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Abstract. Knowledge Space Theory (KST) links in several ways to For-
mal Concept Analysis (FCA). Recently, the probabilistic and statistical
aspects of KST have been further developed by several authors. We re-
view part of the recent results, and describe some of the open problems.
The question of whether the outcomes can be useful in FCA remains to
be investigated.
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In Knowledge Space Theory (KST, see Doignon & Falmagne, 1999; Falmagne
& Doignon, 2011), a body of knowledge is represented by a finite set, say Q, of
test items. The knowledge state of a student is identified with the collection of
items he masters. Because of dependencies among the items, not any subset of
Q can be a knowledge state; for instance, if Q is structured by a prerequisite
relation, the states should be taken as the ideals of the transitive closure of the
prerequisite relation. In general, the collection K of all possible knowledge states
forms a knowledge structure (Q,K); it is assumed ∅, Q ∈ K. The correctness
of the answer provided at a certain time by a student to any item is granted to
depend only on his knowledge state, except for careless errors and lucky guesses.

Because variations are routinely observed in such answers, a probabilistic
extension of KST was designed. So, assume the knowledge state of a student
may vary (around a certain time point of his apprenticeship) in K according
to a probability distribution π on K. Moreover, for any item q in Q, let βq be
the probability of a careless error in answering q, and ηq be the probability of
a lucky guess in answering q. All the numbers π(K) (for K in K), βq and ηq

(for q in Q) will be considered as parameters with (unknown) latent values. (Of
course, the π(K)’s are not independent parameters, because they add up to 1.)
The straight case obtains when βq = ηq = 0, for any q in Q. We now propose
two models for the probabilities of correctness of student answers (considered
as the observables). Both models are based on the latent knowledge structure
together with the various parameters we have just introduced. The second model
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is described in Doignon & Falmagne (1999) (see also Falmagne & Doignon, 2011),
while the first one is only implicit there.

The first model, the Correct Response Model (CRM), defines the probability
τ(q) of a correct answer to any isolated item q. It first conditions the probability
of a correct answer to item q on the state of the student:

τ(q) =
∑
K∈K

Pr(q K) · π(K).

Then, it specifies each conditional probability Pr(q K) by taking into account
the careless error probabilities βq and the lucky guess probabilities ηq:

Pr(q K) =

{
1− βq if q ∈ K,
ηq if q /∈ K.

(1)

A second model, the Basic Local Independence Model (BLIM), defines the
probability of a pattern of responses. Here, a pattern is a subset of Q meant to
contain all items to which a student (at a given time) produces a correct answer.
Exactly as the CRM, the BLIM conditions the pattern probability on the state
of the student. Thus, the probability of a given pattern R of responses (with
R ⊆ Q) equals

ρ(R) =
∑
K∈K

r(R,K) · π(K),

where r(R,K) is specified as follows:

r(R,K) =
( ∏

q∈K\R

βq

)( ∏
q∈K∩R

(1− βq)
)( ∏

q∈R\K

ηq

)( ∏
q∈Q\(R∪K)

(1− ηq)
)
.

Both of our models, the CRM and the BLIM, are instances of probabilistic
models. On the basis of a fixed knowledge structure, they predict from any
parameter point (that is, any list of values for all parameters) some definite
probability values for the observables (in our case, the observables are either
individual correct responses, or whole patterns of correct responses). We use the
term predicted distribution to designate “any distribution of probability values
for the observables that are predicted by the model”. The questions we will
consider are as follows (the first two are clearly stated in Bamber & van Santen,
2000 for probabilistic models in general).

1. Model testability: is there some distribution of probability values for the
observables that the model does not predict?

2. Model identifiability: is each predicted distribution produced from at most
one parameter point?

3. Model characterizability: are the predicted distributions susceptible of an
effective characterization (without reference to the underlying parameter
values)?
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Recently Spoto, Stefanutti & Vidotto (2012) have investigated the first two
questions for the BLIM, the model for pattern probabilities. Moreover, Ste-
fanutti, Heller, Anselmi & Robusto (2012) have produced additional, nice results
about identifiability of the BLIM, especially in its local version: local identifia-
bility means identifiability when the model is restricted to some neighborhood
of any given parameter point.

On our part, we consider the three types of questions for the CRM, the
correct response model, however working mainly in the straight case. First, we
are able to characterize testability of the model using a simple criterion (and also
to reformulate a variant of it, numerical testability, in a manageable, technical
way). Second, about characterizability, we point out unavoidable difficulties in
recognizing when it holds. Third, as regards identifiability, we give a tractable
equivalent, concluding that identifiability is not often met. On the positive side,
we indicate how to modify the parameter domain (consisting of the knowledge
state probabilities) in order to restore identifiability while keeping the same
prediction range; nevertheless, we show that the construction works well only
for the knowledge structures (Q,K) which are derived from a quasi order on
Q (as it is the case in the presence of a prerequisite relation). As a matter of
fact, the construction heavily relies on a theorem of Stanley (1986) for a convex
polytope he associates to a partial order.

The results presented during the talk are taken from a manuscript under
preparation (Doignon, 2013).



Bibliography

Bamber, D., & van Santen, J. P. H. (2000). How to assess a model’s testability
and identifiability. J. Math. Psych., 44 , 20–40.

Doignon, J.-P. (2013). A correct response model in knowledge space theory.
Manuscript in preparation.

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer-
Verlag.

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning Spaces. Berlin: Springer-
Verlag.

Spoto, A., Stefanutti, L., & Vidotto, G. (2012). Considerations about the iden-
tification of forward- and backward-graded knowledge structures. Submitted.

Stanley, R. (1986). Two poset polytopes. Discrete Comput. Geom., 1 , 9–23.
Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing the

local identifiability of probabilistic knowledge structures. Behavior Research
Methods, 44 , 1197–1211.


