
© ACM, 2012. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
SIGMOD Record, Volume 41, Issue 3, September 2012
http://dx.doi.org/10.1145/2380776.2380788

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236368215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A High-Throughput In-Memory Index, Durable on
Flash-based SSD

Insights into the Winning Solution of the
SIGMOD Programming Contest 2011

Thomas Kissinger, Benjamin Schlegel, Matthias Boehm
∗

, Dirk Habich, Wolfgang Lehner
Database Technology Group

Dresden University of Technology
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Growing memory capacities and the increasing number
of cores on modern hardware enforces the design of new
in-memory indexing structures that reduce the number
of memory transfers and minimizes the need for locking
to allow massive parallel access. However, most appli-
cations depend on hard durability constraints requiring a
persistent medium like SSDs, which shorten the latency
and throughput gap between main memory and hard
disks. In this paper, we present our winning solution
of the SIGMOD Programming Contest 2011. It consists
of an in-memory indexing structure that provides a bal-
anced read/write performance as well as non-blocking
reads and single-lock writes. Complementary to this in-
dex, we describe an SSD-optimized logging approach
to fit hard durability requirements at a high throughput
rate.

1. INTRODUCTION
With large main memory capacities becoming af-

fordable over the past years, we observe a shift
in the memory hierarchy that degrades hard disks
to a persistency-only medium and moves the en-
tire data pool and processing into the main mem-
ory. As a second hardware trend, CPU clock
rates stopped growing and the number of cores
and hardware threads per CPU started to increase
constantly. Another present topic are flash-based
SSDs, which allow increased throughput and lower
latency compared to classic hard disks. When hav-
ing a look at the application trends, we identify
high update rates as a major issue, e.g., in mon-
itoring applications, operational BI or even in so-
cial networks. However, common index structures

∗The author is currently visiting IBM Almaden Re-
search Center, San Jose, CA, USA.

…

… …

… …

… … … …

Log Recover

High Throughput

Reliable Durability

M
a

in
 M

em
o

ry
Fla

sh

High Responsiveness

Figure 1: Indexing System Overview.

like B+-Trees [2] are designed to work on block-
based storage and are not well suited for frequent
updates with massive parallelism, because they re-
quire complex locking schemes for split and merge
operations. This increases communication costs be-
tween threads, especially for cache coherency and
locking. Furthermore, they are optimized for large
block sizes that are used on hard disks. There ex-
ist enhancements of the B-Tree that reduce either
locking overhead (B-Link Trees [8]) or make them
cache-aware (CSB+-Trees [10]). However, these im-
proved structures do not overcome the weaknesses
of the B+-Tree base structure in terms of compre-
hensive balancing tasks and main memory accesses,
especially for updates.

In this paper, we describe our solution for the
SIGMOD Programming Contest 2011 [1], which
addresses exactly the described issues: a high-
throughput in-memory index structure, which uses

a flash-based SSD for durability purposes. The
task required us to build an in-memory index that
fits entirely into the available main memory (two
times the total database size) and is able to han-
dle 1024 Byte keys and 4096 Byte values without
duplicates. Further, the index needs to offer an
order-preserving key-value interface comprising the
following operations: (1) read the value for a given
key, (2) update respectively insert a value for a key,
(3) delete a key-value pair, (4) compare-and-swap a
value and (5) iterate over a key range. The given
workload demands a balanced read/write perfor-
mance as well as a fine-grained locking scheme to
allow massive parallel manipulations and reads. For
durability, the contest was defining an Intel X25-E
enterprise class SSD formatted with ext4. The pro-
gramming contest constraints granted three times
the space of the total database size, which required
our solution to perform a continuous garbage col-
lection.

The specifications of the programming contest
were released at the end of January 2011 and all
teams had about two months available for imple-
menting their solutions. In order to compare the
different solutions during this time, the organizers
provided a leaderboard, to show the teams each oth-
ers current results. After the submission deadline
was passed, each solution was tested with different
workloads (unknown before) to determine the win-
ning team that was finally announced during the
SIGMOD 2011.

To give an overview of our winning solution, we
illustrate the architecture in Figure 1. The first
part of the system forms the index structure that
resides completely in the main memory to offer high
throughput and low latency to the consuming ap-
plications. For our solution, we decided to deploy
an enhanced generalized prefix tree [3]. The prefix
tree is optimized to work as in-memory structure,
because it guarantees a maximum number of mem-
ory access for finding a key. In consideration of
the workload, this structure also offers a well bal-
anced read/write performance, since updates do not
involve neither index node nor memory layout re-
organizations. Moreover, its deterministic behavior
allows an efficient handling of parallel requests, be-
cause there are no costly internal reorganizations
that depend on the actual data inside the index.

The contributions of this paper are the presenta-
tion of:

1. A fine-grained locking scheme and an efficient
memory management subsystem for the gener-
alized prefix tree as index structure, which al-
lows non-blocking reads and single-lock writes.

15 6 0
N 0 1 2 14 15

N 0 6 14 15 … N 0 1 2 14 15 … N 0 1 2 14 15 …

0 1 2 14 15 …

…

0 1 2 14 15 …

0 1 2 14 15 … 0 1 2 14 15 … 0 1 2 14 15 …

Key &
Value

Key &
Value

Key &
Value

Key &
Value

K&V K&V K&V K&V

K&V K&V K&V

111 &
Value

0
0000 0000 0110 1111 …
Exemplary Key: 111

Figure 2: The Generalized Prefix Tree.

We discuss this locking scheme in Section 2 in
more detail.

2. A complementary coalesced cyclic log [7, 6, 5]
that is used to log each manipulating operation
and to recover the in-memory index in case of
hardware or software failure. This log that we
describe in Section 3 is tuned to cooperate best
with our in memory index structure.

After dealing with both system parts, we evaluate
each part as well as the overall indexing system in
Section 4 on different hardware configurations. Fi-
nally, we conclude the paper in Section 5.

2. HIGH-THROUGHPUT IN-MEMORY
INDEX

In this section, we start giving an introduction
to the generalized prefix tree, followed by the addi-
tional changes we made to enable it to handle mas-
sive parallel requests. Figure 2 shows an example of
a prefix tree in which we highlighted the traversal
path for the 16 bit width key 111 (decimal nota-
tion). To find a key inside this prefix tree, the key
is split into fragments of an equal prefix length k′.
Starting from the left, each fragment is used to iden-
tify the bucket in the corresponding tree node. For
example, the first four bits in this example are used
to find the appropriate bucket in the root node for
this key. This bucket contains a pointer to the next
node that takes the next four bit fragment to find
its bucket on this tree level. The number of buckets
in each node depends on the prefix length k′ and
is calculated by 2k

′
. At the end of this traversal

path is the actual content node, which contains the
value for the searched key. So, the main character of
a prefix tree is that the key itself is the actual path
inside the prefix tree and is independent of other
keys present in the index.

The most important configuration parameter is
the static prefix length k′. For instance, a 16 bit
key (k = 16), k′ = 1 would cause a maximum tree
height h of 16 which also leads to 16 costly random

11 6 0
N 0 1 2 14 15

N 0 6 14 15 … N 0 1 2 14 15 … N 0 1 2 14 15 …

0 1 2 14 15 …

…

0 1 2 14 15 …

N 0 1 2 14 15 … N 0 1 2 14 15 … N 0 1 2 14 15 … L

L

L L

L L

L

L L

RCU-aware Memory Manager

Key &
Value

Key &
Value

Key &
Value

Key &
Value

K&V K&V K&V K&V

K&V K&V K&V

111 &
Value

0
0000 0000 0110 1011 …

(a) Tree Traversal.

11 6 0
N 0 1 2 14 15

N 0 6 14 15 … N 0 1 2 14 15 … N 0 1 2 14 15 …

0 1 2 14 15 …

…

0 1 2 14 15 …

N 0 1 2 14 15 … N 0 1 2 14 15 … N 0 1 2 14 15 … L

L

L L

L L

L

L L

RCU-aware Memory Manager

Key &
Value

Key &
Value

Key &
Value

Key &
Value

K&V K&V K&V K&V

K&V K&V K&V

111 &
Value

0
0000 0000 0110 1011 …

0 11 14 15 … … L

107 &
Value

111 &
Value

(b) Node Split.

Figure 3: Example of how to insert a new Key into a Prefix Tree.

memory accesses. This configuration is similar to
a classical binary tree. The other extreme is k′ =
16, where only one huge node with 216 buckets is
created. Here, we have only one memory access
to find a key’s value at the cost of a bad memory
utilization. For the contest, we set k′ = 4 to fulfill
the memory limitation on the one hand and the
performance requirements on the other.

In addition to the base index structure, we ap-
plied some performance and memory optimizations
as shown in [3]. The dynamic expansion expands a
node only when a second key with the same prefix
is inserted. The example in Figure 2 contains such
a case. Key 111’s content node is already linked
in the third level of the tree. This is possible, be-
cause there is no other key inside the tree that uses
the same prefix after this point. As soon as a key
is inserted that shares the same 12 bit prefix but
differs in the fourth fragment, a new node is cre-
ated at the fourth level. The second optimization
we applied is to store the type of the next node
directly inside the pointer to that node. So, the
highest bit of each pointer (8 Byte aligned mem-
ory) determines whether the next node is a content
node or an internal node. This reduces the index
size and the number of failed speculative execution
steps, because the code path is determined much
earlier.

The most challenging issue on modern hardware
is parallelization. Thus, we are forced to identify a
fine-grained locking scheme or even better, to use
no locks at all, which is extremely difficult to de-
sign and in some cases not even possible. For our
solution, we designed a locking scheme that allows
non-blocking reads and write operations requiring
only a single lock. However, the main bottleneck
for the write performance is given through the SSD
latency. We will show in Section 3 that due to the
special characteristics of the flash-optimized log and

the on-the-fly garbage collection, also write oper-
ations benefit dramatically from a high degree of
parallelism.

In the first place, we describe how to protect write
operations against each other. This is achieved by
adding a single lock to each internal node. We de-
cided to use spinlocks as the specific locking mecha-
nism, because they (1) have less overhead than mu-
texes/futexes in their lock and unlock operations
and they (2) occupy only 4 Byte of memory, which
is much less compared to the size of a mutex struc-
ture, which is nearly as big as an entire cache line
and therefore doubles the size of each node. Due
to the deterministic behavior of our prefix tree, a
lookup for a specific key takes always the same path
inside the tree and—most importantly—there are
no balancing tasks inside and between the internal
nodes of the tree. Hence, the nature of the prefix
tree allows us to perform a write operation by only
locking a single node, because we do not have to
lock across multiple nodes for, e.g., balancing pur-
poses. Therefore it is enough to lock the node that
needs to be split or where a content node has to be
updated. A more fine-grained solution would be to
lock single buckets instead of complete nodes, since
this would require about 50% more memory for a
node, we decided against this solution.

In order to allow non-blocking read operations,
we use the read-copy update (RCU) mechanism [9].
With RCU, a content node is never updated in-place
by just overwriting the old value with the new one,
but it copies the current content node and modifies
this new private copy. In a second step, the pointer,
which referenced the old content node, is updated
to point to the new content node. This allows read-
ers that still read from the old version to finish and
takes subsequent readers to the new version of the
content node. A problem that arises with RCU
is that the memory management needs to detect,

whether it is safe to recycle the old content node’s
memory block. We accomplished this by adding
a counter to each content node that is atomically
increased by a reader when starting to read from
this content node and is atomically decreased when
finished reading the content node. Thus, the RCU-
aware memory manager has to test this field for
zero, before it can be recycled. The memory man-
ager itself is completely implemented in userland,
because malloc calls turned out to be much too ex-
pensive. Therefore, the memory manager allocates
one huge memory chunk via a mmap call at the begin-
ning and administrates this chunk on its own. For
memory recycling, the memory manager maintains
a free list for each possible chunk length, which is
limited through the maximum key and value sizes
defined by the contest.

Example 1. To summarize, we provide an ex-
ample in Figure 3. The example shows the write
operation of the decimal key 107 (binary represen-
tation and fragmentation in the upper right corner
of the figure). Compared to Figure 2, every inter-
nal node is now extended with a lock. At first, the
running thread traverses the prefix tree down to the
third level as shown in Figure 3(a). The thread now
faces a situation in which the bucket is already oc-
cupied by a another content node with another key.
Thus, it has to perform a dynamic expansion as
shown in Figure 3(b). Therefore, it locks the inter-
nal node and checks whether the situation is still the
same, otherwise it has to retry. At this point it is
safe for the thread to work on that internal node. In
the next step, the thread asks the memory manager
to allocate the new node for the fourth tree level and
two new content nodes. The value of the old content
node is copied to the new content node and the key
tail of the old node is truncated and written to the
new one. The content node for the new node is cre-
ated as usual and both new content nodes are linked
by the new internal node. Now, the pointer of the
third level node is turned to the new internal node
and the node can be unlocked. In a last step, the
thread returns the old content block to the memory
manager, which is going to recycle its memory as
soon as no reader is reading its memory anymore.

3. COALESCED CYCLIC LOG
In this section, we present our flash-optimized co-

alesced cyclic log that is tuned to operate hand in
hand with the in-memory index structure as de-
picted in Figure 1. A flash-based SSD basically
consists of some flashpacks and a controller. The
controller mainly implements the error correction
and the wear leveling, which is responsible for pro-

Chunk 7 Chunk 6 Chunk 5 Chunk 3 Chunk 4 Chunk 8

Current Position Read-Ahead Position

Chunk 4
Valid Data

Write Buffer Writing Operations

Data

Data

Data

Data
Barrier with
Timeout

coalesced, cyclic Log

Chunk Size CRC-32 Log Data

Figure 4: The coalesced cyclic Log.

longing the service life of the flashpacks that are the
actual storage media. Main advantages compared
to hard disks are better energy-efficiency, energy-
proportionality, higher throughput, and lower la-
tency what shortens the gap between transient
main-memory and persistent drives. Previous re-
search [4] showed that SSDs expose their full per-
formance when reading or writing to it with a se-
quential access pattern, similar to hard disks and
main memory, because flashpacks are not capable
of doing in-place updates. Instead, a SSD has to
erase a flash block of typically 4 KB first, before it
is able to write this entire block again. Furthermore,
flash memory is only able to erase a set of blocks
(the erase block size between 128 and 512 KB) at
once. All these internal characteristics are hidden
from the user through the Flash Translation Layer
(FTL). In order to exploit the full performance, we
need to be aware of these internal limitations.

Since the SSD I/O is the bottleneck of the com-
plete indexing system, it is essential to write with a
sequential pattern to the device. Thus, we decided
to use an append log as base structure and applied
the following two extensions:

1. Write coalescing to maximize the write
throughput.

2. Cyclic writing, because of the limited SSD
space.

The idea of write coalescing is similar to a group
commit. Instead of writing each log record individu-
ally, we collect as much as possible log records from
the simultaneously running operations in a write
buffer and flush them at once. The write coalescing
increases the overall throughput dramatically, be-
cause the contest demanded hard durability, which
is ensured by drive cache flushes that are very costly
operations with a high latency. As a side effect, this
raises the latency of single writing operations. How-
ever, it is a good trade-off when taking the through-
put gain into account. Figure 4 shows a schematic

Time

In-Memory
Index

SSD

Reads & Writes

Write Buffer

Read Ahead

Validation

Reads & Writes

Validation

 Write Buffer

Read Ahead

Reads Reads

Fill Fill Write Buffer Flush Flush

Figure 5: In-Memory Index and SSD Usage
over Time.

overview of our coalesced cyclic log. The central
component is the described write buffer that collects
the single log records from the individual threads.
After a thread has written a log record to the write
buffer, this thread is stalled until the write buffer is
flushed. We flush the write buffer, either it is full,
there is no other write operation left, or a predefined
timeout is reached. Every time a flush is initiated,
the single log records in the write buffer are com-
posed to a chunk that is 4 KB aligned and check-
summed with a CRC-32. Afterwards, this chunk is
written to the disk using the fdatasync system call
in Linux.

Since we do not write out the entire index struc-
ture as a checkpoint and the available space on the
SSD is limited, the log needs to be cyclically over-
written. This forces us to perform a garbage collec-
tion on-the-fly. Thus, the coalesced cyclic log reads
at least the size of the write buffer ahead. While
reading, it validates the read log records against the
in-memory index structure. All log records that are
still valid are stored at the beginning of the write
buffer and are written together with the new log
records on the next write buffer flush.

Figure 5 shows the typical write buffer period and
the activity states of the in-memory index as well
as of the SSD. At first, when the write buffer is in
the Fill mode, read and write operations are pro-
cessed. All changes made by write operations are
stored as log data in the write buffer. The corre-
sponding threads are blocked until the write buffer
is flushed. As soon as one of the Flush conditions
for the write buffer occur, the write buffer is locked
disabling further write operations. During the write
buffer is flushed to the SSD, the storage system al-
ready reads ahead the log to free up the space for
the next data chunk. The SSD’s write performance
is not affected by the simultaneous reading, because
the operating system usually detects sequential read
patterns and prefetches this data in the I/O buffer.
After the data was successfully written to the SSD,
the write buffer changes back into the Fill mode. In
order to fully utilize the SSD, it is necessary to keep
the time of Fill phases as small as possible, because
the SSD becomes idle during these times. Thus,

Operation Type Probability

Read 45%
Write 40%
Delete 5%
Compare-and-Swap 5%
Scan (max. 10 rows) 5%

Table 1: Distribution of Operation Types.

we spent a lot of efforts to allow fast parallel op-
erations and non-blocking reads on the in-memory
index. Another solution is to use two write buffers
and alternately filling and flushing them. However,
this solution turned out to be much slower, because
of the high latency of a SSD flush operation. An-
other reason for making reads non-blocking is, that
reads are allowed at any time and they are exten-
sively used for log data validation. The main rea-
son for using non-blocking reads was given through
the overall scenario: In the contest, the benchmark
was setup to create a specific amount of threads.
Each thread has a given probability to issue either
a read or a write operation and the storage system
works optimally when all of these threads flush their
writes at once. Therefore, we need to process read
operations fast to have every thread doing a write
operation to fill the write buffer as fast as possible.
This finally prevents the SSD from being idle.

Once, the system crashes or is shutdown, the
storage system must be capable of rebuilding the
in-memory index. This is done by reading the log
twice. The first time, we only process update op-
erations and the second time we apply delete op-
erations. To maintain the temporal order, the in-
memory index as well as each log record contains
sequential transaction numbers. Thus, an update
respectively a delete is only applied, if the transac-
tion number is greater than the current one in the
content node of the in-memory index. The need for
applying delete operations in a separate run results
from this comparison.

4. EVALUATION
In this section, we evaluate individual system

components as well as the overall performance on
different hardware configurations and parameter
settings. The evaluation system, which is dif-
ferent from the system used for the contest, is
equipped with an Intel i7-3960X (6 cores with
Hyper-Threading, running at 3.3 GHz and 3.9 GHz
max. Turbo Frequency, four memory channels and
15 MB shared L3 cache), 32GB of DDR3-1600, and
an Intel X25-E 64GB SSD. For benchmarking, we

Figure 6: Pure In-Memory Index Perfor-
mance dependent on the Number of Threads.

used the benchmark driver provided by the pro-
gramming contest. This driver generates 8 Byte
sequential integer keys to populate the index struc-
ture. After that, the driver launches a given set of
threads (32 as default) and each of them queries the
index for a preset amount of time. Table 1 shows
the probabilities for a thread to select a specific type
of operation for the next query.

In the first experiment, we evaluate the per-
formance of the pure in-memory index structure.
Therefore, we completely disable the SSD log. Fig-
ure 6 presents the measurements in million oper-
ations per second for a range of 1 million sequen-
tial keys (uniformly selected from this range) with a
payload of 8, 1024, and 4096 Bytes as values. Fur-
ther, we marked some points specific to the evalu-
ation hardware. For large payloads like 1024 and
4096 Bytes, we observe optimal scalability of the
index. With up to 6 threads, where each of them
can be mapped to an exclusive physical core, the
performance scales nearly linearly. In the range
from 6 to 12 threads, the cores are shared by two
threads to fully utilize its processing units, the in-
dex still scales nearly linear, but with less gain. The
performance gain in this region mainly depends on
the remaining amount of memory bandwidth. Af-
ter the limit of 12 hardware threads is reached, the
performance gain stalls and starts to decrease, be-
cause of the scheduling overhead. When looking at
smaller payloads like 8 Byte, we see another behav-
ior. Here, the performance does not scale linearly,
instead, the performance benefit of adding a new
thread decreases constantly and even starts to lower
the overall performance after nine threads until it
reaches the hardware thread limit. This happens
because the index is not memory bound anymore
and is now facing the high concurrency overhead,
especially in the memory management subsystem,
when writing a key/value pair to the index. Due
to the fact, that the evaluation machine of the con-

Figure 7: Overall Performance on different
Drive Configurations.

Figure 8: Overall Performance as a Function
of the Flush Threshold.

test only got 8 hardware threads available, we did
not have any performance penalty by allowing more
than eight thread to work in parallel.

In the second experiment, we activated the SSD
log and measured the index performance for four
different drives. We used an PCI Express OCZ
Revodrive, which internally consists of two SSDs
connected via a RAID-0 chipset, an Intel X25-E
64GB SATAII enterprise class SSD, and a main-
stream OCZ Solid 3 64GB SATA III SSD. Moreover,
we tested our solution on a classic Samsung 160 GB
SATAII HDD to compare the results with the SSDs.
For each drive, we measured the performance for
three different payload sizes with and without ext4
barriers. An ext4 barrier guarantees the drive cache
to be flushed when calling fdatasync (assuming the
driver controller supports the FLUSH CACHE com-
mand). With disabled ext4 barriers, only the file
cache is written back to the drives cache. In case
of a power loss, the data is not guaranteed to be on
the drive. Figure 7 shows all results. In general,
we observe major differences between the different
drive types with enabled barriers. The worst per-
formance was measured on the Revodrive and the
HDD, which are outperformed by orders of magni-
tude by the X25-E and the Solid 3 drive. With this
setting, we mainly measured the latency of the con-

troller respectively the mechanical movements on
the HDD, because there is no way of hiding the la-
tency with the drive cache anymore. When turning
off the ext4 barriers, we are able to measure the
disks bandwidth. Here, the HDD performs much
better, because HDD controllers are tuned for la-
tency hiding. There are not much expensive me-
chanical seeks necessary, because of the sequential
write pattern. Furthermore, a HDD is able to over-
write sectors without erasing or copying them first.
The best results are achieved with the Revodrive
and the Solid 3, which is mainly dedicated to fast
PCIe x4 respectively SATAIII interface.

The last experiment, demonstrates the impact of
the coalesced writes. This experiment was executed
by 64 threads in parallel on an Intel X25-E for differ-
ent payload sizes and write cache thresholds. For
example, a write cache threshold of 4 means that
the write cache is immediately flushed after it col-
lected 4 single log records. The respective measure-
ments are visualized in Figure 8. As an overall
result, we see that the total performance benefits
massively from a high threshold configuration, be-
cause the cache flush is the actual bottleneck in the
system. When comparing the results for the dif-
ferent payload sizes, we observe that the benefit of
flushing more writes at once decreases earlier for
big payloads than for the small ones, what can be
explained with the SSD hitting its bandwidth limit
when transferring the data from the write buffer in
the main memory to the drives cache, before it is
able to flush this cache.

5. CONCLUSION
With the wide availability of large main mem-

ory capacities and multi-core systems, in-memory
indexes with efficient parallel access mechanisms
become more and more important to databases.
Application trends on the other hand, demand
hard durability requirements and high update rates,
which can not be sustained by classic B-Tree like in-
dex structures on conventional hard disks.

Our solution of the SIGMOD Programming Con-
test 2011, that we presented in this paper, ad-
dresses exactly these issues. We designed an index-
ing structure with an efficient locking scheme that
scales with the growing number of hardware threads
and exhibits a balanced read/write performance.
This structure is based on the generalized prefix
tree, which we augmented with an efficient locking
scheme to allow non-blocking reads and single-lock
writes for fast parallel access. To fulfill durability
requirements, we built a storage system that incor-
porates into this indexing structure and takes ad-

vantage of the characteristics of modern flash-based
SSDs. The storage system is mainly a cyclic log that
collects single log records in a write buffer before
flushing it to disk to achieve maximum throughput.
The orchestration of both components — the in-
dex structure and the storage system — creates a
powerful indexing system for modern applications.

6. ACKNOWLEDGMENTS
We thank the NSF, Microsoft, and the ACM

for sponsoring this contest and especially the MIT
CSAIL for doing such a great job in organizing it.
Furthermore, we thank all the other participants for
pushing each others solutions forward. This work
is supported by the German Research Foundation
(DFG) in the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing”.

7. REFERENCES
[1] SIGMOD Programming Contest 2011. http:

//db.csail.mit.edu/sigmod11contest/.
[2] R. Bayer and E. McCreight. Organization and

Maintenance of Large Ordered Indexes, pages
245–262. Software pioneers, New York, NY,
USA, 2002.

[3] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,
D. Habich, and W. Lehner. Efficient
In-Memory Indexing with Generalized Prefix
Trees. In BTW, pages 227–246, 2011.

[4] L. Bouganim, B. T. Jónsson, and P. Bonnet.
uFLIP: Understanding Flash IO Patterns. In
CIDR, 2009.

[5] S. Chen. FlashLogging: Exploiting Flash
Devices for Synchronous Logging
Performance. In SIGMOD, pages 73–86, 2009.

[6] B. K. Debnath, S. Sengupta, and J. Li.
FlashStore: High Throughput Persistent
Key-Value Store. PVLDB, 3(2):1414–1425,
2010.

[7] B. K. Debnath, S. Sengupta, and J. Li.
SkimpyStash: RAM Space Skimpy Key-Value
Store on Flash-based Storage. In SIGMOD,
pages 25–36, 2011.

[8] P. L. Lehman and s. B. Yao. Efficient Locking
for Concurrent Operations on B-Trees. ACM
Trans. Database Syst., 6:650–670, December
1981.

[9] P. E. McKenney and J. D. Slingwine.
Read-Copy Update: Using Execution History
to Solve Concurrency Problems.

[10] J. Rao and K. A. Ross. Making B+-Trees
Cache Conscious in Main Memory. SIGMOD
Rec., 29:475–486, May 2000.

