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Chapter 1

Introduction

Exploiting parallelism in programs has become a part of mainstream program-
ming in recent years. This is a major research and educational challenge in soft-
ware engineering because most application domains are affected and not just,
for example, high-performance computing, and because parallel programs are
highly different from the primarily sequential programs that were dominating
previously.

This shift towards having to write parallel programs has been driven by
limitations reached in general-purpose microprocessors. In the past, perfor-
mance improvements in microprocessors were based on increasing microproces-
sor clock speeds and instruction-level parallelism. However, heat dissipation in-
creases nonlinearly when increasing clock speeds, which decreases the benefit of
this approach because it would make computing increasingly energy-inefficient.
Second, instruction-level parallelism (i. e., transparent parallel execution of a
sequential sequence of instructions by a microprocessor) is limited due to inter-
instruction dependencies in typical sequential programs and because of the cost
of the hardware required to (speculatively) execute large chunks of instructions
in parallel (e. g., large pipelines and speculation buffers).

Therefore, most current general-purpose microprocessors instead rely on tar-
geting thread-level parallelism by offering several processor cores on the same
chip that each can execute a separate, large instruction sequence (e. g., different
processes or threads). Such multi- or many-core CPUs do not increase perfor-
mance by increasing the speed of a single core but rather primarily by putting
an increasing number of cores on the same chip. Thus, the final performance
of programs on new CPU generations only increases if the level of thread-level
parallelism in the programs increases as well.

There are different kinds of parallelism that a program can try to use, which
require a different amount of synchronization (i. e., coordination) between the
parallel processes. For example, data parallelism typically requires little syn-
chronization, but only if data can be partitioned by the programmer or the
program so that each process operates on its own part of the data. However, if
data cannot easily be partitioned or if there could be concurrent operations by
different threads on the same part of data, then threads will have to synchronize
their operations.

Synchronization is thus an important part of parallelization. Its effect on
overall performance depends on the ratio of synchronization operations com-

1



2 CHAPTER 1. INTRODUCTION

pared to synchronization-free, data-parallel operations and on the level of par-
allelism that can be achieved in the synchronization parts of a program. For
example, a program in which just 10% of the operations synchronize and in
which the synchronization mechanism simply executes these operations sequen-
tially will never execute more than 10 times faster than a sequential program
according to Amdahl’s Law [4], independently of how many cores are available.

The vision behind Transactional Memory (TM) is to allow programmers to
only declare which operations synchronize without requiring them to actually
implement and tune synchronization. TM enables them to use the database
concept of a transaction for a set of operations on shared state. Informally, these
transactions appear to execute atomically and isolated from other transactions.
This is ensured by a generic TM implementation, which relieves programmers
of a large part of the burden of having to think about and deal with possible
low-level interleavings and interferences of concurrently executing operations.
At the same time, the TM implementation can potentially execute transactions
in parallel, for example by using optimistic speculative execution and automatic
consistency checks.

With TM, transactions can consist of ordinary program code. Transactional
operations are supposed to be no different from other operations in the program
(e. g., no custom language like SQL for databases is expected). Also, transac-
tions and nontransactional code should be able to operate on almost the same
shared state (e. g., I/O might not be allowed in transactions but access to a
program’s global variables would be).

Different programming languages or environments might support shared
state differently, ranging from shared memory to message passing and state
machine replication. However, most current general-purpose microprocessors
provide cache coherence for a system’s main memory, and shared main memory
is the primary way for threads to communicate on current systems. Therefore,
TM is considered to typically be a form of shared-memory synchronization,
especially in programming environments where state is shared among threads
by sharing an address space (e. g., multi-threaded C/C++ programs). TMs for
message passing environments that run on current systems would likely synchro-
nize and communicate using shared memory as well, but their implementations
would differ a lot from the former.

Note that some people prefer to let the term “TM” refer to some set of
shared memory TM implementations and algorithms and to refer to the TM
abstraction offered in a programming environment as atomic blocks or memory
transactions. I think that this distinction is neither necessary nor useful. There
is such a wide range of possible implementations of TM that the only significant
differentiator of such a set would be that those implementations can be used to
build a TM abstraction.

In this thesis, my focus is on TM for programming environments in which
threads share state via shared memory and a shared address space. Such TMs
are widely applicable in current systems (e. g., in C, C++, and Java programs)
and do not depend on a particular parallelization approach or programming
language.

TM also has wider goals than other implementation-centric mechanisms for
shared-memory synchronization—in particular, most forms of locking and cus-
tom concurrent algorithms—because of its focus on generic implementations
for synchronization declarations. Therefore, it promises more than these other
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mechanisms but might make use of them in the TM implementation at the same
time. TM’s first advantage is that programmers do not have to implement syn-
chronization anymore and think about whether their implementation composes
with the implementation of other operations’ synchronization in a program (if
those other operations use TM as well). Second, a program that uses transac-
tions is not tied to a particular TM implementation, and the TM can pick an
implementation that works efficiently for this particular program, potentially
even during the execution of this program based on the actual workload and
hardware being available (e. g., in a non-platform-specific application). In turn,
there is no reason why TM implementations should magically perform better
than custom implementations of synchronization if programmers are willing and
able to spend enough development effort on synchronization (e. g., when devel-
oping an operating system kernel). In the trade-off between performance and
development costs, the goal for TM is to achieve sufficient or better performance
while requiring less development effort. In summary, because this trade-off is
different for each program, TM’s performance goal is to perform well enough
while still being convenient enough for programmers to be the overall better
synchronization mechanism in many programs.

The most important disadvantage of the other mechanisms for shared-mem-
ory synchronization is that they are not as composable as TM when developing
software (a more detailed comparison using an examples appears in Section 2.3).
When using locking, two separate operations protected by several locks cannot
be easily composed into a single atomic operation because the lock acquisition
order in the composite must be compatible with the acquisition order in the
whole program. Second, the locking scheme of the two operations must be ex-
posed to the composite, which breaks information hiding. Custom concurrent
algorithms typically cannot be easily composed as well because current mi-
croprocessors support synchronization instructions that are limited to a single
memory location, and indirection or complex algorithms are required to build
concurrent operations that access several pieces of shared state atomically.

In contrast, transactions are composable because they can be nested within
each other and because programmers can use ordinary program code within
transactions (with potentially some restrictions, such as I/O). To allow this
kind of composability and to achieve usability, transactions must be integrated
into programming languages. Otherwise, programmers would have to modify
transactional operations to use the TM explicitly, which would make program-
ming with TM a lot more costly in programming languages such as C where
accesses to shared state are represented as loading from and storing to memory
locations.

This required integration of TM with programming languages already shows
that supporting TM either affects several system layers and components or is
influenced by them.

• TM support within compilers is required to transform language-level trans-
action declarations into code that uses a TM implementation. Also, many
TM-specific optimizations can only be performed during compilation be-
cause only there is all the information contained in the source code avail-
able and it is decided how the TM implementation is to be used by the
application.

• TM implementations have to work correctly and efficiently for a wide
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range of transactions. For example, incrementing a single counter in a
transaction is a very different workload compared to a large transaction
that navigates through several data structures. Yet, both should execute
efficiently. The compiler might be able to provide hints about which kind
of workload a transaction is, but this is not always possible. Furthermore,
the performance of a TM implementation depends a lot on the hardware
(e. g., the relative cost of cache misses) and on libraries and the oper-
ating system (e. g., in which patterns a process is allocating memory).
New hardware extensions for TM also have to be investigated and used
effectively.

• To be adopted, TM has to also compose with existing software infras-
tructures. This not only affects the programming language integration,
but TM has to also work within current software environments, legacy
source code and libraries must be usable from within transactions, and
TM must not interfere with nontransactional code or require changes in
such (legacy) code.

A closer inspection of the TM problem space shows that the problem is
indeed cross-cutting and that there is strong coupling between the problems
and solutions on the individual layers. For example, which TM properties to
guarantee is an important question for the programming language integration
but also affects achievable performance in the sense that different language-level
decisions will yield highly different objectives for a TM implementation. In turn,
a particular guarantee might be so costly to implement in terms of performance
that it might not make sense to provide it to programmers because they likely
would not use it anyway due to the overhead.

Therefore, during research and development of TM systems, one has to con-
sider all the affected system layers and TM aspects. If not, it is unlikely that
the TM performance goal can be reached, and one will not be able to find out
whether the vision behind TM can be put into practice.

Contributions. In my work, I have focused on investigating and implement-
ing the building blocks that are required for a high-performance, practical, and
realistic software TM.

The building blocks host several novel algorithms and optimizations for TM
implementations and shared-memory synchronization, both for current hard-
ware and potential future hardware extensions for TM. As I have explained
previously, the final TM use cases and workloads are not yet known, so I aimed
at constructing algorithms and optimizations that are widely and robustly ap-
plicable in TM systems, and can serve as useful building blocks for future TM
systems. They have been incorporated into TM implementations by other re-
search and industry groups, and have initiated further research.

At the same time, these building blocks compose into a full TM implemen-
tation stack. The two main implementation components are TinySTM++, a
software TM implementation of several TM algorithms, and the Dresden TM
Compiler (DTMC), a C/C++ compiler with TM support. This TM stack is
ready to be used today and contains all the features necessary for early TM
adopters. Providing such a stack is essential because it enables feedback from
programmers about TM, which in turn directs future TM research and helps to
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break the chicken-and-egg problem that research encounters that proposes fun-
damental changes in programming abstractions. Second, validating the building
blocks in a full implementation stack shows opportunities for cross-block opti-
mizations and ensures that assumptions of blocks about the environment remain
realistic.

To keep the development effort bounded, I focused on a particular class of
programming environments and hardware.

• I chose to not expect that programmers would follow a specific paralleliza-
tion approach but to instead assume explicit threading (i. e., programmers
manage threads explicitly and use transactions to synchronize between
threads). This too is a specific choice, but it covers what would happen in
other parallelization environments (e. g., using transactions to synchronize
between OpenMP tasks).

• I focused on userspace applications as opposed to operating system ker-
nels as TM usage environments because composability matters most for
applications, which are typically authored by several programmers with
different sets of skills, and because building custom synchronization code
might be beneficial in a kernel, but not in platform-independent applica-
tions. Nevertheless, many of the building blocks would be applicable in a
kernel as well. I also expect no custom operating system support for TM
because this would make TM adoption more difficult.

• C and C++ as programming languages are a useful TM research environ-
ment because they are widely used and are sufficiently low-level (e. g., in
comparison to a managed environment such as a Java virtual machine,
the TM implementation gets validated against potential low-level issues
and constraints). Furthermore, C/C++ applications do not reside in a
homogeneous environment but often have to deal with a large number of
legacy libraries and constraints, which is a good testing ground for TM
composability. Just-in-time compilation is not common for C/C++ pro-
grams.

• The early TM adoption will likely happen on server and desktop multi-
core microprocessors (e. g., on architectures like x86-64), so this should
also be the targeted hardware. When considering potential future hard-
ware extensions, these should be realistic proposals for first-generation
TM support.

Roadmap. In Chapter 2, I will provide background information about the
basics of shared-memory synchronization and about transactions and concur-
rency control from a database perspective. Also, I will show a few use cases of
TM and how it compares to other synchronization mechanisms, and give a brief
overview of the history of TM to put my thesis’ results into context with the
overall development of TM ideas.

In Chapter 3, I will describe my building blocks approach to TM by first
discussing the TM problem space in more detail, including TM requirements, a
structure for TM-based synchronization and the associated performance costs,
and refined focus and assumptions about the TM stack. A summary of the
building blocks I focus on appears in Section 3.2.1. Also, I will briefly describe
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the TM implementation stack that I built and the commonalities in the setup
of the performance experiments.

Next, in Chapter 4, I will describe a specification of how transactions can be
integrated into C/C++ and will explain what this means for a programmer who
uses the new transactional language constructs. Based on this specification, I
will then derive requirements for TM implementations in both compilers and
TM runtime libraries.

The subsequent chapters focus on specific building blocks. First, I will
present STM algorithms and implementations in Chapter 5, in particular the
highly efficient atomic snapshots in time-based STM, and performance trade-offs
in implementations of such STMs.

Chapter 6 is about TM optimizations within compilers. I will describe how
automatic partitioning of application data, a divide-and-conquer approach, en-
ables two TM optimizations: per-partition tuning in partitioning-aware STMs,
and how to colocate application data and TM synchronization metadata.

In Chapter 7, I will describe how to integrate a potential future hardware
extension for synchronization—in particular, AMD’s Advanced Synchronization
Facility—into the TM implementation stack, and will present efficient hybrid
software/hardware TM algorithms, which can concurrently execute transactions
that use the new hardware extension and transactions that do not.

Finally, I will conclude in Chapter 8. To increase locality, the discussions of
related work are embedded into the matching individual chapters.



Chapter 2

Background

In this chapter, I will first provide background information about the two main
areas that TM is based on: shared-memory synchronization, and transactions
and concurrency control as used in databases. The latter provides the idea of
transactions as an abstraction for the synchronization of concurrent accesses
but does not provide solutions or implementations that can be used as-is in a
TM setting. In contrast, the former provides the foundations for TM implemen-
tations, but it did not really offer a programming-language–level abstraction as
powerful and composable as transactions until TM became a hot research topic.

As explained in the previous section, I do not focus on a specific paralleliza-
tion paradigm in this thesis, except that I assume that there is thread-level
parallelism and threads will have to synchronize concurrent accesses to shared
data (as opposed to parallel accesses to disjoint data). Thus, parallelism and
concurrency are not the same thing: There can be threads that execute in
parallel yet never synchronize, and there can be threads that execute concur-
rently and have to synchronize but will never offer any parallelism. In practice,
most parallel threads will have to synchronize at some time (e. g., at least to
signal that they have completed their chunk of work). Still, we want threads
that synchronize as efficiently as possible, which often means that they should
synchronize as little as possible because synchronization can result in runtime
overheads, either due to sequential execution at some level (e. g., when CPUs
communicate) or just because enabling concurrent execution for a piece of code
requires the execution of more CPU instructions. Amdahl’s law [4] gives an
upper bound on the program speedup S one can achieve:

S =
1

(1− P ) + P/N

P is the proportion of the program that can execute in parallel and N is the
number of CPUs. In other words, one can obtain a speedup that grows with
the number of CPUs only if the fraction P can be made sufficiently large; any
sequential execution caused by synchronization will be an obstacle and decrease
the maximum speedup.

In the second part of this chapter, I will illustrate the potential benefits of
TM with a few example uses, and will also give a brief history of TM.

7
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2.1 Shared-Memory Synchronization

In what follows, I will give a summary of the most important points that are
necessary to understand the basic challenges of shared-memory synchronization.
This is not a complete tutorial about this topic, and in order to understand the
concurrent algorithms presented in this thesis in detail, I would highly recom-
mend reading a good textbook such as The Art of Multiprocessor Program-
ming [56] by Herlihy and Shavit.

One key point necessary to understand the challenges of synchronization is
that communication and coordination are not for free in distributed systems,
especially in asynchronous systems. First, it takes time to deliver a message
between two processes, so this can potentially result in one process having to
wait for another. Second, in asynchronous systems, it is not known (or not
precisely known) how long delivering the message will take and how long the
other process needs to process the message. Thus, the sending process will
have to either wait for a confirmation message from the receiver, or be very
conservative and wait for an upper bound of the processing time (if it exists).

Multiprocessor systems (e. g., multicore CPUs) are distributed systems, and
they are also asynchronous if we consider just the execution of instruction se-
quences at individual CPUs. In general, a thread running at one CPU cannot
estimate which instruction another thread is currently executing at another
CPU, unless they synchronize. Even then, a thread can only observe the mes-
sages (e. g., updates to a memory location) sent by another thread but does not
know that the other thread is currently doing. Note that to keep discussions
general, I will talk about CPUs only and will not distinguish between CPUs in
different sockets, cores in a CPU, or hardware threads in a core, unless this is
necessary.

Caches. Main memory in most current computers is physically separated from
the CPUs, so reading values from or writing to main memory is rather costly
compared to CPU-internal communication (e. g., due to smaller bandwidth to
the memory and longer round-trip times of messages). Therefore, CPUs use
several levels of caching, where caches typically get smaller but faster the closer
they are located to the CPU’s core logic. The data in these caches is typically
kept coherent to ensure that threads reading from a cache see the most recent
values and that updates of values in a cache are eventually propagated to main
memory. Note that the hardware’s (i. e., the CPU’s or platform’s) memory
model specifies the details of the cache coherence guarantees, which I will explain
later. There are several ways to implement cache coherence in hardware, and I
will not explain any of these protocols here.

To understand the concept, it is sufficient to imagine a simple protocol where
a CPU accessing a memory location would first ask the nearest cache (i. e., the
first-level L1 cache) whether it holds the most recent copy of the value of a
memory location; if it does not, then the CPU asks higher-level caches; if the
value is not in any cache, then it fetches the value from main memory. An access
to the L1 cache is the fastest way to fetch the value, and usually takes just a
few CPU cycles. In contrast, fetching a value from main memory can require
hundreds of CPU cycles or more. Because of this difference in speed and the
limited capacity of caches (they require quite some space on the CPU die, and
energy during runtime), the efficient use of caches is essential to achieve good
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performance. CPUs can hide some of the cache and memory access latencies
with techniques such as out-of-order execution of instructions, but this has limits
as well.

Another effect that can decrease performance is contention, which in general
means that some resource is so contended in terms of requests that it has to
process that it becomes a bottleneck. In the case of caches, contention can
arise when different CPUs fight about which CPU’s cache a memory location
is cached in; if these CPUs go back and forth, they will constantly suffer from
cache misses, and each cache will have to constantly transfer the most recent
value from the other cache to resolve the cache miss. This will increase the
memory access times at both CPUs.

Cache coherence does not operate on the basis of individual bytes of memory
but rather at the granularity of cache lines, with each line representing one con-
tinuous 64-byte chunk of main memory, for example. In practice, it is therefore
often necessary to separate data that is frequently updated by different threads
into different cache lines to avoid any cache contention overheads due to false
sharing at the cache line granularity.

It is also important to consider that main memory access paths can be
different between individual CPUs, which is called nonuniform memory access
(NUMA). One example for this are systems were each CPU socket handles access
to a part of main memory, and accessing a certain memory location from one
CPU might involve asking the memory controller in another CPU to fetch the
value. Thus, it is not only faster to synchronize for CPUs that are closer to
each other (e. g., two cores on the same CPU socket) because they have a closer
shared cache, but it is also faster for a CPU to access main memory attached
to the same CPU socket. Similarly, cache line contention between cores on
different CPU sockets can be especially costly because of higher communication
costs between those sockets.

Overall, memory access latencies (both for main memory and caches) can
vary significantly on a single machine as well as between different machines.
This complicates the performance tuning of synchronization code a lot, and
can also lead to completely different concurrent algorithms being optimal on
different machines. More information about memory access costs can be found
in a tutorial [35] by Ulrich Drepper.

CPU instructions for synchronization. When threads synchronize via
shared memory, they have to access the same memory locations to exchange
information. Because those threads execute asynchronously, memory accesses
can happen concurrently, so threads have to consider the guarantees that hard-
ware provides for concurrent memory accesses.

Individual loads from and stores to memory locations are usually atomic
on general-purpose CPUs (i. e., the individual bits comprising the location are
guaranteed to be accessed by a single virtually indivisible operation). This
typically holds for accesses of up to machine word size (e. g., 64b on x86-64)
but not for larger accesses nor for accesses by more than one CPU instruction.1

Note that atomicity of loads and stores does not guarantee any specific ordering
(e. g., program order might not be preserved). Ordering guarantees are instead

1There are often other hardware-specific restrictions such as no atomicity with respect to
instruction fetching by a CPU. Details can be found in the respective CPU manuals.
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specified by the hardware’s memory model, which I will describe later.

Because atomicity is not guaranteed for more than one instruction, it is easy
to see that threads cannot safely modify memory locations without possibly
overwriting concurrent writes to the same location. Because the overall system
is asynchronous, some other thread might always have a pending write that it
is about to execute and that can overwrite previous writes by other threads.
Second, no thread can read from some location and make an update under the
assumption that the former location still has the same value. Informally (and
simplified), this means that threads that only use ordinary loads and stores are
not able to agree on something because they cannot make a decision (i. e., write
to memory) while still knowing that their former view of the world still holds.

Thus, what we need is a way for threads to execute an update atomically
with the check of some invariant (i. e., a load from some location). This will
allow a group of threads to reach consensus on the value of a piece of shared
state because no thread will jeopardize a prior decision anymore by a pending,
uncontrolled write.

CPUs offer this functionality by providing a compare–and–set (CAS) opera-
tion, which is a special atomic CPU instruction that updates a memory location
if and only if the same location has the value that the thread expects it to have:

1 bool CAS(machine word∗ location, machine word expected, machine word new val)
2 {
3 if (∗location == expected) { ∗location = new val; return true; }
4 else return false;
5 }

This instruction is also called compare–and–swap or compare–and–exchange,
which are basically the same but return the previous value of the memory loca-
tion instead of just a boolean flag. The load-linked–store-conditional instruction
offered by some CPU architectures has a similar purpose and applicability. In
pseudo-code, I will also use the following notation for CAS:

cas(location : expected → new val)

The CAS operation is universal in the sense that it can be used to implement
consensus for arbitrary operations on objects larger than a machine word [52].
However, the instruction itself really only offers atomic access to a single machine
word, so even with this universal tool, concurrent programming is still very
complex because everything has to be implemented with atomic accesses to
single memory locations (e. g., using techniques such as indirection, versioned
state, operation logs, etc.). This leads to many concurrent algorithms being
complicated enough to be publishable results, which also highlights the need for
simpler abstractions such as TM.

Some CPU architectures (e. g., x86) offer a few other instructions that exe-
cute read–modify–write operations such as fetch–and–increment or fetch–and–or
atomically on a single memory location. These operations are typically slightly
faster than implementations that loop until an equivalent CAS operation suc-
ceeds. CAS operations for two (DCAS) or more separate nonadjacent memory
locations have been invested but have not appeared in mainstream hardware so
far. DCAS [33] was reported to provide not enough benefit to justify hardware
support, whereas limited first-generation HTM was reported to make concurrent
algorithms significantly simpler in some cases [25].
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Memory models. A CPU architecture’s memory model specifies the allowed
outcomes when different CPUs are concurrently executing instructions that ac-
cess memory. While executing a single thread in isolation will give this thread
the impression that its instructions were executed in program order (i. e., the
order that they have in the executed instruction sequence), concurrently execut-
ing instructions on other CPUs will not necessarily observe these outcomes in
the same order. General-purpose CPUs typically do not provide sequential con-
sistency, which would guarantee that all memory accesses are applied in a global
total order that is compatible with the individual threads’ program orders.

Memory models thus specify the ordering and atomicity guarantees that are
provided by CPUs when they execute concurrent memory accesses. For exam-
ple, on x86 CPUs, pairs of stores will become visible to other CPUs in program
order; however, for a store followed by a load (in program order, both to differ-
ent memory locations), the load might be reordered and fetch a value before the
store becomes visible to other CPUs. Programmers can disallow such reorder-
ing by inserting memory barriers (also called memory fences) between memory
accesses in the instruction sequence, which are special CPU instructions that
prevent certain reorderings of these accesses. Different barriers are sometimes
called by the reorderings that they prevent (in our example, a store–load bar-
rier could be used). Some instructions have implicit memory barrier semantics
(e. g., CAS on x86 is a full barrier and prevents any kind of reordering across it).
The complexity of hardware memory models differs (e. g., x86 [102] is simpler
than PowerPC [100]), but they are generally rather complex and require great
care when programming if the code is supposed to be somewhat efficient. Also
note that these potential reorderings are effects that programmers have to pay
attention to in addition to the interleavings that result from having no atomicity
for several memory accesses.

Several programming languages also have memory models because many
compiler optimizations are based on the reordering or merging of the memory
accesses contained in the program source code. Thus, programmers need to
know which executions and outcomes are allowed when threads execute concur-
rently, which they can reason about based on the language’s memory model.
Compilers then have to generate code that implements the language’s memory
model on top of the memory model of the target architecture.

Section 4.1 gives an overview of the C++11 memory model. In pseudocode
based on it, I will use the notations outlined in Table 2.1; for brevity, I will not
distinguish atomically accessible variables from other state (e. g., as necessary
in C++11 using atomic<> types). To understand how an algorithm operates,
it is sufficient to assume that all memory accesses are full barriers. However,
knowledge of the C++11 memory model is required to understand whether the
memory barriers used in a particular algorithm are actually sufficient.

Linearizability. The following explanations will have made it obvious that
instruction sequences are not a convenient way to reason about the concurrent
behavior of operations, and that we instead need less complex correctness cri-
teria. Linearizability [58] is such a criterion; informally, an implementation of a
concurrent data structure is linearizable if (1) all its operations get virtually ex-
ecuted at one indivisible step at some point in time (i. e., the linearization point)
during the invocation of the respective operation, and if (2) the outcomes of all
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Notation (example) Description

a ← b Load b (relaxed MO), store into a (relaxed MO).
a ←acq b Load b (acquire MO), store into a (relaxed MO).
a ←rel b Load b (relaxed MO), store into a (release MO).
a ← inc-and-fetchrel(b) Atomically increment and fetch b (release MO) and

store into a (relaxed MO).
casacqrel(a : b → c) CAS a (acquire–release MO) from b to c.
fencerel Memory barrier (fence) with release MO.

Table 2.1: Memory order (MO) notations. MO semantics are as in the C++11
memory model, but accesses default to being atomic and with relaxed MO.

operations are equal to the outcomes of executing the operations sequentially
in the order given by the linearization points (i. e., like what a sequential imple-
mentation would produce). Invocations are like function calls, so one can model
them as invocation and response events with timestamps (e. g., from wall clock
time); this real time order then constrains when operations can take effect. Note
that it is only necessary to be able to associate each invocation at runtime with
a linearization point that leads to an equivalent sequential execution; it is not
required that the operation takes effect atomically at exactly this point in real
time. For a precise definition and explanation of linearizability, please see the
previously recommended textbook [56].

Linearizability is widely used to describe and reason about the correctness
of concurrent algorithms. Because it is based on ordering in real time (which is
somewhat ubiquitous), it is fairly straight-forward for programmers to reason
about compositions of invocations to linearizable objects, and linearizability can
be investigated for objects in isolation, irrespective of what other objects are
doing (provided that there is information hiding and objects are only accessed
using their operations). For example, CAS on x86 can be roughly considered
as a linearizable operation when ignoring other loads and stores because it is
atomic and its implicit full memory barrier will prevent reordering with other
instructions. In turn, we can implement a concurrent linearizable counter using
such a CAS instruction:

1 machine word fetch and increment(machine word∗ counter)
2 {
3 machine word value;
4 do { value = ∗counter; } while (!CAS(counter, value, value + 1));
5 return value;
6 }

For this code, we know that the invocation of CAS that returns true will
be between the invocation and response events of fetch and increment. This
particular CAS invocation also produces both the return value of the operation
and the only update to the counter’s value. Because CAS is linearizable, our
counter is linearizable too if fetch and increment is the only operation that our
counter offers.

Progress. Complementing correctness criteria such as linearizability, progress
conditions specify whether concurrent operations that are invoked by different
threads will eventually finish (i. e., make progress). The best explanation of



2.1. SHARED-MEMORY SYNCHRONIZATION 13

progress that I am aware of is in a paper by Herlihy and Shavit [57], which
explains the relationship between progress conditions, progress for some or all
operations, and the guarantees provided by schedulers that control the execution
of threads (e. g., operating system schedulers). For the purpose of this thesis,
it is sufficient to consider just four conditions. In blocking implementations,
operations can be prevented from making progress by stopping the execution
of operations by one or several other threads, because in these implementations
operations might block until another one has finished first. In nonblocking imple-
mentations, stopping the execution of some operations cannot prevent progress,
but note that this does not guarantee progress in general. There are three im-
portant nonblocking conditions. First, obstruction-free implementations ensure
progress for every thread that is executed for a sufficiently long time in isolation
(i. e., without interference by other threads). Second, lock-free implementations
guarantee that there will always be some progress eventually, independently
of how or whether threads are executed, even though some operations might
never finish. Finally, wait-free implementations guarantee eventual progress for
all operations that are invoked. Thus, wait-freedom is the strongest progress
condition but also the most complex to implement.

Locks. One way to prevent concurrent threads from interfering with each
other is to use mutual exclusion to ensure that only one thread is executing.
Locks are implementation mechanisms that ensure mutual exclusion. Threads
have to acquire a lock before executing a mutually exclusive operation and re-
lease it afterwards (this region is then a critical section). If another thread
wants to enter the critical section by acquiring the lock, it will have to wait
until the first thread has released the lock again (therefore, locks are block-
ing implementations). Note that there are also types of locks that allow more
than one thread to enter the critical section, or where only some operations
block other operations from entering (e. g., reader–writer locks). Also, there
are several ways to implement locks (e. g., spinlocks, queue locks, and others),
which all have different performance characteristics and often ensure different
progress conditions (but are still blocking). Finally, lock elision has been pro-
posed [86], which allows the speculative execution of critical sections and thus
allows threads to execute logically mutually exclusive instead of mutually exclu-
sive in time. Its implementations are thus similar to TM in spirit but with locks
as fixed fallback solution. Hardware support for lock elision is only starting to
appear in mainstream CPUs, and software solutions basically at least face the
same issues as STMs.

Despite those differences, all kinds of locking suffer from two major draw-
backs. First, they rely on conventions in the sense that different parts of a
program (and thus likely different programmers as well) have to agree on which
locks protect which objects or state. Disagreement about this will lead to uncon-
trolled concurrent accesses to state, which can easily result in value errors (e. g.,
imagine the CAS in the previous fetch and increment example to be not atomic
and rather consist of separate read and write access). Thus, this convention
has to be documented and followed when programming, which requires more
effort by programmers and is error-prone. Furthermore, objects either have to
expose locks that are stored in the object, or callers have to manage locks for
components that they use; both breaks information hiding. Even worse, locking
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conventions do not only have to specify the state–to–lock mapping, but there
also has to be a globally agreed-upon order in which locks are acquired to pre-
vent deadlocks. For example, imagine that there are two locks A and B and two
threads that try to acquire both; if the first thread acquires A and the second
thread subsequently acquires B, then both threads will deadlock because when
they next try to acquire the respective other lock, they will wait for each other
and will not make progress anymore.

Second, locks are an implementation mechanism, not just a declaration about
mutual exclusion. Even if the lock implementations can be exchanged later on,
programmers usually have to decide how many locks protect which data. For
example, they can use coarse-granular locking where each lock protects a lot of
state; this will keep the locking convention simpler, but the achievable paral-
lelism might be low. Or they might use fine-granular locks, which potentially
allows for more parallelism but will result in a much more complex locking
convention.

Both drawbacks decrease the composability of programs that use locking.
In the first case, correctness is at stake because the composition of two locking
conventions must still be deadlock-free, for example. Changing the use of locks
within a component can require a lot of programming effort. In the second case,
there is a potential lack of perfomance composability. A library programmer
often can not anticipate in which kind of workload the library code will be
used in; if using coarse-granular locking, the library might cause a performance
bottleneck, whereas fine-granular locking that has to be exposed on the interface
will make the library harder to use and might also be unnecessary in terms of
performance2.

Summary. To summarize, shared-memory synchronization can be very diffi-
cult, especially when using the low-level synchronization operations offered by
current mainstream CPUs. Existing general-purpose abstractions (or mecha-
nisms) for synchronization such as locking also have their pitfalls, and often
require programmers to make the difficult trade-off between ease-of-use and
good performance. This is one reason why researchers and developers have
been investigating new abstractions such as TM.

2.2 Transactions and Concurrency Control

The concept of transactions has its origins in the database field. Today, trans-
actions are used in a variety of systems besides databases, such as in messaging
systems, some file systems, and of course TM. For many databases, the guar-
antees that transactions provide roughly follow the so called ACID properties:
Atomicity, Consistency, Isolation, and Durability. However, different databases
serve different purposes—therefore, these properties are also provided to dif-
ferent extents. For the other systems that make use of transactions, this ap-
plies even more (e. g., durability might not be considered at all). For example,
whereas atomicity is associated with fault tolerance and recovery in databases,

2In some cases, depending on the scheme of fine-granular locking and the implementation
of locks, the performance of fine-granular locking can actually be worse than coarse-granular
locking because of lock acquisition runtime overheads and of the space overhead of the locks
that have to be managed.
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TM sees atomicity more as a means to manage the indivisible execution of con-
current multi-step operations. Nevertheless, the basic concept of a transaction
is present in all those systems.

Thus, it makes sense to know about at least the basic understanding of trans-
actions in the database field. In this section, I will give a very brief overview
of the parts of database theory that are most relevant for TM. To get a real
overview of this field, I would recommend to read the textbook by Weikum and
Vossen [119]. With a few exceptions, I will not summarize database algorithms
here because TM implementations are more inspired by shared-memory syn-
chronization techniques, even though there are strong similarities between some
TM algorithms and classical database algorithms such as two-phase locking on
a conceptual level.

Serializability. The main correctness criterion for database transactions is
serializability, which roughly expresses that a concurrent execution of transac-
tions has to be equivalent to executing these transactions in some serial order.
However, there are several kinds of serializability, whose definitions vary signifi-
cantly regarding which concurrent executions are deemed serializable. Also, the
database field has evolved over quite some time and so has serializability theory,
which becomes visible when comparing older definitions of serializability with
recent ones.

Transaction executions are modeled in the form of schedules that give a
total order in which the individual steps of transactions are executed. Opera-
tions include begin, commit, and abort actions as well as the actual operations
performed by a transaction such as reads from and writes to individual data
items in the database. A serializability definition then defines whether a cer-
tain schedule is serializable and thus to be allowed for execution by a database.
In a database implementation, a scheduler performs concurreny control by de-
ciding which schedules are correct (i. e., serializable) and potentially aborting
transactions to allow for creating a correct schedule.

Note that from the perspective of programming-language memory models
such as the one of C++11, such schedules and the definitions for many kinds
of serializability are at a too high level of abstraction, make a few implicit as-
sumptions, and are rather coarse when it comes to progress properties; however,
there are well-suited to let database users and implementers reason about the
properties that a database provides when executing transactions, so they fulfill
their purpose.

Among the different kinds of serializability, conflict serializability (CSR) is
probably the most interesting one in the context of TM. Roughly, operations
conflict if they target the same data item and the order in which they are ap-
plied has an effect on either the resulting state or the results returned from
those operations (e. g., reads do not conflict with reads, but writes conflict with
reads and writes). CSR requires conflicting operations by different transactions
to be ordered in the same way in both the concurrent schedule and the as-
sumed serial execution of those transactions; if one would map each conflicting
pair of operations to a directed edge between the respective transactions, the
schedule is conflict serializable iff the resulting graph is free of cycles (and any
topological sort of this graph is then a possible equivalent serial execution of
those transactions). Commit order-preserving conflict serializability (COCSR)
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further restricts CSR by requiring that the order of conflicts between transac-
tions also determines the order in which transactions commit (i. e., the order
of their commit actions in the schedule). COCSR allows for schedules that
would also be linearizable because roughly, the order of commits represents the
linearization points.

CSR and COCSR are interesting because they are efficient to check and can
also be efficiently created by schedulers that use locks to protect concurrent
access to data items. In particular, when using two-phase locking, a scheduler
would first acquire all locks that are required in the transaction (the growing
phase), and would only later start releasing them but not acquire any further
locks (the shrinking phase). As a result, at some point the transaction will
hold all the locks that are necessary to execute all operations of the transaction.
The resulting schedules will be conflict serializable. Strong two-phase locking
is a form of two-phase locking in which all locks are held until the transac-
tion commits, which creates schedules that satisfy COCSR. If using locks, TM
implementations typically do not release locks prior to transaction commit be-
cause the set of accessed memory locations is in general not known in advance
and a new location could be accessed at any time (i. e., it is unknown whether
the shrinking phase can start until there actually is a commit); thus, such TM
implementations would guarantee COCSR and linearizability for transactions.

Page vs. object model. The operations that transactions can execute can
be categorized as either following a page model or an object model: The former
considers just read and write accesses to data item, whereas the latter can
deal with arbitrary operations on data objects (e. g., inserts and removes from
sets). Database theory covers both areas and there are object-model versions
of correctness criteria and schedulers (e. g., conflicts for arbitrary operations
can be defined based on commutativity properties). Object-model concurrency
control is also called abstract concurrency control.

Operations on an abstract level can in turn be implemented as separate
transactions on a lower-level representation of the respective object (e. g., with
plain reads and writes). This is called multilevel concurrency control and can
include several layers of abstraction. This is a very useful approach, both for
transactions for distributed systems and for potentially improving performance.
Conflicts at a low level of abstraction might not necessary represent conflicts at
a higher level of abstraction, so this decreases concurrency and thus transaction
throughput (e. g., inserting two different elements into a set does not conflict on
an abstract level but could require modifying the same low-level state depending
on the implementation of the set). This same approach can also be applied in a
TM context: Transactional Boosting [53] combines abstract concurrency control
with efficient linearizable base implementations of concurrent data structures to
allow for high-performance transactional accesses to those data structures.

Recovery. Databases have to potentially abort transactions, so their sched-
ulers must only allow transaction schedules in which uncommitted transactions
can indeed be safely aborted. Inverse operations can be used to model this (and
also to implement this) because they can undo previous operations (e. g., for a
write operation, we could write back the previous value).

To be prepared for failures and for recovering from them, schedulers can
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always consider expanded schedules which are basically the original schedules
appended with inverse operations for all operations of uncommitted transactions
(in reverse order). If an expanded schedule is correct, then this also means that
we can recover from any error while executing this schedule. Note that this
does not just include database failures but also cases like having to abort due
to encountering a deadlock.

This should already illustrate why database recovery theory is also interest-
ing from a TM perspective. TM implementations in general do not know which
operations a transaction might execute and cannot calculate a correct schedule
before executing a transaction; thus, they have to be prepared to abort some of
those transactions on demand.

One criterion that is important when reasoning about correctness of ex-
panded schedules is reducibility : Informally, schedules are reducible if they can
be transformed into a serial schedule by (1) reordering nonconflicting adjacent
operations (i. e., exploiting commutativity and conflict definitions much like in
CSR) and unordered commutative operations, (2) removing an operation and
its inverse if both appear one after the other in the schedule, and (3) removing
reads of uncommitted transactions. If all prefixes of a schedule are reducible,
the whole schedule is prefix reducible (PRED) and, informally, serializable even
when taking failures into account.

However, trying to find a sequence of transformations that show inclusion in
PRED is not quite practical at runtime, so simpler conditions that also guar-
antee PRED would be useful. Rigorousness is such a condition and requires
(1) that data items are not read or overwritten if an uncommitted transaction
has most recently written the same item (i. e., only committed values are read
or overwritten), and (2) that data items are not overwritten if they have been
previously read by uncommitted and still active transactions. Rigorousness is
stricter than PRED, but strong two-phase locking generates exactly the class of
rigorous schedules.

To summarize, many concepts from database theory can be applied to TM
even if TM has to consider further constraints such as the memory models of pro-
gramming languages. For example, TMs that perform strong two-phase locking
also produce serializable schedules even if they have to abort transactions.

2.3 TM Usage Examples

The following examples are based on C++ transaction statements, which are ex-
plained in detail in Section 4.1. To understand these examples, it is sufficient to
assume that the compound statement following the transaction atomic key-
word is executed as a single transaction. For example, the following code’s first
transaction will increment counter atomically, whereas the second transaction
will increment counter only if it has a value smaller than 10:

1 transaction atomic counter++;
2 transaction atomic { if (counter < 10) counter2 = counter++; }

Both transactions could be executed concurrently by different threads but would
still appear to run virtually atomically and without interleaving with any other
transaction (e. g., counter2 will always remain less than 10).

Likewise, we can express a CAS using a transaction:
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1 bool CAS(machine word∗ location, machine word expected, machine word new val)
2 {
3 transaction atomic {
4 if (∗location != expected) return false;
5 ∗location = new val;
6 }
7 return true;
8 }

This example also shows one of the benefits of proper integration of transactions
and programming languages: In the failure branch, we can just return from the
function containing the transaction, and the transaction will still be properly
committed.

The following (contrived) example shows that we can call functions from
both transactions and nontransactional code (e. g., the compiler will ensure this
for Set :: insert , creating a transactional version of this function if necessary).
This makes it easier for programmers to use transactions because they can
transform existing sequential code (e. g., Set :: insert) into synchronizing code
just by declaring the transaction. Furthermore, transactions can be nested,
even dynamically (whether there is nesting in this example depends on whether
key is already contained in multiset):

1 void addNumbers(int key)
2 {
3 set = new Set();
4 set−>insert(5);
5 set−>insert(23);
6 transaction atomic {
7 if (!multiset . insert (key, set)) {
8 addNumbers(key + 1);
9 delete set;

10 }
11 }
12 }

To illustrate the difference compared to locking, let us look at one final
example:

1 template <typename T>
2 void swap(T& a, T&b) { T temp = a; a = b; b = temp; }
3

4 int counter1, counter2;
5

6 // Thread 1:
7 transaction atomic {
8 swap(counter1, counter2);
9 }

10

11 // Thread 2:
12 transaction atomic {
13 if (counter1 < 10) {
14 swap(counter2, counter1);
15 counter2++;
16 }
17 }

Using transactions, it is easy to see that both threads’ operations can safely
execute concurrently because all accesses to the two counters are declared to be
atomic using transactions.

However, how would we implement this with locks? We cannot simply ac-
quire locks in swap for both a and b in some static order because the threads will
call swap with each a different counter as the first argument, so doing that would
result in possible deadlocks. Second, Thread 2 needs the access to counter2 to
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be atomic with the swapping, so it would have to acquire a lock early anyway.
Third, swap might get mostly called from sequential code, so acquiring locks
there would be unnecessary overhead.

If we instead choose to acquire locks before the call to swap, then both
threads need to agree on the order in which they have to acquire locks and on
which ones (i. e., follow a common locking convention). Additionally, they have
to know which data in swap needs to actually be protected by locks, which is
fine in this tiny example but breaks information hiding and can get much more
complex for nontrivial functions.

Performance can also be a concern: If we use just a global lock for both
counters, correct lock acquistion becomes much easier, but performance might
be bad if Thread 2 mostly runs with counter1 being less than 10 and some other
thread accessing just counter2. Using reader–writer locks would also be difficult
because Thread 2 might have to upgrade its lock for counter1; to avoid poten-
tial deadlock, we would have to acquire the strongest set of locks potentially
necessary.

Overall, even this small example illustrates that TM provides a much easier
to use programming abstraction because the compiler and runtime system will
care about how to implement the synchronization declared by the programmer.
In turn, this can allow for a higher level of composability than when using several
locks because atomic transactions will provide atomicity even if combined or
concurrently executed with other atomic transactions.

2.4 A Brief History of TM

In what follows, I will provide a brief timeline of how TM has developed both in
terms of research and industry adoption. This is not intended to list all results
and steps but rather to show the overall direction of TM and how my thesis
fits into this time-wise. More information can be found in the sections about
related work that follow (e. g., Section 3.3), and a book by Harris et al. [50].

TM research started almost 20 years ago. In 1993, Herlihy and Moss first
proposed TM support as a hardware feature [55]. In 1995, Shavit and Touitou
first proposed STM [103]. While earlier work already established the concept
of transactions [119], including transactions integrated with programming lan-
guages [75, 38, 24, 107], both these two papers are now widely considered to
represent the start of TM research.

Then, it took 10 years until 2003, when the first dynamic STMs were pre-
sented: Harris and Fraser’s Java-based STM and early TM compiler support [49],
and DSTM by Herlihy et al. [54]. In contrast to prior work, those STMs did
not require transactions to declare all memory locations that they would access
at the start of a transaction; this is important because, for example, it allows
transactions to navigate pointer data structures, which makes them more widely
applicable.

In 2006, time-based STM was first proposed in a paper that I coauthored [92].
This is a STM technique that allows to reduce the runtime overheads signifi-
cantly when transactions do not make their read operations visible to other
transactions (see Section 5 for details). This work sparked a lot of related re-
search, and the technique is used in production-level TM implementations till
today [83, 44].
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Also, several people such as Ennals [37] argued that STMs should not strive
to provide nonblocking progress guarantees and rather use locks internally in
the STM implementations to reduce runtime overheads. Dice et al. first pro-
posed the combination of time-based STM with a lock-based implementation in
TL2 [27].

Furthermore, the first TM software stacks for Java that integrated TM
runtime libraries with programming-language integration and compiler support
were also presented in 2006 [1, 51] (see Section 3.3).

Soon after that, around 2007, several authors presented TM programming-
language integration and first compiler optimizations for C/C++ programs [41,
118, 5, 23, 83]. While the way in which programmers would declare transactions
differed in these approaches, all relied on compilers to bridge the gap from
C/C++ declarations to TM runtime libraries, instead of relying on TM library
interfaces or simple source-to-source transformations. Among these, my work on
Tanger [41] resulted in the first publically-available TM support for a C/C++
compiler (which is now a part of DTMC, see Section 3.4).

Other TM research focused on topics such as TM theory and correctness
criteria, hardware support for TM, conflict resolution policies between trans-
actions, integration of I/O operations, nesting semantics, distributed TM, and
programming-language–integration issues.

While likely in development for a longer time, TM support in mainstream
CPUs has been announced only fairly recently. Sun’s Rock CPU [12] featured
a rather restricted HTM, but was ultimately canceled. AMD published a pro-
posal for an HTM [2], and both Intel and IBM have announced the availability
of HTMs [64, 117] in processors scheduled to be available in 2013 or 2012, re-
spectively.

Transactional language constructs for C++ [63] have been recently proposed
for standardization; this draft specification has been the result of a collaboration
between several companies since 2008, and is since 2012 being developed under
the umbrella of Study Group 5 of the ISO C++ committee [66]. GCC, arguably
the most important open-source C/C++ compiler today, supports most of this
draft specification since its 4.7 release in 2012 [44].
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TM Building Blocks

In this chapter, I will discuss the TM building blocks approach that I followed
in my research in detail. As outlined previously, TM is a problem that cuts
through several layers of a typical system stack and, in turn, is affected by how
TM aspects are implemented on each of those layers.

Therefore, I will first analyze the TM problem in detail: What are the re-
quirements for TM abstractions and implementations precisely? What are the
potentially relevant factors in TM-based synchronization, and how can we struc-
ture them so that we better understand their interaction? What are the perfor-
mance challenges, and how can we address them and with which optimization
attempts?

Second, in Section 3.2, I will motivate and demarcate the scope of my work:
What are the basic assumptions about the problem, what should I focus on
in my research, and which building blocks are necessary? While not all of the
building blocks have been open research questions, my work contributed to the
state-of-the-art in most of the major layers that affect TM (e. g., synchroniza-
tion algorithms, compiler-based optimizations, and exploiting new hardware
features).

Finally, I will describe related work that investigated full TM implementation
stacks (Section 3.3), as well as the software prototypes that I developed for the
building blocks and the experiment setup (Section 3.4).

3.1 Problem Analysis

In the following analysis, the starting assumptions about the system and the use
of transactions are intentionally unspecific in order to provide a birds-eye view
of TM and the contexts it might be used in. This will get refined in Section 3.2.
For now, let us just assume that (1) there is some application with transactions
declared by a programmer, (2) a compiler transforms it to executable code,
(3) this code runs on top of or merged with other code such as libraries or an
operating system, and (4) all of that is executed on some piece of hardware.

21
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3.1.1 TM Requirements

TM’s high-level goal is to provide a generic implementation for synchronization
declarations supplied by programmers. Its performance has to be high enough
to justify using TM declarations instead of concrete implementations (e. g., us-
ing locks) and tuning of synchronization. This leads to three main requirements
for TM: usability, composability, and performance. Note that composability con-
tributes to usability but is an advantage that other synchronization mechanisms
do not offer to the same extent and thus is important enough to be considered
a distinct requirement.

Usability. The development effort that TM requires when developing a pro-
gram that uses it is important because it is one part of the benefits that TM can
offer. Achieving usability means keeping this effort low by, for example, making
programming with TM intuitive, easy to reason about, and not error-prone.

Integrating TM into programming languages is a TM feature that is essential
for usability.

• If there would be no language integration and code transformation by a
compiler, programmers would have to use TM like a library and transform
every language-level access to program state into a call into the TM library.
Using existing source code in transactions would then require a costly
refactoring of this code. In turn, the calls to the TM library would make
the code harder to read, and harder to be used outside of transactions.

• The semantics of programming languages intersect with what a TM pro-
vides. For example, a language’s memory model specify when accesses to
state happen and how a program is supposed to behave in a multi-threaded
setting. A TM must be able to roll back and restart transactions, which
can interfere with exceptions and other kinds of control flow transfer in
the language.

Second, the TM semantics also have a large influence on usability:

• It must be easy to understand for the programmer and should be intuitive
for someone who is familiar with the respective programming language.
The correctness of a program with transactions should be simple to reason
about, at least in comparison to other synchronization mechanisms.

• It must be useful in a sufficiently large number of use cases. A wider
applicability of TM increases usability because getting familiar with TM
then amortizes over a potentially larger number of applications.

Composability. TM is not a free-standing solution but rather embedded into
existing systems, driven by parallelism becoming a more important aspect in
theses systems. TM has to compose well with the other components it is being
combined with, especially if incremental adoption of TM is to become possible:

• It must be possible to use TM within existing systems and programming
languages, which requires building TM in such a way that it makes sense to
use it in these environments. For example, there should be no dependence
on new kinds of hardware support for TM.
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• Reusing existing code, libraries, and other components must be possible.
Programming language integration and compiler support is necessary for
this. If executing the existing code transactionally is not possible, there
should be fallback solutions (e. g., for I/O).

• Parts of the systems that do not use TM should not be affected by the
use of TM elsewhere. This applies to aspects such as language semantics
and performance.

• Transactions must compose with each other. On the level of programming
languages, constructs such as transaction statements can provide this in
a straightforward way (see Section 2.3 for an example). However, this
also requires common language-level and TM library interfaces to enable
cross-vendor and cross-compiler composability.

Performance. Scalability and single-thread overheads are the two major as-
pects of TM performance:

• Single-thread overheads refer to how much slower the transactional exe-
cution of a piece of code is compared to the sequential execution of this
code. This class of overheads is not caused by the interference of concur-
rently executing transactions but instead by the TM just preparing the
code for such interference (e. g., adding checks that abort a transaction on
conflicts). Keeping single-thread overheads low is especially important in
workloads with low contention and a lot of parallelism, or when only few
threads are executing concurrently.

• Scalability characterizes how much of the parallelism in a workload a
TM can exploit when the level of concurrency increases (e. g., when more
threads execute transactions concurrently).

Note that the optimal trade-off between scalability and single-thread over-
heads is specific to the respective workload and application. Similarly, appli-
cations might have further requirements regarding fairness or latency of the
executions of transactions, but a simple liveness property of the whole TM
might be sufficient in other cases. Energy efficiency might be a concern in some
environments, too.

3.1.2 TM-Based Synchronization: Time and Space

To give an overview about the problems associated with TM-based shared-
memory synchronization, I will next discuss two major dimensions of the prob-
lem: Time and space.

On both dimensions, a large number of factors decide which low-level shared-
memory synchronization actually happens in a system. The TM typically con-
trols only a subset of these factors. For example, an application using the TM
decides which operations are performed in transactions, allowing the TM to
control only how these operations are performed. Second, it might be feasible
to not integrate TM with a certain component to avoid strong coupling be-
tween components (e. g., the TM and the operating system). These trade-offs
are a large part of the decision which building blocks a TM should consist of.
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Figure 3.1: An overview of the temporal aspect of TM-based synchronization.

Note that the following discussion highlights the possibilities and is meant as an
overview; I will present my selection of blocks later in Section 3.2 and discuss
further details in the following sections.

The TM even cannot know about all factors, or it is not feasible or too
inefficient to determine (e. g., the average execution time of a certain piece of
transactional code). Thus, it will likely have to deal with a lot of uncertainty
regarding the system it operates in, and especially regarding the transaction
workload.

Time. The time at which operations are performed determines whether they
actually execute concurrently (i. e., whether their executions overlap in time)
and thus how they need to be synchronized. For shared-memory synchronization
operations, the temporal behavior has a large influence on performance (i. e., it
can influence the level of contention on a resource, see Section 2.1 for details).
The scheduling of higher-level operations can also change whether operations
execute concurrently, and thus whether they have to synchronize at all on lower
levels.

Figure 3.1 illustrates the components that contribute to determine the tem-
poral behavior of an application with transactions. First, the application follows
a certain approach to parallelization (e. g., explicitly multi-threaded), which de-
termines when the high-level tasks and transactions in the application execute,
and on which and on how many operating-system threads.

The TM then has a large effect on the temporal behavior of the transactional
code in the application. The compiler and how its TM support is implemented
generate the code for transactions and thus determine when (transactional)
loads and stores are scheduled in the code and thus when they happen during
the execution of a transaction. Different TM algorithms and implementations
have different runtime overheads, affecting transaction execution time. The
TM also decides how to proceed when transactions conflict (e. g., aborting a
particular transaction and using back-off). The application code generated by
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Figure 3.2: An overview of the spatial aspect of TM-based synchronization.

the compiler and the TM implementation share resources, so there is further
potential interference.

The operating system then controls when threads execute and on which
hardware resources (e. g., when a thread executes on a certain CPU compared
to threads of another application). The execution speed of the thread’s code
depends on the properties of the hardware it is executed on and can vary widely
due to concurrent execution of other code (e. g., due to contention or cache
miss latencies). Furthermore, if the hardware also contains support for TM
(HTM), then its properties such as conflict resolution policies will also impact
the temporal behavior.

These effects and influences on the temporal behavior of the application
are not isolated. As I have mentioned previously, a different parallelization
approach can potentially run transactions in a different order leading to less
conflicts between transactions; in turn, this could allow the TM to choose a dif-
ferent TM algorithm with more coarse-grained low-level synchronization leading
to less runtime overheads and faster execution of the transactions. As another
example, consider how to best tune exponential back-off that gets triggered on
contention on locks used to synchronize tasks or transactions. The application-
level scheduling can affect the contention on these locks, but the back-off pa-
rameters can also influence the high-level scheduling because back-off changes
the executing time of application-level transactions.

Space. To synchronize, TM has to ultimately use hardware synchronization
operations on some locations in shared memory. The decision where to synchro-
nize in this space is the second important dimension of the TM problem space.
Figure 3.2 shows an overview of the possible strategies.

The hardware level is shown at the bottom of the figure, representing shared
memory and the standard atomic instructions (e. g., CAS) or HTM. The data
residing in shared memory is either application data (on the left side of the
figure) or TM synchronization metadata (i. e., data used exclusively by the TM).
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Furthermore, we can classify data as allowing for either low-level or high-level
synchronization.

Low-level TM synchronization strategies do not depend on high-level infor-
mation such as language-level information but just need the address and length
of an access, as well as whether the acces is a load or store:

• An HTM can synchronize directly on the application data by using the
hardware’s support for transactions. Hybrid software/hardware TM often
accesses TM metadata such as locks using both HTM and standard atomic
operations.

• Pure STM typically synchronizes on application data and TM metadata
using atomic operations.

• STMs operating on this lower level (e. g., word-based STMs, see Chapter 5)
associate TM metadata with application data by mapping addresses in
the address space to metadata objects such as locks. This mapping is
a key component of such an STM because it has a significant effect on
transaction performance.

TM can also try to make use of high-level information, which is either already
available for the transactions or can be inferred through automatic analysis.
Information that is available and can be exploited (e. g., by a compiler) includes
programming language constructs such as types or objects in the high-level
source code of the application, or in general any kind of synchronization-related
declaration provided by a programmer.

A TM can exploit this information by using it to infer a high-level partition-
ing of the application data and associating TM metadata with these partitions.
For example, in a programming language based on objects, a TM can synchro-
nize per object by embedding TM metadata in each object, or by mapping
metadata to objects. This can be extended to any kind of partitioning. Parti-
tions, in turn, can be derived by various other forms of analysis. For example,
pointer analysis can cluster memory allocations for a single instance of a data
structure into one partition.

I will discuss using partitions in detail in Chapter 6, but its main role is
already shown in the figure: It represents an alternative way to associate TM
metadata with language-level items such as objects or variables. If a TM does
not make use of high-level information but just considers accesses to an address
space, it will have to depend on a low-level mapping from the address space
to TM metadata, and will additionally be affected by how the compiler and
the memory allocator lay out language-level items in the address space. For
example, an allocator might place an effectively thread-local and frequently up-
dated variable in the same cacheline as a shared but mostly-read variable; when
mapping cachelines to locks, this would result in more conflicts between trans-
actions compared to when putting the two variables in different partitions. In
general, finding data for which synchronization is not necessary is an important
special case of partitioning (e. g., stack frames created within transactions, or
the effectively thread-local variable in the previous example).

A TM can also potentially try to analyze or predict partitions based on low-
level information. However, such an analysis would likely be more difficult and
imprecise, and thus might have to be paired with enforcing the prediction or
catching false predictions in some other way.
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3.1.3 TM Performance: Workloads and Optimizations

In general, the performance of TM implementations can be a very complex
topic because of the wide variety of workloads (i. e., how an application uses
transactions, when they are executed, etc.), the many factors that can affect
performance, and the equally many possible approaches to optimizing perfor-
mance. For example, a TM implementation can be as simple as using a single
global lock, which can perform close to optimal on some workloads (e. g., those
without any available parallelism) but performs miserable in other situations
(e. g., whenever there is disjoint-access parallelism).

Workloads. The amount of available parallelism in a workload is a major
factor, obviously. First, the parallelism that the underlying hardware supports
is limited (e. g., by the number of CPUs). Second, the application itself will
limit parallelism (e. g., by running only a certain number of threads or using
algorithms with limited parallelism). Furthermore, synchronization in the ap-
plication can limit parallelism too, so the level of concurrency also matters (e. g.,
if using locks, if threads often have to wait because of mutual exclusion with
another thread already holding the requested lock).

For TM, we additionally have to consider that transactions can be executed
speculatively, rolled back, and restarted. Concurrency control can be optimistic
rather than just pessimistic as with typical forms of locking. This can allow for
a higher level of concurrency but also requires the TM to make more choices
and avoid further performance pitfalls.

The probability of conflicts between transactions can often be used as a
metric for the level of concurrency because conflicts require one transaction to
be virtually executed before another. However, what eventually counts as a
conflict depends on the level of abstraction.

On a high level of abstraction, this is determined by the expected semantics
of the transactions; for example, two increments of a value might not conflict
when using abstract concurrency control (see Section 2.2). The compiler or
execution environment might be able to infer the semantics, but often this re-
quires additional annotations by the programmer; in turn, however, this raises
the development effort and thus decreases usability.

Low-level conflicts are usually accesses to the same data item, where at least
one of the accesses is a modification. From this perspective, the data access
patterns of transactions matter: which application data they access, with loads
or stores, and when in the transaction this does happen (early, or close to
commit).

Furthermore, the application logic and the additional code required for trans-
actional synchronization share hardware resources during execution. Therefore,
for example, properties of the application code such as the size of the cache
working set are a factor too because this determines whether usage of additional
cachelines by the TM implementation will potentially decrease performance.

Finally, for an application, not all transactions might be equal in terms
of performance. For example, are some transactions on the critical path of a
parallel execution and should the TM thus give them higher priority and ex-
ecute them faster than others if possible? Is the application more interested
in general throughput of transaction commits or in overall small latencies or
fairness? At which resource-usage cost should the TM try to execute transac-
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tions? Is reducing energy consumption more important than throughput? The
quality–of–service requirements and utility function for TM performance, and
thus the answers to the previous questions, are application-specific. Similarly
to the transaction semantics, the TM might often not be able to infer those
requirements automatically.

Possible optimization approaches. In general, we want to optimize the ex-
ecution costs, so keeping the additional resource usage required for transactional
synchronization low is usually good. For example, this includes computational
overhead due to instrumentation of transactions by a compiler, cache footprint
for TM metadata, memory access and synchronization costs (see Section 2.1),
and wasted work (i. e., transactions that have to be rolled back and restarted).
However, if there is or could be parallelism, we also want to exploit that by
choosing a scalable execution method and running transactions in parallel. We
usually do need to spend hardware resources and energy for that, either for
synchronizing memory accesses (e. g., a CAS is more expensive than just writing
to the same location) or for optimistic or speculative execution.

Similarly to the variety in workloads, there are plenty of optimization oppor-
tunities and workload aspects that can be targeted by optimizations. Therefore,
I cannot give a complete overview here but will instead illustrate some possibil-
ities by listing a few dimensions of the design space.

First, which workload scenario and performance utility function do we op-
timize for? As discussed previously, the latter might not be precisely known.
Likewise, automatically detecting which kind of workload will be or is being
executed can be quite tricky for the TM at both compile time and runtime.

Second, when do we optimize? Statically at compile or link time, or dynam-
ically at runtime of the transactions? The earlier we attempt to optimize, the
less likely it is that we have enough information about the workload, the hard-
ware, and the rest of performance-influencing factors. Consider compilation,
for example: We cannot always do just–in–time compilation and without it, we
cannot adapt at runtime anymore; however, we also cannot generate custom
code for all potential scenarios. In contrast, a TM runtime library can adapt at
runtime but it then also has to spend resources to try to infer information about
the workload that might still have been easily available at compile time. Ad-
ditionally, there is a runtime overhead associated with flexible execution (e. g.,
branches, indirect calls, more bookkeeping) that we would not have if we had
code generated specifically for the particular scenario.

Third, which parts of the execution environment do we optimize? Which
parts have to contribute TM building blocks? This obviously includes the com-
piler and a TM runtime library, but do we also need to or try to optimize other
libraries or parts of the operating system?

Fourth, which parts of application do we optimize? We obviously have to
touch at least some part of the transactions but, for example, do we also want
to optimize code surrounding transactions (e. g., to aid speculative execution of
transactions)?

Finally, do we choose optimistic or pessimistic approaches of concurrency
control? This often is associated with a choice between risk but potential gains
versus no risk but being stuck with a fixed and perhaps too pessimistic ap-
proach. This also applies to speculative execution: It can be very beneficial but
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can also go wrong, and there are overheads associated with containing misspecu-
lation. Speculative execution is also often limited in practice (see Section 4.2.2)
because generally, it is typically not safe to communicate speculative values to
components that are not under control of nor integrated with the TM.

3.2 Focus and Assumptions

Like any other research project, my thesis was motivated by the state-of-the-
art, and evolved in interaction with how the state-of-the-art evolved. When I
started work on my thesis, TM was definitely a promising idea but it was not
clear whether the TM vision would actually be achievable. Would TM be useful
to programmers? Is it an important mechanism compared to other approaches?
Can the TM implementation reach its goals (see Section 3.1.1)? This kind of
context determined my research focus and the assumptions that I made.

Thus, the most important TM research objective was to study what re-
mains of the potential of TM when it is being translated from a vision to an
implementation in a realistic system environment. TM is supposed to make
synchronization easier for programmers, so the best test for this is ultimately
to provide a TM implementation to programmers and to evaluate the feedback.
This also answers what should classify as a realistic system environment: We
need to focus on current systems because only there we have a large number
of active users and programmers who can provide feedback soon. This will not
necessarily reveal the full potential of TM nor every possible show-stopper in
future systems, but it will give a reasonable first evaluation. Another aim of
this first exploration of the TM vision is of course to learn about the problem
space and the relation to other research areas and problems, and to steer future
research.

For this reason, my focus was to build a full TM stack that is a best-effort
implementation of the TM vision for current systems. This research has both a
breadth-first and a depth-first search component. First, what does such a TM
stack have to include, which ingredients are necessary? Second, how far towards
the TM goals do selected important ingredients bring us? Are they sufficient to
reach a goal such as performance, or are they insufficient?

In my thesis, I help answer these questions by first arguing which building
blocks a first-generation TM stack should consist of, and by implementing and
evaluating such a stack. Second, I derived the requirements for TM compil-
ers and TM runtime libraries in such a stack (Chapter 4), investigated how
to improve STM performance (Chapter 5), which divide-and-conquer optimiza-
tions compiler support can enable (Chapter 6), and how realistic first-generation
hardware support for TM can be integrated and used to improve performance
(Chapter 7). To keep the required development effort bounded, I focused on
a particular class of environment and made a few assumptions, which I will
explain next.

Userspace applications. Whereas developers of operating system kernels,
standard libraries, or managed environments might be among the first users of
HTM, they might not be the first to make use of a general-purpose TM stack
because it would come with too many new features to rely on (e. g., language
integration). These developers typically can spend more effort per line of code
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than what would be reasonable for an ordinary userspace application. Building
custom synchronization code might be beneficial or required in a kernel but it
often just unnecessarily increases development costs in a platform-independent
application.

Thus, focusing on applications will likely yield a wider audience and a better
testbed for usability features such as TM semantics and language integration,
and for the general-purpose solution that TM is supposed to be. Composability
might also matter more for applications and their use of libraries, which are
typically authored by several programmers with different skill levels. Neverthe-
less, the insights gained when building an application-focused TM will also be
applicable in kernels and similar environments.

C/C++ instead of managed environments. Validating a TM implemen-
tation against potential low-level issues and constraints can yield useful insight
into the potential of TM. For example, what are the implications for TM if the
application uses manual memory management, or if it calls native code (e. g., in
third-party libraries) that accesses the same data that is accessed by transac-
tions? C and C++ allow such low-level interactions in programs, and thus TM
specifications and implementations for C/C++ will have to deal with this.

In contrast, languages such as Java do not support such low-level, close-to-
the-hardware actions (or hide them behind interfaces such as JNI). The respec-
tive managed environments (e. g., a Java virtual machine) typically have a large
part of the application under full control (e. g., standard libraries are available
in non-platform-specific code and can thus be transformed by the managed en-
vironment). Just-in-time compilation is not common for C/C++, so we have
to build TMs for C/C++ that must not rely on it to improve performance.
TM research results for C/C++ (e. g., TM algorithms) will still be useful for
managed environments, even though there might be additional constraints such
as requiring integration of TM and automatic memory management.

Standard hardware and first-generation HTM. TM will likely be first
adopted on server and desktop multicore microprocessors, so this should be
the targeted hardware. In particular, I chose x86-64 because it is most-widely
available and supported. PowerPC and SPARC would have worked as well but
were either not supported as well in the software I used (i. e., the compiler
that I extended with TM support) or I did not have access to such hardware.
They can run the same operating systems and toolchains as used for x86-64
though, so the main difference for TM would be differences in the hardware
(i. e., memory models and synchronization runtime overheads). ARM is not
yet common on servers. The most important consequence of the choice of 64b
for TM implementations is that standard atomic operations then can deal with
more bits (see Section 2.1), so, for example, counters in TM metadata might
never have to deal with overflow. Nevertheless, the software prototypes I built
(see Section 3.4) also work on 32b x86.

When considering potential future hardware extensions, these should be re-
alistic proposals for first-generation TM support. Even though it might take
rather long before this support is available in real hardware (compared to only on
a simulator) and to a large number of programmers, focusing on first-generation
hardware is better than expecting advanced and costly hardware support. Inves-
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tigating the former can provide valuable insight for hardware manufactures and
can help to make TM hardware available, because it faces a chicken–and–egg
problem as well.

Compiler support. Integrating TM into programming languages is necessary
to achieve usability. Extending C/C++ with the possibility to mark compound
statements as transactions (see Section 2.3 for examples), and adding support
for this to a compiler is the best choice for this integration. Approaches that do
not extend the language do not work well in C/C++ because they are either
not transparent (e. g., requiring each transactionally accessed item to be derived
from a custom class for transactional state), not powerful enough (e. g., prepro-
cessor macros), or do not compose well with other language features such as
exceptions. Regarding the semantics of this language extension, I followed the
consensus that emerged in a part of the TM research community (see Section 4.1
for details).

Transforming the memory accesses in transactional code using (dynamic)
binary instrumentation is possible [120, 41] but does not provide full integration
of TM into the language. Furthermore, this approach likely leads to a larger
runtime overhead of the transformed code because native code is more difficult
to analyze and rewrite than the intermediate code that a C/C++ compiler uses
internally, and a lot of information contained in the source code will have been
lost after the initial compilation to native code.

Only basic support for external actions. TM has to compose with ex-
isting software such as legacy code and libraries. One important case is that
it must be possible for transactions to call functions that have not been trans-
formed by the compiler (e. g., malloc or sqrt). Some of these functions can be
executed as is (e. g., because they do not access any shared state). Others can
have wrapper functions that make them compatible with a transactional execu-
tion (e. g., malloc). If applicable, these properties are expected to be provided
along the declarations of such functions. In any other case, the TM has to
fall back to nontransactional execution (i. e., serial–irrevocable mode). These
options are the basic support that I focused on.

The class of functions that is more difficult to handle is code that communi-
cates with external components (e. g., file I/O functions). A TM would have to
provide at least some transactional guarantees for these external actions. For
example, it would at least have to roll back updates by a transaction that is
to be aborted, even if it cannot guarantee isolation from the effects of external
updates. How this can be supported depends on the semantics of the external
component.1 In principal, one has to rely on techniques known from distributed
databases and other distributed systems that provide atomic snapshots and
distributed commits. I have built such a framework to support external ac-
tions (similar work was published concurrently by Volos et al. [115]), and such
a framework is sufficient for many of the functions provided by the standard
C library. However, supporting actions on more complex external components
quickly becomes highly dependent on these components (e. g., the operating
system or conventions regarding external resources), and some actions just can-
not be rolled back or executed in isolation without extending the features of

1Therefore, dynamic binary instrumentation alone would not be sufficient.
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the external component. Furthermore, classic forms of error handling (e. g., re-
turning error codes from functions) are a problem because they come from a
sequential perspective that does not consider distributed or speculative execu-
tion. Thus, new ways of error handling [91] might be necessary for a proper
language integration of transactions and external actions.

No assumptions about the kind of parallelization. The use cases of
TM that will matter in the future are not yet known. There are several ways
of parallelization, which differ in how they use synchronization and thus the
transaction workload that they request the TM to execute.

For current TM research, focusing on explicit threading as the kind of paral-
lelization used in applications promises to yield the most generally applicable re-
sults. In this case, threads can execute transactions whenever they want. Thus,
a TM can be exposed to any kind of workload, provided that the available TM
applications (e. g., benchmarks) actually are different. The TM cannot expect
that it has additional information about the workload available (e. g., transac-
tion priorities, or whether a transaction will execute the same operations when
it is restarted). It also cannot expect to control the workload beyond simply
delaying execution (e. g., it can execute only one thread’s transaction but it
cannot change the order in which a thread executes transactions).

Making none of these assumptions about the kind of parallelization ensures
that the breadth of the research on the potential of TM is not restricted. For
example, if TM works well with explicit threading, it is likely to also work well
when used inside of OpenMP tasks. Of course, this will not reveal the perhaps
extended potential that TM might have in particular use cases, nor how TM
would compare against other custom synchronization solutions for these cases.

General-purpose performance optimizations. Even without any assump-
tions about the workload and kind of parallelization, one has to select which
kinds of workloads should be the first targets for performance optimizations.
Based on how synchronization is used currently, it is nevertheless reasonable to
expect that a few properties are common:

• Transactions often load from many more memory locations than they write
to. Therefore, transactional loads represent a large part of the runtime
overhead of TM and should be as efficient as possible.

• Typically, accessing disjoint data in parallel results in less overhead than
accessing the same data. Thus, a TM should try to keep up this benefit
and exploit disjoint-data parallelism in workloads. This also extends to
avoiding overheads for concurrent read accesses to the same data.

• Synchronization is associated with runtime overheads, so if programmers
try to optimize transactions, they likely will make them rather small than
large in terms of the number of operations.

As I explained in Section 3.1.2, there are many factors which have an influ-
ence on the performance of synchronization, and they are typically not isolated
from each other but interfere in various ways. Therefore, my focus was on find-
ing performance optimizations that are fairly robust towards variations in these
factors and that promise to be useful in future TM implementations as well.
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One further consequence of not having information about the kind of paral-
lelization is that the TM does not know the precise performance utility function
(see Section 3.1.3). The performance goal that I focused on is that the TM
should target high throughput while trying to avoid starvation of individual
transactions. Blocking TM implementations are allowed, transactions do not
have different priorities, and increasing fault tolerance [116] is not an objective.

Without this information, it is difficult to build generally useful and applica-
ble optimizations related to the temporal aspect of TM-based synchronization
(see Figure 3.1). Therefore, I chose to not focus on the temporal aspect (except
minimizing runtime overheads) because it seems to be better to investigate this
in scenarios in which more is known about the parallelization approach. Fur-
thermore, if the TM should also be able to control scheduling outside of the TM
library (e. g., thread scheduling in the operating system [76]), it has to depend
on custom support in the operating system or the application. Even just pinning
threads to different CPUs could interfere with application-level assumptions in
unexpected ways.

With respect to the spatial aspect of TM-based synchronization (Figure 3.2),
I focused on both low-level and high-level approaches. The former is necessary
because one cannot expect the compiler to always be able to analyze a C/C++
program. Neverheless, trying to exploit high-level information can be very ben-
eficial, as explained in Section 3.1.2.

I chose to not expect programmers to provide detailed programming-lan-
guage–level hints aimed at performance optimizations because this decreases
TM usability.

I also do not provide any models for workloads or TM performance that
would be sufficiently precise to be the base for robust automatic tuning and
adaption at runtime. Without any assumptions about the kind of parallelization
and no programmer-supplied hints, it is difficult to correctly analyze what kind
of workload is being executed and to predict which effects a certain tuning
decision would have. Applying rule–of–thumb tuning and heuristics is of course
still possible and can be beneficial [108], but has not been a major part of my
research focus. Proper models for more advanced decisions seem to have to be
somewhat complex, and thus it is likely better to investigate them after more
widely use of TM has shown which kinds of workloads are actually realistic and
matter in practice.

3.2.1 Building Blocks: Summary

To summarize, the focus for this thesis are (1) C/C++ userspace applications,
(2) standard hardware and realistic first-generation HTM, (3) explicit threading
as an approximation of no assumptions about the kind of parallelization used
in the applications, (4) general-purpose performance optimizations including
compiler support, and (5) no custom support for TM by other parts of the exe-
cution environment such as the operating system and no advanced programmer-
supplied optimization hints.

Thus, the most important system layers for the TM stack are the compiler,
the TM runtime library, and the hardware that is used to execute the appli-
cations. I built software prototypes for the compiler and the TM runtime (see
Section 3.4), whereas the hardware is just used by the former two layers and
not modified.
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The TM stack consists of the following main building blocks, which will be
discussed in detail in the subsequent chapters:

Programming-language integration. The compiler has to map transactions
in C/C++ source code to code that calls a TM runtime library, which
raises the following questions: How do we map language-level semantics
to an implementation? Which part of that is the responsibility of the
compiler, and which part of it has to be handled by the TM runtime
library? What are the precise guarantees that the TM runtime library
has to provide? These questions will be answered in Chapter 4.

STM algorithms and implementations. The TM runtime library needs to
implement the guarantees that are expected by the compiled code that is
using the library. This has to be efficient, and run on current hardware.
Both algorithmic and implementation aspects of this will be covered in
Chapter 5, with a special focus on making transactional read operations
efficient.

Compile-time optimizations. While standard compilation targets a TM run-
time library that synchronizes on the lower level of the spatial aspect of
TM-based synchronization (see Figure 3.2), I will explain in Chapter 6
how compilers can use compile-time analysis of the program code to pro-
vide the library with high-level information about the transaction. This
extends the standard library interfaces discussed in Chapter 4 and allows
the library to execute transactions more efficiently.

HTM integration. It should be possible to use first-generation hardware sup-
port for TM once it becomes available. Therefore, it is necessary for the
other building blocks to compose well with HTM, which I will discuss in
Chapter 7 based on an HTM proposal by AMD. We also want to achieve
good performance despite the potential limitations of such early HTM
implementations, so I will also present efficient hybrid STM/HTM algo-
rithms.

Together, these building blocks comprise a working first-generation TM
stack, which provides powerful programming-language constructs for transac-
tions and shows decent performance on current hardware and likely on hard-
ware with first-generation HTM as well. All of these building blocks except the
compile-time optimizations are essential for a general-purpose TM system for
the set of assumptions that I have chosen, either for usability or for performance
reasons.

Of course, there are other features that could be good to have in a TM,
especially to improve performance: For example, better scheduling of transac-
tions (e. g., contention management), a tighter integration with parallelization
frameworks, and automatic tuning and adaption at runtime. Nonetheless, these
features would also require the building blocks I have selected, at the very least
to exploit their full potential.

3.3 Related Work

Only few research projects have investigated a full set of TM building blocks
(i. e., as outlined in Section 3.2.1), especially when compared to the overall
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amount of TM-related research in the past years. Many investigations cover
only individual pieces such as specific STM or HTM algorithms; while these
are valuable contributions, they can only partially reveal how TMs need to be
designed to be deployed as general-purpose programming tools for production-
level code.

The related work that is the closest to my set of building blocks are two
C/C++ TM stacks that essentially provide the same programming language
constructs for transactions and use roughly the same ABI. Both are implemen-
tations by industry and aimed at production-level deployments (even though
the implementations are still considered experimental).

The first of the two is Intel’s work on TM support for C/C++ as part of
their compiler prototypes [83], which has evolved over the years, concurrently
with my research. They had a large influence on the shape of the C/C++ TM
specification (see Section 4), and the ABI used by my software prototypes and by
GCC (see below) was initially proposed by them. They use a time-based STM
based on the algorithms that I describe in Section 5. The major contributions
that my work provides compared to theirs are a detailed description of the
semantics of the ABI including the split of responsibilities between compilers and
TM runtime libraries (see Section 4.2), whole-program compiler optimizations
(see Section 6), and more advanced HyTM algorithms as well as a detailed
study of HTM integration (see Section 7). See Sections 5.4 and 6.4 for more
information about their work.

The second of the two similar stacks is the TM support by the GNU Compiler
Collection (GCC) [44]. It consists of support for the C/C++ TM specification
in the C and C++ compilers and a TM runtime library, libitm. The former
was significantly influenced by the explanations of the requirements on compil-
ers that I present in Section 4.2 (e. g., how to not violate publication safety).
The latter essentially follows TinySTM++’s design (see Section 3.4.2): It im-
plements a subset of the same TM algorithms (e. g., Algorithm 3) but with a
few minor changes aimed at production-level deployments (e. g., it can dispatch
ABI calls to different TM algorithm implementations at runtime). DTMC (see
Section 3.4.1) uses a port of the TM support in the frontend of GCC’s C/C++
compiler to parse TM constructs such as transaction statements.

Outside of C/C++, early work by Intel [1] and Microsoft [51] was the first
to investigate TM building blocks for Java. Both show that the overhead of
object-based STMs in managed enviroments can be quite small. Their com-
pilers employ STM-specific optimizations and the STMs are tightly integrated
with the respective Java runtime environments. However, because of relying on
a managed environment and using a language like Java, they can use optimiza-
tions that are not practical in C/C++ environments (e. g., not guaranteeing the
consistency of a transaction during its runtime but only when it commits).

Microsoft’s STM.NET is another set of TM building blocks for a managed
environment [112], with the notable distinction that it also tried to integrate
other transactional services with the transactions support at the programming-
language level. STM.NET does not seem to have been made available as part
of any product so far.

The Velox TM stack [3] is the collection of the outcomes of a larger research
project that I participated in. Some of the building blocks and software proto-
types that I present in this thesis are part of the Velox stack (e. g., Section 7.2
or DTMC).
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To improve readability, I will discuss related work specific to certain building
blocks along with the presentation of those building blocks (i. e., in Sections 4.3,
5.4, 6.4, 7.2.5 and 7.3.3).

3.4 Software Prototypes

To be able to validate TM building blocks both in terms of performance prop-
erties and the overall design (e. g., interface design decisions), it is necessary
to build prototypes of a full software stack containing those building blocks.
The software that I built is such a stack; while it might not have all the polish
that would be required for production-level deployments, it is sufficiently close
to that to ensure that the findings will continue to apply to implementations
ready for production-level deployments. This is important because otherwise,
studies like the full-system HTM evaluation discussed in Section 7.2 would not
be meaningful.

Therefore, I will next give an overview of both the TM support for C/C++
compilers (DTMC) and the TM runtime library (TinySTM++) that I built.
Both are availabe under an open-source license.2

In Section 3.4.3, I will also describe the aspects of the experimental setup
that are common across the different evaluations in the subsequent chapters.

3.4.1 DTMC

The Dresden TM Compiler (DTMC) relies on both the GNU Compiler Col-
lection (GCC) and the LLVM compiler infrastructure [71] to compile C/C++
code with transactional language constructs as described in Section 4.1 into exe-
cutable code that targets the TM runtime library ABI described in Section 4.2.1.
This is a multi-pass process.

First, LLVM’s compiler front-end for C/C++ (llvm-gcc) parses and trans-
forms source code into LLVM’s intermediate representation (IR). To support
transactional language constructs, Martin Nowack ported the TM support code
in the former TM branch of GCC to llvm-gcc; this translates constructs such
as transaction statements into blocks of transaction code that are demarcated
from nontransactional code by calls to special marker functions. In the initial
version of DTMC [41], which just consisted of the the LLVM transformation
pass described next, the programmer had to provide those marker calls instead
of being able to rely on transaction statements3. In either case, the output of
the compiler’s front-end is thus LLVM IR in which transaction statements exist
as demarcated blocks of code.

Second, transactional code is transformed so that it uses the TM runtime
library. This happens as one transformation pass in LLVM’s middle-end (i. e.,
embedded within the sequence of LLVM’s general-purpose optimization passes
on LLVM IR). LLVM can optimize whole programs by first transforming all
compilation units (i. e., individual C/C++ source code files) into LLVM IR and
then merging these into a single LLVM IR representation of the whole program.
This is very convenient for TM transformations and optimizations, so DTMC’s

2The source code can be obtained at http://se.inf.tu-dresden.de, for example.
3For example, instead of transaction atomic { x++; }, the programmer had to

write DTMC BEGIN(); x++; DTMC COMMIT();

http://se.inf.tu-dresden.de
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compiler driver tool (tmlink) runs the TM transformation pass on the whole
program’s IR code.

This pass then first analyzes the control-flow graph of the program and
finds all basic blocks that could be executed from within transactions: (1) basic
blocks lexically contained within transaction statements, (2) functions marked
as transaction safe , and (3) all functions that could be called from transactional
code. The latter functions get cloned so that these transactional clones can
contain the instrumentation required to use a TM runtime library; however, if
such functions are marked with the transaction pure or tm wrapper attributes,
then they do not get cloned and can either be used unmodified in transactional
code or have a specialized transactional version, respectively. As second step, all
transactional code is transformed by (1) replacing memory accesses with calls
to matching load and store functions in the TM runtime library, (2) redirecting
function calls to the transactional clones, and (3) adding the calls to TM runtime
library functions that are necessary to start or commit transactions.

DTMC can create several code paths for each transaction, whose purpose is
to have different kinds of TM instrumentations available for each transaction.
For example, for HyTMs (see Section 7.3), it is beneficial to have one code path
for transactions that execute with help of the HTM and another code path for
transactions that run the STM fallback. While this would also be possible with
dispatching between both ways at runtime during each call to the TM run-
time library, having specialized code paths available reduces runtime overheads
significantly and allows the compiler to optimize more aggressively. The instru-
mentations on each path do not differ except that they target differently named
sets of the base ABI functions (e. g., the hardware transaction code path calls
functions whose name is prefixed with “hytm”, whereas the STM code path uses
the default ABI names). The compiler informs the TM runtime library which
code paths are available when starting a transaction (using a parameter to
ITM beginTransaction), and the library then chooses which code path should be

executed (using bits in the return value of ITM beginTransaction). Figure 4.4 on
page 51 shows an example. The library can make this choice on each attempt to
execute the transaction, including on restarts. The user can decide which code
paths should be generated; by default, tmlink uses a configuration file provided
by TM runtime libraries to make this selection.

Finally, tmlink links the TM runtime library statically with the transformed
program if the former is available as LLVM IR. This happens right before the
LLVM code generator transforms LLVM IR into code executable on the target
architecture, so whole-program optimizations can be applied to the composit of
program and the TM runtime library. For example, this allows inlining of the
library’s load and store functions, which in combination with having specialized
code paths, can lead to highly optimized code despite the TM being available
just as a library. The example in Figure 7.7 on page 178 shows that his can result
in code of the same quality as if the compiler inserted the TM instrumentation
code directly.

3.4.2 TinySTM++

TinySTM++ is a framework for TM runtime libraries that eases experimenting
with different STM and HyTM implementations. It contains all the functionality
required to build ABI-compliant TM runtime libraries (see Section 4.2.4) and
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allows implementations of TM algorithms to make use of generic components as
necessary (e. g., there is generic support for serial-irrevocable mode as explained
in Section 5.2). It is written in C++ and uses templates extensively to allow
for a high degree of code re-use while at the same time guaranteeing that no
unnecessary runtime overheads are introduced despite the large flexibility of
the framework. For example, the same implementation of Algorithm 3 can be
instantiated as a pure STM runtime library as well as a HyTM when combined
with an implementation of Algorithm 10. TM runtime libraries can support
several code paths as explained in Section 3.4.1 (e. g., Algorithms 3 and 10
could be used by different code paths in a HyTM).

TinySTM++ hosts the implementations of the algorithms presented in Sec-
tion 5.2 and Chapter 7. The implementations of the algorithms presented in
Chapter 6 are based on a older version of TinySTM [42].

There are a few implementation properties that are worth pointing out.
First, the implementation tries to avoid costly cache misses due to false shar-
ing on cache lines (e. g., TM metadata is split into thread-private and globally
accessible parts, and padding is used to ensure that independent but frequently
accessed TM metadata parts are on separate cache lines). Second, all STMs do
not use any kind of contention management or exponential back-off on trans-
action abort; instead, transactions are restarted immediately. This is certainly
a limitation of the implementation, but falls into the temporal aspect of TM-
based synchronization and is thus out of the scope of my work (see Section 3.2).
However, all ASF-based TMs (1) use a simple back-off scheme on aborts on the
hardware transaction code path4, (2) switch a transaction to the fall-back exe-
cution method (i. e., software transactions or serial-irrevocable mode) after 100
aborts due to conflicts with other threads5, and (3) ignore the first abort due
to exceeding HTM capacity if only serial-irrevocable mode is available as fall-
back execution mode. Similarly, with the LSA STMs evaluated in Section 5.2.2,
transactions switch to serial-irrevocable mode after 100 aborts to avoid poten-
tial livelocks. Note that the STM implementations used in Chapters 6 and 7 do
not perform such a switch to a fall-back execution method. With the exception
of the partitioning-aware STMs in Section 6.2, all orec-based STMs map from
memory locations to orecs using fixed hash functions and hash function param-
eters (i. e., the parameters are constants in the executable code), but arrays of
orecs are allocated dynamically (i. e., the TM runtime library has to load the
pointer to the array on each transactional memory access).

Finally, TinySTM++ uses only spinlocks (i. e., locks that never block using
facilities of the OS but instead just poll the lock’s value in a loop until it is not
acquired anymore). Note that this is not a general limitation in the algorithms
but rather an implementation issue that would be important in production-
level deployments; although the decision whether to spin or block using OS
facilities could take properties of the TM into account, the underlying problem is
independent of TM and is an issue that all lock implementations face. Therefore,
I consider this to be out of the scope of my work.

4Before restarting, hardware transactions wait for a certain amount of time chosen ran-
domly from the range of zero to the time the transaction tried to execute unsuccessfully so
far.

5This counter is maintained per thread and reset whenever a transaction commits.
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Benchmark Update Average number Element value
transactions of elements range

SkipList-Large 20% 4096 8192
SkipList-Small 20% 512 1024

RBTree-Large 20% 4096 8192
RBTree-Small 20% 512 1024

LinkedList-Large 20% 256 512
LinkedList-Small 20% 14 28

HashTable 100% 64000 128000

Table 3.1: IntegerSet benchmark configurations.

3.4.3 Notes about the Experimental Evaluation

The experiments conducted for the performance evaluations in Chapters 5 to 7
have several things in common, which I will describe in this section (e. g., the
selection of benchmarks). However, the experiments differ in other aspects such
as the hardware they have been executed on, which I will described in the
sections about the respective experiments.

The lack of available TM benchmarks is a big problem for TM research
in general. The STAMP TM benchmark suite [11] is basically the only set of
C/C++ benchmarks that is freely available, used widely by the TM community,
and is not meant to test pathological workloads or corner cases. Given that
TM has so far seen little use by C/C++ programmers—or at least that those
programmers have not made their uses public, it is also not possible to just take
existing non-benchmark programs that use transactions and transform them
into benchmarks. There are other applications with transactions that have
been used by research groups as experimental base for publications, such as
those used in a study [84] by Pankratius and Adl-Tabatabai, but those have not
been made publicly available. Besides the benchmarks that try to resemble real
programs, there also exist microbenchmarks that typically test TM performance
when transactions are used to synchronize access to shared data structures. A
frequently used group of such microbenchmarks tests concurrent operations on
different implementations of sets of integers. Therefore, and due to the lack of
better candidates, I use both the STAMP and the integer set benchmarks.

IntegerSet benchmarks. The transactional workload that is created by these
benchmarks is a sorted set of integer values that is accessed and modified by
several threads. Each thread continuously runs a transaction that either inserts
a new element into the set, removes an element from the set, or tests whether
a certain element is contained in the set. This set is not a multiset, so a new
element is only inserted if it is not yet present in the set; thus, insert and remove
operations are not guaranteed to perform transactional write operations.

Each of the IntegerSet benchmarks implements the set either using a skip list,
a red-black tree, a sorted linked list, or a hash table. The skip list uses at most
8 levels. The hash table uses open hashing, 217 buckets, and a multiplicative
hash function; each element in the hash table resides in a separate list node



40 CHAPTER 3. TM BUILDING BLOCKS

Benchmark Comments Benchmark parameters

Genome 16M segments -g16384 -s64 -n16777216

Sim: 16K segm. -g256 -s16 -n16384

Genome-4M 4M segments -g16384 -s64 -n4194304

Genome-8M 8M segments -g16384 -s64 -n8388608

KMeans-Lo 64K input -m40 -n40 -t0.00001 -i random-n65536-d32-c16.txt

Sim: 2K input -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt

KMeans-Hi 64K input -m15 -n15 -t0.00001 -i random-n65536-d32-c16.txt

Sim: 2K input -m15 -n15 -t0.05 -i random-n2048-d16-c16.txt

Vacation-Lo 4M transactions -n2 -q90 -u98 -r1048576 -t4194304

Sim: 4K txns. -n2 -q90 -u98 -r16384 -t4096

Vacation-Hi 4M transactions -n4 -q60 -u90 -r1048576 -t4194304

Sim: 4K txns. -n4 -q60 -u90 -r16384 -t4096

Vacation-1M 1M transactions -n10 -q90 -u80 -r65536 -t1048576

Vacation-2M 2M transactions -n10 -q90 -u80 -r65536 -t2097152

Vacation-2M-Lo 2M transactions -n2 -q90 -u98 -r1048576 -t2097152

Vacation-2M-Hi 2M transactions -n4 -q60 -u90 -r1048576 -t2097152

SSCA2 -s20 -i1.0 -u1.0 -l3 -p3

Sim: -s13 -i1.0 -u1.0 -l3 -p3

Table 3.2: STAMP benchmark configurations. The configurations annotated as
“Sim” in the second column are used for experiments executed in a simulator
(see Chapter 7), all other configurations are used by non-simulated executions.

referenced by one of the buckets, so adding an element to the table requires one
call of malloc to dynamically allocate memory.

Table 3.1 shows the benchmark configurations that I use. The operations
performed by each transaction are chosen randomly such that the potentially
updating transactions with insert and remove operations occur with the prob-
ability shown in the second column of the table; insert and remove operations
always occur with the same probability. Note that as discussed previously, the
probability of transactions that actually modify state might be lower (but ele-
ment lookups are always read-only transactions). The values of elements used
as arguments to operations are chosen randomly in the range of zero to the value
shown in the right-most column of the table. During benchmark initialization,
the integer sets are populated with half as many elements as the upper bound of
the range from which their values are picked; therefore, the number of elements
in the sets will remain roughly constant during the execution of the benchmark.

Each benchmark is executed for five seconds except if a simulator is used
to execute experiments as in Chapter 7, in which case the benchmarks perform
a fixed and lower number of operations to keep simulation time reasonable.
Finally, the implementations of the IntegerSet benchmarks used to evaluate
TM metadata colocation differ slightly (see Section 6.3.2 for details).

STAMP benchmarks. The STAMP benchmarks that I selected for my ex-
periments are Genome, KMeans, Vacation, and SSCA2. Genome’s transactions
access a mix of pointer data structures and a large number of character strings.
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Note that STAMP’s manual instrumentation of memory accesses in transactions
does not treat the frequent string comparisons in the benchmark’s transactions
as transactional accesses because these strings do not change in the respective
phase of the benchmark. Thus, this is a programmer-supplied optimization,
which is not available to TM compilers such as DTMC. This increases the num-
ber of transactionally accessed memory locations in each transaction compared
to what has been reported for STAMP originally. Genome also uses almost
1.5GB of memory on 64b systems with its default non-simulator configura-
tion. KMeans mostly operates on arrays of primitive types, has rather short
transactions that access few memory locations, and spends only little of its to-
tal execution time in transactions. Vacation simulates a reservation system;
its transactions mostly operate on a couple of red-black trees and linked lists.
SSCA2’s transactions are used to build graph data structures in parallel that
are implemented using arrays; it also spends only little of its total execution
time in transactions.

Table 3.2 shows the benchmark configurations that I use. The configurations
annotated as “Sim” are used for the experiments in Chapter 7; they have shorter
execution times, which keeps simulation time reasonable.

The implementation of these benchmarks is based on STAMP version 0.9.6
but contains a few modifications and bug fixes. First, the original STAMP used
map data structures with 32b integer keys and values also to map from or to
pointers—these data structures were changed to instead use pointers as keys
and values. This allows the STAMP benchmarks to also work correctly when
compiled as 64b-pointer programs, and improves the quality of the compiler
analyses used in Chapter 6. Second, the barriers that control when application
threads start to execute transactions have been changed to a spinning imple-
mentation, which allows for more precise measurements of the execution time
when used with a simulator; the barriers now also work with thread counts that
are not a power-of-two value. Finally, some of the entry points to the main
data structures in the benchmarks were placed on separate cache lines to avoid
unnecessary hardware transaction false conflicts.

Other benchmark, software, and execution parameters. The specific
hardware or simulator used for the experiments in Chapters 5 to 7 are different
and described in these chapters. Notwithstanding, benchmarks are never exe-
cuted with more threads than logical CPUs provided by the hardware because
TinySTM++’s implementation only uses spinlocks; as explained previously, this
is not a general limitation, nor is it a case that would be very important in
practice. Threads are pinned to logical CPUs in the STM experiments (see
Section 5.2.2 for details) and the HTM experiments (see Section 7.4; threads
are pinned to cores of the simulated CPU).

All performance measurements have been executed several times, and the
data shown is the average of the individual measurement results.

As mentioned previously, the TM runtime libraries are statically linked to the
benchmarks, and link-time optimizations are enabled (using the default LLVM
optimization passes). Chapters 5 and 7 use the same DTMC version (i. e.,
based on LLVM 2.8) and the most recent TinySTM++ and 64b benchmark
applications. The benchmarks in Chapter 6 use an older DTMC version based
on LLVM 2.1, an older TinySTM version, and are 32b programs. The glibc
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version used to execute experiments is 2.15 in Chapter 5, 2.10 in Chapter 7,
and 2.3.6 in Chapter 6. All benchmarks use glibc’s default memory allocator
except the HashTable experiments of Chapter 7, which use the Hoard memory
allocator [8].



Chapter 4

Integrating TM with
C/C++ Programs

Language integration is essential for TM to provide usability and composability.
Requiring programmers to manually instrument the program code to use TM
like a library would be an obstacle to reaching those goals. Instead, programmers
should be able to just demarcate which regions in the code are supposed to be
transactions, and have the compiler automatically transform these code regions.
A simple option to demarcate regions are calls to special marker functions:

DTMC BEGIN(); x++; DTMC COMMIT();

This is fairly straightforward to implement in a compiler and also was what
I had chosen to do in early versions of DTMC. It does not require extensions
to the programming language but has shortcomings exactly because of that.
First, the compiler would still have to be aware of the program’s source code
during the transformations because otherwise, it cannot precisely detect what
is transactional code (e. g., if transforming intermediate code created by other
parts of the compiler). Second, it still needs to be specified how transactions
interact with other language components such as exception handling. Overall,
the compiler’s frontend has to support TM and we need an extended language
specification.

Thus, one can also extend the language in the first place because it would
need a similar kind of compiler support and level of understanding by the pro-
grammers. The resulting lack of compatibility with older compilers and related
tools is likely to be outweighed by the increased clarity in both syntax and
semantics of programs with transactions.

The central TM language construct in C/C++ are transaction statements,
which are executed as a transaction and consist of either a single statement or
a block of statements (see Section 2.3 for examples). To specify their semantics
and to implement support for them, we need to also consider other specifications
and interfaces, which are shown in Figure 4.1.

The programming language’s memory model, which defines how programs
access memory and how multi-threaded programs synchronize concurrent ac-
cesses, has to be extended with the semantics of transactions. An extended
memory model then specifies the orderings guaranteed by transactions and how
they are related to the rest of the model. One particular TM concern is how

43
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Transactional language constructs
(e.g., __transaction_atomic { ... } )

C++11/C11 memory model

TM runtime library ABI

Extends

TM compiler

Hardware memory model, HTM

TM runtime library

Figure 4.1: Relation of the TM specification to other interfaces.

transactional memory accesses interact with nontransactional memory accesses,
covering questions such as strong versus weak isolation or publication and pri-
vatization.

For reasons further explained in Section 4.2, we want the compiler support to
be fairly independent of actual TM implementations, and rather let the compiler
target a common Application Binary Interface (ABI) as intermediate interface.
TM runtime libraries then implement this ABI for some set of hardware archi-
tectures, which also provide different hardware memory models. The compiler
and the TM runtime libraries thus have to jointly implement the C++ mem-
ory model extended with transactions, on top of the memory models provided
by hardware architectures (e. g., by using hardware instructions with memory
barrier semantics to ensure certain orderings required at the programmming
language level).

4.1 Specifying TM for C/C++

In this section, I will explain a draft specification of transactional language con-
tructs for C++ [63] (“specification” for short), which is a joint effort by several
companies (HP, Intel, IBM, Oracle, and Red Hat) and individuals, including
people working on the major C++ compilers. It is based on and extends the
C++11 standard [65]. I will also describe the extensions to the C++11 memory
model [6, 10] that are necessary for the additional TM language constructs. I
will then, in the following section, derive what this specification actually means
in terms of requirements on a TM compiler and runtime library. Finally, I will
compare this specification to other approaches for modeling the correctness of
concurrent operations in Section 4.3.

Overview of the C++ memory model. To put it simply, the memory
model uses per-thread program order together with the synchronization relations
present in the program to derive a happens–before relation, which then also
describes how memory locations are modified and which values are read by load
operations. Programs have to be free of data races (i. e., all accesses must be
properly ordered by happens–before); if they are not, then the behavior of the
program is undefined. Thus, the memory model defines which executions are
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allowed for a given program and how a program’s threads can synchronize with
each other.

From a formal perspective [6], the model consists of several relations that
are either derived from a program’s source code (and thus are fixed for a given
program and control flow path), or can be chosen freely to represent the different
executions a program might have (i. e., to model the indeterminism that arises
when executing a multi-threaded C++ program).

First, the sequenced–before, data–dependency , and additional–synchronizes–
with relations are determined by the program’s source code and the assumed
control flow in the program. sequenced–before basically is the per-thread order
of operations in the program, and thus takes a central role. The other two
relations are not as important to understand how TM fits into the memory
model (e. g., additional–synchronizes–with models orderings such as between a
child thread and the operation in the parent thread that created them).

Second, reads–from, modification–order , and sequentially–consistent are “wit-
ness relations” that represent the relation or ordering between accesses by sev-
eral threads. The relations are the witnesses of some chosen execution and
are used to enumerate all possible executions. modification–order orders opera-
tions that modify the same location, and reads–from defines which modification
to a location is observed by a reading operation to the same location. Loca-
tions can either be nonatomic (normal program state), atomic (accessible by
atomic operations such as CAS), or mutexes. Atomic operations accept an
additional memory order modifier that affects the strength of its synchroniza-
tion, including which other operations it potentially synchronizes with (e. g.,
memory order relaxed does not impose an order, whereas memory order seq cst

is stronger). sequentially–consistent orders sequentially consistent operations
(e. g., locking and unlocking a mutex).

Together, these six relations can be used to enumerate the possible candidate
executions of a program. The model also uses them to derive other relations,
of which synchronizes–with and happens–before are the most important ones
from the perspective of our discussion. synchronizes–with contains the order
that is enforced by synchronization operations in the program: for example,
two atomic operations in different threads on the same memory location, one a
store with memory order release and the other a load with memory order acquire,
result in a synchronizes–with edge from the store to the load (see Table 2.1
for the notations I use in algorithms). happens–before is, roughly speaking, the
transitive closure of synchronizes–with and sequenced–before (it is not transitive
though for chains including a certain kind of memory order modifier on atomic
operations). Thus, happens–before is the top-most specification of ordering in
some execution of a program, but it is not a total order.

Next, these six relations and the derived relations are used to determine
which candidate executions are consistent. The precise consistency constraints
are described in the formal model and I will not explain them in detail. How-
ever, they are pretty intuitive and basically constraints on the various relations
and combinations of them; for example, reads–from must be consistent with
modification–order and happens–before in that reads observe the most recent
value written to a location according to the orderings specified by happens–
before and modification–order . Any inconsistent candidate executions are not
further considered.

Finally, if any of the consistent candidate executions contains some form of
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race condition (e. g., data races due to conflicting accesses by different threads
that are not ordered by happens–before), then the behavior of the program is
undefined; otherwise, behavior will be equal to one of the candidate executions.
Note that this also highlights the “catch fire” semantics of race conditions and
undefined behavior. In particular, if there can be a case where a program is
not race-free, then the program’s execution enviroment (e. g., the compiler or
the TM runtime library) does not even need to ensure that all other candidate
executions would execute correctly.

Programmers thus have to essentially use the right amount of synchroniza-
tion in their programs to prevent data races and other incorrect yet race-free
behavior. They can do that using ordered atomic operations, locks, or also
transactions as we will see later. The compiler and all other parts in the C++
execution enviroment, including TM runtime libraries, are responsible for trans-
lating race-free source programs into native code that is also race-free and only
yields executions that are equivalent to consistent candidate executions in the
model. This can restrict compiler transformations (e. g., code movement across
operations that contribute to synchronizes–with), and the compiler’s code gen-
erator and the runtime libraries have to use suitable native code (e. g., memory
barriers) that correctly implements the C++ memory model on top of the mem-
ory model provided by the targeted hardware platform.

Please also note that the memory model relies on ordering as expressed in
happens–before and not on linearizability, which is commonly used to reason
about concurrent data structures (see Section 2.1). Furthermore, the C++
standard is rather vague regarding progress guarantees (e. g., it allows I/O op-
erations to actually finish after the respective I/O function has returned, which
would not be a linearizable operation). However, if the operations of a concur-
rent data structure are indeed linearizable, then ordering in happens–before also
becomes straightforward.

TM Language Constructs. The main transactional language construct are
transaction statements, consisting of either the transaction atomic keyword
or the transaction relaxed keyword followed by a compound statement (see
Section 2.3 for examples). Alternatively, transactions can also have the form of
transaction expressions or function transaction blocks. The former make paren-
thesized expressions transactional, whereas the latter execute whole function
bodies as a transaction; both can be expressed with transaction statements, so
I will not consider them further.

Informally, atomic transactions (using the transaction atomic keyword)
can be thought of as executing instantaneously (i. e., atomically and in isolation
from other threads) if there are no race conditions with other nontransactional
operations. These transactions are called atomic transactions and can only exe-
cute code that can execute safely in an atomic transaction or can be transformed
so that it is safe code.

Alternatively, transactions can also be annotated as relaxed transactions (us-
ing the transaction relaxed keyword) and can then execute unsafe code. Ex-
amples for unsafe code are accesses to volatile memory locations or C++ atomic
variables, file I/O, or functions in libraries only available as native code. Thus,
relaxed transactions do not provide full atomicity but are atomic only with re-
spect to other atomic or relaxed transactions; in contrast to atomic transactions,
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they can communicate with other threads from within the transaction via unsafe
code. In a typical STM implementation, those relaxed transactions that exe-
cute unsafe code will use mutual exclusion to prevent any other transaction from
running concurrently, which can result in significantly less scalability. Note that
what the specification defines as unsafe code is not necessarily inherently unsafe
for atomic transaction, but rather a trade-off influenced by several factors such
as implementation concerns and performance overheads for nontransactional
code.

Programmers can declare code as safe or unsafe using the transaction safe

and transaction unsafe attributes, and the compiler can declare code implicitely
safe if it can analyze that it is indeed safe. The specification also allows other
implementation-defined mechanisms that can declare code as safe (e. g., the
transaction pure and tm wrapper attributes discussed later). Safe and unsafe
declarations have to be used consistently, and compile-time errors will be raised
if this not the case or if atomic transactions could potentially execute unsafe
code.

Therefore, while atomic transactions provide stronger guarantees to pro-
grammers because of the compiler checking that they will never execute unsafe
code, relaxed transactions allow all code to be potentially executed from within
a transaction, which can aid usability and composability.

The specification describes a few further language constructs. First, trans-
actions can be canceled using the transaction cancel statement, which rolls
back the current transaction and continues execution after the transaction (i. e.,
it basically skips execution of the transaction). A programmer can addition-
ally request that an exception should be thrown after canceling the transaction.
Second, programmers can declare whether a transaction is allowed to throw ex-
ceptions or not. To preserve existing exception semantics, throwing exceptions
from within a transaction will not automatically cancel this transaction.

Transactions can be nested within other transactions. One can distinguish
between flat, closed, and open nesting: Flat nesting treats the outer-most trans-
action and all nested transaction as a single unit, committing or aborting all
of them together. With closed nesting, nested transactions can or should roll
back without rolling back enclosing transactions. Open nesting allows nested
transactions to commit separately from the enclosing transactions, which makes
possible semantics more difficult. The specification focuses on flat nesting and
does not make use of open nesting. It indicates that closed nesting should
be used when transactions are canceled (unless specified otherwise), but does
not explicitely forbid flat nesting or spurious aborts (i. e., no explicit progress
requirements).

TM Extensions to the C++ Memory Model. To understand what it
actually means if a transaction appears to execute instantaneously in the absence
of race conditions, we need to look at both the definition of C++ race conditions
and the TM-specific ordering guarantees that yield instantaneous execution.

The specification introduces additional transaction begin (“StartTransac-
tion”) and commit (“StopTransaction”) operations to demarcate transactional
code. These operations are purely used to express transactions as part of the
C++ memory model (e. g., in sequenced–before), and are only associated with
outermost transactions but not with nested ones. Code sequenced before a
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1 // Thread 1
2

3 transaction atomic {
4 temp1 = x;
5 temp2 = y;
6 }
7

1 // Thread 2
2 y = 1;
3

4 transaction atomic { x = 1; }
5

6

7 y = 2;

Figure 4.2: An example with two race conditions.

1 // Thread 1
2 // y is initially zero
3

4

5 transaction atomic {
6 temp1 = x;
7 if (temp1 == 1)
8 temp2 = y;
9 }

10

11

1 // Thread 2
2 // y is initially zero
3 y = 1;
4 transaction atomic { x = 1; }
5

6

7

8

9

10 transaction atomic { x = 2; }
11 y = 2;

Figure 4.3: Publication and privatization without race conditions.

transaction (i. e., before any operation that is part of this transaction) is se-
quenced before StartTransaction, which in turn is sequenced before the transac-
tional code (likewise for StopTransaction). This determines per-thread ordering.

Second, the specification defines a transactional synchronization order (TSO),
a total order over all StartTransaction and StopTransaction operations in all
threads. Different transactions must not overlap in this order (i. e., one transac-
tion’s StartTransaction operation must not be ordered between the transaction
begin and commit of another transaction).

Transactions then contribute to the synchronizes–with relation in that Stop-
Transaction operations synchronize with the StartTransaction operation of the
next transaction according to TSO. Thus, transactions do not synchronize with
other C++ operations (e. g., locks or atomics) but contribute to happens–before.
The only constraint on TSO is that it has to be consistent with happens–before
and must not lead to a cyclic happens–before relation. I will discuss in the next
section how a TM implementation can pick a suitable TSO.

As a result, the interaction between transactions is straightforward to imple-
ment and to understand for programmers. However, the interaction with non-
transactional operations is more involved because only race-free C++ programs
have defined behavior. There are essentially two cases that we can distinguish,
publication and privatization, depending on whether a transaction is meant to
make previous operations visible in a race-free way (by synchronizing with other
transactions) or to make data thread-private again.

Figure 4.2 shows a code example with two race conditions: The access to x

is properly synchronized, but Thread 2’s nontransactional assignments to y are
not ordered in happens–before with respect to Thread 1’s transactional access
to y. Note that the race conditions are not due to the order of the transac-
tional operations of Thread 1. Because the program is not race-free, behavior
is undefined and the program could crash or return incorrect results.

Figure 4.3 shows correctly synchronized code. Considering TSO, Thread 1’s
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transaction could be ordered before, in between, or after Thread 2’s transac-
tions. In the first case, before publication, Thread 1 will read the initial value
of x and will not access y. In the second case, after publication, it will read
Thread 2’s assignments to both x and y, which is okay because the assign-
ment to y is sequenced before the Thread 2’s transaction and thus happens be-
fore Thread 1’s transaction (happens–before is roughly the transitive closure of
sequenced–before and synchronizes–with, to which TSO contributes). In the last
case, after privatization, Thread 1 will read the value 2 assigned by Thread 2’s
second transaction and will not access y, again preventing the race condition.

For programmers, this means that they have to be careful to produce race-
free code. This is similar to what is required when using locks but the pro-
grammer does not have to manage mutexes (or locks) and deal with potential
deadlocks.1 Transactions can rather be compared to using a single global lock.

However, even though transactions might synchronize similarly to a global
lock in the memory model, we do want transactions to synchronize more effi-
ciently on the implementation level and execute concurrently if possible. For
the TM implementation, this results in additional requirements that I will dis-
cuss in detail in the next section (e. g., the compiler must not introduce race
conditions when optimizing transactional code).

There are no additional progress or liveness guarantees in the specification,
which makes sense because the C++ standard itself does not require strong
guarantees but rather states that this is implementation-defined. Programs
should terminate eventually to be practical though.

4.2 Requirements for TM Implementations

In this section, I will derive what the TM specification means in terms of require-
ments on a TM compiler and runtime library. I will discuss the implications that
the specification has for TM implementations and how language-level require-
ments in the memory model can be translated into orderings and guarantees
that are required on the level of the TM runtime library ABI. Such an under-
standing is necessary to properly split responsibilities between TM compilers
and runtime libraries. The TM compiler has to translate source code based on
the specification into code that expresses these language-level requirements in
terms of calls to the ABI and the guarantees offered by the ABI. TM runtime
libraries have to implement this ABI on top of the memory model provided by
the targeted hardware architecture. Therefore, the ABI must be reasonable to
implement.

While the specification and the focus of what follows are on C++, TM
support for C can be handled in a similar way. The current C standard does not
define a memory model but the upcoming version, C1x [67], specifies a memory
model very similar to the one of C++11. The language-level constructs for C
will be similar despite perhaps some differences in the language syntax. Thus,
one can expect that large parts of the TM support can be shared between C
and C++ implementations, and that TM runtime libraries and the ABI can be
reused without changes for C programs.

1Note that deadlocks can occur in relaxed transactions that block and wait for external
events to happen.
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It is beneficial to have a common ABI that separates the TM compiler sup-
port from TM runtime libraries because of several reasons. First, such a separa-
tion allows for compatible compilers and libraries, which is important to be able
to link components that use TM but have been compiled using different tools
(e. g., linking an application compiled with Intel’s compiler with system libraries
compiled by GCC). Second, this also allows plugging in different TM implemen-
tations by different vendors if the ABI is generic enough to work with different
TM algorithms (e. g., switching to a new TM implementation when workloads
change or if hardware TM support becomes available, without having to re-
compile all applications). Third, keeping most of the TM implementation in
libraries makes compiler support simpler to implement.

There is a trade-off between performance and flexibility related to pluggable
TM implementations. Dynamically linking TM runtime libraries gives the most
flexibility but can incur runtime overheads because all interactions with the
TM implementation require a function call (e. g., every transactional memory
access). However, TM runtime libraries can also be statically linked. This binds
an application to a certain TM implementation at link time2 but enables link-
time optimizations such as inlining of the TM implementation code into the
application and other whole-program transformations. This can reduce or often
even eliminate these overheads (see Section 7.2.3 for example code targeting
an HTM). Thus, reyling on a common ABI is not an unavoidable cause of
potential overheads, unless it structures code in such a way that important
link-time optimizations are prevented.

The ABI that I am considering here has been initially proposed by Intel [62]
and is now being maintained by Intel, Red Hat, and others. It is designed to
be generic enough to be compatible with different kinds of TM algorithms and
implementations. I am focusing on the Linux version of this ABI with some
changes applied that are not yet reflected in the most recent ABI specification.
I will first give a brief overview of the ABI to show its basic structure and to
illustrate how a compiler would map a transaction’s code to the ABI. However,
the ABI does not yet specify the detailed synchronization-related guarantees
and requirements for both the compiler and TM runtime. Therefore, I will later
extend the ABI specification so that the requirements for compilers and runtime
libraries become clear.

4.2.1 Overview of the TM Runtime Library ABI

The ABI consists primarily of functions for starting and committing transactions
and accessing memory transactionally. Figure 4.4 shows an example transaction
together with a simplified version of the code that a compiler would create for
this transaction.

Transactions are demarcated using calls to the ITM beginTransaction and
ITM commitTransaction functions. The former is similar to the setjmp func-

tion in that it must take a snapshot of callee-saved registers and can return
several times. This allows the TM runtime library to restart a transaction by
implementing and using a matching longjmp-like function. The compiler also
generates code that checks the return code of ITM beginTransaction and either

2Unless the execution environment supports just-in-time compilation or linking during the
runtime of a program, which is not common for C/C++.
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1 extern long cntr;
2 void increment() {
3 transaction atomic {
4

5

6

7 cntr = cntr + 5;
8

9

10

11

12 }
13 }
14

1 extern long cntr;
2 void increment() {
3 ret = ITM beginTransaction(...);
4 // Omitted: save or restore of stack slots
5 if (ret & a runInstrumentedCode) {
6 long l cntr = (long) ITM RU8(&cntr);
7 l cntr = l cntr + 5;
8 ITM WU8(&cntr, l cntr);
9 }

10 else if (ret & a runUninstrumentedCode)
11 cntr = cntr + 5;
12 ITM commitTransaction();
13 }
14

Figure 4.4: An example of how source code with a transaction statement (left)
is transformed to code that targets the TM runtime library ABI (right). Note
that some additional code around ITM beginTransaction has been omitted for
brevity.

saves (or restores) stack slots that might be (or might have been) modified by a
future (or previous) attempt to execute the transaction. Alternatively, the com-
piler can suspend the reuse of stack slots that are live into the transaction during
the transaction. Together with the rollback of transactional memory accesses
provided by the TM runtime library, the setjmp-like transaction begin and the
stack rollback make restarting a transaction transparent to the transactional
code (the details will be discussed in Section 4.2.2).

Compilers can create several code paths with different kinds of instrumen-
tation for each transaction. The example in Figure 4.4 shows two of these,
the first with standard instrumentation and the second with uninstrumented
code. The compiler informs the TM runtime library about which code paths
are available (using arguments to ITM beginTransaction). The library is then
free to choose (via bits in the return code) the code path that it suspects to
yield the best performance; for example, when transactions are only infrequently
executed, running uninstrumented code together with mutual exclusion for full
transactions might be most efficient.

The instrumented code path shows how operations that access memory are
split into calls to the transactional load and store functions in the library (e. g.,
ITM RU8 and ITM WU8). There are separate functions for accesses of different

size than the 8-byte integers shown in the example. Also, there are further ver-
sions of these functions that tell the library that the same location was already
previously accessed by another transactional load or store. In our example,
the compiler could also use ITM RfWU8 and ITM WaWU8; this would allow
a blocking write-through STM library to obtain a write lock right away at the
first read (“Read–for–Write”), which in turn allows a very efficient “Write–
after–Write” variant to be used for the second access to cntr.

Table 4.1 shows an overview of all functions in the ABI in its most recent
version for Linux (the most recent official version of the ABI specification [62]
provides no memory management functions and treats exception handling dif-
ferently).

For transactions that run in serial–irrevocable mode, the TM runtime li-
brary guarantees that no other transaction is running concurrently (i. e., mu-
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Category (example) Description

Begin/commit
( ITM beginTransaction)

Starts and commits transactions.

Load/store ( ITM RU8) Individual transactional loads and stores of in-
tegers, floats, vectors, and complex numbers of
different sizes.

Undo logging ( ITM LU8) Undo-logging for write-through stores that
need no synchronization or isolation.

Bulk data transfers
( ITM memcpyRtWt)

Transactional versions of memcpy, memmove,
and memset, with different variants for combi-
nations of transactional and nontransactional
access to the source and destination memory
regions.

Memory management
( ITM malloc)

Variants of malloc, calloc , free , new, and
delete that are safe for use in transactions.

Exception handling
( ITM cxa throw)

Transactional wrappers for the standard ex-
ception-handling functions.

Serial–irrevocable mode
( ITM changeTransactionMode)

Requests a different mode of execution for the
current transaction.

User commit/undo actions
( ITM addUserCommitAction)

Registers custom actions to be run on transac-
tion commit or abort. Used by transactional
wrappers of library functions (tm wrapper an-
notation).

Miscellaneous Initialization and finalization, aborting trans-
actions, ABI version querying,. . .

Table 4.1: An overview of the functions that comprise the ABI.

tual exclusion) and that the transaction will never have to be aborted (i. e., it is
irrevocable). This allows a transaction to execute TM-unsafe code that might
be encountered in relaxed transactions, or the uninstrumented code path if this
might be more efficient.

While the ABI is specified for only the x86 and x86 64 architectures, most of
the functions are fairly independent of a specific platform (e. g., x86 on Linux).
The platform-specific parts are mostly about aspects such as which calling con-
ventions have to be used or which data types have to be supported for transac-
tional loads and stores, which are platform-specific anyway.

4.2.2 Constraining Speculation

While the current specification of the ABI precisely defines some aspects of the
interface such as the input and output of functions or which code to use for
exception handling, it does not define the required behavior under concurrent
execution. For example, which accesses to shared state by a runtime library are
allowed or required for a given sequence of calls to the ABI functions, and how
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does a compiler express language-level requirements in terms of ABI calls? As
a result, it is unclear for both compiler and runtime library implementers how
to use or implement the ABI correctly.

Looking at the C++ TM specification, the basic problem to be solved is that
a runtime library has to pick a TSO (Transaction Synchronization Order) for
transactions expressed via the ABI, but that the TSO choice must be consistent
with the rest of the happens–before order, including the relation between ac-
cesses in different transactions. Also, the compiler must express happens–before
constraints by using the ABI, and how this can happen needs to be specified.

We want the runtime library to be able to choose TSO because we want
to keep the implementation of concurrency control in the library. We also do
not want to require the library to choose TSO early (i. e., when starting a
transaction) because this would disallow optimistic concurrency control and
significantly limit the TM algorithms that can be used.3 Thus, a runtime library
might have to speculatively execute transactions and abort and restart them
when the tentative TSO choice changes.

TM and the C++ as–if rule. However, speculative execution must be
harmless and invisible in terms of the allowed behavior of a program. For
C++ programs, this requires equality to the behavior of an abstract machine
executing the program according to what is summarized as the as–if rule in the
C++ standard.

Code that is unsafe according to the TM specification (e. g., accesses to
volatile variables, or I/O) often cannot be speculatively executed because it
represents actions of the abstract machine and cannot be rolled back or made
invisible under the as–if rule.4 For such code, the runtime library then has to
select a position in TSO pessimistically and let the transaction become irrevo-
cable. Unsafe code is typically not instrumented by the compiler, so it is also
hard to isolate other code that is running concurrently. Together, these are the
reasons for the existence of the serial–irrevocable mode in the ABI.

Implementing the as–if rule correctly is partially specific to the implementa-
tion of the environment that is executing the program. For example, it depends
on this environment which actions performed by a TM implementation actually
count as visible side effects. In our case, it primarily restricts the possibilities
for speculative execution: The fewer side effects the environment allows to be
contained, the less options for speculative execution the TM implementation
has because otherwise side effects would become visible (i. e., according to what
the environment defines to be visible) that would not occur when executing a
C++ abstract machine.

To illustrate the difficulties associated with a practical definition of what
constitutes a visible side effect in an environment, let me discuss one example
in more detail: segmentation faults that occur due to misspeculation. Espe-
cially in STMs, validating that the memory accesses performed by a transaction

3We also cannot expect that all memory accesses of a transaction are known when start-
ing the transaction because control flow and subsequent memory accesses might be data-
dependent. Therefore, a TM cannot choose an optimal TSO early for such transactions.

4The compiler and runtime library can potentially defer the execution of these parts of
code to the commit of the respective transaction. However, this only works in some scenarios
and might require complex analysis of the transaction by the compiler (e. g., it can work if
there is only output but no input and all output actions can be executed atomically).
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represent an consistent, atomic snapshot can be quite costly. It could thus be
beneficial to allow the TM runtime library to return speculative results of load
operations to transactional code. However, if these results are pointers, deref-
erencing an inconsistent value (e. g., a null pointer) can lead to a segmentation
fault, which is, on the operating systems that I consider, translated into a signal
that is delivered to the signal handlers installed by the program. If the program
did not install a signal handler, the program will terminate before it finished
execution, which would be incorrect behavior. If it did install a signal han-
dler, then incorrect behavior would likely result as well because arbitrary signal
handlers cannot be expected to be aware of speculation inside of the TM im-
plementation and thus would not know how to handle this segmentation fault.
Therefore, the TM would have to install its own signal handler and mask seg-
mentation faults that might have occurred due to misspeculation. Furthermore,
the TM would have to prevent the application or other libraries from installing
a different handler, leading to potential conflicts with these other components.
However, even when controlling the userspace signal handling, the segmentation
faults would still be visible at the kernel level, for example as part of page fault
statistics or perhaps to intrusion detection systems. Such observers are unlikely
to know or care about TM misspeculation.

This example shows that misspeculation is difficult to handle once side effects
become visible to parts of the system that are not anymore under control of the
TM runtime library or the compiler. Trying to contain the visibility of such side
effects (and similar effects like nontermination or exceeding resource usage) in
C/C++ environments requires solutions [116, 21] that are rather invasive, com-
plex, and tightly coupled with other components in the environment. Whereas
this might not matter that much in managed enviroments (e. g., a Java virtual
machine), it does not seem to be beneficial for C/C++ and first-generation TM
support because it would make it harder to provide TMs that are practical on
a wide variety of systems.

Constraining speculation. Therefore, it seems to be more beneficial to con-
strain speculation and thus limit the effects of misspeculation, at least in the
case of first-generation C/C++ TM implementations. The TM runtime library
still selects TSO dynamically at runtime, but with restrictions.

To specify the restrictions on the implementations, we have to look at the
code that the compiler creates from the transactional source code. The compiler-
generated code consists of TM-pure operations, unsafe operations, and calls
to TM ABI functions. TM-pure operations are all code and instructions that
are either annotated as transaction pure or which the compiler can detect to
be safe and not need transactional protection from the TM (e. g., control flow
instructions or arithmetic operations on CPU registers). TM-pure operations
can thus be speculatively executed (I will define what this means precisely in
Section 4.2.3). Unsafe code is all the code that is neither TM-pure nor supported
by the ABI, and is always preceded by an ABI call that requests the TM runtime
library to switch to an execution mode that supports unsafe code (i. e., serial–
irrevocable mode and pessimistically choosing TSO).

When ignoring unsafe code, an execution of the compiler-generated code for
a transaction is thus a sequence of TM-pure operations interleaved with calls
to TM ABI functions. Figure 4.5 shows a simplified example execution of the
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1 // TM−pure code // ABI calls
2 ret =
3 ITM beginTransaction(...);
4 // ret = a saveLiveVariables | ...;
5 // Save stack slots (not shown)
6 long l cntr = (long)
7 ITM RU8(&cntr);
8 // Abort and restart.
9 // ITM beginTransaction() returns a second time.

10 // ret = a restoreLiveVariables | ...;
11 // Restore stack slots (not shown)
12 long l cntr = (long)
13 ITM RU8(&cntr);
14 l cntr = l cntr + 5;
15 ITM WU8(&cntr, l cntr);
16 ITM commitTransaction();

Figure 4.5: An example execution of the transaction of Figure 4.4 with one
abort in the transactional read. TM-pure operations are shown on the left and
ABI calls on the right.

code that a compiler would generate for the transaction shown in Figure 4.4.
The sequence always starts and stops with calls to the ABI begin and commit
functions, respectively. Transactions can be aborted and restarted only within
calls to ABI functions (see Section 7.2.4 for a discussion of the problems caused
by aborting within TM-pure operations). On a transaction restart, control flow
is modified so that ITM beginTransaction returns again, which will reexecute
the transaction’s code from the beginning.

TM-pure operations and the TM runtime library have to work together (via
the ABI) to execute a transaction. To reduce coupling, we do not want to
require them to be aware of the specifics of the as–if rule on the both sides of
the ABI. Instead, we want to enable the compiler and TM runtime library to
separately reason about as–if on their respective side of the ABI.

Table 4.2 shows the high-level guarantees that enable separate reasoning
about as–if by the compiler and the TM runtime library. In particular, these
guarantees enable the compiler to reason about which code is TM-pure (or can
be made TM-pure and how to implement this), without having to know how
the TM runtime library picks TSO. In turn, the TM runtime library can reason
about the as–if requirements for memory accesses executed by it without having
to consider TM-pure code in detail. These guarantees are conservative choices
that restrict speculation, but the gained decoupling makes the potential loss in
performance worthwhile. If necessary, a higher level of coupling can always be
introduced in a later revision of the ABI (e. g., by providing more information
about TM-pure code to the library).

Let us now look at the guarantees in detail. Guarantee L1 in Table 4.2 is
essential in that it requires the TM runtime library to stick to a valid TSO during
the execution of a transaction. Values returned by the library (e. g., results of
transactional loads) are input to TM-pure code, so the TM-pure code will see
a valid execution that could have happened even with a sequential execution of
all transactions.

The counterpart to L1 is C1, which requires TM-pure code to be independent
of a specific TSO choice. This allows the TM runtime library to change TSO
during the execution of a transaction because the TM-pure code’s semantics or
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Compiler

C1 TM-pure must be independent of TSO.
C2 Preserve sequenced–before/happens–before of memory accesses in

race-free code.

TM runtime library

L1 Pick a valid TSO dynamically and only return values consistent
with TSO. Change TSO without abort only if change is transpar-
ent to TM-pure code.

L2 TSO and memory accesses must be consistent with happens–
before. No race conditions must be introduced.

Table 4.2: High-level guarantees provided by a compiler and a TM runtime
library, respectively.

safety are guaranteed to not be affected. This is important because otherwise,
transactions could not be executed optimistically; they would either have to
abort if another transaction commits, or the TM would have to select a TSO a
priori and would have to know about the tentative updates of previous transac-
tions, which is not possible for all possible code. However, TSO is only allowed
to change if the TM runtime library would have returned the same values from
previous operations for the newly chosen TSO (i. e., the change must not be
observable by TM-pure code).

Furthermore, C1 also requires that TM-pure code is race-free if one would
ignore the TSO contributions to synchronizes–with. While this is obvious for
code accessing no shared state (e. g., only accessing the thread’s stack), it re-
quires other code accessing shared state to be properly synchronized and to not
conflict with any synchronization internal to the TM runtime library.

The first part of L2 is a straightforward requirement that is also part of the
language-level specification (Section 4.1). It restricts which TSO choices are
valid. With the current ABI, the added restrictions are relatively strong be-
cause the compiler only instruments transactional code, it only communicates
happens–before via the order of calls to the ABI functions, and because the
TM runtime library is only active during the execution of transactions. This
means in turn that the TM runtime library has to assume that nontransactional
code before a transaction synchronized with other threads (and thus expanded
happens–before with more relations than those resulting from TSO). This also
applies to the nontransactional code executed after returning from a transac-
tion’s commit function. Therefore, the TM runtime library has to ensure that
all operations before the start of the transaction (including previously commit-
ted functions in other threads) are visible to transactional memory accesses and
to TM-pure code (i. e., publication safety). Likewise, after returning from a
commit function, the TM runtime library’s TSO choice must be final because
subsequent nontransactional code could rely on this choice and could communi-
cate it to other threads. If the library would know that nontransactional code
would be free of synchronization and side-effects, it could choose TSO more
freely. However, this information is not provided by the current ABI, so the
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choice has to be conservative.

Finally, together with the second part of L2, C2 ensures that the speculative
execution of source code without race conditions is still race-free and consistent
with happens–before. This is a joint responsibility of the compiler and the library
because the former has to properly communicate the language-level memory ac-
cesses to the latter. Both have to ensure that no potential race conditions are
introduced (e. g., by requesting or making accesses to data that would not be
accessed by the abstract machine). This puts restrictions on the implementa-
tions of concurrency control algorithms in the library and the transformations
by a compiler (e. g., reordering and prefetching).

I will provide more details about the high-level guarantees in Table 4.2 in
what follows, but one can already see that together, they roughly ensure that a
TM implementation adheres to the C++ TM specification: Active transactions
execute as if in isolation, TSO and individual executions are consistent with
happens–before, TM-pure code is not affected by a dynamic selection of TSO at
runtime, and race-free code is executed in a race-free manner. Of course, this
does not make the speculative execution completely transparent (e. g., because
of a potentially higher resource usage than with sequential execution), but both
the compiler and the library are allowed to separately make reasonable imple-
mentation choices that satisfy the as–if rule.

4.2.3 Compilers

A large part of the TM support in a C/C++ compiler is straightforward to
implement (e. g., analyzing which code is transactional or potentially called from
transactions, and cloning transactional code and instrumenting it so that it uses
the TM ABI for memory accesses). However, two issues deserve more attention:
(1) TM-pure code and (2) the compiler transformations that are allowed (or
required) for accesses to shared memory and how to express sequenced–before
with these accesses.

TM-pure code. When instrumenting transactional code, the compiler has to
decide which operations in the code are unsafe, TM-pure, or handled by the
TM runtime library. The latter case is straightforward to handle because the
operation just has to be replaced with a call to the associated TM runtime
library function as specified by the ABI (see Table 4.1). Unsafe code has to be
prefixed with a call to the ABI’s function that requests serial–irrevocable mode.5

However, unsafe code cannot be executed concurrently with other transactions,
so the compiler should not treat TM-pure code as unsafe code.

Therefore, the compiler has to determine whether code is trivially TM-pure
or whether it can be made TM-pure by the compiler. This decision is somewhat
implementation-defined and subject to the as–if rule, but does not depend on
the TM runtime library and can be handled by the compiler on its own (if
adhering to the rules described next). Compiler implementations will typically
have to consider both intermediate forms of transactional code (where most
of the instrumentation is likely to happen) and the native code that will be

5If the operation is already dominated (in terms of control flow) by another call to this ABI
function in the same transaction, then a new call instructions does not need to be inserted.
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Category Remarks

Register-only CPU
instructions

Must be safe and use only CPU registers (e. g., most
control flow instructions but not system calls).

Stack accesses Write-through. Loads and stores are TM-pure.
Compiler-generated code rolls back stack slots on
transaction restart or does not re-use them.

Accesses to thread-
local data

Write-through. Loads are TM-pure. To make stores
TM-pure and ensure rollback, the compiler inserts
calls to undo-logging functions ( ITM L) before the
first store to a location.

Loads from immu-
table data

No side effects, no synchronization necessary (e. g.,
loads from virtual method tables).

Table 4.3: Examples of TM-pure code.

generated for potentially TM-pure operations (e. g., built-in functions used to
implement complex operations).

The majority of TM-pure operations are those which (1) do not result in
visible side effects in terms of the C++ abstract machine (e. g., I/O or volatile
memory accesses), (2) do not contribute to synchronizes–with and are race-free,
and (3) are idempotent (wrt. restarts of a transaction) or rolled back by some
mechanism (e. g., compiler-generated code).

Table 4.3 shows examples for such TM-pure operations. Loads that need
no synchronization in nontransactional code are usually TM-pure because they
target immutable, existing variables (otherwise, the original code would not be
race-free, in which case transactions have undefined behavior as well). Opera-
tions that modify thread-local state can still be TM-pure because of available
rollback mechanisms. CPU state (e. g., registers or floating-point state) gets
rolled back by the setjmp-like behavior of ITM beginTransaction. Stack slots
potentially modified in a transaction get either actively rolled back by code in-
serted by the compiler at the start of a transaction (triggered by a bit in the
return value of ITM beginTransaction, see Figure 4.4), or the compiler can in-
struct its code generator to not re-use stack slots that are live into a transaction
and rather use new stack slots to store modifications within this transaction.
Finally, the ABI provides undo-logging functions (see Table 4.1) to log the previ-
ous values of modified memory locations (without protecting them from accesses
by other threads) and undo any changes on transaction restart. A location can
only be accessed by a TM-pure operation in a transaction if all accesses in this
transaction are by TM-pure operations or unsafe code.

The compiler’s code generator might use built-in functions to implement
complex operations from intermediate code. Those functions, even though they
might communicate with other threads or might have to synchronize their ac-
cesses to shared state, can still be TM-pure if they are idempotent and fulfill the
additional requirements discussed next. Note that these guarantees also explain
the high-level guarantee C1 in Table 4.2 in more detail.
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Race-free even without transaction atomicity. TM-pure operations must
be properly synchronized and race-free even if discarding TSO contribu-
tions of currently active or future transactions to synchronizes–with. In-
tuitively, TM-pure operations must either not need to synchronize at all,
or must be independent of any transactional synchronization because this
is the sole responsibility of the TM runtime library and only well-defined
at the language-level but not at the implementation-level that TM-pure
operations are a part of.

No dependence on TSO choice or changes. TM-pure operations have to
be independent of a particular TSO choice or change in this choice. They
can expect and observe all orderings visible via happens–before to the as-
sociated thread and transaction when the transaction was first started.
However, they must not depend on or be affected by later additions or
changes to TSO (e. g., commits of other transactions). They can also ex-
pect that values returned from the TM runtime library during the current
execution attempt of the transaction (e. g., since the most recent restart of
this transaction) are consistent with the current TSO choice. For exam-
ple, if a transaction did not abort since an earlier TM-pure operation, this
does not mean that no other transaction committed in the meantime, nor
that the current transaction might still be able to successfully commit.

Must be self-contained. Because transactions can be aborted during every
invocation of a function of the ABI, and because the compiler can inter-
leave TM-pure operations with calls to ABI functions, TM-pure operations
must be self-contained in that they do not expect subsequent operations
(TM-pure or ABI) to be executed as well. However, executions of individ-
ual TM-pure operations will not be interrupted or aborted. This might
also restrict the transformations of transactional code that the compiler is
allowed to do (e. g., inlining a TM-pure operation and then moving ABI
calls into the inlined code can be a fault).

No interference with TM-internal synchronization. TM-pure operations
can synchronize with other threads, but this must not create deadlocks
or any other kind of conflict when combined with the TM-internal syn-
chronization. Self-contained TM-pure operations are important for this
requirement as well (e. g., if such an operation acquires a lock it must also
release the lock before it can possibly be aborted). TM-pure operations are
allowed to block on other operations except anything related to TM (e. g.,
operations that execute transactions or any ABI function). However, they
must not wait for or depend on the execution of other operations that have
not been started yet. For example, blocking on a lock acquired by another
TM-pure operation is allowed because the acquired lock shows that the
other, self-contained operation is already running. However, waiting for
another transaction to finish or depending on another transaction to not
abort is not allowed.

These requirements are basically also sufficient for functions annotated as
transaction pure to be indeed correct TM-pure operations. Additionally, such
code has to ensure that it remains self-contained despite potential compiler
optimizations (e. g., a programmer could have to add a noinline attribute to
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the function). Transactional wrapper functions (associated with functions an-
notated with the tm wrapper attribute) are sequences of TM-pure operations
interleaved with calls to ABI functions, so the previous discussion also serves as
a guideline for how to correctly implement such wrappers.

Compiler transformations. All operations in transactional code that are
not TM-pure or unsafe have to be transformed into calls to the TM runtime
library’s functions. For individual memory accesses, these transformations are
straightforward because the compiler just has to transform the access (e. g., in
intermediate code) into a function call (e. g., to ITM RU8). However, transform-
ing or reordering several accesses in a piece of transactional code requires more
care because the compiler must not introduce additional race conditions that
were not present in the C++ source code. Furthermore, the TM runtime library
observes the sequencing of accesses (i. e., sequenced–before) at the language level
through the order of the compiler-generated library calls, so the compiler must
not lose important sequencing information when reordering accesses (high-level
guarantee C2 in Table 4.2).

The first requirement for the compiler is to instruct the library to access ex-
actly the same locations as accessed on the language level (i. e., by an abstract
machine running the program). Accesses can be split or merged if necessary but
must not touch other locations because these could be concurrently accessed by
other code, leading to race conditions that do not exist in the source program.
Using whole-program analysis, the compiler could potentially detect that some
locations (e. g., bytes between two variables that have been added to align those
variables) are only accessed by loads and stores in the TM runtime library and
are always accessible. However, the potential benefit in terms of TM perfor-
mance is probably rather small, so just accessing exactly the same locations
seems to be sufficient.

Note that this applies to loads from memory as well. Loading from mem-
ory will not change the results of other accesses to the same location but the
location could not be accessible, which could raise segmentation faults that are
visible side effects. Some architectures such as SPARC provide nonfaulting load
instructions but we cannot expect that such instructions are generally available.

As a second requirement, the compiler must not access locations specula-
tively, as it would happen when predicting that a certain branch is taken and
prefetching the values that would be accessed in the predicted execution. In
the case of misspeculation, the additional access could lead to a race with other
concurrent code. For such data-dependent accesses, the compiler must not place
them before the other access (and call to the TM runtime library) whose result
determines whether the access would be executed on the language level.

Third, the compiler is allowed to reorder two accesses in a single transaction
if it can prove that the later access (in terms of control flow) would happen in
any case when the first access would execute in this transaction. The reason for
this is that (1) transactions do not remove race conditions in the transaction’s
source code and that (2) the C++ standard allows undefined behavior resulting
from race conditions to occur before the execution of the code that contains
the race condition (see §1.9.5 in the standard [65]). Thus, the TM can assume
that every transaction must be race-free even if executed atomically in any
possible interleaving with nontransactional code. Performing an access earlier
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in the execution of the transaction must thus still be race-free, provided that
this access is guaranteed to be executed (in contrast to a speculative execution
as explained previously) and the reordering would be allowed in a sequential
execution of the transaction. If this would instead lead to a race condition, then
the race condition could also be triggered in valid execution without reordering,
and the reordering just leads to an earlier exposition of the race condition.

Finally, there are restrictions regarding the reordering of code across trans-
action boundaries. Basically, TM-pure operations can be moved into and out
of transactions because they are independent of TSO. Unsafe operations must
not be moved into transactions because this might invalidate liveness proper-
ties that exist in the source program, and they also must not be moved out
of transactions because this might result in race conditions. Other code must
not be moved out of transactions but can be moved into transactions because
it does not synchronize (it would be unsafe code otherwise). If a transaction
can potentially be canceled (see Section 4.1), then no code can be moved into
or out of the transaction, unless the code is TM-pure and its execution cannot
be detected by the program.

These previous requirements also show why publication safety is mostly the
responsibility of the compiler and the transactional program. To avoid race
conditions, the program’s source code must first load the data that determines
whether the published data is available (e. g., flags or pointers) before accessing
the published data itself. Thus, accesses to published data are data-dependent
on the former data, and the compiler must not reorder these accesses so that
they happen speculatively before the data dependency. Given these guarantees,
the TM runtime library is free to select or even change TSO during the runtime
of a transaction that might read published data; the nontransactional accesses to
the published data by the publisher and the observer will always be synchronized
by the intermediary transactional accesses to the publication flags.

4.2.4 Runtime Libraries

The purpose of the high-level guarantees that the library has to provide (L1
and L2, see Table 4.2) is to split responsibilities between the compiler and the
library. To ensure those guarantees and to fulfill the C++ TM specification,
there are several requirements that the library has to fulfill in its implementation
of the ABI.

Next, I will describe these requirements, starting with how transactional ac-
cesses have to be ordered with respect to each other. The interaction of transac-
tional and nontransactional memory accesses further restricts which executions
are allowed. The library also has to pay attention to how memory accesses are
implemented (e. g., in software or by special TM hardware support) and that
this integrates well with the C++ memory model. Finally, there are further
requirements regarding aspects such as progress.

Transactional accesses and TSO. High-level guarantee L1 requires the li-
brary to pick a valid TSO and to only return values to TM-pure or unsafe code
that are consistent with the current choice of TSO.

There are different ways for a library to manage and determine TSO, which
are typically based on some form of isolating transactions and synchronizing
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some representation of TSO. Examples for such representations are several ob-
jects with timestamps, a set of plain locks, or a single global lock with a version
number. The library is free to choose any representation as long as it allows
implementing the requirements described in what follows (see Section 5 for a
discussion of STM algorithms).

Isolating transactions allows the library to run an uncommitted transaction
with a tentative position in TSO (e. g., it could share its tentative position with
another uncommitted transaction). This tentative position can change dynam-
ically. Iff a particular change would be observable by TM-pure or unsafe code
based on the values returned by previous calls to ABI functions, the library has
to abort and restart the transaction before such a change becomes observable.6

Basically, only the ABI’s functions for transactional loads from memory return
values, so the library has to make sure that the snapshot taken of the mem-
ory accessed in the transaction is consistent in that it looks like one valid TSO
choice to TM-pure and unsafe code in this transaction. As explained in Sec-
tion 4.2.2, this allows for library-independent TM-pure code and a separation
of responsibilities between the compiler and the library.

If considering only the transactional accesses (i. e., ABI load and store calls),
the library has to at least guarantee something equivalent to the notion of con-
flict serializability used in databases, which requires all memory accesses within a
transaction to be consistently ordered with conflicting memory accesses in other
transactions, yielding an acyclic order of those transactions that is consistent
with TSO (see Section 2.2). The reason for this is that (1) TSO is a total order
and contributes to happens–before, (2) that memory accesses inside transactions
contribute to the reads–from (store–load access pairs) and modification–order
(store–store access pairs) relations, which are part of happens–before as well,
and (3) that those memory accesses must still fulfill the other requirements of
the memory model (e. g., that loads read from the most recent store according
to happens–before, see the formal model [6] for details). Because happens–before
must be acyclic, the ordering of conflicting memory accesses (reads–from and
modification–order) within different transactions must be consistent with the
ordering of those transactions in TSO.

A transaction executed in serial–irrevocable mode trivially fulfills this re-
quirement because no other transaction is running concurrently and it has (or
will have) a synchronizes–with edge to the previous (and the subsequent) trans-
action.

Transactional accesses and as–if. However, conflict serializability is not
sufficient because executions that are allowed by the library (by a certain choice
of TSO and reads–from and modification–order relations) must adhere to the
as–if rule. This is not just necessary to be able to install correct behavior when
committing transactions but also to make speculative execution of transactions
safe (e. g., for TM-pure code).

Therefore, the TM library must not return values that have been read from
uncommitted updates to shared state because it is unclear whether the updating
transaction has already finished its updates or whether a partial update and thus
inconsistent data would be returned. This restricts the allowed executions in

6If it is only observable based on values returned in a nested transaction, then it is sufficient
to roll back this transaction and subsequently executed code (i. e., closed nesting is allowed).
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practice, adding to the base requirement of conflict serializability.
Transactional memory accesses as implemented by the library must touch

exactly the same bytes in memory as the original access in the source code.
The compiler tells the library which bytes these are (by transforming the source
access into a call to a certain ABI function). The library has no additional
information about other memory locations, so it has to assume that accesses
to, for example, adjacent bytes could create race conditions. An exception are
HTMs that can rely on hardware to isolate memory accesses and only have to
care about interference with nontransactional accesses by the same thread (see
Section 7.2).

Likewise, the library must not execute accesses speculatively but rather has
to follow the sequence of ABI calls to load and store functions (i. e., a memory
access must not happen before the respective call). Only the compiler knows
whether potential subsequent accesses are going to happen or might not hap-
pen because they are data-dependent. The call sequence also communicates
sequenced–before to the library, so the library has to assume that all accesses
are ordered in sequenced–before.

As explained from the perspective of the compiler in Section 4.2.3, accesses
that are known to happen anyway can be reordered. For the library, this means
that it is free to touch the individual bytes of an access in any order (e. g., in
ITM memsetW). Also, for those ABI load and store functions that communi-

cate some information about future accesses (the read–for–write variants, see
Section 4.2.1) or past accesses (e. g., write–after–read), the library is free to re-
order those accesses (e. g., writing an idempotent value early in read–for–write)
because the compiler has determined that these accesses are going to happen
and are not data-dependent.

Nontransactional accesses, TSO, and happens–before. So far, we have
just considered transactional accesses performed by the library. However, there
are also nontransactional memory accesses that affect happens–before or can
observe it, and that therefore yield additional restrictions on the executions
that can be allowed by a library.

Nontransactional accesses within transactions have to be either TM-pure
or unsafe operations, and are thus straightforward to handle. Unsafe opera-
tions might access the same memory locations as transactional accesses but will
only happen after the transaction has been switched over to serial–irrevocable
mode; therefore, the library just has to ensure that in this mode, all trans-
actional accesses are indeed regular memory accesses and prior transactional
stores have been applied as regular stores to the memory locations (i. e., trans-
actional accesses must be visible to unsafe operations). TM-pure operations are
guaranteed to be separated from transactional accesses in terms of the accessed
memory locations, so they do not need to be handled by the library.

Nontransactional accesses outside of transactions do create new requirements
for a library, primarily regarding privatization safety and which TSO choices
are allowed. The library has no control or information about code outside of
transactions, so it has to assume that this code is immediately synchronizing
with all other threads that are not running transactions currently7. When such

7Currently executing transactions cannot synchronize with nontransactional code in other
threads because (1) this is essentially forbidden in TM-pure code (it is forbidden to observe
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synchronization happens, TSO can be observed by nontransactional code, which
can lead to dependencies on TSO being final and stable at this point. Otherwise,
invariants in the code might be violated, which in turn means that the as–if rule
would be violated as well. The high-level guarantee L2 in Table 4.2 is related
to this.

Therefore, a transaction must never get a position in TSO that might or-
der it in happens–before before the nontransactional code sequenced before it.
This does not necessarily require transactions to be linearizable operations, but
library implementations must make sure that the earliest allowed position in
TSO is consistent with happens–before. In turn, when a transaction has commit-
ted and returns to nontransactional code, its position in TSO cannot be easily
changed anymore; similar to the requirement aimed at consistency of TM-pure
code, TSO changes can only happen if they would not have been observable by
any committed transaction.

However, the library must also ensure that the speculative execution of trans-
actions is still safe according to the as–if rule, even when nontransactional code
becomes active (after a transaction commit) and relies on a certain TSO choice.
In particular, the library has to be prepared for privatization: Let us assume
that a committed transaction P performed a write operation that introduces
a conflict on some location with another active transaction O that read from
this location. Subsequently, P accesses some data nontransactionally, assuming
that its write operation notified other transactions that this data is now pri-
vate. O, the observer, would access this data only if it is not private. Therefore,
when P commits, the library is forced to finalize its TSO choice because this is
what the nontransactional code relies upon. If O still operates with a tentative
position in TSO that is before P , then there is a chance that O performs in-
consistent operations (potentially resulting in illegal side effects) as soon as the
nontransactional code after P gets executed.

Preventing such behavior is called privatization safety, and there are different
ways for a library to implement this. First, it can delay the execution of the
nontransactional code after P until all other potential observers (e. g., O) have
realized P ’s commit and moved to a later position in TSO (in our example,
O would have to abort because P ’s write has changed O’s snapshot). Second,
the library can try to implement transactional accesses in such a way that
O’s inconsistent operations are still a safe form of speculative execution under
the as–if rule. Inconsistent operations can be transactional stores and loads
because the nontransactional code might change the operating system’s memory
protection flags for the privatized data, so even a load might raise a segmentation
fault and lead to a visible side effect. Possible implementations of privatization
safety are further discussed in Section 5.2.

Note that a read-only transaction P cannot privatize data because they
cannot force an ordering between P and O. Without this ordering, O might
always be ordered after P and would still access presumably privatized data.
Thus, the source code would not be race-free and the library would be allowed
to do anything. Programmers could erroneously try to let P detect (with loads)
whether any O is running, but this code would not be race-free either.

or reveal TSO), (2) the library itself only synchronizes internally, and (3) unsafe code can
synchronize but will run in serial–irrevocable mode only.
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Memory access implementation requirements. A library has to enforce
the ordering requirements discussed previously in a way that is compatible with
the implementation of the C++ memory model in the nontransactional parts
of a program. Thus, it either has to use suitable native code (e. g., atomic CPU
instructions and memory barriers) or employ C++ atomic operations (i. e., so
that the compiler takes care of the translation to native code). The latter is
particularly useful if library functions can get inlined into the program because
then the compiler can more easily optimize across atomic operations.

There are basically three kinds of orderings that the library has to ensure:
(1) between transactional memory accesses of different transactions, (2) be-
tween transactional and nontransactional memory accesses, and (3) TSO for
unsafe memory accesses in transactions (i. e., serial–irrevocable mode). To do
that, implementations have to either enforce edges in synchronizes–with between
operations in different threads or have to rely on sequenced–before and existing
edges in synchronizes–with. Note that adding such an edge to synchronizes–with
can be costly because it typically requires some sort of memory barrier in the
matching native code (see Section 2.1), so it should only be used if it is indeed
necessary.

To order transactional memory accesses properly, a library has to make
sure that there are edges in synchronizes–with that order conflicting memory
accesses in the same order that the associated transactions have in TSO (i. e., so
that all reads–from and modification–order relations are properly backed with a
synchronizes–with edge). Depending on the TM algorithm, the number of edges
that are necessary can range from one edge per memory access to one edge per
transaction.

However, if two transactions are not in conflict (i. e., their memory accesses
would be race-free if executed as ordinary code by two different threads), then
no edge in synchronizes–with is necessary for this pair of transactions. This is
because the source program cannot know how these transactions are ordered in
TSO8. In turn, detecting the order in a race-free way would require additional
synchronization operations that already include the necessary synchronizes–with
edges. For example, to detect which of two updating transactions to disjoint
memory locations executed first, other transactions would have to take sev-
eral snapshots of the modified locations; likewise, nontransactional synchro-
nization code would have to communicate the observed order, which requires
synchronizes–with edges as well. Not having to inject synchronizes–with edges
for nonconflicting transactions is important for the performance because other-
wise, all transactions would have to synchronize with each other irrespective of
whether the TM algorithm and the transaction workload require this or not.

The ordering of transactions and nontransactional memory accesses outside
of transactions has to also be considered. TM-pure operations do not need
special care because they must be independent of TSO and their internal syn-
chronization must not interfere with TSO. As discussed previously, ensuring pri-
vatization safety is mostly about preventing unsafe speculative execution and
proper synchronization between transactional memory accesses. For publica-
tion safety, it needs to be ensured that all nontransactional accesses that are
sequenced before a transaction become visible no later than the commit of this

8TM-pure code must not observe it, and the transactions do not read from each other so
their results cannot reveal the order
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transaction. Therefore, there needs to be a synchronizes–with edge between this
transaction and all other transactions that read from this transaction (e. g., via
a release operation in the first transaction and a matching acquire operation in
all readers).

Unsafe memory accesses in a transaction will only be executed if this trans-
action has switched to serial–irrevocable mode before (i. e., it is guaranteed to be
executed mutually exclusive with other transactions). Thus, the library has to
use some mechanism for mutual exclusion (e. g., a lock) to order the unsafe ac-
cesses according to TSO. However, transactions that are not in serial–irrevocable
mode do not have to synchronize with each other, only serial–irrevocable trans-
actions have to synchronize with transactions in any mode. This distinction is
important because in the expected common case, transactions only infrequently
switch to serial–irrevocable mode, and it allows a library to implement this mode
without having to suffer from cache misses in the common case even though an
additional memory barrier is necessary on typical hardware during the start of
each transaction.

Also note that transactions and in particular transactional memory accesses
do not need to be linearizable as long as they are still consistent with TSO
and happens–before (e. g., if they correctly handle the sequenced–before and
synchronizes–with relations). If accesses would have to be linearizable, library
implementations would have to be conservative and add costly memory barri-
ers to each transactional load, for example. This also applies to transactions
in general, even though transactions in most practical library implementations
will often be linearizable (or close to being linearizable).

Of course, this requires the library and how it implements TSO and happens–
before to be compatible with how nontransactional code—as generated by the
compiler—implements the C++ memory model. This is likely to be the case for
most STMs, but might require more care in HTMs, depending on how well hard-
ware transactions integrate with the rest of the memory model of the specific
architecture.

Miscellaneous. There are a few other things that a library has to take care
of, which will be explained next.

The ABI allows registering handlers during a transaction that will be exe-
cuted on abort or on commit of this transaction. These handlers can be used by
transactional wrappers for functions annotated with the tm wrapper attribute
to implement transaction support for external resources (e. g., the abort handler
of the malloc function would release the previously allocated memory region).
While this is not specified in the ABI, it makes most sense to treat commit
handlers as unsafe or nontransactional code that can assume that the transac-
tion has already committed. Thus, commit handlers have to be executed after
TSO is agreed upon by all transactions, which implies that privatization safety
has also been established for this transaction before commit handlers are run.
Because transaction aborts in HTMs can be asynchronous (see Section 7.1 for
why this can be beneficial), abort handlers have to assume that they will be run
after the transaction has been rolled back already, so it is best to require them
to always be run after any other TM-internal rollback has happened and the
transaction has been restarted, but before transactional code is executed again.

Besides the requirements related to the as–if rule explained previously, the
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library should also strive for operating as transparently as possible. For example,
the excessive use of resources such as memory might lead to a program not being
able to run as expected by the programmer. However, many components of a
typical execution environment for C/C++ allocate memory, so it does not seem
useful to set up any specific constraints regarding resource usage, at least for
general-purpose TM implementations.

C++11 requires that all threads that are actually executed by the operating-
system scheduler eventually make progress. However, this requirement is quite
informal and OS schedulers are expected to be “reasonable” (e. g., it seems not
quite clear whether the lock-free atomic operations in C++11 indeed need to be
lock-free or just obstruction-free). Instead, implementations of C++11 are ex-
pected to provide practical guarantees for the users of this implementation. This
position is understable if one considers that differences in OS scheduler proper-
ties can affect how to implement progress guarantees and at which cost (this also
holds if just considering liveness). From the TM perspective, this means that
progress guarantees for transactions are likely implementation-specific too; how-
ever, practical implementations will probably ensure that at least some trans-
actions make progress eventually (based on each implementation’s assumption
of what exactly constitutes a reasonable OS scheduler).

Finally, it seems unreasonable to require that TMs would work across pro-
cess boundaries (e. g., for another thread’s data that has been mapped into the
adress space of the progress that is executing the transaction); STMs just rely
too much on virtual addresses to distinguish between data items, and consider-
ing any remapping would likely increase runtime overheads on the fast paths.
Likewise, synchronization via TM will not be address-free (see §29.4 in the
C++11 standard).

4.3 Discussion and Related Work

In what follows, I will discuss the similarities and differences of the C++ TM
specification with other approaches for modeling the correctness of concurrent
operations.

Linearizability. Linearizability (see Section 2.1) is widely used as correct-
ness criterion for concurrent data structures. One could try to use it for TM
by treating the full application state as the data structure and the individual
transactions in the application as the data structure’s operations. However, this
is the external view of a data structure, whereas with TM, we have to put more
attention on what happens internally during the execution of transactions. For
linearizable data structures, this is treated as an implementation aspect and
typically not further considered, whereas for TM we want to specify when such
implementations are correct for arbitrary transactions (e. g., by considering the
as–if rule as explained previously).

Second, linearizability uses the real-time order of operation invocation and
response events to restrict the order of operations, which allows data-structure–
local reasoning about linearizability. However, strict real-time order is stronger
than C++11’s happens–before; because we have to consider the full application
state anyway, local reasoning is less important. Note that most STM impleme-
nations indeed guarantee linearizability for transactions at least with respect to
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other transactions, whereas this might not strictly hold for all kinds of HTM.

Serializability. When considering TSO in isolation, it is similar to serial-
izability in that a single global order is established over all transactions (see
Section 2.2). A majority of the current STMs that conform to the C++ TM
specification rely on algorithms that are similar to some form of strong two-
phase locking (see Section 5 for examples). This also applies to HTMs if they
abort transactions immediately whenever there is a conflicting access by another
thread. As a result, these TMs will basically have serializable (and linearizable)
transactions.

Furthermore, database recovery theory [119] also tells us that those TMs
are rigorous too because of relying on strong two-phase locking. This means
that uncommitted values will never be read or overwritten by other transac-
tions, and that values that have been read by uncommitted transactions are
also never overwritten. Thus, transactions are operating under isolation and do
not see partial updates of other transactions, for example. This, together with
serializability, is already a large part of what a TM has to ensure to enforce
TSO and comply with the as–if rule.

However, databases do not consider other aspects that matter for transac-
tions in the TM context. For example, progress is not explicitly discussed but it
is rather just assumed that schedulers will always accept schedules of a certain
form. The TM specification does not discuss progress explicitly either but just
inherits the informal C++11 progress guarantees, which at least provide some
more details about what one can expect from reasonable implementations.

The most important difference however is that databases do not need to
consider nontransactional operations. In contrast, the C++11 memory model
makes a clear distinction between memory accesses that are atomic and con-
tribute to synchronizes–with in some extent, and ordinary memory accesses that
do not synchronize and might not even be atomic. Transactions are embedded
via TSO into the language’s memory model, and happens–before—including
TSO—then completely specifies the order of transactions and nontransactional
memory accesses. As a result, TMs have to consider aspects such as privatiza-
tion, publication, and how to implement transactions in a data-race-free way.

Similarly, linearizability too only considers the relation between linearizable
operations, but most nontransactional operations are typically not linearizable
(which depends on the underlying (hardware’s) memory model); thus, like seri-
alizability, linearizability is not really sufficient to reason about TM correctness.

Strong isolation. TMs are said to provide strong isolation [9] (also called
strong atomicity) if they do not rely on data-race freedom and instead guarantee
that individual nontransactional memory accesses and transactions are atomic
with respect to each other. While this initially might sound convenient for a
programmer, it comes with a couple of disadvantages compared to the weak
isolation that the C++ TM specification requires.

First, in most proposals for strong isolation, it is not clear what language-
level code should form atomic operations. For example, is the C++ statement
“x++” a single memory access? A novice programmer might assume it is but it
may be or may not be a single access in native code. Even with a language-level
specification of what constitutes atomic accesses, programmers would have to
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remember these rules. Furthermore, goarse-granular race conditions between
transactions and sequences of nontransactional accesses would still be possible,
so programmers have to consider these cases anyway; declaring the atomicity
intent using transactions for all synchronizing memory accesses could be con-
sidered to be just proper documentation (or declaration) of this intent.

Second, on current standard hardware, ensuring strong isolation decreases
the performance of nontransactional code because it disallows common compiler
optimizations for non-concurrent code (e. g., common-subexpression elimina-
tion), and requires additional memory barriers to enforce that nontransactional
operations become visible in program order. This can be avoided if the compiler
can automatically infer data-race-freedom (with respect to transactions). How-
ever, this requires pointer analysis, which is rather difficult in C/C++ programs.
Thus, with strong isolation, an incomplete analysis by the compiler would result
in a direct performance decrease, not just in a missed optimization opportunity.

Overall, the potential programmability benefits of strong isolation are not
convincing enough to justifiy the likely performance decrease of nontransactional
code. This especially applies to programming languages which rely on data-race
freedom already. Tools for automatic data-race detection might be a better
means for programmers to gain confidence in the correctness of their programs
because it will find executions where atomicity violations have not yet been
considered by the programmer.

TM language extensions for C++. In a discussion of options for TM lan-
guage extensions for C++ [18], Crowl et al. already identified several language
constructs and design decisions that appeared later in the C++ TM specifi-
cation. Most importantly, they propose adding transaction statements as the
fundamental way of demarcating transactions. They were looking for practical
language extensions that are usable for normal programmers, allow for incre-
mental adoption of TM, and do not limit efficiency or scalability. This lead them
to make design decisions that are very similar to what the specification proposes,
such as choosing weak atomicity and always providing privatization safety. I/O
and other operations with side effects that cannot be easily made transactional
are not allowed in transactions, but different ways to support such operations
are discussed (i. e., basically the transaction pure and tm wrapper cases). Fur-
thermore, they also discuss exception semantics but do not choose a default
(i. e., whether to abort or commit transactions in which exceptions are thrown).
However, Crowl et al.’s focus is on exploring the design space, so the details
of proposed features are not fleshed out (e. g., there is no distinction between
atomic and relaxed transactions), or important features are missing (e. g., there
are no transactional versions of functions); most notably, it is not discussed
how to integrate transaction semantics with the programming language’s mem-
ory model.

Single global lock atomicity for Java. Menon et al. describe four weak-
atomicity TM correctness conditions [82] that are all based on the idea that
synchronization with transactions should be similar to using a single global
lock (which is used only for transactions and nothing else). These correctness
conditions are aimed at Java, whose memory model is somewhat different to the
C++11 memory model. Unlike the C++11 catch-fire sematics for data races,



70 CHAPTER 4. INTEGRATING TM WITH C/C++ PROGRAMS

Java requires minimal guarantees even for programs with data races. Therefore,
a TM implementation cannot rely on transactions to be of a certain form (e. g.,
to be race-free even when there is concurrent publication, see Figure 4.3 for an
example); instead, the TM has to provide semantics that behave like a global
lock to ensure these minimal guarantees.

This is what SGLA, the strongest condition described by Menon et al., guar-
antees. TMs implementing SGLA have to basically perform concurrency control
between transactions (like for serializability or TSO) and ensure privatization
safety like explained previously for C++, but they also have to use global co-
ordination to ensure publication safety. Menon et al. propose to use “start
linearization” to implement this, which enforces that transactions do not com-
mit until other transactions that were started early than this transactions have
also committed. This does result in higher runtime overheads for the TM.
Furthermore, it relies on racy transactional read accesses to return reasonable
values (e. g., to be atomic). This can work in Java but is not suitable for C++
(e. g., because compilers expect nonsynchronizing code to be data-race-free, and
would have to skip some optimizations otherwise).

Menon et al. also describe three other conditions that are weaker than
SGLA, of which only encounter-time lock atomicity (ELA) is of interest for
us here. It is defined to be equivalent to a lock-based execution that acquires
potentially multiple locks for each accessed data item but before any access to
this data item (i. e., like two-phase locking). ELA is then shown to provide
privatization safety, but publication safety only for data-race-free publication.
TM runtime overheads for ELA will be smaller than for SGLA because global
coordination is not necessary anymore due to being able to rely on data-race-free
publication.

ELA is thus similar to what is required by the C++ TM specification, in the
sense that programmers must use only data-race-free publication and compilers
must not introduce additional data races (e. g., by hoisting loads to before other
loads that they are data-dependent on, or by using accesses of larger granular-
ity than what is specified by the source program). Note that the specification
therefore does not ignore publication safety but rather distributes the responsi-
bilities differently between the programmer, the compiler, and the TM runtime
library to allow a higher performing implementation (in contrast, SGLA puts
the sole responsibility on the library).

Single global lock atomicity for C/C++. Shpeisman et al. subsequently
investigated single global lock atomicity in the context of C/C++ [104]. They
observe that single global lock semantics in race-free programs do not provide
full atomicity guarantees because transactions that contain synchronizing op-
erations (e. g., with C++ atomic operations) do not represent data races but
can still communicate with other threads (like in the case of locks). For similar
reasons, lock-based semantics are not sufficient to allow transactions to be safely
canceled.

To provide full atomicity, Shpeisman et al. define Race-Free Atomicity
(RFA), another correctness condition that guarantees atomicity for all data-
race-free transactions even if those include synchronizing operations. RFA dis-
allows any interleaved execution of RFA transactions and conflicting synchro-
nization actions (i. e., basically actions that would constitute a data race if they
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were ordinary nonsynchronizing actions). However, RFA cannot be practically
implemented, so Shpeisman et al. additionally propose to provide a separate
kind of atomic transactions that are not allowed to contain synchronizing ac-
tions; this allows such transactions to guarantee RFA9. Atomic transactions
can then coexist with so-called critical transactions that continue to provide
lock-based semantics and can contain synchronizing code.

This split into atomic and critical transactions is equivalent to the distinction
between atomic and relaxed transactions in the C++ TM specification, only that
the specification uses the notion of unsafe code instead of synchronizing code.

Shpeisman et al. focus on the TM semantics at the programming language
level. They do not discuss how to implement these semantics nor how to define
a TM runtime library ABI and distribute the implementation responsibilities
between compilers and libraries.

Opacity. Guerraoui and Kapalka define another TM correctness condition
that they call opacity [47]. It models TM as a black box, and executions as a
series of invocation and response events that represent calls to TM operations
(e. g., reads and writes, or transaction starts and commits). Nontransactional
operations are not considered at all (nor are related aspects such as publication
or privatization). Therefore, opacity does not capture an aspect of TM that is
very important in practice, and so it is not sufficient for compiler or runtime
implementors, nor for programmers that want to use TM. As I have explained
previously, we want TM to be integrated into programming languages (and thus
into those languages’ memory models too), so a nonintegrated black-box defi-
nition is not optimal (e. g., the previously discussed differences between SGLA
for Java and ELA for data-race-free C++ also highlight this).

Basically, executions are said to be opaque if there exists a sequential exe-
cution of the transactions that (1) is equivalent to a completed version of the
original execution, (2) respects the real-time order of transactions, and (3) pre-
serves the sequential semantics of all operations. In a complete version of an
execution, all live transactions are chosen as either being committed or aborted.

Executions are equivalent if they contain the same operations for each trans-
action with the same responses, and if the order of operations within each trans-
action is preserved (but a reordering between operations of different transactions
is allowed, so this is similar to conflict serializability’s notion of equivalence). As-
suming that opacity is supposed to be applied at the programming language level
(this is not specified by the authors), the C++ TM specification is somewhat
more permissive in that it allows the reordering of operations by the compiler
or a TM runtime library if this would be allowed by the as–if rule (including the
constraints related to publication safety). Note that the current TM runtime
library ABI also assumes an implicit total order of operations though.

Related to that, the authors claim that letting transactions operate on in-
consistent values (e. g., dirty reads) would always be incorrect. However, this
is rather determined by the TM implementation and its capabilities to, for ex-
ample, isolate and mask potential failures. This concern is therefore better
captured under the umbrella of the as–if rule.

9If atomic transaction do not contain synchronizing actions, then there cannot be any
conflicting synchronizing actions in other threads if the program is data-race-free.
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Transactions are supposed to be ordered in real-time order if one transac-
tion’s commit event happens earlier in real time than the other transactions
start event. This is similar to linearizability, and tries to capture the externally
observable ordering of transactions without relying on a full-program happens-
before relation (i. e., C++11’s happens–before). However, this could become
problematic because it basically requires transactions to be a full memory bar-
rier, which is not implicitly necessary for all HTMs. The C++ TM specification
is better in that regard in that TSO is not constrained by real-time order but
instead by happens–before, which captures all the ordering constraints that are
actually requested by a program (or present in a certain execution).

Guerraoui et al. also define parametrized opacity [45], which is a version
of opacity parametrized by a memory model. However, this condition aims at
providing strong isolation as specified by the model, whereas C++11 and the
C++ TM specification rely on data-race-freedom and weak isolation.

Conclusion. As the previous discussion shows, the biggest advantage of the
C++ TM specification compared to other correctness conditions—with the ex-
ception of the work by Shpeisman et al. [104]—is really its tight integration with
the C++11 memory model and the C++ language in general. While TSO is con-
ceptually quite similar to the ideas behind serializability and other conditions,
the way in which it relies on and contributes to happens–before allows program-
mers to think about synchronization using transactions as just another part
of the language and to understand the interactions of transactions with other
parts of a program. The choice of weak isolation for transactions cleanly follows
C++’s choice of relying on data-race-freedom; both choices are motivated by
unacceptably high performance overheads for stronger models (i. e., strong iso-
lation and sequentially consistent hardware memory models, respectively). The
distinction between atomic and relaxed transactions is also a notable difference;
it provides programmers with a choice between transactions that execute atom-
ically with respect to all other code and transactions that can execute similar
to critical sections protected by a global lock.

Neither the C++ TM specification nor the work by Shpeisman et al. cover
how TM implementations can actually implement the proposed semantics. While
implementation concerns definitely influenced the choice of semantics, the spec-
ifications do not give detailed guidance to implementers.

Such guidance is what my work contributes (see Section 4.2). I have dis-
cussed the trade-offs that implementations face, and derived a split of implemen-
tation responsibilities between TM compilers and TM runtime librarys. This
also provides clear semantics for the TM runtime library ABI, whose previous
specification defined just the sequential functionality of the functions that com-
prise the ABI. As a result, the ABI can then also serve as a precise specification
of what TM runtime libraries for C/C++ have to provide, and the TM imple-
mentations and algorithms presented in Chapters 5 and 7 are built according
to this ABI’s requirements.

Like the C++ TM specification, the ABI benefits from a tight integration
with the C++11 memory model and other properties of C++ environments
(e. g., the as–if rule) because this allows for a more straightforward extension of
existing implementations with TM support.



Chapter 5

Software TM Algorithms
and Implementations

STMs implement TM without relying on any special hardware support for TM.
Until HTMs are widely available and able to execute the vast majority of trans-
actions, STMs are thus the primary means to implement TM. Therefore, until
then, TM performance is basically determined by STM performance (or by
hybrid software/hardware TMs assuming wide availability of first-generation
best-effort HTMs, see Section 7.3).

There is a large number of possible STM implementations, for example using
just a single global lock, two-phase locking on multiple locks, or various non-
blocking algorithms. Nonetheless, for the workload assumptions described in
Section 3.2, there seems to be one sweet spot for general-purpose STMs: Using
optimistic concurrency control for transactional read operations while still al-
lowing concurrent but nonconflicting update transactions to commit in parallel.
Furthermore, we can expect transactions to likely execute many more trans-
actional read than write operations, so the performance of taking an atomic
snapshot of the data accessed in the transaction is essential for good overall
performance.

However, efficiently checking the atomicity of snapshots is difficult in a TM
setting because the data items that a transaction will access are not known until
the transaction is actually executed; with every new read operation executed
by a transaction, the STM has to validate that the snapshot is still atomic.
Validating this by just reading all previously accessed data items again leads to
increasingly larger runtime overheads when the size of the snapshot grows.

Nonetheless, this was the standard approach until early 2006 when Pascal
Felber, Christof Fetzer, and I first published [92] how to take atomic snap-
shots more efficiently by relying on a global time base shared by all transac-
tions.1 In this class of algorithms, which we later called the Lazy Snapshot
Algorithm (LSA) [90], validating snapshot atomicity for a newly executed read
operation has only a small constant runtime overhead in the common case. I
will explain this class of algorithms on an abstract level in Section 5.1.

Next, in Section 5.2, I will discuss an implementation of LSA that is tailored

1Note that even though this paper focuses on Snapshot Isolation [7] as consistency condi-
tion, it also presents the fully atomic version of the algorithm.
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for C/C++ environments. Contrary to our first Java-based and nonblocking im-
plementations of LSA, this implementation uses pessimistic concurrency control
for write operations and keeps only a single version of each transactional data
item. Such an implementation—and LSA—is still one of the most important
STM implementation variants for C/C++ besides just one or two other major
variants.

Given that the STM is operating on top of an asynchronous system, the
STM has to explicitly establish a global time base: It can either implement it
using shared memory synchronization (e. g., as a linearizable integer counter),
or can rely on other time bases provided by the operating environment. The
former is simple to implement and works well in small-scale systems but suf-
fers from synchronization runtime overheads and contention in larger systems.
However, LSA can be modified to use imprecisely synchronized real-time clocks
as time base, which removes the single global synchronization bottleneck in the
algorithm and which I will explain in Section 5.3.

Finally, in Section 5.4, I will conclude with a discussion of related work.

5.1 Time-Based STM

Obtaining atomic snapshots of transactional data with low runtime overhead is
critical for STM performance. According to our workload assumptions described
in Section 3.2, loads are much more common than writes in transactions, and
concurrent reads to the same data items should not result in unnecessary run-
time overheads. In this section, I will explain how STM algorithms can achieve
this with the help of a global time base shared by all transactions.

For the following discussion, it is sufficient to consider a simple definition
of transaction and snapshot atomicity: Similar to database transactions and
serializability (see Section 2.2), we want to allow concurrent execution of STM
transactions but those transactions have to virtually execute in a total order
and in isolation; thus, an atomic snapshot has to virtually execute without
interleaving execution steps of any other transaction. Furthermore, snapshots
get built incrementally when executing a transaction because it is not known a
priori which data items a transaction will access. Finally, a snapshot’s position
in the total order of transactions must be consistent, which basically means that
any change to it must be invisible to the transaction.

A more precise definition of the atomicity and consistency requirements for
C/C++ environments is discussed in Section 4.2 and will be used as require-
ments for an implementation of time-based STMs as discussed in Section 5.2.
Nonetheless, providing snapshots that are always atomic and consistent is an
essential requirement for C/C++ STMs, which is why the algorithms described
next are used in those implementations.

Visible vs. invisible reads. When implementing snapshots, the first major
choice is whether a transaction makes its read operation visible to other trans-
actions or not, leading to the distinction between visible reads and invisible
reads.

With visible reads, transactions either peek into the metadata that the STM
maintains for each transaction to determine whether other transactions are read-
ing a certain transactional data item, or transactions announce their start and
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end of read operations at metadata associated with each data item. Usually,
the latter is preferred because scanning through other transactions’ read sets is
costly. Announcing a read operation can then be implemented by, for exam-
ple, incrementing a shared counter before reading an item, and decreasing the
counter of all items read in the transaction when the transaction commits or
aborts. Update transactions are then only allowed to store to a data item if
there are no active readers.

Altogether, this approach is straightforward to implement and basically
equal to the two-phase locking scheme explained in Section 2.2. The shared
read counters are typically parts of a set of reader–writer locks that data items
are mapped to, and transactions acquire the necessary locks on-demand during
their execution.

The disadvantage of this approach is that while reads of the same data item
can be executed concurrently by different transactions (i. e., two reads do not
conflict with each other), doing so requires updates to shared memory, and
performance will suffer due to contention and cache misses that arise when
different threads modify the same piece of STM metadata (e. g., a shared read
counter or a reader–writer lock, see Section 2.1 for further explanations).

When using invisible reads, the STM does not have to modify shared meta-
data for each read operation but must instead check that no other update trans-
action interfered with the atomicity of the snapshot and the transaction. This
process is called validation, and can also be understood as checking that the
transaction could have held a read lock since the first access to the data item;
validating all data items accessed by the transaction then basically guarantees
atomicity of the snapshot.

Because snapshots have to be always consistent (see Section 4.2), the STM
needs to validate the snapshot before returning any value to the program, so
during each transactional load operation. A simple way to do this, called incre-
mental validation, is to just validate all previously accessed data items. With
this approach, performance will not suffer from overheads that visible reads suf-
fer from but instead from quadratic validation costs: for the n-th read access,
a transaction has to validate the previous n− 1 data items.

Another potential performance disadvantage compared to visible reads is
that with invisible reads, concurrency control is forced to be optimistic: Update
transactions cannot know whether their commit will force other transactions to
abort. However, this is mostly relevant in workloads with frequent read–write
conflicts between transactions, in which case the STM could still use visible
reads when necessary (e. g., after a transaction has aborted a couple of times).
As I have explained in Section 3.2, optimizing the temporal aspect of TM-based
synchronization is beyond the scope of my work, which includes this aspect of
optimistic versus pessimistic concurrency control.

The difference in performance between visible and invisible reads with incre-
mental validation can therefore be roughly characterized by the relative speed
of updating shared data (e. g., cache misses) compared to normal computation
and reading shared data.

Figure 5.1 illustrates this trade-off with a simple benchmark: 8 threads
execute read-only transactions to the same set of data items, except for the
results marked with “disjoint accesses”, in which each transaction accesses its
private set of data items. The figure shows the runtime overhead of a transaction
divided by the number of read operations in the transaction, for transactions



76 CHAPTER 5. STM ALGORITHMS AND IMPLEMENTATIONS

 0

 2

 4

 6

 8

 10

 12

 14

 1  20  40  60  100  150

SMP machine
C

P
U

 t
im

e
 p

e
r 

re
a

d
 (

µ
s
)

Number of objects read by transaction

Invisible time-based
Invisible incremental

Visible
Visible (disjoint accesses)

 0

 1

 2

 3

 4

 5

 1  20  40  60  100  150

CMP machine

Number of objects read by transaction

Figure 5.1: Performance of visible versus invisible reads on both an SMP and a
CMP machine.

of different read set size (i. e., how many separate data items each transaction
accesses). The results were obtained using a Java STM that either uses visible
reads, invisible reads with incremental validation, and invisible reads with time-
based validation.

These results highlight the principal differences in performance, even though
STM snapshot performance is determined by several more factors. First, com-
paring the overheads within each of the plots in the figure shows (1) the quadratic
overhead of invisible reads with incremental validation, where larger transac-
tions suffer from an increasingly large per-read overhead, (2) the large decrease
in performance of visible reads when transactions access the same data, due
to contention and cache misses on the shared STM metadata, and (3) the low
and constant overhead of time-based validation. Comparing both plots in the
figure, we can see that incremental validation is much more costly on the CMP
machine2, whereas non-disjoint visible reads are more costly on the SMP ma-
chine3. This can be explained by the difference in the hardware architectures:
the CMP cores are not very fast (the incremental validation loop hurts) but are
close to each other on a single chip (cache misses are relatively cheap), whereas
the CPUs on the SMP machine are rather powerful on their own but sit on
distant sockets (i. e., communication between CPUs is more time-consuming).
Interestingly, time-based validation performs well on both of these architectures.

Benefits of a global time base. The performance advantage that these
figures show for time-based validation is based on tagging updates to transac-
tional data with timestamps from a discrete global time base that is shared by all
transactions. Progress from the perspective of the transactional data happens
whenever an update transaction commits, and when that happens our global
time base advances (i. e., it ticks). The new time (or timestamp) can then be

2A Sun Fire T2000 server with a single socket and an 8-core 1.2-GHz UltraSPARC T1
processor; each core handles four hardware threads concurrently.

3A symmetric multi-processor system with four sockets holding Xeon CPUs and enabled
hyperthreading (i. e., eight logical CPUs).
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used to identify the commit, and we thus call it the commit time.
Based on that, transactions can take snapshots virtually at a certain time

(called the snapshot time) by reading from the most recent update transaction
that updated the respective data item prior to the snapshot time. Because of
the global time base, updates to different locations can be easily ordered and
compared: When a transaction reads a new data item, it can determine the
atomicity of the whole snapshot by just comparing timestamps (which explains
the “time-based” attribute); it does not need to validate previously accessed
items as with incremental validation. Also, read operations do not need to
modify shared data. Therefore, time-based validation can avoid both these
runtime overheads.

5.1.1 Lazy Snapshot Algorithm (LSA)

In the following, I will describe LSA on a higher level of abstraction. This makes
it easier to understand and avoids having to dive into the low-level implemen-
tation details. Most notably, for the pseudo code below, let us assume that all
STM operations (e. g., individual loads and stores executed by a transaction)
execute atomically and in a sequentially consistent manner. I will present a
complete concurrent implementation for C/C++ on the basis of the C++11
memory model in Section 5.2, which does not rely on these simplifying assump-
tions.

LSA handles transactional accesses to shared data items, which can either
be higher-level constructs or just plain memory locations (see Figure 3.2 and
the discussion in Section 3.1.2). For now, let us assume a set of abstract shared
objects O. Each object o ∈ O traverses a series of versions o1, o2, . . . , oi. Every
time an object is written by a committed transaction, a new version of this
object is created and the previous one becomes obsolete. The STM may—but
does not need to—keep multiple versions of an object at a given time; only the
latest version is necessary.

The discrete logical global time base of LSA is designated by clock. It can be
implemented using a simple shared integer counter, which update transactions
can increment atomically to acquire a unique commit timestamp.

Let us also assume that objects are only accessed and modified within trans-
actions. Hence, we can describe a history of an object with respect to the global
time base clock. boic denotes the time when version i of object o has been
written, and by doie the last time before the next version is written. Let us call
the interval between these two bounds the validity range of the object version
and we denote it simply by [oi]. If oi is the latest version of object o, then doie
is undefined (because we do not know until when oi will be valid), otherwise
doie = boi+1c−1. For convenience, o? denotes the most recent version of object
o.

The sequence H(o) = (bo1c, . . . , boic, . . .) denotes all the times at which
updates to object o are committed by some update transactions. bo1c is the time
when the object was created. Sequence Hi is strictly monotonically increasing,
i.e., ∀oi 6= o? : boic < boi+1c.

Algorithm 1 shows the multi-version, write-through variant of LSA as pseudo
code. Functions prefixed with stm− are the functions that comprise the exter-
nal interface of the STM: Starting a transaction (stm−start), loading from and
storing to transactional data items (stm−load and stm−store), and committing
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Algorithm 1 Lazy Snapshot Algorithm (write-through, multi-version variant)

1: Global state:
2: clock ← 0 . Global time base (shared integer)

3: State of thread p:
4: st: snapshot time (range)
5: r-set: set of read object version
6: w-set: set of written objects

7: stm-start()p:
8: st ← [clock , clock ] . Initial snapshot time bounds
9: r-set ← w-set ← ∅

10: stm-load(o)p:
11: if o ∈ w-set then
12: return o? . Read previous write

13: if bo?c > dste then . Is latest version too recent?
14: extend(clock) . Try to extend (optional)

15: if bo?c ≤ dste then . Can use latest version?
16: st ← [max(bstc, bo?c), dste)] . Yes, use latest version
17: r-set ← r-set ∪ {o?}
18: return o?
19: else
20: if w-set = ∅ ∧ (∃oi : boic ≤ dste ∧ doie ≥ bstc) then . Can use older version?
21: st ← [max(bstc, boic),min(dste, doie)]
22: r-set ← r-set ∪ {oi}
23: return oi
24: else
25: abort() . Cannot find valid version

26: stm-store(o,val)p:
27: if o /∈ w-set then . Need to acquire on first write to o?
28: if bo?c > dste then . Is latest version too recent?
29: extend(clock) . Try to extend

30: if bo?c ≤ dste then . Can use latest version?
31: st ← [max(bstc, bo?c), dste]
32: o? ← new() . Create/acquire a new latest version
33: bo?c ← ∞
34: w-set ← w-set ∪ {o}
35: else
36: abort() . Cannot find valid version

37: o? ← val . Write through to acquired latest version

38: extend(t)p:
39: dste ← t . Try to extend snapshot up to t
40: for all oi ∈ r-set do
41: if o /∈ w-set then . Recompute validity unless object already acquired
42: dste ← min(dste, doie)

43: stm-commit()p:
44: if w-set 6= ∅ then . Nothing to do if read-only transaction
45: ct ← (clock ← clock + 1) . Unique commit time (atomic increment)
46: if dste < ct − 1 then . Must validate if others committed in the meantime
47: extend(ct − 1)
48: if dste < ct − 1 then . Are snapshot and commit time adjacent?
49: abort() . No, commit would not be atomic

50: for all o ∈ w-set do . Make new versions accessible to other transactions
51: bo?c ← ct . Validity starts at commit time

52: abort()p:
53: for all o ∈ w-set do
54: delete(o?) . Remove acquired latest version
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a transaction (stm−commit). A transaction completes successfully if it executes
the algorithm until commit without executing the abort function (after whose
execution the transaction will be restarted from its beginning).

For each thread executing transactions, the STM maintains a read set r-set ,
a write set w-set , and a snapshot time range st . The read set tracks all the
object versions read by a transaction, whereas the write set tracks the objects
written by the transaction (we always write the most recent version).

When starting a transaction, the STM clears both read and write set. It
also sets the snapshot time range so that it is valid starting at the current time
(i. e., value of the global time base clock), which I will explain in detail later.

Write-only transactions. Let us start by considering just transactions that
only write objects. If stm−store gets called for an object that the transaction
has not written to yet, it first checks whether the most recent version of the
object is accessible and tries to extend the snapshot time if necessary (line 29).
We can ignore this for now because the read set r-set will always be empty for
write-only transactions, but I will revisit the snapshot time maintenance aspects
later. In our case, dste will always be set to clock (line 29 and line 39), which
is the current time. We will thus be able to access the most recent version o?
(line 30) unless, as we will see next, another transaction is already writing to this
object.4 To write to the object, we (1) first update our snapshot time (explained
later), (2) create a new most recent object version o?, (3) set its validity range
to start at ∞, and (4) add the object to our write set (lines 31–34). The third
step is precisely what makes the most recent object version inaccessible to other
transactions because the current time will always be smaller than ∞. Thus, if
another transaction has installed such a o?, we will just abort (line 36). Finally,
if we did not abort, we modify the value of o? (i. e., write through to memory).

Thus, writing an object is visible to other threads and prevents them from
writing. This exclusive access can either be implemented like locking so that
other writers simply have to wait until the existing writer transaction has fin-
ished. Alternatively, this also allows nonblocking implementations, where the
exclusive access is handled more like a write marker that requires another writer
to first abort the existing writer transaction. The first Java-based LSA imple-
mentations [92, 90] where indeed nonblocking but we will assume a lock-based
approach in what follows.

By acquiring and writing to the most recent object version, we thus essen-
tially lock the object, write to it, and the updates will become visible as new
most recent object versions o?. If we have to abort we simply remove o?, which
will both undo our updates and make the previous most recent version accessible
again to other transactions (lines 53–54 in stm−abort).

When stm−commit is called, the update transaction is ready to commit: It
(1) acquires a unique commit time ct from the global time base clock on line 45,
(2) validates (lines 46–49), which will always succeed for write-only transactions
for similar reasons as in stm−store, and (3) makes the new most recent object
versions created by this transaction accessible by letting their validity ranges
start at the commit time (lines 50–51).

4Remember that we assume that STM functions execute atomically, so there cannot be
a committed version whose validity starts at a most recent time than the time we obtained
from clock previously.
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Overall, updates thus resemble a two-phase locking scheme: we acquire locks
before writing to an object, and never release the locks until commit. We also
obtain the commit time when we have acquired all the locks. Therefore, all
updates of a transaction are atomic and the commit times will be consistent
with the order of committed object versions by different transactions: two-
phase locking serializes conflicting transactions, which also enforces serialized
acquisition of commit times.

Atomic snapshots. Now that we know how atomic updates and the validity
ranges of object versions work, we can also understand how we can maintain
atomic snapshots. Because those validity ranges are all constructed using the
global time base, and because uncommitted updates are inaccessible due to the
object locking being used, we can just combine the ranges to reason about the
order of a transaction’s operations with respect to other transactions’ opera-
tions.

The transaction uses the snapshot time range st to keep track of the validity
ranges of the objects that it read: Each accessed object version’s validity range
incrementally constrains its lower bound bstc and its upper bound dste further
(i. e., st becomes the intersection of st and the validity range). st is a range
because the same snapshot might be valid at different adjacent positions in the
serialization order of transactions; if the range becomes empty, the snapshot is
not atomic anymore, and the transaction has to abort.

Considering read-only transactions first, lets us now look at how snapshots
are constructed. In stm−start, we set the snapshot time range to the current
value of the global time base clock, which thus represents the current time.5

This ensures that we do not read from out-dated object versions and is required
to ensure linearizability for transactions, for example. Also, we never speculate
about what might be committed in the future, and thus set dste to a time that
is never higher than the current time clock.

In stm−load, we first try to access the most recent object version o? and try
to extend st if necessary, which I will explain later. Then, if we can access o?, we
intersect st with o?’s validity range, add o? to the read set, and return its value
(lines 16–18). Otherwise, we look for another object version oi whose validity
range intersects with st and use it instead (lines 21–23), only using the existing
upper bound doie to further constrain st . If no suitable object version exists,
we have to abort. Note that if we read an object several times, this will also
ensure that we always read the same object version (and thus keep the snapshot
atomic) because of how we constrain dste.

Up to now, we have only considered constraining dste (e. g., by validity ranges
or by the current time in stm−start). However, we can also check whether our
snapshot would still be valid at a more recent snapshot time and not capped
by more recently committed object versions. We call this a snapshot extension
and it is performed by the function extend, which iterates through the read set
and recomputes a new upper bound for st based on the object versions’ validity
ranges (line 42) and a caller-supplied upper bound t (line 39). Note that t is
always less than or equal to the current time, so we never speculate about what
might nor might not happen in the future (lines 14, 29, and 47).

5We could also set it to [clock ,∞] but would then need to use a different representation of
locked object versions than ∞. For brevity, Algorithm 1 constrains st right away.
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The validation of the readset during snapshot extensions is thus similar to
what we would do when using incremental validation; however, we only need to
extend on demand, which also motivated the name Lazy Snapshot Algorithm.
We only need to extend if another conflicting update transaction committed
concurrently, but not in the assumed common case; even if we have to extend,
we will be on somewhat of a slow path anyway because we are reading a fresh
update by another thread and thus will suffer from cache misses. Overall, this
leads to the small and typically constant runtime overhead for stm−load that
leads to the performance advantage of LSA shown in Figure 5.1.

Update transactions. While we can commit read-only transactions right
away (line 44) because their snapshot is always kept atomic and never earlier
than the transaction started, we have to ensure for update transactions that the
snapshot time range and the commit time overlap.

Therefore, an update transaction must have only the most recent versions
of each accessed object in its snapshot. This is ensured by the checks on line 30
in stm−store and line 20 in stm−load. In turn, we rely on this on lines 12 and 41
(i. e., if we have written an object, there is no other object version ordered
between the version in our snapshot and o?).

Update transactions commit by first acquiring a new commit time ct from
the global time base (line 45). Next, they ensure that dste is equal or larger than
ct − 1, attempting a snapshot extension if necessary, and aborting if it cannot
be ensured (lines 46–49). Thus, st and ct are adjacent on the global time
base; because ct is a unique timestamp acquired by this transaction, st and
ct essentially overlap and there cannot be another transaction whose commit
would prevent our snapshot from being atomic with our updates and the commit
time acquisition. This works again similar to two-phase locking, only that our
reads are invisible—but using time-based validation, we ensure that we could
have held read locks until after acquiring ct during commit.

The only remaining step is to release all write locks, which we can do by
setting the lower bound of the validity ranges of the written object versions to
ct (lines 50–51).

Essential ordering constraints. The correctness of LSA relies on a few
ordering and atomicity constraints ensured by the algorithm. First, on trans-
actional loads, we obtain an atomic snapshot of both the data and the commit
time associated with this data. While this is simply assumed to be the case in
Algorithm 1, concrete implementations have to enforce this (see Algorithm 3).
As a result, we can reason about snapshot consistency based on just the times-
tamps.

Second, a transaction makes its updates visible to other transactions (e. g.,
by installing tentative versions as in Algorithm 1) before obtaining a new commit
time. Thus, the commit time is greater than any value that the global time base
had when any of these updates were not yet visible to other transactions. This
ensures that any other transaction making a snapshot at or after the updating
transaction’s commit time will also see the updates (or, alternatively, that the
updated objects are still inaccessible or locked because the updates have not
finished committing yet). Updates are made accessible only after it has been
ensured that the transaction is actually allowed to commit.
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As a result, updates are virtually committed atomically with obtaining the
commit time (i. e., right between the commit time and the previous timestamp).
Also, this ensures that reading transactions will observe the effects of other
update transaction completely or not at all.

To ensure that a transaction’s updates and its snapshot are consistent, up-
dating transactions check that their snapshot is still valid at the time of the
commit. While there exist different variations of this (see below), the underly-
ing key principle is that if such a check succeeds, we know that the snapshot
is atomic with respect to obtaining the commit time; because the updates are
atomic with respect to the commit time too, both the snapshot and the updates
are atomic with respect to each other.

Thus, the global time base and how transactions link their updates and
snapshots to timestamps from this time base effectively orders transactions.
Note that this is not necessarily a total order; for example, transactions that
do not have data conflicts with each other (e. g., two read-only transactions
accessing the same object) need not be ordered.

Algorithm 3 enforces a total order for all update transactions by letting them
all acquire a commit time on their own, but this is not strictly necessary. It is
required that all updates of a transaction have the same commit time (to make
snapshots work), but updates having an equal commit time does not necessarily
imply that those updates were by the same transaction.

Essentially, concurrent update transactions with no data conflicts can share
a commit time. This is possible as long as the commit time they obtain is still
greater than any value of the global time base when their updates were not
yet fully visible to other transactions (see above). However, if transactions do
share commit times, they cannot skip validating their snapshot if the snapshot
time is right before their commit time (lines 46–49 in Algorithm 3). Instead,
they always have to validate that their snapshot is right before their commit
time and no other transaction has tentative conflicting updates pending; those
updates could be by other transactions that use the same commit time. The
LSA variants using a real-time clock as time base rely on this approach (see
Section 5.3), as does related work (see Section 5.4).

Write buffering. Algorithm 1 shows a write-through variant of LSA, but
an STM can also buffer writes until commit as outlined in Algorithm 2 (the
functions ending in −wb then comprise the external STM interface). This write-
back variant really just defers making writes visible until right before commit;
the allowed externally visible behavior of a transaction and the essential ordering
guarantees do not change. Note that we could also defer writing back real values
to the to-be-committed object version until after validation in commit as long
as this happens before we release the write locks (line 50 in Algorithm 1, not
shown in Algorithm 2 for brevity). Furthermore, we could also acquire locks
early as in the write-through variant but never write data updates until we are
sure to commit, leading to a variant called encounter-time locking [42].

Discussion. In what follows, I will conclude with a discussion of some perfor-
mance-related properties of LSA and time-based STMs in general.

First, one might expect that LSA needs to perform extensions frequently
when there are concurrent updates. In fact, however, LSA is quite independent
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Algorithm 2 Lazy Snapshot Algorithm (write-back variant, extends Algo-
rithm 1)

1: State of thread p: . extends state of Algorithm 1
2: w-buffer : buffered writes per object

3: stm-start-wb()p:
4: stm-start()
5: w-buffer ← ∅

6: stm-load-wb(o)p:
7: if ∃w-buffero then
8: return w-buffero . Read buffered write

9: return stm-load(o)

10: stm-store-wb(o,val)p:
11: w-buffero ← val . Buffer store to o

12: stm-commit-wb()p:
13: for all o : ∃w-buffero do . Acquire objects with buffered writes before trying to commit
14: stm-store(o, w-buffero)

15: stm-commit()

of the speed in which concurrent transactions commit and thus increase the
value of the global time base. If there are no concurrent updates to the ob-
jects that a transaction accesses, the most recent object versions do not change
and no extension is required for obtaining a consistent snapshot. This is the
case, in particular, if the value of clock has not changed since the start of the
transaction. If clock has been increased concurrently and the transaction is an
update transaction, then one extension is required during commit. Extensions
are thus only required due to concurrent conflicting commits, and thus after
cache misses. Also, at most one extension is performed per accessed object,
but this worst case is extremely rare in practice because it requires very specific
update patterns.

Accesses to the global time base might become a bottleneck when update
transactions execute frequently due to cache misses and contention on clock.
In practice, however, the number of accesses to clock remains small. All trans-
actions must read the current time once when they are started, and update
transactions must additionally acquire a unique commit time. Further accesses
are not required for correctness. For example, if an update transaction needs
to access a version more recent than its current validity range, it can extend
the snapshot’s upper bound up to any time at which the version was valid, not
necessarily up to the current time (as shown in Algorithm 1). Time informa-
tion gathered from the accessed objects can thus be used instead of reading the
global time base. Alternatively, clock can also be replaced by more scalable
alternatives such as approximately synchronized clocks (see Section 5.3), and
update transactions can share commit times as discussed previously.

LSA can but does not need to maintain multiple object versions. The num-
ber of versions that are kept can have an influence on the likelihood that a
read-only transaction can commit successfully, but it also leads to additional
runtime overheads.6 Thus, other implementations such as the one for C/C++
environments that I will describe in Section 5.2 do not maintain multiple object
versions.

6The potential of keeping multiple versions is further discussed elsewhere [40].
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Figure 5.2: TM-based synchronization: STM.

5.2 Time-Based STM for C/C++ Environments

In this section, I will describe how to implement LSA (Section 5.1) in a C/C++
environment and so that it fulfills the requirements for TM runtime libraries
laid out in Section 4.2.4.

The most important difference to the abstract LSA presented previously is
that we cannot rely on having a set of discrete shared objects anymore because
C/C++ programs can access arbitrary memory locations using pointers. While
we could try to find the object associated with a memory location using a run-
time lookup, the runtime overhead of this would be prohibitive. Therefore, the
STM is word-based and maps low-level memory locations to STM metadata
using a hash functions that cover the whole address space; Figure 5.2 high-
lights the relevant part of the spatial aspect of TM-based synchronization (see
Section 3.1.2 for a description). In Chapter 6, I will describe how to use compile-
time techniques to also exploit high-level mappings in C/C++ environments.

Low runtime overheads are essential for a TM implementation. Most im-
portantly, if the programmer already optimized a program’s transactions so
that they conflict infrequently (i. e., disjoint-data parallelism, see Sections 3.1.3
and 3.2 for further discussion), we want to execute those transactions as quickly
as possible. LSA already targets this scenario (e. g., it preserves disjoint-access
parallelism by synchronizing on individual objects instead of a single global
lock), so the implementation should also be optimized toward it.

A blocking STM implementation is easier to implement and can also per-
form better when aborts are infrequent because the transaction does not need
to handle being involuntarily aborted by other transactions or other kinds of in-
terference; after acquiring a lock, the associated data belongs to the transactions
and it can access it without requiring further synchronization.

A write-through approach for transactional stores helps to keep overheads
low because transactions do not need to buffer writes and look up previous
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writes in the buffer on read–after–write situations.7 Instead, the STM can
just acquire locks for transactional data that is to be updated and modify the
memory locations in place without a need for any software indirection layer.

Maintaining only a single version of each memory location instead of keeping
additional older versions of the data is also more efficient for update transactions
(e. g., no preservation of old data, no garbage collection for obsolete versions,
etc.). Only read-only transactions can benefit from older versions when using
LSA, but only the most recent version is required to be available; for a write-
through, word-based STM this simply is the value at the particular memory
location.

For these reasons, the STM that I will present next is a word-based, blocking,
write-through, and single-version implementation based on LSA.

5.2.1 LSA on C++11

The LSA-based STM implementation that I will discuss in what follows is both
for C++11 and based on it: First, it provides the guarantees that the C++
TM specification requires for TM runtime libraries (see Section 4.2.4), and can
be used to implement the respective ABI. Second, the implementation itself is
based on C++11 in that it uses C++11’s memory model and atomic operations
to implement the synchronization between transactions.

The high-level requirements on TM runtime libraries are shown in Table 4.2
on page 56. I will just give an overview of these requirements for now, and
discuss them in detail after describing the TM algorithm.

The first requirement, L1, essentially states that transactions need to be
totally ordered, called Transaction Synchronization Order (TSO). The way how
LSA and time-based STMs in general use snapshot and commit times from
a global time base achieves such an ordering. In particular, TSO is consistent
with the ordering of commit times and snapshot times of transactions; whenever
those times are not ordered, the respective transactions do not conflict and the
program also cannot observe that, due to the data-race freedom requirement of
C++11.

Snapshot times are a tentative TSO choice. Trying to extend a snapshot to
the current time from the global time base (i. e., validating that the snapshot
has not changed in the meantime) checks whether the transaction can change
its position in TSO without this being visible to TM-pure or unsafe code.

The second requirement, L2, states that TSO and the transactional mem-
ory accesses must be consistent with happens–before, and that data races must
not be introduced. The former essentially requires the TM runtime library to
preserve happens–before relationships established in nontransactional code, and
I will discuss later how the algorithm ensures that. The latter forces the li-
brary to ensure privatization safety and to access only exactly the data that the
transaction would access if executed by the C++ abstract machine.8

7Note that in a different workload scenario in which transaction aborts are frequent, a
write-back approach can be better due to a smaller window of interference between concurrent
conflicting transactions.

8For example, when rolling back writes of an aborted transaction, the TM must not undo
those writes at a coarser granularity than the original memory accesses because this could
overwrite adjacent memory objects that could be concurrently accessed by other threads.
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Ownership records (orecs). Unlike in the LSA version that I presented pre-
viously, we do not want to maintain multiple versions of each memory object;
instead, transactions modify objects in the program’s address space directly.
Transactions use ownership records to synchronize with each other, which are
essentially custom locks carrying a timestamp. Before updating a certain mem-
ory location, transactions first acquire the associated orecs; when committing
an update, orecs are released and the timestamp is updated so that reader
transactions are aware of the update.

An orec is a machine-word–sized data structure whose most-significant bit
serves as a lock bit: If it is set, the orec is acquired and the remaining bits identify
the transaction that acquired it (e. g., a pointer to the per-thread metadata that
the TM runtime library maintains). If the bit is not set, the remaining bits are
split up between a timestamp from the global time base (i. e., the commit time
of this update, as we will see later) and an incarnation number in a few least-
significant bits.

The incarnation number serves a different purpose than the timestamp: It
does not represent when the data was committed but can instead be used to
decrease runtime overheads of aborted update transactions and transactions
conflicting with those aborted transactions. An incarnation number is optional
and only useful in write-through designs, but can increase performance in ex-
change for reserving a few bits.

Putting the lock bit, timestamp bits, and incarnation numbers bits in this
order from most significant to least significant allows for small optimizations in
the TM implementation. The value of an orec with a set lock bit will always be
larger than any (non-overflowing) snapshot time, so a simple comparison can
check two conditions; likewise, an appropriately shifted value of a snapshot time
can discard incarnation numbers in a comparison between a value of an orec and
a snapshot time.

Mapping memory locations to orecs. Orecs are kept separate from the
memory locations that transactions access. Thus, when a transaction accesses
memory at a certain address, it must map from this address to the orec associ-
ated with this memory location. All transactions must obviously use the same
mapping function because they synchronize with other transactions based on
the orecs; using different mappings would prevent proper synchronization.

There are no fundamental constraints on the the number of orecs and the
nature of the mapping, but there are practical constraints. Calculating which
orec an address maps to is on the fast path of transactional loads and stores
with the current ABI, so complex functions are likely to lead to runtime over-
heads. Likewise, using a larger number of orecs can make false conflicts between
transactions less likely (because fewer memory locations map to the same orec)
but can also result in higher memory requirements and cache footprint.

These concerns motivate the use of simple hash functions, for example split-
ting the address space into equally-sized stripes and mapping those to entries
in an array of orecs. I will discuss these trade-offs further in Section 5.2.2. For
what follows, it is sufficient to assume some deterministic mapping function that
is used by all transactions (denoted hash in the algorithms).
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Algorithm 3 Lazy Snapshot Algorithm (C++11-based)

1: Global state:
2: clock ← 0 . Global time base (shared integer)
3: orecs: array of word-sized ownership records, each consisting of:
4: locked: bit indicating if orec is locked
5: owner : thread owning the orec (if locked)
6: time: commit timestamp (if ¬ locked)
7: inc: incarnation number (if ¬ locked)

8: State of thread p:
9: st: snapshot time (only upper bound)

10: r-set: read set of tuples 〈addr , time〉
11: w-set: write set of tuples 〈orec-index , orec-value〉
12: undolog: undo-logging data (sequence of tuples 〈addr , val〉)

13: stm-start()p:
14: st ←acq clock
15: r-set ← w-set ← undolog ← ∅

16: stm-load(addr)p:
17: orec ←acq orecs[hash(addr)]
18: if orec.locked then
19: if orec.owner 6= p then
20: abort() . Orec owned by other thread

21: return ∗addr . We own the orec; just read through

22: if orec.time > st then . Need to extend snapshot?
23: extend() . Aborts if validation fails

24: val ←acq ∗addr
25: if orecs[hash(addr)] 6= orec then . Load again and compare with previous load
26: abort() . Data at addr was perhaps modified concurrently

27: r-set ← r-set ∪ {〈addr , orec.time〉} . Add to read set
28: return val

29: stm-store(addr,val)p:
30: orec ← orecs[hash(addr)]
31: if orec.locked then
32: if orec.owner 6= p then
33: abort() . Orec owned by other thread

34: else
35: if orec.time > st then . We may have read from addr before, so. . .
36: extend() . . . . abort if validation should fail

37: if ¬ casacq(orecs[hash(addr)] : orec → 〈true, p〉) then . Try to acquire orec
38: abort()

39: fencerel . Memory barrier with release memory order
40: w-set ← w-set ∪ 〈hash(addr), orec〉
41: undolog.push(〈addr , ∗addr〉) . Log previous value of *addr
42: ∗addr ← val . Write through to memory

43: stm-commit()p:
44: if w-set 6= ∅ then . Nothing to do if read-only transaction
45: ct ← atomic-inc-and-fetchacqrel(clock) . Unique commit time (atomic increment)
46: if st < ct − 1 then . Must validate if others committed in the meantime
47: extend() . Aborts if validation fails

48: for all 〈orec, orecval〉 ∈ w-set do
49: orecs[orec]←rel 〈false, ct, 0〉 . Release orecs

50: extend()p:
51: st ←acq clock
52: for all 〈addr , time〉 ∈ r-set do . Are orecs free and timestamps unchanged?
53: orec ← orecs[hash(addr)]
54: if (orec.locked ∧ orec.owner 6= p) ∨ (¬ orec.locked ∧ orec.time 6= time) then
55: abort() . Inconsistent snapshot
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Algorithm 3 Lazy Snapshot Algorithm (C++11-based, continued)

56: abort()p:
57: undolog.rollback() . Undo previous writes in reverse order
58: ct ← 0
59: for all 〈orec, orecval〉 ∈ w-set do
60: if incarnation-left(orecval.inc) then . No incarnation number overflow?
61: orecs[orec]←rel 〈false, orecval.time, orecval.inc + 1〉 . Release orec (new incarnation)
62: else
63: if ct = 0 then . Acquire new “commit” timestamp
64: ct ← atomic-inc-and-fetchrel(clock)

65: orecs[orec]←rel 〈false, ct, 0〉 . Release orec (new timestamp)

Description of the algorithm. Algorithm 3 shows the C++11-based version
of LSA. Even though I still show it in terms of pseudo-code, it is based on the
memory model of C++11. Unlike for Algorithm 1, functions are not assumed
to be atomic anymore. However, all individual memory accesses to global state
(including application data) are assumed to be atomic and with relaxed memory
order as default. Atomic operations that require stronger memory orders are
annotated with the respective order (see Table 2.1 on page 12).

I only show load, store, start, and commit functions in Algorithm 3, but
the other functions that are part of the TM runtime library ABI are either
straightforward to implement, or are load or store variations. Also, I will focus
on the differences to Algorithm 1 in the following description, and will discuss
why certain memory orders and barriers are required afterwards; for now, it is
sufficient to assume that all atomic operations are sequentially consistent.

The stm−start function is similar to Algorithm 1, except that the snapshot is
now characterized by just a single value—and not an interval—which is initially
set to the value of the global time base when the transaction starts (line 14);
we do not keep multiple versions for memory objects, so we really are only
interested in the upper bound of the interval.

Transactional stores first map the target address to an orec, and then load
the value of this orec (line 30). If the orec is locked by some other transaction,
we abort the transaction. If the orec is not locked, we have to acquire it before
we can write through to memory (line 37); using CAS makes sure that lines 30–
37 are atomic with respect to other modifications of the orec9. However, if the
transaction has read from memory mapped to the same orec before, then we
need to make sure that no other value has been committed in the meantime;
given that update transactions need to extend the snapshot at commit anyway,
we can also try to extend the snapshot right away (line 35). Note that unlike
in Algorithm 1, unsuccessful snapshot extensions abort the transaction. After
successful orec acquisition, we issue a release memory barrier10 and add the orec
to the write set. Finally, we perform undo logging and write through to memory
(lines 41–42).

When a transaction commits, it follows essentially the same steps as in
Algorithm 1. However, we release the orecs that we have acquired (lines 48–49),
instead of making the most recent memory object versions accessible (we already
have written updates trough to memory in stm−store). When releasing an orec,

9See the stm−commit and abort functions for how those prevent ABA issues.
10Instead of the barrier, we could also require release memory order for all the stores to the

application data, but this is likely to be more expensive (e. g., if there is more than one write
per orec).
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we set its timestamp to the transaction’s commit time, making it accessible only
to transactions with a sufficiently large snapshot time. Also, the incarnation
number is set to zero because we use a new timestamp. Note that even though
the stm−commit function is not atomic, it provides the essential ordering (see
Section 5.1.1) between updates being inaccessible (i. e., orecs locked), acquisition
of a new commit time (line 45), snapshot time extension if necessary (line 47),
and making updates accessible again by releasing the orecs.

Aborting a transaction is slightly more complex because of incarnation num-
bers, but essentially we just have to use the undolog to roll back previous updates
to memory (line 57) and then release the orecs. For the latter, we need to notify
reading transactions about potentially inconsistent reads of data by making sure
that the orec’s value after being released differs from the value it had before we
acquired it. The first way to achieve this is to acquire a new timestamp from the
global time base (line 64) and then release the orec as if we would when commit-
ting the transaction (line 65). To other transactions, this kind of rollback will
look like just another write-only transaction that committed but did not change
any data; this is safe because we have acquired all the orecs for the data we
updated. However, this requires accessing the global time base and potentially
acquiring a new commit time from it, which can increase contention on the time
base and thus reduce performance. Alternatively, we can keep the timestamp of
the orec unchanged but instead increment the incarnation number (line 61) as
long as it does not overflow. This will also let readers detect potentially dirty
reads, as I will explain next.

Transactional loads are somewhat different than in Algorithm 1 because
we cannot assume that stm−load executes atomically. We first map the target
address to an orec, and then load the value of this orec (line 17). If the orec is
locked, then we either abort if it is locked by some other transaction or we have
a read–after–write situation and can thus just read the data (line 21). If the orec
is not locked, then we must try to extend the snapshot if our snapshot time is
not recent enough to form an atomic snapshot (line 23); we do not have multiple
object versions available as with Algorithm 1, so we must read the data that
has been committed most recently. Next, we can read the data from the target
address (line 24). Note that this read can be pending in the sense that it is
not atomic with the previous load of the orec (and thus the checks of the orec’s
value); the orec can change in the meantime. Ensuring privatization safety,
which I will discuss below, also ensures that such pending reads are harmless.

We can make reading the orec and the data effectively atomic by reading
the orec’s value again after reading the data and aborting if the orec’s value has
changed since the first read (line 25). The value could have changed if either a
new update has been committed in the meantime (i. e., orec.time changed) or
if we potentially read uncommitted data (i. e., orec.inc changed or the orec is
now locked). When transactions change data, they always change some part of
the orec’s value (lines 37, 49, 61, and 65), and in a way that avoids any ABA
issues. Thus, reading the orec’s value twice is like validating the single data
load, and will allow us to detect any inconsistencies; checking atomicity of the
whole snapshot of the transaction is still based on time-based validation.

Snapshot extensions validate similarly to per-load validation. We first read
the current value of the global time base (line 51), which becomes our new
snapshot time if the snapshot extension succeeds. After this, we check that all
orecs in the read set are either locked by us, or not locked and their timestamp
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has not changed (line 54). Note that changes just to the incarnation numbers are
fine; we had consistent reads for each orec initially, and different incarnations—
but with the orec not locked—are just concurrent aborted transactions that have
been already rolled back. Besides reduced contention on the global time base,
this is another advantage of using incarnation numbers: They can reduce the
number of extensions and aborts caused by concurrent yet aborted transactions.
If validation of any orec in the snapshot fails, the transaction aborts.

For update transactions that have also read data, a successful snapshot ex-
tension thus also checks that the snapshot is still valid after the commit time
has been acquired.

Also, some smaller optimizations are not shown in Algorithm 3. For example,
instead of aborting immediately, transactions can also spin for a while if an orec
is already acquired, in the hope that the other transaction might commit or
abort soon.

Privatization safety. Privatization refers to a transaction making some data
inaccessible to other threads, and the TM runtime library has to ensure that this
can be safely done (see Section 4.2.4 for details). The privatizing transaction
thus must be an update transaction; it has committed and thus fixed its position
in TSO, but this does not immediately make other transactions aware of this. In
particular, other transactions are not aware of the privatization iff their snapshot
time is less than the privatizing transaction’s commit time.

If privatization is not safe, there are a few things that can go wrong. First,
transactions can use private and thus potentially inconsistent data or can write
to private data. This will lead to either transactions or nontransactional code
operating on inconsistent data, which in turn can lead to incorrect behavior of
the program. Such behavior cannot be easily contained, especially in a typical
C++ implementation. STM algorithms such as NOrec (see Section 7.3.2) that
rely on a centralized commit phase implicitly prevent this first kind of incorrect
behavior but at the expense of less scalability.

Second, STMs that use invisible reads will have pending loads (see the pre-
vious discussion of stm−load), which can target privatized data. This is also the
case for the NOrec STM (see Sections 7.3.2 and 5.2.2), for example, which will
never return the value of such a load to the transaction but will read privatized
data. While the data race that the load causes is benign on typical architec-
tures, accessing data for which the privatizing thread has changed the memory
protection properties (e. g., by releasing memory or re-mapping the respective
memory page as read-only) is not benign and can lead to memory protection
faults.

Some architectures, such as SPARC, provide hardware instructions for non-
faulting loads; using those for data loads together with an STM like NOrec can
avoid the privatization problems. However, non-faulting loads are not available
on many other common architectures such as x86.

Another way to make the pending loads harmless would be to try to mask
protection faults caused by transactions. However, this either requires custom
support in the operating system, or custom signal handlers and enforcing that
the TM runtime library’s signal handlers are always the first to be called for a
memory protection fault, which in turn likely requires custom standard library
support.
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We can also ensure privatization safety purely at the level of the TM runtime
library by letting potentially privatizing transactions never return to nontrans-
actional code until all other concurrent transactions are aware of the privatizing
transaction’s commit. Informally, privatizers thus wait for quiescence of older
snapshots.

To achieve that, all transactions publish their snapshot time regularly in per-
thread variables. They have to do so at least when starting a transaction and
after committing or aborting, marking the transaction as inactive in the latter
two cases. They can also update their published snapshot time after successful
snapshot extensions. Update transactions11 then have to wait until all concur-
rent transactions either became inactive or have a snapshot time that is equal or
larger than their own commit time. This ensures that there is global consensus
on TSO (up to the update transaction’s commit time) before it is exposed to
nontransactional code (e. g., code changing the privatized data). Algorithm 3
does not show this privatization safety implementation, but it is straightforward
to build using atomic operations and release and acquire memory orders.

The disadvantage of this approach is that it introduces a delay before update
transactions can return to nontransactional code, either due to having to wait
for older transactions or because of suffering from cache misses on the published
snapshot times of other threads. However, the big advantage in practice is that
this works across all architectures and without having to rely on custom support
in either the operating system or the standard libraries.

Correctness. In what follows, I will show that Algorithm 3, including the pri-
vatization safety implementation as described previously, satisfies the require-
ments on TM runtime libraries (see Table 4.2 on page 56).

The timestamps used in LSA directly correspond to the ordering of transac-
tions in TSO, and Algorithm 3 ensures that transactional data loads and stores
are consistent with this order. It does so by establishing synchronizes–with rela-
tionships through pairs of release and acquire memory orders (MOs) on certain
atomic operations that are in a reads-from relationship.

First, release MO when releasing orecs (lines 49, 61, and 65) synchronizes
with acquire MO loads from those orecs (line 17). Thus, data stores that happen
before releasing an orec (i. e., commits or rollbacks) happen before data loads
associated with the same orec. Those data loads could read from data stores
that did not happen before the release of the orec but later (e. g., uncommitted
data stores), but this case will be detected by the second orec load (line 25), as
we will see later.

Similarly, release MO when releasing orecs also synchronizes with acquire
MO on the CAS that acquires an orec (line 37). This is like ordinary locking, so
data stores overwrite the most recent updates of the data, and read–after–write
situations are also covered.

Second, the release MO memory barrier sequenced before data stores (line 39)
synchronizes with acquire MO on data loads (line 24) to the same memory lo-
cation. Therefore, the acquisition of the orec (line 37) before the data store
happens before the second load of the orec (line 25) following the matching
data load. This means that if the data load reads potentially uncommitted
data, then the second load of the orec will either observe the orec to be locked

11Read-only transactions cannot privatize data.
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by the other transaction, or have a different commit timestamp or incarnation
number. In either case, the values of the first (line 17) and second load of the
orec will differ; they will only be equal if the data load read from the most recent
data store before the orec was released. Thus, transactional loads will abort if
the loads of the orec and the data were not effectively atomic.

Third, release MO when incrementing the global time base (lines 45 and 64)
synchronizes with acquire MO on loads of the global time base (lines 14 and 51).12

Thus, changes to orecs that happened before incrementing the global time base
will happen before anything that a transaction does after deciding to work on a
particular snapshot time. In particular, snapshot extensions and transactional
loads will observe all finished or unfinished commits that have commit times
equal or less than this snapshot time. For example, assume an update transac-
tion that has just acquired commit time t but failed validation and is now about
to roll back: A concurrent conflicting transaction building a snapshot also at
time t is guaranteed to observe the orecs still being acquired by the update
transaction, and will not build an inconsistent snapshot. This also shows why
orec acquisition must happen before acquiring a commit time.

Considering all those three constraints on happens–before together guaran-
tees that Algorithm 3 follows the same abstract synchronization scheme as Al-
gorithm 1. Transactions build atomic snapshots that contain the most recent
data at this snapshot time according to TSO, and update transactions are also
totally ordered by TSO. Concurrent read-only transactions can have the same
snapshot time, but this does not invalidate the total ordering requirement of
TSO because a data-race–free program cannot observe the difference; thus, this
is a valid application of the as–if rule (see Section 4.2).13

Besides establishing a TSO and making transactional memory accesses con-
sistent with TSO, Algorithm 3 has to satisfy further requirements to be correct.

First, changes in tentative TSO positions of transactions must be invisible to
the program, and indeed they are: A transaction can extend its snapshot time
only if none of the orecs in its read set changed. Thus, it is guaranteed that
the data did not change either in a data-race–free program, so executing the
transaction at the new snapshot time—and thus a different position in TSO—
would have returned the same values.14

Second, TSO contributes to happens–before simply because the TM synchro-
nizes based on the same memory model, so happens–before relationships will be
established by transactions. Likewise, TSO is also consistent with happens–
before: If synchronizing actions in nontransactional code establish happens–
before relationships, then these will affect and constrain which snapshot time a
transaction starts at.

Third, publication via transactions also works correctly because a correct

12Algorithm 3 also shows acquire MO for the increment of the global time base during
commit (line 45). Technically, this is just required when commit uses an optimized version of
the extend function that just validates but does not read the global time base with acquire
MO.

13Note that this reasoning holds just for atomic transactions that cannot communicate with
nontransactional code. However, relaxed transactions might need to execute unsafe code to
communicate with other threads, in which case they will switch to serial-irrevocable mode
first as I will explain subsequently.

14Again, this expects atomic transations that cannot communicate with other threads except
through the TM runtime library. Relaxed transactions that do communicate will switch to
serial-irrevocable mode first.
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publishing transaction happens after the nontransactional operations on the
published data, and because the compiler preserves the ordering of accesses in
transactions (see Section 4.2.3).

Finally, data races are not introduced because transactions access only the
data that the abstract machine would access for an execution with the particular
(tentative) TSO choice (i. e., there are no access-granularity data races). Trans-
actions do make tentative TSO choices and thus can have pending loads and
stores; however, those target only data that could have been validly accessed
by a transaction in some execution. Privatization safety implemented as out-
lined previously ensures that a transaction that potentially privatizes data does
not return to nontransactional code before all concurrent active transactions
reached consensus on TSO up to the where the privatizing transaction commit-
ted. Thus, after this consensus, the concurrent transactions cannot introduce
data races on the privatized data based on a tentative TSO choice anymore.

Serial-irrevocable mode. Relaxed transactions (see Section 4.1) can execute
unsafe code for which we cannot guarantee isolation from other transactions.
Therefore, relaxed transactions enforce serialized execution with respect to other
transactions before executing unsafe code (i. e., they switch to serial-irrevocable
mode). Once they execute in isolation, they try to commit what has been
executed so far and if this is successful, continue executing the rest of the trans-
action without using the TM algorithm. Serialized execution of transactions
trivially satisfies the correctness requirements for a TM runtime library.

Code to provide serial-irrevocable mode is not shown in Algorithm 3 but
can be implemented independently of it using a multiple-reader–single-writer
lock: Transactions that need to execute in isolation try to acquire the lock as a
writer, and all other transaction execute as readers and synchronize using a TM
algorithm. We can optimize this lock for non-serial execution being the common
case by using Dekker-like synchronization: Every thread has a flag that states
whether a non-serial transaction is or wants to become active, and there is a
global flag that threads that want to execute in isolation try to acquire. In
the absence of serial-irrevocable–mode transactions, threads thus can use such
a readers–writer lock without suffering from cache misses or contention.

5.2.2 Performance Trade-Offs and Evaluation

In this section, I will evaluate the performance of LSA for C++11 (Algorithm 3).
The focus will be on scalability (i. e., how much performance a TM can provide
when an increasing number of threads execute potentially conflicting transac-
tions) and runtime overheads (i. e., how much overhead the TM introduces for
transactional code compared to a nontransactional execution of the same code).
However, how the TM maps from memory locations to orecs (i. e., the hash func-
tion used in Algorithm 3 as well as the size of the array of orecs) can have a very
large influence on performance. Therefore, I will investigate the performance
trade-offs for this mapping and suitable hash functions first before looking at
scalability and runtime overheads.

The machine used for the performance measurements in this section is a
two-socket x86-64 NUMA system with two two six-core CPUs15 with hyper-

15Intel Xeon X5650 running at a clock speed of 2.67GHz.
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threading enabled. Thus, it provides 24 logical CPUs in total to the operat-
ing system. Each socket represents one NUMA node. Benchmark threads are
pinned to logical CPUs, alternating between NUMA nodes and first filling up
CPU cores before making use of hyper-threading.16 This scheme will lead to
NUMA-related slowdowns to be visible as soon as benchmarks are executed with
multiple threads, and will not lead to hyperthreading-induced slowdowns until
higher thread counts, when the likely higher level of contention causes memory
to become more of a bottleneck.

The benchmarks that I will consider are Genome, KMeans-Lo, KMeans-
Hi, Vacation-Lo, Vacation-Hi, and SSCA2 (see Table 3.2) as well as all the
IntegerSet microbenchmarks (see Table 3.1). Note that I will show execution
times for STAMP (i. e., less is better) but transaction throughput for IntegerSet
(i. e., more is better).

The STM implementations that I evaluate here are part of TinySTM++.
See Section 3.4.2 for further details about the implementations.

Memory–To–Orec Mapping

With orec-based STMs such as LSA, the detection of conflicts between transac-
tions happens on the orecs and not on the original memory location. Thus, the
memory–to–orec mapping affects every transactional memory access and thus
the performance of the whole TM.

When choosing a mapping, we face several trade-offs. To keep the runtime
overheads of transactions as low as possible, a coarse-granular mapping would
be best so that a transaction has to acquire or validate as few orecs as possi-
ble. However, a fine-granular mapping can help to avoid false conflicts between
transactions (i. e., conflicts that exist on the level of orecs but not when consid-
ering the actual accesses to application data), so that the TM does not provide
less scalability than available in the workload. But if the workload does in fact
not scale, then it can again be better to use a coarse-granular mapping so that
transactions pass the bottleneck as quickly as possible.

To establish a coarse-granular mapping, we can either (1) map several mem-
ory locations to the same orec or (2) increase the minimum granularity of mem-
ory accesses considered for conflict detection. Using the latter to some extent
is probably always required. For example, if most memory accesses in a trans-
action target pointers, then we certainly do not want to acquire or validate a
separate orec for each byte of each pointer; instead, when using machine words
as minimum granularity, we only have to deal with one orec per pointer and still
will not increase false conflicts if pointers are always aligned to words. Using
a smaller granularity than machine words could help in some applications, but
is probably not useful in general because many concurrent data structures are
based on pointers or machine-word-sized integers (e. g., types such as size t ).
Also note that the granularity affects the other components of the mapping too
because it changes the input values for those, as we will see later.

Another trade-off exists regarding the number of orecs that the TM should
use. Using a large number of orecs allows for a potentially more fine-grained

16For example, thread 1 is on the first core of the CPU that comprises the first NUMA
node, thread 2 is on the first core of second NUMA node CPU, thread 3 is on the second core
of the first NUMA node CPU, etc.; thread 13 shares the same CPU core as thread 1, thread
14 the same as thread 2, and so on.



5.2. TIME-BASED STM FOR C/C++ ENVIRONMENTS 95

concurrency control because the TM needs to map fewer memory locations to
the same orec. However, a large number will also increase the space overhead,
and can—depending on the hash function—increase a transaction’s footprint in
caches and other hardware resources such as TLBs; especially the latter can also
affect the performance of nontransactional code. On the other hand, a small
number of orecs will less likely cause these problems but instead forces the hash
function to try harder to avoid false conflicts.

Finally, the computational overhead of the hash function itself is also an
important factor because it is executed once for each transactional memory
access.17

This list of trade-offs already shows that choosing—or finding—a good hash
function is nontrivial. What makes this even more difficult is that the input
values to the hash function (i. e., the addresses of memory objects of the ap-
plication) are controlled by entities outside of the control of the TM runtime
library: Compilers, linkers, memory allocators, and the memory use patterns of
the application itself. When the TM runtime library has to perform a transac-
tional memory access, it cannot associate this access with a high-level memory
object anymore (see Figure 5.2; alternatives based on compile-time analysis are
discussed in Chapter 6).

Furthermore, the layout of application data in the address space affects the
performance of more than just transactional code. For example, the memory
allocator in the GNU C library (glibc) lets each thread allocate memory in
different regions of the address space, which reduces the synchronization-related
runtime overhead of memory allocation and can also lead to lower NUMA-
related memory access costs by allocating the memory pages for those regions
on the same NUMA node as the region’s thread. While this scheme can be a
challenge for TM hash functions as we will see later, it leads to faster execution of
the whole program. Thus, even if the TM could influence the memory allocation
scheme, it would have to trade off benefits for transactions against benefits for
everything else in a program. Second, it is not clear whether a tight integration
between the TM and other system libraries provides enough benefits to justify
the additional complexity and engineering costs. Therefore, I will assume that
TM runtime libraries for the usage scenarios that I focus on cannot rely on being
able to influence an applications use of the address space, and will just have to
handle the current memory allocation schemes.

Hash functions. Algorithm 4 shows the hash functions that I will consider:
Simple, Mult, and Mult32. All three have two common parameters: Shift
(line 2) and the number of orecs (lines 3–4). The number of orecs must be
a power-of-two value, and all hash functions return an index into the array
of orecs (i. e., they return values in the range [0, orecs)). The Shift parameter
represents the minimum access granularity discussed before; Shift controls how
many of the least-significant bits of an address are discarded before the address
is actually hashed (e. g., see line 13).

The Simple hash function then just uses the least-significant bits (of the
remaining bits after shifting) to index into the array of orecs (line 14). While this

17This is to some extent a result of how the TM runtime library ABI is designed: Each
load or store function receives the absolut address or the target memory location, and not a
relative address, for example.
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Algorithm 4 Hash functions for mapping memory addresses to orecs on a 64b
system.

1 // Global constants
2 unsigned shift; // The number of least−significant bits to discard
3 unsigned orecs bits; // The number of bits required to index into all orecs
4 unsigned orecs = 1 << orecs bits; // The number of orecs must be a power of two
5

6 // Odd random numbers. The examples given are the numbers used in the evaluation.
7 uint64 t randomMult = (11400714818402800990ULL >> shift) | 1;
8 uint32 t randomMult32 = 81007;
9

10 // The simple, default mapping
11 unsigned hash Simple(void∗ addr)
12 {
13 uintptr t a = (uintptr t)addr >> shift;
14 return a & (orecs − 1);
15 }
16

17 // Multiplicative hashing
18 unsigned hash Mult(void∗ addr)
19 {
20 uintptr t a = (uintptr t)addr >> shift;
21 unsigned pointer bits = sizeof(uintptr t) ∗ 8;
22 return ((a ∗ randomMult) >> (pointer bits − orecs bits − shift)) & (orecs − 1));
23 }
24

25 // Multiplicative hashing, 32b variant
26 unsigned hash Mult32(void∗ addr)
27 {
28 uint32 t a = (uintptr t)addr >> shift;
29 return (a ∗ randomMult32) >> (32 − orec bits);
30 }

is fast to compute, it does not consider any higher-order bits at all, which will
result in two addresses being mapped to the same orec whenever their distance is
a multiple of 2orecs bits+shift . This seems to happen rather often in practice. For
example, the per-thread regions in glibc’s memory allocator discussed previously
are aligned to power-of-two addresses. If threads then have similar allocations
patterns for shared data (as with the IntegerSet benchmarks), the probability
of false conflicts rises the lower the number of orecs or access granularity.

The Mult hash function aims at avoiding the collision issues of the Simple
hash function by using multiplicative hashing [68]: Instead of using just the
least-signficant bits, it multiplies the address with a random number and uses
the most-significant bits of this product (line 22). Note that it still discards the
least-significant bits first, which reduces the number of bits that it can take into
account (i. e., the number of bits by which to shift the product to the right is
reduced by the Shift number of bits). The random number must be odd and
in the range of possible inputs (i. e., [0, 264−shift) in a 64b system); the number
used in my implementation is based on the (

√
5 − 1)/2 recommendation by

Knuth [68] (see line 7). The class of multiplicative hash functions with such
constraints is universal in the sense that the probability of a hash collision for
two different input values is bounded by 2/2orecs bits [32]. In practice, this means
that the TM can just pick a different random number—possibly at runtime—if it
suspects the current level of false conflicts to be too high, and that doing so will
with high probability lead to a better mapping eventually (if the first random
number was indeed an unfortunate choice). Thus, compared to the Simple hash,
Mult can avoid the 2n-difference collisions, can steer away from other collisions
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by using a different random number, and is still relatively efficient to compute
with just one 64b multiplication and a few additional bit-wise operations. It is
also faster than other universal classes of hash functions (e. g., computing the
address modulo a prime number).

The Mult32 hash function is a 32b variant of Mult and uses only the lower
32 bits of the address after discarding the access-granularity bits (line 28). This
allows it to use just a 32b multiplication, which might be more efficient than
Mult’s 64b multiplication on some hardware. The choice of a small random
number for Mult32 (line 8) is not completely arbitrary: it represents a contrast
to the large factor used in Mult, yet the value is large enough so that low-order
bits of addresses will still make a difference.18

Interestingly, all three hash function result in about the same single-thread
runtime overheads for transactions. Running the benchmarks with a Shift value
of 6 and just 8 orecs (i. e., the whole array of orecs fits into a single cache line)
on the machine described previously shows that the performance difference for
any pair of hash functions is not more than 5% and typically around 2%. There
is no clear winner, but Mult32 often performs best and Mult worst. The same
holds when increasing the number of orecs to 212. This might be different on
less powerful CPUs.

Other candidates for hash functions could be xor-based functions that incor-
porate knowledge about common layout patterns in the address space to mix
input bits with low collision probability (e. g., to avoid the issues of Simple).
Open hashing (i. e., keeping a linked list of several orecs per index when false
conflicts happen) probably has a too large runtime overhead because of the in-
direction and thus additional cache misses and footprint. Closed hashing and
linear probing might be worthwhile, but I have not investigated this further.

Hash functions parameters. When we keep the random numbers used in
Mult and Mult32 constant, all three hash functions are parametrized by Shift
and the number of orecs. If we do not want to have to rely on automatic tuning
of these parameters at runtime (which might be difficult), then we need to select
parameters a priori that will hopefully provide decent performance.

I have measured the performance of LSA with each the Simple, Mult, and
Mult32 hash functions, Shift ranging from 3 to 10, and the number of orecs
ranging from 212 to 226 on the STAMP and IntegerSet benchmarks with 4, 12,
and 24 threads, respectively. The performance of HashTable and SSCA2 is not
significantly affected by the choice of hash function or hash function parameters,
so I will not consider them in detail.

To be able to select good parameters, we first need to prune parameters that
are unlikely to provide good performance; this would also be helpful if we could
rely on automatic tuning.

Let us start this pruning process by looking at large numbers of orecs first;
specifically, whether 224 or 226 orecs provide any benefit over 222 orecs or less.

18Assuming that the smallest value of orecs bits is 16, then the 16 low-order bits of the
multiplication product will be discarded. For the least-significant bit of the address (after
discarded access-granularity bits) to have a significant impact, the minimum value of the
random number needs to be larger than 216; the value on line 8 is the product of (

√
5− 1)/2)

and 216. Note that for the experiments with 12 orecs bits , a few further least-significant bits
of the address thus have less influence; nonetheless, the performance of Mult32 is still good
in such a setting.
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Figure 5.3: Performance of LSA with different hash functions and hash param-
eters for large numbers of orecs.
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Figure 5.3 shows three interesting cases. In Genome, Simple can benefit only
slightly from more than 222 orecs, and just if Shift is less than 6. With the same
benchmark but 24 threads (not shown), it can benefit a bit more and also with
larger values of Shift. However, in all other STAMP benchmarks Simple does
not benefit from large numbers of orecs, or is even slowed down by them (e. g., in
Vacation). Mult and Mult32 never benefit or are slowed down, especially with
small values of Shift as shown for Genome. The reason for the latter is likely
that multiplicative hashing returns values that are distributed more randomly
across the whole array of orecs, in contrast to Simple which translates locality
in accesses to locality in the array of orecs; The result of such behavior is that
Mult and Mult32 access a wider range of memory, and then probably suffer
from the higher TLB footprint, for example. A small access granularity (i. e.,
a small Shift value) increases this problem because transactions then need to
touch more orecs. A similar effect is visible with the IntegerSet benchmarks,
but less pronounced; overall, Mult and Mult32 already reach peak performance
with 222 orecs or less.

In contrast, Simple can benefit from large numbers of orecs on the IntegerSet
benchmarks, as shown by the RBTree-Small and SkipList-Small examples in
Figure 5.3. RBTree-Small suffers especially with a small Shift, which indicates
that this is caused by false conflicts for pairs of addresses that have a power-
of-two distance; LinkedList-Small and LinkedList-Large show similar patterns.
SkipList-Small does not show this problem but is slowed down if Shift has a
value of around 5 (RBTree-Large and SkipList-Large are similar); however, with
a different Shift value, 222 orecs can also result in decent performance.

Overall, performance does not increase when using more than 222 orecs.
Second, the space overhead would just be too large to be practical, as 222 orecs
already require 32MB of memory on a 64b system. Therefore, I will not consider
more than 222 orecs.

In contrast, 212 orecs result in a space overhead of just 32KB, which might
be sufficient even on systems with a small amount of memory. However, do they
allow for decent performance and infrequent false conflicts? Figure 5.4 shows a
few examples.

For STAMP, Mult32 provides good performance in comparison to the other
hash functions: It is always better or as good as the others in Genome and
Vacation, but struggles with large Shift values in KMeans (but not significantly
except in KMeans-Hi with 12 or 24 threads, where Mult is better). With In-
tegerSet, Mult32 is always better than Simple. Mult is somewhat better than
Mult32 in LinkedList but there is no clear winner among the two (see Fig-
ure 5.4): Whereas Mult32 is typically better when Shift is less than 5, Mult
performs equal or better starting at Shift values larger than 5. Overall, for 212

orecs, Mult32 with Shift set to 4 provides good performance compared to Mult
or Simple with any Shift setting. Mult with Shift set to 6 also performs well,
but struggles in Vacation. Simple with Shift set to 6 works well in STAMP, but
has very low performance in IntegerSet.

Notwithstanding, 212 orecs never provide a performance advantage over 216

orecs. The latter allow for at least 10% more performance on basically all
benchmarks, they are less prone to slowdowns associated with certain Shift val-
ues (especially with Mult32 on IntegerSet and Mult on STAMP), and their space
overhead of 512KB is probably still practical for many applications. Therefore,
I will not consider 212 orecs further.
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For the Shift parameter, we do not need to consider a value of 10 because
it never provides a performance advantage except a very small one in Vacation
with a larger number of orecs, it does not perform well in many of the IntegerSet
benchmarks, and it performs very poorly in KMeans. Likewise, we can discard
a Shift value of 3: It is never beneficial with Mult32, performs badly with
Simple in IntegerSet, and only provides a slight benefit in a few other benchmark
configurations (e. g., Simple on four-thread RBTree-Large, or KMeans-Hi with
24 threads).

After this pruning of certain parameter values, we can consider just a Shift
parameter ranging from 4 to 8 and 216 to 222 orecs. Because we do not want to
assume automatic tuning and want to find a general-purpose memory–to–orec
mapping, we need to select one set of parameter values for each hash function
that provides good performance across all benchmarks.

Figures 5.5 and 5.6 show the performance of LSA with the three hash func-
tions on selected STAMP benchmark configurations. Genome benefits from
a large number of orecs, especially when Simple is used. Vacation-Lo and
Vacation-Hi show performance characteristics similar to the case shown in Fig-
ure 5.5 independently of the number of threads. In contrast to Simple, Mult
and Mult32 get slowed down by large numbers of orecs and small values of Shift,
which is a similar effect as in Genome with more than 222 orecs (see Figure 5.3
and the previous explanation of this effect). The results for KMeans-Lo do not
show any clear trends. In contrast, performance of KMeans-Hi suffers signifi-
cantly if the minimum access granularity is too large (see Figure 5.6), especially
with Simple. However, with less contention as in the case of 4 threads, the most
significant slow-down for Mult and Mult32 again happens with a combination
of many orecs and a small Shift value.

Figures 5.7 and 5.8 show the performance of selected IntegerSet configura-
tions19. Hash function parameters do not have a large influence on Mult and
Mult32, which indicates that both are good hash functions in that they map
evenly across the array of orecs and thus are less likely to cause false conflicts;
the two exceptions are a small slow-down in case of many orecs and a small
Shift value, and LinkedList-Large, which seems to slightly favor a small access
granularity. In contrast, Simple is very sensitive to the hash function param-
eters, to the point where certain parameters lead to just half the throughput
compared to others. This indicates that Simple is more prone to hash collisions
in the case of certain memory access patterns.

Across all STAMP and IntegerSet benchmarks, Mult32 seems to perform
best with a Shift value of 5 or 6 and 216 orecs. A larger number of orecs provides
only small performance benefits in primarily Genome as well as LinkedList and
well as RBTree-Small with 4 threads, but not in other cases.

For Mult, the sweet spot seems to be at a Shift value of 6 and 220 orecs. A
larger number of orecs would help in Genome but would decrease performance
in Vacation. 216 orecs would be a decent choice too; Mult32 is somewhat better
for this number of orecs in Genome and Vacation, but performs slightly worse
in some of the IntegerSet configurations.

For Simple, the choice is more difficult due to its sensitivity to the hash
function parameters. 216 orecs do not allow Simple to provide good performance

19SkipList-Large shows similar characteristics as RBTree-Large except that Simple performs
even worse compared to the other hash functions. LinkedList-Small is similar to RBTree-
Small. SkipList-Small resembles characteristics of both RBTree-Small and RBTree-Large.
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Figure 5.5: Performance of LSA with different hash functions and hash param-
eters on selected STAMP benchmarks.
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Figure 5.6: Performance of LSA with different hash functions and hash param-
eters on KMeans-Hi.
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Figure 5.9: Examples for the scalability allowed by the Simple hash function
compare to the Mult and Mult32 (e. g., LSA-Mult32-16-5 uses 216 orecs and a
Shift value of 5).

in IntegerSet and Genome. With 220 orecs, Simple can still suffer from slow-
downs, especially with small IntegerSet configurations and a Shift value of 6,
or in Genome. A Shift value of 4 or 5 does not perform well in LinkedList and
RBTree-Small; in turn, a value of 8 leads to very bad performance in KMeans-
Hi. Thus, the best choice seems to be to use 222 orecs and a Shift value of 6 for
Simple.

Of those three candidations for the memory–to–orec mapping, I will not
consider Simple further. First, while it provides a slight performance advantage
over Mult and Mult32 in Genome and Vacation, it scales significantly worse to a
larger number of threads in KMeans-Hi and most of the IntegerSet benchmarks
(see Figure 5.9 for examples). Second, it has to use 222 orecs to not decrease
performance further, which results in a space overhead of 32MB, compared to
the 8MB or 512KB of Mult with 220 orecs or Mult32 with 216 orecs, respectively.
Finally, Simple is not robust as the hash functions based on multiplicative hash-
ing, which can provide a good mapping for all kinds of access patterns by just
trying a sufficiently large number of different random numbers.

Mult and Mult32, with the random number parameters that I chose, do not
result in significantly different performance, and should rather be considered
as two examples of multiplicative hashing. The Mult32 example shows that
requiring just 216 orecs can still provide good performance, but roughly similar
performance would be possible with Mult and 216 orecs. Even though these hash
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function parameters have been evaluated just on the STAMP and IntegerSet
benchmarks, multiplicative hashing forms a class of universal hash functions
and thus should provide good memory–to–orec mappings with other workloads
as well.

Runtime Overheads and Scalability

After the previous selection of memory–to–orec mappings for LSA (i. e., Mult
with 220 orecs and Shift set to 6, and Mult32 with 216 orecs and Shift set to 5),
we can now investigate the performance of LSA in terms of runtime overheads
and scalability. I will compare LSA to the NOrec STM (Algorithm 12) and to
a global lock used to synchronize otherwise transactional code.

NOrec is a write-back STM design with invisible reads based on a single
orec (see Section 7.3.2 for a detailed description). The orec also serves as time
base, and NOrec uses time-based validation as a fast path; additionally, it em-
ploys value-based validation once time-based validation fails so as to prevent
aborts due to commits of nonconflicting update transactions. NOrec thus never
needs to access several orecs (which decreases its cache footprint) and does not
depend on a well-tuned memory–to–orec mapping. However, commits of all
update transactions are serialized using the single orec and prevent concurrent
execution of transactional accesses by other threads, which can become a bot-
tleneck once update transaction commits are frequent or take a long time. The
serialization of updates allows NOrec to implicitly avoid most ways in which
privatization safety could be violated. However, it can still read application
data that has been privatized, which can lead to protection faults if the mem-
ory protection level of the privatized data is changed (e. g., if it is unmapped);
thus, NOrec does not provide full privatization safety as required by the C/C++
TM specification (see Chapter 4). Nonetheless, masking such violations would
be easier than for other kinds of violations (e. g., writes to privatized data when
LSA rolls back a transaction). Therefore, I have not added enforcement of full
privatization safety to NOrec. Finally, note that the NOrec implementation
does not fall back to execute transactions in serial-irrevocable mode if they
abort more than a hundred times; unlike LSA, NOrec does not suffer from po-
tential livelocks because a transaction only aborts if another update transaction
finishes committing.

Using a global lock to provide mutual exclusion between regions of code is se-
mantically equivalent to using relaxed transactions for this code (see Chapter 4).
It would also provide a similar ease of use to programmers, although it does not
guarantee the same level of safety as atomic transactions. Furthermore, a TM
runtime library could also use a global lock internally to synchronize transac-
tions20, which leads to a TM implementation with no scalability but very low
runtime overheads. In particular, in my implementation the global lock is glibc’s
implementation of a normal POSIX Threads mutex and acquired and released
automatically by the TM runtime library. The library has been stripped down
to avoid most unnecessary runtime overheads (e. g., CPU registers are not saved
when a transaction is started, although stack slots are still saved) and always
executes transactions using the uninstrumented code path. After link-time op-
timizations, this results in similar code as if the programmer had added explicit

20In the current C/C++ TM specification, this even holds for atomic transactions that will
never get canceled, due to the restrictions on TM-safe code.
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mutex acquire and release operations to the application code instead of using
transaction statements.

I will not compare LSA against STM designs based on multiple orecs and
visible reads because a prior study [83] has shown that they perform inferior to
invisible reads. The authors of this study used a bit vector in each orec to let
transactions publish transactional read accesses, an STM very similar to LSA
(Simple hash function, 220 orecs, and Shift set to 6), and measured the perfor-
mance of the STAMP benchmarks on similar hardware (a two-socket, quad-core
Intel Xeon). They found that visible reads never provided a performance bene-
fit with either one or eight threads, but insteaded resulted in signficantly worse
performance in a few benchmarks such as Genome (see Figure 11 in the study).
Visible reads are thus probably a useful mechanism with some workload pat-
terns but not an approach that is beneficial in general, especially when several
concurrent transactions read from the same application data.

Other STM designs that have been proposed either have obvious perfor-
mance disadvantages in the general case (e. g., invisible reads with incremental
validation) or do not provide the consistency guarantees that we need in the
C/C++ context (see Section 5.4). NOrec and the global lock are good repre-
sentatives of the current range of single-orec or single-lock concurrency-control
mechanisms.

Figure 5.10 shows the single-thread runtime overhead of LSA, NOrec, and
a global lock compared to sequential code. Note that the STAMP benchmarks
execute a mix of transactional and nontransactional code in each thread, whereas
IntegerSet executed almost only transactions.

The STMs result in a significant runtime overhead compared to sequential
code, especially when transactions execute many memory accesses as in Genome
and LinkedList-Large. Besides memory accesses, other components of these
overheads are the costs of starting and committing transactions, allowing for the
restart of transactions (e. g., saving CPU registers and stack frame contents),
and other minor costs such as the maintenance of TM-internal performance
statistics. The compiler also influences these overheads by, for example, the
quality of its inlining decisions or how well its register allocator can cope with
the increase in code size due to instrumentation.

The runtime overhead of the global lock is often much smaller but is still sig-
nificant especially in IntegerSet benchmarks like HashTable that run very short
transactions. A part of this overhead could be avoided by further optimiza-
tions of the global lock TM runtime library, but the overheads associated with
acquiring and releasing the lock will remain. Nonetheless, a global lock is—in
terms of single-thread runtime overhead–the most efficient general-purpose way
to synchronize code, and thus should be the baseline that STM is compared to.

In general, it is important to keep in mind that the data shown in Figure 5.10
represents a snapshot of the performance of a prototype implementation; while
single-thread overheads of STM will likely remain significant in the general case,
there is also room for further optimizations both in the compiler and in the TM
runtime library.

Even if STMs suffer from a significant single-thread runtime overhead, they
can still provide good performance if their performance scales with the number
of threads executing transactions concurrently (i. e., if STMs can exploit paral-
lelism in the transactional workload). Figures 5.11, 5.12, 5.13, and 5.14 show
performance scalability for the IntegerSet and STAMP benchmarks. Note that
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Figure 5.10: Single-thread runtime overhead of LSA compared to NOrec and a
global lock, shown as performance in single-threaded benchmark runs normal-
ized to the performance of equivalent sequential code containing no synchro-
nization at all (i. e., higher values represent less runtime overhead).

to increase clarity, the figures do not show results of LSA-Mult if it scales very
similar to LSA-Mult3221.

Because a quiescence-based privatization safety implementation can limit
scalability heavily, I also show performance of variants of LSA that do not
ensure privatization safety (named LSA-Mult-NP and LSA-Mult32-NP). While
not ensuring privatization safety would violate the C/C++ TM specification,
other implementations than those based on quiescence would be conceivable
(see Section 5.4). Furthermore, this helps to distinguish scalability limitations
caused by the core algorithm of LSA from limitations in the privatization-safety
implementation.

The cost of memory accesses also has a large impact on performance. Cache
misses get the costlier the further away the most recent value of a memory
location is (i. e., in main memory or in another CPU core’s cache). As explained
previously, the benchmarks pin threads to logical CPUs; the scheme used so far
alternates between CPUs on different sockets (and thus different NUMA nodes),
which exposes the performance effect of NUMA as soon as more than one thread

21This also applies to the no-privatization-safety variants described next.
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Figure 5.12: Scalability of LSA, NOrec and a global lock with LinkedList and
HashTable.

is used. To highlight the significance of these effects, I also show measurements
for a different pinning scheme, denoted by AN (“Avoid NUMA”). With this
scheme, benchmarks first use all logical CPUs on the first socket (including
those provided by hyperthreading) and only after that pin threads to CPUs on
the second socket.22 Thus, we can expect to see the effects of hyperthreading
starting at more than 6 and more than 18 threads, and NUMA effects to kick
in at more than 12 threads.

The global lock does not provide any scalability beyond a single thread
in all benchmarks except KMeans and SSCA2 AN; even in these exceptions,
scalability fades away once the number of threads becomes large or NUMA-

22That is, for 1–6 threads, each thread runs on its own core on the first socket; with 7–12
threads, all threads are still on the first socket but thread 7 shares a core with thread 1, etc.;
starting with thread 13, the second socket is also used in a similar way.



112 CHAPTER 5. STM ALGORITHMS AND IMPLEMENTATIONS

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2  4  6  8  10 12  16  20  24

Genome
E

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2  4  6  8  10 12  16  20  24

Genome (AN)

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 2  4  6  8  10 12  16  20  24

SSCA2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads

 10

 12

 14

 16

 18

 20

 22

 24

 26

 1 2  4  6  8  10 12  16  20  24

SSCA2 (AN)

Threads

LSA-Mult
LSA-Mult32

LSA-Mult-NP
LSA-Mult32-NP

NOrec
Global lock

Figure 5.13: Scalability of LSA, NOrec and a global lock with Genome and
SSCA2.

related overheads are present. In most cases, performance drops significantly
as soon as more than one thread is used. While this performance drop could
be partially reduced by a more suitable tuning of the implementation of normal
mutexes in glibc23, a certain part of this slow-down is inherent and due to
contention on the lock (e. g., the performance drop in LinkedList-Small from 1
to 2 threads is smaller with the AN pinning scheme than with the default scheme
because the former keeps the first two threads on the same NUMA node).

RBTree and SkipList seem to allow for a high level of parallelism (see Fig-
ure 5.11), but do not benefit much from hyperthreading (e. g., see RBTree AN at
6 to 12 threads). The performance of LSA itself scales well, but the privatization
safety implementation limits the overall performance of the LSA-based STMs
(i. e., the NP-variants of LSA, which do not guarantee privatization safety, pro-
vide much more throughput at higher thread counts). This limitations is more
severe in the presence of NUMA-related memory-access overheads (e. g., com-
pare RBTree-Small with RBTree-Small AN at 1 to 6 threads, or see the drop in
throughput in SkipList-Small AN with more than 12 threads).

The privatization safety implementation is also the major reason for lack
of scalability in HashTable but has comparatively little influence in LinkedList

23The mutex implementation in the current version of glibc does not use any spinning, so
threads trying to acquire the lock will immediately block using an operating-system kernel
mechanism when they find out that another thread has already acquired it. There is also no
back-off or similar measures to reduce memory contention.
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Figure 5.14: Scalability of LSA, NOrec and a global lock with Vacation and
KMeans.
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(see Figure 5.12). Even without privatization safety, HashTable is very prone
to NUMA-related memory-access overheads as shown by the throughput drop
from 12 to 13 threads in HashTable AN; the cause of this could be either the
global time base of LSA (which is implemented using an integer counter accessed
by all threads) or scalability bottlenecks elsewhere in the system (e. g., the
memory allocator). However, such a throughput drop is never visible in all other
benchmarks except LinkedList-Small (which has also very short transactions);
this indicates that a global time base implemented as a shared counter is often
not a significant obstacle to scalability.

NOrec never scales better than LSA with privatization safety for larger
thread counts, and provides slightly more throughput typically only with less
than 6 threads. Compared to LSA without privatization safety, it only yields a
very small performance benefit with 1 or 2 threads. In general, NOrec is more
sensitive to NUMA overheads than LSA due to having to access the single orec
on each transactional read operation (e. g., see the throughput drop from 12 to
13 threads on RBTree AN and SkipList AN).

LSA provides performance equal to the global lock as soon as more than one
thread is used, and better performance at 4 or more threads; the only excep-
tion is LinkedList-Large, which executes long transactions with little available
parallelism. Even if we would assume an ideal lock without any slow-downs
under contention and no cache miss costs (i. e., it would always provide as much
throughput as with a single thread), LSA could still provide better performance
in some benchmarks with at least 4 to 8 threads: On RBTree, on SkipList except
SkipList-Small with the default thread pinning scheme, and on LinkedList-Small
AN. LSA without privatization safety provides significantly more throughput in
all benchmarks except LinkedList.

Regarding the memory–to–orec mapping, Mult and Mult32 result in very
similar performance except in LinkedList-Large.

The STAMP benchmarks show similar performance characteristics (see Fig-
ures 5.13 and 5.14). Vacation has a lot of available parallelism, which allows
the STMs to scale well and LSA to perform better than the global lock with 2
to 4 or more threads. The Mult hash function provides better scalability when
no privatization safety is ensured. NOrec performs somewhat better than LSA
with privatization safety up to 8 to 12 threads but scales worse beyond this
point.

In Genome, LSA suffers from a high single-thread runtime overhead but
scales well and thus still manages to perform better than a global lock with 6 or
more threads. However, the STMs do not benefit from hyperthreading (e. g., see
Genome at 12 versus 13 threads and Genome AN at 6 versus 8 threads). As in
Vacation, Mult provides better performance with higher thread counts, which
is probably caused by Mult being able to use 220 orecs instead of 216 orecs that
Mult32 has available. NOrec has even higher single-thread overheads than LSA
and does not scale better.

The privatization safety implementation again limits scalability, especially
in benchmarks with short transactions (i. e., SSCA2 and KMeans). But even
with privatization safety, LSA performs better than the global lock in SSCA2.

In contrast, KMeans is a challenging workload for the STMs. The global
lock scales up four threads, which shows that the benchmark also executes a lot
of nontransactional code in parallel. Only LSA without privatization safety can
perform better than a global lock, starting at about 6 threads.
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Conclusion

Judging based on the measurements presented previously, the biggest obsta-
cles for LSA’s performance are (1) the scalability decrease imposed by the
quiescence-based privatization implementation and (2) the single-thread run-
time overhead that can only be countered by good scalability. In contrast,
implementing the global time base using a global shared integer counter seems
to not be a significant obstacle to scalability except potentially with very small
transactions such as in the HashTable and LinkedList-Small benchmarks.

There are several possible approaches to increasing the scalability of pri-
vatization safety. Besides the optimizations proposed by related work (see
Section 5.4), even just using techniques like combining [56] in the quiescence
implementation could decrease the number of cache misses and thus overall
performance. However, this cannot work around the inherent overhead of this
kind of privatization-safety implementation, namely that potentially privatizing
transactions have to wait for other transactions to extend their snapshot time
or commit. Therefore, avoiding to ensure privatization safety for transactions
that do not actually privatize could provide greater gains; if possible, this should
happen automatically (e. g., based on compile-time analyses) to not burden the
programmer with having to provide error-prone annotations.

The single-thread runtime overhead is to a large extent a result of the steps
required to perform transactional accesses; for example, maintaining a read
set or an undo log requires just a few CPU instructions but still represents
a significant overhead when compared against the single memory access that
would be executed in sequential code. However, DTMC does not perform several
optimizations such as the read–for–write and write–after–write memory access
variants already considered in the ABI (see Section 4.2.1). Further optimizations
would likely be possible but also require a more complex ABI; it would be easier
to justify the engineering effort once TM has more users and it becomes clearer
to which extent first-generation HTM support can take pressure off of STM
performance.

Despite these two performance obstacles, LSA typically allows for better
performance than provided by a global lock once several threads execute trans-
actions concurrently; on our benchmarks and hardware, LSA starts to provide
better performance at somewhere between 2 and 6 threads. Comparing LSA
to the performance of a global lock is a sensible comparison because a global
lock is as easy to use as transactions—the performance goal of TM is to provide
programmers with a useful trade-off between ease of use and performance. The
IntegerSet benchmarks illustrate that this would still hold in scenarios in which
one lock protects a whole data structure.

Beating the performance of sequential code is more difficult for LSA, requires
higher thread counts than necessary for beating the global lock, and also a
workload with enough available parallelism. Nonetheless, the performance of
LSA without privatization safety shows that LSA itself scales well enough to
make this possible.

NOrec has in several benchmarks a small performance advantage over LSA
with privatization safety on small thread counts, but provides less scalability;
however, compared to LSA without privatization safety, it looses this advantage
and scales much worse. Whether NOrec provides a useful alternative for small
thread counts thus depends on how practical NOrec’s incomplete privatization
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safety guarantee is in the target environment; if it is not feasible to implement
sandboxing for its pending reads and thus the implementation has to ensure
privatization safety explicitly, then NOrec is unlikely to provide any performance
benefit over LSA with privatization safety.

Nonetheless, even though none of the global lock, NOrec, or LSA perform
best on all thread counts, they can all be used to implement TM in a way that
is transparent to programmers. TM implementations can even switch at run-
time between a global lock and LSA, for example, depending on how frequently
transactions execute concurrently (see Section 5.4); this is one of the major
advantages when using TM as a programming abstraction for synchronization.

Further investigating such tuning decisions, in particular how to automati-
cally and efficiently categorize a workload at runtime, should be a worthwhile
topic for future research. For example, it would be interesting to better under-
stand when visible reads could provide a performance benefit, and to find a way
to let the TM apply them only for the transactions or data where this would
increase performance.

Likewise, tuning of everything related to the temporal aspect of TM (see Sec-
tion 3.1.2) also promises to provide performance benefits, but is out of the scope
of my work. The LSA implementation uses no contention management at all
(i. e., it restarts transactions immediately after they have aborted) but prevents
livelocks using the mechanism described in Section 3.4.2. Contention manage-
ment mechanisms could perhaps also decrease the negative performance impact
of false conflicts caused by unfortunate memory–to–orec mapping parameters.

However, one major roadblock to better STM tuning is the currently little
use of TM by mainstream programmers, which in turn leads to a lack of bench-
marks that would represent these use cases properly. Without more certainty
about which workloads and utility functions to tune for, making meaningful
tuning decisions is difficult and error-prone. Thus, future work will have to
continue to investigate and evaluate TM performance trade-offs.

5.3 Scalable Time Bases for Time-Based STM

As we have seen previously, the global time base plays a central role in time-
based STM algorithms like LSA. So far, we have only considered a simple time
base that is straightforward to implement: A global shared integer counter. This
counter works very well in smaller-scale systems. However, when the number of
concurrent threads grows or the machine itself becomes bigger and thus com-
munication between threads becomes more costly, a shared counter can quickly
become a performance bottleneck. While transactions read the counter only
infrequently (i. e., when starting, and optionally on-demand when snapshot ex-
tensions are necessary), every update transaction has to increment the counter.
This leads to contention on the counter and cache misses for all concurrent
transactions. A more scalable time base would thus be very beneficial.

With that in mind, what could be a more scalable time base? An interesting
observation is that in a very large system with many committing update trans-
actions, the counter would be updated very frequently. Each update transaction
represents progress and lets the global time advance; From the perspective of a
transaction, it will look like time is always advancing, pretty much like a wall
clock that ticks independently of what its observer does. Furthermore, more
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clock ticks (or counter increments) will not affect a transaction unless those
ticks where due to conflicting concurrent transactions.

This analogy suggests that we can use real-time clocks as time base. I will
show in what follows that this is indeed possible and how it can be achieved.
I will consider two kinds of clocks: perfectly synchronized clocks and exter-
nally synchronized clocks. Perfectly synchronized clocks (conceptually) give all
threads access to one global clock without any reading error. The reading error
is the difference between the value read and the correct value. Typically, such
a perfectly synchronized clock would need to be implemented in hardware but
software implementations with lower accuracy are also possible. An externally
synchronized clock also provides access to a global clock but with some reading
error that might vary.

Common to both kinds is that they can be more easily parallelized than
simple logical counters. Furthermore, the global clock does not actually need to
be a real-time clock: Neither its speed nor its value needs to be approximately
synchronized with real time. However, having a global real-time clock typically
simplifies the implementation of an externally synchronized clock (because local
clocks with a bounded drift rate can be used to approximate real time). In
particular, this reduces the overhead and error if the synchronization is done in
software.

Next, I will first explain how to make LSA ready to be used with real-time
clocks (Section 5.3.1) and discuss perfectly synchronized (Section 5.3.2) and
externally synchronized clocks (Section 5.3.3). I will conclude with a case study
whose experimental results show that using real-time clocks can indeed improve
the scalability of time-based STM on large systems (Section 5.3.4).

5.3.1 LSA on Real-Time Clocks

Algorithm 5 shows the Lazy Snapshot Algorithm (LSA) modified so that it can
be used with real-time time bases, which I will subsequently call LSA-RT. It
extends the single-version, write-through, blocking variant of LSA implemented
on top of C++11 (Algorithm 3); a multi-version variant is presented in the
original paper [93].

LSA-RT requires just four changes compared to Algorithm 3; while we have
to change how we deal with timestamps and access the global time base, both
the basic algorithm and the global and per-thread state can remain unchanged.

First, we access the global time with the new function get−time, both when
starting a transaction (line 2) and when trying to extend the snapshot time
(line 38).

Second, we delegate all comparisons between timestamps obtained from the
global time base to a new function, possibly−more−recent. In single-version LSA,
we only compare timestamps when we check whether a transaction’s snapshot
time is more recent than the commit time of the data being accessed. If the
latter might possibly be later than the former, we have to extend the snapshot
and validate (which explains the name of the new function).24 This comparison
takes place when reading and writing transactional data (lines 10 and 23).

Third, we now obtain a commit time using another new function called

24Remember that unnecessary snapshot extensions are harmless and only lead to some
unnecessary runtime overheads.
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Algorithm 5 LSA modified for real-time time bases (LSA-RT base, extends
Algorithm 3)

1: stm-start()p: . Replaces same function of Algorithm 3
2: st ← get-time()
3: r-set ← w-set ← undolog ← ∅

4: stm-load(addr)p: . Replaces same function of Algorithm 3
5: orec ←acq orecs[hash(addr)]
6: if orec.locked then
7: if orec.owner 6= p then
8: abort() . Orec owned by other thread

9: return ∗addr . We own the orec; just read through

10: if possibly-more-recent(orec.time, st) then . Need to extend snapshot?
11: extend() . Aborts if validation fails

12: val ←acq ∗addr
13: if orecs[hash(addr)] 6= orec then . Load again and compare with previous load
14: abort() . Data at addr was perhaps modified concurrently

15: r-set ← r-set ∪ {〈addr , orec.time〉} . Add to read set
16: return val

17: stm-store(addr,val)p: . Replaces same function of Algorithm 3
18: orec ← orecs[hash(addr)]
19: if orec.locked then
20: if orec.owner 6= p then
21: abort() . Orec owned by other thread

22: else
23: if possibly-more-recent(orec.time, st) then . May have read from addr before, so. . .
24: extend() . . . . abort if validation should fail

25: if ¬ casacq(orecs[hash(addr)] : orec → 〈true, p〉) then . Try to acquire orec
26: abort()

27: fencerel . Memory barrier with release memory order
28: w-set ← w-set ∪ 〈hash(addr), orec〉
29: undolog.push(〈addr , ∗addr〉) . Log previous value of *addr
30: ∗addr ← val . Write through to memory

31: stm-commit()p: . Replaces same function of Algorithm 3
32: if w-set 6= ∅ then . Nothing to do if read-only transaction
33: ct ← get-commit-time(acqrel) . Commit time
34: extend() . LSA-RT must always validate (and abort if validation fails)
35: for all 〈orec, orecval〉 ∈ w-set do
36: orecs[orec]←rel 〈false, ct, 0〉 . Release orecs

37: extend()p: . Replaces same function of Algorithm 3
38: st ← get-time()
39: for all 〈addr , time〉 ∈ r-set do . Are orecs free and timestamps unchanged?
40: orec ← orecs[hash(addr)]
41: if (orec.locked ∧ orec.owner 6= p) ∨ (¬ orec.locked ∧ orec.time 6= time) then
42: abort() . Inconsistent snapshot

43: abort()p: . Replaces same function of Algorithm 3
44: undolog.rollback() . Undo previous writes in reverse order
45: ct ← 0
46: for all 〈orec, orecval〉 ∈ w-set do
47: if incarnation-left(orecval.inc) then . No incarnation number overflow?
48: orecs[orec]←rel 〈false, orecval.time, orecval.inc + 1〉 . Release orec (new incarnation)
49: else
50: if ct = 0 then . Acquire new “commit” timestamp
51: ct ← get-commit-time(rel)

52: orecs[orec]←rel 〈false, ct, 0〉 . Release orec (new timestamp)
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Algorithm 6 LSA-RT with a shared integer counter as time base (extends
Algorithm 5)

1: get-time()p:
2: t ←acq clock
3: return t

4: get-commit-time(mode)p:
5: t ← atomic-inc-and-fetchmode(clock)
6: return t

7: possibly-more-recent(a, b)p:
8: return a > b

get−commit−time, which takes a C++11 memory order as parameter (lines 33
and 51).

For completeness, Algorithm 6 shows how the new functions can be imple-
mented using a shared integer counter as time base, leading to basically the
same code as in Algorithm 3.

The only subtle and nontrivial change is the fourth one: We always validate
on commit (line 34) and cannot skip validation if our snapshot time is right
before our commit time (as in Algorithm 3 on line 46).

With real-time clocks, we cannot acquire a new unique commit time; instead,
a transaction might share a commit timestamp with another transaction. We
still require the commit time to be larger than the global time when the trans-
action had acquired all its write locks (see Section 5.1.1), so all transactions
that have a snapshot time equal to our commit time or more recent will still
see all our write locks being acquired. Likewise, when we validate on commit,
we are guaranteed to be able to detect conflicts with other transactions trying
to commit at the same timestamp because all their write locks will be visible
to us. Therefore, only nonconflicting transactions will be able to commit at the
same timestamp. This will be further discussed in Sections 5.3.2 and 5.3.3.

Note that this approach also enables a potential optimization for the shared
integer counters: If the transaction uses a CAS instead of the atomic fetch–and–
increment (line 5 in Algorithm 6), then it can share a commit timestamp with
another transaction by just using the current global time after a failed CAS

attempt (i. e., another transaction’s commit time). On architectures that do
not support a fast fetch–and–increment, this can be faster than repeated CAS

attempts when the counter is contended [123].

5.3.2 Perfectly Synchronized Clocks

Synchronizing real-time clocks in distributed systems is a well studied topic [17,
43]. With the appropriate hardware support, one could achieve perfectly syn-
chronized clocks in the sense that there is no observable semantic difference
between accessing some global real-time clock or processor-local replicas of the
global real-time clock. There is of course a performance difference because there
is no contention when processors access their local clock but there might be quite
some contention when instead accessing a single global real-time clock.

In systems that do not have hardware-based clock synchronization, we can
synchronize clocks in software. When doing so, we need to expect that there
is an observable deviation between these individual, externally synchronized
real-time clocks (which I will discuss in Section 5.3.3).
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Algorithm 7 LSA-RT with perfectly synchronized clocks as time base (extends
Algorithm 5)

1: get-time()p:
2: t ← read-local-clock() . Reads the current value of the local clock
3: fenceseqcst . Memory barrier with sequential-consistency memory order
4: return t

5: get-commit-time(mode)p:
6: fenceseqcst
7: ts ← t ← read-local-clock()
8: while t = ts do . Loop until time has advanced
9: t ← t ← read-local-clock()

10: if mode = acqrel then
11: fenceseqcst

12: return t

13: possibly-more-recent(a, b)p:
14: return a > b

Algorithm 7 shows how we can use perfectly synchronized real-time clocks
for LSA-RT (Algorithm 5). To understand how this works, we need to take a
closer look on the requirements for the time base.

We assume that there is a set of clocks that are all perfectly synchronized to
a conceptual real-time clock. Function read−local−clock returns the current time
of the local clock associated with the requesting transaction. The timestamps
that a clock returns are monotonic (i. e., if a transaction first reads t1 and then
t2, then we know that t2 is guaranteed to be equal or larger than t1). All clocks
must return a new, larger timestamp eventually, and they never stop doing this
(i. e., after read−local−clock returned a timestamp t1, it will take a finite number
of steps until it will return t2 with t2 > t1); this ensures that the TM can make
progress.

Perfectly synchronized clocks give the guarantee that if any transaction calls
read−local−clock between real-time timestamps ts and te, then the function will
return a value t with ts ≤ t ≤ te. In other words, they behave like a single
linearizable real-time clock. As a result, possibly−more−recent is very simple:
We just have to compare the timestamps (line 14).

Similarly, in get−time, we just read the current time from the local clock
(line 2). In get−commit−time, we have to wait for a new timestamp that is
larger than the time at which the transaction had acquired all the locks. We
do this by reading the current time and then looping until we observe a larger
timestamp, which we return as commit time (lines 7–9).

However, the synchronization in LSA-RT is based on the C++11 memory
model, in which memory accesses are not guaranteed to be linearizable. There-
fore, we have to additionally embed the ordering implied by the linearizable,
perfectly synchronized clocks into the happens–before relation that the memory
model is based on.

We can do that by requiring that reading ordered timestamps of the clock
constrains the total order of sequentially consistent memory barriers. In partic-
ular, if a and b are such barriers, a is sequenced before a call to read−local−clock

that returns t, and b is sequenced after a call to read−local−clock that returns
t+ 1, then a happens before b.

With this constraint, we can express Algorithm 6’s acquire and release mem-
ory orders on accesses to the shared integer clock in Algorithm 7: acquire mem-
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ory orders are transformed into barriers after reading the clock (line 3 and 11),
and the release memory order when acquiring a new commit time is transformed
into a barrier before waiting for a new timestamp to appear (line 6).

This yields the essential ordering constraint: When a transaction operates
at a snapshot time t+ 1, then all the lock acquisitions of the transactions that
committed (or are about to commit) at t+1 will happen before the snapshotting
transaction’s operations. This holds because the update transaction executed a
memory barrier still at time t or earlier, and the snapshotting transaction will
execute a barrier at t+ 1 but before executing subsequent operations.

Note that the sequentially consistent barriers are just one possible way to
model this and that the optimal way to do it depends on the (hardware) imple-
mentation of the perfectly synchronized clocks. The previous approach works
well when full memory barriers are already linearizable operations. However,
it might also be possible to use barriers with the original acquire and release
memory orders if these get ordered by every tick of the clocks.

The resolution of the clocks also affects the algorithm (i. e., how frequently
the clocks tick). If reading the clock always takes at least one clock tick, the loop
with which we wait for a new timestamp (lines 7–9) might not be necessary. In
turn, if the resolution is rather low, then waiting for a new commit timestamp
can take a while. Alternatively, we can just skip the waiting on behalf of the
committer and mask this misbehavior on the side of reading transactions, similar
to how we can deal with externally synchronized clocks.

5.3.3 Externally Synchronized Clocks

Synchronizing clocks perfectly can be difficult, for example because the cost of
hardware clocks increases when accuracy needs to be high. In turn, if accuracy
is lower, a perfectly synchronized clock’s resolution will be lower too, which
leads to update transactions having to wait longer on average when obtaining
a new commit timestamp (see Section 5.3.2).

Therefore, we want to also be able to use externally synchronized clocks that
return imprecise values but for which the deviation dev between real-time t and
the value of the local clock at time t is bounded. However, with such clocks,
it might not be possible to always determine whether one timestamp was read
later or earlier than another one.

For a time-based transactional memory, the imprecision essentially means
that there is uncertainty about when a transaction committed an update and
how this is really ordered with respect to another transaction’s snapshot.

We can handle that uncertainty in a straight-forward way. If a transaction
cannot be sure that a snapshot extended by some committed version is valid at
a certain time, it assumes that the snapshot is not valid. Thus, it masks un-
certainty errors. Because the deviation is bounded, the uncertainty is bounded
too; it can render commits inaccessible for other transactions, but only some
time right after the commit.25 Note that a time-based TM algorithm can always
fall back to using validation (i. e., snapshot extensions), so we always have some
way to access a data item.

Algorithm 8 shows how we can use such externally synchronized clocks for
LSA-RT. First of all, all timestamps are now tuples (lines 6–8). They consist

25If keeping multiple versions of each data item, only the lower and upper bounds of a
version’s validity range are affected [93].
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Algorithm 8 LSA-RT with externally synchronized clocks as time base (ex-
tends Algorithm 5)

1: Global state: . Replaces global state of Algorithm 5
2: orecs: word-sized ownership records, each consisting of:
3: locked: bit indicating if orec is locked
4: owner : thread owning the orec (if locked)
5: time: commit timestamp (if ¬ locked), consisting of:
6: t: timestamp
7: cid: ID of the clock that t originated from
8: dev : maximum deviation of t from real time
9: inc: incarnation number (if ¬ locked)

10: get-time()p:
11: 〈t, cid, dev〉 ← read-local-clock() . Reads the current value of the local clock
12: fenceseqcst . Fence with sequential-consistency memory order
13: return 〈t, cid, dev〉

14: get-commit-time(mode)p:
15: fenceseqcst
16: 〈ts , cid, dev〉 ← 〈t, cid, dev〉 ← read-local-clock()
17: while t = ts ∧ clock-is-shared(cid) do . Loop unnecessary if dev > 0 and clock isn’t shared
18: 〈t, cid, dev〉 ← read-local-clock()

19: if mode = acqrel then
20: fenceseqcst

21: return 〈t, cid, dev〉

22: possibly-more-recent(a, b)p:
23: if a.cid = b.cid then . Timestamps from same clock?
24: return a.t > b.t . Yes, no deviation between timestamps

25: return a.t + a.dev > b.t − b.dev . No, need to take possible deviation into account

of a timestamp value t , an ID cid of the local clock that the timestamp was
obtained from, and the maximum deviation dev of this timestamp from real
time (i. e., if a call to read−local−clock is executed between ts and te in real time
and returns t, then ts − dev ≤ t ≤ te + dev). However, we still assume that
each clock is monotonic, so two timestamps obtained from the same clock can
be compared as when using a perfectly synchronized clock.

The get−time and get−commit−time functions are similar to those for per-
fectly synchronized clocks shown in Algorithm 7. However, the loop in function
get−commit−time is not required if we assume that dev > 0 and each thread has
its own clock that is shared with no other thread.26

The major difference to Algorithm 7 is that we need to take uncertainty into
account when reasoning about the validity of a snapshot based on timestamp
values. If timestamps are from the same clock, we can compare them directly
because they are from the same time base (line 24). If they are from different
clocks, then we have to take both clocks’ maximum deviation into account: We
can simply use the sum of these deviations as uncertainty interval, and make a
conservative decision (line 25).

Note that even with large deviations, we will always be able to construct
a snapshot becaus we can fall back to full validation after each access (i. e.,
returning false from possibly−more−recent will trigger a snapshot extension).

Furthermore, the deviations only matter if we read right after an update
performed by another thread; in this case, a reading transaction will suffer
from a cache miss anyway, which will take additional time. Conceptually, the

26If a clock is not shared between several threads and a thread only executes one transaction
at a time, then there can never be any conflicts between transactions using the same clock.
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Figure 5.15: MMTimer synchronization errors and offsets.

length of the cache miss reduces the length of the deviation and its effect on
performance; the cache miss results in having to wait some time anyway before
a transaction can read another transaction’s updates.

5.3.4 Evaluation and Discussion

To evaluate how time bases can affect performance, I will next present results
of a case study about LSA performance on an SGI Altix 3700, which is a cache-
coherent NUMA machine with Itanium II processors. Pairs of two processors are
tightly connected and share 4GB of memory; all processor pairs are (indirectly)
connected to all other pairs, and I executed my experiments on a 32-processor
partition of the whole 192-processor system. On the Altix, shared counters have
noticeable overhead because inter-processor communication is slow compared to
the compute speed of individual processors. Executables were generated using
an older version of the TM runtime library (see Section 3.4), which does not
ensure privatization safety. I experimented with two time bases: (1) an ordinary
shared integer counter and (2) MMTimer, a hardware clock that is part of the
Altix machine.

MMTimer. MMTimer is a real-time clock with an interface similar to the
High Precision Event Timer widely available in x86 machines. It ticks at 20
MHz but reading from it always takes an amount of time that is equivalent to
7 to 8 ticks of MMTimer, so the effective granularity is coarser than one would
expect from 20 MHz. In particular, MMTimer is therefore strictly monotonic
(i. e., both get−time and get−commit−time just return the value of MMTimer).

At first, I had no information about whether MMTimer is a synchronized
clock or not. I therefore used a simple test to measure the synchronization error
by (1) having threads on different CPUs read from MMTimer and (2) comparing
the clock value obtained at each CPU with a reference value published by a
thread on another CPU. Figure 5.15 shows the results of a four-hour run with
synchronization rounds every ten seconds.

In the figure, offsets represent the estimated difference of local clock values
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to the reference clock value and errors denote the largest possible deviation be-
tween the estimated offset and the offset that could be achieved by a perfect
comparison. Only the maximum values of all CPUs are shown for each round.
The results show that there is no drift, so MMTimer behaves like a global clock
or a set of synchronized clocks. Second, errors are always larger than offsets,
so MMTimer could indeed be a perfectly synchronized clock. Third, the error
seems to be bounded and is not too large: 90 ticks seems to be a reasonable esti-
mate for this bound (see Figure 5.15). However, the clock comparison algorithm
that I used suffers from the overheads of communicating over shared memory,
so MMTimer’s actual synchronization error bounds could be much smaller.

After performing these experiments, I got the information that MMTimer
is indeed a synchronized clock [61]. Every node in the Altix system has one
register for the clock that is accessible via the MMTimer interface. Before
system boot, a single node is selected as source for the clock signal, and all
other nodes’ clocks are synchronized to this node. During runtime, the source
clock then advances all other nodes’ clocks. Dedicated cables are used for the
clock signal. However, I do not know how the synchronization mechanism works
in detail (e. g., synchronization errors could arise from a varying latency of the
clock signal), but I believe that such potential errors are already masked by
the time that it takes to read the MMTimer (7 or 8 ticks of MMTimer), which
would mean that MMTimer behaves like a perfectly synchronized clock.

The important observation is that, unsurprisingly, hardware support can
ensure a much better clock synchronization than mechanisms that require com-
munication via shared memory (in our case, 8 ticks vs. 90 ticks).

Time base overheads. To investigate the overheads of using shared counters
and MMTimer as time bases, I used a simple workload in which transactions
update distinct objects (but this fact is not known a priori). This type of work-
load is likely to exist in many larger systems: programmers rely on the TM
to actually enforce atomicity and isolation of concurrent computations, but the
program has been optimized to prevent global synchronization bottlenecks. Fur-
thermore, performance in this workload is not affected by other TM properties
(e. g., contention management), which makes the overhead of the time base more
apparent.

Figure 5.16 shows throughput results for this workload for update trans-
actions of different sizes. For very short transactions, throughput in single-
threaded executions is decreased by MMTimer’s overhead (i. e., the 7 to 8 ticks
required to read from it); for transactions with 10 accesses, using MMTimer
results in half the throughput. However, the overhead becomes small when
transactions are larger; with 100 accesses, using MMTimer results in a roughly
10% throughput decrease.

More importantly, using a shared counter as time base prevents the STM
from scaling well, whereas with MMTimer, performance increases linearly with
the number of threads on this workload. For example, with just two threads and
transactions with 10 accesses, MMTimer already leads to 60% more throughput.
The impact of the shared counter’s overheads decreases when transactions get
larger because the contention on the counter decreases. However, the influence
of the shared counter’s overhead would increase again if the STM would perform
its operations faster or more CPUs would be involved.
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Figure 5.16: Overhead of time bases for update transactions of different size.

Synchronization errors. Larger synchronization errors increase the amount
of time in which transactions cannot be certain whether they are allowed to
access a memory location or not. To resolve the uncertainty, they need to extend
their snapshot time far enough to make it clear that an orec’s timestamp is not
possibly more recent than the snapshot time.

However, which effect larger synchronization errors actually have on perfor-
mance depends a lot on the workload (e. g., locality, update frequencies, or the
duration of transaction) and on the overheads that the TM and synchronization
on the respective architecture introduce. First, a large synchronization error
only matters if one transaction needs to read another transaction’s updates im-
mediately after the other transaction committed. This is unlikely in workloads
with little contention, and will not happen for threads that share the same clock
or are close to each other in terms of where on the system they execute (in which
case the errors are likely to be smaller). Second, while the synchronization er-
rors imposes a limit on the maximum scalability for transactions that do not use
snapshot extensions, transactions can still use those extensions like incremental
validation to make progress regardless of any time base synchronization errors.
Thus, scalability is only limited by the minimum of the limits imposed by either
errors or incremental validation overheads.

To illustrate the effect that synchronization errors might have for contended
workloads, Figure 5.17 shows transaction throughput for a linked list that is
accessed by all the threads in the Altix’ partition. We can observe that even
with a synchronization error of 100 MMTimer ticks (which means an effective
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Figure 5.17: Influence of synchronization errors on throughput on LinkedList
(see Section 3.4.3) with a 20% update transaction rate, using 32 threads, and
lists with an average number of elements of 32, 128, and 256. MMTimer’s
synchronization error (“dev”, see Algorithm 8) is specified in terms of MMTimer
ticks.

maximum offset between two clocks of 10µs), using MMTimer still results in
roughly the same throughput as if using a shared integer counter as time base.
Only larger synchronization errors result in a performance decrease compared to
the counter, and this decrease is stronger on the shorter lists where transactions
are more likely to hit other threads’ updates after a short amount of time. Note
that this workload is unlikely to allow for good performance of transactions
independently of which time base is used. There is not a lot of parallelism in
a system-wide shared linked list, so this would be a bottleneck in the program
in any case (e. g., due to frequent cache misses and transaction conflicts). In
contrast, if the program would pay attention to locality and threads would
access separate lists, then we would see advantages for MMTimer similar to
those shown in Figure 5.16.

As I have mentioned previously, the STM implementation used for this eval-
uation does not guarantee privatization safety. Applying the quiescence-based
implementation described in Section 5.2 would be possible but might cause ex-
cessive overheads on large systems due to a large number of threads and large
cache miss overheads. Nonetheless, we can still ensure privatization safety by
waiting until the snapshot times of other active transactions are guaranteed
to be more recent that the updating transaction’s commit time. Likewise, the
TM could still use combining to decrease communication overheads because all
snapshot times originate from the same time base.

Overall, this case study and evaluation shows that scalable time bases are
practical and allow LSA to scale to large systems despite it relying on a global
time base. For synchronized hardware clocks to be useful as a time base, their
synchronization errors must be bounded and the bounds must be known a priori
(e. g., at program start, but lease-like guarantees would be useful as well).
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5.4 Related Work

Dice et al.’s TL2 STM [27] is very similar to LSA, and was proposed only
slightly later than the first version of LSA [92]. While TL2 also uses time-
based validation and a global time base to ensure that the snapshot taken by
a transaction is always consistent, it does not include the possibility to extend
the validity of a snapshot to a more recent time (except as a mandatory step
during transaction commit); thus, a transaction can only read from an object if
the most recent update to the object is before the start time of this transaction.
TL2 combines the time-based TM approach with a write-back, word-based,
blocking TM design that uses ownership records and does not maintain multiple
versions of objects in memory; this combination provides good performance, and
later implementations of LSA also moved towards this combination [93, 42]. As
time base, TL2 uses a shared integer counter but also proposes optimizations
that allows transactions to share a commit time in certain cases, which can
be beneficial if the hardware only implements CAS and not atomic fetch–and–
increment operations. Dice et al. also suggest to use hardware clocks instead of
a shared counter to avoid its overhead but do not investigate this in detail.

Concurrently with TL2, Spear et al. proposed a heuristic [109] aimed at
reducing the overheads of incremental validation: A global variable is used to
count the number of attempted commits of update transactions in the whole
program, which allows transactions to skip incremental validation if the value
of the variable did not change since their most recent validation. This approach
is significantly less effective than TL2 or LSA because even updates to mem-
ory locations not accessed by a transaction will always trigger full incremental
validation. Furthermore, with such a heuristic the global variable is a bigger
bottleneck than the global time bases used by TL2 or LSA because transactions
have to read this variable on every transactional access; thus, even disjoint
updates will lead to costly cache misses.

Zhang et al. expand on the earlier commit time sharing schemes of LSA-RT
and TL2 by investigating further variations of the commit phase in time-based
TM algorithms [123]. They focus on shared counters as time base, and try to
either reduce the number of updates to the global time base or avoid unnecessary
validations on commit.

Overall, time-based validation is now used by most STMs that use invisible
reads and need to provide transactions with consistent snapshots. For example,
SwissTM [34] consists of LSA and a variation of TinySTM’s [42] encounter-time
locking. Likewise, the STM in Intel’s TM stack [83, 118] uses LSA with a write-
through design but combines it with a transaction execution mode that uses
visible reads; transactions that need to make progress can use the latter mode,
and can still run concurrently with LSA-based transactions.

Two other STMs proposed more recently than LSA and TL2, NOrec [22] and
TML [20], try to reduce STM runtime overheads by using as little metadata and
instrumentation as possible. TML is essentially equivalent to a write-through
LSA implementation (i. e., Algorithm 3) that uses only a single ownership record,
which allows optimizations such as not having to maintain a read set or an
undo log for write. However, TML does not scale in the presence of update
transactions even if concurrent transactions do not conflict with each other.
NOrec aims at similar optimizations but tries to improve scalability in workloads
with update transactions by using a write-back design and combining time-based
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validation with value-based validation (see Section 7.3.2 for details).
STMs proposed prior to LSA either used visible reads, like in SXM [46], or

invisible reads with incremental validation, like in DSTM [54] or ASTM [79].
There are several STMs [28, 98, 51, 1, 88] that do not guarantee the con-

sistency of a transaction during its execution, and are thus not suitable for
transactions in a C/C++ environment as explained in Section 4.2.

How to map memory locations to TM synchronization metadata has seen
little investigation so far compared to other aspects of STMs. To the best of my
knowledge, all major word-based STMs for C/C++ environments use a map-
ping similar to the Simple hash function in Algorithm 4. For example, Yoo et
al. [121] observe that 214 orecs and a conflict detection granularity of 64B result
in very frequent false conflicts in Genome and Vacation; as a new approach, they
essentially propose to instead use 220 orecs that are packed more densily than in
the prior implementation. Multiplicative hashing has not been evaluated so far,
which might have been motivated by the larger runtime overhead of multiplica-
tion in less recent CPUs. Felber et al. [42] propose hierarchical locking, which
adds one additional level of TM metadata whose items each summarize a subset
of all orecs; this allows for skipping the validation of certain orecs if no orec in
the respective subset has changed. Nonetheless, the Simple hash function is still
used for this mapping. Zilles and Rajwar [125] show that in a simplified model
of execution under a TM, the probability of false conflicts grows quadratically
with both the number of locations accessed by each transaction or the number
of transactions executing concurrently. They propose to use a tagged ownership
table in which orecs also store details about the memory addresses they have
been acquired for, and refer to a chaining hash table as one possible imple-
mentation of this; however, they do not evaluate such a scheme in practice but
only describe the potential runtime overheads of such an implementation. They
do not further consider specific memory–to–orec mappings but rather assume
universal hash functions in their model.

Several authors [110, 83, 80, 121] have investigated how to reduce the run-
time overhead of ensuring privatization safety. All of these approaches either
rely on quiescence schemes using timestamps from a global time base, or use it as
a baseline implementation for transactions that use invisible reads. Thus, time-
based TM is a good fit for these schemes because it already provides transactions
with suitable timestamps. Besides explicit privatization fences based on quies-
cence, Spear et al. [110] also consider the instrumentation of nontransactional
code as an alternative. Yang et al. [83] observe that there is no need to quiesce
transactions that have not (yet) performed invisible reads (e. g., because they
use visible reads instead). Marathe et al. [80] investigate optimizations based
on making read operations visible to a limited extent that is still useful for pri-
vatization safety purposes but incurs less runtime overheads than fully visible
reads. Yoo et al. [121] propose to provide interfaces that allow programmers to
mark transactions that do not privatize data.

Tuning the performance of TM implementations, possibly at runtime, is ex-
plicitly considered by a few authors (but is to a lesser extent part of many
TMs). Intel’s TM runtime library [83] can switch between TM algorithms at
runtime by changing a function pointer table that dispatches calls to the library
to different internal TM implementations. GCC’s TM runtime library [44] also
has this ability but currently uses only a very simple policy for the choice of
TM algorithm. Spear [108] investigates this in more detail, including switching
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between differently optimized variants of the same STM algorithm (e. g., avoid-
ing write-set lookup costs in write-back STMs by running a specialized variant
until the first write happens in a transaction). Felber et al. investigate using
a hill-climbing strategy to tune memory-location–to–metadata mapping of an
STM.

However, validating the effectiveness of any tuning decision is difficult given
the current lack of a wider range of realistic TM benchmarks; thus, automatic
tuning is not not within the focus of my work (see Section 3.2). This also
applies to tuning the temporal aspect of TM implementations. One important
part of this is deciding how to react to conflicts between transactions, which is
called contention management and can range from simple back-off schemes to
more advanced conflict resolution schemes that dynamically compute priorities
of transactions (e. g., as proposed by Scherer and Scott [101]).

Finally, time-based validation is also beneficial outside of memory-only trans-
actions: Google’s Percolator [85], which is a system built to incrementally pro-
cess very large data sets with transactional guarantees on data centers with
many servers, uses essentially the same algorithm as the snapshot-isolation ver-
sion of LSA [92]. Application data is kept in the Bigtable distributed storage
system, which can provide atomic access to single data items extended by a lock
flag and a timestamp. As global time base, Percolator uses a centralized server
that offers functions to get the current time and acquire a new commit time.
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Chapter 6

Compile-Time TM
Optimizations

TM support in compilers is an essential building block of a realistic TM imple-
mentation (see Section 3.2). This is not just due to ease of use and hosting the
implementation of programming-language integration, but also for performance
reasons: Everything in an application with transactions that can be done and
optimized at compile time does not lead to overheads at runtime.

Furthermore, compilers have more high-level information than pure runtime-
library–based solutions, for example. With a split of responsibilities between
TM compilers and runtime libraries as explained in Section 4.2, compilers have
all the information available in the source code of the transactional application
(e. g., data types, or all nontransactional code). In contrast, runtime libraries
typically implement a simpler ABI that requires passing less information to it
and focuses just on the execution of transactional code.

There are many possible TM-centric compile-time optimizations. For ex-
ample, the ABI discussed in Section 4.2 allows compilers to convey whether
a certain transactional memory access always follows after a certain other ac-
cess to the same memory location (e. g., that a certain load is always preceded
by a store). DTMC (see Section 3.4.1) does not perform perform this kind of
optimizations but instead applies just general-purpose optimizations to trans-
actional code.

Instead of such low-level optimizations, the category that I focus on in what
follows are divide-and-conquer approaches. My past experience indicates that
it is unlikely that a one-size-fits-all TM algorithm exists that is optimal for each
workload. This is also backed up by the performance results shown for STMs
in Section 5.2.2 and for HyTMs in Section 7.3, and the many different STM
and HyTM algorithms that have been proposed and make different trade-offs
to optimize for different workloads (see Sections 5.4 and 7.3.3).

For example, consider the difference between visible reads and invisible reads
discussed in Section 5.1: While invisible reads are probably the better general-
purpose technique, visible reads might perform better for workloads with a
high probability of conflicts between transactions because they allow the TM to
choose which transaction to abort or stall. Another example is the granularity of
conflict detection: data structures that suffer from a high probability of conflicts
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Figure 6.1: TM-based synchronization: Automatic partitioning of application
data. Note that even with partitions, a TM runtime library might still map
memory locations to low-level TM metadata; however, it can do so differently
for each partition.

might benefit from coarse-grained detection (e. g., at the granularity of whole
data structures), whereas one would rather use fine-grained detection for data
structures like hash tables for which conflicts are typicallly less likely.

Supporting a divide-and-conquer approach does not yield a one-size-fits-all
solution to this performance problem, but it allows for combining the strengths
of different TM algorithms as required by a workload. This rests on the as-
sumption that a large application is likely to execute transactions with different
purposes on different parts of the application state and that workloads are more
homogeneous within rather than across those parts. In turn, this can make
it beneficial for TM performance to synchronize differently on each part; also,
certain optimizations might only be possible on some parts but not for all parts
of the application.

Thus, following the analysis of TM-based synchronization in Section 3.1.2,
the dimension across which we have to partition is space (i. e., application data
accessed by transactions). This partitioning should be automatic in the sense of
not requiring programmers to provide any information about partitions. Man-
ual partitioning would put programmers in control but would also bring back
the difficulties of maintaining something like a locking scheme; acquisition or-
der would not matter but programmers would have to follow and agree on a
program-wide data–to–partition mapping.

But how can we best partition application data? Consider Figure 6.1: Try-
ing to partition on the low level of raw addresses is not helpful because a large
amount of high-level information has already been lost, other placement deci-
sions affect the layout of data in the address space (e. g., compilers or memory
allocators), and runtime overheads are harder to avoid. These difficulties are
discussed in more detail in Section 5.2.2.

Instead, we should try to analyze the program at a higher level and involve
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the compiler in finding partitions. Once we have high-level partitions, and know
which partition a transactional memory access targets, we can still do address-
based mappings within each partition.

With high-level partitioning, we thus get two levels of mapping application
data to synchronization metadata, instead of just one. One could envision to use
more levels but each level potentially increases the runtime overheads (e. g., by
having to navigate through another layer of indirection to find synchronization
metadata at runtime), so two levels seems to be a good choice. Also, the high-
level partitioning imposes only little runtime overhead as most of the analysis
happens at compile time.

It is important that partitions are disjoint (i. e., that each memory location
is associated with exactly one partition) because this allows the TM to synchro-
nize per partition, including choosing different synchronization algorithms for
different partitions. Also, the partitioning should be stable in the sense that a
memory location’s associated partition should not change during the lifetime of
the programming-language–level object at this location.1

Because we want to move most of the overheads of partitioning to compile
time, the compiler must infer which partition a certain transactional memory
access is associated with. For programming languages like C/C++ that use
pointers, this requires the compiler to perform points-to analysis, which tries to
provide this information by tracking how pointers are used and passed between
parts of a program (e. g., functions).

Fortunately, there already exists a powerful points-to analysis technique,
Lattner’s Data Structure Analysis (DSA) [70], that has an LLVM-based imple-
mentation and can thus be used by DTMC. To make DSA applicable for the
TM use case, I had to apply a few changes to it, most importantly adding sup-
port for analyzing multi-threaded programs, replacing the runtime component
with TM-specific support, and tuning DSA-internal policies and heuristics. I
will describe both DSA and the changes in Section 6.1.

Next, in Section 6.2, I will present how to use partitioning to improve overall
TM performance by tuning the TM’s concurrency control scheme separately
for each partition. This employs just a simple tuning mechanism but already
results in good performance improvements, and is thus a proof of concept for
such divide-and-conquer TM optimizations. For example, the partitioning helps
to reduce false conflicts between transactions, and can remove synchronization
altogether for thread-local and transaction-local data.

In Section 6.3, I will then show how to colocate TM synchronization meta-
data with application data, which allows for a conceptually different mapping
from memory locations to TM metadata and can improve the cache footprint of
transactions and thus decrease runtime overheads. This is only possible for ap-
plication data that is used like objects, so that it is clear at compile time which
object a memory access targets and thus where the metadata resides in memory.
We can use the modified DSA to detect which partitions have this property, and
an additional compile-time transformation to actually extend each object with

1Note that this does not mean that a certain memory address is always associated with
the same partition. If a variable is allocated dynamically on the application’s heap, then the
associated partition must be stable until the variable’s memory is deallocated; but another
variable which happens to be allocated later at the same memory address could very well be
associated with a different partition. This is possible because TM synchronization is defined
on the programming-language level, not on the memory address level.
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TM metadata in such partitions.

Finally, I will discuss related work in Section 6.4. The implementations of
partitioning and both optimizations reside in branches with older versions of
DTMC and TinySTM++ (see Section 3.4.2), so the performance results pre-
sented in this chapter cannot be directly compared to those in Sections 5.2.2
and 7.4; for example, privatization safety is not yet guaranteed by these imple-
mentations.

6.1 Automatic Partitioning of Application Data

In this section, I will describe the compiler analysis and transformations that
provide partitioning and detect which properties are common for all objects
in a certain partition. It is automatic in the sense that it does not require
programmers to provide any special annotations, but instead works on plain
C/C++ programs, for example.

The underlying techniques are Lattner’s Data Structure Analysis (DSA)
and Poolalloc [72, 70]. I changed the implementations of these techniques to
be applicable in a multi-threaded setting and tuned towards the TM use case.
Also, Poolalloc originally uses partitioning information to improve how memory
is allocated for objects within a partition, which I replaced with the TM-specific
usages presented in Sections 6.2 and 6.3.

DSA is implemented as an LLVM analysis pass, and Poolalloc is a trans-
formation pass. Both do whole-program analysis or transformation of code
expressed in LLVM’s Intermediate Representation (LLVM-IR), which is con-
ceptually similar to Java bytecode. This is straight-forward to do with LLVM
because source files are by default compiled to object files carrying LLVM-IR
and code generation happens in the traditional linking phase on the combina-
tion of all object files. In other words, LLVM does link-time optimization by
default.

DTMC also schedules the TM transformations to be executed at the linking
phase. If partitioning is enabled, DTMC schedules DSA and Poolalloc to run
before the TM transformations pass, which then has partitioning information
available and can, for example, additionally pass a pointer to partition metadata
in each call to the TM runtime library’s load or store functions.

Poolalloc also has a runtime component, which allows it to calculate and
track more detailed points-to information (i. e., instances of partitions, see below
for an example). Doing this at compile time would require cloning functions
and specializing those clones, which would result in too much code bloat. The
resulting runtime overheads are small, and Poolalloc can decide at compile time
and on a per-partition basis whether it tracks this additional information.

In what follows, I will first describe DSA and then Poolalloc, and conclude
with a description of my changes to both of them.

Overview of DSA. DSA is a points-to analysis that is inter-procedural, con-
text-sensitive, unification-based, and field-sensitive (see below for explanations).
It basically tries to analyze which data structures are used in a program, and
which properties they have (e. g., whether they are always of a certain data
type).
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Figure 6.2: A part of the DS graph for function main of Vacation.

DSA models points-to information as a graph of nodes that represent data
structures (DS). These nodes are built from and associated with (1) instructions
in the program that access memory through pointers, (2) function arguments
and return values, and (3) global variables. DSA considers a certain value (e. g.,
a global variable) as a pointer iff it is used as a pointer.

As an example, Figure 6.2 shows a part of the DS graph for the function
main of the Vacation benchmark (see Section 3.4.3); the complete graph is signif-
icantly larger, and also contains more edges starting at the nodes shown in the
figure. It shows some of the important data structures used in this benchmark.
Edges between the nodes represent points-to information. The small boxes in
the bottom of each node represent one field in the respective structure types.
For example, the first and fourth field of structure manager t point to two sep-
arate red-black tree instances; DSA can detect separate instances of the same
data type. The analysis of all shown nodes is complete. All nodes except the
one marked as “collapsed” have a type, meaning that all memory locations as-
sociated with such a node are accessed in a type-safe way in the program. Only
the node shown at the top is an array, meaning that all other nodes originate
from non-array allocations and uses.

DSA builds such DS graphs incrementally, starting with an intra-procedural
analysis. It analyzes each function and creates an initial graph based on how
pointers and data structure instances are used in the function. For example, if
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the function contains a load to an address calculated as a pointer plus a field
offset derived from a certain structure type, then the pointer is assumed to point
to a DS node with this type. Besides type and points-to information for pointers,
DS nodes also contain a set of flags stating whether the data structure is on
the stack or on the heap (which is derived from where the pointer originated;
for example, nodes on the heap are marked with “H”), whether the information
about the node is complete (i. e., all of its uses have been analyzed), and a few
other things.

This analysis is field sensitive in the sense that pointers stored in different
fields of a data structure can point to different nodes within the DS graph.

However, a field in an existing node can point to at most one other node.
To guarantee this property, whenever it is discovered that pointers stored in
the same field point to disjoint nodes, these nodes are unified. Likewise, any
pointers that are found to potentially alias each other (i. e., potentially point to
the same object in memory) have to be unified as well.

To unify two nodes, DSA merges them into a single node in a way that
preserves uncertainty. For example, if one instruction uses a pointer of type A
but another instruction uses the same pointer with incompatible type B (e. g.,
after a cast), then DSA will unify the DS nodes for both uses of the pointer and
will infer that the type for the pointer is not known in any of the uses (i. e.,
marking the node as “collapsed”). Other properties are handled in a similar
way (e. g., nodes pointed to by the two to-be-unified nodes will also be unified).

A DS graph node is marked as complete in a function if DSA has analyzed
all its uses. Thus, after the intra-procedural phase, DS graphs contain complete
information about DS nodes whose associated pointers do not (transitively)
escape from the function. For example, a node is not complete if a pointer
associated with it escapes to callees due to being used as an argument in function
calls.

To obtain whole-program information, DSA then executes a bottom-up pass
on the program’s call graph and merges the DS graphs of callees into callers,
which results in complete information for nodes that do not escape to callers.
Like in the intra-procedural phase, DS graphs are merged by unifying aliasing
DS nodes into a single node. Thus, DSA is also context-sensitive (i. e., data
structures are distinguished based on call graphs and not just allocation sites,
for example).

Finally, DSA can make a top-down pass on the call graph to propagate
information from callers to callees, again by merging the DS graphs. This is
an optional step and only required by some clients of the points-to information
(see below for further discussion).

DS nodes that escape to non-analyzable functions (e. g., external functions)
or through external globals will remain marked as incomplete. This is partially
mitigated by DSA having built-in knowledge of the semantics of frequently used
standard library functions such as malloc or memcpy.

The unification of nodes is an important property from the perspective of the
partitioning use case for DSA: If two pointer values in a function are associated
with different DS nodes marked as complete, then it is guaranteed that they
point to non-overlapping memory regions. Otherwise, DSA would have unified
the DS nodes to a single node.
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Overview of Poolalloc. However, the reverse is not necessarily true: Non-
overlapping memory regions can be associated with the same DS node. This is
where Poolalloc comes into play, which is a mixed runtime/compile-time tech-
nique that can identify and track instances of data structures.

In a nutshell, Poolalloc instruments the program so that whenever a function
creates a complete DS node (e. g., before using malloc to create objects associated
with this node), another call to Poolalloc’s runtime library is inserted that
creates a new metadata object for this DS node. These metadata objects are
called pools, and Poolalloc uses them to optimize memory allocation and locality
within such pools. Which nodes pools are created for is driven by heuristics.

Poolalloc then also changes function calls and signatures so that callers pass
pointers to pools that are required by callees. For example, if a pointer in a
caller escapes to a callee, then the caller would also pass the pool along with
the pointer in the call.

Thus, this adds runtime tracking of pools to the program, and allows for
pools to be distinguished from each other even deep in the call graph, and
without having to clone functions. For example, two separate data structures
instances created using the same initialization function can thus be assigned to
two different pools.

Furthermore, we can thus detect whether two pointers might address over-
lapping memory regions simply by comparing the pools associated with the
pointers: If the two pointers belong to different pools, then the objects pointed
to will be disjoint as well and will not alias. This allows us to use Poolalloc’s
pools as partitions for TM.

Implementation details. To be applicable for the TM use case, I had to ap-
ply a few changes to both DSA and Poolalloc. For example, both were originally
implemented for single-threaded programs.

The TM runtime library replaces the original Poolalloc library and does
not retain Poolalloc’s original per-pool memory optimizations. It allocates the
metadata objects that represent pools on the heap rather than on the stack
as the original Poolalloc runtime does. This is necessary because threads can
share data even if one does not dominate the other in the call graph.2 Further-
more, because pools can be shared between threads, the runtime uses garbage
collection for the metadata objects that represent pools. I also slightly changed
Poolalloc’s heuristics for when to create pools to be more suitable for TM and
partitioning than for Poolalloc’s original purpose.

For DSA to support multi-threaded programs, I primarily had to add cus-
tom handling of pthread create (i. e., the POSIX Threads function that creates
new threads). Work items for a thread are typically passed through it as an
argument, so DSA needs to know that a call to pthread create is conceptually
similar to an indirect call to the thread function. Likewise, Poolalloc performs
additional instrumentation of the program so that calls to pthread create get
redirected to a wrapper function in the TM runtime library that additionally
communicates all necessary pools to the newly created thread.

I also added support for detecting transaction-local pools (i. e., pools which

2In single-threaded programs, two functions can only operate on the same pool if one is an
(indirect) callee of the other or if the pool is also associated with a global variable. Pools for
global variables are global variables too and not dynamically allocated.
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are created and destroyed in the same transaction) and thread-local pools in
simple cases.

Finally, I changed the DSA implementation to be more rigorous in some
cases because the original clients of DSA’s results (e. g., pool allocation) can cope
with inconsistencies that would break the TM-related uses. Second, for certain
programs, DSA cannot always guarantee consensus on DS node information with
just the bottom-up and top-down merge passes. To guarantee this, it would have
to continously merge in both directions until the DS graph is stable and DS node
information does not change anymore. However, this is just necessary for the
optimization in Section 6.3 and it is an implementation issue, not a conceptual
limitation. The benchmark programs used to evaluate those optimizations do
not have the problematic call graph patterns.
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6.2 Partitioning-Aware STM and Dynamic Tun-
ing

As described previously, automatic partitioning of application data enables us
to use a divide-and-conquer approach when tuning a TM implementation. DSA
and PoolAlloc provide the TM with partitions that are disjoint in memory (see
Section 6.1), and determining which partition a transactional memory access
targets is possible at very little cost.

This allows the TM to isolate the partitions with respect to concurrency
control and to facilitate the tuning of the TM by considering each partition
independently [94]. The underlying assumption is that a typical application
contains a variety of data structures, each of which being subject to different
transactional workloads. Thus, by selecting a concurrency control mechanism
suitable for each partition and by tuning each partition individually, we can
improve the overall transaction throughput.

In contrast, TMs that are not aware of partitions have to choose one config-
uration for controlling concurrency in the whole application. For example, an
STM like the one presented in Section 5.2 will have to use the same array of
orecs for all transactions and all data in the program, which can result in false
conflicts and makes tuning more difficult (see Section 5.2.2 for more examples).
With partitions, the TM can use a separate array of orecs for each partition, or
can use other TM algorithms (e. g., that only use a single orec). Combining dif-
ferent per-partition concurrency control schemes is straight-forward (especially
for orec-based STMs), which is necessary to allow programs to access several
partitions in the same transaction.

Partitioning implementation. For partitioning, it is sufficient to use just
the bottom-up merging of DS graphs in DSA. The current implementation in-
structs PoolAlloc to create one partition for each complete node of a DS graph,
although it would be also possible to group several nodes in the same partition.
For example, for a DS graph like Figure 6.2 on page 135, it might make sense to
use one partition per red-black tree consisting of both the root and inner nodes
of each tree instance. Also, there is no partitioning of data structures for which
PoolAlloc uses only a single node in the DS graph.

Partitions are represented by partition descriptors, which are instantiated
at runtime when the control flow reaches a partition creation point in the pro-
gram. These descriptors are small data structures that store the TM metadata
for partitions, including the type of concurrency control in this partition (see
Section 6.2.1 for further details).

The TM runtime library’s functions for transactional loads and stores receive
an additional argument that holds a pointer to the descriptor of the partition
that is associated with the targeted memory address of the load or store. The
compiler supplies the descriptors with the help of PoolAlloc. Functions that
access memory and have transactional wrappers (e. g., malloc or memcpy) are
treated similarly: The compiler redirects calls to those to transactional wrappers
that are also partitioning-aware and accept the required partition descriptors as
additional arguments.

As a result, whenever the TM runtime library has to perform a transac-
tional memory access, it is aware of which partition this access targets. On such
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an access, it loads the type of the partition from its descriptor and dispatches
execution to the TM runtime library code responsible for this type. This con-
stitutes a large part of the runtime overhead of partitioning (see Section 6.2.2)
but much of this overhead could be removed by better compiler optimizations
(e. g., creating different code paths specialized for different partition types, or
switching between types only when necessary).

The TM runtime library also provides a default partition for every trans-
actional memory access that is not associated with a partition. This is the
fall-back implementation for accesses that, for example, target incomplete DS
nodes (e. g., data that is also accessed in external functions and whose uses are
thus not completely analyzed) or accesses that are assumed to be associated
with a partition by a callee but not by the caller.

6.2.1 Tuning

Using multiple partitions allows us to perform various kinds of optimizations
that would be ineffective with a single partition. For example, it is unreasonable
to assume that a single global partition would be read-only, but it is not unlikely
that some partitions in an application would be read-only (see Section 6.2.2).

Table 6.1 shows the types of concurrency control for partitions that I im-
plemented to evaluate the potential benefits of partitioning-aware STM. They
offer various trade-offs in terms of concurrency and overhead.

Note that even though the STM can use a different algorithm in each par-
tition, it still provides transactions with the same guarantees as the original
STM does. The integration of other concurrency control mechanisms than those
shown in Table 6.1 should be straight-forward as long as they can participate
in some kind of two-phase commit protocol. Note that all mechanisms need to
be able to roll back a transaction. For example, even though partitions of type
Exclusive Lock will never have to abort due to concurrent accesses by other
transaction to the partition, it could be used in a transaction that uses other
partitions in which aborts are possible.

Partition descriptors contain the TM metadata required to do per-partition
concurreny control: (1) the partition’s type, (2) a single orec for the Single Orec
and Exclusive Lock types, (3) a pointer to the array of orecs, the number of
orecs, and the Shift parameter for the Multiple Orecs type (see below), and
(4) a few counters to maintain statistics (e. g., the number of aborts in the
partition).

Partitions can be tuned on demand and independently of each other. When
a thread wants to tune a partition, it (1) tries to change the partition type to
Tuning using a CAS operation, (2) acquires a new timestamp from the global
clock used by LSA for time-based validation (see Section 5.2), and (3) waits
until every active transaction has a start timestamp (i. e., snapshot time) larger
or equal than the acquired timestamp. If a transaction accesses a partition
that is being tuned, it aborts and updates its start timestamp. Thus, if step
(1) succeeded, then after step (3) every transaction will discover or will already
know that the partition is being tuned. The thread that performs the tuning can
thus—after step (3)—change the partition’s metadata and finally set the new
partition type. Note that, although we do have to wait for active transactions to
finish, tuning will only delay the transactions that actually access the partition
being tuned.
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First Update 20 aborts 1000 aborts 2000 aborts

Part-1 Multiple Orecs
(O=218, S=6)

Part-2 Exclusive Lock Multiple Orecs
(O=218, S=6)

Part-3 Exclusive Lock Single Orec Multiple Orecs
(O=218, S=6)

Part-4 Exclusive Lock Single Orec Multiple Orecs
(O=210, S=8)

Multiple Orecs
(O=218, S=6)

Table 6.2: Partition tuning strategies Part-1 to Part-4. Initially, all partitions
are of the Read-Only type. For Multiple Orecs, LSA uses the Simple hash
function to map memory locations to orecs (see Algorithm 4 on page 96), with
O being the number of orecs and S the value of the Shift parameter.

My prototype implementation uses only simple tuning strategies (see Ta-
ble 6.2) based on runtime measurements and heuristics. All strategies initially
set the type of all partitions to Read-Only. The type is changed if the number
of aborts in the partition exceeds a certain threshold (e. g., on reaching 1000
aborts, Part-3 changes the partition type to Multiple Orecs, 218 orecs and 6 as
Shift parameter). I chose values for the number of orecs and the Shift parameter
that provided good overall performance in the benchmarks (see Section 6.2.2).
The type of the default partition is always Multiple Orecs.

Please note that while this approach supports workloads that dynamically
change their characteristics at runtime (e. g., initializing a lookup table and later
using it just for read-only lookups), simple tuning strategies can effectively limit
the ability of the STM to adapt to these changes. For instance, the prototype
never tunes a partition back to the Read-Only type.

6.2.2 Evaluation

Let us now evaluate the effectiveness of partitioning and per-partition tuning by
looking at results from Vacation, Genome, KMeans, and LinkedList (see Sec-
tion 3.4.3). The DTMC branch with partitioning support was used to compile
those benchmarks, both with and without partition being enabled. Applications
were compiled to 32b executables and run on an two-socket x86 machine with
8 CPU cores in total.

The benefits of partitioning depend very much on the quality of the compile-
time analyis, so let us look at this first. Table 6.3 shows how many of the
transactional loads and stores in an application are associated with partitions.3

Accesses not associated with a partition are implicitly linked to the default
partition by the STM. Partition creation points are calls in the program code
that instantiate partitions. Note that the number of partitions actually created
and accessed at runtime can be different from the number of creation points.

3Note that this shows the number of call sites in the application binary. The number of
loads and stores executed at runtime is shown in Table 6.4.
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Benchmark Partition Partitioned/total transactional
creation points loads stores

Vacation 19 160 / 164 103 / 105
KMeans 11 5 / 8 1 / 4
Genome 23 47 / 47 15 / 16
LinkedList 3 13 / 13 6 / 6

Table 6.3: Partitioning compile-time statistics.

The table shows that most of the accesses can be associated with partitions.
KMeans has fewer partitioned accesses because it uses global variables, for which
PoolAlloc does not by default create partitions.

Table 6.4 shows runtime statistics for partition accesses and aborts. All
partitions were forced to be of the Multiple Orecs type and to use 218 orecs and
a Shift parameter value of 6. Partitions without transactional accesses are not
shown. The abort statistics were gathered from benchmark runs with 8 threads.
Load/store statistics were measured in benchmark runs with a single thread, a
smaller 2K input file for KMeans, and only 40K segments for Genome.

We can see that the number of accesses varies a lot between the partitions.
There are more reads than writes, but the ratio differs per partition. There are
several read-only partitions but the largest partitions are often updated (e. g.,
in Vacation).

The default partition receives significantly fewer accesses than the other
partitions (or none at all in Genome). This number could be further decreased
by tuning PoolAlloc’s heuristics for when to create partitions, and by improving
the thread-local compiler analysis.

Transaction abort counts also have a high variance, which further indicates
that partitions are different and subject to different patterns of transactional
operations.

Overall, Table 6.4 shows that partitioning is effective for the majority of
application state that is accessed transactionally in the benchmarks and creates
many opportunities for different kinds of optimizations.

Table 6.5 illustrates the performance of the different partition types (see
Table 6.1 for details about each type). For this measurement, benchmarks were
run with a single thread only and all partitions were forced to be of a certain
type. The LinkedList benchmarks run transactions that look for a specific
element in lists with 2000 and 250 elements, respectively.

In my prototype implementation, partitioning adds non-negligible overhead
to transactional accesses. The first reason is that the STM dispatches execution
based on the partition type during each access (see the difference between the
second and the third column). Further compiler optimizations could remove
this overhead. For example, the compiler could detect that only one partition
is used in a function and create a special version optimized for read-only or
thread-local partitions. Note that the runtime tuning mechanism itself does not
require transactions to check the partition type on every transactional access.

The second part of the overhead (i. e., the third column’s values being less
than 1) is due to the extra level of indirection that partitions result in. The
partitioning-aware STM has to load the pointer to the array of orecs and the
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Benchmark Transactional Read/write Write/write
/ Partition loads stores aborts aborts

Vacation-2M / 1 105M 11M 1.3K 43K
2 125M 20M 2.8K 33K
3 4.3M 450K 9 3K
4 192M 3.5M 107K 10K
5 253M 184K 192 0
6 258M 41K 33 0
7 37M 15M 17K 63
8 263M 41K 24 0
9 6.9M 5 328 0

10 8.2M 0 0 0
11 8.4M 0 0 0
12 8.4M 0 0 0
13 22M 0 0 0

default 21M 19M 5K 894
thread-local 14M 10M 0 0

KMeans-Lo / 1 524K 524K 451K 28K
2 524K 0 0 0
3 524K 0 0 0
4 524K 0 0 0
5 32K 0 0 0

default 44K 44K 16M 157K

Genome-4M / 1 11.8M 106K 316 49
2 91K 30K 186 436
3 118M 4.7M 567K 3K
4 952K 0 0 0
5 65K 75K 0 14
6 15K 0 0 0
7 1.9M 0 0 0
8 952K 0 0 0
9 30K 0 0 0

10 0 15K 0 0
11 337K 75K 1K 516
12 57K 0 0 0
13 141K 0 0 0
14 42K 0 0 0
15 84K 0 0 0

txn-local 73K 0 0 0
thread-local 0 42K 0 0

Table 6.4: Runtime statistics for partitions: Number of transactional accesses
and aborts due to read/write or write/write conflicts.
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Vacation 0.71 0.80 1.21 1.32 N/A
KMeans 0.85 0.94 1.07 1.13 N/A
Genome 0.74 0.84 1.17 1.34 n/a

LinkedList-2000 (only lookup) 0.68 0.86 1.36 1.90 2.30
LinkedList-250 (only lookup) 0.61 0.80 1.29 1.73 2.22

Table 6.5: Performance of partition types and overhead of supporting parti-
tions. Shows speedup relative to the non-partitioning-aware STM that uses the
Multiple Orecs scheme (single-threaded execution).

number of orecs and Shift parameter from the partition descriptor, whereas
these values are constant in the non-partitioning-aware STM.

Nevertheless, the other columns show that despite these overheads, even just
using a single orec instead of multiple orecs can increase performance signifi-
cantly. It seems likely that further compiler optimizations could increase the
performance advantage of the partition types that need no or very little per-
access concurrency control code (e. g., Read-Only or Exclusive Lock) because no
calls into a TM runtime library are necessary and undo-logging can be efficiently
inlined in the application code.

After showing the applicability of partitioning and the potential of opti-
mizations that it enables, let us now look at performance results for the STAMP
benchmarks (see Table 3.2 for details about the benchmark configurations). Fig-
ures 6.3, 6.4, and 6.5 show comparisons of the performance of non-partitioning-
aware LSA and of the four simple tuning strategies of the partitioning-aware
STM (see Table 6.2). LSA-O-S denotes LSA using the Simple hash function,
2O orecs and S as Shift parameter. The LSA-O-S configurations shown in the
figures are the ones that provided the best performance for eight threads, and
the figures show both benchmark execution time (lower is better) and relative
speedup to the best-performing configuration of the original STM (higher is
better). Note that the data shown here can differ from the data shown in Sec-
tion 5.2.2 due to the differences in the benchmarks, TM implementations (e. g.,
32b versus 64b), and the machines the experiments have been executed on.

With Vacation (see Figure 6.3), the partitioning-aware STM is often slightly
slower than the original STM due to the higher per-access overhead discussed
previously (e. g., with single-threaded Vacation-2M-Lo, Part-1 is 30% slower
than LSA-18-6, even though the latter uses the same STM).

However, the partitiong-aware STM performs significantly better if (1) it
uses the Exclusive Lock type in single-threaded runs (available in Part-2, Part-
3, and Part-4) or (2) in the high contention variant of the benchmark with a
large number of threads. The latter also shows that increasing the number of
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Figure 6.3: Performance of partitioning with Vacation.
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Figure 6.4: Performance of partitioning with KMeans.

orecs as in LSA-24-6 is not sufficient to avoid false conflicts in a global array of
orecs; in contrast, the partitioning-aware STM can still scale even though it uses
less orecs because the partitioning works like a high-quality mapping function
that mitigates the limitations of the simple memory–to–orec mapping used by
the STM.

With KMeans (see Figure 6.4), the partitioning-aware STM can take ad-
vantage of the three often-accessed read-only partitions (see Table 6.4), which
can be exploited by all tuning strategies and thus help overcome the other par-
titioning overheads. Using a fine-granular memory–to–orec mapping seems to
be important in the high-contention variant of the benchmark, which indicates
that advanced tuning strategies should also adapt the number of orecs and the
memory–to–orec mapping for each partition.

With Genome (Figure 6.5), the partitioning-aware STM performs signifi-
cantly better than the original STM (with one exception). Although the statis-
tics in Table 6.4 do not show this clearly, I observed that the two most-frequently
accessed partitions (1 and 3) are read-only during the first phase of the bench-
mark, which allows the STM to handle many of the accesses using a Read-Only
partition type. More importantly, the results show that partitions can decrease
the STM’s space overhead required for synchronization metadata significantly
when using the Simple hash function, especially in Genome-8M: Part-4 uses
five partitions with 256K orecs each and one with 1K orecs, whereas the non-
partitioning-aware LSA uses 256MB of memory just for its orecs in the LSA-26-6
configuration. With 224 locks, LSA suffers from frequent aborts due to false con-



148 CHAPTER 6. COMPILE-TIME TM OPTIMIZATIONS

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  4  8

Genome-4M
E

x
e

c
u

ti
o

n
 t

im
e

LSA-22-10
LSA-26-6

Part-1
Part-2

Part-3
Part-4

 0

 10

 20

 30

 40

 50

 60

 70

 1  2  4  8

Genome-8M

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1  2  4  8

Genome-4M

S
p

e
e

d
u

p
 o

v
e

r 
L

S
A

-2
6

-6

Number of threads

 1

 1.1

 1.2

 1.3

 1.4

 1  2  4  8

Genome-8M

Number of threads

Figure 6.5: Performance of partitioning with Genome.

flicts resulting from the simplicity of the address-based memory–to–orec map-
ping, which leads to a sharp decrease in performance.4 While this degradation
could probably be partially reduced through proper STM contention manage-
ment5, partitioning allows the STM to attack the root cause of this performance
problem.

Overall, these performance results show that even a not well-optimized pro-
totype of a partitioning-aware STM and simple tuning strategies can already
yield better performance than an STM without partitioning support. Further-
more, partitioning allows TMs to benefit from optimizations targeted at low-
contended or read-only workloads, which would be less likely to occur in practice
for larger programs whose application state is not partitioned.

It seems likely that more advanced code generation should be able to reduce
the runtime overheads of partitioning (e. g., generating code paths specialized for
a certain partition type so as to decrease the overheads of runtime dispatching,
see Table 6.5). Likewise, better runtime tuning strategies should be able to
increase the benefits of employing per-partition synchronization schemes.

4This is also the reason why I show only results for LSA-26-6 for Genome-8M.
5The LSA implementation evaluated in Section 5.2.2 switches a transaction to execute in

serial-irrevocable mode when it has aborted more than 100 times (see Section 3.4.2), which
weakens the worst-case effect of false conflicts.
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6.3 Colocating Application Data and TM Meta-
data

TMs designed for C/C++ environments or other unmanaged environments6

often use a low-level mapping from memory addresses to TM synchronization
metadata, which is called word-based (see Section 5.2 for details).

Another alternative is to use object-based accesses, for which TM conflict
detection happens on the granularity of memory objects that represent the ob-
jects or data structures used in the source program. This approach is popular
and useful in managed environments [1, 51]. However, it cannot be easily used
by TMs for C/C++ programs because those can access arbitrary memory loca-
tions via pointers, including pointers to fields of an object, for example. Type
information is available in the source code but accesses are not guaranteed to be
type-safe at runtime unless restricted programming-language dialects are used.
This means that TM compilers cannot easily derive which object a certain access
targets, and runtime lookups would be much too costly in terms of performance.

Besides restricting programming languages, TMs for C/C++ programs can
also provide object-based accesses by requiring programmers to make explicit
calls to the TM runtime library [113, 109]. However, both options do not provide
the same level of ease of use and programming language integration that I am
aiming for.

Nonetheless, object-based TMs have two potential advantages. First, if they
keep metadata external and map to it from the base address of the object
(i. e., the smallest memory address that is within the object) using a hash func-
tion, then they can thus use the knowledge about object granularity and base
addresses to try to map more beneficially than with the flat-address-space ap-
proach that word-based STMs typically use (e. g., to avoid false sharing or an
excessive amount of metadata).

Second, if object-based STMs use in-place metadata by embedding it into
every transactionally accessed object, they can potentially benefit from the im-
proved locality compared to when using external metadata. If objects are not
too large, the object data and metadata will likely reside in the same cache line,
which reduces the cache footprint of transactions. It can also result in fewer
cache misses when reading data modified by other transactions because there is
only one cache miss for both object data and metadata and not two. Also, no
indirection is necessary to access the metadata.

However, the very same properties can also decrease performance, depending
on the workload. For example, if there is very little contention, using only a
few orecs could yield the highest STM performance but this kind of tuning is
not possible with the fixed object–to–metadata mapping in the case of in-place
metadata. Similarly, in-place metadata increases the size of objects and can
thus increase the cache footprint.

So, how can we enable object-based accesses for C/C++ programs? We do
not want programmers to provide extra information nor restrict the program-
ming language, and we cannot look up object boundaries at runtime. Thus,
we have to solve this at compile time, and we will not be able to always use

6Informally, in unmanaged environments, application code directly accesses the resources
provided to its process. In managed environments, applications access resources through an
intermediate layer such as a Java Virtual Machine.
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object-based accesses. We need to partition memory into objects that we know
and memory locations for which we are not certain which object they belong to.

Given that this is a partitioning problem, we can indeed use automatic par-
titioning of application data to solve it [89]. In particular, we can use DSA
(see Section 6.1) to find partitions that contain only objects of the same type.
For such partitions, DTMC can then generate transactional load and store calls
to the TM runtime library that provide the base address and size of the ob-
ject as additional parameters. The runtime library can use this information
to map from object base addresses to external metadata. We can also go one
step further and support in-place metadata by letting the compiler modify all
allocations of objects in such partitions such that there is additional space for
the metadata (i. e., an orec), which then can be used by the TM runtime library.
Note that this compile-time approach is not bound to certain data types in an
all-or-nothing fashion but can differentiate between instances of a type.

Similar to the default partitions used in partitioning-aware tuning (see Sec-
tion 6.2), we can use a word-based default TM algorithm for all other partitions
that are not known to contain objects. Because partitions are guaranteed to be
disjoint, all accesses to a certain memory location will be either word-based or
object-based, and combining both in a transaction is safe.

Next, in Section 6.3.1, I will describe this solution in more detail. The evalu-
ation in Section 6.3.2 shows that an object-based STM can be significantly faster
than a word-based STM with an otherwise identical design and implementation,
even if the parameters of the latter have been tuned.

6.3.1 Enabling Object-Based STM

For our purposes, let us consider an object to be a continuous chunk of memory
that can be defined and identified by its size (most likely derived from its type)
and its base address in memory (i. e., the start of the memory chunk). We
also want to only consider objects that could correspond to user-defined data
structures in the program (e. g., ignore primitive types because they seem too
small to justify object-based accesses).

Accesses to objects are identified by relying on the DS graphs produced by
top-down DSA, which produces points-to information that covers all accesses
to a memory location in the whole program. Note that as pointed out in Sec-
tion 6.1, in general we would need to merge DS graphs up and down the call
graph until no changes to DS graphs occur anymore, but the two merging phases
of top-down DSA are sufficient for our benchmarks.

The compile-time support for object-based accesses is implemented as a vari-
ant of an older version of DTMC. When it is about to transform a memory access
in transactional code, it checks the DS node associated with the access’ target
address and transforms the access into an object-based or word-based STM
call. A node can be accessed using object-based STM functions iff (1) it is of a
known structure type and accessed in a type-safe way, (2) has been completely
analyzed, (3) is not external, and (4) is not an array. Otherwise, the access is
transformed into a word-based STM call. I will discuss these constraints again
below.

The compiler determines the size of the object based on the type of the DS
node associated with the target of the access. The base address is computed
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by either reusing base pointers available in the program7 or based on the offset
information contained in the points-to edges in DS graphs (pointers can target
specific fields of objects).

In-place metadata. To be able to support STMs that use in-place metadata
(i. e., embed transactional metadata such as orecs in each object), DTMC has
to make sure that there is enough space for the metadata. The current im-
plementation appends metadata to the end of the object (i. e., at base address
plus object size), but prefixing the object with metadata would also be possi-
ble. To reserve sufficient space, DTMC enlarges all allocations (on stack and on
heap) that could be used in an object-based access by the size of the metadata
and adds calls to the TM runtime library that initialize the metadata after the
allocation.

To counter potential memory bloat issues, DTMC could additionally track—
via DSA—which nodes are actually accessed from within transactions, and only
enlarge the allocations of those nodes.

Safety. The basis for the safety of these transformations are the guarantees
given by DSA and the properties that are required for DS nodes to be eligible for
object-based accesses: Typed data structures with stable DS node information
that all parts of the program agree on.

DTMC ensures that there is no unknown behavior, constraints or uses of
each object-based DS node by requiring complete node information. This also
ensures that memory for objects was allocated by a function whose semantics are
known by DTMC and which it can transform. For example, external functions
would result in external and incomplete DS node information, and programs
that forge pointers in nonanalyzable ways would either lead to nodes being part
of arrays or no type information being available.

Data structure instances that are part of an array are not considered as
potentially object-based accesses, so allocations reserve memory for only one
object and metadata does not need to be explicitly added to data type defini-
tions. DTMC only treats data structures with structure types as object-based
to filter out primitive types.

DSA does not have custom handling of inheritance of C++ objects. If there
is conflicting information when two DS nodes are merged (i. e., two uses of
potentially the same pointer), node unification will lead to the respective parts
of DS node information being marked as unknown. This can prevent object-
based accesses but also ensures that in-place metadata can be safely appended
to all fully analyzable objects.

Object-based STM implementations. Because data partitioning guaran-
tees that object-based and word-based memory accesses are separated at com-
pile time, it is easy to support both in an STM. The STM is essentially LSA as
described in Section 5.2 (for word-based accesses), but with additional object-
based load and store functions. The latter use the same algorithm as word-based

7Address computations for pointers to structure fields are explicit instructions in LLVM’s
intermediate representation for code. They start at a pointer and navigate through the data
structure definitions contained in the program (and DS node information is associated with
such instructions).
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loads and stores but manage and map to orecs differently. For word-based ac-
cesses, the STM implementation uses the Simple hash function to associate
memory locations with orecs (see Algorithm 4 and Section 5.2.2).

With external metadata (called LSA–ObjE in what follows), the address
of the orec that is associated with an object is computed by mapping from
the object’s base address to an orec in the external array of orecs also used by
word-based accesses, using the Simple hash function as well. Note that using the
same set of orecs for word-based and object-based acccesses is possible because
object-based load and store functions reuse most of the functionality in the
word-based STM implementation.

With in-place metadata (LSA–Obj ), each object has a single orec that is
located right after the object in memory. Such orecs have the same layout as
the orecs in the external array of orecs. Remember that we can obtain the ad-
dress of each object’s orec because the compiler supplies the accessed object’s
base address and size as arguments on each object-based STM load or store call.
Privatization safety (see Section 5.2) ensures that the memory used for in-place
metadata is never released and reused for other memory allocations until other
transactions will not access it anymore. However, LSA–Obj’s implementation
does not provide general privatization safety but guarantees this just with re-
spect to released memory; it keeps lists with to-be-freed memory chunks per
thread and only releases memory after all other transactions that could still ac-
cess the data have aborted or committed, using the same time-based approach
that is the base for the implementation of general privatization safety.

Using the same STM algorithm for object-based accesses as for the purely
word-based STM variants allows for a meaningful comparison between both;
all that differs is how orecs are chosen and where those orecs are located in
memory. Nevertheless, the underlying approach should be applicable to other
word-based and object-based STM algorithms and implementations because of
the compile-time separation between object-based and word-based accesses.

6.3.2 Evaluation

I will focus on two aspects in this section: First, I will show to which extent
TM benchmarks contain object-based accesses, and whether DTMC can detect
and transform these accesses. Second, I will evaluate the performance of the
benchmarks when using the new object-based STM functionality in compar-
ison to the word-based implementation. As benchmarks, I will use Genome,
KMeans, Vacation, LinkedList, and RBTree as described in Section 3.4.3, but
with different workload parameters and also a slightly different implementation
in case of LinkedList and RBTree (see below).

Compile-Time Transformation to Object-Based Accesses

Table 6.6 shows compile-time (static) and run-time transformation results for
the different benchmarks. Static loads and stores are instructions in the pro-
gram that access memory from within a transaction and are replaced by DTMC
with calls to the TM runtime library. The number of loads and stores at run-
time were measured by instrumenting LSA-Obj and running the benchmark
with a single thread in the default configuration for at least 10 seconds. Thus,
the first columns give an indication of how many object-based accesses are in
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RBTree 0 / 0 84 / 77 100% / 100% 100% / 100%
LinkedList 0 / 0 16 / 6 100% / 100% 100% / 100%

Genome 47 / 19 32 / 18 40% / 48% 12% / 98%
KMeans 9 / 7 0 / 0 0% / 0% 0% / 0%
Vacation 25 / 9 243 / 188 90% / 95% 97% / 84%

Table 6.6: Applicability of object-based compiler transformations (OB is object-
based, WB is word-based, single-threaded benchmark runs, counting only trans-
actional loads/stores).

these programs, and the last column shows whether these are important for the
benchmark’s performance due to being executed often.

Both RBTree and LinkedList access a single logical8 data structure transac-
tionally, and DTMC detects this and uses just object-based accesses.

Genome’s transactions access a mix of linked data structures and a large
number of character strings. Word-based accesses are used for the strings, which
leads to the low percentage of object-based accesses at runtime compared to the
percentage of static object-based accesses in the program. However, while just
half of the transactional stores in the program can be transformed to object-
based accesses at compile time, at runtime they comprise the vast majority of
stores that get executed.

KMeans mostly operates on arrays of primitive types. DSA detects these
arrays but they are not considered for object-based transformations.

In Vacation, DSA detects the tree and linked-list data structures used by the
benchmark with just a few omissions (e. g., the collapsed node in Figure 6.2). As
a result, the majority of transactional accesses at runtime are object-based. Note
that this depends on the portability and clean up changes to STAMP described
in Section 3.4.3: The original source code of STAMP used containers holding
32b integer elements also for elements of pointer types, which makes portability
difficult. DSA could have infered that the values are not integers but pointers
by, for example, proving that the values are not modified by integer arithmetic,
but this is not implemented.

Overall, DTMC is able to detect and transform the majority of object-based
accesses. Better tuning of DSA could perhaps allow for an even higher ratio of
object-based accesses (e. g., tuning how frequently it collapses DS nodes even
though it could try harder to analyze the code). Likewise, adding special sup-
port for arrays could enable further compile-time optimizations in KMeans and

8DSA usually detects more data structures because it distinguishes, for example, between
the head of the red-black tree and its nodes (see Figure 6.2).
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Benchmark Update transactions Initial number of elements

LinkedList-1 20% 512
LinkedList-2 20% 16384
LinkedList-3 80% 512
LinkedList-4 80% 16384

RBTree-1 20% 512
RBTree-2 20% 65536
RBTree-3 80% 512
RBTree-4 80% 65536

Table 6.7: Configurations of IntegerSets benchmarks used to evaluate object-
based accesses.

Genome.

Performance

To evaluate the performance of object-based versus word-based accesses at run-
time, I will next show which transaction throughput LSA, LSA–Obj, and LSA–
ObjE provide on a two-socket x86 machine with eight CPU cores in total. All
benchmarks were compiled to 32b executables using DTMC, with the object-
based transformations only enabled when compiling for LSA–Obj and LSA–
ObjE. Every benchmark uses eight threads to execute transactions.

The IntegerSet benchmarks used in what follows differ to some extent from
those described in Section 3.4.3. First, while they execute the same kind of
operations, they strictly alternate insert with remove operations: If an update
transaction is to be run, a thread will either remove the element it inserted
previously into the set, or insert a new element with a random value. This
keeps the ratio of actual update transactions closer to the targeted ratio, and
the total number of elements in the set is likely to remain close to the initial
number of elements. Second, integer values put into the set are always selected
randomly from the [0, 65536) range, and the set is initially populated with up to
a certain number of random elements. Table 6.7 shows the configurations that
I consider. The RBTree configurations with 64K elements are populated with
256K random elements to increase the number of elements that are actually in
the set initially.

For STAMP, I will use the Genome-4M and Vacation-1M benchmark con-
figurations listed in Table 3.2. I will not show any measurements for KMeans
because it contains no object-based accesses.

The performance of word-based accesses (LSA) and object-based accesses
that use external metadata (LSA–ObjE) is influenced by how the TM maps
memory locations to orecs (see Section 5.2.2). Both use the Simple hash func-
tion, which is parametrized by the number of orecs and the Shift parameter (i. e.,
the number of least-significant bits that are discarded from input addresses).
Therefore, I will show performance measurements for different settings of Shift
(3–8 for IntegerSet, 4–10 for Genome and Vacation) and different numbers of
orecs (216–224); parameters outside of these ranges are probably not feasible
in practice. Note that the data shown here can differ from the data shown in
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Section 5.2.2 due to the differences in the benchmarks, TM implementations
(e. g., 32b versus 64b), and the machines the experiments have been executed
on.

Let us first look at the performance of the IntegerSet benchmarks, which do
not use any word-based accesses. Figure 6.6 shows transaction throughput for
RBTree, omitting RBTree-3 results because they form a shape similar to the
RBTree-1 results.

The throughput results for LSA–Obj form a plane because it only uses the
orecs embedded into the objects and is thus not affected by the parameters to
the hash function. LSA–ObjE is usually better than or equal to LSA but is
still vulnerable to disadvantageous hash function parameters. With small trees
(RBTree-1 and RBTree-3), LSA–ObjE can reach the performance of LSA–Obj
with selected hash function parameters but not in general; LSA provides at
least roughly 10% less throughput, and in some cases up to 30% less. For large
trees and a 20% update rate (RBTree-2), LSA–Obj performs better than the
other STMs except for a few hash function parameters. Only with frequent
updates and large trees (RBTree-4) does LSA–Obj performs worse than the
other STMs—but LSA–ObjE performs best in this case, despite also relying
on hash functions to map memory locations to external metadata. This is
interesting because it indicates that even associating each object with exactly
one orec can be beneficial. Another interesting observation is that the hash
function parameters that provide the best performance for LSA differ between
small and large trees.

Figure 6.7 shows transaction throughput for LinkedList using LinkedList-1 as
example; all four configurations show similar performance characteristics. LSA–
Obj always performs best, and both LSA–ObjE and LSA provide 5–40% less
throughput; only a few hash function parameters result in maximum through-
put, and performance degrades considerably as soon as parameters do not match
those sweet spots.

Overall, both the RBTree and the LinkedList measurements support what
I already showed in Section 5.2.2: The performance of STMs that use arrays
of orecs as synchronization metadata is significantly influenced by the hash
function and the choice of hash function parameters, especially with the Simple
hash function; furthermore, the workload also influences which hash function
parameters yield the best throughput. In contrast, object-based accesses that
use in-place metadata do not need to use a hash function and can still perform
better even when the hash function parameters are well-tuned.

Let us now switch to the STAMP benchmarks, which execute both word-
based and object-based accesses. Figure 6.8 shows transaction throughput for
Genome. LSA–Obj’s performance now is affected by the hash function parame-
ters, but to a much lesser extent than both LSA–ObjE and LSA. Although most
of the transactional loads are not object-based accesses (see Table 6.6), 98% of
all transactional stores are. Thus, if the latter use in-place metadata as in case
of LSA–Obj, the likelihood of false conflicts with other transactions is decreased
substantially, and the the choice of hash function parameters also becomes less
important. LSA–ObjE and LSA perform similarly but cannot provide the same
maximum throughput as LSA–Obj.

Figure 6.9 shows transaction throughput for Vacation. The performance of
all three TMs suffers heavily with a few hash function parameters (i. e., 218

orecs and a Shift value of 4 or 6, and 220 orecs and a Shift value of 4), which
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Figure 6.6: Performance of object-based accesses with RBTree.
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Figure 6.7: Performance of object-based accesses with LinkedList.
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Figure 6.10: Peak performance of LSA–Obj and LSA–ObjE compared to LSA
(i. e., with the best-performing hash function parameters selected separately for
each benchmark and each STM), when the maximum number of orecs is 224 or
222, respectively.

suggests that even the few word-based accesses in Vacation are prone to fre-
quent false conflicts. However, when avoiding the problematic settings, hash
function parameters do not affect performance significantly anymore. Interest-
ingly, LSA–Obj then performs significantly better than both LSA–ObjE and
LSA, providing usually about 30% more throughput. This indicates that this
performance advantage is not just caused by fewer false conflicts but probably
also by the increased locality that in-place metadata can provide. With smaller
objects such as nodes of a red–black tree, the in-place orec is likely to reside on
the same cache line as the object, which leads to potentially fewer cache misses
and a smaller cache footprint of transactions.

Figure 6.10 summarizes the effect of object-based accesses on performance.
It compares the maximum throughput that each of the STMs was able to reach
when using the most favorable hash function setting for the respective bench-
mark configuration and STM (i. e., with perfect tuning). The benefits of object-
based accesses with in-place metadata result in LSA–Obj always performing
better or equal to LSA except for RBTree-4; LSA–Obj’s throughput advantage
is modest with the IntegerSet microbenchmarks but significant in the larger
STAMP applications. Furthermore, LSA–Obj is much less dependent on a well-
tuned hash function if object-based accesses are frequent. This also means that
fewer orecs can be sufficient to provide equal performance; for example, in the
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lower part of Figure 6.10 the number of orecs is limited to 222, resulting in a
higher relative advantage of LSA–Obj and LSA-ObjE in several benchmarks.
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6.4 Discussion and Related Work

Both optimizations that I have presented, dynamic tuning in a partitioning-
aware STM [94] and colocating application data with TM metadata [89], rely
on the divide-and-conquer approach of automatically partitioning application
data. Related work can be categorized as either automatic lock allocation at
compile time, TM metadata colocation, or other compile-time optimizations.
Prior work primarily falls either in the first or last of these categories; related
work published more recently than my work also investigates optimizations sim-
ilar to my work but then also uses very similar techniques to do so.

Automatic lock allocation at compile time. Lock allocation refers to
techniques that try to let compilers automatically infer a locking scheme for
the atomic regions (e. g., transactions) in a program, often without any addi-
tional lock-related information by programmers except the demarcation of those
atomic regions. They are implemented as compiler analyses that look for par-
titions in the application data that can be associated with locks, and compiler
transformations that generate code that automatically acquires and releases
those locks around or in the atomic regions.

While all the approaches described next perform lock allocation for concur-
rency control, almost none of them investigate other divide-and-conquer–based
optimizations such as the per-partition tuning in my work. Because deadlock
must be avoided with automatic lock allocations, transactions often have to al-
locate locks early during a transaction (e. g., when the transaction is started),
and need rather conservative compiler analyses to be safe. In exchange for these
limitations, lock allocation can avoid STM overheads like the instrumentation
of memory accesses in transactions.

Note that a partitioning-aware STM can synchronize in a similar way as with
lock allocation by forcing partitions to always have the Exclusive Lock partition
type (see Table 6.1 on page 141). The only difference is that this would be
a dynamic locking scheme that uses deadlock prevention instead of deadlock
avoidance and thus needs to be able to roll back transactions; static schemes
could be implemented by (1) tuning the compiler’s heuristics for when to create
partitions and (2) making outermost transactions also aware of all the global
partitions that are used in them. Nonetheless, the techniques proposed by the
related work described next could often be used to optimize the analysis quality
and heuristics of DSA and PoolAlloc towards the concurrency control use case.

In prior work, McCloskey et al. present a compile-time tool [81] that can
transform transactions in a C program into critical sections iff the program-
mer provides source code annotations that declare which data is protected by
which lock. However, the tool can only detect potential deadlocks but can-
not avoid them automatically; programmers have to resolve such issues by, for
example, providing locks at different levels of granularity regarding the data
that is protected. Hicks et al. present a lock inference algorithm [59] based
on points-to analysis for atomic regions in a simple source language. Locking
annotations are not required and the infered locking scheme is guaranteed to
be deadlock-free, but each atomic region always acquires a fixed set of locks
when started. Emmi et al. formulate lock allocation [36] as an optimization
problem and express it using integer linear programming (ILP): The compiler
needs to find a data–to–lock mapping that minimizes the number of locks (i. e.,
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to reduce lock acquisition runtime overheads) and minimizes the conflict costs
between atomic regions (i. e., to decrease the runtime overheads due to mutually
exclusive execution). Zhang et al. present a similar ILP formulation and also
present a heuristic solution [124]. Halpert et al. investigate lock allocation at
the granularity of whole atomic regions [48]: Instead of looking for a minimal
lock allocation based on a data–to–lock mapping, their analysis starts with the
conservative assumption that all atomic regions interfere with each other and
then tries to refine this interference graph; the result is an assignment of a static
or dynamic lock for each set of atomic regions that can interfere with each other.

In concurrent work, Cherem et al. present a lock inference analysis that
relies on unification-based points-to analysis [13] (as DSA does). They combine
this with a multi-granularity locking scheme that forms a tree structure, which
matches the output of a unification-based analysis nicely: The top-level lock
protects all memory locations, it’s children each protect one of the points-to
sets, and within each such set a limited number of locks provide protection of
finer granularity. Their locking runtime library uses intention locking to achieve
fine-granular locking despite the existance of coarse-grain locks in the hierarchy
(see the Weikum and Vossen textbook [119] for details).

In subsequent work, Upadhyaya et al. propose to use knowledge about the
semantics and internals of data structures—specifically, containers—to make
alias analysis and lock allocation more precise [114]. This requires data structure
programmers to provide additional information, for example whether it is safe to
follow a locking scheme that is only based on the hashes of keys in associative
containers such as hash maps. The description of the requirements for such
specially supported containers is rather vague, but one assumption seems to be
that they are already thread-safe. Upadhyaya et al. compare the performance
of their compiler-generated locking to TL2 (see Section 5.4) on the STAMP
benchmarks, but this evaluation is flawed. First, they use the original STAMP
for TL2 but for the locking, they use a modified version of STAMP in which the
red-black trees used in Vacation seem to have been replaced by hash maps; this
changes the synchronization characteristics significantly. Second, they do not
consider making the knowledge about the containers available to the STM or a
TM compiler, even though it would enable conceptually similar optimizations
as with lock allocation (e. g., as proposed by Herlihy and Koskinen [53]).

Sreeram and Pande describe a lock allocation scheme that uses DSA as
points-to analysis to build must-alias and may-alias sets for all memory ac-
cesses in a transaction [111]. If a transaction has an empty may-alias set, then
all its accesses are known and it can be run as an irrevocable transaction us-
ing the allocated locks; otherwise, the transaction will execute using an STM
instead. However, the authors’ description of the synchronization between such
irrevocable and the default revocable transactions seems to be flawed; they state
in Section VII.C of the paper that irrevocable transactions acquire commit locks
when started, which would serialize all transactions that use the lock allocation.9

Mannarswamy et al. also propose to use lock allocation in combination with

9If irrevocable transactions would only acquire the commit lock during commit, only the
commits would be serialized. However, in that case, irrevocable transactions could read in-
consistent data, which would violate the atomicity requirements for transactions. This may
be the behavior intended by the authors because they highlight in Section VII.C that trans-
actional reads of irrecovable transactions must be non-faulting; nontheless, this would not be
sufficient to guarantee correctness.
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an STM [77], but they decide between both on the granularity of memory ac-
cesses and not whole transactions. In particular, to avoid false conflicts, they
propose to let the compiler infer locks only for memory accesses for which it can
perform a better-than-conservative analysis (e. g., when an access has an empty
may-alias set). However, to ensure a consistent data–to–lock mapping for all
transaction, the STM has to perform additional runtime lookups: For trans-
actional accesses that may target a memory location with a compiler-allocated
lock, the STM has to consult a table with the compiler-allocated lock mappings
to determine whether it needs to use the compiler’s lock or the TM metadata
managed by the STM. In essence, this has thus many similarities with my ear-
lier work, except that their work (1) moves the performance-relevant tuning
decisions to compile-time (i. e., whether to use an allocated lock for a certain
access) and (2) uses a different points-to analysis.

Colocating application data and TM metadata. The lock allocation tool
built by Mannarswamy et al. can also colocate a compiler-allocated lock with
a structure by adding it as a new field of the structure, provided all fields of
this structure are protected by this lock. This is performed by a whole-program
structure layout transformation in the compiler they use, and is conceptually
very similar to my prior work.

In further subsequent work, Mannarswamy and Govindarajan focus specifi-
cally on improving the cache footprint and cache miss costs of STMs [78] and
investigate three optimizations. The first, lock–data colocation, is like my prior
work except that they add a heuristics-based profitability analysis that tries to
take into account the overall cache footprint of a program. The performance
gain that they report for Vacation (< 2%) is much lower than what I observed
with my implementation (> 30%, see Section 6.3.2), but their results are based
on TL2 and manually instrumented code and they do not report how many of
the transactional accesses this optimization could be applied to. The second
optimization removes redundant lock accesses by having the compiler allocate a
single lock for several shared locations that are always accessed together in all
transactions; thus, this is a special kind of lock allocation. The third optimiza-
tion, using per-partition time bases instead of a global time base, is just another
implementation option for time-based STMs that is enabled by making the STM
partitioning-aware (see Section 6.2); the authors even reimplemented DSA and
PoolAlloc in their compiler. I had considered this approach during my prior
work but rejected it because of (1) the runtime overheads this results in (e. g.,
snapshot extensions are necessary whenever a new partition is accessed, trans-
actions need to maintain several snapshot times, etc.) and (2) the possibility to
use other scalable time bases such as synchronized clocks (see Section 5.3).

McRT-STM [98] supports TM metadata colocation for small objects by us-
ing a custom memory allocator that allocates small memory chunks in a special
memory region. Chunks are grouped in memory blocks together with other
chunks of the same size. The STM has to check at runtime whether a trans-
actional access targets a memory region reserved for small objects. If so, it
computes the base address of the object by loading the size of objects in this
memory block from the block’s header. This approach avoids the need for
compile-time analysis, but results in higher runtime overheads.

The TM support presented by Adl-Tabatabai et al. for a managed runtime
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environment [1] can choose between TM metadata colocation and a mapping to
external metadata on a per-data-type granularity.

Other compile-time optimizations. Shpeisman et al. present a compile-
time analysis for Java programs [105] that can detect memory locations that
are never accessed in transactions, which is used to reduce the runtime over-
head required to ensure strong isolation. The TM-aware compiler presented by
Yang et al. can emit calls to specialized TM runtime library functions when
several transactional accesses target the same memory location [83], which prob-
ably uses an intra-procedural analysis. More information about TM support in
other compilers is provided in Sections 2.4 and 3.3.



Chapter 7

Exploiting Hardware
Support for TM

Unfortunately, current STMs, including the implementations described previ-
ously, still have a relatively large performance overhead compared to the execu-
tion of sequential code. While there is likely room left for further software-only
optimizations, hardware support for TM can decrease these overheads substan-
tially.

My focus is on first-generation hardware support that has been integrated
into real products or has been proposed by industry for inclusion in high-volume
microprocessors. Different to many other HTM proposals, these HTMs are
simple designs that provide best-effort HTM in the sense that only a subset of
all reasonable transactions are expected to be supported by hardware. They
have several limitations (e. g., the number of cache lines that can be accessed
in a transaction can be as low as four) and thus have to be complemented with
software fallback solutions. In turn, they are easier to implement in hardware
and to integrate into current microprocessors, which makes them more likely to
be available as TM building blocks in the near future.

My work uses AMD’s Advanced Synchronization Facility (ASF) [2] as the
base TM hardware support. It is a proposal for shared-memory synchronization
extensions to the AMD64 architecture. ASF is a good basis because it is de-
signed to be practical and have reasonable costs when implemented in hardware,
is publicly available in the form of a near-cycle-accurate simulator, and provides
a more useful set of features than other HTMs. In Section 7.1, I will provide
more information about first-generation HTMs and about ASF in particular.

First-generation best-effort HTMs cannot execute every possible sequential
code as a transaction. First, even if a transaction uses the HTM for concur-
rency control (called a hardware transaction in what follows), it typically needs
additional instrumentation of the code or additional software runtime support.
For example, custom hardware instructions might have to be used for transac-
tional memory accesses, transaction demarcation instructions have to be added
to the code, or parts of a transaction’s rollback might have to be implemented
in software (e. g., if the HTM does not restore all CPU registers on abort).

Second, some transactions will not be able to use the HTM for concurrency
control and will instead use an STM implementation (software transactions)
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because, for example, the HTM does not offer enough capacity for all the trans-
actional loads and stores in those transactions. A simple fallback strategy is
to execute software transactions serially (i. e., not concurrent with any other
hardware or software transaction) and hardware transactions concurrently.

This integration is the first part of exploiting hardware support for TM and
will be covered in Section 7.2. I investigated this and built the required runtime
support in the context of a study of ASF’s suitability for TM [14]. Overall, ASF
provides useful hardware support for TM and aligns well with other TM building
blocks. However, some of the design decisions for ASF make it harder to use
in a TM context than what seems necessary. Many of the findings discussed in
this section will also apply to other proposed hardware mechanisms that share
some features with ASF (e. g., execution of nonspeculative code in Alert-On-
Update [110]).

However, using serialized execution as fallback limits performance when soft-
ware transactions are not infrequent because the whole TM then frequently
switches to serial execution without any parallelism. It is therefore desirable to
build a hybrid TM (HyTM), in which multiple hardware and software transac-
tions can run concurrently.1

Thus, as the second part of exploiting TM hardware support, I will present
novel HyTM algorithms [96, 95] in Section 7.3. They are based on ASF and com-
bine with either LSA for C/C++ environments (Section 5.2) or NOrec [22] on
the STM side. Most previous HyTM proposals have assumed HTMs in which
every memory access inside a transaction is speculative (i. e., transactional),
whereas ASF supports nonspeculative memory accesses (including nonspecula-
tive atomic instructions). This allows for the construction of efficient HyTM
algorithms that improve on previous HyTMs. In particular, they decrease the
runtime overhead, abort rates, and HTM capacity requirements of hardware
transactions, while at the same time allowing hardware and software trans-
actions to run and commit concurrently. LSA and NOrec are optimized for
different workloads (i. e., a higher level of concurrency vs. lower single-thread
overheads), so the HyTM algorithms complement each other.

I will evaluate the performance of the HyTMs in Section 7.4 on simulations of
several reasonable implementations of ASF that differ notably in their capacity
limits (i. e., how they keep track of transactional loads and stores and how many
such accesses they can track per transaction). AMD implemented the ASF
extensions in their simulator using ASF cycle costs and pipeline interactions
that they would expect from a real hardware implementation. Together with
the realistic implementation of the building blocks in the rest of the TM stack,
this yields a reasonably accurate outlook on the TM-performance benefits of
having ASF implemented in real microprocessors.

7.1 First-Generation TM Hardware Support

Current commercial microprocessors are very complex and costly to design and
verify. This typically results in incremental evolution instead of large changes to
a processor’s design between consecutive generations. This constraint applies

1There is also the option of running either software or hardware transactions concurrently
(like in PhasedTM [74], see Section 7.3.3) but this will force all concurrent transactions into
software transactions even if just one of them cannot be run as a hardware transaction.
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especially to new features that still need to show that they present a large-
enough benefit to customers.

HTM is such a new feature. Many academic hardware-extension proposals
mandated modifying critical components such as the cache-coherence protocol,
which would be too costly in the context of a commercial microprocessor and
first-generation support for a feature. For example, the first HTM design, pub-
lished by Herlihy and Moss [55], proposed to use a separate transactional data
cache that is accessed in parallel to the conventional data cache. This would
require many intrusive modifications to a current typical microprocessor (e. g.,
to the main load–store path) and require space for the additional cache, making
such an implementation impractical to add. Similary, Shriraman et al. [106]
propose a mechanism for STM acceleration that would extend the standard
MESI cache-coherence protocol to twice the number of states and transitions.

Instead, HTM proposals by industry such as AMD’s Advanced Synchro-
nization Facility, Intel’s TSX [64], or the TM support in Sun Microsystems’
Rock processor [26], are best-effort designs that provide a limited feature but
at an affordable implementation cost. Typical limitations are a bounded ca-
pacity for transactional loads and stores, or disallowing certain instructions in
a transaction. Their implementations try to leverage existing components and
features (e. g., Rock’s TM reuses support for single-thread speculative execu-
tion, and ASF does not change the cache-coherence protocol). These HTMs
are also unobtrusive with respect to other parts of the system stack (e. g., they
do not require custom OS support and can be used from kernel and userspace
contexts).

To be useful despite the limitations, each of these hardware approaches re-
lies on accompanying software to provide a complete TM support with features
like large transaction sizes, less restrictions on transactional code, or advanced
contention management strategies. Likewise, transaction virtualization is con-
sidered to be best handled in software (e. g., in contrast to the virtualized trans-
actional memory proposed by Rajwar et al. [87], which increases the complexity
of the hardware implementation).

HASTM’s hardware extensions can be used to accelerate STM concurreny
control for transactional reads by providing a mechanism to monitor read sets
in hardware. Writes are not accelerated and must rely on pure software imple-
mentations. It allows for a reasonable, low-cost hardware implementation. I
will discuss its HyTM algorithms in more detail in Section 7.3.3.

The Rock processor, which was actually implemented in hardware but was
never publicly available, contained an HTM that showed encouraging perfor-
mance results but also had limitations that made the HTM difficult to employ
effectively. For example, hardware transactions abort on TLB misses and often
on certain code sequences commonly used for function calls. The former is cum-
bersome to deal with because some TLB misses will have been resolved after a
restart, whereas others will have to be replayed in software by the TM runtime
(e. g., using dummy accesses to the respective page) to be resolved. This lim-
its the applicability of the HTM to simpler transactions that might have to be
heavily tweaked to be able to use the HTM regularly. These use cases definitely
exist (e. g., in custom concurrent code in an OS kernel, or in a garbage collector),
but the hardware support is less useful for general-purpose transactions.

Azul Systems has developed multicore processors that contain an HTM [16]
which seems to be primarily used for lock elision [86] in Java. I will discuss lock
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elision in Section 7.3.3.

7.1.1 Advanced Synchronization Facility (ASF)

AMD’s Advanced Synchronization Facility is a proposal [2] of HTM extensions
for x86-64 CPUs. It essentially provides hardware support for the speculative
execution of regions of code. These speculative regions are similar to transac-
tions in that they take effect atomically and can access memory transactionally
using speculative loads and stores. ASF provides selective annotation, which
means that nonspeculative memory accesses are supported within transactions
(including nonspeculative atomic instructions) and speculative memory accesses
have to be explicitly marked as such.

ASF is a best-effort design that would be feasible to implement in high-
volume microprocessors. It is more advanced than the designs described previ-
ously. For example, unlike with Rock’s HTM, TLB misses do not abort transac-
tions. It comes with a number of limitations, of course. The number of disjoint
locations that can be accessed in a speculative region is limited—depending on
ASF’s implementation variant—either by the size of speculation buffers (which
are expensive and thus have been designed with small capacity) or by the size
and associativity of caches (when tracking speculative state in caches). It follows
that speculative accesses and concurrency control have cache line granularity.
ASF transactions are not virtualized and therefore, abort on events such as
context switches or page faults. However, page faults triggered in speculative
regions will be visible to the operating system after the abort, so a custom re-
play of the fault by the TM runtime is not necessary to be able to retry the
hardware transaction.

The original aim behind ASF was to make concurrent nonblocking program-
ming easier and faster by providing an atomic read–modify–write operation
for more than a single memory location. To that end, ASF ensures eventual
forward-progress in the absence of contention and exceptions if a speculative
region does not access more than four distinct cache lines.2 This guarantee
prevents programmers from having to always provide a software fallback path
that does not use ASF even if the speculative region is small. Note that in a
general-purpose TM, we need to always provide the software fallback because
we cannot make assumptions about the transactions.

In what follows, I will summarize ASF’s properties [14]. More information
can be found there, in ASF’s specification [2], and in two papers about its
internals and the background of the design [31, 15].

ISA extensions. The new instructions that ASF provides allow for entering
and leaving speculative regions (SPECULATE, COMMIT, and ABORT) and ac-
cessing protected memory locations (i. e., memory locations that can be read and
written speculatively and which abort the speculative region if accessed concur-
rently by another thread: LOCK MOV, WATCHR, WATCHW, and RELEASE).
All of these instructions are available in all system modes (user, kernel; virtual-
machine guest, host).

2Eventual means that there may be transient conditions that lead to spurious aborts, but
eventually the speculative region will succeed when retried continuously. The expectation is
that spurious aborts almost never occur and speculative regions succeed the first time in the
vast majority of cases.
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1 // DCAS Operation:
2 // if ((mem1 = rax) && (mem2 = rbx)) {
3 // mem1 = rdi; mem2 = rsi;
4 // rcx = 0;
5 // } else {
6 // rax = mem1; rbx = mem2;
7 // rcx = 1;
8 // }
9 DCAS:

10 mov %rax, %r8
11 mov %rbx, %r9
12 retry :
13 SPECULATE // SR begins
14 jnz retry // Restart SR after aborts
15 mov $1, %rcx // Default result , overwritten on success
16 lock mov (mem1), %r10
17 lock mov (mem2), %rbx
18 cmp %r8, %r10
19 jnz cmpfail
20 cmp %r9, %rbx
21 jnz cmpfail
22 lock mov %rdi, (mem1)
23 lock mov %rsi, (mem2)
24 xor %rcx, %rcx // Success indication
25 cmpfail:
26 COMMIT
27 mov %r10, %rax

Figure 7.1: An example implementation [14] of a DCAS operation using ASF.

Speculative regions are started using the SPECULATE instruction. When
a speculative region is aborted, execution resumes at the instruction following
the SPECULATE instruction (with a matching error code in the rAX register,
which allows clients to handle aborts in a custom way). COMMIT and ABORT

both finish the execution of a speculative region: COMMIT makes all speculative
modifications instantly visible to all other CPUs, whereas ABORT discards these
modifications. Flat nesting is used for nested speculative regions.

In a speculative region, speculative/protected memory accesses can be ex-
pressed in the form of ASF-specific LOCK MOV CPU instructions, and can be
mixed with ordinary nonspeculative/unprotected accesses (MOV). This selec-
tive annotation allows the TM or the programmer to use speculative accesses
sparingly and thus preserve precious ASF capacity. Second, the availability of
nonspeculative atomic instructions allows us to use common concurrent pro-
gramming techniques during a transaction, which enables novel HyTMs (see
Section 7.3) and can reduce the number of transaction aborts due to benign
contention (e. g., when updating a TM-internal, shared counter). In a specula-
tive region, nonspeculative loads are allowed to read state that is speculatively
updated in the same speculative region, but nonspeculative stores must not
overlap with previous speculative accesses.

ASF also provides CPU instructions for just monitoring a cache line for con-
current stores (LOCK PREFETCH) or loads and stores (LOCK PREFETCHW),
and for stopping monitoring a cache line (RELEASE).

Figure 7.1 shows a simplified example of a double CAS (DCAS) operation
implemented using ASF.

Speculative region aborts. As explained by Christie et al. [14], there are
several conditions that can lead to the abort of a speculative region, besides
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CPU A CPU B cache line state
Mode Operation Protected Shared Protected Owned

Speculative region LOCK MOV (load) OK B aborts
Speculative region LOCK MOV (store) B aborts B aborts
Speculative region LOCK PREFETCH OK B aborts
Speculative region LOCK PREFETCHW B aborts B aborts
Speculative region COMMIT OK OK
Any Read operation OK B aborts
Any Write operation B aborts B aborts
Any Prefetch operation OK B aborts
Any PREFETCHW B aborts B aborts

Table 7.1: Conflict matrix for ASF operations (from [2], §6.2.1).

the ABORT instruction: (1) contention for protected memory, (2) system calls,
exceptions, and interrupts, (3) the use of certain disallowed instructions, and
(4) implementation-specific transient conditions. In case of an abort, all modifi-
cations to protected memory locations are undone, and execution flow is rolled
back to the beginning of the speculative region by resetting the instruction and
stack pointers to the values they had directly after the SPECULATE instruction.
No other register is rolled back; software is responsible for saving and restoring
any context that is needed in the abort handler (see Section 7.2). Additionally,
the reason for the abort is passed in the rAX register. Because all privilege-level
switches (including interrupts) abort speculative regions and no ASF state is
preserved across such a context switch, all system components (user programs,
OS kernel, hypervisor) can make use of ASF without interfering with one an-
other.

Conflict detection for speculative accesses is handled at the granularity of a
cache line. Conflict resolution in ASF follows the “requester wins” policy (i. e.,
existing speculative regions will be aborted by incoming conflicting memory
accesses) with cache line granularity. Table 7.1 summarizes how ASF handles
contention when CPU A performs an operation while CPU B is in a speculative
region with the cache line protected by ASF. These conflict resolution rules are
important for understanding how the HyTM algorithms presented in Section 7.3
work.

Isolation and ordering guarantees. The isolation and ordering guarantees
that ASF provides for mixed speculative and nonspeculative accesses are im-
portant for the correctness of the HyTM algorithms because they access shared
data nonspeculatively. Also, a speculative region can trigger externally visible
side effects such as page faults. It is important to know whether these effects
were caused by misspeculation (i. e., were caused by a memory access that would
cause an abort) or by a consistent (yet potentially incomplete) speculative re-
gion or transaction. The guarantees described next complement the rules layed
out in Table 7.1. They are not yet part of the ASF specification but reflect the
intended design [29].

Aborts of a speculative region are designed to be instantaneous with respect
to the program order of instructions in a speculative region. For example, aborts
are supposed to happen before externally visible effects such as page faults or
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Storespec(A)→hb Storenonspec(B)→hb Commit

⇒Monitor(A)→hb Retire(A)→hb Retire(B)→hb V isible(B)

Loadspec(A)→hb Load(B)

⇒Monitor(A)→hb DataBind(A)→hb DataBind(B)

Figure 7.2: Ordering guarantees provided by ASF. →hb expresses happens-
before relationships conceptually similar to happens-before in the C++11 mem-
ory model (see Section 4.1). A and B are memory locations.

non-speculative stores appear. This behavior also illustrates why speculative
accesses can also be referred to as “protected” accesses. A consequence of this
is that speculatively accessed cache lines are monitored early for conflicting ac-
cesses (i. e., once the respective instructions are issued in the CPU, which is
always before they retire). Together with the standard memory model of x86
architectures, this leads to two rules that are relevant for the HyTM algorithms.
Figure 7.2 shows the order of CPU effects that is implied by certain program or
execution orders. The first rule essentially states that if a speculative store to
A happens before a nonspeculative store, then A’s cacheline will be monitored
before the nonspeculative store is visible to other threads. Similarly, the second
rule states that if a speculative load happens before a nonspeculative or spec-
ulative load, then the monitoring of the former will happen before the second
load actually retrieves a value from memory.

Furthermore, atomic instructions such as CAS or an atomic fetch-and-incre-
ment retain their ordering guarantees. For example, a CAS ordered before a
COMMIT in a program will become visible before the transaction’s commit,
and a CAS will be a full memory barrier with respect to memory accesses and
monitoring.

ASF implementation variants. ASF could be implemented in different
ways in hardware. One major implementation choice that affects ASF’s clients
is how uncommitted speculative reads and writes are tracked.

First, one can introduce a new CPU data structure called the locked-line
buffer (LLB), which holds the addresses of protected memory locations accessed
in the current speculative region and is fully associative. It also holds the
prior values of speculatively modified memory lines. Finally, it monitors remote
memory requests and aborts a current speculative regions on probe requests
that represent conflicting memory accesses by other CPUs.

Second, the L1 cache of each CPU core can be extended with an additional
speculative–read bit per cache line and the regular cache-coherence protocol
can be used to monitor protected reads and abort a current speculative region
if required. Similarly, the L1 cache could be extended with another bit for
speculative stores.

One can also combine these options, using the LLB only for speculative
stores and tracking speculative reads in the L1 cache. From the perspective of
ASF clients, the trade-off is mostly in terms of capacity for speculative state
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Name State stored in HTM capacity

LLB8 8-line LLB 8 distinct lines (loads and stores)

LLB256 256-line LLB 256 distinct lines (loads and stores)

LLB8L1 Stores: 8-line LLB Stores: 8 distinct lines
Loads: 1K-line L1 Loads: Minimum of 1K lines or 2-way set

associativity, shared with nonspeculative accesses

Table 7.2: ASF implementation variants.

(i. e., how many distinct memory lines can be accessed by a speculative region
before it will exceed the capacity and will have to abort). The L1 cache is
relatively large but its effective capacity can be limited by its associativity, and
nonspeculative accesses will potentially compete with speculative accesses for
cache space. The LLB does not suffer from these problems but will likely be
smaller in size because fully associative structures are quite costly.

Table 7.2 shows the implementations that I will consider in the evaluation.
LLB8 represents a minimal implementation that can only be used for small
transactions. LLB256 has a large LLB whose capacity is unlikely to be exceeded
based on current TM benchmarks, but thus is also costly to implement. LLB8L1
is a middle ground offering a capacity that is often sufficient.

ASF simulator. ASF is not yet implemented in hardware, so one has to rely
on simulation to evaluate it. AMD has extended PTLsim [122] with support
for ASF and a more detailed model of the interactions between multiple sep-
arated processor cores and memory hierarchies (PTLsim-ASF [30]). PTLsim
can simulate a full AMD64 system, which is important to be able to evaluate a
realistic TM stack with applications, libraries, and an operating system kernel
that would also run on a real machine.

AMD configured [14] the simulator to match the general characteristics of a
system based on AMD Opteron processors (family 10h), with a three-wide clus-
tered core, out-of-order instruction issuing, and instruction latencies modeled
after the AMD Opteron microprocessor. The cache and memory configuration
is:

• L1D: 64 KB, virtually indexed, 2-way set associative, 3 cycles load-to-use
latency.

• L2: 512 KB, physically indexed, 16-way set associative, 15 cycles load-to-
use latency.

• L3: 2 MB, physically indexed, 16-way set associative, 50 cycles load-to-use
latency.

• RAM: 210 cycles load-to-use latency.

• D-TLB: 48 L1 entries, fully associative; 512 L2 entries, 4-way set associa-
tive.

The simulated machine used for the evaluation has 16 CPU cores, each
having a clock speed of 2.2 GHz. PTLsim-ASF does not yet model topology
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Figure 7.3: PTLSim accuracy for the execution time of the STAMP benchmarks
(no TM, no ASF, one thread) for simulated execution time normalized to native
execution time.

information such as placement of cores on chips or sockets, and thus also does not
model limited cross-socket bandwidths. Therefore, these cores behave as if they
were located on the same socket, resembling future processors with higher levels
of core integration. The cache-coherence model is simplified but captures first-
order effects caused by cache coherence [30]. Additional ordering constraints
and fencing semantics for the ASF primitives are modeled as well. However,
the version of the simulator that was available did not yet correctly model
the ordering guarantees between speculative and nonspeculative loads, so the
implementations of HyTMs affected by this have to use additional read–read
memory barriers.

Simulator accuracy. To illustrate the accuracy of the simulator, Figure 7.3
shows the difference in execution times on a real machine3 compared to a simu-
lated execution within PTLsim-ASF4. A close match between the performance
of simulated and real executions is desirable because this increases the confi-
dence in the results of the evaluation. All experiments used for the evaluation
(Section 7.4), including baseline STM runs, have been conducted inside the
simulator to make sure that the results are comparable.

For many of the STAMP benchmarks (see Section 3.4.3), PTLsim-ASF stays
within 10–15% of native execution speed, which is in line with earlier results
for smaller benchmarks [30]. However, the results for Vacation-Lo and KMeans
show that not all mechanisms in the microarchitecture are simulated precisely
by PTLsim-ASF.

3AMD Opteron processor family 10h, 2.2 GHz.
4These results are from an experiment on an earlier version of PTLsim-ASF, which simu-

lated an 8-core machine.
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Figure 7.4: TM-based synchronization: HTM with serial execution of transac-
tions as fallback mode. Note that the fallback is implemented using standard
atomic operations, which has been omitted to increase clarity.

7.2 An ASF-Based TM Runtime Library

First-generation HTMs such as ASF are not yet widely available in hardware
and can only be added to new hardware designs but not to existing machines.
To give an incentive to the hardware manufacturers to include HTM support in
new designs, the transition from STM to HTM should be easy for future users.

The best way to achieve this would be to encapsulate the HTM support in a
TM runtime library that provides the same ABI as STM-only implementations.
This allows to keep other TM building blocks generic (e. g., the compiler). If the
TM runtime library is linked dynamically to an application, these applications
can use STM or HTM without recompilation.

I have built ASF-TM, which is a TM runtime library that can use ASF
to execute transactions. It provides the ABI described in Section 4.2, with
a few minor differences. In what follows, I will first describe an HTM-like
implementation that falls back to serial execution for each transaction that
cannot be executed in hardware (see Figure 7.4). Hybrid TM algorithms can
be implemented in the similar way, and I will describe those in Section 7.3.

Building ASF-TM showed that ASF’s design has only a few issues that
make ASF hard to support in a TM library, and that features such as selective
annotation are indeed useful from a TM perspective. The findings also apply
to other HTM designs and present a software-side validation of HTM design
decisions.

7.2.1 Implementation Overview

ASF-TM’s implementation can be roughly split into the groups of functionality
required by the ABI: (1) starting and committing transactions, (2) data transfers
that load from or store to shared data, (3) other functions such as queries or
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infrequently used functions, and (4) executing nontransactional code or custom
wrappers.

The first two will be discussed in Sections 7.2.2 and 7.2.3. The third category
is straight-forward to handle, either because these functions do not modify any
state and only read transaction-private or immutable state (e. g., getting the
current transaction’s ID) or because ASF-TM can fall back to serial execution
for functions that are only infrequently called.

Nontransactional code (e. g., accessing nonshared data on the stack or TM-
internal functions) and code with custom instrumentation (e. g., functions de-
clared with transaction pure or tm wrapper attributes) are more difficult to han-
dle. First, ASF disallows some combinations of speculative and nonspeculative
accesses to data. While the compiler can consistently separate nonshared and
potentially shared data, it does so on the granularity of individual bytes and not
on the cache line granularity that ASF accesses have. The problems resulting
from this potential false sharing are discussed in Section 7.2.3.

Second, nontransactional code can contain CPU instructions such as RDTSC

that are disallowed in ASF speculative regions ([2], §6.3) but allowed in sequen-
tial code or if executing the code with a TM runtime library other than ASF-TM.
Note that even though such instructions might not seem to be very useful for
application code in transactions, they can be reasonable code or even required
in cases like transaction pure functions. ASF makes this difficult to handle for
the software side because it will not only abort the speculative region but also
raise a general protection fault that is visible to the operating system and signal
handlers installed by the application. ASF-TM cannot reliably and efficiently
prevent these side effects.5 To not add additional dependencies on operating-
system support and to ease the transition from STM to HTM, ASF should
not raise general protection faults in speculative regions unless these would be
raised for sequentially executed code as well. Instead, it should only abort the
transaction and perhaps signal the execution of disallowed code using a special
abort reason code ([2], §6.1.1). In fact, PTLsim-ASF implements this already
and only aborts the speculative regions in most cases.

Third, ASF speculative regions can be aborted at any time without con-
sideration of what kind of code is currently executed in the speculative region.
Thus, there can be asynchronous aborts when executing nontransactional code,
which is difficult to handle and discussed in Section 7.2.4.

There are two generic features in my TM stack that are particularly useful
to increase ASF-TM’s performance. First, the compiler can generate several
different code paths for each transaction (see Section 3.4.1). Each code path
will use different sets of data transfer functions (or no instrumentation at all).
This allows ASF-TM to provide distinct functions for execution of hardware and
software transactions, which avoids having to switch between both dynamically
at runtime during each transactional memory access. In what follows, functions
for hardware transactions will be prefixed with htm− and those for software
transactions with stm−.

5For example, ASF-TM has no control over how the exceptions are handled in the ker-
nel internally and whether, for example, they would appear in statistics visible to users.
Application-side signal handlers can be set but then ASF-TM has to ensure that its handler is
never unset or overwritten by the application. Furthermore, switching to ASF-TM’s software-
only fallback mode would take longer because the operating system would be involved in
delivering the signal.
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1 leaq 8(%rsp), %rax // calculate SP of calling function
2 movq (%rsp), %r8 // get saved IP of calling function
3 subq $72, %rsp // allocate space on stack
4 movq %rax, (%rsp) // save the registers on the stack
5 // ... save r8 (caller IP), rbx, rbp, r12−r15 on stack here ...
6

7 movq %rsp, %rsi // provide address of saved registers as 2nd argument
8 call ASFTMBegin
9 // Use ASF unless we are about to run uninstrumented code or the

10 // code path ID is even.
11 test $0x22, %eax
12 jnz 1f
13 movq %rax, %rdi
14 SPECULATE
15 jnz .Labort ITM beginTransaction
16 call ASFTMPostSpeculate // must return first argument(%rdi) in %rax
17 1:
18 addq $72, %rsp
19 ret
20 .Labort ITM beginTransaction:
21 // Supply ASF abort reason code as first argument
22 movq %rax, %rdi
23 call ASFTMRestart
24 test $0x22, %eax
25 jnz 1f
26 movq %rax, %rdi
27 SPECULATE
28 jnz .Labort ITM beginTransaction
29 1:
30 jmp ASFTMRestartLongjmp

Figure 7.5: ASF-TM’s code to start a transaction.

Second, it is possible to use link-time optimization when statically linking
ASF-TM to an application with transactions. Together with a separate hard-
ware transaction code path, this allows for very efficient code when speculative
accesses get inlined (see Section 7.2.3 for an example). Note that ASF-TM still
provides the same ABI, so this can be used on demand and does not prevent
the portability offered by dynamic linking of the TM runtime library.

7.2.2 Begin and Commit

Starting a transaction in ASF-TM requires more care than in an STM and has
several implications for the implementation of other TM functions. Therefore,
I will discuss this in more detail. The ABI requires the TM to provide a single
function to start a transaction ( ITM beginTransaction), which will return more
than once when transactions are restarted. The SPECULATE instruction of
ASF provides similar functionality but we cannot rely on the compiler to insert
a SPECULATE instruction into the application code because this is not possible
with the current ABI. Furthermore, the TM needs to execute additional code
(e. g., synchronization code related to serial–irrevocable mode) before starting
a transaction. This code might not be able to run in a speculative region, so it
needs to be executed before the speculative region is started with SPECULATE.
Also, keeping as much code as possible out of the speculative region eases the
implementation because code executed from within a speculative region needs
to be robust to asynchronous aborts (see Section 7.2.4).

Figure 7.5 shows the implementation of ITM beginTransaction in ASF-TM.
Its first part up to line 5 is setjmp-like functionality and saves callee-saved regis-
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ters on the stack. This is necessary because ASF only restores the stack pointer
when restarting a speculative region.

Next, we call ASFTMBegin on line 8, supplying as arguments (1) the first
argument of ITM beginTransaction and (2) the address of the the saved registers
on the stack.6 This function then has to (1) copy the registers on the stack
to a per-transaction buffer so that they can later be restored when restarting
the transaction, (2) decide between executing as a hardware or as a software
transaction or in serial–irrevocable mode, and (3) start a software transaction
or preprare for the execution of a hardware transaction, respectively.

ASF only supports flat nesting (i. e., transactions are always completely
rolled back and the outermost transaction is restarted). Therefore, ASFTMBegin

basically has to just increment a nesting counter in the case of nested transac-
tions. In case of outermost transactions, ASFTMBegin will be executed before
we start a speculative region, so it does not have to deal with asynchronous
aborts.

ASFTMBegin must return the value that would otherwise be returned from
ITM beginTransaction. Unless the former decided to run uninstrumented code

or software-only code paths (line 11), we start the speculative region by execut-
ing the SPECULATE instruction (line 14) and then run TM code that has to
be executed from within the speculative region (ASFTMPostSpeculate, see Sec-
tion 7.3.2 for examples). Finally, we return to the transaction (line 19), which
will execute the proper code path.

If the speculative region aborts, ASF will roll back all speculatively modified
cache lines and resume execution at line 15. However, the TM still has to run the
software-only implementation parts of the transaction abort, so we detect this
and branch to the restart handling starting at line 22. We call ASFTMRestart,
which finishes the software-side abort of the current transaction (e. g., rolls back
memory allocations) and calls ASFTMBegin to start a new transaction. Because
of flat nesting, it is not executed inside a speculative region and thus does not
need to be robust to asynchronous aborts. Next, unless we have to restart
as a software transaction (line 11), we execute a second SPECULATE instruc-
tion. Finally, because this is a restarted transaction, we jump to a function
(line 30) that will (1) call ASFTMPostSpeculate if in a hardware transaction
and (2) use the saved registers to return directly from the application’s call to
ITM beginTransaction, similar to what longjmp does.7

ASF-TM uses a simple policy to decide whether to execute hardware or
software transactions. Each invoked transaction is first executed as a hardware
transaction. On hardware-transaction aborts due to far calls, disallowed oper-
ations, exceeded ASF capacity8, or serial–irrevocable mode requests, ASF-TM
will restart the transaction as a software transaction. When software transac-
tions abort, they will never be switched to hardware transactions. On aborts
caused by contention between speculative regions and other accesses, ASF-TM
uses a simple back-off strategy and only switches to a software transaction if
the transaction encountered a large number9 of aborts caused by contention.

6 ITM beginTransaction is declared to take a variable number of arguments, but ASF-
TM currently considers only the first argument.

7To work correctly, ITM beginTransaction must not be inlined into the calling function.
8If only serial–irrevocable mode is available as software fallback, only the second capacity-

related abort will cause a switch to a software transaction
9This number is arbitrarily set to 100.
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1 Load64: // arguments: address in %rsi
2 lock mov (%rsi), %rax
3 retq
4

5 Store64: // arguments: address in %rsi, value in %rdx
6 lock mov %rdx, (%rsi)
7 retq

Figure 7.6: 64-bit load and store functions in an ASF-based HTM.

1 lock mov (%r15),%r15 // load address of first node from list head
2 loop:
3 mov %r15,%rax
4 lock mov 0x8(%rax),%r15 // load address of next node
5 lock mov (%r15),%rcx // load node value
6 cmp %r14,%rcx
7 jl loop

Figure 7.7: A transactional traversal of a linked list using an ASF-based HTM
and link-time optimization.

This policy guides the execution of a single transaction including all its restarts,
but does not try to take the results of the execution of other transactions into
account. A proper tuning of this policy at runtime could increase performance.

Commiting a hardware transaction is straight-forward because COMMIT can
be called anywhere in the call stack. A COMMIT that causes the transaction to
abort is not different to an asynchronous abort, which can also happen anytime
(see Section 7.2.4 for further discussion of asynchronous aborts).

7.2.3 Loads and Stores

For brevity, let us consider a simple HTM-like implementation of hardware
transactions. The compiler will transform all accesses to shared memory in a
transaction into calls to the data transfer functions as specified in the ABI (i. e.,
loads, stores, and copying, moving or setting the values of blocks of memory).
ASF uses selective annotation, so we can use LOCK MOV instructions to in-
struct ASF to make only these accesses transactional. Other accesses do not
have to be instrumented, thus we only need LOCK MOV instructions in the
implementations of the ABI’s transactional data transfer functions.

Figure 7.6 shows 64-bit load and store functions as an example.10 Static link-
ing of ASF-TM and link-time optimization can reduce the overhead further by
inlining the LOCK MOV instructions into the application code (see Section 3.4.1
for details). As an example, Figure 7.7 shows the code generated by the com-
piler for a transactional traversal of a linked list. The code for the sequential
version of this traversal is essentially the same but without the LOCK prefixes.

Even simple HTMs such as the one I am considering here have to provide the
transaction guarantees outlined in Section 4.2. ASF obviously handles concur-
rency control between transactions but ASF-TM has to also ensure publication
and privatization safety, which depend on the interaction of nontransactional

10The functions in the example take the address of the transaction descriptor as first argu-
ment but we do not need to access it in an HTM-like algorithm.
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memory accesses and publishing or privatizing transactions.

Privatization safety is implicitely guaranteed by ASF because hardware
transactions will abort instantaneously on conflicting accesses to the cache lines
that they have accessed (see Section 7.1.1). Informally, the snapshot of a active
hardware transaction is always up-to-date. This also means that transactions
will never operate on inconsistent data (e. g., they never observe only parts
of the updates committed by another concurrent transaction). Furthermore,
COMMIT instructions are full memory barriers, so later nonspeculative accesses
to privatized data are never ordered before the commit.

Publication safety is a bit more involved because it must be ensured by both
the compiler and the TM runtime library. Informally, it requires that transac-
tional loads and stores are not reordered before other transactional loads that
appear earlier in program order.11 Speculative loads are ordered in program or-
der by ASF in terms of both monitoring the respective cache lines and retrieving
the data (see Figure 7.2). Speculative stores will not become visible before the
speculative region is committed and thus earlier loads will always have started
monitoring and loading the data before that. Thus, transactions will always
observe the nonspeculative updates that happened before the publishing trans-
action signaled the availability of these updates. Similar to privatization safety,
a publisher’s COMMIT instructions represents a full memory barrier. However,
the compiler also must take part in ensuring publication safety by not reordering
transaction loads or stores before other, earlier loads (see Section 4.2.3).

The final issues that we have to consider is false sharing between specula-
tive and nonspeculative accesses. The compiler has a consistent view of which
memory locations are potentially shared with other threads or not. It also pro-
vides this view to the TM by using TM load and store functions iff the accessed
location is shared. However, this information is at the granularity of bytes,
whereas speculative accesses in ASF always operate on full cache lines, lead-
ing to a potential false sharing between speculative and nonspeculative accesses
from ASF’s perspective.

ASF can handle some combinations of such false sharing but will raise a
general protection fault if a nonspeculative store targets a cache line that has
been accesses speculatively before. This is difficult to avoid by the compiler and
TM because this kind of sharing can happen in several situations that can be
caused by not just the TM building blocks but also by other parts of the tool
chain or the application (e. g., by the linker).

For example, consider a thread’s stack. Variables on the stack are typically
thread-private but can be shared as well. ASF’s selective annotation allows the
compiler to avoid wasting ASF’s capacity for accesses to nonshared parts of the
stack. But if there are shared variables on the stack frames of functions that
execute transactions, then these transactions are prone to triggering general
protection faults. To avoid this, the compiler’s code generator would have to
ensure that these potentially shared variables are on a separate cache line than
all other stack slots modified in transactions. This seperation would also have to
hold with respect to stack frames of calling functions and other future calls’ stack
frames that would end up on the same cache lines. Using a shadow stack for
all on-stack allocations of potentially shared data, starting in the function that

11This also applies to externally visible side effects caused by these accesses (e. g., page
faults).
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starts the outermost transaction, could be a reasonable approach to implement
this.

Another example are global variables. Putting every global variable on sep-
arate cache lines is not practical because it could bloat applications’ memory
requirements. In turn, it can be hard to let the compiler infer which global
variables are accessed or not accessed in transactions, because this requires
whole-program points-to analysis.12

In summary, it is hard for the TM compiler and runtime library to always
avoid the false sharing between speculative and nonspeculative accesses. Always
falling back to using software transactions when such a problem could poten-
tially occur will likely require a very conservative decision, wasting much of the
performance benefit that ASF and selective annotation offer.

Note that the problem is not that ASF cannot deal with the false sharing but
instead that it raises the general protection fault. If ASF would just abort the
speculative region and signal the false sharing with a special abort reason code,
the TM could easily fall back to a software transaction. Advanced compiler
analysis and trying to avoid the false sharing would still be possible.

Thus, judging from a software perspective, ASF should abort speculative re-
gions when they encounter unsupported false sharing instead of raising a general
protection fault. Note that this is similar to the case of disallowed instructions
discussed in Section 7.2.1.

7.2.4 Dealing with Asynchronous Aborts

ASF can abort speculative regions asynchronously at any time during their exe-
cution. This can make it difficult to execute uninstrumented code that modifies
state nonspeculatively. We can roughly categorize this code into (1) modifica-
tions to a thread’s stack, (2) TM-internal code, and (3) functions declared with
the transaction pure or tm wrapper attributes (called external code from now on).

Stack modifications are straight-forward to handle because the compiler gen-
erates code that can restore the stack slots potentially modified by a transaction.
The nonspeculative code that ASF-TM executes after an asynchronous abort
uses a new stack frame and is therefore not affected. It is not run from within
a speculative region, and will eventually return to the compiler-generated code
that restores the values of the stack slots potentially modified.

However, ASF-TM has to execute other TM-internal but nonspeculative
code. If it is trivial code such as decrementing the nesting level when a nested
transaction commits, then it is usually not much affected by asynchronous
aborts (e. g., because the nesting level can be easily reset to zero on transaction
restarts). However, if updates of TM metadata consist of modifiying more than
one memory location, then asynchronous aborts can cause incomplete updates
and a violation of invariants. Thus, such code has to be made robust to asyn-
chronous aborts, which complicates the implementation. For example, compiler
or memory barriers might have to be added, and large parts of the TM have to
be built in a way similar to reentrant signal handlers.

A good example for this issue is dynamic memory allocation from within
a transaction. In an STM, this is straight-forward to do because we can just

12The analysis would also have to consider variables that are accessed by functions declared
with the transaction pure attribute, or functions which have a custom transactional wrapper.



7.2. AN ASF-BASED TM RUNTIME LIBRARY 181

call malloc. This is safe because malloc only operates on memory managed
by itself, implements its own synchronization, and its callers will wait for it
to have finished the operation. This is not safe anymore within a speculative
region because it can abort during the operation due to malloc calling into the
operating system kernel or a conflicting memory access by another thread (e. g.,
the abort could happen right after malloc acquired a lock, which in turn could
block every thread that subsequently tries to allocate memory).

To handle memory allocation in ASF-TMs implementation, we therefore
have to resort to (1) logging the allocation request, (2) aborting the transaction,
(3) performing the allocation, and (4) restarting the transaction. This works well
for allocations used by ASF-TM itself (e. g., undo-log buffers). For allocations
triggered by the application, ASF-TM can just hope that the same allocation
will happen in the restarted transaction, so it might have to revert to a software
transaction after a small number of mispredictions.

The fact that STMs do not consider asynchronous aborts is also the key
point in the case of external code, the last category that we need to deal with.
From an STM perspective, this makes a lot of sense because it allows for simple
wrapper implementations and simple reuse of a lot of library code, as long as
these functions synchronize on their own and access data that is separate from
transactionally accessed data. Asynchronous aborts conflict with this assump-
tion, and I will next discuss possible work-arounds for this problem.

Software-side solutions. The simplest option would be to not call external
code from within hardware transactions. The ABI would have to be extended
so that it requires the compiler to notify the TM if external code is about to be
executed by a transaction.13 TMs could then decide to switch to software trans-
actions before executing such code. However, this is not what we really want
because there could be many bits of external code (e. g., built-in functions used
by the compiler) making it less likely to be able to use hardware transactions.

Another option would be to classify external code as asynchronous-abort–
safe or unsafe. This would require a second group of transaction pure and
tm wrapper attributes, increasing the complexity on the software side. ASF’s
particular safety requirements are different than those of STMs and other HTMs.
Thus, it is not clear that expecting programmers to maintain this classification
is beneficial in the long term.

One could also try to suspend speculative regions around external code, sim-
ilar to the split hardware transactions proposed by Lev and Maessen [73]. This
suspension has to be implemented entirely in software and results in signifi-
cant performance overheads for hardware transactions because it requires read
logging and write buffering, wasting much of the performance benefits of HTM.

Finally, we could try to automatically instrument external code in a way that
makes it robust to asynchronous aborts, for example by transforming memory
accesses to ASF’s speculative accesses or by redirecting them to a simple STM
that just provides this robustness but not concurrency control. However, this
defeats the purpose of the transaction pure and tm wrapper annotations. Also, we
cannot generically roll back custom synchronization code using software only.14

13This could either happen when starting a transaction, or using a new TM callback func-
tion.

14We cannot expect to know about the semantics of the synchronization operations, and we
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Furthermore, not all external code is available as source code or at compile
time, so dynamic binary instrumentation would have be used at runtime as
well. Overall, relying on instrumentation seems to be too intrusive and fragile.

Hardware-side solutions. It might also be possible to change ASF in a
way that avoids expensive hardware-based virtualization (i. e., by continuing to
abort transactions on far control transfers) and still makes it easier for software
to deal with asynchronous aborts.

ASF could offer speculative regions to run in a mode where consistency of
the region is just checked at commit time and on demand during its execution.
ASF would have to support a new CPU instruction that aborts a speculative
region if it is inconsistent, similar to a validate function in an STM. ASF-TM
could then use this instruction after each speculative load to check that the
value to be returned to the user is indeed part of a consistent snapshot.

However, this STM-like operation also causes a typical STM problem to
appear in hardware transactions: There can be pending speculative loads and
stores that get executed even when a speculative region’s snapshot is stale.
Because aborts would not be instantaneous anymore in the new ASF execution
mode, this would create a race condition with other privatizing transactions that
could change the protection levels of the memory accessed by the speculative
region with the stale snapshot. The software-only solution to this—ensuring pri-
vatization safety between hardware transactions—would decrease performance
significantly. A hardware-based solution could be to make speculative accesses
nonfaulting, and to forward some information from loads and stores to ASF’s
validating instruction (i. e., so that page faults and TLB misses can be made
visible if the speculative region had indeed a consistent snapshot).

This shows that asynchronous aborts are beneficial in code that is robust to
them. So, what we would really want is to suspend them when running external
code and resume aborting when switching back to instrumented code. We do
not need to ensure privatization safety while executing external code because
such code must not access shared data.15

Thus, ASF could offer new CPU instructions to suspend and resume aborts
in an speculative region, which ASF-TM would call before and after the execu-
tion of external code. Let us call them SUSPEND and RESUME. ASF would
roll back speculative updates instantaneously with the abort as before, but defer
the jump back to SPECULATE until RESUME is executed. The abort reason
could be carried forward to RESUME (requiring minimal virtualization, simi-
lar to what would be needed for the on-demand validation scheme discussed
previously). Alternatively, ASF could maintain a single bit indicating whether
a speculative region has aborted. This bit would be set on aborts and after
context switches, and cleared when new outermost speculative regions start.

Other speculative regions nested in a region where aborts are suspended are
more difficult because they need to run with open-nested16 semantics to provide

have no control over other threads potentially participating in the synchronization protocol.
15We can support accessing shared data through calls to the TM. These special transactional

data transfer functions would just resume and suspend the speculative region before and after
performing the necessary speculative accesses. Obviously, the caller would have to ensure that
this is robust to asynchronous aborts at the time at which it calls these functions.

16Under open nesting, nested transactions essentially commit independently of parent trans-
actions.
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us with the composability that we aim for. Even if this is the case, it will be dif-
ficult to provide ASF’s minimal-progress guarantees. Thus, such special nested
speculative regions could instead of depending on open nesting just abort parent
speculative regions or optionally use a software fallback if a parent speculative
region exists. However, this only provides partial composability, in that nesting
is safe but only one of the speculative regions can actually execute.

7.2.5 Discussion and Related Work

I investigated how to build an ASF-based TM runtime library that can be
integrated into a general-purpose TM system. The study that this was a part
of used a near-cycle-accurate full-system simulator. Other previous or more
recent studies about realistic first-generation HTM either focused on different
hardware support and use cases or have not been evaluated publically.

Intel’s TSX is an HTM feature that has been announced recently for an
upcoming CPU. It provides an interface roughly similar to ASF but does not
support nonspeculative accesses; all memory accesses in a speculative region
are automatically considered as speculative accesses without the need for any
special annotations. Aborted speculative regions do not make any of their side
effects visible, which simplifies their use but can also require a slightly more
frequent execution of software transactions. GCC’s TM runtime library [44] has
recently been extended with a simple HTM execution mode that can use Intel’s
TSX; this uses the same ABI as considered here and employs serially executed
software transactions as fallback mode. No performance measurements have
been published so far.

The recent IBM BlueGene/Q processor also contains an HTM feature [117].
Using this HTM is significantly more complex than in the case of ASF or Intel’s
TSX. There are two separate execution modes aimed at short-running and long-
running transactions, both of which track speculative state in different hardware
resources and require different handling by software. The ABI of the TM run-
time library for this HTM is not described in detail but it has to rely on the
operating system kernel to handle events like exceeding the HTM’s capacity
or executing disallowed code; the kernel also executes TM conflict resolution
policies in some modes.

In the primary study about Rock TM [26, 12], the authors were able to use
a real hardware implementation. However, in comparison to ASF, Rock TM
puts more restrictions on the code that it can run as a hardware transaction, so
the focus of these studies has rather been on using HTM support for concurrent
data structures in operating system kernels or virtual machines than on using
it as part of a general-purpose TM (e. g., there are no results for the STAMP
benchmarks). There seems to be some level of compiler support for Rock TM
but it is not discussed whether it is reasonably close to what would be useful for
a generic STM. Because ASF’s design is different than Rock TM (e. g., selective
annotation or handling TLB misses) and supports a wider spectrum of code
in transactions, studying ASF in the context of general-purpose transactions
revealed the implications of different hardware design choices in further system
areas.

In TxLinux and MetaTM [97, 60], an academic HTM proposal is used as
basis for evaluating hardware transactions as replacement for lock-based syn-
chronization in the Linux kernel (using a technique similar to speculative lock



184 CHAPTER 7. EXPLOITING HARDWARE SUPPORT FOR TM

elision [86]). The authors also consider userspace applications (STAMP with
manual instrumentation), but in both cases the HTM is used directly and it
is not investigated how the HTM would integrate with general-purpose TM
support (e. g., there is no compiler support or integration with programming
languages). The HTM itself does not use selective annotation and has to imple-
ment virtualization for hardware transactions. Only a simple in-order simulation
of the x86 architecture is used for the evaluation.

HASTM [99] is evaluated as part of general-purpose TM for userspace ap-
plications, including compiler support. It only provides hardware support for
concurrency control but does not support transactional updates. It therefore
can only accelerate STM algorithms and does not face issues like asynchronous
aborts or false sharing of speculative and nonspeculative memory accesses. The
simulator used for the study is described as an accurate IA32 simulation.

In comparison, ASF is well aligned with general-purpose, non-ASF-specific
TM building blocks. Design decisions such as the visibility of page faults trig-
gered by speculative code make building a TM based on ASF easier than it
would be on Rock TM, for example.

Selective annotation is a very valuable feature of ASF because it allows to
use costly ASF capacity only for memory accesses that actually need to be
protected or speculative. Furthermore, it enables new HyTM algorithms (see
Section 7.3). However, even though it makes sense to not support some kinds
of false sharing between speculative and nonspeculative memory accesses, ASF
should be more forgiving towards its clients and handle exceptional situations
by aborting the speculative region instead of raising general protection faults.
For customly built synchronization based on ASF, the fatal errors might be use-
ful because they reduce the error cases that need to be handled. In contrast, for
generic synchronization mechanisms like TM, it is much easier to just prevent
such situations most of the time instead of having to choose a conservative im-
plementation. Unlike the faults, speculative region aborts can be handled locally
in the TM. This also applies to faults raised by the execution of instructions
not supported in speculative regions.

ASF’s instantaneous aborts and the guarantee of snapshot consistency that
this implies are very useful for HyTMs and also make other behavior practical
(e. g., page faults triggered by speculative code being visible). However, this
also implies asynchronous aborts, which complicate executing nonspeculative
code. Because none of the software-only solutions to work around this issue are
really practical, extending ASF with support for suspending and resuming asyn-
chronous aborts seems to be the best overall solution. It seems to require only
a few changes to ASF but allows for more encapsulation of ASF’s peculiarities
inside the TM runtime library.

Overall, ASF is together with these two changes (aborts instead of faults and
suspendable asynchronous aborts) ready for being used inside a general-purpose
TM.17 Support for ASF can be confined to a TM runtime library (ASF-TM)
that provides the same ABI as STM runtime libraries. This is important for a
new hardware feature like ASF as well because it eases the transition from STM
to an ASF-based TM.

17PTLsim-ASF implements the first change, aborting speculative regions instead of raising
faults. Suspendable asynchronous aborts are not implemented by it but the benchmarks used
for the evaluation in Section 7.4 work without this change as they do not require the execution
of unsafe external code.
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Figure 7.8: TM-based synchronization: HyTM.

7.3 Hybrid TM Algorithms

Previously, I explained why first-generation best-effort HTMs are unlikely to be
able to execute all transactions as hardware transactions. The three main causes
for falling back to software transactions are (1) that a transaction accesses more
memory locations than the HTM has capacity for, (2) that an HTM cannot
execute parts of the code in a transaction, or (3) that a different transaction
conflict resolution policy than the one implemented in hardware is required (e. g.,
ASF implements a strict requester-wins policy, which can lead to starvation or
live-locks). The fallback modes that I considered so far (e. g., serial–irrecovable
mode) required all threads to agree on whether to execute hardware or soft-
ware transactions. In this section, I will focus on hybrid transactional memory
algorithms that can execute hardware and software transactions concurrently.

The overall aim of HyTMs is to execute as many transactions as possible
as hardware transactions, while at the same time avoiding global overheads
due to having to execute software transactions as well. In HyTMs, hardware
transactions have to execute more code than in pure HTMs because they need
to synchronize with software transactions as well using TM synchronization
metadata such as orecs (see Figure 7.8). HyTM performance can therefore be
characterized along the following points:

Hardware transaction performance. The overheads on transactional loads
and stores are most important for this as they are the most frequently per-
formed operations within a transaction. HTM code can be very similar to
sequential code (see Figure 7.7 on page 178), so additional synchronization-
related code required on the hardware transaction code path can quickly
decrease performance.

Level of concurrency. Allowing a higher level of concurrency when running
hardware and software transactions concurrently is important because
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it will decrease the slow-down that the execution of software transac-
tions might cause (i. e., slow software transactions should not slow down
hardware transactions as well). Furthermore, the additional synchroniza-
tion with software transactions should not cause hardware transactions
to abort each other more often. Transactions with disjoint accesses also
should not abort each other.

Hardware capacity requirements. It is essential for HyTM performance to
keep the capacity requirements small for hardware transactions because
exceeding the capacity is the main reason why a HyTM has to fall back to
software transactions. Even though a HyTM cannot cut down the memory
accesses of a transaction nor change the HTM’s conflict resolution policy,
it is up to the HyTM to decide how and when to use speculative and
nonspeculative accesses.

Software transaction performance. Depending on the implementation of
software transactions, they can still stall or disturb hardware transac-
tions. Therefore, even if they are infrequent, their performance can have
a significant influence on the overall TM performance. For example, if the
software transaction implementation does not provide privatization safety,
commits by hardware and software transactions will be slowed down be-
cause both have to commit in a privatization-safe manner. Likewise, using
invisible reads can improve throughput among software transactions (see
Section 5) but also helps in the case of HyTMs (e. g., if visible reads mod-
ify orecs, then this will abort hardware transactions that synchronize by
monitoring those orecs for changes, even if there is no real conflict.

The novel HyTM algorithms that I will present next, HyLSA and HyNOrec-
2, rely on nonspeculative accesses in transactions—including nonspeculative
atomic read–modify–write instructions—to improve HyTM performance in com-
parison to previous HyTM proposals. In particular, they decrease the runtime
overhead, abort rates, and HTM capacity requirements of hardware transac-
tions, while at the same time allowing hardware and software transactions to
run and commit concurrently (this is further discussed in Section 7.3.3 and Ta-
ble 7.4). HyLSA and HyNOrec-2 complement each other in that they optimize
different HyTM performance factors. Their STM base algorithms, LSA (Lazy
Snapshot Algorithm, Section 5.2) and NOrec [22], focus on different workloads
in their optimizations (i. e., a higher level of concurrency vs. lower single-thread
overheads). All HyTMs fulfill the TM runtime library specifications discussed
in Section 4.2.

For HyLSA, the focus is on decreasing HTM capacity requirements. Hard-
ware transactions use nonspeculative data loads together with the indirection
provided by ownership records and an STM-like algorithm to allow the HyTM
to control the granularity of conflict detection (e. g., in contrast to the fixed
cache-line granularity provided by ASF). This effectively allows them to read
more data in transactions than supported by the HTM capacity if using a pure
HTM algorithm. In turn, this comes with a higher runtime overhead for trans-
actional loads and stores because of the ownership record indirection. Software
transactions just need to execute LSA.

The aim of HyNOrec-2 is to keep runtime overheads of hardware transactions
small. It uses speculative accesses only for all transactional loads and stores but
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Technique Explained in

1. Monitor metadata but read data nonspeculatively. Section 7.3.1

2. Use nonspeculative atomic read-modify-write
operations to send synchronization messages.

Section 7.3.1 & 7.3.2

3. Validate hardware transactions against software
synchronization messages.

Section 7.3.2

Table 7.3: General-purpose synchronization techniques enabled by the availabil-
ity of nonspeculative operations in hardware transactions.

Algorithm 9 Common transaction start code for all HyTMs.

1: hytm-start()p:
2: if hytm-disabled()p then
3: goto line 7

4: s ← SPECULATE . Start hardware transaction
5: if s 6= 0 then . Did we jump back here after an abort?
6: if fallback-to-stm(s) then . Retry in software?
7: stm-start()p . We are in a software transaction
8: return false . Execute STM codepath

9: goto line 4 . Restore registers, stack, etc. and retry

10: htm-start()p . We are in a hardware transaction
11: return true . Execute HTM codepath

not for accessing any TM metadata, thus requiring basically the same capacity
as a pure HTM algorithm. Transactional accesses require very little additional
code. Commits of software transactions, which run a modified NOrec algorithm,
stall hardware transactions for the duration of the commit. However, in contrast
to previous NOrec-based HyTMs, transactions only abort other transactions if
they indeed are in conflict. The performance of hardware transactions thus is
very close to a pure HTM algorithm.

Nonspeculative operations are useful beyond HyTM optimizations. Table 7.3
shows three general-purpose synchronization techniques, which are all combina-
tions of both transaction-based synchronization and classic nontransactional
synchronization using standard atomic instructions. The first technique can
reduce HTM capacity requirements and has similarities to lock elision [86],
whereas the other two are about composability with nontransactional synchro-
nization. I will explain the techniques further in Sections 7.3.1 and 7.3.2. To
make them applicable, the HTM does not only have to allow nonspeculative op-
erations but it must also provide certain ordering guarantees (see Section 7.1.1).

I will present the HyTM algorithms using the same notation as in Section 5.2.
Nonspeculative accesses are the default in these algorithms; all speculative ac-
cesses are prefixed with LOCK MOV. SPECULATE, ABORT, COMMIT, and
LOCK PREFETCHW refer to the respective ASF instructions.

Because those algorithms have been built for ASF, they also rely on the
AMD64’s memory model as well as the ordering guarantees described in Sec-
tion 7.1.1 (see Figure 7.2 on page 171). To make the algorithms easier to under-
stand, I have annotated the speculative memory accesses with memory orders
too (primarily in cases where pairs of speculative and nonspeculative memory
accesses need to be ordered with respect to each other).

As I mentioned previously, DTMC generates separate STM and HTM code
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paths for each transaction. A common transaction start function (see Algo-
rithm 9) takes care of selecting STM or HTM code at runtime. A transaction
first tries to run as a hardware transaction (line 4). SPECULATE returns a
non-zero value when jumping back after an abort, similarly to setjmp in the
standard C library. If the transaction aborts and a retry is unlikely to succeed
(as determined on line 6, for example, because of capacity limitations or after
multiple aborts due to contention), it switches to software mode. After this
decision for either a software or hardware transaction, only STM or HTM code
will be executed (functions starting with stm− or htm−, respectively) during
this attempt to execute the transaction.

In what follows, I will present the HyLSA and HyNOrec-2 algorithms in Sec-
tions 7.3.1 and 7.3.2, discuss them in comparison to related work in Section 7.3.3,
and evaluate them in Section 7.4.

7.3.1 The Hybrid Lazy Snapshot Algorithms

Next, I will discuss two variants of a HyTM based on LSA (see Section 5.2).
These algorithms are extensions to Algorithm 3 on page 87 and use the same
synchronization metadata as the STM: ownership records (orecs) and a global
clock implemented as a shared integer counter. Hardware transactions also syn-
chronize similarly to software transactions, but use ASF to modify and monitor
orecs instead of locking orecs nonspeculatively and performing time-based vali-
dation.

The Eager Hybrid LSA algorithm. The first variant of HyLSA, shown
in Algorithm 10, uses eager conflict detection. Like software transactions in
Algorithm 3, hardware transactions speculatively acquire orecs before they write
to memory locations associated with those orecs. As a result, data conflicts with
other transactions will be detected as early as possible.

Transactional loads first perform an ASF-protected load of the associated
orec (line 6). This operation monitors the orec for changes and will lead to
an abort if the orec is updated by another thread. If the orec is not locked,
the transaction uses a nonspeculative load operation (line 9) to read the target
value. Note that ASF will start monitoring the orec before loading from the
target address (see the ordering guarantees in Figure 7.2). If the transaction
is not aborted before returning a value, this means that the orecs associated
with this address and all previously read addresses have not changed and are
not locked, thus creating an atomic snapshot.

Loading the target values nonspeculatively allows the HyTM to use HTM
capacity just for orecs and data updates. The HyTM chooses the mapping from
memory locations to orecs (i. e., the hash function called on line 6), so it can
use this mapping to influence how many orecs a certain set of memory locations
are associated with. The latter allows the HyTM to run hardware transactions
that load more data than the HTM would actually provide capacity for, which
can be valuable given that HTM capacity is limited.

Transactional stores proceed as loads, first monitoring the orec and verifying
that it is not locked (lines 12–14). The transaction then watches the orec for
reads and writes by other transactions (PREFETCHW on line 15). This ensures
eager detection of conflicts with concurrent transactions. Finally, the updated
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Algorithm 10 HyLSA (Eager variant, extends Algorithm 3)

1: State of thread p: . Extends state of Algorithm 3
2: o-set: set of orecs updated by transaction

3: htm-start()p:
4: o-set ← ∅

5: htm-load(addr)p:
6: LOCK MOV : orec ←acq orecs[hash(addr)] . Protected load
7: if orec.locked then
8: ABORT . Orec owned by (other) software transaction

9: val ← ∗addr
10: return val

11: htm-store(addr,val)p:
12: LOCK MOV : orec ←acq orecs[hash(addr)] . Protected load
13: if orec.locked then
14: ABORT . Orec owned by (other) software transaction

15: LOCK PREFETCHWacq orec . Watch for concurrent loads/stores
16: LOCK MOV : ∗addr ← val . Speculative write
17: o-set ← o-set ∪ {hash(addr)}

18: htm-commit()p:
19: if o 6= ∅ then . Is transaction read-only?
20: ct ← atomic-inc-and-fetchacqrel(clock) . Commit timestamp
21: for all o ∈ o-set do
22: LOCK MOV : orecs[o]←rel 〈false, ct〉
23: COMMIT . Commit hardware transaction

memory location is speculatively written (line 16). Note that hardware trans-
actions can safely read cache lines nonspeculatively that they have updated
speculatively, so read–after–write situations will not abort transactions and the
reads will read the transaction’s own updates.

Upon commit, an update transaction first acquires a unique commit times-
tamp from the global time base (line 20). This operation will become visible
before the transaction’s commit but will happen after monitoring of the orecs has
been started. Second, it speculatively writes all updated orecs (lines 21–22), and
finally tries to commit the transaction (line 23). Note that these steps are thus
ordered in the same way as the equivalent steps in a software transaction (i. e.,
acquiring orecs or recording orec version numbers before incrementing clock ,
and validating orec version numbers or releasing orecs afterwards). Read-only
transactions do not need further actions because loads have ensured an atomic
snapshot already by monitoring the associated orecs. If the transaction com-
mits successfully, then we know that no other transaction performed conflicting
accesses to the orecs (representing data conflicts). Thus, the hardware trans-
action could have equally been a software transaction that acquired write locks
for its orecs or validated that their version numbers were not changed. If the
hardware transaction aborts, then it only might have incremented clock , which
is harmless because other transactions cannot distinguish this from a software
update transaction that did not update any values that have they have read.

By nonspeculatively incrementing clock (line 20), a hardware update trans-
action sends a synchronization message to software transactions, notifying them
that they might have to validate due to pending hardware transaction commits.
It is thus an application of the second general-purpose technique in Table 7.3.
Because ASF provides nonspeculative atomic read–modify–write operations,
hardware transactions can very efficiently send such messages. In contrast,
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using speculative stores would lead to frequent aborts caused by consumers of
those messages. If using just nonspeculative stores instead of read–modify–write
operations, concurrent transactions would have to write to separate locations to
avoid lost updates, which in turn would require observers to check many differ-
ent locations. In the case of HyLSA, this would also prevent the efficiency that
is gained by using a single global time basis. The ordering guarantees that ASF
provides for nonspeculative atomic read–modify–write operations are essential
because it allows hardware transactions to send messages after monitoring data
and before commit or monitoring further data.

The STM ensures privatization safety using a typical STM quiescence-based
protocol (see Section 5.2); update transactions essentially wait until concurrent
transactions have extended their snapshot far enough into the future so that they
will have observed the updates. Because hardware transactions will be aborted
immediately by conflicting updates, their snapshot is always most recent and
we do not need to wait for them.

Algorithm 11 HyLSA (Lazy variant, extends Algorithm 3)

1: State of thread p: . Extends state of Algorithm 3
2: o-set: set of orecs updated by transaction

3: htm-start()p:
4: o-set ← ∅

5: htm-load(addr)p:
6: LOCK MOV : orec ←acq orecs[hash(addr)] . Protected load
7: if orec.locked then
8: ABORT . Orec owned by (other) software transaction

9: val ← ∗addr
10: return val

11: htm-store(addr,val)p:
12: LOCK MOV : ∗addr ←acq val . Speculative write
13: o-set ← o-set ∪ {hash(addr)}

14: htm-commit()p:
15: if o 6= ∅ then . Is transaction read-only?
16: ct ←acq clock + 1 . Optimistic commit timestamp
17: for all o ∈ o-set do
18: LOCK MOV : orec ←acq orecs[o] . Protected load
19: if orec.locked then
20: ABORT . Orec owned by (other) software transaction

21: LOCK MOV : orecs[o]←acq 〈false, ct〉 . Speculative write

22: t ←acq clock
23: if ct ≤ t then . Was optimistic timestamp valid?
24: ct ← t + 1 . Use conservative timestamp
25: for all o ∈ o-set do
26: LOCK MOV : orecs[o]←rel 〈false, ct〉 . Speculative write

27: t ←acq clock

28: if ct > t then
29: atomic-incacqrel(clock)

30: COMMIT . Commit hardware transaction

The Lazy Hybrid LSA algorithm. Software transactions use eager conflict
detection, but we can also combine those with hardware transactions that use
lazy conflict detection, as shown in Algorithm 11: Upon stores, we do not read
nor watch the orec associated with the accessed memory location, but instead
we just speculatively write to the target location (line 12) and detect conflicts
for those stores later during commit.
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For an LSA update transaction to commit correctly, its commit timestamp
must be strictly larger than the value of clock at the time when the transaction
had acquired—or, for a hardware transaction, started monitoring—all of the
orecs associated with updated locations. Therefore, we start the commit phase
of update transactions by speculatively writing to all orecs (lines 17–21), which
will also start monitoring.

We can use several optimizations to speed up commit in certain cases. Sim-
ilarly to the commit-phase optimizations by Zhang et al. [123], we first install
an optimistic commit timestamp (lines 16 and 21) and next load clock again
(line 22) to check the invariant. Because the orec “acquisition” with speculative
stores is not bound to a value like for a typical software lock, we can optimize
more aggressively than in an STM by updating orecs to the assumed final value
(orec.locked is false, line 21), which can then potentially allow us to skip the
second orec update loop (lines 25–26). Nevertheless, the bigger effect on perfor-
mance might be that we can potentially skip incrementing clock and share the
same commit timestamp between nonconflicting transactions.

7.3.2 The Hybrid NOrec Algorithms

In this section, I will discuss how the NOrec [22] STM algorithm can be turned
into a scalable HyTM for ASF. Roughly speaking, NOrec uses a single orec
(a global versioned lock) and relies on value-based validation in addition to
time-based validation. The reason for creating a hybrid extension to NOrec is
that this algorithm can potentially provide better performance for low thread
counts because it does not have to pay the runtime overheads associated with
accessing multiple orecs. On the other hand, LSA is expected to provide better
scalability with large thread counts or frequent but disjoint commits of software
transactions. Therefore, both algorithms are of practical interest depending on
the target architecture and workload.

The NOrec algorithm. NOrec, shown in Algorithm 12, is quite similar—
when ignoring VBV—to time-based TMs like LSA; the main difference is that
NOrec uses a single orec (gsl , line 2) and does not acquire the lock before
attempting to commit a transaction. As a consequence, it yields a very simple
implementation and allows for a few optimizations. In particular, it is not
necessary to track which locks are covering loads or stores, and the lock itself
can serve as time base (lines 28/32, 11, and 36). However, such a design would
not scale well when update transactions commit frequently because timestamp-
based validation would also fail frequently (e. g., in the checks on lines 19 and 28).
Therefore, NOrec attempts value-based validation (VBV, lines 38–41) whenever
timestamp-based validation is not successful (lines 20 and 29).

With VBV, the consistency of a transaction’s read set is verified on the basis
of the values that have been loaded instead of the versions of the orecs. The
disadvantage of using values is that one has to potentially track more data in
the read set because several addresses often map to the same orec. VBV is
typically paired with serialized commit phases. In NOrec, this is enforced on
lines 12 and 37.

My implementation of NOrec differs in a few points from the original im-
plementation [22]. Notably, in my implementation, when writing back buffered
updates upon commit, transactions only write to precisely those bytes that were
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Algorithm 12 NOrec STM algorithm [22]

1: Global state:
2: gsl: word-sized global sequence lock, consisting of:
3: locked: most significant bit, true iff locked
4: clock : clock (remaining bits)

5: State of thread p:
6: sl: thread-local sequence lock
7: r-set: read set of tuples 〈addr , val〉
8: w-set: write set of tuples 〈addr , val〉

9: stm-start()p:
10: repeat
11: sl ←acq gsl . Get the transaction’s start time
12: until ¬ sl.locked . Wait until concurrent commits have finished
13: r-set ← w-set ← ∅

14: stm-load(addr)p:
15: if 〈addr ,new-val〉 ∈ w-set then . Read after write?
16: val ← new-val . Return buffered value
17: else
18: val ←acq ∗addr
19: while sl 6= gsl do . Timestamp-based validation
20: sl ← validate() . Trigger value-based validation
21: val ←acq ∗addr

22: r-set ← r-set ∪ {〈addr , val〉}
23: return val

24: stm-store(addr,val)p:
25: w-set ← w-set ∪ {〈addr , val〉} . Updates are buffered

26: stm-commit()p:
27: if w-set 6= ∅ then . Is transaction read-only?
28: while ¬ casacqrel(gsl : sl → 〈true, sl.clock〉) do . Acquire lock
29: sl ← validate() . Trigger value-based validation

30: for all 〈addr , val〉 ∈ w-set do . Write updates to memory
31: ∗addr ← val
32: gsl ←rel 〈false, sl.clock + 1〉 . Release lock and increment clock

33: validate()p:
34: repeat
35: repeat
36: c ←acq gsl . Get current time
37: until ¬ c.locked . Wait until concurrent commits have finished
38: for all 〈addr , val〉 ∈ r-set do
39: v ←acq ∗addr
40: if v 6= val then . Value-based validation
41: abort() . Inconsistent snapshot

42: until c = gsl
43: return c
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modified by the application, whereas the original implementation always per-
forms updates at the granularity of aligned machine words. This more complex
bookkeeping introduces higher runtime overheads but is required for the STM
to operate correctly according to the C/C++ TM specification (see Section 4).

Furthermore, Dalessandro et al. assume that NOrec provides privatization
safety, but this is not quite true when considering privatization safety as required
by the C/C++ TM specification. It is true that software transactions will
never operate on an inconsistent snapshot, but the STM can still internally
access privatized data (lines 18 and 39). These loads can result in protection
faults if the privatizing thread changed the memory protection on the privatized
data in the meantime. However, to ease comparisons with related work in the
evaluation, I have not added an explicit enforcement of full privatization safety
in my implementation. Nonetheless, I will discuss this further when describing
my HyTM algorithms.

The Hybrid NOrec algorithm by Dalessandro et al. HyNOred-DSS
(Algorithm 13) is based on the informal description by Dalessandro et al. [22],
adapted to use ASF as HTM. The main approach of HyNOrec-DSS is to use two
global sequence locks, gsl and esl . The purpose of the additional lock esl is for
software transactions to be able to interrupt and stop hardware transactions.
Software transactions acquire both locks on commit (lines 5–8) and increment
their version numbers after committing (lines 17–18).

Hardware transactions monitor esl (line 25), so that any store to this loca-
tion will abort them. Also, they will not proceed if the lock is acquired (line 27).
Because software transactions only update data when they have acquired esl ,
hardware transactions never see inconsistent state (e. g., partial software com-
mits). Note that esl is only modified by software transactions because hardware
transactions would otherwise abort each other, which is not necessary because
they access all data speculatively (lines 20 and 23) and thus ASF will resolve
any conflict. To avoid false sharing, gsl and esl are located in separate cache
lines in my implementation.

In turn, hardware transactions increase the version number of the global se-
quence lock gsl (line 30), which will trigger validation in active software transac-
tions and thus notify them about the updates. From the perspective of software
transactions, committed hardware transactions are thus equivalent to software
transactions that committed atomically.

A scalable Hybrid NOrec algorithm. The major problem of HyNOrec-
DSS is that it does not scale well in practice (see Section 7.4). For example,
Dalessandro et al. assume [22] that the update of the contended gsl by every
hardware transaction (line 30 in Algorithm 13) is not a performance problem
because it would happen close to the end of a transaction. However, experi-
mental evaluation of this algorithm shows a high rate of aborts and poor overall
performance.

In what follows, I will construct a new algorithm, HyNOrec-2, that performs
much better while being no more complex. gsl and esl are used by software and
hardware transactions to synchronize with each other, so my key approach is to
apply the last two techniques from Table 7.3 and use nonspeculative operations
to let hardware transactions synchronize more efficiently via these variables. To
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Algorithm 13 HyNOrec-DSS: HyTM by Dalessandro et al. [22] (extends Al-
gorithm 12)

1: Global state: . Extends state of Algorithm 12
2: esl: extra sequence lock

3: stm-acquire-locks()p:
4: SPECULATE . Start hardware transaction (retry code omitted)
5: LOCK MOV : l ← gsl
6: if l = sl then
7: LOCK MOV : gsl ← 〈true, sl.clock〉 . Try to acquire commit lock
8: LOCK MOV : esl ← 〈true, sl.clock〉 . Also acquire extra lock

9: COMMIT
10: return l = sl . True⇔ locks were acquired atomically

11: stm-commit()p: . Replaces function of Algorithm 12
12: if w-set 6= ∅ then . Is transaction read-only?
13: while ¬ stm-acquire-locks() do . Acquire gsl and esl atomically
14: sl ← validate()

15: for all 〈addr , val〉 ∈ w-set do . Write updates to memory
16: ∗addr ← val
17: esl ← 〈false, sl.clock + 1〉 . May abort hardware transaction
18: gsl ← 〈false, sl.clock + 1〉 . Release lock and increment clock

19: htm-load(addr)p:
20: LOCK MOV : val ← ∗addr . Protected load
21: return val

22: htm-store(addr,val)p:
23: LOCK MOV : ∗addr ← val . Speculative write

24: htm-start()p:
25: LOCK MOV : sl ← esl . Protected load (monitor extra lock)
26: if sl.locked then . Extra lock available?
27: ABORT . No: spin by explicit self-abort [22]

28: htm-commit()p:
29: LOCK MOV : l ← gsl
30: LOCK MOV : gsl ← 〈false, l.clock + 1〉 . Release lock and increment clock
31: COMMIT . Commit hardware transaction

better explain and evaluate the different optimizations involved, I will addition-
ally show two intermediate algorithms.

Algorithm 14 shows the first (intermediate) NOrec-based HyTM, which will
serve as the basis for the other two variants. As a first straightforward optimiza-
tion, a hardware transaction has to update gsl only if it will actually update
shared state on commit (line 26).

Second, we do not need to use a small hardware transaction to update both
gsl and esl in stm−commit. This is not necessary because esl is purely used to
notify hardware transactions about software commits18 and can only be modified
by a software transaction that previously acquired gsl (line 7). In contrast to
Algorithm 13, this allows hardware transactions to try to commit at a time
where gsl has been acquired but esl has not yet been updated (which would
have aborted the hardware transaction). However, this case can be handled by
just letting the hardware transaction abort if gsl has been locked (line 29).

This second change is not about performance but it allows us to have a
software fallback path in the HyTM that does not depend on HTM progress
guarantees (e. g., no spurious aborts), which are surprisingly difficult to imple-

18As a matter of fact, esl .clock can contain any value as long as the lock bit is updated
properly because such an update will abort hardware transactions monitoring esl .
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Algorithm 14 HyNOrec-0: STM acquires locks separately (extends Algo-
rithm 12)

1: Global state: . Extends state of Algorithm 12
2: esl: extra sequence lock

3: State of thread p: . Extends state of Algorithm 12
4: update: are we in an update transaction?

5: stm-commit()p: . Replaces function of Algorithm 12
6: if w-set 6= ∅ then . Is transaction read-only?
7: while ¬ casacqrel(gsl : sl → 〈true, sl.clock〉) do . Acquire commit lock
8: sl ← validate()

9: esl ← 〈true, sl.clock〉 . Also acquire extra lock (no need for cas)
10: for all 〈addr , val〉 ∈ w-set do . Write updates to memory
11: ∗addr ← val
12: esl ←rel 〈false, sl.clock + 1〉 . Release locks and increment clock
13: gsl ←rel 〈false, sl.clock + 1〉

14: htm-load(addr)p:
15: LOCK MOV : val ← ∗addr . Protected load
16: return val

17: htm-store(addr,val)p:
18: LOCK MOV : ∗addr ← val . Speculative write
19: update ← true . We are in an update transaction

20: htm-start()p:
21: LOCK MOV : l ← esl . Protected load (monitor extra lock)
22: if l.locked then . Extra lock available?
23: ABORT . No: spin by explicit self-abort

24: update ← false . Initially not an update transaction

25: htm-commit()p:
26: if update then
27: LOCK MOV : l ← gsl
28: if l.locked then . Main lock available?
29: ABORT . No: we will be aborted anyway

30: LOCK MOV : gsl ← 〈false, l.clock + 1〉 . Release lock and increment clock

31: COMMIT . Commit hardware transaction

ment [31]. Also, programs can use the software path in the HyTM as is on
hardware that does not support ASF.

Algorithm 14 can still suffer from conflicts on gsl if updating hardware trans-
actions commit frequently. Algorithm 15 shows that we can replace the specu-
lative update of gsl with a nonspeculative atomic fetch–and–increment instruc-
tion (line 9), which allows hardware transactions that access disjoint data to
not abort each other anymore and makes the algorithm scale better. Note that
the fetch–and–increment operation will be ordered before the commit of the
transaction. Also, using a typical CAS loop instead of the fetch-and-increment
yields lower performance.

To understand why this is possible, consider possible orderings of the hard-
ware transaction’s fetch-and-increment and a software transaction’s CAS on gsl .
If the increment comes first, the CAS will fail and will cause a software trans-
action validation. If the software transaction accesses during validation any
updates of the hardware transaction before the former can commit, it will abort
the hardware transaction, making the situation look like if some transaction
committed without updating anything. If in contrast the CAS comes first, the
hardware transaction will notice that gsl was locked before it incremented gsl
and will abort. The hardware transaction’s update to gsl is harmless in this
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Algorithm 15 HyNOrec-1: HTM writes gsl nonspeculatively (extends Algo-
rithm 14)

1: htm-start()p: . Replaces function of Algorithm 14
2: wait until ¬ esl.locked . Spin while extra lock unavailable
3: LOCK MOV : l ← esl . Protected load
4: if l.locked then . Extra lock available?
5: ABORT . No: explicit self-abort

6: update ← false . Initially not an update transaction

7: htm-commit()p: . Replaces function of Algorithm 14
8: if update then
9: l ← atomic-fetch-and-incacqrel(gsl) . Increment gsl.clock (gsl.locked is MSB)

10: if l.locked then
11: ABORT . Main lock unavailable, we will be aborted anyway

12: COMMIT . Commit hardware transaction

Algorithm 16 HyNOrec-2: HTM does not monitor esl (extends Algorithm 14)

1: htm-start()p: . Replaces function of Algorithm 14
2: update ← false . Initially not an update transaction

3: htm-load(addr)p: . Replaces function of Algorithm 14
4: LOCK MOV : val ←acq ∗addr . Protected load
5: wait until ¬ esl.locked . Spin while extra lock unavailable
6: return val

7: hytm-commit()p: . Replaces function of Algorithm 14
8: if update then
9: atomic-incacqrel(gsl) . Increment gsl.clock (gsl.locked is MSB)

10: wait until ¬ gsl.locked

11: COMMIT . Commit hardware transaction

case because no transaction interprets gsl .clock if gsl is locked.

Additionally, hardware transactions spin nonspeculatively if esl is locked
before accessing it speculatively to avoid unnecessary aborts (line 2).

The remaining problem of Algorithm 13 (and Algorithm 15) is that com-
mitting a software transaction aborts all hardware transactions that execute
concurrently. One might see this as a minor issue assuming that, typically, soft-
ware transactions are much longer than hardware transactions, but this is not
necessarily the case. There are several reasons why a transaction cannot use
ASF, for example because it contains instructions that are not allowed in ASF
speculative regions (e. g., rdtsc), or because its access pattern quickly exceeds
the associativity of the cache used to track the speculative loads, hence leading
to capacity aborts after only few accesses.

Fortunately, software transactions can commit without having to abort non-
conflicting hardware transactions. The key insight to understand this second
extension is that the monitoring in hardware transactions is like an over-cautious
form of continuous value-based validation (any conflicting access to a specula-
tively accessed cache line will abort a transaction). In NOrec, software trans-
actions tolerate concurrent commits of other transactions by performing value-
based validation when necessary.

This leads to my final optimization shown in Algorithm 16. Hardware trans-
actions do not monitor esl using speculative accesses anymore. The purpose of
esl is to prevent hardware transactions from reading inconsistent state such as
partial updates by software transactions. To detect such cases and thus still
obtain a consistent snapshot, hardware transactions first read the data specu-
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latively (line 4) and then wait until they observe with nonspeculative loads that
esl is not locked (line 5). If this succeeds and the transaction reaches line 6
without being aborted, it is guaranteed that it had a consistent snapshot valid
at line 5 at a time when there were no concurrent commits by software trans-
actions. Again, note that ASF will have started monitoring the data before
performing the subsequent nonspeculative loads.

The reasoning for waiting until gsl is not locked on line 10 is similar and just
applied to the commit optimization in HyNOrec-1. Waiting for gsl is as good
as waiting for esl because esl will be locked iff gsl is locked (see Algorithm 14).

Thus, hardware transactions essentially validate against commit messages by
software transactions (the third general-purpose technique in Table 7.3). This
consists of the nonspeculative spinning on esl (reading commit messages by
software transactions) combined with the implicit value-based validation per-
formed by ASF monitoring the data accessed by the hardware transaction. The
nonspeculative accesses allow hardware transactions to observe and tolerate soft-
ware commits that create no data conflicts (i. e., pass value-based validation).

Note that esl could be removed and replaced by just gsl . A downside of this
approach is that it would increase the number of cache misses on line 5 because
both hardware and software commits would update the same lock. In contrast,
if there are no frequent commits by software transactions, checking esl on line 5
is likely to hit in the cache. Therefore, it is better to keep gsl and esl separate.

Hardware transactions in the HyNOrec algorithms are privatization-safe.
Unconditional memory accesses will never target privatized data in a data-race-
free program. Conditional memory accesses depend on the snapshot formed
by the prior loads in the transaction. This snapshot will always be up-to-date
because ASF monitors all the accessed data and transactions will be aborted
immediately if the data changes. However, NOrec software transactions can still
have pending reads so we need to ensure full privatization safety for them (see
the prior discussion of this for details).

7.3.3 Discussion and Related Work

Table 7.4 shows a comparison of my HyTM algorithms (second and third row)
with previous HyTM designs. The columns list HyTM properties that have a
major influence on performance.

First, at least first-generation HTM will not be able to run all transactions
in hardware. Thus there likely will be software transactions, which should be
able to run concurrently with hardware transactions (see column two19). Sec-
ond, HyTMs should not introduce additional runtime overheads for hardware
transactions, which would decrease HTM’s performance advantage compared
to STM. Third, HTM capacity for transactional memory accesses is scarce, so
HyTM should require as little capacity as possible20. Furthermore, HyTM al-
gorithms that do not guarantee privatization safety for software transactions
have to ensure this using additional implementation methods (see Section 5.2),
resulting in additional runtime overhead. Visible reads are often more costly
for STMs than invisible reads and can introduce artificial conflicts with trans-

19“Yes” means that non-conflicting pairs of software/hardware transactions can run con-
currently.

20“Data” refers to the application data accessed in a transaction.



198 CHAPTER 7. EXPLOITING HARDWARE SUPPORT FOR TM
H
y
T
M

H
W

/
S
W

c
o
n
c
u
rre

n
c
y

H
W

tra
n
sa

c
tio

n
lo
a
d
/
sto

re
ru

n
tim

e
o
v
e
rh

e
a
d
s

H
W

c
a
p
a
c
ity

re
q
u
ire

d
fo
r

P
riv

a
ti-

z
a
tio

n
sa

fe
ty

(S
W

)

In
v
isib

le
re

a
d
s

(S
W

)

R
e
m
a
rk

s

H
y
N

O
rec-2

Y
es,

S
W

co
m

m
its

sta
ll

o
th

er
H

W
/
S
W

o
p
s

V
ery

sm
a
ll

D
a
ta

Y
es

a
Y

es
S
ee

A
lg

o
rith

m
1
6

H
y
L

S
A

(ea
g
er)

Y
es

S
m

a
ll

(lo
a
d

o
rec)

O
recs

a
n
d

d
a
ta

u
p

d
a
tes

N
o

Y
es

S
ee

A
lg

o
rith

m
1
0

P
h
a
sed

T
M

[7
4
]

N
o

N
o
n
e

D
a
ta

N
/
A

N
/
A

C
a
n

u
se

a
n
y

S
T

M

H
o
ff

m
a
n

et
a
l.

[6
0
]

L
ittle

N
o
n
e

D
a
ta

Y
es

N
o

D
irty

rea
d
s

n
o
t

p
rev

en
ted

K
u
m

a
r

et
a
l.

[6
9
]

Y
es

H
ig

h
(in

d
irectio

n
)

D
a
ta

Y
es

N
o

D
a
m

ro
n

et
a
l.

[2
3
]

Y
es

S
m

a
ll

(lo
a
d

o
rec)

D
a
ta

a
n
d

o
recs

Y
es

N
o

H
A

S
T

M
[9

9
]

ca
u
tio

u
s

Y
es

M
ed

iu
m

(lo
a
d
+

lo
g

o
rec)

R
ea

d
d
a
ta

N
o

Y
es

S
to

res
in

S
W

o
n
ly

H
A

S
T

M
a
g
g
ressiv

e
Y

es
S
m

a
ll

(lo
a
d

o
rec)

R
ea

d
d
a
ta

a
n
d

o
recs

N
o

Y
es

S
to

res
in

S
W

o
n
ly

H
y
N

O
rec-D

S
S

[2
2
]

P
a
rtia

l,
S
W

co
m

m
its

a
b

o
rt

H
W

tx
n
s

N
o
n
e,

b
u
t

co
n
cu

rren
t

co
m

m
its

a
b

o
rt

ea
ch

o
th

er

D
a
ta

a
n
d

2
lo

ck
s

Y
es

a
Y

es

H
y
N

O
rec-D

S
S
-2

[1
9
]

Y
es,

S
W

co
m

m
its

sta
ll

o
th

er
H

W
/
S
W

o
p
s

V
ery

sm
a
ll,

co
n
cu

r-
ren

t
co

m
m

its
ca

n
still

a
b

o
rt

ea
ch

o
th

er
(b

u
t

less
lik

ely
)

D
a
ta

a
n
d

3
lo

ck
s/

co
u
n
ters

Y
es

a
Y

es
A

p
p
lies

to
th

eir
b

est-p
erfo

rm
in

g
a
lg

o
rith

m
s

T
a
b

le
7
.4

:
O

v
erv

iew
o
f

H
y
T

M
d

esig
n

s.

a
T

h
e

N
O

rec-b
a
sed

a
lg

o
rith

m
s

d
o

n
o
t

g
u

a
ra

n
tee

fu
ll

p
riv

a
tiza

tio
n

sa
fety

a
s

req
u

ired
b
y

th
e

C
/
C

+
+

T
M

sp
ecifi

ca
tio

n
(see

S
ectio

n
7
.3

.2
fo

r
d

eta
ils).



7.3. HYBRID TM ALGORITHMS 199

actional HTM reads (e. g., if the STM updates an orec even though it just reads
the associated data).

In phased TM [74], the implementation mode for transactions is switched
globally (i. e., only software or hardware transactions are running at a time).
The serial irrevocable mode that is present in most current STMs is a special
case of the phased approach, as it can be used as a very simple software fallback
for HTMs. This leads to no HyTM overhead when in hardware mode, but even
a single transaction that has to run in software reduces overall performance to
the level of STM. The phased TM approach is orthogonal to hybrid TM.

Similarly, the HyTM [60] presented by Hofmann et al. uses a simple global
lock as software fallback mechanism instead of an STM that can run several
software transactions concurrently. Hardware transactions wait for a software
transaction to finish before committing, but are not protected from reading
uncommitted and thus potentially inconsistent updates of software transactions
(“dirty reads”). Remember that with ASF, for example, hardware transactions
are not completely sandboxed; page faults due to inconsistent snapshots will
abort speculative regions but will also be visible to the operating system.

Kumar et al. describe a HyTM [69] based on an object-based STM design
with indirection via locator objects, which uses visible reads and requires small
hardware transactions even for software transactions. Prior research has shown
that STM algorithms with invisible reads and no indirection have significantly
lower overhead (e.g., [27, 42]).

Damron et al. present a HyTM [23] that combines a best-effort HTM with a
word-based STM algorithm that uses visible reads and performs conflict detec-
tion based on ownership records. The HTM does not use selective annotation
and thus hardware transactions have to monitor application data and TM meta-
data (i. e., ownership records) for each access, which significantly increases the
HTM capacity required to successfully run transactions in hardware. Likewise,
visible reads result in significant overheads for STMs. This HyTM is also used
in a study about the HTM support in Rock [26].

The hardware-accelerated STM algorithms (HASTM) by Saha et al. [99] are
based on multiple ownership records21, like LSA but unlike NOrec. HASTM
in cautious mode monitors application data and does read logging, whereas
HyLSA monitors ownership records and does not log reads. HASTM in aggres-
sive mode monitors both application data and ownership records, thus suffering
from higher HTM capacity requirements (evaluated in Section 7.4). Thus, only
HyLSA can change the memory–to–orec mapping to achieve a larger effective
read capacity. Transactional stores in HASTM are not accelerated but exe-
cuted in software only. Furthermore, HASTM in cautious mode as presented
in the paper does not prevent dirty reads22, which can crash transactions in
unmanaged environments such as C/C++.

Spear et al. propose to use Alert-On-Update (AOU) [110] to accelerate
snapshots by reducing the number of necessary software snapshot validations
in STMs based on ownership records. However, LSA already has efficient time-
based snapshots due to its use of a global time base, whereas AOU uses a commit
counter heuristic, which can suffer from false positives that lead to costly re-
validations. The details of the AOU algorithm are not presented, thus it is

21I am considering HASTM’s cacheline-based variants here.
22It first checks the version in an ownership record and then loads data speculatively. Exe-

cuting these steps in reverse order fixes this problem.
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difficult to assess the remaining HyTM aspects and overheads (and I do not
include it in Table 7.4). Similar to HASTM, AOU does not use speculative
writes for transactional stores.

Dalessandro et al. informally describe a HyTM [22] based on the NOrec STM
(“HyNOrec-DSS”). It features low runtime overheads and capacity requirements
but it shows less scalability because (1) commits of software transactions abort
hardware transactions and (2) concurrent commit phases of hardware transac-
tions can abort each other as well. See Sections 7.3.2 and 7.4 for a detailed
discussion and evaluation.

In concurrent work [19] that has been published after the first publication [39]
of my HyTM algorithms, Dalessandro et al. describe optimizations of HyNOrec-
DSS (“HyNOrec-DSS-2”, last row in Table 7.4) and evaluate them on Rock [26]
and on ASF. They try to reduce conflicts on metadata (NOrec’s global lock,
see Section 7.3.2) by distributing commit notifications using speculative stores
over several counters, which leads to additional runtime overhead for software
transactions because they then have to validate all these counters (and at least
two) after each transactional load. In contrast, my HyTMs use nonspeculative
read–modify–write operations for such notifications (the second technique in
Table 7.3), which enables software transactions to validate using only a single
counter. Their algorithms also use nonspeculative loads to validate during a
hardware transaction’s runtime (“lazy subscription”, the third technique in Ta-
ble 7.3) but still use speculative reads for validation during commit, and thus
require more HTM capacity than HyNOrec-2. Furthermore, they propose an
optimization similar in spirit to phased TM, but embedded into the HyTM algo-
rithms (“SWExists”), which avoids commit-time synchronization with software
transactions if none is running. However, this requires speculative accesses to
one further location (thus increasing HTM capacity requirements), and only
helps in workloads in which software transactions are rare. SWExists could be
applied to our algorithms as well and could increase scalability if mostly hard-
ware transactions execute. Their evaluation results on Rock cannot be easily
compared with ours because Rock is fairly limited compared to ASF. On ASF,
they only show results for one ASF implementation, LLB256 (see Section 7.1.1),
which has sufficient capacity to run almost all transactions in hardware and rep-
resents the best case in terms of HTM capacity. Other ASF implementations
with reduced capacity (e. g., because of cache associativity or a smaller LLB)
might be more likely to appear in real hardware but in turn make extra specula-
tive accesses for HyTM metadata much more costly. Furthermore, the choice of
LLB256 makes it more difficult to compare their optimizations in detail to my
implementations because, as I show in Section 7.4, the interesting behavior of
HyTMs (and arguably, the target workload for best-effort HTM) appears with
workloads in which software transactions are not rare.

As shown in Table 7.4, the new HyTM algorithms that I have presented
improve on previous designs. In the class without orecs, HyNOrec-2 provides a
high level of concurrency and good scalability while not wasting HTM capacity
and requiring only a very small runtime overhead. For HyTMs with orecs,
HyLSA features either lower HTM capacity requirements or a smaller runtime
overhead than other algorithms.
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7.4 Evaluation

In this section, I will evaluate TMs that use ASF, focusing on the performance
of HyTM algorithms and how they compare against using ASF as a pure HTM
with serial-irrevocable mode as fallback. I will not evaluate ASF itself or its
design decisions because this is out of the scope of my work; instead, I will
assume that ASF is a realistic first-generation best-effort HTM.

The experiments were executed on the CPU simulator discussed in Sec-
tion 7.1.1, which has reasonable simulation accuracy (see Figure 7.3 on page 173).
All measurements were performed on the simulator, including those for STMs.

I will show results for LLB8, LLB8L1, and LLB256, the ASF implementation
variants explained in Table 7.2 on page 172 because this highlights the impact
that differences in HTM capacity can have on the performance of HTMs and
HyTMs.

Because of the huge runtime overhead of simulation, shorter benchmark
runs had to be used to make it practically feasible to perform a large number
of experiments. For the STAMP benchmarks (see Section 3.4.3), this can be
achieved by using the standard configurations recommended for simulated runs
(annotated with “Sim” in Table 3.2 on page 40). For the IntegerSet benchmarks
(see Table 3.1), a fixed number of operations is executed instead of running each
benchmark for several seconds.

All benchmarks have been compiled with DTMC, which creates a separate
code path in each transaction for each TM algorithm that can be used (e. g.,
one path each for hardware and software transactions when a HyTM is used).
The HyTM algorithms are implemented as part of ASF-TM (see Section 7.2),
which in turn is part of the prototype TM runtime library that I built (see
Section 3.4.2).

7.4.1 ASF-TM performance

The focus of my work on ASF-TM was primarily on functional aspects of us-
ing ASF in a typical TM software stack (e. g., how to deal with asynchronous
aborts). To synchronize between transactions, ASF-TM uses ASF like a pure
HTM and simply falls back to running transactions in serial-irrevocable mode if
it seems unlikely that they can finish execution as hardware transactions. While
ASF-TM and the quality of compiler support affect the single-thread overheads
of hardware transactions to some extent, scalability and how often transactions
can execute completely as hardware transactions is essentially determined by
just the performance properties of ASF. Therefore, I will evaluate ASF-TM
performance by summarizing the results of a study of ASF performance that I
coauthored [14]. Note that these results have been obtained on earlier versions
of both the simulator and the TM software prototypes than those used to obtain
the results presented in Section 7.4.2.

Figure 7.9 shows the performance of single-threaded executions of the STAMP
benchmarks in comparison to executions of sequential versions of those bench-
mark that do not employ any synchronization code. These measurements are
for the LLB256 implementation variant of ASF, which can execute essentially all
transactions in the benchmarks as hardware transactions. We can see that ASF-
TM is about 20–40% slower than sequential execution, whereas STM (LSA, see
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Figure 7.9: Single-thread performance of the STAMP applications normalized
to the execution time of sequential, nonsynchronizing code (larger is better).

Algorithm 3) only has one fifth to half of the the execution speed of sequential
runs.

These runtime overheads of ASF-TM are caused by several factors. First, all
transactions have to adhere to the TM runtime library ABI and thus need to call
the respective begin and commit functions (see Section 7.2.2); this includes an
explicit save or restore of CPU registers because ASF restores just a few of them.
Second, transactions in ASF-TM have to take part in serial-irrevocable mode
synchronization (see Section 5.2) before they can execute as hardware transac-
tions, which does not require hardware transactions to update shared state but
does require memory barriers. Third, the execution of speculative regions using
ASF also results in some runtime overhead compared to sequential execution.
Finally, without any synchronization in the sequential code, the compiler is free
to optimize code across what would otherwise be separate transactions. On the
positive side, the results show that DTMC’s inlining of transactional load and
store calls can keep overheads relatively low; this works even for HyTMs because
of DTMC’s ability to generate separate code paths for each transaction.

Besides these single-thread overheads, ASF-TM’s performance and scala-
bility depends primarily on (1) how many transactions can run as hardware
transactions instead of having to fall back to serial-irrevocable mode and (2)
how likely hardware transactions conflict with other concurrent transactions.

Figure 7.10 shows a break-down of the reasons why hardware transactions
abort for selected STAMP applications. We can see that exceeding ASF ca-
pacity is the primary abort reason on LLB8 and LLB8L1, whereas LLB256 has
enough capacity to execute even the larger transactions. Note that even though
LLB8L1 can use the L1 cache to track transactional reads, the cache’s associa-
tivity (two-way set associative) can still limit the effective capacity; furthermore,
the cache line displacement logic in the simulator has not been optimized to try
to minimize the impact of capacity limitations. The “malloc” aborts are caused
by how ASF-TM handles memory allocation inside of hardware transactions
(see Section 7.2.4), which only infrequently requires transactions to fall back to
serial-irrevocable mode. Page faults and system calls are very unlikely to occur
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Figure 7.10: Hardware transaction abort rates of selected STAMP applications
for 1, 2, 4, and 8 threads for HTM. The different patterns identify the cause of
aborts. Note that a capacity abort can occur only once per executed transaction
because after such an abort, the transaction will fall back to serial-irrevocable
mode.

in transactions in these benchmarks, so capacity limitations are the most likely
cause when a transaction falls back to serial-irrevocable mode. This is further
illustrated by the HTM results in Tables 7.5 and 7.6, which show which ratio of
transactions can commit as hardware transactions.23

Overall, LLB8 is often insufficient to execute many transactions using ASF
except those with very small transactions such as HashTable. LLB8L1 can
typically execute many hardware transactions except in STAMP applications
like Vacation that traverse several data structures. LLB256 has enough capacity
to execute all transactions in our benchmarks.

Scalability results for using hardware transactions with serial-irrevocable
mode as fallback can be found in several figures in Section 7.4.2 (e. g., results
labeled “HTM” in Figure 7.17). When transactions cannot execute as hard-
ware transaction frequently (e. g., on LLB8), contention on the lock that serial-
irrevocable mode is implemented with can cause a slowdown when the number
of threads increases. This lock’s implementation is optimized with the assump-
tion that serial-irrevocable mode would be infrequent, as is the case with typical

23Note that as I mentioned previously, different versions of both the simulator and the
TM software prototypes were used to obtain the results in Section 7.4.2 and the results in
Figure 7.10.
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Benchmark Percentage of hardware transaction commits
LLB8 LLB8L1 LLB256

SkipList-Large < 1% Figure 7.11 100%

SkipList-Small < 1% HTM: 98–100% 100%
HyNOrec: 95–100%

HyLSA-eager: 90–95%

RBTree-Large 0–2% Figure 7.11 100%

RBTree-Small 2–10% HTM: 99–100% 100%
HyNOrec: 99–100%

HyLSA-eager: 90–95%

HashTable 100% HTM: 100% 100%
HyNOrec: 99–100%

HyLSA-eager: 95–96%

LinkedList-Large 1–3% Figure 7.11 100%

LinkedList-Small Figure 7.11 100% 100%

Table 7.5: IntegerSet microbenchmarks and approximate ratio of hardware
transaction commits to total number of commits. “HyNOrec” represents all
of HyNorec-0, HyNOrec-1, and HyNOrec-2.

STM scenarios and workloads; a tuning of the lock implementation that is more
appropriate for such HTM scenarios could avoid these slowdowns.

7.4.2 HyTM Performance

In what follows, I will evaluate the HyTM algorithms presented in Section 7.3 by
comparing them with pure HTM (see Sections 7.2 and 7.4.1) and the matching
STM algorithms, LSA (see Algorithm 3) and NOrec (see Algorithm 12). The
HyTM implementations have the same names as the respective algorithms (e. g.,
Algorithm 16 is denoted “HyNOrec-2”), are based on ASF-TM, and use the
STM implementations for their software transaction code paths. HyLSA and
LSA use the Simple hash function (see Algorithm 4 on page 96), 220 orecs, and
a Shift parameter value of 3.

Because hardware transactions have lower runtime overheads than software
transactions in all our HyTM algorithms, it is important for HyTMs to run as
many transactions as hardware transactions as possible. Table 7.5 shows for the
IntegerSet benchmarks which percentage of transaction commits happen on the
hardware transaction code path in comparison to the total number of commits.
Remember that in ASF-TM, only ASF aborts due to nontransient conditions like
exceeding ASF’s capacity make the HyTM switch to the software transaction
code path. Aborts due to conflicts between transactions will not result in such
a switch unless a transaction suffers from a high number of retries (100 in our
experiments). Therefore, the ratio of HTM’s commits that I show is essentially
independent of the level of contention in a workload.

On LLB8L1 and LLB256, HTM and the HyNOrec algorithms (or at least
HyNOrec-2) can execute almost all transactions in the IntegerSet benchmarks
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Figure 7.11: Ratio of hardware transaction commits to total number of commits.

using ASF; HyLSA is close but has to fall back to STM more often due to
its higher capacity requirements. LLB8 is typically not sufficient to execute
hardware transactions, except for really short transactions such as in HashTable.
Note that even though HyNorec-2 does not access more data speculatively than
an HTM, it can effectively reach capacity limits earlier. It has to always check
esl, which keeps esl in the cache and can thus reduce the capacity limit by one,
which can matter if the effective limit is the cache associativity.

HyNOrec algorithms. Let us now focus on how the different NOrec-based
HyTMs perform. Figure 7.12 shows a comparison between those algorithms for
the same SkipList benchmarks but with two different ASF implementations.
With LLB8 (left side), all transactions have to fall back to software executions
(see Table 7.5), but interestingly HyNOrec-2 is able to scale better than the other
algorithms. The abort rate due to transaction conflicts shows that this is because
hardware transactions in the other HyNOrec variants suffer from conflict aborts
before they notice a capacity abort (which would make them switch to executing
as a software transaction). Because HyNOrec-2 does not monitor esl, it will not
be aborted by commits of nonconflicting software transactions, and will find
out quickly that it should switch to software, then taking advantage of STM
scalability.

When using LLB8L1 (right side), many transactions can execute in hard-
ware (see Table 7.5 and Figure 7.11). HyNOrec-2 also scales much better in
this case, showing that its ability to survive commits of nonconflicting software
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Figure 7.12: Comparison of the performance of the HyNOrec algorithms. “HW
contention abort rate” is the number of aborts due to inter-transaction data
conflicts per transaction that commits in hardware or switches to the software
codepath.

transactions (e. g., in contrast to HyNOrec-1) is beneficial even when the ma-
jority of transactions execute in hardware. Furthermore, HyNOrec-DSS suffers
from many more aborts than the other TMs. To explain this, I also show results
for HyNOrec-DSSU, which is like HyNOrec-DSS but only updates gsl when up-
date transactions commit, thus reducing the number of speculative updates to
gsl (SkipList has 20% update transactions). HyNOrec-DSSU performs simi-
lar to HyNOrec-0, indicating that this part of the HyNOrec-0 optimizations is
crucial. HyNOrec-DSS never performed better than HyNOrec-0 in any of the
benchmarks and often performed significantly worse. It does not scale beyond
4 to 6 threads in IntegerSet unless transactions execute the software code path
most of the time. Therefore, I will not consider HyNOrec-DSS any further in
what follows.

Figure 7.13 shows HashTable, which runs short and mostly update transac-
tions. HyNOrec-1 performs and scales much better than HyNOrec-0 and suffers
from very few aborts, whereas the rate of aborts due to contention is still signif-
icant for HyNOrec-0. This shows that updating gsl nonspeculatively is an im-
portant optimization, especially if commits of update transactions are frequent.
Second, it highlights that updating gsl speculatively can indeed lead to con-
tention. Thus, both the optimizations HyNOrec-2 has compared to HyNOrec-0
(or HyNOrec-DSS) are effective in increasing performance significantly.
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Figure 7.13: Comparison of the performance of the HyNOrec algorithms
(HashTable). “HW contention abort rate” is the number of aborts due to inter-
transaction data conflicts per transaction that commits in hardware or switches
to the software codepath.

HyLSA algorithms. After looking at the HyNOrec algorithms, let us now
focus on HyLSA. Figure 7.14 shows the performance of three HyLSA variants.
Unfortunately, the current version of the ASF simulator does not always provide
the ASF ordering guarantees for nonspeculative accesses (see Figure 7.2). To
be able to run the same HyLSA TMs in all benchmarks, I had to add memory
barriers (i. e., an lfence instruction) between the speculative load of an orec and
the nonspeculative load of data (e. g., lines 6 and 9 in Algorithm 10). HyLSA-
lazy-noMB is Algorithm 11 without such barriers, which shows their runtime
overhead. However, scalability remains similar in the benchmarks for all vari-
ants. HyLSA-lazy can scale slightly better than HyLSA-eager, which is likely
due to lazy conflict detection. Because both perform similar in many situations,
I will focus on HyLSA-eager in what follows.

HyLSA’s capacity requirements are different than those of HyNOrec. HyLSA
buffers updates speculatively and thus, for stores, needs ASF capacity for both
data and orecs. However, for loads, only orecs are accessed speculatively, and
the hash function that maps data to orecs influences capacity requirements. The
HyLSA implementations map memory at the granularity of machine words to
word-sized orecs (i. e., the three least-significant bits of addresses are discarded
and the remaining bits select a slot in an array with 220 orecs). Orecs are not
cache-line padded because padding would likely increase capacity requirements
for HyLSA unless more than one adjacent cache line of memory maps to the
same orec. Without padding, hardware transactions detect conflicts on cache
line granularity, whereas STM transactions can detect conflicts on word-size
granularity and can thus potentially scale better in high-contention workloads.

Table 7.5 and Figure 7.11 show that HyLSA is already more likely to hit
capacity limitations than HyNOrec just because it needs twice the capacity for
stores, so it is important for HyLSA to read data nonspeculatively. Figure 7.15
illustrates this point further, showing that when HyLSA is changed so that it
accesses data speculatively (HyLSA-eager-SDL), less transactions can execute
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Figure 7.16: Comparison of the performance of HTM, STMs, and HyTMs
with HashTable. LLB256 is not shown because it yields results very similar
to LLB8L1.

as hardware transactions.

IntegerSet benchmarks. Figures 7.16, 7.17, 7.18, and 7.19 show a compar-
ison of the performance of HTM, the HyTM algorithms, and both STMs with
the IntegerSet benchmarks.

HashTable (see Figure 7.16) performs roughly similar on all ASF implemen-
tations and scales very well, but ultimately suffers from external bottlenecks
when the level of concurrency increases beyond a certain point (e. g., in the
memory allocator). HyNOrec 2 performs significantly better than HyNOrec-0
because it updates gsl nonspeculatively. It also performs better than HyLSA
due to less runtime overhead per transactional data access, yet HyLSA scales
well. However, HyNOrec-2 cannot reach the performance of HTM because it
has to update gsl, which leads to contention overheads.

On all other benchmarks, LLB8 is not sufficient to run many transactions as
hardware transactions, and STMs perform slightly better than HyTMs because
the latter try to first execute in hardware, unsuccessfully. Better runtime tuning
of when the HyTMs attempt to execute hardware transactions could help avoid
this misspeculation.

SkipList-Large on LLB8L1 (see Figure 7.17) shows that HyNOrec-2 can sig-
nificantly outperform HTM even if just 5–10% of all transactions cannot execute
as hardware transactions (see Table 7.5). HTM has the lowest runtime over-
heads per transactional access but its simple fallback (serial-irrevocable mode)
can quickly limit scalability. In contrast, HyNOrec-2 can run nonconflicting
software and hardware transactions concurrently without introducing articial
aborts, and yet does not impose large overheads on hardware transactions.

RBTree-Large and RBTree-Small (see Figure 7.18) show the same win for
HyNOrec-2 on LLB8L1, but for this benchmark HyNOrec-2 is even as fast as
HTM on LLB256, where all transactions can execute as hardware transactions.

In LinkedList-Small (see Figure 7.19) on LLB256, all transactions can exe-
cute in hardware but HyTMs and HTM do not scale. The reason for this behav-
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Figure 7.17: Comparison of the performance of HTM, STMs, and HyTMs with
SkipList.
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Figure 7.18: Comparison of the performance of HTM, STMs, and HyTMs with
RBTree.



212 CHAPTER 7. EXPLOITING HARDWARE SUPPORT FOR TM

 0

 1

 2

 3

 4

 5

 1  2  4  8  16

LinkedList-Large (LLB8)

T
h

ro
u

g
h

p
u

t 
(t

x
/µ

s
)

HTM
HyNOrec-0

HyNOrec-2
HyLSA-eager

LSA
NOrec

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16

LinkedList-Small (LLB8)

 0

 1

 2

 3

 4

 5

 1  2  4  8  16

LinkedList-Large (LLB8L1)

T
h

ro
u

g
h

p
u

t 
(t

x
/µ

s
)

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16

LinkedList-Small (LLB8L1)

 0

 1

 2

 3

 4

 5

 1  2  4  8  16

LinkedList-Large (LLB256)

T
h

ro
u

g
h

p
u

t 
(t

x
/µ

s
)

Number of threads

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  4  8  16

LinkedList-Small (LLB256)

Number of threads

Figure 7.19: Comparison of the performance of the HTM, STM, and HyTMs
with LinkedList.
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Benchmark LLB8 LLB8L1 LLB256

Genome HTM, HyNOrec-2: 65% HTM: 90–95% 100%
HyNOrec-1: 60% HyNOrec: 85–90%
HyNOrec-0: 50% HyLSA: 75%
HyLSA: 38–42%

KMeans-{Hi,Lo} HTM, HyNOrec-{1,2}: 100% 95–100% 100%
HyLSA, HyNOrec-0: 25%

Vacation-Hi 0% HTM: 13–14% 100%
HyNOrec: 9–12%

HyLSA: 3–5%

Vacation-Lo 0% HTM: 8–11% 100%
HyNOrec: 6–9%
HyLSA: 1–2%

SSCA2 99–100% 99–100% 99–100%

Table 7.6: Approximate ratio of hardware transaction commits to total number
of commits in STAMP.

ior is that ASF’s conflict detection is on the granularity of cache lines, whereas
STMs can use smaller granularities (word-sized in LSA, value-based validation
in NOrec), which can be beneficial in high-contention workloads with a high
level of false sharing. As explained before, HyLSA could use the indirection of
the orecs and the memory-to-orec mapping to emulate a smaller granularity for
conflict detection. However, this would waste ASF capacity and thus does not
seem to be a generally useful strategy. Instead, a HyTM should perhaps switch
proactively to software to try to employ a more contention-resistant STM algo-
rithm. The HyNOrec algorithms cannot change the conflict-detection granular-
ity of hardware transactions, but at least HyNOrec-2 performs similar to HTM
on LLB8L1 and LLB256 with both LinkedList-Large and LinkedList-Small.

STAMP benchmarks. To conclude the evaluation, I will next show perfor-
mance results for selected applications from STAMP, starting with the hard-
ware transaction ratio (see Table 7.6). LLB256 is again sufficient to execute all
transactions in hardware. SSCA2 and KMeans have small transactions and thus
can execute almost completely with hardware transactions even on LLB8 and
LLB8L1. However, HyNOrec-0 seems to require just a little too much capacity
for LLB8 to be sufficient with KMeans-Hi; in contrast to HyNOrec-2, it accesses
esl and gsl speculatively. Genome on LLB8 also shows this difference in the ca-
pacity requirements of the HyNOrec algorithms. Transactions run by Vacation
are too large for LLB8’s capacity and often too demanding for LLB8L1 as well.

HyLSA’s larger capacity requirements for stores decrease the hardware trans-
action ratio; except when capacity is clearly sufficient, HyLSA can run signifi-
cantly fewer transactions as hardware transactions than HyNOrec-2.

Figures 7.20, 7.21, and 7.22 show scalability results for the STAMP applica-
tions. With KMeans, which has small enough transactions to allow them always
to be executed as hardware transactions by an HTM, HyNOrec-2 performs best
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Figure 7.20: Comparison of the performance of the HTM, STM, and HyTMs
with KMeans.
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Figure 7.21: Comparison of the performance of the HTM, STM, and HyTMs
with Vacation.
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Figure 7.22: Comparison of the performance of the HTM, STM, and HyTMs
with Genome and SSCA2.
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among the HyTMs and STMs and almost as good as HTM. It also scales better
than HyNOrec-0. Vacation and Genome on LLB256 as well as SSCA2 show
similar performance patterns. Vacation on LLB8 and LLB8L1 suffers from a
low hardware transaction ratio, which limits HyTMs to the performance of the
respective STMs and prevents scalability for HTM. With Genome on LLB8
and LLB8L1, HyNOrec is slowed down compared to HyLSA because NOrec is
slower than LSA for this benchmark. In all other configurations, HyLSA causes
a higher runtime overhead than HyNOrec for hardware transactions, but typ-
ically scales well; its performance can be worse than LSA’s in some cases due
to unsuccessful attempts to run hardware transactions or due to larger conflict-
detection granularity.

Overall, TM performance with the STAMP applications thus follows the
same general trends as with the IntegerSet benchmarks. HyNOrec-2 performs
best among the HyTMs most of the time and typically close to or better than
HTM. The results show that my HyTM algorithms indeed improve upon previ-
ous HyTM algorithms as shown in Table 7.4 on page 198; either by allowing for
a larger level of concurrency between hardware and software transactions, by
reducing runtime overhead of hardware transactions, or by requiring less HTM
capacity and thus allowing more transactions to run with hardware acceleration.

While previous HyTM designs have used nonspeculative memory accesses
inside of hardware transactions, my results show that this has a much larger
potential and importance if algorithms also make use of nonspeculative atomic
read-modify-write instructions. I believe that the general-purpose techniques
that I used in my algorithms (Table 7.3) apply not just to HyTM but can
be useful in general for concurrent algorithms based on new synchronization
hardware like ASF.
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Chapter 8

Conclusion

I have investigated, implemented, and evaluated major building blocks that
are required for a high-performance, practical, and realistic TM: Efficient STM
algorithms, compiler support and compile-time optimizations, integration of
first-generation HTMs, efficient HyTM algorithms, and precise requirements for
TM implementations.

I focused on TM for C/C++ userspace applications, which allows program-
mers to synchronize using transactional programming-language constructs that
extend the C++11 memory model. I also made no assumptions about the kind
of parallelization used in the applications. This puts my work into the context
of mainstream programming, and allows for a larger applicability of the results
of my work. C/C++ are also low-level languages in terms of allowing program-
mers to work close to the hardware, which in turn results in stronger constraints
for the implementations of such languages compared to, for example, managed
environments such as Java; for TM implementations, this means that they, for
example, have to deal with pointers and cannot expect to be able to control or
transform most of the code that is executed. Thus, this makes it more likely
that results for C/C++ TM implementations could also be applicable in other
languages, even though the latter might allow for different optimizations.1

Furthermore, I have focused on standard hardware and realistic first-gene-
ration HTM, and did not expect custom support for TM by other parts of
the execution environment such as the operating system. This is important to
make TM practical for programmers, in particular for the early adopters that
TM needs to overcome the chicken-and-egg situation it faces. While the software
prototypes that I have built are not directly used by people outside of the TM
research community (but were valuable for research), my work has influenced
GCC’s TM implementation, for example: GCC’s TM runtime library uses LSA
and follows its implementation discussed in Section 5.2, and the compiler adheres
to the TM implementation requirements laid out in Section 4.2.3. This shows
that the TM implementation stack comprised by the building blocks that I have
presented is realistic in the sense that it is feasible to integrate it with current
commercial systems software.

1One notable aspect that might differ in other languages is the behavior of programs with
data races: C/C++ simply allows undefined behavior for such programs, whereas languages
such as Java require stronger guarantees, which might require changes to the TM implemen-
tation that I have presented.
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Likewise, the transactional language constructs that I used in my work follow
a specification that is the result of a joint effort of a large part of the TM
community and also aims at providing practical and efficient TM programming
abstractions.

Regarding performance, I focused on general-purpose optimizations with-
out relying on programmer-supplied optimization hints. This choice was also
motivated by the aim at practical TM building blocks. The STM and HyTM
algorithms that I have presented provide state-of-the-art performance; they sig-
nificantly improve upon prior work by showing ways to avoid major sources of
runtime overhead and scalability limitations (e. g., via time-based validation or
by exploiting nonspeculative operations in hardware transactions). However,
while especially the HyTMs provide good performance, the STMs still face sig-
nificant performance challenges, primarily caused by single-thread runtime over-
heads and quiescence-based privatization safety implementations. Nonetheless,
further optimizations seem to be possible, in particular those based on compile-
time analyses and specialization.

In summary, the building blocks thus comprise a good first-generation TM
implementation that is sufficient for early adopters to provide feedback and to
start using transactions in C/C++, potentially even in noncritical production
deployments. Its high level of integration with the programming language and
its compatibility with existing systems provide for a large amount of the level of
usability that TM promises. However, whether the current level of performance
is sufficient for TM to provide a good usability–performance trade-off in prac-
tice, is something that depends on how programmers will use TM and how the
performance of HTMs will develop over time. I will discuss this issue further at
the end of this chapter.

In what follows, I will assess my work’s individual contributions to the state
of the art, discuss open questions and future work, and provide an outlook for
TM.

STM algorithms. The time-based validation technique presented in Sec-
tion 5.1 influenced the design of STMs significantly because it showed how
to implement always-consistent atomic snapshots very efficiently with invisible
reads by relying on a global time base. Combined with pessimistic concurrency
control for write operations and the use of multiple ownership records, this
yields one of the most important STM implementation variants for C/C++
(see Section 5.2), and is used in commercial TM implementations.

The performance of such an STM can scale well to larger numbers of threads,
but also suffers from single-thread runtime overheads and scalability deficiencies
in current privatization safety implementations. It is also heavily influenced by
the quality of the hash function used to map memory locations to ownership
records; as I have shown in Section 5.2.2, multiplicative hashing can provide a
better mapping with lower space overhead compared to the simple hash func-
tions used in prior work.

Even though the global time base used by such STMs is a central shared
component, the benefits of time-based validation often outweigh this potential
bottleneck. Furthermore, it can also be implemented using imperfectly synchro-
nized hardware clocks (see Section 5.3), which are much easier to parallelize.2

2Whether this will become the primary way to implement the STM’s time base will depend
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Finally, systems such as Google’s Percolator (see Section 5.4) show that time-
based validation based on centralized global time bases are useful even when
implementing transactions on large distributed systems.

Requirements for TM implementations. The requirements that I present
in Section 4.2 provide no benefits to programmers using transactions but instead
provide guidance to TM implementers. They are split into responsibilities of
compilers and TM runtime libraries at the boundary of a TM runtime library
ABI. Thus, this also defines the previously unspecified semantics of this ABI,
which is important in practice.3

Different to most of the prior work on correctness criteria for TM imple-
mentations, these TM implementation requirements are based on the semantics
and correctness concepts of the programming language hosting the transactional
language constructs (e. g., on the C++ as–if rule). This is useful to TM imple-
menters because it expresses the trade-offs in the design of these requirements
more clearly and in terms meaningful in the rest of the language’s implementa-
tion.

Compile-time optimizations based on partitioning. These divide–and–
conquer optimizations have a lot of potential and result in performance benefits
even with simple prototypes, but they also face significant implementation ob-
stacles in practice. While they are transparent to programmers due to relying
on automatic partitioning of application data, the compiler needs to be able to
analyze the whole program.

Partitioning-aware STMs incur additional runtime overheads (see Section 6.2)
but allow for tuning the performance of individual partitions separately; how-
ever, this also means that they need high-quality automatic tuning and het-
erogeneous workloads to overcome the overheads. The tuning policies that I
evaluated are too simple to be of general use in practice. Likewise, I have not
investigated compiler optimizations aimed specifically at reducing the runtime
overheads of per-partition tuning.4 TM metadata colocation (see Section 6.3)
provides some speedup over simple memory–to–orec mappings but requires a
rather complex transformation of programs (e. g., the change of memory alloca-
tion).

Thus, the prototypes show the potential of partitioning, but only further
investigation with more advanced compilers and non-benchmark workloads will
show how much of the potential performance benefits can be realized in prac-
tice. Open questions are, for example, whether link-time optimizations and

on the communication overheads in future hardware and the availability of reliably synchro-
nized hardware clocks. The current trends in hardware are that communication becomes more
costly, but hardware clocks in mainstream CPUs are also getting more tightly synchronized.
Furthermore, this of course also depends on characteristics of future TM workloads and on
whether these workloads can be partitioned into smaller pieces with higher locality (e. g., using
the techniques presented in Chapter 6).

3Having precisely defined ABIs is necessary for cross-vendor compatibility between com-
pilers and between runtime libraries; otherwise, deploying executable code that uses dynamic
linking would only work correctly if all pieces would have been generated by the same compiler
version.

4For example, my prototypes check the type of the associated partition on every access; it
would likely be more efficient to select a TM variant for groups of accesses, which should be
possible in many cases (e. g., for operations such as those in the IntegerSet benchmarks that
access just a single partition).
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whole-program analysis will become more common, how to deal with library
code, and whether the implementation complexity required by partitioning is
feasible. Nonetheless, I believe that partitioning will remain important, even
if just to break larger applications down into smaller parts to increase locality
and scalability. Finally, other TM building blocks such as transaction sched-
ulers or contention managers could also benefit from the additional information
provided by partitioning.

Hybrid TM algorithms on HTMs with nonspeculative operations.
The first-generation HTM proposal that my work is based on, AMD’s Advanced
Synchronization Facility (ASF), differs from many other HTMs in that it allows
nonspeculative memory accesses to be executed as part of hardware transactions.
This adds complexity to TM stacks that want to use ASF, but the implemen-
tation can be confined to a TM runtime library that uses the standard ABI as
long as the HTM avoids certain shortcomings in its design (see Section 7.2).

Nonspeculative operations in hardware transactions are tremendously useful
for hybrid software/hardware TMs (HyTMs) because they allow hardware trans-
actions to communicate with other threads without having to abort. ASF also
supports atomic read–modify–write operations such as CAS to execute nonspec-
ulatively, which provides additional benefit. Furthermore, it is also important
that the HTM monitors speculatively accessed locations eagerly for conflicting
accesses by other threads because this can be used to ensure consistency of
nonspeculative operations (e. g., see Algorithm 10).

I have constructed two HyTM algorithms, HyLSA and HyNOrec-2, that
use nonspeculative operations to improve significantly over prior work (see
Section 7.3). HyLSA is similar to prior HyTMs that use multiple ownership
records but read application data nonspeculatively, which—in combination with
a coarse-granular memory–to–orec mapping—allows it to increase the effective
capacity for transactional reads beyond the HTM’s capacity.

HyNOrec-2 executes hardware transactions in such a way that they are not
aborted by commits of concurrent nonconflicting software transactions. At the
same time, these hardware transactions execute with very low overhead com-
pared to pure HTMs that cannot execute software transactions concurrently;
in particular, hardware transactions essentially require the same HTM capacity
as with a pure HTM, and the additional runtime overhead for transactional
memory accesses is very small. This allows HyNOrec-2 to often perform similar
to pure HTMs when all transactions can execute as hardware transactions, and
to provide much better scalability than pure HTM or prior HyTM algorithms
otherwise.

Even though the HTM facilities currently announced for mainstream proces-
sors do not yet allow nonspeculative operations in transactions, my HyTM algo-
rithms show the benefit that this would provide to HyTMs and to transaction-
based synchronization algorithms in general.

Open questions and future work. Besides the follow-up work suggested
previously, there are several open questions that future work should try to an-
swer and other TM building blocks that future TM stacks should include.

First of all, the temporal aspect of TM-based synchronization (see Sec-
tion 3.1.2) needs to be further investigated, in particular transaction scheduling,
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contention management, conflict resolution policies, and when to use pessimistic
or optimistic concurrency control.

However, it is difficult to, for example, know which transactions should be
prioritized in a parallel program when the program’s performance utility func-
tion is unknown. Integrating TM and programming abstractions for paralleliza-
tion could provide the TM with better insight into what the program actually
wants to execute in parallel (e. g., with task-based parallelism, transactions on
the critical path in the task graph could be executed with a higher priority).

Second, the quality of automatic performance tuning of TM needs to improve
considerably. Currently, most tuning strategies are more or less rules of thumb
or heuristics that have not been validated on many benchmarks. Thus, better
and more benchmarks are needed so that tuning strategies can be tested on
a hopefully more representative sample of all workloads that might appear in
practice.

Furthermore, we also need a better understanding and classification of work-
loads to be able to predict which performance effect a certain tuning decision
would have. This needs to include both building TM performance models offline
and figuring out how TM implementations can detect at runtime which kind of
workload they execute. Valuable inputs to any automatic classification could
be, for example, the parallelization approach in a program, compile-time analy-
ses on transactions (e. g., whether they access many or few memory locations),
or programmer-supplied hints.

Once TM workloads are better understood, including which kinds are im-
portant in practice, it would also be beneficial to investigate specializations of
TM aimed at certain workloads.

Finally, there is a need for more studies about what remains of the promises
of TM once it is put into the hands of real programmers. The few existing
studies such as the one by Pankratius and Adl-Tabatabai [84] show that TM
can provide advantages compared to other programming abstractions, but they
have not evaluated TM in the context of commercial applications.

Outlook for TM. TM has not yet overcome the chicken-and-egg situation
that many new programming abstractions face, but it is still making contin-
uous progress towards being widely available. Major hardware vendors have
announced hardware support for transactions for upcoming mainstream CPUs,
which can indicate that these vendors think that TM will become useful. Even
if these HTMs are meant to rather enable lock elision than transactional con-
structs in mainstream programming languages, it will still benefit the latter due
to the better performance that HTM can result in.

The existence of a study group on TM in the ISO C++ committee as well
as the participation of several large companies in the C++ TM specification
drafting group show that there is also significant interest for transactional pro-
gramming abstractions on the software side.

The future importance of TM will also be determined by how synchroniza-
tion in general will develop over time. This, in turn, depends a lot on which
parallelization paradigms will be most important, and which role synchroniza-
tion will take in those. Likewise, the shape of future hardware architectures
will of course also affect at least how synchronization is implemented; nonethe-
less, transactions could be still useful programming abstractions in larger or
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more loosely coupled systems (e. g., with only partially cache-coherent memory)
because of how conveniently they allow to express atomicity requirements.

To summarize, while TM can definitely be implemented and continues to be
a promising approach, it is still too early for a final judgement on the usefulness
and importance of TM. We need to first let more programmers get in touch
with optimized TM implementations and first-generation hardware support for
TM, so that they can evaluate TM in real applications and give feedback to
TM implementers. This feedback cycle needs more time, both for early adop-
tion and evaluation and for further refinement of TM implementations and the
programming-language constructs. Only after this we will be able to judge how
often TM is a useful tool for programmers in the sense of providing them with
the trade-off between performance and ease of use that they are looking for.
Thus, while my work does not answer whether the TM idea will be widely use-
ful, it has contributed to make it possible to answer this question in the future.
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