
Diploma Thesis

Feature-based

Con�guration Management of

Applications in the Cloud

submitted by

Xi Luo

born 09.10.1986 in Beian, China

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: Dr. Andreas Rummler, Dipl.-Medieninf. Julia Schröter
Professor: Prof. Dr. rer. nat. habil. Uwe Aÿmann

Submitted 30.04.2013

II

Acknowledgements

• I express my most sincerest gratitude to Dr. Andreas Rummler and
Dipl. - Medieninf. Julia Schröter, the supervisors of my thesis, for their
constant supervision, su�cient consideration, great patience, complete
support and utmost dedication. I deeply appreciate their valuable as
well as constructive advice when commenting and discussing in the while
process of thesis writing.

• I am also profoundly grateful to my parents and all the friends, who have
been granting me their unconditional favor for the thesis.

III

IV

Contents

List of Figures i

List of Tables iii

1 Introduction 1
1.1 Motivation . 2
1.2 The Structure of This Document 2

2 Background 5
2.1 Cloud Computing . 5
2.2 Software Product Line Engineering 7
2.3 Role Based Access Control . 10
2.4 Staged Con�guration . 12
2.5 Work�ow Modeling . 14

2.5.1 Concept . 14
2.5.2 Work�ow Modeling Languages 16
2.5.3 Adaptive Work�ow . 17
2.5.4 Adaptation Patterns . 17

2.6 Graph Transformation . 18
2.7 Related Work . 20

3 Analysis 23
3.1 Illustrative Example . 23

3.1.1 Domain and Exiting Platform 24
3.1.2 Yard Management System as a SaaS Application 28

3.2 Requirements Identi�cation . 28

4 Concept 31
4.1 Con�guration Management Speci�cation 31

4.1.1 Variability Modeling . 32
4.1.2 Stakeholder Views Modeling 34
4.1.3 Con�guration Work�ow Modeling 36

4.2 Con�guration Work�ow Adaptations 41

V

VI CONTENTS

4.3 Mapping between Problem Space and Solution Space 47
4.4 Con�guration Process Simulation 50

5 Implementation 53
5.1 Con�guration Speci�cation . 54

5.1.1 Extended Feature Model Speci�cation 55
5.1.2 View Model Speci�cation 56
5.1.3 Con�guration Work�ow Model Speci�cation 57

5.2 Graph Transformation Rules . 62
5.3 Mapping Realization . 65
5.4 Con�guration Management Tooling 67
5.5 Evaluation . 70

6 Conclusions and Future Work 77
6.1 Conclusions . 77
6.2 Future Work . 78

Bibliography i

List of Figures

2.1 The cloud computing stack [VBB11] 6
2.2 A sample feature model of a mobile phone [BSRC10] 9
2.3 Relationships among RBAC models [SCFY96] 11
2.4 Role relationships . 11
2.5 Example of role hierarchies [SCFY96] 12
2.6 State transitions of a work�ow instance [RW12] 15
2.7 State transitions of a task instance [RW12] 16
2.8 Illustration of a graph transformation step [AEH+99] 19

3.1 Schematic overview of a large warehouse [Con11a] 25

4.1 The extended feature model . 32
4.2 Extended feature model for the Yard Management System . . . 33
4.3 The view model [SMM+12] . 35
4.4 Views for stakeholders in the Yard Management System 36
4.5 A con�guration work�ow about the Yard Management System . 39
4.6 Staged con�guration concerning Yard Management System . . . 39
4.7 State transitions of an action instance 40
4.8 Control �ow patterns [RW12] 41
4.9 The initial con�guration work�ow 42
4.10 Rules of the graph transformation 43
4.11 The adaptation �owchart of a con�guration work�ow 45
4.12 Example about using change primitives for User 2 46
4.13 Con�guration and instantiation of a cloud-based application

[SMM+12] . 47
4.14 Mapping between extended feature model and Yard Manage-

ment System variability model 48
4.15 Cocktail Model in the Yard Management System 49
4.16 Con�guration management speci�cation 50
4.17 Con�guration management execution 51

5.1 Java Work�ow Tooling Work�ow Editor 54
5.2 Abstract Ecore metamodel of Extended Feature Model 55

i

ii LIST OF FIGURES

5.3 Abstract Ecore metamodel of View Model 56
5.4 Abstract Ecore metamodel of JWT Work�ow Editor 57
5.5 Connection between JWT Work�ow Editor model and View

Model . 58
5.6 Connection between JWTWork�ow Editor model and Extended

Feature Model . 58
5.7 Extension of Action in JWT Work�ow Editor model 59
5.8 Utilized meta models in the con�guration management tooling . 61
5.9 Models importing . 68
5.10 A work�ow example in the con�guration work�ow editor 69
5.11 Con�guration viewer . 69
5.12 A con�guration work�ow in the con�guration work�ow editor . 72
5.13 Multiple stakeholders concurrently perform specialization steps . 73
5.14 Mobile communication service 74
5.15 Location service with satellite map 74

List of Tables

2.1 Overview of SPLE activities [BD07] 8
2.2 Catalog of adaptation patterns (AP) [WRRM08] 18

4.1 Change primitives for the rules in Figure 4.10 44

iii

iv LIST OF TABLES

Chapter 1

Introduction

In the last decades, cloud computing became increasingly hot and created the
most buzz. Cloud computing is the utilization of computing resources (hard-
ware and software) that are delivered as a service over a network (typically the
Internet). It entrusts remote services with a user's data, software and compu-
tation. End users can access cloud-based applications through a web browser
or a mobile application, and their data are stored in servers at a remote loca-
tion. Thus, cloud computing is an e�cient way for IT to add capabilities or
increase capacity on the �y without investing in new infrastructure or licensing
new software.

The two most normally cited examples of cloud o�ering are Amazon and
Google. Basically, both of them rent their inner data-center resources to out-
side customer [Wei09]. For example, in Amazon's Elastic Compute Cloud
(EC2)1, customers can rent virtual-machine instances and run their applica-
tions on Amazon's hardware. Like in the case of Amazon, in cloud computing,
applications are usually installed in remote servers instead of customers' local
computers. Therefore, the cloud computing resources (hardware and software)
are shared by various unrelated users. To enable sharing of resources and costs
across a large pool of users, multi-tenancy is regarded as one of the essential
characteristics of cloud computing [ZCB10]. In the principle of multi-tenancy,
a single instance of the software runs on a server and serves multiple client
organizations (tenants). With a multi-tenant architecture, a software applica-
tion can virtually partition its data and con�guration. Thus, multiple tenants
share the same application, running on the same operating system, on the
same hardware, with the same data-storage mechanism, but they do not share
or see each other's data.

1aws.amazon.com/ec2/

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In the provision of a cloud-based application, various stakeholders with dif-
ferent objectives are involved, i.e. providers of all cloud stack layers as well
as tenants and their users [MG11]. Normally, according to their objectives,
providers can o�er di�erent computing resources that are shared by various
tenants. For example, infrastructure providers o�er di�erent kinds of infras-
tructure resources, i.e. servers and networks. Based on the supplied resources,
platform providers o�er platform resources, such as frameworks. Then appli-
cation providers rent platform resources and provide their applications with
con�gurable functionalities. Finally, tenants as well as their users can rent
applications on demand and pay only for the services they use and for a cer-
tain usage time. In the above example, applications in the cloud environment
require di�erent con�guration stages from di�erent stakeholders. In addition,
during the con�guration process, new tenants can be added and removed dy-
namically. Therefore, a dynamic, yet scalable con�guration management is
required for providing highly con�gurable applications for multiple tenants
and their associated users in a shared cloud environment [SMM+12].

The purpose of this thesis is to develop a con�guration management that is
able to manage and create tenant con�gurations for cloud-based applications.
By modeling a con�guration work�ow, the con�guration management enables
a centered and structured con�guration process. The con�guration work�ow
intents to manage the variability of cloud-based applications. After staged con-
�guration of related stakeholders, a complete con�guration per user is created
and all variability is bound. Additionally, the con�guration work�ow must
allow for the dynamical stakeholders integrating during or after the con�gu-
ration process. Based on Eclipse and extended feature models, the concepts
are prototypically implemented in a tool. By using a concrete case study and
experiments, the concepts and the applicability of the solution to the SAP
Netweaver Cloud are evaluated.

1.2 The Structure of This Document

The structure of the thesis is listed as follows:

• Chapter 2 describes the background and relevant technologies which are
utilized in our approach.

• Chapter 3 introduces an example of a cloud-based application as a case
study. Based on the example and the literature [SMM+12] we identify the
requirements for con�guration management of cloud-based applications.

1.2. THE STRUCTURE OF THIS DOCUMENT 3

• Chapter 4 introduces our con�guration management concept, includ-
ing con�guration management speci�cation and con�guration work�ow
adaptations. Furthermore, we also describe how to adapt our concept to
the use case introduced in Chapter 3.

• Chapter 5 shows how the concept is implemented based on Model-driven
engineering (MDE) and demonstrate the feasibility of our concept with
the help of the use case.

• Chapter 6 concludes the thesis by outlining our approach and contribu-
tions. Furthermore suggestions for future work are also discussed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

As stated in the introduction, this thesis focuses on proposing concepts for
con�guration management of cloud-based applications. In this chapter we
introduce the related background and used methods as well as models. In
addition, we also show the selected literatures related to the research area
covered in this thesis.

2.1 Cloud Computing

The cloud computing is an approach of providing computing resources (e.g.
networks, servers, applications, storage and services) as a service under the def-
inition from National Institute of Standards and Technology (NIST) [MG11].
Therefore, computing resources are dynamically con�gurable depending on the
demand of a tenant and its users. According to the abstraction level of ca-
pability and service model of providers, cloud computing services are divided
into three classes, namely: (1) Infrastructure as a Service, (2) Platform as a
Service, and (3) Software as a Service. Figure 2.1 depicts the layered organi-
zation of the cloud stack from physical infrastructure to applications.

1. Infrastructure as a Service: IaaS provides virtualized resources (such as
computation, storage, and communication) on demand [SMLF09]. The
services from this layer are considered to be the bottom layer of cloud
computing systems [NWG+09]. The cloud owner who o�ers IaaS is called
an IaaS provider. Examples of IaaS providers include Amazon EC21,
GoGrid2 and Flexiscale3.

1Amazon Elastic Computing Cloud, aws.amazon.com/ec2
2Cloud Hosting, Cloud Computing and Hybrid Infrastructure from GoGrid,

http://www.gogrid.com
3FlexiScale Cloud Comp and Hosting, www.�exiscale.com

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: The cloud computing stack [VBB11]

2. Platform as a Service: PaaS refers to o�ering an environment (oper-
ating system support and software development frameworks) on which
developers create and deploy applications. It makes a cloud easily pro-
grammable so that developers do not necessarily need to know how many
virtualized resources that applications will be using. Examples of PaaS
providers include Google App Engine4, Microsoft Windows Azure5 and
Force.com6.

3. Software as a Service: SaaS refers to o�ering applications over the In-
ternet. In this business model applications are rented to customers (ten-
ants) on demand. Therefore, tenants pay only for the services they use
and for a certain usage time. Examples of SaaS providers include Sales-
force.com7, Rackspace8 and SAP Business ByDesign9.

In this thesis we focus on con�gurable cloud applications allowing for tailored
functionality. In order to save costs, some cloud applications are based on
a multi-tenant architecture. A multi-tenant application allows customers to
share the same hardware resources by providing them one shared application
and database instance. The application is con�gured to �t tenants' needs as

4 Google App Engine, URL http://code.google.com/appengine
5Windows Azure, www.microsoft.com/azure
6 Salesforce CRM, http://www.salesforce.com/platform
7Salesforce CRM, http://www.salesforce.com/platform
8Dedicated Server, Managed Hosting, Web Hosting by Rackspace Hosting,

http://www.rackspace.com
9SAP Business ByDesign, www.sap.com/sme/solutions/businessmanagement/business-

bydesign/index.epx

2.2. SOFTWARE PRODUCT LINE ENGINEERING 7

if it runs on a dedicated environment [BZP+10]. Usually, a tenant groups a
number of users, which are the stakeholders in an organization renting a multi-
tenant SaaS solution. With this model, application deployment becomes easier
for service providers, as only one application instance has to be deployed.

In order to con�gure cloud-based multi-tenant aware applications, methods
from software product line engineering (SPLE) can be used to deal with the
commonality and variability. In next section, we introduce SPLE and its uti-
lization.

2.2 Software Product Line Engineering

Software product lines (SPL) refers to software engineering methods, tools and
techniques for producing a set of similar software products that share more
commonalities than variability [BSRC10]. Generally, the customers' require-
ments are the same and no customization is performed. In order to achieve
customer's personalization, software product line engineering (SPLE) promotes
the production of families of software products from common features rather
than production of individual products.

Division of Software Product Line Engineering

The main di�erence between SPLE and normal software development is that
SPLE has a logical separation within the development of core, i.e. domain
engineering and application engineering [PBVDL05].

• Domain Engineering: This process is responsible for establishing the
reusable platform and de�ning commonality as well as the variability
of the product line. The platform is comprised of software artefacts
(requirements, design, realization, test etc.).

• Application Engineering: This process is responsible for deriving
product line applications by reusing domain artefacts and exploiting the
product line variability.

The above split allows for separating two concerns to build a robust platform
and to build customer-speci�c applications. The interaction of the two pro-
cesses must be bene�cial with each other. For example, the design of the
platform must be of use for application development, and application develop-
ment must assist in using the platform.

The terms Problem Space and Solution Space together represent the develop-
ment phases of SPLE, as in [KU00] introduced by Czarnecki and Eisenecker.

8 CHAPTER 2. BACKGROUND

• Problem Space: The problem space generally refers to systems' speci�-
cations during the domain analysis and requirements engineering phases.
It is used to describe the desired combination of problem variability to
implement a product variant.

• Solution Space : The solution space refers to the concrete systems
created during the architecture, design and implementation phases. It
describes the composing assets of a product line and its relation to the
problem space, i.e. rules for how elements of the platform are selected
when certain values in the problem space are included in a product vari-
ant.

The four-part division resulting from the combination of the problem space
and solution space with domain and application engineering is shown in Table
2.1.

Problem Space Solution Space

Domain
Engineering

Variability within
the problem area

Structure and selection rules
for the solution elements
of the product line platform

Application
Engineering

Speci�cation of
the product variant

The needed platform elements
(and additional application
elements if required)

Table 2.1: Overview of SPLE activities [BD07]

Feature Model

In SPLE, Feature Models are widely used for variability and commonality man-
agement [KCH+90]. A feature model describes the features of a set of software
products in the domain as well as relationships between them. A feature is a
system attribute relevant for some stakeholders and is used to describe com-
monality and variability. According to the stakeholders' interest a feature can
be a requirement, a non-functional characteristic or a technical function. Fea-
tures are organized in feature diagrams. A feature diagram is a visual notation
of a feature model, which is an and/or tree of di�erent features. The root of a
feature diagram represents a concept (e.g. a software product), and its nodes
are features.

Figure 2.2 depicts a simpli�ed feature model of a mobile phone that illustrates
how features are used to specify and build software for mobile phones. Based on
the feature model we show the following relationships and constraints among
features of a basic feature model [BSRC10]:

2.2. SOFTWARE PRODUCT LINE ENGINEERING 9

Figure 2.2: A sample feature model of a mobile phone [BSRC10]

1. Relationships between a parent feature and its child features (subfea-
tures)

• Mandatory: A mandatory relationship between a child feature
and its parent feature depicts that the child feature must be included
in all products in which its parent feature appears. For example,
every mobile phone must include support for calls.

• Optional: An optional relationship between a child feature and
its parent feature depicts that the child feature can be optionally
included in all products in which its parent feature appears. In the
example, a mobile phone may optionally provide support for GPS.

• Alternative: An alternative relationship between a set of child fea-
tures and their parent feature depicts that only one child feature can
be included in a product in which the parent feature appears. For
instance, a mobile phone may support for only one feature among
basic, color and high resolution for a screen.

• Or: An or relationship between a set of child features and their
parent feature depicts that one or more child features can be selected
when the parent feature is part of the product. In the example,
camera, mp3 or both of them can be selected whenmedia is selected.

2. Cross-tree constraints

• Requires: The inclusion of a feature A implies the inclusion of a
feature B in a product if A requires B. For example, a mobile phone
with camera must include support for a high resolution screen.

• Excludes: A feature A and a feature B cannot be included in the
same product if A excludes B. For example, GPS and basic screen

10 CHAPTER 2. BACKGROUND

cannot be included in a mobile phone.

Based on the basic feature model, sometimes it is necessary to extend fea-
ture models to include more features' information, so-called feature attributes.
These types of models with additional information are called Extended Fea-
ture Models (EFM) [BSRC10]. In the seminal report on feature models of
FODA [KCH+90] the inclusion of additional information in feature models is
already contemplated. For example, relationships between feature and feature
attributes were presented. Furthermore, the inclusion of attributes in fea-
ture models is also proposed in [CK05], [BRCT05], [BTRC05] and [BBRC06].
Many proposals agree that an attribute should contain a name, a domain and
a value. Therefore feature attributes can be used to describe functional or
non-functional information to support the feature.

Besides, some authors also propose extending feature models with cardinalities
[CHE05a, RBSP02]. In our concept we utilize the group cardinality. A group
cardinality is an interval denoted <n..m> with n as lower bound and m as
upper bound. The interval limits the number of child features that may be
included in a product if their parent feature is selected.

As stated in the literature [MMLP09], [RA11] and [SCG+12], methods from
SPLE are convenient to handle the commonality and variability of SaaS ap-
plications. In this thesis, we focus on managing the variability of cloud-based
applications. With the help of EFM we set out the variability and de�ne the
con�guration space of cloud-based applications. By utilizing EFM, a multi-
tenant SaaS application can be con�gured by involved stakeholders according
to their requirements.

2.3 Role Based Access Control

In the provision of a cloud-based application, various stakeholders are involved.
According to their roles, the stakeholders have di�erent permissions to select
application characteristics. Therefore, a view concept is required to determine
stakeholders' possible con�guration choices based on their roles.

Role-Based Access Control (RBAC) is an approach to restricting system access
to authorized users [FKC92]. Usually, access control decisions are determined
by the roles on which individual users take as part of an organization. This
may include responsibilities, quali�cations and duties. For example, roles in
a hospital include doctor, nurse, clinician and pharmacist. The concept of
RBAC began with multi-user and multi-application on-line systems pioneered
in the 1970s. The central notion of RBAC is to associate permissions with

2.3. ROLE BASED ACCESS CONTROL 11

roles, and to assign users to appropriate roles. In an organization to di�er-
ent job functions, di�erent roles will be de�ned. According to their respective
responsibilities users are assigned to corresponding roles. With RBAC the
management of permissions is extremely simpli�ed.

Figure 2.3: Relationships among RBAC models [SCFY96]

In [SCFY96], according to various dimensions of RBAC a family of four con-
ceptual models are de�ned. Figure 2.3 shows the relationship between the
four models. RBAC0 is the base model that indicates the minimum require-
ments for any system supporting RBAC. RBAC1 and RBAC2 are called ad-
vanced models, which include RBAC0 and additional independent features.
RBAC1 adds the concept of role hierarchies that are depicted in later para-
graph. RBAC2 adds constraints. As the consolidated model, RBAC3 includes
RBAC1 and RBAC2 and, by transitivity, RBAC0. Considering the current
common cloud-based applications, various stakeholders may have role hierar-
chies. For instance, various tenants inherit same permissions from their parent
role, but hold di�erent roles for the purpose of identi�cation (e.g. two tenants
from di�erent organizations). Therefore, in this thesis we are only interested
in the RBAC1 with the concept of role hierarchies. In the following part we
describe the base model RBAC0 and the concept of role hierarchies.

Figure 2.4: Role relationships

The base model of RBAC consists of Role, User and Permission. A role is a

12 CHAPTER 2. BACKGROUND

job function and can be thought of as a collection of permissions that a user
or a set of users perform within the context of an organization. A user is
normally a human being. A permission is an approval of a particular model
of access to one or more objects in a system and allocated to roles in an orga-
nization. The relationships among individual roles, users and permissions are
depicted in Figure 2.4. In the �gure, the role Doctor is assigned to users Luke
and John, so that both of them have the permissions of diagnosis and medical
records checking which are associated with the role Doctor.

Figure 2.5: Example of role hierarchies [SCFY96]

In the literature [FKC92], [HDT95] and [NO94] a concept of role hierarchies is
discussed. Usually, the concept is implemented in systems that provide roles.
Role hierarchies refer to the situations where roles can inherit permissions
from other roles. An example of role hierarchies is shown in Figure 2.5. In
the example, more powerful roles are shown towards the top of the diagram
while less powerful roles towards the bottom. The programmer role and test
engineer role inherit all permissions from project member role. In addition
to the inherited permissions they can have individual permissions. Besides,
role hierarchies also support multiple inheritance of permissions. For example,
project supervisor role inherits from both test engineer and programmer roles.

In this thesis we use the RBAC1 model as a basis to de�ne the specialization
steps performed by stakeholders on EFM. The details is introduced in Chapter
4.

2.4 Staged Con�guration

As mentioned in Section 2.2, a feature model can be used to depict the con�g-
uration space of a software product family. By selecting the desired features

2.4. STAGED CONFIGURATION 13

from a feature model an application engineer can specify a product in a prod-
uct family. During the con�guration process, the con�guration operations are
performed in a certain order. According to Czarnecki et al. [CHE04] the above
process is called staged con�guration, if the process may also be performed in
stages, where each stage can eliminate some con�guration choices. In a staged
con�guration each stage takes a feature model as an input and yields a spe-
cialized feature model as an output. The set of software products described
by the output feature model is a subset of the products described by the input
feature model.

In a staged con�guration there are two types of processes: con�guration process
and specialization process.

• Con�guration Process: The process of deriving a con�guration is re-
ferred to as con�guration process, while a con�guration comprises the
features that are selected according to the constraints in a feature dia-
gram.

• Specialization Process: A specialization process is a transformation
process that takes a feature diagram and yields another feature diagram.
The collection of con�gurations denoted by the latter diagram is a true
subset of the con�gurations denoted by the former diagram. The latter
diagram is also referred to as a specialization of the former one. In addi-
tion, a fully specialized feature diagram expresses only one con�guration.

Generally there are two extremes to perform a con�guration process: 1) a con-
�guration is derived from a feature diagram directly and 2) a con�guration is
derived by specializing a feature diagram top down to a fully specialized fea-
ture diagram. Therefore, a staged con�guration can be achieved by successive
specialization processes.

In a staged con�guration, at each stage some specialization steps are applied
and the last stage is followed by deriving a con�guration from the most special-
ized feature diagram in the specialization process sequence. A specialization
step refers to the removal of a certain con�guration choice. There are six
categories of specialization steps: a) re�ning a feature cardinality, b) re�ning
a group cardinality, c) removing a grouped feature from a feature group, d)
assigning a value to an attribute which only has been given a type, e) cloning
a solitary sub-feature, and f) unfolding a feature reference. More details about
each specialization step can be found in [CHE04].

A con�guration stage can be de�ned in terms of three dimensions [CHE05a]:

14 CHAPTER 2. BACKGROUND

• Time: A con�guration stage may be de�ned in terms of di�erent phases
of a product lifecycle, such as product design, deployment, testing, etc.

• Roles: A con�guration stage may be de�ned according to di�erent roles
with di�erent responsibilities. In a staged con�guration, each role is
responsible to eliminate di�erent variability.

• Targets: A con�guration stage may be de�ned by a target system for
which a given software needs to be con�gured.

In our concept we design a con�guration work�ow model so that a multi-tenant
SaaS application can be con�gured by applying a staged con�guration process.
In the work�ow model, each stage is de�ned in terms of roles dimension and
thereby is performed by stakeholders. In addition, some stakeholders' con�gu-
ration choices (e.g. tenants) depend on the pre-con�guration process of other
stakeholders (e.g. providers).

2.5 Work�ow Modeling

The goal of this thesis is to model a con�guration work�ow that enables cen-
tered and structured con�guration process for cloud-based applications. A
work�ow is a description of a sequence of a series of tasks (activities) through
which work is routed [OAWtH10]. It is also used as a synonym for a business
process and may be seen as any abstraction of real work.

2.5.1 Concept

The concept of a work�ow is closely related to other concepts used to describe
organizational structure, such as functions, teams and projects. A work�ow
model (also denoted as work�ow schema) is used to specify which tasks need
to be executed and in what order. Basically, a work�ow model comprises a set
of nodes that represent start/end nodes, tasks or control connectors, and a set
of control edges between them [RW12].

• Start/End Nodes: The start node and end node separately indicates
where a particular work�ow will start or end.

• Tasks: A task (or action) is usually associated with an invokable ap-
plication service and can either be atomic or complex. An atomic task
represents an automated task or a manual task. While an automated
task is automatically performed without human interaction, a manual
task is made available as work items to users. A complex task refers to
a subprocess and allows the modularization of a business process.

2.5. WORKFLOW MODELING 15

• Control Connectors: A control connector is used to describe split
or join in the control �ow of a work�ow. For example, an XOR-split
allows selecting one out of several outgoing branches, whereas an OR-
split allows selecting at least one out of several outgoing branches.

• Control Edges: A control edge is used to depict the precedence rela-
tionship between nodes of a work�ow.

To a work�ow speci�cation, a distinction is made between the type level and
instance level [RW12]. While type level de�nes the schemes for executable
work�ow model at build time, instance level refers to the execution of related
work�ow instance at run time. Once a work�ow executes, new work�ow in-
stances can be created and executed. Figure 2.6 depicts the life cycle of a
work�ow instance.

Figure 2.6: State transitions of a work�ow instance [RW12]

In Figure 2.6, a newly created work�ow instance has state created. When the
instance starts to be executed, its state changes to running. When at least one
of the enabled tasks is running, the instance enters state active. In addition,
a work�ow instance has the state suspended if it has no running tasks. Fur-
thermore, if a work�ow instance is abnormally terminated or aborted, di�erent
actions are required, depending on the concrete state of the instance. In the
end, a work�ow instance is completed if the end node is achieved.

16 CHAPTER 2. BACKGROUND

Figure 2.7: State transitions of a task instance [RW12]

During the execution of a work�ow instance, a task instance represents an invo-
cation of a task. A task instance utilizes data associated with its corresponding
work�ow instance and produces data utilized by succeeding tasks. Figure 2.7
shows the life cycle of a task instance [RW12]. When the preconditions for ex-
ecuting a task are met, the state of the task instance changes from inactive to
enabled. If the task instance starts to run, its state changes to running. When
a task instance completes, its state changes to completed. Besides, in order to
cover more advance scenarios, three additional states (skipped, suspended and
failed) are involved. First, a task instance in state inactive or enabled may be
skipped (i.e. it enters state skipped) if an alternative path is selected for exe-
cution. Secondly, a task instance with state of running may be suspended (i.e.
it enters state suspended) and resumed later (i.e. it reenters state running).
Finally, a task instance switches to state failed if it fails because of errors.

2.5.2 Work�ow Modeling Languages

Work�ow languages are used to design work�ow models and enable their ex-
ecution [Wes12]. The commonly used work�ow languages include: dedicated
work�ow speci�cation languages (e.g. YAWL10, XPDL11); executable process
de�nition languages based on web services (e.g. BPEL12); work�ow products
(e.g. Websphere13). In order to specify work�ows it is also possible to use
languages for business process modeling, such as BPMN14 and UML Activity
Diagrams.

10http://www.yawlfoundation.org/
11http://www.xpdl.org/
12http://bpel.xml.org/about-bpel
13http://www-01.ibm.com/software/websphere/
14http://www.bpmn.org/

2.5. WORKFLOW MODELING 17

2.5.3 Adaptive Work�ow

A work�ow should provide �exibility because of its various changes. Thus,
adaptive work�ow is involved in order to deal with the dynamic modi�cation
of a work�ow model. Adaptive (or dynamic) work�ow refers to the extending
of a static work�ow in such a way that the work�ow model can be modi�ed
or expanded in some way when changes occur [VDAVH04]. The changes of a
work�ow include, for example, users add tasks, delete tasks, postpone tasks'
execution, etc. Usually, such behavioral changes of a work�ow instance require
structural adaptations of its corresponding work�ow model [RW12]. Structural
adaptations include, for example, insertion, deletion, movement of a task, etc.

The structural adaptations of a work�ow model can be classi�ed into two levels
according to their scope or impact: structural changes and ad-hoc changes
[VDAVH04].

• Ad-hoc Changes: In ad-hoc changes a single instance of a work�ow is
a�ected during the run time to cope with unanticipated exceptions.

• Structural Changes: In structural changes a work�ow model is modi-
�ed so that all new instances of the work�ow bene�t from the changes. A
structural change is typically associated with a business process redesign
(BPR).

Both levels of structural adaptations can be conducted by using adaptation
patterns, which are described in Section 2.5.4.

2.5.4 Adaptation Patterns

Adaptation patterns allow users to structurally modify work�ow models. Gen-
erally, a work�ow model can be transformed into another work�ow model by
applying an adaptation pattern. Thus, two di�erent approaches can be used
to ful�ll the structural adaptation [WRRM08]. One approach is based on
change primitives that operate on single elements of a work�ow model at a
low abstract level, such as add node, remove node, add edge, or remove edge.
Another approach is based on high level change operations that combine a set
of change primitives to enable adaptations at a high abstract level, such as add
task, delete task or move task.

Adaptation patterns constitute abstractions of high level change operations.
An adaptation pattern contains one high level operation. Table 2.2 shows the
catalog of adaptation patterns as identi�ed in [WRRM08]. In the table, the
term process fragments refers to speci�c parts of a work�ow model.

18 CHAPTER 2. BACKGROUND

Pattern category Pattern
Adding or deleting AP1: Insert process fragment
process fragments AP2: Delete process fragment
Moving or replacing AP3: Move process fragment
process fragments AP4: Replace process fragment

AP5: Swap process fragment
AP14: Copy process fragment

Adding or removing AP6: Extract subprocess
process levels AP7: Inline sub-process
Adapting control AP8: Embed process fragment in loop
dependencies AP9: Parallelize process fragments

AP10: Embed process fragment in conditional branch
AP11: Add control dependency
AP12: Remove control dependency

Change transition
AP13: Update condition

conditions

Table 2.2: Catalog of adaptation patterns (AP) [WRRM08]

In our proposed concept we model the con�guration work�ow for cloud-based
applications. We specify the work�ow using UML Activity Diagrams as work-
�ow modeling language. According to state transitions of task instances the
proposed con�guration work�ow is able to be executed. In addition, a work-
�ow is a directed graph and thus some characteristics as well as methods about
graph are also suitable for work�ow. With the help of work�ow adaptation
patterns and graph transformation (see Section 2.6) we realize the work�ow's
dynamic changes for supporting stakeholders' integration at run time.

2.6 Graph Transformation

Generally, a variety of problems that are typical to software engineering, can be
represented as graphs or diagrams. To most activities in the software process,
a lot of visual notations have been proposed, such as stage diagrams, control
�ow graphs, process modeling notations, and the UML family of languages.
These notations produce the models that can be seen as graphs. Therefore,
graph transformation is involved when specifying how the models are built and
interpreted.

Graph Transformation or Graph Rewriting refers to a technique of creating a
new graph from an original graph algorithmically [AEH+99]. The basic idea of
graph transformation is applying a rule to a graph and iterating this process.
A graph consists of a set of vertices V and a set of edges E. Each edge e in E

2.6. GRAPH TRANSFORMATION 19

has a source vertex s(e) and a target vertex t(e) in V. A rule r has the form of
L→ R, in which L is called left-hand side of the rule and R is called right-hand
side of the rule. In addition, a rule may also contain application conditions
that ensure the performance of a graph transformation in a controlled way.
Each rule application can transform a graph by replacing an occurrence of
the left-hand side in the graph with a copy of the right-hand side. Thus, a
graph transformation from an original graph G to a resulting graph H can
be denoted by G ⇒ H. A collection of graph transformations is called graph
transformation system.

Figure 2.8: Illustration of a graph transformation step [AEH+99]

As depicted in [Hec06], a graph transformation can be performed in three steps.
Figure 2.8 illustrates the steps which have to be performed when applying a
rule r from the graph G to the graph H.

1. Find an occurrence of the left-hand side L in the given graph G.

2. Delete from G all vertices and edges matched by L\R (i.e. all vertices
and edges that are in L but not in R).

3. Paste a copy of R\L (i.e. all vertices and edges that are in R but not in
L) to yield the derived graph H.

20 CHAPTER 2. BACKGROUND

Several properties of graph transformation need to be considered, if graph
transformation is regarded as a speci�cation and programming method [AEH+99].
Generally, the realization of these properties is not requested but may be help-
ful in certain contexts. Here we display two of them being relevant for our
concept.

• Con�uence: A graph transformation system is con�uent if for each two
graph transformations G ⇒ G1 and G ⇒ G2 there is a graph H such
that G1 ⇒ H and G2 ⇒ H are valid. The property con�uence implies
that each graph can be transformed into at most one irreducible graph.

• Termination: A graph transformation system is called terminating if
there is no in�nite derivations G⇒ G1 ⇒ G2 ⇒ G3 ⇒

Our proposed con�guration work�ow model utilizes the concept of graph trans-
formation with consideration of above two properties. Graph transformation
enables our con�guration work�ow model to integrate stakeholders dynami-
cally at run time. Based on work�ow adaptation patterns (see Section 2.5)
we design transformation rules of graph transformation that is depicted in
Chapter 4 in detail.

2.7 Related Work

In this section, we introduce work regarding con�guration management, which
tackles di�erent research �elds.

Rühl and Andel�nger propose utilizing SPL techniques to create highly cus-
tomizable and con�gurable SaaS applications [RA11]. In order to achieve this
goal a vision of an architectural model (a catalog) is presented. During do-
main engineering, the catalog is created to depict the �exibility of applications.
Thus, the created catalog can be used to con�gure applications per tenant.

Further concept of applying SPL techniques on con�gurable SaaS application
is given by Mietzner et al. [MMLP09]. In order to support SaaS providers in
managing the variability of SaaS applications, the authors use variability mod-
eling techniques from software product line engineering. Specially, they use ex-
plicit variability models to derive customization and deployment information
for individual SaaS tenants. The authors argue that the already deployed ap-
plication services can in�uence a tenant's con�guration decisions. Therefore,
the con�gurable variability of new tenants is restricted.

Hubaux et al. propose a view-oriented con�guration processes based on fea-
ture models [HHS+11]. They introduce scheduled con�guration work�ows with

2.7. RELATED WORK 21

concern-speci�c con�guration views per stakeholder. A view is de�ned on a
feature model to present features that are relevant for a certain stakeholder.
Based on these views the con�guration process is driven by a work�ow.

Mendonca et al. propose a process-centric approach to collaborative product
con�guration [MCO07]. This approach enables decision makers to de�ne pri-
ority schemes, and thus can anticipate and solve decision con�icts. In order to
derive executable process models a novel algorithm is designed.

In addition, an approach to design and con�gure multi software product lines
(MPLs) is proposed by Rosenmüller et al. [RS10]. They use composition
models to describe how an MPL is composed from multiple SPL instances.
The proposed models allow users to automate the con�guration process of
MPLs. Furthermore, con�guration generators can be automatically derived to
simplify the con�guration process.

22 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

In this chapter, we present an example of a cloud-based application, in which
various products are derived after multiple stakeholders' con�gurations. Through
analyzing the example and related research presented in Chapter 2, we identify
the requirements for the con�guration work�ow of a cloud-based application.
These requirements are the basis for our main contributions.

3.1 Illustrative Example

In this section, we present a sample con�guration scenario based on a well-
known example from the industry automation area - a Yard Management
System (YMS). As a case study for our approach, we consider the yard man-
agement system, which is used as a case study in the INDENICA project1.
The main purpose of INDENICA is to abstract from service heterogeneity in a
service-oriented environment. It provides methods, architectures, components,
tools and assets for reuse-based creation of the adapted platforms. By utiliz-
ing SPL techniques, INDENICA creates a multi-tenant aware virtual service
platform (VSP) that can abstract, integrate and enhance external services.
Therefore, an application developed on top of this platform is independent
of the underlying services and can make use of enriched features provided by
the virtual platform itself, e.g. multi-tenancy [Con11b]. As a case study of
INDENICA, the YMS is integrated into the VSP, which is multi-tenant aware.
The VSP provides tenants various services which derive from the integrated
platforms. Tenants may be SaaS providers with developers as potential users.
They can manage their business through VSP by using one combined applica-
tion.

We use the YMS to demonstrate the feasibility of our approach. On the one
hand, yard management is a general and famous commercial scenario from

1http://www.indenica.eu/

23

24 CHAPTER 3. ANALYSIS

the industry automation area. On the other hand, a prototype of the YMS is
available and is able to run in a cloud-based environment (e.g. SAP NetWeaver
Cloud2) as a SaaS application. The YMS itself is not multi-tenant aware, i.e.
each instance has only one end user. We focus on the con�guration process and
identify the requirements for con�guration management of cloud-based appli-
cations. During the con�guration process, multiple stakeholder can perform
the specialization steps and �nally a con�guration can be derived. The newly
derived con�guration will replace current con�guration of the running appli-
cation. In the following part, we introduce the yard management domain and
the existing platform. Moreover, we also describe the provision process of the
yard management system as a SaaS application in a cloud-based environment.

3.1.1 Domain and Exiting Platform

The Yard Management Domain

Large distribution centers have to handle ten thousands truckloads each year
with up to 900 trucks a day. 800 employees have to collaborate to provide fast
and reliable shipment completion of those truckloads. In order to assure the
continuous �ow of goods in the yard, people have to work hand in hand. The
incoming trucks have to be registered at the gate guard and assigned to free
docks for unloading the trailer. Some goods must be unloaded at particular
docks, while others goods can be unloaded at the docks with a shorter storage
distance. Every loading process has to be handled by warehouse sta�, so the
incoming trucks need to be noti�ed on new delivery tasks. Furthermore, the
yard jockeys are responsible for fetching trailers from the parking lot and tak-
ing them to a speci�c dock. All the processes are administered and monitored
by the yard manager.

In order to solve the above problem, Yard Management Systems can be used
for regulating trucks and trailer movements in the yard. Yard Management
Systems are software systems designed to manage the movement of trucks
and trailers in the yard of a manufacturing facility, warehouse, or distribution
center [HTHS07]. They are often used in conjunction with Warehouse Manage-
ment Systems (WMS) as well as Transportation Management Systems (TMS).
This allows for exchanging information, such as advanced shipping notice and
optimized material �ow in the warehouse. Current Yard Management Systems
support several features. Dock Door Scheduling allows for automatic schedul-
ing of inbound deliveries by assigning arriving trucks to free docks based on
business rules. Moreover, real-time information on the location of trailers is
provided. Based on the real-time information, yard employees can move trailers

2https://www.sapcloudappspartnercenter.com/

3.1. ILLUSTRATIVE EXAMPLE 25

from staging to docks to �ll orders in an e�cient manner. Some Yard Manage-
ment Systems support identi�cation of trailers via RFID or similar techniques.

Figure 3.1: Schematic overview of a large warehouse [Con11a]

Figure 3.1 displays a schematic overview concentrating on the important parts
of our scenario [Con11a]. It shows a warehouse with a loading bay and a yard
including a parking area as well as a gateway. In the gateway, the trucks can
register when they enter the yard and deregister when they leave the yard to
be scheduled and coordinated during the load and unload operations. The
scheduling can be planned in advance with the help of shipping noti�cations
of transport providers. The goods are loaded or unloaded by the trucks in
the loading bay. For large warehouse a parking place is required to be able to
handle a large amount of trucks. Especially, during peak hours a large number
of trucks arrive and leave within a short period of time. In addition, cameras
are used to monitor the trucks and the activities on the yard. Therefore, the
yard personnel are coordinated to run all processes e�ciently.

Sample Application Use Cases

This subsection depicts the sample application use cases implemented for the
YMS in INDENICA. The YMS supports two main features of yard manage-
ment: Dock Door Scheduling (DDS) and Yard Jockey Support. In the following
part, we describe the two scenarios in detail.

26 CHAPTER 3. ANALYSIS

• Dock Door Scheduling The supplier or transport service provider
sends a shipping notice to the warehouse. With the information about
the arrival time and loading content, the warehouse manager plans fur-
ther actions for a loading or unloading process and informs yard manager
to prearrange the occupation of the dock doors. Truck drivers are able
to update the warehouse manager about a more concrete arrival time
so that the warehouse manager can plan more concretely and reschedule
assignments and tasks. When the truck arrives at the yard, the driver
checks in via a terminal and requests information about the assignment.
The yard manager assigns either a dock door or parking area if no ap-
propriate dock door is available.

• Yard Jockey Support The yard jockeys are able to get informed about
new tasks. Such tasks can be: 1) Contact a truck driver after a service
request, 2) Inform the truck driver who waits about loading start, and
3) Pick up a trailer for loading. The assignment of yard jockeys to tasks
is based on their location and further schedule.

The YMS Services

The YMS consists of a base platform as well as several domain services. The
base platform provides common services that are necessary for the development
of most of the features of the yard management platform variant. Typical
services which are provided by the base platform are persistence, messaging,
authentication and web development support in general. The base platform is
combined with several domain services to produce a domain-speci�c platform
variant. These domain services include general support for yard management
as well as additional services for data interchange, mobile communication and
collaboration, which are depicted as follows.

• Yard Management Service (YM): This service provides basic logic
to handle common yard management processes. It registers new shipping
tasks, schedules and assigns arriving trucks free docks or waiting area in
case of a dock unavailable, so-called Dock Door Scheduling (DDS). The
service is used by the yard manager for administration and monitoring.
The gate guard can also use the service to register new trucks and com-
municate with scheduled docks.

• Yard Jockey Service (YJ): This service allows for scheduling of yard
jockey tasks, including fetching or relocating trailers on the yard. It
maintains trailer location that allows intelligent tasks scheduling and
optimizes the path of yard jockeys.

3.1. ILLUSTRATIVE EXAMPLE 27

• Mobile Communication Service (MC): This service provides func-
tionality for communicating with mobile devices. It is used to distribute
noti�cations and monitor yard entities state in real time. For example,
truck drivers can receive information about their assigned docks. Yard
jockeys can receive noti�cation on new tasks and update their states.

• Location Service (LS): This service allows mobile devices to be used
to communicate their positions via GPS. It provides yard jockeys with
accurate trailers positions. With the position information, yard manager
can assign fetching tasks to the best suited yard jockey.

The YMS Variability

As mentioned in Chapter 2, variability is something that is captured and de-
scribed in the problem domain. Therefore, it is usually a decision point that
is visible to the customer or user. The management of variability is the key
issue to be addressed by INDENICA project. As a case study of INDENICA,
the YMS de�ned multiple variation points, which are described as follows.

The YMS uses OSGI framework3. An OSGI-based platform allows an easy
exchange as well as extension of bundles, and thus gives users freedom to
adapt the platform on demand. The base platform of the YMS provides the
following tree variation points: persistence, connectivity and authentication.

• Persistence: For the persistence of the domain objects a relational
database is used. There are two access variants available: JDBC4 and
Java Persistence API (JPA)5.

• Connectivity: For the connectivity, three possibilities are provided to
consume HTTP-Requests: Remote Function Call (RFC), SOAP-based
services and REST.

• Authentication: For Authentication, the YMS uses Java Authentica-
tion and Authorization Service (JAAS) as an API which allows connect-
ing Java-based applications with services for authentication and access
rights.

Besides the variation points about base platform, the mentioned domain ser-
vices also provide di�erent variability that can be tailored to meet customer
needs. YM and YJ can be extended by other services. By using MC, truck
drivers and yard jockeys are allowed to use mobile devices. YM provides

3OSGi http://www.osgi.org/
4http://www.oracle.com/technetwork/java/overview-141217.html
5http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

28 CHAPTER 3. ANALYSIS

two scheduling types, next and �tting, which describe how arriving trucks are
scheduled. It also allows several additional functions, such as special dock
types and special vehicle types. YJ can be extended with GPS-support via LS
to allow truck drivers and yard jockeys to update their precise positions via
mobile devices. In that case, MC must be applied. In addition, LS enables
users to display their positions through textual coordinates and road map view
as well as satellite map view.

3.1.2 Yard Management System as a SaaS Application

The current YMS runs on SAP NetWeaver Cloud which uses an OSGi-based
JavaEE6 application server [Con12]. As mentioned above, the YMS de�nes
multiple variation points that can be tailored to meet customer needs. Dur-
ing the process of providing a runnable YMS variant, various stakeholders are
involved, e.g. platform providers, application providers and tenants as well as
their users. According to their roles, the various stakeholders focus on di�er-
ent types of application characteristics. In addition, they can eliminate some
con�guration choices (services) in the light of their requirements. After the
con�guration process, di�erent customized con�guration variants can be de-
rived. Dependencies among several stakeholders exist, for example, tenants
renting the application depend on the application provider. Therefore, the
con�guration of the application provider has to be applied �rst. Due to stake-
holders' di�erent responsibilities, their possible decisions are restricted. For
instance, end users are not allowed to con�gure the used database as it is the
responsibility of the providers. Additionally, during or after the con�guration
process tenants can be added or removed. As a SaaS application, the YMS
will be used to identify the requirements and illustrate our concepts in Section
3.2 and Chapter 4 respectively.

3.2 Requirements Identi�cation

In the previous work, seven requirements for con�guration management of
cloud-based applications have already been identi�ed [SMM+12]. Based on
the requirements and the above scenario, we highlight the following concrete
requirements that will be addressed by our proposed concepts.

• REQUIREMENT 1. Speci�cation of functional variability As mentioned
above, cloud-based applications provide di�erent functionalities to ful�ll
various requirements of customers. In the YMS, the described domain
services provide di�erent variability, such as di�erent type of data base
for persistence or various views for GPS-supported location service. Ac-
cording to the stakeholders' objectives, the provided variability can be

3.2. REQUIREMENTS IDENTIFICATION 29

tailored to ful�ll their need. Therefore, we need to handle the variability
of functionality.

• REQUIREMENT 2. Speci�cation of stakeholder views During the con-
�guration process of cloud-based applications, various stakeholders with
di�erent objectives are involved. They can remove a certain con�gu-
ration choice according to their concerns. For example, in the YMS a
provider con�gures fundamental application properties (e.g. persistence
type and connectivity type), whereas a tenant chooses only from high-
level application functionality (e.g. mobile devices with di�erent GPS
views). Thus, we need a view concept de�ning the con�guration opera-
tions which a stakeholder is allowed to perform.

• REQUIREMENT 3. Speci�cation of structured con�guration work�ow
A con�guration work�ow of a cloud-based application di�ers from other
business processes. In the work�ow, di�erent con�guration operations
of various stakeholders are involved. In addition, some stakeholder deci-
sions have global impact while others have only local one. In the YMS,
changes made by the application provider directly impact the remaining
con�guration choices of other stakeholders (e.g. tenants and users). Ten-
ants can make decisions only if the application provider's con�guration
is completed. Therefore, the speci�cation for a structured con�gura-
tion work�ow is required to document, analyze and explain the work�ow
logic. As mentioned in our example, during or after the con�guration
process tenants can be added or removed. Therefore, the con�guration
process has to be capable of adding and decommissioning stakeholders
at run time.

• REQUIREMENT 4. Dynamic integration of stakeholders During the
design time of a cloud-based application, not all tenants and their users
are known explicitly. As mentioned in the YMS, during or after the
con�guration process tenants can be added or removed. Therefore, the
con�guration process has to be capable of adding and decommissioning
stakeholders at run time.

• REQUIREMENT 5. Mapping between problem space and solution space
In the YMS, after a con�guration is derived, the con�guration needs
to be integrated into a YMS instance. In order to achieve this goal, we
need to map the derived con�guration onto the YMS con�guration. This
issue refers to the mapping between problem space and solution space as
introduced in Section 2.2. Therefore, a mapping used to adapt di�erent
variability expressions from di�erent systems are needed.

In Chapter 4, we propose a dynamic con�guration work�ow that addresses the
above identi�ed requirements. With the help of the work�ow, the illustrated

30 CHAPTER 3. ANALYSIS

con�guration scenario will be modeled and simulated.

Chapter 4

Concept

In this chapter, we introduce our proposed concepts of the con�guration man-
agement for multi-tenant cloud-based applications. In Chapter 3 we have
illustrated a cloud-based application. Through the analysis of the example, we
identi�ed various requirements for the con�guration management. Based on
these requirements, we will construct our concepts.

In Section 4.1 we specify the con�guration management, which is based on an
extended feature model, a view model and a con�guration work�ow model. In
Section 4.2 we introduce the concept of con�guration work�ow adaptations.
With the help of the work�ow adaptations, our con�guration management is
able to integrate dynamic stakeholders into the con�guration work�ow. In Sec-
tion 4.3 we present an EFM mapping solution used to adapt other variability
expressions from di�erent systems to our EFM. In Section 4.4 we show the
complete concepts by simulating a con�guration process regarding the YMS.

4.1 Con�guration Management Speci�cation

Model-driven engineering (MDE) is a software development methodology fo-
cusing on creating domain models. As a promising approach, MDE is meant
to e�ectively express domain concepts e�ectively, address platform complex-
ity and simplify design process as well as teams working [Sch06]. Due to the
improved abstraction of DSLs, the problem descriptions are much clearer and
simpler. This not only increases the speed of development, but also provides
clear understanding of domain concepts within the project. Furthermore, the
evolution of the software is greatly simpli�ed through the separation of the
technical illustration and professional models. Therefore, we use MDE to spec-
ify our con�guration management. To describe our concepts, we refer to the
concepts stated in [SMM+12] and we de�ne the following three models based
on the MDE.

31

32 CHAPTER 4. CONCEPT

• Extended Feature Model (EFM) is used to express the functionality
variability and de�ne the con�guration space of cloud-based applications.

• View Model (VM) is used to de�ne stakeholders and their views on
the EFM.

• Con�guration Work�ow Model (CWM) is used to capture the
ordering between con�guration stages and stakeholders' specialization
steps at run time.

These models are able to reduce the complexity of con�guration process and
support reuse as well as separation of concerns (SoC). In the following sections,
we elaborate on the proposed models and utilize them to model the YMS
example illustrated in Section 3.1.

4.1.1 Variability Modeling

In cloud computing, normally a provider hosts a cloud-based application that
is rented to tenants and accessed by the users of tenants over the internet.
Therefore, various stakeholders which involved in a cloud-based application
can have di�erent objectives and requirements. As one of the most popular
ways in SPLE, feature modeling is convenient to handle the commonality and
variability of a cloud-based application [MMLP09, RA11, SCG+12]. Hence,
utilizing an Extended Feature Model (EFM) can address Requirement 1 stated
in Chapter 3.

Figure 4.1: The extended feature model

As depicted in Section 2.2, an EFM is a feature model including more informa-
tion about features. In our concepts, we utilize an EFM with feature attributes

4.1. CONFIGURATION MANAGEMENT SPECIFICATION 33

and group cardinalities. In the EFM, features and feature attributes depict
the application functionality and functionality properties respectively. Each
feature has a selected state with three possible values: unbound, selected and
deselected. The selected state of a feature depends on specialization steps (see
Section 2.4) of the related stakeholder. Each feature attribute has a value
and refers to a discrete or continuous value domain, which de�nes the possible
specialization steps for the feature attribute. Therefore, the functionality at-
tributes are not just selectable or deselectable for product con�gurations, but
further allow for a more �ne-grained valuation.

We use a cardinality-based syntax to express valid ranges (k..l) of child features
that are to be selected from groups with n features. For example, cardinal-
ity (n..n) denotes mandatory, (0..n) optional, (1..1) alternative, and (1..n) or
groups. In order to specify constrains on valid product con�gurations, the
EFM also includes crossing tree hierarchies that are given as require and ex-
clude edges between two features. As a visual notation, a feature diagram is
used to depict our EFM. The feature diagram of our EFM is shown in Figure
4.1.

Figure 4.2: Extended feature model for the Yard Management System

As displayed in Figure 4.2, we utilize the above EFM to model the commonal-
ity and variability of our example illustrated in Chapter 3. In the example, we
use Yard Management System (YMS) as the root of our feature diagram. The
base platform services and domain services are presented by the features while
their properties are presented by the features attributes. Among the services,
several dependencies and relationships exist and are described by feature rela-
tionships and cross-tree constrains respectively. For instance, we express Yard

34 CHAPTER 4. CONCEPT

Management Service (YM) as a feature and the property Scheduling Type of
YM as a feature attribute. The Scheduling Type has a discrete value domain:
next and �tting. The next is used to retrieve the next possible appointment
for the given time while the �tting is used to �nd an appointment that �ts best.

YM has also four additional functions: enable mobile device (MC), enable
train in the yard (Enable Trains), enable ship in the yard (Enable Ships), and
enable special docks (Special Docks). These functions are presented by child
features of YM. In contrast to YM, Yard Jockey Service (YJ) has only one
child feature Location Service (LS) that allows GPS-supported location ser-
vice. In order to use LS, MC must be applied. This dependency is presented
by the require edge between MC and LS.

4.1.2 Stakeholder Views Modeling

In Section 4.1.1 we use the EFM to de�ne the con�guration space for an ap-
plication. From a stakeholder's point of view, domain features organized in
a feature diagram represent selectable product characteristics. According to
their roles, di�erent stakeholders may have various objectives and permissions
to perform specialization steps on the EFM, i.e. every stakeholder owns a tai-
lored con�guration view that integrates stakeholder relevant concerns. Thus,
a view concept is required to limit stakeholders' possible specialization steps
based on their roles.

In our concepts, we de�ne a View Model (VM) as the view concept to address
Requirement 2. The VM is based on the advanced role based access control
model (RBAC1) and refers to the concepts in [SMM+12]. As introduced in
Section 2.3, RBAC1 includes the RBAC base model and the concept of role
hierarchies. Thus, our VM is visualized in Figure 4.3 and described as follows.

The VM includes Stakeholders and their Views on the Specializations Steps. A
stakeholder either represents a person, a member of an organization, or a third
party that is involved in the con�guration process and has certain concerns
regarding the con�guration of parts of the EFM. It refers to a view that can
be thought of a set of specialization steps on the EFM. Each specialization step
allows to bind variability until a feature model is created that corresponds to
a variant con�guration. According to Czarnecki et al. [CHE05b], specializa-
tion steps in our EFM include re�nement of group cardinalities, selection and
deselection of features, as well as setting attribute values.

The VM allows the concept of role hierarchies, i.e. Inheritance. Thus, stake-

4.1. CONFIGURATION MANAGEMENT SPECIFICATION 35

Figure 4.3: The view model [SMM+12]

holders can inherit views from other stakeholders. For example, in Figure 4.3,
Tenant and User are stakeholders that have di�erent views. Tenant 1 inherits
the views from Tenant while User 1 and User 2 inherit the views from User.
Tenant and User are called Stakeholder Types that directly refer to views. A
stakeholder type is de�ned according to the applications and corresponds to
a stage in the Con�guration Work�ow Model (see Section 4.1.3). All other
stakeholders should inherit from stakeholder type to obtain a view on the spe-
cialization steps. For instance, a new stakeholder User 3 arrives and should
inherit from User to obtain the view. Therefore, a stakeholder's view depends
on its stakeholder type's view.

With the help of stakeholder types, we can use inheritance relation to identify
the di�erent users that are in the same con�guration stage but from di�erent
organizations. For example, two stakeholders User 1 and User 2 from di�er-
ent organizations inherit view of the same stakeholder type User and have the
same view on the EFM.

Besides, Group is used to de�ne VM. A group describes the membership re-
lation among stakeholders. It consists of a Leader and a set of Members. For
example, in Figure 4.3 Tenant 1, User 1 and User 2 compose a group, in
which Tenant 1 is the group leader and User 1 as well as User 2 are group
members. In a group, the group members' specialization steps are a�ected by
the group leader's specialization steps. On the one hand, the group members
can not perform specialization steps until the group leader �nishes its special-
ization steps. On the other hand, the possible specialization steps of the group
members depend on not only their stakeholder type, but also the specialized
feature model yielded by their group leader.

36 CHAPTER 4. CONCEPT

As mentioned above, multiple stakeholders can be involved in a con�guration
process of a cloud-based application. Commonly, stakeholders' con�guration
ordering is determined according to the application. At the run time, each
newly arriving stakeholder inherits from the related stakeholder type, and thus
obtains a view on the EFM.

Figure 4.4: Views for stakeholders in the Yard Management System

With the help of the VM, views of stakeholders for the illustrated example
can be modeled. As depicted in Figure 4.4, four kinds of stakeholder types are
involved and have various views on the EFM of the YMS. In Figure 4.4, Plat-
form Providers and Application Providers focus on the fundamental platform
services and make global pre-con�gurations valid for all Tenants and their
Users. After platform providers and application providers �nish performing
specialization steps, tenants and their users can eliminate left-over con�gura-
tion choices and eventually leading to a con�guration.

4.1.3 Con�guration Work�ow Modeling

In the con�guration process of a multi-tenant cloud-based application, di�er-
ent stakeholders are involved and apply specialization steps. Some stakeholders
can perform the operations concurrently, but others must perform the opera-
tions in a certain order. Commonly, the stakeholder operations order depends
on the their stakeholder types. For example, in Section 4.1.2 we display the
view model of the YMS, where four stakeholder types are involved. Among
the stakeholder types, tenants can perform the specialization steps only if the
associated providers complete their operations. Therefore, a con�guration pro-
cess can be composed of a sequence of con�guration stages. Each con�guration

4.1. CONFIGURATION MANAGEMENT SPECIFICATION 37

stage is de�ned according to di�erent stakeholder type with di�erent views.

In order to capture the order within the con�guration stages and stakehold-
ers' specialization steps, we de�ne a Con�guration Work�ow Model (CWM)
to model a structured and staged con�guration process. The de�ned CWM
can address Requirement 3.

To specify the CWM, we utilize the UML Activity Diagram1 (due to its
widespread use in both academia and practice) as our work�ow language (see
Section 2.5.2). Activity diagrams are UML behavior diagrams which are in-
tended to model both computational and organizational processes (i.e. work-
�ows) [RJB04]. An activity diagram is constructed from a limited number of
shapes, connected with arrows. The details of the elements in activity dia-
grams can refer to [OMG11]. In this section we introduce elements of activity
diagram utilized and the con�guration work�ow constructed by these elements.

As introduced in Section 2.5, a work�ow model comprises a set of nodes (rep-
resenting start/end nodes, tasks or control connectors) and a set of control
edges between them. According to the concept, we model our CWM based on
activity diagram as follows:

• Activity: A con�guration work�ow is represented by an activity, which
consists of all other elements in the work�ow. An activity has a tree-like
structure. Each activity node has only one input edge except the Idle
action which will be introduced below.

• Initial Node: An initial node is a starting point for executing a con�g-
uration work�ow. A con�guration work�ow must have only one initial
node. When a con�guration work�ow is executed, a feature model as a
data object is imported via the initial node.

• Flow Final Node: A �ow �nal node is a �nal node that terminates
a �ow of a con�guration work�ow. A con�guration work�ow may have
multiple �ows and �ow �nal nodes. When a �ow completes, a complete
con�guration is provided.

• Activity Final Node: An activity �nal node is a �nal node that stops
all �ows in a con�guration work�ow. A con�guration work�ow must
have only one activity �nal node. When the work�ow is completed, all
of actions stop and change their state into completed.

• Action: An action is a single step within an activity and represents a set
of specialization steps in the con�guration work�ow. Each action refers

1http://www.omg.org/

38 CHAPTER 4. CONCEPT

to a stakeholder and is performed by the stakeholder. When stakeholder
performs specialization steps, the related action takes a feature model
as an input and yields a specialized feature model as an output. Thus,
the possible specialization steps concerning the action depend on the
related stakeholder's view and con�guration choices of the input feature
model. In addition, the yielded feature model is stored locally. If an
action has successors, the duplicate of the feature model is propagated
to the successors. In our work�ow, we use the action name to symbolize
the stakeholder name.

• Idle Action During the con�guration process, new stakeholders can
be dynamically integrated into the work�ow. Therefore, the work�ow
state should not become completed immediately, when all actions in the
work�ow are complete. In our work�ow, an idle action is speci�ed to
keep the work�ow in the state suspended (see Section 2.5.1), when all
actions in the work�ow are complete. A con�guration work�ow includes
only an idle action, which is connected with the activity �nal node. We
de�ne that the idle action can be performed by a third party stakeholder.
When the stakeholder performs the idle action, the work�ow is complete.

• Fork Node: A fork node is used to split a �ow into multiple concur-
rent �ows. Through the fork node, each successive action can obtain a
specialized feature model from the previous action.

• Control Flow: A control �ow is an edge that starts an activity node
(start/�nal node, action, join/fork node) after the previous one is �n-
ished. It is used to show the order that actions will be performed in the
work�ow.

According to the above speci�cation, a con�guration work�ow about the YMS
is depicted in Figure 4.5. In Figure 4.5, the work�ow includes four kinds of
stakeholder types (i.e. Platform Provider, Application Provider, Tenant and
User). According to Czarnecki et al. a con�guration stage can be de�ned
in terms of roles (see Section 2.4). Thus, in our con�guration work�ow, each
stakeholder type re�ects a con�guration stage. The stakeholders in the same
stage have the same view on the EFM, but di�er from one another in their
organizations, such as Tenant 1 and Tenant 2.

Figure 4.6 depicts a staged con�guration �ow involved in Figure 4.5. In the
�ow, each stakeholder performs the specialization steps according to its views
on the EFM. The views of the stakeholders are de�ned in VM. In addition,
after a stakeholder �nishes its specialization steps, a partial con�guration is
derived and propagated to its succeeding stakeholder. Therefore, the special-

4.1. CONFIGURATION MANAGEMENT SPECIFICATION 39

Figure 4.5: A con�guration work�ow about the Yard Management System

Figure 4.6: Staged con�guration concerning Yard Management System

40 CHAPTER 4. CONCEPT

ization steps of preceding stakeholder a�ects the succeeding stakeholder.

Figure 4.7: State transitions of an action instance

As mentioned in Section 2.5.1, a work�ow instance and an action instance
have life cycles separately. In our CWM, we de�ne that a work�ow instance
has the same life cycle as described in Section 2.5.1. In addition, we de�ne
that each action instance has four states in its life cycle as depicted in Figure
4.7. When the state of its previous action instance is completed, the action
instance state changes from inactive to enabled. For example, when Applica-
tionProvider1 is completed, the state of Tenant 1 changes from inactive to
enabled. If the stakeholder associated with the action instance performs the
specialization steps, the action instance state changes to running. When an
action instance completes, its state changes to completed.

In order to describe the control �ow constructs of our con�guration work�ow,
we utilize two control �ow patterns which are depicted in Figure 4.8. In Figure
4.8, we use event diagrams (as proposed in [Wes12]) to describe the semantics
of selected control �ow patterns. The sequence pattern expresses that an ac-
tion B becomes enabled after an action A has completed. The parallel split
pattern allows splitting the control �ow into multiple �ows which are then
concurrently executed. In the parallel split pattern, after completing action A,
both action B and C become enabled. In our con�guration work�ow, when
a work�ow instance is cerated and then executed, the action instances, which
are connected to the initial node, change their state from inactive to enabled.
Then the work�ow instance runs along with the concepts of control �ow pat-
terns. When a third party stakeholder arrives and performs the Idle action,
the work�ow will be completed.

The basic concepts of our con�guration management are represented by the
combination of EFM, VM and CWM. At design time, the three models can de-
scribe the con�guration process for a multi-tenant cloud-based application. At
runt time, a work�ow instance is created and then executed, but the work�ow
instance can not support the dynamic integrating of stakeholders. In Section

4.2. CONFIGURATION WORKFLOW ADAPTATIONS 41

Figure 4.8: Control �ow patterns [RW12]

4.2 we will introduce our solution for the above issue.

4.2 Con�guration Work�ow Adaptations

In Section 4.1.3 we de�ned the con�guration work�ow model to specify the
con�guration process. The model allows the stakeholders, which are known
during application design time, to apply specialization steps. But new cus-
tomers may be added dynamically at run time. Therefore, a work�ow adap-
tation mechanism is required for the con�guration work�ow to support the
dynamic integrating of stakeholders. In this section, we describe our concept
that enables the con�guration work�ow to dynamically change at run time.
This concept is used to address Requirement 4.

As introduced in Section 2.5, a work�ow is also a directed graph. During the
con�guration process, newly arriving stakeholders change the work�ow model,
i.e. the graph, and thus graph transformation (see section Graph Transforma-
tion) is a suitable solution to the dynamic work�ow modi�cation.

The idea of graph transformation is to apply a rule to a graph and create a new
graph from the original one. The rule de�nes an original graph (left-hand side)
and a goal graph (right-hand side). It can transform a graph by replacing the
occurrence of the left-hand side with the right-hand side. In addition, a rule
can include a set of application conditions that determine whether or not the
transformation is applied. There are two advantages to use graph transforma-

42 CHAPTER 4. CONCEPT

tion as the solution to work�ow adaptation. On the one hand, it is convenient
and simple. We only need to de�ne the rules according to the prede�ned stake-
holder types and the rules are able to determine the inserting positions as well
as the con�guration orders of arriving stakeholders in the work�ow. On the
other hand, it is very �exible. In di�erent situations we can de�ne di�erent
rules to realize the work�ow adaptation and some of the rules are able to be
reused. Therefore, we utilize the concepts of graph transformation to realize
the con�guration work�ow adaptation. Based on the example of YMS, we
display our de�ned rules in the following parts.

Figure 4.9: The initial con�guration work�ow

Before we design the rules, we �rst de�ne the initial con�guration work�ow,
to which our rules are applied. Figure 4.9 depicts the initial con�guration
work�ow that consists of an initial node, an idle action, an activity �nal node
and two control �ows (see Section 4.1.3). In the initial con�guration work�ow,
the idle action has the state enabled. The goal of the idle action is to keep the
work�ow in the state suspended after all actions in the work�ow are performed.

In our example, we de�ne four rules based on the involved stakeholder types
(i.e. platform provider, application provider, tenant and user) as depicted
in Figure 4.10. Each rule is used to integrate a type of stakeholder into the
work�ow. A rule consists of a left-hand side, a right-hand side and a set of ap-
plication conditions. In the rules, A, B, C and D are variables that is used to
express the stakeholders. The left-hand side presents the graph to be searched
in the given graph. It may occur many times in the given graph. If an occur-
rence of the left-hand side is found, the application conditions will be checked.
In the application conditions we de�ne two relationships inherits from and
belongs to, which are respectively used to represent the inheritance and group
in VM. For example, in rule (d), C inherits from tenant depicts that the ar-
riving stakeholder C should inherit from the stakeholder tenant. D belongs to
C depicts that the arriving stakeholder D is a member of a group, in which
the exiting stakeholder C is the leader. When the application conditions are
satis�ed, the rule will be applied. As a result, the occurrence of the left-hand
side in the given graph is replaced by the right-hand side.

In Figure 4.10, rule (a) is used to integrate a new platform provider in the
work�ow. When the left-hand side of rule (a) is found in the given work�ow,
the application condition will be checked. If the arriving stakeholder is plat-
form provider, rule (a) is applied to the given graph. Rule (b) and (c) are

4.2. CONFIGURATION WORKFLOW ADAPTATIONS 43

Figure 4.10: Rules of the graph transformation

separately used to integrate a new application provider and a new tenant in
the work�ow. Both rules have similar structure but di�er in application con-
ditions. Rule (d) is used to handle a new user. After rule (d) is applied to
the given graph, a new user is added into the work�ow. At the end of the
�ow, a complete con�guration will be derived. In our YMS only one platform
provider and one application provider are involved, our rule (b) and (c) do not
consider the group relationship.

The replacement of the occurrence of the left-hand side by the right-hand side
changes the work�ow model. As introduced in Section 2.5.4, two approaches
can be used to modify work�ow model. One approach is change primitives that
operate on single elements of a work�ow mode at a low abstract level. The
possible operations of change primitives are add node, delete node, add edge
and delete edge. The node, which is added or removed, can be an initial node,
a �nal node, a fork node or an action. Another approach is high level change
operations that combine a set of primitives to enable changes of a work�ow. As
high level change operations, there are already several prede�ned adaptation
patterns, such as move process fragment and replace process fragment. Since
our de�ned rules are simple, in our concepts we utilize change primitives to
replace the occurrence of the left-hand side with the right-hand side. For each
rule, we design a collection of ordered change primitives as depicted in Table
4.1. When a valid rule is found, its change primitives will be performed in a
certain order.

44 CHAPTER 4. CONCEPT

Rules Change Primitives

rule (a)

01: delete edge from Initial Node to Idle
02: add node A
03: add node F0
04: add edge from Initial Node to F0
05: add edge from F0 to Idle
06: add edge from F0 to A
07: add edge from A to Idle

rule (b)

01: delete edge from A to Idle
02: add node B
03: add node F1
04: add edge from A to B
05: add edge from B to F1
06: add edge from F1 to Idle

rule (c)

01: add node C
02: add node F2
03: add edge from F1 to C
04: add edge from C to F2
05: add edge from F2 to Idle

rule (d)

01: add node D
02: add node FF1
03: add edge from F1 to D
04: add edge from D to FF2

Table 4.1: Change primitives for the rules in Figure 4.10

According to the the rules and changes primitives above de�ned, we display
the adaptation �owchart of a con�guration work�ow in Figure 4.11. When a
stakeholder arrives and wants to join in the work�ow, it has to enter its type
and name as the input parameters, e.g. its type is User and name is User 1.
If necessary, it also needs to enter a name of a existing stakeholder, whom it
wants to request services from, e.g. the input name is Tenant 1.

After that, the work�ow starts to search the valid rules. It �rst searches the
occurrence of left-hand side of a rule. The given work�ow may have multiple
occurrences of left-hand side of the rule. If its left-hand side occurs in the
graph, the work�ow checks the application conditions of the rule. If the condi-
tions are ful�lled, the rule is valid and its change primitives will be performed.
The work�ow iterates the search process until all rules are checked.

During the searching process, if one rule is valid, VM will create a role if the

4.2. CONFIGURATION WORKFLOW ADAPTATIONS 45

Figure 4.11: The adaptation �owchart of a con�guration work�ow

stakeholder is not included. The created role inherits from the stakeholder's
type and assigned to the stakeholder. Then, VM will put the arriving stake-
holder into a group as a member, in which the demanded stakeholder is the
leader.the added actions need to be handled as follows. Besides, the added ac-
tions must refer to the arriving stakeholder. In addition, the state of an added
action depends on its preceding action. If its preceding action has the state
completed, the state of the added action is enabled. If the preceding action
has other state (i.e. inactive, enabled and running), the added action's state
is inactive. Finally, after all rules are checked, the procedure of the work�ow
adaptation is terminated.

Figure 4.12 shows an example using the above de�ned rules and �owchart
to realize the graph transformation. In the example, the given work�ow in-
cludes six stakeholders Platform Provider 1, Application Provider 1, Tenant
1, Tenant 2, User 1 and User 2. When a new user User 3 arrives, it en-
ters its type User and its group leader name Tenant 2. Then the work�ow
starts to search the valid rules. There are three occurrences of the left-hand
sides of rule (c) and (d) in the work�ow: actionApplicationProvider1 → actionIdle,
actionTenant1 → actionIdle and actionTenant2 → actionIdle. Then, the work�ow
checks the application conditions of rule (c) and (d). Since the arriving stake-
holder is a user, the application condition D inherits from user in rule (d) is

46 CHAPTER 4. CONCEPT

Figure 4.12: Example about using change primitives for User 2

ful�lled whereas the application condition C inherits from tenant in rule(c) is
not ful�lled. According to the other two conditions in rule (d), the occurrence
actionTenant2 → actionIdle is satis�ed, which is covered by the gray area in the
top graph of Figure 4.12. Therefore, the rule (d) should be applied. After the
performance of the change primitives, the occurrence the left-hand side of rule
(d) (colored by gray in the top of the graph) is replaced by the right-hand side
of rule (d) (colored by gray in the bottom of the graph). In Figure 4.12 the
new added nodes and edges are colored by dark gray..

The graph transformation rules with their change primitives compose our con-
cepts of the con�guration work�ow adaptations. According to di�erent situ-
ations, di�erent graph transformation rules have to be de�ned. The de�ned
rules are not only used at run time but also used to construct the work�ow at
design time so that they are capable to be utilized by the work�ow instance.
The three models (EFM, VM and CWM) as well as the concepts of the work-
�ow adaptation enable the con�guration work�ow to dynamically integrate a
newly arriving stakeholder. During the con�guration process, a complete con-
�guration is created at the end of a �ow. This con�guration should be utilized
by the cloud-based application. Therefore we need an interface for the con�g-
uration management to allow the application to recognize the con�guration.
In next section we will introduce our concept for the interface based on the
YMS example.

4.3. MAPPING BETWEEN PROBLEM SPACE AND SOLUTION SPACE47

4.3 Mapping between Problem Space and Solu-

tion Space

Usually, a cloud-based application provides multiple con�gurable functionality
to meet customers' di�erent requirements. A customer can select functionality
in accordance with their need and then a con�guration is created. According
to the con�guration, the application supplies the customer with the required
functionality. Based on the above proposed con�guration work�ow, a con�gu-
ration represented by a specialized EFM is produced. To use the con�guration,
the cloud-based application must be able to recognize the EFM. Therefore, a
mapping is required between our EFM (problem space) and the application
functionality (solution space). To di�erent applications, the ways of mappings
are di�erent. In this section, based on the YMS example, we introduce our
mapping concept that addresses Requirement 5.

Figure 4.13: Con�guration and instantiation of a cloud-based application
[SMM+12]

Figure 4.13 shows con�guration and instantiation of a cloud-based application.
It describes a mapping between Problem Space and Solution Space (see Section
2.2) for the cloud-based application. In the problem space, tenancy contracts
de�ne the application functionality as well as functionality properties, which

48 CHAPTER 4. CONCEPT

are rented by tenants. A tenancy contract is created by a tenant via special-
ization steps and builds the basis for deriving multiple variant con�gurations
for a tenant's users. In a user's variant con�guration, all variability is bound.
In the solution space, user variant con�gurations are instantiated as user con-
texts at runtime. The set of all user contexts describes a virtual tenant context.
Those tenant contexts are integrated into the same application instance and
share resources (e.g. software, hardware, databases). Thus, variant con�gura-
tions are independent in the problem space whereas become dependent in the
solution space.

Figure 4.14: Mapping between extended feature model and Yard Management
System variability model

Figure 4.14 displays the mapping between our EFM and the YMS models.
In our concepts, we use EFM to express the variability in the problem space.
Thus, the user's variant con�guration is expressed by a specialized EFM. In
addition, we utilize a staged con�guration, which is realized by CWM, to
create the user's variant con�guration. The YMS uses OSGI framework and
runs on SAP NetWeaver Cloud which uses an OSGi-based JavaEE6 applica-
tion server. It utilizes an internal Cocktail Model to describe the variability.
Cocktail Model consists of Variability Model and Variability Resolution Model.
YMS uses variability model to represent the variation points in YMS. Further-
more, it uses variability resolution model as a user's variant con�guration to
bind all variabilities to speci�c values. Therefore, we can match our con�gu-
ration (a fully specialized EFM) with the variability resolution model in YMS
to indirectly realize the mapping between the EFM and the application func-
tionality. In the following part we �rst introduce the variability model as well
as the variability resolution model in the YMS, then we show the mapping

4.3. MAPPING BETWEEN PROBLEM SPACE AND SOLUTION SPACE49

between our con�guration and the variability resolution model.

Figure 4.15: Cocktail Model in the Yard Management System

Figure 4.15 depicts the variability model and the variability resolution model
in the YMS. The variability model includes a VariabilityModel, which is a con-
tainer of a collection of VariableElement. Each VariableElement describes a
variation point of an application (i.e. a functionality or functionality prop-
erty) and may contain several OptionElements. The OptionElements are used
to depict the value range of a VariableElement if necessary. A Constraint is
considered as a relationship or a constrain among the VariableElements and
OptionElements. A VariabilityResolution can refer to a VariabilityModel. It
consists of a set of ResolutionElements, which can resolve the referred Vari-
ableElements, e.g. it can determine that functionality is selected or not.

A derived user's variant con�guration in our concepts is a fully specialized
EFM. In the con�guration, all variability is bound. Therefore, in order to map
our con�guration onto the variability resolution model, we need to match the
features and feature attributes in EFM with the VariabilityElements in the
variability model of YMS. In addition, we have to match the feature state and
the feature attribute value with the ResolutionElement.

After users perform specialization steps, fully specialized EFMs are derived
through the con�guration work�ow and then transformed into variant con�g-
urations of YMS, which are represented by variability resolution model. The
variant con�gurations are instantiated as user contexts, which are integrated
into the same application instance. According to the user contexts, the ap-
plication instance provides various services to the users. In next section, we
will illustrate the complete process for our con�guration management with the

50 CHAPTER 4. CONCEPT

YMS.

4.4 Con�guration Process Simulation

In this section, we display the complete con�guration management concepts
through simulating a con�guration process with regard to YMS. This sim-
ulation consists of two steps that are applied at design time and run time
respectively. In the following part, we introduce the simulation in the above
two phases.

Figure 4.16: Con�guration management speci�cation

Figure 4.16 depicts the work that has to be prepared for the con�guration
process at design time. First, we de�ne the EFM that describes the variability
of the YMS. In Section 4.1.1 we have already modeled an EFM for the YMS
that is depicted in Figure 4.2. Secondly, in the light of the EFM and YMS
we establish the VM, which depicts the allowable specialization steps on the
EFM for each involved stakeholder type. A prede�ned VM for the YMS and
the EFM is displayed in Figure 4.3 in Section 4.1.2. Finally, according to the
known stakeholders, we design the con�guration work�ow using the de�ned
graph transformation rules for the YMS in Section 4.2.

The construction of the work�ow begins with the initial work�ow as depicted
in Figure 4.9. Each known stakeholder should be added in the VM and in-
herit its stakeholder type. In addition, if the stakeholder is a group member
of its preceding stakeholder, the group relationship in the VM should be up-
dated. In the simulation, we utilize the work�ow described in Figure 4.5 as
the constructed work�ow at design time. During the design time, an EFM,
a VM as well as a CWM are derived. These three models enable stakehold-

4.4. CONFIGURATION PROCESS SIMULATION 51

ers to perform specialization steps during the con�guration process at run time.

Figure 4.17: Con�guration management execution

As shown in Figure 4.17, at run time, an instance is created from the above
constructed work�ow and then executes. All actions contained in the work�ow
have the state inactive, except that the idle action has the state enabled. At
the beginning, the EFM is imported into the work�ow instance from the initial
node. When the work�ow instance executes, the actions connecting to the ini-
tial node change their state from inactive to enabled and obtain the imported
EFM.

During the con�guration process, the stakeholders can perform specialization
steps if their referred actions' state is enabled. When they perform specializa-
tion steps, the state of their referred actions changes from enabled to running.
After they complete the specialization process, partial con�gurations (i.e. spe-
cialized EFMs) are propagated from their preceding stakeholders' actions to
their actions. The allowable specialization steps of stakeholders depend on the
stakeholders' permissions described in the VM and the specialized EFM from
their preceding stakeholder in the work�ow. After the stakeholders �nish their
specialization steps, the derived partial con�gurations (i.e. specialized EFMs)
are stored locally and the related actions change their state from running to
completed. The succeeding actions of those completed actions change their

52 CHAPTER 4. CONCEPT

state from inactive to enabled.

At run time, a new stakeholder can arrive dynamically. For example, in Figure
4.17 a new stakeholder User 3 arrives. If the stakeholder wants to take part in
the work�ow, it has to give its type (e.g. the type of User 3 is user), and its
preceding stakeholder type and group leader (e.g. the preceding stakeholder
type is tenant, the group leader is Tenant 2), if available. According to the
input data, the work�ow searches the valid graph transformation rules and ap-
ply them. If rules are not found valid, e.g. a tenant arrives when the work�ow
has no application provider yet, the work�ow will not change.

After the valid rules are applied, new actions are added into the work�ow. In
the work�ow of Figure 4.17, a valid rule is found for the arriving stakeholder
User 3, and thus an action is added into the work�ow. An added action should
refer to the related stakeholder and initialize its state. If its preceding action
has the state completed, the state of the added action is enabled. If the pre-
ceding action has other state (i.e. inactive, enabled and running), the added
action's state is inactive.

At the end of a �ow, an EFM-based con�guration is derived. The con�guration
must be transformed into the valid con�guration of the application (e.g. YMS
con�guration). The transformed con�guration are integrated into the appli-
cation instance. According to the user's variant con�guration, the application
instance provides the speci�ed services to the user.

During the con�guration process, the idle action keeps enabled all the time.
It waits for the termination activity from a stakeholder. When the con�gu-
ration process is invalid (e.g. application instance do not run any more), a
stakeholder applies a termination activity and the con�guration work�ow is
terminated.

The proposed concepts of the con�guration management for cloud-based appli-
cation enable us to design and execute a con�guration work�ow. Furthermore,
they also allow integrating dynamic stakeholders at run time. In Chapter
5 we introduce our con�guration management tooling which implements the
proposed concepts.

Chapter 5

Implementation

In this chapter, we introduce our con�guration management tooling for cloud-
based applications, which implements the concepts depicted in Chapter 4. Our
tooling uses Eclipse1 as the open source platform and software development
environment. Eclipse is an open source community dedicated to developing
open development platforms and products. By virtue of an highly �exible
plug-in mechanism, the Eclipse Platform is easily extensible. In the develop-
ment of the tooling, we utilize three application frameworks developed by the
Eclipse community: Eclipse Modeling Framework (EMF)2, Eclipse Modeling
Framework Text (EMFText)3 and Java Work�ow Tooling (JWT)4.

Based on EMF, the Extended Feature Model (EFM) and the View Model
(VM) are modeled. In the previous work, the EFM and VM are already de-
�ned.5 In addition, two textual editors are separately developed for EFM and
VM with the help of EMFText. We integrate the two textual editors into our
tooling so that the tooling allows users to de�ne the application variability and
stakeholders as well as their views on the application variation points using
domain speci�c languages.

JWT provides us an EMF-based work�ow editor, which is shown in Figure 5.1.
By extending the meta model of JWT Work�ow Editor (JWT WE), we con-
struct the Con�guration Work�ow Model (CWM) and build our Con�guration
Work�ow Editor (CW editor). This editor is used to show and execute the
con�guration work�ow. Users can also use the editor to specify the work�ow
to be executed. When the work�ow executes, users can perform the staged
con�guration process. Furthermore, the editor also supports the dynamic inte-

1http://www.eclipse.org/
2http://www.eclipse.org/modeling/emf/
3http://www.emftext.org/index.php/EMFText
4http://www.eclipse.org/jwt/
5https://github.com/extFM/extFM-Tooling

53

54 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Java Work�ow Tooling Work�ow Editor

grating stakeholders by searching and applying the valid graph transformation
rules that are prede�ned. When a con�guration is derived during or after the
con�guration process, the tooling is able to transform the EFM con�guration
into YMS con�guration, which will be integrated into the YMS instance. The
CW editor, together with the editors of EFM and VM, compose our con�gu-
ration management tooling.

In Section 5.1, we specify the prede�ned models by using EMF. By extending
the meta model of JWT WE we construct our CWM. In Section 5.2, we intro-
duce the implementation of the graph transformation rules which are de�ned in
Section 4.2. In Section 5.3, we show the mapping method that is used to map
EFM con�guration onto YMS con�guration. In Section 5.4, we display the
con�guration work�ow tooling and its functionality. In Section 5.5, we eval-
uate the usability of our proposed concepts by performing the con�guration
process regarding a cloud-based application.

5.1 Con�guration Speci�cation

EMF is a modeling framework and code generation facility that is able to create
systems. In EMF these systems are called core models. The metamodel [AK03]
of all core models is called Ecore. Basically, Ecore is a sub-set of UML[Fow97]
Class diagrams [MH06]. From Ecore metamodels, EMF provides tools to pro-
duce a set of Java classes, together with a set of adapter classes for viewing and
command-based editing of the model, and a basic editor. By utilizing EMF,

5.1. CONFIGURATION SPECIFICATION 55

the meta models of EFM, VM and JWT WE are modeled. In this section,
we abstractly introduce the above three models that are relevant to our tooling.

5.1.1 Extended Feature Model Speci�cation

Figure 5.2: Abstract Ecore metamodel of Extended Feature Model

In the EFM, the feature diagrams organize sets of features in a tree-like hier-
archical structure. As depicted in Figure 5.2, a FeatureModel has a Feature as
the root of the tree structure. The tree structure is realized by using Groups.
As a node of the tree, a Feature can include a set of Groups as its subtree. As
a subtree, a Group can also contain several Features as its nodes. In addition,
a Group has two attributes minCardinality and maxCardinality that are used
to express the cardinality-based syntax (see Section 4.1.1).

Each Feature has a selected state which has three possible values: unbound,
selected and deselected. Furthermore, a Feature may have several Attributes.
Each Attribute has a value and refers to Domain, which is contained in Feature-
Model and describes the possible specialization steps of the feature attribute.
The domain can be a DiscreteDomain or a ContinuousDomain. Besides, Fea-
tureModel also includes a collection of Constrains that can specify constrains

56 CHAPTER 5. IMPLEMENTATION

on valid product con�gurations.

5.1.2 View Model Speci�cation

Figure 5.3: Abstract Ecore metamodel of View Model

The VM uses the base model of Role-based Access Control, namely RBAC0

(see Section 2.3)). In Figure 5.3, a AccessControlModel represents the VM and
contains a set of Roles, Permissions and Organization. The Role can be used
to express the a stakeholder in our VM, e.g, a platform provider, an applica-
tion provider, a tenant or a user. It can refer to a collection of Permissions
that determine the role's possible specialization steps on an EFM. A Role has
two types of Con�gurationDecision: FeatureDecision and AttributeDecision,
which refers to a Feature and an Attribute in an EFM respectively. A Feature-
Decision is used to select or deselect a feature while an AttributeDecision is
used to set an attribute value. Both kinds of decisions are also considered as
Permissions, which determine the possible decisions of a role.

A Role can have multiple parent roles and child roles, which realize the In-
heritance relationship in the VM. The child roles inherits all permissions from
their parent roles, and thus, multiple inheritance of a Role become reality. In
addition, the Group represents the membership relation among stakeholders.
Each Group contains a leader and several members.

5.1. CONFIGURATION SPECIFICATION 57

5.1.3 Con�guration Work�ow Model Speci�cation

JWT project provides design time, development time and runtime work�ow
tools to develop, deploy and test work�ow. As a tool of JWT project, JWT
Work�ow Editor (WE) is used in our tooling as a basic work�ow editor. WE
is a visual tool for creating, managing and reviewing process de�nitions. It
is based on EMF and enables users quickly to create work�ow process de�-
nitions, check and store them for further use. By extending WE, we specify
our CWM and develop the con�guration management tooling, which consists
of EFM editor, VM editor and CW editor. In this section, we introduce the
abstract meta model of JWT WE that is relevant to our development, and
then display our CWM that extends the JWT WE meta model.

Figure 5.4: Abstract Ecore metamodel of JWT Work�ow Editor

Figure 5.4 shows the abstract meta model of JWT WE. The JWT WE meta
model contains a Model, which consists of a set of Activities and Roles. All
processes modeled with Eclipse JWT are Activities. An Activity includes all
elements in a graphical model. Examples for those elements are ActivityN-
odes and ActivityEdges. An ActivityNode can be, for example, an Action, an
InitialNode, a ForkNode or a FinalNode. Each ActivityEdge connects two Ac-
tivityNodes as its source node and target node. Roles are de�ned not only for
one process model, but also for all processes. Each Action can be performed
either automatically or by a speci�c Role. For details on the JWT metamodel
interested readers can refer to [BLR08].

58 CHAPTER 5. IMPLEMENTATION

We use the JWT WE as a basic activity diagram editor. Based on the ba-
sic activity diagram editor, we extend the above meta model to specify our
CWM. In the following part, we will depict our extension to the JWT WE
meta model. Each extended class is displayed in a �gure and colored with
gray.

Figure 5.5: Connection between JWTWork�ow Editor model and View Model

In order to connect JWT WE model with VM, an ACMConnector and a
RoleConnector are built as depicted in Figure 5.5. The Model in JWT WE
includes an ACMConnector which refers to an AccessControlModel in VM.
This extension enables the JWT WE to get access to the AccessControlModel.
RoleConnector is used to make a connection with the two Roles, which are
separately included in JWT WE and VM. With the help of RoleConnector,
the Roles in JWT WE are able to know their inheritance relation, membership
relation as well as the views on the related EFM.

Figure 5.6: Connection between JWT Work�ow Editor model and Extended
Feature Model

When a work�ow executes, a feature model which depicts the con�guration
space, is imported into the work�ow. Once one stakeholder completes its spe-
cialization process, the specialized feature model as a partial con�guration is

5.1. CONFIGURATION SPECIFICATION 59

stored locally and one copy is propagated to the succeeding stakeholder. In
order to realize the storage functionality, an EFMContainer is constructed as
shown in Figure 5.6. It links the JWT WE with EFM and allows the Action
in JWT WE to store a specialized feature model.

Figure 5.7: Extension of Action in JWT Work�ow Editor model

When a stakeholder receives a partial con�guration from its preceding stake-
holder, it can start performing specialization steps. After the stakeholder com-
pletes the specialization process, its con�guration decisions should be recorded.
This record is important if a recon�guration is requested in the future. This
functionality is implemented by Log which is displayed in Figure 5.7. Each
Action has a Log which includes a set of Con�gurationDecisions. These con-
�guration decisions are the specialization steps, which are performed by the
stakeholder of the Action.

Besides, we also create a State to realize the life cycle of an Action. There
are four states in total: inacitve, enabled, running and completed. Each Ac-
tion contains a State. In particular, when a new stakeholder arrives, and a
new action is added into the work�ow and its state must be initialized. The
initial state of the action depends on the state of its preceding action. In
addition, an event-based trigger mechanism is implemented which enables the
work�ow to execute according to the control �ow pattern (see Section 4.1.3).
If a stakeholder completes its operation, its related Action changes the state
from running to completed, and noti�es its succeeding actions of its new state.
After receiving the noti�cation, the succeeding actions change their states from
inactive to enabled, and the referred stakeholders are able to perform special-
ization steps.

60 CHAPTER 5. IMPLEMENTATION

Figure 5.8 shows the complete meta models as well as their connections in
the con�guration management tooling. We extend JWT WE meta model to
construct CWM. With the help of the extension, CWM is capable of utilizing
EFM and VM to specify application variability and stakeholder con�guration
decisions. By using CWM, we can specify a con�guration work�ow. The
work�ow can execute according to the control �ow pattern. When the work-
�ow executes, the involved stakeholders are able to perform the con�guration
process. During the process, partial con�gurations and stakeholders' con�gu-
ration decisions can be stored locally. Furthermore, the partial con�gurations
are propagated from preceding stakeholders to succeeding stakeholders, and
�nally, complete con�gurations are derived. In next section, we will introduce
our implementation of graph transformation.

5.1. CONFIGURATION SPECIFICATION 61

Figure 5.8: Utilized meta models in the con�guration management tooling

62 CHAPTER 5. IMPLEMENTATION

5.2 Graph Transformation Rules

In order to integrate dynamic stakeholders into the con�guration work�ow, a
work�ow adaptation mechanism is needed for dynamic changes. In our con-
cepts, we utilize the graph transformation to realize the work�ow adaptation.
In this section, we introduce the implementation of the graph transformation
and its usage in our tooling. Based on the JWT WE meta model, we use Java
as the programing language to realize all the following methods and algorithms.

In Section 4.2 we introduced the concepts of graph transformation. The idea
of graph transformation is to apply a rule to a graph and create a new graph
from the original one. Therefore, we focus on the speci�cation and implemen-
tation of the rules.

In our concept in Chapter 4, we de�ned four rules for the YMS examples. Each
rule is speci�cally de�ned for a certain stakeholder type. When a stakeholder
arrives, the tooling will check the de�ned rules one by one. If rules are found
valid, then the associated change primitives will be performed to the work�ow.

A rule consists of left-hand side, right-hand side and application conditions.
Additionally, for each rule a set of change primitives are de�ned, which are
used for directly changing the elements in the work�ow. In order to perform
a rule, the left-hand side of the rule must occur in the work�ow. Moreover,
the application conditions must be ful�lled. The right-hand side of a rule is
the result that the de�ned change primitives are applied to the left-hand side.
Therefore, we only need to specify the left-hand side, application conditions
and the associated change primitives, which are displayed as follows.

Since our work�ow has a tree-like structure, the left-hand side can be consid-
ered as a subtree that contains a collection of nodes, which are connected with
several edges. For example, the left-hand side of rule (c) contains two actions
and a fork node. The three nodes are connected with two edges. In order to
search the subtree in a work�ow, we �rst need a speci�cation of the subtree. In
our solution, we use the root node as the speci�cation to express the subtree.
Listing 5.1 depicts this speci�cation.

Listing 5.1: Speci�cation of the left-hand side of rule (c)

1 // i n i t i a l the nodes and edges
2 Action ac t i on = proces sFactory . c r ea teAct ion () ;
3 ForkNode forkNode = proces sFactory . createForkNode () ;
4 Action id l eAc t i on = proces sFactory . c r ea teAct ion () ;
5 Act iv ityEdge edge1 = proces sFactory .

5.2. GRAPH TRANSFORMATION RULES 63

createAct iv i tyEdge () ;
6 Act iv ityEdge edge2 = proces sFactory .

c r ea teAct iv i tyEdge () ;
7
8 // bu i ld the subt ree s t r u c tu r e
9 edge1 . s e tSource (ac t i on) ;
10 edge1 . se tTarget (forNode) ;
11 edge2 . s e tSource (forNode) ;
12 edge2 . se tTarget (i d l eAc t i on) ;

In Listing 5.1, the node action has an output edge, which connects the node
action with the node forkNode. Similar to edge1, edge2 connects the node
forkNode and idleAction. Therefore, the node action is the root node and
can express the structure of the subtree. To search the subtree, we can check
whether nodes contained in the work�ow have the same structure as the sub-
tree. The searching method is depicted in Listing 5.2.

Listing 5.2: Method for searching left-hand side of rule (a)

1 searchLefts ide_RuleC (Act i v i ty a c t i v i t y) {
2 f o r (ActivityNode node : a c t i v i t y . getNodes) {
3 i f (hasStructure_RuleC (node)) {
4 l e f t S i d e s . add (node) ;
5 }
6 }
7 }
8
9 hasStructure_RuleC (node) {
10 ActivityNode nextNode = JWTUtil . getNextNode (node) ;
11 i f (nextNode i n s t an c e o f ForkNode) {
12 ForkNode forkNode = nextNode . getOutEdge () .

getTarget () ;
13 i f (JWTUtil . getNextNodes (forkNode) . conta in s (

i d l eAc t i on)) {
14 re turn true ;
15 }
16 }
17 return f a l s e ;
18 }

As a result, the leftSide contains all the occurrence of the left-hand side of rule
(c). Similar to rule (c), we can also de�ne the searching algorithms for the
other rules. After we �nd the occurrence of left-hand side of a rule, we need
to check the application conditions.

64 CHAPTER 5. IMPLEMENTATION

There are two types of application conditions. Inherit from is used to check the
stakeholder type while belongs to is used to check the stakeholder membership.
They respectively refer to the role hierarchy and group in VM. When a new
stakeholder arrives and requests services, it must show its stakeholder type.
Then the VM will create a role which inherits from User. If there are multiple
services providers, the stakeholder has to show its requested stakeholder. For
example, in Figure 4.12 a stakeholder wants to request services from Tenant 2.
It should give its stakeholder type User and the requested stakeholder Tenant
2. The VM will create a role with the name User 2 which inherits from User.
Based on the given stakeholder type and requested stakeholder, the tooling
will check whether the conditions of rules are ful�lled. Listing 5.3 describes an
abstract method for checking conditions of rule (c).

Listing 5.3: Check application conditions

1 checkCondit ions_ruleC (l e f t S i d e s , a r r i v i ngS tk) {
2 f o r (ActivityNode root : l e f t S i d e s) {
3 i f (inher itFrom (root . getRole () , VM. getRole ("

App l i ca t i onProv ide r ")) {
4 i f (inher itFrom (ar r i v ingStk , VM. getRole ("Tenant

")) {
5 re turn true ;
6 }
7 }
8 }
9 return f a l s e ;
10 }

After a rule is found valid, the related change primitives will be performed. The
found occurrences of rules' left-hand side provide the exact positions where the
change primitives should be performed. We implement the change primitives
with the help of the API provider by JWT. Some examples about the change
primitives are shown in Listing 5.4.

Listing 5.4: Examples of change primitives

1 pub l i c s t a t i c Action addAction (Act i v i ty a c t i v i t y ,
S t r ing name) {

2 Action ac t i on = proces sFactory . c r ea teAct ion () ;
3 ac t i on . setName (name) ;
4 a c t i v i t y . getNodes () . add (ac t i on) ;
5 re turn ac t i on ;
6 }

5.3. MAPPING REALIZATION 65

7
8 pub l i c s t a t i c Act iv ityEdge addEdge (Act i v i t y a c t i v i t y ,

ActivityNode source , ActivityNode t a r g e t) {
9 Activ ityEdge actEdge = proces sFactory .

c r ea teAct iv i tyEdge () ;
10 actEdge . s e tSource (source) ;
11 actEdge . se tTarget (t a r g e t) ;
12 a c t i v i t y . getEdges () . add (actEdge) ;
13 re turn actEdge ;
14 }

By utilizing the graph transformation rules, the tooling is able to change the
work�ow dynamically when a stakeholder arrives. In next section we will
introduce the realization of the mapping between our EFM con�guration and
YMS con�guration.

5.3 Mapping Realization

In Section 4.3 we have introduced the variability model utilized in the YMS.
In an EFM con�guration all variability is bound. Thus, an EFM con�gura-
tion is composed of the features with a certain state (i.e. selected or dese-
lected). In the variability model of YMS, the con�guration variation points
are represented by V ariabilityElements while the con�guration decisions are
expressed by ResolutionElements. Therefore, we match the Feature and At-
tribute in EFM with the V ariabilityElement in the variability model of YMS.
In addition, we match the feature state (the attribute selected of Feature)
and the feature attribute value (the attribute value of Attribute) with the
ResolutionElement.(see Figure 5.8)

We �rst create an EFM according to the feature model of YMS depicted in
Figure 4.2. In the cerated EFM, each feature or feature attribute is coordi-
nated with a V ariabilityElement in the YMS variability model. After the
con�guration process, a fully specialized EMF is derived and all variability is
bound. The feature state is either selected or deselected. Moreover, in the
feature model of YMS, there is only one feature attribute scheduling type. The
value of the feature attribute is a String type value.

In our mapping methods, we create a resolutionElement for each feature con-
tained in the EFM. In the resolutionElement, we set its value as the feature
state, and its resolved variability element as the feature id. Finally, the res-
olutionElement is saved in the variability resolution model. An example for
mapping a con�guration decision onto resolution element is depicted in Listing

66 CHAPTER 5. IMPLEMENTATION

5.5.

Listing 5.5: Algorithm for mapping EMF and VariabilityResolution

1 Feature f e a t u r e = EFMUtil . f i ndFeature (featureName ,
featureModel) ;

2 f o r (Feature f e a tu r e : featureModel) {
3
4 Resolut ionElement re so lu t ionElement = new

Resolut ionElement () ;
5
6 // to coord inate with the YMS v a r i a b i l i t y element
7 St r ing r e s o l v e s = TransformParser . ana lyze (f e a tu r e .

ge t Id ()) ;
8
9 // s e t v a r i a b i l i t y element
10 // that i s r e s o l v ed by the r e s o l u t i o n element
11 re so lu t ionElement . s e tRe so l v e s (r e s o l v e s) ;
12
13 // s e t the va lue f o r the r e s o l v ed v a r i a b i l i t y

element
14 re so lu t ionElement . setValue (f e a tu r e . g e tS e l e c t ed ()) ;
15
16 // s e t the binding time
17 re so lu t ionElement . setBindingTime (BindingTime .

RUN_TIME) ;
18
19 v a r i a b i l i t yR e s o l u t i o n . getReso lut ionElements () . add (

re so lu t ionElement) ;
20 }

In the YMS, the VariabilityModel and VariabilityResolution are respectively
saved in the a *.var �le and a *.res �le. When the YMS instance is deployed,
the VariabilityResolution in the *.res �le is loaded. At run time, when users
perform the specialization steps, all their con�guration decisions are �rst saved
in *.res �le, and then loaded by the YMS instance. Thus, after we �nish
the mapping between EFM con�guration and YMS con�guration, we save
the VariabilityResolution in the *.res �le and transport the �le to the YMS
instance.

5.4. CONFIGURATION MANAGEMENT TOOLING 67

5.4 Con�guration Management Tooling

As introduced above, the con�guration management tooling consists of a con-
�guration work�ow editor and two editors for EFM and VM. The editors for
EFM and VM are developed based on EMF and EMFText. Thus, they al-
low developers to specify EFM and VM by using domain speci�c languages.
Examples for the EFM and VM modeling by using the editors are shown in
Listing 5.6 and Listing 5.7.

Listing 5.6: Example for EFM using EFM editor

1
2 f e a t u r e model "Test "
3 domain <d1> [v1 , v2 , v3 , v4]
4 domain <d2> [1 0 . . 2 0 , 3 0 . . 5 0]
5
6 f e a t u r e "F_Root" <fr>
7 group <g_alt> (0 . . 1) {
8 f e a tu r e "F2" <f2>
9 f e a tu r e "F3" <f3>
10 }

Listing 5.7: Example for VM using VM editor

1 a c c e s s c on t r o l on <simpleFM . e f t >
2
3 permi s s i ons {
4 s e l e c t f e a tu r e f 2
5 d e s e l e c t f e a t u r e f 2
6 s e l e c t f e a tu r e f 3
7 d e s e l e c t f e a t u r e f 3
8 }
9
10 r o l e <roleType1> {
11 s e l e c t f e a tu r e f 2
12 d e s e l e c t f e a t u r e f 2
13 }
14 r o l e <roleType2> {
15 s e l e c t f e a tu r e f 3
16 d e s e l e c t f e a t u r e f 3
17 }
18
19 r o l e <ro l e1> extends roleType1
20 r o l e <ro l e2> extends roleType2

68 CHAPTER 5. IMPLEMENTATION

21
22 group "group1" <g1> ro l e 1 {
23 r o l e 2
24 }

The Con�guration Work�ow editor (CW editor) aims to specify the con�gura-
tion work�ow. After the editor imports the EFM and VMmodels via an import
models dialog as depicted in re�gimportingmodels, we can use the editor to
design our work�ow. After we gives the input parameters via a dialog (e.g. the
stakeholder type name), the CW editor will create a role for the stakeholder.
Then it searches the prede�ned graph transformation rules. If a rule is found
valid, the CW editor will automatically change the original work�ow according
to the rule. The UI of the CW editor is depicted in Figure 5.10.

Figure 5.9: Models importing

In the depicted work�ow, there are two stakeholders involved. Both of them
refer to an action. The action state is shown in the action name. Before the
work�ow executes, except the idle action all actions' state is inactive. The Idle
action keeps the state enabled until we double click the idle action. When we
execute the work�ow (clicking start button), the root action (action of Plat-
form Provider 1) changes its state from inactive to enabled.

5.4. CONFIGURATION MANAGEMENT TOOLING 69

Figure 5.10: A work�ow example in the con�guration work�ow editor

Figure 5.11: Con�guration viewer

We can perform the specialization steps via viewer with tree-like structure,
which is shown in Figure 5.11. The viewer can identify the stakeholder and
get access to VM to obtain the permissions of the stakeholder. Through the
viewer, we are allowed to select and deselect features, or set the feature at-
tribute values according to our permissions which speci�ed in VM. After the
specialization process, the related action changes state from running to com-
pleted, and then the succeeding actions are enabled. The partial con�guration
is stored in the action and a copy is propagated to the succeeding actions. At
the end of a con�guration �ow, a con�guration is derived. This con�guration
is represented by a specialized EFM, which is saved in a *.feature �le. With

70 CHAPTER 5. IMPLEMENTATION

the *.feature �le as input parameter, we call the mapping method, which is
depicted in Section 5.3. After the mapping process, the *.feature �le is trans-
formed to *.res �le. This �le will be integrated into the YMS instance which
is deployed in remote server.

The con�guration work�ow tooling implements our proposed concepts. In
order to evaluate concepts, we will utilize the tooling to perform a con�guration
process regarding a cloud-based application in the next section.

5.5 Evaluation

In this section, we will evaluate the usability of the proposed concepts. By
using the developed tooling, we apply a con�guration process to a cloud-based
application. As a case study, we use the YMS prototype running on SAP
Netweaver Cloud and apply a con�guration process to derive a YMS con�gu-
ration.

As introduced in Chapter 3, the YMS is used to manage the movement of
trucks and trailers in the yard of a manufacturing facility. The current version
supports several features, such as dock door scheduling, mobile communica-
tion service and location services. The YMS de�nes multiple variation points
that can be tailored to meet customer needs. In order to apply con�guration
operations on the variation points, we �rst utilize the EFM editor to specify
the feature model regarding the YMS. The feature model is already given in
the Figure 4.2. By using the EFM editor, we specify the feature model as
depicted in Listing 5.8.

Listing 5.8: Speci�cation of EFM regarding YMS using EFM editor

1 f e a t u r e model "YMS"
2 domain <scheduleType> [next , f i t t i n g]
3 //domain <d2> [1 0 . . 2 0 , 3 0 . . 5 0]
4
5 f e a t u r e "YMS" <yms>
6 group <aut_opt >(0 . . 1) {
7 s e l e c t e d f e a t u r e "Authent icat ion " <authent i ca t i on

>
8 group <jaas_man> (1 . . 1) {
9 f e a tu r e "JAAS" <jaas>
10 }
11 }
12 group <per_man>(1 . . 1) {
13 f e a tu r e " Pe r s i s t en c e " <pe r s i s t en c e >

5.5. EVALUATION 71

14 group <per_alt >(1 . . 1) {
15 f e a tu r e "JDBC" <jdbc>
16 f e a tu r e "JPI" <jp i>
17 }
18 }
19
20
21 c on s t r a i n t <l s c on s t r a i n t > l s −> mc

In addition, four stakeholder types are involved in the con�guration process.
These stakeholder types as well as their possible specialization steps are de�ned
in VM. We use the VM editor to de�ne the above information that is depicted
in Listing 5.9.

Listing 5.9: Speci�cation of VM regarding YMS using EFM editor

1 a c c e s s c on t r o l on <YMS. e f t >
2
3 permi s s i ons {
4 s e l e c t yms ,
5 s e l e c t authent i ca t i on ,
6 d e s e l e c t authent i ca t i on ,
7
8 }
9 r o l e " p lat formProv ider " <plat formProvider> {
10 " s e l e c t yms" ,
11 " s e l e c t au then t i c a t i on " ,
12
13 }
14 r o l e " app l i c a t i onProv id e r " <app l i ca t i onProv ide r> {
15
16 }
17 r o l e " tenant " <tenant> {
18
19 }
20 r o l e " user " <user> {
21
22 }

After we �nish the speci�cation of EFM and VM, we import the models into
the CW editor. When we add a new stakeholder into the work�ow, the editor
will change the work�ow. Figure 5.12 shows a complete work�ow.

During the con�guration process, if an action has the state enabled, we can

72 CHAPTER 5. IMPLEMENTATION

Figure 5.12: A con�guration work�ow in the con�guration work�ow editor

perform the specialization steps to the action via the con�guration viewer that
is already shown in Figure 5.11. The tooling allows multiple stakeholders to
perform the specialization steps simultaneously. For example, in Figure 5.13,
Tenant1 and Tenant2 obtain the copies of the partial con�guration from Ap-
plicationProvider1, and perform the specialization steps concurrently. When
they complete the operations, they propagate their partial con�gurations to
their users.

After a staged con�guration process, a complete con�guration is derived at the
end of a �ow and will be transformed into YMS con�guration. Listing 5.10
displays the part of transformed features in the YMS con�guration.

Listing 5.10: YMS con�guration

1 <ns3 : r e so lu t i onElement r e s o l v e s="SchedulingType"
value="next " bindingTime="runTime"/>

2 <ns3 : r e so lu t ionElement r e s o l v e s="useMobile " va lue
="true " bindingTime="runTime"/>

3 <ns3 : r e so lu t i onElement r e s o l v e s="shipsEnabled "
value="true " bindingTime="runTime"/>

4 <ns3 : r e so lu t i onElement r e s o l v e s="useGps" value="
true " bindingTime="runTime"/>

5 <ns3 : r e so lu t i onElement r e s o l v e s="showGpsText" value
="true " bindingTime="runTime"/>

6 <ns3 : r e so lu t i onElement r e s o l v e s="showGpsMap" value
="true " bindingTime="runTime"/>

7 <ns3 : r e so lu t i onElement r e s o l v e s="gpsMapI sSa t e l l i t e "
va lue="true " bindingTime="runTime"/>

After the con�guration is transported to the YMS instance, the requested
services will be provided. For example, the above con�guration enables the

5.5. EVALUATION 73

Figure 5.13: Multiple stakeholders concurrently perform specialization steps

74 CHAPTER 5. IMPLEMENTATION

drivers and jockeys to use mobile devices. In addition, the yard manager can
user the satellite map services. The two services are respectively displayed in
Figure 5.14 and Figure 5.15.

Figure 5.14: Mobile communication service

Figure 5.15: Location service with satellite map

Based on the YMS example, we use the con�guration management tooling
to perform the staged con�guration process. The multiple stakeholders apply
the specialization steps to the imported EFM con�guration space. At the
end of each �ow, an EMF con�guration is derived and transformed into YMS
con�guration. Finally, the YMS instance will provide the required services to
the users according to the integrated con�gurations. By utilizing the developed
tooling, we have accomplished the the con�guration management for a multi-

5.5. EVALUATION 75

tenant cloud-based application, and up to now the usability of the proposed
concepts is �nished with demonstration.

76 CHAPTER 5. IMPLEMENTATION

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we focus on managing the variability of the multi-tenant cloud-
based applications. As a case study, we analyzed the YMS and identi�ed the
requirements of the con�guration management for cloud-based applications.
Based on the previous work [SMM+12], we presented concepts of con�gura-
tion management that is able to manage and create tenant con�gurations for
cloud-based applications.

In the concepts, the Extended Feature Model (EFM) is used to model the
commonality and variability of a cloud-based application. By using EFM, a
con�guration space regarding the application is constructed. In order to limit
stakeholders' possible specialization steps in the con�guration space, we de-
�ned the View Model (VM) that provides a view concept. In order to model a
con�guration work�ow, we de�ned the Con�guration Work�owModel (CWM).
The CWM aims to construct a con�guration work�ow that enables multiple
stakeholders to apply con�guration process concurrently. After the related
stakeholders �nish the staged con�guration, a complete con�guration per user
is created and all variability is bound. EFM, VM and CWM compose our
con�guration management model structure.

Additionally, in order to allow the con�guration management to integrate dy-
namic stakeholders, we also presented the work�ow adaptation concept that
utilizes the graph transformation rules to perform the dynamic changes of a
work�ow. With the help of this concept, our con�guration management is able
to manage the con�gurations of prede�ned or new arriving stakeholders.

In order to use the derived EFM con�guration, the cloud-based application
must be able to recognize the EFM. Therefore, we provided a mapping solution

77

78 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

based on the YMS. By mapping EFM con�guration onto the YMS con�gura-
tion, we integrate the con�guration into the YMS instance, which will provide
the users with demanded services.

To implement the concepts, we extend the JWT Work�ow Editor (JWT WE)
to build the CWM and connect the CWM with EFM and VM. By utilizing
the developed con�guration management tooling, we can visually specify a
con�guration work�ow and execute the work�ow. During the execution of the
work�ow, a staged con�guration process is performed. Each involved stake-
holder will apply specialization steps according to their permissions that are
de�ned in VM. When a new stakeholder intents to join the work�ow, the tool-
ing will search the valid graph transformation rules and apply their associated
change primitives. In addition, the tooling is able to create YMS con�gurations
according to the derived EFM con�gurations at the end of the work�ow. When
YMS con�gurations are integrated into the YMS instance, the YMS instance
will provide the demanded services for the related stakeholders. Therefore, the
developed tooling proofed the usability of our proposed concept.

6.2 Future Work

In this section, some future work will be listed as follows:

1. Recon�guration
When a stakeholder`s objective changes, a recon�guration is probably
required. For example, a tenant decides to rent di�erent services, then
its con�guration needs to be recon�gured. Our proposed CWM can be
used to specify a staged con�guration process. In a staged con�guration
process, the down-stream con�gurations are a�ected by the up-stream
con�guration. Therefore, if a stakeholder changes its con�guration, its
subsequent stakeholders' con�gurations are a�ected by the recon�gura-
tion, and probably need to be changed as well.

2. Veri�cation
In order to ensure the con�guration process consistency, a process ver-
i�cation is required. The process of veri�cation can be used to verify
the soundness, completeness and termination of the overall con�gura-
tion process. With the process of veri�cation, users can also keep track
of their con�gurations to complete error-correction and error-avoidance.

3. Removal of Stakeholders
During the con�guration process, some stakeholders �nish their opera-
tions and will leave the work�ow. Thus, the functionality of removing

6.2. FUTURE WORK 79

stakeholder from the work�ow is needed. Our proposed graph trans-
formation rules can be used to ful�ll the removal of work�ow elements,
such as an action, or a subwork�ow. When a stakeholder is removed
from the work�ow, it may probably a�ect other stakeholders. For ex-
ample, if an application provider leaves the work�ow, its related tenants
will also leave or refer to other providers. Therefore, the de�nition of the
graph transformation rules about removing stakeholders should take the
stakeholders' objectives into consideration.

4. Design and Realization of Graph Transformation Rules
Based on the YMS example, we de�ned four graph transformation rules.
According to di�erent applications, various rules should be respectively
de�ned. Therefore, a standard modeling tool can help developers to
e�ciently design the rules. Furthermore, in our concepts, we check
the whole work�ow to search the occurrences of the left-hand side in a
rule. This algorithm is ine�cient and leads to redundant searching work.
For this reason, the methods about graph matching in pattern recogni-
tion can be considered as solutions of searching the rules' left-hand side
[CFSV04].

The above future work is expected to focus on the extension possibilities and
improvements in our feature-based con�guration management of applications
in the cloud.

Bibliography

[AEH+99] Marc Andries, Gregor Engels, Annegret Habel, Berthold Ho�-
mann, Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy
Schürr, and Gabriele Taentzer. Graph transformation for spec-
i�cation and programming. Science of Computer programming,
34(1):1�54, 1999.

[AK03] C. Atkinson and T. Kuhne. Model-driven development: a meta-
modeling foundation. Software, IEEE, 20(5):36�41, 2003.

[BBRC06] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Auto-
mated analysis of feature models: challenges ahead. Communi-
cations of the ACM, 49(12):45�47, 2006.

[BD07] Danilo Beuche and Mark Dalgarno. Software product line engi-
neering with feature models. Overload Journal, 78:5�8, 2007.

[BLR08] Bernhard Bauer, Florian Lautenbacher, and Stephan Roser. Ag-
ilpro - agile processes in the context of erp - agilpro meta-
model description. \T1\textquotelefthttp://wiki.eclipse.

org/images/2/2f/AgilPro_MetamodelDescription.pdf, 2008.

[BRCT05] David Benavides, Antonio Ruiz-Cortes, and Pablo Trinidad. Us-
ing constraint programming to reason on feature models. In The
Seventeenth International Conference on Software Engineering
and Knowledge Engineering, SEKE, volume 2005, pages 677�682,
2005.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Au-
tomated analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615�636, 2010.

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Au-
tomated reasoning on feature models. In Advanced Information
Systems Engineering, pages 491�503. Springer, 2005.

i

 \T1\textquoteleft http://wiki.eclipse.org/images/2/2f/AgilPro_MetamodelDescription.pdf
 \T1\textquoteleft http://wiki.eclipse.org/images/2/2f/AgilPro_MetamodelDescription.pdf

ii BIBLIOGRAPHY

[BZP+10] C-P Bezemer, Andy Zaidman, Bart Platzbeecker, Toine Hurk-
mans, and A t Hart. Enabling multi-tenancy: An industrial ex-
perience report. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1�8. IEEE, 2010.

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario
Vento. Thirty years of graph matching in pattern recognition.
International journal of pattern recognition and arti�cial intelli-
gence, 18(03):265�298, 2004.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker.
Staged con�guration using feature models. In Software Product
Lines, pages 266�283. Springer, 2004.

[CHE05a] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. For-
malizing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7�29,
2005.

[CHE05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker.
Staged con�guration through specialization and multilevel con-
�guration of feature models. Software Process: Improvement and
Practice, 10(2):143�169, 2005.

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-
based feature modeling and constraints: A progress report. In
International Workshop on Software Factories, 2005.

[Con11a] Indenica Consortium. Description of feasible case stud-
ies. http://www.indenica.eu/fileadmin/INDENICA/user_

upload/d51-casestud.pdf, 2011. Indenica Project Deliverable
D5.1.

[Con11b] Indenica Consortium. View-based design time and runtime
architecture for tailoring vpss. http://www.indenica.eu/

fileadmin/INDENICA/user_upload/d31-viewbasedarch.pdf,
2011. Indenica Project Deliverable D3.1.

[Con12] Indenica Consortium. Implementation of a family of service plat-
forms and applications. http://www.indenica.eu/fileadmin/

INDENICA/user_upload/D531_ImplementationPlatforms.pdf,
2012. Indenica Project Deliverable D5.3.1.

[FKC92] DF Ferrailio, DR Kuhn, and R Chandramouli. Role based access
control. In 15th National Computer Security Conference, 1992.

http://www.indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf
http://www.indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf
http://www.indenica.eu/fileadmin/INDENICA/user_upload/d31-viewbasedarch.pdf
http://www.indenica.eu/fileadmin/INDENICA/user_upload/d31-viewbasedarch.pdf
http://www.indenica.eu/fileadmin/INDENICA/user_upload/D531_ImplementationPlatforms.pdf
http://www.indenica.eu/fileadmin/INDENICA/user_upload/D531_ImplementationPlatforms.pdf

BIBLIOGRAPHY iii

[Fow97] Martin Fowler. UML Distilled: Applying the Standard Object
Modelling Language. Addison-Wesley, 1997.

[HDT95] MY Hu, SA Demurjian, and TC Ting. User-role based security
in the adam object-oriented design and analyses environment.
Database Security VIII: Status and Prospects. North-Holland,
1995.

[Hec06] Reiko Heckel. Graph transformation in a nutshell. Electronic
notes in theoretical computer science, 148(1):187�198, 2006.

[HHS+11] Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens, Dirk
Deridder, and Ebrahim Khalil Abbasi. Supporting multiple per-
spectives in feature-based con�guration. Software & Systems
Modeling, pages 1�23, 2011.

[HTHS07] Michael Hompel, Michael Ten Hompel, and Thorsten Schmidt.
Warehouse management: automation and organisation of ware-
house and order picking systems. Springer, 2007.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak,
and A Spencer Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, DTIC Document, 1990.

[KU00] Czarnecki Krzysztof and Eisenecker Ulrich. Generative program-
ming: Methods, tools, and applications, 2000.

[MCO07] Marcilio Mendonca, Donald Cowan, and Toacy Oliveira. A
process-centric approach for coordinating product con�guration
decisions. In System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on, pages 283a�283a. IEEE,
2007.

[MG11] Peter Mell and Timothy Grance. The nist de�nition of cloud
computing (draft). NIST special publication, 800:145, 2011.

[MH06] R. Miles and K. Hamilton. Learning UML 2.0. O'Reilly Media,
Inc., 2006.

[MMLP09] Ralph Mietzner, Andreas Metzger, Frank Leymann, and Klaus
Pohl. Variability modeling to support customization and deploy-
ment of multi-tenant-aware software as a service applications. In
Proceedings of the 2009 ICSE Workshop on Principles of Engi-
neering Service Oriented Systems, pages 18�25. IEEE Computer
Society, 2009.

iv BIBLIOGRAPHY

[NO94] Matunda Nyanchama and Sylvia L Osborn. Access rights ad-
ministration in role-based security systems. In Proceedings of the
IFIP WG11, volume 3, pages 37�56. Citeseer, 1994.

[NWG+09] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youse�, and Dmitrii Zagorodnov.
The eucalyptus open-source cloud-computing system. In Cluster
Computing and the Grid, 2009. CCGRID'09. 9th IEEE/ACM In-
ternational Symposium on, pages 124�131. IEEE, 2009.

[OAWtH10] Chun Ouyang, Michael Adams, Moe Thandar Wynn, and
Arthur HM ter Hofstede. Work�ow management. In Handbook on
Business Process Management 1, pages 387�418. Springer, 2010.

[OMG11] OMG OMG. Uni�ed modeling language (omg uml), 2011.

[PBVDL05] Klaus Pohl, Gunter Bockle, and Frank Van Der Linden. Software
product line engineering, volume 10. Springer, 2005.

[RA11] Stefan T Ruehl and Urs Andel�nger. Applying software product
lines to create customizable software-as-a-service applications. In
Proceedings of the 15th International Software Product Line Con-
ference, Volume 2, page 16. ACM, 2011.

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philip-
pow. Extending feature diagrams with uml multiplicities. In 6th
Conference on Integrated Design & Process Technology (IDPT
2002), Pasadena, California, USA, 2002.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Uni�ed
Modeling Language Reference Manual, The. Pearson Higher Ed-
ucation, 2004.

[RS10] Marko Rosenmüller and Norbert Siegmund. Automating the con-
�guration of multi software product lines. Proceedings of VaMoS,
10:123�130, 2010.

[RW12] Manfred Reichert and Barbara Weber. Enabling �exibility in
process-aware information systems. Springer, 2012.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control models. Com-
puter, 29(2):38�47, 1996.

[SCG+12] Julia Schroeter, Sebastian Cech, Sebastian Götz, Claas Wilke,
and Uwe Aÿmann. Towards modeling a variable architecture for

BIBLIOGRAPHY v

multi-tenant saas-applications. In Proceedings of the Sixth Inter-
national Workshop on Variability Modeling of Software-Intensive
Systems, pages 111�120. ACM, 2012.

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-
IEEE COMPUTER SOCIETY-, 39(2):25, 2006.

[SMLF09] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian
Foster. Virtual infrastructure management in private and hybrid
clouds. Internet Computing, IEEE, 13(5):14�22, 2009.

[SMM+12] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and
Malte Lochau. Dynamic con�guration management of cloud-
based applications. In Proceedings of the 16th International Soft-
ware Product Line Conference-Volume 2, pages 171�178. ACM,
2012.

[VBB11] William Voorsluys, James Broberg, and Rajkumar Buyya. Intro-
duction to cloud computing. Cloud Computing: Principles and
Paradigms, Wiley Press, New York, pages 3�41, 2011.

[VDAVH04] Wil Van Der Aalst and Kees Max Van Hee. Work�ow manage-
ment: models, methods, and systems. The MIT press, 2004.

[Wei09] Neal Weinberg. Cloud computing: Hot technology for
2009. http://www.networkworld.com/supp/2009/outlook/

hottech/010509-nine-hot-techs-cloud-computing.html,
2009.

[Wes12] Mathias Weske. Business process management. Springer, 2012.

[WRRM08] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma.
Change patterns and change support features�enhancing �exi-
bility in process-aware information systems. Data & knowledge
engineering, 66(3):438�466, 2008.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing:
state-of-the-art and research challenges. Journal of Internet Ser-
vices and Applications, 1(1):7�18, 2010.

http://www.networkworld.com/supp/2009/outlook/hottech/010509-nine-hot-techs-cloud-computing.html
http://www.networkworld.com/supp/2009/outlook/hottech/010509-nine-hot-techs-cloud-computing.html

Con�rmation

I con�rm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, 30.04.2013

	List of Figures
	List of Tables
	Introduction
	Motivation
	The Structure of This Document

	Background
	Cloud Computing
	Software Product Line Engineering
	Role Based Access Control
	Staged Configuration
	Workflow Modeling
	Concept
	Workflow Modeling Languages
	Adaptive Workflow
	Adaptation Patterns

	Graph Transformation
	Related Work

	Analysis
	Illustrative Example
	Domain and Exiting Platform
	Yard Management System as a SaaS Application

	Requirements Identification

	Concept
	Configuration Management Specification
	Variability Modeling
	Stakeholder Views Modeling
	Configuration Workflow Modeling

	Configuration Workflow Adaptations
	Mapping between Problem Space and Solution Space
	Configuration Process Simulation

	Implementation
	Configuration Specification
	Extended Feature Model Specification
	View Model Specification
	Configuration Workflow Model Specification

	Graph Transformation Rules
	Mapping Realization
	Configuration Management Tooling
	Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

