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Abstract

This thesis presents a comprehensive study of the magnetic properties and of quan-
tum phase transitions (QPTs) of two di�erent systems which have been investi-
gated by means of low-temperature magnetization measurements. The systems
are the heavy-fermion Yb(Rh1−xCox)2Si2 (metallic) and the quantum magnet
NiCl2-4SC(NH2)2 (insulator). Although they are very di�erent materials, they
share two common properties: magnetism and QPTs. Magnetism originates in
Yb(Rh1−xCox)2Si2 from the trivalent state of the Yb3+ ions with e�ective spin
S = 1/2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These
magnetic ions are located on a body-centered tetragonal lattice in both systems
and, in this study, the QPTs are induced by an external magnetic �eld.
In Yb(Rh1−xCox)2Si2 the evolution of magnetism from itinerant in slightly

Co-doped YbRh2Si2 to local in YbCo2Si2 is examined analyzing the magnetic
moment µ versus chemical pressure x phase diagram in high-quality single crystals,
which indicates a continuous change of dominating energy scale from the Kondo to
the RKKY one. The physics of the antiferromagnet YbCo2Si2 can be completely
understood. On the other hand, the physics of pure and slightly Co-containing
YbRh2Si2 is much more complex, due to the itinerant character of magnetism and
the vicinity of the system to an unconventional quantum critical point (QCP). The
�eld-induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a
pressure of 1.5GPa is characterized by means of the magnetic Grüneisen ratio.
The �nal part of this thesis describes quantum criticality near the �eld-induced

QCP in NiCl2-4SC(NH2)2 . These results will be compared to the theory of QPTs
in Ising and XY antiferromagnets. Since the XY -AFM ordering can be described
as BEC of magnons by mapping the spin-1 system into a gas of hardcore bosons,
the temperature dependence of the magnetization for a BEC is analytically derived
and compared to the results just below the critical �eld. The remarkable agreement
between the BEC theory and experiments in this quantum magnet is one of the
most prominent examples of the concept of universality.
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1 Introduction

The central topic of this PhD work is the study of magnetic quantum phase
transitions (QPT)s in condensed matter. Two systems were chosen to be in-
vestigated: The heavy-fermion (HF) system Yb(Rh1−xCox)2Si2 and the quan-
tum magnet NiCl2-4SC(NH2)2. Although they are very di�erent materials,
i.e. Yb(Rh1−xCox)2Si2 is a metal and NiCl2-4SC(NH2)2 is an insulator, they
share two common properties: magnetism and QPTs. Magnetism originates in
Yb(Rh1−xCox)2Si2 from the trivalent state of the Yb3+ ions with e�ective spin
S = 1/2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These
magnetic ions are located on a body-centered tetragonal lattice in both systems
and, in this study, the QPTs are induced by an external magnetic �eld.
Quantum phase transitions are phase transitions between two di�erent ground

states of matter, which take place at T = 0 and, therefore, are driven by quantum
�uctuations. These transitions have been the focus of scienti�c interest during the
last 30 years since their properties are di�erent from the well-understood prop-
erties of classical thermal phase transitions, which are driven by thermal �uctua-
tions [1]. More importantly, the associated quantum critical point (QCP), in case
of a continuous QPT, is usually surrounded by a regime of quantum critical �uc-
tuations where unconventional superconductivity or novel phases of matter may
arise [2, 3, 4]. The discovery of new states of matter could open the way to fu-
ture applications (e.g., high-Tc superconductor technology is already used for the
creation of strong magnetic �elds). This is why the understanding of the intrinsic
properties of these materials is not just driven by fundamental curiosity, but it is
necessary for pioneering new technologies.
Since QPTs can be induced by an external parameter like a magnetic �eld, pres-

sure or chemical substitution, a large number of materials have been investigated
with the objective to �nd universal behaviors [5]. In general, the properties of
QPTs in magnetic insulators can well be described by the current theories, as will
be reviewed in section 2.4 and demonstrated in chapter 5 for NiCl2-4SC(NH2)2.
QPTs in metals, on the other hand, are poorly understood. The regime around the
QCP is characterized by non-Fermi liquid properties, i.e. the Fermi liquid theory,
the standard theory of electronic interactions in metals, seems to break down at
QCPs between a magnetically ordered (MO) state and a paramagnetic (PM) state.
This has been veri�ed not just in a few particular materials, but in all strongly
correlated electron systems which show a QCP. It is therefore crucial to be able
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1 Introduction

to establish the presence of a QCP in a certain compound, as it was done, e.g., for
YbRh2Si2 [6, 7] (see Sec. 4.1.1).
Another important matter is the �local� versus �itinerant� character of mag-

netism in metals. Similarly to their wave-particle duality nature, electrons in a
metal can have dual character: Itinerant, if their wave function is mostly spatially
delocalized or local, if their wave function is mostly localized. The conventional
theory of QPTs in metals (the spin-density-wave (SDW) scenario) considers mag-
netism to be itinerant, in other words, the electrons that are providing the magnetic
moments are delocalized and part of the Fermi surface as in the case of 3d-electron
systems (cf. Sec. 2.3.1). Apparently quite a number of heavy fermions compounds
can be described by such theory, like CeNi2Ge2 [8] or CeCu2Si2 [9]. Yet, mag-
netism may be better described by a local approach, although electrons in metals
are never completely localized [10], i.e. assuming that the magnetic electrons are
not part of the Fermi surface, like for insulators. A typical example is YbCo2Si2,
to which Secs. 4.1.2 and 4.5 are dedicated.
Magnetic QPTs are particularly well-studied in HF-systems. Here, the hy-

bridization between the f -electrons with the (s, p, d) conduction electrons leads
to the formation of a heavy composite quasiparticle band with d and f character,
which dominates the thermodynamic and transport properties at low tempera-
tures. This hybridization can be described by the Kondo interaction. The magnetic
f -moment is progressively screened when T < TK , the Kondo temperature, leav-
ing a non-magnetic ground state. The magnetic coupling between neighboring f
electrons can nevertheless be mediated by the so-called Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction. This can produce both an antiferromagnetically or a
ferromagnetically ordered state at T = 0, depending on the carrier concentration,
band structure and the distance between the adjacent f moments, if the RKKY
energy kBTRKKY is larger than the Kondo energy kBTK . The interplay between
these two energy scales de�nes the position of the QCP between the MO ground
state and the PM one (see Sec. 2.2.4).
Some years ago, it has been shown that at the antiferromagnetic (AFM) QCP

in CeCu6−xAux [11] the magnetic correlations have surprisingly local character. It
has been found that at the pressure-induced QCP in CeRhIn5 [12] and at the mag-
netic �eld-induced QCP in YbRh2Si2 [13], the Kondo e�ect breaks down, causing
an abrupt change of the Fermi surface. None of these properties is predicted by
the SDW scenario. Recently, new theories have been developed, which can model
many of the newly observed features, and are known as local QCP scenario (cf.
Sec. 2.3.2). None of these theories can so far completely describe the physics of
QPTs in metals [14]. However, general scaling can provide precise predictions of
the behavior of some thermodynamic quantities, like the Grüneisen ratio Γ [15]. If
scaling applies, the temperature dependence of Γ(T ) at the QCP is independent

2



of the microscopical details of the material but follows a universal power law asso-
ciated with the type of critical magnetic �uctuations and their dimensionality (cf.
Sec. 2.3.4).
The objective of this work is to study MO-to-PM QPTs in the aforementioned

two systems and to compare the results with the present theories in order to make
a step forward to a more complete understanding. The physical quantity that
has been chosen to be measured is the magnetization, from which we can derive
the magnetic Grüneisen ratio. Since QPTs are per de�nition phase transitions at
T = 0, we need measurements of the magnetization at very low temperatures. To
do this, a Faraday magnetometer was built and adapted into a dilution refriger-
ator which achieves 0.05K [16]. A special setup was developed to measure the
magnetization with a high resolution (close to that of a SQUID) and in magnetic
�elds up to 12T.
The outline of this work is as follows:

Chapter 2 contains the basic theoretical models, which will later be used for the
data analysis. A brief overview of the Fermi-liquid theory, of quantum phase tran-
sitions and of the SDW and local QCP scenarios are presented. Finally, a general
description of the theory of quantum magnets as well as their description in terms
of Bose-Einstein condensation (BEC) of magnons are presented.
Chapter 3 introduces the principle of operation of a Faraday magnetometer, its
setup and its application in a dilution refrigerator. Since the magnetization was
also measured under hydrostatic pressure, a brief introduction to this technique is
given.
Chapter 4 is the central chapter of this work. Seven high-quality single crystals of
the series Yb(Rh1−xCox)2Si2 are investigated. The evolution of magnetism from
itinerant in slightly Co-doped YbRh2Si2 to local in YbCo2Si2 is examined ana-
lyzing the magnetic moment µ versus chemical pressure x phase diagram, which
indicates a continuous change of dominating energy scale from the Kondo to the
RKKY one. The �ndings show that the physics of the antiferromagnet YbCo2Si2
can be completely understood. On the other hand, the physics of pure and slightly
Co-containing YbRh2Si2 is much more complex, due to the itinerant character of
magnetism and the vicinity of the system to an unconventional QCP. The �eld-
induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure
of 1.5GPa is studied by means of the magnetic Grüneisen ratio. This QCP is lo-
cated in the itinerant part of the phase diagram and supposed to be described by
the SDW scenario.
Chapter 5 describes the comprehensive study of quantum criticality near the
�eld-induced QCP in NiCl2-4SC(NH2)2 by means of magnetization measurements.
These results will be compared to the theory of QPTs in Ising and XY antiferro-
magnets. Since the XY -AFM ordering can be described as BEC of magnons by
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1 Introduction

mapping the spin-1 system into a gas of hardcore bosons, the temperature depen-
dence of the magnetization for a BEC is analytically derived and compared to the
results just below the critical �eld. The remarkable agreement between the BEC
theory and experiments in this quantum magnet is one of the most prominent
example of the concept of universality.
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2 Theoretical concepts

2.1 Ce- and Yb-based 4f-electron systems

During the last four decades, systems which contain elements with incompletely
�lled 4f -shells like Ce, Yb have assumed a central role in the �eld of strongly
correlated electron systems. The main reason is that the non-magnetic electronic
con�gurations Ce4+ ([Xe]5d26s2) and Yb2+ ([Xe]4f 146s2) lie in energy very close
to the magnetic con�gurations Ce3+ ([Xe]4f 15d16s2 with one 4f electron) and
Yb3+ ([Xe]4f 135d16s2 with thirteen 4f electrons, i.e. one 4f hole), respectively.
Since the magnetic Ce+3 is larger than the non-magnetic Ce4+, a change of hydro-
static pressure or chemical substitution can induce dramatic valence change [17].
Speci�cally, a decrease of the unit-cell volume due to pressure or substitution of an
element by a smaller one (chemical pressure) favors the non-magnetic Ce con�gura-
tion. On the other hand, the magnetic Yb3+ ion is smaller than the non-magnetic
Yb2+, therefore, in Yb systems a decreasing of the unit-cell volume favors the mag-
netic ground state. This is schematically displayed in Fig. 2.1. The size of the f
shells is small compared to the interatomic distances, implying that the f electrons
do not participate in the chemical bonding and the f electron wave functions of
neighboring atoms do not overlap. Therefore, the magnetic moments associated
with the f electrons can be treated as localized. However, in intermetallic systems
the f electrons can hybridize with the conduction electrons - typically 3d electrons
- leaving a non-magnetic ground state (see Sec. 2.2.2). On the other side, the
local magnetic moments of the f electrons can polarize the conduction electrons

4f 14 4f 13

Yb2+ Yb3+

non-magnetic magnetic

Pressure

4f 1 4f 0

Ce3+ Ce4+

non-magneticmagnetic

Pressure

J = 0 J = 7/2 J = 5/2 J = 0

a) b)

Figure 2.1 � Schematic pressure dependence of Ce and Yb ions in intermetallic com-
pounds. The arrows indicate the direction of hydrostatic or chemical pressure. The red
color indicates the magnetic atoms while the blue the non-magnetic ones. Here J is the
total angular momentum of the f electron.
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2 Theoretical concepts

producing a magnetic coupling between neighboring f moments leaving a mag-
netically ordered ground state (see Sec. 2.2.3). Since both mechanisms depend
in a di�erent way on the hybridization strength J , a change of pressure strongly
modi�es J and therefore the ground state of f intermetallic compounds. The dis-
covery of new many-body phase of matter (e.g. unconventional superconductivity)
across the point of phase change between a magnetically ordered ground state and
the non-magnetic one - the so-called quantum critical point (see Sec. 2.3) - has
increased the interest of scientists in 4f - and 5f -based intermetallic compounds,
in particular in the so-called heavy-fermion systems (see sec. 2.2). One of these,
Yb(Rh1−xCox)2Si2, is studied in this work (Chapter 4).

2.1.1 Crystalline electric �eld

The magnetic properties of rare-earth compounds commonly exhibit a strong
anisotropy due to the e�ect of the crystalline electrical �eld (CEF) on the or-
bital part of the total angular momentum J . Basically, in 4f -based systems the
e�ect of the CEF on the magnetic atoms is much weaker than in 3d-based ma-
terials. This is because the 4f shell is much better shielded by the outer shells
than the 3d shell. The CEF interaction (≈ 10meV) results to be smaller than
the spin-orbit coupling (≈ 100meV) and can be treated as a perturbation on each
J-multiplet [18, 19]. In this case, the CEF Hamiltonian can be generally written
as

HCF =
∑
i

∑
l

rli

+l∑
m=−l

Bm
l Y

m
l (θi, φi) (2.1)

where Y m
l (θi, φi) are the spherical harmonics and Bm

l are the CEF parameters
which depends on the environment. Adding the Zeeman term, the global Hamil-
tonian becomes:

H = HCF + gJµBB (2.2)

where µB is the Bohr magneton and B the magnetic �eld.
In this work, systems with tetragonal crystal structure are investigated. In a

tetragonal point symmetry the Hamiltonian can be simpli�ed into

HCF = B0
2O

0
2 +B0

4O
0
4 +B4

4O
4
4 +B0

6O
0
6 +B4

6O
4
6 (2.3)

where Bn
m are the CEF parameters and On

m are the Stevens operators [20]. These
dimensionless coe�cients are tabulated and vary in sign and amplitude from one
rare earth to another. The lowest term of the Hamiltonian are of order 2 and it is
generally dominant. The six-fold multiplet of Ce3+ (with J = 5/2) and eight-fold
multiplet of Yb3+ (with J = 7/2) are then split at least into 2-fold degenerate
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2.1 Ce- and Yb-based 4f -electron systems

energy levels (Kramers doublets). These can be represented in the case of Yb3+

in the basis of |jz > and their eigenfunctions as

|Γ6,1 >= cos(α)| ± 1/2 > + sin(α)| ∓ 7/2 >
|Γ6,2 >= sin(α)| ± 1/2 > − cos(α)| ∓ 7/2 >
|Γ7,1 >= cos(α′)| ± 3/2 > − sin(α′)| ∓ 5/2 >
|Γ7,2 >= sin(α′)| ± 3/2 > + cos(α′)| ∓ 5/2 >

(2.4)

with (α)2+(α′)2 = 1. The knowledge of the mixing parameters and the transi-
tion energies within the Hund's rule ground state fully describe the crystal-�eld
scheme and determines all Bn

m parameters. The low-lying doublet is magnetic and
represents the ground state of the system. Its entropy amounts to Rln2 where
R = 8.31 J/Kmol is the molar gas constant. The magnetic �eld lifts the degener-
acy of the doublets. At very low temperature the ground state doublet is splitted
by the �eld into levels with di�erent magnetic moments µB‖c and µB⊥c (where c
is the crystallographic c-axis) according to the �eld orientation. The di�erence
between the size of the magnetic moments is a measure of the magnetocrystalline
anisotropy. Since the CEF splitting energy is usually small (≈ 10meV), at room
temperature the total e�ective moment of the J- multiplet

µeff = g
√
J(J + 1)µB, (2.5)

where g is the Landé factor, can be measured. For Ce3+ it is about µCeeff =
3/7
√

35 ≈ 2.54µB and for Yb3+ it is µY beff = 12/
√

7 ≈ 4.54µB. At high temperature,
the magnetic susceptibility χ−1 follows a Curie-Weiss behavior

χ−1 ∝ µ2
eff

T − θW
(2.6)

with θW the Weiss temperature. The paramagnetic Weiss temperatures θabW and
θcW , along both principal crystallographic axes, can be expressed on the basis of
molecular �eld theory [21] as a function of the �rst CEF parameter B0

2 which is
therefore a measure of the strength of the magnetocrystalline anisotropy:

B0
2 =

(
θabW − θcW

) 10kB
3(2J − 1)(2J + 3)

. (2.7)

Information about the crystalline electric �eld splitting of the free-ion states can
usually be derived from many spectroscopic methods. The principal experimental
method used for such purpose is inelastic neutron scattering (INS), but optical
methods, ESR and hyper�ne methods like NMR and Mössbauer spectroscopy are
also widely used. Recently, polarization dependent soft x-ray absorption spec-
troscopy (XAS) was shown to be a powerful tool for determining the crystal-�eld
ground state for these class of materials [22]. The treatment outlined above is
applied in Sec. 4.1.2 for the case of YbCo2Si2.
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2 Theoretical concepts

2.2 Heavy-fermion systems

The term �heavy fermion� (HF) is used to describe the low temperature electronic
state of a new class of intermetallic compounds, based on lanthanide (4f -electrons)
and actinide (5f -electrons) atoms, with an electronic density of states N(EF ) at
the Fermi level and at low temperatures as much as 1000 times larger than in
normal metals. There are quite a large number of HF compounds based on Ce
and Yb. The heavy electron state has its origin in the hybridization between the
4f/5f local moments and the usually-3d conduction electrons, an e�ect that is
known as Kondo e�ect (see Sec. 2.2.2). At high temperature a HF system behaves
like a local magnet, showing Curie-Weiss behavior in the susceptibility, but below a
characteristic temperature, the Kondo temperature, the conduction electrons start
to compensate the f -moments, leaving a non-magnetic ground state at T → 0.
The increasing overlap of the electronic d and f states creates a new �at band
at the Fermi level, separated by the so-called hybridization gap, which contains
d − f composite quasiparticles and results in an expansion of the Fermi surface
volume [23, 24]. These quasiparticles have a heavy (e�ective) mass, re�ected in
the enhanced value of the Sommerfeld coe�cient γ0 = C(T )/T |T→0 or the Pauli
susceptibility χ0, both proportional to N(EF ). The ground state of a HF system
can be well described by the Fermi liquid theory (see Sec. 2.2.1). The conduction-
electrons-mediated interaction between the f -moments (the RKKY interaction, see
Sec. 2.2.3) in a HF system can overcome the Kondo e�ect and yields a magnetically
ordered ground state. Since the discovery of CeAl3 (with a Sommerfeld coe�cient
γ0 = 1620mJ/mol K2) [25], various types of ground states were observed in HF
systems, such as superconducting, magnetic ordered or insulating state. The limit
of the HF state was established in a somehow arbitrary way, with γ0 ≤ 400mJ/mol
K2 [26] de�ned as lower limit.

2.2.1 Fermi liquid theory

The standard theory of metals is the Fermi-liquid (FL) theory. Its discovery goes
back to the work of L. D. Landau in 1956. He introduced a phenomenological
theory to describe the properties of a weak interacting fermion system at low tem-
peratures [27]. Landau's basic idea is the one-to-one correspondence between the
energy states of a system of non-interacting Fermi particles (Fermi gas), like elec-
trons or 3He atoms, and the states of the interacting particles (Fermi liquid). The
particles of the Fermi liquid are known as quasiparticles, which are elementary ex-
citations of the Fermi gas. A quasiparticle has the same charge and spin quantum
numbers of the non-interacting fermion. The dynamical properties of this quasi-
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2.2 Heavy-fermion systems

particles, such as the e�ective mass m∗, are renormalized due to the interaction
between the quasiparticles. In metals the e�ective mass is

m∗

me

= 1 +
F s

1

3
(2.8)

where F s
1 is a non-dimensional Landau parameter andme is the bare electron mass.

In simple metals, m∗ is generically one order of magnitude larger than me, whereas
in HF systems m∗ can attain values as large as 103me. The thermodynamic and
transport properties of a FL are related to m∗ since the density of states at the
Fermi energy N(EF ) ∝ m∗. The temperature independent susceptibility has the
form

χ0 = χ0
Pauli

m∗

me

(
1

1 + F a
0

)
(2.9)

where F a
0 is the antisymmetric Landau parameter and χ0

Pauli is the free electron
Pauli susceptibility. The electronic speci�c heat is [28]

C(T ) = γ0T + δT 3 ln(T/T ∗) +O(T 3) (2.10)

where the Sommerfeld coe�cient γ0 = C(T )/T |T→0 is

γ0 =
1

3

(
kB

~

)2

kFm
∗ (2.11)

where the term δT 3 ln(T/T ∗) is large is systems close to a magnetic instability and
T ∗ is a cuto� temperature. The electrical resistivity varies as

ρ(T ) = ρ0 + AT 2 (2.12)

where ρ0 is the residual resistivity and the prefactor A re�ects the quasiparticles-
quasiparticles scattering cross-section which results in A ∝ (m∗)2 ∝ γ2

0 ∝ N(EF )2.
Therefore, in HF systems, A takes values of four to six orders of magnitude larger
than in a normal metal [29]. Experimentally, it was found that for the most HF
compounds A is related to γ by the empirical Kadowaki-Woods relation: A/γ2

0 ≈
10−5µΩcm(mol K/mJ)−2 [30].

2.2.2 Kondo e�ect

The Kondo problem goes back to the experimental observation by de Haas et
al. [31] of a resistivity minimum at low temperatures in Au diluted with Fe
magnetic impurities. The resistivity minimum was successfully explained by Jun
Kondo in 1964 [32]. Using perturbation theory he explained the upturn of the
resistivity at low temperatures by considering the scattering of the conduction
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electrons on a single magnetic ion embedded in a non-magnetic sea of conduction
electrons. The theory gives a − lnT contribution to the resistivity which, added on
the phononic T 5 contribution, yields a minimum at a certain temperature. This
e�ect has come to be known as the Kondo e�ect. The single-impurity Kondo
e�ect is observed in diluted alloys with a small amount of 3d or 4f impurities, in
which the magnetic moments do not, directly or indirectly, interact due to the large
distance between them. The theoretical estimations made by Kondo are valid only
above a characteristic temperature, which is know as the Kondo temperature TK .
Below TK , Kondo's prediction leads to an unphysical result, namely the resistance
diverges as T → 0. There are two theoretical models that are used to tackle
this problem: the s − d hamiltonian, where d represents either d or f orbitals,
and the Anderson model [33, 23]. In the s − d model, a magnetic impurity is
described by a local spin S coupled by an exchange interaction constant J to the
conduction electrons of the host metal. The low temperature behavior was solved
by Wilson using renormalization-group technique [34]. Later on, Wiegmann and
Andrei found the exact solution of the s − d model with spin S = 1/2 using the
Bethe ansatz [35, 36]. Within this framework, the exact solution at T = 0 consists
in a non-magnetic spin-singlet state formed by an antiparallel coupling between
the impurity spin and the conduction electron spins. The characteristic energy
scale can be estimated to be

kBTK ∝
1

N(EF )
exp

(
− 1

|J |N(EF )

)
, (2.13)

where kB is the Boltzmann constant. Note that the Kondo temperature is not a
phase transition temperature, but rather a characteristic crossover.
HF systems consist often of a periodical arrangement of magnetic ions on the

crystal lattice and can not be described as magnetic impurities embedded in a non-
magnetic sea of conduction electrons. As a consequence of the periodicity, Bloch
plane waves forms and the resistivity drops to low values after having reached a
maximum (cf. left panel of Fig. 2.2) at a characteristic temperature, the coher-
ence temperature Tcoh. These systems are known as Kondo-lattice (KL) systems.
The hybridization between the f and d electrons below Tcoh creates a sharp peak
in N(EF ) (Abrikosov-Suhl resonance) which has a width proportional to kBTcoh,
hence m∗ ∝ 1/Tcoh. In addition, when a hybridizing f -shell is embedded into
a metallic host, it is necessary to consider the ground state f -spin degeneracy
N = 2j+ 1. In this limit, the N -fold degenerate Coqblin-Schrie�er model [37] and
the degenerate periodic Anderson model [38] have been developed and successfully
applied to rare-earth systems. The general behavior of a Kondo-lattice system at
low temperature is summarized in Fig. 2.2, which shows the resistivity ρ(T ), mag-
netic susceptibility χ(T ) and speci�c heat C(T ). For T > Tcoh the Kondo e�ects is
responsible for the logarithmically increase of ρ(T ) with decreasing T . At T ≈ Tcoh
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2.2 Heavy-fermion systems

coherence e�ects start to dominate and ρ(T ) drops steeply. A quadratic tempera-
ture dependence of ρ(T ) at the lowest temperatures is expected because of the FL
ground state. Because of local moment ions, at high temperatures χ(T ) follows a
Curie-Weiss behavior and �attens to a constant value χ0 at T << Tcoh which is the
renormalized Pauli susceptibility. At low temperatures, below Tcoh, the electronic
speci�c heat coe�cient C(T )/T increases due to the formation of the resonance
peak at the Fermi level and then becomes constant with γ0 = C(T )/T |T→0 ∝ χ0.

2.2.3 RKKY interaction

Because of the dense periodic distribution of magnetic ions in KL systems, the
distance between the neighboring magnetic moments is small compared to the
distance in diluted Kondo systems. Although the direct interactions between the
4f moments are negligible, they can interact via polarization of the conduction
electrons. This indirect exchange interaction was �rst proposed by Ruderman and
Kittel [39] and later considered by Kasuya and Yosida, and now it is generally
know as the RKKY interaction. The indirect exchange interaction is de�ned as

J2N(EF ) cos(2kF r)/r
3. (2.14)

It has to be noted that here J is the same exchange interaction constant as
considered for the Kondo e�ect. This creates an oscillating interaction (depicted
in the left panel of Fig. 2.3) where r is the distance from the local moment setting
up the oscillations. The energy scale associated with this type of interaction is
proportional to magnitude of the wavelength π/kF = λF/2, which is also given by
the Fermi wavelength kF . Depending on the separation R between a pair of ions
their magnetic coupling can be ferromagnetic (FM) or antiferromagnetic (AFM)
(see right panel of Fig. 2.3).

T TT

∝ −lnT

∝ T−1

γ0

C/Tχ

χ0

ρ

∝ T 2ρ0

Figure 2.2 � Schematic behavior of a Kondo-lattice system at low temperature in
resistivity ρ(T ), magnetic susceptibility χ(T ) and speci�c heat C(T ).
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The strength of the interaction can be expressed by the characteristic tempera-
ture

kBTRKKY ∝ J2N(EF ). (2.15)

In Ce-based KL systems, the RKKY interaction usually promotes an AFM ground
state with a Néel temperature TN of the order of J2N(EF ), usually few Kelvins.

2.2.4 Doniach phase diagram

The competition between the Kondo screening (on-site) and the RKKY (inter-site)
interactions governs the phase diagram of the Kondo lattice, since both energy
scales kBTK and kBTRKKY depend on |J |N(EF ) (cf. Eq. 2.13 and 2.15). This is
schematically represented by the phase diagram in Fig. 2.4 for an AFM KL system,
�rst proposed by S. Doniach [41]. When |J |N(EF ) is small, than the kBTRKKY
is the dominant energy scale and the magnetically ordered phase (MO) forms at
enough low T , but when |J |N(EF ) is large, kBTK dominates and the moments
of the KL become fully screened, leaving a FL ground state. For intermediate
values of |J |N(EF ), where TK ≈ TRKKY , a local maximum in the transition tem-
perature Tm occurs and implies that there should be a critical value JcN(EF ) at
which a quantum phase transition between the magnetically ordered phase and
the paramagnetic one (PM) takes place. The point at |Jc|N(EF ) is called quan-
tum critical point (QCP). Except for the special case of some materials which are
located exactly at the QCP, like CeNi2Ge2 [8], it is necessary to tune the system
to the QCP using a non-thermal control parameter like pressure, chemical substi-
tution or magnetic �eld. This phase diagram was found to describe the behavior
of a large number of KL systems apart from the region close to the QCP where

r

J

0

(a)

A

B

A

B

λF/2

(b)

Figure 2.3 � a) Variation of the indirect exchange interaction constant J as a function of
r, the distance between the magnetic atoms A and B. b) Depending on r, the magnetic
coupling between the atoms can be ferromagnetic (left) or antiferromagnetic (right).
Figure taken from Ref. [40].
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2.3 Quantum phase transitions

Figure 2.4 � Doniach diagram, illustrating the magnetically ordered regime at TK <
TRKKY and the HF non-magnetic regime at TK > TRKKY . At a critical concentration
of the exchange interaction constant |Jc|N(EF ), where TK ≈ TRKKY , a quantum phase
transition between the magnetically ordered phase (MO) and the paramagnetic one (PM)
takes place. The point at |Jc|N(EF ) is called quantum critical point (QCP). Experimen-
tally, at the QCP non-Fermi-liquid (NFL) behavior is observed, caused by the magnetic
quantum critical �uctuations.

pronounced deviations from the FL behavior were observed. Such deviations are
a consequence of the magnetic quantum critical �uctuations present at the QCP,
which break down the FL state, i.e. known as non-Fermi liquid (NFL) behavior.
Experimentally, such a NFL behavior can manifest itself in, e.g., a logarithmic
divergence of the speci�c heat coe�cient or a linear temperature dependence of
the resistivity [42]. Generically, in KL systems the FL ground state competes
with the magnetically ordered state, but in presence of strong quantum e�ects or
geometric frustration other ground states can also occur, like spin glass and spin
liquid states [24].

2.3 Quantum phase transitions

When a system consists of more than one phase, a phase change is called phase
transition (PT). It could be discontinuous, if the �rst derivative of the free energy
F (T, p,H), like the entropy, volume or magnetization, changes discontinuously
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between the two phases or continuous if is the second or the third di�erential of
F that changes abruptly. According to the Landau's theory of PTs [43], an order
parameter can be de�ned to be zero outside one phase and �nite inside the other,
as schematically drawn in Fig. 2.5 (the red line is the transition boundary line).
Hence, there is a spontaneous symmetry breaking at the PT between a disordered
phase and an ordered one. A typical example is the PT from a paramagnetic
state into a ferromagnetic one at the critical temperature TC (in this case, the
Curie temperature), where the order parameter is the magnetization. What is not

δc δ

Te
m

pe
ra

tu
re

Disordered phaseOrdered phase

QCP

0

Quantum critical
Classical critical

Figure 2.5 � Schematic phase diagram of a system with magnetic order at T > 0 that
can be continuously suppressed to zero by a non-thermal control parameter δ (red line).
The point where the transition temperature reaches zero is the quantum critical point
(QCP). The blue lines delimit the region of strong classical/thermal critical �uctuations
around the transition phase boundary line. The blue-red region indicates the quantum
critical region which marks the crossover between a predominantly classical-to-quantum
character of the �uctuations.

treated in this theory are correlations and �uctuations of the order parameter,
which become very important near the transition temperature of continuous PTs
(region delimited by the blue lines in Fig. 2.5). Here the dominant length scale
which characterizes the �uctuations is the correlation length ξ which diverges at
the critical point as ξ ∝ t−ν with t = |T − TC |/TC and ν is the correlation length
critical exponent. The order parameter �uctuates not only in space but also in time
with ξτ ∝ ξz ∝ t−νz, where z is the dynamic critical exponent. Critical length and
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2.3 Quantum phase transitions

time scales are the only characteristics of the system close to TC . Therefore, the
scaling is universal and depends only on the symmetry of the order parameter [44].
When the PT is induced at T = 0 by a non-thermal external parameter (repre-

sented in Fig. 2.5 by δ ), like pressure or magnetic �eld, this is called quantum
phase transition (QPT). A classical PT involves thermal �uctuations occurring at
�nite temperatures only. In the thermodynamic limit T → 0, where the thermal
energy scale is absent only �uctuations associated with the Heisenberg's uncer-
tainty principle may be present. If the transition between the ordered phase and
the disordered phase is continuous, those zero-point �uctuations drive the QPT
which takes place at the quantum critical point (QCP), i.e. when δ = δc. Fluctua-
tions can have predominantly thermal or quantum character near δc depending on
whether their thermal energy kBT is larger or smaller than the quantum energy
scale ~ωc. The interplay between classical and quantum �uctuations in the vicinity
of a QCP is illustrated in the T − δ phase diagram of Fig. 2.5. At δ = 0, classical
�uctuations dominate in the vicinity of the �nite phase boundary line, but this
region becomes narrower with decreasing temperature and increasing δ. Quantum
critical �uctuations have an e�ect in the quantum critical region above the QCP
(blue-red region). Its boundaries are crossover lines and not phase transitions,
being determined by the condition kBT ≈ ~ωc ∝ |δ − δc|νz. Here, the properties
of a system are governed by thermal excitations of the quantum critical ground
state. This can cause unusual physical properties at �nite temperatures, such as
unconventional power laws in thermodynamic quantities, i.e. NFL behavior, or
in some cases can promote novel states of matter. Importantly, quantum ordered
phases occurring at T = 0K survive to a �nite temperature range. This makes
empirical investigations of QPTs possible. A wide range of QPTs have been investi-
gated, e.g in cuprate superconductors, which can be tuned from a Mott insulating
state into a superconducting phase by a carrier doping [45, 46]. An increasing
number of QPTs in HF systems, unconventional metals and insulating quantum
magnets were discovered. For a comprehensive review about the state of the art of
QPTs, see articles in Ref. [47]. Two main theoretical models have been developed
to describe QPTs in HF systems, the �spin-density-wave� scenario and the �local
quantum critical point� scenario.

2.3.1 Spin density wave scenario

The spin-density-wave (SDW) scenario, which is also known as the itinerant sce-
nario [1, 48, 49], assumes the formation of the magnetic order in metals due to
a SDW instability. The electrons which form the Fermi surface on the PM side
of a QPT, namely the FL side in Fig. 2.4, retain their integrity when entering
the magnetically ordered phase. Thermal and quantum �uctuations of the order
parameter are considered. The traditional approach proposed by J. A. Hertz is
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based on the Ginzburg-Landau-Wilson functional of the order parameter and its
�uctuations, φ4 theory, in d+

c = d + z dimensions, where d is the spatial dimen-
sion [1, 5]. Meanwhile, di�erent techniques have been used to calculate physical
quantities at the SDW-QCP, like the renormalization group theory (J. A. Hertz [1]
and A. J. Millis [48]), the self-consistent renormalization theory (T. Moriya [49])
and molecular �eld approach (G. G. Lonzarich [50]). The results are very similar
in all theories since they only depend on the dimension d and the critical exponent
z. The predictions for the temperature dependencies of the transport and ther-
modynamic properties are summarized in Tab. 2.1. The results for the uniform
susceptibility are slightly di�erent in every theory. We have included in Tab. 2.1
the predictions from Ref. [50]. Two important predictions of the SDW theory are
the behavior of the phase boundary line close to δc

TN,C ∼ |δ − δc|ε with ε = z/(d+ z − 2) (2.16)

and
m∗ ∝ |δ − δc|(d−z)/2 (2.17)

showing how the e�ective mass of the quasiparticles diverges when approaching
the QCP at the critical parameter δc [15]. A crucial aspect of the SDW scenario

AFM (z = 2) FM (z = 3) FL
d = 2 d = 3 d = 2 d = 3

α/T 1/T log log(1/T ) T−1/2 1/T log(1/T ) T−2/3 const.
C/T log(1/T ) −

√
T T−1/3 log(1/T ) const.

Γ log log(1/T )
T log(1/T )

−T−1 T−2/3 log(1/T ) (T 2/3 log(1/T ))−1 const.
ρ T T 3/2 T 4/3 T 5/3 T 2

χ T−3/2 T−1 T−4/3 const.

Table 2.1 � Predictions of the SDW scenario at the QCP and of the FL theory for the
thermal expansion coe�cient α(T ), speci�c heat C(T ) and thermal Grüneisen ratio Γ(T )
after Ref. [15], electrical resistivity after Ref. [49] and magnetic susceptibility χ(T ) after
Ref. [50]. Only the critical contributions are considered.

in HF systems is that the Kondo energy scale remains �nite at the QCP [14],
implying that the heavy quasiparticles survive near the QCP. Therefore, for such
a transition one does not expect the Kondo energy scale to change signi�cantly
while the system is tuned through the QCP by varying the control parameter. A
schematic phase diagram of this scenario is shown in Fig. 2.6 (right panel), where
the characteristic energy scale T0 represents the Kondo temperature [14].1

1For T � T0 the Kondo lattice behaves as individual local moments, following the Curie-Weiss
behavior.
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There are indeed few HF compounds that can be well described by the SDW
scenario, like CeNi2Ge2 [8] or CeCu2Si2 [9]. But in other HF systems, that have
been strongly investigated in the proximity of a QCP, this theory fails. Prototypical
examples of HF system which do not �t into the SDW scenario are YbRh2Si2 and
CeCu6−xAux which both show evidence of an AFM-QCP. It has been shown that at
the QCP in CeCu6−xAux with x = 0.1 the magnetic correlations have surprisingly
local character and that the dynamical susceptibility χ′′(ω,q) shows ω/T scaling
which is not expected in the SDW theory [11]. It has been also found that at the
pressure-induced QCP in CeRhIn5 [12] and at the magnetic �eld-induced QCP
in YbRh2Si2 [13], the Kondo e�ect breaks down, causing an abrupt change of
the Fermi surface. None of these properties is predicted by the SDW scenario.
Recently, new theories have been developed, which can model many of the newly
observed features, and are known as local QCP scenario.

δ

T ∗

T0

QCP
TFL

TN

δ

T

T ∗

T0

QCP TFL

TN

Local QCP: Desintegrtion of heavy quasiparticles QCP-SDW: The quasiparticles remain intact

Small Fermi-Surface Large Fermi-Surface

δlocc δcδloc

T

Figure 2.6 � Schematic phase diagrams for the two types of AFM quantum critical sce-
narios for HF systems. Left: The Kondo breakdown scenario [51, 52]. Right: The SDW
scenario [1, 48, 49]. TN represents the AFM ordering temperature, TFL indicates the
onset of the low temperature Fermi liquid regime and δ is the control parameter. T0 rep-
resents the characteristic energy scale (the Kondo temperature), signifying the crossover
from the high temperature incoherent state of local moments to the low temperature
state in a Kondo lattice systems where moments are partially screened. The T ∗ energy
line marks the crossover line between the local moments (δ < δc) and the quasiparticles
(δ > δc) which are part of the Fermi surface. In fact, this energy scale separates the
small and large Fermi surfaces.
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2.3.2 Local quantum critical point scenario

In the SDW scenario of quantum criticality, the quasiparticle system undergoes a
SDW instability at the QCP and the Kondo energy scale remains �nite across the
quantum phase transition. Recently, however, experimental results have indicated
that the signature of heavy quasiparticles does not survive near the QCP [13,
12]. These discoveries have promoted theoretical descriptions which include the
destruction of the Kondo e�ect at the QCP [51, 52, 53, 54, 55, 56]. The term
�local quantum criticality� refers to the localization of the electronic excitations
associated with the f -moments in which a destruction of Kondo screening of the
f -moments coincides with the magnetic transition of the Kondo lattice. Thus, the
breakdown of the Kondo e�ect at the QCP should be associated with a Fermi
surface instability. Originally, based mainly on results from YbRh2Si2 [57], the
nature of the Kondo breakdown was suggested to involve multiple energy scales.
These multiple energy scales collapse to zero as the system is tuned through the
QCP and it has been proposed that the Fermi surface changes from a large to
a small one when the QCP is crossed from the paramagnetic side [14]. This is
represented in Fig. 2.6 (left panel). The line associated with the energy scale
T ∗ separates the incomplete Kondo screened state (left side of T ∗) and complete
Kondo screened state (right side of T ∗). Thus, the T ∗ line marks the crossover
from small to large Fermi surface: In fact, in the left side of T ∗ the local moments
do not participate in the Fermi surface formation. This is di�erent from what is
expected in the SDW scenario, as shown in the right panel of the same �gure [14].
Here, the T ∗ line has to vanish somewhere inside the AFM region of the phase
diagram, but not at the QCP.

2.3.3 Global phase diagram

In the last years, new perspectives where proposed about the mechanism be-
hind quantum criticality in HF systems, including the idea of a global phase
diagram [58, 59, 60]. The scienti�c breakthrough was a work done on Ir- and
Co-substituted YbRh2Si2 by Friedemann et al. [61]. The main results of this
work are schematically summarized in the magnetic phase diagrams of Fig. 2.7.
They represents the evolution of the fundamental energy scales in this systems,
the AFM ordering temperature TN(H), the Kondo-destruction T ∗(H) crossover
line, and the FL region below TFL(H) (the tuning parameter is here the magnetic
�eld H). These scales were evidenced by several thermodynamic and transport
measurements [57]. In YbRh2Si2 all energy scales converge to a single critical
�eld at T = 0. In the Ir-substituted sample, TN is suppressed, whereas in the
Co-substituted sample TN is enhanced. Surprisingly, the T ∗ scale does not change
the position in the phase diagram in both systems. Therefore, it was inferred
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that T ∗ is separated from TN in Yb(Rh0.94Ir0.06)2Si2, whereas T ∗ intersects TN in
Yb(Rh0.93Co0.07)2Si2. Interestingly, both T ∗ and TFL in the Ir- and Ge-substituted
samples are separated from TN [63, 62]. The NFL region between these energy
scales has been proposed to have a spin-liquid ground state. The important point
is that the Kondo-destruction energy scale seems not to be linked to the QCP, and
in a KL system di�erent QCPs are possible, which can be of SDW or local nature.
In two independent works, Q. Si and P. Coleman et al. proposed a possible ex-

planation considering an extension of the Doniach phase diagram to a more �global
phase diagram� for KL systems [58, 59, 60]. The phase diagram based on calcula-
tions on the AFM Kondo lattice by Q. Si [58] is shown in Fig. 2.8. This diagram
has two parameters: The vertical axis is parametrized by G which characterizes
the degree of quantum �uctuations or magnetic frustration of the local moments.
Therefore increasing G reduces the TN . The horizontal axis describes the strength
of the Kondo coupling JK between the local moments and the conduction electrons.
It controls the degree of quantum �uctuations due to the spin-�ip process associ-
ated with the Kondo coupling. The AFS phase describes the small-Fermi surface
AFM state and the AFL correspond to the AFM state in presence of a Kondo
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Figure 2.7 � Schematic H−T phase diagrams of stoichiometric, Ir-, Co- and Ge- doped
YbRh2Si2. These phase diagrams were taken from Refs. [61, 62].
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screening. The PL phase is the heavy Fermi liquid state with heavy quasiparticles
and large Fermi surface, while the PS phase is the paramagnetic state with small
Fermi surface. The red line represents the line of QCPs of SWD nature while the
blue line represents the QCPs of local nature. According to this, there are three
possible routes for a system to go from the AFS phase to the PL phase:

• The transition between AFS and PL gives rise to a local QCP. A critical
Kondo breakdown occurs at the AF QCP, giving rise to a sudden change
of the Fermi surface and the vanishing of a Kondo-breakdown scale. This
describes the case of stoichiometric YbRh2Si2.

• Trajectory AFS → AFL → PL describes the case of Yb(Rh0.93Co0.07)2Si2
where the Kondo breakdown takes place inside the AFM phase and the
Fermi surface changes not suddenly but like in a Lifshitz transition. The
QCP at the AFL − PL boundary falls in the SDW type.

• The PS − PL transition could describe a spin liquid to heavy Fermi liquid
QCP, like in the case of Yb(Rh0.94Ir0.06)2Si2.

G

JK

AFS

AFL

PS

PL

Kondo destruction QCPS

SDW QCPS

Figure 2.8 � Proposed theoretical phase diagram at T = 0 for AFM Kondo lattices [60].
G is a measure of the degree of quantum �uctuations or magnetic frustration. JK de-
scribes the strength of the Kondo coupling between the local moments and the conduction
electrons. The AFS phase describes the small-Fermi surface AFM state and the AFL
correspond to the AFM state in presence of a Kondo screening. The PL phase is the
heavy Fermi liquid state with heavy quasiparticles and large Fermi surface, while the PS
phase is the paramagnetic state with small Fermi surface. The red line represents the
line of QCPs of SWD nature while the blue line represents the QCPs of local nature.
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A similar phase diagram is described by P. Coleman et al. in Ref. [59], where on
the horizontal axis the parameter TK/J is considered.

2.3.4 The Grüneisen ratio

The Grüneisen ratio has been successfully used as a tool for the identi�cation of
QCPs [8, 15, 64, 65]. The thermal Grüneisen ratio Γ is simply de�ned as ratio
between the thermal expansion coe�cient α and the molar speci�c heat Cp

Γ =
α

Cp
= − (∂S/∂p)T

VmT (∂S/∂T )p
(2.18)

where S is the entropy, Vm the molar volume and p the pressure. For a pressure-
tuned quantum phase transition, the control parameter r can be linearized around
the critical pressure r = (p− pc)/pc. The ratio (∂S/∂p)T = p−1

c (∂S/∂r)T explores
then the dependence of the entropy on r. The corresponding quantity for a transi-
tion tuned by a magnetic �eldH with r = (H−Hc)/Hc is (∂S/∂H)T = (∂M/∂T )H ,
were M is the total magnetization. We thus de�ne the magnetic Grüneisen ratio
as

ΓH = −(∂M/∂T )H
CH

= − 1

T

(∂S/∂H)T
(∂S/∂T )H

=
1

T

∂T

∂H

∣∣∣
S

(2.19)

which can be determined from the magnetocaloric e�ect, or measuring the mag-
netization M(T) and the speci�c heat C(T) separately.
In the work by L. Zhu et al. [15] it was demonstrated that, if scaling applies,

when approaching a p-induced QCP the T -dependent Grüneisen ratio Γ(T ) di-
verges with the inverse of the control parameter

Γ(T → 0, r) = −Gr
1

Vm(p− pc)
(2.20)

and at the critical pressure

Γ(T, r = rc) = −GTT
−1/νz (2.21)

where the parameters ν (the correlation length exponent) and z (the dynamical
critical exponent) are universal and depend only on the dimensionality of the criti-
cal �uctuations d and their nature (z = 2 for AFM and z = 3 for FM �uctuations).
In addition, also the prefactors Gr and GT depend strictly on these parameters.
In other words, the temperature exponent of the Grüneisen ratio provides a direct
means to measure νz and, as a result characterizes the nature of a QCP. For ΓH
with r = (H −Hc)/Hc we have similar equations

ΓH(T → 0, r) = −Gr
1

(H −Hc)
, ΓH(T, r = rc) = −GTT

−1/νz. (2.22)
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2 Theoretical concepts

Again, in the T → 0 limit, the prefactors are universal. As discussed in Refs. [15,
65] scaling is applicable under certain conditions: i) The system is dominated by a
single energy scale E∗; ii) Sometimes non-critical contributions can dominate, like
in the case of a AFM SDW QCP (see tab. 2.1). These contributions have to be
carefully subtracted; iii) At the QCP more than a single diverging time scale can
be present. This can indeed lead to a breakdown of simple scaling relations [66].

2.4 Spins are almost bosons

QPTs are intensively studied not only in metallic systems. Insulators show QPTs
of di�erent types. One of the most prominent example is the QPT in the dipolar-
coupled Ising ferromagnet LiHoF4 (Tc = 1.53K) driven by a transverse magnetic
�eld at T = 0 [67]. There is another class of materials where a QPT is induced by
the magnetic �eld: Low dimensional quantum magnets. Among them, dimer-based
antiferromagnets [68] and quasi 1D arrangements of spin S = 1 (e.g., Haldane
chains [69]). The central characteristic of these magnets is that they possess a non
magnetic spin singlet (S = 0) ground state separated from the �rst excited triplet
(S = 1) state by an energy gap ∆ (see Fig. 2.9). The magnetic �eld eventually

Figure 2.9 � Schematic representation of
the Zeeman splitting of the triple modes
with gap ∆ and bandwidth D. At the �eld
Hc1 a �eld induced Bose-Einstein conden-
sation of magnons occurs. The inset rep-
resents the triplons dispersion atHc1. Fig-
ure taken from Ref. [70].

closes the gap at a critical �eld Hc1 inducing a QPT into a XY AFM ordered
state with �nite magnetization and AFM magnon excitations. During the last
decade, these materials have attracted much interest because the AFM ordering
can be described as a Bose-Einstein condensation (BEC)2 of magnons by mapping
the spin-1 system into a gas of hardcore bosons [71]. These type of bosons can

2Bose-Einstein condensation occurs when the temperature of a gas of integer-spin particles
(bosons) is low enough and thermodynamics causes a signi�cant fraction of them to spon-
taneously enter a single quantum state. These particles form the condensate and they act
collectively as a coherent classical wave.

22



2.4 Spins are almost bosons

undergo BEC and become super�uid. In this respect, the magnetic �eld acts as a
chemical potential and tunes the boson density.
The �rst theoretical investigation of a possible BEC of magnons in quasi-one-

dimensional systems was discussed by E. G. Batyev and L. S. Braginskii [72], and
I. A�eck [73]. More than �fteen years later, �eld-induced antiferromagnetic order
was observed experimentally in the gapped S = 1/2 dimer compound TlCuCl3 [74,
68, 75] (see the Review article [76] by Giamarchi et al. and references therein).
The magnetization measurements have shown that the magnetic subsystem of
TlCuCl3 consists of weakly antiferromagnetically coupled S = 1/2 spin dimers
and the �rst excited state is separated from the ground state singlet by the energy
gap ∆ ≈ 0.7 meV. The QCP is at Hc1 ≈ 5.7T. A series of experimental works
could con�rm the applicability of the BEC in this material and in many other
quantum magnets with lattices of dimerized S = 1/2 Cu2+ (e.g., BaCuSiO6 [77],
KCuCl3 [78], TlCuCl3 [75, 68]) or S = 1 Ni chains (e.g., Ni(C5H14N2)2N3(PF6) [79],
NiCl2-4SC(NH2)2 [80, 81, 82]). The correspondence between a Bose gas and a
quantum antiferromagnet is given in Tab. 2.2 [76]. The general phase diagram of
such materials is schematically represented in Fig. 2.10.
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Q C P  ( H c 1 ) Q C P  ( H c 2 )
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B E C  

A n t i f e r r o m a g n e t

S a t u r a t e d  
P a r a m a g n e t

Q u a n t u m  
P a r a m a g n e t Figure 2.10 � Schematic phase diagram

of a gapped quantum magnet. The phase
boundary line divides the quantum param-
agnet from the XY AFM ordered phase,
i.e. the BEC. The magnetic �eld H in-
duces two QPTs at Hc1 and Hc2. The
shape of the phase boundary line close
to these critical �elds is important to de-
termine the nature of the ordered ground
state.

Bose gas Antiferromagnet
Bosons Magnons

Boson number N Spin component Sz

Charge conservation U(1) Rotational invariance O(2)
Condensate wave function ψi(r) Transverse magnetic order 〈Sxi + iSyi 〉

Chemical potential Magnetic �eld

Table 2.2 � Correspondence between a Bose gas and a XY quantum antiferromagnet.
Table taken from Ref. [70].
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2 Theoretical concepts

The starting point is the spin Hamiltonian of the magnetic system. In Chapter 5,
the �eld-induced QCP of the quantum magnet NiCl2-4SC(NH2)2, referred to as
DTN, will be investigated. Therefore, we will adapt our description to the case
of DTN where the magnetic Ni2+ ions with S = 1 are located on a body-centered
tetragonal lattice. There is a large single-ion easy-plane anisotropy described by
a parameter D > 0, not to confuse with the bandwidth in Fig. 2.9. Assuming
D >> Jij, which gives a non magnetic ground state at H = 0, the magnetic
structure of DTN can be described by the Hamiltonian (the following calculations
are based on Ref. [83]):

H =
∑
<ij>

Jij ~Si~Sj +D
∑
i

(Szi )2 − gµBµ0H
∑
i

Szi (2.23)

where the �rst sum is taken over all bonds connecting the Ni sites i and j with
exchange parameter Jij. The magnetic �eld H is oriented along the single-ion
anisotropy, i.e. along the crystallographic z direction, to keep the axial symmetry
of the Hamiltonian. In the limit Jij/D → 0, the ground state of eq. 2.23 is
nonmagnetic and is a direct product of spinors with Szi = 0 on each site i. The
�rst excited state can be formed by creating a single spin excitations with Szi ± 1
on each site i with a dispersionless spectrum (point at H = 0 in Fig. 2.9 and
Fig. 2.11)

ω0(~k) = D.

We can now consider the Szi ± 1 excitations as bosonic excitations

Szi = b†ibi−a†iai , S+
i = (S−i )† =

√
2(b†i +ai) , S

x
i =

1

2
(S+

i +S−i ) , Syi =
1

2
(S+

i −S−i )

where ai and bi are bosons representing -1 and +1 spin excitations on site i and
S+
i either removes a down boson or creates an up boson on site i. Since we can

not have more than 1 boson created at each site, we need the following constraints〈
a†ib
†
iaibi

〉
= 0 ,

〈
a†iai

〉
≤ 1 ,

〈
b†ibi

〉
≤ 1,

which have to be ful�lled on each site simultaneously. We can formulate this with
the help of an in�nite repulsion U between any two bosons on each site. The
Hamiltonian in Eq. 2.23 can then be mapped into the following one

H =
∑
<ij>

Jij[(b
†
ibib

†
jbj − b†ibia†jaj − a†iaib†jbj + a†iaia

†
jaj) + (b†ia

†
j + b†ibj + aia

†
j + aibj

+a†ib
†
j + a†iaj + bib

†
j + biaj)] +

∑
i

(D − hz)b†ibi + (D + hz)a
†
iai + lim

U→∞

U

N

∑
i

(a†ib
†
iaibi

+a†ia
†
iaiai + b†ib

†
ibibi)
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2.4 Spins are almost bosons

with hz = gµBµ0H. This equation can be simpli�ed if we consider that a -1 boson
has a potential energy of an amount (D + hz) and we can therefore neglect the
term a†iai and the three terms in the �rst part of the equation.
There are many ways to proceed. The goal is to obtain a description that can

be used to �t the experimental measurable, in particular of the DTN compound.
Assuming a low density of bosons, i.e. low temperature, we might transform our
Hamiltonian into a Schwinger boson Hamiltonian [84] with new operators α and
β which are boson �elds corresponding to a spin down and up excitation. The
resulting Hamiltonian is

H = Ẽ0 +
1

N

∑
~k

[(ω(~k)− hz)β†~kβ~k + (ω(~k) + hz)α
†
~k
α~k]

with ground state energy Ẽ0 and parameters

Ẽ0 = (λ−D)(s2 − 1) +
1

N

∑
~k

[ω(~k)− λ− s2J(~k)] (2.24)

ω(~k) =

√
λ[λ+ 2s2J(~k)] (2.25)

s2 = 2− 1

N

∑
~k

λ+ s2J(~k)

ω(~k)
(2.26)

D = λ(1 +
1

N

∑
~k

J(~k)

ω(~k)
) (2.27)

J(~k) =
1

2

∑
n

Jne
i~k ~Rn . (2.28)

Here, J(~k) is the dispersion of the spin excitations (Fourier transform of the ex-
change part of the Hamiltonian 2.23), ~Rn is the vector connecting a �xed site i
with its neighbor site n, λ and s are variables that have to be determined self-
consistently [84]. Meaningful results are obtained when λ ≈ D and s ≈ 1. The
magnetic �eld acts as chemical potential and when its energy is equal to the value
of the excitation gap ω( ~Q)−hz ( ~Q is the minimum position in ~k space), the system
undergoes the QPT from a quantum paramagnetic to the 3D antiferromagnetically
ordered state.
In the bosonic representation, this process can be viewed as a condensation of

magnons carrying S = 1, obeying Bose-Einstein statistics [73, 85]. In spin space,
the �eld-induced Bose-Einstein condensation of magnons corresponds to the order
of the transverse spin components, perpendicular to the applied �eld, which spon-
taneously brakes the O(2) symmetry of the Hamiltonian Eq. 2.23. The universality
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2 Theoretical concepts

class of the QCP can be determined by measuring the temperature dependence of
thermodynamic quantities like the magnetization M(T ) or the speci�c heat C(T )
and the shape of the phase border line at the QCP [68]. Tab. 2.3 displays the ex-
pectation exponents for a XY antiferromagnet and the Ising QCP, both in three
dimensions (d = 3). The BEC of magnons belongs to the 3D XY universality
class with d = 3 and dynamical exponent z = 2.

Thermodynamics

Considering the partition function of the grand-canonical ensemble for noninter-
acting bosons

Z =
∞∏
i=1

νmaxi∑
νi=0

e
− νi(Ei−µ)

kBT (2.29)

where µ is the chemical potential, Ei the energy of the particles and νi their
occupation number. For a system of bosons3 we have νmaxi =∞, then

Z =
∞∏
i=1

1

1− e−
(Ei−µ)
kBT

. (2.30)

The free energy is therefore

F = −kBT ln(Z) = −kBT
∞∑
i=1

ln

(
1− e−

(Ei−µ)
kBT

)−1

= −kBT
∞∑
i=1

lnZi. (2.31)

3Fermions have νmax
i = 1

H

Sz = ±1

Sz = 0

En
er

gy

D

Hc2Hc1

Figure 2.11 � Schematic repre-
sentation of the Zeeman splitting
of the Sz = ±1 excited states
of Ni2+-based quantum magnet
like DTN. D is the single-ion
anisotropy dominant energy, Hc1

and Hc2 are the critical �elds
which de�ne the range of the XY
AFM order (BEC phase), the
black lines represents the disper-
sion of magnons.
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2.4 Spins are almost bosons

In our case, the bosons are labeled by their crystal momentum ~k and in the con-
tinuum limit we can write

F = kBT
1

VBr.

∫
1stBr.

ln(1− e−
(Ei−µ)
kBT )d3k (2.32)

and the integration is restricted to the �rst Brillouin zone. From the free en-
ergy relation, we can derive all thermodynamic quantities like, for instance, the
magnetization and the heat capacity:

M = − 1

V

(
∂F

∂B

)
= − 1

V

∑
i

n(Ei)
∂Ei
∂B

,

CV = 2kBT
∑
i

∂ lnZi
∂T

+ kBT
2
∑
i

∂2 lnZi
∂T 2

(2.33)

where H = B/µ0 is the applied magnetic �eld and n(E) is the Bose distribution
function

n(E) =

(
e
Ei−µ
kBT − 1

)−1

.

For J/D << 1 we obtain

ω(~k) = D + J(~k) (2.34)

J(~k) = J‖ cos kz + J⊥(cos kx + cos ky)

assuming the body-centered tetragonal lattice of DTN and a cosine form of the
dispersion [82, 86]. At low temperatures, only the up bosons at the dispersion
minima (k = ±π) contribute to the thermodynamic sum. Considering ∂Ei/∂B =

∂ω(~k)/∂B = −gµB, we can evaluate the average magnetic moment

m = (B, T ) =
V

N
· M
gµB

=
1

VBr.

∫
1stBr.

d3k n
(
ω(~k)− hz

)
. (2.35)

Thermodynamic variable XY -AFM (BEC) Ising-AFM

M(Hc, T ) T 3/2 T 2

C(Hc, T ) T 3/2 T 3

Phase line Tc ∝ (H −Hc)
2/3 Tc ∝ (H −Hc)

1/2

Table 2.3 � Temperature dependencies of the thermodynamic quantities: magnetization
M(T ) and speci�c heat C(T ) at the �eld induced QCP. The exponents are given for d = 3.
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2 Theoretical concepts

Considering Eqs. 2.34, the magnetization is small but �nite for �elds H < Hc1.
Moreover, we know that in the DTN compound J⊥ ≈ 0, i.e. J⊥ << kBT and J‖.
We can then write

m(B, T ) ≈ 1

2π

π∫
−π

dk
[
e

1
kBT

(J‖ cos(k)+D−hz−µ) − 1
]−1

. (2.36)

In the range J⊥ << kBT << J‖ the magnetic moment is linear in T (m(T ) ∝
T ), while at lower temperature m(T ) ∝ T 3/2. Fig. 2.12 shows the temperature
dependence of the magnetic moment at a �eld slightly below the critical �eld Hc1

calculated from Eq. 2.36.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0

0 . 2
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m 
/��

B

T  /  K
Figure 2.12 � Temperature dependence of the magnetic moment at a �eld slightly
below the critical �eld Hc1 calculated with the equation 2.36 and parameters: D = 8.9K,
J‖ = 2.2K, J⊥ = 0.18K, g = 2.26 valid for DTN [82, 86].
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3 Experimental methods

Magnetic units Since we use magnetization measurements as a main charac-
terization technique, it is instructive to give a brief survey of the magnetic units.
In this context, it is interesting to read the publication of William Fuller Brown
Jr. [87] and Bennetts et al. [88] where the authors explain the use and removal of
various systems of units in the history of physics and technology. The magnetic
�ux density is measured in the SI unit system in Tesla (T), where 1 T = 1 Vs/m2.
In the cgs system, this corresponds precisely to 104 Gauss (G). The vacuum per-
meability in the cgs system is µ0 = 1, therefore the magnetic �ux density B and
the magnetic �eld H are used interchangeably. In fact, in the past, the magnetic
�eld was measured in Gauss, until in 1928 the Oersted (Oe) was introduced as a
new equivalent unit for the magnetic �eld. In the SI system the vacuum perme-
ability is µ0 = 4π · 10−7 Vs/Am and we measure the magnetic �eld H in A/m.
One A/m in vacuum is exactly 4π · 10−7T. This is in the cgs system 4π · 10−3 G
or ≈ 1/80 Oe.
The magnetization M is related to the magnetic induction by B = µ0(H + M)

in the SI-system, with M measured in A/m. In contrast, in the cgs system it
is B = H + 4πM , therefore 1 A/m for M in SI corresponds to 10−3 G. The
magnetic moment µ is measured in the SI system in Am2. This is 1 Am2 = 1 J/T
≈ 1023µB. This is equal in cgs system to 103 erg/G or 103 emu. "Emu" is the
so-called electromagnetic unit and is equivalent to 1 erg per Gauss. In this thesis
the SI system is used. The susceptibility will be presented in m3/mol, and the
magnetization in µB per magnetic atom.

3.1 Magnetization

A magnetic moment µ in an externally-produced magnetic �eld B has a potential
energy

Ep = −µ ·B (3.1)

From this the units of the magnetic moment are J/T (emu in cgs). The magnetic
moment of atoms or molecules is often quoted in terms of the Bohr magneton which
is equal to the magnetic moment due to electron spin

µB =
eh

4πme

= 9.27× 10−24 J/T.
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Material/Ordering χ
Vacuum 0

Diamagnetic Small and negative
Paramagnetic Small and positive

Antiferromagnetic Small and positive
Ferromagnetic Large and positive
Ferrimagnetic Large and positive

Table 3.1 � Variation of the susceptibility χ with the type of material and magnetic
ordering.

The magnetizationM is the vector �eld that expresses the density of permanent
or induced magnetic moments in a magnetic material. The origin of the magnetic
moments responsible for magnetization is microscopic, due to electric currents
resulting from the motion of electrons in atoms.
The volume magnetization M , is a measure of the magnetic moment per unit

volume
M =

µ

V
. (3.2)

How a material responds under the in�uence of a magnetic �eld is quanti�ed by
the susceptibility χ, which is the variation of the magnetization with an applied
�eld

χ =
M

H
. (3.3)

The susceptibility of a material depends on its magnetic characteristics. Ta-
ble 3.1 gives an indication of how χ varies with the type of material and magnetic
ordering (if any).

3.1.1 Magnetization measurements

Magnetization is a key thermodynamic quantity for the study of condensed mat-
ter. Although neutron scattering (NS) is the right technique to image bulk exci-
tations, magnetization measurements are essential to provide the �eld parameters
and temperature range to search for such excitations. In other words, we may
need magnetization measurements in order to know what we want to measure by
NS spectroscopy. Magnetization measurements include a large range of di�erent
techniques (see Fig 3.1) depending on the temperature range and the type of ma-
terial. We can divide magnetization measurements initially in two types: bulk and
surface. The former case can be subdivided in local and global techniques. The
local type includes:
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3.1 Magnetization

• Muon spin Rotation (µSR)

• Mössbauer Spectroscopy

• Electron paramagnetic resonance (EPR)

• Nuclear magnetic resonance (NMR)

• Nuclear quadrupole resonance (NQR)

and the global techniques with which we investigate macroscopically the sample,
include:

• Inductively coupled techniques

• Force methods.

On the other hand, the surface techniques include:

• Hall probe, SQUID on tip, etc.

The force techniques are the Gouy method and the Faraday magnetometer.
Magnetization data in this thesis have been obtained using a MPMS SQUID
(Quantum Design) and a high-precision Faraday magnetometer mounted in a 4He-
3He dilution refrigerator. The theoretical principles of the Faraday magnetometer
are outlined in Section 3.2.1 and its construction details in Section 3.2.1.3.

Among the various methods [89] inductive ones (sample extraction, VSM and
�eld modulation techniques) are most commonly used for the magnetization mea-
surements with a superconducting magnet. Except for the �eld modulation tech-
nique one must move the sample inside of a pick-up coil to drive a time varying
magnetic �ux. This action becomes a problem in the mK temperature regime
because it produces heat and warms-up the sample. With the �eld modulation
technique (AC method) one measures the di�erential susceptibility as a function
of the applied �eld. This technique is usually used at low temperatures since the
sample is not moved during the measurement.
The main advantage of the Faraday magnetometer compared to other methods

is that the temperature of the sample can be exactly estimated due to the good
thermal coupling with the mixing chamber and high magnetic �elds can be used
(up to 12 T). The in�nitesimal displacement of the sample can be monitored by
a capacitive cell. Such capacitive cell can be made from non-magnetic materials,
simplifying the analysis of the data, since only a diamagnetic contribution needs
to be subtracted. Another important advantage is that the sample can be easily

31



3 Experimental methods

Magnetization

Neutrons

Surface

Hall Probe

Photoemission

Squid on tip

etc

Faraday
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µSR
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EPR

NMR

Mössbauer

Bulk

Global
Local

coupled Methods

Gouy

Figure 3.1 � Classi�cation of di�erent experimental methods to measure the magneti-
zation of a sample.

oriented and quickly changed. Despite all these advantages there are some di�-
culties. One is that magnetically anisotropic samples will be subjected to a torque
which will produce an additional signal. This signal can be larger than the mag-
netization signal, making it di�cult to subtract. It is also important to note that
working with high gradient �elds can produce lateral instabilities [90], which can
move the sample and a�ect the �nal magnetization measurement. All these issues
will be described in detail in section 3.2.1.3.

3.2 Experimental techniques

The following sections give a brief review of the experimental methods used in
this thesis as well as their operational principles and applications. In general, the
methods used in this work for measuring the magnetization can be classi�ed in two
categories [91]: the force method where one measures the magnetic force exerted
on a sample placed in an inhomogeneous magnetic �eld and the induction method
where one measures the signal (voltage) induced by moving the sample with respect
to the detecting coils. The �rst category is exempli�ed by the Faraday balance
method [91]. A Faraday balance is a device for measuring magnetic susceptibility
and it is often used in magneto-chemical studies because one can simultaneously
observe changes in both magnetic properties and sample weight [92]. However,
since the gradient is produced by the specially shaped poles (inhomogeneous �eld)
of a large electromagnet, the method becomes unstable, when the �eld dependence
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3.2 Experimental techniques

of the magnetization M(H) is measured. This is the case if the sample contains
ferromagnetic material. The reason for this is that the �eld gradient, and there-
fore the sensitivity, is a function of the �eld which must be determined empirically.
One �nds that it decreases rapidly towards zero at low �elds and is also unstable
at high magnetic �elds [93]. The second category is exempli�ed by the vibrating
sample magnetometer (VSM) or the wide used superconducting quantum interfer-
ence device (SQUID) magnetometer. This method has a high sensibility but can
only be used in magnetic �elds as high as 7 T and its application at temperatures
below 2 K is rare.

3.2.1 Faraday magnetometer

3.2.1.1 Measurement of the force

In the Faraday method, the magnetization M is measured by observing the force
F acting on a specimen of volume V placed in an inhomogeneous magnetic �eld
H. The relevant equation is:

F = (M · ∇)µ0H. (3.4)

Such magnetic force can be measured capacitively by measuring the displacement
produced by the sample on a variable parallel-plate capacitor, whose movable
plate is suspended by elastic springs. Suppose that F is directed perpendicular to
the plates, than the movable plate will be pushed until the restoring force of the
springs balances with F , reaching equilibrium. The displacement of the plate is
proportional to F and can be detected as a capacitance change ∆C.

Capacitance 
Bridge

Movable plate

Sample

Fixed plate

F

S

C

Hi

Shielded wires

Low

CuP wires (Springs)

Figure 3.2 � Working principle of the measuring cell. The magnetic force F exerted on
a sample situated in a spatially-varying �eld is detected as a change in the capacitance of
a parallel plate capacitor, whose movable plate is suspended by elastic CuP wires acting
as a spring.
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Figure 3.2 shows schematically the working principle. In a pioneering work by
Sakakibara et al. [16] a Faraday force magnetometer was designed for magnetiza-
tion measurements. We used this work as a reference to design our magnetization
cell. This method allows us to perform magnetic measurements in high magnetic
�elds and at mK temperatures.

3.2.1.2 Capacitive cell

The magnetic force can be measured by a capacitive method with a very sensitive
capacitance cell able to detect small variations produced by the change in the
magnetization. The measuring cell in which the sample holder is suspended by a
crossed set of wires is shown in Fig. 3.3. This con�guration is very sensitive to
torque e�ects specially when we are measuring along the magnetic hard axis of
a crystal. This is because just a single set of wires was used. Nevertheless, for
magnetization along the easy axis the performance of the cell is very good, since
no radial component exists and the torque, if is small, can always be subtracted.
We have modi�ed the sample platform to reduce the torque contribution, which

is proportional to the magnetization perpendicular to the applied �eld. The sample
holder (gray component in Fig. 3.3) has been now suspended on a double set of
wires as displayed in Fig. 3.2. The wires are clamped on two parallel bronze rings
which are connected to the low-temperature stage of the cryostat. An image of the

Sample Holder

bbb

Figure 3.3 � Left: Schematic representation of the initial design of the capacitive cell.
Right: E�ect of the torque exerted on the sample holder due to the inhomogeneous mass
distribution or to the crystal anisotropy.

cell design is shown in Fig. 3.4. The lower part of the sample holder is the upper
plate of the capacitor. It is made of epoxy (Stycast 1266) and its electrode is formed
by a thin layer of silver paint (Dupont 4922), which has been carefully polished
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3.2 Experimental techniques

and covered by a thin layer of GE insulating varnish. This process is important in
order to increase the sensitivity of the cell and achieve a large short-cut value of
the capacitance. The total weight of the sample holder is 0.2134 g. The sample is
located at the top of the Stycast holder and connected with the mixing chamber
through a thin (0.0125 mm) silver foil as a thermal link. The upper capacitor plate

z
r

a)

z

b)

1

2

3

4

5

Figure 3.4 � Schematic representation of the capacitance cell. a) Complete assembled
cell. b) Exploded view drawing of the magnetization cell and its parts: 1.- Upper ring
2.- Sample holder (movable plate) 3.- Lower ring 4.- Lower capacitor plate 5.- Locking
plate.

is suspended by four phosphor - bronze (CuP) wires of 0.125 mm diameter with
an initial tension of 0.5 N. Such wires are crossed in two separate (3 mm) planes
in the z direction and with a di�erence of 45o in the x-y plane (see Fig. 3.5). The
diameter of the movable plate is 10 mm and the unloaded capacitance C0 is 7.2 pF
with a space between plates of about 0.1 mm. The lower capacitor plate is made of
brass and polished (1 µm) to a mirror �nish. This lower plate can be adjusted in
the z direction for speci�c cases in which the magnetization will exceed the spatial
movement of the upper plate, or simply to maximize the resolution (see Fig.3.9).

3.2.1.3 Design and performance of the cell

To design a reliable cell we need to consider the forces acting on a sample under
the in�uence of a gradient �eld. If the sample is strongly anisotropic, M is not
always parallel to the �eld H and may have a small radial component Mr. We
assume Mr << Mz ≈ M ≡ |M|. Neglecting terms proportional to ∂Hz/∂r, the
forces will be then

Fz = Mz
∂HG

∂z
(3.5)

where HG is the gradient �eld, and the radial component

Fr = −Mr

2

∂HG

∂z
. (3.6)
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Figure 3.5 � Di�erent views of the sample holder described in section 3.2.1.2. A robust
sample holder and extra two holes for 2 set of CuP wires are the main di�erences from
the initial design.

The component Fr is important for the lateral instability e�ect produced for high
gradient �elds [94]. In addition to the force the sample will experience a torque

N = M×H . (3.7)

All forces and the torque contribute to the displacement of the capacitor plate,
and the response ∆C may be written to a �rst approximation as

∆C = υFz + νFr + ω|N| (3.8)

where the coe�cients υ, ν and ω depend on the particular design of the cell. Other
magnetization cells are made of di�erent materials and based on di�erent princi-
ples, for example cantilevers or diaphragms [95]. These kinds of magnetization
cells present a strong torque signal, therefore a �eld dependence magnetization is
always complicated to analyze when the torque response is of the same order or
bigger than the magnetic signal. This usually happens in the case of extremely
anisotropic materials, since N is very sensitive to a misalignment of the sample
and is, therefore, not reproducible. We have tested two cells, cell 2 has a smaller
sample holder (small background contribution) but is suspended on just a single
set of wires. This con�guration provides a large torque e�ect. Cell 3 has a bigger
sample holder, but it is suspended on two sets of wires to reduce the torque e�ect.
It can be seen in Fig. 3.7 that in the case of the new cell 3, tested with a sample
YbCo2Si2 the e�ect of the torque is suppressed compared with the previous design
(cell 2). The results in Fig. 3.7 were obtained under the same gradient �eld and
temperature conditions for H‖[100] and H‖[001]. The new con�guration allows
the sample holder to move preferentially in the z direction, so that the capacitor
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plates are always parallel. It also avoids lateral instabilities that can modify the
�nal capacitance [90]. The torque signal (red points) is an additional signal that
needs to be subtracted from the raw capacitance data (black points) by comparing
the signals with the gradient coils switched on and o�. The displacement δ of the
capacitance plate produced by the force Fz can be estimated by the formula:

δ/Fz =
L3

192nEI
(3.9)

where n and L are the number and the e�ective length of the wires, respectively,
E is the Young's modulus and I is the moment of inertia (I = πD4/64) of the wire
with diameter D. For the values of the new cell (L = 15 mm, D = 0.15 mm, n = 4,
E = 120 GPa), the response of the cell can be estimated to be δ/Fz ≈ 3 mm/N, or
∆C/Fz ≈ 300 pF/N. The sensitivity of the cell can be also measured by putting a
weight on it, or by observing the response due to a specimen whose magnetization is
already know. We show in Fig. 3.8 the cell response to di�erent weights obtained at
room temperature (RT). The capacitance change was monitored by a capacitance
bridge (Andeen-Hagerling, 2500A) in a three terminal con�guration. The unloaded
capacitance was 7.2 pF at RT and 5.4 pF at 4.2 K. Notice that ∆C is not linear
with respect to weight, especially above ∆C/C0 ≈ 0.2. If we neglect the edge
e�ects of the capacitor, ∆C can be transformed to the displacement δ of the plate
by the simple formula

δ = ε0A

(
1

C0

− 1

C

)
(3.10)

were A denotes the area of the plate, ε0 is the permitivity of vacuum and C =
C0 + ∆C (see Fig. 3.8). A set of di�erent weights was used (ASTM E617 Class 2,
1-500 mg) in order to gradually change the relative capacitance versus the distance
between the plates. In the calibration with di�erent weights (see Fig. 3.8) a linear

Figure 3.6 � Previous cell 2 (left) and new cell 3 (right).
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Figure 3.7 � Comparative analysis of the performance between the initial design (cell
2) and the new load cell (cell 3) developed in the present work, using YbCo2Si2 as a test
material. The measurements were performed under the same conditions in gradient �eld
and temperature. In the �gure d2 (black points) correspond to the displacement of the
platform when the gradient �eld is not zero and d1 (red points) when the gradient �eld
is zero.

response for small weights up to 2 g can be observed. Usually we use this range
in our magnetization measurements (δ ≤ 5µm).

3.2.1.4 Sensitivity

The sensitivity of the magnetometer is governed by the sensitivity of the capaci-
tance cell itself, together with the maximum gradient that we can obtain and the
resolution of the capacitance bridge. This low torque capacitance cell can detect
force changes as small as 5 · 10−6 Newtons. The maximum �eld gradient in the
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Figure 3.8 � Response of the load cell 3 to di�erent weights, measured at room tem-
perature. The black points are the observed capacitance change, while the red ones show
the displacement of the movable plate of the cell, calculated from Eq. 3.10. The inset
zooms in the values between 1 and 100 mg.
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Figure 3.9 � Calculation of the capacitance vs. the displacement of the plates for cell
3, according to Eq. 3.10.

system is 10 T/m. Then the minimum detectable magnetic moment is of the order
of 10−6 emu, (see Sec. 3.2.1.3). The sensitivity limits are determined by signal-
to-noise ratio at the input circuit of the Andeen-Hagerling capacitive bridge. The
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coils used to supply the gradient �eld (∂Hz/∂z) are shown in Fig. 3.13 as they
are mounted inside the main magnet. The symmetry, size and sample position are
crucial factors for an accurate measurement, since the force is a strong function of
the spatial coordinates.

3.2.1.5 Background contributions

A measurement of the capacitance includes several contributions: sample magne-
tization, magnetization of all pieces of the sample holder and the contribution of
the torque. A sample holder can produce a substantial contribution to the total
signal. The holders used in this thesis have a single type of substrate, Stycast and
are substantially larger in volume and mass than the sample itself. Fortunately, the
Stycast is diamagnetic (see Fig. 3.12). Under applied �elds its contribution is lin-
ear in �eld and temperature independent. Therefore the diamagnetic contribution
can be easily substracted.

3.2.1.6 Calibration

Magnetization cells are generally calibrated with substances whose magnetization
is known. The saturation moment of a small sphere of pure nickel is usually used as
a secondary calibration standard for most magnetic measurements [96]. The two
major reasons for choosing nickel are that it can be obtained with high purity and
that the saturation moment of nickel is easily attained at low magnetic �elds. The
absolute accuracy of the instrument depends on the knowledge of the magnetic
properties of the calibration standard and reproducibility of sample position.
This method is usually applied in cantilever magnetization cells in which the

initial load capacitance never changes (≈ 0.1 pF), since the samples are very
small. We measure crystals between 5-30 mg. The initial capacitance in every
new measurement may change from sample to sample. This change in the initial
capacitance makes it di�cult to get absolute units by calibration against a refer-
ence material. Another possibility of calibration is to compare the �nal �eld and
temperature dependence magnetization measurement M(H,T ) against the mea-
surements done in an SQUID. In this way we obtain the absolute magnetic units
(see. Fig. 3.10). This method (calibration against other instrument) is more con-
venient and versatile since gives direct units without the necessity to calibrate the
magnetization cell.
Figure 3.10 shows the result of the calibration obtained by comparing the re-

sponse of a sample previously measured in the SQUID at 2 K and the measurement
performed in the Faraday magnetometer at the same temperature with a vertical
gradient �eld of 10 T/m.
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The magnetization in Fig. 3.10 is extracted from the di�erent of the �eld sweep
with and without gradient �eld. The �nal data on this �gure emerge from the
di�erence of two curves as shown in Fig. 3.7 according to Eq. 3.11. The �nal
magnetization then will be proportional to the net displacement (δ) of the up-
per capacitor plate when ∂Hz/∂z 6= 0 after subtracting the displacement when
∂Hz/∂z = 0 and will be de�ned by the formula

M ≈
(
∂Hz

∂z

)−1

(d2 − d1). (3.11)

The left panel of Figure 3.11 shows how the magnetic force F ∝ ∆ C is direct
proportional to the gradient �eld. This can be easily understood by looking at the
right panel of Fig. 3.11, in which it is shown the response of YbRh2Si2 and the
linear dependence of the �nal capacitance against di�erent gradient �elds.
Figure 3.12 shows the magnetization of two empty cells between 0.05 K and

2 K : cell N.2 and 3. The magnetization contribution of the empty cell presents
a diamagnetic behavior, which is consistent with the expected diamagnetism of
the epoxy. In contrast, cell 2 shows a temperature dependence when the magnetic
�eld was sweept. The non-linear response of the data for cell 2 is possibly due
to the contribution of the phosphor-bronze wires which pass through the sample
holder. In all measurements this contribution of the cell needs to be subtracted
from the measured signal.
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Figure 3.10 � Calibration against the result obtained with a SQUID at 2 K in YbCo2Si2.
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Figure 3.11 � Left: dependence of the capacitance for di�erent gradient �elds in
YbRh2Si2. Right: dependence of the capacitance versus the strength of the gradient
�eld.
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Figure 3.12 � Background contribution of cell 2 and 3. The �nal signal (M(a.u)) is the
result of the total displacement dtot minus the displacement produced by the torque dN ,
multiplied by the inverse of the gradient �eld.

3.2.1.7 Magnets characteristics

In the Faraday method used for magnetization experiments [95, 97] the gradient
�eld is usually produced by a solenoid magnet in which the sample is situated out
of the center position. In this way, the same magnet produces the magnetization
and the gradient �eld. This con�guration has a strong position dependence of
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the gradient �eld, and produces a poor reproducibility of the results. A much
better method is to use gradient coils [98] in which the �eld gradient can be
independently applied. We use superconducting magnets in gradient con�guration
to achieve high magnetic �elds. The pair of superconducting coils are Oxford SC
magnets with gradient coils (counter-wound split coils). A schematic picture is
shown in Figure 3.13. The main coil produces magnetic �elds (HM) up to 12 T,
with a homogeneity at the center better than 1 part in 104 over a 10 mm diameter
in spherical volume. The gradient coils are able to produce a spatially varying
magnetic �eld ∂Hz/∂z of 10 T/m. In our con�guration, the gradient coils are
wounded inside the main coil, and are driven by an independent power supply.
The uniformity of the �eld gradient along the z axis is better than 0.5 % over ±
5 mm from the center.
The sample is located at the symmetry center of the gradient coils. At this

position (z = 0) the leading terms of the z component of the vertical �eld gradient
is expressed as (

∂Hz

∂z

)
z=0

=
∂HG

∂z
+
∂HM

∂z
. (3.12)

For our magnet ∂HM/∂z is expected to be very small (10−3 HM [T/m]). This value
is usually much smaller than ∂HG/∂z even at the high �elds and can therefore be
ignored. It should be noted that, although the �elds produced by the magnet may
be axially symmetric, Eq. 3.12 with the condition ∇ · (µ0H) = 0 leads to a radial
component of the �eld Hr of the order

Hr ≈ −
r

2

∂HG

∂z
. (3.13)

3.2.1.8 Installation in a dilution refrigerator

The magnetization cell was installed in a 4He - 3He dilution refrigerator, the cooling
power of which is 25 µW at T = 100 mK. The magnetization cell is attached to a
silver cold �nger which is thermally connected to the mixing chamber. In addition
to the thermal link provided by the magnetization cell, the sample holder is directly
connected to the cold �nger with a silver foil of 10 µm thickness. The sample is
positioned on the silver foil over the sample holder and �xed with grease (Apiezon
N) or Varnish (GE-7031). The bending force of the silver foil is small compared
to the restoring force in opposite direction of the load cell, and therefore does not
disturb the measurement. The paramagnetic contribution (Pauli paramagnetism)
of the silver foil can be neglected. We monitored the temperature of the sample
with two of RuO2 thermometers (LakeShore 2.2 kΩ Rx-102-A-AA). One is located
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directly on the silver cold �nger, near the silver foil and the second one on the
mixing chamber, as shown in Figure 3.14.
Two small coaxial cables are used to electrically access the load cell. In an

isothermal magnetization curve, the time varying �eld will induce eddy currents
in the metallic parts of the cell and cell holder, which can raise the sample tem-
perature. We have then to choose a sweep rate slow enough to maintain the
temperature of a constant value and ensure isothermal condition. Despite the
eddy currents we can make �eld dependent magnetization measurements at a base
temperature of 40 mK with an uncertainty of ± 5 mK. The sharp peaks in the
temperature around HM = 0 (see Fig. 3.15) are caused by the �ux jumps in the
superconducting magnet.

3.2.2 SQUID magnetometer

One of the most sensitive magnetometry technique is the SQUID magnetometer.
It uses a combination of superconducting materials and Josephson junctions to
measure magnetic �elds with resolutions up to ∼ 10−9 emu or greater [99]. In this
work we have used MPMS SQUID and VSM SQUID magnetometers to measure
the magnetization M(H,T) at high temperatures in order to calibrate the low-
temperature magnetization measurements. The sample is usually �xed inside of
a plastic straw. The set up is placed in a 4He cryostat, in which temperatures

µ0H(z) dHz/dz

z

dHz
dz

Main SC Coil

z

Gradient SC Coil

z

r

Figure 3.13 � Main and gradient �eld pro�les in the plane of symmetry of the super-
conducting magnet as a function of the vertical coordinate z (left) and the schematic
diagram of the superconducting set of coils used for the Faraday method (right).
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3.3 Magnetization measurements at high pressure

Figure 3.14 � Cross-sectional view of the Faraday magnetization cell installed in a
conventional 4He-3He dilution refrigerator.

from 300 to 1.8 K can be achieved. A superconductor magnet inside the cryostat
provides a magnetic �eld strength up to 7 T.

3.3 Magnetization measurements at high pressure

Like magnetic �eld, pressure can be used as control parameter in order to modify
magnetic properties of a material. The application of pressure can produce im-
portant changes in the structural and electronic con�guration of a crystal. Com-
pared to isoelectronic substitution (chemical pressure) which introduces additional
atomic disorder, hydrostatic pressure o�ers a clean way to tune the system through
phase transitions. This technique is often used in the �eld of strongly correlated
electron systems where high pressures are used in combination with low temper-
atures and high magnetic �elds. Therefore, the measurements of magnetization
under such conditions are very desirable. The type of pressure cell used here is
a small piston-type cell (2.4 g) made of a non magnetic copper-beryllium alloy
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Figure 3.15 � Temperature reading of the sample Ts and mixing chamber TM as the
�eld is varied between - 2 and 2 T, obtained from the two RuO2 thermometers installed
near the sample and directly below the mixing chamber. The sharp peaks in Ts are
caused by �ux jumps in the superconducting magnet.

(Cu-Be), which can maintain their mechanical properties up to pressures of about
2 GPa. In this pressure cell even the piston is made of Cu-Be. Therefore, the
contribution of the total cell to M can be easily subtracted from the raw data.
A major problem of magnetic measurements under pressure is the separation of

the small changes in the magnetization of the sample from the magnetization of the
manometer and pressure cell. One measures the total magnetization, which is the
sum of the magnetization of the sample, pressure cell and pressure manometer (see
Fig. 3.16). We have measured the pressure cell separately to be able to subtract
this contribution and achieve a good accuracy of the absolute values.
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Figure 3.16 � Picture and schematic diagram of the miniaturized piston-cylinder type
pressure cell used for magnetization measurements. The di�erent components of the
cell are indicated by numbers from 1 to 7. 1.-Body cell (CuBe), 2.-Locking nut, 3.-
Plug (CuBe) and inner Cylinder, 4.-Samples, 5.- Manometer (Pb), 6.-Piston (CuBe)
7.-Backing Plate. Photo by R. Borth [100].

3.3.1 Experimental setup for M(H,T ) under pressure

Magnetization measurements under pressure were done in a dilution refrigerator
cryostat as described in section 3.2.1.8, at low temperatures and high magnetic
�elds. The temperature range of the measurements is 0.05 ≤ T ≤ 4 K, but
we also used a MPMS to obtain M (H,T ) measurements in the temperature range
2 ≤ T ≤ 300 K.
To determine the exact pressure inside the pressure cell, the SC transition tem-

perature (Tc) of lead (Pb) was monitored. The pressure sensor is located inside the
pressure cell near the sample. Another sensor is placed outside the cell in order
to obtain the SC transition at normal pressure. The SC transition was monitored
by χAC(T ) measurements. The evolution of Tc for Pb is easily found in the liter-
ature [101]. To measure the magnetization of the sample under pressure we have
positioned the pressure cell (l = 16 mm, d = 6 mm) on the sample holder in either
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axial or longitudinal orientation with respect to the z axis. In this way, we were
able to measure two crystallographic directions.

Figure 3.17 � Pressure cell mounted transversely on the magnetization cell. After the
measurements, the contribution of the empty pressure cell was subtracted from the total
magnetization.
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4.1 Introduction and motivation

The general understanding of quantum phase transitions (QPTs) is based on the
concept of a single energy scale that fades continuously for T → 0 (see Sec. 2.3).
The conventional theoretical approach associates with this energy scale an order
parameter that is de�ned �nite inside a region of the phase diagram and zero
elsewhere [1, 48, 49]. This region is separated from the rest by a 2nd-order phase
transition line which vanishes at T = 0, i.e., at the quantum critical point (QCP).
In materials with magnetic phase transition temperatures close to zero, the energy
scale is usually considered to be the ordering transition temperature - e.g., in the
case of antiferromagnetic (AFM) systems, this is the Néel temperature TN - and
the order parameter is the staggered magnetization [5, 14]. In metals the magnetic
order can be of the spin-density-wave (SDW) type and the same electrons which
form the Fermi surface are involved in the QPT (see Sec. 2.3.1). This is the case of
heavy-fermion compounds where the QPT separates a paramagnetic (PM) heavy
Fermi liquid (FL) from an AFM metal. In these systems there are two principal
energy scales: kBTK and kBTRKKY which derive from the respective interactions,
the Kondo and the RKKY (see Secs. 2.2.2 and 2.2.3). TK de�nes the temperature
at which the localized f -electrons start to hybridize with the itinerant d-electrons
to form a larger and heavier Fermi surface, TRKKY is a measure of the inter-site
exchange magnetic coupling. The interplay between these energy scales determines
the magnetic ordering temperature TN and characterizes the conventional QPT
(see Sec. 2.2.4) [41]. In real systems, however, the situation can be rather more
complex, due to the presence of multiple energy scales that can get involved in
the QPT (see Sec. 2.3.2) [57]: Spin, charge, orbital and lattice degrees of freedom
have to be considered. In addition, many materials show more than just a single
magnetic phase transition. Therefore, experimental studies of quantum criticality
become quite demanding but, on the other hand, promising for the discovery of
novel correlated phases of condensed matter.
A prototypical example of such a complex system is the tetragonal YbRh2Si2,

which is particularly suitable for studying QPTs [6, 102, 7]. In fact, this com-
pound has a large TK ≈ 25K and a very small TN = 72mK that can be sup-
pressed by a magnetic �eld µ0HN = 60mT (H ⊥ c, with c being the mag-
netically hard axis) or chemical negative pressure (P ≈ −0.25GPa) [103, 104].
Three other intriguing features have recently been detected: (i) Another sharp
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phase transition at TL = 2.2mK [105], (ii) a kink in the magnetization at
H0 ≈ 10T [106, 107], and (iii) a crossover energy scale T ∗(H) [13, 57]. The
origin of the low-T transition is still unclear, but the comparison with the isoelec-
tronic analogue YbCo2Si2 [108, 109] and the evolution of TL observed in the series
Yb(Rh1−xCox)2Si2 (Co substitution corresponds to negative pressure) might sug-
gest a second, possibly 1st-order, AFM transition [110, 111, 112]. The feature at
H0 has been interpreted as �eld-induced suppression of the HF state, as hydro-
static pressure experiments have revealed a clear correspondence between H0 and
the Kondo scale TK [106, 107]. Accurate de-Haas-van-Alphen experiments could
show that the Fermi surface smoothly changes at H0 suggesting a Lifshitz-like
type of transition [113]. Meanwhile, thermopower experiments and renormalized
band structure calculations have undoubtedly demonstrated that the anomaly at
H0 is caused by the �eld-induced shift of a van-Hove singularity (in the quasipar-
ticle density of states) through the Fermi level, causing two consecutive Lifshitz
transitions [114, 115]. Finally, there is the crossover line T ∗(H) which has been
found in measurements of the Hall-e�ect [13] and various other thermodynamic
properties [57]. The full width at half maximum (FWHM) of these crossovers is
proportional to temperature. This suggests a step-like change of the Hall coef-
�cient at T = 0 implying a Fermi surface reconstruction. This �nding inspired
a series of new theoretical proposals which considered the Fermi surface collapse
due to the critical breakdown of the Kondo screening e�ect at the �eld-induced
AFM QCP, including degrees of freedom other than �uctuations of the order pa-
rameter [52, 51, 53, 116]. In addition, recent detailed experiments have shown
that the FWHM is proportional to temperature and therefore consistent with the
energy over temperature scaling of the quantum-critical single-electron �uctuation
spectrum [61].
However, experimental evidence that the energy scale T ∗(H) does not change

much under applied pressure [117, 118], while the other energy scales TL(H),
TN(H) and T0(H) are very pressure sensitive [103, 104, 112], has reopened the
debate on how to interpret the experimental results. Three possibilities are cur-
rently considered: (i) The T ∗(H) line represents a change in the Fermi surface
and inside the magnetic phase it is seen as a Lifshitz transition where the two
magnetic phases have di�erent topology [58, 59]; (ii) it represents the e�ect of a
Zeeman-induced Lifshitz transition [119, 120, 121]; (iii) recent inelastic neutron
scattering experiments associate the electron spin resonance signal [122] seen in
YbRh2Si2 with a �eld-induced mesoscopic spin resonance, which evolves in �eld
like the T ∗(H) line [123].
A detailed study of the magnetic �uctuations at the QCP is hindered by the

lack of knowledge of the magnetically ordered structure which is due to the very
low TN and the unexpectedly small ordered moment (10−3µB/Yb) [124]. One way
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to overcome this problem is to stabilize the AFM order by applying hydrostatic or
chemical pressure, thus enhancing TN and the size of the ordered moment. This
has been successfully realized by substituting isoelectronic Co for Rh [125]: In
fact, the whole series Yb(Rh1−xCox)2Si2 crystallizes in the tetragonal ThCr2Si2-
structure (space group I4/mmm) [110, 112]. The complete substitution of Rh
by Co eventually leads to the stoichiometric compound YbCo2Si2, which is easier
to study, since its TN = 1.7K [126, 111] with almost localized 4f electrons and
TK << TRKKY [110, 112]. The knowledge of its magnetically ordered structure
will possibly give some hints about the magnetic structure in YbRh2Si2, provided
that the Yb Kramers-doublet ground state is the same in both compounds.
In the following Sec. 4.2 we follow the evolution of the three aforementioned

energy scales under the e�ect of chemical pressure (Co substitution) by means of
magnetization measurements in magnetic �elds as high as 12T and temperatures
down to 0.05K [16]. This allow us to observe the evolution of itinerant to local
magnetism by monitoring the magnetic moment from the small value of about
≈ 0.1µB in YbRh2Si2 to ≈ 1.4µB in YbCo2Si2, for H ⊥ c, and the evolution of
the magnetic ordered ground state.
In Sec. 4.3 we focus on the nature of the �eld-induced QCP in

Yb(Rh0.93Co0.07)2Si2, which is supposed to be of itinerant character (see Sec. 2.3.3),
i.e. to be described by the SDW scenario. This is done by calculating the magnetic
Grüneisen ratio (see Sec. 2.3.4), the analysis of which provides direct evidence of
the presence of a QCP and information about its nature. A similar analysis is done
in Sec. 4.4 with very demanding experiments on YbRh2Si2 under a hydrostatic
pressure of 1.5GPa, which corresponds to a chemical Co substitution of x ≈ 0.1,
i.e. near to x = 0.07.
Finally, in Sec. 4.5 the low-temperature H−T magnetic phase diagram of high-

quality single crystals of YbCo2Si2 is derived by applying the magnetic �eld along
three crystallographic directions: [100], [110] and [001]. These data can be used to
test the CEF calculations (see Sec. 2.1.1) by providing the values of the saturation
magnetization and clarify the evolution of the magnetic structure in an applied
magnetic �eld.

4.1.1 The heavy-fermion compound YbRh2Si2

The heavy fermion (HF) compound YbRh2Si2 crystallizes in the body-center
tetragonal structure ThCr2Si2 (see �g 4.1) (space group I4/mmm) with lattice
parameters a = 4.007Å and c = 9.858Å [6]. The Yb ions in YbRh2Si2 are in
the trivalent state with J = 7/2 split into four Kramers doublets due to the crys-
talline electric �eld (CEF) (cf. Sec. 2.1.1) [6]. Inelastic neutron scattering (INS)
experiments have shown that the ground state is separated from the three excited
doublets by approximately 17, 25, and 43meV corresponding to 200, 290, and
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500K [127]. Similar values have be measured by Stock et al. [123]. This was also
recently observed in Scanning Tunneling Microscopy (STM) [128]. The suscepti-

Figure 4.1 � Body-center tetragonal crystal structure of YbRh2Si2 (space group
I4/mmm).

bility χ follows a Curie-Weiss behavior above 200K for magnetic �elds along both
crystallographic directions, H‖c and H ⊥ c with an e�ective magnetic moment
µeff = 4.4µB, which is close to the magnetic moment expected for a free Yb3+ ion
(4.54µB). The Weiss temperatures ΘW (H‖c) = −180K and ΘW (H ⊥ c) = −9K
indicate a strong magnetocrystalline anisotropy and point to an AFM ground state,
or at least a ground state with AFM interactions [129]. At low temperatures, χ⊥c
is very large and about 20 times larger than χ‖c [130]. This and the value of the
Sommerfeld-Wilson ratio of about 30 indicate the presence of strong ferromag-
netic �uctuations [63]. At TN a sharp peak is observed in χ⊥c (see Fig. 4.2a) below
which antiferromagnetism sets in. The ordered moment has been reported to be
very small (10−3µB/Yb) [124].
The electrical resistivity ρ(T) exhibits a weak negative temperature dependence

at high-T decreases sharply below 100K indicating the development of coherence
e�ects, characteristic of Kondo lattice systems. The characteristic Kondo temper-
ature TK ≈ 25 − 29K was determined from the magnetic entropy (cf. inset of
Fig. 4.2c) and thermopower experiments [6, 131]. In zero �eld and at ambient
pressure ρ(T) follows a quasi-linear behavior below 10K indicating strong non-
Fermi-liquid (NFL) behavior (cf. Fig. 4.2b) [7]. A pronounced kink at TN marks
the onset of the AFM ordering below which ρ(T) follows a T 2 behavior expected
for a Fermi liquid. This is con�rmed by the large and constant Sommerfeld coef-
�cient γ0 = Cel/T (T → 0) = 1.8 J/K2mol [7] which evidences the HF character of
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Figure 4.2 � a) Ac-susceptibility measured in zero external magnetic �eld H and a
modulation �eld of about 11µT applied perpendicular to the c-axis [132]. The arrow
indicates the peak at the Néel temperature TN . b) T -dependence of the resistivity in
zero �eld which is ∝ T above TN and ∝ T 2 below TN . c) Contribution of the 4f -
electrons to the speci�c heat, plotted as ∆C/T vs. log(T0/T ) from Ref. [107]. The red
line is a logarithmic �t to the data between 0.3 and 10K. The inset shows the evolution
of the entropy S(T ) with temperature which reaches the expected value of Rln8 for
a J = 7/2 Yb3+ ion at about 300K. The magnetic speci�c heat data shows a broad
Schottky anomaly at ≈ 60− 70 K which is consistent with the CEF schema proposed by
Stockert et al. [127].

YbRh2Si2. The speci�c heat measurements reveal strongly enhanced values and a
logarithmic increase of the 4f -electron Cel(T )/T (see Fig. 4.2c)1 being a further
hallmark of the presence of spin �uctuations and the emergence of NFL behavior.
The logarithmic increase of Cel/T towards lower temperatures can be described by
a function proportional to log(T0/T ) where T0 ≈ 25K can be considered the char-
acteristic spin-�uctuation temperature according to Ref. [49]. Most interestingly,
below T = 0.3K, Cel/T increases strongly than a logarithmic function following
a power law Cel/T ∝ T 0.34. This additional upturn was ascribed to the breakup
of the heavy quasiparticles at the QCP [7]. The AFM phase transition is charac-
terized by an extremely sharp anomaly at TN [7, 133] below which a tiny amount
of entropy, about 0.03Rln2, is released [107] in agreement with the small ordered
moment.

1The electronic contribution Cel(T) is derived by subtracting the non-magnetic contribution of
LuRh2Si2 from the total speci�c heat of YbRh2Si2.
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Figure 4.3 � Left: Isothermal magnetization measurements of YbRh2Si2 at 0.05K
for �elds perpendicular to the c direction (H ⊥ c) up to 12T. The arrow indicates the
position of H0. The inset shows the same data in a double logarithmic scale to emphasize
that M ∝ H0.7. Right: Isothermal magnetization measurements of YbRh2Si2 at various
low temperatures below and above TN with H ⊥ c. The arrow marks the position of the
critical �eld HN . The inset shows a magnetization measurement at 0.05K with �eld
parallel to the c direction (H‖c). The black straight lines have been drawn to emphasize
the kink at HN .

The magnetization isotherms M(H) of YbRh2Si2 are quite rich of features (see
Fig. 4.3). At 0.05K M(H) shows a pronounced kink at about 0.06T which re-
mains sharp even above TN . This feature has been associated with the presence of
a crossover energy scale T ∗(H). This crossover sharpens on cooling and at T = 0
marks the abrupt change of the Fermi surface at the AFM-QCP as evidenced
by Hall-e�ect experiments [13, 61] in agreement with the predictions for the lo-
cal Kondo breakdown scenario [52, 51, 134, 116] (see text below). For H > HN

the magnetization increases steeply following a power law M ∝ H0.7 (see inset
of Fig. 4.3) up to H0 ≈ 10T where it shows a kink and the slope of M vs. H
strongly decreases. The increase of M between 0.1 and 10T is too strong to be
associated with Pauli paramagnetism, but it indicates the continuous suppression
of the Kondo e�ect which increases the measured magnetic moment. The value of
M at H0 is about 1.1µB, and it is still smaller than the saturation value of about
1.7µB expected for the Γ7 ground state as deduced from ESR [122, 135] (with a
gESR = 3.6) and INS experiments [127, 123]. In fact, YbRh2Si2 shows a well de-
�ned ESR signal with properties similarly observed for local Yb3+ ions in metallic
environments. The signal is observed well below the Kondo temperature TK , where
the magnetic Yb3+ moments are supposed to be screened and no ESR signal is
expected. It is the �rst observation of an ESR signal of the Kondo ion in a Kondo-
lattice system; the origin of the signal is yet unexplained [122], although recent INS
experiments associate the ESR signal with a �eld-induced mesoscopic spin reso-
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nance [123]. The feature at H0 was initially associated with the destruction of the
heavy-fermion state and localization of the f -electrons [106, 107]. Subsequently,
the continuous decrease of the dHvA frequency across this transition was inter-
preted as a Lifshitz transition induced by strong spin-splitting [113]. Meanwhile,
renormalized band structure calculations [114] supported by thermopower, Hall
e�ect, magnetoresistance and thermodynamic measurements [115] have undoubt-
edly demonstrated that the feature at H0 is split into two �eld-induced topological
changes of the Fermi surface, i.e. Lifshitz transitions, which involve Fermi surfaces
of d + f character. This means that the f -electrons are still not fully localized
above H0.
The magnetization is very anisotropic. Small magnetic �elds µ0HN = 0.06T

with H ⊥ c and µ0HN = 0.66T with H‖c are su�cient to suppress TN to zero
(cf. magnetic phase diagrams in Fig. 4.4). At these �elds the measured magnetic
moments are very small, 0.1µB/Yb for H ⊥ c and 0.04µB/Yb for H‖c, as shown in
Fig. 4.3. This indicates the strong Kondo e�ect which almost completely screens
the Yb moments of the doublet ground state. At the critical �eldHN the resistivity
ρ(T ) shows NFL T -linear behavior (see orange area in Fig. 4.4a) and the speci�c
heat Cel/T diverges for T → 0 following a power law T−0.34[7]. These discover-
ies have been taken as evidence for the presence of an AFM-QCP in YbRh2Si2.
These temperature dependences do not agree with the conventional SDW scenario
(see Sec. 2.3.1), but a local Kondo breakdown scenario (see Sec. 2.3.2) was pro-
posed [52, 51, 134, 116]. In the Kondo breakdown scenario the Kondo e�ect which
is responsible for the formation of heavy quasiparticles breaks down and a Fermi
surface reconstruction at the QCP should occur. At the QCP the quasiparticle
will disintegrate into its localized spin and delocalized charge degrees of freedom.
Such a break up of the heavy electrons is responsible for the peculiar NFL behavior
observed in YbRh2Si2. Such a scenario has been supported by Hall-e�ect, trans-
port and thermodynamic experiments, which have identi�ed a crossover energy
scale T ∗(H) which vanishes at the QCP and where the Hall e�ect shows an abrupt
change at T → 0 [13, 57, 61]. The results of all these experiments have been sum-
marized in the phase diagram of Fig. 4.4b. Across the T ∗ line the Fermi surface
changes from a small volume at low �elds to a large volume at higher �elds. Here,
the heavy Fermi-liquid regime is recovered below TFL, as evidenced by a constant
Sommerfeld coe�cient γ and ρ ∝ T 2 (see blue area in Fig. 4.4a). In addition, the
divergent behavior of the thermal Γ(T ) and magnetic ΓH(T ) Grüneisen ratios at
the QCP in YbRh2Si2 (see Sec. 2.3.4), divergencies that are in contrast with the
conventional SDW model, might support the local scenario [8, 118]. In particular,
at an AFM-QCP the SDW scenario predicts νz = 1 with ν the spatial correlation-
length exponent and z the dynamical exponent. For the case of YbRh2Si2 a value
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Figure 4.4 � a) Magnetic phase diagram of YbRh2Si2 with H‖c from Ref. [7]: Color
plot showing the temperature and �eld dependence of the exponent ε of the resistivity
ρ = ρ0 +AT ε: The orange area indicates the NFL behavior, i.e. ρ(T ) ∝ T , while the blue
area indicates the FL behavior, i.e. ρ(T ) ∝ T 2. This plot evidences clearly the presence
of a QCP at µ0HN = 0.66T (with H‖c). The blue area on the left is the AFM ordered
region. b) Magnetic phase diagram of YbRh2Si2 with H ⊥ c from Ref. [57]. The energy
scale T ∗(H) was obtained from Hall resistivity ρH(H), magnetostriction coe�cient λ(H),
magnetoresistance ρ(H), ac-susceptibility χAC(T ) and magnetization M + (∂M/∂H)H
measurements. TN is the Néel temperature and TFL is the temperature below which
ρ(T ) ∝ T 2 marking the FL ground state.

of νz = 0.7 was found from measurements of the thermal [8] and magnetic [118]
Grüneisen ratios.

4.1.2 The antiferromagnet YbCo2Si2

YbCo2Si2 has already been investigated by several groups (see Refs. [126, 136,
137, 138]), but all of these studies are based on polycrystalline material and do not
focus on the low temperature properties. The �rst evidence of magnetic order in
YbCo2Si2 was observed by Hodges in 170Yb Mössbauer spectroscopy experiments
on polycrystalline materials [126]. He found AFM order below 1.7 K with the
easy magnetization in the basal plane and a saturated moment of 1.4 µB/Yb.
Moreover, he suggested that the magnetic moments lie in directions close to the
basal plane. These results could be explained in terms of a Yb3+ valence state
experiencing a tetragonal crystalline electrical �eld (CEF), resulting in a Kramers-
doublet Γ7 as ground state. This agrees well with high-temperature (T > 100K)
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susceptibility measurements, which follow a Curie-Weiss behavior with an e�ective
moment of 4.7 µB/Yb and a Weiss temperature θW of -4 K and -160 K for the
magnetic �eld H parallel and perpendicular to the basal plane, respectively; no
magnetic contribution from Co has been observed [110, 112]. A similar �t at
temperatures between 2 and 4 K leads to a reduced e�ective moment of 3.6 µB/Yb
for H ⊥ c. INS experiments revealed that the excited Kramers doublets are 4,
12.5 and 30.5 meV away from the ground state doublet. An exact analysis of the
CEF level scheme has been proposed in Ref. [112]: Using the Weiss temperatures
θabW ≈ −4K and θcW ≈ −160K from the high-temperature Curie-Weiss �ts of
the magnetic susceptibilities (see Fig. 4.5), the CEF coe�cient B0

2O
0
2 of the CEF

Hamiltonian in Eq. 2.3 can be estimated from equation 2.7 (see Tab. 4.1). Taking
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Figure 4.5 � Inverse magnetic dc susceptibility of single crystalline YbCo2Si2 measured
in an applied �eld of 2 T. The solid lines represent the Curie-Weiss law (Eq. 2.6).

Table 4.1 � Crystal �eld parameters for YbCo2Si2 in meV [111]

B0
2 B0

4 B4
4 B0

6 B4
6

0.75 6.162 · 10−3 5.022 · 10−2 −1.159 · 10−4 2.242 · 10−4

into account the energy splittings (INS experiments) and the values of α and α′

that can be extracted from ESR [139] experiments - these measurements lead to
gab ≈ 2.8 and gc ≈ 1.4 - the CEF parameters corresponding to a single solution
could be derived and are listed in table 4.1. The ground state wave function is:

|Γ7,1 >= 0.891| ± 3/2 > −0.454| ∓ 5/2 > (4.1)

and the CEF level scheme is shown in Fig. 4.6.
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Figure 4.6 � Schematic crystal-�eld level scheme proposed by Klingner et al. [111]. ∆1 =
4meV, ∆2 = 12.5meV and ∆3 = 30.5meV are the CEF excitation energies determined in
neutron scattering experiments [138].

An external magnetic �eld removes the degeneracy and the Zeeman Hamiltonian
H = −µ ·B with magnetic moment µ = −gJµBJ can be treated as 1st order
perturbation. With �eld parallel to the c axis, B//c, the magnetic moment (i.e.,
the saturation magnetization) is:

µc = − < jc > gJµB =
8

7
· 0.68µB = 0.77µB (4.2)

and the ESR g-factor is accordingly

gc(ESR) = 2gJ < jz >= 2µc = 1.54. (4.3)

With �eld perpendicular to the c axis, B ⊥ c, the magnetic moment is:

µab = − < jab > gJµB =
8

7
· 1.4µB = 1.6µB (4.4)

and the ESR g-factor is

gab(ESR) = 2gJ < jab >= 2µab = 3.2. (4.5)

This �ts reasonably good with our experimental results displayed in section 4.5.2.
A similar ground state is currently considered in YbRh2Si2 [127, 140].
A second AFM phase transition has been observed in YbCo2Si2 at a temperature

TL = 0.9 K by means of magnetization, resistivity and speci�c-heat measurements
(e.g., see Fig.4.7) [108, 141, 112]. While the phase transition at TN is second
order, the sudden drop at TL and the latent heat observed in the heat capacity in
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zero �eld point to a �rst order nature of the phase transition (see Fig. 4.7) [112].
Both transition temperatures are suppressed by a �eld larger than 2 T, and the
H−T magnetic phase diagrams become very complex, showing a strong basal plane
anisotropy [141]. The entropy above both transitions con�rms a Kramers doublet
ground state and the local character of the Yb 4f quasi-hole. In fact, the Kondo
temperature has been estimated to be lower than 1K and this system is dominated
by the RKKY exchange interaction since about 75% of the ground state entropy
has been found below TN [110, 111]. The γ0 = 0.13 J/K2mol value indicates a
weak hybridization of the local 4f moments with the conduction electrons and
therefore the system cannot be considered a HF system.
The fact that Yb seems to have a similar Γ7 ground state in both YbCo2Si2 and

YbRh2Si2, represents a unique opportunity to make a direct comparison between
these two compounds. Further experiments in neutron di�raction measurements
on our YbCo2Si2 single crystals might be the key experiments in order to clarify
the magnetic structure and the magnetic excitations in YbRh2Si2. Powder neutron
di�raction studies, performed in the intermediate and low-T AFM states, have de-
tected magnetic peaks and suggested that the propagation vector Q changes its
periodicity between the two phases [142]. In addition, preliminary neutron scatter-
ing experiments seem to indicate that the propagation vectorQ is incommensurate
below TN , Q2= (0.25, 0.08, 1) for 0.9 < T < 1.7 K and becomes commensurate
below TL, Q1=(0.25, 0.25, 1) for T≤0.9 K [143].
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Figure 4.7 � Speci�c heat measurement of YbCo2Si2 in zero �eld. The TN = 1.7 K and
TL = 0.91 K transitions are marked by a vertical arrow. The TL is a clearly �rst-order
phase transition. Data from Ref. [110].
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4.1.3 Isoelectronic substitution of Co for Rh: Yb(Rh1−xCox)2Si2

Inelastic neutron scattering experiments are adequate tool to investigate quan-
tum critical �uctuations in YbRh2Si2. Although recently signi�cant progresses
have been done with coaligned single crystals (reaching a sample mass of about
3 g) [123], a comprehensive and satisfying study is still missing. The low transition
temperature and also the extremely small ordered moment prevent experimental-
ists to achieve this goal. To overcome these di�culties, INS experiments should
be carried out under pressure, since TN and the corresponding ordered moment
increase with increasing pressure in Yb-based compounds (see Sec. 2.1) [144, 145].
Such experiments have not been successful yet. However, isoelectronic substi-
tution of Rh by Co leads to a similar e�ect as pressure. Recently, the crys-
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Figure 4.8 � Equivalence of external and chemical pressure in YbRh2Si2. The Néel
temperature TN of YbRh2Si2 is taken from Mederle et al. [144, 103] in agreement with
Knebel et al. [145]. Above 1GPa a second transition is observed at TL. The transi-
tion temperatures for Yb(Rh1−xCox)2Si2 were determined by Westerkamp et al. with
ac-susceptibility [132] and Krellner et al. [146] with speci�c heat measurements. The
pressure values for Yb(Rh1−xCox)2Si2 has been calculated using the measured lattice
parameters and the bulk modulus of YbRh2Si2 [147].

tal growing process has been optimized in order to produce single crystals of
Yb(Rh1−xCox)2Si2, which all crystallize in the tetragonal ThCr2Si2-type structure:
Several high-quality single crystals with a Co content x varying between 0.03 and
1 have been synthesized [110, 112]. The analysis of the crystallographic parame-
ters a and c of the Yb(Rh1−xCox)2Si2 series indicates positive chemical pressure
with increasing x. The ratio c/a decreases with increasing unit cell volume and
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changes slope above x = 0.27 indicating that a comparison between hydrostatic
and chemical pressure is only possible for x ≥ 0.38 to some extent. Moreover, from
analysis of the low-T entropy it could be stated that the Yb3+ CEF ground state
is a Kramers doublet for the complete series.
As expected for low Co content, the increasing of x stabilizes the magnetic order

enhancing TN and the value of the ordered moment [125, 117]. This is illustrated
in Fig. 4.8 for p < 5GPa where the transition temperatures TN and TL have been
plotted versus the hydrostatic (from Refs. [144, 103, 145]) and chemical pressure
(from Refs. [132, 146]). The pressure values for Yb(Rh1−xCox)2Si2 has been cal-
culated using the measured lattice parameters and the bulk modulus (190GPa) of
YbRh2Si2 [147]. The values of the transition temperatures measured under hydro-
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Figure 4.9 � x − T phase diagram of Yb(Rh1−xCox)2Si2 obtained from Refs. [144,
103, 147, 145, 132, 112]. The gray points were obtained under hydrostatic pressure
while the colored ones correspond to Yb(Rh1−xCox)2Si2. The P ∗ dashed line marks
the modi�cation from a low-moment to a high-moment state as suggested by Plessel et

al. [147].

static pressure match quite well those of the Co-doped samples up to a pressure
of about 2.5GPa. Above this pressure the correspondence can not be observed
anymore [112].
A comprehensive study of the evolution of magnetism in Yb(Rh1−xCox)2Si2 at

intermediate and high temperatures was performed by Klingner et al. [112]. By
means of susceptibility, resistivity and speci�c heat measurements a complete x−T
phase diagram was drawn. This is shown in Fig. 4.9. The phase diagram can be
divided in 4 di�erent x regions: (I) for 0 ≤ x ≤ 0.12, TN and TL measured in
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Yb(Rh1−xCox)2Si2 excellently agree with those measured under hydrostatic pres-
sure; (II) for 0.12 < x < 0.27, TN and TL increase and join at x = 0.27, while under
hydrostatic pressure both phase transitions come closer at 5GPa but never join;
(III) for 0.27 ≤ x ≤ 0.58 TN and TL decrease monotonically towards a minimum
near x = 0.58. The sample with x = 0.27 shows a single phase transition down to
20mK, while in the x = 0.58 sample recent measurements indicate the presence
of a second transition below TN [148]; (IV) above x = 0.58, hydrostatic pressure
experiments suggested a modi�cation from a low-moment (LM) to a high-moment
(HM) state along the P ∗ dashed line. This is not observed in Yb(Rh1−xCox)2Si2
indicating a smooth rather than abrupt change from LM to HM. Hydrostatic and
chemical pressure can de�nitely not be compared for x > 0.58, anymore.
The evolution of the magnetic ground state in Yb(Rh1−xCox)2Si2 is character-

ized by the interplay between the two characteristic energy scales: Kondo (TK)
and RKKY (TRKKY ). Both energies decrease with increasing pressure in Yb-based
intermetallic systems [149] (see Sec. 2.1). Previous comparisons between chemical
and hydrostatic pressure on Yb-based systems have already discussed this phenom-
ena [150, 151]. Klingner et al. have shown that the Kondo temperature strongly
decreases from 25K in YbRh2Si2 to values below 1K for x > 0.4, while TRKKY
assumes an almost constant value of about 2K throughout the whole series [112].
This is beautifully shown in Fig. 4.10 where T4f , i.e. the temperature at which
the entropy reaches 0.5Rln2, the Sommerfeld coe�cient γ0 and the temperature at
which the coherence maximum Tmax in the resistivity ρ(T ) appears are plotted as
a function of x [112]. This agrees with the fact that both temperatures have a dif-
ferent dependence on the hybridization strength parameter J - faster exponential
decrease for TK and a quadratic decrease for TRKKY - which in turn is modi�ed
by the pressure (see Sec. 2.2.4). It is evident the change of relevant energy scale
from the Kondo into a dominant TRKKY for concentrations x > 0.4. The use
of chemical pressure in Yb(Rh1−xCox)2Si2 o�ers the possibility to investigate the
evolution from itinerant to local magnetism by modifying J . Moreover, the analy-
sis of the Weiss temperature θW from �ts of the low-T magnetic susceptibilities of
Yb(Rh1−xCox)2Si2 samples with B ⊥ c has shown that ferromagnetic correlations
increase with increasing x achieving a maximum in the range 0.27 ≤ x ≤ 0.38
where θW is positive. Additional experiments have con�rmed the sample with
x = 0.27 to be a ferromagnet with moments along the c-axis. This discovery is
not a surprise when we consider that in YbRh2Si2 strong ferromagnetic �uctua-
tions have been detected [153, 63] and Knebel et al. have proposed a ferromagnetic
ground state above 5GPa [145].
Quantum criticality of isoeletronic substituted YbRh2Si2 was extensively studied

by Friedemann et al. [117, 154] using electrical resistivity, ac-susceptibility and
magnetization. Rhodium in YbRh2Si2 was initially doped with iridium (negative
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pressure) and cobalt (positive pressure). In Ref. [117] the authors have speci�cally
studied the in�uence of chemical pressure on the �eld-induced QCP. A 3D phase
diagram which summarizes the major �ndings of Ref. [117] is shown in Fig 4.11.
These �ndings are: (i) The AF state is stabilized through the application of positive
chemical pressure, as expected. (ii) The position of the suggested breakdown
of the Kondo e�ect manifesting itself as a Fermi surface reconstruction depends
only weakly on chemical pressure, although the Kondo e�ect itself is known to be
strongly pressure dependent. (iii) For positive pressure, the AF QCP at HN is
located in the regime with intact Kondo screening (HN > H∗) where the SDW
theory is expected to be applicable. (iv) For negative chemical pressure, on the
other hand, HN is separated from H∗ towards lower �elds with an intermediate
spin-liquid (SL) type of ground state emerging. Obviously, here, AF order and the
FL ground state are not connected by a single QCP, but are separated by a SL
region. Moreover, it needs to be understood why in pure YbRh2Si2, the AF QCP is
�locked-in� by the Kondo breakdown. In the framework of the local critical scenario
a coincidence of the two occurs as a natural consequence of reduced dimensionality
of the AF quantum critical �uctuations [51], whereas the intersection observed in
7% Co is predicted in the 3D case.
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Figure 4.10 � Evolution of the characteristic energy scales TK and TRKKY with x in
Yb(Rh1−xCox)2Si2. These have been estimated from T4f , i.e. the temperature at which
the entropy reaches 0.5Rln2, the Sommerfeld coe�cient γ0 and the temperature of the
coherence maximum Tmax in the resistivity. Figure from Refs. [110, 112].
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Figure 4.11 � Evolution of the H − T phase diagram of YbRh2Si2 under positive (Co
substitution) and negative (Ir substitution) chemical pressure. The zero temperature
plane displays H versus the chemical pressure x. The green lines indicate the antiferro-
magnetic (AF) phase transition border lines. The red line represents the x-dependence
of the Kondo-breakdown line for T ∗(H)→ 0. The orange area represents the spin-liquid
(SL) ground state while the gray area indicates the Fermi-liquid (FL) ground state. This
�gure was taken from Ref. [152].

4.2 Itinerant vs. local magnetism in Yb(Rh1−xCox)2Si2

In this section, the evolution of the magnetism from a more itinerant character
in YbRh2Si2 towards the more local character in YbCo2Si2 is analyzed by means
of magnetization measurements of Yb(Rh1−xCox)2Si2 single crystals at low tem-
peratures. The magnetic �eld is mostly applied along the magnetic easy axis, i.e.
H ⊥ c. All measurements were carried out in the Faraday magnetometer (see
Sec. 3.2.1). From these measurements the values of the magnetic moment µN(HN)
just above the critical �eld HN which suppresses the magnetic ordered state as
well as the magnetic moment µH0(H0) at the H0 anomaly (close to the saturation
magnetization µsat) at higher �elds can be extracted. The comparison of these
values with the measured ESR g-factor and with the energy scales extracted from
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4.2 Itinerant vs. local magnetism in Yb(Rh1−xCox)2Si2

Fig. 4.10 allows to derive conclusions about the itinerant/local character of the
magnetism and about the evolution of the Fermi surface in Yb(Rh1−xCox)2Si2.

4.2.1 Magnetization of Yb(Rh1−xCox)2Si2 with 0 ≤ x ≤ 0.27

4.2.1.1 YbRh2Si2 and Yb(Rh0.93Co0.07)2Si2

The magnetization curves for YbRh2Si2 at low temperatures have been shown and
discussed in Sec. 4.1.1. Here, selected measurements have been chosen to compare
them with those for Yb(Rh0.93Co0.07)2Si2. Single crystals of Yb(Rh0.93Co0.07)2Si2
have been already investigated by Westerkamp et al. [125] and Friedemann et
al. [117]. Two phase transitions in zero �eld at TN = 0.4K and TL = 0.06K
were observed in ac-susceptibility and resistivity. The transition at TN can be
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Figure 4.12 � Left: Temperature dependence of dc-susceptibility χ = M/H for
Yb(Rh0.93Co0.07)2Si2. The AFM phase transition TN is marked by an arrow. Right:
Field dependence of the magnetization at di�erent temperatures. The kink at HN marks
the phase transition from an AFM into the paramagnetic state.

suppressed to zero temperature by a magnetic �eld HN(T = 0) = 0.23T while
the transition at TL splits into two transitions in �eld which have critical �elds
HL1 = (0.02)T and HL2 = (0.05)T, respectively. From the H-dependence of the
ordering temperatures and the little chemical pressure that 7% of cobalt exerts,
it has been concluded that both transitions are AFM. A maximum in the ac-
susceptibility in �eld was associated with the T ∗ line and it was demonstrated that
it remains at the same position found in the stoichiometric YbRh2Si2. Therefore
the AFM border line TN(H) and the T ∗ intercept each other and the T ∗(H) line
falls inside the AFM ordered region of the phase diagram [117].
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The left panel of Fig. 4.12 shows the temperature dependence of the uniform
susceptibility χ = M/H in several �elds with H ⊥ c. The kink at TN = 0.4K
marks the onset of the AFM state. Surprisingly, M/H keeps increasing below
TN and saturate at a high value of 12 × 10−6 m3/mol indicating the presence
of strong FM �uctuations. No other signature of phase transition below TN is
further observed. TN shifts to lower temperatures as the external magnetic �eld is
increased (see dashed arrow in Fig. 4.12, left). A magnetic �eld of 0.23 T is enough
to suppress the AFM order to zero. The �eld dependence of the magnetization
at temperature below and above TN is shown in the right panel of Fig. 4.12. At
0.05K it shows a sudden increase of the magnetic moment for very small �elds
and at 0.23T a kink at HN marks the transition into the paramagnetic state.
The transition at HN can be followed up to 0.3K although it becomes smooth.
Above HN the value of the magnetic moment is small µN(HN) ≈ 0.23µB/Yb but
almost four times larger than that of YbRh2Si2. For H > HN , the magnetization
strongly increases indicating that M(H) is far from its saturation value. For
higher temperatures no other feature was found and at the lowest temperature no
hysteresis e�ects could be detected.
We focus now on the energy scale T ∗(H). To get more insights into its nature, we

have performed the analysis proposed in Ref. [13, 57] for the two single crystals:
YbRh2Si2 and Yb(Rh0.93Co0.07)2Si2. In analogy with the Hall-e�ect signatures
observed at T ∗(H), it has been proposed to �t M vs. H with the integral of the
following step function:

f(H,T ) = A2 −
A2 − A1

1 + (H/H∗)p
(4.6)

where parameters A1 and A2 denote the linear slope of M vs. H before and after
the kink, which is associated with H∗ (cf. Fig. 4.13). Since M vs. H is not linear
for H ≥ H∗, the authors suggested to �t the quantity M̃ = M + (dM/dH)H vs.
H which represents the derivative of the magnetic free energy and is linear at least
up to 2T (right frames of Fig. 4.13). There is a disadvantage to do that: The kink
is shifted to lower �elds, e.g., in YbRh2Si2 the kink observed at 0.1T is shifted to
≈ 0.05T showing that the position of H∗(T ) stricktly depends on how it is de�ned.
This could have fundamental consequences: For instance, the fact that at 50mK in
the stoichiometric crystal the critical �eldsHN andH∗ almost coincide would imply
that at temperatures lower that 50mK these energy scales might intersect each
other (this hypothesis is currently being investigated by measurements of the Hall
e�ect under pressure). For Co concentrations higher than 7% this analysis could
not be performed anymore because of the strong in�uence of the HL transition
on the curvature of M vs. H. In the right frames of Fig. 4.13 the black lines are
the �t to the data performed by integrating equation 4.6. The little humps are a
consequence of the metamagnetic-like transition at HN .
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The results of such �ts are summarized in Fig. 4.14. The data for YbRh2Si2
agree well with those in Fig. 4.4b and the FWHM of the crossover �t function is
proportional to T as it was found in recent Hall e�ect measurements by Friede-
mann et al. [61]. With x = 0.07 the AFM ordered region expands while the
crossover �eld H∗, associated with the energy scale T ∗(H), is slightly in�uenced
by the chemical substitution, as observed in Ref. [117]. In the Yb(Rh0.93Co0.07)2Si2
sample T ∗(H) follows an almost linear H dependence outside the AFM phase, de-
viates from linearity at T < TN(0) and ends clearly inside the magnetic phase.
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Figure 4.13 � Left: Magnetization isotherms for two single crystals with �eld H ⊥ c
axis. Red lines indicate measurements at temperatures T < TN . HN and H∗ are the
�elds associated with TN and T ∗ at 50mK. In YbRh2Si2 the two �elds almost coincide.
Right: M̃ = M + (dM/dH)H vs. H for the same two single crystals. The little humps,
visible just above HN , denote the phase transition and their shape is a consequence of
how M̃ is calculated.
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Figure 4.14 � Magnetic phase diagrams from magnetization measurements. The data
points for the T ∗ line comes from the �tting of the crossover function (equation 4.6).
The dotted lines are guides to the eye. The inset display the FWHM of the crossover
function plotted over the temperature.

The FWHM of the crossover �t function also depends linearly on �eld outside
the phase, but remains constant inside, suggesting either that such an analysis
is valid only for T ≥ TN(0), where it is not in�uenced by the ordered magnetic
structure, or that the Fermi surface changes continuously at T = 0 inside the mag-
netic phase. Anyway, the fact that the T ∗(H) line ends inside the AFM ordered
phase has two important consequences: i) there are two �eld-induced QCPs, one
associated with the T ∗(H) line and the other with TN(H), ii) the latter must have
itinerant character and should be described by the SDW model (see Sec. 2.3.1).
Quantum criticality at this QCP is analyzed in Sec. 4.3 by means of the magnetic
Grüneisen ratio (see Sec. 2.3.4).
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4.2.1.2 Yb(Rh0.88Co0.12)2Si2
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Figure 4.15 � Left: Temperature dependence of the susceptibility χ = M/H at 0.1T.
Two kinks marked by arrows indicate the transition temperatures TN and TL. Right:
Isothermal magnetization curves at selected temperatures below and above TN and TL.
The curves are shifted by 0.1µB/Yb. The arrows indicate kinks which are associated with
the critical �elds H ′L and HN . This is better shown in the derivative dM/dH plotted in
the inset.

The sample with x = 0.12 has been already investigated by means of ac-
susceptibility and shows a similar behavior as the one with x = 0.07 [125]. At
TN = 0.78K AFM order sets in and below TN another, possibly AFM, phase tran-
sition has been detected at TL = 0.28K. This is reproduced in the dc-susceptibiliy
data taken at 0.1T and shown in Fig. 4.15 (left panel). The arrows indicate the
kinks at TN and TL where the susceptibility changes slope. Like in the x = 0.07
sample, the susceptibility keeps increasing below TL. A magnetic �eld of about
0.5T is enough to suppress TN to zero while a �eld of µ0HL = 0.05T suppresses TL
to zero in a similar fashion. This is well shown in Fig. 4.15 (right panel) where the
magnetization isotherms at selected temperatures are depicted. M vs. H at 0.05K
features three kinks that we associate with H ′L, HL and HN . A better understand-
ing in given by the derivative dM/dH, displayed in the inset, which shows a peak
at H,L and a drops at HL and HN . This is in agreement with the ac-susceptibility
χ′(H) measured at 0.02K by T. Westerkamp where the broad drop in χ′(H) at
0.12T was associated with a second transition, indicating that TL splits in two
branches in �eld [132]. Above HN the value of the magnetic moment is still small
µN(HN) ≈ 0.45µB/Yb but double of that in Yb(Rh0.93Co0.07)2Si2. The value of
µN(HN) seems to increase linearly with the value of TN . For H > HN , the magne-
tization strongly increases indicating that M(H) is far from its saturation value.
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Figure 4.16 � T −H phase diagram of Yb(Rh0.88Co0.12)2Si2. The Néel temperature in
zero �eld was determined by ac-susceptibility (4) [125]. The black line represents a �t
to the data with an empirical elliptic function to estimate the critical �eld HN (T = 0) =
0.49T. The black dashed lines are the phase boundary lines taken from Ref. [125].

For higher temperatures no other feature was found and at the lowest temperature
no hysteresis e�ects could be detected. For this and higher cobalt concentrations
the analysis performed using equation 4.6 could not be performed anymore, be-
cause of the high HL and the stronger curvature of M vs. H. However, the T ∗

line could be observed as a maximum in the ac-susceptibility by T. Westerkamp
and it seems to be at a similar position in the phase diagram as for the x = 0.07
sample [132]. The resulting phase diagram is shown in Fig. 4.16, were the ordered
phases are considered to be AFM.

4.2.1.3 Yb(Rh0.82Co0.18)2Si2

We focus now on the next Co concentration x = 0.18. Yb(Rh0.82Co0.18)2Si2 has not
been investigated before. It features two anomalies similar to those observed for
x = 0.12 and x = 0.07. This is shown in Fig. 4.17 (left panel). The arrows indicate
the phase transitions at TN (red) and TL (blue). At TN the susceptibility shows a
weak kink, whereas at TL it shows a pronounced drop typical for AFM ordering,
and saturates at a quite high value of 9× 10−6 m3/mol. A magnetic �eld of about
0.7T suppresses TN to zero, while the �eld splits TL into two branches which are
suppressed at critical �elds H ′L = 0.15T and HL = 0.22T, similar to what was
seen in Yb(Rh0.88Co0.12)2Si2. This is shown in Fig. 4.17 (right panel) where the
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Figure 4.17 � Left: Temperature dependence of the susceptibility of
Yb(Rh0.82Co0.18)2Si2 measured at di�erent �elds. The black arrows marks the
kinks indicating the onset of the AFM ordering at TN . The red arrows marks the second
transition at TL below which χ(T ) decreases rapidly. Right: Isothermal magnetization
curves where two clear features are observed at HN and HL. The �rst is a smooth
metamagnetic-like increase of the magnetization whereas the second one is a small kink.
This is emphasized in the derivative dM/dH(H) plotted in the inset. Another kink can
be identi�ed at H ′L as in the sample with x = 0.12.

magnetization isotherms at selected temperatures are depicted. M vs. H at 0.05K
features a metamagnetic-like increase of the magnetization followed by a �rst kink
and another kink at higher �elds that we associate with HN . This is emphasized in
the derivative dM/dH plotted in the inset. dM/dH shoes a peak at µ0H

′
L = 0.15T,

a drop at µ0HL = 0.22T and another drop at HN = 0.7T. Fig. 4.18 (left panel)
displays two magnetization isotherms taken at the lowest measured temperature of
0.05K to show that there is no hysteresis. The magnetic moment at HN starts to
become quite large µN(HN) ≈ 0.7µB/Yb, indicative that Co doping weakens the
Kondo interaction faster than it does with the RKKY interaction (cf. Fig. 4.10).
However, this value is still far from the saturation one. This is supported by
the high value of the Sommerfeld coe�cient γ0 = 1.3 J/K2mol [110], which gives
an indication of the e�ective mass of the quasiparticles. The �nal magnetic phase
diagram is shown in Fig. 4.18 (right panel). This magnetic phase diagram was also
con�rmed by resistivity and ac-susceptibility measurements [155]. As for x = 0.12
three border lines can be identi�ed. The region between TN(H) and TL(H) can
be likely associated with an AFM order, while the ground state below TL(H) is
still unknown. However, the χ(T ) measurements strongly suggests another AFM
phase.
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Figure 4.18 � Left: Magnetization curves between -2 and 2T taken by sweeping up
and down the magnetic �eld to show that there is no hysteresis at the lowest measured
temperature of 0.05K. Right: T −H phase diagram of Yb(Rh0.82Co0.18)2Si2. The green
triangles are data points from speci�c heat measurements from Ref. [110]. The black line
represents a �t to the data with an empirical elliptic function to estimate the critical
�eld HN (T = 0) = 0.7T.

4.2.1.4 Yb(Rh0.73Co0.27)2Si2

The sample with x = 0.27 is somehow unique in the series Yb(Rh1−xCox)2Si2. As
reported by Klingner et al. [112] this material shows just a single phase transi-
tion at TN = 1.3K in contrast to all other samples with lower Co content2. As
introduced in Sec. 4.1.3, at x = 0.27, which corresponds to a hydrostatic pressure
of about 4.3GPa (see phase diagram in Fig. 4.9), TN and TL appear to merge to
a single magnetic transition, while in the pressure experiments by Knebel et al.
two distinct phase transitions were observed up to 7GPa [145]. Moreover, pressure
experiments on YbRh2Si2 have showed that the unit cell c/a-ratio is constant up
to the highest applied pressures of 21GPa [147], while in Yb(Rh1−xCox)2Si2 an in-
crease of c/a has been seen with decreasing unit cell volume with a change of slope
exactly at x = 0.27 [112]. Finally, Yb(Rh0.73Co0.27)2Si2 is at the position of the
x − T phase diagram where the RKKY energy scale prevails over the Kondo one
(cf. Fig. 4.10) and where the low-T Curie-Weiss �ts give slightly positive values
of the Weiss temperature (Θ2−4 K

W = 0.1K for x = 0.27) indicating strong FM cor-
relations [112]. The high-T Curie-Weiss �ts still give negative Weiss temperatures
(cf. Fig. 4.23, right panel), because it is dominated by the CEF e�ects.

2The label TN was historically given to this transition temperature because it was thought to be
AFM. In this section we demonstrate that it is FM. However, we keep here the nomenclature.
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4.2 Itinerant vs. local magnetism in Yb(Rh1−xCox)2Si2

Our magnetization measurements with H ⊥ c reproduces exactly this scenario.
The susceptibility χ vs. T of Yb(Rh0.73Co0.27)2Si2 taken at di�erent �elds between
0.1 and 2T is shown in Fig. 4.19 (top left panel). At a small �eld of 0.1T a
single phase transition is observed as a sharp peak (black arrow) in χ(T ) down to
0.05K. This is con�rmed by recent ac-susceptibility and resistivity measurements
performed by S. Lausberg down to 0.02K [156]. With increasing H the transition
is shifted systematically to lower temperatures. M vs. H taken at several temper-
atures between 0.05 and 2K in shown in Fig. 4.19 (top right panel). At 0.05K the
magnetization grows linearly in �eld and features a sharp kink at µ0HN = 0.55T
after which it increases with a much lower slope. With increasing T the kink is
shifted to lower �elds, in agreement with behavior of χ(T ). The magnetic moment
at HN , µN(HN) ≈ 0.85µB/Yb, is larger than in Yb(Rh0.82Co0.18)2Si2, con�rming
the continuous suppression of the Kondo e�ect with increasing x. The resulting
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Figure 4.19 � Top left: χ vs. T
of Yb(Rh0.73Co0.27)2Si2 taken at di�erent
�elds H ⊥ c between 0.1 and 2T. A sin-
gle phase transition is observed as a sharp
peak (black arrow). With increasing H
the transition is shifted to lower tempera-
tures. Top right: M vs. H taken at sev-
eral temperatures between 0.05 and 2K.
M(H) grows linearly in �eld and features
a sharp kink at µ0HN = 0.55T. With in-
creasing T the kink is shifted to lower �elds
(red arrow). Bottom: magnetic phase dia-
gram. Just a single phase border line can
be drawn. The ordered phase results to be
FM (see main text).

73



4 Yb(Rh1−xCox)2Si2

magnetic phase diagram is displayed in Fig. 4.19 (bottom panel). Just a single
phase border line can be drawn. This line is expected for an antiferromagnet, i.e.
the transition shifts to lower temperatures as the �eld increases, as for x < 0.27
samples. Interestingly, the phase border line is very steep close to the critical �eld
of 0.55T and might suggest a �rst order phase transition at HN(T = 0). Moreover,
the line is now well �tted by an almost circular function (see black line in the bot-
tom panel of Fig. 4.19 and Fig. 4.20) and not an elliptic function like for all other
sample with smaller x. This is illustrated in Fig. 4.20 where a 3D plot of the outer
border line for 0 ≤ x ≤ 0.27 obtained from our data is plotted. The TN(x) line
at H = 0 and the magnetic moment µN(HN) increase monotonically with x and
reaches a maximum at x = 0.27 (cf. Fig. 4.9). On the other side, the critical �eld
HN(x) at T = 0 increases almost linearly in x up to x = 0.18, but then drops sud-
denly at x = 0.27. This might indicate a relevant change in the magnetic ordered
structure. This observation and the peculiar fact that in Yb(Rh0.73Co0.27)2Si2 the
ac-susceptibility measured down to 1.8K along the magnetocrystalline easy axis
starts to become smaller than the ac-susceptibility along the hard axis (a sim-
ilar behavior was observed in the low-T ferromagnet YbNi4P2 [157]) motivated
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Figure 4.20 � 3D H − T magnetic phase diagram of the series of Yb(Rh1−xCox)2Si2
compounds vs. Co content. For simplicity only the TN transition is depicted. It can be
observed how the magnetic order increase as the cobalt content is increased, the critical
�eld HN is also increased until a value of ≈ 0.7 T but short after 0.18 decrease to 0.58 T.
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4.2 Itinerant vs. local magnetism in Yb(Rh1−xCox)2Si2

S. Lausberg et al. [156] to characterize this material along the c-axis (hard-axis).
Surprisingly, measurements of the heat capacity and ac-susceptibility have demon-
strated that Yb(Rh0.73Co0.27)2Si2 orders ferromagnetically along the c-axis below
1.3K.
The magnetization measurements at low temperatures for H‖c, performed in

collaboration with A. Hannaske, are shown in Fig. 4.21. In the left panel the
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Figure 4.21 � Left: χ vs. T in a double-logarithmic scale. The increase of χ(T ) at
TN = 1.3K indicates the onset of FM order. Right: M vs. H isotherms with hysteresis
at temperatures below TN while at 1.8K the hysteretic behavior is not present anymore.

temperature dependence of M/H at small �elds of 0.05 and 0.2T is shown. M/H
increases at TN up to a value of about 13 × 10−6 m3/mol as expected for a fer-
romagnet. We did not consider the demagnetization factor. The "smoking gun"
experiment for a FM material is the �eld dependent magnetization which is shown
in the right panel of Fig. 4.21. It reveals a clear hysteresis at H = 0 below 1.3K,
evidencing that the ground state of the compound is indeed FM. Although the
transition temperature for Yb(Rh0.73Co0.27)2Si2 should be labeled TC (FM Curie
temperature), we have labeled it TN (AFM Néel temperature) since it represents
the x-evolution of the TN measured in the pure system (x = 0). The behavior of
M vs. H indicates that the FM moments are aligned along the c-axis.
The discovery of pressure induce ferromagnetism in YbRh2Si2 is surprising but,

as a matter of fact, consistent with all �ndings observed before. Strong FM �uc-
tuations in YbRh2Si2 were previously seen by Ishida et al. [153] and Gegenwart et
al. [63], Knebel et al. [145] suggested FM order above 5GPa and �nally Klingner et
al. [112] measured a positive Weiss temperature at x = 0.27. Neutron scattering
experiments failed to see the ordered state since the magnetic neutron intensity in
masked by the strong elastic peak at Q = 0 [158].
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4 Yb(Rh1−xCox)2Si2

4.2.1.5 Summary

The evolution of magnetism in Yb(Rh1−xCox)2Si2 for 0 ≤ x ≤ 0.27 along the mag-
netic easy axis, i.e. H ⊥ c, is shown in Fig. 4.22 and can be summarized as follows:
With increasing Co content the magnetic uniform susceptibility M/H at a con-
stant temperature, e.g. 2K, increases with increasing x. In addition both observed
transition temperatures TN and TL become higher with larger x. This results from
the continuous suppression of the Kondo screening and the smooth decreasing of
the RKKY interaction with increasing x (see Sec. 4.1.3). The value of the sus-
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Figure 4.22 � Left: Basal plane susceptibility M/H of Yb(Rh1−xCox)2Si2 for the
0 ≤ x ≤ 0.27 single crystals plotted as a function of T . The black arrow indicates the
increasing susceptibility with increasing x. Red and blue arrows show the position of
TN and TL, respectively. The data for YbRh2Si2 are taken from Ref. [159]. Right: H-
dependence of the magnetization for the same set of samples. The magnetic moment at
HN , µN (HN ), increases with increasing Co content.

ceptibility at 0.05K seems to be approximately the same for all concentrations,
i.e. between 8 and 11× 10−6 m3/mol. The behavior of the susceptibility suggests
AFM order below TN and TL since it shows a peak or kink at both transitions and
AFM order is established in YbRh2Si2. However, FM order has been found in the
sample with x = 0.27 with ordered moment along the c-axis (explaining the peak
in the susceptibility measured with H ⊥ c) and this raises the question whether
in the samples with 0 < x < 0.27 the magnetic order below TL is FM or not.
Isothermal magnetization measurements (see Fig. 4.22, right panel) also show a

consistent behavior with the scenario of Ref. [112]. M increases linearly withH and
features kinks at the critical �elds HN and HL. In the sample with x = 0.27 just
a single kink is observed and no hysteresis, suggesting that the FM moments are
aligned along the c-axis where a hysteresis was observed (cf, Fig. 4.21). Outside the
ordered phase the magnetic moment at HN , µN(HN), increases with increasing Co
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Figure 4.23 � Left: Inverse of the magnetic susceptibility χ‖ with H‖c (blue circles)
and χ⊥ with H ⊥ c (green circles) plotted as a function of T along with the averaged
value χ−1

eff de�ned in eq. 4.7. The data were taken between 1.8 and 300K in a constant
magnetic �eld of 2T. The straight red line represents the Curie-Weiss law. Right: Same
plot for Yb(Rh0.73Co0.27)2Si2. The solid lines represent the Curie-Weiss �ts performed
between 200 and 300K.

content and reaches a value of ≈ 0.85µB/Yb for Yb(Rh0.73Co0.27)2Si2. This value
is still smaller than the saturation magnetization expected for the Yb3+ ion in the
tetragonal CEF environment (see Secs. 2.1.1 and 4.1.2).

4.2.2 Magnetization of Yb(Rh1−xCox)2Si2 with x = 0.58 and x = 1

The next Co concentration studied here is x = 0.58, which corresponds to a
chemical pressure of about 9GPa and is located in the x − T phase diagram of
Fig. 4.9 at the minimum of TN(x) and where the P ∗ line begins. It was suggested by
Plessel et al. that this line marks the modi�cation from a low-moment state into the
high-moment state [147], but this e�ect does not take place in Yb(Rh1−xCox)2Si2.
Taking into account that Yb(Rh0.73Co0.27)2Si2 is FM while the pure YbCo2Si2 is
AFM, it is interesting to investigate the evolution from FM to AFM starting with
x = 0.58.
The �rst peculiar feature of Yb(Rh0.42Co0.58)2Si2 is the high-T magnetic sus-

ceptibility. In all samples with 0 ≤ x ≤ 0.27 and in YbCo2Si2, both inverse
susceptibilities χ−1

‖ (with H‖c) and χ−1
⊥ (with H ⊥ c) follows a Curie Weiss be-

havior above 200K [110, 111, 112], as shown, e.g., in the right panel of Fig. 4.23 for
the x = 0.27 sample. In Yb(Rh0.42Co0.58)2Si2 both susceptibilities deviate from the
Curie-Weiss behavior as displayed in the left panel of Fig. 4.23. A broad maximum
in the χ−1

‖ vs. T curve can be seen around 100K. This behavior is associated with
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4 Yb(Rh1−xCox)2Si2

a modi�cation of the CEF scheme for this material compared to that of the other
concentrations. However, the calculated averaged susceptibility

χ =
1

3
χ‖ +

2

3
χ⊥ (4.7)

follows the expected Curie-Weiss behavior between 50 and 300K with an e�ective
moment µeff ≈ (4.56 ± 0.1)µB, close to that of the free Yb3+ ion, and a Weiss
temperature of −38K.
The low-T measurements were performed �rst with H ⊥ c, more precisely with

H‖[110]. The data are shown in Fig. 4.24. The left panel shows the susceptibility
χ = M/H measured at several �elds from 0.05 to 4T. At 0.05T, two anomalies
can be observed. A sharp peak at TN = 0.82K and a smooth kink at TL = 0.65K
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Figure 4.24 � Left: T - dependence of the susceptibility χ = M/H of
Yb(Rh0.42Co0.58)2Si2 measured at di�erent �elds between 0.05 and 4T perpendicular
to the c-axis. The inset zooms into the region of the peaks. Right: Isothermal magne-
tization curves at many temperatures to systematically investigate the magnetic phase
diagram. The critical �eld HL is associated with the metamagnetic-like transition and
HN is associated with the kink after which the magnetization saturates.

which disappears at �elds larger than 0.1T.3 This is emphasized in the inset of
the same panel. The pronounced peak at TN persists up to a magnetic �eld of
0.6T where the susceptibility assumes a high value of about 10.5× 10−6 m3/mol.
The phase transition at TL was not seen in the heat capacity measurements of
Ref. [112], possibly because both transitions are in a narrow temperature region

3We use the same nomenclature for the two transition temperatures, like in the case of the
x = 0.27 compound, in agreement with Ref. [112], although one of the transitions is FM.
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and the feature at TL is very weak. A consistent picture is give by the magnetiza-
tion isotherms shown in the right panel of Fig. 4.24. M vs. H at 0.05K features
a metamagnetic-like increase at µ0HL = 0.2T and a sharp kink at µ0HN = 0.6T.
The magnetic moment at HN , µN(HN) ≈ 0.9µB/Yb is slightly larger than that in
Yb(Rh0.73Co0.27)2Si2. Both anomalies at HL and HN can be followed in the deriva-
tive dM/dH up to 0.7K. The resulting points are plotted in the phase diagram
of Fig. 4.25 (left panel). Both phase border lines follow a behavior expected for
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Figure 4.25 � Magnetic phase diagram of Yb(Rh0.42Co0.58)2Si2 with H‖[100]. Two
phase transition lines TN (H) and TL(H) are derived from �eld and temperature de-
pendencies of the magnetization and from the speci�c heat of Ref. [148]. Isothermal
magnetization measurements at 0.07K where the �eld was swept up and down between
-0.4 and 0.4T. The inset is a zoom in the �eld region where a slight hysteresis at HL is
observed.

an antiferromagnet. This does not rule out the presence of a FM phase, as it was
demonstrated for Yb(Rh0.73Co0.27)2Si2. We checked that at H = 0 no remanent
magnetization is present. Two subsequent �eld sweeps (up and down) were carried
out at 0.07K and the results are shown in the right panel of Fig. 4.25. Only tiny
hysteresis were observed across HL(H) but no hysteresis at H = 0. A similar e�ect
was observed in YbCo2Si2 where the commensurate AFM ground state is changed
into a incommensurate AFM one by a �eld applied along the [100] direction (see.
Fig. 4.51) [108, 109]. This suggests that the ground state might be similar to that
of YbCo2Si2. Measurements along the c-axis provide, however, a di�erent picture.
The susceptibility and magnetization are shown in Fig. 4.26 on the left and right
panels, respectively. The temperature dependence of the susceptibility for H‖c
shows a strong increase up to values close to 100 × 10−6 m3/mol at TN = 0.82K
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which indicates the onset of FM order. Just below TN , M/H decreases strongly
suggesting another transition into an AFM or canted AFM ground state. This
is corroborated by the �eld dependence of the magnetization at selected temper-
atures. At 0.7K, i.e. between TL and TN , a remanent magnetization of about
0.01µB/Yb with no hysteresis is measured, evidencing the FM state. Below TL,
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Figure 4.26 � Left: Temperature dependence of the magnetization of
Yb(Rh0.42Co0.58)2Si2 divided by �eld for H‖c. The strong increase of M/H up to val-
ues close to 100 × 10−6 m3/mol at TN = 0.82K indicates the onset of FM order. The
pronounced peak indicate the lower AFM ground state. Right: Field dependence of the
magnetization at selected temperatures. At 0.7K, i.e. between TL and TN , a remanent
magnetization of about 0.01µB/Yb with no hysteresis is observed, evidencing the FM
state. Below TL, M vs. H shows metamagnetic-like transitions with a tiny remanent
magnetization. Measurements from Ref. [158].

M vs. H shows metamagnetic-like transitions with a tiny remanent magnetiza-
tion indicating that the ground state has switched from FM to AFM or, possibly,
canted AFM since at H = 0 a remanent moment is still visible.
The magnetization of a single crystal with x = 1, i.e. YbCo2Si2, is studied in

great detail in this thesis. All measurements are shown and discussed in Sec. 4.5.
For the sake of discussing the evolution of magnetism from more itinerant to more
local in Yb(Rh1−xCox)2Si2 we need just to mention that YbCo2Si2 behaves simply
like a local antiferromagnet. The value of the magnetization just above HN is
1.4 µB/Yb with H ⊥ c and is in agreement with the saturated moment calcu-
lated by Hodges [126] and by Klingner et al. [112], con�rming the local magnetic
behavior of the Yb 4f quasi-holes.
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4.2.3 Evolution from itinerant to local magnetism

So far we have focused the attention on the physics of Yb(Rh1−xCox)2Si2 at low
magnetic �elds, where the Kondo e�ect is not completely suppressed and every
crystal shows at H = 0 a magnetic ordered ground state caused by the RKKY
interaction. In this section a comprehensive magnetization study of the relevant
energy scales under chemical pressure and at higher �elds (with H ⊥ c) will be
presented, in order to show the evolution from the more itinerant character of
magnetism in YbRh2Si2 to the more local character at high chemical pressure, i.e.
in YbCo2Si2, and at high �elds where the magnetization reaches its saturation
value. The largest value of the �eld used for the magnetization measurements is
12T (see Sec. 3.2.1).
At low �elds (H ⊥ c) and small Co content, the H-dependence of the magne-

tization has been already shown in Fig. 4.22. M(H) increases linearly and shows
kinks at the critical �elds HL and HN . For H > HN the system is paramagnetic
(PM) and the ground state is a heavy-fermion Fermi liquid [102, 7, 107, 111]. At
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Figure 4.27 � Left: high-�eld magnetization curves for for 0 ≤ x ≤ 0.27 taken at 0.05K
for H ⊥ c. The upward arrows indicate the position of the kink associated with the �eld
H0. The downward arrows mark the critical �eld HN . Right: evolution of the critical
�elds HL, HN and H0 with Co content x for 0 ≤ x ≤ 0.27. All converge to the same
point at x = 0.27.

higher x, the critical �elds HL and HN assume larger values and above them the
ground state is a Fermi liquid but the heavy-fermion character is strongly reduced,
e.g. in YbCo2Si2 γ0 = 0.13 J/K2mol. In fact, the RKKY interaction dominates
over the Kondo interaction (cf. Sec. 4.1.3).
The high-�eld part of the magnetization at 0.05K for Yb(Rh1−xCox)2Si2 is

shown in Fig. 4.27 (left panel) exemplary for 0 ≤ x ≤ 0.27. For x > 0.27 the
magnetization at H > HN behaves similarly to that of Yb(Rh0.73Co0.27)2Si2 with
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the only di�erence that the moment µN(HN) increases with increasing x. Above
HN , M vs. H exhibits a strong negative curvature in all samples with x < 0.27
until it reaches the �eld H0 (indicated by arrows in Fig. 4.27), after which M(H)
increases linearly in �eld. No other feature could be seen in measurements ofM(H)
up to 35T [107]. As explained in Sec. 4.1.1, the kink in magnetization at H0 is
the signature of �eld-induced Lifshitz transitions due to the shift of a van-Hove
singularity in the renormalized band structure density of states across the Fermi
level [160, 107, 161, 113, 114, 115]. The reduction of the e�ective quasiparticle
mass and the fact that H0 scales under pressure with the Kondo temperature was
initially associated with the destruction of the heavy-fermion state and localization
of the f -electrons [106, 107] and this is still an essential part of the Lifshitz tran-
sitions [114]. The new �ndings (see Fig. 4.29) show that the f electrons are not
fully localized above H0 and the Kondo e�ect is not completely suppressed. This is
corroborated by the value of the magnetic moment at H0, µH0(H0) ≈ 1.2µB/Yb,
i.e. much smaller than the expected saturation value of about 1.7µB/Yb [107].
However, increasing the �eld up to H0 leads to a strong de-renormalization of the
quasiparticles and, therefore, to a strong reduction of the density of states at EF .
Fig. 4.27 shows that H0 is strongly a�ected by chemical doping, i.e. it decreases

with increasing x while the kink becomes rounded, possibly because of disorder.
This agrees with pressure experiments [106]. At x ≥ 0.27 just a single kink in
magnetization at HN is observed. The critical �elds HL, HN and H0 for 0 ≤
x ≤ 0.27 are plotted in Fig. 4.27 (right panel). Interestingly, all three �elds
converge at x = 0.27 suggesting that the van-Hove singularity disappears from
the renormalized band structure for x ≥ 0.27. This can easily been explained
within the Kondo model, assuming that for x ≥ 0.27 TK becomes weaker than
TRKKY . Then the RKKY interaction forces the system into a localized magnetic
state and prevents the formation of the so-called large Fermi surface. As a result,
for x ≥ 0.27, the system retains at zero �eld as well as high �elds the localized
Fermi surface.
The pressure dependence of H0 of Yb(Rh1−xCox)2Si2 is plotted in Fig. 4.28

together with the Kondo temperature TK in a semi-logarithmic scale. The pressure
dependence of the �eld H0 shows a smooth exponential decrease as the pressure is
increased, as TK does. This is in agreement with the band structure calculations
which show that the �eld does not only move the van-Hove singularity across the
Fermi level, but it simultaneously lowers the renormalized density of states as a
consequence of the suppression of the hybridization, i.e. the Kondo e�ect. Such
exponential behavior can be observed only until x = 0.27 where H0 coincides with
HN . The complete localization of the 4f quasi-holes might continuously happen
at much higher values of the �eld [162].
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4.2 Itinerant vs. local magnetism in Yb(Rh1−xCox)2Si2

Since the evolution of the measured magnetic moment µ(H, x) with �eld and
pressure re�ects the competition between TK and TRKKY in Yb(Rh1−xCox)2Si2, it
is very useful to draw a phase diagram where on the abscissa we have the chem-
ical pressure x and on the ordinate the magnetic moments µN(HN) and µH0(H0)
measured at HN and H0, respectively. This is shown in Fig. 4.29. In addition,
we can take advantage of recent measurements of the ESR g-factor published in
Ref. [139] from which we can add µsat(Hsat) = gESR/2 (taken at 5K) on our plot.
In fact, despite the high value of TK ≈ 25K, a sharp ESR signal was observed
below TK with pronounced Yb3+ character [122]. Although the Kondo tempera-
ture decreases by an order of magnitude with increasing x in Yb(Rh1−xCox)2Si2,
all crystals of the series show a well de�ned ESR signal below 20K with prop-
erties typical of a local Yb3+ spin (see Fig. 4.29) [163, 139]. It is important for
our analysis that the g-factor shows an uniform variation with x (see Sec. 4.1.2).
Therefore, the plotted gESR/2 values are a reliable estimation of the ground state
saturation magnetization µsat(Hsat) of the fully localized 4f state.
Fig. 4.29 is the key result of our study and represents the �eld (H) and pressure

(x) evolution of magnetism in Yb(Rh1−xCox)2Si2. This phase diagram is separated
in four regions. The LO-MO region represents the magnetically ordered AFM state
with a localized small Fermi surface. At small x the region IT-HF represents the
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Figure 4.28 � Pressure dependence of the high-�eld transition in the series of
Yb(Rh1−xCox)2Si2 plotted together with the Kondo temperature TK (right scale) in
a semi-logarithmic representation. The pressure dependence of the �eld H0 shows a
smooth exponential decrease as the pressure is increased, as TK does. Such exponential
behavior can be observed only until x = 0.27 where H0 coincides with HN .
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itinerant heavy-fermion ground state, which is characterized by TK > TRKKY and
an itinerant renormalized large Fermi surface. Above µH0 the system enters the
region RN-LO with a change of the Fermi surface into a small localized, but still
renormalized, Fermi surface. The Kondo e�ect is here not completely suppressed.
At even higher �elds, the system reaches the saturation moment µsat = gESR/2
where it enters the LO region which is characterized by the non-renormalized small
local Fermi surface. At zero pressure and at H > HN ≈ 60mT the Kondo energy
scale dominates over the RKKY one, almost screening the magnetic Yb3+ moments
and leaving AFM order just below 0.07K with a very small µN(HN) ≈ 0.1µB/Yb.
The system shows itinerant magnetism and heavy-fermion character in the regions
IT-HF. We do not discuss here the properties of the AFM-QCP and the physics
associated with the Kondo-breakdown energy scale T ∗(H∗), since it seems not to be
very a�ected by pressure and we consider �elds H > H∗. With increasing pressure,
i.e. increasing the strength of the hybridization J , the magnetic moment µN(x)
increases rapidly as a consequence of the rapid (exponential in J , see Sec. 2.2.4)
decrease of the Kondo temperature TK . TRKKY also decreases but in a smoother
way (quadratic in J , see Sec. 2.2.4). Furthermore, in this region TRKKY can not
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Figure 4.29 � Left: Phase diagram of Yb(Rh1−xCox)2Si2 where the Co content x,
i.e. chemical pressure, is plotted on the abscissa versus the magnetic moments µN (HN )
and µH0(H0) measured at HN and H0, respectively. The empty circles indicate the
�elds µH0(H0) and µN (HN ) while the �lled squares indicate the values of µsat(Hsat) =
gESR/2 (at 5K) from Ref. [139]. The phase diagram is separated in four regions: LO-MO
(localized electron and magnetic ordered), IT-HF (itinerant electron and heavy-fermion
behavior with large renormalized Fermi surface), RN-LO (localized electron with small
renormalized Fermi surface) and LO (localized electron with non-renormalized Fermi
surface). Right: Evolution of the ESR spectra (H ⊥ c) in Yb(Rh1−xCox)2Si2 single
crystals for di�erent cobalt concentrations, from Ref. [139]. The solid lines represent
metallic Lorentzian line shapes. The narrowing of the ESR line with decreasing x is
associated with the increasing of the Kondo interaction [139].
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Figure 4.30 � Same plot as Fig. 4.29 with the additional inverse of the characteristic
energy scales T4f , Tmax, γ0 taken from Fig. 4.10, the scales of which are �xed by the two
pure Rh and Co compounds.

be extracted from experimental data. Therefore, the region LO-MO expands with
increasing x. Above x = 0.27 the RKKY interaction dominates substantially over
the Kondo interaction and µN(x) vs. x still increases, but only weakly. Between
x = 0.27 and x = 1 the system still shows some weak heavy-fermion character in
the region RN-LO, while at x = 1 the pressure is enough to eventually localize the
4f -electrons where µN = µsat. This demonstrates the fact that magnetism evolves
continuously from itinerant to local in Yb(Rh1−xCox)2Si2. The magnetic �eld has
a similar e�ect, but the interesting fact is that evolution from itinerant to local
takes place in two steps. A small �eld suppresses TRKKY and the system enters
the IT-HF region characterized by HF behavior and a large renormalized Fermi
surface [113, 114] (the local-to-itinerant �eld-induced transition at the AFM-QCP
is located at very low �elds, about 0.06T, and we discuss here the region with
H ≥ 0.1). Then, the �eld induces two Lifshitz transitions [115] where dHvA
measurements indicate that the Fermi surface changes from large to small [113],
but it is still the renormalized one [114]. Finally the fully localization of the f
electrons takes place smoothly at even higher �elds where the magnetic moment
achieves its saturation value. This intriguing behavior has its origin in the complex
Kondo e�ect mechanism in Kondo lattices. Both the coherence e�ects resulting
from the lattice periodicity as well as the de-renormalization of the quasiparticles,
which re�ects the break-up of the local Kondo singlets, have to be taken into
account.
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It is now instructive to plot the inverse of the characteristic energy scales T4f ,
Tmax, γ0 into the phase diagram (see Fig. 4.30). Surprisingly, we can perfectly scale
the evolution of the energy scale with µN(x). This emphasizes the crossover from
the region where the Kondo energy scale dominates (with more itinerant character)
to that where the RKKY energy scale dominates (with more local character).

4.3 Field-induced QCP in Yb(Rh0.93Co0.07)2Si2

The discovery of pronounced NFL behavior in a broad temperature region above
the �eld-induced QCP in YbRh2Si2 has encouraged a large number of works with
the purpose of characterizing the nature of such a QCP [6, 7]. As a matter of fact,
there are only two well studied scenarios with which we can attempt to describe
the experimental data of YbRh2Si2: the conventional �itinerant� SDW scenario
(see Sec. 2.3.1) and the unconventional and recently proposed �local� scenario
(see Sec. 2.3.2). Many of YbRh2Si2 properties are well described by the local
scenario [8, 61]. According to this scenario [51] and experimental evidence [13, 107],
the phase transition at the QCP is accompanied by a Fermi surface reconstruction
due to the breakdown of the Kondo e�ect. This has been suggested to happen at
the T ∗(H) crossover energy scale at which the moments from local become itinerant
(see Sec. 4.1.1). One of the fundamental question that has still to be answered
is why the energy scale T ∗(H) is almost pressure independent [117]. Within the
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Figure 4.31 � Left: Phase diagram of the Yb(Rh0.93Co0.07)2Si2 compound with H ⊥ c
obtained from resistivity measurements. It is similar to the phase diagram of Fig. 4.14
but, here, the phase line TL(H) and the FL line are included. The yellow region is the
region where the electrical resistivity ρ ∝ T 1.5 (see right panel). Right: ρ(T ) plotted over
T 1.5. The arrows marks the end of linearity. Figures taken from Ref. [154].

simplest model, in a local scenario the T ∗(H) must vanish at the AFM QCP, but
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for more complex model, e.g. with the presence of frustration, TN and T ∗ can be
separated (see Sec. 2.3.3). The work of Friedemann et al. , which is summarized
in Fig. 4.11 [152], suggests that there is a global phase diagram (see Sec. 2.3.3 and
Refs. [58, 60, 59]) where the �eld H∗ separates a region where the moments are
part of the large Fermi surface (itinerant) and a region where they are local (with
small Fermi surface). The nature of the QCPs is di�erent in these two regions.
It is therefore desired to investigate the nature of such QCPs in both regions. In
this chapter, we focus on positive pressure (7% Co substitution) where the AFM
QCP at HN is located in the regime with intact Kondo screening (HN > H∗)
where the SDW theory is expected to be applicable. We show measurements of
the uniform magnetization as well as of the speci�c heat, from which we can deduce
the magnetic Grüneisen ratio ΓH . ΓH(T ) vs. T should diverge at a �eld-induced
QCP (i.e., atHN(0)) where ΓH vs. H changes its sign manifesting an accumulation
of entropy due to the presence of quantum �uctuations [15, 65].
The nature of the QCP at µ0HN(0) = 0.22T in Yb(Rh0.93Co0.07)2Si2 was already

investigated in Ref. [117] and in the Supplementary Information of the same article.
The SDW model seems to be the adequate to describe the behavior of the resistiv-
ity, where we expect ρ(T ) ∝ T 3/2 for an antiferromagnet with 3D �uctuations, and
the corresponding �eld dependence of the Néel temperature TN(H) = (HN −H)ε

predicts an exponent ε = 2/3 [5] where the experimental result gives ε = 0.65.
However, the region of the phase diagram where the T 3/2 power law in resis-
tivity is observed is rather broad and not sharp as expected at a QCP. This is
illustrated in the left panel of Fig. 4.31 (yellow region). Such a broadening is
possibly due to disorder and we might than expect a spin-glass ground state in
Yb(Rh0.93Co0.07)2Si2, since for a spin-glass the resistivity is also expected to follow
a T 3/2 power law [164]. On the other side, the phase transition at TN does not
show any frequency dependence [132] and it looks like a second order phase tran-
sition in the speci�c heat (see Fig. 4.32 [157]). The model experiment to provide
evidence of the presence of quantum critical �uctuations is the measure of the
critical magnetic Grüneisen ratio (see Sec. 2.3.4):

ΓH = − 1

T

(∂S/∂H)T
(∂S/∂T )H

= −(∂M/∂T )H
CH

=
1

T

∂T

∂H

∣∣∣
S

(4.8)

which can be determined by measurements of the magnetization and speci�c heat
or directly by magnetocaloric e�ect experiments [157]. According to Refs. [15, 65],
this quantity diverges when approaching any �eld-induced QCP with power law
functions

ΓH(T,H = HN) ∝ T−1/νz and ΓH(T = 0, H) = −Gr(H −HN)−1 (4.9)

where the parameters ν (the correlation length exponent) and z (the dynami-
cal critical exponent) are universal and depend only on the dimensionality of the
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Figure 4.32 � Uniform susceptibility (left panel) and speci�c heat measurements (right
panel) of a single crystal of Yb(Rh0.93Co0.07)2Si2 plotted as a function temperature [157].
In M/H vs. T , the red lines correspond to the �elds where Friedemann et al. have
observed the T 1.5 dependence in the electrical resistivity. The dashed line represents the
AFM transition temperature TN . At the critical �eld both M(T )/H and C(T )/T tends
to saturate to a constant value at low temperatures.

critical �uctuations d and their nature (z = 2 for AFM and z = 3 for FM �uctua-
tions). In addition, also the prefactorGr depends strictly only on these parameters,
Gr = ν(d− z), which provide a fully determination of the nature of the QCP. For
instance, when scaling applies within the SDW scenario ν = 1/2 and for a system
with 3D AFM critical �uctuations, d = 3 and z = 2, we simply expect Γ ∝ 1/T
(cf. Tab. 2.1). In YbRh2Si2 it was found ΓH ∝ T−0.7 at low temperatures (below
0.3K) and Gr = −0.3 [118] which do not agree with the SDW scenario, but seems
to agree with the Kondo-breakdown QCP proposed in Ref. [165].
We have used measurements of the magnetization M(T,H) and speci�c heat

C(T,H) to determine ΓH . The temperature dependence of both measurements
is shown in Fig. 4.32. The magnetization measurements are the same as those
presented in Fig. 4.12 but, here, we have marked in red the curves close to
the QCP at µ0HN(0) ≈ 0.22T. A quick examination of the uniform suscepti-
bility χ = M(T )/H in Fig.4.32 (left panel) around the critical �eld (in the range
0.22 ≤ µ0H ≤ 0.25T) makes clear that there is not divergence of M(T )/H, since
the curves tend to saturate to a constant value towards the lowest temperature of
0.05K. Also the speci�c heat coe�cient C(T )/T (right panel of Fig.4.32) follows
a similar behavior. In both cases, M/H and C/T at the critical �eld of 0.22T
feature a smooth crossover around T ≈ 0.3K below which they �atten. To ob-
tain ΓH we need to calculate the derivative of the magnetization with respect to
temperature. This is shown in Fig. 4.33 together with C(T )/T and ΓH(T ) in a
double logarithmic representation to emphazise the putative power-law behavior.
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No divergence is seen in −(dM/dT )/T vs. T but the magnetic Grüneisen ratio
ΓH(T ) rises steeply below 1K and exhibits a crossover into a smooth logarithmic
behavior below 0.3K (see Fig. 4.34). For a AFM system with 3D �uctuations we
expect from the SDW theory ΓH ∝ T−1. This might be realized for T > 0.3K
(when a non critical background is subtracted) but not below 0.3K. Even in the
case of 2D AFM �uctuations the theory predicts ΓH ∝ loglog(1/T )/T log(1/T )
(see Tab. 2.1) which does de�nitely not agree with the experimental data below
0.3K. One possible explanation is that 0.22T might not be the �eld where the
�uctuations become critical. To proof this assumption, we have performed the
same analysis for all �elds close to 0.22T. We have found the very same behavior:
For instance, in Fig. 4.34 we have plotted ΓH(T ) vs. log(T ) for a �eld of 0.25T. We
have also included the magnetic Grüneisen ratio calculated from measurements of
the magnetocaloric e�ect performed by A. Steppke [157]. This is because the mag-
netocaloric e�ect shows the largest divergence of ΓH(T ) at this �eld. Both results
match surprisingly well although they have been obtained from three measurement
techniques and two di�erent samples of the same batch. Not just the temperature
dependence is the same but also the absolute values. In the plot we have included
the T−1 power law, too. There is indeed not a big di�erence between the behavior
at 0.22T and that at 0.25T.

We can therefore conclude that the magnetic Grüneisen ratio does not show a
critical divergence at HN(0) and this means that we do not have a QCP.
A second possibility might be the fact that, since the susceptibility keeps in-

creasing below TN for H < HN (see Fig. 4.32), the quantum �uctuations might
become critical inside the AFM phase, possibly at the critical �eld HL(0) or at
H∗(0). Since HL(0) ≈ H∗(0) it is di�cult to decide whether the �uctuations of the
magnetic order-to-disorder transition or those of the small-to-large Fermi surfaces
are responsible for the critical behavior. There is another intriguing aspect that
has to be considered. For �elds larger than the critical �eld the uniform suscep-
tibility χ = M/H saturates at low temperature to a constant value as expected
for a Fermi liquid (cf. Sec. 2.2.1). For a Kondo lattice the value of the Pauli
susceptibility in the PM regime χ0 = χ(T → 0) is proportional to the Sommerfeld
coe�cient γ0 and therefore to the e�ective mass m∗ of the quasiparticles. Resistiv-
ity measurements by Friedemann et al. [154] on Yb(Rh0.93Co0.07)2Si2 have shown
that the quasiparticle-quasiparticle scattering cross section A, where in a Fermi
liquid ρ = ρ0 + AT 2 and A ∝ (m∗)2, strongly diverges when HN(0) is approached
from the PM side, following a function

A(H) ∝ (H −Hcr)
−1 (4.10)

and a critical �eld µ0Hcr ≈ 0.13T which is surprisingly inside the AFM phase. A
similar analysis can be done with the χ0(H) values of the magnetic susceptibility
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Figure 4.33 � a) Temperature derivative of the magnetization −(dM/dT )/T of
Yb(Rh0.93Co0.07)2Si2 plotted over the temperature at the critical �eld µ0HN = 0.22T.
b) Electronic speci�c heat coe�cient C(T )/T of the same sample plotted over the tem-
perature. The data were taken from Ref. [157]. c) Calculated magnetic Grüneisen ratio
ΓH from the data of panel a) and b). −(dM/dT )/T and C(T )/T exhibit a crossover
towards a constant value below 0.3K, whereas ΓH increases smoothly with decreasing T
following a logarithmic behavior.

data of Fig. 4.32. Since in a Fermi liquid χ0 ∝ m∗ we attempt to �t our data for
H > HN(0) with the following function

χ0 ∝
1

(H −Hcr)ε
(4.11)

which yields a critical �eld Hcr ≈ 0 and ε ≈ 1/2 (see Fig. 4.35). There is a slight
kink at 0.22T which, however, does not in�uence the �t coe�cients too much
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(see inset of Fig. 4.35). In the SDW scenario we expect m∗ ∝ (H − Hcr)
(d−z)/2

(see Sec. 2.3.1), therefore we can conclude that this result matches nicely the
one obtained by resistivity experiments where ε ≈ 1, i.e. χ0 ∝ A1/2 ∝ m∗ and
suggests d = 2 and z = 3 which imply a 2D FM QCP at a �eld close to zero.
The quantum criticality seen from the PM side of the phase diagram seems to be
more sensitive to FM �uctuations than to AFM ones. In fact, we know that in
pure YbRh2Si2 FM �uctuations have been observed [63] and also under pressure
the magnetic order changes from AFM to FM (cf. section 4.2.1). In addition,
even in the antiferromagnet CeCu6−xAux such a possibility was considered, based
on neutron scattering results [166]. It is worth mentioning that high magnetic
�elds promote FM �uctuations instead of AFM ones in YbRh2Si2, as shown by K.
Ishida et al. [153]. Therefore, our analysis of χ0, which is taken from high �elds,
might be more in�uenced by FM �uctuations than by AFM ones.
It is therefore important to plot −(dM/dT )/T vs. T inside the AFM phase and

compare these curves with those at �elds close to HN(0). This is shown in Fig. 4.36
in a double-logarithmic representation. We have also plotted a T−1 function as a
guide to the eye. This �gure emphasizes how, for higher �elds than the critical
�eld, the curve tends to saturate to a constant value below 1K. Nevertheless, as
we approach the critical �eld µ0HN(0) = 0.22T the crossover region is shifted
to lower temperatures. As soon as the ordered state is reached, the value of
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Figure 4.34 �Magnetic Grüneisen ratio ΓH(T ) obtained from −(dM/dT )/T and CH(T )
(black points) data as well as from magnetocaloric e�ect measurements (red points) [157]
plotted as a function of the temperature. The dashed line is just a guide to the eye,
indicating that the data do not follow a T−1 power-law function.
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the quantity −(dM/dT )/T changes dramatically due to the e�ect of the phase
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transition and saturate for �elds between 0.1 and 0.2T. However, at �elds close
to µ0HL(0) ≈ 0.06T, below TN , −(dM/dT )/T diverges following a T−1 power
law. Assuming C(T )/T to be constant at these �elds below TN , we can infer the
presence of a 3D AFM SDWQCP at 0.06T in Yb(Rh0.93Co0.07)2Si2 in disagreement
with the analysis of χ0. Although all results seem not to agree consistently with
just a single set of universal parameters within the SDW model, we can surely
state that the clearest divergencies are seen inside the AFM ordered state at �elds
close to 0.06T. As previously mentioned, we do not know if this divergences are
a consequence of the �uctuations of the magnetic order-to-disorder transition at
HL(0) or those of the small-to-large Fermi surfaces at H∗(0) since HL(0) ≈ H∗(0).
Another simple explanation for the lack of critical �uctuations at HN(0) is the

presence of disorder in the sample. Disorder scattering might in�uence the crit-
ical slowing down of the �uctuations below 0.3K explaining the crossover from
a quasi T−1 behavior of ΓH into a weak −log(T ). To test this scenario we have
performed very challenging measurements of the magnetization and speci�c heat
under hydrostatic pressure, since 7% of Co substitution represents a pressure of
about 1GPa (cf. Fig. 4.8). The measurements and the analysis of the results are
presented in the next section.

4.4 YbRh2Si2 under hydrostatic pressure

As mentioned in Sec. 4.1.1, magnetization measurements under the hydrostatic
pressure of 0.64 and 1.28GPa on YbRh2Si2 were already performed by Y. Tokiwa et
al. at di�erent temperatures and high magnetic �elds [106, 159]. The main results
were the observation of the �eld-induced suppression of the HF state at H0, as
hydrostatic pressure experiments have revealed a clear correspondence between
H0 and the Kondo scale TK [106, 107], and the con�rmation that the energy scale
T ∗(H) is almost pressure independent [159, 117]. Unfortunately, the lack of speci�c
heat data under pressure did not permit to calculate ΓH(T,H). In the following
section we will show measurements of the magnetization of a single crystal of
YbRh2Si2 under a pressure of 1.5GPa (see Sec. 3.3) as well as speci�c heat results
taken from the same sample inside the very same pressure cell performed by R.
Borth [100] in the group of Dr. Michael Nicklas. We will compare our analysis
with that performed for the Yb(Rh0.93Co0.07)2Si2 crystal since a pressure of 1.5GPa
corresponds to a Co substitution of about 10% (cf. Fig. 4.8). Since up to a Co
concentration of 12% (≈ 2GPa) the physical properties of the pure system under
pressure and of Yb(Rh1−xCox)2Si2 seem to be equivalent, such a comparison is
justi�ed.
The magnetization measurements were performed in two steps, as described in

the experimental Sec. 3.3, �rst by measuring the magnetization of the pressurized
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sample together with the pressure cell (and the pressure gauge) and after that,
by measuring the contribution of the empty pressure cell which is eventually sub-
stracted. A miniature CuBe piston-cylinder pressure cell, which contained 21.2
mg of 12 high-quality single crystals of YbRh2Si2, was mounted on the Faraday
magnetometer (Sec. 3.2.1). The complete pressure cell has a relative small mag-
netization, and the ratio of the contribution from the empty cell is less than 45%
of the contribution of the samples at high magnetic �elds.

4.4.1 Magnetization vs. �eld

0 . 0 0 . 5 1 . 0 1 . 5

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5 H  ⊥ c

M 
(µ B/Y

b)

µ 0 H  ( T )

 0 . 0 5  K
 0 . 1  K
 0 . 1 5  K
 0 . 2  K
 0 . 2 5  K
 0 . 3  K
 0 . 3 5  K
 0 . 4  K
 0 . 4 5  K
 0 . 5  K
 0 . 6  K
  2  K

Y b R h 2 S i 2  1 . 5  G P a

0 . 2 7  T

H c  =  0 . 0 6 1  T
P b  

H N

Figure 4.37 � Isothermal magnetization measurements at several temperatures of
YbRh2Si2 for H ⊥ c under a hydrostatic pressure of 1.5GPa. The arrows indicate
the critical �eld HN ≈ 0.27T at which the AFM order is suppressed at 0.05K and the
critical �eld µ0Hc ≈ 0.061T of superconducting lead used as a manometer to estimate
the inner pressure.

Fig. 4.37 shows the isothermal magnetization measurements performed with the
�eld perpendicular to the crystallographic c-axis at di�erent temperatures and
under a hydrostatic pressure of 1.5GPa. At 0.05K, two anomalies can be seen in
M(H), a step like at µ0Hc ≈ 0.061T and a kink at µ0HN ≈ 0.27T. The �rst one
corresponds to the superconducting critical �eld of lead (Pb) used as manometer
to estimate the internal pressure, while the second one marks the suppression of
the AFM order by the magnetic �eld, that sets in below TN = 0.55K. Assuming
a good agreement between hydrostatic pressure and Co substitution (cf. Fig. 4.8)
we expect another feature to be present at about 0.05T which should correspond
to the critical �eld of the magnetic transition at TL. Unfortunately, this feature is
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obscured by the strong e�ect at Hc. Since this e�ect is very strong and sensitive
to the remanent �eld of the superconducting magnet (a few mT), we were not
able to substract it correctly. The feature at Hc remains sharp up to 2K since
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Figure 4.38 � High-�eld curves of the �eld dependence of the magnetization in YbRh2Si2
at di�erent hydrostatic pressures. The �eld H0, associated with the Lifshitz transitions
is marked by arrows. The data at 0.64 and 1.28GPa were taken from Ref. [106].

the superconducting transition of lead at 1.5GPa is at 6.64K [167]. The kink
at HN becomes rapidly smeared with increasing temperature. Nevertheless, the
transition can be followed up to 0.4K. These data look quite similar to those for
Yb(Rh0.93Co0.07)2Si2 and Yb(Rh0.88Co0.12)2Si2 of Fig. 4.12 and 4.15, respectively,
con�rming the good agreement between hydrostatic pressure and Co substitution.
Although the kink in the magnetization curves broadens rapidly with increasing
temperature,M(H) exhibits a strong non linear �eld dependence even for T ≥ TN .
This behavior is also observed in YbRh2Si2 (see Fig. 4.3).
At higher �elds, the kink associated with H0 is found at about 4T, con�rming

that H0 is shifted to lower �elds under pressure. This is shown in Fig.4.38 where
we have plotted the magnetization of YbRh2Si2 at 0, 0.64, 1.28 and 1.5GPa. The
data at 0.64 and 1.28GPa were taken from Ref. [106]. The arrows indicate the
positions ofH0 which are 6.2, 3.7, and 3.5T for 0.64, 1.28 and 1.5GPa, respectively.
Surprisingly, the curves for 1.28 and 1.5GPa are very similar with a similar value
for H0, which is remarkable since H0 is very sensitive to pressure [106]. A more
detailed discussion about this issue is given in Sec. 4.4.2. However, our data
seem to be consistent with the speci�c heat results taken at the same pressure
by R. Borth [100]. In fact, in Fig. 4.39 we have plotted the �eld dependence of
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Figure 4.39 � Field dependence of the di�erential susceptibility χ(H) = dM(H)/dH
of YbRh2Si2 at 1.5 GPa and 0.05K. The sudden decreases of χ(H), marked by the red
arrows, indicate the transitions at HN and H0. The di�erential susceptibility χ0 at T ≈ 0
(black points) is proportional to the Sommerfeld coe�cient γ0 (red points) indicating the
reduction of the quasiparticle e�ective mass m∗ ∝ χ0 ∝ γ0 with �eld in the Fermi-liquid
ground state [100].

the di�erential susceptibility χ(H) = dM(H)/dH of YbRh2Si2 at 1.5 GPa and
0.05K. The sudden decreases of χ(H), marked by the red arrows, indicate the
transitions at HN and H0. The di�erential susceptibility χ0 at T ≈ 0 (black
points) is proportional to the Sommerfeld coe�cient γ0 (red points) indicating the
reduction of the quasiparticle e�ective mass m∗ ∝ χ0 ∝ γ0 with �eld in the Fermi-
liquid ground state. The very same behavior was observed in YbRh2Si2 at zero
pressure [106, 107].

4.4.2 Comparison with 1.28 GPa

The remarkable similarity between our data at 1.5GPa and the data at 1.28GPa
of Refs. [106, 159] motivated us to compare them in more detail. In the left
panel of Fig. 4.40 we have plotted the low- and high-�eld magnetization curves at
0.05K, the same displayed in Fig. 4.38, for 1.28 and 1.5GPa. It can be clearly
seen that they match each other. In particular, the critical �elds HN are almost
identical, 0.28 and 0.27T for 1.28 and 1.5GPa, respectively. This behavior is
quite anomalous since a di�erence of 0.22GPa between the two pressures should
yield a relevant di�erence in HN (see Fig. 4.20). We therefore conclude that there
was an error in the exact estimation of the 1.28GPa value of the pressure in
Refs. [106, 159]. The same conclusion can be drawn from the H − T magnetic
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Figure 4.40 � Left: Same curves as Fig. 4.38 for 1.28 and 1.5GPa. The inset emphasizes
that at low �elds the data show the very same behavior despite the superconducting
transition. Right: H − T magnetic phase diagram of YbRh2Si2 at di�erent pressures for
H ⊥ c. The points at 1.5GPa were taken from magnetization and speci�c heat data,
while the points at 0.64 and 1.28GPa were adapted from Refs. [106, 118]. Both TN (H)
and TL(H) at 1.28 and 1.5GPa follows exactly the same behavior.

phase diagram shown in the right panel of Fig. 4.40. The AFM phase transition
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Figure 4.41 � Left: Fig. 4.8 on which we have plotted the TN values for 1.28 and
1.5GPa. The point for 1.28GPa does not �t into the expected behavior. Right: Pressure
dependence of H0 in YbRh2Si2. Also here the point for 1.28GPa is not on the �t line.

boundary line has been determined from the kinks in both isothermal M(H) and
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iso�eldM(T ) magnetization measurements. The TL phase boundary line has been
determined by the kinks inM(T ) at very low �elds (µ0H < 0.06) together with the
speci�c heat measurements performed by R. Borth [100]. Both TN(H) and TL(H)
at 1.28 and 1.5GPa follows exactly the same behavior. Tokiwa et al. used tin (Sn)
as a manometer. Since the critical �eld of Sn (≈ 300G) is much smaller than
that of Pb (≈ 800G), it is possible that the remanent �eld of the superconducting
magnet of the SQUID did consistently a�ect the value of Tc needed to estimate
the pressure.
To add more evidence for our conclusion, we have plotted the TN values for 1.28

and 1.5GPa in Fig. 4.41 (left panel). In addition we have plotted the values for H0

over pressure in the right panel of Fig. 4.41. It can straightforwardly be seen that
the values for 1.28K do not �t into the expected behavior. In particular, looking
at the TN vs. pressure phase diagram for the doping series Yb(Rh1−xCox)2Si2, our
pressures are located in a quasi-linear pressure dependence region (between 7 and
12% Co), where a di�erence of 0.22GPa should yield an increase in TN of ≈ 0.1K.

4.4.3 Magnetization vs. temperature

The uniform susceptibility χ = M(T )/H at di�erent �elds of YbRh2Si2 at 1.5GPa
is shown in Fig. 4.42. In this temperature range the measurements are not a�ected
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Figure 4.42 � Uniform susceptibility of YbRh2Si2 under 1.5GPa at several magnetic
�elds with H ⊥ c. The transition at TN associated with the onset of the AFM order
is marked by the dashed line. The transition temperature in zero �eld is 0.55K. Inset:
low-�eld data. The transition at TL = 0.2K can be seen as a kink in χ(T ) (red dashed
arrow).
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by the superconducting transition of lead, because Tc = 6.64K [167]. In small
�elds, as in Fig. 4.12, we can clearly see the onset of the AFM order in form
of a kink at TN = 0.55K marked by the dashed arrow. Even the transition at
TL = 0.2K is visible in the inset of the same �gure. As the �eld is increased the
transitions become less pronounced and the susceptibility tends to saturate into
a constant value at low temperatures. More precisely, for �elds between 0.06 and
0.1T, χ(T ) keeps increasing below TN like in Yb(Rh0.93Co0.07)2Si2. Above 0.1T,
χ(T ) saturates below a temperature which varies from 0.1 up to 0.4K inferring a
Fermi-liquid ground state. The Curie-Weiss analysis of the inverse susceptibility
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Figure 4.43 � Field dependence of the value χ0 of the susceptibility for T → 0 (taken
at 0.06K) from the measurements shown in Fig. 4.42. The solid blue line represents a
�t according with equation 4.11. The inset shows the same data and �t in a double
logarithmic representation to emphasize the quality of the �t. A slight kink might be
identi�ed at 0.27T.

at low temperatures (between 2 and 4K) gives an e�ective magnetic moment of
2.6µB and a Weiss temperature of −1.5K, values very similar to those estimated
in Yb(Rh0.93Co0.07)2Si2 [112].
Extracting the χ0 susceptibility values for T → 0, we can attempt to perform

the same analysis done in Sec. 4.3 for Yb(Rh0.93Co0.07)2Si2. The extracted values
are plotted in Fig. 4.43 together with a �t to the data with the equation 4.11
(blue line). The function 4.11 can well describe the data yielding a critical �eld
Hcr ≈ 0 and ε ≈ 1/2 in good agreement with the results shown in Fig. 4.35
for Yb(Rh0.93Co0.07)2Si2. This suggests that the critical �uctuations are strong
inside the AFM phase at a �eld close to zero and their character is FM and 2D.
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Like in Yb(Rh0.93Co0.07)2Si2, this imply that at µ0HN = 0.27T there is no QCP
or at least the critical �uctuations are not strong. As already mentioned, high
magnetic �elds promote FM �uctuations instead of AFM ones in YbRh2Si2, as
shown by K. Ishida et al. [153] and this could explain why this analysis yields
parameters compatible with an FM character of the �uctuations. To test this
scenario we have calculated the magnetic Grüneisen ratio at �elds below and above
HN and compared the results with those for Yb(Rh0.93Co0.07)2Si2, which are shown
in Sec. 4.3.

4.4.4 Field-induced QCP at 1.5 GPa

In the previous section 4.3, the quantity −(∂M/∂T )H/T was introduced, which is
needed to calculate the magnetic Grüneisen ratio ΓH (see Eq. 4.8). In Fig. 4.44
such quantity is calculated from the data of Fig. 4.42. The results are split in
two panels, the left one for 0.06 ≤ µ0H ≤ 0.22T (inside the AFM phase) and the
right one for 0.25 ≤ µ0H ≤ 1T (at the putative �eld-induced QCP and outside
the AFM phase). The putative �eld-induced QCP is at µ0HN = 0.27T. Similarly
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Figure 4.44 � Left: −(dM/dT )/T vs. T for �elds 0.06 ≤ µ0H ≤ 0.22T (inside the
AFM phase). Right: −(dM/dT )/T vs. T for �elds 0.25 ≤ µ0H ≤ 1T (at the �eld-
induced QCP and outside the AFM phase). The lines are guides to the eye. The red
dashed line is ∝ −log(T ).

to what was seen in Yb(Rh0.93Co0.07)2Si2, the quantity −(dM/dT )/T do not show
any strong divergence at �elds close to 0.27T. Nevertheless, at high temperatures
−(dM(T )/dT )/T is proportional to T−2 and below 1K decreases substantially
and eventually follows a −log(T ) behavior (red dashed line in Fig. 4.44) down
to the lowest temperature. We can not attribute this behavior to the presence of
disorder, like in Yb(Rh0.93Co0.07)2Si2, but it seems to be intrinsic. In all �elds close
to the critical �eld of 0.27T this behavior is observed (cf. right panel of Fig. 4.44).
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However, for small �elds the temperature dependence of −(dM/dT )/T is stronger
and follows a T−1 at 0.06T, like in Yb(Rh0.93Co0.07)2Si2 (cf. Fig. 4.36), which is
the critical �eld associated either with the transition at TL or with the crossover
energy T ∗.
The speci�c heat was measured at the same �elds as the magnetization on the

very same pressure cell. Selected results are plotted in Fig. 4.45 (right panel)
as C(T )/T vs. T in a double logarithmic representation. The TN and TL phase
transitions (not shown) in zero �eld match quite well those previously reported
by Mederle et al. at the same hydrostatic pressure [144]. The application of a
magnetic �eld leads to the suppression of the AFM ordered state at the critical
�eld of 0.27T. Here, the data saturates below 0.25K and remains constant down
to the lowest temperature. In the vicinity of a QCP, a system is known to show
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Figure 4.45 � Left: Temperature derivative of the magnetization plotted as
−(dM/dT )/T vs. T at the critical �eld µ0HN = 0.27T for YbRh2Si2 at 1.5GPa. The
curve initially increases with a slope proportional to T−2 which �attens into a−log(T ) be-
havior below 1K. Right: Temperature dependence of the speci�c heat C/T of YbRh2Si2
at 1.5 GPa for four �elds [100]. After the subtraction of the nuclear contribution CN [157],
C(T )/T at the critical �eld 0.27T is nearly constant below 0.3K. For a 3D AFM QCP,
C/T consists of a non critical γ0 and a critical contribution C/T ∝ −

√
T [49, 15]. The

solid red line represents a �t to the data according to the equation C/T = γ0 − α ·
√
T

which might �t to the data at 0.27T. The �t parameters are γ0 = 1.45 J K−2 mol−1

and α = 0.6691 J mol−1 K−3/2. For the lower �elds, below TN , C/T follows a T−0.15

dependence which is close to a −log(T ).

deviations in the Sommerfeld coe�cient γ = C/T from the Fermi liquid theory (see
Tab. 2.1), where it is expected to be constant. For instance, for a 3D itinerant FM
QCP, C/T is expected to be proportional to −log(T ), while for a 3D AFM QCP,
C/T consists of a non critical γ0 and a critical contribution C/T ∝ −

√
T [49, 15].

The solid red line in the right panel of Fig. 4.45 represents a �t to the data
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according to the equation C/T = γ0−α ·
√
T which might �t to the data at 0.27T.

For the lower �elds, below TN , C/T follows T−0.15 dependence which is close to a
−log(T ). The weak T -dependence of C/T at 0.06T is in contrast to the strong
T−1 power-law dependence of −(dM(T )/dT )/T . This suggests that ΓH might be
proportional to T−1 as expected for a 3D AFM QCP.

4.4.5 The magnetic Grüneisen ratio

As explained in Sec. 2.3.4 and Ref. [15], a divergence in the Grüneisen ratio can
be considered as direct evidence of the presence of quantum critical �uctuations
and therefore can prove the existence of quantum critical points. The temperature
dependence of the magnetic Grüneisen ratio ΓH(T ) = −(∂M(T )/∂T )H/C(T )H of
YbRh2Si2 at 1.5GPa for �elds 0.06 ≤ µ0H ≤ 0.4T, i.e. below and above the
critical �eld µ0HN = 0.27T, is displayed in Fig. 4.46. The data are plotted in a
double logarithmic representation to emphasize the power-law behavior.
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Figure 4.46 � Left: Temperature dependence of the magnetic Grüneisen ratio ΓH(T ) =
−(∂M(T )/∂T )H/C(T )H of YbRh2Si2 at 1.5GPa for �elds 0.06 ≤ µ0H ≤ 0.2T, i.e.
below the critical �eld µ0HN = 0.27T. The data are plotted in a double logarithmic
representation to emphasize the power-law behavior. Right: Same as in the left panel
but for �elds 0.22 ≤ µ0H ≤ 0.4T, close and above µ0HN = 0.27T.

For �elds 0.22 ≤ µ0H ≤ 0.4T, i.e. close and above the AFM critical �eld
µ0HN = 0.27T, ΓH(T ) ∝ T−2 above 1K. But below 1K it �attens and all curves
seem to be proportional to a −log(T ) function at low T or a power law with a very
small exponent (see analysis in Fig. 4.47). Such a weak divergence is not expected
in 3D antiferromagnets at the QCP in either the SDW [15] or the local [165]
scenario. Since the system at HN is expected to be itinerant (cf. discussion in
Sec. 4.1.3) it should follow the SDW model, with Γ ∝ T−1 in 3D or ΓH ∝ T−1

with logarithmic corrections in 2D (see Tab. 2.1). But this is not the case. The
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Figure 4.47 � Magnetic Grüneisen ratio of YbRh2Si2 at 1.5 GPa at the AFM critical
�eld µ0HN = 0.27T. ΓH(T ) ∝ T−2 above 1K, but below 1K it �attens and all curves
seem to be proportional to a −log(T ) function at low T or a power law with a very small
exponent of −0.15. The inset shows the �eld dependence of ΓH = −Gr(H−Hcr)

−1 taken
at 0.06K, according to Eq. 4.9. A �t to the data gives Gr = −0.42 and Hcr ≈ 0.004T.

weak temperature divergence of ΓH(T ) can not be attributed to the presence of
disorder, since the samples are of the best quality, and it is therefore an intrinsic
property of YbRh2Si2 at HN .
The T−1 power law is indeed found inside the AFM phase, in particular at 0.06T.

In fact, ΓH(T ) keeps increasing inside the AFM phase with a larger slope at the
smallest �elds. The log-log representation in the left panel of Fig. 4.46 emphasizes
such behavior. As it was conclude for the Yb(Rh0.93Co0.07)2Si2 system, we may
state that the critical divergencies are observed not at the AFM �eld-induced
QCP but inside the AFM phase at another critical �eld of about 0.06T. This �eld
coincides with the critical �eld of the transition at TL(H) or with the critical �eld
associated with the Kondo-breakdown crossover line T ∗(H) [159]. Since ΓH =
T−1/(νz) in the SDW scenario, we can extract z = 2, since ν = 1/2, which imply
an AFM QCP. More information can be deduced from the H-dependence of ΓH .
The inset of Fig. 4.47 shows the �eld dependence of ΓH taken at 0.06K. According
to Eq. 4.9, ΓH = −Gr(H − Hcr)

−1 with Gr = ν(d − z). A �t to the data gives
Gr = −0.42 and Hcr ≈ 0.004T. This is consistent with z = 2 when d ≈ 3 inferring
a 3D AFM QCP at a �eld which is in the range 0 ≤ µ0Hcr ≤ 0.06T. Unfortunately,
a clear statement about the meaning of these parameters and the nature of the
QCP inside the AFM phase can not here be given, since these numbers are a�ected
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by the magnetic phase below TN and, in addition, we did not subtract the non-
critical contribution to ΓH(T,H) which can not be correctly estimated.

4.5 The magnetic phase diagrams of YbCo2Si2

In this section an investigation of the magnetic properties of the high quality single
crystals of the YbCo2Si2 compound by means of dc-magnetization measurements
is presented. The low-temperature H − T magnetic phase diagram is derived by
applying the magnetic �eld along three crystallographic directions: [100], [110] and
[001]. These data can be used to test the CEF calculations by providing the values
of the saturation magnetization and clarify the evolution of the magnetic structure
in an applied magnetic �eld. The results obtained here by dc-magnetization are
complementary to those obtained in magnetoresistance [141] and neutron scatter-
ing [142, 143] experiments. The interpretation of the data is done by taking into
account all these results. This work might be the �rst step to help identifying the
ordered state in the homologue YbRh2Si2.
The single crystals investigated here has been grown with In-�ux technique

as fully described in Ref. [112]. They have a residual resistance ratio (RRR =
ρ300K/ρ0.35K) of 2 at 0.35 K. Its shape is square, with sides parallel to the crystal-
lographic direction [100], which made it easy to align. The dc-magnetization (M)
has been measured with a high resolution Faraday magnetometer as described in
section 3.2.1, in magnetic �elds as high as 4 T and temperatures down to 0.05 K.
The ac-susceptibility measurements were performed in a Quantum Design Physical
Properties Measurement System (PPMS) in temperatures down to 2 K and mag-
netic �elds up to 3 T. A few measurements have been carried out down to 0.5 K
in a 3He option (iQuantum Corporation) for a 7 T-SQUID (Quantum Design).
The measurements were made on two di�erent crystals: for the directions H‖[100]
and H‖[001] a crystal with a mass of 8.44 mg in the Faraday magnetometer and
other crystal from the same batch with 35 mg for the direction H‖[110] in the
3He SQUID.

4.5.1 Magnetization vs. temperature

Figure 4.49 shows the temperature dependence of the uniform susceptibility χ =
M/H in several magnetic �elds along the three crystallographic directions. Two
features can be identi�ed in all three �eld directions: A sharp kink at TN =
1.75 K and a distinct drop at TL = 0.9 K. At TN AFM order sets in but χ(T )
indicates a di�erent antiferromagnetically ordered structure below TL, as suggested
in Ref. [142]. The shape of the magnetization curves reminds to that observed in
YbRh2Si2, (cf. Ref. [105]), pointing to an AFM nature of the phase transition
at TL in YbRh2Si2. Both TN and TL, shift to lower temperatures with increasing

104



4.5 The magnetic phase diagrams of YbCo2Si2

H along the [100] and [001] directions, whereas for H‖[110] TL remains almost
constant in T . For H parallel to [100] and [110] and at �elds higher than 0.1 T,
the sharp cusp at TN changes into a plateau, where χ(T ) remains almost constant
down to a temperature T ′N (cf. curve at 0.5 T for H‖[100] and curve at 0.55 T for
H‖[110] of Fig. 4.49). The lower transition becomes broader in T as the external
�eld is enhanced, and it disappears for �eldsH ≥ 1 T along the two directions [100]
and [110], but a �eld of about 1.6 T is necessary to suppress TL along [001] [108].
A �eld H ≥ 2 T is necessary to suppress TN to zero, where χ(T ) becomes nearly
constant in all three directions.
The strong basal anisotropy noticed in the magnetoresistance measure-

ments [141] is con�rmed by the di�erent behavior of the iso�eld curves taken
along [100] and [110]. The curves look very similar for H ≤ 0.3 T but in higher
�elds the susceptibility along [100] still keeps decreasing below TL, while along
[110] it increases steeply. The picture proposed in Ref. [141] is that the phase
transition at TL is the one where the propagation vector Q changes from incom-
mensurate to commensurate; the kink at T ′N and the features observed for H‖[110]
at H ≈ 0.4 T would indicate a possible reorientation of the moments without
any change in Q. This could explain why χ changes behavior above 0.4 T. Along
[001], just two anomalies at TN and TL are observed, which are systematically
suppressed by �elds of 1.6 and 2.35 T, respectively.
It is worth noting that, below TL and in low �elds parallel to [100], the suscepti-

bility follows a T 4 dependence, as shown in Fig. 4.50. This temperature dependence
is probably due to spin wave excitations and depends strictly on their dispersion.
However, the knowledge of the low-T propagation vector can help us to perform
calculations to check this power law, as well as those obtained in speci�c-heat and
resistivity measurements [112, 141].

Figure 4.48 � Photography of a YbCo2Si2 single crystal on millimeter paper.
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4.5.2 Magnetization vs. �eld

To investigate the phase transition lines in more detail, we measured the �eld de-
pendence of M at di�erent temperatures. The results are shown in �gures 4.51
to 4.53 with the respective derivatives dM/dH. The isothermal curves of Fig 4.51
at 0.05 K, H‖[100] show two metamagnetic-like steps at about 0.65 T and 0.85 T,
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Figure 4.49 � Magnetic susceptibility χ = M/H, plotted as a function of T , in ex-
ternal magnetic �elds applied along three crystallographic directions. In every frame,
all curves have been shifted for clarity by a constant factor with respect to that at the
lowest �eld. TN denotes the upper AFM transition temperature, TL the lower one. T ′N
de�nes the temperature down to which the susceptibility stays constant below TN and
successively decreases. The arrows indicate the evolution of the transition temperatures
with increasing magnetic �eld.
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followed by a kink at HN = 1.9 T, which is associated with the transition at
HN (upper frame). Measuring M , while sweeping the �eld up and down, a small
hysteresis is observed across the second phase transition at 0.85 T (cf. inset of
the same frame). At HN the transition is continuous. At a slightly higher tem-
perature T ≈ 0.2 K, the hysteresis vanishes. By further increasing T , the two
steps merge into one at 0.65 K and afterward split again at 0.8 K without showing
any hysteresis. This is well illustrated in the bottom frames of Fig. 4.51, where
dM/dH is plotted as a function of H. We have assigned the critical �elds of the
metamagnetic-like transitions to the �elds corresponding to the maxima of dM/dH
and for the transition at HN we considered the in�ection points in dM/dH. More-
over, from the evolution of these anomalies in �eld we have associated the �elds
of the �rst and second step with the signatures seen at T ′N and TL, namely H ′N
and HL. These signatures indicate that the nature of the phase line T ′N(H) may
be of the second order while the one of TL(H) is of the �rst order. This does not
contradict the interpretation given in Ref. [143] that at 0.65T the �eld modi�es
the orientation of the moments (either through a spin-�op transition or depopulat-
ing unfavored AFM domains, that causes the strong change of slope in M vs. H)
without modifying the propagation vector Q, whereas at 0.85T it is the change of
Q, that causes the tiny hysteresis e�ect. This scenario seems to be con�rmed by
neutron scattering experiments on single crystals performed in magnetic �eld [143].
The value of the magnetization just above HN is 1.4 µB/Yb, which is in agree-

ment with the saturated moment calculated by Hodges [126] and by Klingner et
al. [112], con�rming the local magnetic behavior of the Yb 4f holes. Above HN ,
M increases further possibly because of the van Vleck contributions to M .
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Figure 4.50 � Uniform susceptibility plotted as a function of T 4 to emphasize the
behavior below the lower AFM transition temperature TL (indicated by arrows).
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The results of the M vs. H measurements with H along the [110] direction
are shown in Fig. 4.52. At all temperatures lower than TN , a metamagnetic-like
step is observed at almost the same �eld of 0.45 T with no detectable hysteresis,
although the temperatures at which these data have been taken are higher than
0.05 K, as shown in the inset of Fig. 4.51. The expected saturation magnetization
of 1.4 µB/Yb is achieved at HN ≈ 1.75 T for a temperature of 0.5 K, below
which we did not carry out further measurements. At 1.4 K the signature of such
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Figure 4.51 � Upper frame: M vs. H at four selected temperatures with H‖[100]. HN

denotes the critical �eld associated with the transition at TN . In the inset we zoom on
the metamagnetic-like transitions to emphasize the hysteresis loop at 0.05 K; the arrows
indicate the �eld sweep direction. In the lower frames, the derivative of the isotherm
magnetization is plotted at 0.5, 0.65 and 0.8 K. The two metamagnetic-like transitions
visible at 0.5 K join each other to become one at 0.65 K and split again at 0.8 K. This
feature is accentuated in dM/dH (in form of peaks). We have associated the �elds H ′N
and HL with the transitions at T ′N and TL, respectively.
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anomaly is very weak and can only be observed in the derivative (cf. bottom
frame of Fig. 4.52). Since only a metamagnetic-like transition is seen along the
[110] direction, one may ask whether this transition represents the reorientation of
the moments or a change in Q. Since this feature seems to be present also above
TL, we tend to associate it with H ′N .
The Fig. 4.53 shows representative curves of the magnetization as a function

of the �eld (upper frame) and its derivative (lower frame) for H‖[001]. Also in
these measurements only a single step could be discerned before the magnetization
reaches its saturation value of 0.68 µB/Yb with a kink at 2.35 T for T = 0.05 K.
The saturated moment matches very well with that calculated within the CEF
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Figure 4.52 � Upper frame: M vs. H at three selected temperatures with H‖[110].
Lower frames: dM/dH vs. H at the same three temperatures. HN and H ′N denote the
critical �elds associated with the transitions at TN and T ′N , respectively.
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model in Ref.[112]. In this case we have associated the metamagnetic-like step in
M vs. H with the phase transition at TL, although here no hysteresis could be
resolved. This association is derived directly from the shape of the phase lines
plotted in Fig. 4.54. Both the isothermal and iso�eld measurements show features
at the same phase transition lines where the propagation vector Q is believed
to change. In the lower frame of Fig. 4.53 we have plotted dM/dH vs. H to
emphasize that the signatures at HL and HN broaden and the peak intensity is
reduced, as expected from the evolution of the phase transition lines.
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Figure 4.53 � Upper frame: M vs. H at six selected temperatures with H‖[001]. Lower
frames: dM/dH vs. H at the same six temperatures. HN and HL denote the critical
�elds associated with the transitions at TN and TL, respectively. The arrows indicate
the evolution of the critical �elds with increasing temperature.
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Figure 4.54 � Magnetic phase diagram of YbCo2Si2 with H‖[100], [110] and [001]. The
square and circle points have been extracted from iso�eld and isothermal measurements of
M , respectively. PM indicates the paramagnetic region while AFM the antiferromagnetic
one. The four di�erent AFM phases are labeled from I to IV. The full lines represent phase
transition lines at which the propagation vectorQ changes, whereas the dashed lines mark
the reorientation of the moments. The border between the PM and the AFM regions has
been �tted with the curve: [HN (T )/HN (0)]n + [T/TN (0)]n = 1, where TN (0) = 1.77 K,
µ0HN (0) = 1.9, 1.88 and 2.35 T and n = 1.9, 1.78 and 1.94 for H‖[100], [110] and [001],
respectively. The di�erences in the evolution of TN at µ0H(T ) = 0 between H‖[100],
H‖[001] and H‖[110] come from the fact that the magnetization measurements were
performed in two di�erent crystals from the same batch.
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4.5.3 H − T phase diagrams

The deduced magnetic H − T phase diagram with H applied along the three
crystallographic directions [100], [110] and [001] is shown in Fig. 4.54. The squares
and circles indicate anomalies observed inM vs. T andM vs. H, respectively. The
outer second order phase-transition boundary line, which separates the AFM from
the paramagnetic (PM) phase, can be followed from 1.75K in zero �eld up to the
critical �elds µ0HN(0) = 1.9, 1.88 and 2.35T along the three directions. The data
along these lines can well be described by an empirical curve [HN(T )/HN(0)]n +
[T/TN(0)]n = 1 with n close to 2. The exponents are displayed in the caption of
Fig. 4.54. For H//[110] TN at zero �eld is slightly smaller than that measured
along [100] or [001]. This is due to the fact that the iso�eld measurements were
performed in the SQUID on a second sample of the same batch [110].
Inside the magnetic phase, four AFM regions can be identi�ed when the �eld is

applied along the basal plane (upper panels), while for H//[001] only two regions
have been observed (lower panel). We start our description from the lower panel of
Fig. 4.54. Since the two AFM phase transitions at TN and TL in zero �eld have been
established to be of the second and �rst order and involve a change of the propaga-
tion vector Q [111, 142, 143], it is straightforward to draw continuous lines on the
points and consider the two regions AFM I and II as regions with di�erent Q. On
the other hand, for H//[100] the TN(H) line seems to split in �eld separating the
regions AFM II and IV and AFM I and III by a second-order-like phase transition
indicated by a kink at T ′N or a metamagnetic-like step at H ′N without hysteresis
(see Figs. 4.49 and 4.51). In addition, the boundaries between the phases I and II
and between the phases III and IV appear to be �rst order lines (see Fig. 4.51).
For this reason we have drawn a continuous line, which we think separates the
regions with di�erent Q. A similar interpretation can be considered for H//[110],
but in this case the line separating the two magnetic structures is almost constant
in temperature. Recent neutron scattering experiments performed in magnetic
�eld seem to support such a scenario [143]. Taking into account all our �ndings
and the results of Refs. [141, 142, 143] we might interpret our data as follows:
Region II is characterized by AFM order with an incommensurate arrangement of
the moments, which then assumes a commensurate structure in region I through
a �rst order phase transition. By applying a magnetic �eld along [001], the ar-
rangement of the moments undergoes a metamagnetic-like transition changing the
propagation vector and becoming fully polarized above 2.35T. The same feature is
expected across the continuous line inside the magnetic ordered phase for H//[100]
(upper panel of Fig. 4.54), e.g. between the AFM III and AFM IV. For H//[100]
and [110] the magnetic �eld modi�es the orientation of the moments at T ′N(H)
(dashed lines in Fig. 4.54), either through a spin-�op transition or depopulating
unfavored AFM domains, without modifying the propagation vector Q. However,
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in Ref. [143] a signi�cant di�erence between the behavior of the magnetoresistance
across the dashed lines for temperatures lower and higher than TL(H) was ob-
served: For T > TL(H) the magnetoresistance shows a kink at T ′N(H) suggesting
a continuous transition, e.g. a depopulation of unfavored AFM domains, while for
T < TL(H) the magnetoresistance shows a distinct drop inferring a spin-�op tran-
sition, possibly into a structure with a ferromagnetic component. The fact that
only for H//[001] no reorientation of the moments is observed, suggests that the
moments may lie in directions close to the basal plane, as previously suggested by
Hodges [126]. Our interpretation assumes that the AFM structure allows multiple
domains and that the dashed lines in Fig. 4.54 may indicate a simple domains
depopulation e�ect. Another and more suggestive possibility is that of a double-Q
structure as has been found, e.g., in GdNi2B2C [168]. The same principle holds
for such a kind of structure in which the �eld somehow favors one or the other
propagation vector.
In summary, in this section the magnetic phase diagram of single crystals of

YbCo2Si2 was explored by means of isothermal and iso�eld magnetization mea-
surements with the magnetic �eld oriented along the crystallographic directions
[100], [110] and [001]. In a small �eld µ0H = 0.1 T two AFM phase transitions
were detected at TN = 1.75 K and TL = 0.9 K, in the form of a sharp cusp and a
sudden drop in χ = M/H. These signatures con�rm that the phase transitions are
second order at TN and �rst order at TL. The shape of the magnetization curves
are similar to those observed in YbRh2Si2 pointing to an AFM nature of the phase
transition at TL in YbRh2Si2. The AFM order is completely suppressed by �elds
close to 2 T where the magnetization reaches its saturation values Ms(H‖[100])
and Ms(H‖[110]) ≈ 1.4µB and Ms(H‖[001]) ≈ 0.68µB which match quite well
with those calculated for the Γ7 ground state proposed in Ref. [112] con�rming the
trivalent state of the Yb ions in YbCo2Si2. Inside the AFM phase, two main re-
gions can be identi�ed along all directions where the propagation vectorQ assumes
two di�erent values. For H parallel to [100] and [110] (the magnetic structure is
anisotropic in the basal plane), however, these regions are separated by another
line, which seems to correspond to the line where the magnetic moments reorient,
and separates AFM domains; in the case of an AFM double-Q structure we would
observe the same features and the available neutrons scattering results needs to
clarify this point. ForH parallel to [001] only two AFM phases have been observed,
implying that the moments might lay in directions close to the basal plane.

4.5.4 Ac-susceptibility

Finally, I would like to brie�y compare ac-susceptibility χ′(T ) measurements on
YbCo2Si2 with those performed on YbRh2Si2 [125]. In the latter compound a
maximum was observed in the temperature dependence of χ′(T ) in magnetic �eld
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Figure 4.55 � Temperature dependence of the ac-susceptibility χ′(T ) measured at dif-
ferent applied magnetic �elds. The arrows indicate the maximum observed only at high
�elds. Inset: Magnetic phase diagram with H‖[100] in which we have included the points
extracted from the maxima of χ′(T ).

and it was associated with an energy scale T ∗(H) interpreted as the energy where
the Kondo e�ect breaks down due to the presence of a �eld-induced QCP at HN .
The T ∗(H) line vanishes for T → 0 at the QCP [57]. In YbCo2Si2 we observe a
similar e�ect, i.e., maxima in χ′(T ) which are indicated by arrows in Fig. 4.55.
Plotting the maxima on the phase diagram (inset of the same �gure) we can deduce
from the evolution of the points that the similar energy scale T ∗(H) for YbCo2Si2
is not approaching the critical �eld HN . In YbRh2Si2 the maxima undoubtedly
represents the thermally activated excitation of the Γ7 doublet split by the Zeeman
e�ect.
A straightforward comparison between the two systems cannot be done, since

YbCo2Si2 is a system where the Yb quasi-holes are almost localized while in
YbRh2Si2 they are almost delocalized. It would be however interesting to study
the evolution of this energy scale while varying the Co content, as has already been
done in Ref. [125] and [117] for low Co concentrations.

4.6 Conclusions

In this Chapter, seven high-quality single crystals of the series Yb(Rh1−xCox)2Si2
(with x = 0, 0.07, 0.12, 0.18, 0.27, 0.58 and 1) were investigated by means of mag-
netization measurements in a temperature range 0 ≤ T ≤ 4K and �eld range
0 ≤ µ0H ≤ 12T.
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4.6 Conclusions

We have investigated the evolution of magnetism from itinerant (with x = 0
and H > HN) to local (with x = 1) in Yb(Rh1−xCox)2Si2 (Sec. 4.2) and drawn
an instructive magnetic moment µ vs. chemical pressure x phase diagram (see
Fig. 4.30). At zero pressure and atH > HN the Kondo energy scale dominates over
the RKKY one, almost screening the magnetic Yb3+ moments and leaving AFM
order just below 0.07K and a very small ordered moment µ(HN) ≈ 0.1µB/Yb. The
system shows itinerant magnetism and heavy-fermion character. At the critical
�eld HN of the AFM phase a QCP is found with pronounced NFL properties
and an associated energy scale T ∗(H∗) where the Kondo e�ect breaks down and a
Fermi surface reconstruction takes place (Sec. 2.3.2). This energy scale separates a
region where the magnetic moments have local character from a region where they
have itinerant character (see Fig. 4.11). One of the �rst observations is that this
energy scale seems not to be very a�ected by pressure. With increasing pressure,
i.e. decreasing the strength of the hybridization J , the magnetic moment µ(x)
increases rapidly as a consequence of the rapid decrease of the Kondo temperature
TK . TRKKY also decreases but in a smoother way. Therefore, at above x = 0.27 the
RKKY interaction dominates substantially over the Kondo interaction and µ(x)
vs. x still increases, but weakly. Between x = 0.27 and x = 1 the systems still show
weak heavy-fermion character, while at x = 1 the pressure is enough to eventually
localize the 4f -electrons and we obtain µ = µsat. This demonstrates the fact
that magnetism evolves continuously from itinerant to local in Yb(Rh1−xCox)2Si2.
On the other hand, the evolution from itinerant to local magnetism induced by
magnetic �eld takes place in two steps. First, the �eld induces Lifshitz transitions
where the Fermi surface changes from large to small as a result of the shift of a
van-Hove singularity across the Fermi level and then the fully localization of the f
electrons takes place smoothly at even higher �elds where the magnetic moment
achieves its saturation value. Hence, both the coherence e�ects resulting from the
lattice periodicity as well as the de-renormalization of the quasiparticles, which is
re�ects the break-up of the local Kondo singlets, have to be taken into account.
The physics of the antiferromagnet YbCo2Si2, i.e. at high x, can completely

be understood, if one considers Yb local moments and the CEF schema shown in
Sec. 4.1.2. On the other side, the physics of pure YbRh2Si2 and small x is much
more problematic, due to the itinerant character of magnetism and the vicinity of
the system to a QCP. We have tried to characterize the �eld-induced AFM QCP
at the critical �eld HN in Yb(Rh0.93Co0.07)2Si2 (Sec. 4.3) and in pure YbRh2Si2
under a pressure of 1.5GPa (Sec. 4.4) by means of a measure of the magnetic
Grüneisen ratio ΓH(T,H). This QCP is located in the itinerant part of the phase
diagram and supposed to be described by the SDW scenario (Sec. 2.3.1). We
have found very similar results in Yb(Rh0.93Co0.07)2Si2 and in YbRh2Si2 under
1.5GPa demonstrating that, for small x ≤ 0.12, chemical pressure is equivalent to
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hydrostatic pressure. At HN , ΓH(T ) ∝ −log(T ) and therefore does not diverge as
expected (Γ ∝ T−1 in 3D AFM QCP). However, at �elds well below HN , ΓH(T ) ∝
T−1 inferring a 3D AFM QCP at a �eld which is in the range 0 ≤ µ0Hcr ≤ 0.06T.
Unfortunately, a clear statement about the nature of the QCP inside the AFM
phase can not here be given, since the extracted parameters are a�ected by the
magnetic phase below TN and, in addition, we did not subtract the non-critical
contribution to ΓH(T,H) which can not be correctly estimated.
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5.1 Introduction and motivation

This section is dedicated to the study of the �eld-induced quantum phase tran-
sition in the strongly anisotropic quasi-one dimensional S = 1 Ni2+ chain
NiCl2-4SC(NH2)2 (dichloro-tetrakis-thiourea-nickel(II)), better know as DTN (see
Fig. 5.1). Di�erently from theories of QPTs in metals, the theory of QPTs in
magnetic insulators, like DTN, seems to be better understood and to match often
the experimental evidence. The QPTs in DTN are induced by magnetic �eld. In
fact, DTN enters a XY AFM ordered state below 1.2K between moderate �elds

Figure 5.1 � Left: Body-centered tetragonal crystal structure of DTN with chains
of Ni-Cl-Cl-Ni atoms arranged along the crystallographic c direction. The AFM ex-
change constants between neighboring spins are Jc = 2.2K along the chains and about
10 times smaller, Jab = 0.18K, in the ab-plane. DTN crystals are yellow (inset). Right:
Field dependence of the magnetization at 16mK (right scale). The phase boundary
line between the quantum paramagnetic (QPM) phase, the XY AFM phase and the
fully spin-polarized (FSP) phase was obtained by magnetocaloric-e�ect measurements
(open squares). The solid squares and circles were obtained by Monte Carlo calculations.
Figure taken from Ref. [86].
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µ0Hc1 ≈ 2T and µ0Hc2 ≈ 12.5T. In this prospect, quantum magnets like DTN are
suitable materials to be investigated by means of magnetization measurements.
DTN has a body-centered tetragonal crystal structure with chains of Ni-Cl-

Cl-Ni atoms arranged along the crystallographic c direction (see Fig. 5.1). The
magnetic Ni2+ atoms carry spin S = 1 due to an almost completely quenched
orbital momentum. The dominant single-ion anisotropy constant D/kB = 8.9K,
and the AFM exchange constants between neighboring spins Jc/kB = 2.2K (along
the chains) and Jab/kB = 0.18K, (in the ab-plane) were obtained by neutron
scattering and ESR experiments [82, 86]. The gyromagnetic factor g parallel to
the c-axis was estimated to be 2.26 by ESR experiments [86]. The ground state
at H = 0 is non magnetic (S = 1, Sz = 0) and is separated from the �rst excited
state (S = 1, Sz = ±1) by an energy gap ∆ (see Fig. 2.11 of Sec. 2.4). The
magnetic �eld eventually closes the gap at a critical �eld Hc1 inducing a QPT into
a XY AFM ordered state with �nite magnetization and AFM magnon excitations.
The magnetization then rises up to the saturated value at Hc2 (cf. right panel of
Fig. 5.1).

gap

Hc1 H

QCP

Ordered Phase

Te
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re

0

Thermally disordered Phase

∆0

Figure 5.2 � Left: Energy of the spin excited doublet plotted as function of the applied
magnetic �eld parallel to the crystallographic c-axis and measured at wave vector Q =
(−1.5,−1.5, 1.5). The energy of the scans in magnetic �eld are shown in the subplots
(b), (c) and (d). Right: Schematic view of the phase boundary line of a gapped quantum
magnet. The dotted line shows the energy of the spin gap shifted linearly by the Zeeman
e�ect. The blue-red conical region indicates the region of enhanced quantum �uctuations
at T > 0. The red solid line represents the phase boundary between the paramagnetic
and the XY-AFM phase, while the two blue lines represent the region with strong thermal
�uctuations. Figure taken from Ref. [169].
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5.2 Results

The �rst microscopic evidence that the zero-�eld magnetic excitations in
DTN are doublet states was found by N. Tsyrulin by means of neutron spec-
troscopy [169]. He observed how the energy levels of the doublet excited state
split linearly with increasing �eld, (see left panel of Fig. 5.2). This �gure shows
the magnetic excitation spectrum as a function of energy for di�erent magnetic
�elds. At µ0Hc1 ≈ 2T the magnetic sublattice undergoes a second order phase
transition into a XY AFM order. This XY AFM order can be described as a
Bose-Einstein condensation of magnons by mapping the spin-1 system into a gas
of hardcore bosons [71]. This analogy between ultra cold diluted atomic gases and
BEC in quantum magnets was theoretical predicted by Matsubara and Matsuda
in 1953 [71] and observed experimentally in the gapped S = 1/2 dimer compound
TlCuCl3 [74, 68, 75, 76]. An overview of the theory is given in Sec. 2.4. The
DTN system can be fully described by the Hamiltonian 2.23 in Sec. 2.4 and all
thermodynamical quantities can be calculated, as done, e.g., in Eqs. 2.33. The
expectation values for critical exponents at the �eld-induced QCP at Hc1 can be
obtained analytically and numerically. The universality class of the QCP can be
determined by measuring the temperature dependence of thermodynamic quanti-
ties like the magnetization M(T ) or the speci�c heat C(T ) and the shape of the
phase border line in the vicinity of the QCP [68]. Tab. 2.3 of Sec. 2.4 displays
the expectation exponents for a XY antiferromagnet and the Ising QCP, both in
three dimentions (d = 3). The BEC of magnons belongs to the 3D XY universality
class with d = 3 and dynamical exponent z = 2. In addition, by using M(T ) and
C(T ), the temperature dependence of the magnetic Grüneisen ratio ΓH(T ) can be
obtained and compared with the expected behavior ΓH(T ) ∝ T−1/νz at the QCP
(cf. Sec. 2.3.4).

5.2 Results

In the following, dc-magnetization measurements on a single crystal of NiCl2-
4SC(NH2)2 by means of the high-resolution Faraday magnetometer (described in
Sec. 3.2.1) are presented. In addition, speci�c heat measurements performed by
A. Steppke [157] with the compensated heath-pulse technique [170] on the same
sample are shown and used to calculate the magnetic Grüneisen parameter (see
Sec. 2.3.4). All measurements were performed down to 50mK an up to 5T. We
have accurately determined the phase diagram boundary line and performed an
accurate analysis of the temperature dependence of M(T ) and C(T ) in order to
obtain critical exponents that are compared to those predicted for the XY -AFM
and Ising universality classes. A detailed analysis of the Grüneisen parameter at
the quantum critical point is also given.
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5.2.1 Magnetization

Fig. 5.3 shows the magnetization M(H) curves obtained in magnetic �eld up to
5T applied along the c-axis at temperatures between 0.05 and 0.5K. The mag-
netization increases linearly and very slightly from H = 0 up to the critical �eld
µ0Hc1 = 2.12T at which it changes slope1. The kink in M vs. H can clearly
be observed at the phase transition where the spin gap closes and the XY -AFM
order sets in. For H > Hc1 the magnetization increases linearly as expected (see
right panel of Fig. 5.1). With increasing T , the kink is shifted to higher �elds as
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Figure 5.3 � Magnetization M plotted as a function of the magnetic �eld H‖c at dif-
ferent temperatures. The curves are vertically shifted by 0.014µB/Ni for better visibility.
The dashed arrow indicates the evolution of the critical �eld Hc1, at which M vs. H
shows a kink.

expected from the shape of the phase diagram (see right panel of Fig. 5.1). The
�eld at which the phase transition occurs can be accurately obtained from the
position of the peak of the second derivative of the magnetization with respect to
�eld d2M/dH2. This peak sharpens as the temperature is reduced. In Fig. 5.4,
d2M/dH2 vs. H is shown for the measurement done at the lowest temperature of

1In our publication, i.e. Ref. [171], the increasing of M(H) for H < Hc1 is associated to a
misalignment of the sample of less than 1.2 ◦, which gives a contribution M(H ⊥ c) to the
magnetization, and the data were corrected. This is because the ground state is a singlet
between H = 0 and Hc1 and the magnetization should be zero. This correction results
in a slightly di�erent value of the critical �eld, i.e. 2.08T. In this section the raw data are
analyzed with µ0Hc1 = 2.12T. There is no di�erence between our analysis and that performed
in Ref. [171] as well as in the conclusions.
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Figure 5.4 � First and second derivative of M(H) with respect to H, plotted as a func-
tion of H for the measurement taken at 0.05K. The sharp peak in the second derivative
marks the position of the critical �eld Hc1 (blue line).

0.05K. The vertical line indicates the correct position of Hc1, which is 2.12T. This
method of extracting the critical �eld is signi�cantly more accurate and reliable
than the method used by Paduan-Filho et al. [172] in which only the �rst deriva-
tive is taken into account. The thermodynamic validation of such an argument is
explained in the Ref. [173].
The temperature dependence of the magnetizationM(T ) is presented in Fig. 5.5

at several magnetic �elds below and above the critical �eld Hc1. The transition
to the XY -AFM ordered state is marked by a dip in M(T ) which is a phase
transition of second order surrounded by thermal �uctuations, similar to what
was observed previously by Paduan-Filho et al. [81]. Inside the ordered state the
spins of nickel are in a canted con�guration (↖↗↖↗), and the magnetization for
T → 0 increases with increasing �eld. When the temperature is increased at values
close to the single-ion anisotropy constant D/kB ≈ 9K the magnetization shows
a maximum (at about 5K), indicating the presence of the spin gap. Neglecting
the exchange interaction parameters between the Ni sites we can simplify the
Hamiltonian 2.23 as

H =
∑
i

[D(Szi )2 − gµBµ0HS
z
i ] (5.1)
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Figure 5.5 � Left: Magnetization curves as a function of temperature for several mag-
netic �elds applied along the c-axis. The maxima at about 5K indicate the spin gap. The
onset of magnetic order at low temperatures is marked by a dip [81]. Right: Temperature
dependence of the magnetic susceptibility at 1T along the crystallographic c-axis. The
solid line is a �t to the data with Eq. 5.2.

where only the single-ion anisotropy is taken into account [80]. The susceptibility
along the c-axis can be calculated and is

χH‖c =
2µ0NA(µBg)2

kBT (2 + eD/kBT )
(5.2)

where NA is the Avogadro number, µB is the Bohr magneton and D is the single
ion anisotropy constant. The susceptibility at high temperatures follows the Curie-
Weiss law and below 5K it decreases exponentially to zero due to the opening of
the spin gap. A �t of the measured curve at 1T with Eq. 5.2 is displayed in the
right panel of Fig. 5.5. Eq. 5.2 reproduces quite well the data. Only at very low
temperatures the �t deviates slightly due to the impact of the exchange interaction
and the fact that at 1T the measured magnetization is not zero. The �t gives a
value for D/kB of ≈ 8.23K, which is very close to the published data [82, 86].

5.2.2 Comparison between theory and experiment

Using the measurements displayed in Figs. 5.3 and 5.5, we can extract the points
of the phase transitions for �elds close to Hc1 at low temperature. According to
the expectation values summarized in Tab. 2.3, the phase boundary line should
follow Tc ∝ (H − Hc)

1/α with α = 3/2 for a XY -AFM (BEC) or α = 2 for an
Ising antiferromagnet. Fitting our data we could �nd the universality class of the
quantum critical point provided we �t the data in the lowest temperature range,
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where thermal �uctuations are negligible. Fig. 5.6 shows the extracted data as
well as two �tting functions. The blue line is a �t over all points by keeping
the parameters free. The �t suggests α ≈ 2 and seems to describe quite well
the experimental data down to the critical �eld of 2.12T. The red line is a �t
of the data in the �eld range delimited by the black arrows (below 500mK) by
keeping the exponent α = 3/2 �xed. This �t also matches quite well the data. At
low temperature it is therefore di�cult to discern between the XY or the Ising
scenarios (see inset of Fig 5.6). It has to be mentioned, that investigations of the
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Figure 5.6 � Phase transition boundary line extracted from measurements displayed
in Figs. 5.3 and 5.5. The solid lines are �ts with equation Tc = γ(H −Hc)

1/α. At high
temperature the �t with α ≈ 2 seems to describe quite well the experimental data. At
lower temperature, in particular in the �eld range delimited by the arrows, both �ts
match quite well the data. The T dependence of α is shown in the inset by the plot of
H −Hc vs. T on double logarithmic scales.

exact shape of the phase boundary close to Hc1 down to 1mK was successfully
performed by detailed AC susceptibility measurements by L. Yin et al. [174].
They found that below 300mK the universality class is of a BEC. Up to date, this
is the solely experimental observation consistent with a �eld induced BEC-QCP in
this material. Our measurements go down to only 50mK and below 300mK only
few points can be used for the �t. In addition, as shown in Fig. 2.12 of Sec. 2.4,
the theoretical calculation for the magnetization of DTN at Hc1 (after having used
experimental parameters) shows that the BEC critical exponents can be observed
only below J⊥/kB ≈ 0.18K. Below this temperature, M(T ) ∝ T 3/2, which is the
signature of the presence of quantum critical �uctuations.
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To check this theoretical prediction (see Tab. 2.3) we have plotted in Fig. 5.7
the magnetization M(T ) as a function of T 3/2 for magnetic �elds H‖c between 1
and 3T. The curves are shifted vertically by 0.014µB/Ni for clarity. The arrows
mark the onset of theXY -AFM state while the continuous dashed region marks the
position in temperature whereM(T ) deviates from the T 3/2 behavior and becomes
constant. We can observe that at lower �elds the curves do not show a power
law dependence inside the quantum paramagnetic state but the magnetization
is almost constant at low T . Nevertheless, as we approach to the critical �eld
µ0Hc1 = 2.12T, the magnetization develops a T 3/2-behavior at low temperatures
over a decade in temperature (0.1 ≤ T ≤ 1K), in agreement with the expected
behavior for a BEC QCP in 3 dimensions. No T 2 proportionality is observed.

0 1 2 3 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 
 3 . 0  T
 2 . 9  T
 2 . 8  T
 2 . 7  T
 2 . 6  T
 2 . 5  T
 2 . 1 5  T
 2 . 1 4  T
 2 . 1 3  T
 2 . 1 2  T
 2 . 1 0  T
 2 . 1 0  T
 2 . 0 8  T
 2 . 0 6  T
 2 . 0 4  T
 2 . 0 2  T
 2 . 0  T
 1 . 9 8  T
 1 . 9 6  T
 1 . 0  T

N i C l 2 -  4 S C ( N H 2 ) 2

 M 
(µ B/Ni

)

T 3 / 2  ( K 3 / 2 )

H  | |  c

Figure 5.7 �Magnetization plotted as a function of T 3/2 for magnetic �eldsH‖c between
1 and 3T. The curves are shifted vertically by 0.014µB/Ni for clarity. The arrows mark
the onset of the XY -AFM state. The continuous dashed region marks the position in
temperature where M(T ) deviates from the T 3/2 behavior.

This results clearly indicate the presence of a QCP and that its universality class
is that of an XY antiferromagnet, in contrast to the T 2 dependence for an Ising
magnet.
To further support this point, we have �tted the magnetization at 2.08T, slightly

below Hc1, with the function 2.35 of Sec. 2.4 with µ0H ≈ 2T, µ ≈ 0, J‖/kB =
2.2K, J⊥/kB = 0.18K, D/kB = 8.9K, plus an additional o�set m0 = 0.013µB.
No big di�erence can be seen between the �t in 1D and that in 3D. The initial
parameters are unchanged apart of the gyromagnetic ratio g which is 2.8 in 1D
and g = 2.65 in 3D in very good agreement with the experiments [86]. The data
with the �t are shown in Fig. 5.8. We observe that the analytic results agree
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well with the experimental data below 2K. The small o�set can be caused by a
misalignment of the sample as explained in Ref. [171]. At higher temperatures, the
calculations deviate signi�cantly as expected. We can conclude that the analytical
solution describes the temperature behavior of the magnetization quite nicely at
low temperatures.

5.2.3 Magnetic phase diagram

We can now summarize all �ndings in a magnetic phase diagram. Figure 5.9
shows the experimental phase diagram of DTN forH‖c derived from magnetization
measurements. The left side of the phase diagram corresponds to the QPM region
where M(T ) ∝ T n>3/2 while the right side corresponds to the XY -AFM region
(see right panel of Fig. 5.1). The central part is the typical QCP conical region
where M(T ) ∝ T 3/2 indicating that quantum �uctuations linked to the QCP at
µ0Hc1 = 2.12T are dominating. The phase boundary line between the QPM and
the AFM regions agrees well with those determined in previous magnetization
measurements [81, 172].
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Figure 5.8 � T -dependence of the magnetization at a magnetic �eld µ0H = 2.08T ,
slightly below Hc1. The solid lines are �t to the data performed using Eq. 2.35, consid-
ering both 3D and 1D integral, with µ0H ≈ 2T, µ ≈ 0, J‖/kB = 2.2K, J⊥/kB = 0.18K,
D/kB = 8.9K, plus an additional o�set m0 = 0.013µB. No big di�erence can be ob-
served. From the �t we obtain a gyromagnetic ratio g = 2.8 in 1D and g = 2.65 in 3D in
very good agreement with the experiments [86].

125



5 NiCl2-4SC(NH2)2

0 1 2 3 4
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

M � T 3 / 2

T  n ,  n > 3 / 2

 M  ( T )
 M  ( H )H  l l  cD T N

T (
K)

µ0 H  ( T )

A F M

Figure 5.9 � Experimental magnetic phase diagram of DTN for H‖c derived from
magnetization measurements. The left side of the phase diagram corresponds to the
QPM region while the right side to the XY -AFM region (see right panel of Fig. 5.1).
The central part is the typical QCP conical region where M(T ) ∝ T 3/2 indicating that
quantum �uctuations linked to the QCP at Hc1 are dominating. The squares of the left
side of the phase diagram were extracted from the point were the magnetization deviates
from the T 3/2 behavior (see. Fig 5.7).

5.2.4 Speci�c heat

To investigate in more detail the properties of the QCP at Hc1 it is important to
measure the temperature dependence of the magnetic Grüneisen ratio, as explained
in Sec. 2.3.4. However, a measurement of the speci�c heat is needed. A. Steppke
has performed such a measurement down to 50mK. The raw data are displayed in
Fig. 5.10 (black points). The speci�c heat of DNT contains three contributions:
nuclear Schottky, magnetic Schottky and a quantum critical contribution at low T .
The phonon contribution is negligibly small in the temperature range below 1K.
The Schottky contributions can be subtracted from the total C/T since CS/T ∝
T−3 is very large below 300mK (cf. Fig. 5.10). The remaining magnetic speci�c
heat Cmag should follow a T 3/2 power law at low temperature which results from
quantum critical �uctuations at the QCP (cf. Tab. 2.3). This is not the case, at
least for T > 0.2K. There are possibly two reasons for this behavior: i) the T 3/2

law is due to quantum �uctuations of the QCP which are seen in the calculations at
temperatures well below Jc/kB = 2.2K and in the experiments for T < 0.3K [174],
ii) C(T )/T is in�uenced by two broad humps, the one at 2.5K is due to the
population of the Sz = ±1 excited states and the other at 0.5K might be the
dimensionality crossover from 3D to 1D since Jc/kB = 0.18K. However, analytical
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5.2 Results

and quantum Monte Carlo calculations seems to reproduce nicely the behavior of
Cmag(T )/T vs. T , suggesting that in the T → 0 limit Cmag ∝

√
T [171].

5.2.5 The magnetic Grüneisen ratio

As elucidated in Sec. 2.3.4, the magnetic Grüneisen parameter, ΓH , can be derived
by magnetization and speci�c heat measurements according to

ΓH = −(∂M/∂T )

CH
, ΓH(T,H = Hc1) ∝ T−1/νz (5.3)

where the parameters ν (the correlation length exponent) and z (the dynamical
critical exponent) are universal and depends only on the dimensionality of the
critical �uctuations d and their nature (z = 2 for AFM and z = 3 for FM �uctu-
ations) [15, 65]. In the case of a XY antiferromagnet or BEC we expect ν = 1/2
and z = 2, which yields ΓH ∝ 1/T . Fig. 5.11 shows the magnetic Grüneisen ratio
ΓH estimated from the magnetization and speci�c heat data at 2.08T presented in
Fig. 5.7 and 5.10. ΓH ∝ 1/T below 1.5K as expected for a XY -AFM QCP. This
is in good agreement with the behavior seen in Fig. 5.8. The fact that the speci�c
heat does not strictly follow a

√
T behavior seems to not a�ect the Grüneisen ratio

possibly because ∂M(T )/∂T is more singular than C(T )H .
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Figure 5.10 � Total C/T and magnetic Cmag/T (after the subtraction of the nuclear
Schottky contribution) speci�c heat plotted as a function of temperature T at the critical
�eld Hc1 = 2.08T for the speci�c heat set-up in a log-log representation [171, 157].
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5 NiCl2-4SC(NH2)2

5.3 Conclusions

In this chapter a comprehensive experimental study of the magnetization and
speci�c heat in the vicinity of the �eld-induced QCP (Hc1 ≈ 2.12T) of NiCl2-
4SC(NH2)2 (DTN) was presented. We could identify the boundary line points
of the phase transition between the quantum paramagnetic phase and the 3-
dimensional XY -AFM phase, which can be described within the formalism of
a Bose-Einstein condensation (BEC) of magnons. We found the phase line
Tc ∝ (H − Hc)

2/3 at low temperatures and a T 3/2 behavior in the magnetiza-
tion at Hc1, which are all in agreement with the universality class of a BEC QCP.
We have performed analytical calculations of the magnetization for low tempera-
tures, which nicely reproduce the temperature dependence of the magnetization.
Furthermore, the magnetic Grüneisen ratio was calculated from the experimental
data and it diverges with a 1/T power law as expected for a BEC QCP. All in all,
theory and experiments con�rm the existence of a XY -AFM QCP at Hc1 and this
investigation is a remarkable example how theory can describe the experimental
evidence in great detail.

0 . 1 1

1

1 0

µ0 H  =  H c

-� H (1
/T)

T  ( K )

~ T - 1

Figure 5.11 � Magnetic Grüneisen ratio ΓH estimated from the magnetization and
speci�c heat data at 2.08T (see Fig. 5.7 and Fig. 5.10). ΓH ∝ 1/T below 1.5K as
expected for a XY -AFM QCP. This is in agreement with the behavior seen in Fig. 5.8.
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6 General conclusions

The central topic of this PhD thesis has been the study of magnetic quantum
phase transitions (QPTs) in the heavy fermion (HF) system Yb(Rh1−xCox)2Si2
and in the quantum magnet NiCl2-4SC(NH2)2. The magnetic �eld H has been
chosen as tuning parameter and the physical quantity, that was measured, is the
magnetization M . To do this a high-resolution Faraday magnetometer was set up
in a dilution refrigerator to be able to measure M(T,H) up to 12T and down to
0.05K. The magnetic Grüneisen ratio ΓH , i.e. the ratio between the �eld depen-
dence of the entropy and the temperature dependence of the entropy, was used
to identify the presence of �eld-induced quantum critical points (QCPs). This
ratio can be expressed as a function of M and the speci�c heat at constant H,
ΓH = −(∂M/∂T )H/CH .
The evolution of magnetism from itinerant (with slightly Co-doped) to local

(with x = 1) in Yb(Rh1−xCox)2Si2 was investigated and an instructive magnetic
moment µ vs. chemical pressure x phase diagram was drawn. At zero pressure
and at H > HN the Kondo energy scale dominates over the RKKY one, almost
screening the magnetic Yb3+ moments and leaving AFM order just below 0.07K
and a very small ordered moment. The system shows itinerant magnetism and HF
character. At the critical �eld HN of the AFM phase a QCP is found with pro-
nounced NFL properties and an associated energy scale T ∗(H∗) where the Kondo
e�ect breaks down and a Fermi surface reconstruction takes place. One of our �rst
observations is that this energy scale seems not to be very a�ected by pressure as
predicted by the theoretical �local QCP scenario�. The QPT at H∗ seems to be
a continuous QPT inside the AFM phase, similar to a Lifshitz transition. Recent
theoretical models, which include the e�ect of frustration, predict this behavior
associating the QPT inside the AFM phase with a Kondo-destruction topological
transition with a continuous change of the Fermi surface at T = 0 in agreement
with our �ndings. With increasing pressure, i.e. decreasing the strength of the
hybridization J , the magnetic moment µ(x) increases rapidly as a consequence of
the rapid decrease of the Kondo temperature TK . TRKKY also decreases but in
a smoother way. Therefore, at above x = 0.27 the RKKY interaction dominates
substantially over the Kondo interaction and µ(x) vs. x still increases, but weakly.
Between x = 0.27 and x = 1 the system still shows weak heavy-fermion character,
while at x = 1 the pressure is enough to eventually localize the 4f -electrons and we
obtain µ = µsat. This demonstrates the fact that magnetism evolves continuously
from itinerant to local in Yb(Rh1−xCox)2Si2. On the other hand, the evolution
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6 General conclusions

from itinerant to local magnetism induced by magnetic �eld takes place in two
steps. First, the �eld induces Lifshitz transitions where the Fermi surface changes
from large to small as a result of the shift of a van-Hove singularity across the
Fermi level and then the fully localization of the f electrons takes place smoothly
at even higher �elds where the magnetic moment achieves its saturation value.
Hence, both the coherence e�ects resulting from the lattice periodicity as well as
the de-renormalization of the quasiparticles, which is re�ects the break-up of the
local Kondo singlets, have to be taken into account.
The physics of the antiferromagnet YbCo2Si2, i.e. at x = 1, could completely be

understood within the framework of crystal �eld e�ects and a local 4f -electron
model. The magnetic phase diagram of single crystals of YbCo2Si2 was ex-
plored along the crystallographic directions [100], [110] and [001]. In a small
�eld µ0H = 0.1 T two AFM phase transitions were detected at TN = 1.75 K
and TL = 0.9 K. The AFM order is completely suppressed by �elds close to
2 T where the magnetization reaches its saturation values Ms(H‖[100]) and
Ms(H‖[110]) ≈ 1.4µB and Ms(H‖[001]) ≈ 0.68µB which match quite well those
calculated for the Γ7 ground state, con�rming the trivalent state of the Yb ions.
Inside the AFM phase, two main regions can be identi�ed along all crystallographic
directions where the propagation vector Q assumes two di�erent values. For H
parallel to [100] and [110], however, these regions are separated by another line,
which seems to correspond to the line where the magnetic moments reorient, and
separates AFM domains. For H parallel to [001] only two AFM phases have been
observed, implying that the moments might lay in directions close to the basal
plane.
Another important achievement is the investigation of the �eld-induced

QPT at the critical �eld HN between the AFM phase and the PM one in
Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure of 1.5GPa. The mag-
netic Grüneisen ratio ΓH(T,H) behaves in a very similar way in both compounds
demonstrating that, for small x, chemical pressure is equivalent to hydrostatic
pressure and the e�ect of disorder on our results can be de�nitively neglected. At
HN , ΓH(T ) ∝ −log(T ) implying no QCP. The expected divergence for a 3D AFM
QCP is Γ ∝ T−1. In addition, at �elds well below HN , ΓH(T ) ∝ T−1 inferring a
3D AFM QCP at this �eld which is in the range 0 ≤ 0.06T. Unfortunately, a clear
statement about the nature of the QCP inside the AFM phase cannot be given,
since the extracted parameters are a�ected by the magnetic phase below TN .
In the quantum magnet NiCl2-4SC(NH2)2, the �eld-induced QCP at the critical

�eld Hc ≈ 2.12T was investigated. We have identi�ed the boundary line of the
phase transition between the quantum paramagnetic phase and the 3-dimensional
XY -AFM phase. The phase line Tc ∝ (H − Hc)

3/2 at low temperatures and the
T 3/2 behavior in the magnetization at Hc1 were observed. Interestingly, the quan-

130



tum phase transition can be described within the formalism of a Bose-Einstein
condensation (BEC) of magnons. We have performed analytical calculations of
the magnetization for low temperatures, which nicely reproduce the temperature
dependence of the magnetization for the universality class of a BEC QCP. Further-
more, the magnetic Grüneisen ratio was calculated from the experimental data and
it diverges with a 1/T power law as expected for a BEC QCP. In this insulating ma-
terial it seems that the theory of quantum phase transitions can reliably describe
the experiments and the existence of a XY -AFM QCP at Hc1 is con�rmed.
In summary, the behavior of the magnetization across �eld-induced QPTs was

examined in detail in two di�erent systems: an insulating quantum magnet and a
metallic heavy-fermion system. Although the state-of-the-art theory of quantum
phase transitions can reasonably well describe QPTs in insulating materials, it can
not describe the unusual behavior observed at QPTs in metals, e.g. the absence
of a QCP at the �eld-induced QPT in Yb(Rh0.93Co0.07)2Si2 as well as at the �eld-
induced QPT in the pure YbRh2Si2 under pressure.
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Appendix 1

The ground state in magnetic �eld of YbCo2Si2

Considering Yb+3 valence state for YbCo2Si2 experiencing a crystalline electric
�eld (CEF) in a tetragonal symmetry, with a total angular momentum J = 7/2
(Landé factor gJ = 8/7), the wave-function of a CEF doublet can be either

|ψ1 >= a| ± 5/2 > +b| ∓ 3/2 > (1)

or

|ψ2 >= a| ± 7/2 > +b| ∓ 1/2 > (2)

with coe�cient a and b between 0 and 1 which ful�ll the a2 + b2 = 1 normaliza-
tion. These can be represented in the basis of |jz > and their eigenfunctions can
be written as:

|Γ7,1 > = 0.891| ± 3/2 > −0.454| ∓ 5/2 >

If an external magnetic �eld is applied the degeneracy is removed and the
Zeeman Hamiltonian can be written as: H = −µ ·B with magnetic moment
µ = −gJµBJ . Considering the operators of the total angular momentum :

jz|j,m > = m|j,m >

jx|j,m > =
1

2
(j+ + j−)|j,m >

j±|j,m > = [j(j + 1)−m(m±)1)]1/2 |j,m± 1 >

the e�ect of an external magnetic �eld H on these wave-functions can be cal-
culated for the [100] and [001] directions.
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Appendix 1

Field parallel to the z axis: H ‖ z
The Hamiltonian is Hz = gJµBjzBz and the corresponding expectation value of
the two energy levels are:

E(a) =< Γ7,1(a)|Hz|Γ7,1(a) > = gJµBB < Γ7,1(a)|jz|Γ7,1(a) >= 0.68gJµBBz

with < Γ7,1(a)|jz|Γ7,1(a) > = (0.891)2(
3

2
) + (−0.454)2(−5

2
) = +0.68

E(b) =< Γ7,1(b)|Hz|Γ7,1(b) > = gJµBB < Γ7,1(b)|jz|Γ7,1(b) >= −0.68gJµBBz

with < Γ7,1(b)|jz|Γ7,1(b) > = (0.891)2(−3

2
) + (−0.454)2(

5

2
) = −0.68.

The other matrix elements are zero:

< +3/2|jz|5/2 >=< +3/2|jz|−5/2 >=< +−3/2|jz|5/2 >=< −3/2|jz|−5/2 >= 0.

The ground state wave function is therefore |Γ7,1(b) > with eigenvalue E(b) and
the magnetic moment of the lower state (i.e. saturation magnetization) is:

µz = − < jz > gJµB =
8

7
· 0.68µB = 0.77µB. (3)

The ESR g-factor is

gz(ESR) =
E(a)− E(b)

µBBz

= 2gJ < jz >= 2µz = 1.54 (4)

Field perpendicular to the z axis: H ⊥ z

The Hamiltonian is Hx = gJµBjxBz and the corresponding matrix elements which
are not zero are:

j+|+ 3/2 > = α1|+ 5/2 >

j+| − 5/2 > = α2| − 3/2 >

j−|+ 5/2 > = α3|+ 3/2 >

j−| − 3/2 > = α4| − 5/2 >

with α1 =

[
7

2

(
7

2
+ 1

)
− 3

2

(
3

2
+ 1

)]1/2

= α2 = α3 = α4 = 2
√

3.
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The eigenfunction of the Jx operator are therefore linear combinations of |Γ7,1(a) >
and |Γ7,1(b) >:

|Γ7,1(c) > =
1√
2

(|Γ7,1(a) > +|Γ7,1(b) >)

|Γ7,1(d) > =
1√
2

(|Γ7,1(a) > −|Γ7,1(b) >) .

The eigenvalues are:

< Γ7,1(c)|Jx|Γ7,1(c) > =
1

2

1√
2

1√
2

[(−)(0.891 · 0.454) · 4 · 2
√

3] = −1.4

< Γ7,1(d)|Jx|Γ7,1(d) > =
1

2

1√
2

1√
2

[(+)(0.891 · 0.454) · 4 · 2
√

3] = +1.4.

The ground state wave function is therefore |Γ7,1(c) > with eigenvalue E(c) =
−1.4gJµBBx. The magnetic moment (i.e. saturation magnetization) for this case
is:

µz = − < jz > gJµB =
8

7
· 1.4µB = 1.6µB. (5)

The ESR g-factor is

gz(ESR) =
E(d)− E(c)

µBBx

= 2gJ < jx >= 2µx = 3.2. (6)
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Appendix 2

Table of Conversions for magnetic properties

Table 1 � Units for magnetic properties

Quantity Symbol cgs unit Conversion SI
Gaussian factor

�ux density B Gauss (G) 10−4 Tesla (T), Wb/m2

magnetic induction
Magnetic �ux φ maxwell G cm2 10−8 Wb, (V s)

Magnetic �eld strength H Oerested (Oe) 103/4π A/m
Magnetization M emu/cm 103 A/m

Magnetic moment m emu 10−3 A/m2, J/T
Molar susceptibility χ cm3/mol, emu/mol 4π×10−6 m3/mol

Permeability µ0 dimensionless 4π×10−7 H/m,Wb/A·m
Demagnetization factor D, N dimensionless 1/4π dimensionless
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