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Abstract. An algorithm of incremental mining implicative logical rules is pro-

posed. This algorithm is based on constructing good classification tests. The in-

cremental approach to constructing these rules allows revealing the interde-

pendence between two fundamental components of human thinking: pattern 

recognition and knowledge acquisition. 
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1 Introduction 

Methods of incremental symbolic machine learning are developing in several direc-

tions. The first one is to construct incrementally concept lattice [1-3]. In [3], an in-

cremental algorithm to construct a lattice from a collection of sets is derived, refined, 

analyzed, and related to a similar previously published algorithm for constructing 

concept lattices. The second direction is related to incremental mining association 

rules [4-5]. This direction includes the incremental approach to mining frequent item-

sets based on Galois Lattice Theory [6]. Significantly fewer investigations are devot-

ed to incremental mining logical rules. Utgoff proposed three incremental decision 

tree induction algorithms [7]. Rough set based incremental method is advanced in [8]. 

This paper is devoted to incremental learning of logical rules in the form of impli-

cations based on the concept of good classification test. Incremental learning is con-

sidered not only as a model of inductive human reasoning for implicative logical rule 

generation but also as an essential part of pattern recognition processes. 
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2 The Concept of Good Classification Test 

Let G = {1, 2,…, N} be the set of objects’ indices (objects, for short) and M = {m1, 

m2, …, mj, …mm} be the set of attributes’ values (values, for short). Each object is 

described by a set of values from M. The object descriptions are represented by rows 

of a table R the columns of which are associated with the attributes taking their values 

in M. Let R(+) and G(+) be the sets of positive object descriptions and the set of indi-

ces of these objects, respectively. Then R() = R/R(+) and G() = G/G(+) are the set 

of negative object descriptions and the set of indices of these objects, respectively.  

The definition of good tests is based on two mapping 2
G
  2

M
, 2

M
  2

G
 deter-

mined as follows. A  G, B  M. Denote by Bi, Bi  M, i = 1,…, N the description of 

object with index i. We define the relations 2
S
  2

T
, 2

T
  2

S
 as follows: A = val(A) = 

{intersection of all Bi: Bi  M, i  G} and B = obj(B) = {i: i  G, B  Bi}. These 

mapping are Galois’s correspondences [9]. Of course, we have obj(B) = {intersection 

of all obj(m): obj(m)  G, m  B}. Operations val(A), obj(B) are reasoning operations 

(derivation operations).  

The generalization operations generalization_of(B) = B′′ = val(obj(B)) and general-

ization_of(A) = A′′ = obj(val(A)) are are actually closure operators [9]. A set A is 

closed if A = obj(val(A)). A set B is closed if B = val(obj(B)).  

Notice that these generalization operations are also used in FCA [10], [11]. For g  

G and m  M, {g}′ is denoted by g′ and called object intent, and {m}′ is denoted by 

m′ and called value extent.  

Definition 1. A diagnostic (classification) test for R(+) is a pair (A, B) such that B 

 M (A = obj(B) ≠ ), A  G(+) and B   val(g) & B   val(g), g, g  G(). 

Equivalently, obj (B)  G() = . 

In general case, a set B is not closed for diagnostic test (A, B), consequently, diag-

nostic test is not obligatory a concept of FCA [12]. 

To say that a collection B of values is a diagnostic test for the set R(k) is 

equivalent to say that it does not cover any object description belonging to the classes 

different from k. At the same time, the condition obj(B)  G(k) implies that the 

following implicative dependency is true: ‘if B, then k’ and, consequently, a 

diagnostic test, as a set of values, makes up the left side of an implication. 

It is clear that the set of all diagnostic tests for a given set R(k) (call it ‘DT(k)’) is 

the set of all B such that the condition obj(B)  G(k) is true. For any pair of diagnostic 

tests from DT(k) only one of the following relations is true:obj(Bi)  obj(Bj), obj(Bi) 

 obj(Bj), obj(Bi)  obj(Bj), where the last relation means that obj(Bi) and obj(Bj) are 

incomparable, i.e. obj(Bi)  obj(Bj) and obj(Bj)  obj(Bi). This consideration leads to 

the concept of a good diagnostic test: they are maximal elements of partially ordered 

set DT(k). 

Definition 2. A classification test (A, B), B  M (A = obj(B)  ) is good for R(+) 

if and only if any extension A* = A  i, i  A, i  G(+) implies that (A*, val(A*)) is 

not a test for R(+). 
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Definition 3. A good diagnostic test (A, B), B  M (A = obj(B)  ) for R(+) is 

irredundant if any narrowing B* = B\m, m  B implies that (obj(B*), B*)) is not a 

test for R(+). 

Definition 4. A good diagnostic test for R(+) is maximally redundant if any ex-

tension of B* = B  m, m  B, m  M implies that (obj(B*, B*) is not a good test for 

R(+). 

It is possible to show that good maximally redundant tests (GMRTs) are closed, 

consequently, they are formal concepts in term of the FCA, but they are not always 

frequent itemsets [12]. In what follows, we shall consider mining GMRTs. 

The first algorithm for inferring all GMRTs for a given class of objects with its 

theoretical foundation has been proposed in [13] and analyzed in [14]. Then an algo-

rithm ASTRA has been proposed and realized in a program system SIZIF [15]. The 

algorithms NIAGaRa and DIAGaRa have been described in [16] and [17], respective-

ly. Diagnostic Test Machine (DTM) [18] is a software based on supervised mining 

good diagnostic tests. The experiments conducted with the publicly available dataset 

of 8124 mushrooms have showed that the result of the DTM turned out to be better 

with respect to classification accuracy (97,5%) than the results (95%) informed in 

[19] for the same set of data. 

Any algorithm for mining GMRTs can be used as a part of incremental algorithm 

solving the same task. 

The Decomposition of Good Test Inferring into Subtasks 

To transform good classification test inferring into an incremental process, we in-

troduce two kinds of subtasks [15], [16]: for a given set of positive examples: 1) given 

a set of values B  M, (obj(B), B) is a test, find all B*   B such that (obj(B*), B*) is a 

GMRT; 2) given a non-empty set of values Х   M  such that (obj(X), X) is not a test, 

find all Y, X  Y, such that (obj(Y), Y) is a GMRT. 

The subtask of the first kind. We introduce a concept of projection proj(R)[t] of a 

given positive object description t on a given set R(+) of positive examples. The 

proj(R)[t] is the set Z = {z: (z is non empty intersection of t and t’) & (t’  R(+)) & 

((obj(z), z) is a test for R(+))}. 

If proj(R)[t] is not empty and contains more than one element, then it is a subtask 

for inferring all GMRTs that are in t. If the projection contains one and only one ele-

ment t, then (obj(t), t) is a GMRT. 

The subtask of the second kind. We introduce a concept of attributive projection 

proj(R)[B] of a given set B of values on a given set R(+) of positive examples. The 

projection proj(R)[B] = {t: (t  R(+)) & (B appears in t)}. Another way to define this 

projection is: proj(R)[B] = {ti: i  (obj(B)  G(+))}. If attributive projection is not 

empty and contains more than one element, then it is a subtask for inferring all 

GМRТs containing B. If B appears in one and only one object description t, then there 

is only one GMRT: (obj(t), t). 

The following theorem gives the foundation of reducing projections [15], [16]. 
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Theorem 1. Let m  M, (obj(X), X) be a maximally redundant test for a given set 

R(+) of positive objects and obj(m)  obj(X). Then m does not belong to any GMRT 

for R(+) different from (obj(X), X). 

1 An Approach to Incremental Inferring GMRTs 

Incremental supervised learning is necessary when a new portion of observations 

becomes available over time. Suppose that each new object comes with the indication 

of its class membership. The following actions are necessary with arrival of a new 

object: 1) checking whether it is possible to perform generalization of some existing 

rules (tests) for the class to which a new object belongs (a class of positive objects, for 

certainty); 2) inferring all GMRTs induced by the new object description; 3) checking 

the validity of rules (tests) for negative objects, and, if it is necessary, modifying the 

tests that are invalid (test for negative objects is invalid if its intent is included in a 

new (positive) object description). Thus the following mental acts are performed: 

 Pattern recognition and generalization of knowledge (increasing the power of al-

ready existing inductive knowledge); 

 Increasing knowledge (inferring new knowledge); 

 Correcting knowledge (diagnostic reasoning). 

The first act modifies already existing tests (rules). The second act is reduced to 

subtask of the first kind. The third act can be implemented by the following ways. In 

the first way, we delete invalid tests (rules) and, by the use of subtask of the first kind, 

we must find new GMRTs generated by negative objects’s descriptions that have 

been covered by invalid tests. In the second way, this act can be reduced to subtasks 

of the second kind. Then we obtain diagnostic logical assertions in the form: X, d  

negative class of objects; X, b  positive class of objects; d, b  false, where X, d, b 

  M, and X is object intent of invalid test . 

Algorithm DIAGaRa is used for solving both kinds of subtasks. Currently, we real-

ize the first way with deleting invalid tests. 

2 DIAGaRa: an Algorithm for Inferring GMRTs 

The decomposition of inferring GMRTs into subtasks of first and second kinds 

gives the possibility to construct incremental algorithms. The simplest way to do it 

consists of the following steps: choose object description (value), form subtask, solve 

subtask, delete object description (value) after the subtask is over, and check the con-

dition of ending the main task. In this process, already obtained tests are used for 

pruning the search space. 

DIAGaRa is based on using a basic recursive procedure for solving subtask of the 

first kind The initial information for finding all the GMRTs contained in a positive 

example (object) description is the projection of this example on the current set R(+). 

It is essential that the projection is simply a subset of examples (object descriptions) 
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defined on a certain restricted subset B* of values. Let A* be the subset of indices of 

objects from R(+) which have produced the projection. 

Generally, it is useful to introduce the weight W(B) of any set B of values in the 

projection: W(B) =  splus(B) = obj(B)  A* is the number of positive object de-

scriptions of the projection containing B. Let WMIN be the minimal permissible value 

of weight. Currently, we assume that WMIN = 1. 

Let STGOOD be the partially ordered set of elements A   A* satisfying the condi-

tion that (A, val(A)) is a good test for R(+). The basic recursive procedure consists of 

applying the sequence of the following steps: 

Step 1. Check whether the intersection of all the elements of projection corre-

sponds to a test and if so, then A* is stored in STGOOD if (A*, val(A*)) is currently a 

good test; in this case, the subtask is over. Otherwise the next step is performed. 

Step 2. The generalization operation is performed as follows: B  =  val(splus(m)), 

m  B*; if B is object intent of a test, then m  is deleted from the projection and 

splus(m) is stored in STGOOD if splus(m) is currently value extent of a good test. 

Step 3. The value m is deleted from the projection if splus(m)  s for some s  

STGOOD. 

Step 4. If at least one value has been deleted from the projection, then the reduc-

tion of the projection is necessary. The reduction consists in deleting the elements of 

projection that do not correspond to tests (as a result of previous eliminating values). 

If, under reduction, at least one element has been deleted from the projection, then 

Step 2, Step 3, and Step 4 are repeated. 

Step 5. Check whether the subtask is over or not. The subtask is over when either 

the projection is empty or the intersection of all elements of the projection 

corresponds to a test (see, please, Step 1). If the subtask is not over, then an element 

of this projection is selected, new subtask is formed, and the basic algorithm runs 

recursively. 

An Approach for Forming the Set STGOOD. The important part of the basic 

algorithm is how to form the set STGOOD. Let L(S) be the set of all subsets of the set 

S. L(S) is the set lattice. The ordering determined in the set lattice coincides with the 

set-theoretical inclusion. It will be said that subset s1 is absorbed by subset s2, that is 

s1  s2, if and only if the inclusion relation is hold between them, that is s1  s2. Under 

formation of STGOOD, a set s is stored in STGOOD if and only if it is not absorbed 

by any element of this set. It is necessary also to delete from STGOOD all the 

elements in it that are absorbed by s. Thus, when the algorithm is over, STGOOD 

contains all the collections of objects that correspond to GMRTs and only such 

collections. Essentially the process of forming STGOOD is an incremental procedure 

of finding all maximal elements of a partially ordered set. 

The set TGOOD of all the GMRTs is obtained as follows: TGOOD = {(s, val(s)), 

(s) (s  STGOOD)}. 

3 INGOT: An Incremental Algorithm for Inferring All GMRTs 

The first act is performed by the procedure GENERALIZATION (STGOOD, j*). 
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The procedure GENERALIZATION (STGOOD(+), j*). 

Input: j* is the index of new example (object), the set 

STGOOD(+) of GMRTs for the class of positive examples, 

the set R(-) of negative examples. 

Output: STGOOD(+)modified by the generalization. 

Begin 

(s) (s  STGOOD(+)) 

  if to_be_test({s  j*}, val({s  j*})) = true then 

  s  generalization (s  j*); 

end 

The second act is reduced to the subtask of the first kind. The procedure 

FORMSUBTASK(j) aims at preparing initial data for inferring all the GMRTs con-

tained in description t of object with  index j: 

The procedure FORMSUBTASK(j, R(class(j)), G(class(j)), 

STGOOD(class(j)).  

Input: j, R((class (j)), R() = R/R(class(j)), 

G(class(j)), STGOOD(class(j)). Output: 

proj(R(class(j))[j]; 

              Begin 

proj(R(class(j))[j]    {{j}}; nts    G(class(j); 

(i) i  nts, i  j 

   if to_be_test(({j, i}, val({j, i})) = true then do 

     Begin 

     insert i into proj(R(class(j))[j]; 

     end 

end 

Four possible situations can take place when a new object comes to the learning 

system: 

 The knowledge base is empty; 

 The knowledge base contains only objects of the positive class to which a new 

object belongs; 

 The knowledge base contains only objects of the negative class; 

 The knowledge base contains objects of both the positive and the negative classes. 

The second situation conforms to the generalization process taking into account 

only the similarity relation between examples of the same class. This problem is 

known in the literature as inductive inference of generalization hypotheses or unsu-

pervised generalization. An algorithm for solving this problem can be found in [20]. 

Let CONCEPTGENERALIZATION [j*](G(+), STGOOD(+)) be the procedure of 

generalization of positive examples in the absence of negative examples. Next, the 

procedure INGOT is presented. 
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The procedure INGOT(j*). 

Input: j*, class(j*), t* - description of j*-object, R, 

G, STGOOD = STGOOD(+)  STGOOD(). Output: STGOOD. 

begin 

k  class(j*); G(+)     G(k); R(+)    R(k); R(-)    

R/R(+), G(-)    G/G(+); 

N    N + 1;  j*    N, where N is the number of ob-

jects; 

G(+)    j*  G(+);   R(+)    t*  R(+); 

STGOOD(+)     STGOOD(k); 

STGOOD(-)     STGOOD/STGOOD(+); 

if  N  = 1 then  STGOOD(+)  {j*}  STGOOD(+);  else 

if  N   1 and G(+) = 1 then 

begin 

STGOOD(+)     {j*}  STGOOD(+); 

(s), s  STGOOD(-), val(s)  t* 
   (j), j  G(), s  val(j) 

    FORMSUBTASK (j, R(), G(), STGOOD(); 

    DIAGaRa(proj(R()[j], STGOOD());  

    end 

end 

else if  N  1 and G(-) =  then 

CONCEPTGENERALIZATION [j*](G(+), STGOOD(+)); 

else   /* N   1 and G(+)  1 and G(-)    */ 

begin 

if STGOOD(+)   then 

GENERALIZATION(STGOOD(+), j*); end 

FORMSUBTASK (j*, R(+), G(+), STGOOD(+)); 

DIAGaRa(proj(R(+)[j*], STGOOD(+)); 

   (s), s  STGOOD(-), val(s)  t* 
       (j), j  G(), s  val(j) 

        FORMSUBTASK (j, R(), G(), STGOOD(); 

        DIAGaRa(proj(R())[j], STGOOD()); 

        end 

    end 

end 

The data in Table 1 is for processing by algorithm INGOT (Example 1) for each 

object description step by step. 

Table 1. The Data for Generating GMRTs (Example 1) 

Index of example Outlook Temperature Humidity Windy Class 
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1 Sunny Hot High No 1 

2 Sunny Hot High Yes 1 

3 Overcast Hot High No 2 

4 Rain Mild High No 2 

5 Rain Cool Normal No 2 

6 Rain Cool Normal Yes 1 

7 Overcast Cool Normal Yes 2 

8 Sunny Mild High No 1 

9 Sunny Cool Normal No 2 

10 Rain Mild Normal No 2 

11 Sunny Mild Normal Yes 2 

12 Overcast Mild High Yes 2 

13 Overcast Hot Normal No 2 

14 Rain Mild High Yes 1 

Table 2a. The Records of Step-by-Step Results of the Procedure INGOT. 

j* Class(j*) STGOOD(1), STGOOD(2) 

{1}; 1 STGOOD(1): 1; 

2 1 STGOOD(1): 1,2; 

3 2 STGOOD(1): 1,2; STGOOD(2): 3; 

4 2 STGOOD(1): 1,2; STGOOD(2): {3}, {4}; 

5, 2 STGOOD(1): 1,2; STGOOD(2): {3}, {4,5}; 

6 1 STGOOD(1): {1,2}, {2,6}; STGOOD(2): {3}, {4,5}; 

7 2 STGOOD(1): {1,2}, {6}; STGOOD(2): {3,7}, {4,5}; 

8 1 STGOOD(1): {1,2,8}, {6}; STGOOD(2): {3,7}, {4,5}; 

9} 2 STGOOD(1): {1,2,8}, {6}; STGOOD(2): {3,7}, {4,5}, {5,9}. 

Table 2b. The Records of Step-by-Step Results of the Procedure INGOT (continuation). 

J* Class(j*) STGOOD(1); STGOOD(2) 

10} 2 STGOOD(1): {1,2,8}, {6}; 

STGOOD(2): {3,7}, {4,5,10}, {5,9,10}; 

11} 2 STGOOD(1): {1,2,8}, {6}; 

STGOOD(2): {3,7}, {4,5,10}, {5,9,10}, {10,11}, {9,11}; 

12} 2 STGOOD(1): {1,2,8}, {6};  

STGOOD(2): {3,7,12}, {4,5,10}, {5,9,10}, {10,11}, {9,11}, 

{11,12}; 

13} 2 STGOOD(1): {1,2,8}, {6}; 
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STGOOD(2): 

{3,7,12,13},{4,5,10},{5,9,10,13},{10,11},{9,11},{11,12} 

14} 1 STGOOD(1):{1,2,8}, {6,14}; 

  STGOOD(2):{3,7,12,13},{4,5,10}, {5,9,10,13},{10,11},{9,11}. 

In Tables 2a and 2b, the sets STGOOD(1) and STGOOD(2) accumulate the sets of 

objects corresponding to the GMRTs for Class 1 and Class 2, respectively, at each 

step of the algorithm. Table 3 contains the results of the procedure INGOT. 

Table 3. The Sets TGOOD(1) and TGOOD(2) Produced by the Procedure INGOT 

TGOOD(1) TGOOD(2) 

({1,2,8}, Sunny High) ({4,5,10}, Rain No) 

({6,14), Rain Yes) ({5,9,10,13}, Normal No)  

- ({10,11}, Mild Normal) 

- ({9,11}, Sunny Normal) 

- ({3,7,12,13}, Overcast) 

The traning set of next example is in Table 4. It contains the description of 25 

students (persons) characterized by positive (Class 1) and negative (Class 2) dynamics 

of intellectual development during a given period of time. The persons are described 

by factors of the MMPI method modified in Russia by L. Sobchik [21].  

Table 4. The Training Set of Data for Example 2 

 L F K Hy Pd Mf Pa Pt Ma Class 

1 4 3 5 3 3 4 3 4 4 2 

2 4 4 5 3 3 3 2 4 4 2 

3 4 3 4 3 3 3 3 3 4 2 

4 3 3 4 3 3 3 3 3 4 2 

5 4 3 4 3 3 4 3 3 3 2 

6 5 4 5 3 4 2 4 3 3 2 

7 5 3 5 4 4 3 4 4 4 2 

8 4 3 4 3 3 4 3 3 3 2 

1 3 3 5 4 4 4 3 4 4 1  

2 2 3 4 3 3 3 3 3 3 1  

3 3 3 5 3 3 2 4 4 3 1 

4 3 3 4 3 4 4 2 3 5 1 

5 3 3 5 4 4 4 3 4 3 1 

6 4 2 4 4 4 4 2 3 3 1 

7 3 3 3 2 3 4 3 2 5 1 

8 3 3 4 3 4 4 3 3 3 1 

9 2 4 5 4 3 4 4 4 4 1 

10 3 3 5 3 3 2 4 3 4 1  

11 3 4 4 3 3 4 2 3 4 1  

12 3 3 4 4 2 4 3 3 4 1 
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13 5 3 5 4 4 4 4 4 4 1 

14 3 3 4 3 4 4 2 4 4 1 

15 3 3 4 3 3 2 2 3 4 1  

16 5 3 4 2 3 3 4 3 3 1 

17 3 3 5 4 3 5 4 4 3 1 

Incremental learning is partitioned into several stages (Table 5). Stage 1: training 

set contains 6 first persons of Class 1 and 6 first persons of Class 2. The result of 

Stage 1 is in Tables 6. 

Stage 2 is a pattern recognition stage; the control set contains persons 7 and 8 of 

Class 2 and persons 7 – 17 of Class 1. All persons of Class 2 and 5 persons (8, 9, 13, 

14, 17) of Class 1 have been recognized correctly. Persons 10, 11, 15 of Class 1 have 

been recognized as persons of Class 2, and persons 7, 12, 16 of Class 1 have been 

assigned to neither of these classes. Results of Stages 3-7 are given in Tables 7-11. 

Each table contains only new rules generated in corresponding stage. 

Table 5. Stages of Incremental Learning 

Stage Traning sets Searching rules for Rules 

are in Table 

 Class 1 Class 2 Class 1 Class 2  

1 Persons 1-6 Persons 1-6 Yes Yes  6 

2 Pattern recognition 

3 Persons 1-6 Persons 1- 8 No Yes 7 

4 Persons 1-6 and  

8, 9, 13, 14, and 17 

Persons 1-8 Yes No 8 

5 Persons 1-6, and 

8-11, 13-15, and 17  

Persons 1-8 Yes No 9 

6 Person 1-17 Person 1-8 Yes No 10 

7 Persons 1-17 Persons 1-8 No Yes 11 

Table 6. The Result of Stage 1 

№ of rule  L F K Hy Pd Mf Pa Pt Ma Class Persons 

1     4 4    1 {1,4,5,6} 

2 3 3 5       1 {1,3,5} 

3 2 3 4 3 3 3 3 3 3 1 {2} 

1 4   3 3     2 {1,2,3,5} 

3    3 3    4 2 {1,2,3,6} 

5  4 5 3      2 {2,4} 

Table 7. The result of Stage 3 

№ of rule L F K Hy Pd Mf Pa Pt Ma Class Persons 

1 4   3 3     2 {1,2,3,5,8} 

2      3   4 2 {2,3,6,7} 

3    3 3    4 2 {1,2,3,6} 



An Approach to Incremental Learning Good Classification Tests          61 

4 5  5  4  4   2 {4,7} 

5  4 5 3      2 {2,4} 

During Stage 4, Rule 4 for Class 2 (see, please, Table 7) is deleted (Rule 4   

val(13) for person 13 of Class 1). 

During Stage 6, Rule 3 for Class 2 (see, please, Table 7) is deleted (Rule 3   

val(11) for person 11 of Class 1).  

Table 8. The result of Stage 4. 

№ of 

rule 

L F K Hy Pd Mf Pa Pt Ma Class Persons 

1     4 4    1 {1,4,5,6,8,13,14} 

2 2    3     1 {2,9} 

3   5  3  4 4  1 {3,9,17} 

4    4     3 1 {5,6,17} 

5    4  4    1 {1,5,6,9,13} 

6 3 3       3 1 {3,5,8,17} 

7 3 3      4  1 {1,3,5,14,17} 

Table 9. The result of Stage 5. 

№ of 

rule 

L F K Hy Pd Mf Pa Pt Ma Class Persons 

8   4    2   1 {4,6,11} 

9 3 3  3 3 2    1 {3,10,15} 

10  4   3 4   4 1 {9,11} 

11 3     4    1 {1,4,5,8,11,14} 

12   5  3  4   1 {3,9,10,17} 

13 3 3 5       1 {1,3,5,10,17} 

Table 10. The result of Stage 6 

№ of rule L F K Hy Pd Mf Pa Pt Ma Class Persons 

14  3  2 3     1 {7,16} 

15  3 4  3 3  3 3 1 {2,16} 

16 3 3  4      1 {1,5,12,17} 

Stage 7: correcting the rules for Class 2. The result is in Table 10. 

Table 11. Final Rules for Class 2 (Stage 7) 

№ of rule L F K Hy Pd Mf Pa Pt Ma Class Persons 

1 4   3 3     2 {1,2,3,5,8} 

2      3   4 2 {2,3,6,7} 

5  4 5 3      2 {2,4} 

6  3  3 3  3  4 2 {1,3,6} 
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4 The Integrative Inductive-Deductive Model of Reasoning 

We considered only supervised learning, but integrative inductive-deductive 

reasoning includes unsupervised learning too. This mode of learning is involved in 

reasoning when a new portion of objects (examples) becomes available over time but 

without indication of their class membership. In this case, a teacher is absent. Only 

knowledge is available. A new object description can currently be complete or 

incomplete, i.e. some attribute values can be unknown or not observable. If we deal 

with completely described object, then the following results of reasoning are possible: 

1) class of new object is determined; 2) there are several classes to which new object 

can belong to (a situation of uncertainty); 3) object is unknown. 

In situation with incomplete object description, we can try to infer hypotheses 

about unknown values of attributes (it is reasoning based on “past experience”); if an 

object is unknown, we can try to select a set of training examples that are similar to 

this object in most degree and to infer new rules for describing this set of examples. 

Consider some instances of pattern recognition reasoning by using the rules 

obtained by the procedure INGOT (Table 3). 

Example 1. New weather descriptions are complete, for example, <Overcast, Cool, 

High, No>; <Sunny, Mild, Normal, No>; <Sunny, Mild, High, Yes>. In all these 

cases, we find the rules, which allow us to recognize the weather class. 

Example 2. If weather descriptions are incomplete, then it is possible that neither 

of the rules is applicable. But we can use the training set of examples to infer possible 

variants of weather class. Assume that the weather description is: <Rain, Mild, High>. 

We construct the decision tree as follows: Rain: Class 2 (Observations 4, 5, 10), Class 

1 (Observations 6, 14); Mild: Class 2 (Observation 4, 10), Class 1 (Observation 14); 

High: Class 2 (Observation 4), Class 1 (Observation 14). It is a situation of 

uncertainty. Consequently, a step of conditional or diagnostic reasoning is needed. 

We can consider hypothetically some possible values of attribute Windy; then we 

comclude that “if Windy = No, then Class 2”; “if Windy = Yes, then Class 1”. 

Really, we have obtained the following diagnostic rule: “If we observe that (Outlook 

= Rain) & (Temperature = Mild) & (Humidity = High), then (if Windy = No, then 

Class 2; else Class 1). Note that, the process of pattern recognition includes some 

inductive step of reasoning. 

Example 3. The weather description is: <Hot, Yes>. The reasoning tree is: Hot: 

Class 1 (Observations 1, 2), Class 2 (Observations 3, 13); Yes: Class 1 (Observations 

2), Class 2 (Observations -). Now we can formulate hypothetically a new forbidden 

rule: “Hot, Yes → Class 2, false” or, in another form, “If we observe that 

(Temperature = Hot) & (Windy = Yes), then it is never observed Class 2”.  

Example 4. The weather description is: <Sunny, Mild, Low, No>. Here we meet a 

new value of Humidity – “Low”. Assume that the sets of values of Humidity and 

Temperature are ordered and Low  Normal  High and Mild  Cool  Cold. Assume 

that the functions of distance on the attribute domains are also defined. Then in the 

pattern recognition process, it is possible to infer that <Sunny, Mild, Low, No> is 

nearer to the example of Class 2 <Sunny, Cool, Normal, No> than to the example of 
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Class 1 <Sunny, Mild, High, No>. A new feature for Class 2 can be formed, namely, 

<Sunny, Low >. 

One of the possible models of deductive plausible human reasoning based on 

implicative logical rules can be found in [22]. 

One of the important problems of integrating deductive and inductive reasoning is 

connected with creating some on-line interactive method for modifying context of 

reasoning. Failures in reasoning or appearance of new data can require to add new 

attributes to the context. The task of incremental generating a logical context for 

email messages classification is considered in [23]. This article presents a method for 

incremetal constructing a logical context by the assignment of new attributes to object 

descriptions. The existing context plays the role of a dynamic schema to help users to 

keep consistency in their object descriptions. 

5 Conclusion 

In this paper, the decomposition of inferring good classification tests into subtasks 

of the first and second kinds is presented. This decomposition allows, in principle, to 

transform the process of inferring good tests into a “step by step” reasoning process. 

We have described some inductive algorithm INGOT for inferring good maximally 

redundant classification tests. We did not focus on the efficiency of this algorithm; we 

intend to give more attention to the complexity problems in future contributions. 

The development of full on-line integrated deductive and inductive reasoning is of 

great interest. The main problem in this direction is the development of an on-line 

interactive model to support users in constructing and modifying the context of 

deductive-inductive reasoning. 
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