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1 Introduction

”Anything that can go wrong will go wrong”

(Murphy’s Law)

The Object Constraint Language (OCL) is a declarative language used to describe constraints
on models or model extensions without side effects [OMG12, p. 21], e.g. without altering the
state of the model. Developed in 1995 at IBM as a business modeling language [Huß00], it be-
came adopted by the Object Management Group (OMG) as an extension of the Unified Modeling
Language (UML). Today, it is part of UML itself [OA99].

”A debugger is a tool to (stepwise) execute and observe a program and its data”1 [FH11,
p. 223]; and debugging is the process of finding errors in a program. When the complexity of the
program grows, quality assurance activities (e.g. pair programming, audits) come up against
their limits. They cannot prevent errors but improve the overall code quality.

There are many ways of debugging. By definition, to log and print the flow of the program
(also called tracing) or to print values in between are called debugging. But debugging does
not only help to find errors. It also helps to understand complex scenarios and code. However,
Debugging is used with different meanings in the context of model-based development. The
Oxford Dictionary defines debugging as ”[to] identify and remove errors from (computer hard-
ware or software)” [Pre10]. In [SSJ+03] counter-example generation is understood as debugging.
Gogolla et al. understands debugging as the generation of trace outputs visualizing interim re-
sults [BGHK12]. ”Debugging [...] support[s] [...] understanding the nature of bugs and typically
offers functions such as running an expression step by step, conditional breakpoints [...], tracking
and changing the values of variables” [COD10].

In this thesis debugging is understood as a graphical, disruptable (e.g. to suspend and resume)
interpretation of (parts of) OCL expressions on model instances, similar to the graphical, step-
wise debugging of Java programs in state-of-the-art IDEs such as Eclipse. Hence, the impact of
each step during interpretation can be visualized.

Finding errors in a complex environment is not an easy task. To track the error down de-
bugging is the best method in the field of OCL, since it is no general purpose language. As a
Domain Specific Language (DSL), OCL does not provide the ability to output to the console or
any other standard output (e.g. stdout or stderr in C). Furthermore, debugging has been one
of the most-wanted features regarding an IDE4OCL among other 20 identified features [COD10].

There are many tools around OCL [URL13c, URL13a, URL13b]. However, to the best of
my knowledge there is no graphical debugging support for OCL, yet. This work addresses this
issue and realizes a graphical debugger for Dresden OCL using the Eclipse Debug Platform, i.e.
integrating a debugger for OCL into the Eclipse Debug Platform.

Thus, the major task of this work is to develop a graphical debugger integrated into Dres-
den OCL and the Eclipse Integrated Development Environment (IDE). First, Dresden OCL is
presented, then the Eclipse Debug Platform is introduced. Based on these tools, the requirements

1The original text is in German. Translation was done by the author.
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1 Introduction

for an OCL debugger are analyzed. Afterwards, the architecture is discussed and evaluated. At
last, the graphical user interface is presented and the work is summarized.

The remainder of this thesis is organized as follows:

• Chapter 2 introduces Dresden OCL, its history and detailed information about important
key features.

• In Chapter 3 the Eclipse Debug Platform is presented and explained.

• Then, the requirements for the debugger are derived and compared to other existing work
in Chapter 4.

• Afterwards, Chapter 5 presents the architecture and design decisions. It is shown how the
implementation is tested. Chapter 6 shows and explains the graphical user interface.

• In Chapter 7 the work is summarized and future work is discussed. Finally, in Chapter 8
a conclusion is drawn.

Some typographical rules which are used all over this work to remember:

• Italics are used for keywords or scientific terms,

• Typewriter fonts are used for programming constructs or programming languages, such
as Java, Scala or OCL.
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2 The Dresden OCL Toolkit

Dresden OCL is a set of tools to write and parse OCL constraints and to evaluate OCL con-
straints on various models. Furthermore, it provides code generation support. Dresden OCL has
been developed at the Technische Universität Dresden since 1999. To this day, various versions
have been released. The different releases and the corresponding UML versions are illustrated
in Figure 2.1.

1995 1996 1997 1998 1999 2004 2005 2006 20072000 2001 2002 2003 2010 2011 2012 20132008 2009

OCL 0.8
(IBM)

UML 1.1 and
UML OCL 1.1
standardization

Release of the
Dresden
OCL Toolkit

Release of the
Dresden
OCL2 Toolkit

Release of
Dresden OCL2
for Eclipse

Release of
Dresden OCL
(3.2)

UML 2.0 and
OCL 2.0
standardization

UML 2.4 and
OCL 2.3.1
standardization

Figure 2.1: Releases of Dresden OCL, UML and OCL

2.1 The Dresden OCL Toolkit

The first work on OCL at the Technische Universität Dresden was done in 1998, as Alexander
Schmidt researched a mapping from OCL to the Structured Query Language (SQL) [Sch98].
Frank Finger realized an implementation of the OCL Standard Library and the possibility
to load UML models and OCL constraints as well as a Java code generator [Fin99, Fin00].
Afterwards, Ralf Wiebicke developed the instrumentation of the generated Java code [Wie00].
The work of Alexander Schmidt, Frank Finger and Ralf Wiebicke resulted in a release called the
Dresden OCL Toolkit (DOT).

2.2 The Dresden OCL2 Toolkit

In 2003 Stefan Ocke adopted the DOT to the Netbeans Metadata Repository [Ock03]. This release
was called the Dresden OCL2 Toolkit (DOT2). DOT2 provided the first OCL to SQL code
generation [Hei05, Hei06]. Ronny Brandt ported the Java code generation and instrumentation
to this new release [Bra06].
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2 The Dresden OCL Toolkit

2.3 Dresden OCL2 for Eclipse

In 2007 Matthias Bräuer realized the pivot model, which makes the toolkit independent from
specific models or meta-model repositories [Brä07b]. Based on this work Nils Thieme devel-
oped an OCL parser [Thi08] for loading UML models and parsing OCL constraints and Ronny
Brandt implemented a new OCL interpreter [Bra07a] for interpreting OCL constraints. This
new release was called Dresden OCL2 for Eclipse (DOT4Eclipse). Claas Wilke developed a new
Java code generator [Wil09] using AspectJ and finally Björn Freitag reengineered the SQL code
generation [Fre11].

2.4 Dresden OCL

Today the toolkit is known as Dresden OCL. Based on Dot4Eclipse, Dresden OCL currently
supports the parsing and interpretation of OCL 2.3.1, Java and SQL code generation as well as
further features such as OCL metrics and the tracing of OCL interpretation [WTFS12, p. 46].

The Architecture of Dresden OCL

Dresden OCL is build as a set of Eclipse plug-ins. Figure 2.2 shows an excerpt of the relevant
parts of the toplevel architecture. Dresden OCL is separated into four parts: the API, the tools,
the OCL and the variability layer.

Figure 2.2: Toplevel architecture of Dresden OCL (redrawn from [WTFS12])
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2.4 Dresden OCL

The API layer declares the facade that hides all implementation details and provides an API
to access all functionality Dresden OCL provides. Since Dresden OCL is provided as a single
library this is what the end-user will use.

The tools layer provides each tool separated in its own Eclipse plug-in. Dresden OCL takes
huge advantage of the Eclipse/OSGi implementation to separate each part from another.

The OCL layer consists of an implementation of OCL (i.e. its syntax and semantics, used
as packages by the tools). It also contains the OCL Standard Library which provides a set of
standard types (e.g. primitive types, enumerations and collections) as well as their semantics
for OCL interpretation.

The variability layer consists of the pivot model and the model instance types. They are used
to map arbitrary meta-models or model instances, respectively, on Dresden OCL. Those meta-
models adopted are currently an Eclipse Modeling Framework (EMF) Ecore Meta-Model, a Java
Meta-Model, a UML2 Meta-Model and a XSD Schema Meta-Model and their model instances,
respectively [WTW10, p. 3f].

The various tree representations of OCL in Dresden OCL

When interpreting an OCL file, a model and a model instance have to be loaded. The OCL
file is checked against the model, e.g. whether all contexts reference to existing classifiers in the
model. Then it is parsed and its static semantics is checked, e.g. whether all invariants result
in a boolean type. At last the constraints get interpreted on elements being part of the model
instance selected beforehand, e.g. constraints defined on a class Person are evaluated for all
persons being part of a model instance. Figure 2.3 illustrates the tool chain.

Figure 2.3: The tool chain of Dresden OCL

Each activity takes an input and produces an output. For Dresden OCL this process is realized
as follows (cf. Figure 2.4): an EMFText-based parser parses the OCL file according to a defined
Concrete Syntax (CS) specification of OCL. The output is a tree-based representation of the CS;
called the Abstract Syntax Tree (AST) [ABB+12]. This is the input to the OCL static semantics
checker and type resolution component which maps the type, operation and property references
in the AST to the pivot model elements of the constrained model and transforms the AST into
another tree-based representation, called the Abtract Syntax Model (ASM) [BD08]. In the ASM
the OCL constraints are represented as hierarchical expressions, which in contrast to the AST’s
representation can be traversed more easily and is thus, easier to interpret. Finally, the ASM is
passed to the OCL Intepreter which interprets it on the model instance elements.
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2 The Dresden OCL Toolkit

OCL file EMFText
parser

ASTOCL file static semantics
& type resolution

ASMInterpreterListener

Figure 2.4: Data Flow Diagram (according to DeMarco [DeM79, p. 411]) while interpreting an
OCL file

Concrete Syntax, Abstract Syntax Tree and Abstract Syntax Model by Example

To ease the understanding of the parsing and interpretation process in Dresden OCL, consider
the following example: the example model is a single UML class Person with an attribute called
age. Listing 2.1 shows the constraint defined for this model.

1 context Person
2 inv : ( age + 1) > age

Listing 2.1: OCL invariant: age incremented by one is bigger than age

The concrete syntax can be written in the Extended Backus-Naur Form (EBNF). Listing 2.2
shows an excerpt from the concrete syntax of OCL sufficient for the given example. It describes
how the language is assembled. The complete concrete syntax of OCL is defined in the OCL
specification [OMG12].

1 ExpressionInOclCS ::= CallExpCS

2 CallExpCS ::= FeatureCallExpCS

3 FeatureCallExpCS ::= OperationCallExpCS

4 OperationCallExpCS ::= OclExpressionCS [1] simpleNameCS OclExpressionCS

[2]

5 PropertyCallExpCS ::= simpleNameCS

6 IntegerLiteralExpCS ::= <Integer Lexical Representation >

7 BracketExpCS ::= "(" OclExpressionCS ")"

6



2.4 Dresden OCL

Listing 2.2: Concrete Syntax for the simple invariant

Figure 2.5 shows the Abstract Syntax Tree. The Abstract Syntax Tree contains all necces-
sary information (e.g. it does not contain the parantheses anymore, that are defined with the
BracketExpCS in the concrete syntax) to parse the tree. To ease the interpretation the AST is
mapped on the ASM which is shown in Figure 2.6.

7



2 The Dresden OCL Toolkit

Figure 2.5: The Abstract Syntax Tree of a simple invariant
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2.4 Dresden OCL

Figure 2.6: The Abstract Syntax Model of a simple invariant
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3 The Eclipse Debugging Framework

The Eclipse Debugging Framework, also known as the debug platform, is part of the Eclipse
Software Development Kit (SDK). It provides support for building and integrating debuggers
into Eclipse. It supplies interfaces and classes known as the debug model [URL12a]. The debug
model represents common artifacts in debuggable programs. This chapter will give an overview
about the debug model and describes how the Eclipse user interface interacts with the debug
model.

3.1 The Debug Model

The debug model provides interfaces that must be implemented by clients who want to provide
debugging support. Figure 3.1 shows an overview of the debug model.

Figure 3.1: The Eclipse platform debug model architecture

The remainder of this section describes each part and its role.

ILaunch

The ILaunch results from launching either the debug session or a system process. Therefor it
represents those process(es) launched and gives access to them.

IProcess

The IProcess represents a program in normal execution mode. It can be an external program
being executed to run an external debugger.

11



3 The Eclipse Debugging Framework

IDebugElement

The IDebugElement represents an artifact in the program being debugged.

IDebugTarget

The IDebugTarget plays the central role in the debug model. It manages the other debug
elements, e.g. it contains threads and give access to the process. The debug target represents
either a debuggable process or a virtual machine. Thus, the abstraction provides the ability
to represent either a debug target for a single debugging process, like gdb [URL12d] for the C
language or to represent for example the Java Virtual Machine.

IThread

The IThread represents a thread in the program being debugged. It contains the stack frames
and providing access to them.

IBreakpoint

The IBreakpoint represents a breakpoint in the program being debugged. Breakpoints are de-
fined on lines of the program being debugged. They are ”[...] capable of suspending the execution
of a program at a specific location when a program is running in debug mode” [URL12b].

IStackFrame

The IStackFrame represents the execution stack of a thread being suspended. It contains the
variables being visible at the current location of the program in execution. The stack can be
used to visualize the execution path of a program. It contains access to the line, the characters
of the start and end of the element in the resource (e.g. a *.ocl file containing the source code)
to highlight the location in the source code. Figure 3.2 shows the visualization of an example
stack frame in Eclipse.

IVariable

The IVariable represents a variable in the stack frame. The IVariable also supports the
ability, to change a value of a variable while the program is suspended, but running (e.g. the
Java Platform Debugger Architecture supports Hot Code Replacement).

IValue

The IValue represents a value of a variable. It can represent complex data structures and
therefor contain variables itself.

3.2 Interacting with the Debug Model

All commands controlling the debugger are issued from Eclipse’s user interface thread. Thus,
these actions must be non-blocking. That means, they have to return just after they are called
in order to not freeze the user interface. For example, if an action will result in a long running
operation, the user interface’s thread is waiting for the action to return and cannot render the
user interface or handle user inputs anymore.

12



3.3 The Execution Control Commands

Figure 3.2: A Stack Frame of a suspended Debug Process

3.3 The Execution Control Commands

Figure 3.3 shows and explains the icons to send Execution Control Commands to the debug
process and/or its threads. In the following the shown commands are explained:

• Resume (hit F8 when the process or thread is suspended): makes the process or thread
to continue interpretation where it was stopped (either by reaching a breakpoint or by a
suspend command),

• Suspend: suspends a process or thread in order to stop, but not terminate it,

• Terminate: terminates a process and end execution,

• Step into (hit F5): to step into the statement the thread suspended at (e.g. if the
interpreter suspended by reaching an operation call a step into will cause the call of the
operation and then a new suspend event is fired after entering the operation call),

• Step over (hit F6): interprets the statement the thread suspended at without stepping
into and suspends again afterwards,

• Step return (hit F7): to return from the statement currently stepping in.

The Execution Control Commands can be used to control the debugging process. They provide
the ability to observe the execution in a fine-grained manner (e.g. to step into and step over)
or in a course-grained way using resume and breakpoints for debugging.

13



3 The Eclipse Debugging Framework

Figure 3.3: The Eclipse’s User Interface for Debug Commands
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4 Requirements Analysis and Related Work

This chapter presents and discusses the requirements for a step by step debugger for Dres-
den OCL. It presents related work in the field of model-based debugging and relates it to this
work.

4.1 Requirements Analysis

This section presents and discusses the requirements for a step by step debugger for Dres-
den OCL. The requirements result from the analysis of the Debug Framework of Eclipse pre-
sented in Chapter 3, since the Debug Framework forms the foundation the Dresden OCL De-
bugger is built on top of.

Several subtasks have to be realized to implement the debugger:

/R1/ A mapping from the Abstract Syntax Model to the Abstract Syntax Tree,

/R2/ an implementation of the various interfaces of the Eclipse Debug Framework,

/R3/ extending the OCL Interpreter to provide the information for the Debug Model,

/R4/ and realizing an instrumentation of the existing OCL Interpreter.

The mapping from ASM to AST

To check if an element interpreted by the interpreter is constrained by a line breakpoint there
have to be more information available. The line breakpoints are defined in the editor. Thus,
they relate to elements of the AST. For EMFText-based debuggers, breakpoints can be retrieved
from EMF-based AST resources. In particular, they are defined on the elements in that line.
When parsing the AST, the elements of the ASM are generated. For earch element generated,
its originating element of the AST must be stored, otherwise it is unclear to which expressions
in the ASM each individual breakpoint relates to. Currently, there is no such mapping. The
constraints defined in the OCL file are stored on the corresponding model. Therefor the model
will own the information which maps an element of the ASM to the element of the AST it
originated from. More specifically, we need:

/R11/ A map containing the elements of the ASM and their corresponding element in the AST
they originated from,

/R12/ an algorithm computing the line a given ASM element originated from.

The Eclipse Debug Model implementation

EMFText provides debugging support for their generated editors and Domain Specific Languages
(DSL)s. But this feature has some conditions Dresden OCL cannot fulfill. EMFText assumes
that (1) the abstract syntax itself is executable; and (2) the interpreter has to be stack-based.

15



4 Requirements Analysis and Related Work

The first condition is unfeasible due to ”[...] OCL is a modeling language in the first place,
OCL expressions are not by definition directly executable” [OMG12, p. 21]. OCL’s Abstract
Syntax Tree is parsed to an Abstract Syntax Model using the Dresden OCL Parser. The ASM is
then used during interpretation to evaluate the constraints on the model instance element (see
Section 2.4). The second condition means that the interpreter uses a stack to push and pop the
elements being interpreted. These preconditions render the auto-generated debugging support
unusable for Dresden OCL. As a result the Debug Model has to be implemented explicitly in
this work:

/R21/ Implement the interfaces provided by Eclipse’s Debug Model,

/R22/ implement the debug user interface to provide debugging support,

/R23/ implement the launch support to launch OCL files.

As a non-functional requirement Section 3.2 already stated the need of non-blocking functions
called from the UI thread:

/R24/ The functions called by the Eclipse’s user interface must be non-blocking.

Since OCL is side effect free [OMG12, p. 21] (e.g. without altering the state of the model)
the debugger could debug backwards. This means, the ability to step back and to reverse the
last operation. This criterion will not be part of this work, but is listed here as demarcation
criterion:

/R25/ The UI offers the ability to step back to issue the debugger to reverse the last operation.

The instrumentation of the Interpreter

When interpreting constraints the interpreter takes a constraint and a model instance element
as input and interprets the constraint on the model instance element. The user is interested in
the result of the interpretation. However, while debugging the user is interested in (parts of)
information during the interpretation, e.g.:

/R31/ The value of a property of the model instance element,

/R32/ the value of a variable, e.g. as defined by a let expression,

/R33/ the variables and their values regarding the current scope of execution,

/R34/ the result of an operation call,

/R35/ the execution sequence (stack frame).

Furthermore, a debugger provides the ability to stop and continue interpretation step by step.
To stop conditionally either because of a stop condition has been triggered or a breakpoint has
been hit. This requires the interpreter to provide interfaces for instrumentation. Especially,
to be instrumented from outside, e.g. to suspend or resume. The interpreter has to behave
differently regarding its execution mode. The execution mode can either be the debug mode or
the normal run mode. The execution modes can have an impact on both the execution time
the interpreter needs and the resources it uses. During debugging the execution time and the
consumed resources will be higher. To sum up, the interpreter needs to supply the following:

16
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/R41/ interfaces to make the interpreter suspend, resume or abort,

/R42/ interfaces to instruct the interpreter (e.g. the commands shown in Figure 3.3),

/R43/ interfaces to add and delete breakpoints,

/R44/ suspend if a breakpoint is hit,

/R45/ trace the execution sequence and provide a stack frame,

/R46/ save variables and their values during each execution step.

4.2 Related Work

To the best of my knowledge, there is currently no existing work where real step by step debug-
ging is applied to OCL. In [BGHK12] debugging is understood as ”term evaluation”. Brünningen
et al. developed an ”evaluation browser” for USE1 which shows the evaluation of invariants on
a given state model (UML object diagram) in which the state model is used as a test case. This
view can be filtered, e.g. to show failed evaluations only and to examine the cause of the failure.
Their approach currently works for invariants only. Dresden OCL provides this feature, too.
It is named Dresden OCL Tracer [WTFS12, p. 46] and allows to view the evaluation of any
expression and the interim results of the subexpressions. Table 4.1 shows these tools and their
features regarding their debugging or tracing support.

Tool Features

✓  ✓
 ✓  ✓  ✓

USE  ✓
OCLE

graphical 
Debugging

Debugging Trace outputs

Dresden OCL before this work no
Dresden OCL after this work

no partially
no partially no

Eclipse MDT/OCL no no no

Table 4.1: The features of the OCL tools regarding their debugging and tracing support

”[OCLE2 was] initially designed with the NEPTUNE3 project [...] but development was
stopped in 2005” [CODA+11, p. 8]. They offer debugging support by means of identifying er-
rornous sub-expressions. Eclipse MDT/OCL4 offers currently no interactive debugging support.
At best, the OCL Console can be used to evaluate partial OCL expressions.

With the OCL Debugger developed in this thesis Dresden OCL will be the only OCL tool
that allows graphical debugging support at this time.

1USE: UML-based Specification Environment, http://sourceforge.net/projects/useocl/
2OCLE: OCL Environment, http://lci.cs.ubbcluj.ro/ocle/index.htm
3IST 1999-20017 FP5 EU research project, http://neptune.irit.fr
4MDT/OCL or Eclipse OCL, http://wiki.eclipse.org/MDT/OCL
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5 Design and Structure

This chapter presents the architecture of the developed debugger. It describes the new intro-
duced plug-ins, classes and interfaces and how they play together. Furthermore, it describes
how the debugging process is working in detail. Finally, it is presented how the debugger has
been tested.

5.1 Architecture

This section introduces the architecture of the developed debugger. Specifically, the package
structure and the class structure are presented.

5.1.1 Package Structure

The debugger is realized as a new plug-in of Dresden OCL. Since it extends the OCL inter-
preter, which has been introduced in Section 2.4, it inherits its dependencies. Furthermore, it
is dependent on the Model plug-in, the Model Instance plug-in, the Model Bus plug-in and the
OCL Resource plug-in. Figure 5.1 shows these dependencies.

Figure 5.1: Dependencies of packages involved with the debugger

5.1.2 Class Structure

This section describes some classes and interfaces that have been implemented for the debugger.

19



5 Design and Structure

Public Interfaces

The debugger plug-in defines one public interface that shall be used to refer to a debugger.
It is called IOclDebuggable and is described in Figure 5.2. It extends the IOclInterpreter

and offers therefor the ability to use the debugger wherever the interpreter is used as type or
argument.

Figure 5.2: The interface of the OclDebuggable

The IModel does now provide the methods getAllMappings() in order to get the current
mapping from the elements of the ASM to the AST. setAllMappings(Map) sets the mapping,
respectively.

5.2 The OCL Debug Model

The central component of the debugger is the implementation of the various interfaces provided
by the Eclipse Debug Model introduced in Section 3. An important aspect of the implementation
of all those interfaces is the coercion to thread safe programming, including classes that must
be single threaded, because of the Eclipse Platform is throughout multi-threaded.

The OclDebugTarget is the central class of our debug model. This is, because it ”[...] is the
root of the debug element hierarchy” [URL12c]. Launching a debug session will always result in
the creation of a debug target. It is responsible to keep track of all used threads, the breakpoints
and the event dispatcher. Debugging OCL is done in a single threaded environment; the OCL
debugger. The OclDebugger runs in parallel in its own thread and is issued with commands
from the UI or the other debug elements (see Section 3.3).

The OclDebugProxy is responsible for sending the commands to the debugger. It does not
directly communicate with the debugger, but uses the OclDebugCommunicationHelper to asyn-
chronously send requests and sometimes wait for their results. The proxy sends the requests to
the request port . The OclDebuggerListener provides a server and forwards the requests to the
IOclDebuggable. The debugger proccesses the request and responses with an event, if necces-
sary. The EventDispatchJob in the OclDebugTarget uses the OclDebugCommunicationHelper
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to receive those events and to notify the listeners to these events: the OclDebugProcess, the
OclDebugThread and the OclDebugTarget itself. Figure 5.3 shows the correlation between all
these classes and clarifies the calls between them exampled with a terminate command issued
from the user interface.

In Section 3.2 the coercion to thread safe programming and non-blocking operations has
been explained. This requirement led to the implementation of a non-blocking communication
mechanism using sockets. There are two ports used for communication. One port for requests
and the other for events. Requests are used to send commands to the debugger, e.g. to suspend
or to terminate the debugger. Events are used to listen for incoming commands to be executed
or answered. The use of sockets over a simple listener is that they are buffering messages and
therefor queuing them. Figure 5.4 shows the sequence of events when starting the debugging
process. Using listeners, after the third call the fifth could happen before the fourth. The
message would be lost. With the use of sockets the message is kept and queued eliminating race
conditions. Furthermore, they can be used to wait for requested answers. If the OclStackFrame

is asked for variables it contacts the OclDebugProxy to get the variables belonging to it. Then
a request is issued and the socket reader is immediately blocked until the answer returns. A
simple listener could not realize that.

The OclDebugCommunicationHelper therefor defines three functions for the different types
of communication patterns: (1) sendEvent() to send a message into the PrintStream1. The
stream is synchronized. This means, it can be written just once at a time. (2) receive() to
receive a message from the reader. Calling this message blocks until a message is received. (3)
sendAndReceive() to do both; send and receive as explained before.

5.3 The Mapping from ASM to AST

Section 4.1 discussed the fundamental reasons for a mapping from the ASM to the AST. This sec-
tion will explain how this mapping was implemented and discusses the decisions made. Changes
are made to the OCL staticsemantics checker, in particular to the OclParseTreeToEssentialOcl
(see Listing 5.1). While creating the element of the ASM, it also stores the AST’s element in
a map. The resulting mapping is promoted via the model. Currently, the IModel holds the
constraints defined for that model. Thus, the IModel will hold the mapping, too. The line of
an element of the ASM can be determined by computing the line of the corresponding AST’s
element (cf. Listing 5.2).

1 case c : CollectionLiteralPartsOclExpCS => {

2 (computeOclExpression(c.getOclExpression)).flatMap { oclExpressionEOcl => {

3 val ci = factory.createCollectionItem(oclExpressionEOcl)

4 allMappings.put(ci, c)

5 Full(ci)

6 }

7 }

8 }

Listing 5.1: An excerpt of the mapping from ASM to AST

Listing 5.1 shows a Scala code snippet of the OclParseTreeToEssentialOcl trait2. In

1A print stream is a stream you can write into. The sink must not be known.
2”A trait encapsulates method and field definitions, which can be resued by mixing them into classes” [OSV10,

p. 258]
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Figure 5.3: Synchronous and asynchronous calls after issuing a terminate command from the UI
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Figure 5.4: The Interaction between the Launch, Debugger and the Debug Target
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case of a CollectionLiteralPartsOclExpCS (e.g. Set = {1, 2} the 1 and 2 are the expres-
sions stating a simple IntegerLiteralExpCS) the OCL expression gets computed in line 2, and
the CollectionItem will be created. This CollectionItem is then mapped in line 4 on the
CollectionLiteralPartsOclExpCS it originated from.

1 /**

2 * Computes the line of the EObject in the containing resource.

3 * @param element the EObject element

4 * @return the line the element was defined in the resource

5 */

6 protected int getLine(EObject element) {

7

8 EObject e = m_currentMappings.get(element);

9 OclResource resource = (OclResource) e.eResource ();

10 int line;

11 do {

12 line = resource.getLocationMap ().getLine(e);

13 e = e.eContainer ();

14 } while (line == -1 && e != null);

15 return line;

16 }

Listing 5.2: The function computing the line number of an element of the ASM

The function presented in Listing 5.2 is defined in the OclDebugger. The function gets an
EObject passed as argument. That is a super type the ASM elements inherited from. In lines
11-15 the line of the AST element in the OCL editor is determined and returned.

As discussed in Section 4.1, the mapping from the ASM to the AST is essential to realize
OCL debugging for Dresden OCL. However, its implementation turned out not to be a big task
and could be realized rather easily.

5.4 The OCL Debugger

This section introduces the debugger realized in this work and how it has been tested.

5.4.1 The Implementation of the Debugger

In fact the debugger is a specialization of the interpreter. It does indeed interpret, but collects a
lot more information at the same time. Section 4.1 stated all the requirements the debugger has
to fulfill. In order to achieve this, the debugger must have access to the internals of the already
implemented OclInterpreter: First, it needs to change the startup process of the interpreter.
Second, the debugger has to call more functions during interpetation. Third, it has to collect
the information during each step and send it to the event socket. Last, the debugger has to
provide interfaces to e.g. suspend the interpretation. This would result in a lot of conditional
checks for every method (e.g. checks for the execution mode). Therefor, the OclInterpreter

has been extended by the OclDebugger implementing the IOclDebuggable (cf. Figure 5.2).
This solution comes with the advantage that the original implementation of the interpreter does
not suffer in time and space needed for interpretation.

As mentioned before, the OclDebugger implements the IOclDebuggable. It also extends
the OclInterpreter. On startup it starts the server socket and suspends in order to listen to
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incoming commands. The debugger encapsulates the caseXXX methods of the interpreter (e.g.
caseOperationCallExp(OperationCallExp)) and checks if the ASM element is constrained by
a breakpoint. If it is constrained by a breakpoint the debugger suspends, otherwise it resumes the
interpretation unmodified. Listing 5.3 shows how this is realized for the caseOperationCallExp
function. The debugger checks and eventually suspends before and after the call (depending on
the current stepping) to the super implementation in order to show the stack frame and variables
before and after the call, e.g. after returning from an OperationCall the parameters and the
source of the OperationCall are presented as variables (actually the variables are named as
source and as param).

1 @Override

2 public OclAny caseOperationCallExp(OperationCallExp operationCallExp) {

3

4 String operationResultName =

5 "result of " + operationCallExp.getReferredOperation ().

getName ();

6

7 OclAny result = super.caseOperationCallExp(operationCallExp);

8 myEnvironment.setVariableValue(operationResultName , result);

9 stopOnBreakpoint("caseOperationCallExp", operationCallExp);

10 popStackFrame ();

11 myEnvironment.deleteVariableValue(operationResultName);

12 return result;

13 }

Listing 5.3: The function caseOperationCallExp of the OclDebugger

To support step return and step over commands, the OclDebugger needs to log every step
at any time during interpretation. When in step through mode (by issuing step into after
suspending), before and after every case-method call a virtual breakpoint have to be set. These
virtual breakpoints have to be connected to the method. When step return gets issued the next
virtual breakpoint after leaving the method currently stepping in will be the next step. Since
every function call of the OclInterpreter is encapsulated before and after with breakpoint
checks, issuing step return would result in suspending the debugger when the latter check is
done and the debugger has returned from that function. This means, that on every first check
the function has to be marked in order to know where to stop. However, step over requires to
execute the next case-method call without stepping into it, but execute the case-method call
and immediatelly suspend after returning from it.

The variables and their values are stored in the OclInterpreter in a data structure called
InterpretationEnvironment that holds the visible variable values hierarchically. Thus, reach-
ing a new scope while interpreting the InterpretationEnvironment creates a new empty envi-
ronment that links to its parent. So there is an unambiguous assignment of the variables during
interpretation. The debugger uses this environment to determine the variables visible in every
stack frame.

5.4.2 Testing the Debugger

The OclDebugger was tested extensively by hand. This means, constraints were debugged
and the overall output was observed manually. However, to allow further development and
enhancement as well as bugfixing of the OCL debugger developed during this work, unit tests
are required to test the debugger in a systematic and automated manner. Thus, first unit tests
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testing the OclDebugger and the most important features, e.g. starting and suspending or to
suspend on breakpoint hit have been developed. They found the basis for the development
of further, systematic unit tests testing the functionality of the OCL debugger for all kinds of
expressions being part of OCL. But, due to the limited time for the completion of this work,
there are currently no integration tests. Integration testing can be done by mocking the whole
OCL debug model in the package org.dresdenocl.debug.model. Designing further unit tests
as well as integration tests is a definite taks for future works.
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6 Graphical User Interface Implementation

This chapter describes how the OCL Debugger realized in this work may be used. Dresden OCL
in general was introduced in Chapter 2. With the OCL Debugger you can debug .ocl files with
Dresden OCL. In the following, we use the allConstraints.ocl (cf. Listing A.1) of the Simple
Example (UML/Java) (see Figure 6.1) provided with Dresden OCL’s Examples.

Figure 6.1: The Class Diagram of the Simple Example

6.1 The Dresden OCL Debug Perspective

This section shows the Debug Perspective and each of the views being part of it. This is the
Launch Configuration Dialog, the Variables View, the Breakpoints View and at last the Stack
Frame View.

The Dresden OCL Launch Configuration Dialog

The Dresden OCL Launch Configuration Dialog shown in Figure 6.3 allows to configure options
for the debugging process. Currently, the resource URL can be changed.

The Dresden OCL Variables View

The Variables View (see Figure 6.2) allows to see the variables in the current selected stack
frame. Switch the stack frame selection in order to see the variables of the other stack frames.
While debugging, the latest stack frame get selected automatically and the latest variable values
are presented.

The Dresden OCL Breakpoints View

The Breakpoints View shows all breakpoints defined. The colored dot before the breakpoint
entry shows, whether the breakpoint is active or not. If the dot is filled blue, it is active. Is
it a blue circle with white body it is inactive. Figure 6.4 shows a breakpoint view with active
breakpoints.
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Figure 6.2: The Variables view showing the variables of a selected stackframe

The Dresden OCL Stack Frame View

The Stack Frame View shows each thread being executed in the current debugging process and
the call stack for every single thread. Figure 3.2 shows a stack frame while debugging. The call
stack of each thread can be collapsed using the arrow before the thread entry.

6.2 Using the Debugger

This section explains how the debugger is used in order to debug a set of OCL expressions on
Model Instance Elements. First, you have to load a Model. Then, you have to load the Model
Instance. At last you have to start the debugging process.

6.2.1 Selecting a Model

To select a model use the context menu entry under Dresden OCL > Load as Model ... or better
use the @model{} annotation at the very beginning of the constraint file (as comment before the
package command) in order to load the model automatically.

6.2.2 Selecting a Model Instance

To select a model instance use the context menu entry under Dresden OCL > Load as Model
Instance ... on a proper Model Instance file.

6.2.3 Debugging

Figure 6.5 shows the context menu entry to start a debug session. Eclipse will ask whether to
switch to the Debug Perspective if it is not already the active perspective. The Debug Perspective
is shown in Figure 6.6. Since the debugger is embedded in the Eclipse Debug Framework the
standard shortcuts (F5-F8) may be used in order to work with the debugger (i.e. to issue
the execution control commands). The execution control commands issuable from the UI are
explained in Section 3.3.
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Figure 6.3: The Launch View for launching the Dresden OCL Debugger

Figure 6.4: The Breakpoints view showing the currently declared breakpoints and their files
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Figure 6.5: The context menu entry for Debug as ...

After switching to the Debug Perspective the debugging process starts automatically. Thus,
either the suspend command is issued from the UI on the process or thread (depends on the se-
lection in the Stack Frames View, see Figure 3.2) or the debugger has to hit an active breakpoint
in order to suspend; or it finishes interpretation and terminates. On suspending, the last stack
frame is selected and the current variables are shown in the Variables View. On breakpoint hit,
it is possible to either step into (F5), step over (F6), step return (F7) or to resume (F8) until
all constraints are interpreted on all Model Instance Elements. Then, the debugger terminates.

6.3 Summary

This chapter described the Debug Perspective with all its views, which are the Launch Configu-
ration Dialog, the Variables View, the Breakpoints View and at last the Stack Frames View. It
explained how to load a Model and Model Instance and how to start debugging. Furthermore, it

30



6.3 Summary

described how to control the debugger in order to get the appropriate information of the debug
process (e.g. variable values at a special stack frame).

Figure 6.6: The debug perspective of Dresden OCL Debugger
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7 Evaluation and Future Work

This chapter evaluates the implementation presented in Chapter 5 and checks whether the
requirements identified in Section 4.1 were fulfilled. At first, the tasks of this work are discussed.
Then, the features realized are presented. Finally, this chapter presents tasks that were not
implemented and should be addressed by future works.

7.1 Evaluation

This section will evaluate whether the developed OCL debugger fulfills the requirements an-
alyzed in Section 4.1. The tasks of this work have been the realization of a graphical OCL
debugger for Dresden OCL that is integrated into the Eclipse Debug Framework and the con-
sequent subtasks. This includes the implementation of the various interfaces provided by the
Eclipse Debug Framework, namely the Eclipse Debug Model. Furthermore, it encompasses the
introduction of a mapping from the Abstract Syntax Model to the Abstract Syntax Tree enabling
the visualization of the interpretation process. Besides, the implementation had to be tested
and documented.

The result of this work is the implementation of a graphical OCL debugger for Dresden OCL
which is integrated into the Eclipse Debug Framework. There is still further work to do in order
to release the debugger with Dresden OCL. This includes further testing and the implementation
of all step modes. The resulting OCL debugger has been tested with unit tests. Integration
tests have yet to be done. In addition, it has been tested manually intensively.

The requirements for the realization of an OCL debugger were analyzed in Section 4.1. Ta-
ble 7.1 lists these requirements and checks whether they have been realized during this work. All
requirements have been fulfilled besides the demarcation criterions. They should be addressed
by future works.

7.2 Future Work

Despite the debugger implemented in this work there are some features missing. Some are
evaluated in Section 4.1. These can be realized in future works. Some of these tasks are:

• Currently, on mouse hover the OclEditor does not show the values of variables during
debugging. This can be provided with implementing a debugging-aware OclHoverText-

Provider. This means, i.e. on hovering a variable definition in the OCL file the current
value will be shown.

• Currently, the OclEditor does give not any feedback whether breakpoints can be hit or
not. Especially, when breakpoints are defined on comments, these breakpoints can never
be reached. Future work could address this feature by integrating checks on breakpoint
reachability into the static semantics plug-in of Dresden OCL or with another post pro-
cessor.
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Table 7.1: The requirements for the Debugger for Dresden OCL
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7.2 Future Work

• Breakpoints may be conditional. This means, they are either constrained by a hit-counter
(triggering by a defined hit count) or a condition that must hold. Both is not implemented
in this work. The latter would require (1) to write the condition in OCL; (2) to parse and
interpret the condition and evaluate it during debugging.

• OCL is side-effect free. This means, it does not alter the state of a model. Thus, it is
possible to debug in reverse order using the drop to frame possibility of the Eclipse Debug
Framework to go back to a specified stack frame and replay the steps. Such functionality
could be realized in future works, e.g. using a memento pattern [GHJV94, p. 283ff].

• Dresden OCL already provides tracing support with the Dresden OCL Tracer and the
TracerView. It may be helpful to see the interim results of the expressions and sub-
expressions in the view of the tracer during debugging. These both views may be synchro-
nized with the debugging process in future works.

• Enable the possibility to change the value of variables during debugging in the Debug
View. The Eclipse Debug Model supports this feature in its API.

• The Java Debugger (jdb) allows to change the implementation of methods, but not their
interfaces or parameters, during runtime. This may be a challenging task since the con-
straints need to be re-parsed and the effected ASM elements need to be exchanged. The
references every single old element needs to be exchanged with the new references.
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8 Summary and Conclusion

This work presented and implemented a graphical debugger for Dresden OCL that can be used to
debug OCL expressions using the Dresden OCL integration for Eclipse. The result is embedded
in the Eclipse Debug Framework and offers the ability to run and debug OCL expressions on
models and their instances.

The work presented how the Eclipse Debug Model can be implemented for OCL and how the
interpretation process can be visualized in the user interface. The interpretative way Dresden
OCL choose to evaluate the constraints on model instance elements is very comfortable for
this purpose since it required no refactoring on the interpreter implementation to achieve the
debugging support.

As shown in Section 4.2 there is currently no graphical debugging support for OCL in other
tools. Despite the non-existent graphical debugging support there are some attempts to support
a simple kind of debugging: to expose and visualize faulty sub-expressions, e.g. so does USE.
The debugger realized in this work is the first to provide graphical debugging support in the
field of OCL.

Comparing the debugger realized in this work with other existing debuggers (e.g. the Java
Debugger) highlights what still can be done. For example the Java Debugger allows to change the
implementation of methods, but not the interface or parameters, during runtime. The debugger
realized in this work offers not the feature to do this.

Since debugging was one of the most-wanted features identified in a survey among the com-
munity [COD10] (among others, e.g. refactoring and auto-completion), Dresden OCL made a
big step towards an IDE4OCL.
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A Simple Example

1 −− @model { . . / model/ s imple . uml}
2 package org : : d r e sdenoc l : : examples : : s imple
3
4 −− The age o f Person can not be negat ive .
5 context Person
6 inv : age >= 0
7
8 −− Students should be 16 or o ld e r .
9 context Student

10 inv : age > 16
11
12 −− P r o f e s s o r s should be at l e a s t 30 .
13 context P r o f e s s o r
14 inv : not ( age < 30)
15
16
17 −− Returns the age o f a Person .
18 context Person
19 de f : getAge ( ) : Integer = age
20
21
22 −− Before r e tu rn ing the age , the age must be de f ined .
23 context Person : : getAge ( )
24 pre : not age . o c l I sUnde f ined ( )
25
26
27 −− The r e s u l t o f getAge must equal to the age o f a Person .
28 context Person : : getAge ( )
29 post : r e s u l t = age
30
31 endpackage

Listing A.1: The allConstraints.ocl of the Simple Example (UML/Java)
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