22.5 45.0 60.0

6 12.0 27.0 54.0 72.0

7 14.0 31.5 63.0 84.0

8 16.0 26.0 72.0 96.0

9 18.0 40.5 81.0 108.0

10 20.0 45.0 90.0 120.0

...
...

...
...

...

50 20.0 45.0 90.0 120.0

is desired, any arbitrary functional relationship for describing transient infiltration could be taken

into account with the presented analytical ZI approach, as shown in Section 6.1.

6.2.2 Comparison of Modeling Results

Since mass conservation should not solely be considered as a measure of model performance,

the comparative analysis additionally addresses process dynamics and computational efficiency.

Therefore, model performance is subsequently evaluated with respect to mass conservation, portrayal

of hydrograph shape, and required CPU times. For the purpose of clarity, results for all Chézy

roughness coefficients (KC = 2.0, 5.0, 10.0, 20.0 m
1
2 · s−1) are included in tabular form, but modeling

results in the form of hydrographs are shown only for model setups with the roughness coefficient

set to KC = 5.0 m
1
2 · s−1.

6.2.2.1 Mass Balance Check

The fulfillment of mass conservation of the four incorporated models is considered first. For this

purpose, the four different lateral inputs of scenarios 1 to 4 are supplied to the synthetic test plane of

a specific roughness. A mass conservation check is carried out for every model by comparing the sum

of lateral inflow to the sum of modeled outflow at the plane’s lowermost cross section at x = 80 m

after 50 minutes. The resulting relative mass balance errors are given in Table 6.7. The mass

balance comparison unveils that the analytical zero-inertia model outperforms the numerical models

for most constellations of lateral inflow rates and Chézy roughness coefficients. The deviations in

the mass balance of the aZI model output amount to some 0.1 % for 14 out of 16 calculation runs

and are therewith significantly smaller than for the numerical models in 11 out of 16 cases.

For the numerical models, the nKW model outperforms the nHD and nZI models with respect

to mass conservation for all simulation runs. The errors of the incorporated numerical models are

directly dependent on the spatial and temporal resolution of the solution scheme. The deviations of

the aZI model from the reference can additionally be improved by tightening the precision criterion

of the iteration procedure (5.63);(5.64). The mass balance error decreases with higher total peak

inflow for all incorporated numerical models. For the aZI model, the relative mass balance errors
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Table 6.7: Comparison of the relative mass conservation of the investigated overland flow models
for different lateral inputs to the synthetic test plane after 50 minutes of inflow. Best results are set
in bold font.

Chézy coefficient

(m
1
2 · s−1)

2.0 5.0 10.0 20.0

nHD −1.43 % −1.75 % −1.86 % −2.29 %

qmax = nZI −1.43 % −1.75 % −1.86 % −2.30 %

20 mm · h−1 nKW −0.51% −0.56% −0.58 % −0.60 %

aZI −1.38 % −1.11 % −0.49% −0.53%

nHD −1.32 % −1.34 % −1.81 % −1.79 %

qmax = nZI −1.32 % −1.34 % −1.81 % −1.80 %

45 mm · h−1 nKW −0.53% −0.58 % −0.59 % −0.61%

aZI −0.84 % −0.55% −0.37% −0.63 %

nHD −1.25 % −1.26 % −1.66 % −1.30 %

qmax = nZI −1.25 % −1.26 % −1.67 % −1.31 %

90 mm · h−1 nKW −0.56% −0.59 % −0.60 % −0.61 %

aZI −0.64 % −0.48% −0.52% −0.58%

nHD −1.24 % −1.25 % −1.64 % −1.46 %

qmax = nZI −1.24 % −1.25 % −1.65 % −1.43 %

120 mm · h−1 nKW −0.56 % −0.59 % −0.60 % −0.61 %

aZI −0.26% −0.15% −0.18% −0.25%

are lowest for moderate roughness coefficients of KC = 5.0, 10.0 m
1
2 · s−1. Overall, the aZI model

performed very well compared with the other models.

6.2.2.2 Hydrographs of the Test Scenario Calculations

The aforementioned boundary and initial conditions are applied to the four presented models

and the simulated flow hydrographs for the lowermost observation point of the synthetic test

plane (at x = 80 m) are compared. Fig. 6.8 depicts the resulting hydrographs for the scenario

calculations (maximum inflow rate qmax = 20, 45, 90, 120 mm · h−1) for a roughness coefficient of

KC = 5.0 m
1
2 · s−1. The results for other roughness coefficients (KC = 2.0, 10.0, 20.0 m

1
2 · s−1) look

similar but with decreased/increased dynamics of the rising limb of the simulated flow hydrographs.

Table 6.8 shows the quasistationary flow rates after 50 minutes at the lowermost cross section

x = 80 m. The process dynamics of all scenarios are soundly portrayed by the four incorporated

hydrodynamic models. These observations apply for the whole range of investigated Chézy roughness

coefficients. Onset and rising limb of the hydrograph and transition to the quasistationary peak

flow rate are convergent for the investigated models. The calculations for higher Chézy coefficients

lead to a slightly better agreement of the resulting peak flow rates of the different models.

The analytical zero-inertia model nearly matches the stationary peak inflow rates of qmax =

20, 45, 90, 120 mm · h−1 for all applied Chézy roughness coefficients, which is supported by the

analytical character of the model. The aZI model performs best for 15 out of 16 calculations

presented herein. It is even possible to improve the quality of the aZI results by tightening the

convergence precision criterion of the incorporated iterative solution procedure, which, in contrast,

leads to higher computational effort. The aZI model shows the lowest relative peak flow errors for

moderate Chézy coefficients. Relative peak flow errors of the aZI model decrease with increasing peak

flow rates. For the numerical models, the nKW model performs best in matching quasistationary
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Table 6.8: Comparison of absolute and relative quasistationary flow rates (mm · h−1) at the
lowermost cross section after 50 minutes at location x = 80 m for scenario calculations 1–4. The
relative deviations from the maximum lateral inflow to the test plane qmax are given in parentheses.
Best results are set in bold font.

Chézy coefficient

(m
1
2 · s−1)

2.0 5.0 10.0 20.0

nHD
19.6664 19.6142 19.5944 19.5086

(−1.67 %) (−1.93 %) (−2.03 %) (−2.46 %)

nZI
19.6664 19.6141 19.5940 19.5079

qmax = (−1.67 %) (−1.93 %) (−2.03 %) (−2.46 %)

20 mm · h−1

nKW
19.8535 19.8358 19.8471 19.8231

(−0.73%) (−0.82 %) (−0.76 %) (−0.88 %)

aZI
19.7730 19.8923 19.9350 19.9283

(−1.14 %) (−0.54%) (−0.33%) (−0.36%)

nHD
44.3164 44,3303 44,1184 44,1370

(−1.52 %) (−1.49 %) (−1.96 %) (−1.92 %)

nZI
44.3162 44,3296 44,1168 44,1332

qmax = (−1.52 %) (−1,49 %) (−1,96 %) (−1,93 %)

45 mm · h−1

nKW
44.6670 44,6942 44,5782 44,4173

(−0.74 %) (−0,68 %) (−0,94 %) (−1,29 %)

aZI
44.6850 44.8425 44.8650 44.7975

(−0.70%) (−0.35%) (−0.30%) (−0.45%)

nHD
88.7156 88.7314 88.3846 88.7334

(−1.43 %) (−1.41 %) (−1.79 %) (−1.41 %)

nZI
88.7151 88.7295 88.3800 88.7219

qmax = (−1.43 %) (−1.41 %) (−1.80 %) (−1.42 %)

90 mm · h−1

nKW
89.3272 89.3021 89.3449 89.2886

(−0.75 %) (−0.78 %) (−0.73 %) (−0.79 %)

aZI
89.4375 89.7075 89.6625 89.4825

(−0.63%) (−0.33%) (−0.38%) (−0.58%)

nHD
118.2978 118.3182 117.8628 118.0799

(−1.42 %) (−1.40 %) (−1.78 %) (−1.60 %)

nZI
118.2970 118.3152 117.8555 118.1176

qmax = (−1.42 %) (−1.40 %) (−1.79 %) (−1.57 %)

120 mm · h−1

nKW
119.0986 119.0993 118.9665 119.1663

(−0.75 %) (−0.75 %) (−0.86 %) (−0.69 %)

aZI
119.4300 119.7225 119.6100 119.4525

(−0.47%) (−0.23%) (−0.33%) (−0.46%)
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Figure 6.8: Flow hydrograph comparison for lateral input scenarios 1–4 (maximum inflow rate

qmax = 20, 45, 90, 120 mm · h−1) and Chézy roughness coefficient of KC = 5.0 m
1
2 · s−1 at the lower

end of the synthetic test plane (x = 80 m).

peak flow rates. The respective relative errors of the nKW model are always lower than the errors

of the nHD and the nZI model. Furthermore, the errors of the nHD and nZI model are nearly

equal for the specific simulations. Like for the aZI model, relative peak flow errors of the numerical

models decrease with increasing peak flow rates.

6.2.2.3 Computation Time Requirements

A comparison of CPU time requirements of the test scenario calculations is conducted. The

numerical models are all implemented in FORTRAN language and compiled with the same compiler.

The analytical zero-inertia model is implemented and executed in the MATLAB environment. A

1.6 GHz machine with 2 GB of memory is used for computation. The CPU times of each model

for all 16 model setups are averaged and normalized by the mean CPU time requirement of the

analytical ZI model:

CPU time factor =
CPU timenHD,nZI,nKW

CPU timeaZI
(6.7)

The mean CPU time and CPU time factors for the four different models are given in Table 6.9.

As expected, CPU time increases with the complexity of the governing flow equations. The flow

simulations with the nHD model require the highest CPU time, followed by the nZI and the nKW

model. The aZI model has the lowest CPU time requirements. CPU time is mainly required for the

iterative solution of the system (5.63);(5.64), which typically needs less than 30 iteration loops for

yielding convergence in the study at hand. Tightening the iteration criterion leads to slightly better

model results but higher CPU time requirements. It needs to be mentioned that the nHD, nKW,

and nZI code were used as compiled executable code, whereas the aZI code was executed in the
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Table 6.9: Comparison of average CPU time requirements of the nHD, nZI, nKW, and aZI models.

Model Code execution Space step

(m)

Time step

(s)

CPU time

(s)

CPU time

factor

nHD compiled 0.5 2 9.56 1.40

nZI compiled 0.5 2 8.97 1.31

nKW compiled 0.5 2 6.92 1.01

aZI interpreted 0.5 adaptive 6.83 1.00

MATLAB interpreter environment. It is assumed that a compiled version of the aZI code would

outperform the other investigated models by far, considering CPU time requirements.

6.2.3 Summary

The presented analytical zero-inertia model showed a highly satisfactory performance for modeling

typical scenarios of sheet flow on a synthetic plane, charged by time-varying rainfall events. In

a comparative analysis, the aZI model delivered mostly better results than the commonly used

numerical approaches in terms of an adequate mass conservation and matching peak runoff rates.

Furthermore, the aZI model delivered a convergent solution for the flow dynamics compared with

the numerical solutions. At the same time, the aZI model demanded less CPU time than the

employed numerical solution schemes.

The mass balance error of the aZI model for the 16 simulation runs amounted to −0.15 % to

−1.38 % which made the model superior for 11 out of 16 runs regarding mass conservation. The

mass balance errors of the numerical models for all simulation runs spanned from −1.24 % to

−2.29 % (nHD), −1.24 % to −2.30 % (nZI), and −0.51 % to −0.61 % (nKW). The errors of the aZI

model for the representation of peak inflow rates were again comparatively small with −0.23 %

to −1.14 %. The nHD model (−1.40 % to −2.46 %), nZI model (−1.40 % to −2.46 %), and nKW

model (−0.68 % to −1.29 %) showed larger relative errors, related to peak inflow rates. The aZI

model met the peak flow rates best for 15 out of 16 simulations. The performance of the aZI model

regarding mass conservation and the portrayal of peak inflow rates is supported by the analytical

character of the model.

The aZI model demanded the lowest computation times of all investigated models. However,

CPU time requirements of the aZI model were only slightly lower than those of the nKW model

for the flow calculations with the investigated simple geometry. The nHD model demanded the

highest CPU times, which were a factor of 1.4 higher than those required for the aZI model.

The benefit of lower CPU time of the aZI model will significantly improve spatially distributed

surface flow modeling on catchment scale. At the same time, the aZI model is free of numerical

inconveniences, like discretization errors, phase errors, and convergence problems, which often

endanger the solution of numerical schemes, particularly regarding the weak process dynamics of

typical sheet flow phenomena (cf. Section 2.2). To delimit such errors, a relatively fine spatial and

temporal discretization of the employed numerical solution schemes had to be chosen which led to

higher CPU times. Furthermore, the coupling of the aZI surface flow model with any arbitrary

infiltration model can be carried out straightforwardly because of the analytical character of the

surface flow model (cf. Sections 5.1 and 6.1).
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Chapter 7

Flash Flood Routing under

Transmission Losses and Dam

Operation

This chapter focuses on the development and application of an integrated modeling system for flow

routing in ephemeral rivers with groundwater recharge dams, such as in the Sultanate of Oman. The

proposed system is based on a process-oriented description of wadi flow, infiltration, dam operation,

and reservoir evaporation and allows for a robust application within a limited data situation, as is

usually encountered in arid and semiarid regions.

Particularly, the proposed framework (a) accounts for the considerable loss of mass and mo-

mentum from the weakly dynamic flow downstream of a dam, attributable to transmission losses;

(b) regards the transient character of transmission losses, which are nonlinearly dependent on time

and changing channel flow conditions; and (c) circumvents any numerical inconveniences associated

with the modeling of dam release flow over initially dry beds by employing an analytical solution

procedure of the governing flow equations.

Following a comprehensive sensitivity analysis, relevant process parameters are estimated and

the modeling system is applied to Wadi Ma’awil, Northern Oman. The application demonstrates

both the system’s accurateness and robustness for flash flood routing under transmission losses along

the wadi, where a recharge dam causes strong flow retention. Therefore, the proposed modeling

system can aid in deriving realistic groundwater recharge rates, which is of high importance for a

sound water resources assessment in the study area.

7.1 Outline of the Structure of a Novel Integrated Modeling

System for Ephemeral Channel Routing

The proposed wadi flow and dam simulation model (Fig. 7.1) satisfies the afore-discussed demands

of a comprehensive process modeling of infiltrating ephemeral river flow influenced by dam retention.

It consists of three main elements, each a hydrodynamic model for the upstream and the downstream

reaches, as well a dam simulation model. The hydrodynamic models are coupled with an infiltration
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Downstream reachUpstream reach Recharge dam

Flood routing 
Kinematic wave model

Infiltration 
Kostiakov-Lewis model

Dam operation 
Nonlinear volume balance

Evaporation 
Penman model

Dam outflow routing 
Zero-inertia/ 
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Infiltration 
Kostiakov-Lewis model
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Transmission losses Transmission lossesEvaporation losses

Wadi flow and dam simulation model

Figure 7.1: Components of the proposed wadi flow and dam simulation model.

model for the quantification of transmission losses. The dam simulation model incorporates an

evaporation modeling component. All sub-models are one-dimensional and are coupled horizontally

via the flow Q(t). The integrated modeling system is implemented in MATLAB and is presented in

the following.

7.1.1 Wadi Flow Routing Models

Two flow routing models are developed aiming at a comprehensive representation of the specific

flow processes in the upstream and downstream reaches of a recharge dam. For the pronounced

flow in the upstream reaches, a KW model is implemented, following the outcomes of the discussion

in Section 3.7.1. To accommodate for the more complex character of the flow downstream of the

dam, flow advance and recession are treated separately. It is important to match the dynamics and

nonlinearity of the advancing flow in an initially dry channel under considerable infiltration. To

circumvent numerical instabilities and to pay attention to the influence of infiltration, a tailor-made

analytical ZI model, as derived in Section 5.1, is set up for modeling the advancing flow domain.

In turn, flow recession in the downstream reaches—which is not covered by the analytical ZI

solution—is modeled with the KW equations again. The same applies for dam outflow influenced

by spillway operation (cf. Section 3.7.1). Evaporation from wadi flow is neglected since evaporation

rates are usually two orders of magnitude below infiltration rates (cf. Section 1.1).

7.1.1.1 Numerical Kinematic Wave Model (Upstream Model)

Making use of the continuity equation (3.7), the KW momentum equation (3.4)—which assumes

a parallelism of bottom and friction slope—and the uniform flow formula (3.5) yield an explicit

expression of the KW model. According to the derivation outlined in Appendix A.1 and with β set

to 2
3 for the Manning-Strickler formula, the KW model reads

∂Q

∂x
=

((
KStS

1
2
0

2

3
R

1
3
∂R

∂x
A

)
+

(
KStS

1
2
0 R

2
3
∂A

∂x

))
(7.1)

where KSt is the respective Strickler roughness coefficient [L
1
3 T−1].

Equation (7.1) is inserted into the continuity Eq. (3.7) and the resulting equation is numerically

solved using a finite differencing scheme on the basis of the argumentation given in Section 4.4. A

second-order Runge-Kutta method is applied for approximating the partial differential quotients of
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Eqs. (7.1) and (3.7).1 Further following Section 4.4, an explicit formulation of the difference equations

is chosen. Appendix A.2 exemplarily shows the derivation of the corresponding second-order scheme

as is used in this work.

The numerical solution requires the specification of boundary and initial conditions. The

upstream boundary condition at x = 0 is the inflow hydrograph

Q0 = Q0(t) = Q(x = 0, t) (7.2)

The downstream boundary can be characterized either by an advancing wave tip or a rating curve,

e.g., coming from the assumption of outflow at normal depth at the end of the model domain. For

the first case, the boundary conditions would read

A(xtip, t) = 0 (7.3)

u(xtip, t) = utip(t) =
dxtip

dt
(7.4)

where xtip(t) is the location of the advancing wave tip.

The ideal dry-channel initial condition would be

xtip(t = 0) = 0 (7.5)

For this study, this ideal dry-channel initial condition is alleviated to prevent numerical issues. A

constant minimum flow is introduced and the other dependent hydraulic variables are calculated

prior to the numerical integration, assuming uniform flow conditions. This practice is quite common,

albeit introducing some errors (Cunge et al., 1980). Nevertheless, for greater flood magnitudes,

such as those present in the upstream wadi sections, the incorporation of a nonzero minimum flow

is feasible, as discussed in Section 4.4. A normal-depth lower boundary condition is placed at the

lowermost cross section, i.e., the location of the recharge dam.2

Since cross-sectional infiltration is dependent on the wetted perimeter, and vice versa, the

flow equation is coupled with the time-dependent Kostiakov-Lewis infiltration function (Eqs. (6.1)

to (6.3)) by employing alternating iterative coupling, based on a fixed-point iteration scheme (cf.

Section 5.1.7). Algorithm 7.1 illustrates a pseudocode implementation of the incorporated iteration

scheme. In contrast to the iterative procedures given by Eqs. (5.47);(5.48) and (5.63);(5.64) which

employ an adaptive temporal discretization (cf. Section 4.4), the coupling is carried out at the

equidistant spatiotemporal nodes ∆(x, t) of the underlying finite difference scheme. Furthermore, it

is important to account for the transient spatial extents of the flow domain in order to obtain an

exact assessment of infiltration. To encounter the nonzero minimum flow assumption, only flow

above the initial flow rate is taken into account for the calculation of infiltration.

1 The class of Runge-Kutta methods essentially comprises single-step methods of various order (which might be
evaluated for intermediate steps as discussed in Section 4.2.2) and, therefore, also covers the first-order Euler method
(cf. Appendix A.1). The classification is made regardless of the applied formulation of the solution scheme (i.e.,
explicit or implicit). The fourth-order Runge-Kutta method is the “original” method, which is usually addressed by
referring to “the Runge-Kutta method”. Concisely, the Runge-Kutta method applied herein is a second-order scheme
with intermediate nodes, located at 1

2
∆t (the so-called midpoint method).

2 Since the employed flow model is based upon the (steady) kinematic wave assumptions and perturbations cannot
travel in upstream direction, this boundary condition type poses no serious restriction for the validity of the KW
results calculated for the interior points.
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Algorithm 7.1 Algorithm for the alternating iterative procedure for coupling the numerical
kinematic wave model with the Kostiakov-Lewis infiltration model.

1: EPS = 10−4 . Define iteration precision criterion
2: for j = 1 : ∆t : tend do . Loop over time
3: for i = 1 : ∆x : xend do . Loop over space
4: k = 1 . Set iteration counter
5: qφ(k−1) = 0 . Initially estimate cross-sectional infiltration qφ

6: repeat
7: Solve the KW model with respect to qφ(k−1) (Eqs. (7.1) and (3.7), according to

Appendices A.1 and A.2) to obtain infiltration opportunity times and wetted perimeter

8: qφ(k) from Eqs. (6.1) and (6.2) . Calculate new estimate of qφ

9: ICC =
∣∣∣qφ(k) − q

φ
(k−1)

∣∣∣ . Calculate iteration convergence criterion

10: k = k + 1 . Update iteration counter
11: until ICC < EPS . Compare ICC with EPS
12: end for
13: end for

The alternating iterative coupling of the surface flow and the infiltration model yields a proper

convergence behavior, which allows for a straightforward coupled computation of flow and infiltration

with, for instance, less than 20 iteration loops under a quite strict iteration precision criterion of

10−4. The nonprismatic cross-sectional geometry is included via an analytical power law fit of the

empirical profile functions h̃(x,A) and R̃(x,A), derived from topographic data. The procedure

required because of this is the same as used for the processing of the cross-sectional data for the

analytical ZI model, shown in Section 5.1.2. Thus, the corresponding values of water depth, wetted

cross-sectional area, and hydraulic radius can be mapped onto each other on an analytical basis.

A prerequisite model validation was carried out by Six (2011) for a prismatic rectangular test

channel (width of 100 m; slope of 0.008; Strickler roughness coefficient of KSt = 30.30 m
1
3 · s−1;

zero infiltration) in order to compare the results of the KW model with those obtained from a

full hydrodynamic model, which was implemented in HEC-RAS.1 It can be seen exemplarily from

Fig. 7.2 that the KW model slightly overestimates values around the peak and underestimates

their timing in comparison to the HD model. These effects are more pronounced for higher flow

rates, i.e., the more unsteady portions of the hydrograph, and are attributable to the neglecting of

secondary terms in the KW model (cf. Section 3.7.1). In contrast, the HD model preserves those

terms, leading to the observed wave deceleration and dispersion. However, the results of the two

models are in good agreement, especially for the portions of the hydrographs which are associated

with moderate flow rates.

7.1.1.2 Coupled Analytical ZI Advance Model–Numerical Kinematic Wave Recession

Model (Downstream Model)

Dam release leads to an outflow which is advancing in the downstream direction. Therefore, the

flow processes can be modeled with the analytical zero-inertia approach, presented in Section 5.1.

Generally, the advance rate of the wave tip decreases with increasing time and increasing extent

1 The comparison was carried out disregarding the influence of the applied numerical solution schemes, namely an
explicit Runge-Kutta scheme for the KW model (cf. Appendix A.2) and an implicit Preissmann scheme for the HD
model (cf. Appendix A.3). However, some of the difference in the model outputs may emerge from the differing
solution schemes.

92



7.1 Outline of the Structure of a Novel Integrated Modeling System

0 4 8 12 16 20
0

100

200

300

400

500

600

700

800

900

Time t (h)

F
lo

w
 Q

 (
m

3
⋅
s–

1
)

 

 
Inflow at +0,000 m 
KW output at +10,000 m 
HD output at +10,000 m 

Figure 7.2: Comparison of simulation results obtained by the kinematic wave model with those of
a full hydrodynamic model for station +10,000 m of a rectangular test channel under zero infiltration.
Inflow event recorded on 06/06/07 at Afi gauging station, according to Section 7.2.1. Values in
the output were aggregated to 10 min intervals; spatial discretization for both models was 100 m;
temporal discretization was 10 s for the HD model and 1 s for the KW model, respectively.

of the infiltrating domain. Assuming an infinitely long permeable channel bed and a quasisteady

inflow, the advance would cease if infiltration rates equal inflow rates. Approaching such a state of

zero advance leads to a rapidly growing number of iterations for solving the system (5.47);(5.48).

Furthermore, if dam outflow rates are lower than infiltration rates, the flow domain would start

receding in the upstream direction. Such conditions are not covered by the iterative solution

procedure of the ZI model presented herein.

Therefore, from the point in time when the flow approaches such a zero-advance condition,

hydrodynamics are modeled with a KW approach, following the concepts discussed in Section 7.1.1.1.

This approach is reasonable since (a) the flow momentum is negligible when the flow advance velocity

converges to zero, and (b) inflow rates have already become comparably low, which justifies the KW

assumption that the change of the water depth along the channel is very small (∂h∂x ≈ 0). Practically,

specific criteria are required in order to evaluate the zero-advance condition; the analytical ZI model

is, therefore, applied until one of the following relations is harmed

(tn − tn−1)

(tn−1 − tn−2)

!
≤ σ (7.6)

k
!
≤ ς (7.7)

with σ: an upper limit for the allowed increase rate of advance times and ς: maximum tolerable

number of iterations for solving the procedure (5.47);(5.48).

For the first case, the rate of increase of the advance times between the equidistant channel

locations xn,...,n−2 is evaluated, as illustrated by Fig. 7.3. If the condition (7.6) is not fulfilled

anymore, the actual ZI model results for the time slice t = tn are passed to the initial condition of a
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Figure 7.3: Illustration of the employed zero-advance criterion, given by Eq. (7.6).

KW model, which is set up following the concepts already discussed.1 The KW model is employed

to simulate the further development of the flow variables, related to the initial condition for t = tn

and to the upper boundary condition Q0(t) from t = tn to t = tend. The end time of the simulation,

tend, might be defined a priori the simulation or dynamically, e.g., related to the condition if all

inflow volume had already infiltrated or left the modeling domain through the channel. In case

condition (7.7) is harmed first, differing from the aforesaid, the solution procedure (5.47);(5.48) had

not yet converged and, therefore, yielded no result for tn. Therefore, switching between the ZI and

the KW model is performed for the time slice t = tn−1. Practically, adjusting σ to values between

3 and 5 and ς to 200 to 500 leads to a balancing of computation time and model accuracy.

Besides culvert release, a comprehensive modeling approach has to account for spillway release

as well. However, spillway release is a fairly rare condition for the operation of the recharge dam

investigated in this thesis, located in Wadi Ma’awil (cf. Section 7.2.1). The dam construction report

(MAF, 1989; cf. Table 7.2) assesses the design storage to 10 · 106 m3, which is related to a return

period of roughly 30 years.

Generally, total outflow rates under spillway release are high compared to culvert outflow

alone. This implies a negligible impact of infiltration on flow momentum during spillway operation.

Furthermore, the spillway outflow features strongly falling hydrographs, which renders the analytical

ZI approach not applicable. Dam outflow during spillway operation is, therefore, simulated again

with a KW model, set up as outlined previously. When the spillway is activated, ZI results are

passed to the initial condition of the KW model, and vice versa when the spillway outflow ceases.

The downstream hydrodynamic model combined in this way, consisting of a ZI model and a KW

model for routing the advancing/receding culvert outflow and an additional KW model for flow

routing during spillway operation, is referred to as a coupled ZI/KW model in the following.

7.1.2 Dam Simulation Model with Evaporation Component

Within the frame of the proposed integrated modeling system, dam operation is simulated with an

incremental solution of the nonlinear storage equation. Attributable to the morphology found at the

1 If the spatial resolution of the KW model does not equal that of the ZI model, this step would require an
inter/extrapolation of the values of the dependent variables according to the chosen spatial resolution of the KW
model.
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Omani dam sites, the water surface area connected to a specific storage volume is comparably large.

Additionally, the dams are filled for a couple of days which may yield a significant evaporation loss

under the given climatic conditions. Evaporation from the free water surface is, therefore, taken

into account in the dam water balance.

7.1.2.1 Reservoir Routing Model

The dynamic change of the water volume within a retention reservoir under varying inflow conditions

can be expressed by the differential storage equation, representing continuity. Sedimentation causes

clogging of the reservoir bottom and, consequently, infiltration through the bottom will tend to

zero (Haimerl, 2004). Due to the specific cubature of the herein considered groundwater recharge

reservoirs—located in the coastal plain—the inclined side areas of the reservoir, which are less prone

to clogging and, therefore, typically permeable, only make up a small fraction of total reservoir

area. For this reason, infiltration losses can be neglected in the reservoir balance. The continuity

equation of the storage volume, therefore, reads

dV

dt
(t) = Qin(t)−Qout(t)− E(t) (7.8)

where t: time [T]; V (t): storage volume [L3]; Qin(t): inflow to the reservoir [L3T−1]; Qout(t): total

outflow from the reservoir [L3T−1]; E(t): evaporation from the reservoir’s surface [L3T−1]. According

to the morphology of the dam site, the reservoir storage volume V (t) is a function of the water

level, W (t) [L]: V (t) = f(W (t)) = V (W ). The water surface area of the reservoir Ar(t) [L2] can be

related to the water level as well: Ar(t) = f(W (t)) = Ar(W ). Furthermore, evaporation is—besides

the climatic influence—a function of the evaporating free water surface area: E(t) = f(Ar(t)).

The outflow Qout(t) is constituted of the outflow through the dam culverts Qoutcm
(t) and—

depending on a certain water level which activates the spillway—the outflow over the spillway

Qouts(t) if active:

Qout(t) =

M∑

m=1

Qoutcm
(t) +Qouts(t) (7.9)

where m = 1, ...,M is the culvert index [−] and M is the total number of culverts.

The outflow through the culverts and over the spillway is nonlinearly dependent on water depth

W (t). Assuming the outflow is not controlled from downstream1, the outflow through each of the

culverts and over the spillway can be modeled with an exponential stage–discharge relationship in

the form (Chow, 1959)

Qoutcm,s
(t) =




αcAc (W (t)−Hcm)

1
2 for the culverts

αsLs (W (t)−Hs)
3
2 for the spillway

(7.10)

where αc,s: empirical hydraulic discharge coefficient of the culverts and the spillway, respectively

[−], which is dependent on the design of the culvert inlets and the spillway crest; Ac: culvert inlet

area [L2] (which may be variable due to control, e.g., with a movable gate); Hcm,s: elevation of

the culvert inlet axes (i.e., of the projected inlet area’s center of gravity) and the spillway crest,

respectively [L]; and Ls: length of the spillway [L].

1 This assumption is made in accordance with the construction report of the dam investigated herein (MAF, 1989).
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For the culverts, Eq. (7.10) applies for submerged conditions. For part-full conditions, further

discrimination of the flow situation is needed. There is no flow if the water level is lower than

the culvert bottom. According to Chow (1959) and Vischer and Hager (1999), free surface flow

conditions can be assumed if the water level is higher than the culvert bottom but lower than

1.2 times the culvert diameter. The free surface flow in the culverts is assumed to be normal and

critical1 and can be calculated for an ideally circular culvert with the relationship (Vischer and

Hager, 1999)

Qoutcm
(t) =

(
3
(
W (t)− (Hcm − 1

2Dc)
)

5Dc

) 5
3 (
gD5

c

) 1
2 (7.11)

where Dc: culvert diameter [L]; and g: acceleration due to Earth’s gravity [LT−2].

Defining tj as a specific point in time and integrating Eq. (7.8) by applying the trapezoidal rule

with the discrete increment ∆t leads to the storage equation in the form

V (tj + ∆t) =

V (tj) +
∆t

2
(Qin(tj) +Qin(tj + ∆t)−Qout(tj)−Qout(tj + ∆t)− E(tj)− E(tj + ∆t)) (7.12)

7.1.2.2 Iterative Solution of the Nonlinear Storage Equation

The nonlinear system (7.9);(7.12) is solved for V (tj + ∆t) with a fixed-point iteration scheme,

i.e., initially estimating Qout(tj + ∆t) and iteratively improving this estimate until convergence is

reached, regarding a specific precision criterion. This solution accounts for the nonlinear dependency

of dam outflow, evaporation, and water level. More precisely, for estimating Qout(t), it is feasible

to use the water level W (t) as the iteration variable, which is related to Qout(t) and V (t) via the

dam hydraulic properties and morphological characteristics. Algorithm 7.2 shows a pseudocode

implementation for the iterative calculation of the dam outflow. For the sake of clarity and brevity,

evaporation is omitted in the pseudocode. In the full code, evaporation is estimated for every time

step as a function of the water surface area (which is a function of the water level) and is then

considered in the storage equation as an additional loss term.

7.1.2.3 Penman Evaporation Model

For the quantification of transient evaporation from the dam water surface, any arbitrary functional

relationship can be included within the proposed modeling framework. To utilize the quite detailed

available climate data (cf. Section 7.2.1), evaporation is calculated with the Penman model (Penman,

1948), which combines aerodynamic mass transport of evaporated water away from the liquid phase

with an energy balance equation. A potential oasis effect is not taken into account. The Penman

model reads

E(t) =
sEG + γ + v(e0 − e)

s+ γ
Ar (7.13)

where E(t): evaporation from the reservoir’s surface [L3T−1]; s(T ): gradient of the saturated water

vapor pressure curve [ML−1T−2Θ−1], with T (t): temperature [Θ]; EG(t): evaporation equivalent of

global radiation G(t) [LT−1]; γ(T ): psychrometric constant [ML−1T−2Θ−1]; v(t): wind function,

1 Which can easily be validated by calculating the Froude number of the flow as a function of the culvert water level,
for example, by using the Manning-Strickler law and employing a culvert slope of 2 % and a culvert roughness

coefficient of KSt = 62.5 m
1
3 · s−1, both given by the dam engineering report (MAF, 1989).
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Algorithm 7.2 Iterative Solution of the system of Eqs. (7.12);(7.9) with a fixed-point iteration
scheme.

1: require: dam characteristics V (W ), W (V ), Qout(W ) and inflow hydrograph Qin(tj)
2: EPS = 10−4 . Define iteration precision criterion
3: for j = ∆t : tend do . Loop over time
4: k = 1 . Set iteration counter
5: W (k−1) = W (tj−1) . Initially estimate water level from preceding time step
6: repeat

7: Q
(k−1)
out from Qout(W ) . Calculate outflow corresponding to water level W (k−1)

8: V (k−1) from V (W ) . Calculate storage volume corresponding to water level W (k−1)

9: V (k) from Eq. (7.12) . Calculate new estimate of storage volume considering Qin(tj)
10: W (k) from W (V ) . Calculate new estimate of water level from volume V (k)

11: ICC =
∣∣W (k) −W (k−1)

∣∣ . Calculate iteration convergence criterion
12: k = k + 1 . Update iteration counter
13: until ICC < EPS . Compare ICC with EPS
14: end for
15: return: outflow hydrograph Qout(tj), storage volume over time V (tj), and water level over

time W (tj)

dependent on site conditions and wind speed w(t) [LT−1]; e0(t): saturated water vapor pressure

[ML−1T−2]; e(t): actual water vapor pressure [ML−1T−2]; and Ar(t): the water surface area of the

reservoir [L2].

The parameters of the Penman model can be calculated by obtaining temperature T (t), actual

vapor pressure e(t), global radiation G(t) [ML2T−3L−2], and wind speed w(t) (for details see, e.g.,

Brutsaert, 1982). Basically, the saturated water vapor pressure can be estimated by employing the

August-Roche-Magnus formula (August, 1828) which reads

e0(t) = 6.11e(t)

17.62T (t)

243.12 + T (t) (7.14)

The gradient of the saturated water vapor pressure curve can then be calculated with the relationship

s(t) = e0(t)
4284

243.12 + T (t)
(7.15)

The psychrometric “constant” in Eq. (7.13) is actually not a constant but at least slightly

dependent on the air pressure. Nevertheless, a constant value of γ = 0.65 hPa · K−1, which is

followed here, is often assumed since it is valid under normal atmospheric pressure conditions

(1013 hPa). The evaporation equivalent of global radiation results from the water’s latent heat of

vaporization and can be calculated by using the relationship

EG(t) =
G(t)

ι
(7.16)

with the conversion factor ι = 245 J · cm−1 when G is given in J · cm−2.

The wind function relates the measured wind speed to the wind speed at the evaporating surface,

which is dependent on the elevation of the measurement (usually two meters above ground) and
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the surface roughness. A logarithmic relationship is often assumed for the surface layer, i.e., the

first 60 or 100 m of the planetary boundary layer1, which reads

v(t) = w(t)ln
zw
z0

(7.17)

where zw is the elevation of the wind speed measurement [L] and z0 is the dynamic roughness

length [L], which expresses the height above ground where the wind function becomes zero. For

free water surfaces, this value is comparably small since the laminar surface boundary layer is thin.

A typical value for z0 over water is 0.0001 m, which is used within this thesis.

Within the dam simulation model, the total evaporation volume is calculated for every time step

∆t, using the evaporation height E(t) and the known relationship between the reservoir’s water

level W (t) and the corresponding area of the evaporating water surface, Ar(t), which is derived a

priori using dam morphology data.

7.2 Real-World Application of the Modeling System for an

Arid Region

This section demonstrates the functionality and applicability of the wadi flow and dam simulation

model for a case study under realistic data conditions. Before applying and validating the full

modeling system for an extreme flood event in Wadi Ma’awil, two preliminary tasks are performed.

First, a parameter sensitivity analysis is carried out in order to identify the sensitivity of process

parameters which are associated with flow and transmission loss modeling. Second, the afore-

identified parameters are estimated regarding their sensitivity and range. Finally, the full modeling

system is used to simulate wadi flow and transmission loss dynamics, influenced by dam operation.

The investigated 2007 event, caused by cyclonic storm Gonu (event 06/06/07), led to highest peak

flow rates at Afi station and highest inflow volumes to Ma’awil Dam.2 The operational storage

capacity of the dam was totally filled and the spillway was activated.

To account for the insufficient data situation, the sensitive parameters are calibrated for a

neighboring and morphologically very similar catchment and then transferred to the investigation

area. In Wadi Ma’awil, downstream gauge data, which would be helpful for an empirical analysis

of transmission losses, are lacking. Theoretically, an inverse reconstruction of event-related dam

inflow would be possible on the basis of stage recorder data. Specifically for the investigation area,

such an approach is questionable due to (a) the possibly very dynamic change of dam inflow rates,

which is not resolved by the stage recorder since culvert outflow dynamics are comparably slow, and

(b) the uncertain relationship of dam water level and outflow rates under spillway release conditions,

caused by the high hydraulic capacity of the spillway.

To tackle these challenges, the proposed integrated modeling system is used to correlate upstream

wadi flow data and stage recorder data of the downstream recharge dam. Dam operation parameters

are taken from the dam engineering report and are assumed to be valid; they are, therefore, not

subject to calibration. All relevant process parameters of the routing models are calibrated for the

1 Mostly referred to as Prandtl boundary layer, named after Ludwig Prandtl.

2 Following the definitions given by Graf (2002), the considered event would be classified as a single-peak event rather
than as a flash flood event, since it was caused by a large tropical storm system and was not the consequence of
smaller-scale convective rainfall.
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Figure 7.4: Overview map of the study area in Oman.

neighboring catchment of Wadi Bani Kharus, using data of two associated gauges from the period

prior the year 2004 when Bani Kharus dam was constructed. Then, the parameters estimated in

this way are transferred to Wadi Ma’awil. Finally, this parametrization is validated by routing the

gauged flow to the dam, then simulating the dam operation and, finally, comparing the modeled

dam water level development with stage recorder data.

7.2.1 Study Area and Available Data

The study area is located in the south-eastern Batinah Region, Sultanate of Oman (Fig. 7.4), and

covers two catchments: Wadi Ma’awil (total area 835 km2; Fig. 7.10) and Wadi Bani Kharus (total

area 1,183 km2; Fig. 7.5c). Both catchments are bordered by the Gulf of Oman in the north and by

the Hajar Mountain Range in the south, which has peaks up to a height of 3,000 m a.s.l. A three to

five kilometer broad strip along the coast is used for intensely irrigated agriculture, whereas the

more remote parts of the coastal plain are nearly bare. Groundwater uptake for irrigation makes up

over 50 % of total water use (Al-Shaqsi, 2004). Fresh water resources are scarce in the region and

the coastal alluvial aquifer is threatened by over-abstraction and, consequently, saltwater intrusion.

A progressive increase of irrigation water salinity caused a shifting of crop patterns away from the

coastline (Fig. 7.5a). Traditionally, irrigated agriculture was established in the frontal area of the

Hajar Range. A system of man-made channels routed water from the mountains to oases that

mainly harvested dates and bananas for food, and maize and sorghum for fodder. These channels

are called Aflaj (Fig. 7.5b) and guaranteed sustainable agriculture over centuries.

Rainfall of up to 350 mm · a−1 in the mountains and 50 mm · a−1 in the plain is strongly

contrasted by a potential evaporation of approximately 2,000 mm · a−1. The variability of rainfall

patterns in space and time is extreme, where relatively wet periods can be followed by extremely

dry periods (Fisher, 1994; Wheater, 2002; McIntyre et al., 2007; Al-Rawas and Valeo, 2009). This
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7 Flash Flood Routing under Transmission Losses and Dam Operation

(a) Abandoned date plantation near the
coastline (photo by Jens Grundmann, 2009).

(b) Aflaj channel in the Hajar Range
(photo by Andy Philipp, 2011).

(c) Wadi Bani Kharus leaving the mountains
(photo by Alexander Gerner, 2009).

(d) Alluvial wadi bed material
(photo by Alexander Gerner, 2009).

Figure 7.5: Impressions of the study area.

is illustrated by Fig. 7.6, where the number of days with runoff per year is displayed for station Afi

near Afi, situated in Wadi Ma’awil at the outlet of the mountains (Fig. 7.4). The flow regime in the

neighboring catchment of Wadi Bani Kharus shows similar characteristics.

Flow is most often a consequence of convective rainfall in the mountains, leading to flash floods.

Alternatively, tropical storm systems (cyclones) can cause heavy rainfall and severe flooding. During

dry years, typically two or less events occur. After passing the mountain front, the surface flow

enters the plain where ephemeral flood events have led to thick alluvial deposits (Fig. 7.5d). Usually

a significant amount of flood flow can infiltrate through the wadi beds, which is supported by the

infiltration conditions of the alluvium and the decreasing general slope in the plain. Nevertheless,

especially during larger floods, fresh water is lost to the sea. Several groundwater recharge dams

have been constructed in the Batinah plain in order to minimize these losses and to promote the

replenishing of the coastal aquifer. A much more comprehensive summary of the study area’s

physical geography, lithology, hydrogeology, climate, and water balance, as well as associated

primary data can be found in Al-Shaqsi (2004).
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Figure 7.6: Number of days with flow at Afi gauging station, years 1984 to 2007.

Table 7.1: Summary of required input data for the full modeling system.

Data Parameter(s) Assessment Notes

Wadi cross-sectional

data

h̃(x,A), R̃(x,A); resp.

p1(x), p2, p3(x), p4

Obtained from digital

elevation model and aerial

imagery

Cross-sectional data

included via specific profile

functions

Longitudinal profile S0
† Obtained from digital

elevation model

Calculated from thalweg of

cross sections

Channel roughness KSt
† Calibration (based on flow

observations)

Initial estimate from field

assessment

Infiltration

characteristics
ka
†, kk

†, kc
†

Calibration (based on

observed transmission

losses)

Infiltration modeled with

empirical Kostiakov-Lewis

model

Dam characteristics
V (W ), Ar(W ),

αc,s, Hcm,s, Ls, Dc

Engineering report of the

dam

Outflow characteristics

determinable a priori

Flow data Q(t)
Obtained at gauging

stations

Daily and sub-daily values,

peak values

Dam water level over

time
W (t) Water level recorder

Timely-resolved data are

scarce

Climate data T (t), e(t), G(t), w(t) Seeb climate station
Evaporation modeled with

Penman model

†Parameters are included in the analysis of parameter sensitivity.

A set of specific data is required for setting up the proposed modeling system. Required input

data are: cross-sectional wadi profile parameters; corresponding general slopes of the upstream and

downstream wadi sections; roughness coefficients of the wadi sections; parameters of the infiltration

model; dam characteristics, including morphological, culvert and spillway characteristics; time series

of inflow to the model domain; and climate data for evaporation modeling. Table 7.1 summarizes

data requirements and gives information on data assessment for the application presented herein.

The data situation is highlighted in the following.

Morphological Data: Morphological data of the wadis are derived from a digital elevation model

(DEM). The publicly available and spaceborne-obtained ASTER (Advanced Spaceborne Thermal

Emission and Reflection Radiometer) data sets (Abrams, 2000) are used. Cross-sectional cut lines

are extracted from the DEM using GIS functionality and superimposed aerial imagery to capture

typical flow widths. Figure 7.7 shows plots of the general profile of the main channels of Wadi

Ma’awil (Fig. 7.7a) and Wadi Bani Kharus (Fig. 7.7b). Since there are two gauging stations located
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Figure 7.7: General profile plots. (a) Wadi Ma’awil between Afi gauging station and the Gulf of
Oman, and (b) Wadi Bani Kharus between Al Abyadh gauging station and the Gulf of Oman.

along the lower reaches of Wadi Bani Kharus (stations Al Abyadh and Bani Kharus at Highway),

flow data situation is generally better than for Wadi Ma’awil (with only station Afi near Afi1).

Furthermore, Bani Kharus Dam was constructed in 2004 and, a significant portion of available

flow data were, therefore, unaffected by dam operation, which allows for a direct estimation of

transmission losses. This is not the case for Wadi Ma’awil, where most flow data were affected by

dam operation and, furthermore, no valid downstream flow data are available.

Fluvial geomorphology of Wadi Ma’awil and Wadi Bani Kharus features wide cross-sectional

profiles, which change only gradually in the downstream direction. Typically, effective flow widths

range from 40 to 150 m, mainly depending on event magnitude. For minor events, a braided

network of smaller wadi channels routes the flow, whereas major events tend to promote a better

horizontal interconnection of flow-effective cross-sectional areas (Tooth, 2000). Wadi material is very

heterogeneous in size and composition, ranging from stones to gravel to sand and silt, with the silt

material in depressions of the bed. The general slope of Wadi Ma’awil between Afi gauging station

and Ma’awil Dam is estimated to 0.00868 and 0.00375 downstream of the dam. The neighboring

Wadi Bani Kharus exhibits a very comparable morphology (Fig. 7.7). Channel slope is estimated

to 0.00738 for upper Wadi Bani Kharus (Al Abyadh gauging station to Bani Kharus Dam) and

0.00326 for the lower section (dam to sea).

Infiltrometry Data: Infiltrometry measurements were carried out in the area in order to assess

suitable dam locations (MAF, 1985; MAF, 1990). Nevertheless, observed transmission losses in

ephemeral channels tend to actually be lower than those inferred from infiltrometry tests (Wheater,

2002). Borehole analyses estimated the thickness of the upper gravel layer, which covers the deeper

and more cemented alluvium, to 20 to 40 m. The alluvium extends down to −220 m a.s.l. in the

area of Ma’awil Dam (MAF, 1990). MAF (1985) performed 60 double-ring infiltrometry tests which

delivered mean infiltration rates from 0.744 to 4.920 m · d−1 for a four-hour duration. Furthermore,

1 Although there is another gauging station located at the coastal highway (cf. Fig. 7.7), data are lacking or available
data cannot be used due to quality issues.
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7.2 Real-World Application of the Modeling System for an Arid Region

the study found that infiltration rates were highest (>4.8 m · d−1) for recently reworked wadi

materials, moderate (2.4 to 4.8 m · d−1) where sandy deposits were found, and lowest (<2.8 m · d−1)

where a denser surface texture was present.

MAF (1990) conducted a program of 68 four-hour double-ring infiltrometry tests in the area.

Obtained mean infiltration rates ranged from 0.94 to 40.13 m ·d−1 with a mean value of 11.16 m ·d−1,

while the maximum value was not used for the calculation of the mean value. Tests conducted at

the surface and at 1 m depth did not show significant differences for measured infiltration rates.

However, the tests suggest that infiltration rates will change during an event, e.g., as a consequence

of event-specific sedimentation. In contrast, numerous authors modeled transmission losses in

ephemeral rivers with a steady-state infiltration rate (e.g., Morin et al., 2009). It has to be proven

if a timely-variable infiltration modeling might improve the portrayal of transmission losses for the

specific application case.

Recharge Dam Data: The present study specifically addresses the recharge dam which was

constructed in 1991, spanning Wadi Ma’awil with a length of 7.5 km. Figure 7.8 gives some

impressions of the dam. Table 7.2 summarizes the main properties of Ma’awil Dam, obtained

from the dam engineering report (MAF, 1989). Figure 7.9 shows the reservoir’s morphological and

hydraulic characteristics, respectively: V (W ), Ar(W ), and Qout(W ), based on data provided by the

dam operating authority and the engineering report. The maximum outflow was estimated to ca.

0.26 · 106 m3 per day per culvert by the engineering report (ca. 3 m3 · s−1). The outflow relationship

in Fig. 7.9b is calculated as lined out in the dam model section, using the parametrization given in

Table 7.2.

The construction report estimates the reservoir’s end-life dead storage to 1.6 · 106 m3 after

30 years. An in-situ assessment in 2009 (18 years after dam construction) suggested that the

construction report’s estimate is too high; assuming a mean storage reduction of 0.053 · 106 m3 · a−1,

sedimentation would have reduced the storage capacity by approximately 1.0 · 106 m3 until 2009.

Referring to the dam’s original storage curve (Fig. 7.9a), the sediment intake would have led to

a sedimentation of parts of the culverts, which were not able to be observed in situ. Therefore,

storage reduction due to sedimentation is at first neglected, but should be regarded with respect to

the discussion of real-world results.

Surface Flow Data: For Wadi Ma’awil, surface flow data are available for Afi gauging station

(Fig. 7.10). The employed records comprise 24 years (years 1984 to 2007) and exhibit characteristics,

typical for arid dryland rivers. Figure 7.11 shows the flood frequency curve for Afi gauging station

which features a steep gradient, resulting in very high ratios of the annual peak flow and the

100-year and 500-year flood beyond 25 and 40, respectively. The frequency distribution of the peak

discharges is highly skewed, attributable to a high ratio of small to large events.

Gauging data with a temporal resolution of one hour are available for the years 1984 to 1995 and

since 1996 with a resolution of five minutes. Within the 24 years of observation, 83 runoff events

were observed. Six of 44 events from the years 1996 to 2007 can be fairly related to water level

recorder data of Ma’awil Dam. For five of six events, only peak dam water levels are available. A

reconstruction of total flow volumes at the dam site is only possible with stage recorder data which

is resolved in a timely manner. The 2007 event caused by cyclonic storm Gonu (event 06/06/07)

led to the highest observed peak flow rates (881 m3 · s−1) and highest flow volumes (15.156 · 106 m3)
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(a) View parallel to the longitudinal dam
axis with the upstream face on the

right-hand side. Mind the long,
gabion-enforced spillway crest.

(b) View of the downstream wadi with
coarser alluvial bed material, allowing

pronounced infiltration.

(c) One of the dam’s 10 culvert inlets. (d) Stage gauge.

Figure 7.8: Impressions of Ma’awil Dam (photos by Alexander Gerner, 2009).

at Afi station. Ma’awil Dam’s operational storage capacity was completely filled and the spillway

was activated. Outflow volumes of the dam are coarsely estimated to ca. 14 · 106 m3, using stage

recorder data and reservoir characteristics, delivering the stage dependent outflow.

It is important to mention that although timely-resolved stage recorder data are available for

event 06/06/07, the reconstruction of total retention and release of Ma’awil Dam—which would be

of superior interest for the quantification of losses between Afi gauging station and the dam—is

very uncertain. This is caused by the high hydraulic capacity of the spillway with a length of over

4 km. If the spillway is activated, the resolution of the recorded water levels allows merely for a

loose estimation of actual spillway overflow and, therefore, of the dam’s outflow balance. Moreover,

available stage recordings for the event ended before the dam’s storage was cleared.

Wadi Bani Kharus is gauged at the outlet of the mountains (Al Abyadh gauging station) and

32.3 km downstream at the coastal highway (station Wadi Bani Kharus at Highway), which permits

an event-based connection of flow data. Nevertheless, highly-resolved data were lacking due to the

fact that five-minute records are available as recently as 1997, which limits usable data unaffected
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7.2 Real-World Application of the Modeling System for an Arid Region

Table 7.2: Main properties of Ma’awil Dam (according to MAF, 1989 and MRMEWR, 2007).

Parameter Value

Dam type Gravel dam with asphalt concrete core

Dam crest height (m) 8.3

Dam crest length (m) 7,500 (including wing embankment)

Dam slope 2 : 1

Dam base width (m) 45.0

Design storage (106 m3) 10.0

Spillway type Broad-crested gabion weir

Spillway crest width (m) 5.0

Spillway crest length Ls (m) 4,040

Spillway crest elevation Hs (m a.s.l.) 59.00

Spillway discharge coefficient αs 1.350

Spillway design flood (m3 · s−1) 4,000 (0.5 · PMF)

Number of culverts M 10

Culvert type Circular ductile pipe

Culvert diameter Dc (m) 0.8

Culvert inlet area Ac (m2) π(0.5 ·Dc)2 = 0.50265

Culvert inlet axis elevations Hcm (m a.s.l.) 54.36, 54.07, 54.53, 54.75, 54.07, 54.53, 54.53, 54.53, 54.07, 55.20

Culvert discharge coefficient αc 2.726
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Figure 7.9: Morphological and hydraulic characteristics of Ma’awil Dam. (a) Storage volume V
and water table area Ar as a function of water level elevation W , and (b) dam outflow Qout as a
function of water level elevation W .
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Figure 7.10: Cross section of Wadi Ma’awil at Afi gauging station with the gauge in front (photo
by Alexander Gerner, 2009).
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Table 7.3: Mean monthly climate data of station Seeb near Airport, years 1990 to 2010.

Month Air

temperature

(°C)

Water vapor

pressure

(102 Pa)

Global

radiation

(106 J ·m2)

Wind speed

(knots)

January 20.7 15.6 15.5 4.8

February 22.0 16.4 19.6 4.9

March 24.8 17.8 22.9 5.1

April 29.4 18.5 26.8 5.3

May 33.9 20.0 28.7 5.4

June 35.0 26.2 28.4 5.5

July 34.0 30.7 25.6 5.5

August 32.0 31.7 24.8 5.3

September 31.0 28.0 24.0 4.7

October 29.2 22.7 21.5 4.4

November 25.2 19.6 17.9 4.2

December 22.3 18.0 15.7 4.3

by dam operation (dam constructed in 2004) to the years of 1997 to 2003 (with approximately

three events per annum). Gauging data of a least four flood events with a temporal resolution

of five minutes can be correlated by roughly validating travel times between the two gauging

stations. Additionally, the influence of lateral inflow can be excluded for these events by analyzing

event-related rainfall patterns.

Climate Data: Climate data required for evaporation modeling are taken from Seeb International

Airport station, located in the Batinah plain at 8.4 m a.s.l. at a distance of ca. 50 km east of the dam

site and ca. 3 km to the coast. Available station records comprise daily values of temperature T (t),

water vapor pressure e(t), global radiation G(t), and wind speed w(t) for the years 1990 to 2010

(Table 7.3). Thus, all relevant data for an event-related evaporation modeling with the Penman

model are available. Actual daily values are used for evaporation modeling. Typical modeled

event-related evaporation heights (Eq. 7.13) range from 3 to 10 mm · d−1, which usually causes

evaporation losses between only few to 25 % of retained flow volumes.

7.2.2 Parameter Sensitivity Analysis of the Integrated Modeling System

Before applying the modeling system for observed events in Wadi Ma’awil, the sensitivity of selected

process parameters is estimated. A synthetic input hydrograph is routed with the full model

under varied parameters and the results are subsequently compared. Each single parameter is

altered ±30 % for each model run, whereas the remaining parameters are held to their respective

initial values. The parameters of the dam simulation sub-model can be estimated with certainty

by referring to the construction report of the dam and are excluded from the sensitivity analysis.

Sensitivity is, therefore, checked for parameters referring to the hydrodynamic and infiltration

models for the upstream and the downstream reaches. Parameters included in the analysis are

indicated with a cross in Table 7.1.

Channel slope is assumed to be homogeneous for the whole wadi reach and is set to S0 = 0.00660.

The initial channel roughness was estimated to KSt = 30 m
1
3 · s−1 during an in-situ assessment of

wadi bed material in 2009, using tabulated values (Chow, 1959). The initial parameters of the

Kostiakov-Lewis infiltration model (ka = 0.8640 and kk = 7.7433 · 10−5 m · s−ka) are taken from a
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Upstream KW model Downstream ZI/KW modelDam simulation model

Inflow volume 
0.720 
100 %

Flow volume 
0.361 (0.283–0.388) 

50.1 % (39.3 %–53.9 %)

Flow volume 
0.257 (0.250–0.282) 

35.7 % (34.7 %–39.2 %)

Transmission losses 
0.355 (0.435–0.328) 

49.3 % (60.4 %–45.6 %)

Transmission losses 
0.257 (0.282–0.250) 

35.7 % (39.2 %–34.7 %)

Evaporation losses 
0.100 (0.101–0.099) 

13.9 % (14.0 %–13.8 %)

Losses to the sea 
–

Inflow at 
Afi gauging 

station

Figure 7.12: Results of the parameter sensitivity analysis. Initial values and mean upper and
lower values of flow volumes and transmission/evaporation losses for a variation of selected process
parameters of ±30 %. The values are given in 106 m3. The percentages relate the absolute values to
the total inflow volume at Afi gauging station.

model fitted for infiltrometry tests in Wadi Ahin (Haimerl and Zunic, 2002), located 125 km west of

Wadi Ma’awil (cf. Section 6.1.1.1), whereas the steady-state infiltration rate kc is set to an initial

value of 2.3148 · 10−5 m · s−1, which equals 2.0 m · d−1 and is, therefore, covered by the discussed

infiltrometry data.

Spatial and temporal discretization of the upstream KW routing model are set to ∆x = 50 m

and ∆t = 1 s, respectively. The time step of the dam simulation model is set to ∆t = 60 s. Further

parametrization of the dam simulation model is carried out as outlined in the preceding section.

The coupled ZI/KW downstream routing model is used for modeling culvert release flow. The

spillway is not activated under the considered inflow conditions. The ZI/KW model is discretized

with ∆x = 100 m in space and with an adaptive time step for the ZI component, and ∆t = 1 s for

the KW component. To circumvent numerical oscillations, the upstream KW model is supplied

with a low virtual baseflow rate of 0.1 m3 · s−1. Only flow above this level is taken into account for

transmission loss modeling.

A synthetic triangular flow hydrograph of a two-hour duration and with a peak value of

200 m3 · s−1 (peak return period of ca. 2.5 years and a flow volume of 0.720 · 106 m3) is implemented

as the upper boundary condition at Afi gauging station and routed with the full modeling system.

Mean climate data of Seeb station for the month of July are employed for evaporation modeling.

Process parameter sensitivity is estimated with respect to flow arrival times, maximum extent of the

infiltrating flow domain, transmission losses, and evaporation volumes. Table 7.4 and Figure 7.12

show the results of the sensitivity analysis.

All investigated parameters turned out to be sensitive to a certain degree. Channel roughness

(coefficient KSt) has the strongest impact on arrival times, followed by bed slope S0. Increased

slope and decreased channel roughness (higher values of KSt) cause a faster advance of the flow. In

contrast, the maximum extent of the infiltrating flow is only weakly controlled by channel slope and

roughness. Increased slope and decreased roughness lead to a slight extension of the infiltrating

flow domain. The final position of the flow domain is foremost determined by the parameters of the

infiltration model, where ka is dominant. For smaller values of ka, less water infiltrates and the

flow persists over a longer distance, and vice versa. The furthest extent is reached for ka set to

0.6048 (−30 %) with the flow at station +31,800 m (sea at +34,100 m).
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Table 7.4: Results of the parameter sensitivity analysis of the full modeling system under a total
inflow of 0.720 · 106m3 at gauging station Afi near Afi, Wadi Ma’awil.

∆

(%)

S0 KSt

(m
1
3 · s−1)

ka kk

(10−5

m·s−ka )

kc

(10−5

m · s−1)

Mean

value

Upper parameter value +30 0.0086 39.0 1.123 10.0663 3.0092 −
Initial parameter value ±0 0.0066 30.0 0.864 7.7433 2.3148 −
Lower parameter value −30 0.0046 21.0 0.605 5.4203 1.6204 −
Arrival time +30 2.1 2.0 ∞ 2.3 2.3 2.2

at Ma’awil Dam (+19,700 m) ±0 2.3 2.3 2.3 2.3 2.3 2.3

(h) −30 2.5 2.8 2.2 2.3 2.3 2.4

Maximum extent +30 24,900 25,200 17,100 23,700 23,800 22,980

of infiltrating flow ±0 24,700 24,700 24,700 24,700 24,700 24,700

(m) −30 24,300 24,000 31,800 26,200 26,800 26,620

Arrival time at +30 8.8 11.2 0.1 9.8 9.8 8.0

maximum extent of flow ±0 9.5 9.5 9.5 9.5 9.5 9.5

(days) −30 8.5 10.2 9.0 9.1 9.9 9.4

Transmission losses +30 0.343 0.333 0.719 0.390 0.390 0.435

Afi–Ma’awil Dam ±0 0.355 0.355 0.355 0.355 0.355 0.355

(106 m3) −30 0.374 0.392 0.237 0.319 0.318 0.328

Upstream Inflow +30 0.376 0.386 0.000 0.326 0.327 0.283

KW Ma’awil Dam ±0 0.361 0.361 0.361 0.361 0.361 0.361

model (106 m3) −30 0.341 0.323 0.478 0.397 0.398 0.388

Relative mass +30 0.194 0.141 0.139 0.488 0.439 0.280

balance error ±0 0.560 0.560 0.560 0.560 0.560 0.560

(% of total inflow) −30 0.680 0.641 0.635 0.489 0.598 0.609

Evaporation +30 0.100 0.101 − 0.098 0.098 0.099

Ma’awil Dam ±0 0.100 0.100 0.100 0.100 0.100 0.100

(106 m3) −30 0.099 0.098 0.104 0.101 0.101 0.101

Dam Outflow +30 0.269 0.281 − 0.225 0.225 0.250

simulation Ma’awil Dam ±0 0.257 0.257 0.257 0.257 0.257 0.257

model (106 m3) −30 0.238 0.221 0.369 0.292 0.292 0.282

Relative mass +30 0.888 0.639 − 0.569 0.549 0.661

balance error ±0 0.556 0.556 0.556 0.556 0.556 0.556

(% of total inflow) −30 0.646 0.706 0.677 0.630 0.563 0.644

Transmission losses +30 0.269 0.281 − 0.225 0.225 0.250

Ma’awil Dam–sea ±0 0.257 0.257 0.257 0.257 0.257 0.257

Down- (106 m3) −30 0.238 0.221 0.369 0.292 0.292 0.282

stream Losses to +30 0.000 0.000 − 0.000 0.000 0.000

coupled the sea ±0 0.000 0.000 0.000 0.000 0.000 0.000

ZI/KW (106 m3) −30 0.000 0.000 0.000 0.000 0.000 0.000

model Relative mass +30 0.057 0.058 − 0.067 0.067 0.062

balance error ±0 0.043 0.043 0.043 0.043 0.043 0.043

(% of total inflow) −30 0.042 0.057 0.026 0.095 0.091 0.062

Overall relative error +30 1.025 0.723 0.139 0.990 1.055 0.786

of full modeling system ±0 1.159 1.159 1.159 1.159 1.159 1.159

(% of total inflow) −30 1.368 1.290 1.338 1.025 1.252 1.255
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7 Flash Flood Routing under Transmission Losses and Dam Operation

Total transmission losses are influenced most strongly by the parameters of the infiltration model.

The parameter ka again shows the highest sensitivity. Looking at Eq. (6.1), it is obvious that, if kk

approaches zero, the influence of ka disappears and actual infiltration rates equal the steady-state

infiltration rate kc. In turn, a value of ka = 1 also leads to a constant modeled infiltration rate.

Therefore, the sensitivity of the infiltration model parameters changes depending on their initial

values. For ka set to 1.1232 (+30 %), infiltration increases from the start. This leads to a total

consumption of surface flow before Ma’awil Dam is reached. The flow is consumed by infiltration

after ca. 2.5 h and reaches station +17,100 m for this specific model run, whereas Ma’awil Dam is

located at station +19,700 m. This result of the upstream routing sub-model is affected by some

uncertainties due to a transmission loss quota of 100 %. These uncertainties are a consequence of

neglecting infiltration in the momentum equation of the incorporated kinematic wave equations

and their numerical solution during the advance phase of the flow.

Although transmission losses and arrival times are comparably variable, evaporation volumes

simulated by the dam model only slightly differ for the considered scenarios. Besides the climatic

forcing, evaporation is dependent on the development of the dam water level over time. Since

outflow rates of the dam are low compared with inflow rates, evaporation is almost completely

related to the maximum water level elevation caused by an event, which consequently determines

how long the evaporating water table persists. Due to the positive dependency of water level area

and water level elevation, evaporation volumes are slightly higher for higher inflow volumes, and vice

versa. For the scenarios incorporated in the sensitivity analysis, the relative portion of evaporation

is around 14 % of total inflow volume. This—in comparison with evaporation estimates of observed

events (cf. Strobl and Haimerl, 1999)—rather high value is caused by the moderate dam inflow

volumes and the pronounced forcing of the employed climate data from the month of July.

For the downstream wadi section, all available water infiltrates before reaching the sea (station

+34,100 m) for every investigated parameter combination due to slow culvert release. Taking into

account the similar dam evaporation for all scenarios, higher upstream transmission losses cause

lower dam inflows and, therefore, lower downstream transmission losses. This leads to an only

seemingly contradictory influence of parameter variations on transmission losses for the upstream

and the downstream wadi sections. The maximum extent of the flow domain is typically reached

after a couple of days, which is the case if total infiltration rates equal inflow rates for the wadi

downstream of the dam. Generally, higher inflow rates lead to a faster advance of the flow. The

incorporated ZI/KW model for routing the dam culvert outflow is capable of accurately portraying

such weak process dynamics in the initially dry wadi. This is reflected in an exact solution for the

extending flow domain together with very small mass balance errors.

The overall relative mass balance errors in Table 7.4 are calculated for every investigated

parameter combination by comparing the sum of transmission losses upstream and downstream

of the dam, dam evaporation, as well as losses to the sea with the total inflow of 0.720 · 106 m3.

The errors range between 0.139 % and 1.368 % for the investigated parameter variations. This

yields the full model’s mean relative mass balance error to be ca. 1.1 % of total inflow. Looking at

the relative errors of the incorporated sub-models, it is obvious that all models perform well with

respect to mass conservation. The downstream ZI/KW model features the lowest mass balance

errors, which is supported by the advance model’s analytical character. The errors of the ZI/KW

model range between 0.026 % and 0.095 % of total inflow. The KW model for the upstream wadi

reaches causes mass balance errors between 0.139 % and 0.680 %, which is a consequence of its
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7.2 Real-World Application of the Modeling System for an Arid Region

approximate numerical model solution. The dam simulation model shows slightly higher deviations

with mean errors between 0.549 % and 0.888 %. These errors mainly emerge from the iterative

solution of the dam retention equation.

7.2.3 Optimization-Based Process Parameter Estimation

The KW routing model is now applied for simulating flood wave movement and transmission losses

for the westerly adjacent, morphologically similar, and well-monitored catchment of Wadi Bani

Kharus (cf. Figs. 7.4 and 7.7b) for events of the period prior the construction of Bani Kharus Dam

in the year 2004. This is performed in terms of an inverse modeling in order to obtain a robust

estimate of wadi channel roughness and infiltration parameters, which can then be adopted for flow

simulations in Wadi Ma’awil. Channel slope and cross-sectional profiles are estimated as outlined

previously. The comparably pronounced slope of � 0.001 and the missing weakening influence of

dam operation on flow dynamics make the KW model applicable for the considered wadi reach

between the stations Al Abyadh and Bani Kharus at Highway (Ponce, 1991). The spatial and

temporal discretization of the routing model are set to ∆x = 50 m and ∆t = 1 s, respectively. As

for the sensitivity analysis, the numerical KW model is charged with a very low initial base flow

rate of 0.1 m3 · s−1 to impede numerical oscillations.

The employed KW model is calibrated for one of the available four events (03/27/97, cf.

Table 7.5) with respect to channel roughness KSt (according to Manning-Strickler) and Kostiakov-

Lewis parameters ka, kk, and kc. Regarding flow volumes and peak flow rates, the smallest event is

chosen for calibration to challenge the model’s extrapolation ability in the subsequent validation.

Calibration is performed simultaneously for the four considered parameters using the CMA-ES

methodology, an evolutionary-strategy optimization technique based on covariance matrix adaption

(Hansen, 2006). The root-mean-square error (RMSE), calculated from the simulated and the

gauged flow hydrograph at the highway station, is used as a performance criterion for the CMA-ES

algorithm:

RMSE =

√√√√√
O∑
1

(Qobs −Qsim)
2

O
(7.18)

where Qobs(t) and Qsim(t): observed and simulated flow at a specific station x [L3T−1]; and

O: number of flow observations [−].

Furthermore, the Nash-Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970) is used to

evaluate model quality, defined by

NSE = 1−

O∑
1

(Qobs −Qsim)
2

O∑
1

(
Qobs −Qobs

)2
(7.19)

where Qobs(t): mean value of observed flow at a specific station x [L3T−1].

Roughness and infiltration parameters are calibrated to K = 26.67 m
1
3 · s−1, ka = 0.5406,

kk = 9.9980 · 10−4 m · s−ka , and kc = 5.5198 · 10−7 m·s−1. The calibrated value of the roughness

coefficient coincides with a coarse bed material and might be an indicator of strong sediment

transport processes. A NSE of 0.9719 indicates a nearly perfect convergence of modeled and gauged
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Figure 7.13: Modeling results of the kinematic wave flood routing model for Wadi Bani Kharus.
Left column: calibration event 03/27/97. Right column: validation event 03/26/97. (a) Flow
hydrographs at different channel locations; (b) infiltration rates over time at different channel
locations; (c) cumulative infiltration volumes over time at different channel locations; (d) cumulative
infiltration volumes over time for the whole channel reach Abyadh–sea.

flow, which can also be seen from Fig. 7.13a, left column, where observed and modeled flow nicely

match at station Bani Kharus at Highway. For the calibration event, flow is consumed by infiltration

ca. 11 h after the arrival of the flow at the highway station, which is reflected by the respective

graphs of the infiltration rate (b) and the cumulative infiltration volume over time (c). Due to

persisting inflow to the model domain, water still infiltrates in the more upstream channel sections,

which can be seen from the graph of infiltration volumes over time for the whole channel (d).

Observed transmission losses are just slightly underestimated by 0.8 % and the flow arrival time at

the highway station is overestimated by 10 min (cf. Table 7.5). Furthermore, peak flow rates are

accurately modeled (overestimation of 5.8 %).

Validation is carried out for three events of the year 1997 (03/26/97, 03/30/97a, and 03/30/97b).

Table 7.5 summarizes the main results of the validation model runs. Graphical results are shown
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7.2 Real-World Application of the Modeling System for an Arid Region

Table 7.5: Overview of calibration and validation results of the kinematic wave flood routing model
for Wadi Bani Kharus between stations Al Abyadh and Bani Kharus at Highway (TL: transmission
losses; calibration event: 03/27/97; times are rounded to five-minute increments).

Peak flow date at Abyadh

03/26/97 03/27/97 03/30/97a 03/30/97b

NSE at highway 0.4373 0.9719 −4.1332 0.4994

RMSE at highway (m3 · s−1) 2.6001 0.2819 8.1391 1.6983

Inflow volume at Abyadh (106 m3) 1.8415 0.7073 1.1227 1.2868

Flow volume observed at highway (106 m3) 0.2422 0.0887 0.1689 0.1180

Flow volume modeled at highway (106 m3) 0.2089 0.0943 0.3508 0.1631

Observed TL Abyadh–highway (% of total inflow) 86.8 87.5 85.0 90.8

Modeled TL Abyadh–highway (% of total inflow) 88.7 86.7 68.8 87.3

Observed peak flow at highway (m3 · s−1) 13.2 5.2 10.9 7.6

Modeled peak flow at highway (m3 · s−1) 11.8 5.5 30.4 9.3

Arrival time lag modeled–observed at highway (min) −15 +10 +10 +10

exemplarily for event 03/26/97 in the right column of Fig. 7.13. With a peak flow rate of 190 m3 ·s−1—

compared with less than 50 m3 · s−1 for the calibration event—the physically-based routing model

is operated in its extrapolation domain. A NSE of 0.4373 usually indicates that the model only

acceptably simulates the flow observations. Nevertheless, flow volume and peak rate observations

at the highway station (0.2422 · 106 m3 and 13.2 m3 · s−1) are adequately met by the model

(0.2089 · 106 m3 and 11.8 m3 · s−1). The arrival time lag between observation and model output is

15 min. Additionally, the dynamics of the hydrograph’s falling limb are soundly matched. This shows

that the rather low NSE is mainly caused by the phase differences of modeled and observed rising

hydrograph values. Moreover, the NSE is not calculated over the whole simulation period but only

starting from the onset of the flow, whereas including the preceding zero values would apparently

improve the NSE. For flash flood routing under intense transmission losses, such validation results

are very encouraging. It should be pointed out that despite the fact that total infiltration volumes

are higher compared with the calibration event (mainly due to broader flow widths), arrival times

of the infiltrating flow are similar (cf. Fig. 7.13). This coincides, e.g., with the findings of Mudd

(2006).

Validation events 03/30/97a and 03/30/97b both belong to a single event which features two

independent peaks and extends over two days. Results are again presented in Table 7.5. The model

validation for event 03/30/97a leads to a rather low NSE of −4.1332 due to flow volumes and,

therefore, transmission losses are not adequately modeled. Transmission losses are underestimated

by 16.2 % and the peak flow rate is overestimated by almost a factor of three. Nevertheless,

dynamics of the flow at the highway station are acceptably met, which can be seen from a slight

overestimation of the flow arrival time of 10 min. In contrast, event 03/30/97b is, again, quite

soundly modeled with respect to volume, peak flow, and arrival time at the highway station

(NSE = 0.4994, underestimation of transmission losses of 3.5 %, overestimation of peak flow of

22.4 %, arrival time lag of 10 min).

With the exception of event 03/30/97a, modeled transmission losses and flow dynamics nicely

match the observations. For the investigated events, flow volumes are comparably low and, vice

versa, transmission losses are high, which causes mass balance errors of slightly over 1 %. Modeled

transmission losses range between 68.8 % and 88.7 % of total inflow, whereas observed transmission

losses range between 85.0 % and 90.8 %. Nevertheless, the validation results suggest that the
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7 Flash Flood Routing under Transmission Losses and Dam Operation

calibrated set of roughness coefficient and infiltration parameters delivers a robust model para-

metrization, which is representative for a realistic range of event magnitudes and characteristics.

The derived parameter set can, therefore, be transferred to the neighboring catchment of Wadi

Ma’awil, for which this parametrization is subsequently validated.

7.2.4 Model Application for Wadi Ma’awil

The presented wadi flow and dam simulation model—consisting of the hydrodynamic models for

the upstream and the downstream wadi reaches and the dam simulation model—is now applied

for the most extreme runoff event ever observed in the Batinah area. The flood event caused

by cyclonic storm Gonu in June 2007 led to the highest observed flows at Afi gauging station.

Flow observations with a temporal resolution of five minutes are used as the upper boundary

condition for the upstream KW model. Cross-sectional and longitudinal data are extracted from

the ASTER DEM as outlined previously. Roughness and infiltration parameters are transferred

from the neighboring catchment of Wadi Bani Kharus as shown in the preceding section. This also

applies for the downstream ZI/KW routing model.

Spatial and temporal discretization of the upstream and downstream routing models are again

set to ∆x = 50 m and ∆t = 1 s, respectively. An initial flow rate of 0.1 m3 · s−1 is applied for the

upstream KW model. The temporal resolution is adaptive for the downstream ZI component. The

dam model’s outflow is used as an upper boundary condition for the downstream ZI/KW model.

The advancing culvert outflow is modeled with the ZI component, whereas dam outflow influenced

by spillway release is modeled with the KW equations. The same applies for the recession of the

flow domain. The parameters of the dam retention model are adopted from the dam engineering

report (Table 7.2). Evaporation is calculated using actual climate data of Seeb station. The time

step of the dam simulation model is set to ∆t = 60 s.

The results of the upstream hydrodynamic model are shown in Fig. 7.14. The pronounced

dynamics of this event are reflected in a surging flow with a modeled arrival time of the strongly

rising limb of ca. 1.5 h and a peak propagation time of ca. 1 h between Afi gauging station (+0,000 m)

and Ma’awil Dam (+19,700 m). Due to generally high flow volumes and low infiltration opportunity

times, modeled transmission loss quotas are comparably low for the upper wadi section. The inflow

volume to the dam is modeled to 14.299 · 106 m3, which is 94.3 % of total inflow to the model

domain (15.156 · 106 m3). Transmission losses in the upstream section are modeled to 0.813 · 106 m3,

which is 5.4 % of total inflow. As already discussed in the error analysis section, the given values

are affected by small mass balance errors (<0.3 % of total inflow volume). Flow is significantly

higher than zero after the start of the simulation at 06:00 UTC. Therefore, infiltration starts right

away and—together with increasing flow widths—initially consumes a large portion of the flow.

Nevertheless, total flow volumes are low in the first three hours of the event, which limits infiltration

and causes only slowly rising total infiltration volumes (Fig. 7.14f).

Figure 7.15 shows the results of the consecutive dam simulation model. For the investigated

event, the total outflow of the dam is modeled to 14.166 · 106 m3 (93.5 % of total inflow volume) and

total evaporation to 0.133 · 106 m3 (0.9 % of total inflow volume). Again, the values are affected by

small mass balance errors (<0.1 % of total inflow volume). Since the inflow of Ma’awil Dam is not

gauged, stage recorder data are used for model validation. For this purpose, the modeled and the

recorded water level development over time are compared. Stage recorder data are available in form
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Figure 7.14: Modeling results of the upstream kinematic wave flood routing model for Wadi
Ma’awil, Afi station to Ma’awil Dam, event 06/06/07. (a) Flow hydrographs at different channel
locations, as well as inflow hydrograph to Ma’awil Dam; (b) infiltration rates over time at different
channel locations; (c) cumulative infiltration volumes over time at different channel locations;
(d) cumulative infiltration volumes over time for every spatial increment of the channel; (e) cumulative
infiltration volumes at the end of the simulation over the channel reach; (f) cumulative infiltration
volumes over time for the channel reach Afi–dam.

of an analog limnigraph sheet which was digitized by hand. The peak inflow rate of 853 m3 · s−1

is retained to 237 m3 · s−1 in the dam outflow. Modeled peak water level is 59.11 m, whereas the

recorded peak is 59.09 m. Modeled outflow continues for over eight days until the dam is cleared.

Unfortunately, the available limnigraph sheet ends before the dam is empty. Due to the very

high hydraulic capacity of the spillway, water level recordings above 59 m a.s.l. (elevation of the

spillway crest) only allow for a coarse estimation of the dam outflow over time and, therefore,

outflow volumes. Nevertheless, the recorded limnigraph is quite adequately matched by the dam

simulation model (Fig. 7.15c) and the initial estimate of the event-related outflow volume of ca.

14 · 106 m3 can be validated (cf. Section 7.2.1). This supports not only the chosen parametrization

of the dam model, but foremost the reasonable estimates of inflow volumes and inflow dynamics,

delivered by the upstream KW model. These findings effectively validate the routing and infiltration

parameters of the upstream KW model, which were calibrated for the neighboring catchment of

Wadi Bani Kharus.

Furthermore, the reservoir simulation results confirm that the initial assumption that only a

small amount of the storage volume is ineffective for flood retention due to sedimentation is feasible,

since the minimum recorded dam water level is below 54 m a.s.l. which renders the maximum
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Figure 7.15: Results of the dam simulation model for Ma’awil Dam, event 06/06/07. (a) Inflow
and outflow over time; (b) development of retained flow volume over time; and (c) comparison of
the modeled and recorded water level over time.

possible dead storage volume to be less than 0.03 · 106 m3. This is only 0.3 % of the design storage,

according to dam morphology data (cf. Fig. 7.9a) and, therefore, does not significantly impact

the results presented herein. However, if an operational application of the modeling system is

intended, a reassessment of dam morphology data, including a dead storage estimation, is strongly

recommended.

Figure 7.16 shows the results of the downstream coupled ZI/KW model. For the investigated

extreme event, a significant portion of flow is lost to the sea. Losses to the sea are modeled to

11.762 · 106 m3 (77.6 % of total inflow volume) and transmission losses to 2.403 · 106 m3 (15.9 %

of total inflow volume). However, the initial advance of the flow domain towards the sea is a

consequence of culvert release. The sea is reached at ca. 20:00 UTC on 06/06/07 (Fig. 7.16a). This

advance is controlled by the nonlinear interaction of flow dynamics and infiltration, which in turn

affects flow volumes and momentum, and it is therefore possible for it to be adequately modeled by

the proposed analytical ZI model component. Less extreme events would feature weaker downstream

dynamics, which would pose a stronger indication for the ZI advance model. Nevertheless, the

investigated event is the only one with sufficient data available.

The spillway is activated between 20:25 UTC on 06/06/07 and 04:15 UTC on 06/07/07, leading

to a very dynamic outflow which is routed with the KW component. The remaining culvert outflow

persists over days and, therefore, establishes a major portion of the transmission losses (ca. 85 %).

As seen in Fig. 7.16c, the infiltrating flow domain starts receding in the upstream direction after a

certain time. This happens when inflow rates are lower than infiltration rates. Flow and, therefore,
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7.2 Real-World Application of the Modeling System for an Arid Region
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Figure 7.16: Modeling results of the downstream coupled zero-inertia/kinematic wave hydrody-
namic model for Wadi Ma’awil, Ma’awil Dam to the Sea of Oman, event 06/06/07. (a) Outflow
hydrograph of Ma’awil Dam and flow hydrographs at different channel locations; (b) infiltration
rates over time at different channel locations; (c) cumulative infiltration volumes over time at
different channel locations; (d) cumulative infiltration volumes over time for every spatial increment
of the channel; (e) cumulative infiltration volumes at the end of the simulation over the channel
reach; (f) cumulative infiltration volumes over time for the channel reach dam–sea.

infiltration ceases at a specific point, which shifts upstream over time. According to the results of

the incorporated KW model, recession begins close to the coast after ca. 6.5 days and lasts for two

days until infiltration ceases directly below the dam. Advance and recession trajectories calculated

with the ZI/KW model are shown in Fig. 7.17.

The presented modeling results for the downstream reach are affected by very small mass balance

errors (less than 0.01 % of total inflow volume). Despite the dynamic character of the investigated

event—with spillway operation and losses to the sea—relative errors are not higher than for the

scenarios investigated in the sensitivity analysis. This is mainly due to higher total flow volumes

which leads to lower transmission loss quotas and, therefore, lower relative mass balance errors.

Figure 7.18 shows the overall volume balance of the investigated event. The full model’s total

mass balance error is ca. 0.3 % of total inflow volume and is calculated by comparing the inflow

at Afi to the sum of transmission losses, evaporation losses, and losses to the sea. Although total

transmission loss quotas are comparably low (21.3 % of total inflow), absolute values (3.216 · 106 m3)

are high compared with flow volumes of other gauged events.
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7 Flash Flood Routing under Transmission Losses and Dam Operation
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Figure 7.17: Advance and recession trajectories calculated with the downstream ZI/KW model
for Wadi Ma’awil, Ma’awil Dam to the Sea of Oman, event 06/06/07.

Upstream KW model Downstream ZI/KW modelDam simulation model

Inflow volume 
15.156 
100 %

Flow volume 
14.299 
94.3 %

Flow volume 
14.166 
93.5 %

Transmission losses 
0.813
5.4 %

Transmission losses 
2.403 
15.9 %

Evaporation losses 
0.133 
0.9 %
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Figure 7.18: Modeling results of the wadi flow and dam simulation model for Wadi Ma’awil, event
06/06/07. The absolute values are given in 106 m3. The percentages relate the absolute values to
the total inflow volume at Afi station.

7.3 Summary

This chapter presented a comprehensive and process-oriented modeling system for routing ephemeral

river flow under the influence of a groundwater recharge dam. A special focus of model development

was set on the representation of intricate process dynamics under significant transmission losses.

It was possible to soundly model flow and infiltration dynamics downstream of the recharge dam

by implementing an analytical ZI model for the flow advance phase, as derived in Section 5.1 and

tested in Section 6.1. Flow under zero-advance conditions and the successive flow recession was

considered as quasi-steady flow with a rectified water surface profile (i.e., ∂h
∂x = 0) and it was,

therefore, possible to model them successfully with a kinematic wave approach.

Besides accounting for dam release flow, the proposed integrated modeling framework holds

modeling components for simulating both the dam inflow dynamics and for dam operation. Dam

operation was portrayed with a robust reservoir routing approach, based on an iterative solution

of the storage equation coupled with the nonlinear dam outflow relationships and a Penman

evaporation model. The flow upstream of the dam was simulated with a numerical kinematic wave
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model. This approach was chosen since the KW model is appropriate for modeling flow on steep

slopes, which is the case for the study area. As applies for the wadi reaches downstream of the dam,

the upstream hydrodynamic model was iteratively coupled with an infiltration model to account for

the transient interaction of surface flow and channel transmission losses.

Infiltration was modeled with the empirical Kostiakov-Lewis formula. Although any arbitrary

functional relationship for quantifying transient infiltration could be used within the developed

modeling framework, an empirical approach for infiltration modeling was preferred. Infiltration on

alluvial wadi bed material is strongly driven by gravitational force and influenced by macropore

effects. On the other hand, comprehensive infiltrometry data were available for the study area,

which essentially indicated that (a) infiltration is highly variable in space and time, and (b) initial

infiltration rates are very pronounced with typical rates up to some ten meters per day.

The full modeling system was applied at first for Wadi Ma’awil in order to carry out a

comprehensive sensitivity and error analysis. The sensitivity of ±30 % variations of channel slope,

roughness coefficient, and infiltration model parameters on transmission losses, flow dynamics,

and dam evaporation was evaluated. Total transmission losses were influenced by the infiltration

parameters most strongly. Channel slope and channel roughness had a major influence on flow

dynamics with respect to arrival times, whereas the final extents of the infiltrating flow domain

were again controlled most strongly by the infiltration parameters. The influence of parameter

variations on dam evaporation was small compared to flow and transmission loss volumes. The

overall mean relative mass balance error of the full modeling system was only around 1.1 %. The

downstream hydrodynamic modeling component—which employed the analytical ZI advance model—

featured extraordinary small mass balance errors, being at least one order of magnitude below the

errors introduced by the numerical model components (i.e., the numerical KW model for upstream

hydrodynamics and the reservoir routing model).

Consecutively, infiltration parameters and channel roughness were calibrated for Wadi Bani

Kharus, employing an initial parametrization of the Kostiakov-Lewis model which was inferred from

infiltrometry data. Data of a flash flood event which were obtained at an upstream (Al Abyadh)

and a downstream gauge (highway station) were, therefore, used. Model calibration yielded a nearly

perfect match of the observed and modeled hydrographs at the downstream gauge (NSE > 0.97).

A subsequent validation proved the suitability of the modeling system for accurately predicting

transmission losses along a natural wadi reach. The mean error between observed and modeled

transmission loss volumes was around 5 %, which is an excellent result regarding the underlying

high transmission loss quotas, being beyond 80 % of inflow volumes. Furthermore, the model turned

out to deliver feasible results for peak flow rates and arrival times of the flood wave. The mean

arrival time error at the downstream station was below 5 minutes and the mean relative peak error

was around 35 %, which is a fairly good result when taking into account the initially high inflow

rates to the wadi section.

A subsequent application of the modeling system for the most intense observed natural flood

event in Wadi Ma’awil, caused by cyclone Gonu, was carried out, employing infiltration and

roughness parameters which were calibrated for the neighboring catchment of Wadi Bani Kharus.

The dam parametrization was taken from the dam construction report without modification, and

climate data were obtained from the Seeb Airport data set. An observed hydrograph at Afi

was routed using the parametrized full modeling system. For validation, the simulated temporal

development of the dam water level was compared with data obtained from a limnigraph sheet
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7 Flash Flood Routing under Transmission Losses and Dam Operation

Table 7.6: Comparison of absolute and relative flow volumes, transmission losses, and evaporation
losses for the results of the sensitivity analysis (mean values from 11 simulations) and the Gonu
simulation.

Mean values from the

sensitivity analysis

Values from the Gonu

simulations

Relative

values

(%)

Absolute

values

(106 m3)

Relative

values

(%)

Absolute

values

(106 m3)

Upstream inflow volume 100.0 0.720 100.0 15.156

Upstream transmission losses 49.3 0.355 5.4 0.813

Dam inflow volume 50.1 0.361 94.3 14.299

Evaporation losses 13.9 0.100 0.9 0.133

Dam outflow volume 35.7 0.257 93.5 14.166

Downstream transmission losses 35.7 0.257 15.9 2.403

Losses to the sea 0.0 0.000 77.6 11.762

Total transmission losses 85.0 0.612 21.3 3.216

Total mass balance error 1.1 0.008 0.3 0.045

which was written during the event. The modeled water level development matched the observations

very closely with respect to process dynamics and the peak water level, which was overestimated by

only 2 cm. Unfortunately, missing stage recordings during dam depletion precluded a comparison of

modeled and observed flow volumes. However, the accurate match of dam water level dynamics

implicitly validated the upstream model parametrization (i.e., infiltration model parameters and

roughness coefficient), assuming the dam parametrization obtained from the dam construction

report to be valid.

Finally, it is interesting to compare the Gonu results to those of the sensitivity analysis with

respect to absolute and relative flow volumes, transmission losses, and evaporation losses. Table 7.6

summarizes the respective values. It was observed that relative transmission losses were low for

the Gonu event (around 20 % of the inflow volume of 15.156 · 106 m3) and high for the scenarios

investigated in the sensitivity analysis (85 % of 0.720 · 106 m3). However, absolute transmission

losses of the Gonu event doubled those of the sensitivity scenarios for the upstream reaches and

were ten times higher for the downstream reaches. These findings reflect that transmission losses

were limited by available inflow for the sensitivity analysis scenarios.

Despite the differences in the inflow volumes, absolute evaporation losses only slightly differed

(around 30 %) for the investigated inflow events. The reasons for this are that: (a) the applied

climatic forcing was quite similar (actual values of June 2006 for Gonu and mean July values of the

years 1990–2010 for the sensitivity analysis); (b) as a consequence of the comparably low hydraulic

capacity of the culvert outlets, the total operation time of the dam was always around 8–9 days for

both the Gonu event and the various inflow scenarios regarded in the sensitivity analysis; and (c) for

the Gonu event, a significant amount of water was released over the spillway, which significantly

depleted the volume of water available for a more decelerated culvert release. This, consequently,

led to a similar water level development for all investigated events, although the Gonu event caused

a higher maximum dam water level, which in the end led to slightly higher absolute evaporation

volumes.

120



Chapter 8

Summary and Conclusions

This thesis developed a process-oriented modeling system for estimating alluvial infiltration from

flash floods (so-called transmission losses) influenced by the operation of groundwater recharge

dams. Recharge dams amplify natural indirect recharge by (a) reducing flow rates in such a way

that ideally no surface flow is lost beyond a reach with good recharge properties (or to the sea),

and (b) by increasing both infiltration opportunity times and the wetted channel area. Therefore,

artificially increased indirect recharge can exceed natural recharge from wadis greatly (Strobl and

Haimerl, 1999; Bouwer, 2002; Haimerl, 2004; to name only a few). On the one hand, a sound

description of the highly nonlinear and intricate surface flow and infiltration processes is of interest

for planning and operating recharge dams with respect to available wadi reach length. On the other

hand, better insight into the spatiotemporal dynamics of transmission losses is of high importance

for assessing the regional water balance, which is, in turn, a prerequisite for planning any mitigation

strategies that aim at relieving the pressure from the natural water resources.

Under the conditions which are typically found in arid regions, surface flow is ephemeral and

transmission losses have to be assessed on an event-related temporal scale. A review of applicable

approaches for transmission loss estimation revealed the need of a surface-water based and process-

oriented approach if an event-specific assessment of transmission losses is indicated. Such process-

oriented approaches cover the surface flow processes by means of physically-based, hydrodynamic

models. Coming from the full hydrodynamic model, it was discussed which simplifications of the

Saint-Venant equations are applicable under the problem-specific conditions of infiltrating wadi

flow. It was outlined that the zero-inertia model poses a feasible process description for advancing

dam release flow downstream of groundwater recharge dams. It was further discussed that the

kinematic wave approximations are applicable under certain conditions.

The hydrodynamic model equations (full hydrodynamic, zero-inertia, kinematic wave) are

usually solved by approximate, numerical methods. With respect to modeling infiltrating wadi flow

on alluvial beds, it was outlined that applying numerical solution schemes to the governing flow

equations may be prone to failure due to:

. mass balance errors and stability issues, attributable to an inappropriate representation of

the flow variables’ gradients, particularly at the interface of the flow domain and the initially

dry channel bed;
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8 Summary and Conclusions

. the interaction of surface flow and subsurface processes, which requires the dynamic coupling

of modeling components (i.e., the surface flow model with an infiltration model) in a manner

that the natural interdependency of both processes is represented;

. the fact that the typically high transmission loss quotas add further errors to the mass and

the momentum balance if the surface–subsurface processes are not adequately portrayed.

Consequently, based mainly on previous work of Schmitz and Seus (1992) and Schmitz et al. (2002),

an analytical solution strategy for the zero-inertia equations was derived, essentially describing

flow in permeable nonprismatic open channels. Furthermore, the same mathematical concepts

were applied for deriving a model for overland flow on an inclined surface element. A subsequent

comprehensive and comparative analysis showed the advantages of the analytical approaches over

generally accepted numerical solutions in terms of mass conservation, an accurate portrayal of flow

dynamics, and computational efficiency.

Moreover, the analytical ZI open channel flow model proved its excellent applicability for

simulating infiltrating wadi flow with very high infiltration quotas (> 90 % of inflow volumes) under

almost zero-advance conditions, which was achieved by iteratively solving the involved nonlinear

equations with an adaptive time step at predefined channel locations. The analytical ZI model made

up one component of an integrated modeling framework, which was supplemented by hydrodynamic

models for describing wadi flow in the upper reaches, dam operation, as well as flow recession

downstream of a recharge dam. The full modeling system could be soundly calibrated and validated

and exposed low mass balance errors.

Assuming validity of the flow data used for calibration, three important properties of the

modeled infiltrating open channel flow were observed. First, the hydrographs tend to steepen in

the downstream direction, leading to a surging flow. This steepening tendency is amplified by

initially high transmission losses (calibrated initial infiltration rates were almost 10−3 m · s−1 or

86.4 m · d−1). Second, therefore, assuming a constant infiltration rate over time—as proposed by

numerous authors—will not necessarily lead to a satisfactory representation of hydrograph shape

under significant transmission losses. Third, mean modeled infiltration rates for typical event

durations (hours to days) were in the lower range or lower (10−6 to 10−5 m · s−1) than suggested by

infiltrometry testing (10−5 to 10−4 m · s−1). This is covered, e.g., by the findings of Wheater (2002),

who stated that observed transmission losses in ephemeral channels tend to actually be lower than

those inferred from infiltrometry tests.

The latter point clearly shows that using empirical infiltrometry data for transmission loss

modeling is problematic, even if the tremendous variability in the infiltrometry measurements could

be neglected. Compared to infiltration rates derived from infiltrometry tests, mean in-channel

infiltration tends to be different for several reasons:

. Pronounced flow dynamics lead to erosion and a reworking of wadi material which promotes

infiltration.

. During wave recession, sedimentation leads to clogging and, as a consequence, to a reduction

of infiltration rates.

. In-channel infiltration varies with changing driving gradients and, therefore, with changing

water levels.
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The listing illustrates that assuming event-independent and spatially invariant infiltration parameters

for transmission loss modeling—as employed herein (i.e., the same parameter set upstream and

downstream of a recharge dam)—introduces considerable uncertainties. Nevertheless, an event-

related calibration of an in-channel infiltration model seems to be more reasonable than just picking

an arbitrary or mean infiltration rate from infiltrometry testing, where observed infiltration rates may

span several orders of magnitudes in space and time. However, further event-related observations of

surface flow and transmission losses are urgently needed to cope with the aforementioned problems,

especially for the wadi section downstream of the investigated recharge dam, were virtually no

observation data were available for validating the modeled transmission losses.

Furthermore, as comprehensively reviewed by Tooth (2000), dryland rivers undergo a pronounced

morphological change, even on an event scale. Therefore, some further remarks have to be made on

the herein incorporated assumptions that the roughness coefficient, channel morphology, and bottom

slope are temporally invariant. Theoretically, an erosion–sedimentation model could be connected

with the methodology applied in this thesis in order to describe transient channel morphology, i.e.,

by accounting for a change in the cross-sectional profile functions. A further concern is posed by the

dependency of friction and the suspended load. Despite the fact that there are numerous studies

on suspended load transport dynamics in ephemeral rivers, the mutual relationship of friction and

sediment load often remains unclear beyond lab scale (e.g., Vanoni and Brooks, 1957; Martin-Vide

et al., 1999).

Moreover, in the absence of a friction law for unsteady flows, velocity, channel roughness,

channel geometry, and friction slope are commonly related using a steady flow formula, e.g., of

the Manning-Strickler type. Consequently, friction is portrayed with the help of an effective

parameter (i.e., the roughness coefficient) which only delivers a mean and, at best, event-specific

description of friction. Nevertheless, the herein presented modeling framework is intended to aid as

a prognosis tool. Recalling the tremendous uncertainties of the driving rainfall, the uncertainties

and inadequatenesses in the portrayal of ephemeral river morphology and friction are not the major

source of the model’s predictive uncertainty.

Despite the fact that the proposed modeling system was able to be successfully applied, the

imponderables of hydraulic modeling in arid environments became very clear. The major problem is

the lack of data, which strongly limits model calibration and validation; this is due to the rareness

of events together with sparse observation networks for precipitation and flow. Additionally, surface

and subsurface flow processes are strongly interconnected and very dynamic in space and time. All

available data should, therefore, be exploited thoroughly.
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Chapter 9

Outlook

The approaches developed in this thesis generally cover two aspects which are related to the urgent

need for fostering water resources management in the study region of Northern Oman: improving

water resources assessment (i.e., using the modeling system to estimate indirect groundwater

recharge) and, on the other hand, optimizing groundwater recharge. Both aspects need to be

regarded for mitigating the problems associated with the intense over-exploitation of the coastal

aquifer system in Oman’s Batinah plain.

9.1 The Modeling System for Improving Water Resources

Assessment

It is of very basic interest to improve the water resources assessment in the study region with

respect to gain a better status-quo estimation of the present situation, which should be the basis for

the planning and evaluation of any mitigation measures. In this light, the process-modeling strategy

proposed herein should be validated more comprehensively and—if needed—improved. Foremost,

this requires a sound assessment, collection, and verification of process-relevant data, including

. event-related wadi gauge data, preferably for a series of gauges;

. observations of the maximum extent of dam release flows;

. event-related rainfall data for validating flow data, preferably from radar measurements;

. wadi morphology data; and

. event-related reservoir data, including inflow, water level development, dam operation param-

eters, and sediment intake.

The aforementioned listing comprises data which are to a certain extent operationally collected by

the Omani authorities. However, the rareness and pronounced dynamics of flash flood events may

negatively affect data availability and quality. Therefore, data analyses should always be carried

out synoptically, employing all available information.

Beyond this, further research is required in order to improve the modeling of wadi flow dynamics

and recharge processes, and to account for uncertainties which affect the recharge assessment.
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Based on the experience gained through this study, four important areas which require further

investigation are evident:

. Accounting for the impact of uncertain process parameters (e.g., infiltration parameters and

channel roughness) and the probability distribution of the driving data (e.g., flow data and

climate data) on recharge estimates;

. the assessment and inclusion of typically changing wadi morphology and topology, especially

for smaller flood events with no distinct horizontal connection of the flow network;

. the investigation of the interdependency of event-related sediment balance, wadi morphology,

as well as their interactions with flow dynamics, emerging from changes in flowpaths, wadi

cross sections, and—finally—channel roughness and infiltration properties; and

. the more detailed assessment of surface-water related processes, which were not regarded in

this study, namely, storage and re-evaporation of already infiltrated water from the upper

alluvial layer.

Addressing the first point is a prerequisite if the recharge assessment should be accompanied by a

probability information (e.g., expected value of recharge as a function of the return period) which is

connected to an information on the validness of such estimates (e.g., in form of uncertainty bands).

During the last decade, statistical post-processors relying on Bayesian inference1 have become widely

used by hydrologists for such tasks (e.g., Krzysztofowic, 1999; Sikorska et al., 2012; Pokhrel et al.,

2012). Together with appropriate statistical sampling techniques, such as Markov chain Monte

Carlo (MCMC) methods, Bayesian methods are highly valuable for uncertainty modeling. However,

Bayesian inference needs prior information, i.e., observed transmission losses. Furthermore, such

methods are computationally demanding which often calls for high-performance computers.

Related to the second point, a potentially promising way to cope with changing morphology and

topology is to turn away from a static description of the channels towards a more abstract one which

is able to match the characteristic features of the very variable ephemeral flow patterns (Schick,

1988; Graf, 2002). Fractal approaches seem to be ideal for deriving a generally applicable model of

channel characteristics. A very comprehensive work on the self-organization of river networks and

their abstract description is provided by Iturbe and Rinaldo (1997). However, such morphological

models need to be supplemented with appropriate data, which can be provided, for example, by

remote-sensing satellites. For instance, Mett and Aufleger (2009) and Mett and Aufleger (2010)

recently presented a detailed methodology for deriving morphology data for Omani wadis from

various satellite products. The aforementioned authors are currently working on a very promising

approach to relate morphological changes to a specific flow energy of an occurred event, which may

allow the estimation of unobserved flow properties such as peak flow rates.

The third complex of issues has been subject to investigations for decades (e.g., Nomicos, 1956;

Vanoni and Brooks, 1957). However, the modeling of erosion and sediment transport is very

demanding and requires comprehensive data to feed most often empirically coined transport models.

Nevertheless, the proposed modeling framework would allow the inclusion of a sediment transport

model, which would only be reasonable with accompanying and cumbersome sediment monitoring

1 Based on Bayes’ theorem (Bayes, 1763), Bayesian inference allows the calculation of a posterior probability distribution
function (e.g., for event-related transmission losses) as a consequence of prior information, as observed transmission
losses for upstream inflows and a known or assumed distribution of infiltration parameters.
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(e.g., Martin-Vide et al., 1999; López-Tarazón et al., 2012). However, the channel-scale interactions

of bed roughness, flow properties, and sediment load are also an important field of future research.

The fourth point paramountly requires thorough field investigations (e.g., such as those carried

out by Haimerl, 2004) in order to evaluate a potential need for regarding such further processes.

Including appropriate modeling concepts within the existing modeling framework is possible but—of

course—is only justified if required data (e.g., on the antecedent wetness conditions) are available

for model calibration, validation, and operation.

9.2 The Modeling System for Optimizing Groundwater Re-

charge

In the study region, the predominant portion of indirect recharge occurs downstream of groundwater

recharge dams. In-channel recharge is influenced foremost by downstream infiltration opportunity

times, reservoir evaporation, and potential losses to the sea. All the aforementioned influences are a

consequence of the applied dam release strategy. Up to now, dam operation in Oman is carried out

on a more or less empirical basis, focusing mainly on the hard restriction that the reservoir needs

to be emptied within 12 to 14 days after the inflow of an event (MAF, 1989).

However, this thesis made clear that a beneficial release of stored water should also focus on

an optimal wetting of the available downstream alluvial sections, which feature good infiltration

properties. Releasing water as fast as possible (i.e., without causing losses to the sea) diminishes

evaporation losses, which can be significant, most importantly for smaller inflow events. Furthermore,

it was shown that flow dynamics and infiltration are strongly nonlinearly interdependent. Therefore,

a simulation-based evaluation of feasible release strategies is indicated in order to maximize future

groundwater recharge. This could be done, for example, by altering a given release rule with

respect to maximal downstream infiltration and minimal dam evaporation for a set of inflow

hydrographs. This set can, e.g., comprise synthetically generated inflow hydrographs in order to

sample the naturally occurring inflow properties with respect to inflow volumes and inflow dynamics.

Consequently, for a given inflow situation, a feasible release strategy can be selected.

For obtaining maximal infiltration quotas, it is apparently indicated to guarantee a more or less

quasiconstant release rates (cf. Section 6.1.4). As the emptying of the reservoir leads to a falling

water level, the culvert outlets theoretically need to be adjusted permanently which, of course,

would require on-site electricity, telemetry of water level measurements, motor-actuated culvert

sluice gates, and a control logic for each of the culverts. It is questionable if such a sophisticated

technology effort would justify the achievable enhancement of groundwater recharge in comparison

to more robust operation rules, e.g., based on a daily adaption of the culvert outlets by hand.

Investigations assessing an optimal—which in this context means not only regarding recharge,

but also institutional and technological effort—dam operation strategy need, therefore, to be carried

out in close exchange with the Omani authorities, most importantly the MRMEWR and its branches.

This outlines the strong need for a further and deepened cooperation with the Omani authorities in

order to optimize the existing artificial groundwater augmentation facilities.
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Wöhling, T., G. H. Schmitz, and J.-C. Mailhol. Modeling two-dimensional infiltration from irrigation

furrows. Journal of Irrigation and Drainage Engineering, 130(4): 296–303, 2004a.
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Appendix A

Mathematical Supplements

A.1 Derivation of an Explicit First-Order Finite Difference

Scheme for the Kinematic Wave Model

In the following example, the kinematic wave model is approximated by a first-order single-step

explicit finite difference scheme (explicit Euler method). This is done in order to outline, in principle,

the application of finite difference methods for the considered hydrodynamic models. Making use of

the relationship Q = uA and inserting Eq. (3.6) into Eq. (3.4) yields

0 = S0 −
Q2

K2R2βA2
(A.1)

Rearranging Eq. (A.1) and solving for Q gives

Q = KS
1
2
0 R

βA (A.2)

and differentiating Eq. (A.2) with respect to x (product rule) leads to

∂Q

∂x
=

((
KS

1
2
0 βR

β−1 ∂R

∂x
A

)
+

(
KS

1
2
0 R

β ∂A

∂x

))
(A.3)

Assuming K and S to be constant, the dependent variables and their derivatives in Eq. (A.3)

are approximated by means of first-order finite backward differences. Referring to Fig. A.1, the

spatial differences of Eq. (A.2) are set up parallel to the abscissa (spatial dimension, indexed with

i), solely addressing already known values in the time domain (which is indexed with j). If the

unknown function value at a point A(i,j) is sought, already known values of the temporal cut along

(∀i, j − 1) are taken into account. Assuming that the major portion of mass and momentum is

transported in positive spatial direction, the values at D and C are influencing the solution at A. In

turn, the temporal differences are set up along the ordinate (temporal dimension), including values

at A (which are unknown) and D (which is located in the same spatial cut, (i,∀j)). This approach

only provides an accurate approximation if the CFL condition (Eq. (4.1)) is satisfied; in other words,

the solution lies below a diagonal connection of the points C and A (i.e., a characteristic curve, cf.

Section 4.1).
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Figure A.1: Discretized solution domain of the explicit Euler method.

The corresponding finite difference quotients read

R ≈
(
R(i,j−1) +R(i−1,j−1)

2

)
(A.4)

∂R

∂x
≈ ∆R

∆x
=

(
R(i,j−1) −R(i−1,j−1)

∆x

)
(A.5)

A ≈
(
A(i,j−1) +A(i−1,j−1)

2

)
(A.6)

∂A

∂x
≈ ∆A

∆x
=

(
A(i,j−1) −A(i−1,j−1)

∆x

)
(A.7)

The temporal derivative of the cross-sectional area in the continuity equation (3.1) is approximated

by
∂A

∂t
≈ ∆A

∆t
=

(
A(i,j) −A(i,j−1)

∆t

)
(A.8)

Inserting Eq. (A.3) into Eq. (3.1) and applying the relationships (A.4) to (A.8) delivers

{
KS

1
2
0 β

(
R(i,j−1) +R(i−1,j−1)

2

)β−1

(
R(i,j−1) −R(i−1,j−1)

∆x

)(
A(i,j−1) +A(i−1,j−1)

2

)}
+

(
KS

1
2
0

(
R(i,j−1) +R(i−1,j−1)

2

)β (A(i,j−1) −A(i−1,j−1)

∆x

))
+

(
A(i,j) −A(i,j−1)

∆t

)
= 0 (A.9)

144



A.1 Explicit First-Order Finite Difference Scheme for the Kinematic Wave Model

Solving Eq. (A.9) for A(i,j), which is the only unknown, delivers a relationship for A(i,j) where only

known values appear on the left-hand side of the equation and A(i,j) is, therefore, given explicitly as

−∆t

{
KS

1
2
0 β

(
R(i,j−1) +R(i−1,j−1)

2

)β−1

(
R(i,j−1) −R(i−1,j−1)

∆x

)(
A(i,j−1) +A(i−1,j−1)

2

)}
−

∆t

(
KS

1
2
0

(
R(i,j−1) +R(i−1,j−1)

2

)β (A(i,j−1) −A(i−1,j−1)

∆x

))
+

A(i,j−1) = A(i,j) (A.10)

Consecutively, the initially unknown hydraulic radius R(i,j) can be obtained by employing two

profile functions, as Eqs. (3.9) and (3.10), for establishing a lookup table of R̃ depending on Ã, i.e.,

R(i,j) = f
(
A(i,j)

)
(cf. Section 3.4). The flow rate Q(i,j) can then be calculated by using a uniform

flow equation such as Eq. (A.2). For calculating values for the whole spatiotemporal domain, it

is feasible to first calculate the values of the dependent variables at all temporal nodes j for one

spatial cut i (e.g., a cross section) and then proceed to i+ 1. Such an approach is represented by

Algorithm 7.1.

In case there are inflows or losses (e.g., resulting from infiltration through a permeable bed), the

extended continuity equation (3.7) is used. Defining a mean inflow/loss rate as

qφ ≈
(
qφ(i,j−1) + qφ(i−1,j−1)

2

)
(A.11)

and employing Eqs. (3.7), (A.2), (A.4) to (A.8), and (A.11) leads—analogously to the previously

outlined derivation—to the finite difference equation of the KW model with a source/sink term,

postulating that inflows (gaining flows) are signed positive and losses negative:

−∆t

{
KS

1
2
0 β

(
R(i,j−1) +R(i−1,j−1)

2

)β−1

(
R(i,j−1) −R(i−1,j−1)

∆x

)(
A(i,j−1) +A(i−1,j−1)

2

)}
−

∆t

(
KS

1
2
0

(
R(i,j−1) +R(i−1,j−1)

2

)β (A(i,j−1) −A(i−1,j−1)

∆x

))
−

(
qφ(i,j−1) + qφ(i−1,j−1)

2

)
+

A(i,j−1) = A(i,j) (A.12)

The scheme exhibits a consistency order of O(∆x,∆t), since the spatial and temporal derivatives of

the model equations are approximated by backward differences (Press et al., 1992).
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A.2 Derivation of an Explicit Second-Order Finite Differ-

ence Scheme for the Kinematic Wave Model

Concisely, the Runge-Kutta method applied herein is a second-order scheme with intermediate

nodes in the temporal domain, located at 1
2∆t (the so-called midpoint method). Using backward

differences (as in Appendix A.1), the finite difference equations are first evaluated at the intermediate

nodes
(
i, j − 1

2

)
and, in a second step, the results for the target node at (i, j) are calculated. Hence,

the finite difference form of the KW model at
(
i, j − 1

2

)
reads

−1

2
∆t

{
KS

1
2
0 β

(
R(i,j−1) +R(i−1,j−1)

2

)β−1

(
R(i,j−1) −R(i−1,j−1)

∆x

)(
A(i,j−1) +A(i−1,j−1)

2

)}
−

1

2
∆t

(
KS

1
2
0

(
R(i,j−1) +R(i−1,j−1)

2

)β (A(i,j−1) −A(i−1,j−1)

∆x

))
−

(
qφ(i,j−1) + qφ(i−1,j−1)

2

)
+

A(i,j−1) = A(i,j− 1
2 ) (A.13)

As shown in Appendix A.1, R(i,j− 1
2 ) is obtained by using an empirical or analytical relationship of

A and R. The values of the dependent variables at the spatiotemporal node (i, j) are calculated by

−∆t

{
KS

1
2
0 β

(
R(i,j− 1

2 ) +R(i−1,j− 1
2 )

2

)β−1

(
R(i,j− 1

2 ) −R(i−1,j− 1
2 )

∆x

)(
A(i,j− 1

2 ) +A(i−1,j− 1
2 )

2

)}
−

∆t

(
KS

1
2
0

(
R(i,j− 1

2 ) +R(i−1,j− 1
2 )

2

)β (A(i,j− 1
2 ) −A(i−1,j− 1

2 )

∆x

))
−



qφ
(i,j− 1

2 )
+ qφ

(i−1,j− 1
2 )

2


+

A(i,j−1) = A(i,j) (A.14)

A(i,j− 1
2 ) is obtained with the help of Eq. (A.13). The term A(i−1,j− 1

2 ) is related to an already known

spatial cut (i− 1,∀j) which is, e.g., the upper boundary condition for i− 1 = 0. Thus, the values of

A(i−1,j− 1
2 ) can be calculated by linear interpolation:

A(i−1,j− 1
2 ) =

A(i−1,j+1) +A(i−1,j)

2
(A.15)

The outlined Runge-Kutta scheme exhibits a consistency order of O(∆x,∆t2).
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A.3 Basic Concept of an Implicit Finite Difference Scheme

with Interior Point (Preissmann Scheme)

The Preissmann scheme (or box scheme) is a (third-order) four-point implicit scheme (i.e., the

scheme incorporates initially unknown function values). Corresponding to Fig. A.2, space derivatives

and function values are evaluated at the interior point E. Since the scheme is implicit, the CFL

condition (Eq. (4.1)) does not apply and the employed time step can be significantly larger than for

explicit schemes.
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Figure A.2: Finite difference cell for the Preissmann (box) scheme.

Assuming Φ to be a general expression for the function of a specific dependent variable (e.g.,

Q(x, t), A(x, t), etc.), the implicit finite difference form for a time derivative reads

∂Φ

∂t
=

∆Φ

∆t
=

(
Φ(i−1,j) + Φ(i,j)

)
−
(
Φ(i−1,j−1) + Φ(i,j−1)

)

2∆t
(A.16)

for the space derivative

∂Φ

∂x
=

∆Φ

∆x
=
θ
(
Φ(i,j) − Φ(i−1,j)

)

∆x
+

(1− θ)
(
Φ(i,j−1) − Φ(i−1,j−1)

)

∆x
(A.17)

and for a function value

Φ =
θ
(
Φ(i,j) + Φ(i−1,j)

)

2
+

(1− θ)
(
Φ(i,j−1) + Φ(i−1,j−1)

)

2
(A.18)

where θ = [0, ..., 1] is the so-called implicit weighting factor.

It can be directly seen from Eqs. (A.17) and (A.18) that for θ = 0 the scheme is fully explicit

(i.e., only values of the known temporal cut at j − 1 are regarded). Vice versa, for θ = 1 the scheme

is fully implicit, and only values from the initially unknown temporal level j are taken into account.
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It can be proven that the difference scheme outlined above is (theoretically) unconditionally

stable for θ > 0.5 (Cunge et al., 1980; Fread, 1993), which means that the size of the chosen time

interval does not affect stability. However, numerical damping increases for increased values of θ.

In practice, non-stability of the scheme can occur independent from the selected value of θ. Factors

that may endanger stability (and, therefore, convergence) include changes in the cross-sectional

geometry, abruptly changing channel slopes, and characteristics of the boundary conditions (e.g., a

steep flood wave).

Applying the previously outlined box scheme consequently leads to a system of (nonlinear)

simultaneous equations. This system is usually linearized and the resulting system of linear

equations is solved with a standard method, mostly based upon iteration (e.g., fixed-point iteration

or Newton-Raphson method). For the implementations of the Preissmann scheme utilized herein,

a fixed-point iteration scheme was applied. While the Preissmann scheme is based on each two

spatial and temporal nodes, it exhibits a consistency order of O(∆x2,∆t2) (Cunge et al., 1980;

Subramanya, 2009).
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A.4 Analytical Solution of the Kinematic Wave Model by

Obtaining Characteristic Solutions

The solution presented subsequently is following basic concepts outlined by Singh (1996). A

rectangular cross section is assumed. Thus, the hydraulic radius equals the quotient of the wetted

cross-sectional area and the wetted perimeter:

R =
A

P
(A.19)

The momentum and continuity equations of the kinematic wave model for a flow without losses or

inflows read
∂A

∂t
+
∂Q

∂x
= 0 (A.20)

Sf = S0 (A.21)

and the momentum equation can be expressed by employing a friction law (cf. Sections 3.4 and

Appendix A.1) in the form

A = δQη (A.22)

where η is a coefficient depending on the cross-sectional geometry (Singh, 1996). For a wide

rectangular cross section, η is 2
3 (Miller, 1984). The coefficient δ is given by

δ =

(
P β

KS
1
2

)η
(A.23)

where β is the exponent of the employed friction law. By inserting Eq. (A.22) into Eq. (A.20), the

continuity equation can be recast in such a way that Q is dependent on x:

∂Q

∂x
+ δβQη−1

(
∂Q

∂t

)
= 0 (A.24)

or on t:
∂Q

∂t
+

1

δβQη−1

(
∂Q

∂x

)
= 0 (A.25)

Calculating the total derivative of Q yields

dQ =
∂Q

∂x
dx+

∂Q

∂t
dt (A.26)

and dividing Eq. (A.26) by dt gives

dQ

dt
=
∂Q

∂x

dx

dt
+
∂Q

∂t
(A.27)

Postulating a constant discharge (i.e., dQ
dt = 0), Eq. (A.27) can be set equal to Eq. (A.25):

∂Q

∂x

dx

dt
+
∂Q

∂t
=
∂Q

∂t
+

1

δηQη−1

(
∂Q

∂x

)
(A.28)
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and subtracting by ∂Q
∂t as well as dividing by ∂Q

∂x yields

dx

dt
=

1

δηQη−1
(A.29)

The continuity equation (A.20) may be rewritten as

∂x

∂t
=
∂Q

∂A
=

dx

dt
=

dQ

dA
(A.30)

A constant discharge (dQ
dt = 0) is propagated along a straight line in (x, t), given by

dx

dt
=

1

δηQη−1
=

dQ

dA
(A.31)

Such a line is called characteristic line (cf. Section 4.1) and Eq. (A.31) is the characteristic equation

of the kinematic wave model. The term

dx

dt
=

dQ

dA
=

1

δηQη−1
= cκ (A.32)

describes the so-called kinematic wave celerity [LT−1] and the relationship cκ = dQ
dA is called the

Kleitz-Seddon law (Lighthill and Whitham, 1955). Under the assumed single-valued stage–discharge

relationship, the wave celerity depends on the water depth alone, i.e., points of the wave profiles

with the same depth travel with the same velocity.

Under the assumption of a rectangular cross section (dA = Bdh), cκ can be expressed in terms

of the water depth:

cκ =
1

B

dQ

dh
(A.33)

By applying the wide channel assumption (R u h), the Manning-Strickler formula (β = 2
3 ) reads

Q = KStAR
βS

1
2
0 = KStBhh

βS
1
2

f = KStBh
5
3S

1
2
0 (A.34)

and solving this expression for for h yields

h =

(
Q

KStBS
1
2
0

) 3
5

(A.35)

Calculating the derivative of Q with respect to h delivers

dQ

dh
=

5

3
KStBS

1
2
0 h

2
3 (A.36)

and expressing h by means of Q by using Eq. (A.35) gives

dQ

dh
=

5

3
KStBS

1
2
0

(
Q

KStBS
1
2
0

) 2
5

(A.37)
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This way, the kinematic wave celerity cκ can be expressed in terms of Q:

cκ =
1

B

dQ

dh
=

1

B

5

3
KStBS

1
2
0

(
Q

KStBS
1
2
0

) 2
5

=
1

B

5

3
KStBS

1
2
0

(
1

KStBS
1
2
0

) 2
5

Q
2
5 = µQ

2
5 (A.38)

where µ is a constant factor for a channel reach with no changes in roughness, slope, and cross-

sectional geometry.

The solution for Q(x, t) requires the specification of initial conditions, i.e., Q(x, t = 0), and

boundary conditions, i.e., Q(x = 0, t). A cross section at x = L is considered, where L [L] is the

distance between this cross section and the location of the upper inflow boundary. To predict

the flow at x = L, the function Q(L, t) is sought. Assuming a constant cκ
1, the equation of the

kinematic wave celerity reads2

dx

dt
= cκ(Q) (A.39)

Integration of Eq. (A.39) on the interval [0, ..., L] = x reads

ˆ L

0

dx =

ˆ td(Q)

tu(Q)

cκ(Q)dt (A.40)

and yields

L = (td(Q)− tu(Q)) cκ(Q) (A.41)

Rearranging delivers

td(Q) = tu(Q) +
L

cκ(Q)
(A.42)

where td(Q) indicates the time which a specific inflow Q(tu) needs for traveling the distance L.

Combining Eqs. (A.42) and (A.38) gives

td(Q) = tu(Q) +
L

µQ
2
5

(A.43)

which is an analytical solution of the kinematic wave model for variable (but—as a consequence of

the KW assumptions—quasisteady) inflows. According to the previously demanded restrictions

(wide rectangular channel), the model preserves a specific inflow value and the flow process is

governed solely by advection. If cκ were not exclusively dependent on Q, which would be the

case, e.g., if lateral sources/sinks were regarded in the continuity equation (cf. Section 3.5), the

characteristic lines would become characteristic curves and a specific inflow value is modified in

space and time.

1 This yields a linear kinematic wave model.

2 Compare the similarity of Eq. (A.39) to the definition of the Courant number, Eq. (4.2).
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A.5 Details on the Derivation of the Iterative Procedure

(5.47);(5.48)

Using the relationships given by Eqs. (5.17), (5.21), (5.38), and (5.44), Eq. (5.37) can be briefly

expressed as

A0,n = A0(tn) = A(0, tn) = p1(0)−
1
p2

(
−ρ0(t)

λψn
p2

) 1
λ

(A.44)

Based on the hydraulic principle u = Q
A and using the expression for the hydraulic radius given by

Eq. (5.6), Eq. (5.17) can be written as

− ρ0(t) =
(Q0(tn))

2

K2 (A0(tn))
2 −

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4 (A.45)

Inserting Eq. (A.45) into Eq. (A.44) yields

A(0, tn) = p1(0)−
1
p2

{
λψn
p2

{
(Q0(tn))

2

K2 (A0(tn))
2−

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4

}} 1
λ

(A.46)

which is equivalent to the expression

(A(0, tn))
λ

= p1(0)−
λ
p2

{
λψn
p2

{
(Q0(tn))

2

K2 (A0(tn))
2−

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4

}}
(A.47)

Multiplying both sides of Eq. (A.47) by (A(0, tn))
2

yields

(A(0, tn))
2+λ

= p1(0)−
λ
p2

{
λψn
p2

{
(Q0(tn))

2

K2
−

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4+2

}}
(A.48)

and multiplying both sides of Eq. (A.48) by p1(0)
λ
p2 p2 leads to

(A(0, tn))
2+λ

p1(0)
λ
p2 p2 = λψn

{
(Q0(tn))

2

K2
−

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4+2

}
(A.49)
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which can be recast to

λψn
(Q0(tn))

2

K2
= (A(0, tn))

2+λ
p1(0)

λ
p2 p2+

λψn

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

2βp4+2
(A.50)

Based on Eq. (5.21), it holds true that 2βp4 + p2 = λ and, therefore, 2βp4 + 2 = λ − p2 + 2.

Equation (A.50) can now be written as

λψn
(Q0(tn))

2

K2
= (A(0, tn))

2+λ
p1(0)

λ
p2 p2+

λψn

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β (A0(tn))

λ−p2+2
(A.51)

which equals

λψn
(Q0(tn))

2

K2
= (A(0, tn))

2+λ

{
p1(0)

λ
p2 p2+

λψn

(
S0 +

qφ0 (tn)Q0(tn)

g (A0(tn))
2

)
p3(0)2β

(A0(tn))
p2

}
(A.52)

Equation (A.52) can be solved for (A(0, tn))
2+λ

which yields

(A(0, tn))
2+λ

=
λψn

(
Q0(tn)
K

)2

p1(0)
λ
p2 p2 + λψn

(
S0 +

qφ0 (tn)Q0(tn)

g(A0(tn))2

)
p3(0)2β

(A(0,tn))p2

(A.53)

which equals

A(0, tn) =




λψn

(
Q0(tn)
K

)2

p1(0)
λ
p2 p2 + λψn

(
S0 +

qφ0 (tn)Q0(tn)

g(A0(tn))2

)
p3(0)2β

(A(0,tn))p2




1
2+λ

(A.54)

which can be rewritten as the iteration equation (5.47):

A
(k)
0,n =




λψn

(
Q0(t(k−1)

n )
K

)2

p2p1(0)
λ
p2 + λψn

(
S0 +

qφ0

(
t
(k−1)
n

)
Q0

(
t
(k−1)
n

)
g
(
A

(k−1)
0,n

)2

)
p3(0)2β(
A

(k−1)
0,n

)p2




1
2+λ

(A.55)

The second equation of the iterative procedure (5.47);(5.48) is derived using the continuity

equation for the permeable channel (5.46). The inflow volume to the wadi over time can be

calculated by
ˆ t(k)n

0

Q0(τ)dτ =

ˆ t(k−1)
n

0

Q0(τ)dτ +

ˆ t(k)n

t
(k−1)
n

Q0(τ)dτ (A.56)
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The expression
´ t(k)n

t
(k−1)
n

Q0(τ)dτ may be written as Q0

(
t
(k−1)
n

)(
t
(k)
n − t(k−1)

n

)
which allows to rewrite

Eq. (A.56) as

ˆ t(k)n

0

Q0(τ)dτ =

ˆ t(k−1)
n

0

Q0(τ)dτ +Q0

(
t(k−1)
n

)(
t(k)
n − t(k−1)

n

)
(A.57)

Setting the inflow volume, given by the right-hand side of Eq. (A.57), equal to the volume of water

in the channel plus the infiltration volume, given by the right-hand side of Eq. (5.46), delivers

ˆ t(k−1)
n

0

Q0(τ)dτ +Q0

(
t(k−1)
n

)(
t(k)
n − t(k−1)

n

)
= A0,nωn +

ˆ tn

0

ˆ xn

0

qφ(ξ, τ)dξdτ (A.58)

which can be straightforwardly rearranged to yield the second iteration equation (5.48):

t(k)
n = t(k−1)

n +

A
(k)
0,nωn +

ˆ t(k−1)
n

0

ˆ xn

0

qφ(ξ, τ)dξdτ −
ˆ t(k−1)

n

0

Q0(τ)dτ

Q0

(
t
(k−1)
n

) (A.59)
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A.6 Details on the Evaluation of Equation (5.60)

A.6 Details on the Evaluation of the First Integrand in

Equation (5.60)

Using a continuous formulation, Eq. (5.65) can be written as

h(x, t) = h0

√
1− x

xtip
(A.60)

where both h0 and xtip depend on time. Differentiating Eq. (A.60) with respect to t, therefore,

yields
∂h

∂t
=

dh0

dt

√
1− x

xtip
+

h0

2
√

1− x
xtip

x

x2
tip

utip (A.61)

This result can be inserted for the first integrand in Eq. (5.60):

ˆ x

0

∂h

∂t
(ξ, t)dξ =

dh0

dt

ˆ x

0

√
1− ξ

xtip
dξ +

h0utip

2x2
tip

ˆ x

0

ξ√
1− ξ

xtip

dξ (A.62)

Both integrals on the right-hand side of Eq. (A.62) can be explicitly evaluated (Bronstein and

Semendjajev, 1966) and the resulting expression reads

ˆ x

0

∂h

∂t
(ξ, t)dξ = −2

3
xtip

dh0

dt

((
1− x

xtip

) 3
2

− 1

)
− 1

3
utiph0

((
2 +

x

xtip

)√
1− x

xtip
− 2

)

=
2

3

d

dt
(xtiph0)− 2

3
xtip

dh0

dt

(
1− x

xtip

) 3
2

− 1

3
utiph0

(
2 +

x

xtip

)√
1− x

xtip
(A.63)

The first term on the right-hand side of Eq. (A.63) equals Q0 −
´ xtip

0
qφ(ξ, t)dξ, which can be seen

from Eq. (5.62). Consequently, Eq. (5.60) can be simplified to

Q(x, t) =
2

3
xtip

dh0

dt

(
1− x

xtip

) 3
2

+
1

3
utiph0

(
2 +

x

xtip

)√
1− x

xtip
+

ˆ xtip

x

qφ(ξ, t)dξ (A.64)
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Analytical Model of Surge Flow in Nonprismatic Permeable
Channels and Its Application in Arid Regions

A. Philipp1; G. H. Schmitz2; and R. Liedl3

Abstract: A surge running down a dry wadi bed as a consequence of a controlled water release from a reservoir—e.g., for artificial
groundwater recharge—represents a free boundary problem. After some time, when aiming for groundwater recharge, the infiltration
equals inflow and thus forms a kind of “standing” wave. The numerical solution of such phenomena generally involves considerable
problems. For avoiding the numerical inconvenience resulting from the complex interacting surface/subsurface flow, we present an
analytical solution of the slightly modified zero-inertia �ZI� equations. The development introduces a momentum-representative cross
section for portraying the transient development of momentum and refers to a channel with constant slope, irregular geometry, and a
permeable channel bed with significant infiltration. Due to the structure of the solution, any arbitrary infiltration model can be used for
quantifying the infiltration losses. For both synthetic prismatic and nonprismatic test channels, the robust and easy-to-use analytical ZI
model shows an excellent match with the results of a comparative numerical simulation. Finally, the ZI model is employed for simulating
a surge flow downstream of the Wadi Ahin groundwater recharge dam �Oman�, in order to perform a scenario for artificial groundwater
recharge in a natural wadi channel reach. This realistic application illustrates the potential of the new approach by even computing an
almost standing wave and shows its applicability for an accurate and robust evaluation of release strategies.

DOI: 10.1061/�ASCE�HY.1943-7900.0000172

CE Database subject headings: Surge; Groundwater recharge; Infiltration; Channels; Arid land.

Author keywords: Surge flow; Artificial groundwater recharge; Zero-inertia equations; Infiltration; Nonprismatic channels; Wadi flow.

Introduction

Surge flow problems have been treated by a variety of ap-
proaches. Existing models can be grouped into four classes—
volume balance, kinematic, zero-inertia �ZI�, and full dynamic
models. For example, Schmitz et al. �2002� underline the appli-
cability of ZI models for surge flow phenomena. Despite the sim-
plifications of the ZI flow description, the solution of the
underlying equations often requires numerical techniques due to
complex hydraulics �Katopodes and Strelkoff 1977; Jaynes 1986�.
Many writers, such as Henderson �1966�, Schmitz and Seus
�1990�, and Schmitz et al. �2002�, developed analytical solutions
for the ZI equations for prismatic and nonprismatic channels,
however, without considering the impact of significant infiltration
losses.

In arid regions, water resources are limited and the shortage of
water has always been one of the most important restricting fac-
tors for socioeconomic development. Since the growing water
demand in arid and semiarid regions cannot always be covered by

available surface water, groundwater has been extensively used.
In some areas, the amount of extracted groundwater has exceeded
the natural groundwater recharge; socioeconomic changes, popu-
lation growth, and ongoing urbanization will lead to enhanced
water stress �Kowsar 1991; Kowsar 1996; Battashi and Rashid
1998; Bouwer 2002; Haimerl and Zunic 2002; Haimerl 2004� and
make technical solutions for enhanced groundwater recharge in-
dispensable. One of the most economic and effective methods of
groundwater recharge is the controlled releasing of stored flood
water in natural channels downstream of recharge dams which
creates a surge traveling down the channel.

This study focuses on the development and the application of
an analytical model for the surge flow in permeable nonprismatic
channels. We use an analytical solution of the slightly modified ZI
equations and employ the model for describing the surge flow in
the presence of significant infiltration such as surge flow in a
permeable wadi channel for artificial groundwater recharge from
a reservoir. Furthermore, the model’s analytical character allows
the straightforward incorporation of any infiltration model.

Analytical Model

The unsteady surge flow in an irregular river bed with water
losses through the bottom can be described by the extended ZI
equations

�A

�t
+

�Q

�x
= − q �1�

�h

�x
= S0 −

u2

K2R2� +
qu

gA
�2�

in which t=time �T�; x=longitudinal space coordinate �L�;
A�x , t�=wetted cross-sectional area �L2�; Q�x , t�=discharge
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�L3T−1�; u�x , t�=flow velocity �LT−1�; h�x , t�=water depth �L�;
q=volumetric rate of infiltration per unit width �L2T−1�; R�x , t�
=hydraulic radius �L�; K=velocity coefficient �L1−�T−1�; S0

=bottom slope ���; g=acceleration due to Earth’s gravity �LT−2�;
and �=exponent of the flow formula ��� �e.g., for the Manning-
Strickler equation �=2 /3�.

In contrast to the standard ZI equations �e.g., Katopodes and
Strelkoff 1977�, Eqs. �1� and �2� each contain an additional term
for quantifying the impact of water losses through the bottom of
the river bed on volume and momentum conservation. Further-
more, the inclusion of the qu /gA term in the analytical develop-
ment �2� does not cause any inconvenience. Including this term
allows incorporating inflow with significant momentum contribu-
tion to the channel under arbitrary angles. This maintains the
generality of the solution. For the presented application of the
model, the term qu /gA could be omitted.

The first step toward a solution of the system �Eqs. �1� and �2��
is to multiply Eq. �2� by R2� yielding

R2�
�h

�x
= �S0 +

qu

gA
�R2� −

u2

K2 �3�

According to Schmitz et al. �2002� the inflow boundary can be
considered as a kind of momentum-representative cross section
for surge flow problems. In this approach, the momentum �which
is set equal to zero in the kinematic wave analysis� described by
the right-hand side of Eq. �3� is continuously represented by the
transient amount of momentum at x=0. Thus, the right-hand side
of Eq. �3� no longer depends explicitly on x and Eq. �3� can be
expressed as

R2�
�h

�x
= �S0 +

q0u0

gA0
�R0

2� −
u0

2

K2 = �S0 −
u0

2

K2R0
2� +

q0u0

gA0
�R0

2�

�4�

with A0=A0�t�=A�x=0, t�; R0=R0�t�=R�x=0, t�; u0=u0�t�=u�x
=0, t�; and q0=q0�t�=q�x=0, t�. The expression on the right-hand
side of Eq. �4� may be regarded as the measure of the transient
momentum at x=0 covering contributions from the bottom slope,
friction, and infiltration through the river bed.

The description of the arbitrarily varying cross sections of the
river uses the relationships

h̃�x,A� = h�x,t� = p1�x�A�x,t�p2 �5�

R̃�x,A� = R�x,t� = p3�x�A�x,t�p4 �6�

with p1�x�, p2, p3�x�, and p4=geometry parameters for describing
the water depth and hydraulic radius of a river cross section.
These are expressed in Eqs. �5� and �6� by the functions which
depend on the spatial coordinate x and the wetted cross-sectional
area A=A�x , t�. For formal reasons, the functions characterizing
the cross-sectional geometry are distinguished from the functions
h�x , t� and R�x , t� which explicitly relate the water depth and hy-
draulic radius to the independent variables of space and time.

Schmitz et al. �2002� showed that irregular cross sections of
natural river beds can be closely approximated by adjusting the
free parameters p1�x�, p2, p3�x�, and p4 of Eqs. �5� and �6�. In
particular, p1�x� and p3�x� take care of the nonprismatic character
of the river bed. The values of p2 and p4 are not dependent on the
space variable and account for some kind of common property,
which is most evident for basic cross-sectional geometries, e.g.,
p2= p4=1 /2 for a triangular, 2/3 for a parabolic, and 1 for a rect-

angular cross section. The practical adjustment of the geometry
parameters for a nonprismatic channel is shown in the “Model
Applications” section.

The system of partial differential equations �1� and �4� requires
the specification of initial and boundary conditions. At the fixed
upstream boundary �x=0�, the boundary condition is

Q�0,t� = Q0�t� �7�

with the restriction that strongly falling discharge hydrographs
cannot be used as an upstream boundary condition due to the ZI
assumptions �Schmitz et al. 2002�. At the downstream moving
boundary, x=xtip�t�, the following conditions have to be satisfied:

A�xtip,t� = 0 �8�

u�xtip� = utip�t� =
dxtip

dt
�9�

with xtip�t� and utip�t� denoting the location and the velocity of the
wave front, respectively.

The initial condition of the surge flow problem is

xtip�t = 0� = 0 �10�

Using the expression for the hydraulic radius as defined by Eq.
�6�, the solution of the momentum Eq. �4� reads

A�x,t� = p1�x�−1/p2��1 +
2�p4

p2
�� u0

2

K2R0
2� − S0

−
q0u0

gA0
� · R0

2��
x

xtip�t� � p1���p4/p2

p3��� �2�

d�	1/�p2+2�p4�

�11�

Next, considering the upstream boundary condition �7�, a direct
integration of the continuity Eq. �1� yields the discharge Q�x , t� as

Q�x,t� = Q0�t� −�
0

x 
 �A

�t
��,t� + q��,t��d� �12�

where the integrand can be obtained by differentiating Eq. �11�
with respect to t. Eqs. �11� and �12� solve the system �Eqs. �1� and
�4�� and also satisfy boundary conditions �7� and �9�. This solu-
tion accounts for the hydraulic feedback between the advance of a
surge over an initially dry river bed and water losses due to the
infiltration across the continuously extending wetted river bottom.

Iterative Solution of the Nonlinear Problem

The solution procedure for Eqs. �11� and �12� first requires evalu-
ating the position of the advancing wave front xtip�t� and the wet-
ted cross-sectional area A0�t�=A�x=0, t� at the inflow boundary
by solving a nonlinear system of two equations iteratively. For
this purpose, N observation points �0�x1�x2� ¯ �xN� are de-
fined, the arrival time of the wave tip tn for each observation
point, i.e., xtip�tn�=xn �for n=1,2 , . . . ,N�, and the corresponding
wetted cross-sectional area A0,n=A0�tn� at x=0 is calculated. The
first of the aforementioned nonlinear equations is obtained by
setting x=0 in Eq. �11�. Making use of relationships �4� and �6�
yields
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A0,n = p1�0�−1/p2��1 +
2�p4

p2
� · sn
Q0�tn�2

K2A0,n
2 − �S0

+
q0�tn�Q0�tn�

gA0,n
2 �p3�0�2�A0,n

2�p4�	1/�p2+2�p4�

�13�

with

sn =�
0

xn 
 p1���p4/p2

p3��� �2�

d� �14�

The second equation is derived from the volume balance

�
0

tn

Q0���d� = A0,n�n +�
0

tn �
0

xn

q��,��d�d� �15�

where the abbreviation

�n =�
0

xn 
 p1�0�
p1��� �1/p2�1 −

1

sn
�

0

� 
 p1��̃�p4/p2

p3��̃�
�2�

d�̃	1/�p2+2�p4�

d�

�16�

is used. Rearranging Eqs. �13� and �15� leads to the iterative
procedure

A0,n
�k� =� �1 +

p1�0�
p1���

�sn
Q0�tn
�k−1��2

K
�

p1�0��1+�2�p4/p2�� + �1 +
2�p4

p2
�sn
S0 +

q0�tn
�k−1��Q0�tn

�k−1��
g · �A0,n

�k−1��2 � p3�0�2�

�A0,n
�k−1��p2


1/�2+p2+2�p4�

�17�

tn
�k� = tn

�k−1� +
A0,n

�k� �n + �0
tn
�k−1�

�0
xnq��,��d�d� − �0

tn
�k−1�

Q0���d�

Q0�tn
�k−1��

�18�

where k=1,2 ,3 , . . . denotes the iteration index. A Taylor series
expansion of the left-hand side of Eq. �15� around tn

�k−1� was in-
cluded in order to take into account the impact of infiltration
through pervious river beds. Starting values are provided by the
results obtained from the preceding time step, i.e., A0,n

�0� =A0,n−1

and tn
�0�= tn−1. After the convergence of the iteration procedure

�Eqs. �17� and �18�� is achieved, the wetted cross-sectional area
A�x , tn� can be straightforwardly computed from

A�x,tn� = A0�tn�
 p1�0�
p1�x� �1/p2� �x

xn
 p1���p4/p2

p3��� �2�

d�

�
0

xn 
 p1���p4/p2

p3��� �2�

d��
1/�p2+2�p4�

= A0,n
 p1�0�
p1�x� �1/p2�1 −

1

sn
�

0

xn 
 p1���p4/p2

p3��� �2�

d�	1/�p2+2�p4�

�19�

making use of Eqs. �11� and �14�. Eq. �19� is inserted into Eq.
�12� to compute the discharge Q�x , t�. This step includes a nu-
merical integration and, in addition, requires either some standard
formula, e.g., Kostiakov-Lewis, or some other problem-specific
functional relationship quantifying the infiltration rate q�� ,��.

Table 1. Geometric Profile Data and Inflow Hydrograph for the
Prismatic �Parabolic� Test Channel

Geometric profile data

Velocity coefficient K �m1/3 /s� 33.33

Channel slope S0 �m/m� 0.002

Cross-sectional parameter p1 �m1−2p2� 0.2823

Cross-sectional parameter p2 ��� 2/3

Cross-sectional parameter p3 �m1−2p4� 0.1870

Cross-sectional parameter p4 ��� 2/3

Channel length �m� 2,000

Cross-section type Parabolic

Upstream inflow hydrograph

t �s� Q �m3 /s�
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Fig. 1. Comparison of wave front propagation along the prismatic
�parabolic� channel computed with the ZI model and compared to the
results of the fully dynamic simulation �HEC-RAS�
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The evaporation could be easily included as a loss term �com-
puted by any appropriate model� in the iterative solution proce-
dure of the kinematic wave. This is not crucial due to the low
order of magnitude of the rate of evaporation losses compared to
the infiltration. This is, for example, stated by Wheater �2002�.

Model Applications

In this section, some features of the ZI surge flow model are
analyzed by comparing the results of the analytical model and the
ones obtained from a full hydrodynamic model. The investigation
focuses on permeable prismatic and nonprismatic channels, thus,
providing a first step prior to the application of the suggested
analytical model for surge flow phenomena in wadi beds and an
application to problems of groundwater recharge by means of
reservoir release.

Infiltration characteristics are exemplarily represented by the
empirical Kostiakov-Lewis equation �Walker and Skogerboe
1987; Walker 1998� which is given by

I�t� = Kk · tKa + Kc · t �20�

where I�t�=cumulative infiltration volume per channel section
�L3L−1�; t=time �T�; Ka=empirical Kostiakov-Lewis exponent
���; Kk=empirical Kostiakov-Lewis exponent �L3T−KaL−1�; and
Kc=steady or final infiltration rate �L3T−1L−1�.

Based on the infiltration basin test data measured by Haimerl
and Zunic �2002� and Haimerl �2004� in Wadi Ahin, Sultanate of
Oman, the Kostiakov-Lewis model parameters were fitted to dry
initial conditions providing Kk�m3 /minKa /m�=0.004 646, Ka�−�
=0.864, and Kc�m3 /min /m�=0.001 082. The duration of the cor-

responding infiltration experiment was 5.977 min; the area of the
infiltration basin was 38.5 m2. The adjusted coefficient of deter-
mination R2 and the root-mean-square error �RMSE� of the fitted
Kostiakov-Lewis model were R2=0.9997 and RMSE=0.087 21.

Model Comparison between the Analytical ZI Model
and a Fully Hydrodynamic Model

The results of the flow computations with the analytical surge
flow model are subsequently compared to the numerical solution
of the full Saint-Venant equations �fully dynamic approach�,
emerging from simulations with the Hydrologic Engineering Cen-
ters River Analysis System �HEC-RAS� model �Brunner 2002�.
First, test examples incorporating prismatic and nonprismatic
channel geometries are evaluated using the ZI model. In a second
step, the flow is computed for the same input data using the fully
dynamic numerical model. Therefore, the infiltration hydrograph
is taken from the ZI calculations and considered as negative lat-
eral inflow in HEC-RAS. Modeling in initially dry channels can
lead to considerable numerical inconveniences due to the steep
gradient at the downward moving wave tip �Schmitz et al. 2002�.
For this reason, we run the fully dynamic numerical HEC-RAS
model with an initial channel flow of 0.15 m3 /s. We employ a
time discretization of 5 s for the further simulations with the
numerical model.

We first set up the analytical ZI model and the fully dynamic
numerical model for a hypothetical prismatic channel �see next
subsection� and continue with simulations of the flow in a hypo-
thetical nonprismatic channel �see second subsection�. The main
goal of the comparisons presented in the following subsections is
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Fig. 2. Cross-sectional profiles for the nonprismatic test channel at different channel locations x
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to check the validity of the analytical solution, i.e., the inclusion
of infiltration in the developed mathematical framework together
with the implementation of the code.

Model Comparison for a Permeable Prismatic Channel
We tested the ZI model for a hypothetical permeable prismatic
channel with a length of 2,000 m and uniform parabolic cross
sections. Therefore, cross-sectional parameters p1�x� and p3�x� do
not vary along the channel. Observation points for the intercom-
parison with the results of the fully dynamic numerical model are
placed every 100 m along the channel. The parameters of the
Kostiakov-Lewis infiltration model are obtained from the Wadi
Ahin field study of Haimerl and Zunic �2002� and Haimerl
�2004�. The geometric profile data and the inflow hydrograph can
be seen from Table 1. Fig. 1 shows the computed arrival times of
the wave tip along the channel.

Both the results of the hydrodynamic and the ZI models show
a perfect agreement. The difference between the ZI approach and
the fully hydrodynamic solution lies in an underestimation in the
mean arrival times of the ZI model of only 0.08%. The continu-
ously rising graph of the advance trajectory shows slight devia-
tions from a straight line. This originates from the superposition
of two effects: infiltration decelerates the advance of the wave tip
and—in contrast—the increasing inflow accelerates the advance.
This recurs a couple of times during the simulation, namely, when
the inflow rises according to Table 1. The results suggest that the
analytical ZI model is well suited for predicting surge flow phe-
nomena in permeable prismatic channels.

Model Comparison for a Permeable Nonprismatic Channel
An important aspect relates to a more realistic description of the
wadi geometry. According to Schmitz et al. �2002�, the geometric
properties of the considered channels are evaluated using Eqs. �5�
and �6� where the geometric parameters p1�x�, p2, p3�x�, and p4

are calculated by minimizing the residual mean squares �RMSs�

RMS�h̃� =�
0

Ã�x�
�h̃�x,A� − p1�x�Ap2�2dA �21�

Table 2. Inflow Hydrograph for the Nonprismatic Test Channel for the
ZI Model and the Fully Dynamic Model

Upstream inflow hydrograph

Time �s� Flow �m3 /s�

0 0

180 0.5

360 0.75

540 1.5
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Fig. 3. Development of the varying geometry parameters p1�x� and
p3�x� along the nonprismatic test channel

0 400 800 1200 1600 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Channel location [m]

A
rr

iv
al

tim
e

[s
]

HEC−RAS
ZI model

Fig. 4. Comparison of wave front propagation along the nonpris-
matic channel computed with the ZI model and compared to the
results of the fully dynamic simulation �HEC-RAS�

Fig. 5. Overview map of Wadi Ahin and Wadi Ahin recharge dam
with Wadi Channels 1–5, Sultanate of Oman �after Haimerl and
Zunic 2002 and Haimerl 2004�
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RMS�R̃� =�
0

Ã�x�
�R̃�x,A� − p3�x�Ap4�2dA �22�

for each cross-sectional location. In Eqs. �21� and �22�, the func-

tions h̃�x ,A� and R̃�x ,A� denote the dependencies of both water
depth and hydraulic radius on the wetted cross-sectional area. The

upper limit of the integration, Ã�x�, is selected for each cross
section according to an appropriate reference water depth. A pro-
nounced variation of the geometry parameters p1�x� and p3�x�
reflects pronounced morphological changes along the considered
reaches of the channel. The maxima of p1�x� and p3�x� are com-
monly associated with narrow cross sections, while the minima
indicate more general lateral slopes of the cross sections �see
Figs. 2 and 3�.

A sensitivity analysis showed only a weak dependency of the
ZI solution �in terms of computed arrival times� on the parameter
p1�x� but a strong relationship with the parameter p3�x�. Regard-
ing Eqs. �5� and �6� and Eqs. �21� and �22�, p3�x� strongly ac-
counts for the nonprismatic character of the channel. The
incorporation of the longitudinal varying channel parameters �es-
pecially p3�x�� therefore seems appropriate for a sound process
modeling which is supported by the investigations of Schmitz et
al. �2002�.

The test channel used in the following example is constructed
of selected cross sections of Wadi Ahin. The cross sections are
placed every 200 m along the channel; the length of the channel is
2,000 m. The Strickler velocity coefficient is constant along the
channel and equals 33.33 m1/3 /s �this equals a Manning’s value
of n=0.03�. The longitudinal profile slope is set constant to 0.002.
The constant profile parameters equal p2=0.5795 and p4

=0.5468; p1�x� and p3�x� can be obtained from Fig. 3. The infil-
tration parameters are taken from the experimentally derived pa-
rameters for Wadi Ahin �after Haimerl and Zunic 2002 and
Haimerl 2004�. The inflow hydrograph for the test setup is given
in Table 2.

Fig. 4 depicts the time required for the advancing wave front
to reach the respective channel locations. The results reveal a
slight underestimation of the wave tip arrival time, except for the
location at 400 m with an overestimate of about 18 s. The results
underline the good performance of the analytical ZI model for
simulating surge flow phenomena also in nonprismatic channels.

Application of the Analytical Model for a Nonprismatic
Channel of Wadi Ahin „Sultanate of Oman… for the
Optimization of Flood Water Release from a
Groundwater Recharge Dam

In this section, the analytical ZI model is used for simulating the
surge flow resulting from reservoir release with respect to ground-
water recharge. The catchment of Wadi Ahin �approximately
1 ,054 km2; Haller 2000� is located at the Northern coast of
Oman �see Fig. 5�. A recharge dam is located about 10 km inland
from the Oman Sea obstructing the main wadi channel. The dam
features five culverts for the downstream release of water �Fig. 5�.
Downstream of Wadi Ahin dam, five nonprismatic permeable
channels were investigated. Fig. 6 shows examples of some typi-
cal wadi cross sections of the five wadi channels.

The most important manageable factor of artificial groundwa-
ter recharge measures is the rate of culvert release, considering a
certain volume of water stored in the reservoir and a given chan-
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Fig. 6. Typical cross-sectional profiles of Wadi Ahin, Sultanate of Oman �after Haimerl and Zunic 2002�
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nel length with suitable infiltration characteristics. The proposed
analytical ZI model can serve as a robust and accurate tool for the
adjustment of culvert release rates to enhance the downstream
infiltration, i.e., for a desired wetted wadi reach. In the following,
we show the applicability of the ZI model for the estimation of an
appropriate release strategy exemplarily for the first of the afore-
mentioned wadi channels downstream of the Wadi Ahin recharge
dam.

McIntyre et al. �2007� indicated flow volumes of some ten
thousand to some million cubic meters for Hayl flow gauge lo-
cated about 30 km2 up from the Ahin dam at the transition of the
coastal plain to the mountains. Since the catchment of the Ahin
dam is not significantly larger than the Hayl catchment and rain-
fall mostly occurs in the mountains, flow volumes derived for the
Hayl gauge are also representative for the catchment of the Ahin

dam. According to Mott-MacDonald International �1992�, the
Ahin reservoir features a total volume of 6.5�106 m3 in order to
retain a flood of 10 years return period.

We use the ZI model to obtain suitable release hydrographs out
of the reservoir with respect to high cumulative downstream in-
filtration. The order of magnitude of the selected filling of the
reservoir and the derived hydrographs used for the simulation
seem appropriate for smaller events with frequent occurrence.
The Wadi Channel 1 �Fig. 5� is mapped by 12 cross sections and
has a length of about 6,200 m. The longitudinal slope is 0.006, the
Manning-Strickler velocity coefficient is estimated to be
30 m1/3 /s, and the channel is assumed to be initially dry. As
mentioned before, any arbitrary functional relationship for quan-
tifying the infiltration losses can be used with the proposed ap-
proach. For convenience we again employ the Kostiakov-Lewis
model �Eq. �20��.

Table 3 presents two unsteady flow hydrographs released to
the downstream channel. The same total volume of water is re-
leased in both scenarios. However, the release is much slower in
Scenario 2. Fig. 7 depicts the results of the arrival time, infiltra-
tion volume, and infiltration percentage under both scenarios for
Wadi Channel 1.

Under Scenario 1, the release of about 12.3�103 m3 of water
within a time of 1 h and 18 min leads to a total cumulative
infiltration of about 1�103 m3, which is equivalent to an infil-
tration quota of about 8%. Under Scenario 2, the release of about
12.3�103 m3 of water within a time of 11 h and 31 min leads to
a total cumulative infiltration of about 10�103 m3, which is
equivalent to an infiltration volume of about 80% compared to the

Table 3. Release Hydrographs �Scenarios 1 and 2� for the Calculation of
Cumulative Downstream Infiltration

Scenario 1 Scenario 2

Time �s�
Flow

�m3 /s� Time �s�
Flow

�m3 /s�

0 0 0 0

300 1.2 60 0.2

600 2.8 1,800 0.2

4,535 2.8 1,860 0.3

41,490 0.3

Cumulative release �m3� 12,268 Cumulative release �m3� 12,267
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Fig. 7. Arrival time, infiltration volume, and infiltration percentage for Scenarios 1 and 2 for Wadi Channel 1 downstream of Wadi Ahin recharge
dam
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released volume �infiltration quota�. A study for Wadi Channels
2–5, employing the same assumptions as before, delivered infil-
tration quotas ranging from 3.7 to 8.1% for Scenario 1 and 81.4 to
almost 90% for Scenario 2.

As a final step, we evaluate the reservoir release rate leading to
a practically standing wave within a considered channel reach due
to the complete infiltration of constantly released water along the
channel. This is an important question when looking at the design
of the culverts with regard to the available channel reach length
and an aspired infiltration quota. Fig. 8 shows the results of the
computation. We consider the steady state to be reached with an
infiltration quota of over 99%. It becomes clear, that for a con-
stant release rate of 0.2 m3 /s and less nearly the whole inflow
volume infiltrates, resulting in a practically standing wave with
the wave tip at the most downstream cross section at 6,200 m.
The further decrease of the steady inflow rate leads to a shift of
the standing wave tip toward upstream locations.

Summary and Conclusions

The presented analytical surge flow model, based on the zero-
inertia assumptions, offers a new tool for the simulation of flood
wave propagation with infiltration losses through permeable beds.
The analytical model showed its capability for the simulation of a
surge moving down an irregularly shaped natural permeable
stream bed even under problem specific restrictions such as an
initially dry channel bed and a significant infiltration. Therefore,
the presented model seems to be ideal for simulating surge flow
phenomena downstream of groundwater recharge dams, notwith-
standing the discontinuity when attaining the state of a standing
wave and—looking at the straightforward applicability—
evaluating reservoir release strategies and culvert design for spe-
cific groundwater recharge problems.

The test runs for the prismatic and nonprismatic permeable
channels showed excellent agreement with the fully dynamic nu-
merical solution. The model applicability therefore seems not to
be severely restricted by the underlying assumptions. Although
the incorporation of a spatially constant slope and velocity coef-
ficient is obviously dependent on the channel morphology, it ap-
parently does not represent a serious restriction for the model
application for surge flow modeling in ephemeral alluvial wadi
beds. The approach circumvents any numerical trouble of the free
boundary value problem and offers the possibility of incorporat-
ing nonprismatic channel geometries and any appropriate model
for the quantification of infiltration losses through the channel
bed.

Further model applications and modifications that stand out to
be tested are �1� the incorporation of significant momentum con-
tributions under varying angles. This might be the case if the
outflow of the five reservoir culverts unites downstream of the
dam. �2� The implementation of a more comprehensive infiltra-
tion model that could be adjusted for the wetted perimeter like
this is done in software packages such as SIRMOD �Walker and
Skogerboe 1987; Walker 1998�.
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Analytical Model of Surface Flow on Hillslopes
Based on the Zero Inertia Equations

Andy Philipp1; Rudolf Liedl2; and Thomas Wöhling3

Abstract: Coming from the zero inertia (ZI) equations, an analytical model to describe sheet flow phenomena with a special focus on
rainfall runoff processes is developed. A slight modification of the ZI equations, which draws upon the concept of a momentum-representative
cross-section of the moving water body, leads—after comprehensive mathematical calculus—to an analytical solution describing essentially
one-dimensional, shallow overland flow. In a test series, the analytical ZI model is applied together with three numerical models, one based on
the Saint-Venant equations, one on the kinematic wave equations, and another one on diffusion wave equations. The test application refers to
a typical rainfall runoff situation, i.e., rather shallow overland flow on a hillslope as a consequence of excess rainfall. Contrary to the ana-
lytical model, the comparative analysis clearly shows the difficulties of the numerical solutions in terms of exactness and robustness when
approaching typical shallow water depths. This problem of numerical models is tackled by applying small time and space discretization,
which, however, comes along with higher CPU execution times. Besides the good computational efficiency and freedom of any numerical
inconvenience, the new analytical model outperforms the numerical models for typical overland flow simulations. This particularly refers to a
highly satisfactory fulfillment of the mass balance and a nearly perfect match of peak flow rates. DOI: 10.1061/(ASCE)HY.1943-7900
.0000519. © 2012 American Society of Civil Engineers.

CE Database subject headings: Sheet flow; Overland flow; Diffusion; Slopes; Hydrology.

Author keywords: Surface flow; Sheet flow; Overland flow; Zero inertia model; Diffusion wave; Analytical model; Hillslope hydrology.

Introduction

Surface flow on hillslopes can be a driving process of runoff
formation, especially during flood prone hydro-meteorological sit-
uations. Flow on the surface is affected by morphology and micro
relief of the catchment, positive and negative mass (and momen-
tum) contributions by precipitation and infiltration, antecedent
wetness conditions, and water supervening from upper parts of the
catchment. The preceding listing illustrates the complex character
of surface flow processes and renders their closed physically based
description nearly impossible, since the relevant processes are
strongly interconnected, highly nonlinear, and available data for
such an ambitious process modeling will always be lacking for real
meso-scale catchments.

The concept of sheet flow is commonly used to tackle the afore-
mentioned problems of a physically based description of surface
flow. This means that the flowing water on the surface is considered
as a somehow virtual moving water body (or sheet of water) trav-
eling down a characteristic rough slope without considering the real

flow conditions in rills and small channels. Nevertheless, only the
average characteristics of water movement are portrayed this way.
For the one-dimensional case there are only few studies (e.g., Tayfur
and Kavvas 1998) that try to overcome the simplifications of the
sheet flow concept toward a more realistic portrayal of rill flow,
which of course results in a mostly unrealistically high data
demand.

The literature shows—beside simple volume balance
techniques—three general concepts of physically based one-
dimensional overland flow modeling: (1) the full hydrodynamic
description on the basis of the Saint-Venant equations, (2) the
diffusion wave or zero inertia (ZI) approximation (which some au-
thors consider synonym, and some do not), and (3) the kinematic
wave approximation. Despite that the kinematic wave approach for
overland flow modeling has been extensively studied (Henderson
and Wooding 1964; Ross et al. 1979; Hjelmfelt 1981; Hjelmfelt
1984; Govindaraju et al. 1992; Jaber and Mohtar 2003; Liu et al.
2004) and a great number of researchers (Woolhiser and Liggett
1967; Zhang and Cundy 1989; Esteves et al. 2000, to name only
a few) investigated the usability of one- and two-dimensional
Saint-Venant models for this task, far less has been reported on the
validity, limits, and applicability of the zero inertia/diffusion wave
approximation. Furthermore, many authors report of serious prob-
lems, such as attenuation errors, phase errors, and discretization
errors, when applying numerical solution schemes to the com-
monly used overland flow equations (e.g., Singh 2002; Jaber and
Mohtar 2003; Tsai and Yang 2005).

Morris and Woolhiser (1980) first used the diffusion wave sim-
plification of the full Saint-Venant equations for overland flow
modeling. They showed that the often-assumed validity of the kin-
ematic wave approximation can be harmed under highly subcritical
flow conditions (e.g., on a flat and/or very rough terrain). Daluz
Vieira (1983) compared 150 simulations on the basis of the Saint-
Venant equations with those obtained by the kinematic and the
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diffusion wave approximation for a range of flow conditions,
rendered by different kinematic wave numbers and Froude num-
bers. Their study showed the wide applicability and validness of
the diffusion wave approximation for Froude numbers smaller
than 0.5 and kinematic wave numbers greater than 5.0. Govindaraju
et al. (1988) showed that for high Froude numbers and low
kinematic wave numbers, the kinematic wave approximation may
fail.

Govindaraju et al. (1988) proposed an analytical solution of
the zero inertia problem for steep slopes under invariant rainfall
conditions. They replaced the commonly used critical flow depth
boundary condition by a zero-depth gradient boundary condition.
This methodology—as in the case of the research presented in this
paper—leads to nonlinear equations that can be solved with any
standard numerical method and deliver a solution for the rising
and the recession hydrograph. Govindaraju et al. (1990; 1992) ex-
panded the aforementioned concepts to an approximate analytical
solution for space-time-varying rainfall input and lateral inflow for
the one- and two-dimensional case. Furthermore, literature shows
no evidence of an exact analytical solution of the zero inertia
equations under arbitrarily time varying rainfall.

Besides these publications, research on analytical solutions of
the zero inertia equations for overland flow problems remains lim-
ited. A number of authors introduced and expanded a free boundary
formulation of the zero inertia problem. They proposed an exact—
and not only approximate—analytical solution to the problem.
The developed models already performed well for a wide range
of model applications, e.g., border and furrow irrigation (Schmitz
and Seus 1990; 1992), coupled one-dimensional surface and
two-dimensional subsurface flow (Wöhling et al. 2004; 2006;
Wöhling and Mailhol 2007), surge flow in prismatic and nonpris-
matic channels over initially dry channels (Schmitz et al. 2002),
and surge flow in initially dry, nonprismatic channels with signifi-
cant infiltration effect on mass and momentum balance and weak
process dynamics (Philipp et al. 2010). The objective of this paper
is to develop and test an exact analytical solution of the zero inertia
equations for runoff problems on hillslopes under time varying
rainfall.

Analytical Model

Considering the flexibility and universality of numerical flow
models, the question arises: why are analytical solutions of the gov-
erning equations needed? Arguments that are given in the literature
are (1) straightforward model applicability since only physically
based parameters are needed, (2) the sensitivity and influence of
single parameters can often be directly seen from the computation
formulas, (3) the data situation omits the application of numerical
methods, (4) there are no numerical inconveniences, and (5) the
analytical solution can serve as a reference for numerical models,
e.g., to quantify the influence of different numerical methods on the
quality of the solution. The authors set up an analytical zero inertia
model of the commonly incorporated sheet flow analogon of sur-
face flow, which assumes flow in a very wide cross-section with
a uniform flow depth perpendicular to the flow direction. A wide
rectangular cross-section is assumed. This implies that the width of
the cross-section is much greater than the water depth h, such that
the hydraulic radius R equals h. It is intended to set up the model
for flow over initially dry portions of a surface. Furthermore, the
model should account for changes of the flow attributable to water
originating from rainfall and/or infiltration excess as well water
supervening from upper parts of the catchment.

The extended ZI equations (Schmitz et al. 2002) are derived
by neglecting the local and advective inertia terms ∂u∕∂t and
u · ∂u∕∂x of the full hydrodynamic shallow water flow equations
for the one-dimensional case, which are mostly referred to as Saint-
Venant equations (Yen and Tsai 2001). Additionally, for surface
runoff influenced by rainfall—considering the momentum contri-
bution of the falling rain to the flow insignificant—the qu∕ðgAÞ
term of the momentum equation of the Saint-Venant equations
can be neglected. The rainfall contributing to the flow is taken into
account by the q term of the continuity equation. This leads to the
standard ZI equations (continuity and momentum equation):

∂h
∂t þ

∂Q
∂x ¼ q ð1Þ

∂h
∂x ¼ S0 �

u2

K2hβ
ð2Þ

where t = time (T); x = longitudinal space coordinate (L); Qðx; tÞ =
discharge per unit width (L2T�1); uðx; tÞ = flow velocity (LT�1);
hðx; tÞ = water depth (L); qðx; tÞ = rate of positive/negative mass
contribution attributable to rainfall or infiltration (L2T >�1);
K = discharge coefficient (L1�βT�1); β = exponent of h, depending
on the flow formula (Chézy: β ¼ 1; Manning: β ¼ 1:333…); and
S0 = bottom slope (-). For further model development, β is set to 1
(Chézy law is used for the quantification of friction losses).

The first step toward the solution of the system of Eqs. (1)
and (2) is to multiply Eq. (2) by h, yielding

h
∂h
∂x ¼ S0h�

u2

K2 ð3Þ

According to Schmitz and Seus (1990), the inflow boundary
can be considered as a kind of momentum-representative cross-
section for the specific flow problem. In this approach, the mo-
mentum described by the right-hand side of Eq. (3)—which is
set equal to zero in kinematic wave analysis (Hjelmfelt 1981;
Yen and Tsai 2001)—is continuously represented by the transient
amount of momentum at x ¼ 0. Thus, the right-hand side of
Eq. (3) no longer depends explicitly on x, and Eq. (3) can be
expressed as

h
∂h
∂x ¼ S0h0 �

u20
K2 ð4Þ

where h0 ¼ h0ðtÞ ¼ hðx ¼ 0; tÞ; and u0 ¼ u0ðtÞ ¼ uðx ¼ 0; tÞ.
Schmitz and Seus (1990; 1992) showed that another possible
location of the momentum-representative cross-section is the
position of the center of gravity of the moving water body.
This approach leads to a physical and mathematical equivalent
solution. For this study, the authors place the momentum-
representative cross-section at x ¼ 0 because the subsequent cal-
culus is more brief and this location introduces a well-defined
coupling location when single-slope models should be cascaded.

The solution of the system of partial differential Eqs. (1) and (4)
requires the specification of boundary and initial conditions. At the
fixed upstream boundary (x ¼ 0), the boundary condition is

Qð0; tÞ ¼ Q0ðtÞ ð5Þ
with the restriction that strongly falling discharge hydrographs
cannot be used as an upstream boundary condition because of the
ZI assumptions (Schmitz et al. 2002). As a consequence, the model
covers the rising limb and the plateau part of the hydrograph. At the
moving downstream boundary (x ¼ xtipðtÞ) the following condi-
tions have to be satisfied:
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hðxtip; tÞ ¼ 0 ð6Þ

uðxtip; tÞ ¼ utipðtÞ ¼
dxtip
dt

ð7Þ

where xtipðtÞ and utipðtÞ denotes the location and velocity of the
wave front, respectively. The initial condition of the flow problem
over an initially dry surface is

xtipðt ¼ 0Þ ¼ 0: ð8Þ
Schmitz et al. (2002) have derived the solution of the momentum
Eq. (4) for arbitrary cross-section geometries. In our rectangular
case, their solution reads

hðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
u20
K2 � S0h0

�
· ½xtipðtÞ � x�

s
: ð9Þ

Next, the continuity Eq. (1) is solved for Q. Considering the
upstream boundary condition given by Eq. (5), a direct integration
of the continuity equation yields

Qðx; tÞ ¼ Q0ðtÞ �
Z

x

0

�∂h
∂t ðξ; tÞ þ qðξ; tÞ

�
dξ ð10Þ

where the integrand can be obtained by differentiating Eq. (9) with
respect to t, and ξ indicates the integration variable in time. Eqs. (9)
and (10) solve the system Eqs. (1) and (4) and satisfy the boundary
conditions given by Eqs. (5)–(7).

The solution procedure for Eqs. (9) and (10) first requires
evaluating the position of the advancing wave front xtipðtÞ and
the water depth h0ðtÞ ¼ hðx ¼ 0; tÞ at the inflow boundary—which
is not zero in case water emerges from upper catchment parts and
not only laterally from rainfall—by solving a nonlinear system of
two equations iteratively. For this purpose, N observation locations
ð0 < x1 < x2 < … < xNÞ are defined and the arrival time of
the wave tip tn for each observation point, i.e., xtipðtnÞ ¼ xn for
(n ¼ 1; 2;…;N), and the corresponding water depth h0;n ¼
h0ðtnÞ at x ¼ 0 is calculated.

The first aforementioned nonlinear equation is obtained by
setting x ¼ 0 in Eq. (9):

h0;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xn

�
Q0t2n
K2h20;n

� S0h0;n

�s
ð11Þ

The second nonlinear equation is derived from the volume balanceZ
tn

0
Q0ðτÞdτ ¼ 2

3
h0;nxn þ

Z
tn

0

Z
xn

0
qðξ; τÞdξdτ ð12Þ

where ξ and τ indicate the integration variables in the dimensions of
space and time.

Rearranging Eqs. (11) and (12) leads to the iterative procedure
defined by Eqs. (13) and (14):

hðkÞ0;n ¼

8>><
>>:
2xn

h
Q0ðtnÞ
K

i
2

1þ 2xnS0

hðk�1Þ
0;n

9>>=
>>;

1∕4

ð13Þ

tðkÞn ¼ tðk�1Þ
n

þ 2∕3 hðkÞ0;nxn þ
R tðk�1Þ

n
0

R xn
0 qðξ; τÞdξdτ � R tðk�1Þ

n
0 Q0ðτÞdτ

Q0½tðk�1Þ
n �

ð14Þ

where k ¼ 1, 2,3,… denotes the iteration index. A Taylor series

expansion of the left-hand side of Eq. (12) around tðk�1Þ
n has been

included to take into account the effect of lateral inflow/outflow
from rainfall and/or infiltration, respectively. Initial values are
provided by the results obtained from the preceding time step,

i.e., hð0Þ0;n ¼ h0;n�1 and tð0Þn ¼ tn�1.
After the iteration in Eqs. (13) and (14) has converged, the water

depth hðx; tnÞ can be straightforwardly computed from

hðx; tnÞ ¼ h0;n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xn

r
ð15Þ

by making use of Eq. (9). Eq. (15) is inserted into Eq. (10) to com-
pute the discharge per unit width, Qðx; tÞ. If there is—beside or
instead of known lateral inflow—significant infiltration, this step
requires either some standard formula, e.g., Kostiakov-Lewis, or
some problem-specific functional relationship quantifying the infil-
tration rate and to calculate qðξ; τÞ. Additionally, some details on
the evaluation of the integral of Eq. (10) are given in the Appendix.

Since the formulation of the proposed analytical model assumes
a free and moving lower boundary, the concept of the so-called
“virtual wave” is used as proposed by Schmitz (1989) and Schmitz
and Seus (1990). This concept virtually extends the computational
domain in case the moving wave tip reaches the lower boundary of
the model domain—which is immediately the case assuming a
homogeneous lateral rainfall input to the test plane. Thus, the water
body atop the test plane is filled up by the lateral rainfall input,
forming a traveling virtual wave tip beyond the real extensions
of the test plane. This traveling virtual wave tip is the transient
location of the lower boundary conditions of Eqs. (6) and (7).
In this way, the virtual wave provides flow rate, flow depth, and
flow velocity along the test plane. Fig. 1 gives an illustration of
the virtual wave concept.

Comparative Analysis

In this section, results of the developed analytical zero inertia
model (analytical ZI model or aZI model) are compared with results
obtained by numerical solutions of the Saint-Venant equations
(numerical HD model or nHD model), the kinematic wave approxi-
mation (numerical KW model or nKW model), and the diffusion
wave or zero inertia model (numerical ZI model or nZI model).
This is done by modeling surface runoff as a consequence of
excess rainfall on a synthetic test plane with a specific roughness
as typically examined by many authors (e.g., Schmid 1986;
Di Giammarco et al. 1995; Tsai and Yang 2005).

Test Setup

Characteristics of the Synthetic Test Plane

For model intercomparison and subsequent assessment of the pro-
posed analytical zero inertia model, the flow over a synthetic im-
pervious test plane as proposed by Schmid (1986) (see Fig. 1) was
simulated. This specific test plane was selected because of the
availability of model results of another kinematic wave model
implementation for the discussed test plane, which gave the oppor-
tunity to check for validness of the incorporated flow models first.
The used synthetic test plane featured the following parameters:
rectangular domain, length of 80 m, width of 20 m, surface slope
of 15°, and Chézy friction coefficients of KC ¼ 2:0; 5:0; 10:0;
20:0 m1∕2∕s. For the purpose of clarity, results for all aforemen-
tioned friction coefficients are included in tabular form but model
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results in form of hydrographs are shown only for setups with the
friction coefficient set to KC ¼ 5:0 m1∕2∕s.

Specifics of the Model Setups

Numerical Full Hydrodynamic Model (nHD Model)
The employed full hydrodynamic model is based on the Saint-
Venant equations (Strelkoff 1970) that pose a reliable process
model for unsteady shallow water flow of incompressible fluids.
In general, the governing system of continuity and momentum
equation cannot be solved analytically. A large number of studies
have been conducted to verify the applicability and validity of
different numerical solution approaches for the one and two-
dimensional Saint-Venant equations. For the one-dimensional case
most often finite differencing schemes are applied. For this study,
the authors used a centered implicit finite differencing scheme that
employs Picard iteration for the convergent solution of the resulting
system of nonlinear equations. The nHD model’s spatial resolution
was set to Δx ¼ 0:5 m, and a temporal resolution of Δt ¼ 2 s was
chosen. This spatial/temporal resolution was selected on the basis
of a prerequisite sensitivity analysis that revealed—depending
foremost on the magnitude of the inflow rate—that greater values
of Δx and Δt did provoke a declined convergence behavior of the
relaxation scheme or, finally, led to numerical instabilities that
avoided a convergent solution.

Numerical Kinematic Wave Model (nKW Model)
A standard one-dimensional kinematic wave model of surface flow
(e.g., as proposed by Schmid 1986) was implemented. The model
uses the common kinematic wave approximations (Lighthill and
Whitham 1955), which indicates that the inertia terms of the Saint-
Venant equations are neglected and, additionally, bottom slope is
set equal to friction slope. These assumptions are in contrast to the
full hydrodynamic process description as they cause a bijective re-
lationship of flow rate and flow depth. Because of their character as
partial differential equations, the kinematic wave equations are
mostly solved numerically, which is performed by a large number
of authors for the one- and two-dimensional case (e.g., Schmid
1986; Liu et al. 2004; Tsai and Yang 2005; Howes et al. 2006).

The governing equations were solved with an implicit differencing
scheme too. The time step of the nKW model was set to Δt ¼ 2 s,
and the spatial resolution was set toΔx ¼ 0:5 m to prevent numeri-
cal instabilities and convergence problems and to keep consistency
with the other incorporated numerical model setups.

Numerical Zero Inertia Model (nZI Model)
The zero inertia or diffusion wave approach neglects the terms of
local and advective momentum but does not assume the parallelism
of friction slope and bottom slope. The incorporated numerical sol-
ution scheme for the nZI model is based on a centered implicit
finite differencing scheme as proposed by numerous authors for
the one-dimensional case (e.g., Bronstert and Bárdossy 2003). As
applies for the afore-discussed numerical solutions of the full
hydrodynamic model and the kinematic wave model, it was crucial
to discretize the solution domain with an appropriate resolution in
time and space to prevent larger numerical errors. For consistency,
the spatial resolution for the test scenario calculations was therefore
set to Δx ¼ 0:5 m, and a discretization time step of Δt ¼ 2 s was
applied. Additionally, a coarser resolution in space and/or time led
to numerical issues, depending on process dynamics and magnitude
of the flow.

Analytical Zero Inertia Model (aZI Model)
The analytical ZI model concept presented in this paper already
showed its ability to portray flow processes associated with free
boundary problems as met in initially dry channels, weak process
dynamics (e.g., flows connected with standing wave phenomena
under significant infiltration losses), and flows over small to zero
slopes up to fast surges (Schmitz and Seus 1990; Schmitz and Seus
1992; Schmitz et al. 2002; Wöhling et al. 2004; Wöhling et al.
2006; Wöhling and Schmitz 2007; Wöhling and Mailhol 2007;
Philipp et al. 2010). Therefore, the proposed aZI model seems
to offer a robust and reliable solution of a comprehensive process
description of surface flow without the potential errors of numerical
solution procedures. The model is based on the MATLAB imple-
mentation of the furrow advance phase model with space discreti-
zation (FAPS) by Wöhling et al. (2006). The model was modified

Fig. 1. Schematic sketch of the synthetic test plane for overland flow and illustration of the virtual wave concept
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to account for lateral mass contribution along a wide flow plane
(h≈ R) by the authors. According to Wöhling et al. (2006) and
as outlined in the model development section, a space discretization
for incrementing the iterative solution procedure in Eqs. (13) and
(14) was included. The synthetic test plane was discretized by intro-
ducing observation points with a spatial resolution of Δx ¼ 0:5 m.
Any standard algorithm could be used (e.g., fixpoint iteration) for
the iterative solution of the governing nonlinear equations, but this
may not lead to satisfactory convergence rates at any time. To im-
prove convergence of the iterative solution procedure, an algorithm
of higher order accuracy is indicated. According to Wöhling et al.
(2006), the Newton-Raphson algorithm was applied. This algo-
rithm is of second-order accuracy, but demands the derivatives
of the governing equations. Wöhling et al. (2006) has more details
on the therefore required calculus. The number of iteration loops till
convergence for each iteration run typically amounts to fewer than
20 when using the second-order Newton-Raphson relaxation
scheme, depending on convergence rate and the value of the
selected iteration error criterion. According to Fig. 1, the upper
boundary condition of the model can be implemented as lateral
inflow qðx; tÞ, and/or as inflow to the plane from uphill Qð0; tÞ.

Boundary Conditions and Initial Conditions of the Test
Scenarios

Four model test scenarios with different upper boundary conditions
were selected for comparative model analysis. The lateral boundary
condition is—as usual for sheet flow modeling—given by a lateral
inflow qðtÞ to the model domain. Additionally, the incorporation of
a time-variable inflow Qð0; tÞ at the uppermost model boundary at
x ¼ 0 is possible. To keep brevity, no model results for inflow via
the upper boundary are shown. The maximum inflow rates are set
to qðtÞmax ¼ 20;45;90;120 mm∕h, linearly rising from zero to the
maximum within 10 min and staying constant for the next 39 min
(see Table 1 and Fig. 2). The selected inflow rates span a wide range
of events, leading to pronounced flow on the plane. For all included
models, a zero-flow initial condition was applied. Furthermore, for
the numerical models, a zero-depth gradient was used as down-
stream boundary condition. Infiltration was not taken into account
to take care for better model intercomparability. The coupling of a
selected infiltration model with the specific surface flow models
would have posed a source of uncertainties because the coupling

strategies would have differed, e.g., because of different temporal
discretization strategies and the nonlinear dependency of surface
and subsurface flow. If the portrayal of infiltration is desired,
any arbitrary functional relationship describing transient infiltration
could be taken into account with the presented analytical ZI
approach, which was already shown by Wöhling et al. (2006)
and Philipp et al. (2010).

Comparison of Model Results

Mass Balance Check

The fulfillment of mass conservation of the four incorporated mod-
els is considered first. For this purpose, the four different lateral
inputs of scenarios 1 to 4 are supplied to the synthetic test plane
of a specific roughness. A mass conservation check is carried out
for every model by comparing the sum of water of the lateral input
and the sum of modeled outflow at the plane’s lowermost cross-
section at x ¼ 80 m after 50 min. A variation of Chézy coefficients
of KC ¼ 2:0; 5:0; 10:0; 20:0 m1∕2∕s was used to sample a wide
range of surface roughness conditions. The temporal and spatial
resolution of the numerical models was set to equal values ofΔt ¼
2 s and Δx ¼ 0:5 m. The spatial resolution of the analytical model
was also set toΔx ¼ 0:5 m to take care for a certain degree of com-
parability of the results regarding spatial model resolution. The re-
sulting relative mass balance errors are given in Table 2.

The mass balance comparison unveils that the analytical zero
inertia model outperformed the numerical models for most constel-
lations of lateral inflow rates and Chézy friction coefficients. The
deviations in the mass balance of the aZI model output amounted to
some 0.1% for 14 out of 16 calculation runs and were therewith
significantly smaller than for the numerical models in 11 out of
16 cases. For the numerical models, the nKW model outperformed
the nHD and nZI models with respect to mass conservation for all
simulation runs. The errors of the incorporated numerical models
were directly dependent on spatial and temporal resolution of
the solution scheme. The deviations of the aZI model from the
reference could additionally be improved by tightening the error

Table 1. Lateral Inflow Rates qðtÞ to the Model Domain for the Test
Scenarios 1, 2, 3, and 4

Time
(minutes)

Scenario 1
(millimeters
per hour)

Scenario 2
(millimeters
per hour)

Scenario 3
(millimeters
per hour)

Scenario 4
(millimeters
per hour)

0 0.0 0.0 0.0 0.0

1 2.0 4.5 9.0 12.0

2 4.0 9.0 18.0 24.0

3 6.0 13.5 27.0 36.0

4 8.0 18.0 36.0 48.0

5 10.0 22.5 45.0 60.0

6 12.0 27.0 54.0 72.0

7 14.0 31.5 63.0 84.0

8 16.0 26.0 72.0 96.0

9 18.0 40.5 81.0 108.0

10 20.0 45.0 90.0 120.0

— — — — —
50 20.0 45.0 90.0 120.0
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0

20

40

60

80

100

120

140

160

Time (minutes)

La
te

ra
l i

nf
lo

w
 (

m
ill

im
et

er
s 

pe
r 

ho
ur

)

Scenario 1 
Scenario 2 

Scenario 3 
Scenario 4 

Fig. 2. Lateral inflow rates qðtÞ to the model domain for the test
scenarios 1, 2, 3, and 4
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criterion of the iteration procedure given by Eqs. (13) and (14). The
mass balance error decreased with higher total peak inflow for all
incorporated models. The mass balance errors of the aZI

model were always lowest for moderate friction coefficients of
KC ¼ 5:0; 10:0 m1∕2∕s. Overall, the aZI model performed very
well compared with the other models.

Results of the Test Scenario Calculations

The aforementioned initial conditions and boundary conditions
were applied to the four presented models and the simulated flow
hydrographs for the lowermost observation point of the synthetic
test plane (x ¼ 80 m) were compared. Fig. 3 depicts the resulting
hydrographs of the scenario calculations 1, 2, 3, and 4 (maximum
inflow rate qðtÞmax ¼ 20;45;90;120 mm∕h) for a friction coeffi-
cient of KC ¼ 5:0 m1∕2∕s. The results for other friction coefficients
(KC ¼ 2:0; 10:0; 20:0 m1∕2∕s) look similar but with decreased/
increased dynamics of the rising limb of the simulated flow hydro-
graphs. Table 3 shows the quasi-stationary flow rates Qðx; tÞ after
50 min at the lowermost cross-section x ¼ 80 m for the scenario
calculations. The process dynamics of all scenarios are soundly
portrayed by the four incorporated models. These observations
apply for the whole range of investigated Chézy friction coeffi-
cients. Onset and rising limb of the hydrograph and transition to
the quasi-stationary peak flow rate are convergent for the investi-
gated models. The calculations for higher Chézy coefficients led to
a slightly better agreement of the resulting peak flow rates of the
different models.

The analytical zero inertia model nearly matched the stationary
peak inflow rates of qðtÞmax ¼ 20;45;90;120 mm∕h for all applied
Chézy friction coefficients, which is supported by the analytical
character of the model. The aZI model performed best for 15
out of 16 herein presented calculations. The quality of the aZI
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Fig. 3. Flow hydrograph comparison for lateral input scenarios 1, 2, 3, and 4 (maximum inflow rate qðtÞmax ¼ 20; 45; 90; 120 mm/h) and Chézy
friction coefficient of KC ¼ 5:0 m1∕2∕s at location x ¼ 80 m of the synthetic test plane; simulation results provided by numerical full hydrodynamic
model (nHD), numerical kinematic wave model (nKW), and numerical and analytical zero inertia models (nZI and aZI)

Table 2. Comparison of the Relative Mass Conservation of the Numerical
Hydrodynamic Model (nHD), Numerical Kinematic Wave Model (nKW),
Numerical and Analytical Zero Inertia Models (nZI and aZI) for Different
Lateral Inputs to the Synthetic Test Plane after 50 Minutes of Inflow

KC½m1∕2∕s� 2.0 (%) 5.0 (%) 10.0 (%) 20.0 (%)

qðtÞmax ¼
20 mm∕h

nHD �1:43 �1:75 �1:86 �2:29

nKW �0:51 �0:56 �0:58 �0:60

nZI �1:43 �1:75 �1:86 �2:30

aZI �1:38 �1:11 �0:49 �0:53
qðtÞmax ¼
45 mm∕h

nHD �1:32 �1:34 �1:81 �1:79

nKW �0:53 �0:58 �0:59 �0:61
nZI �1:32 �1:34 �1:81 �1:80

aZI �0:84 �0:55 �0:37 �0:63

qðtÞmax ¼
90 mm∕h

nHD �1:25 �1:26 �1:66 �1:30

nKW �0:56 �0:59 �0:60 �0:61

nZI �1:25 �1:26 �1:67 �1:31

aZI �0:64 �0:48 �0:52 �0:58
qðtÞmax ¼
120 mm∕h

nHD �1:24 �1:25 �1:64 �1:46

nKW �0:56 �0:59 �0:60 �0:61

nZI �1:24 �1:25 �1:65 �1:43

aZI �0:26 �0:15 �0:18 �0:25
Note: Best results are set in bold.
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results could be even improved by tightening the convergence
criterion of the incorporated iterative solution procedure that led
to higher computational effort. The aZI model showed the lowest
peak flow errors for moderate Chézy coefficients. Peak flow errors
of the aZI model decreased with increasing peak flow rates. For the
numerical models, the nKW model performed best in matching
quasi-stationary peak flow rates. The respective relative errors of
the nKW model were always lower than the errors of the nHD
and the nZI model. Furthermore, the errors of the nHD and nZI
model were nearly equal for the specific simulations. Like for
the aZI model, peak flow errors of the numerical models decreased
with increasing peak flow rates.

Computation Time Requirements

A comparison of CPU time requirements for the calculations of the
aforementioned test scenarios (four different boundary conditions
with four different friction coefficients) was conducted. The
numerical models were all implemented in FORTRAN language
and compiled with the same compiler. The analytical zero inertia
model was implemented and executed in the MATLAB environ-
ment. A 1.6 GHz machine with 2 GB of memory was used for com-
putation. The CPU time of each model for all 16 model setups were
averaged and normalized by the mean CPU time requirement of the
analytical ZI model:

CPU time factor ¼ CPU timenHD;nKW;nZI

CPU timeaZI
ð16Þ

The mean CPU time and CPU time factors for the four different
models are given in Table 4.

As expected, CPU time increased with the complexity of the
governing flow equations of each model. The flow simulations with
the nHD model required the highest CPU time, followed by the nZI
and the nKWmodel. The aZI model exhibited the lowest CPU time
requirements. CPU time is primarily required for the iterative sol-
ution of the system in Eqs. (13) and (14), which needed typically
fewer than 20 iteration loops for yielding convergence. Tightening
the iteration criterion led to slightly better model results but higher
CPU time. It has to be mentioned that the nHD, nKW, and the nZI

code were used as compiled executable code, whereas the aZI code
was executed in the MATLAB interpreter environment. It is
assumed that a compiled version of the aZI code would outperform
the other investigated models by far, considering CPU time
requirements.

Discussion and Conclusions

The presented analytical zero inertia model showed a highly
satisfactory performance for modeling typical scenarios of sheet
flow on a synthetic plane, charged by time-variable rainfall events.
In a comparative analysis the aZI model delivered mostly better
results than the commonly used numerical approaches in terms
of an adequate mass balance and matching peak runoff rates.
Furthermore, the aZI model showed a convergent solution for
the process dynamics of the flow compared with the numerical so-
lutions. At the same time, the aZI model demanded less CPU time
than the employed numerical solution schemes.

The mass balance error of the aZI model for the 16 simulation
runs amounted �0:15 to �1:38%, which made the model superior
for 11 out of 16 runs regarding mass balance errors. The mass bal-
ance errors of the numerical models for all simulation runs spanned
1:24 to �2:29% (nHD), �0:51 to �0:61% (nKW), and �1:24 to
�2:30% (nZI). The errors of the aZI model for the portrayal of
peak inflow rates were again comparatively small with �0:23 to

Table 4. Comparison of Average Central Processing Unit (CPU) Time
Requirements of the Full Hydrodynamic Model (nHD), Kinematic Wave
Model (nKW), Numerical Zero Inertia Model (nZI), and Analytical
Zero Inertia Model (aZI)

Model
Code

execution

Spatial
resolution
Δx (meters)

Temporal
resolution Δt

Averaged
CPU time
(second)

CPU
time
factor

nHD Compiled 0.5 2 s 9.56 1.40

nKW Compiled 0.5 2 s 6.92 1.01

nZI Compiled 0.5 2 s 8.97 1.31

aZI Interpreted 0.5 Adaptive 6.83 1.00

Table 3. Comparison of Absolute and Relative Quasi-Stationary Flow Rates (Millimeters per Hour) at the Lowermost Cross-Section after 50 Minutes
Qðx ¼ 80 m; t ¼ 50 minÞ for Scenario Calculations 1, 2, 3, and 4

KC½m1∕2∕s� 2.0 5.0 10.0 20.0

qðtÞmax ¼ 20 mm∕h nHD 19.6664 ð�1:67Þ 19.6142 ð�1:93Þ 19.5944 ð�2:03Þ 19.5086 ð�2:46Þ
nKW 19.8535 ð�0:73Þ 19.8358 ð�0:82Þ 19.8471 ð�0:76Þ 19.8231 ð�0:88Þ
nZI 19.6664 ð�1:67Þ 19.6141 ð�1:93Þ 19.5940 ð�2:03Þ 19.5079 ð�2:46Þ
aZI 19.7730 ð�1:14Þ 19.8923 ð�0:54Þ 19.9350 ð�0:33Þ 19.9283 ð�0:36Þ

qðtÞmax ¼ 45 mm∕h nHD 44.3164 ð�1:52Þ 44,3303 ð�1:49Þ 44,1184 ð�1:96Þ 44,1370 ð�1:92Þ
nKW 44.6670 ð�0:74Þ 44,6942 ð�0; 68Þ 44,5782 ð�0; 94Þ 44,4173 ð�1; 29Þ
nZI 44.3162 ð�1:52Þ 44,3296 ð�1; 49Þ 44,1168 ð�1; 96Þ 44,1332 ð�1; 93Þ
aZI 44.6850 ð�0:70Þ 44.8425 ð�0:35Þ 44.8650 ð�0:30Þ 44.7975 ð�0:45Þ

qðtÞmax ¼ 90 mm∕h nHD 88.7156 ð�1:43Þ 88.7314 ð�1:41Þ 88.3846 ð�1:79Þ 88.7334 ð�1:41Þ
nKW 89.3272 ð�0:75Þ 89.3021 ð�0:78Þ 89.3449 ð�0:73Þ 89.2886 ð�0:79Þ
nZI 88.7151 ð�1:43Þ 88.7295 ð�1:41Þ 88.3800 ð�1:80Þ 88.7219 ð�1:42Þ
aZI 89.4375 ð�0:63Þ 89.7075 ð�0:33Þ 89.6625 ð�0:38Þ 89.4825 ð�0:58Þ

qðtÞmax ¼ 120 mm∕h nHD 118.2978 ð�1:42Þ 118.3182 ð�1:40Þ 117.8628 ð�1:78Þ 118.0799 ð�1:60Þ
nKW 119.0986 ð�0:75Þ 119.0993 ð�0:75Þ 118.9665 ð�0:86Þ 119.1663 ð�0:69Þ
nZI 118.2970 ð�1:42Þ 118.3152 ð�1:40Þ 117.8555 ð�1:79Þ 118.1176 ð�1:57Þ
aZI 119.4300 ð�0:47Þ 119.7225 ð�0:23Þ 119.6100 ð�0:33Þ 119.4525 ð�0:46Þ

Note: The relative deviations from the maximum lateral inflow to the test plane qðtÞmax are given in parentheses. Best results are set in bold.
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�1:14%. The nHDmodel (�1:40 to�2:46%), nKWmodel (�0:68
to �1:29%), and nZI model (�1:40 to �2:46%) showed larger rel-
ative errors, related to peak inflow rates. The aZI model met the
peak flow rates best for 15 out of 16 simulations. The very exact
match of the aZI model of mass balance and peak inflow rate is
supported by the analytical character of the model.

The aZI model demanded the lowest computation times of all
investigated models. Although, CPU time requirements of the aZI
model were only slightly lower than those of the nKW model for
the flow calculations on the investigated simple geometry. The
nHD model demanded the highest CPU times that were factor
1.4 higher than for the aZI model. The benefit of lower CPU time
of the aZI model will very well improve spatially distributed sur-
face flow modeling on catchment scale. At the same time, the aZI
model is free of numerical inconveniences, like discretization
errors, phase errors, and convergence problems, which often endan-
ger the solution of numerical schemes, particularly regarding weak
process dynamics of typical sheet flow phenomena. To delimit such
errors, the authors of this study had to chose a relatively fine spatial
and temporal resolution of the employed numerical solution
schemes which led to higher CPU times. Furthermore, as shown
by Wöhling et al. (2004; 2006) and Philipp et al. (2010), the
straightforward coupling of the surface flow model with any arbi-
trary infiltration model is easy because of the analytical character of
the surface flow model.

Consequently, the proposed analytical zero inertia model can
represent a valuable element in a boundary condition coupled, cell-
wise surface runoff modeling environment because it is (1) accurate,
(2) fast in terms of low computational demand, and (3) robust
for a wide range of process dynamics. The authors are working
on an implementation of the proposed model in a rainfall runoff
modeling framework. For spatially distributed hydrological model-
ing, the aZI model can potentially improve the portrayal of over-
land flow in terms of reduction of errors and total model
execution times.

Appendix

Using a continuous formulation, Eq. (15) can be written as

hðx; tÞ ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r
ð17Þ

where both h0 and xtip depend on time. Differentiating Eq. (17) with
respect to t therefore yields

∂h
∂t ¼

dh0
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r
þ h0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r x
x2tip

utip ð18Þ

This result can be inserted for the first integrand in Eq. (10)

Z
x

0

∂h
∂t ðξ; tÞdξ ¼

dh0
dt

Z
x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ

xtip

s
dξ þ h0utip

2x2tip

Z
x

0

ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ

xtip

s dξ

ð19Þ

Both integrals on the right-hand side of Eq. (19) can be explicitly
evaluated (e.g., Bronstein and Semendjajev 1966) and the resulting
expression reads

�Z
x

0

∂h
∂t ðξ; tÞdξ ¼ � 2

3
xtip

dh0
dt

��
1� x

xtip

�
3∕2

� 1

�

� 1
3
utiph0

��
2þ x

xtip

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r
� 2

�

¼ 2
3
d
dt

ðxtiph0Þ �
2
3
xtip

dh0
dt

�
1� x

xtip

�
3∕2

� 1
3
utiph0

�
2þ x

xtip

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r �
ð20Þ

The first term on the right-hand side of Eq. (20) equals
Q0 �

R xtip
0 qðξ; tÞdξ, as can be seen from Eq. (12). Consequently,

Eq. (10) can be simplified to�
Qðx; tÞ ¼ 2

3
xtip

dh0
dt

�
1� x

xtip

�
3∕2

þ 1
3
utiph0

�
2þ x

xtip

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xtip

r
þ
Z

xtip

x
qðξ; tÞdξ

�
ð21Þ

which yields the discharge per unit width, Qðx; tÞ.
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Abstract

Flash floods in ephemeral rivers are characterized by pronounced runoff dynamics, rapidly

rising hydrographs, and infiltration through permeable river beds. In numerous countries, this

infiltration—which is commonly referred to as transmission loss—is artificially increased by

means of dams in order to promote groundwater recharge of local aquifers. However, flow

dynamics are significantly altered by dam operation, i.e., initially pronounced process dynamics

are reduced and standing/receding wave effects may occur in downstream river sections. For

the adequate portrayal of such flow processes, we develop an integrated modeling system for

flow routing in ephemeral rivers with groundwater recharge dams. The proposed system is

based on a process-oriented description of flow, infiltration, and reservoir evaporation and

allows for a robust application under a limited data situation, as usually encountered in arid

and semi-arid regions.

Particularly, the proposed framework accounts for (a) the considerable loss of mass and

momentum from the weakly dynamic flow downstream of a dam, attributable to transmission

losses; (b) the transient character of transmission losses, which are nonlinearly depending on

time and changing channel flow conditions; and (c) circumvents any numerical inconveniences

associated with the modeling of dam release flow over initially dry beds by employing an

analytical solution procedure of the governing flow equations. Following a comprehensive

sensitivity analysis, relevant process parameters are estimated and the modeling system is

applied for Wadi Ma’awil, Northern Oman. The application demonstrates both the system’s

accurateness and robustness for flash flood routing under transmission losses along the wadi,

where a recharge dam causes strong flow retention. Therefore, the proposed modeling system

can aid in deriving potential groundwater recharge rates, which is of high importance for a

sound water resources assessment in the study area.
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Introduction

Ephemeral rivers are common in many dryland regions, e.g., Australia, India, Saudi Arabia, and

the Southwestern United States (Schick, 1988; Tooth, 2000). According to the specific regional and

climatic conditions, the riverbeds (or wadis) are dry throughout most of the year. Especially in

arid regions, convective rainstorms can lead to pronounced runoff events, called flash floods, which

typically show a rapidly rising water level. Since there is no direct connection between streamflow

and groundwater, a certain amount of runoff infiltrates through the permeable bed. Therefore,

surface flow and infiltration are mutually dependent, which demands a coupled process description.

Infiltration is often very noticeable and the phenomenon is referred to as transmission loss, although

the water is not lost but can recharge the groundwater (Sharma and Murthy, 1994; Shentsis and

Rosenthal, 2003; Goodrich et al., 2004). Numerous authors, e.g., Rushton (1997) and Scanlon and

Healy (2002) define transmission losses as potential groundwater recharge, whereas actual recharge

is potential recharge minus the amount of water which has infiltrated but does not contribute to

the groundwater. Furthermore, transmission loss rates may even exceed flow rates, which prevents

the infiltrating flow domain from reaching more downstream sections (Tooth, 2000). In general,

infiltrating runoff in ephemeral streambeds provides a certain contribution to groundwater recharge,

whose quantification is inevitable, e.g., with respect to regional groundwater assessment (Wheater,

2002).

Modeling of flow influenced by transmission losses is challenging. The validity of modeling results

mainly depends on the availability of gauging data, which are usually scarce in arid environments

(Morin et al., 2009). Therefore, a wide range of concepts was applied for ephemeral flow modeling,

depending on the specific and mostly limiting data situation, as well the various aims of the

related studies. These concepts include simple regression models (e.g., Sharma and Murthy, 1994;

Dunkerley and Brown, 1999), hydrologic routing approaches (e.g., Sharma and Murthy, 1995;

Costelloe et al., 2003), and all types of hydrodynamic models (e.g., El-Hames and Richards, 1998;

Goodrich et al., 2004; Philipp et al., 2010). However, several studies indicate the need for a

hydrodynamic modeling if a detailed prognosis of flood dynamics, the transient extents of the flow

domain, and—consequently—transmission losses is desired (e.g., Morita and Yen, 2002; Mudd,

2006).

Hydrodynamic models can be grouped into full hydrodynamic (HD) models (Eagleson, 1970),

zero-inertia (ZI) models (Hayami, 1951), and kinematic wave (KW) models (Lighthill and Whitham,

1955). The ZI model keeps the pressure-gradient and momentum-source/sink terms of the full

hydrodynamic model but neglects the inertial terms, the KW model neglects all the aforementioned.

The KW model is commonly used for hydrodynamic flow routing in ephemeral channels, as shown

e.g., by Goodrich et al. (2004), Al-Qurashi et al. (2008), Saber et al. (2009) and Morin et al. (2009),

and allows for a robust and reliable model application for slopes >0.001 (Ponce, 1991). Other

authors applied ZI models (e.g., Philipp et al., 2010) or HD models (e.g., El-Hames and Richards,

1998; Mudd, 2006).

Most often, the aforementioned routing approaches are treated numerically, which can cause

specific problems, ranging from considerable mass balance errors to convergence problems, especially

if the flow advance is very dynamic and/or occurs over an initially dry bed (Garcia-Navarro et al.,

1999), or process dynamics get very weak (Philipp et al., 2010). This can jeopardize a discrete

numerical solution which may not be able to resolve such dynamics under a feasible temporal

B Selected Publications of the Author

180



and spatial resolution. As a way out, a virtual baseflow rate is often introduced to circumvent

numerical issues, which, however, may distort the character of the modeled flow. Like other authors,

Schmitz et al. (2002) tried to overcome such problems by employing an analytical solution of the ZI

equations in order to avoid numerical errors for dam-break flood modeling, where the flow advance

was considered as a free-boundary problem, aiming at accurately capturing the wave tip dynamics.

Together with the aforementioned hydrodynamic routing approaches, transmission losses are

often portrayed with simple regression models (e.g., Saber et al., 2009), channel water balance

methods (e.g., Goodrich et al., 2004; Al-Qurashi et al., 2008), or constant infiltration rates (e.g.,

Morin et al., 2009). Nevertheless, infiltration is dependent on infiltration opportunity times and

the transient depth of water, resulting in a variably wetted cross-sectional perimeter. A specific

water level in the channel further causes a hydrostatic pressure head which—besides gravitation

and the matrix potential of the soil—drives infiltration. This is demonstrated e.g., by Parissopoulos

and Wheater (1991), who used Richards’ equation for describing infiltration processes in permeable

channels.

Furthermore, when coupling surface flow and infiltration processes on milder slopes—which

might establish a significant loss of mass and momentum of the flow—transmission losses should

be considered in the momentum equation since they slow down the downstream movement of the

infiltrating flow domain. This was done e.g., by Philipp et al. (2010), who used an extended ZI

model for modeling advancing open channel flow under infiltration. Mudd (2006) proved the highly

nonlinear interdependency of flow and infiltration by means of coupling a HD model with Richards’

equation in order to perform a numerical study.

For the coarse upper layers of the thick, unsaturated alluvial soils found in wadi beds, the

matrix gradient does not strongly differ from zero and the initial vertical water movement is mainly,

but not solely, a consequence of gravitation (Scanlon and Healy, 2002). Moreover, the influence of

a transient hydrostatic pressure head on wadi infiltration is assumed to be small (Bouwer, 1982;

Haimerl, 2004). Furthermore, infiltration on permeable alluvial material is also driven by macropore

flow processes (Beven and Germann, 1982; Wood et al., 1997). Together with the limited data

situation in arid areas, the applicability of matrix flow models (i.e., models based on Richards’

equation) for the quantification of infiltration is often precluded. The present study, therefore,

incorporates an empirical Kostiakov-Lewis model for predicting wadi infiltration.

Improving groundwater recharge is of high importance for a sustainable water resources man-

agement in arid and semi-arid areas. For instance, several groundwater recharge dams have been

constructed in the wadis of the Sultanate of Oman in order to promote recharge of the coastal

aquifers. Such dams retain flood flow and support a decelerated release of water, which leads to

higher infiltration opportunity times in the downstream wadi sections (Haimerl, 2004). Furthermore,

the dams prevent clogging of the downstream channel reaches by retaining sediment load. Recharge

dams decrease runoff dynamics significantly since dam release rates—typically established by culvert

release—are low compared to peak inflow rates. Consequently, a sound modeling of ephemeral flow

under the influence of recharge dams has to consider the variable runoff dynamics upstream and

downstream of the dam, especially if process dynamics get weak and standing/receding wave effects

occur.

To tackle the aforementioned problems, we develop an integrated modeling system for ephemeral

channel flow, influenced by a groundwater recharge dam. Compared to previous work (e.g., Morin

et al., 2009), the modeling system aims at a more process-oriented description of flow and infiltration.
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Flood routing 
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Transmission losses Transmission lossesEvaporation losses

Wadi flow and dam simulation model

Figure 1: Components of the proposed modeling system.

The proposed modeling system accounts particularly for (a) the considerable loss of momentum

from less dynamic flow downstream of a dam, attributable to transmission losses; (b) the transient

development of channel infiltration, nonlinearly depending on time and changing channel hydraulics;

and (c) circumvents any numerical inconveniences associated with dam release flow routing under

pronounced losses by employing an analytical solution procedure of the governing flow equations.

The proposed system is applied for Wadi Ma’awil, Northern Oman, where flow is controlled by a

large groundwater recharge dam. The application results suggest that the herein presented modeling

system can serve as a valuable and robust tool for the quantification of transmission losses within a

larger framework for water resources management in arid regions (Grundmann et al., 2012).

The Wadi Flow and Dam Simulation Model

The full modeling system (Fig. 1) incorporates three main elements: each a hydrodynamic model

for the upstream and the downstream reaches; as well a dam simulation model with a Penman

evaporation component. The hydrodynamic models are each coupled with a Kostiakov-Lewis

infiltration model for the quantification of transmission losses which can be parametrized on the

basis of infiltrometry data. For the more pronounced flow in the steeper upstream reaches, we

implemented a KW model. To accommodate for the more complex character of the flow downstream

of the dam, flow advance and recession were treated separately. To circumvent numerical instabilities

and to take care for the potentially strong influence of infiltration, a tailor-made analytical ZI model

was set up for modeling the advancing flow domain. In turn, flow recession in the downstream

reaches—which is not covered by the derived analytical ZI solution—was modeled with the KW

equations. The same applies for dam outflow caused by spillway operation. All sub-models are

one-dimensional and are coupled horizontally via the flow Q(t).

Flow Routing and Transmission Losses

Kinematic Wave Routing Model

The unsteady flow upstream of the dam is modeled with the KW equations which assume that

friction slope equals bed slope. Consequently, the KW model cannot reproduce a depth-discharge

hysteresis.
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The continuity equation reads
∂A

∂t
+
∂Q

∂x
= −q (1)

in which t: time [T]; x: longitudinal space coordinate [L]; A(x, t): wetted cross-sectional area [L2];

Q(x, t): discharge [L3T−1]; q(x, t): volumetric rate of infiltration per unit width [L2T−1].

Under the aforementioned restrictions of the kinematic wave assumptions, the corresponding

momentum equation reads

0 = S0 − Sf (2)

where S0: bottom slope [−] and Sf: friction slope [−].

Velocity, slope, and channel roughness are commonly related using a friction law in the form

u = KRβS
1
2

f (3)

where u(x, t): flow velocity [LT−1]; K: Roughness coefficient [L1−βT−1]; R(x, t): hydraulic radius

[L]; β: exponent of the flow formula [−] (e.g., β = 2
3 for the Manning-Strickler law).

Equation (3) is rearranged and inserted into Eq. (2), yielding

0 = S0 −
u2

K2R2β
= S0 −

Q2

K2R2βA2
(4)

The geometry of the wadi cross sections can be incorporated in the one-dimensional model by

means of two profile functions, e.g., relating the wetted cross-sectional area and the hydraulic radius

to the water depth:

Ã(x, h) =

ˆ B̃(x,h)

0

h̃(x, y)dy (5)

R̃(x, h) =
Ã(x, h)

P̃ (x, h)
=

ˆ B̃(x,h)

0

h̃(x, y)dy

ˆ B̃(x,h)

0

√
1 + h̃′(x, y)2dy

(6)

where y: space coordinate perpendicular to the flow at a specific channel location x [L]; h(x, y): depth

of water reaching the cross-sectional coordinate (x, y) [L]; Ã(x, h): wetted cross-sectional area as a

function of water depth [L2]; B̃(x, h): flow width in the channel as a function of water depth [L];

R̃(x, h): hydraulic radius as a function of water depth [L]; and P̃ (x, y): the wetted cross-sectional

perimeter [L].

This way, Ã, R̃, and P̃ are biuniquely related via the water depth. Another practice is expressing

the water depth and the hydraulic radius in terms of the wetted cross-sectional area, i.e., obtaining

h̃(x,A) and R̃(x,A) (cf. Eqs. (18) and (19)), which can be achieved by employing the inverse function

of Ã(x, h) and mapping R̃(x, h) on R̃(x,A). For formal reasons, the profile-specific functions h̃, B̃,

Ã, R̃, and P̃ are distinguished from the spatiotemporal functions of the dependent variables h(x, t),

B(x, t), A(x, t), R(x, t), and P (x, t).

Assuming K and S0 to be constant for a channel element, Eq. (4) is rearranged and differentiated

with respect to x, yielding
∂Q

∂x
= KS

1
2
0 R

β−1
(
βA

∂R

∂x
+R

∂A

∂x

)
(7)
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Eq. (7) is inserted into Eq. (1) and the resulting equation is numerically integrated using an explicit

Runge-Kutta finite differencing scheme. Despite implicit finite difference schemes feature greater

numerical stability and comparably intermediate computational demand (Press et al., 1992), an

explicit scheme was chosen since the routing model is intended for the portrayal of highly dynamic,

shock-prone flows, as present in sewer networks (Duchesne et al., 2001), associated with dam-break

problems (e.g., Garcia-Navarro et al., 1999), or—as applies for this work—flash flood routing (e.g.,

Mudd, 2006).

The numerical scheme evaluates the solution at specific spatiotemporal points, which are

equally spaced with the spatial step ∆x and the time step ∆t. For explicit schemes, the chosen

spatiotemporal discretization has to fulfill the Courant-Friedrichs-Lewy condition (Courant et al.,

1928), which relates the spatial and temporal resolution to the maximum process velocity, established

by the flow velocity u and wave celerity c =
√
gh:

∆x

max(u± c)
!
> ∆t (8)

The solution of the KW model requires the specification of initial and boundary conditions.

The upstream boundary condition at x = 0 is the inflow hydrograph

Q0 = Q0(t) = Q(x = 0, t) (9)

and the downstream boundary can be characterized by an advancing wave tip. Therefore, the

downstream boundary conditions read

A(xtip, t) = 0 (10)

u(xtip, t) = utip(t) =
dxtip

dt
(11)

where xtip(t): location of the advancing wave tip [L] and utip(t): velocity of the wave tip [LT−1].

The ideal dry channel initial condition is

xtip(t = 0) = 0 (12)

For the numerical KW model, the initial condition is alleviated to prevent numerical issues. A

minimum flow Q(x, t = 0) > 0 is introduced and the initial values of the other dependent variables

are calculated prior the numerical integration, assuming uniform flow conditions. Due to the

simplifications inherent to the KW momentum equation (2), the model cannot account for the

influence of the dam on the upstream wadi section, which poses no restriction with respect to the

pronounced slope of the wadi section upstream of the dam.

Since cross-sectional infiltration is dependent on the wetted perimeter, and vice versa, the flow

equation is coupled with the infiltration function by employing a fixed-point iteration scheme in

order to carry out an alternating iterative coupling procedure (cf. Morita and Yen, 2002). This

means, that the flow equations and the loss relationship are solved separately, but in the same time

step. Surface flow and losses are interlinked via infiltration as internal boundary condition. The

fulfillment of the continuity equation is used to check for convergence with respect to a specific

tolerance criterion.
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Zero-Inertia/Kinematic Wave Routing Model

The advancing and infiltrating dam release flow is modeled with the extended ZI equations

∂A

∂t
+
∂Q

∂x
= −q (13)

∂h

∂x
= S0 − Sf +

qu

gA
(14)

in which h(x, t): water depth [L] and g: acceleration due to Earth’s gravity [LT−2]. Compared to

Eq. (2), Eq. (14) introduces a non-parallelism of friction slope and bed slope, and accounts for the

impact of infiltration on the momentum balance via the qu/gA term.

Using Eq. (3), Eq. (14) can be rewritten to

∂h

∂x
= S0 −

u2

K2R2β
+
qu

gA
(15)

For the solution of the system (13);(15), Eq. (15) is multiplied at first by R2β , which yields

R2β ∂h

∂x
=

(
S0 +

qu

gA

)
R2β − u2

K2
(16)

The concept of the proposed analytical solution draws upon that the inflow boundary can be

considered as a kind of momentum-representative cross section (Schmitz et al., 2002). The

momentum described by the right hand side of Eq. (16)—which equals zero in kinematic wave

analysis—is continuously represented by the transient amount of momentum at x = 0, the location

of the inflow boundary. Thus, the right-hand side of Eq. (16) no longer depends explicitly on x and

the equation can be expressed as

R2β ∂h

∂x
=

(
S0 +

q0u0
gA0

)
R2β

0 −
u20
K2

=

(
S0 −

u20

K2R2β
0

+
q0u0
gA0

)
R2β

0 (17)

with A0 = A0(t) = A(x = 0, t), R0 = R0(t) = R(x = 0, t), u0 = u0(t) = u(x = 0, t), and

q0 = q0(t) = q(x = 0, t). The right-hand side of Eq. (17) covers contributions from bottom slope,

friction, and infiltration through the channel bed, and may, therefore, be regarded as a measure of

the transient momentum at x = 0.

The variable cross-sectional geometries are described by the power laws (cf. Schmitz et al., 2002)

h̃(x,A) = h(x, t) = p1(x)A(x, t)p2 (18)

R̃(x,A) = R(x, t) = p3(x)A(x, t)p4 (19)

with p1(x), p2, p3(x), and p4: geometry parameters for expressing water depth and hydraulic radius

of a channel cross section as a function of the wetted cross-sectional area. Nonprismatic irregular

cross sections can be closely approximated by adjusting the free parameters p1(x), p2, p3(x), and

p4, as shown by Schmitz et al. (2002).
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The system (13);(17) requires initial and boundary conditions. At x = 0, the boundary condition

is

Q0 = Q0(t) = Q(x = 0, t) (20)

Strongly falling hydrographs cannot be used as upper boundary condition for the analytical ZI

model (Schmitz et al., 2002). Therefore, the approach is applicable for gradually varied dam culvert

outflow but not for dynamically changing flow hydrographs, as present in the upstream wadi section

or downstream of the dam, as a consequence of spillway release.

The following conditions have to be fulfilled at the advancing wave tip

A(xtip, t) = 0 (21)

u(xtip, t) = utip(t) =
dxtip

dt
(22)

and the initial condition is

xtip(t = 0) = 0 (23)

Employing Eqs. (18) and (19), the momentum Eq. (17) can be analytically solved:

A(x, t) = p1(x)−
1
p2





(
1 +

2βp4
p2

)(
−S0 +

u20

K2R2β
0

− q0u0
gA0

)

R2β
0

ˆ xtip(t)

x

(
p1(ξ)

p4
p2

p3(ξ)

)2β

dξ





1
2βp4+p2

(24)

where ξ indicates the integration variable in space.

To preserve the concept of a moving lower boundary condition, the virtual-wave concept of

Schmitz and Seus (1992) is applied. This means, that the modeling domain is continuously extended

in downstream direction if the advancing wave tip reaches the end of the considered channel reach.

With the upstream boundary condition (20), the continuity equation (13) can be directly integrated,

yielding the discharge Q(x, t) as

Q(x, t) = Q0(t)−
ˆ x(t)

0

(
∂A

∂t
(ξ, t) + q(ξ, t)

)
dξ (25)

where the integrand can be obtained by differentiating Eq. (24) with respect to t. Eqs. (24) and (25)

solve the system (13);(17) and also satisfy the boundary conditions (21) and (22). The nonlinear

system (24);(25) is solved iteratively. For the detailed solution procedure cf. Philipp et al. (2010).

Foremost, this solution soundly accounts for the possibly strong hydraulic feedback between the

advancing flow over a dry riverbed and water losses due to infiltration.

During the beginning advance of dam release flow, infiltration quotas are comparably high and

the consideration of infiltration in the momentum balance is indicated for an accurate transmission

loss modeling. Generally, the advance rate of the wave tip decreases with increasing time and

increasing extent of the infiltrating domain, which can lead to standing wave effects. This is the

case if infiltration rates equal inflow rates. If dam outflow rates are lower than infiltration rates, the

flow domain starts receding in upstream direction. This condition is not covered by the analytical
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solution of the ZI equations. When the flow advance ceases, the ZI model results are, therefore,

written to the initial condition of a KW model, which covers the recession phase and is set up

following the concepts already discussed.

Under spillway release—which is a rare condition for the investigated recharge dam—total

dam outflow rates are high compared to culvert outflow alone. This implies a negligible impact of

infiltration on flow momentum during spillway operation. Moreover, downstream infiltration rates

have already dropped significantly at the time of spillway activation. Furthermore, the spillway

outflow features strongly falling hydrographs. We chose, therefore, to route the dam outflow during

spillway operation again with a KW model. When the spillway is activated, ZI results are passed

to the initial condition of the KW model and vice versa, when the spillway outflow ceases. The

such combined downstream hydrodynamic model, consisting of a ZI model and a KW model for

routing the advancing/receding culvert outflow and an additional KW model for flow routing during

spillway operation, is referred to as ZI/KW model in the following.

Kostiakov-Lewis Infiltration Model

Any arbitrary relationship could be used for the quantification of transmission losses within the

proposed modeling framework. Wadi infiltration is not solely a consequence of matrix flow, which

omits the application of typical deterministic infiltration models. Furthermore, no soil hydraulic

data are available, which would be a precondition for applying, e.g., Green and Amp type models.

We assume, therefore, an empirical model to be appropriate in case infiltrometry data are available.

Infiltration is portrayed by the empirical Kostiakov-Lewis model (Haverkamp et al., 1988), which

reads

qK(x, t) = kakkt
(ka−1) + kc (26)

where qK: infiltration rate per unit area [LT−1]; ka: empirical Kostiakov-Lewis exponent [−];

kk: empirical Kostiakov-Lewis exponent [LT−ka ]; and kc: steady or final infiltration rate [LT−1].

The volumetric cross-sectional infiltration q is calculated by taking into account the wetted

cross-sectional perimeter at which infiltration occurs

q = qKP (x, t) (27)

and the quantity of total infiltrated water along a channel section can then be calculated by

I(x, t) =

ˆ t

0

ˆ x

0

q(x, t)dx dt (28)

where I(x, t) is the total cumulative infiltration [L3].

Dam Operation

Nonlinear Dam Retention Model

The dynamic change of the water volume within a retention reservoir under varying inflow conditions

can be expressed by the differential storage equation, representing continuity. Sedimentation causes

clogging of the reservoir bottom and, consequently, infiltration through the bottom will tend to zero

(Haimerl, 2004). Due to the specific cubature of the herein considered reservoir—located in the
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coastal plain—the inclined reservoir sides, which are less prone to clogging and, therefore, potentially

permeable, make up an only small fraction of the bottom area. For this reason, infiltration losses

are neglected in the reservoir balance. The continuity equation of the reservoir reads

dV

dt
= Qin −Qout − E (29)

where V (t): storage volume [L3]; Qin(t): inflow to the reservoir [L3T−1]; Qout(t): total outflow of

the reservoir [L3T−1]; E(t): evaporation from the reservoir’s surface [L3T−1].

According to the morphology of the dam site, the storage volume is a function of the water

level, W (t) [L]: V (t) = f(W (t)). The water surface area of the reservoir, Ar(t) [L2], can be related

to the water level as well: Ar(t) = f(W (t)). Furthermore, evaporation is—besides the climatic

influence—a function of the evaporating free water surface area: E(t) = f(Ar(t)).

Qout(t) is constituted of the outflow through the dam’s culverts, Qoutci
(t), and—depending on

a certain water level which activates the spillway—the outflow over the spillway, Qouts(t):

Qout(t) =

i∑
Qoutci

+Qouts (30)

where i is the number of culverts [−].

The outflow through the culverts and over the spillway is nonlinearly depending on water depth

W (t). Assuming the outflow not to be controlled from downstream, the outflow is modeled with an

exponential stage–discharge relationship in the form (Chow, 1959)

Qoutci,s
(t) =




αcAc (W −Hci)

1
2 for the culverts

αsLs (W −Hs)
3
2 for the spillway

(31)

where αc,s: empirical hydraulic discharge coefficient of the culverts and the spillway, respectively

[−]; Ac: culvert inlet area [L2]; Hci,s: elevation of the culvert inlet axes and the spillway crest,

respectively [L]; Ls: length of the spillway [L].

For the culverts, Eq. (31) applies for submerged conditions. For part full conditions, further

discrimination of the flow situation is needed. According to Chow (1959), free surface flow conditions

can be assumed if the water level is lower than 1.2 times the culvert diameter. The free surface flow

is assumed to be critical and can be calculated for a circular culvert with the relationship (Vischer

and Hager, 1999)

Qoutci
(t) =

(
3
(
W − (Hci − 1

2Dc)
)

5Dc

) 5
3 (
gD5

c

) 1
2 (32)

where Dc is the culvert diameter [L].

Defining tj as a specific point in time and integrating Eq. (29) by applying the trapezoidal rule

leads to

V (tj + ∆t) =

V (tj) +
∆t

2
(Qin(tj) +Qin(tj + ∆t)−Qout(tj)−Qout(tj + ∆t)− E(tj)− E(tj + ∆t)) (33)
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The system (30);(33) is solved for V (tj + ∆t) with a fixed-point iteration scheme. This solution

accounts for the nonlinear dependency of dam outflow, evaporation, and water level.

Penman Evaporation Model

For the quantification of transient evaporation from the dam water surface, any arbitrary functional

relationship can be included within the proposed modeling framework. To utilize the quite detailed

available climate data (cf. subsequent section), evaporation is calculated with the Penman model

(Penman, 1948). A potential oasis effect is not taken into account. The Penman model reads

E(t) =
sEG + γ + v(e0 − e)

s+ γ
Ar (34)

where s(T ): gradient of the saturated water vapor pressure curve [ML−1T−2Θ−1] with T (t): tempera-

ture [Θ]; EG(t): evaporation equivalent of global radiation G(t) [LT−1]; γ(T ): psychrometric constant

[ML−1T−2Θ−1]; v(t): wind function, dependent on site conditions and wind speed w(t) [LT−1];

e0(t): saturated water vapor pressure [ML−1T−2]; e(t): actual water vapor pressure [ML−1T−2].

The parameters of the Penman model can be calculated by obtaining temperature T (t), actual

vapor pressure e(t), global radiation G(t), and wind speed w(t) (for details see e.g., Brutsaert,

1982).

Study Area and Data

The study area is located in the Batinah Region, Sultanate of Oman (Fig. 2), and covers two

catchments: Wadi Ma’awil (835 km2) and Wadi Bani Kharus (1,183 km2), with the focus set on

Ma’awil. The catchments are bordered by the Gulf of Oman in the north and the Hajar Mountain

Range in the south. Fresh water resources are scarce in the region and the coastal alluvial aquifer is

threatened by over-abstraction, and—consequently—saltwater intrusion. The variability of rainfall

patterns in space and time is extreme, where relatively wet periods can be followed by extremely dry

periods. Both catchments exhibit a groundwater recharge dam. A set of specific data is required

for setting up the proposed modeling system. Required input data are: cross-sectional wadi profile

parameters; corresponding general slopes; roughness coefficients; parameters of the infiltration

model; dam characteristics, including culvert and spillway characteristics; time series of inflow to the

model domain; and climate data for evaporation modeling. Table 1 summarizes data requirements

and gives information on data assessment for the herein presented application.

Morphological data of the wadis were derived from a digital elevation model (DEM). The ASTER

data sets (Abrams, 2000; NASA, 2012) were used. Cross-sectional cut lines were extracted from the

DEM, supplemented by superimposed aerial imagery to capture typical flow widths. Figure 3a–b

shows plots of the general profile of the main channels of Wadi Ma’awil and Wadi Bani Kharus.

Fluvial geomorphology of Wadi Ma’awil and Wadi Bani Kharus features very wide cross-sectional

profiles, which change only gradually in downstream direction. The alluvium extends down to

−220 m a.s.l. (meters above sea level) in the study area (MAF, 1990).

The general slope of Wadi Ma’awil between Afi gauging station and Ma’awil Dam was estimated

to 0.00868 and 0.00375 downstream of the dam. The neighboring Wadi Bani Kharus exhibits a very

similar morphology (Fig. 3). Channel slope was estimated to 0.00738 for upper Wadi Bani Kharus
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Figure 2: Overview of the study area. Base map created from ASTER GDEM data (NASA,
2012).

Table 1: Required input data for the full modeling system. Parameters indicated with an asterisk
were included in the parameter sensitivity analysis.

Data Parameter(s) Assessment Notes

Wadi cross-sectional

data

Ã(x, h), R̃(x, h);

resp. p1(x), p2,

p3(x), p4

Obtained from digital elevation

model and aerial imagery

Cross-sectional data included

via specific profile functions

Longitudinal profile S0
∗ Obtained from digital

elevation model

Calculated from thalweg of

cross sections

Channel roughness KSt
∗ Calibration (based on flow

observations)

Initial estimate from field

assessment

Infiltration

characteristics
ka∗, kk

∗, kc∗
Calibration (based on observed

transmission losses)

Infiltration modeled with

Kostiakov-Lewis model

Dam characteristics

V = f(W ),

Ar = f(W ), αc,s,

Hci,s, Ls, Dc

Engineering report of the dam
Outflow characteristics

determinable a priori

Flow data Q(t) Obtained at gauging station
Daily and sub-daily values,

peak values

Dam water level

over time
W (t) Water level recorder

Timely-resolved data available

for event 06/06/07

Climate data
T (t), e(t), G(t),

w(t)
Seeb climate station

Evaporation modeled with

Penman model
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Figure 3: General profile plots. (a) Wadi Ma’awil; (b) Wadi Bani Kharus.

and 0.00326 for the reach below the dam. Infiltrometry measurements were carried out in the area

in order to assess suitable dam locations. MAF (1985) performed 60 double-ring infiltrometry tests

in the Ma’awil area which delivered mean steady infiltration rates from 0.744 to 4.920 m · d−1 for

a four-hour duration (with an overall mean around 2.0 m · d−1). MAF (1990) carried out further

infiltrometry tests which suggest that wadi infiltration in Bani Kharus is in the same order of

magnitude (0.850 to 15.360 m · d−1; mean value 5.1 m · d−1).

The present study specifically addresses Ma’awil Dam which was constructed in 1991. Table 2

summarizes the main properties of the dam, obtained from the engineering report (MAF, 1989).

For Wadi Ma’awil, surface flow data were available for Afi gauging station. Gauging data with

a temporal resolution of one hour were available for the years 1984 to 1995 and since 1996 with

a resolution of five minutes. Timely-resolved stage recorder data were available for a 2007 event,

caused by cyclonic storm Gonu (event 06/06/07). This event led to highest observed peak flow

rates (881 m3 · s−1) and highest flow volumes (15.156 · 106 m3) at Afi station. The dam’s operational

storage capacity was completely filled and the spillway was activated.

There are two gauging stations located along the lower reaches of Wadi Bani Kharus: Al Abyadh

and Bani Kharus at Highway. Bani Kharus Dam was constructed as recently as 2004 and, therefore,

a significant portion of available flow data were unaffected by dam operation, which allows for a

direct estimation of transmission losses. Daily values were available until 1997 and five-minute

records were available as recently as 1997, which limits usable data to the years 1997 to 2003. At

least gauging data of four events with a temporal resolution of five minutes could be correlated by

validating travel times between the two gauges. Additionally, the influence of lateral inflow could

be excluded for these events by analyzing event-related rainfall patterns.

Table 3 summarizes the available hydrological information for the two inflow gauges of the

considered catchments. It can be seen that the ephemeral character of the flow regime is very

pronounced. The information given in Table 3 further illustrates the strong similarities of both

catchments which are a consequence of the catchments’ neighborship, their similar morphology,

geology, and climate. Finally, climate data required for dam evaporation modeling (cf. Table 1)
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Table 2: Main properties of Ma’awil Dam.

Property Value

Dam crest height (m) 8.3

Dam crest length (m) 7,500

Design storage (106 m3) 10

Number of culverts i 10

Culvert diameter Dc (m) 0.8

Culvert inlet area Ac (m2) 0.50265

Culvert inlet axis 54.36, 54.07, 54.53, 54.75,

elevation Hci 54.07, 54.53, 54.53, 54.53,

(m a.s.l.) 54.07, 55.20

Culvert discharge coefficient αc 2.726

Spillway crest length Ls (m) 4,040

Spillway crest elev. Hs (m a.s.l.) 59

Spillway discharge coefficient αs 1.350

Design flood (m3 · s−1) 4,000

Table 3: Hydrological information for the inflow gauges of the considered catchments.

Inflow gauges (catchment)

Afi (Ma’awil) Al Abyadh (Bani Kharus)

Observation period 1984–2007 1981–2007

Days with runoff per year (min–mean–max) 0–14–75 0–16–75

Daily runoff (min–mean–max) (m3 · s−1) 0.000–0.088–175 0.000–0.113–81.2

Mean runoff for all days with runoff (m3 · s−1) 2.254 2.611

Highest observed flood peak with date (m3 · s−1) 881 (06/06/07) 777 (06/06/07)

were taken from Seeb International Airport station, located in the Batinah plain at 8.4 m a.s.l. in a

distance of ca. 50 km east of the dam site.

Model Application and Discussion

This section demonstrates the application of the proposed modeling system for a case study under

realistic data conditions. A stepwise procedure was carried out. First, a parameter sensitivity

analysis was performed in order to identify the sensitivity of process parameters, associated with

flow and transmission loss modeling in Wadi Ma’awil. Second, to account for the insufficient data

situation, the sensitive parameters were calibrated for a neighboring and morphologically very

similar catchment and then transferred to the investigation area. Finally, the full modeling system

was used to simulate wadi flow and transmission loss dynamics, influenced by dam operation for

extreme event 06/06/07.

Parameter Sensitivity Analysis

For Wadi Ma’awil, a synthetic input hydrograph was routed with the full modeling system under

varied parameters and the results were subsequently compared. Each single parameter was altered

±30 % for each model run, whereas the remaining parameters were held to their respective initial

values. Sensitivity was checked for parameters of the hydrodynamic and infiltration models (indicated
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with an asterisk in Table 1). The dam parameters are assumed to be certain by referring to the

construction report of the dam and were, therefore, excluded from the sensitivity analysis.

The initial channel slope was set to a mean value S0 = 0.00660 and initial channel roughness was

estimated to KSt = 30 m
1
3 ·s−1 during an in-situ assessment of wadi sediments, using tabulated values

(Chow, 1959). The steady-state infiltration rate kc was set to an initial value of 2.3148 · 10−5 m · s−1,

which equals 2.0 m · d−1 and is, therefore, in the range of mean infiltration rates, inferred from

the afore discussed infiltrometry data. Since available infiltrometry data comprise only integral

infiltration rates, but no temporal information which would allow for the inference of ka and kk, the

two Kostiakov-Lewis parameters were taken from a model fitted for infiltrometry tests in Wadi Ahin,

located 125 km west of Wadi Ma’awil (Haimerl, 2004; ka = 0.8640 and kk = 7.7433 · 10−5 m · s−ka).

Spatial and temporal resolution of the upstream KW routing model were set to ∆x = 50 m and

∆t = 1 s. The time step of the dam simulation model was set to ∆t = 60 s. The combined ZI/KW

downstream routing model was discretized with ∆x = 100 m in space and with an adaptive time

step for the ZI component and ∆t = 1 s for the KW component, respectively. To suppress numerical

oscillations, we ran the upstream KW model with a low virtual baseflow rate of 0.1 m3 · s−1. Only

flow above this level was taken into account for transmission loss modeling.

A synthetic triangular flow hydrograph of a two-hour duration and with a peak value of 200 m3·s−1
(peak return period of ca. 2.5 years and a flow volume of 0.720 · 106 m3) was implemented as upper

boundary condition at Afi gauging station. The spillway was not activated under the considered

inflow. Mean climate data of Seeb station for the month of July were employed for evaporation

modeling. Process parameter sensitivity was estimated with respect to flow arrival times, maximum

extent of the infiltrating flow domain, transmission losses, and evaporation volumes (Table 4).

All investigated parameters turned out to be sensitive to a certain degree. Channel roughness

(Manning-Strickler coefficient KSt) had the strongest impact on arrival times, followed by bed slope

S0. Increased slope and decreased channel roughness (higher values of KSt) caused a faster advance

of the flow. In contrast, the maximum extent of the infiltrating flow was only weakly controlled by

channel slope and roughness. Increased slope and decreased roughness led to a slight extension of

the infiltrating flow domain. The final position of the flow domain was foremost determined by

the parameters of the infiltration model, where ka was dominant. For smaller values of ka, less

water infiltrated and the flow persisted over a longer distance, and vice versa. Total transmission

losses were strongest influenced by the parameters of the infiltration model. Again, ka showed the

highest sensitivity. For ka set to 1.1232 (+30 %), infiltration increases from the start. This led to a

total consumption of surface flow before Ma’awil Dam was reached. The flow was consumed by

infiltration after ca. 2.5 h and reached station +17,100 m for this specific model run.

Although transmission losses and arrival times are comparably variable, evaporation volumes

simulated by the dam model only slightly differed for the investigated parameter combinations.

Besides the climatic forcing, evaporation is dependent on the development of the dam water

level over time. Since outflow rates of the dam are low compared to inflow rates, evaporation is

almost completely related to the maximum water level elevation caused by an event, which in turn

determines how long the evaporating water table persists.

For the downstream wadi section, all available water infiltrated before reaching the sea for every

investigated parameter combination due to slow culvert release. Taking into account the similar

dam evaporation of all model runs, higher upstream transmission losses caused lower dam inflows,

and, therefore, lower downstream transmission losses. This leads to an only seemingly contradictory
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Table 4: Results of the parameter sensitivity analysis of the full modeling system for Wadi Ma’awil
under a total inflow of 0.720 · 106 m3.
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Arrival time +30 2.1 2.0 ∞ 2.3 2.3 2.2

at Ma’awil Dam (+19,700 m) ±0 2.3 2.3 2.3 2.3 2.3 2.3

(h) −30 2.5 2.8 2.2 2.3 2.3 2.4

Maximum extent +30 24,900 25,200 17,100 23,700 23,800 22,980

of infiltrating flow ±0 24,700 24,700 24,700 24,700 24,700 24,700

(m) −30 24,300 24,000 31,800 26,200 26,800 26,620

Arrival time at +30 8.8 11.2 0.1 9.8 9.8 8.0

maximum extent of flow ±0 9.5 9.5 9.5 9.5 9.5 9.5

(days) −30 8.5 10.2 9.0 9.1 9.9 9.4

Transmission losses +30 0.343 0.333 0.719 0.390 0.390 0.435

Afi–Ma’awil Dam ±0 0.355 0.355 0.355 0.355 0.355 0.355

(106 m3) −30 0.374 0.392 0.237 0.319 0.318 0.328

Upstream Inflow +30 0.376 0.386 0.000 0.326 0.327 0.283

KW Ma’awil Dam ±0 0.361 0.361 0.361 0.361 0.361 0.361

model (106 m3) −30 0.341 0.323 0.478 0.397 0.398 0.388

Relative mass +30 0.194 0.141 0.139 0.488 0.439 0.280

balance error ±0 0.560 0.560 0.560 0.560 0.560 0.560

(% of total inflow) −30 0.680 0.641 0.635 0.489 0.598 0.609

Evaporation +30 0.100 0.101 − 0.098 0.098 0.099

Ma’awil Dam ±0 0.100 0.100 0.100 0.100 0.100 0.100

(106 m3) −30 0.099 0.098 0.104 0.101 0.101 0.101

Dam Outflow +30 0.269 0.281 − 0.225 0.225 0.250

simulation Ma’awil Dam ±0 0.257 0.257 0.257 0.257 0.257 0.257

model (106 m3) −30 0.238 0.221 0.369 0.292 0.292 0.282

Relative mass +30 0.888 0.639 − 0.569 0.549 0.661

balance error ±0 0.556 0.556 0.556 0.556 0.556 0.556

(% of total inflow) −30 0.646 0.706 0.677 0.630 0.563 0.644

Transmission losses +30 0.269 0.281 − 0.225 0.225 0.250

Ma’awil Dam–sea ±0 0.257 0.257 0.257 0.257 0.257 0.257

Down- (106 m3) −30 0.238 0.221 0.369 0.292 0.292 0.282

stream Losses to +30 0.000 0.000 − 0.000 0.000 0.000

combined the sea ±0 0.000 0.000 0.000 0.000 0.000 0.000

ZI/KW (106 m3) −30 0.000 0.000 0.000 0.000 0.000 0.000

model Relative mass +30 0.057 0.058 − 0.067 0.067 0.062

balance error ±0 0.043 0.043 0.043 0.043 0.043 0.043

(% of total inflow) −30 0.042 0.057 0.026 0.095 0.091 0.062

Overall relative error +30 1.025 0.723 0.139 0.990 1.055 0.786

of full modeling system ±0 1.159 1.159 1.159 1.159 1.159 1.159

(% of total inflow) −30 1.368 1.290 1.338 1.025 1.252 1.255
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influence of parameter variations on transmission losses for the upstream and the downstream

wadi sections. The maximum extent of the flow domain was typically reached after a couple of

days, which is the case if total infiltration rates equal inflow rates for the wadi downstream of the

dam. Generally, higher inflow rates led to a faster advance of the flow. The incorporated ZI/KW

model for routing the dam’s culvert outflow was capable of accurately portraying such weak process

dynamics in the initially dry wadi. This is reflected by the very small mass balance errors.

The overall relative mass balance errors in Table 4 were calculated for every investigated

parameter combination by comparing the sum of transmission losses upstream and downstream of

the dam, dam evaporation, and losses to the sea against the total inflow. The full model’s mean

relative mass balance error was ca. 1 % of inflow. Regarding the relative errors of the incorporated

sub-models, the downstream ZI/KW model featured the lowest mass balance errors, which is

supported by the ZI advance model’s analytical character. The errors of the ZI/KW model ranged

between 0.026 % and 0.095 % of total inflow. The KW model for the upstream wadi reaches caused

mass balance errors between 0.139 % and 0.680 %, which is mainly a consequence of the approximate

numerical model solution. The dam simulation model showed slightly higher deviations with mean

errors between 0.549 % and 0.888 %. These errors mainly emerged from the iterative solution of the

dam retention equation.

Estimation of Process Parameters

For Wadi Ma’awil, dam operation hinders the calibration of process parameters due to the influence

of flow retention and dam evaporation. Furthermore, highly resolved data of a downstream gauge

are lacking for the pre-dam era (before 1991), which would have facilitated a model calibration

based on a sequence of gauges. Theoretically, an inverse reconstruction of event-related dam inflow

would be possible on the basis of stage recorder data. Together with an upstream wadi gauge, this

data could be used for the calibration of routing and transmission loss parameters. Specifically for

Ma’awil dam, such an approach is questionable due to (a) the potentially very dynamic change of

dam inflow rates, which is not resolved by the stage recorder; and (b) the uncertain relationship of

dam water level and outflow rates under spillway release conditions, caused by the high hydraulic

capacity of the spillway.

Therefore, the parameters were calibrated and validated for the westerly adjacent and morpho-

logically similar catchment of Wadi Bani Kharus (cf. Study Area and Data section), using data

of the two serial gauges Al Abyadh and Bani Kharus at Highway (Fig. 3b). Then, the validated

parameters were transferred to Wadi Ma’awil. The KW routing model was operated for events of

the period prior the construction of Bani Kharus Dam (2004), hence these flow data are unaffected

by dam operation. As discussed in the Study Area and Data section, valid flow data were available

for four events.

The employed KW model was calibrated for event 03/27/97 with respect to channel roughness

KSt and Kostiakov-Lewis parameters ka, kk, and kc. Regarding flow volumes and peak flow rates,

the smallest event was chosen for calibration in order to challenge the model’s extrapolation ability

in the subsequent validation. Calibration was performed simultaneously for the four considered

parameters, using the CMA-ES optimization algorithm (Hansen, 2006). The Nash-Sutcliffe model

efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) was used to evaluate model quality. Channel

slope and cross-sectional profiles were estimated as outlined before. The spatial and temporal
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Figure 4: Modeling results of the kinematic wave flood routing model for Wadi Bani Kharus.
(a) Calibration event 03/27/97; (b) validation event 03/26/97.

resolution of the routing model were set to ∆x = 50 m and ∆t = 1 s. As for the sensitivity analysis,

the numerical KW model was charged with a very low initial base flow rate of 0.1 m3 · s−1 to impede

numerical oscillations.

Roughness and infiltration parameters were calibrated to KSt = 26.67 m
1
3 · s−1, ka = 0.5406,

kk = 9.9980 · 10−4 m · s−ka , and kc = 5.5198 · 10−7 m · s−1. A NSE of 0.9719 indicates a nearly

perfect convergence of modeled and gauged flow, which can also be seen from Fig. 4a. Observed

transmission losses were slightly underestimated by 0.8 %. Timing and magnitude of the flow were

accurately matched.

Validation was carried out for the remaining three events. Results are shown exemplarily for

event 03/26/97 in Fig. 4b. A NSE of 0.4373 usually indicates that the model only acceptably

simulated the flow observations. Nevertheless, flow volume and peak rate observations at the highway

station (0.2422 · 106 m3 and 13.2 m3 · s−1) were adequately met by the model (0.2089 · 106 m3 and

11.8 m3 · s−1). The flow peak time lag between observation and model output was 15 minutes. This

shows that the rather low NSE is mainly caused by the phase differences of modeled and observed

values. Moreover, the NSE was not calculated over the whole simulation period but only starting

from the onset of the flow, whereas including the preceding zero values would have apparently

improved the NSE. For flash flood routing under intense transmission losses, such validation results

are very encouraging.

For all four investigated validation events, observed transmission losses ranged from 85.0 %

to 90.8 % (mean value 87.5 %), whereas modeled transmission losses were between 68.8 % and

88.7 % (mean value 82.9 %). The maximum arrival time prediction error was 15 minutes (mean

value 4 minutes). For validation, flow volumes were comparably low and in turn transmission
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losses were high, which caused mass balance errors of slightly over 1 %. Nevertheless, the results

suggest that the calibrated parameter set is representative for a realistic range of event magnitudes

and can, therefore, be transferred to the neighboring catchment of Wadi Ma’awil, for which this

parametrization is subsequently validated.

Wadi Flow Routing and Dam Simulation

The presented modeling system was subsequently applied for Wadi Ma’awil, extreme event 06/06/07.

Flow observations with a temporal resolution of five minutes were used as upper boundary condition

for the upstream KW model. Morphological data were prepared as outlined before. Roughness and

infiltration parameters were transferred from Wadi Bani Kharus. Spatial and temporal resolution

of the upstream and downstream routing models were set to ∆x = 50 m and ∆t = 1 s. An initial

flow rate of 0.1 m3 · s−1 was applied for the upstream KW model. The temporal resolution was

adaptive for the downstream ZI component. Evaporation was calculated using actual climate data

of Seeb station. The temporal resolution of the dam simulation model was set to ∆t = 60 s.

The results of the upstream hydrodynamic model are shown in Fig. 5a–b. The pronounced

dynamics of this event reflect in a surging flow with a modeled arrival time of the strongly rising

limb of ca. 1.5 h. Due to generally high flow volumes and low infiltration opportunity times, modeled

transmission loss quotas were comparably low for the upper wadi section. The inflow volume to

the dam was modeled to 14.299 · 106 m3, which is 94.3 % of total inflow to the model domain

(15.156 · 106 m3). Transmission losses in the upstream section were modeled to 0.813 · 106 m3, which

is 5.4 % of total inflow. During the first hours of the simulation, infiltration was limited by available

water, which caused slowly rising total infiltration volumes (Fig. 5b).

Figure 5c–d shows the results of the subsequent dam simulation model. For the investigated

event, the total outflow of the dam was modeled to 14.166 · 106 m3 (93.5 % of total inflow) and

total evaporation to 0.133 · 106 m3 (0.9 % of total inflow). The peak inflow rate of 853 m3 · s−1 was

retained to 237 m3 · s−1 in the dam’s outflow (c). Modeled peak water level was 59.11 m, whereas

the recorded peak was 59.09 m.

The modeled dam outflow persisted for over eight days. Unfortunately, the available limnigraph

data ended before the dam was depleted. Nevertheless, stage recorder data were adequately

simulated by the dam model (Fig. 5d). This supports not only the chosen parametrization of the

dam model, but foremost the reasonable estimates of inflow volumes and inflow dynamics, delivered

by the upstream KW model. These findings effectively validated the routing and infiltration

parameters of the upstream KW model, which were calibrated for the neighboring catchment of

Wadi Bani Kharus.

Figure 5e–f shows the results of the downstream combined ZI/KW model. Losses to the sea

were modeled to 11.762 · 106 m3 (77.6 % of total inflow) and transmission losses to 2.403 · 106 m3

(15.9 % of total inflow). For the investigated extreme event, a significant portion of flow was lost to

the sea. However, the initial advance of the flow domain towards the sea is a consequence of culvert

release. The sea is reached at ca. 20:00 UTC on 06/06/07 (Fig. 5e). This advance is controlled

by the nonlinear interaction of flow dynamics and infiltration, which in turn affects flow volumes

and momentum, and could, therefore, be adequately modeled by the proposed analytical ZI model

component. Less extreme, more frequent events (e.g., as investigated in the sensitivity analysis)

would have featured weaker downstream dynamics, which would have posed a stronger indication
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Figure 5: Modeling results for Wadi Ma’awil, event 06/06/07. (a) Flow hydrographs at different
upstream channel locations; (b) cumulative infiltration volumes for the upstream reach; (c) dam
inflow and outflow; (d) modeled and recorded dam water level; (e) flow hydrographs at different
downstream channel locations; (f) cumulative infiltration volumes for the downstream reach.
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Figure 6: Model results for lower Wadi Ma’awil, event 06/06/07. (a) Infiltration rates over time;
(b) advance and recession trajectories.

for the ZI advance model. Nevertheless, the investigated event was chosen due to sufficient data

were available.

The spillway was activated between 20:25 UTC on 06/06/07 and 04:15 UTC on 06/07/07, leading

to a very dynamic outflow, which was routed with the KW component. The remaining culvert

outflow persisted over days and, therefore, established the major portion of transmission losses (ca.

85 %). When inflow rates were lower than infiltration rates, the infiltrating flow domain started

receding in upstream direction. Modeled recession began after ca. 6.5 days close to the coast and

lasted for two days until infiltration ceased directly below the dam (Fig. 6a and b).
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Both the simulated upstream and downstream hydrographs showed a certain steepening tendency.

This phenomenon is sometimes referred to as kinematic shock (Lighthill and Whitham, 1955), which

is not only a property of the governing equations but can appear physically in ephemeral channels

with pronounced slope (Ponce, 1991; Sharma and Murthy, 1995). Additionally, the initially high

infiltration rates after the onset of an event amplify the steepening of the hydrographs’ rising limb.

Albeit the dynamic character of the investigated event—with spillway operation and losses to

the sea—relative errors were lower than for the sensitivity analysis. This is mainly attributable

to higher total flow volumes which led to lower transmission loss quotas and, therefore, lower

relative mass balance errors. The full model’s total mass balance error was estimated to ca. 0.3 %

by comparing the inflow volume at Afi to the sum of transmission losses, evaporation losses, and

losses to the sea. Although total transmission loss quotas were low compared to the results of the

sensitivity analysis (21.3 % of total inflow), absolute infiltrated volumes were high (3.216 · 106 m3).

Summary and Conclusions

We presented a comprehensive and process-oriented modeling system for ephemeral river flow under

the influence of a groundwater recharge dam. A special focus of model development was set on the

resolution of intricate process dynamics under significant transmission losses. Flow and infiltration

dynamics downstream of the recharge dam were soundly portrayed by implementing an analytical

ZI model for the flow advance phase, combined with a numerical KW model for flow recession.

The more pronounced flow dynamics in the upstream reaches were modeled with a numerical KW

model, where the approach turned out to be an appropriate simplification of the full hydrodynamic

process description. Infiltration was captured with a robust Kostiakov-Lewis model. Dam operation

was modeled with the nonlinear storage equation. Evaporation from the free water surface was

calculated using the Penman model, since daily climate data were available for the investigation

area.

Assuming validity of the flow data used for calibration, three important properties of the

modeled infiltrating open channel flow were observed. First, the hydrographs tend to steepen in

downstream direction, leading to a surging flow. This steepening tendency is amplified by initially

high transmission losses. Second, assuming a constant infiltration rate over time—as proposed

by numerous authors—will not necessarily lead to a satisfactory portrayal of hydrograph shape

under significant transmission losses. Third, mean modeled infiltration rates for typical event

durations (hours to days) were in the lower range or lower than suggested by infiltrometry testing

(10−5 to 10−4 m · s−1). This is covered e.g., by the findings of Wheater (2002), who states that

observed transmission losses in ephemeral channels tend to be actually lower than those inferred

from infiltrometry tests.

Notwithstanding the fact that the proposed modeling system could be successfully applied for

flash flood routing in ephemeral rivers under the influence of groundwater recharge dams, the

imponderables of hydraulic modeling in arid environments became very clear. The major problem

are the lacking data which strongly limit model calibration and validation. This is due to the

rareness of events together with coarse observation networks for precipitation and flow. Additionally,

surface and subsurface flow processes are strongly interconnected and very dynamic in space and

time. Therefore, all available data should be exploited thoroughly, which might justify the use of

empirical modeling approaches, as in the case of the incorporated infiltration model.
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As comprehensively reviewed by Tooth (2000), dryland rivers undergo change, even on an event

scale. Therefore, some further remarks have to be made on the herein incorporated assumptions

that the roughness coefficient, channel morphology, and bottom slope are temporally invariant.

Theoretically, an erosion–sedimentation model could be connected with the herein applied method-

ology in order to describe transient channel morphology, i.e., by accounting for a change in the

cross-sectional profile functions. A further concern is posed by the dependency of friction and

the suspended load. Despite there are numerous studies on suspended load transport dynamics

in ephemeral rivers, the mutual relationship of friction and sediment load often remains unclear

beyond lab scale (e.g., Vanoni and Brooks, 1957; Martin-Vide et al., 1999).

Moreover, in the absence of a friction law for unsteady flows, velocity, channel roughness,

channel geometry, and friction slope are commonly related using a steady flow formula, e.g., of the

Manning-Strickler type. Consequently, friction is portrayed with the help of an effective parameter

(i.e., the roughness coefficient) which delivers only a mean and event-specific description of friction.

Nevertheless, the herein presented modeling framework is intended to aid as a prognosis tool.

Recalling the tremendous uncertainties of the driving rainfall in arid and semiarid regions, the

uncertainties and inadequatenesses in the portrayal of ephemeral river morphology and friction are

not the major source of the model’s predictive uncertainty.

Summing up, the paper focused on model development under the problem-specific conditions

which are typical for (semi)arid regions. The herein provided first model application bears an

exploratory character. Therefore, further model application is of interest. For instance, the

modeling system could be used within a stochastic framework for obtaining, e.g., the expected value

of transmission losses as a function of the flood return period. Such calculations could then be

repeated assuming the absence of a recharge dam which would deliver the expectable dam efficiency

with regard to transmission losses. Moreover, model applications in other regions (e.g., as Australia

and the Southwestern US) are proposed to foster further model refinement.
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