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ABSTRACT

Measuring the energy consumption of software components
is a major building block for generating models that allow for
energy-aware scheduling, accounting and budgeting. Cur-
rent measurement techniques focus on coarse-grained mea-
surements of application or system events. However, fine
grain adjustments in particular in the operating-system ker-
nel and in application-level servers require power profiles at
the level of a single software function. Until recently, this
appeared to be impossible due to the lacking fine grain res-
olution and high costs of measurement equipment.

In this paper we report on our experience in using the
Running Average Power Limit (RAPL) energy sensors avail-
able in recent Intel CPUs for measuring energy consumption
of short code paths. We investigate the granularity at which
RAPL measurements can be performed and discuss practical
obstacles that occur when performing these measurements
on complex modern CPUs. Furthermore, we demonstrate
how to use the RAPL infrastructure to characterize the en-
ergy costs for decoding video slices.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Measurement
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1. INTRODUCTION

The increasing popularity of mobile devices and the en-
vironmental concerns related to green and sustainable IT
have qualified energy consumption as a primary concern in
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the design of electronic systems and of computer systems in
particular. At the heart of many approaches towards energy
efficient and energy proportional computing lie energy mod-
els that allow extrapolating the future energy consumption
of the system. Such models are used to schedule applica-
tions and resources [11], to adapt application behavior to
externally specified energy constraints [4], and to account
energy usage to the respective software components [12].

To obtain an energy model, the energy consumption of one
or more applications is measured by manually instrumenting
the hardware in a lab and concurrently measuring hardware-
level performance counters. The energy model then usu-
ally constitutes a linear regression model, incorporating the
hardware performance counters that best correlate with the
manual energy measurement. This approach has drawbacks:
manual instrumentation is often done at the level of the com-
puter’s power supply [15], resulting in models that are too
coarse-grained or inaccurate to model detailed application
behavior. This can be leveraged by more fine-grained in-
strumentation of single processing units [2].

In addition to that, a study by McCullough and colleagues
pointed out that linear regression models are inaccurate when
it comes to modeling more complex computer systems and
workloads [10]. In their paper, they argue that the only
way to properly evaluate the energy characteristics of such
components would be measurement features built into the
platform that can be used by applications dynamically.

Our focus lies on determining the power consumption of
short-running code paths, such as the energy cost of a single
function within an application or of a system call of the
underlying operating system. We believe this information
will be helpful for a variety of tasks. As an example, imagine
the following three scenarios:

1. Video encoders today optimize the encoded frames so
that the decoded pictures come at a high ratio of qual-
ity per encoded byte. If we were able to measure the
energy required to decode a single video frame or even
its sub-slices, encoders could optimize for quality per
watt or deliver a version of the video that contains a
high-quality and a second one that can be decoded at
a low-energy (e.g., on a smartphone). The runtime de-
coder might then decide which frame to use based on
the currently available energy budget.

2. Database systems usually combine a set of available
operators so that they calculate the result for a given
query. There are many of such combinations and know-
ing the energy cost of every single operator may allow
the database system to not only select the operator



combination that computes a result as fast as possi-
ble, but also the one that consumes the least energy.

3. Hardware devices, such as hard disks or network in-
terfaces, exist in different variants and can be run in
different power modes [5]. However, when it comes
to evaluating the energy required to execute a specific
workload on this device, measuring the device’s en-
ergy consumption is not sufficient. Instead, we must
also measure the energy that the driver of this device
consumes in terms of CPU power. It may therefore
well be that operating a low-power device might ac-
tually consume more energy than unoptimized devices
if they cause the CPU and the driver to service more
interrupts. A thorough evaluation of such scenarios
however is only possible if energy can be measured as
fine granular as a single interrupt handler.

Recently, the vendors of desktop and server class systems
have equipped their systems with a new tool for obtaining
fine-grain energy models: on board energy sensors for mea-
suring the energy consumption of on-core hardware compo-
nents and of the code that runs on these components. Intel
introduced these sensors — called “Running Average Power
Limit” (RAPL) — with their Sandy Bridge microarchitec-
ture [6], AMD starting with their Bulldozer [1] CPUs'.

In this paper we evaluate whether and how RAPL sen-
sors can be used for measuring the energy consumption of
short code paths. In Section 2 we describe HAECER, a mea-
surement framework that we built into our operating system
to allow application-specific energy measurements. In Sec-
tion 3, we then go on describing the obstacles we had to
overcome to obtain results for small code paths. Section 4
presents first results about slice-accurate energy models for
video decoding that we obtained with our framework.

2. RAPL MEASUREMENTS

To obtain exact energy measurements at the granularity
of short source code blocks, we ideally would like to get an
exact reading of the system’s consumed energy at the start
and the end of a measurement time frame. In this section,
we take a closer look at how Intel’s RAPL sensors work
(Sec. 2.1), whether they are accurate enough to perform
short-time measurements (Sec. 2.2), and how we leverage
them in the HAECER measurement framework (Sec. 2.3).

2.1 How RAPL Works

Intel introduced the Running Average Power Limit (RAPL)
feature with the Sandy Bridge microarchitecture. RAPL is
available in newer versions of the Xeon server-level CPUs
and provides sensors that allow measuring the power con-
sumption of the CPU-level components listed in Table 1.
These available counters limit measurements to CPU and
memory controller power consumption. It is impossible to
measure energy consumption of I/O devices, but we hope
that device vendors will follow Intel’s lead and provide energy-
related information through their device-specific interfaces.

RAPL sensors can be configured and examined by reading
Machine-Specific Registers (MSRs). On the Intel architec-

LAt the time of writing this paper, no Bulldozer system was
available for us. We will therefore limit ourselves to the
Intel RAPL sensors. Extending our approach to the AMD
Bulldozer sensors should be straight forward.

RAPL_PKG | Whole CPU package

RAPL_PPO Processor cores only

RAPL_PP1 “A specific device in the uncore”
RAPL_DRAM | Memory controller

Table 1: List of available RAPL sensors

ture this is only possible in privileged kernel mode. Hence,
we require kernel-level support for energy readings.

2.2 How accurate are RAPL counters?

Intel reports an update rate of the RAPL MSRs once ev-
ery 1 ms [7, Ch.14]. To perform exact energy measurements
at the beginning of short code paths, we therefore need to
align the start of this code path to an update point. Unfor-
tunately, updates of RAPL counters do not occur accurately
every millisecond, which would have allowed us to delay the
beginning of the short code path to the next multiple of
1 ms.
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Figure 1: Distribution of updates relative to the
specified 1 ms interval

Figure 1 shows the deviation of RAPL counter updates
from once every millisecond. We evaluated this update ac-
curacy on an Intel Core i5-2400S CPU running a tight loop
at 2.5 GHz in which we continually read the time stamp
counter and the RAPL MSR. Updates are expected every
2,500,000 cycles. A deviation of 0 means that an update
was seen exactly at a multiple of 1 ms after the start of the
benchmark. For values larger than 0 the update occurred af-
ter the 1 ms instant, for negative values the update was seen
before. We can see that updates are not accurately timed,
but jitter in the range of +/- 50,000 cycles. This deviation is
high enough to make short-term energy measurements sig-
nificantly inaccurate. In addition to the mentioned MSR
update inaccuracy, we see a small amount of measurements
that deviate by more than 100,000 cycles. We explain where
these come from and how we handle update inaccuracies in
Section 3.

To gain confidence in the RAPL hardware, we also com-
pared the energy consumption reported through RAPL mea-
surements with a measurement we performed on a manually
instrumented board kindly provided by TU Dresden’s HPC
Centre (ZIH). In Figure 2, we see the consumption reported
by RAPL compared with the external measurement for a



Comparing RAPL with external measurements
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Figure 2: Comparison of RAPL and external mea-
surement

synthetic benchmark that switches between highly utilizing
the CPU and sleeping every second. Although there is an off-
set of nearly 4 W between the curves we see that the curves’
characteristics are identical. We attribute this offset to the
fact that the external measurement includes additional en-
ergy consumers such as for instance the DRAM, which the
RAPL hardware do not cover?.

2.3 HAECER - A framework for short-term
energy measurements

Our group develops the L4/Fiasco.OC microkernel [16].
We performed the measurements documented in this paper
on top of Fiasco.OC. However, we are convinced that our
methodology can equally be applied to other operating sys-
tems, such as Linux. As RAPL MSRs can only be read in
kernel mode, we added a read_rapl system call to the kernel
and extended the application-level event monitoring frame-
work FERRET [13] to support also low-latency short-term
energy measurements. The resulting framework we call the
HAEC Energy Reader — HAECER.

HAECER provides convenience functions for the inher-
ently CPU version dependent setup and initialization of per-
formance counters. Furthermore, HAECER handles obsta-
cles that stem from timing and measurement inaccuracy.

Instead of trying to perform fine-grained measurements
using RAPL, we could also implement synthetic microbench-
marks that execute the code we are interested in for thou-
sands of times and then compute power consumption using a
coarse-grained measurement. While this works if we are only
interested in the cost of executing instructions, it becomes
infeasible for the scenarios we described in Section 1: These
pieces of software do depend on the data they are currently
handling. We will see in Section 4 that the same function for
decoding a slice of a video frame consumes different amounts
of energy depending on which video data is being processed.
To catch this behavior in a microbenchmark, we would have
to set up a proper environment for every such benchmark.
Our framework allows instrumenting arbitrary applications
regardless of such characteristics.

2The DRAM sensor documented by Intel is only available
in newer versions of the Xeon server-level CPUs.

call return a)

! ! ! !
! ! ! !
| | foo | |
T S S S S
0 1 2 3 4 5 6 t/ms
[RAPL read]
return b)
! ! ! ! !
! ! !
| | foo |
E— i :
0 1 2 3 4 5 6 t/ms

Figure 3: Adjusting measurements to accurately
measure short-term energy consumption

3. MEASURING SHORT-TERM POWER
CONSUMPTION

Suppose we want to measure the energy consumption of
a function foo by manually instrumenting its start and end.
Figure 3 a) illustrates the problems we are now facing. The
call to foo may happen at any instant within a RAPL update
interval. (Dashed lines in Figure 3 represent those updates.)
If we simply read the RAPL MSR at this point, we read the
value from the last update, which means we may read a value
that may be up to one update interval too old. Accordingly,
if we instrument the end of this function by instrumenting
foo’s return with a read of the RAPL MSR, we may again
read a value that is up to one update interval too old. This
may lead to worst-case scenarios:

1. If the call to and return from foo fall into a single
update interval, the obtained difference in energy con-
sumption will be zero, because we will read the same
(inaccurate) MSR value twice.

2. If the call to foo happens shortly before an update, we
will read an old value and over-estimate foo’s energy
consumption.

3. If foo returns short before the next RAPL update,
we will read a too old value and underestimate foo’s
energy consumption.

We solve these issues in HAECER by aligning instru-
mentation points with RAPL updates as illustrated in Fig-
ure 3 b). The function for measuring the start of a code
path begins with a loop that reads the RAPL MSR until
it sees a change in the obtained value. Then it goes on to
execute the function foo. Thereby we make sure that we
start measuring the energy consumption at the beginning of
an update interval.

We instrument the end of the code path in a similar way
by inserting a delay loop that reads the RAPL MSR un-
til it sees a modification. Thereby we measure the energy
consumption until the next RAPL update. If we can control
the energy spent between the actual return from foo and the
next update, we can simply subtract this energy from the
measured value and thereby get the exact value we would
like to measure. To synchronize for the next RAPL update
we have to loop reading the RAPL MSR. We evaluated the
energy cost of this loop using a microbenchmark and deter-
mined that the energy cost per clock cycle remains constant
across several executions. Therefore, we can simply count
the number of rdmsr operations until the next RAPL up-



date and compute from these the energy consumed in the
delay loop.

The exact value to subtract for the delay loop of course
varies depending on the actual hardware the measurement is
performed on and on environmental situations such as tem-
perature. To remain independent from the test machine, the
HAECER framework comes with an initialization function
that calibrates the average energy spent for instructions in
the RAPL synchronization loop.

In Section 2.2, we observed a small amount of RAPL up-
dates that occurred significantly later than the average up-
dates. We further investigated this issue and repeated the
microbenchmark in user and kernel mode, as well as with in-
terrupts disabled to rule out OS-level effects that might step
in — the observation remained the same. Therefore, the only
viable explanation for us is that this delay is introduced by
the CPU switching into System Management Mode [7, Ch.3].
This mode is used internally by the CPU to perform mainte-
nance tasks, such as thermal management and certain legacy
device emulations. SMM completely defies itself from con-
trol by the operating system®. Our experiments show that
SMM is entered periodically about every 16 milliseconds on
our test machine. To rule out SMM side effects on our short-
term measurements, we extended the delay loop at the start
of our measurements to wait for the entry into SMM. This
left us 16ms to perform our measurements.

Together, the mechanisms explained above allow us to
accurately obtain RAPL measurements for the start and
end of a short code path. In the next Section we will val-
idate this claim by inspecting the energy consumption of
slice-level video decoding. We are aware of two limitations,
though: First, the delay loops of course add execution over-
head. Therefore, our measurements cannot be left always-on
and should not be combined with time measurements. Sec-
ond, our measurements are accurate only as long as we run
a single instrumented application. Enhancing our approach
to account for multiple concurrent applications would re-
quire modifications to the scheduler and potentially expen-
sive multiplexing of the RAPL sensors. While we expect
this to be feasible, we leave it for future work.

4. CASE STUDY: SLICE DECODING
ENERGY CONSUMPTION

With the possibility of fine-grained energy measurements
in place, we now report on our experiment for evaluating our
framework with one of the scenarios discussed in Section 1:
slice-granular decoding energy.

Decoding high-resolution videos may require a substantial
amount of CPU power even in today’s systems. Moreover,
video decoding is a common use case for embedded systems,
such as mobile phones, where both, the CPU and the avail-
able battery power, are a limited resource. Modern video
decoding formats such as H.264 [8] are prepared for paral-
lel decoding while maintaining the high compression rates
from exploiting the interdependence of subsequent images
(called frames). To parallelize frame decoding Wiegand et
al. [18] suggests splitting video frames into so called slices
and decoding slices on the available CPUs. Roitzsch [14] im-
proves on Wiegand’s equal split by predicting slice decoding
times to better balance the load to the different CPUs or a
multicore system.

3Plus, disabling SMM may break the CPU.

We believe that larger energy savings become possible
when the majority of the slice decoding cores can be kept
at low frequencies and hence at low supply voltages [17].
However, this requires accurate information about video de-
coding energy at the granularity of the individual slices. For
a 24 frames-per-second video (i.e., one frame every 40ms),
the slice decoding time with 10 slices per frame is already in
the order of 4ms. This simple calculation already qualifies
slice decoding as a short code path. In reality, slice decoding
may be well below one millisecond, which, as we have seen,
is below the granularity of RAPL energy sensors.
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Figure 4: Per-slice energy consumption for H.264
video frames

For our video experiments we ported the instrumentation
done by Roitzsch in [14] to a recent version of the ffmpeg
decoder [3]. We performed our measurements on the trailer
for “The Avengers” [9]. The video is 31 seconds long and
has been encoded with 12 equally-sized slices per frame. We
decoded the video in a single-threaded version of the decoder
on an Intel Core-15-2400S CPU.

Figure 4 shows the per-slice energy consumption measured
with the help of our framework®. The graphs illustrate that:
1. The energy used for decoding a frame (the sum of 12
slices) varies between 0.1 W and 0.8 W, and 2. The energy
used for decoding a single slice (parts of the bars) varies
as well. From this we conclude that our assumption that
slice decoding energy varies is correct and that research on
energy-balanced slice-based video decoding appears to be
promising.

To gain trust in the slice-level values presented in Figure 4,
we need to validate that these values match the higher-level
energy consumption and are not disturbed by energy con-
sumed by our instrumentation. We verified this by instru-
menting the same video at the frame level, leaving out all
slice-level instrumentation code. Figure 5 shows the frame-
granular energy consumption in relation to the sum of slice-
level values obtained in the previous experiment. As the
difference is not perceptible from this Figure, we addition-
ally plot the relative error between the two measurements
(Figure 6). The average relative error per frame is 1.13%,
the maximum 3.6% and the minimum 0.5%.

5. CONCLUSIONS

In this paper we evaluated the suitability of Intel’s RAPL
energy performance counters for performing fine-grained en-

4We only show a few frames here for visibility reasons.
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ergy measurements on short code paths. We explained the
obstacles we encountered when trying to evaluate the energy
consumption of code blocks that execute faster than the av-
erage RAPL update frequency. We implemented HAECER,
a framework for instrumenting applications and performing
fine-grained energy measurements at sub-update frequencies
and demonstrated the applicability of HAECER for an ac-
curate evaluation of video slice decoding energy.
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