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We present a mean field model for a mixture of AB diblock-copolymers and A-block selective

nanoparticles confined between two identical non-selective walls. A horizontally symmetric lamellar

structure of the nanocomposite is considered where nanoparticles are allowed to segregate between the

polymer–wall interfaces. For a fixed value of wall separation, we study changes in the free energy as a

function of the number of lamellar layers and the amount of nanoparticle uptake in the A-phase

denoted by y ¼ fx with 0 # x # 1 for a given value of f, where f is the overall nanoparticle volume

fraction. The absorption isotherm for nanoparticle uptake in the A-phase as a function of f shows

saturation beyond a threshold value fs, and the optimal value of uptake y increases with increasing

strength of monomer–nanoparticle attractive interaction. Increasing f above fs produces a decrease in

the optimal number of lamellar layers which is related to a jump-like transition of the chain extension.

The effect of varying film thickness is also studied. By considering A-block selective walls we also

investigated a wetting transition of the copolymer film and found the transition to be discontinuous.

A corresponding phase diagram is constructed.
I. Introduction

Diblock-Copolymers (DBCs), created by covalently joining two

chemically distinct polymer blocks, are very suitable for

producing flexible nanocomposite materials that exhibit advan-

tageous electrical, optical, and mechanical properties. For

example, DBC and nanoparticle (NP) mixtures are used in the

creation of next generation catalysts, selective membranes,

photonic band gap materials and stimuli-responsive materials.1–4

Block-copolymers which microphase separate into various nano-

structures5 can direct the spatial distribution of NPs in the

polymer matrix. Generally, two types of NPs are distinguished

with respect to their monomer affinity: selective NPs which prefer

one component of DBC, and nonselective NPs which interact

equally with both components of DBC.6

Block-copolymers in geometrical constraints (thin-films) are of

particular interest since many applications are based on thin-film

technologies. For thin-films, confining geometries as well as the

interaction of the copolymer components and NPs with respect

to the confining surfaces have to be considered and this leads to a

many-dimensional phase diagram and corresponding parameter

space which may be used to tune the order and morphology of

the nanocomposite films. A basic understanding of the interplay

of the various parameters by considering simplified models for

the DBC–NP composite is necessary for both a rational design of
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new composite film materials and more rigorous numerical and

theoretical investigations of the most promising combinations of

parameters.

Recent studies on DBC–NP mixtures show that NPs can

induce self-assembled structures.7–11 Segregation of nonselective

NPs at the DBC interface and at the polymer–wall interface for

confined systems is observed.11–18 The driving force behind the

migration of non-selective NPs at the interfaces in the nonse-

lective case can be the entropic depletion effect which arises due

to the size difference between monomers and NPs.15,16,19 Selective

NPs, on the other hand, are localized within one block–copol-

ymer domain and can induce morphological transitions, such as

from cylinder to lamellar structures.7,20 Furthermore, a theoret-

ical study on symmetric DBC–selective-NP mixtures confined

between neutral walls using both self-consistent field theory

(describing polymers) and density functional theory (describing

NPs) shows that due to the entropic effects NPs are driven to the

polymer–wall interfaces and favor parallel orientation of the

lamellae with the NP selective block located near the walls.16 This

prediction is in agreement with our recent molecular dynamics

simulation study where we observe parallel lamellae with NP

selective blocks located near the neutral walls and the NPs are

segregated in the polymer–wall interface forming a dense layer.21

In the simulation, perpendicular lamellae are also observed, but

only for nearly symmetric DBCs and at low values of NP

concentration, whereas parallel morphologies are realized for

symmetric as well as asymmetric DBCs and at relatively higher

values of NP concentration.
This journal is ª The Royal Society of Chemistry 2012
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Several experimental and theoretical studies have addressed

the commensurability and stability of parallel and perpendicular

morphologies for pure DBC thin films – see ref. 22–28 – but to a

lesser extent for DBC nanocomposite systems.16,29,30 The

problem of morphology selection (here mainly perpendicular vs.

parallel) is of major interest for possible applications. Nano-

particles can influence on these morphologies and this might be

an interesting and new possibility to control them. It has been

observed in a recent experiment29 that lamellae orientation can

be changed using thermally stable gold NPs with tuned surface

chemistry.

The freedom of the system to take up only a part of the NPs

provided to the composite in order to minimize the free energy is

most important for the parallel morphology. Here, controlled

take-up can reduce the frustrations imposed by the film-thickness

and might favor the parallel orientation. This effect becomes also

important when the confining surfaces are selective with respect

to one of the DBC phases. This is the problem we consider in the

present work by using simple mean-field arguments. Here, with

the mean-field method we maintain simplicity in the results

without losing the complexity of the problem; also it forms the

basis for a more complete description where various morphol-

ogies are taken into account.

Our aim here is to understand, considering a parallel

morphology, the effect of NP concentration, film thickness and

monomer–NP interaction in forming commensurable lamellae in

the absence of enthalpic interactions between the polymer or NPs

and walls (purely repulsive walls). An interesting scenario arises

if particles can form a separated phase on top of the polymer

layer. In this case uptake or release of nanoparticles can reduce

frustration effects which originate from a mismatch of equilib-

rium lamellar period and the thickness of the layer. Furthermore,

within the parallel morphology, we also study transition to

wetting when the confining walls are selective. The rest of this

work is organised as follows. In Section II, based on the strong

segregation approximation,31 we construct a simplified mean

field free energy model for the DBC–selective-NP mixtures at a

given composition confined in a slit of thickness L. We study the

equilibrium properties of the nanocomposite considering both

polymer non-selective walls in Section II, and selective walls in

Section III. In both cases we consider a dense NP layer which can

be formed in the polymer–wall interface; see Fig. 1. If the walls
Fig. 1 (a) Schematic illustration of a horizontally oriented lamellar

structure formed by a DBC–selective-NP mixture confined between two

identical non-selective walls of separation L. NPs driven out of the

polymer matrix form a dense layer of thickness D in the polymer–wall

interface regions. (b) Magnification of the dotted region in (a): each chain

with a fraction of NPs absorbed in it has a chain extension (DA +DB) and

an A–B interface contact area Ai.

This journal is ª The Royal Society of Chemistry 2012
are selective with respect to the NP-selective block of the DBCwe

assume that for some value of the monomer–wall interaction the

polymer can incorporate all the NPs and wet the surface. In

Section III the transition to such ‘‘wetted’’ phase will be discussed

and a corresponding phase diagram will be constructed.
II. Mean-field model

In the strong stretching limit the pure phase of DBC forms a dry

polymer brush.31 Analogy between a polymer brush and DBC in

the strong stretching limit has been exploited by Pryamitsyn and

Ganesan to study density distribution of NPs and influence of

NPs on the lamellar thickness and elastic constants of DBC.32 It

is important to note that unlike a surface grafted polymer brush

the grafting density of a DBC-brush can vary depending on

temperature and NP density. In our present study, we ignore

effects of a non-homogeneous brush potential33 and we consider

a homogeneous distribution of particles inside the copolymer

phases.
A. Non-selective walls

In Fig. 1(a), we sketch a single layer of horizontally oriented

lamellae confined between two identical non-selective walls. Each

chain has an interface contact area, Ai, and average heights, DA

and DB, of the A and B blocks respectively; see Fig. 1(b). Since

the NPs are selective with respect to the A-block the uptaken NPs

are exclusively confined in the A-phase of the copolymer layer. A

region of thickness D is formed at the polymer–wall interface by

the NPs expelled from the polymer matrix as shown in Fig. 1(b).

We consider this as a crystalline layer and set the free energy per

NP to zero, i.e. consider this as the ground state of the NPs.

Let us assume that the preparation of the film consists of

mixing a certain amount of NPs with a given amount of a DBC.

The total number of NPs available per chain, n, remains an

overall constant. The NP volume fraction, f, is given by

f ¼ nvp

Ns3
; (1)

where np and s3 are respectively the volumes of a NP and a

Kuhn-monomer and we put s ¼ 1 for convenience, and N is the

number of monomers in a chain. Suppose, NA is the number of

monomers in the A-block then the fraction of A is defined as

f ¼ NA/N, and thus the number of monomers in the B-block is

NB ¼N(1� f). As shown in Fig. 1(b), if we denote the fraction of

NPs absorbed in the A-phase of the copolymer by x then the

condition of incompressibility is defined by the following set of

equations

Ai �DA ¼ Nð f þ fxÞ;
Ai �DB ¼ Nð1� f Þ;
Ai � d ¼ Nfð1� xÞ:

(2)

Here, we have defined an intensive quantity d ¼ D/p, the NP

layer thickness per lamellar layer, where p is the number of

lamellar layers. Furthermore, to accommodate p number of

lamellar layers together with a NP layer of thickness D in

between the walls separated by a distance L the condition of

commensurability requires that
Soft Matter, 2012, 8, 11328–11335 | 11329
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Fig. 2 Change in the total free energy per chain, F(L, f), as a function of

the absorbed fraction, x, of NPs for 3p ¼ 0.001, cN ¼ 100, NP diameter

sp ¼ 2s, and f ¼ 0.4. Results are shown for f ¼ 0.08, and for p ¼ 1 and

p¼ 2 at two different values of wall separation (a) L/x¼ 2.0 and (b) L/x¼
3.0. Arrows indicate the direction of shift of the free energy curve upon

changing the number of layers from 1 to 2.
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p(D + d) ¼ L/2, (3)

where D ¼ (DA + DB). The example in Fig. 1(a) corresponds to

p ¼ 1. From eqn (2) and (3), we get

Ai ¼ 2Np

L
ð1þ fÞ; (4)

d ¼ L

2p

�
f� y

1þ f

�
: (5)

Here, we denote the uptake of nanoparticles in the A-phase of

the copolymer film by y and it can be written as

y ¼ fx: 0 # x # 1, (6)

but the expression for the optimal amount of NP uptake in terms

of other fixed parameters of the system will be derived later in the

section. The reduction in the thickness of the NP layer (per

lamellar unit) due to the uptake of NPs in the polymer matrix is

given by

d ¼ dð y ¼ 0Þ � dðyÞ ¼ L

2p

�
y

1þ f

�
: (7)

Because of mass conservation d is added to the particle selec-

tive A-block, thereby changing the overall chain extension. The

contribution to the total free energy due to chain stretching and

interface tension per chain, FDBC, following the narrow interface

approximation,34 can be written as

FDBC ¼ 3

2NA

�
DA

0 þ d
�2þ 3

2NB

DB
2 þ c1=2Ai; (8)

where c is the effective Flory–Huggins interaction parameter

where non-universal constants within the narrow interface

approximation are taken into account. The first term in eqn (8)

corresponds to the stretching of A-blocks, where

DA
0 ¼ f

�
L

2p
� dð y ¼ 0Þ

�
¼ L

2p

f

ð1þ fÞ is the thickness of the

A-block for y ¼ 0 and thus

DA ¼ �
DA

0 þ d
� ¼ L

2p

�
f þ y

1þ f

�
; (9)

The second term corresponds to the stretching of B-blocks with

DB ¼ L

2p

�
1� f

1þ f

�
: (10)

In writing the free energy expressions we set the value of

thermal energy, kBT, to unity. We note that DA
0 is obtained due

to the geometrical restriction (confinement) and does not corre-

spond to the equilibrium chain extension at zero NP uptake. The

first and second terms together represent the stretching of the

block-copolymer (Fbc).

The free energy contribution per chain due to the particles,

FNP, is given by the following expression,

FNP ¼ nA

"
lnðhÞ þ 4h� 3h2

ð1� hÞ2
#
� 3phNA: (11)

Here, nA ¼ (yNA/fvp) is the number of NPs in the A-phase, h is

the NP volume fraction within the A-phase given by h¼ y/(f + y).
11330 | Soft Matter, 2012, 8, 11328–11335
The first term on the rhs of eqn (11) corresponds to the ideal

translational entropy of a hard-sphere gas (Fte), while the second

term is the non-ideal part approximated by the Carnahan–

Starling equation (Fcs).
35 The third term represents the mean-

field interaction of the polymer chain with the particles (Fen) at

the given volume fraction h, and 3p denotes the strength of

monomer–NP attraction.

Adding eqn (8) and (11) we obtain the total free energy per

chain,

Fx
3

2NA

DA
2 þ 3

2NB

DB
2 þ c1=2Ai þ nA

"
lnðhÞ þ 4h� 3h2

ð1� hÞ2
#

� 3phNA; (12)

where the expression forDA andDB are given by eqn (9) and (10)

respectively.

Let us introduce a characteristic length scale x defined as

x ¼
ffiffiffi
c

p
3

� �1=3

N2=3s (13)

which corresponds to the equilibrium chain extension for a pure

symmetric DBC melt in bulk obtained within the framework of

our model.11 In Fig. 2 we plot the total free energy F shown in eqn

(12) at two different values of wall separation L as indicated in

the figure. Here, the idea is to illustrate that the lamellae formed

by the nanocomposites at a fixed value of L may be in a frus-

trated state and variation in the number of lamellar layers p can

drive the system towards a higher/lower free energy state

depending on the ratio of film thickness and equilibrium lamellar

period. As shown in Fig. 2(a), for L/2x¼ 1.0, the system shows an

increasing tendency of F for p > 1, whereas at L/2x ¼ 1.5 – see

Fig. 2(b) – it shows a decreasing tendency of F with increasing p.

This suggests the existence of a preferred value of p at each value

of L which minimizes the total free energy of the system.

For a given film thickness, L, the minimum of Fwith respect to

the NP uptake (vF/vy)¼ 0 gives the equilibrium uptake of NPs as

3x2ð1þ y=f Þ
Nr2

þN

vp

�
ln

�
y

f þ y

�
þ f

f þ y

�
þ tcs � 3pNf

ð f þ yÞ2 ¼ 0;

(14)
This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 Equilibrium uptake of NPs, y, as a function of f for a given wall

separation (L/x ¼ 8.0) at 3p ¼ 0.001 and 3p ¼ 0.10. The saturation

threshold, fs ¼ 0.056, is indicated for 3p ¼ 0.001. The quantity fs is equal

to the optimal amount of NP uptake. Inset: the average plateau height as

a function of 3p.

Fig. 4 Various terms which contribute to the total free energy (see eqn

(12)) shown as a function of 3 calculated at the optimal value of NP
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where tcs� (8y/f + 3y2/f2) is the contribution from the Carnahan–

Starling term and r is defined as

r ¼ [1 � f + f(1 + y/f)2]1/3. (15)

Eqn (14) in the limit y � 1 can be solved and it has the

following form

y � f exp[np(3p/f � (3c/N2)1/3)], (16)

and thus increasing N or 3p increases the uptake y. An exact

solution of eqn (14) at large values of y cannot be obtained as in

the limit y � 1, and therefore we solve it numerically for large

values of y to understand the equilibrium properties of the

system. Now, at fixed L and y, the optimal number of lamellar

layers p is obtained by setting

�
vF

vp

�
L;y

¼ 0 and it has the

following expression

p ¼ L

2x

r

ð1þ fÞ : (17)

Thus, at a fixed value of L and y, increasing f would lead to a

decrease in the optimal number of lamellar layers. A simulta-

neous solution of eqn (14) and (17) determines the equilibrium

state of the polymer–nanocomposite at the given wall separation

and overall nanoparticle fraction.

We take the copolymer nanocomposites in bulk as a reference

state and the free energy contribution per chain in bulk, Fbulk,

can be written as11

Fbulkx
3

2N
D2 þ c1=2 Nð1þ yÞ

D
þ FNP; (18)

where D is the total extension of a DBC and FNP is the NP

contribution shown in eqn (11).

p

uptake shown in Fig. 3. Here, Fbc, Fte, Fcs, and Fen are respectively the

chain stretching, translational entropy of NPs, Carnahan–Starling, and

monomer–NP enthalpic interaction terms.
B. Numerical results

For the numerical calculations, we fix the values of c (¼ 0.1) and

N (¼ 1000) such that cN ¼ 100 (strong segregation regime), and

choose a diblock composition of f ¼ 0.4. This choice of slightly

asymmetric DBC is motivated by the simulation results21 that for

DBC–selective-NP mixtures confined by purely repulsive walls

horizontally symmetric lamellae formed with the asymmetric

DBC can be stable over a wide range of NP concentration values.

Here, we use relatively small NPs i.e., sp¼ 2s, where s and sp are

respectively the monomer and NP diameters, and we vary the NP

volume fraction f in the range 0# f# 0.8. Within the mean-field

treatment presented here the effects due to the inclusion of big

NPs, e.g. chain conformations, cannot be captured accurately

and thus we restrict to relatively small NPs. Numerical solutions

of eqn (14) and (17) are obtained for the equilibrium NP uptake

y, and the optimal number of lamellar layers p for a given film

thickness L. In the following, we start with the discussion of fixed

film thickness. For very thin films, e.g. L/2x < 1, the bulk equi-

librium lamellar period cannot be realized and therefore we

choose a film of thickness L/x ¼ 8.0 so that the system can also

realize the bulk values.

The equilibrium NP uptake, y, as a function of f for a fixed

wall separation of L/x¼ 8.0, is shown in Fig. 3. For a given value
This journal is ª The Royal Society of Chemistry 2012
of monomer–NP interaction 3p there is an optimal amount of NP

uptake, y, given by eqn (14) and it is equal to the saturation

threshold denoted by fs in the absorption isotherm shown in

Fig. 3. As indicated by the plateau in the curve of y, for a given

value of 3p, there is no more uptake possible beyond the

threshold value fs. However, in the region f < fs we see a linear

increase with y ¼ f because of the value of f being smaller than

the value of optimal y ¼ fs for the given 3p and the NPs are

completely absorbed by the copolymer film. The optimal amount

of NP uptake increases with 3p as shown in the inset of Fig. 3.

Each point in the inset of Fig. 3 represents the average plateau

height for the corresponding 3p. A comparision of the various

terms which contribute to the total free energy – see eqn (12) – is

plotted as a function of 3p as shown in Fig. 4. Here, for 3p > 0.2,

contributions from the Carnahan–Starling (Fcs) and the mono-

mer–NP enthalpic interaction (Fen) terms dominate the other

terms, and thus a higher NP uptake at large 3p is limited mainly

due to the large positive Fcs (packing) contribution.

In Fig. 5, we show the equilibrium free energy, F(f), and the

corresponding optimal number of lamellar layers, p, as a func-

tion of f obtained at two different values of 3p when L/x ¼ 8.0.
Soft Matter, 2012, 8, 11328–11335 | 11331
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Fig. 5 Equilibrium free energy per chain, F(f), and the corresponding

optimal number of lamellar layers, p. The wall separation is fixed at L/x¼
8.0. (a) 3p¼ 0.001 and (b) 3p¼ 0.50. Dashed lines represent the free energy

in the bulk; see eqn (18).

Fig. 6 Change in the (a) total thickness of the NP layer D, and (b)

thickness of the NP layer per lamellar layer, d. Results are shown as a

function of f for three different values of 3p indicated in the figure, and L/

x ¼ 8.0. Here, the NP layer thickness scales with f as D or d � f/(1 + f).

Fig. 7 Chain extension, D, as a function of f calculated at a film

thickness L/x ¼ 8.0. Results are shown for 3p ¼ 0.001, 0.l and 0.5. Jumps

in the value of D correspond to the jumps of p in Fig. 5.
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Results are shown for (a) 3p ¼ 0.001 and (b) 3p ¼ 0.50. The free

energy is lower for the higher value of A-monomer–NP attractive

interaction 3p; however, in both cases there is a decrease in the

optimal value of p as we increase f, and the change is associated

with a cusp in the free energy curve. For higher values of 3p the

transition points are shifted to higher values of f. The free energy

displays a minimum for a given number of lamellar layers with

respect to f. It is interesting to note that, unlike the horizontal

lamellae formed by a pure DBC, here the frustration present in

the system at a given NP volume fraction can be reduced by

changing the monomer–NP interaction strength alone. For

example, the highly unfavorable points (cusp) in the free energy

curve at f x 0.2 and f x 0.65 are shifted to the right upon

increasing 3p and thus reduce the frustration at that point;

compare Fig. 5(a) and (b). This also illustrates the possible role of

temperature T in reducing the frustration of nanocomposite

films because the monomer–NP enthalpic interaction strength

3p � 1/T.

The change in the thickness of the NP layer as a function of

overall NP volume fraction, f, for fixed L is shown in Fig. 6. The

NP layer thickness vanishes for f # fs because below the

threshold value fs all the NPs are absorbed in the polymer

matrix; see also Fig. 3. Furthermore, the value of D is consis-

tently lower for higher 3p since the NP uptake y is higher for

higher values of 3p. Increase of total NP layer thickness D with f

is smooth, Fig. 6(a), and scales with f as D� f/(1 + f) according

to eqn (5). However, the change of NP layer thickness per

lamellar layer d has jumps, Fig. 6(b), due to the change in the

optimal number of lamellar layers with increasing f – see Fig. 5 –

but the scaling with f remains the same.

In Fig. 7 we display the change in equilibrium chain extension,

D, with the variation of f at a given value of wall separation

L/x ¼ 8.0. At low NP concentration (f# fs) the chain extension

is equal to that of pure DBCmelts in the bulk,D/x¼ 1.0 (we have

chosen a commensurable value of L), and D/x decreases with

increasing f above fs. Discontinuous relaxation of D/x to higher

values is observed when f is further increased. Thus, D(f) at

fixed L displays sawtooth-like behavior, and jumps in D are

related to the transition of the number of lamellar layers.
11332 | Soft Matter, 2012, 8, 11328–11335
In accordance with the previous result, the value of f when D is

discontinuous increases for larger 3p. In general, the chain

extension oscillates about D/x ¼ 1.0, and the maximum/

minimum value depends on the film thickness and the number of

lamellar layers.

Next, we consider the variation of the equilibrium free energy

and the corresponding change in the optimal number of lamellar

layers as we vary the film thickness. Here, we fix f and determine

the lowest free energy state by varying the NP uptake, y, and the

number of lamellar layers, p, for a given L, and then we vary L in

the range 1 # L/x # 10. In Fig. 8, we display the optimal free

energy, F(L), and corresponding optimal number of lamellar

layers, p, obtained at different values of NP concentration, f,

indicated in the figure while keeping 3p ¼ 0.001. As we can see in

Fig. 8(a), for larger f the free energy curve as a whole is shifted to

the right i.e., minima positions moved to higher values of L/x.

This behavior can be understood if we recall the fact that

increasing f above the saturation threshold fs creates a NP layer

whose thickness increases with increasing f – see Fig. 6(a) – and

thus a larger value of L corresponds to the optimal free energy at

larger f when 3p is fixed. In order to rationalize this behavior we
This journal is ª The Royal Society of Chemistry 2012
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Fig. 8 (a) Equilibrium free energy and (b) corresponding optimal

number of lamellar layers as a function of wall separation, L/x, at f ¼
0.08, 0.24 and 0.40 while keeping 3p ¼ 0.001. The first minimum in the

free energy curves is encircled to highlight the shift along the X-axis with

increasing f; see (a).

Fig. 10 Equilibrium chain extension, D, as a function of rescaled film

thickness, ~L, calculated at different values of f while keeping 3p ¼ 0.001.

Pu
bl

is
he

d 
on

 1
7 

Se
pt

em
be

r 
20

12
. D

ow
nl

oa
de

d 
by

 S
L

U
B

 D
R

E
SD

E
N

 o
n 

27
/0

3/
20

14
 0

6:
46

:0
0.

 
View Article Online
consider the rescaled film thickness ~L h L/L1, where L1 is the

film thickness at which F(L) has the first minimum; see Fig. 8(a).

If we now plot F as a function of rescaled film thickness we see

that the free energy curves for different f fall on top of each

other, and thus F( ~L) no longer has f dependence; see Fig. 9. The

positions of the minima correspond to the optimal film thickness

for p ¼ 1, 2, 3 and so on. We observed similar behavior for other

values of 3p. The rescaled form of the free energy curve displayed

in Fig. 9 can be obtained directly from eqn (12) as shown below.

The equilibrium film thickness, �L, at fixed y and p for a given f

is obtained by setting

�
vF

vL

�
y;p

¼ 0; and it has the following

expression

�L ¼ 2p(1 + f)xr�1. (19)

Thus,

L1 ¼ �Lp¼1 ¼ 2(1 + f)xr�1, (20)

and using this expression of L1 in eqn (12), we get
Fig. 9 Equilibrium free energy per chain, F, shown in Fig. 8(a), plotted

as a function of rescaled film thickness ~L ¼ L/L1; see text for the defi-

nition of L1. The dashed line represents the free energy in the bulk; see

eqn (18). Inset: change of L1 as a function of f.

This journal is ª The Royal Society of Chemistry 2012
Fx
3

2N

~Lx

p

� �2

r�1 þ c1=2Nr
p

~Lx

� �
þ nA

"
lnðhÞ þ 4h� 3h2

ð1� hÞ2
#

� 3phNA: (21)

Here, by introducing the rescaling film thickness ~L ¼ L/L1, the

free energy F no longer depends on f as in Fig. 9. The depen-

dence of f enters only in L1; see eqn (20).

In Fig. 10 we display the value of equilibrium chain extension,

D, as a function of rescaled film thickness ~L when 3p ¼ 0.001. As

we can see, the value of D/x oscillates around 1 and amplitude

decreases with increasing film thickness. Since the NP uptake at

3p ¼ 0.001 is very low – see Fig. 3 – it is expected that D/x will

finally converge to 1 at very large values of L. The behavior of

chain extension shown here for the nanocomposites is almost the

same as that obtained experimentally by T. P. Russell and

coworkers for a pure symmetric DBC in confinement.36
III. Selective walls and phase diagram

A. Mean field model

For non-selective walls, above the saturation threshold fs a NP

layer of thickness D > 0 is formed and separates the wall from the

DBC. If the walls are attractive with respect to A-monomers then

for some values of monomer–wall interaction the A-phase could

wet the surface by uptaking all the NPs.

To study the case of selective walls, we add a monomer–wall

interaction term to the free energy given by eqn (12). Contribu-

tion to the total free energy due to the A-monomer–wall inter-

action is denoted by Fw, and it is approximated by the product of

an effective monomer density near walls cA and the monomer–

wall interaction strength per chain gAi:

Fw ¼ �gAi � cA, (22)

where g is the interaction strength per unit area. Assuming a

homogeneous NP distribution inside the A-phase, we define the

effective monomer density near walls as

cA ¼ 1� a

�
f

f þ f

�
; (23)

where a ¼ (ad/vp)s with ad as the area of the monomer depletion

region on the walls due to a NP close to the wall. According to
Soft Matter, 2012, 8, 11328–11335 | 11333
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Fig. 12 (a) Phase diagram: lines separating ‘‘wetted’’ and ‘‘non-wetted’’
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Fig. 11 we obtain ad ¼ pssp. The second term on the rhs of eqn

(23) represents the overall reduction of the monomer–wall

contact area due to NPs in the vicinity of walls. The total free

energy for the ‘‘wetted’’ F1 is

F1 ¼ Fy¼f + Fw. (24)

If a transition to the wetted phase from the non-wetted phase is

possible then the following condition must be fulfilled

DF # 0, (25)

where DF ¼ F1 � F is the free energy difference between the

wetted (eqn (24)) and the non-wetted (eqn (12)) phases for a given

f and L. Eqn (25) at equality gives the critical value g*.
Fig. 11 Schematic illustration of the monomer depletion region due to a

nano-particle close to the wall. On the wall, a region of radiusRd from the

center of a NP is not available to monomers. The depletion radius,

depending on the particle size, varies as Rd ¼ sp=
ffiffiffiffi
m

p
, where m ¼ sp/s,

and thus the area of the depletion region ad ¼ psp
2/m.

regions – shown for three different values of 3p for L/x ¼ 8.0. Above the

line is the ‘‘wetted’’ phase while that below is the ‘‘non-wetted’’ phase.

The coexistence line is shifted to the right for higher 3p indicating the

broadening of the wetted region. (b) Difference in the optimal number of

lamellar layers Dp between the two phases.
B. Numerical results and phase diagram

In this section, using numerical calculations, we will discuss the

transition between the ‘‘wetted’’ and the ‘‘non-wetted’’ phases as

a function of NP volume fraction f for a film of thickness L/x ¼
8.0. For the numerical calculations, we first optimize the free

energy for the ‘‘wetted’’ case F1 by varying p for a fixed value of g

and L and at y ¼ f for a given f. Next, we calculate the free

energy F according to eqn (12) for the equilibrium values of p and

y. Using eqn (25) we calculate g* for which the equality is exactly

fulfilled.

In Fig. 12(a), we display the phase diagram in the f � g plane

showing ‘‘wetted’’ and ‘‘non-wetted’’ phases. Since, for f below

the saturation threshold, fs, there is a complete uptake of nano-

particles in the A-phase – see Fig. 3 – the free energy difference

between the two phases DF ¼ 0. Thus, the critical value of

interaction strength g* ¼ 0 for f < fs. However, when f > fs we

have DF s 0 and thus obtain a non-zero g* and the value of g*

increases rapidly on further increase of f. As we can see in

Fig. 12(a), the value of g* decreases upon increasing 3p at a given

value of f and this is due to the higher NP uptake at large values

of 3p. This shift of the coexistence line shows the broadening of

the wetted phase. Also when crossing the coexistence line in the

region g* s 0, there is jump in the number of optimal lamellar

layers p – see Fig. 12(b) – and a corresponding jump in chain
11334 | Soft Matter, 2012, 8, 11328–11335
extension D in going from the ‘‘non-wetted’’ to ‘‘wetted’’ phase.

This indicates a discontinuous (first order) transition between the

two different phases.
IV. Conclusion

We have presented a simplified mean field model, based on the

strong segregation theory, for a mixture of A–B diblock copol-

ymers and A-block selective NPs confined between two identical

walls in slit geometry. A horizontally oriented lamellar structure

of the nanocomposite is considered. Here, nanoparticles can be

segregated at the walls in order to reduce the frustration of

incommensurabilty and lower the free energy of the parallel

morphology.

The equilibrium state of our system is determined by simul-

taneously varying the NP uptake in the A-phase and the number

of copolymer layers formed between the walls. Both non-selec-

tive and A-block selective wall types are considered. With the

non-selective walls, in particular, we have discussed the NP

uptake behavior and effects of particle concentration and film

thickness in forming commensurable lamellae. Also the transi-

tion to a wetted phase when the confining walls are selective is

considered.

In non-selective walls case, at very low NP concentration, a

complete uptake of NPs is driven by enthalpic interactions with

the A-phase (under-saturated regime). At higher concentrations

a dense layer of NPs at the polymer–wall interface is formed and

the uptake of particles is limited mainly by concentration effects

which are taken into account by the Carnahan–Starling term in

the free energy (saturated regime). If the concentration of

nanoparticles is increased further keeping a fixed distance

between the walls the optimal number of lamellar layers

decreases jump-like. The change in the optimal number of layers

results in a discontinuous transition of the chain’s extension and

is associated with a cusp in the free energy. An interesting result

that we observed here is that it is possible to reduce the frus-

tration in a film of fixed thickness by properly tuning the

monomer–NP interaction strength 3p; see Fig. 5.
This journal is ª The Royal Society of Chemistry 2012
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An attractive (selective) interaction between A-monomers and

walls leads to a discontinuous transition between ‘‘non-wetted’’

and ‘‘wetted’’ phases. For the latter a complete uptake of parti-

cles is more favorable due to the contact energy gained by the

A-phase. Based on our free energy arguments a phase diagram in

the plane of nanoparticle-fraction and monomer–wall interac-

tion has been constructed. In general, we observe broadening of

the ‘‘wetted’’ region upon increasing the nanoparticle–monomer

interaction. The transition between the two phases is discontin-

uous related to a jump in the optimal number of lamellar layers.

An interesting question is the selection of lamellar reor-

ientations and possible morphological transitions induced by the

NPs. Here, one has to compare several scenarios of where the

segregated NPs are placed. If we neglect the problem of location

of segregated NPs within the film the free energy of the perpen-

dicular orientation corresponds to that of the bulk state with the

optimal take-up of NPs. In our calculations this leads generally

to lower free energies – see Fig. 5 and 9 – and thus to a preference

of perpendicular orientation for non-selective walls. This result,

however, contradicts recent SCFT calculations16 and direct MD

simulations.21 Thus, a more detailed approach to the perpen-

dicular morphology of the nanocomposite including the problem

of the free energy effort of forming a segregated NP-phase is

necessary.
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