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Abstract

During development, higher organisms grow from a single fertilized egg cell to the adult
animal. The many processes that lead to the eventual shape of the developed organism
are subsumed as morphogenesis, which notably involves the growth of tissues by repeated
rounds of cell division. Whereas coordinated tissue growth is a prerequisite for animal
development, excessive cell division in adult animals is the key ingredient to cancer.

In this thesis, we investigate the collective organization of cells by cell division and
cell death. The multicellular dynamics of growing tissues is influenced by mechanical
conditions and can give rise to cell rearrangements and movements. We develop a con-
tinuum description of tissue dynamics, which describes the stress distribution and the
cell flow field on large scales. Cell division and apoptosis introduce stress sources that,
in general, are anisotropic. By combining cell number balance with dynamic equations
for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid
with a relaxation time set by the rates of division and apoptosis. If the tissue is confined
in a fixed volume, it reaches a homeostatic state in which division and apoptosis bal-
ance. In this state, cells undergo a diffusive random motion driven by the stochasticity
of division and apoptosis. We calculate the effective diffusion coefficient as a function of
the tissue parameters and compare our results concerning both diffusion and viscosity to
simulations of multicellular systems.

Introducing a second material component that accounts for the extracellular fluid, we
show that a finite permeability of the tissue gives rise to additional mechanical effects.
In the limit of long times, the mechanical response of the tissue to external perturbations
is confined to a region of which the size depends on the ratio of tissue viscosity and cell-
fluid friction. The two-component description furthermore allows to clearly distinguish
the different contributions to the isotropic part of the mechanical stress, i.e., the fluid
pressure and the stress exerted by cells.

Last but not least, we study the propagation of an interface between two different
cell populations within a tissue driven by differences in the mechanical control of the
rates of cell division and apoptosis. Combining simple analytical limits and numerical
simulations, we distinguish two different modes of propagation of the more proliferative
population: a diffusive regime in which relative fluxes dominate the expansion, and a
propulsive regime in which the proliferation gives rise to dominating convective flows.



Résumé

Les organismes supérieurs se développent à partir d’une seule cellule fécondée jusqu’à
l’animal adulte. Les nombreux processus qui conduisent à la forme finale de l’organisme
sont connus sous le nom de morphogenèse, qui comprend notamment la croissance des
tissus par des cycles répétés de division cellulaire. Alors que la croissance coordonnée des
tissus est une condition nécessaire au développement des animaux, la division cellulaire
excessive chez les animaux adultes est l’ingrédient clé du cancer.

Dans cette thèse, nous étudions l’organisation collective des cellules par division et
mort cellulaire. La dynamique multicellulaire des tissus en croissance est influencée par
des conditions mécaniques et peut donner lieu à des réarrangements ainsi qu’à des mou-
vements cellulaires. Nous élaborons une description continue de la dynamique des tissus
qui décrit la distribution des contraintes et le champ d’écoulement des cellules sur de
grandes échelles. La division cellulaire et l’apoptose introduisent des sources de con-
traintes qui, en général, sont anisotropes. En combinant l’équation de conservation du
nombre de cellules avec des équations dynamiques des sources de contraintes, nous mon-
trons que le tissu se comporte de manière effective comme un fluide viscoélastique avec
un temps de relaxation fixé par les taux de division et d’apoptose. Si le tissu est confiné
dans un volume donné, il atteint un état homéostatique dans lequel division et apoptose
s’équilibrent. Dans cet état, les cellules subissent un mouvement diffusif aléatoire dû à la
stochasticité de la division et de l’apoptose. Nous calculons le coefficient de diffusion ef-
fectif en fonction des paramètres du tissu et comparons nos résultats concernant à la fois
la diffusion et la viscosité à des simulations numériques de tels systèmes multicellulaires.

En introduisant un deuxième composant qui représente le liquide extracellulaire, nous
montrons qu’une perméabilité finie du tissu donne lieu à des effets mécaniques supplémen-
taires. Dans la limite des temps longs, la réponse mécanique du tissu à des perturbations
extérieures est confinée à une région dont la taille dépend du rapport entre la viscosité
tissulaire et le coefficient de frottement entre les cellules et le liquide extracellulaire. La
description à deux composants permet en outre de distinguer clairement les différentes
contributions à la partie isotrope de la contrainte mécanique, c’est-à-dire la pression du
fluide et la contrainte exercée par les cellules.

Finalement, nous étudions la propagation d’une interface entre deux populations de
cellules différentes, due à des différences dans le contrôle mécanique des taux de division
et de mort cellulaire. En combinant de simples limites analytiques et des simulations
numériques, nous distinguons deux modes de propagation différents de la population
cellulaire la plus proliférante : un régime diffusif dans lequel les flux relatifs dominent
l’expansion, et un régime de propulsion dans lequel la prolifération domine et entraine
des flux convectifs.



Kurzzusammenfassung

Die Entwicklung höherer Organismen beginnt mit einer einzelnen befruchteten Eizelle
und endet beim erwachsenen Tier. Die vielen Prozesse, die zur endgültigen Form des
entwickelten Organismus führen, werden als Morphogenese zusammengefasst; diese um-
fasst insbesondere das Wachstum von Geweben durch wiederholte Zellteilungszyklen.
Während koordiniertes Gewebewachstum eine Voraussetzung normaler Entwicklung ist,
führt übermäßige, unkontrollierte Zellteilung letztlich zu Krebs.

In dieser Arbeit untersuchen wir den Einfluss von Zellteilung und Zelltod auf die
Organisation von Zellen in Geweben. Die Dynamik wachsender Gewebe wird durch
mechanische Bedingungen beeinflusst, die u.a. Anlass zu Zellbewegungen sein können.
Wir entwickeln eine Kontinuumsbeschreibung der Gewebedynamik, die die mechanis-
chen Spannungen und das Zellströmungsfeld auf großen Skalen beschreibt. Zellteilung
und Apoptose wirken als Spannungsquellen, die in der Regel anisotrop sind. Indem wir
die Erhaltungsgleichung für die Zellanzahldichte mit dynamischen Gleichungen für die
Spannungsquellen kombinieren, zeigen wir, dass sich das Gewebe effektiv wie eine viskoe-
lastische Flüssigkeit verhält, deren Relaxationszeit von Zellteilungs- und Apoptose-Raten
abhängt. Wenn das Gewebe in einem gegebenen Volumen eingeschlossen ist, erreicht es
einen homöostatischen Zustand, in dem Zellteilung und der Apoptose im Gleichgewicht
sind. In diesem Zustand unterliegen die Zellen einer diffusiven Bewegung aufgrund der
Stochastizität von Zellteilung und Apoptose. Wir berechnen den effektiven Diffusionsko-
effizienten als Funktion der Gewebeparameter und vergleichen unsere Ergebnisse sowohl
hinsichtlich der Diffusion und als auch der Viskosität mit numerischen Simulationen
solcher vielzelliger Systeme.

Die Berücksichtigung der extrazellulären Flüssigkeit als einer zweiten Materialkom-
ponente erlaubt uns zu zeigen, dass eine endliche Permeabilität des Gewebes zusätzliche
mechanische Effekte bedingt. Auf langer Zeitskalen bleibt die mechanische Reaktion
des Gewebes auf externe Störungen auf einen Bereich der Größe λ beschränkt, wobei
λ vom Verhältnis der Gewebeviskosität zum Permeabilitätskoeffizienten abhängt. Die
Zweikomponenten-Beschreibung erlaubt darüber hinaus eine klare Unterscheidung der
verschiedenen Beiträge zum isotropen Teil der mechanischen Spannung, d.h., des hydro-
dynamischen und des von Zellen ausgeübten Drucks.

Zuletzt untersuchen wir die Dynamik einer Grenzfläche zwischen zwei verschiedenen
Zellpopulationen innerhalb eines Gewebes, die durch Unterschiede in der mechanischen
Kontrolle der effektiven Zellteilungsraten angetrieben wird. Mithilfe der Kombination
einfacher analytischer Grenzfälle und numerischer Simulationen zeigen wir, dass zwei
unterschiedliche Ausbreitungsmodi unterschieden werden können: ein diffusives Regime,
in dem relative Flüsse die Expansion der stärker wachsenden Zellpopulation dominieren,
sowie ein Regime, in dem die Grenzfläche durch konvektive Strömungen angetrieben wird.
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Chapter 1

General introduction

Developmental biology is concerned with the intricate, fascinating phenomena which
mark the beginning of life. Physics is concerned with everything that obeys the laws of
nature, themselves of surprising beauty often enough. It thus may seem promising to
bring these two disciplines together, and researchers have indeed tried to bridge the gap
between these two throughout the history of science. More recently, however, the field of
“developmental biophysics”1 has seen a rapid, accelerating growth driven by increasingly
quantitative insight into the molecular mechanisms at work in biology. In the past
decade, more and more research has aimed at a deeper physical understanding of the
processes involved in development and eventually at physical descriptions of biological
phenomena.2

A recurrent task for the scientist engaged in developmental biophysics is to rationalize
experimental data. In general, this is achieved via modeling of the phenomenon under
study: if a model that draws on simple, generic physical principles is able to reproduce
the experimental findings, the task can be considered accomplished, at least until the
model has been proven wrong. Here, “generic physical principles” refers to concepts
such as conservation of mass or momentum, and to mechanisms that will inevitably take
place in a given physical environment whether alive or not, for example the flattening of
concentration gradients due to diffusion (as long as no additional fluxes counteract this
tendency). They can be contrasted with genetic mechanisms that would rely on a precise
encoding in space and time of the observed cell and tissue behavior [139]. Due to the
inherent complexity of the biological system under study, however, it is not obvious which
kind of model, or biophysical description, to choose. The development of higher organisms
is coordinated over many time and length scales, and “generic physical mechanisms” and

1It is probably best to think of developmental biophysics not in terms of a discipline (or a couple of
them) but as an area of research where scientists with different backgrounds work together on questions
that arise in development. Needless to say, this includes all the work done in biomechanics, mathematical
biology, applied mathematics, ...

2Anecdotal evidence that this has not always been a commonly shared goal is retold in a portrait
of George Oster, an early pioneer in the field: Apparently, he once received a negative referee report
because he and his co-authors “[attempted] to apply Newton’s laws to embryos”, for “as all biologists
know, biological systems don’t obey the laws of physics.” [143].

13
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a b c

Figure 1.1. Human development. (a) A human fertilized egg zell (zygote) 18-20 h after fertil-
ization [140], (b) a 5-6 weeks old embryo [1], and (c) the author as a young man.

gene regulation are more and more known to be intertwined [30, 58, 151, 191, 195].
Before we turn our attention to the aims of this thesis, we discuss some basic aspects

of animal development as well as of its evil counterpart, cancer biology, where we review
recent advances in the field along the way. We then discuss biophysical descriptions of
tissue growth put forward in the literature, and we conclude the introduction with an
overview of the remainder of this thesis.

1.1 Animal morphogenesis

One of the ultimate goals of developmental biology is to eventually understand human
development, see Fig. 1.1. The underlying principles of development are mostly studied
in a few model organisms, however, which typically exhibit a couple of advantageous
characteristics like a fully sequenced genome; rapid, well-characterized embryonic devel-
opment; and short generation times [192]. In general, these traits make the whole battery
of molecular cell biology methods available and allow for a thorough characterization of
the effects of mutations using advanced imaging methods [8, 192].

Zebrafish development

Two prominent examples are the fruit fly Drosophila melanogaster and the zebrafish
Danio rerio. Although both develop as most multicellular organisms from a single fer-
tilized egg cell (called the zygote), their actual developmental programs are rather quite
different. An overview of the different stages of zebrafish embryogenesis is shown in
Fig. 1.2. In early development, cells undergo repeated rounds of cell division without
actually increasing the total cell mass, forming the so-called blastula. The blastula is an
undifferentiated tissue that subsequently differentiates into the three germ layers ecto-
derm, mesoderm, and endoderm during gastrulation [108]. These germ layers eventually
give rise to distinct adult tissues and organs such as neuronal tissues and skin (ectoderm);
the skeleton, heart, and connective tissue (mesoderm); and intestinal organs (endoderm).
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Figure 1.2. Zebrafish embryogenesis. Figure modified after [108].

All aspects of development that contribute to the actual shaping of the animal are referred
to as morphogenesis, and gastrulation is the first instance of important morphogenetic
movements of cells and tissues in developing animals. In the zebrafish, gastrulation
comprehends epiboly, which denotes the spreading movement of the blastula (and later
ectoderm) over the yolk cell, as well as an additional inward movement of lateral cells
after the establishment of the anterio-posterior (head-to-tail) axis in the developing em-
bryo. Additionally, cells at the advancing tissue margin differentiate into mesoderm and
endoderm cells that move upwards inside the developing embryo [108, 115, 192]. After
gastrulation, zebrafish development proceeds to the segmentation period, during which
the precursors of the skeletal segments form (the so-called somites) as well as rudiments
of the primary organs. The embryo elongates further during pharyngula and hatching
period, before it finally starts to swim on its own [108, 192], see also Fig. 1.2.

Although much is known about the genes involved in zebrafish morphogenesis [89,
192]3, only few studies have addressed the physical basis of morphogenetic movements
during zebrafish development on a tissue scale. A remarkable exception is the work of
Schötz et al., in which the authors explored the possibility that the relative positioning
of the germ layers during gastrulation can be understood as wetting of two immiscible

3The scholarly journal Development devoted a special issue to the role of genes in zebrafish develop-
ment in order to celebrate the landmark success of huge genetic forward screens, see [89, ff.].
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a b

Figure 1.3. Germ layer positioning during ze-
brafish gastrulation. (a) A sketch of the lead-
ing edge of the advancing tissue at shield stage
(∼60% epiboly). Mesendoderm cells are induced
at the blastula margin (yellow) and move subse-
quently upward, while outer cells differentiate into
ectoderm (red). The yolk cell is to the left. (b)
Schötz et al. hypothesized that the relative posi-
tioning is caused by differences in cell surface ten-
sion and that the relative movement is analogous
to wetting of immiscible liquids. Figure modified
after [165].

liquids [165]. The authors show that ectoderm and mesendoderm cell aggregates sort
out in vitro due to differences in tissue surface tension4, and they calculate the maximal
driving force for mesendoderm invagination that could possibly result from differential
adhesiveness of ectoderm and mesendoderm with the yolk, see Fig. 1.3. Strong con-
clusions cannot be drawn, however, mainly because the adhesion between cells of the
different germ layers and the yolk is difficult to access, and the authors themselves point
out that other contributions such as active migration may be relevant.

D. melanogaster gastrulation

The life cycle of the fruit fly is shown in Fig. 1.4(a). Its development is quite distinct
from zebrafish and human development, although the genetic overlap between Drosophila
melanogaster and homo sapiens sapiens is still enormous.5 During the first 13 rounds
of nuclear divisions, the nuclei do not yet form independent cells and share all the same
cytoplasm [192]. They assemble into a layer at the inner surface of the egg before cellular-
ization starts. The surrounding plasma membrane then bulges in and the nuclei separate
into independent cells, eventually forming the cellular blastoderm. At this stage, gastru-
lation sets in, see Fig. 1.4(b).

Drosophila gastrulation comprises a complex sequence of morphogenetic movements,
which have been extensively studied in the literature. As early as 1981, Odell and col-
leagues proposed a mechanical model of the ventral furrow formation in the Drosophila
embryo [144], see Fig. 1.5(a). At the beginning of gastrulation, the cellular blastoderm
invaginates at the ventral side of the embryo (the dorso-ventral axis being defined as
the back-to-front axis of the adult animal), giving rise to a hollow structure inside of
the embryo. The authors of the cited study showed with computer simulations that this
tissue movement can be understood as the sole consequence of a wave of the mechanically
triggered constriction of cells at their apical (external) side. Recent studies established
a rather precise picture of the nature of the mechanical forces at work [122, 123], see

4We discuss the concept of tissue surface tension below in more detail, see sec. 2.1.
5Approximately 75% of known human disease genes have recognizable counterparts in the fly genome,

and about one third of these homologues is similar to a degree that functional equivalence can be
expected [22].
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a b

Figure 1.4. Life cycle and gastrulation of Drosophila. (a) After the female fly ays the fertilized
eggs, the early embryo develops in the egg—notably undergoing gastrulation—before it eventually
hatches 12 − 15 h post fertilization. Development continues through three larval stages, during
which the precursors of adult appendages grow and form. After approx. 5 days, the 3rd instar
larva forms the pupa and undergoes metamorphosis. The adult fly is fully developed after about
9 days. Figure kindly provided by the Carolina Biological Supply Company. (b) The
first important morphogenetic movements take place during gastrulation. The image sequence
(top to bottom, left to right) shows the Drosophila embryo slightly rotated along the anterior-
posterior axis (anterior being left in the image) so that the dorsal side can be seen at the upper
side. Gastrulation starts with the cellularized blastoderm (upper left image), before ventral
furrow formation (not shown) sets in. Subsequently, the germ band elongates along the anterior-
posterior axis and moves dorsally as indicated by the red arrows. The last step of gastrulation is
dorsal closure during which an epidermal opening at the back (blue shaded regions) of the embryo
is eventually covered, see text for details. Images publicly available at http://www.flybase.org,
see also [184, ff.].

Fig. 1.5(b,c). The medial acto-myosin networks that cover the apices of the invaginating
cells constrict in a non-synchronized, pulsed fashion and pull adherens junction sites in-
ward during constriction. During subsequent pauses, the cells’ apices remain constricted
as long as the actomyosin networks and their inter-cellular coupling via adherens junc-
tions are not compromised, e.g., due to genetic mutations. Ventral furrow formation is
thus a classic example of a morphogenetic process that is caused by force generation on
the cellular scale, where these forces eventually give rise to movements on a supra-cellular
scale because of mechanical coupling between cells. Note that this process is nevertheless
genetically regulated: the expression of the gene snail is indeed necessary for onset of
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Figure 1.5. Ventral furrow formation. (a) Early computer simulations of epithelial invagination
caused by mechanically triggered cell constriction at the apical side [144]. (b) Micrographs of
the constriction of cells along the ventral midline. (c) A sketch of the underlying mechanics at
the cellular scale: Cells exhibit an actin-myosin network on their apices that actively generate
contractile forces and pulls adherens junctions inwards, thus reducing their apical area. This
contraction happens in a pulsatile fashion with intermediate stabilization of the actin-myosin
network. Figures (b,c) modified after [123].

constriction, and the expression of the gene twist is a prerequisite of the stabilization of
the achieved reduction in apex area [123, 122]. As mentioned earlier, however, there exists
crosstalk between mechanical forces and the observed gene expression patterns. Another
study suggested that twist expression may be triggered by the mechanical deformation
of cells due to a first constriction wave triggered by snail [151].

Ventral furrow formation is not the only tissue movement during gastrulation. After
ventral furrow formation, the germ band elongates along the anterio-posterior axis of
the embryo and shrinks along the perpendicular axis, showing a so-called convergence-
extension movement [79, 114, 192]. The germ-band extension is indicated in Fig. 1.4(b).
Recent studies addressed the contribution of actively generated force anisotropies due
to polarized acto-myosin flows at the cellular scale [157] as well as the role of externally
applied tension that acts on the germ band [35]. Here, it is interesting to note that
this externally applied tension stems itself from the active constriction and invagination
movement of other parts of the embryo [35, 79].

A third aspect of gastrulation—its grand finale, kind of—is dorsal closure, see also
Fig. 1.4(b). After a sequence of tissue rearrangements and retraction, the embryo’s back
exhibits an epidermal opening that needs to be closed before the embryo enters the first
larval stage [192]. The opening is initially covered by a sheet of cells (the amnioserosa),
which contributes actively to closure. Dorsal closure is another example of the coordina-
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Figure 1.6. Growth of imaginal discs in Drosophila. During the
three larval stages, haltere (Ha), leg (Le), and wing (Wi) precursors
grow in size by repeated rounds of cell division. The Dpp signal-
ing molecule is fluorescently labeled, and the Dpp producing cells
along the A/P compartment boundary (separating an anterior and
a posterior cell population) can clearly be distinguished, see text for
details. Figure modified after [189].

tion of forces generated at cellular and supra-cellular scale [79]. Amnioserosa cells show
pulsatile contractions similar to the cell contractions that lead to mesoderm invagina-
tion [28, 80, 170], thus pulling epidermal cells dorsally. This contraction is stabilized by a
ratchet-like mechanism mediated by a supra-cellular actin-cable along the margin of the
epidermis [79, 80, 180]. The shrinking amnioserosa cells eventually undergo programmed
cell death (apoptosis), which in itself contributes to the constricting forces [180].

The Drosophila wing imaginal disc

While gastrulation is indeed an important step in early development6 and serves as a
fascinating model system to study forces at the tissue scale, the actual growth of the
developing fly is far from ending there. During gastrulation, small groups of cells are
put aside that constitute the precursors of the adult appendages such as the antennae,
wings, and legs [192]. These so-called imaginal discs grow substantially during the three
larval stages of Drosophila development, and especially the wing imaginal disc has been
the subject of many studies that focused on mechanical aspects of growth and on growth
control [6, 26, 59, 100, 113, 124, 189]. The wing imaginal disc grows from approx. 50 to
5 · 104 cells in about five days, see Fig. 1.6. Throughout this time, cells remain firmly
attached to each other, forming a monolayer of cells [192]. Growth critically depends on
intact signaling of the morphogen (signaling molecule involved in morphogenesis) Dpp [6,
192]. Dpp, which is produced in a small stripe of cells along the dorso-ventral axis in the
wing disc (see also Fig. 1.6), diffuses from the source and sets up a concentration gradient
in both the anterior and the posterior compartment of the wing disc [6]. Different models
have been put forward to account for the observed uniform growth pattern, invoking

6As Lewis Wolpert famously said, “it is not birth, marriage, or death, but gastrulation, which is truly
the most important time in your life.”
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Figure 1.7. The mitotic cell cycle. Cells that undergo mitosis go through a sequence of well-
defined steps before eventually undergoing cytokinesis. Many genetic pathways exist that closely
regulate the progression from one stage to the next [8]. Figure adapted from Open High School
of Utah OCW (Open Course Ware), see http://ocw.openhighschool.org/.

mechanical [4, 5, 100, 168] or genetic regulation [166, 189]. In a recent paper, Wartlick
and colleagues showed evidence suggesting that cells divide after experiencing a relative
increase in Dpp concentration of 50%, which leads to homogenous cell division because
of the reported scaling of the Dpp concentration gradient with tissue size [189]. This
view has already been contested, however, other authors preferring a model that relies on
absolute concentration thresholds and takes additional morphogens into account [91, 166].

1.2 Cancerous tissue growth

After this quick tour through animal development, where we could only touch upon a
few interesting concepts and notions related to morphogenesis, we now present some key
aspects of the biology of cancer. Cancer is rather a class of diseases than a specific illness,
which all involve uncontrolled cell proliferation and growth [190]. Cancer is caused by
genetic mutations that interfere with natural control mechanisms of the cell cycle, see
Fig. 1.7, and with genetic pathways that lead to programmed cell death when cell growth
becomes abnormal [190]. Because cells usually have to acquire more than one mutation
to become cancerous, the risk of becoming cancer increases with age, as mutations can
add up over time. But age is not the only factor favoring tumor development. By now,
many chemical carcinogens are known to considerably increase the chances of developing
a cancer, of which more than 50 are found in tobacco alone [111].

The progression of cancer is illustrated in Fig. 1.8. In most cancer cells, DNA repair
mechanisms are substantially impaired, which implies that cancer cells have a high rate
of mutations [190]. This allows them to adopt an increasingly malignant phenotype,
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Figure 1.8. The progression of cancer. (a) First, a cell adopts a mutation that compromises
its growth control, and the cell begins to proliferate abnormally. A benign tumor forms that
is still contained within the original tissue environment. (b) At a later stage, a benign tumor
cell acquires an additional mutation that renders it more malignant. Its offspring divides more
aggressively, eventually compromising tissue structure. The tumor becomes malignant. (c)
Additional mutations allow malignant cancer cells to become metastatic and invade other tissues
via the lymphatic system or the blood stream. Figure modified after [43].

eventually giving rise to metastatic cells that invade the surrounding tissue. Via the
lymphatic system or the blood stream, metastatic cells can reach sites in the body far
from the primary tumor. Although only a small fraction manages to leave the vessel
and form a secondary tumor, metastatic tumors are the most probable cause of deaths
related to cancer [190].

During the last decades (after Richard Nixon declared the “war on cancer” in 1971),
much has been learned about the genes involved in cancer progression [8, 190]. With ad-
vances in cellular biophysics regarding the understanding of cell motility and cell-cortex
mechanics [98, 160], the mechanical properties of cancer cells became another area of
interest [69, 173]. As there is such a huge variety of different cancers, and cancer cell
types, no unique conclusion can be drawn from this research. Not surprisingly, however,
in highly malignant cells mechanical properties are often altered in a way that facilitates
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migration through microchannels [173], and cells seem to be mechanically softer than
their healthy counterparts [87]. In the last couple of years, research has additionally
been focussing on the tumor microenvironment [25, 93, 107, 116, 135]. Here, microen-
vironment refers to the healthy tissue sourrounding the nascent tumor, which mostly
consists of extracellular matrix and fibroblast cells embedded therein [8, 68], see also the
introduction to chapter 3. Although normal mechano-response of cancer cells seems to be
compromised [54, 173], the mechanical properties of the tumor microenvironment seem to
play an important role in whether cancer cells adopt a malignant phenotype [34, 116, 145].

1.3 Biophysical descriptions of growing tissues

The study of tissue mechanical properties led to the development of a whole range of
biophysical descriptions of tissue mechanics and tissue growth. The notorious D’Arcy
Thompson advocated as early as 1917 that one should employ the principles of math-
ematical mechanics to understand the growth and form of living organisms [179], and
this agenda has found a rich echo in the meantime. Here, we try to focus on rather
recent work with an emphasis on those descriptions and models of tissue mechanics that
explicitly account for growth. Among those, an obvious distinction can be made between
(i) discrete models that at least to some degree account for single-cell behavior and (ii)
continuum-mechanics descriptions that do not explicitly consider details on the cellular
scale.

Discrete descriptions of tissue mechanics

One can further roughly distinguish two types of discrete models present in the literature,
independent of their implementation. In a first class of models, one finds single-cell based
models that represent cells as discrete, point-like particles [27, 29, 36, 55, 57, 56, 142].
The interactions between particles are described by potential functions that—roughly
speaking—emulate those of sticky elastic spheres in order to model finite cell stiffness,
cortex elasticity, and cell-cell adhesion in a comprehensive way [56]. The implementation
of the dynamics of these models varies across the literature, ranging from Metropolis [57],
Langevin-type [73], and dissipative-particle dynamics-like time evolution [27]. Similarly,
the implementation of cell division varies across models, but amounts to replacing one
of the basic interacting particles by two. The variability of such models is enormous as
the number of possible parameters to model tissue mechanical characteristics is a priori
unlimited; and various extensions of growth rules, coupling to nutriment concentrations,
or cell-substrate interactions can be conceived [73, 96].

Whereas this flexibility and the straightforward computational approach are certainly
advantages to simulate large systems of almost arbitrary complexity, it does come at a
cost. The discrete, point-like representation of cells makes it difficult to relate model pa-
rameters to actual cell mechanical properties, and the energy dissipation in these models,
which is linked to the dynamics, is not always well-defined.7 A second class of biophysical

7In many models, the instantaneous cell velocities follow from the balance of viscous and potential
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Figure 1.9. The vertex model. (a) The pack-
ing of epithelial cells is described by a two-
dimensional polygonal tiling that represents
cell-cell junctions at the apical (upper) side of
the epithelium. The forces that act on a vertex
are balanced. These forces stem from the com-
pression of cells, adhesion between cells, and
contractile forces along the cell edges and are
described by an energy function. A stable cell
configuration corresponds to a local minimum
of the energy. (b) Ground state diagram of the
vertex model proposed by Farhadifar et al. [59].
For a certain parameter range, the global en-
ergy minimum of the cell network corresponds
to a soft lattice with vanishing shear modulus.
In the Drosophila wing imaginal disc, laser ab-
lation experiments suggest that the global en-
ergy minimum corresponds to a stable, hexago-
nal cell packing, and random cell division leads
to the irregular packings observed in vivo [59].
Figures modified after [59, 171].
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models approaches tissue mechanics at the mesoscale: instead of representing individual
cells by a single coordinate, they rather describe the junctional network defined by cell-
cell contacts [59, 100, 171]. In these models, epithelial cell packings are represented as
polygonal tilings, see Fig. 1.9(a). Under the assumption that the observed cell configu-
rations can be described by the balance of conservative forces, the authors write down
an energy function that depends on the positions of the vertices where cell edges meet.
Note that, to date, this approach remains limited to sheet-like tissues that can be rep-
resented as two-dimensional networks. The effective energy contains terms that account
for cell elasticity, cell-cortex contractility, and cell-cell adhesion [59, 100]. Farhadifar and
coworkers have shown that their “vertex model” exhibits different ground state properties
depending on the ratio between a perimeter elasticity of cells and the tension at cell-cell
bonds, see Fig. 1.9, and concluded from experiments that the developing wing disc can
be considered as an elastic tissue on short times [59].

Similar approaches that make use of an effective energy to describe the mechanics of
tissues have been introduced earlier in the context of cell-cell sorting experiments [78, 85]
or to describe cell configurations in the retina of Drosophila [106]. These models are
derived from the so-called large-Q Potts model of domain growth and represent a cell as
a compact domain of identical spins. Manning and colleagues considered the interfacial
energies associated with cell-cell contacts and used a standard surface-evolver routine to
find equilibrium cell configurations [120]. Far from being complete, we mention just one
more formulation, where tissues have been modeled as a polygonal tiling of cells that

forces; however, the contribution to the viscous forces is not unequivocally defined. In order to be more
precise, we would need to discuss individual models in greater detail.
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Figure 1.10. Large scale flows in the develop-
ing Drosophila dorsal thorax. Red arrows cor-
respond to cell flows obtained by particle image
velocimetry, averaged over the time course of two
hours. The dorsal thorax shows large scale cell
rearrangements during Drosophila metamorphosis
due to active cell contractility and cell prolifera-
tion. Image courtesy of Y. Bellaïche (Inst. Curie),
see also [30].

in turn are represented as an ensemble of viscoelastic rods [102]. Note also that as for
single-cell based models, the dynamics in the aforementioned mesoscale models is not
unequivocally defined.8

An advantage of the vertex model and related formulations is that the obtained ep-
ithelial packings can be compared to experimental data in a straightforward way. For
considerably large systems, however, discrete models of growing tissues are increasingly
hard to computationally solve. Although such technical limitations might soon be over-
come by increasing computational power, it is questionable whether cellular detail needs
to be considered when investigating large scale pattern formation and dynamics. Another
disadvantage of discrete models and corresponding simulations of tissue growth is intrin-
sic to numerical simulations in general: the obtained results can only be interpreted a
posteriori, and in the absence of analytical expressions for the dynamics and mechanical
stresses no strong predictions of the model behavior upon parameter variations can be
made.

Continuum descriptions of tissue mechanics

The advantage of continuum descriptions of (growing) tissues is two-fold. First, con-
tinuum mechanics provides a well-established framework to discuss material behavior
on macroscopic scales, at least for passive materials.9 Second, the formulation of the
tissue-mechanics problem in terms of partial differential equations allows in principle to
derive analytical expressions for the stress distribution and the cell flow field. For large
systems, these flow patterns can vary over length scales large compared to a single cell,
see Fig. 1.10, and continuum descriptions may turn out to be appropriate.

It is less obvious, however, how to describe the tissue mechanical properties within the

8In quasi-static models that aim to describe stable stationary configurations, different energy mini-
mization routines could lead to different local minima; in finite-element models, the exact placement of
viscous elements is somehow arbitrary.

9The theory of elasticity has been formalized in the 19th century by Euler, Cauchy, Barré de Saint-
Venant, Lamé and many others.
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framework of continuum mechanics. In the context of tissue growth, different constitutive
equations have been proposed [105, 153, 181]. The descriptions range from elastic [11, 84],
visco-plastic [12, 154], to liquid-like [17, 27] behavior in the absence growth, reflecting
the diversity of mechanical properties among different tissues. In addition, the way how
growth of the tissue is considered varies across the literature [105, 181]. Finally, some
of these models describe the dynamics of more than one material component, taking the
extracellular matrix and/or the interstitial fluid additionally into account, or couple the
growth dynamics to nutriment abundance [38, 37, 153, 154].

Elastic growth models have proven well suited to describe the residual stresses that
result from incompatible growth [51, 84, 164]. The assumption that the tissue behaves
as an elastic solid at all times seems to be appropriate for plants in particular, mostly
because plant cells have a solid cell wall which is not continually remodeled [8, 84]. How-
ever, other soft animal tissues such as arterial walls have been successfully described
as hyperelastic materials, based upon the collagen-fiber reinforced microstructure of the
tissue [76]. A class of models known as morphoelasticity uses finite elasticity theory in
conjunction with volumetric growth to address the stability of resulting tissue configu-
rations, and different instabilities due to growth have been found [11, 81, 83]. A central
assumption of morphoelasticity is that the total, finite deformation can be decomposed
into a contribution due to growth and an elastic deformation that ensures material com-
patibility [161]. Therefore, these models implicitly assume the existence of an unstressed
reference state, which is not necessarily compatible with material or tissue integrity. An
incremental morphoelasticity theory has been proposed that may circumvent conceptual
problems in the limit of large deformations [82, 185].

At the other end of possible choices of constitutive relations, we find growing tissues
described as viscous liquids [17, 27]. Basan and colleagues discussed a hydrodynamic
instability related to tissue growth that stems from viscous shear stresses due to differen-
tial proliferation [15]. In between these extremes—fully viscous and solid-like tissues—
mixture theory allows to separately account for an elastic extracellular matrix component
and an “elastic fluid”-like cell component [105, 154]. Recently, Ciarletta and coworkers
used this approach to analyze shape instabilities of early-stage melanoma [10, 42].

1.4 Overview of this thesis

Although the rich variety of biophysical descriptions of tissue growth present in the
literature might to some degree reflect the skill and taste of the dedicated scientist, it
is foremost due to the richness of organic life itself. For the physics of tissues may well
obey the laws of Newton, the variety of biological functions performed by different tissues
suggests that these may also behave differently from a mechanical point of view.

In this thesis, we address the physics of tissue growth from a slightly different angle.
Starting from an elastic tissue behavior in the absence of cell division and apoptosis, we
aim at understanding the effect of cell division and cell death on the material properties
at long times. In chapter 2, we introduce the continuum mechanics framework that
we employ and derive effective constitutive equations in the presence of cell division
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and cell death. We then discuss two examples of tissue growth where we make use of
the obtained equations. We introduce noise related to cell division and apoptosis and
calculate the effective diffusion coefficient of cells at the homeostatic state at which cell
division and apoptosis balance. A calculation of the height-fluctuations of a thin tissue
layer is furthermore presented.

In chapter 3, we extend our continuum description to a two-component model of
tissues, taking the interstitial fluid explicitly into account. This allows us to discuss the
effect of a finite permeability of the tissue on its dynamics when subjected to an external
pressure. If the material densities of fluid and cell phase differ, gravity leads to additional
forces, and we discuss a hypothetical “gravitational treadmilling” non-stationary steady
state of a tissue. The calculation of the diffusion constant of cells at the homeostatic
state reveals a damping of cell diffusion due to cell-fluid friction.

Finally, we address in chapter 4 the dynamics of two distinct cell populations within
one tissue. Here, as throughout this thesis, we focus on the role of a coupling between
the rate of cell division and the mechanical stress. We combine analytical limits and
numerical calculations to study the dynamics of an interface between two cell populations
that differ in their mechanical control of growth.

Each of these chapters is framed by a short introduction and a discussion of the results.
We conclude this thesis with some general remarks and point out future directions of
research.



Chapter 2

Fluidization of tissues due to cell
division and apoptosis

In this chapter, we develop a continuum description of tissue mechanics that takes into
account the effects of cell division and apoptosis. Whereas various models of tissue growth
have been proposed before, including models that are formulated in terms of continuum
mechanics, these models mostly postulate constitutive equations for the tissue stress
that seem appropriate to describe their relevant mechanical properties. Although the
respective choice of constitutive equation may often be well corroborated by experiments
or by resemblance with well-studied materials, our approach here is different. Based on a
few assumptions about the tissue material properties in the absence of cell division and
apoptosis—for simplicity, we consider tissues then to be elastic—, we try to derive the
constitutive equation for the tissue stress in the presence of cell division and cell death.

2.1 Introduction: Tissue rheology revisited

Biological tissues exhibit a wide variability of mechanical properties. On the cellular
level, this is illustrated by the completely different architecture of plant cells compared
to animal cells. Whereas plant cells have a solid cell wall to resist a high internal tur-
gor pressure, such a cell wall is totally absent in animal cells. On the tissue level, we
find that tissue mechanical properties are often closely linked to tissue function; a non-
comprehensive list of mechanically distinct tissues includes bone, skin, arteries, and grey
matter. In the following, and throughout this work, we focus our analysis on soft animal
tissues which are composed of large assemblies of (living) cells. What does soft mean
in this context? We consider tissues as soft if their elastic response at the time scale of
several seconds is characterized by an elastic modulus in the range of several to several
thousand Pa. In general, this definition coincides with less physical and more physio-
logical inspired definitions put forward elsewhere1; note however that we do not exclude

1Wikipedia cites the online Dictionary of Cancer Terms of the National Cancer Institute, which
states that soft tissue refers to “muscle, fat, fibrous tissue, blood vessels, or other supporting tissue of the

27
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epithelia or cell monolayers by our definition as might be the case for other authors.
The mechanical properties of tissues have mostly been characterized by their response

to applied forces or deformations. Step-stress or step-strain experiments allow for mea-
surements of the elastic modulus and viscoelastic stress relaxation times. For soft tissues,
it makes sense to refer to this characteristic behavior as tissue rheology. Various con-
tinuum mechanics models have been put forward to account for the stress-strain curves
obtained for skin [117], adipose [77] and brain tissue [99], for example. The theoretical
approaches range from finite elasticity models described by non-linear strain energy func-
tions to modeling by constitutive equations that describe generalized viscoelastic solids
(see [71, especially chap. 2 & 7] for an exhaustive discussion and references therein).
Rheological measurements are mostly carried out for adult non-proliferating tissues and
on macroscopic length scales of several mm, however, and the models that aim at repro-
ducing the experimental data do not apply in a straightforward way to embryonic tissues
or early-stage tumors.

Morphogenetic processes during animal development already suggest that the me-
chanical properties of embryonic and adult tissues ought to be different, given that the
former repeatedly need to change their form and position in the developing body. It
has been argued that embryonic tissues can effectively be considered as viscous fluids—
as opposed to elastic solids—on the time scales of several minutes up to hours; most
notably, the late Malcolm Steinberg proposed as early as 1963 an explanation for cell
sorting experiments that drew on an analogy between aggregates of embryonic cells and
liquids [172]. His Differential Adhesion Hypothesis (DAH) suggests that differences in
cell-cell adhesion drive the sorting out of cells of different type and can explain the ob-
served engulfment patterns of cell aggregates. In the meantime, his ideas have been
tested experimentally for aggregates of various embryonic cell types and in different ex-
perimental settings [21, 63, 64, 65, 66]. Although the DAH may be over-simplifying in
neglecting certain relevant cell mechanical contributions to cell sorting such as cell con-
tractility [109], his key idea—differences in interfacial tensions lead to cell sorting—has
not been proven wrong.2 Later, this idea has been refined by Brodland and colleagues,
who introduced their formulation under the name of the Differential Interfacial Tension
Hypothesis [31, 32]. In a recent paper Manning and colleagues disentangled the respective
contributions from cell-cell adhesion and cortical tension to tissue surface tension [120].

The analogy between tissues and viscous fluids itself does not yet explain how elastic
stresses relax, however. First of all, whether a tissue effectively behaves as a viscous
fluid depends on the time scale of the phenomenon under study. Moreover, different
relaxation processes may take place in tissues which would give rise to a hierarchy of
different relaxation times. As tissue growth implies repeated rounds of cell division and
takes place on time scales going from several hours to days, it is natural to ask how

body” [2]; another source cited defines soft tissues as “nonepithelial, extraskeletal mesenchyme exclusive
of the reticuloendothelial system and glia” [169] (after [3]). Sometimes this term is extensively used
without being defined at all as for example does Fung in his book on biomechanics of living tissues [71].

2The debate whether visco-elastoplastic constitutive equations are more appropriate to describe exper-
imental data of tissue surface tension measurements is not yet completely settled, however, see [119, 152]
for a view contesting Steinberg and followers.
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Figure 2.1. Coupling between mechanical conditions and proliferation. (a-c) Multicellular tissue
spheroids can grow against an elastic matrix, where the final size depends on the opposing matrix
rigidity. Here, we show a tumor spheroid made up of cells of the human breast cancer cell line
MCF-7 growing in an agarose hydrogel of a stiffness 1-2 kPa after 1, 11, and 27 days, respectively.
The scale bars are 50µm; figure modified after [69]. (d) Here, the stretch-induced reorientation
of the mitotic spindle is shown. Fink and colleagues plate a cell (retinal pigment epithelial cell
line, hTERT-RPE1) on a silicon substrate, where the cell attaches to an oval fibronectin pattern
(leftmost image). The lower panel shows the mitotic spindle of the cell before cell division via
DNA staining, which is indicative of the cell division orientation. In the absence of additional
clues, the cell divides along its long axis. By stretching the substrate along the perpendicular axis
(see arrows), the oval pattern is deformed into a circle and the geometric anisotropy no longer
persists. The cell responds to the induced anisotropy of the mechanical stress by reorientation
of the mitotic spindle (from left to right, relative times are given in minutes). Scale bar 10µm;
figure taken from [60].

cell proliferation might influence the tissue mechanical properties over long times. Many
experiments suggest that the interplay between tissue mechanics and growth is two-
fold: not only may cell proliferation alter tissue mechanical properties, but mechanical
conditions interfere with cell division and apoptosis. A classic experiment is the growth
of multicellular aggregates embedded in an elastic hydrogel [95], see Fig. 2.1(a-c) for an
example of such growth. The final size of the tissue aggregates depends on the matrix
stiffness, indicating that accumulated elastic stress due to the deformation of the matrix
eventually prevents further cell proliferation. Another example of a possible coupling
between mechanical conditions and growth concerns the orientation of the cell division
axis by external mechanical stresses [61, 126]. Recently, Fink et al. reported that in
the absence of geometrical cues, the anisotropy of externally applied stresses suffices to
reorient the mitotic spindle of dividing cells [61], see also Fig. 2.1(d). In our study, we
thus try to unravel the implications of such mutual interplay between tissue mechanics
and growth.

This chapter is organized as follows. In the next section, we introduce the basic
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balance equations and establish the mechanical stress contributions of cell division and
cell death. This allows us to develop effective constitutive equations for the stress that
take cell division and apoptosis into account. For tissues growing in a fixed volume,
cell division and apoptosis eventually balance, which leads us to a discussion of the
homeostatic state (sec. 2.3). In section 2.4, we discuss two examples of tissue growth in
which the mechanical coupling between cell division/apoptosis and stress plays a decisive
role. We then discuss the role of noise, which allows us to calculate an effective diffusion
coefficient of cells at the homeostatic state (sec. 2.5), before we close this chapter with a
discussion of the results.

2.2 Growing tissues as elastic media

We aim at describing the stress distribution and cell flows on large length scales. We
thus consider the tissue as a continuous material without accounting for its structure
at the cellular scale. In particular, we do not distinguish individual cells but formulate
balance equations in terms of averaged (cell number and momentum flux) densities, see
Fig. 2.2 for an illustration. Furthermore, we assume that the tissue is highly permeable
to interstitial fluid flow at the relevant time and length scales, which allows us to describe
the tissue by a single material component only. In the next chapter, we will relax this
assumption and extend the one-component theory presented here to a multi-component
description.

We first discuss the balance equations for cell number and momentum flux densities.
We then introduce the constitutive relations that describe the tissue elasticity at short
times, i.e., in the absence of cell turn-over, before establishing the concept of stress
sources introduced by cell division and apoptosis.

2.2.1 Cell number and momentum balance

Cell number balance

Cell number balance is described by a conservation equation for the cell number density
n,

∂tn+ ∂α(nvα) = (kd − ka)n. (2.1)

Here, we introduced the cell flow velocity vα, which appears in the convective term on
the left-hand side. Greek indices denote the Cartesian coordinates x, y, z; and ∂α is
short-hand for ∂/∂xα. Einstein’s summation convention over repeated indices is implied.
In addition to convective transport, however, cell division and cell death can change the
local density of cells, which gives rise to the source term on the right-hand side. Here, kd

and ka denote the rates of cell division and apoptosis, respectively. Note that the above
equation can be rewritten as

d

dt
n = n (kd − ka − ∂αvα) ,



2.2. Growing tissues as elastic media 31

Figure 2.2. Continuous quantities such as the cell num-
ber density n and the cell flow velocity vα are obtained via
an averaging procedure. A typical averaging volume (here
shown in red) is large compared to the size of a single cell
and small compared to typical length scales over which the
averaged quantities vary.

where we introduced the convected time derivative (d/dt) = ∂t + vα∂α; in a convected
volume element, the cell number density remains constant if the number growth rate
ka − kd is equal to the volume growth rate ∂αvα.

Another remark is due here. Let ρ be the actual mass density of the tissue. The
average cell volume Ωc is simply given by n−1, and subsequently Mc = ρΩc = ρ/n is the
average mass of a single cell. The cell number balance (2.1) then leads to

∂tρ+ ∂α(ρvα) = (kd − ka) ρ+
ρ

Mc

d

dt
Mc, (2.2)

i.e., we obtain a mass conservation equation with source terms. In other words, the total
mass of the tissue is not conserved, which is not surprising in the case of growing tissues.
Obviously, a one-component description simply cannot account for actual mass conserva-
tion at the cellular level, which points to the necessity to introduce a second component
if mass conservation should be obeyed. This program is carried out in chapter 3 of this
work. In the following, we simply assume that the actual mass density ρ = Mc/Ωc of
cells and thus of the tissue is constant in space and time.

Momentum balance

For systems with finite mass density ρ, the conservation of linear momentum is expressed
by

∂t(ρvα) + ∂β(ρvαvβ) = ∂βσαβ + f ext
α . (2.3)

In the absence of internal and external forces, the rate of change of the linear momentum
density ρvα is only due to a convective momentum density flux described by ρvαvβ .
Internal and external forces act as momentum sources, however, and are taken into
account on the right-hand side of the above equation. Here, internal forces can be
described as the divergence of a momentum density flux tensor σαβ , which is called the
stress tensor. External forces are described by the force density f ext

α .
We can estimate the respective orders of magnitude of the different terms by a simple

argument. The mass density of the tissue is approximately the mass density of water,
ρ ≈ ρH2O ≈ 103 kg m−3. Typical velocities of cells are in the range of several µm/s to
µm/d, i.e., vα . 10−7 m s−1, and we can safely assume that typical time and length
scales are also in the range of several seconds and µm, respectively. We thus obtain
upper estimates ∂t(ρvα) ≈ 10−6 N m−3 and ∂β(ρvαvβ) ≈ 10−5 N m−3 for the convected
rate of change of momentum per unit volume. What are the corresponding orders of
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magnitude for the source terms on the right-hand side? Without specifying the actual
form of σαβ , we know that typical forces exerted by cells lie in the range of several nN,
which corresponds to a force density of ≈ nN/µm3 = 109 N m−3! Even if our estimates
were wrong by some orders of magnitude, we still could safely neglect the inertial terms
on the left-hand side of equation (2.3). We thus consider that internal and external forces
are always balanced and write force balance as

∂βσαβ = −f ext
α . (2.4)

In hydrodynamics, this equation corresponds to the so-called Stokes limit of the Navier-
Stokes equation for small Reynolds number. Biological microswimmers like sperm or
bacteria such as Escherichia coli, for example, move at low Reynolds number; see also
the classic account of Purcell [156].

We finally note that if the total angular momentum is conserved, the stress tensor
σαβ can always be taken symmetric, see Ref. [125, appendix A] for a detailed discussion.3

2.2.2 Elastic stress and source stress due to cell division and apoptosis

In order to describe the actual tissue dynamics, we need to specify the constitutive
relations that govern the tissue mechanical behavior. Here, we elaborate on what we
mean by “growing tissues as elastic media.” Whereas we try to present the theory as self-
contained as possible, we will occasionally refer to appendix A for some further technical
details.

Cell division and apoptosis as force dipoles

We consider a tissue in which cells are linked to their neighbors by adhesion molecules.
We assume that at time scales short compared to cell division and apoptosis, this tissue
behaves as an elastic solid. For small deformations, the tissue elasticity is described by
a linear relation between stress and strain,

σel
αβ = Cαβγνuγν , (2.5)

where σel
αβ denotes the elastic stress in the tissue and uγν = 1

2(∂γuν + ∂νuγ) is the
strain tensor, the deformation field being denoted by uγ . For simplicity, we consider
that the tissue is isotropic; the tensor of elastic constants is then given by Cαβγν =
χ δαβδγν + 2µ (δαγδβν − δαβδγν/3), where χ and µ are the bulk and shear elastic moduli,
respectively.

At longer time scales, the tissue is remodeled by the appearance of new cells by
division and the disappearance of cells by cell death. Division and apoptosis imply a

3The total angular momentum density can be split into an orbital contribution due to the center-of-
mass motion of individual volume elements and a spin contribution that describes the angular momentum
in the rest frame of local volume elements. The antisymmetric part of the stress tensor then describes
the transfer of angular momentum between these contributions. Recent work on active chiral fluids by
Fürthauer and colleagues considers cases of active torque generation at the microscopic level in which it
is advantageous to keep the antisymmetric part of the stress tensor, see ref. [177] for a detailed discussion.
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change of local stress generated actively. Thermodynamically speaking, tissues are far-
from-equilibrium systems, and cells can consume free energy in order to drive all kinds
of active processes [137]. Here, we consider the sum of the forces generated by cells
during the process of duplication or cell death, i.e., we include the phases of cell growth
and the subsequent division when referring to a cell division event. Because these forces
are of internal origin and have to be balanced locally, cells cannot exert any net force,
and the local force distribution associated with division and apoptosis events can be
characterized by its dipole moment, see appendix A. In a continuum description, the
local stress associated with each event can thus be described by a point force dipole
dαβ . Because division and apoptosis do not generate any net torque in general, we take
dαβ = dβα. The associated force dipole density in the tissue is Dαβ =

∑
n d

(n)
αβ δ(r− rn) ,

where we sum over all force dipoles. The strain induced by a static ensemble of force
dipoles is given by

ud
αβ =

∑
n

Hαβγν(r− rn)d(n)
γν , (2.6)

where Hαβγν is the Green’s function corresponding to a point dipole (appendix A). The
elastic stress σel

αβ now contains contributions Cαβγνuext
γν due to external forces f ext

α and
contributions from the strain induced by the force dipole density Dαβ . In the presence of
both internal force dipoles and external forces, the elastic stress satisfies the force balance
equation

∂βσ
el
αβ = −f int

α − f ext
α

= ∂βDαβ − f ext
α , (2.7)

where we used that f int
α = −∂βDαβ is the density of internal forces associated with a

force dipole density Dαβ . The total stress σαβ satisfies the force balance ∂βσαβ = −f ext
α ,

and from Eq. (2.7), it follows that the total stress in the tissue is given by

σαβ = σel
αβ −Dαβ . (2.8)

We can identify the stresses that are introduced by cell division and apoptosis as σs
αβ =

−Dαβ , which act as a source of stress in the tissue.

Dynamic force dipole densities: From deformation to flow

For a simple elastic material in the absence of remodeling, the elastic stress can be
expressed in terms of the deformation gradient uαβ as expressed in Eq. (2.5). Here, uα
is the deformation with respect to a stress-free reference configuration. In the presence
of permanent cell division and apoptosis, such a unique reference state of the strain can
no longer be defined. However, differences of strain between subsequent states still have
a meaning. In general, a local flow field v(r, t) exists such that

uαβ(t)− uαβ(t0) =

∫ t

t0

dt′ vαβ(t′) (2.9)
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to linear order. Here, vαβ = 1
2(∂αvβ + ∂βvα) denotes the velocity gradient of the flow.

The changes in stress at time t, starting from an initial state at t0, are given to linear
order by

σαβ(t)− σαβ(t0) = Cαβγν [uγν(t)− uγν(t0)] + σs
αβ(t)− σs

αβ(t0) , (2.10)

where we assumed that eventual external forces are constant in time. Alternatively, we
can express the dynamic change of the stress as a differential equation,

D

Dt
σαβ = Cαβγνvγν +

D

Dt
σs
αβ , (2.11)

where (D/Dt)σαβ = ∂tσαβ +vγ∂γσαβ +ωαγσγβ +ωβγσαγ is the co-rotational time deriva-
tive which captures geometric nonlinearities and ωαβ = (1/2)(∂αvβ−∂βvα) is the vorticity
of the flow. Equations (2.10) and (2.11) are independent of any reference state, in con-
trast to equation (2.8). Note that the elastic behavior at short times is still captured by
the first term on the right-hand side. The second term on the right-hand side describes
the stress increments in time due to dynamic force dipole densities. In the following,
we establish the form of the rate of change of the source stress caused by cell division
and apoptosis. In order to discuss the respective contributions separately, we introduce
the isotropic and the traceless parts of the total stress, σ and σ̃αβ , respectively, with
σαβ = σδαβ + σ̃αβ .

2.2.3 Isotropic contribution to the source stress, equation of state

The force dipoles associated with cell division and apoptosis can similarly be split into
isotropic and traceless parts. We discuss the isotropic contributions first. In addition
to the traceless part discussed later, each cell division creates a positive isotropic force
dipole ddδαβ , with dd > 0, that contributes to the source stress σs

αβ ; each apoptosis event
contributes a negative force dipole daδαβ , with da < 0. The rate of change of the isotropic
component of the source stress is related to the rates of cell division and of apoptosis.
In a tissue with permanent cell division and apoptosis, the isotropic part of the source
stress therefore changes as

d

dt
σs = −n (ddkd + daka) , (2.12)

where we used that σs
αβ = −Dαβ and that there are nkd cell divisions and nka apoptosis

events per unit volume per unit time. From Eq. (2.11) we then find the dynamic equation
for the isotropic part of the stress in the presence of cell division and apoptosis,

d

dt
σ = χvγγ − n (ddkd + daka) , (2.13)

where vγγ = ∂γvγ is the divergence of the cell flow. Note that the rates of division and
apoptosis kd and ka generally depend on local stress as well as on cell density.

The stress increments dd and da are phenomenological, macroscopic parameters de-
scribing forces generated at the cellular scale. In principle, these forces can vary with the
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state of a cell, i.e., cell size, cell stress, or abundance of certain proteins. Let us consider
the two limit cases dd = 0 and da = 0. If we had dd = 0, dividing cells would not exert
any force on the surrounding cells. This case describes cell divisions without subsequent
growth where cells divide by simply introducing a new cell-cell contact. In developing
embryos, this form of cell division without increasing total tissue mass is called cleavage.
In many species, the fertilized egg cell undergoes rapid rounds of cleavage to form a large
cluster of undifferentiated cells before morphogenesis starts [192]. Divisions of this type
are certainly limited by the finite size of the nucleus which cannot be reduced further.
In the case da = 0, cell death does not introduce any force dipole in the tissue; this limit
corresponds to cell death being described by discounting the dead cell from the number
density n of (living) cells without removing the debris from the tissue. Note that me-
chanical equilibrium for vanishing net number growth rate kd−ka = 0 implies da = −dd,
however, although strictly speaking this needs to be true on average only.4

Equation of state for the cell volume

Can we be more precise? We assume that the cell volume Ωc = n−1 is under cellular
control and depends on the isotropic part of the stress. In the simplest form this implies
an equation of state

σ = σ(n) , (2.14)

relating isotropic stress and cell density. As a consequence of this simple choice, the
stress σ depends only on the current cell configuration but not on history. Note that
in general the relation between cell density and stress is more complex and can involve
memory. Developmental, genetic programs could give rise to changes in cell volume that
are not accompanied by or due to changes in stress; we mentioned the repeated rounds
of cleavage of the fertilized egg above.

The existence of an equation of state thus implies that we can express changes in
stress in terms of changes in cell number density, or more precisely

dσ

dt
=

dσ

dn

dn

dt
.

Using the cell number balance (2.1), we find that this is compatible with Eq. (2.13) only
if n(ddkd + daka) = χ(kd − ka), so that d = dd = −da and d = χ/n. In order to squeeze
new cells into the tissue, dividing cells have to expend on average an elastic energy d
which scales with the bulk modulus χ and the cell volume n−1. The same elastic energy
is liberated on average when cells die and are disposed of after cell death. The total
stress thus obeys

d

dt
σ = −χ

n

dn

dt
,

which using once more cell number balance (2.1) can finally be rewritten as

d

dt
σ = χ [vγγ − (kd − ka)] . (2.15)

4This average is two-fold, averaging forces over the cell cycle and in a local volume element as implied
by a continuum theory.



36 Chapter 2. Fluidization of tissues due to cell division and apoptosis
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Figure 2.3. Orientation of the mitotic spin-
dle and subsequent cell division. (a) A mitotic
spindle in metaphase, i.e., before the separation
of the duplicated chromosomes. The spindle is
formed by microtubules (green) that emanate
from the two opposed spindle poles. During
anaphase, the DNA (blue) is pulled towards
the two ends of the spindle via pulling forces
exerted on the kinetochores (red); figure taken
from [53]. (b) An epithelial cell (mouse mam-
mary duct) in metaphase-to-anaphase transi-
tion. Note that the mitotic spindle defines an
axis along which the cell eventually divides. In-
stead of the kinetochores, polymerized actin is
additionally shown in red. Scale bar 10µm;
figure modified from [146]. (c) Fluorescence
micrograph of a dividing cell in the zebrafish
neuro-ectoderm during late epiboly. Embryos
were labeled with membrane-GFP. Scale bar
10µm; figure modified from [167].

We remark here that for d 6= χ/n, Eq. (2.13) corresponds to more complicated equations
of state for the cell stress that involve memory.

Incompressible tissue

Let us quickly discuss the limit of an incompressible tissue. Here, we consider a tissue
to be incompressible if the cell number density is constant, n = n0, and the bulk elastic
modulus χ = −ndσ

dn → ∞. In this case, the isotropic part of the stress σ is no longer
defined by an equation of state but becomes a Lagrange multiplier in order to ensure the
constraint vγγ = kd − ka.

2.2.4 Anisotropic contribution to the source stress

We now discuss the anisotropic contribution to the source stress generated by cell division
and apoptosis. Cell division is an intrinsically oriented process. The orientation of
cell division first manifests itself in the orientation of the mitotic spindle, see Fig. 2.3.
In the absence of external cues and for cells that do not exhibit a pronounced shape
anisotropy, the orientation of the mitotic spindle is necessarily uniformly distributed.
The orientation of the mitotic spindle can be aligned on average, however, such that
there exists a preferred axis of cell division. This anisotropy can be induced by external
stresses [61], by internal factors such as the planar cell polarity pathway [167], or signaling
cues such as morphogen gradients [26]. Here, it is not important whether this anisotropy
of cell division is mediated via a finite shape anisotropy of cells or not. Note however
that for isotropic tissues, shape anisotropy and cell division orientation align on average
for small perturbations. Averaging the cell division anisotropy in a small volume defines
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Figure 2.4. Average ani-
sotropy of the cell division axis.
(a) The axis of cell division is
characterized by a vector p of
unit length. The average over
these orientations defines the
nematic tensor q̃αβ , see text for
details. (b) If cell divisions are
random, the order parameter
vanishes (left panel). If cell
divisions are aligned on aver-
age along the x-axis, one finds
q̃xx > 0.

a b

p

x

q̃xx = 0 q̃xx > 0

the nematic tensor q̃αβ = 〈pαpβ − 1
3δαβ〉 , where the unit vector p defines the axis of cell

division, see Fig. 2.4.
For simplicity, we consider first the case of an isotropic tissue in the absence of external

cues such as morphogen gradients or planar cell polarity. The effect of additional guidance
cues will be discussed further below. In a perfectly isotropic tissue, the nematic order
tensor vanishes, as is the case for the traceless part of the stress due to symmetry. For
small perturbations, the relaxation of the nematic tensor is driven mainly by the local
anisotropic stress, and the rate of change of the nematic tensor to linear order is then
given by

∂tq̃αβ = − 1

τq

(
q̃αβ −

σ̃αβ
σ0

)
. (2.16)

Here, we have introduced the characteristic time scale τq > 0, which describes the dynam-
ics of the alignment after a mechanical perturbation. The response of the cell anisotropy
to stress is described by the coefficient σ0 > 0. Note that the isotropic component of
the stress does not contribute to the relaxation of the nematic tensor, which is traceless.
In the following, we consider the case where the anisotropy relaxation is faster than cell
division and apoptosis, such that

q̃αβ ' σ̃αβ/σ0 (2.17)

on the relevant time scales in the absence of additional fields that influence orientation.

Shear stress relaxation by oriented cell division

Cell division is anisotropic. In addition to the isotropic part discussed before, each
division event contributes a change −d̃d

αβ to the anisotropic component of the source
stress σ̃s

αβ . Because the cell division axis is on average aligned with the local tissue
anisotropy, the force dipole d̃d

αβ is proportional to the nematic tensor, d̃d
αβ = d̃dq̃αβ .

Analogously, the contribution of force dipoles associated with apoptosis events d̃a can be
written as d̃a

αβ = d̃aq̃αβ . Typically, one finds d̃d > 0 and d̃a < 0, see appendix A. Note
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that for an isotropic tissue, mechanical balance does not require d̃a = −d̃d. For isotropic
cells, d̃a ≈ 0 even for small but finite cell division anisotropy.

The rate of change of the traceless part of the source stress is then given by

D

Dt
σ̃s
αβ = −n

(
d̃dkd + d̃aka

)
q̃αβ , (2.18)

and we find for the rate of change of the anisotropic stress, Eq. (2.11),

D

Dt
σ̃αβ = 2µvαβ − n

(
d̃dkd + d̃aka

)
q̃αβ . (2.19)

Using q̃αβ ' σ̃αβ/σ0 , we finally obtain a constitutive relation for the traceless part of
the stress for times which takes into account cell division and apoptosis,(

1 + τa
D

Dt

)
σ̃αβ = 2ηṽαβ . (2.20)

Here, we introduced the relaxation time τa =
[
n(d̃dkd + d̃akd)/σ0

]−1
and the effective

shear viscosity η = τaµ. The above equation is the constitutive equation of a Maxwell
viscoelastic fluid. At short times t < τa, the tissue response is essentially elastic, whereas
for long times t � τa the traceless stress relaxes to zero and the tissue exhibits a fluid
behavior. The cross-over time scale between the elastic and the viscous regime is set
by the relaxation time τa. Note that for a growing tissue, this time scale is expected
to be of the order of hours to days: If we assume that σ0 ∼ d̃d/n ∼ µ as suggested by
dimensional analysis, we find τa ∼ k−1

d ∼ 105 − 106 s which is the average time it takes
a cell to divide. The effective viscosity is then of order η ∼ k−1

d µ ∼ 106 − 1010 Pa s,
depending on the cell division rate and the shear modulus µ. Whereas at first glance
such orders of magnitude appear to be extremely slow or highly viscous, respectively,
this stress relaxation mechanism may still play a role in developmental processes that
take place on the time scale of days to weeks.

2.2.5 Polarized tissues

In the previous paragraphs, we considered that the tissue anisotropy described by the
nematic tensor q̃αβ is small and set by the the anisotropic part of the stress only. In
that case, tissue growth is essentially isotropic if no anisotropic external stresses are
applied. However, in many situations tissues exhibit finite polarity even in the absence
of externally applied stresses. In this case, cell polarity in the tissue is aligned on large
scales. Such large scale patterns of cell polarity are known to exist in epithelia and other
tissues [33, 186, 187, 194]. They could arise due to the existence of signaling gradients in
the tissue, e.g., morphogen gradients, or could be due to cells aligning their polarity with
their neighbors. As argued above, cell division is on average oriented along the axis of
cell polarity. Therefore, because cell division generates anisotropic stresses, tissue growth
is anisotropic.
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If the anisotropy is set by an external field such as a morphogen gradient, the
anisotropy of the tissue in the absence of stress is given by a traceless nematic ten-
sor q̃0

αβ , see also [7]. In the presence of stress, the nematic tensor in the tissue relaxes
toward this value according to

∂tq̃αβ = − 1

τq

[(
q̃αβ − q̃0

αβ

)
− σ̃αβ

σ0

]
. (2.21)

As for isotropic tissues, we assume that the orientation dynamics of the nematic tensor
is fast compared to cell division, and we can therefore write

q̃αβ = q̃0
αβ + σ̃αβ/σ0 (2.22)

on the relevant time scales.
In polarized tissues, symmetry arguments suggest that the finite order parameter q̃0

αβ

can couple to the elastic deformation and give rise to a spontaneous deformation u0
αβ in

the stress-free state. We assume that the isotropic part of the stress is still defined by an
equation of state (2.14). The traceless part of the elastic stress is then given by

σ̃el
αβ = Cuni

αβγν ũγν + wq̃0
αβ , (2.23)

where Cuni
αβγν is the tensor of elastic constants for a uniaxial material5 and w is an elasto-

nematic coupling coefficient [188]. In the theory of nematic elastomers, such a coupling
arises naturally when writing down all the allowed terms in the free energy [118]. In a con-
tinuum description of tissues, which are systems that are intrinsically out-of-equilibrium,
the stress wq̃0

αβ can be interpreted as an active stress due to anisotropic cell contrac-
tility; such active anisotropic stresses have been observed in the developing Drosophila
germband, for example [157, 158].

We now discuss the traceless component of the stress tensor. The source stress due to
cell division and cell apoptosis is still given by Eqs. (2.12) and (2.18), as for an isotropic
tissue. For simplicity, we ignore the elastic anisotropy and choose elastic constants such

5For materials with uniaxial symmetry, the general form of the tensor of elastic constants is given by

Cuni
αβγν = C1nαnβnγnν + C2

(
nαnβδ

⊥
γν + δ⊥αβnγnν

)
+ C3δ

⊥
αβδ
⊥
γν + C4

(
δ⊥αγδ

⊥
βν + δ⊥ανδ

⊥
βγ

)
+ 1

2
C5

(
δ⊥αγnβnν + δ⊥ανnβnγ + δ⊥βγnαnν + δ⊥βνnαnγ

)
,

where n is a unit vector pointing along the axis of anisotropy and δ⊥αβ = δαβ − nαnβ . The existence of
an equation of state (2.14) requires that isotropic and anisotropic deformations decouple, which implies

C1 + 2C2 = 3C3 + 2C4 .

For nematic elastomers, symmetry furthermore requires that when describing deformations with respect
to the new reference state u0

αβ , the elastic constant C5 vanishes as long as the isotropy of the unstressed
reference state is spontaneously broken, i.e., in the course of an isotropic-to-nematic phase transition,
without any external fields or boundary conditions enforcing a precise axis of anisotropy. This so-called
soft elasticity is neglected here because we assume that the “spontaneous” finite order parameter q̃0

αβ is
set by external fields such as morphogen gradients or set by boundary conditions.
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that Cuni
αβγν ũγν = 2µũαβ .6 Using the above expression, we then find that the traceless

part of the stress tensor satisfies(
1 + τa

D

Dt

)
σ̃αβ = 2ηṽαβ − σ0q̃

0
αβ . (2.24)

Analogous to isotropic tissues, polarized tissues behave as a Maxwell viscoelastic fluid:

The shear stress relaxes over a time τa =
[
n(d̃dkd + d̃akd)/σ0

]−1
and the tissue is de-

scribed by an effective shear viscosity η = τaµ at long times. Note that the effective shear
viscosity becomes a tensor if elastic anisotropy is taken into account. However, there is
an additional component of the stress on the right hand side of Eq. (2.24), which is pro-
portional to the spontaneous nematic tensor q̃0

αβ . This active stress is due to large scale
patterns of cell polarity which locally orient cell division, and it has contributions pro-
portional to the cell division rate and to the apoptosis rate, respectively. The magnitude
−σ0 of the active stress is negative if the cells orient along the principal axis of the stress
as the tissue grows. This corresponds to a dilative active stress driving tissue elongation
along the direction of cell division. Active stresses due to cell division have been first
introduced by Bittig et al. [27]. Note furthermore that the above constitutive equation
is similar to the constitutive equation obtained for active polar gels as a description of
the cell cytoskeleton developed in Ref. [110], and the active stress has the same form as
the active stress proposed therein.

2.3 The homeostatic state

In many situations, tissues do not actually grow in size or in cell number: Although
cells might divide, they do so rather to compensate eventual cell death and guarantee
tissue maintenance. Following other authors, we call such a state of balanced cell division
and apoptosis a homeostatic state [17, 70]. In this section, we develop the concept of
the homeostatic pressure as introduced by Basan and colleagues [17] and explore its
consequences for the tissue dynamics close to the homeostatic state.

The isotropic homeostatic state

The isotropic homeostatic state is a homogeneous stationary state in which the cell
density is constant, n = nh, there is no cell flow, vα = 0, the nematic tensor vanishes,
q̃αβ = 0, and the source stress σs

αβ is isotropic and time independent. Constant cell
density and vanishing cell flow requires that kd = ka, i.e., that cell division and apoptosis
balance as discussed above. Constant source stress requires ddkd +daka = 0, and because
dd = −da = d, both conditions are identical.

6This corresponds to the choice

C1 = C3 + 2C4 , C2 = C3 , C5 = 2C4 ,

where C4 = µ and C3 = χ− 2
3
µ ; see also note 5 above.
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We assume that for constant biochemical conditions, the rates of cell division and
apoptosis, kd and ka, respectively, are functions of the cell number density n only. The
condition kd(nh) = ka(nh) then determines the homeostatic density nh, and via the
equation of state this condition defines the isotropic stress at the homeostatic state,
i.e., the homeostatic pressure Ph = −σ(nh). In principle, the rates of cell division
and apoptosis depend also on the local concentration of nutrients, growth factors, and
possibly other cell signaling molecules, which translates to a homeostatic pressure that
will depend on the biochemical conditions. Note that the rates may depend also on the
cell stress σ, which is here already taken into account since σ = σ(n).

Close to the homeostatic state, the properties of the tissue are obtained by expanding
the effective cell number growth rate kd − ka to linear order in the density deviations
δn = n− nh, assuming that nutriment conditions remain constant. We therefore write

kd − ka = −1

τ

δn

nh
, (2.25)

where τ−1 = −nh
∂(kd−ka)

∂n . Density deviations and stress deviations δσ = σ + Ph are
related via the equation of state (2.14), and we thus obtain(

1 + τ
d

dt

)
(n− nh) = −nhτvγγ , (2.26a)(

1 + τ
d

dt

)
(σ + Ph) = ζvγγ , (2.26b)

where we introduced the effective bulk viscosity ζ = τχ. Note that the viscous term
is not due to internal friction but describes the coupling of the net cell division rate to
variations in the isotropic stress. The dynamics of the traceless part of the stress is still
described by Eq. (2.20). The two equations are equivalent and show that the density and
the isotropic part of the stress tend to relax to a fixed homeostatic density and pressure
within the relaxation time τ . The Maxwell dynamics of the isotropic part of the stress
is a unique feature of the homeostatic state, which is absent in fluids with a conserved
number of particles even at a liquid vapor critical point [23]. This property is associated
with the fact that in the homeostatic state, the tissue is infinitely compressible. The
pressure does not depend on the volume of the tissue as the number of cells is regulated
by cell division and apoptosis. As a consequence, one can expect giant fluctuations of
the volume of the tissue at constant (homeostatic) pressure.

What does the dynamics look like for an incompressible tissue? In this case, both χ
and τ would be ill-defined since the cell number density is constant, n = n0,h. Before
taking the limit χ → ∞, however, one can express the dependence of the rates of cell
division and apoptosis on the cell number density as a dependence of the isotropic part
of the stress σ via the equation of state (2.14). The obtained functions kd(σ) and ka(σ)
remain well-defined in the limit χ → ∞, i.e., for an incompressible tissue. We can
now expand the cell number growth rate kd − ka close to the homeostatic pressure and
introduce an effective bulk viscosity ζ via

kd − ka =
σ + Ph

ζ
. (2.27)
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Here, ζ is no longer the product of an elastic modulus and a characteristic time scale
defined by Eq. (2.25), but appears naturally in the expansion as ζ−1 = ∂(kd−ka)

∂σ . The
isotropic part of the stress is now determined by

σ = −Ph + ζvγγ , (2.28)

where the constraint vγγ = kd − ka is already taken into account. Not surprisingly, the
above equation can be considered as the limit τ → 0, χ → ∞ of Eq. (2.26b) such that
τχ→ ζ remains finite. Because cells are incompressible, one can neglect the elastic term
at all times, and variations in the isotropic stress immediately translate to tissue volume
growth or shrinkage via an increase or decrease of the net cell division rate. The time
scale τ defined via τ = ζ/χ tends to zero for χ→∞ while ζ remains finite.

The anisotropic homeostatic state

Similarly, a polarized tissue can reach a steady homeostatic state. The steady state
behavior implies again that the cell number density remains constant, n = nh, and that
the cell flow vanishes, vα = 0. The latter condition together with stationarity requires
the existence of a finite anisotropic homeostatic stress σ̃h

αβ = −σ0q̃
0
αβ , as can be seen from

Eq. (2.24). This is the value of the anisotropic stress for which cell division is randomly
oriented on average, see Eq. (2.22), which guarantees stationarity of the source stress.
Though the nematic order parameter q̃αβ vanishes at the homeostatic state, note that the
rates of cell division and apoptosis may still depend on the nematic order parameter q̃0

αβ

which we consider to be set by external conditions.7 Assuming again constant biochemical
conditions and constant q̃0

αβ , the balance of cell division and apoptosis then defines the
homeostatic density via the condition kd(nh) = ka(nh).

As a consequence of the finite polarity of the tissue, if one measures the stress devel-
oped by a uniaxial tissue at steady state, the homeostatic stress in the symmetry axis
direction is different from the homeostatic stress in the directions perpendicular to it.
Conversely, in an ensemble where one imposes stresses, in order to obtain a homeostatic
state one has to set both stresses to their homeostatic values. The case of biaxial order
follows the same logic: In this case, the tissue develops three different homeostatic stress
values in three orthogonal directions of space. In turn, in order to obtain a steady state in
a stress imposed ensemble one has to impose three different values in the three directions.

2.4 Examples of tissue growth

Having laid out the theoretical foundations of a continuum description of tissue mechan-
ics, we discuss two examples of tissue growth in which our framework can be applied.
First, we consider the growth of a spherical cell aggregate, or multicellular tissue spheroid,
embedded in an elastic matrix. Due to the elastic deformation of the matrix, growth will
finally come to a halt. Second, we discuss the growth of an epithelial layer spreading on

7Rotational invariance implies that the rates of cell division and apoptosis depend on scalar invariants
of q̃0

αβ , which for a traceless tensor is to lowest order the contraction q̃0
αβ q̃

0
βα.
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a spherical cap. Here, the nontrivial geometry—which is inspired by the epiboly of the
developing zebrafish embryo [192]—allows predictions about the cell division orientation
due to the stress distribution in a proliferating tissue.

2.4.1 Spheroid growth in an elastic matrix

We consider a tissue spheroid with an initial radius R(0) = R0 at time t = 0, embedded
in an infinite elastic matrix that is initially unstressed, see Fig. 2.5(a) for a sketch.
We assume that the tissue dynamics is described by the constitutive equations (2.20)
and (2.26b), although strictly speaking we do not consider a perturbation close to the
homeostatic state. We want to discuss the dynamics of growth in the limit of long times,
i.e., for t � τ, τa, and neglect therefore the elastic contributions to the tissue stress.
Spherical symmetry implies that v = vr(r)er, and the constitutive equations become

σ = −Ph + ζ
(
∂rvr + 2

vr
r

)
, (2.29a)

σ̃rr = 4
3η
(
∂rvr −

vr
r

)
, (2.29b)

in the limit of long times. Furthermore, σ̃θθ = σ̃φφ = −σ̃rr/2 and σ̃rθ = σ̃rφ = σ̃θφ = 0
due to symmetry. For simplicity, we consider that the matrix can be described as a
simple linear elastic material with shear modulus G. The stress exerted by the matrix
on the tissue is then given by

σE
rr

∣∣
R

= −4G
R−R0

R0
, (2.30)

which is a classic textbook exercise (see e.g. [112] for a derivation). Force balance implies
that σrr(R) = σE

rr

∣∣
R
, and by using vr = 0 we can already find the equilibrium radius at

which growth stops,

R∞ = R0

(
1 +

Ph

4G

)
. (2.31)

Note that we neglected tissue surface tension for simplicity, which would add another
term to the force balance at R. Instead, we would have σrr(R) = σE

rr

∣∣
R
− γ/R, where γ

is a surface tension. Our simplification is justified as long as γ � G(1 + Ph
4G)2R0, given

that γ/R0 < Ph such that the tissue starts to grow at t = 0.
Let us now solve for the dynamics of R(t). Force balance in the tissue is expressed

by

∂rσ + ∂rσ̃rr + 2
σ̃rr − σ̃θθ

r
= 0 , (2.32)

which leads to an ordinary differential equation for vr(r),

∂r

[
1

r2
∂r
(
vrr

2
)]

= 0 . (2.33)

This equation together with the boundary condition vr|r=0 = 0 is fulfilled for vr = cr,
where c(t) is a (time-dependent, i.e. quasi-static) constant to be determined from the
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Figure 2.5. Spheroid growth in an elastic matrix. (a) Cartoon of the initial state and growth
arrest: At time t = 0, the cell aggregate has a radius R0 and the elastic matrix is uncompressed.
Growth stops when the tissue has reached a size R∞ due to the elastic stress of the compressed
matrix. (b) Exemplary growth curves for different values of R∞/R0 = 1 + Ph

4G with time rescaled
by τc, see text for details.

stress boundary condition at r = R. Using Eqs. (2.29) and with Ṙ = vr(R, t), we finally
find a dynamic equation for R(t),

Ṙ =
R

3ζ

(
Ph − 4G

R−R0

R

)
. (2.34)

The growth dynamics is thus given by

R(t) =
R0R∞e

t/τc

R∞ +R0

(
et/τc − 1

) , (2.35)

where we introduced the characteristic time scale τc = 3ζ/(4G+Ph). Examples of growth
curves described by the above equation are shown in Fig. 2.5(b). Note that since the
tissue grows homogeneously, shear stresses do not exist, and the effective shear viscosity
does not appear in the dynamic equation for R(t).

Although the proposed model is quite simple, it qualitatively captures the observed
growth curves for tumor spheroids grown in agarose gels of different stiffness [95]: After
a fast initial growth phase, growth slows down until an equilibrium size is reached, which
diminishes with increasing gel stiffness. For quantitative inferences, however, it is not ob-
vious whether the ensemble of our assumptions are correct. Most probably, the assumed
linear dependence of the cell number growth rate on the isotropic part of the stress does
not hold over a long pressure range. Also, the same authors of the study cited above
observed the free growth of tumor spheroids in culture medium and found a characteristic
time scale of growth arrest comparable to the confined spheroids [95], which cannot be
understood within our model. In general, it is understood that tumor spheroid growth
is eventually limited by nutrient conditions [133], whereas we assumed nutrient abun-
dance and constant biochemical conditions. Furthermore, recent experiments on tumor
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spheroid growth suggest that cells differentiate and adopt different stress dependence of
division and apoptosis close to the edge of the spheroid and in the bulk, respectively [130],
an effect that we neglected here.

2.4.2 Epithelial growth on a sphere

During early zebrafish development, a thin layer of proliferating cells spreads over the
central yolk cell, a process called epiboly [115, 192]. Epiboly is a concerted movement of
cells in which different groups of cells are involved. At the onset of epiboly, blastoderm
cells are located at the animal pole of the yolk cell, see also Fig. 1.2. The blastoderm
is covered by an epithelial monolayer of cells, the so-called enveloping cell layer (EVL).
During epiboly (∼ 3−10.5 h after fertilization), blastoderm and EVL cells spread over the
yolk towards the vegetal pole. Notably, cells do not switch between the blastoderm and
the EVL, so that we can discuss the dynamics of these tissues independently. Inspired
by this geometry, we discuss the growth of an epithelial sheet of cells on a sphere. For
simplicity, we assume that the sphere is rigid and its radius R constant. First, we intro-
duce an effective two-dimensional description of growing tissues, which can be obtained
as a limit of the bulk equations developed in the previous section. We then consider the
case of an incompressible tissue with constant proliferation rate, which allows to capture
the main effects of the imposed geometry on cell division orientation. We finally take a
possible coupling between stress and proliferation rate into account, which gives rise to
spatial inhomogeneities in the proliferation rate.

Effective two-dimensional description

In this section, we derive the effective equations describing tissue dynamics in two di-
mensions for thin, sheet-like tissues like epithelia. We follow the classic thin plate or shell
approximation which is commonly used in the context of elasticity theory [112]. First, we
develop the equations for a planar thin sheet, before using these expressions later with
the corresponding modifications in a curved geometry.

Neglecting external body forces, the total force balance in three dimensions is given
by Eq. (2.4),

∂βσαβ = 0 ,

where Greek indices stand for the Cartesian coordinates (x, y, z). Let us assume that
the tissue is a thin layer of height h along the z-direction. We now express force balance
independently along z and in the (x, y)-plane,

∂βσzβ = 0 , (2.36a)
∂βσiβ = 0 , (2.36b)

where latin indices stand for Cartesian coordinates in the (x, y)-plane. Integrating the
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latter equation over z, we obtain

0 =

∫ h

0
dz ∂βσiβ (2.37a)

= ∂k

(∫ h

0
dz σik

)
+

∫ h

0
dz ∂zσiz (2.37b)

≡ ∂kςik + σiz
∣∣h
0
. (2.37c)

Here, ςik denotes the tensor of tensions in the two-dimensional plane; note that the dimen-
sion of ςik is [Force]/[Length], i.e., a length times the a (three-dimensional) stress. The
first term in the last line is the divergence of the tension tensor in two dimensions. The
second term contains the forces that are transmitted at the upper and lower boundaries,
which are given by the boundary conditions. Due to the reduction of one dimension, they
appear as external body forces in the two-dimensional force balance. The force balance
in the plane can thus be written as

∂kςik = −f ext
i , (2.38)

where f ext
i is now a surfacial force density. In general, one considers momentum transfer

at the boundary due to passive friction, which gives rise to a friction force f ext
i = −γvi .

Analogously, integrating the force balance along z gives

0 = ∂k

(∫ h

0
dz σzk

)
+ σzz

∣∣h
0
, (2.39)

where the first term corresponds to forces in z-direction exerted by the tissue on the
(x, z)- and (y, z)-planes and σzz

∣∣h
0

= σzz(h) − σzz(0) is the sum of the normal forces
exerted at the upper and lower surface. The shear stresses σzk vanish for sufficiently
small h since they are caused by gradients along z of the elastic deformation or flow
velocity in the plane or, respectively, by gradients along (x, y) of the z-components of
the elastic deformation or flow velocity. Force balance normal to the plane thus simply
implies that the forces exerted on the top and bottom surface cancel.

Having discussed force balance, we need to specify how the constitutive equations for
σαβ in the bulk translate to constitutive equations for ςik in the plane. The latter being
defined by

ςik =

∫ h

0
dz σik , (2.40)

we can in principle calculate them straight away. Since all the arguments developed
in the previous section carry over to two-dimensional, i.e. sheet-like, tissues, however,
we can proceed along the same lines in order to obtain the corresponding constitutive
equations. Therefore, we can write for the traceless part

(1 + τa∂t) ςik = 2η′ṽik , (2.41)
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Figure 2.6. Geometry of a tissue growing on a sphere. (a) The surface of the sphere is
parametrized by the polar coordinates θ and φ which induce a local, orthonormal basis (eθ, eφ).
At time t, the tissue covers the sphere up to an opening angle Θ(t). (b) On a sphere, force
balance in the tangential plane involves the forces fθ(θ) = ςθθ(θ)R sin(θ) dφ eθ(θ) and fθ(θ) =
ςφφ(φ)R dθ eφ(φ) . The change of (eθ, eφ) with θ and φ gives rise to additional terms in the force
balance, see text for details.

where ṽik = vik − 1
2vllδik such that ṽii = 0 and we neglect geometric nonlinearities for

simplicity. Note that η′ ∼ hη is a two-dimensional viscosity with the physical dimension
[Force]/[Length]×[Time]. We assume that the isotropic part of the tension tensor is given
by an equation of state

ς = ς(n) , (2.42)

where n is now a surface number density of cells, for which still holds

∂tn+ ∂k (nvk) = n (kd − ka) . (2.43)

For an incompressible tissue, the cell number density is constant, n = n0, and the area
growth rate equals the number growth rate, vkk = kd−ka. In this case, the isotropic part
of the tension ς becomes a Lagrange multiplier in order to satisfy the force balance (2.38).

Force balance in spherical geometry

We now discuss the two-dimensional force balance for a thin sheet in a spherical geometry.
The geometry of the growing epithelium is illustrated in Fig. 2.6(a): The tissue partially
covers the surface of a sphere of radius R up to the opening angle Θ. Each point r on the
surface is parametrized by two angles θ and φ, which induce a local orthonormal basis
tangential to the surface via eθ = ∂θr/||∂θr|| and eφ = ∂φr/||∂φr||.8 The tension tensor
and the cell flow field are defined on the surface and become functions of the spherical
polar coordinates θ and φ. Due to the rotational symmetry around the z-axis, the fields
do not explicitly depend on φ, however. Rotational symmetry implies furthermore that
the cell flow field can be expressed as v = vθ(θ)eθ. Note that although ∂φvθ = 0,

8The surface of a sphere is given by all points r = R sin θ cosφ ex + R sin θ sinφ ey + R cos θ ez.
The orthonormal basis (eθ, eφ) is then defined by eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez and
eφ = − sinφ ex + cosφ ey.
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the unit vector eθ remains a function of φ. This dependence of the local orthonormal
basis on (θ, φ) induces additional terms in the planar force balance, see Fig. 2.6(b). In
the preceding paragraphs, we assumed a planar geometry in order to derive the two-
dimensional force balance in Cartesian coordinates. In coordinate-free notation, force
balance can be expressed as ∇ · ς = γv, where ∇ · ς is the two-dimensional divergence of
the tensor ς. Taking the variation of the basis into account, we obtain9

∂θςθθ + cot θ (ςθθ − ςφφ) = Rγvθ (2.44)

for the force balance in spherical polar coordinates, where ςθθ and ςφφ are given by the
constitutive equations (2.41) and (2.42). A more complete account of the force balance
of thin sheets for arbitrary curved surfaces using a differential geometry approach can be
found in [75]. Because we assume that the sphere is rigid, and the radius of the sphere
constant, we do not need to consider the force balance along the radial direction. Note
however that the isotropic part of the tension gives rise to a Laplace pressure acting on
the underlying sphere.

Growing epithelium with fixed proliferation rate

In the following, we consider an incompressible tissue that proliferates with a fixed pro-
liferation rate kd − ka ≡ k0. We consider the growth dynamics in the limit of long times
and assume that the tensions are purely viscous. Incompressibility implies that the di-
vergence of the cell flow field is set by the proliferation rate. We can write the divergence
of the cell flow field in spherical polar coordinates, and we obtain10

∂θvθ + cot θ vθ = Rk0 . (2.45)

For an incompressible, proliferating epithelium the cell flow velocity is thus given by

vθ = Rk0 tan θ/2 , (2.46)

which is plotted in Fig. 2.7(a). For k0 > 0, cells flow from the pole at θ = 0 towards
the equator and further with increasing velocity, as all cells behind proliferate and thus
contribute to the flow. With the analytical expression for the cell flow given above,
we can solve the dynamics for the opening angle Θ(t) as a function of time. Since
dΘ/dt = vθ(Θ)/R,

dΘ

dt
= k0 tan Θ/2 , (2.47)

9In Cartesian coordinates, ∇ = ex∂x + ey∂y and ς = ςikei ⊗ ek, where ⊗ denotes the dyadic (or
tensorial) product and i, k = x, y. Force balance ∇ · ς = γv can then simply be expressed as ∂kςik = γvi
since the basis (ex, ey) does not vary in space. In spherical polar coordinates, we have ∇ = eθ

1
R
∂θ +

eφ
1

R sin θ
∂φ, and the stress tensor can be written as ς = ςθθeθ ⊗ eθ + ςφφeφ ⊗ eφ. Note that we used

ςθφ = 0 due to symmetry. The divergence ∇ · ς now includes additional terms due to ∂men 6= 0 for
m,n = θ, φ (cf. note 8), and we obtain the result presented above.

10In coordinate-free notation, the divergence of the cell flow is given by ∇ · v. Taking the variation of
eθ into account, one obtains the above expression, see also notes 8 and 9.
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which for the initial condition Θ(0) = Θ0 is solved by

Θ(t) = 2 sin−1
(
etk0/2 sin Θ0/2

)
. (2.48)

Note that we neglected here any explicit time dependence of the proliferation rate k0.
The time T it takes the tissue to cover the sphere completely is a function of Θ0 and
given by T (Θ0) = −2k−1

0 ln sin Θ0. An example of Θ(t) is shown in Fig. 2.7(e).
In the viscous limit, the traceless part of the tensions depends on the velocity gradient

of the cell flow only, which in spherical geometry is given by11

ς̃θθ = η′ 1
R (∂θvθ − cot θ vθ) (2.49)

and ς̃φφ = −ς̃θθ. Here, we used that v = vθ(θ)eθ. The isotropic tension ς serves as
a Lagrange multiplier and has to be determined from the force balance. Although all
cells divide homogeneously, i.e., with a constant cell division rate, the resulting cell flow
gives rise to shear tensions due to the nontrivial geometry. Without having to solve force
balance, the traceless part of the tension immediately follows from the above equation,
and we obtain

ς̃θθ = η′k0 tan2 θ/2 . (2.50)

In analogy to the theory developed in the previous section, the average cell division
orientation can be described by a two-dimensional nematic tensor q̃mn, wherem,n = θ, φ,
and we assume that q̃mn ∝ ςmn. Therefore, our results imply that cell divisions are
increasingly oriented along eθ for increasing θ, see Fig. 2.7(b). This mechanism of cell
division orientation is purely mechanical and does not depend on external morphogen
gradients or planar cell polarity. Note that this effect is independent of the cell-substrate
friction because of the imposed proliferation rate.

We now discuss the isotropic part of the tension. Force balance (2.44) leads to an
equation for ς,

∂θς = −η′k0

(
2− R2

λ2

)
tan θ/2 , (2.51)

where we introduced the characteristic length scale λ =
√
η′/γ. Together with the

boundary condition ςθθ(Θ) = ς0, where ς0 is the tension applied at the outer rim of the
tissue, we thus obtain

ς − ς0 = η′k0

[
2

(
2− R2

λ2

)
ln

cos θ/2

cos Θ/2
− tan2 Θ/2

]
. (2.52)

Note that in general, the isotropic tension is not homogeneous. This inhomogeneity
of the (surface) tension translates to spatially varying forces exerted by the tissue on

11In coordinate-free notation, the traceless part of tensions is given by

ς̃ = η′Tg
[
∇⊗ v + (∇⊗ v)T − (∇ · v)1

]
,

where 1 denotes the unit tensor in the tangential plane and Tg takes the tangential part (all contributions
proportional to em ⊗ en where m,n = θ, φ) of its argument. See also notes 8 and 9.
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Figure 2.7. Tissue growth with fixed proliferation rate. The velocity profile (a) and—
subsequently—the anisotropic part of the tension (b) within the expanding cell sheet are fixed
by the incompressibility constraint. (c) The isotropic part of the tension depends on the ration
λ/R where λ is a characteristic length scale of friction, see text for details. We plot all fields
for an opening angle Θ = 2π/3, which in general evolves in time. (d) The total time of closure
depends on the initial opening angle Θ0, and (e) we show an example of Θ(t) for Θ0 = π/6.

the underlying sphere. Since we assumed the sphere to be rigid, however, these radial
forces do not have to be considered. The tension profile depends on the ratio λ/R, see
Fig. 2.7(c). For low friction, i.e., λ > R/

√
2 ≡ λc, the isotropic tension ς decreases

towards the tissue border, whereas this behavior is inverted for λ < λc.
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Coupling of proliferation rate and isotropic stress

The above results suggest that, depending on the shear viscosity η′ and the friction
coefficient γ, the isotropic tension varies considerably along the surface. Therefore, one
might ask how a coupling between the cell division rate and the isotropic part of the
tension would influence the dynamics. In the previous example, we investigated the role
of such a coupling for a growing tissue spheroid in three dimensions. Here, we consider
that the cell proliferation rate varies with the isotropic tension and we expand the former
around the tension applied at the outer rim. To first order, the proliferation rate varies
linearly with the tension variations ς − ς0, and we write

kd − ka = k0 +
ς − ς0
ζ ′

. (2.53)

Here, ζ ′ ∼ hζ (note that ζ 6= ς) is an effective two-dimensional bulk viscosity with the
same dimension as η′. Strictly speaking, it is not important around which reference
tension we expand the net cell division rate as long as we consider the dependence on
the tension to be linear. A different reference tension simply translates to a change of
the baseline cell division rate k0.

The constitutive equation for the isotropic tension now reads

ς = ς0 − ζ ′k0 + ζ ′vii , (2.54)

where we used the incompressibility condition vii = kd−ka. The divergence of the cell flow
is no longer constant, and we need to determine vθ via the force balance equation (2.44).
With the above equation for ς, force balance becomes

sin2 θ ∂2
θvθ + sin θ cos θ ∂θvθ +

(
α sin2 θ − 1

)
vθ = 0 , (2.55)

where

α =
2− (R/λ)2

1 + ζ ′/η′

is a dimensionless number. For α→ 0, we recover the limit of constant and homogenous
cell division. The above equation can be solved analytically [150]12, and we finally obtain

vθ = C sin θ f(cos θ) . (2.57)

Here, we used the boundary condition vθ(0) = 0; the remaining constant C can finally be
determined from the tension boundary condition at θ = Θ. The function f(x) is given
by

f(x) = (ν + ν2 − 2)Γ(1− ν
2 )Γ(3+ν

2 ) ∂x F (−ν
2 ,

1+ν
2 , 1

2 ;x2)

− 2ν(1 + ν)Γ(3−ν
2 )Γ(4+ν

2 )∂x
[
xF (1−ν

2 , 1 + ν
2 ,

3
2 ;x2)

]
, (2.58)

12The solution can be found by step-wise variable transformations, as shown in the cited reference [150],
see Eq. 2.1.6.115 ibidem. We would like to point out a misprint in Eq. 2.1.2.154, however, where it has
to be

y = C1 F (− ν
2
, 1+ν

2
, 1

2
;x2) + C2 xF ( 1−ν

2
, 1 + ν

2
, 3

2
;x2) . (2.56)
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where F (α, β, γ; z) is the hypergeometric series13 and ν is related to the dimensionless
number α introduced above via ν2 + ν = α. Examples of the velocity profile vθ for
different ratios η′/ζ ′ and λ/R are shown in Fig. 2.8(a-c). The traceless part of the
tension follows from the cell flow as given by Eq. (2.49). The isotropic part can now
be determined via Eq. (2.54); note that incompressibility is automatically taken into
account. Examples of flow and tension profiles for different values of λ/R and η′/ζ ′ are
plotted in Fig. 2.8(d-i). Due to the coupling between isotropic stress and proliferation,
we observe a variation of the cell division rate with increasing θ, an effect that becomes
more pronounced as η′/ζ ′ is increased. Note that this effect crucially depends on the
ratio λ/R: In the case of negligible friction, isotropic tension is increased at the animal
pole (θ = 0). Thus, cells divide more at the pole and division is reduced towards the
tissue margin. This effect is again purely mechanical and caused by the geometrical
constraints. For λ < λc, the opposite behavior can be observed. Due to the high cell-
substrate friction, the tension applied at the tissue margin is reduced towards the animal
pole. Therefore, cell division dominates at the margin. These results are in line with the
results in the case of constant proliferation, given that in the limit of fixed proliferation
rate, we obtained that the isotropic stress ς varies along θ qualitatively in the same way.
In principle, the net proliferation rate can even become negative either close to the tissue
border or at the pole. However, the assumed linear relation postulated in Eq. (2.54) does
certainly not hold for cases in which the tension variations ς − ς0 exceed the reference
tension k0ζ

′.

The above description of two-dimensional tissue growth on a sphere can hardly be
considered to be anything more than an oversimplified toy model of zebrafish epiboly.
Nonetheless, it is not unconceivable that the predicted pattern of cell division can be ob-
served experimentally, which would be a significant confirmation of the theory of tissue
growth developed in the previous sections. The nontrivial geometry gives rise to oriented
cell divisions for an otherwise isotropic tissue, a new and purely mechanical effect. Fur-
thermore, the reduction of our theory to two dimensions naturally leads to a cell-substrate
friction term in the force balance that qualitatively changes the tension distribution in
the tissue that might be observed experimentally. In order to get to a more complete
description of the morphogenetic processes during epiboly, possible other contributions
would probably have to be taken into account. First, we assumed substrate friction to be
purely passive for simplicity. In principle, cells can generate forces and actively migrate
on the underlying substrate, an effect that we neglected here. Second, we assumed the
yolk cell to be rigid; a more detailed description might take the elastic deformation of
the yolk into consideration. Last but not least, rotational symmetry around the z-axis
is eventually broken, which definitely deserves careful study.

13The hypergeometric function is defined as

F (α, β, γ; z) = 1 +

∞∑
k=1

(α)k(β)k
(γ)k

zk

k!
,

where (α)k = α(α+ 1) · · · (α+ n− 1).
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Figure 2.8. Coupling of isotropic tension and proliferation rate. (a-b) Velocity profile for
different ratios λ/R and η′/ζ ′ and an opening angle Θ = 2π/3. The dependence of vθ on Θ
is shown in (c). The corresponding plots for the traceless part of the tension and the isotropic
tension are shown in (d-f) and (g-i), respectively. Note that the deviation of the proliferation
rate kd − ka from the “equilibrium” value k0 is given by (kd − ka)− k0 = (ς − ς0)/ζ ′, see text for
details.

2.5 Fluctuations

In the previous sections, we considered cell division and apoptosis as purely deterministic
processes. In statistical-mechanical terms, we studied the mean-field behavior of tissue
growth. However, cell division and cell death are stochastic processes, at least in the sense
that the cell division times as well as the average life time of a cell follow a distribution of
times.14 To first order, this stochasticity can be described by additional noise terms in the
dynamic equations. In this section, we study the effect of such noise on the mechanical
properties of a tissue. For the sake of simplicity, here we only consider the vicinity of the
homeostatic state of an isotropic non-polarized tissue.

14Biologists may feel offended by the notion of cell division and apoptosis being stochastic, given all
the precise regulation machinery inside cells. Determinism at the cellular scale does not change our
argument, however.
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2.5.1 Stress and velocity fluctuations

The stochasticity of cell division and cell death introduces noise in the cell number balance
equation (2.1), which we now write as

∂tδn+ nh∂αvα = −δn
τ

+ ξc . (2.59)

Here, we introduced the number density variations δn = n− nh and used the expansion
of the net cell number growth rate around the homeostatic density, Eq. (2.25). The
cell division and apoptosis noise has a vanishing average 〈ξc〉 = 0 . In order to obtain
an expression for the correlation function of this noise, we approximate the stochastic
dynamics of the cell number density by a simple birth-and-death process with equal and
constant rates. In the absence of convective flows, the noise correlator is then given by
〈ξc(r, t)ξc(r0, t0)〉 = nh (kd + ka) δ(r− r0) δ(t− t0) [74].

The random cell division and apoptosis events give rise to fluctuations in the stress.
The isotropic stress fluctuation is related to the density fluctuation by the equation of
state. Close to the homeostatic state, we therefore write

(1 + τ∂t) (σ + Ph) = ζvγγ − ξ , (2.60)

where ζ = τχ is the effective bulk viscosity introduced above and ξ = ξcζ/nh the rescaled
noise due to cell division and apoptosis. Noise must also be introduced in the equation
for the traceless part of the stress tensor, associated with fluctuations of cell shape and
of the orientation of cell division. The constitutive equation for the shear stress then
becomes

(1 + τa∂t) σ̃αβ = 2ηṽαβ + ξ̃αβ . (2.61)

We do not give here a microscopic description of this noise. We only assume that the
fluctuations are correlated over time scales much shorter than the cell division time so
that this noise can be considered as local in time. It has zero mean, 〈ξ̃αβ〉 = 0 , and
because of the symmetry of the traceless component of the stress tensor its correlations
are characterized by a noise strength θ with 〈ξ̃αβ(r, t)ξ̃γδ(r0, t0)〉 = θ(δαγδβδ + δαδδβγ −
2
3δαβδγδ)δ(r− r0)δ(t− t0) .

We decompose all quantities in Fourier modes in space and time with the conven-
tion f(q, ω) =

∫
dt
∫

dr e−i(qr−ωt)f(r, t) . Using the force balance equation ∂ασαβ = 0
and Eqs. (2.60) and (2.61), one can calculate the density fluctuation and the velocity
fluctuation as a function of noise. The density fluctuation in the homeostatic state reads

δn =
τnh

η̄ (1− iωτ̄)

[
4
3(η/ζ)ξ + qαqβ ξ̃αβ/q

2
]
, (2.62)

where we introduced the longitudinal viscosity η̄ = ζ + 4
3η and an effective relaxation

time τ̄ = (τaζ + τ 4
3η)/η̄ . In order to calculate the velocity fluctuations, we decompose

the velocity into a longitudinal and a transverse component, vα = v||qα/q + v⊥α . We
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finally obtain

v|| =
1

iq

1

η̄ (1− iωτ̄)

[
(1− iωτa) ξ − (1− iωτ) qαqβ ξ̃αβ/q

2
]
, (2.63a)

v⊥α =
i

ηq2

(
qβ ξ̃αβ − qαqβqγ ξ̃βγ/q2

)
. (2.63b)

2.5.2 Diffusion of cells at the homeostatic state

In order to illustrate the role of the fluctuations in the tissue, we consider a tracer particle
of radius a immersed in the tissue and moving by Brownian-type motion with the cell
flow [20]. Due to random cell division and apoptosis, the particle diffuses in the tissue.
In three dimensions, the diffusion constant is defined as

D = lim
t→∞

〈r2
p(t)〉
6t

,

where rp stands for the position of a tracer particle. The position can be expressed in
terms of the flow field vα(r, t) in which the particle moves, and we find

D =
1

3

∫ ∞
0

dt 〈vα(rp(t), t)vα(rp(0), 0)〉

=
1

3

∫ ∞
0

dt

∫
d3q

(2π)3

∫
d3q′

(2π)3

〈
ei[qrp(t)+q′rp(0)]vα(q, t)vα(q′, 0)

〉
. (2.64)

We make here the approximation that fluctuations in particle positions and velocity
fluctuations in the tissue are decoupled and that the particle position fluctuations follow
a Gaussian distribution,〈

eiq[rp(t)−rp(0)]
〉

=

∫
d3r

1

(4πDt)3/2
e−

r2

4Dt eiqr

= e−q
2Dt . (2.65)

The diffusion coefficient is thus given by

D =
1

3

∫ ∞
0

dt

∫
d3q

(2π)3
e−q

2DtCvv(q, t) , (2.66)

where we introduced the velocity-velocity correlation function Cvv(q, t) defined by

〈vα(q, t)vα(q ′, 0)〉 = (2π)3δ(q + q ′)Cvv(q, t) . (2.67)

Furthermore, we assume that the velocity-velocity correlations decay fast compared to
the characteristic time scale defined by diffusion, i.e., τ̄ � a2/D. A detailed discussion
and a calculation where this latter assumption is relaxed can be found in appendix B. The
finite size of the tracer particle implies the existence of a cut-off wave-length qmax = π/a
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related to the tracer particle’s radius a. The expression of the diffusion constant then
simplifies to

D =
1

6

∫ qmax

0

d3q

(2π)3
Ĉc
vv(q, ω)

∣∣
ω=0

, (2.68)

where the Fourier transform Ĉc
vv(q, ω) of the cell velocity correlation function is defined

according to

〈vc
α(q, ω)vc

α(q ′, ω′)〉 = Ĉc
vv(q, ω)(2π)4δ(q + q ′)δ(ω + ω′) . (2.69)

The velocity correlation function can be directly calculated from Eqs. (2.63). The
diffusion constant in the homeostatic state then reads

D =
1

6πa

{
1

(ζ + 4
3η)2

[
ζ2kd

nh
+

2

3
θ

]
+

θ

η2

}
. (2.70)

The diffusion constant therefore varies with the cell division rate kd. In order to make the
result more transparent, we assume in the following that the tissue is hardly compressible
so that ζ � η . In this limit, the expression for the diffusion constant reduces to D =

1
6πa

[
kd
nh

+
(
nhd̃kd
σ0µ

)2
θ

]
. Here, we have expressed η = τaµ and d̃ = d̃d + d̃a. The diffusion

coefficient increases with the cell division rate and varies linearly with the cell division
rate at small values of kd. Note however that the noise intensity θ could itself be a
function of kd.

2.5.3 Height fluctuations of a tissue layer

Another illustration of the role of cell division noise are the height fluctuations of a tissue
at the homeostatic state. We consider a layer of tissue plated on a solid substrate; the
height of the tissue layer along z is given by h(x, y), see Fig. 2.9 for a sketch. On its upper
surface, the tissue is covered by a membrane with surface tension γ and bending modulus
κ. The membrane is subject to a constant external pressure Ph such that the tissue
is at the homeostatic state to zeroth order. For simplicity, we consider the dynamics
on long times only and keep only the viscous part of the stresses in the constitutive
equations (2.20) and (2.26b).

The boundary conditions are specified as follows. The normal velocity vz vanishes
at z = 0, and the tangential stresses σiz, where i = x, y, vanish at z = 0, h which
corresponds to full-slip boundary conditions. The normal stresses at the upper boundary
are continuous and given by

σzz(h) = −Ph + γ∆⊥h− κ∆2
⊥h , (2.71)

where ∆⊥ = ∂k∂k. Here, latin indices denote Cartesian coordinates in the (x, y)-plane,
and the Einstein summation convention is implied.

In the following, we want to determine the mean square amplitude of the height
fluctuations of the tissue due to cell division noise. Therefore, we calculate the spectrum
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Figure 2.9. Cartoon of a tissue layer on a solid substrate. (a) Here, the tissue is covered by
a membrane with surface tension γ and bending modulus κ. Spatial variations of tissue height
h(x, z) thus give rise to additional normal stresses at the upper surface on top of the homeostatic
pressure, see text for details. Because of the stochasticity of cell division and apoptosis, the
height h exhibits fluctuations around the mean height H. (b) The same tissue covered by a stiff
piston. Due to cell division noise, the piston position, i.e., the tissue height H, fluctuates as long
as the system size is finite, see text for details.

of the height fluctuations by solving the force balance equation for the cell flow in Fourier
space. We switch to the Fourier domain for the spatial dimensions in the (x, y)-plane
according to f(z,q, t) =

∫
dx
∫

dy e−i(qxx+qyy)f(r, t) . Furthermore, we introduce the
deviatoric isotropic stress δσ = σ + Ph relative to the homeostatic pressure. Force
balance then reads

∂zδσ + ∂zσ̃zz + iqkσ̃zk = 0 , (2.72a)
iqkδσ + ∂zσ̃zk + iqlσ̃kl = 0 , (2.72b)

where the components of the stress tensor are given by

δσ = ζ(∂zvz + iqkvk)− ξ (2.73a)

σ̃zz = η(4
3∂zvz − 2

3 iqkvk) + ξ̃zz (2.73b)

σ̃zk = η(∂zvk + iqkvz) + ξ̃zk (2.73c)

σ̃kl = η(iqkvl + iqlvk − 2
3(∂zvz + iqmvm)δkl) + ξ̃kl . (2.73d)

These are the constitutive equations (2.60) and (2.61) in the presence of noise in the
limit of long times. In principle, one could keep the finite viscoelastic relaxation times.
Then, one would have to switch to the Fourier domain in time in order to express the
stresses as functions of the cell flow, which would give rise to prefactors ∼ (1 − iωτ)−1.
The limit of long times then corresponds to the limit ω → 0.

Inserting the above relations into the force balance, one can eliminate the vi and
we obtain an equation for vz only. In the following, we restrict ourselves to the limit
q � 1/h. In this case, variations along x and y are small and their contributions to the
viscous stresses can be neglected. Equation (2.72a) then becomes ∂z(δσ + σ̃zz) = 0, and
with the boundary condition (2.71) we obtain

η̄∂zvz − ξ + ξ̃zz = −
(
q2γ + q4κ

)
δh , (2.74)

where we introduced the height variations δh = h−H around the mean height H of the
tissue layer. Furthermore, η̄ = ζ + 4

3η denotes the longitudinal viscosity.
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In real space, the dynamics of the membrane is determined by the normal velocity at
z = h(r⊥, t) via

∂tδh(r⊥, t) = vz(H + δh(r⊥, t), r⊥, t) . (2.75)

This relation cannot be transformed into Fourier space because of the additional, implicit
dependence of vz on r⊥ via h(r⊥, t) on the right-hand side. Doing linear fluctuation
theory, however, the noise terms can be considered to be a small perturbation. Therefore,
we can write

∂tδh(r⊥, t) ' vz(H, r⊥, t) (2.76)

to linear order, neglecting the dependence of vz on δh. Because both vz(H, r⊥) and δh(r⊥)
scale with the noise (i.e., vanish in the absence of noise), taking this dependence into ac-
count would give rise to terms of higher order. The relation can now be transposed to the
Fourier domain in a straightforward way, such that one finds ∂tδh(q⊥, t) ' vz(H,q⊥, t).
Integrating equation (2.74) over z thus allows to determine the dynamics of the tissue
height, and we obtain

∂tδh+
q2γ + q4κ

η̄
H δh =

1

η̄

∫ H

0
dz (ξ − ξ̃zz) . (2.77)

Using the Fourier transform δh(q, ω) =
∫

dt eiωtδh(r, t), we can express the above equa-
tion as

δh(q, ω) =

∫ H
0 dz (ξ − ξ̃zz)

−η̄iω + (q2γ + q4κ)H
(2.78)

in the Fourier domain in time. From this expression we can now calculate the equal
time mean square amplitude fluctuations 〈|δh(r, t)|2〉. For the height-height correlation
in Fourier space, we find

〈δh(q, ω)δh(q′, ω′)〉 =

∫ H
0 dz

∫ H
0 dz′ 〈(ξ − ξ̃zz)(ξ − ξ̃zz)〉

[−iη̄ω + (q2γ + q4κ)H][−iη̄ω′ + (q′2γ + q′4κ)H]
(2.79a)

=
2
(
ζ2kd/nh + 2

3θ
)
H

η̄2ω2 + (q2γ + q4κ)2H2
(2π)3δ(q + q′)δ(ω + ω′) , (2.79b)

where we used that the noise correlator in Fourier space is given by

〈(ξ − ξ̃zz)(ξ − ξ̃zz)〉 = 〈ξξ〉+ 〈ξ̃zz ξ̃zz〉 (2.80a)

=

(
2ζ2kd

nh
+

4

3
θ

)
(2π)3δ(z − z′)δ(q + q′)δ(ω + ω′) . (2.80b)

Note that the spectrum of height fluctuations given in Eq. (2.79) does not depend on
the mean height H of the tissue. At first sight, this might seem surprising, given that
the whole tissue below the membrane contributes to the fluctuations. The height fluctu-
ations around the mean height H are governed by the excess pressure due to membrane
deformation, however, and the mean height H drops out.



2.5. Fluctuations 59

With

〈δh(r, t)δh(r, t)〉 =

∫
d2q

(2π)2

∫
d2q′

(2π)2

∫
dω

2π

∫
dω′

2π
ei[(q+q′)r−(ω+ω′)t]〈δh(q, ω)δh(q′, ω′)〉

(2.81)
one finally finds

〈|δh(r, t)|2〉 =
1

2π

∫ π
lc

π
L

dq
ζ2kd/nh + 2

3θ

η̄(qγ + q3κ)
(2.82)

for the mean square amplitude fluctuations of the tissue height. Here, we introduced two
cut-off wavelengths. The large wavelength cut-off L '

√
A is related to the surface area

A of the fluctuating tissue layer. For an infinitely extended tissue, the height fluctuations
eventually diverge. The microscopic cut-off lc is a priori related to the length scale of
the tissue at which the continuum description fails and thus of the order of the size of a
cell. Note however that we neglected viscous stresses in the plane under the assumption
q � 1/h. We therefore choose a short wavelength cut-off which is a cross-over length
scale H � lc � L. If large wave-length fluctuations dominate, the dependence on the
microscopic cut-off can be neglected and the result is consistent with the assumption
q � 1/h. In any case, we only have to convince ourselves that the short wave-length
contributions for q > π/lc do not contribute significantly to the amplitude of the height
fluctuations.

Another remark is due here. The above expression that we obtained for the mode
spectrum of the height-height correlations is analogous to the case of a fluid membrane
subject to thermal fluctuations [41]. Whereas for a fluid membrane the mode spectrum
follows in a straightforward way from the equipartition theorem, we used here force
balance in order to calculate the fluctuations caused by non-thermal cell division noise.
To linear order, the structure is equivalent, however, and we can discuss the tissue height
fluctuations using the same concepts as for a thermally fluctuating membrane.

Let us consider two limiting cases. First, consider q2κ� γ for qmin ≤ q ≤ qmax. The
integral in Eq. (2.82) then evaluates to

〈|δh(r, t)|2〉 ' ζ2kd/nh + 2
3θ

2πη̄γ
ln
L

lc
. (2.83)

In this case, we cannot neglect the dependence on the short wave-length cut-off lc. Note
however that we obtain the scaling of the mean square amplitude of the fluctuations with
L, which shows a logarithmic divergence. Therefore, the tissue height does not display
long-range positional order; however, orientational order is conserved, see also [41].

We now turn to the case γ = 0. In this limit, the mean square amplitude fluctuations
are more violent and we get

〈|δh(r, t)|2〉 ' ζ2kd/nh + 2
3θ

4π3η̄κ

(
L2 − l2c

)
, (2.84)

or

〈|δh(r, t)|2〉 ' ζ2kd/nh + 2
3θ

4π3η̄κ
L2 (2.85)
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Figure 2.10. Fluctuating tissue surface. (a) The surface normal n varies along r⊥ due to cell
division noise. (b) If a surface does not exhibit long-range orientational order, it crumbles on
length scales larger than the persistence length lp, and the assumption of no overhangs is no
longer justified. (c) One can discuss the Helfrich collision length Lh for which the root mean
square height fluctuations 〈|δh|2〉1/2 are of the order of the mean height H, see text for details.

provided L� lc. The root mean square of the height fluctuations scales with the lateral
dimension of the tissue. In this case, the surface is said to be rough, and one can define
a wandering exponent ν via 〈|δh|2〉1/2 ∼ Lν [41]. Here, ν = 1. A rough interface does
not display long-range orientational order, and the surface becomes eventually crumpled
on large length scales.

In principle, one can calculate the characteristic length scale on which the orientation
of the surface decorrelates [41, 50]. We can calculate this persistence length in the
following way. The variation of the surface normal n is given by δn(r⊥) = n(r⊥)− ez '
−∇⊥h(r⊥), see also Fig. 2.10(a). Therefore, one obtains

〈|δn(r, t)|2〉 ' 〈|∇⊥δh(r, t)|2〉

=
ζ2kd/nh + 2

3θ

2πη̄κ
ln
l

lc
, (2.86)

where l is an upper cut-off length. The persistence length lp is defined as the length for
which 〈|δn(r, t)|2〉 is of the order of unity, and one finds

lp ∝ e
2πη̄κ

ζ2kd/nh+ 2
3 θ . (2.87)

For the dynamics of a tissue layer discussed here, the description breaks down on length
scales larger than this persistence length. Most importantly, the tissue height h with
respect to the solid substrate becomes ill-defined and the assumption of no overhangs
does no longer hold, see Fig. 2.10(b).

There is another, shorter length scale at which the description breaks down, however.
Because the tissue has a finite mean height H and the tissue surface is not fluctuating in
free space as it could be the case for a fluid membrane, fluctuations eventually reach the
solid substrate at z = 0. We can therefore define the Helfrich collision length LH [94],
being the system size at which the root mean square amplitude fluctuations are of the
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order of the tissue height H. From Eq. (2.85) we find

LH = H

√
2πη̄κ

ζ2kd/nh + 2
3θ
. (2.88)

On length scales larger than LH, the tissue layer eventually breaks up into islands
of smaller aggregates, see Fig. 2.10(c). Strictly speaking, the linear approximation
∂th(r⊥, t) = v(H, r⊥, t) does break down for height fluctuations of the order of the mean
height. The existence of a characteristic length scale of tissue fracture can nevertheless
be expected, and we expect its scaling to follow Eq. (2.88).

Diffusing piston

Let us now discuss the fluctuations of a tissue covered by a stiff piston. The tissue height,
or piston position, is simply given by H and does not vary in space, see Fig. 2.9(b). Force
balance at z = H now simply reads σzz(H) + Ph = 0, since no additional terms due to
local height variations appear. Due to translational symmetry in the (x, y)-plane, i.e., for
large enough tissues, we can again neglect spatial variations along r⊥. The force balance
along z then becomes

η̄∂zvz =
1

A

∫
A

d2r⊥ (ξ − ξ̃zz) , (2.89)

where we averaged the cell division noise over the surface area of the piston. Integration
over z is straightforward, and we obtain

∂tH =
1

η̄A

∫ H

0
dz

∫
A

d2r⊥ (ξ − ξ̃zz) . (2.90)

This equation is not a linear approximation as the corresponding equation (2.77) in the
previous case because H does not depend on r⊥. Note however that the height H is now
a random variable and fluctuates in time.

If the tissue surface area A is large compared to the tissue height H such that
√
A�

H, we can assume that fluctuations are small and δH ≡ H −H0 � H0 on intermediate
times, where H0 is a reference tissue height at t = 0. This allows us to calculate the
fluctuations of δH at short times, i.e., as long as the fluctuations are small compared to
H0. One can then define an effective diffusion constant for the piston via

Deff =

∫ T

0
dt 〈Ḣ(t)Ḣ(0)〉 (2.91a)

' 1

(η̄A)2

∫ H0

0
dz

∫ H0

0
dz′
∫
A

d2r⊥

∫
A

d2r′⊥ 〈(ξ − ξ̃zz)(ξ − ξ̃zz)〉 , (2.91b)

and one eventually obtains

Deff =
2H0

η̄2A

(
ζ2kd

nh
+

2

3
θ

)
. (2.92)
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Due to the vanishing compressibility of the tissue at the homeostatic state, one can
expect giant fluctuations of the tissue height. This is indeed reflected by the fact that
Deff ∝ H0. In principle, this diffusive mode of the mean height H adds up to the local
height fluctuations discussed in the preceding paragraphs. Note however that this mode
vanishes for A→∞.

What is the characteristic time scale tD at which this approximation breaks down?
If one naively assumes that tDDeff = H2

0 , one immediately finds

tD = H0/
√
Deff

=
η̄
√
AH0√

2
(
ζ2kd/nh + 2

3θ
) . (2.93)

For times t � tD, the effective diffusion coefficient does capture the fluctuations of the
piston. At times close to or longer than tD, the tissue height fluctuations are of the
order of the order of H0, and the change of the diffusion constant needs to be taken into
account. Moreover, the state H = 0 acts as an absorbing boundary, such that the tissue
will eventually suppressed at long times. Note however that in analogy to a linear birth
and death process with equal probability of birth and death, the mean first passage time
to suppression diverges for all heights H0 [74].

2.6 Comparison of analytical results to numerical simula-
tions

In order to test the ideas presented in the previous sections, we performed numerical
simulations of dynamic tissues. From these simulations we determined both the tissue
viscosity and the diffusion constant of individual cells (which can be considered as tracer
particles) as a function of the cell division rate in the homeostatic state.

A single-cell based model of tissue growth

The simulations have essentially been developed by Markus Basan and Jens Elgeti. Here,
we give only a short summary of the model used to simulate tissues; a more detailed
description can be found in appendix C.1. In short, we use a few intuitive rules for cell
behavior to simulate the growth of a three dimensional tissue. Each cell is represented
by two point particles which interact via a repulsive potential. The separation of the
particles due to repulsion corresponds to cell growth. When the particles reach a critical
distance, the cell divides. This is described by inserting two new particles close to the
initial ones, thereby adding one new cell. As this process repeats, the tissue grows, see
Fig. 2.11.

Neighboring cells interact with each other via a short range repulsive and a long range
attractive potential. Furthermore, dissipative particle dynamics (DPD, [86, 97]) is used
to describe effects of internal friction and fluctuations. The DPD method is a stochastic
simulation technique that can locally conserve momentum as required for hydrodynamic
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Figure 2.11. Single-cell based model of growing tissues. Individual cells are represented by two
particles (left). Growth is mimicked by a repulsive potential that drives these particles apart,
and the cell divides after a threshold distance between the two initial particles is reached. This
process repeats in time (images from left to right), see text for details.

behavior. Finally, to mimic apoptosis cells are randomly removed at a rate independent
of time and pressure.

Tissues that are grown in a box with fixed walls or with periodic boundary conditions
reach a homeostatic state at which cell division and apoptosis balance on average. As
we argued above, the tissue exhibits a finite characteristic pressure at the homeostatic
state. The dependence of this homeostatic pressure on the model parameters has been
studied in detail by Basan and colleagues, see reference [16]. Here, we focus on the results
obtained for the effective viscosity at the homeostatic state and the diffusion constant of
cells.

Viscosity

In our simulations, we measure the shear viscosity of a tissue grown between two walls
until reaching the homeostatic state (using periodic boundary conditions in the plane).
We shear the tissue by moving the top wall with a prescribed velocity relative to the
bottom wall while keeping their distance fixed. The boundary conditions at the wall
are described in appendix C.1. We determine the shear rate from the measured velocity
profile in the tissue, and we measure the stress exerted on the walls. For most values of
the imposed velocity gradient, the stress is a non-linear function of shear rate and the
tissue shows shear thinning. At small shear rates however, the viscosity is given by the
ratio of stress to shear rate in linear response. We also refer to a later work where the
non-linear rheology has been probed in more depth [16].

We first perform these simulations for a reference system with parameters given in the
appendix. Parameters used in the other simulations are specified relative to this reference
system. Figure 2.12 shows the variation of the viscosity η as a function of the division
rate kd for different parameter choices. For large values of kd, the viscosity decreases as a
function of the division rate with a power law η ∝ k−1.2

d close to our prediction η ∝ k−1
d .

On short time scales, the tissue behaves as a solid. On times long compared to the
inverse cell division rate kd, the tissue starts to flow and is well characterized by a shear
viscosity η. Note however, that the tissue starts to flow even for vanishing cell division
rate if the imposed stress is larger than a critical yield stress.
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Figure 2.12. Viscosity in a shear simulation. The viscosity is determined for different tissue
parameters: standard/reference tissue (red), reduced growth force (B∗ = 0.5, blue), reduced
adhesion (f∗1 = 0.6, pink), and reduced noise intensity (T ∗noise = 0.1, light blue). The viscosity
is rescaled to the value obtained for the reference tissue with reference cell division/apoptosis
rate. We use simulation units p0, t0 and l0, see appendix C.1. In these units, the viscosity of the
standard tissue is ηref = 0.15 p0t0 . The asterisks indicate dimensionless parameters which take
the value 1 for the standard tissue.
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Figure 2.13. Diffusion coefficient of cells D in a tissue simulation. Here, the dependence of D
on the division rate kd in the homeostatic state is shown for a reference system (red), simulations
with reduced growth force (B∗ = 0.5, blue), and decreased adhesion strength (f∗1 = 0.6, purple).
The green line shows a linear fit to the data. The diffusion coefficient is rescaled to the value
obtained for the reference tissue with reference cell division/apoptosis rate. In simulation units
(see appendix C.1), Dref = 0.85 l20t
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0 .
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Diffusion

In order to determine the diffusion coefficient of cells in the simulations, we let a tissue
grow in a cubic compartment with periodic boundary conditions until it reaches the
homeostatic state. Subsequently, we track cells individually and calculate their mean
squared displacement (MSD). In the absence of cell turnover (no division or apoptosis),
the displacement increases initially with time, but saturates at a finite value. This
indicates caging and solid-like behavior. In the presence of cell division and apoptosis,
the displacement shows diffusive behavior. We determine the diffusion coefficient by
a linear fit to the MSD. The resulting diffusion coefficients displayed in Fig. 2.13 are
proportional to kd as expected from our theory. Note that the MSD of a cell over its
lifetime remains the same for different values of the cell division rate.

2.7 Discussion

In this chapter, we developed a continuum description of growing tissues incorporating
the effects of cell division and apoptosis. The first important result of this work is that
cell division and apoptosis introduce a dynamic reorganization of elastic tissues that
leads to liquid-like behavior with well-defined shear and bulk viscosities on long time
scales and in the vicinity of the homeostatic state. Whereas it has been argued before
that tissues behave effectively as viscous fluids on long times, we show explicitly how
the dynamic orientation of stress sources due to cell division and apoptosis events leads
to a relaxation of the shear stress. Our analytical calculation of the shear viscosity can
well describe simulations capturing the essence of cell duplication and apoptosis. The
relaxation of the traceless part of the stress in the tissue is due to a bias of cell division
anisotropy by local stress. From a theory point of view, the coupling of average cell
division anisotropy to shear stresses arises naturally in isotropic tissues as a first order
term in a linear expansion in the (mechanical) perturbation. The stipulated bias on the
axis of cell division has been demonstrated in spectacular experiments for single cells in
elastic environments [61, 178], and it is hypothesized that similar mechanisms are at work
when orienting cell divisions in tissues [126]. Close to the homeostatic state at which cell
division and cell death balance, an effective bulk viscosity arises from the coupling of the
net cell division rate to excess isotropic stress relative to the homeostatic pressure [17].
A unique consequence of these cellular reorganizations in the vicinity of the homeostatic
state is the absence of a compression modulus. As a result, imposing cell pressures
either slightly larger or slightly smaller than the homeostatic pressure leads either to
the complete disappearance of the tissue or on the contrary to a complete invasion of
space by the growing tissue. However, these stress relaxation mechanisms due to cell
division and apoptosis do not exist for all cell types. Whether or not these effects can
be observed in practical situations depends on the actual values of τ and τa compared to
the observation time.

To illustrate the described tissue dynamics, we considered the growth of a multicellu-
lar spheroid embedded in an elastic matrix. Growth eventually comes to a halt when the
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elastic stress exerted by the gel equals the homeostatic pressure of the cell aggregate, and
cell division and apoptosis balance. The growth dynamics corresponds qualitatively to
experimentally observed growth curves [95]. In principle, one could calculate an effective
homeostatic pressure from the observed radius at growth arrest if the initial radius and
the matrix shear modulus are known. However, the strong dependence of the homeo-
static pressure on the initial radius of the aggregate makes quantitative inferences rather
difficult since the initial radius is experimentally hard to control, and it is not sure what is
the equilibrium radius of the cavity in the unstressed matrix. Furthermore, other effects
are supposed to play a role, such as nutrient limitation [133] and surface effects [130],
which we neglected here.

Another example of tissue growth under mechanical constraints is the epiboly of the
developing zebrafish embryo, see also Fig. 1.2 in the introduction. During epiboly, cell
division is fast, as cells in the enveloping cell layer (EVL) divide approximately three
times while spreading on the yolk cell [115]. As a simple toy model of zebrafish epiboly,
we studied the example of a tissue layer that spreads on a rigid sphere due to continuous
cell proliferation. Our results suggests that stresses due to cell division and apoptosis
may contribute to the observed cell flow. Due to the spherical geometry, even isotropic
growth gives rise to anisotropic shear stresses, which eventually may orient cell divisions
in the EVL. An experimental confirmation of the predicted cell division pattern—if no
other planar cell polarity pathways establish global tissue order—would be beautiful evi-
dence in favor of the theory developed in this chapter. Oriented cell divisions of epiblast
cells (below the EVL) along the animal-vegetal axis have been documented in the litera-
ture [44, 115]; however, the planar cell polarity pathway seems to be involved in spindle
orientation [167]. More careful experimental analysis which probes tissue tension might
be necessary to distinguish different contributions. Our model furthermore suggests that
coupling between isotropic stresses and the rate of cell division may account for spatially
varying cell division rates along the EVL. Here, the friction with the underlying substrate
plays a decisive role: If the characteristic length λ =

√
η′/γ < R/

√
2, cell divisions are

suppressed at the animal pole, whereas this pattern is inverted for λ > R/
√

2.
The second important result of our work concerns the study of noise in the tissue.

Here, we mostly considered the noise due to cell division and cell death. Other sources
of noise such as the noise due to cell shape fluctuations (formation of protrusions for
example) could also play an important role [101, 127, 128]. Density correlation functions
can be measured in the simulations and could be directly compared to experiments. In
the future, such a fluctuation analysis could become an important way to characterize
tissues. A spectacular illustration of the role of noise could be obtained in experiments in
which a tissue is confined by a piston with a constant pressure equal to the homeostatic
pressure acting on the tissue. Starting from the conservation equations with noise, we
showed that the position of the piston is diffusing with a diffusion constant D ≈ H(kd+ka)

nA ,
where A is the area of the piston and H is the tissue thickness. These giant fluctuations
are associated with the vanishing compressibility of the tissue that we obtain in the
hydrodynamic theory.

In the description developed above, we assumed that the only stress relaxation mech-
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anisms are cell division and cell death. In the case where the adhesion is not too strong,
other stress relaxation mechanisms can exist, for example those related to fluctuations
of cell shape and the remodeling of cell-cell junctions [128, 121]. The theory devel-
oped in this chapter can be easily modified to take additional relaxation modes into
account. Instead of starting from the constitutive equation for an elastic material in
the absence of cell division and apoptosis, one could consider a viscoelastic constitutive
equation as describing the tissue on times short compared to cell division and apop-
tosis. The rate of change of the traceless part of the stress would then be given by
(D/Dt)σ̃αβ = Cαβγν ṽγν + (D/Dt)σ̃s

αβ − σ̃αβ/τ0, where τ0 is the rate of stress relaxation
in the absence of cell turn-over. In this case, our predictions remain very similar but the
stress relaxation rate becomes the sum of the relaxation rates of the various relaxation
modes. The viscous relaxation time can become much smaller than the cell division time
and accordingly the shear viscosity is strongly reduced. This is consistent with recent ex-
periments on young tissues during development or on cancerous tissues where viscosities
of the order or 105 Pa s and viscoelastic relaxation times of the order of a few minutes have
been measured [63, 88]. However, these relaxation modes do not couple to the isotropic
part of the stress, and the time scales for the compression/dilation deformations are still
controlled by cell division and death.

Moreover, we presented here only a linear description of the rheology of tissues. Our
simulations suggest that tissues show shear thinning, i.e., that their viscosity decreases
with the shear rate, when the shear rate is large compared to the division and apoptosis
rates. Another non-linear effect observed in the simulation is the existence of a yield
stress which corresponds to a plastic behavior of the tissue. The yield stress again exists
only at very low values of the cell division rate. A more detailed analysis of the rheology
of the tissues simulated by the model presented here can be found in reference [16]. The
single-cell model of tissue growth has also been applied successfully in order to simulate
the growth of tissue spheroids subject to an external pressure, see reference [130].

Last, we considered here that the tissue is a one-component fluid. We therefore
implicitly neglect the roles of both the interstitial fluid and of the extracellular matrix
and we do not keep track of total mass conservation. In the next chapter, we develop a
two component hydrodynamic theory of tissues that takes the friction due to permeation
as well as mass conservation into account.
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Chapter 3

Tissue dynamics with permeation

In the previous chapter, we discussed the effects of cell division and apoptosis on the ma-
terial properties of soft tissues. We described growing tissues as continuous media, which
allowed us to understand the coupling between mechanical stresses and the orientation of
cell division and the rates of cell division and apoptosis. In order to keep our argument
simple, we considered the tissue as a one-component system not explicitly accounting
for the material turnover that is necessarily implied by cell division and apoptosis. We
therefore did not discuss the associated fluxes of non-cellular material that may give rise
to additional mechanical conditions. In this chapter, we extend the theory developed
above to a two-component description of tissue dynamics in order to investigate these
effects.

3.1 Introduction: Extracellular matrix and interstitial flow

Animal tissues do not only consist of cells; they are complex assemblies of cells, the
so-called extracellular matrix (ECM) which fills the interstitial space between cells as
illustrated in Fig. 3.1, and the interstitial fluid. The ECM consists of macromolecules
produced and assembled into an organized mesh by the surrounding cells. The actual
composition of the ECM can vary a lot between different tissues and during development,
as its function strongly depends on its structure. In general, the ECM can be described
as a cross-linked network of fibrous proteins filled by a porous hydrated gel of amino
polysaccharides (the glycosaminoglycans). Whereas the glycoaminoglycans usually do
not contribute much to the overall ECM weight, as in the case of connective tissue, they
fill most of the extracellular space [8]. Thus, by forming a hydrogel, the glycoaminogly-
cans can provide mechanical support to the tissue without impeding the fast diffusive
transport of molecules solved in the interstitial fluid.

The glycosaminoglycan Hyaluronan (also called hyaluronic acid) is especially abun-
dant in embryonic tissues, for example. It is a unusually large glycosaminoglycan with
a molecular weight of 8 · 106 that forms hydrophilic gels that swell enormously with wa-
ter. Spun out at a cell’s surface, it often serves as means to create a cell-free space into
which cells can migrate, as a small amount of Hyaluronan is enough to form a gel that

69
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a b

Figure 3.1. Extracellular matrix and interstitial flow. The interstitial space between cells is
filled by a dense matrix of various proteins and polysaccharides. The latter form a swelled hydro-
gel which is permeated by the interstitial fluid. (a) A micrograph of cells and extracellular matrix
in the developing limb bud of a chicken embryo. The scale bar indicates 100µm, image taken
from [8]. (b) Close-up sketch of the interstitial space, arrows indicating interstitial fluid flow.
The green dots represent the abundance of different versatile proteins present in the extracellular
space.

occupies a large volume. The volume ratio of ECM to cells is probably highest in con-
nective tissues, where collagen proteins hierarchically organize into fibers and sheets that
provide tensile strength. ECM elasticity is provided by another protein, Elastin, that
assembles into an extensive cross-linked network of fibers which adopt a “random-coil”
configuration if not stretched. The basal lamina, or basement membrane, that among
other functions separates epithelial tissues from the underlying connective tissue, is a
special form of extracellular matrix. It has a dense, intricate structure consisting of
interconnected collagens, laminins (another fibrous protein), and specific proteoglycans
(glycosaminoglycans attached to a core protein).

Cells can attach to the extracellular matrix via cellular adhesion proteins that attach
to their respective ECM homologues. In many cases, this attachment is mediated via
cellular adhesion proteins called integrins that bind to fibronectin, an ECM protein that
has additional binding domains for collagen as well as for other ECM building blocks.
Because integrins can assemble a cytoplasmic binding complex that links them firmly
to the cell cortex, the latter is finally strongly connected to the collagen network of the
extracellular matrix. A prominent example of such a mechanical link are focal adhesions,
where many integrin-fibronectin binding complexes act together in a cluster. Note that
focal adhesions are mostly formed by cells that are spread on a layer of extracellular
matrix. For cells that are embedded in the ECM, the cell-ECM adhesion contacts are
usually less focalized and more homogeneously distributed [67].

The important role of the ECM in development and in healthy tissue homeostasis only
begins to emerge [103, 163]. The abundance of various ECM proteins and proteoglycans
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suggest all kinds of different roles in cell-cell signaling, some of which already having been
studied. Notably, the ECM is constantly remodeled by the embedded cells in response to
different cues ranging from mechanical stress to specific molecular signals, for example
those induced in the case of injury [68].

As mentioned above, the extracellular space is also penetrated by interstitial fluid
which swells the ECM hydrogel. In normal tissues, the interstitial fluid consists mostly
of blood plasma filtrate that leaks out of capillaries and is subsequently drained by
the lymphatics [174]. In in vitro cell aggregates such as multicellular spheroids, the
interstitial fluid is mostly made up of the culture medium provided. This interstitial
fluid flow provides the cells with nutrients and removes metabolic waste.

Here, we develop a multi-component description of tissues in order to capture the
effects of material turnover and interstitial fluid flow in the extracellular space in the
framework of a continuum theory. Despite the apparent complexity and diversity of the
extracellular matrix in tissues, however, we distinguish here only two different compo-
nents constituting a tissue for simplicity. In the following, we address the dynamics of
homogenous three-dimensional confluent tissues with low ECM to cell mass ratio. On
the relevant time scales of cell division and apoptosis, the ECM surrounding a cell can
be considered as part of that cell, being newly assembled after a cell division or degraded
in the case of apoptosis. Thus, we consider the ECM as part of one single cell/ECM tis-
sue component. In addition, we consider the permeating interstitial fluid as the second
component independently taken into account.

This chapter is organized as follows. In section 3.2, we detail our two-component
description of tissue dynamics. In line with the results obtained in the previous chapter,
we consider the cell/ECM phase to behave as a viscoelastic fluid in the presence of
cell division and apoptosis. We consider the interstitial fluid to behave as a purely
viscous fluid. We show that friction between the fluid and the cell/ECM phase leads to a
Darcy-like relation for the interstitial fluid velocity. We furthermore discuss the dynamics
around the homeostatic state introduced above, where cell division and apoptosis balance
at a given pressure [17]. The two-component description allows to clarify the nature of
the homeostatic tissue pressure as opposed to the hydrostatic pressure. In section 3.3,
we consider the example of a tissue confined in a chamber which is closed at one end
with a movable piston. We solve for the dynamics in the case of both permeable and
impermeable pistons for a tissue close to its homeostatic state. For tissues with low
permeability, i.e., high friction between fluid and cell/ECM phase, we find that the
pressure induced cell division or apoptosis is limited to a region close to the permeable
piston with a characteristic length scale given by the permeability and the effective tissue
viscosity. Section 3.4 presents a discussion of gravitational forces in the context of a two-
component description. As an application, we discuss a treadmilling steady state of a
tissue under its own gravitational load, which can be found if the cell/ECM phase and
the interstitial fluid have different mass densities. In section 3.5, we review the effective
diffusion of cells due to stress fluctuations and find that the effective diffusion constant
is modified by the tissue permeability. The last section of this chapter is devoted to a
discussion of the results.
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3.2 Two-component description of tissue mechanics

The idea to describe tissues as a multi-component system is not new and various math-
ematical models have been proposed in the literature [38, 154, 162], see also section 1.3.
As argued above, we distinguish only two components in order to keep our description
simple: (i) a cell/ECM phase that accounts for both the cells in the tissue and the sur-
rounding ECM, which for simplicity we refer to subsequently as cell phase only, and (ii)
the interstitial fluid that permeates the cell phase. Although the interstitial fluid is a
complex fluid that contains many different proteins and other solvable molecules, we use
here a simplified description and consider it as a simple fluid comprising a single effective
“molecular” species.

The cell and fluid phases are characterized by the cell number density nc and the
fluid particle number density nf , respectively, coarse grained over the size of several cells.
We introduce the effective cell volume Ωc (including a portion of the ECM) and the fluid
particle volume Ωf such that

ncΩc + nfΩf = 1 , (3.1)

which implies that cells and fluid fill space completely. We further define the cell volume
fraction ϕ = ncΩc, and the fluid volume fraction is consequently given by nfΩf = 1−ϕ .

3.2.1 Cell-number balance and material turnover

The cell number density nc obeys a balance equation which includes advection due to
cell flow as well as an additional source term due to cell division and apoptosis,

∂tnc + ∂α(ncv
c
α) = nc(kd − ka) . (3.2)

Here, vc
α is the velocity field of the cells, and kd and ka denote the cell division and apop-

tosis rates, respectively. Note that this equation is identical to the cell number density
balance equation in the one-component theory; no extra terms need to be considered
because of the presence of the second component.

The cell balance equation alone does not imply the conservation of mass, however.
In the two-component description, we can express total mass conservation as

∂t (ncMc + nfmf) + ∂α

(
ncMcv

c
α + nfmfv

f
α

)
= 0 , (3.3)

where Mc and mf denote the average cell and fluid particle mass, respectively, and vf
α is

the fluid flow velocity. From (3.2) and (3.3) we thus find a balance equation for the fluid
particle density,

∂tnf + ∂α

(
nfv

f
α

)
= −Mc

mf
nc(kd − ka)− nc

mf

d

dt
Mc , (3.4)

where (d/dt) = ∂t + vc
γ∂γ is the convected time derivative with respect to the cell flow.

The above equation implies that a cell of mass Mc can be converted into Mc/mf fluid
particles and vice versa when cells die or divide.
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Let us define the compressibility Ξ of the two-component system. The compressibility
is given by the response of the total volume to a variation in pressure with no exchange
of matter,

Ξ = − 1

V

∂V

∂P

∣∣∣
Nc,Nf

(3.5a)

= −nc
∂Ωc

∂P

∣∣∣
Nc,Nf

− nf
∂Ωf

∂P

∣∣∣
Nc,Nf

, (3.5b)

where we used V = NcΩc + NfΩf . In the following, we consider the system as incom-
pressible. The incompressible limit corresponds to Ξ→ 0, and we find

0 = −nc
∂Ωc

∂P

∣∣∣
Nc,Nf

− nf
∂Ωf

∂P

∣∣∣
Nc,Nf

. (3.6)

Mechanical stability implies that both cell volume Ωc and fluid particle volume Ωf must
decrease with pressure P in general. Equation (3.6) then imposes that they do not depend
on pressure when the tissue is incompressible. For simplicity, we assume that the fluid
volume Ωf is constant; the cell volume Ωc does not depend on pressure, but can depend
on the cell volume fraction ϕ. The pressure P is then determined by the constraint on
the total volume flux vα = ncΩcv

c
α+nfΩfv

f
α . Using equations (3.1) to (3.3), we find that

for an incompressible system

∂αvα =

(
1− Mc/Ωc

mf/Ωf

)
ncΩc (kd − ka) + nc

(
d

dt
Ωc −

Ωf

mf

d

dt
Mc

)
. (3.7)

In the case of constant cell and fluid mass densitiesMc/Ωc = mf/Ωf ≡ ρ0 , this expression
reduces to ∂αvα = 0 . If not explicitly stated otherwise, we consider the tissue to be
incompressible and assume that cell and fluid mass densities are equal and constant.
For a thorough discussion of the incompressible limit for a two-component fluid, see
appendix D.

3.2.2 Force balance

Tissues are subject to mechanical forces of various origins. Those can either be forces
applied at tissue boundaries, external body forces such as gravity, or internal forces due
to active processes such as cell division and apoptosis. Forces give rise to mechanical
stresses in the tissue, which are described by the total stress tensor σαβ . In a two-
component system, the total stress includes contributions from both phases. Thus, we
write σαβ = σc

αβ + σf
αβ , where σ

c
αβ and σf

αβ are the stress tensors in the cell phase and
in the fluid, respectively.

Neglecting inertia, we can write the total force balance for a volume element of unit
volume as ∂βσαβ = −f ext

α , where f ext
α are the external (body) forces acting on the tissue.

In the following, we neglect gravity unless otherwise stated. In the absence of external
forces, force balance then requires

∂β(σcαβ + σfαβ) = 0 . (3.8)
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If we write separate force balance equations for each of the two different phases, the
above equation implies that

∂βσ
c
αβ + fα = 0 ,

∂βσ
f
αβ − fα = 0 .

Here, fα denotes the momentum transfer between the two phases. In the absence of
gravitational forces, we assume that momentum is transferred between the cell and the
fluid phase solely due to friction in the presence of a relative flow between the two phases.
Thus, we write

fα = −κ(vc
α − vf

α) , (3.9)

where the inverse friction coefficient κ−1 is the effective permeability or hydraulic con-
ductivity of the tissue.1 The physical dimension of κ is [Viscosity]/[Length]2, which
allows a rough estimate of the tissue permeability. If we assume that κ ∼ ηf/d

2
p, where

ηf ∼ 1− 100 mPa s is the viscosity of the interstitial fluid (the viscosity of pure water is
approx. 1 mPa s at room temperature) and dp ∼ 0.1 − 1µm is an average pore size be-
tween the cells in the tissue, one finds κ ∼ 109−1013 Pa s m−2. This estimate is consistent
with experimental results [138], see also the discussion at the end of this chapter.

We describe the fluid flow coarse-grained over several cells. The deviatoric stress
in the fluid is thus negligible compared to the isotropic stress in the fluid, because the
effective pore size of the cell/ECM phase permeated by the interstitial fluid is of the
order of a cell size or smaller. Therefore, we can express the total stress in the fluid as
σf
αβ = −Pfδαβ , where Pf is the fluid pressure in the tissue. Note that in the case of an

incompressible tissue, the total pressure P = −σαα/3 due to cells and interstitial fluid
plays the role of a Lagrange multiplier to ensure the constraint on ∂αvα. Equivalently,
we can consider Pf to play the role of the Lagrange multiplier: For an incompressible
tissue, the fluid pressure is equally determined by ∂αvα , as Pf = P + σc . Here, we used
σc = σc

αα/3 as an abbreviation for the isotropic part of the cell stress, which one could
refer to as (negative) cell pressure also. This contribution to the stress is discussed in
more detail below.

Taking the above form of fα and σf
αβ into account, the force balance equations finally

read

∂βσ
c
αβ − ∂αPf = 0 , (3.10a)

κ(vc
α − vf

α) = ∂αPf . (3.10b)

For vc ≡ 0, the second equation is the famous Darcy equation describing fluid flow
through porous media [47]. It reflects the fact that gradients in fluid pressure drive
relative interstitial fluid flow through the extracellular matrix.

1Note that Galilean invariance imposes that fα is proportional to the relative flow of cell and fluid
phase if no other gradients or distinguished axes are present in the tissue. In the mechanics literature,
symmetry arguments like Galilean invariance are also known as objectivity requirements, see for example
[183].



3.2. Two-component description of tissue mechanics 75

3.2.3 Constitutive equations

In order to describe the tissue dynamics, we need to specify a constitutive equation for the
cell phase that relates the stress tensor σc

αβ to other variables or kinematic quantities of
the system. In doing so, the constitutive equation accounts for the cell/ECM component
material properties. In the previous chapter, we studied the role of cell division and
apoptosis on the mechanical properties of growing tissues; we found that tissues which
are elastic in the absence of cell division and apoptosis behave in effect as viscoelastic
fluids if cells divide or die. Here, we want to use these findings for the description of the
cell phase. Note that the same arguments as developed in the previous chapter, section
2.2, hold true for the cell phase in a two-component description. An additional argument
has to be made, however, for the dependence of the isotropic cell stress on cell density
nc and cell volume Ωc, as in general nc 6= Ω−1

c for a two-component system.
We consider the cell network to behave as an elastic material in the absence of cell

division and apoptosis, and we write

D

Dt
σc
αβ = Cαβγνv

c
γν +

D

Dt
σs
αβ (3.11)

for the rate of change of the cell stress. Here, vc
αβ = (1/2)(∂αv

c
β +∂βv

c
α) is the strain rate

tensor of the cell velocity field, (D/Dt)σαβ = ∂tσαβ+vc
γ∂γσαβ+ωαγσγβ+ωβγσαγ denotes

the co-rotational time derivative with respect to the cell flow, and ωαβ = (1/2)(∂αv
c
β −

∂βv
c
α) is the corresponding cell flow vorticity. The elastic properties of the cell phase are

described by the tensor Cαβγν , which links the stress in the cell phase to the deformation
gradient in the absence of cell division and apoptosis. In the following, we assume that
the tissue material properties as characterized by Cαβγν do not depend on orientation,
i.e., that Cαβγν = χ δαβδγν + 2µ(δαγδβν − δαβδγν/3) as for an isotropic material. Here, χ
and µ are the compressional and the shear elastic modulus, respectively. The last term
in the above equation, (D/Dt)σs

αβ , accounts for source stresses due to cell division and
apoptosis.

The cell stress tensor σc
αβ can be separated into an isotropic contribution σc and a

traceless part σ̃c
αβ , such that σc

αβ = σcδαβ + σ̃c
αβ . We discuss the anisotropic part first.

In line with the argument put forward in the case of the one-component theory, the
corresponding rate of change of the source stress is given by Eq. (2.18),

D

Dt
σ̃s
αβ = −nc(d̃dkd + d̃aka)

σ0
σ̃c
αβ , (3.12)

where we already used that the anisotropy of cell division q̃αβ = σ̃c
αβ/σ0 is biased by

the shear stress on the relevant time scales. For a more detailed discussion please see
section 2.2 in the previous chapter. In the above equation, d̃d and d̃a are the respective
magnitudes of the stress increments related to cell division and apoptosis, and σ0 is a
susceptibility. Together with Eq. (3.11), this form of the source stress leads to Maxwell
viscoelastic dynamics for the anisotropic part of the cell stress,(

1 + τa
D

Dt

)
σ̃cαβ = 2ηṽcαβ , (3.13)
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where τ−1
a = nc(d̃dkd + d̃aka)/σ0 is an (inverse) relaxation time and η = τaµ an effective

shear viscosity. In the two-component description, the cell phase exhibits the same shear
stress relaxation as found in the one-component theory developed in the previous chapter.

In order to discuss the isotropic part of the cell stress, we first consider the tissue in the
absence of cell division and apoptosis. We assume that the cell stress depends on the cell
volume Ωc as well as on the cell number density nc. Note that this distinction need not
be made in a one-component description, where Ωc = n−1

c by definition. In its simplest
form, such a dependence on nc and Ωc implies an equation of state σc = f(nc,Ωc) . For
simplicity, we consider such an equation of state in the following. In order to close the
system of equations, however, we need one more constitutive equation. A simple choice
is to assume that cells adjust their volume according to the cell number density, which
implies an additional equation of state Ωc = g(nc) . This choice contains the case in which
the cell volume fraction ϕ = ncΩc is fixed to a constant value ϕ = ϕ0 : In this limit,
the cell volume is given by Ωc(nc) = ϕ0/nc . Equivalently, we can write the equations of
state of the tissue as

nc = h1(σc) , Ωc = h2(σc) , (3.14)

where h1 and h2 are positive functions. Note that both cell number density and cell
volume may additionally depend on the fluid pressure, which we neglect here.

Using these equations of state, we can then define a tissue elastic bulk modulus χ̄ via

d

dt
σc = − χ̄

nc

dnc

dt
, (3.15)

or χ̄ = −nc(d/dnc)h
−1
1 , respectively. In the absence of cell division and apoptosis, cell

number balance implies (d/dt)nc = −ncv
c
γγ , such that the above equation can be written

as (d/dt)σc = χ̄vc
γγ . The isotropic part of the constitutive equation (3.11) on the other

hand becomes (d/dt)σc = χvc
γγ in the case of vanishing source stress, i.e., in the absence

of cell division and apoptosis. A comparison of the two latter expressions thus shows
that χ̄ = χ ; the elastic bulk modulus of the tissue is well-defined.

Cell division and apoptosis give rise to an isotropic source stress as discussed in the
previous chapter, and we write

d

dt
σs = −ncd (kd − ka) . (3.16)

Here, we already assume that the stress increments d due to single cell division and
apoptosis events are of equal magnitude and opposite in sign, see chapter 2, sec. 2.2.2
for a more detailed account. This expression for the source term in Eq. (3.11) leads to

d

dt
σc = χvc

γγ − ncd (kd − ka)

for the rate of change of the isotropic cell stress. Using cell number balance, equation
(3.15) on the other hand implies

d

dt
σc = −χ

[
(kd − ka)− vc

γγ

]
, (3.17)
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and it follows that d = χ/nc . This result is again analogous to the one obtained in the
one-component theory put forward in the previous chapter, such that the constitutive
equation for the cell stress corresponds both for the isotropic and the traceless part to
the constitutive equation for the total stress in the one-component description.

3.2.4 Homeostatic state

In the previous chapter, we discussed the case in which cell division and apoptosis balance
on average in the framework of a one-component description. Basan and colleagues
argued that this so-called homeostatic state is reached for a characteristic pressure exerted
on the cells, as long as biochemical conditions such as nutrient concentrations are kept
constant [17]. Even though the biochemical environment might be constant, the rates of
cell division and cell death still vary with the mechanical stress in the tissue, which gives
rise to a homeostatic pressure Ph at which kd(Ph) = ka(Ph) , see chapter 2, sec. 2.3, for a
more detailed account. Note also that any explicit dependence of the rates on the volume
fraction ϕ could in principle be expressed as a dependence on σc for known equations of
state (3.14).

Here, we argue that the cell division rate kd and the apoptosis rate ka mainly depend
on the cell pressure −σc in the case that the biochemical environment does not change.
Although they might explicitly depend on the fluid pressure Pf , we neglect such a depen-
dence here. In the two-component description, the homeostatic pressure thus translates
to a homeostatic cell stress −σc = Ph at which cell division and apoptosis balance on
average.

Close to the homeostatic state, we expand the effective cell number growth rate kd−ka

to linear order in the deviatory isotropic cell stress δσc ≡ σc +Ph around the homeostatic
cell pressure Ph,

kd − ka '
1

τ

δσc

χ
. (3.18)

Together with Eq. (3.17), this expansion leads to Maxwell dynamics for the isotropic
part of the stress close to the homeostatic state,(

1 + τ
d

dt

)
(σc + Ph) = ζvc

γγ , (3.19)

where ζ = τχ is an effective bulk viscosity.
Not surprisingly, this result—relaxation of the isotropic stress at long times—is essen-

tially the same as the one obtained for the one-component description. The distinction
between isotropic cell stress and fluid pressure in the two-component description allows
a more precise characterization of the homeostatic pressure, however: Assuming that the
cell division and apoptosis rates depend on the isotropic cell stress, it turns out that
the homeostatic pressure is not to be confounded with the actual fluid pressure. The
example presented in the next section illustrates this point in more detail.
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Figure 3.2. Sketch of tissue chamber with piston. The tissue is on the left, separated from
a fluid reservoir on the other side of the piston. The piston can be considered as being either
impermeable or permeable to the extracellular fluid, see text for details.

3.3 Example: Tissue chamber closed by a piston

With the basic equations being laid out, we now highlight specific features of tissue
dynamics with permeation taken into account. As a toy model, we consider a tissue
confined to a chamber with fixed lateral walls closed by a movable piston, as sketched in
Fig. 3.2.

3.3.1 Steady state of the tissue and piston

We first identify the possible steady states of the system. Consider that both the walls
and the piston are impermeable and exert an external pressure Pext. In this case, the total
pressure in the tissue chamber has to balance the external pressure, −σc + Pf = Pext .
Furthermore, since there is no cell flow at steady state, the cell pressure equals the
homeostatic pressure, σc = −Ph , and the fluid pressure thus follows as Pf = Pext − Ph .
In principle, this steady state in the case of an impermeable piston exists irrespective of
the applied external pressure.

The situation is different if one of the walls or the piston is semi-permeable and allows
for fluid exchange: The flow through the wall or piston is related to the hydrostatic
pressure drop over the wall, and a steady state thus requires Pf = Pext , where P ext is the
external hydrostatic pressure. Furthermore, the existence of a steady state implies that
the tissue is at its homeostatic state, and σc = −Ph . Thus, a steady state exists only if
an additional force (per unit area) Pp is exerted by the piston; the total pressure in the
chamber balances the sum of the external hydrostatic pressure and the additional force
applied on the piston, and we find Pp = Ph . The force exerted by a semi-permeable piston
at steady state therefore provides a measure of the homeostatic pressure. If Pp 6= Ph ,
either the piston moves and squeezes the tissue or the tissue pushes the piston and invades
the chamber; there is no other possible steady state.

Note that at steady state, the cell volume and the volume fraction of the interstitial
fluid can in principle be calculated from the equations of state of the tissue.
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3.3.2 Tissue and piston dynamics close to steady state

In order to discuss the role of permeation on the possible growth dynamics of the tissue,
we consider a tissue close to its homeostatic state confined by a semi-permeable piston
at one end of the chamber. We choose free slip boundary conditions on the walls of
the chamber for both the fluid and the cell phase, which allows for a one-dimensional
treatment of the dynamics. Only the piston is permeable. As before, the pressure exerted
on the tissue is given by Pext + Pp . However, we now consider that the force exerted on
the piston can be written as Pp = Ph + δP with δP 6= 0 . The position of the piston is
given by the length L of the compartment filled by the tissue. Depending on the sign of
δP , the piston moves in either direction.

Before we can solve for the dynamics, we need to specify the boundary conditions
at x = 0 and x = L . At the origin, both the cell phase and the fluid are at rest,
vc
x(0) = vf

x(0) = 0 . In the following, we suppress the spatial index for better readability;
note that all components orthogonal to the x-direction vanish for symmetry reasons.
Using the incompressibility constraint ∂x(ϕvc + (1− ϕ)vf) = 0 , we thus find

ϕvc + (1− ϕ)vf = 0 . (3.20)

The velocity of the cell flow at x = L corresponds to the velocity of the piston (the
moving boundary) because the piston is impermeable to cells, vc(L) = L̇. Assuming that
the piston has a finite permeability ν for fluid flow, the boundary condition for the fluid
velocity at x = L can be written as

vf(L)− L̇ = ν (Pf(L)− Pext) . (3.21)

Finally, force balance along x implies

−σc − σ̃c
xx + Pf = Pext + Ph + δP . (3.22)

The constitutive equations for the isotropic and the traceless part of the cell stress
are given by Eqs. (3.19) and (3.13), respectively:

(1 + τ∂t) (σc + Ph) = ζ∂xv
c , (3.23a)

(1 + τa∂t) σ̃
c
xx = 4

3η∂xv
c . (3.23b)

Both the isotropic and the anisotropic stresses show a viscoelastic behavior with relax-
ation times τ and τa, respectively. Note that we already neglected the geometric nonlin-
earities in the convected time derivative. Because of the moving boundary condition at
L = L(t), however, we do not know how to solve analytically the full viscoelastic problem
defined by the equations above. In the following, we therefore discuss approximations of
the problem at short and long times.

Elastic limit at short times

In principle, we are interested in the dynamics at long times, i.e., for times t � τ, τa ;
in this limit, we can neglect the elastic stresses and consider the tissue to behave as a
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purely viscous liquid. It is nonetheless instructive to discuss first the dynamics at short
times. For times t� τ, τa , the response to an additional force δP exerted by the piston
is essentially elastic, and we can write

σc + Ph ' χ∂xuc , (3.24a)
σ̃c
xx ' 4

3µ∂xu
c , (3.24b)

where uc is the deformation field of the cell phase along x. The cell velocity is given
by the time derivative of the deformation, vc = u̇c . Force balance and the permeation
equation κ(vf − u̇c) = −∂xPf lead to a diffusion equation for the elastic deformation uc,

∂tu
c = Del∂

2
xu

c , (3.25)

with the effective diffusion coefficient Del = (1 − ϕ)(χ + 4
3µ)/κ . The strain propagates

by diffusive motion only due to the friction with the interstitial fluid; the effective dif-
fusion of the strain is not caused by thermal fluctuations. Note that such an effective
diffusion equation for an elastic strain has also been discussed in the context of the
swelling of chemical gels, as put forward by Tanaka and colleagues [176]; more recent
work can be found in [193]. The swelling of chemical gels also found its application in
studies of morphogenesis: In an intriguing study, Derveaux and colleagues discussed the
growth dynamics and shape instabilities of tumors in skin using swelling hydrogels as an
experimental analogon [52].

The time-dependent boundary condition at L(t) can be rewritten as

u̇c
∣∣
L

= −vel

(
δP

χ̄
+ ∂xu

c
∣∣
L

)
, (3.26)

where we introduced the longitudinal elastic modulus χ̄ = χ+ 4
3µ and the characteristic

velocity vel = (1 − ϕ)χ̄ν. The constants Del and vel can be combined to obtain the
characteristic length lel = Del/vel = (κν)−1 and the characteristic time tel = Del/v

2
el =

[(1−ϕ)χ̄κν2]−1 of the problem. Note that both depend on piston permeability ν and do
not solely depend on tissue bulk properties. Without explicitly solving the dynamics of
the deformation field uc, we can already infer the steady state deformation after complete
relaxation: The diffusion equation imposes that the strain field ∂xuc is constant, and from
the boundary condition follows ∂xuc(x) = −δP/χ̄. The equilibrium position of the piston
L∞ is then given by L∞ = L0 + u(L∞) = L0/(1 + δP/χ̄).

The characteristic time and length allow for simple scaling arguments with respect to
the dynamics. In the absence of viscous relaxation, the first (immediate) elastic response
to a step stress δP for times up to t ∼ tel remains confined to a layer of thickness lel until
(σc
xx +Ph) ∼ −δP in this layer. The elastic deformation subsequently diffuses along the

tissue during a time Tel ∼ L2/Del = (L/lel)
2tel . Note that this time scale is independent

of the piston permability ν and depends only on tissue elasticity and tissue permeability.
Consequently, the friction between cell phase and interstitial fluid is essentially irrelevant
for the initial elastic response if L � lel, i.e., the tissue then behaves effectively like a
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one-component system. In this case, the tissue strain is homogeneous and its dynamics
depends only on the flux boundary condition at L(t).

Let us discuss the limits L/lel → 0,∞ in more detail. In the first case, for L � lel,
the strain can be considered as homogeneous throughout the tissue, ∂xuc = const., and
the moving boundary condition (3.26) becomes an ordinary differential equation for the
piston position L,

L̇ = −vel

(
δP

χ̄
+
L0 − L
L

)
. (3.27)

For small δP/χ̄, relative deformations are small, and we can approximate the above
equation by L̇ ' −vel (1 + δP/χ̄− L/L0) ; the respective solution is then given by

L(t) ' L0

[
1− δP

χ̄

(
1− e−t vel/L0

)]
. (3.28)

In the limit of L/lel → ∞, the relaxation of the piston is entirely limited by the
diffusion of the elastic strain. This limit corresponds to an infinite permeability of the
semipermeable piston, i.e., ν →∞. In this case, the boundary condition at L becomes a
condition on the strain at x = L which imposes ∂xuc

∣∣
L

= −δP/χ̄. The dynamics can be
mapped to the diffusion of a solute characterized by the concentration c(x, t) ≡ ∂xuc into
a sheet of thickness 2L with a prescribed concentration c0 = −δP/χ̄ at the boundaries
x = ±L ; the symmetry around x = 0 ensures that the gradient of the concentration
∂xc ≡ ∂2

xu
c vanishes at the origin as required by uc(0, t) = 0. The length L of the sheet

would then be given by

L(t) = L0 + u(L, t) = L0 +

∫ L

0
dx ∂xu

c ≡ L0 +

∫ L

0
dx c . (3.29)

For small δP/χ̄, the relative deformation is small, and the solution is approximately given
by the known result for solute diffusion with constant boundaries at x = ±L0 [45]:

L(t) ' L0

[
1− δP

(
1− 8

π2

∞∑
n=1

1

(2n+ 1)2
e−Del(2n+1)2π2t/(4L2

0)

)]
(3.30)

In order to check the validity of the above approximations, we compared the analytical
results to the numerical solution of the full problem defined by Eqs. (3.25) and (3.26),
see Fig. 3.3. For details on the numerical solution we refer to appendix C.2.

Viscoelastic cross-over

On times long compared to the viscous relaxation times t� τ, τa, the elastic contribution
to the total stress relaxes and the tissue behaves as a viscous fluid. Whether an “elastic
steady state” of constant deformation is reached before the viscous regime takes over
depends on the ratio of the viscous relaxation time over the time of elastic relaxation
discussed above. For L & lel, the time after which elastic equilibrium is reached scales
as Tel ∼ L2/Del = (L/lel)

2 tel ; for L . lel we found that Tel ∼ L/vel = (L/lel)tel .
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Figure 3.3. Elastic relaxation dynamics of a tissue under compressional load. On short time
scales, the tissue response to an additional force δP exerted on the piston is essentially elastic.
Here, we plot the piston position as a function of time for different initial tissue sizes L0. All
times and lengths are in units of tel and lel, respectively, see text for details; furthermore, we
chose δP/χ̄ = 0.01. Note that for L0 = 0.1, the dynamics is perfectly described by the solution to
Eq. (3.27) which is plotted in blue (dashed line). For L0 = 100, the dynamics is well accounted for
by Eq. (3.30) which is plotted in red (dashed-dotted line). The inset shows that for times t < tel
the initial response is still limited by the relaxation dynamics at the boundary. As L/lel → ∞,
tel → 0 and this effect becomes negligible.

Let us assume that τ = τa for simplicity. If τ � Tel, a homogeneous elastic stress will
build up throughout the tissue before the stress starts to relax at times t > τ . In this
case, we expect the tissue to behave effectively as described by a one-component theory,
i.e., without effects of finite tissue permeability. If τ < Tel, however, the viscous response
starts to dominate before the elastic deformation has propagated along the entire tissue,
and we may expect to see the effects of a finite friction between cells and interstitial
fluid. If τ � tel, the elastic short time limit does not make much sense at all; the viscous
relaxation dominates before any significant elastic stresses are built up.

For the special case τ = τa, we can obtain an equation for the velocity field vc that
makes the above discussed cross-over more explicit. We differentiate the force balance
equation ∂x(σc

xx − Pf) = 0 with respect to time and make use of the operator identity
(1− τ∂t)∂x = ∂x(1− τ∂t). With the constitutive equations (3.23) we then get

∂tv
c = −1

τ

(
vc − λ2∂2

xv
c
)
, (3.31)

where we introduced the characteristic length scale λ =
√

(1− φ)χ̄τ/κ due to tissue
viscosity and permeation. On short times (and for zero cell velocity at t = 0), the
velocity field obeys a diffusion equation with D = λ2/τ = Del. Subsequently, however,
the velocity field relaxes to a value that obeys a quasi-static differential equation which
we discuss below in more detail. The corresponding boundary condition can be obtained
analogously, and we find

(1 + τ∂t) v
c
∣∣
L

= −λ
α

(
δP

χ̄
+ τ∂xv

c
∣∣
L

)
, (3.32)
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where α = lel/λ is a dimensionless number related to piston permeability. For numerical
solutions of the above equations please refer to C.2.

Viscous limit at long times

After this brief discussion of the elastic response at short times and the viscoelastic cross-
over for times t ∼ τ, τa, we turn to the dynamics at long times, i.e., for times longer than
the viscous relaxation times, or t � τ, τa. In this limit, the viscous stresses are the
dominating contribution in the constitutive equations, and we can write

σc + Ph ' ζ∂xvc , (3.33a)
σ̃c
xx ' 4

3η∂xv
c . (3.33b)

We can check later for consistency by comparing explicitly the two terms on the left-hand
side of Eqs. (3.23). Using the permeation equation κ(vf − vc) = −∂xPf and incompress-
ibility, the force balance ∂x(σc

xx − Pf) = 0 becomes

λ2∂2
xv

c − vc = 0 . (3.34)

Here, we (re)introduced the characteristic permeation length λ =
√

(1− ϕ)η̄/κ , where
η̄ = ζ + 4

3η is the longitudinal viscosity. If τ = τa, we have η̄ = τ χ̄. Note however that
the viscous limit is well-defined also for τ 6= τa. Instead of a partial differential equation
for the deformation field uc, as was the case in the elastic limit, one obtains an ordinary
differential equation for the cell flow velocity vc. The viscous dynamics at long times is
quasi-static not only in the sense that inertial terms are neglected, but also in the sense
that the velocity field depends on the boundary conditions only: Any initial conditions
necessarily have been “forgotten”, i.e., any possible elastic stresses built up at early times
have been relaxed.

In the following, we assume that the cell volume fraction ϕ varies only weakly across
the tissue such that δϕ� ϕ, this is made more precise below. Thus, we may consider λ
as constant when solving (3.34) for the cell velocity vc; the general solution is given by

vc(x) = A sinh x
λ +B cosh x

λ .

Taking the boundary conditions vc(0) = 0 and vc(L) = −(1− ϕ)ν(δP + η̄∂xv
c(L)) into

account, we finally obtain

vc(x) = − v0

cosh L
λ + α sinh L

λ

sinh x
λ , (3.35)

where v0 = δPλ/η̄ is a characteristic velocity and α = λ/[(1−φ)η̄ν] = [(1−φ)η̄κν2]−1/2

is a dimensionless parameter related to the permeability of the piston.2 Because the cell
2Note that with lel, tel as defined above, α = lel/λ ≈ (tel/τ)1/2 for τ ≈ τa. Vanishing α � 1 thus

implies that elastic and viscous time scales are locally well separated; however, strain propagation may
take just as much time as viscous relaxation. For large α � 1, or sufficiently small piston permeability
ν � (η̄(1− ϕ)κ)−1/2 , the overall dynamics is so slow that the elastic limit does not make any sense at
all; on the relevant time scales, all stresses relax immediately.
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velocity vc does not explicitly depend on time, only geometric nonlinearities contribute
to the rate of change of stress (which scales with ∂xvc). These are of second order in δP ,
however, and can thus safely be neglegted.

Depending on the ratio L/λ , we can distinguish two different regimes of the tissue
response:

a) L� λ:

If the permeation length is much smaller than the size of the tissue, we find

vc(x) = − v0

1 + α
e(x−L)/λ , (3.36a)

−σc(x) = Ph + δP
ζ

η̄

e(x−L)/λ

1 + α
, (3.36b)

Pf(x) = Pext + δP

(
1− e(x−L)/λ

1 + α

)
. (3.36c)

Due to the finite permeability of the tissue, fluid pressure builds up over the length
scale λ beyond which it compensates the additional force exerted by the piston.
Thus, only a small region of thickness λ is perturbed, where apoptosis dominates
if δP > 0 and division dominates if δP < 0 . Most of the tissue is in its stationary
state. The piston moves at constant velocity L̇ = −v0/(1 + α): For small α � 1,
the velocity scales with the size of the perturbed region λ; for α � 1, i.e., for
low piston permeability ν, the velocity does not depend on tissue permeability κ
and scales with ν. For α → ∞, the piston does not move and no cell turnover
takes place. This limit corresponds to zero piston permeability and one recovers
the stationary state as discussed for an impermeable piston. Examples of flow and
pressure profiles are sketched in Fig. 3.4. A one-component description of tissues
must fail to capture the dynamics of the regime L� λ correctly.

b) L� λ:

If the permeation length is much larger than the size of the tissue, to lowest order
in x/λ we find

vc
x(x) = − v0

1 + αL/λ

x

λ
, (3.37a)

−σc(x) = Ph + δP
ζ

η̄

1

1 + αL/λ
, (3.37b)

Pf(x) = Pext + δP
αL/λ

1 + αL/λ
. (3.37c)

In this regime, one recovers the result that one would obtain in the one-component
theory: Without permeation, any excess pressure δP acts on the whole tissue
instantaneously in a homogeneous way because no momentum can be transferred
to the fluid, and ∂xv

c
x = const. Note however that for the actual two-component
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Figure 3.4. Tissue dynamics in response to an external force in the viscous limit. The force is
exerted by a semipermeable piston, with its position being indicated by the dashed vertical line.
Here, we illustrate the case in which the characteristic length λ is small compared to the size of
the tissue chamber L. We find that the tissue response is confined to a zone of length λ close to
the piston, see text for details. (a) For δP > 0, the cells undergo apoptosis which results in a
negative net cell flow as indicated. (b) For δP < 0, the cells are dividing and thus give rise to a
net expansion of the tissue.

system in the limit L� λ, the excess pressure δP exerted by the piston is rescaled
due to the fluid pressure drop at x = L caused by the finite piston permeability.

The position of the piston as a function of time is implicitly given by

λ lnL/L0 + α(L− L0) = −v0t . (3.38)

For large α, i.e., α � λ/L, the piston moves with constant speed L̇ ≈ −v0/α, as
the finite permeability of the piston limits the velocity with which the tissue turns
over. For reasonably small L� λ/α, or for large enough piston permeability, i.e.,
ν � L/(η̄(1 − φ)), this effect becomes negligible and the position of the piston
varies according to L̇ ≈ −v0L/λ . In this case, one recovers an exponential regime
either for growth or for shrinkage.

The cell number density nc and the cell volume Ωc can in principle be determined
via the equations of state (3.14). Eventually, one can check that for small δP their
variations are small (but always time dependent). The assumption that the variation
δϕ of the volume fraction is small can now be discussed more precisely: The above
calculations are consistent if δϕ = (dϕ/dσc)δσc � ϕ ≈ 1, where δσc = δPζ/[η̄(1 + α)]
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Figure 3.5. Cell flow and stress profiles for a spher-
ical tissue aggregate in response to an excess piston
pressure δP > 0. Here, we chose ζ = η and R = 5λ,
see text for details.

in the case of L� λ and δσc = δPζ/[η̄(1 + αL/λ)] in the case of L� λ, and dφ/dσc =
(dh1/dσc)Ωc + nc(dh2/dσc) for known h1 and h2 (cf. Eqs. (3.14)).

Finally, we show in appendix C.2 that the numerical solution to the viscoelastic
problem with τ = τa for both L� λ and L� λ confirms the long-time limits obtained
in this section.

Viscous limit in spherical geometry

In principle, the same behavior can be found for spherical tissue aggregates under an
external excess pressure δP acting on a semi-permeable membrane enclosing the tissue.
Spherical symmetry imposes vc = vc(r)er . Radial force balance in spherical geometry
reads

∂rσc + ∂rσ̃
c
rr + 2

σ̃c
rr − σ̃c

θθ

r
− ∂rPf = 0 . (3.39)

Using again incompressibility and the permeation equation, we obtain an equation for vc

in the limit of long times,

λ2

[
∂2
rv

c + 2

(
∂rv

c

r
− vc

r2

)]
− vc = 0 , (3.40)

where λ2 = (1 − ϕ)η̄/κ is defined as above. Taking the boundary condition vc(0) = 0
into account, the solution to this equation is given by

vc(r) = c
[
λ
r cosh λ

r −
(
λ
r

)2
sinh λ

r

]
. (3.41)

The integration constant c can be found from the boundary conditions at the outer radius
R(t). Using σc + σ̃c

rr−Pf = −Pext−Ph−δP , the flux boundary condition can be written
as

vc
∣∣
R

= −λ
α

(
δP

η̄
+ ∂rv

c
∣∣
R

+ ε
vc

r

∣∣∣
R

)
, (3.42)
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where ε = 2(ζ − 2
3η)/η̄ and all other constants defined as above. We finally find

vc(r) = − v0

(
cosh λ

r − λ
r sinh λ

r

)
R
r[

α+ (ε− 2) λR
]

cosh λ
R +

[
1− α λ

R − (ε− 2)
(
λ
R

)2]
sinh λ

R

(3.43)

for the radial velocity of the cell flow, with v0 = δPλ/η̄. Examples of flow and stress
profiles are shown in Fig. 3.5. In principle, we could now discuss in more detail the same
limits as before, i.e., R� λ and R� λ . The qualitative behavior remains the same as
in the linear geometry, however.

3.4 Example: Tissue under its own gravitational load

In the previous section, we neglected gravitational forces, which are supposed to be
small compared to other forces. Although they do not necessarily play a role in many
biological contexts of tissue dynamics, taking the effects of gravitation into account allows
to illustrate key aspects of a multi-component description of tissues.

3.4.1 Force balance in the presence of gravity as external body force

In the presence of external body forces, total force balance reads ∂βσαβ = −f ext
α . For

gravitational forces, we have f ext
α = ρgα , where ρ = ϕρc + (1 − ϕ)ρf is the total mass

density of the tissue (ρc and ρf being the mass densities of the cell phase and the inter-
stitial fluid, respectively) and gα is the gravitational acceleration. For each of the two
components, we can write force balance separately as

∂βσ
c
αβ + fα = −ϕρcgα , (3.44a)

−∂αPf − fα = −(1− ϕ)ρfgα , (3.44b)

where the gravitational force on each of the components corresponds to its mass fraction.
The momentum transfer between the two phases is again denoted by fα. Whereas in the
absence of gravity the momentum transfer was due only to a finite permeability of the
cell phase for interstitial fluid flow, fα now comprises not only friction forces ∝ (vc

α− vf
α)

but contains an additional contribution due to buoyancy forces,

fα = −κ(vc
α − vf

α)− ϕρfgα , (3.45)

and we can rewrite the above equations as

∂βσ
c
αβ − κ(vc

α − vf
α) = −ϕ(ρc − ρf)gα , (3.46a)

−∂αPf + κ(vc
α − vf

α) = −ρfgα . (3.46b)

Two main conclusions can be drawn immediately: First, gravitation enters the force
balance equation for the cell phase only for finite density differences ρc − ρf , i.e., if the
mass density of the cell/ECM phase is different from the mass density of the interstitial
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Figure 3.6. Sketch of a treadmilling tissue column of
height h. Due to a difference in the mass densities of cells
and fluid, cells are subject to gravitational forces. We find
a solution where cells tend to divide at the top layer of a
tissue column and undergo apoptosis at the bottom layer.
In between, a constant cell flow maintains the stationary
state, together with the opposed interstitial fluid flow.

fluid. In general, the mass density difference is small, ρc − ρf � ρf . Second, in the
absence of flow, i.e., in a stationary state, gravitation gives rise to a barometric profile
of the hydrostatic pressure Pf due to the finite mass density of the fluid.

Consider a tissue column of arbitrary height with ρh = ρf . Does the homeostatic
stationary state still exist? Only excess weight with respect to the interstitial fluid would
actually exert an additional stress on the cell phase, which is not the case. Therefore,
force balance is readily satisfied for zero flow and σc

αβ = −Phδαβ constant, where Pf

exhibits a barometric pressure profile as discussed above.

3.4.2 Gravity-induced treadmilling steady state

In the case of a small but finite difference δρ ≡ ρc − ρf � ρf between the mass densities
of cells and the fluid, no homeostatic stationary state exists. For a tissue layer close
to homeostatic state, however, a treadmilling stationary state can be found in which
apoptosis is induced at the bottom of the tissue layer, balanced by cell division at the
upper surface, see Fig. 3.6.

We consider a tissue contained in a box with impermeable lateral walls that are
described by full slip boundary conditions and a solid bottom wall at z = 0, such that
the problem is effectively one-dimensional. The tissue of height h is subject to a force
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exerted on its upper surface by a semi-permeable membrane or piston similar to the
example given in the previous section. In the long time limit, we consider the tissue as
viscous and keep only the viscous part of the cell stress variations δσc = σc +Ph and σ̃c

αβ

as given by the constitutive equations (3.13) and (3.19), σ̃c
αβ = 2ηṽc

αβ and δσc = ζvc
γγ .

For finite δρ, the divergence of the total volume flux is finite in the presence of cell
division and apoptosis, as discussed in section 3.2 above. Assuming that cell and fluid
mass densities are constant, the incompressibility condition reads

∂αvα =

(
1− ρc

ρf

)
ncΩc

(
kd − ka −

1

Ωc

d

dt
Ωc

)
. (3.47)

Both the net cell division rate kd− ka and the cell volume are proportional to the excess
isotropic cell stress, i.e., kd − ka ∝ δσc and δΩc ∝ δσc (cf. equation of state (3.14)).
Because δσc ∝ δρ/ρf as we will see below, the divergence vanishes to second order in
δρ/ρf � 1. Therefore, we take ∂αvα = 0. Using the zero flux boundary condition at
z = 0, we can thus express the fluid velocity as vf = − ϕ

1−ϕv
c , where we used vc = vcez

and vf = vfez (also, g = −gez in the following).
From the force balance equation of the cell phase we obtain an equation for the cell

flow velocity,
λ2∂2

zv
c − vc = v0 , (3.48)

where we introduced the characteristic velocity v0 = δρgϕ(1− ϕ)/κ. The characteristic
length λ =

√
(1− ϕ)η̄/κ and the longitudinal viscosity η̄ = ζ + 4

3η are defined as above.
The general solution for Eq. (3.48) is given by

vc = −v0

(
1 +Ae

z
λ +Be−

z
λ

)
, (3.49)

where A and B have to be determined by the boundary conditions at z = 0 and z = h.
We look for a steady state where the cell velocity vanishes on both surfaces, vc(h) =
vc(0) = 0, and we find

vc = −v0

(
1− sinh z

λ + sinh h−z
λ

sinh h
λ

)
. (3.50)

The cell pressure −σc follows from the constitutive equation (3.19) in the viscous limit,

−σc = Ph −
ζv0

λ sinh h
λ

(
cosh

z

λ
− cosh

h− z
λ

)
. (3.51)

For h� λ, this expression simplifies to

−σc = Ph +
ζv0

λ

(
e−

z
λ − e−h−zλ

)
. (3.52)

In this case, the tissue is proliferating in a small layer of thickness λ at the upper surface
and undergoing apoptosis in a layer at the bottom of the same thickness. In between,
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the cells flow with a velocity vc ' −v0 from the top to the bottom. If h � λ, the cell
velocity is vanishing everywhere to second order, i.e., vc = O(δρhλ) , and no relevant
turnover takes place.

In order for the treadmilling steady state to exist, the cell stress σc
zz along z at

z = h � λ has to be balanced by a semi-permeable membrane or piston, σc
zz = −Pp ,

which exerts a pressure Pp = Ph − η̄v0/λ. The external hydrostatic pressure Pext at
z = h enters as a boundary condition for the fluid pressure with Pf(h) = Pext. (Note
that the fluid flux across the membrane vanishes and we do not have to take the finite
membrane permeability into account.) The fluid pressure can then be determined from
−∂zPf + κ

1−ϕv
c = ρfg , and we find

Pf = Pext + (ρf + ϕδρ)g(h− z) + ϕδρgλ
cosh z

λ − cosh h−z
λ − cosh h

λ + 1

sinh h
λ

, (3.53)

which in the case of h� λ simplifies to

Pf = Pext + (ρf + ϕδρ)g(h− z)− ϕδρgλ
(
e−

z
λ − e z−hλ + 1

)
. (3.54)

As in the first example, the cell number density nc and the cell volume Ωc can in
principle be determined via the equations of state (3.14). Eventually, one can check that
for small δρ/ρf � 1 their variations are small.

3.5 Fluctuations

In the above examples, we did not consider fluctuations that may arise due to the stochas-
ticity of cell division and apoptosis. Whereas such a mean-field might be appropriate
when describing the dynamics on large scales, it does not allow to capture the diffusive
behavior of single cells in a tissue which exists even at steady state; see also the dis-
cussion in the previous chapter, sections 2.5 and 2.7. Here, we investigate the role of
fluctuations in the homeostatic state in the two-component description along the lines of
the one-component theory developed above, notably including the effects of permeation,
however.

3.5.1 Stress and velocity fluctuations

When we take the stochasticity of cell division and apoptosis into account, the cell number
balance equation contains an additional noise term describing the fluctuations. To first
order, fluctuations in the cell number density are described by gaussian white noise ξc

with zero mean and local correlations in space and time. For a simple birth-and-death
process, one would have 〈ξc(r, t)ξc(r0, t0)〉 = nc(kd + ka) δ(r− r0)δ(t− t0) , which we use
here by (simplifying) analogy. Thus, we rewrite the cell number balance including noise
as

∂tnc + ∂α(ncv
c
α) = nc(kd − ka) + ξc . (3.55)
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The fluctuations in the cell number lead to fluctuations in the isotropic part of the cell
stress according to (3.17), which close to the homeostatic state reduces to(

1 + τ
d

dt

)
(σc + Ph) = ζvc

γγ −
ζ

nh
ξc , (3.56)

where nh = nc(Ph) is the cell number density in the homeostatic state.
Fluctuations of the orientation of cell division, and stochastic cell deformations, give

rise to noise in the anisotropic part of the stress,(
1 + τa

D

Dt

)
σ̃c
αβ = 2ηṽc

αβ + ξ̃αβ , (3.57)

where ξ̃αβ denotes the noise source. Without giving a microscopic description of these
fluctuations, we assume that they correspond to a Gaussian white noise with zero mean
and delta-correlations in space and time. For an isotropic system, these correlations are
characterized by a single noise strength θ such that 〈ξ̃αβ(r, t)ξ̃γδ(r0, t0)〉 = θ

(
δαγδβδ + δαδδβγ − 2

3 δαβδγδ
)
δ(r−

r0)δ(t− t0) .
As the stochasticity of cell division and apoptosis implies fluctuations in the cell

stress σc
αβ , they give rise to fluctuations in the cell flow. In order to calculate the

diffusion constant of single cells in the tissue, we need to solve for the correlations of the
cell velocity fluctuations. The cell velocity can in turn be calculated from force balance.
In the following, we assume that the mass densities of cell phase and interstitial fluid
are equal and constant and neglect gravitational forces. Incompressibility then requires
∂αvα = 0, and assuming zero volume flux at infinity we have vα = 0. Thus, the fluid
velocity field vf

α can be expressed as vf
α = −vc

αϕ/(1− ϕ) .
Following the strategy employed above for calculating the diffusion coefficient in the

one-component description (cf. sec. 2.5), we decompose all quantities in Fourier modes in
space and time according to f(q, ω) =

∫
dt
∫

dr e−i(qr−ωt)f(r, t) . We again split the cell
velocity field into longitudinal and transverse components, vc

α = vc
||qα/q+vc

⊥α . Inserting
Eqs. (3.56) and (3.57) into the force balance,

iqβσ
c
αβ − iqαPf = 0 ,

−iqαPf + κ
1−ϕv

c
α = 0 ,

we finally obtain

vc
|| =

1

iq

(1− iωτa)ζn−1
h ξc − (1− ωτ)qαqβ ξ̃αβ/q

2[
(1− iωτa) ζ + (1− iωτ) 4

3η
]

+ κ̄(1− iωτ)(1− iωτa)
, (3.58a)

vc⊥α =
i

q

qβ ξ̃αβ/q − qαqγqβ ξ̃γβ/q3

η + κ̄(1− iωτa)
, (3.58b)

where κ̄ = κ/[(1 − φ)q2]. Note the additional term in the denominator for finite κ̄ due
to the permeation of the interstitial fluid through the tissue, in comparison to the one-
component tissue theory. As κ̄ ∝ q−2, friction becomes increasingly important for long
wavelength modes.
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3.5.2 Diffusion in the homeostatic state

In order to determine the single cell diffusion constant at the homeostatic state, we
calculate the diffusion for a tracer particle of the size of a cell that moves with the cell
flow field. The respective diffusion constant in three dimensions can be written as (cf.
sec. 2.5)

D =
1

3

∫ ∞
0

dt 〈vc
α(rp(t), t)vc

α(rp(0), 0)〉 ,

where rp(t) denotes the tracer particle’s position at time t. Under the assumptions that
particle position and velocity fluctuations decouple and that position fluctuations are
Gaussian (cf. sec. 2.5), the diffusion coefficient is thus given by

D =
1

3

∫ ∞
0

dt

∫
d3q

(2π)3
e−q

2DtCc
vv(q, t) , (3.59)

where we introduced the velocity-velocity correlation function Cc
vv(q, t) as

〈vc
α(q, t)vc

α(q ′, 0)〉 = Cc
vv(q, t)(2π)3δ(q + q ′) . (3.60)

In the following, we furthermore assume that diffusion is slow in comparison with the
decay of the velocity-velocity correlations, i.e., that e−q2Dt ' 1 for all times t at which
Cc
vv(q, t) is finite. Note that this approximation necessarily implies the existence of a cut-

off wave-length qmax = π/a related to the tracer particle’s radius a. Here, a corresponds
to the average radius of a cell. The expression of the diffusion constant then simplifies
to

D =
1

6

∫ qmax

0

d3q

(2π)3
Ĉc
vv(q, ω)

∣∣
ω=0

, (3.61)

where the Fourier transform Ĉc
vv(q, ω) of the cell velocity correlation function is defined

according to

〈vc
α(q, ω)vc

α(q ′, ω′)〉 = Ĉc
vv(q, ω)(2π)4δ(q + q ′)δ(ω + ω′) . (3.62)
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The full calculation of Ĉc
vv(q, ω) reveals three characteristic time scales on which the

velocity correlations decay; see appendix B.2 for a detailed calculation. For ω = 0, the
expression for the correlation function reduces to

Ĉc
vv(q, 0) =

2

q2

[(
ζ

η̄ + κ̄

)2 kd

nh
+

2

3

θ

(η̄ + κ̄)2
+

θ

(η + κ̄)2

]
. (3.63)

Note that with η̄ + κ̄ = η̄[1 + (λq)−2] we find that the characteristic length scale λ of
permeation as introduced above for the piston example (see section 3.3) reappears in
the diffusion problem: We see already that for q � 1/λ, the effect of permeation on the
velocity-velocity correlations is negligible. Carrying out the integral in Eq. (3.61), the
diffusion constant follows as

D =
1

6πaη̄2

[
s(πaλ)

(
ζ2kd

nh
+

2

3
θ

)
+ s(πa λ̄)

(
η̄

η

)2

θ

]
, (3.64)

where λ =
√

(1− φ)η̄/κ and λ̄ =
√

(1− φ)η/κ are longitudinal and transverse perme-
ation lengths, respectively, with η̄ = ζ + 4

3η being the longitudinal viscosity. The effects
of permeation are described by the function

s(x) = 1 +
1

2(1 + x2)
− 3

2

arctanx

x
, (3.65)

which increases monotonously with x from zero to one, see Fig. 3.7 for a plot. For λ, λ̄�
a , however, one recovers the behavior of the one-component theory, with s(x� 1) ' 1.
The correction due to permeation is already less than a factor of two for λ, λ̄ in the range
of the size of a cell, with s(2π) ≈ 0.7 .

Note that for very long relaxation times of the velocity-velocity correlations, the above
expression for the diffusion coefficient might not hold true, however. In that case, the
above calculation provides an upper limit for the diffusion constant. A detailed discussion
of the slow diffusion approximation and the calculation for finite relaxation times can be
found in the appendix, section B.2.

3.6 Discussion

In this chapter, we introduced a two-component continuum description of tissues that
takes both cells plus the surrounding extracellular matrix as well as the interstitial fluid
into consideration. Two main motivations let us go beyond the one-component descrip-
tion of tissues developed in the previous chapter: First, cell division and apoptosis cannot
be consistently described without creation of matter ex nihilo if no material turnover be-
tween different phases is taken into account. The obvious requirement of overall mass
conservation thus points towards the necessity of a multi-component description, and it
is to be expected that such a description will give rise to additional mechanical condi-
tions that may turn out to be relevant for the tissue mechanics. Second, the homeostatic
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tissue pressure, first introduced by Basan and colleagues [17] and discussed above in the
framework of a one-component description of tissues (section 2.3), is not unambiguously
defined; its relation to the (ambient) hydrostatic pressure is at least not obvious. The
distinction between a cell/ECM phase and the interstitial fluid allows to disentangle (me-
chanical) cell stress and hydrostatic pressure and thus allows to clarify the nature of the
homeostatic pressure.

By decomposing the overall force balance for a multi-component system as separate
force balances for each component, one finds that additional internal forces appear which
represent momentum transfer between the individual components. In general, these
internal forces follow from symmetry considerations. In a tissue described by a cell/ECM
phase and a fluid component, momentum is transferred if the permeability of the tissue is
finite, i.e., for finite friction between the interstitial fluid and the cells or the extracellular
matrix, respectively. Another contribution to the internal forces are buoyancy forces that
appear if gravitation is taken into account, which breaks rotational symmetry. It turns
out that a one-component description of tissues can be regarded as a friction-less limit
case of the two-component theory when either gravitation is completely neglected or the
mass densities of the cell/ECM phase and the interstitial fluid are equal; in this case,
both components mechanically decouple as no momentum between the two is exchanged.

Finite friction or permeability implies that fluid flow relative to the cell/ECM phase
gives rise to internal friction forces that have to be balanced by a gradient in hydrostatic
pressure. The resulting linear relation between relative flow and fluid pressure gradient
is known as Darcy’s law, which describes fluid flow through porous media. Such pressure
gradients can be imposed by boundary conditions or be due to locally prevailing cell
division or apoptosis, i.e., net material turnover. In the latter case, relative flows arise
that lead to a hydrostatic pressure buildup in the tissue. As in the previous chapter,
we focussed our analysis on the tissue dynamics close to the homeostatic state in the
limit of long times. In this limit, finite tissue permeability has two main effects. First,
the (longitudinal) tissue viscosity η̄ = ζ + 4

3η and the friction coefficient κ define a
characteristic length λ ∝

√
η̄/κ over which the relative flow relaxes as momentum is

transferred between the cell/ECM phase and the interstitial fluid. As an example, we
discussed the dynamics of a semi-permeable piston which exerts an additional force on
a tissue confined in a chamber close to its homeostatic state. The cells respond to
additional cell/ECM phase pressure by apoptosis or cell division, respectively, which
leads to relative material flows as implied by net material turnover. If the characteristic
length λ is significantly smaller than the length of the chamber, this response is confined
to a region of width λ close to the moving piston; beyond this region, the hydrostatic
pressure balances the additional force exerted by the piston and the tissue remains at
its homeostatic state. In the limit of vanishing friction, λ diverges and one recovers the
one-component behavior where the tissue response is homogeneous over the entire tissue.
Second, friction between fluid and cell phase in effect slows down the diffusive motion
of cells in the tissue as such motion implies relative material flows. We find that the
effective diffusion constant equals the diffusion constant obtained for the one-component
theory rescaled by a factor that accounts for permeation. This factor depends on the
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ratio between cell radius a and the characteristic length λ, and it is significantly smaller
than 1 only for λ . 2a, which does not seem to be the case in general (see below).
As λ decreases with the friction coefficient as λ ∝ 1/

√
κ ∝ dp, where dp is the typical

pore size in the interstitial space, the condition λ < 2a is most likely met in very tightly
packed tissues. (Because the isotropic and the anisotropic fluctuations contribute slightly
differently to the diffusion constant, another similar characteristic length λ̄ appears as
well, which relates the friction coefficient to the pure shear tissue viscosity η.)

Furthermore, the two-component theory allows for a coherent description of gravi-
tational forces. For many practical purposes, the mass densities of interstitial fluid and
cell/ECM phase, ρf and ρc, respectively, can be considered to be equal. In this case,
gravitation gives rise to a barometric pressure gradient for the fluid pressure without
exerting any additional force on the cell/ECM phase. As an anecdotal example may
serve a giraffe: Although the fluid pressure at the lower part of its long neck may be
significantly higher than right below the head, the cells may be just as fine all along. In
principle, the homeostatic state is still well-defined. We show, however, that for a finite
density difference ρc − ρf a treadmilling steady state can be found at long times if the
characteristic permeation length λ is sufficiently small and the tissue layer sufficiently
thick. This example, in which the tissue is again considered to be close to its homeostatic
state, gives an additional illustration of the tissue dynamics with permeation: the cell
turnover response to gravitational forces is restricted to a region of width λ due to finite
permeability.

What are the orders of magnitude for the characteristic lengths introduced above?
A general answer to this question is rather difficult, for several reasons. Both tissue
permeability and tissue viscosities are not easily measured and reported values vary
over several orders of magnitude. We expect tissue permeability to depend strongly on
tissue type, i.e., tissue composition and architecture. Moreover, the bulk viscosity ζ in
the homeostatic state, or equivalently the bulk stress relaxation time τ , have not yet
been measured, see also the discussion in the previous chapter (section 2.7). When we
estimate that both bulk and shear viscosity are in the range of 105 − 107 Pa s [63] and
that the inverse permeability κ is in the range 1011 − 1014 Pa s m−2 [138], we obtain
orders of magnitude for the characteristic length that range from the size of a cell to
centimeters, λ ∼ 10−5−10−2 m. Note that the reported values for the tissue permeability
are consistent with the rough estimation that κ ∼ ηf/d

2
p, where ηf is the viscosity of the

interstitial fluid and dp an average pore diameter in the interstitial space. Additional
experiments such as the piston experiment suggested here are certainly needed to gain a
quantitative understanding of the effects of permeation.

Another finding which might be experimentally relevant is that the two-component
theory predicts an increased interstitial fluid pressure in the center of multicellular tumor
spheroids which proliferate at the rim and undergo apoptosis in the rest of the tissue. So
far, pressure measurements have been made only in vascularized solid tumors in vivo, for
which the contribution of the pressure difference between vasculature and surrounding
tissue would additionally have to be taken into account. Notwithstanding, a spatially
resolved measurement of the interstitial fluid pressure in multicellular spheroids would
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certainly provide a means to access the permeability of the tissue.
In this chapter, we developed the constitutive equations for the cell phase along

the same lines as in the one-component description. The arguments developed in the
previous chapter can consistently be transposed to the two-component theory; remarks
and shortcomings that apply to the one-component description consequently carry over to
the two-component theory as well, see section 2.7 of the previous chapter for a discussion.
One additional “equation of state” is needed, however, to close the system of equations.
In the two-component description, cell number density and cell volume are in principle
two independent variables. Here, we chose the simplest possible equations of state by
assuming that cell density and cell volume depend on the isotropic cell stress only. In
general, cells might regulate their volume also in response to the hydrostatic pressure,
although cell volume is in most cases determined by the osmotic pressure of the medium
only and does not change much at all. Similarly, the cell number density could depend
on the hydrostatic pressure, which we did not consider here. The equations of state could
in principle also involve the history of the evolution of the system, which goes beyond
the scope of this work. We assume that these effects are negligible at the level of detail
with which the tissue mechanics is described in this work.

Some additional remarks are due here. We restricted our description to tissues with
a minor contribution of the extracellular matrix to a combined cell/ECM phase. Our
choice of constitutive equations for the cell phase which relate the isotropic stress in the
cell phase to the cell number density is based on this assumption. We do not intend to de-
scribe the interstitial flows that occur in the stroma, a matrix-rich connective tissue with
scattered isolated cells [174]. The general approach to use multi-component continuum
descriptions remains legitimate; the constitutive equations that model the tissue mechan-
ical properties have to be chosen appropriately, however. Similarly, our two-component
description does not allow to describe active migration of cells in the extracellular matrix.
To this end, the ECM would have to be described as a third, elastic phase to which the
cells can transfer momentum in order to move (i.e., in which they can crawl). Such a
description has been proposed by Ambrosi et al. for a three-component mixture theory
[12]. Rather microscopic descriptions on a cellular scale might be appropriate if the de-
tails of the interstitial flow do matter for the phenomenon under consideration, compare
also section 1.3.



Chapter 4

Interface dynamics between two cell
populations

In the previous chapters, we discussed the multicellular dynamics of tissues without
distinguishing different types of cells. However, tissues often comprise more than one
single type of cells. Similarly, organs often consist of different tissues that exhibit at
least one common interface. In this chapter, we generalize our description of tissues to
cases in which two different types of cells are present in the tissue, which can interact
mechanically. Having thus established an appropriate framework, where we draw on
results from the previous chapters, we discuss aspects of the dynamics of interfaces which
can arise in such multi-cell type tissues.

4.1 Introduction: Cell competition & mechanics

Cells of different type often do have distinct roles in the developing and adult animal.
In order for these cells to function correctly and to not interfere with each other, or to
be able to coordinate certain tasks, they need to talk to each other. Communication
between cells has been studied for a long time, and many signaling pathways have been
described [8, 190]. However, it is conceivable that cells do not only communicate by the
exchange of molecules or the recognition of certain molecular ligands but by mechanical
signals such as forces exerted between them. Such mechanical interaction has first been
hypothesized in the context of cell competition [168], which denotes the outgrowth of
so-called “winner” cells against “loser” cells in a tissue due to a growth advantage [14, 19].

Cell competition has first been studied in the Drosophila wing imaginal disc, the
larval precursor of the adult fly wing [131]. The authors studied the growth of clones of
genetically impaired cells (minute-mutants) that had a growth disadvantage compared
to the surrounding wild-type cells. During the growth of the wing disc, the wild-type
(WT) cells eventually suppressed the minute cells. However, if a complete compartment
was comprised of the minute-mutant cells, they continued to proliferate (though at a
slower speed than WT cells) and eventually formed a fully grown compartment. Appar-
ently, only the presence of both WT and minute cells lead to cell competition and the
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Figure 4.1. Interfaces between cells of
different type. In (a), the piston experi-
ment discussed in the previous chapters
is modified such that the tissue cham-
ber is filled with two different types of
cells that are separated by a moving
wall. Cells can interact mechanically
by exerting forces on the wall which re-
places the piston in the previous set-
up. The image is taken from [17],
where this gedankenexperiment was in-
troduced first. In (b), the two different
cell populations can freely intermingle,
which gives rise to a smooth interfacial
profile of the volume fraction φ of the
blue cells.

suppression of the “loser” cells. Similarly, a so-called supercompetitor mutant was found
that outcompeted the wild-type cells [132]: clones of dMyc(+)-mutant cells eventually
suppressed WT cells in the wing imaginal disc. Since these first discoveries, cell compe-
tition has become an active and growing field of research, and considerable progress has
been made. A recent study established the role of a the transmembrane protein Flower
that is differently spliced for cells with “winner” and “loser” identity and thus allows cells
to directly compare their fitness [159]. A cell that comes off badly in such a comparison
is then eventually undergoing apoptosis. It has furthermore been shown that in some
cases cells stressed by supercompetitors activate the JNK and Hid pathway [104], thus
triggering cell death. However, the details are not clear yet, and it remains a matter of
debate whether the reported findings are general and shared in different situations of cell
competition or restricted to the specific situation in which they have been studied so far.

Although these results underline the role of cell signaling and seem to suggest a purely
molecular basis of cell competition, it is not understood what leads to the adoption of the
distinct “winner” and “loser” identities [19, 72]. Most importantly, the hypothesis that a
mechanical interaction is at the basis of the competition between differing cells has not
been ruled out. It is known that mechanical forces can activate signaling pathways; for
example, it has been shown that mechano-sensitive transmembrane ion channels can be
activated by mechanical stress [8]. In a seminal paper, Shraiman suggested that mechan-
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ical stress due to cell division may serve as an integral-feedback mechanism in order to
guarantee homogeneous growth in the imaginal wing disc [168], see also chapter 1 for a
discussion. He argued that the same ideas may be relevant for cell competition, if cells
respond differently to mechanical stress caused by inhomogeneous cell division. In the
meantime, it has been shown that the observed spatial homogeneity of cell proliferation
in the growing wing disc is probably caused by an intricate signaling mechanism and
not due to mechanical stresses [166, 189], see also section 1.1 in the introduction. His
argument regarding the competition of cells responding differently to stresses generated
by growth itself remains an intriguing hypothesis nevertheless.

In the previous chapters, we considered the growth of a tissue against a piston that
exerts an additional pressure on the cells. Instead of the tissue being enclosed by a pis-
ton, one could consider a moving wall that separates a second compartment filled with
cells of a different type, see Fig. 4.1(a). Basan and colleagues introduced this gedanken-
experiment in order to illustrate their concept of homeostatic competition between cells
that have a different homeostatic pressure, along the lines of Shraiman’s ideas. Here, we
want to generalize these ideas to tissues with mixed populations of cells of different type,
see Fig. 4.1(b) for a sketch. In principle, the rates of cell division and apoptosis may
then depend not only on the mechanical stress in the tissue but on the relative concen-
tration of cells of either type. For simplicity, we focus here mainly on purely mechanical
interactions, however.

4.2 Continuum description of tissues with two cell types

We consider tissues that consist of cells of two different cell types A and B, respectively.
For simplicity, we neglect the interstitial fluid and write

nAΩA + nBΩB = 1 , (4.1)

where nA and nB are the cell number densities of population A and B, respectively,
and ΩA and ΩB are the respective average cell volumes. Cells of both types can undergo
apoptosis, described by rates kAa and kBa , or give rise to offspring, characterized by the cell
division rates kAd and kBd , respectively. Cell number balance for the two cell populations
reads

∂tnA + ∂α
(
nAv

A
α

)
= kAnA , (4.2a)

∂tnB + ∂α
(
nBv

B
α

)
= kBnB , (4.2b)

where we introduced the effective proliferation rates kA = kAd − kAa and kB = kBd −
kBa . Each cell type is convected by a flow fieId described by the velocities vAα and vBα ,
respectively.

We define the volume fraction of cells of type A as φ = nAΩA. We can then define
an average velocity vα and a relative flow Jα by

vα = φvAα + (1− φ)vBα , (4.3a)

Jα = φ(1− φ)
(
vAα − vBα

)
, (4.3b)
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such that vAα = vα + Jα/φ and vBα = vα − Jα/(1 − φ). Using these expressions, we can
rewrite the cell number balance equations (4.2) as a balance equation for the volume
fraction φ,

∂tφ+ vα∂αφ+ ∂αJα = φ(1− φ)(kA − kB)

+ φ(1− φ) (∂t + vα∂α) ln ΩA/ΩB + (1− φ)Jα∂α ln ΩA + φJα∂α ln ΩB , (4.4)

and an equation for the divergence of vα,

∂αvα = φkA + (1− φ)kB + φ (∂t + vα∂α) ln ΩA

+ (1− φ) (∂t + vα∂α) ln ΩB + Jα∂α ln ΩA/ΩB . (4.5)

Note that in general the cell volumes are functions of the cell number densities and the
pressure, i.e., ΩA = ΩA(nA, nB, P ) and ΩB = ΩB(nA, nB, P ), where P is the isotropic
part of the stress. Equation (4.1) then implicitly defines an equation of state P =
P (nA, nB) and eventually allows to express ΩA and ΩB in terms of φ and P . Here, we
assume that the cell volumes are constant and that the tissue is incompressible. In this
case, the pressure becomes a Lagrange multiplier to ensure the constraint

∂αvα = φkA + (1− φ)kB . (4.6)

Please see also appendix D for a detailed discussion of incompressibility for a classical
two-component fluid. For constant cell volumes, Eq. (4.4) finally simplifies to

∂tφ+ vα∂αφ+ ∂αJα = φ(1− φ)(kA − kB) . (4.7)

Changes of the volume fraction φ are caused by convective currents, relative flows, and
an imbalance of proliferation between cells of either type.

Constitutive equations and force balance

In order to determine the dynamics of the field φ(r, t), we first need to determine the
average velocity vα and the relative flow Jα. We assume that the latter is a diffusive
current caused by gradients in the volume fraction φ, and we write

Jα = −D∂αφ . (4.8)

Here, D is a diffusion constant with the physical dimension [Length]2/[Time]. In prin-
ciple, D = D(φ), which we neglect for simplicity. We assume furthermore that cells of
type A and type B have the same mass density mA/ΩA = mB/ΩB and that gradients
in pressure do not drive relative flows. The velocity vα has to be determined from force
balance, which neglecting inertial terms and in absence of external forces reads

∂βσαβ = 0 . (4.9)

The total stress, which can be split into an isotropic and a traceless part according to
σαβ = σδαβ + σ̃αβ , is given by a constitutive equation that expresses the stress in terms
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of a pressure, the velocity gradient, and contributions due to gradients in φ. For classical
two-component fluids, this constitutive relation can be derived using Onsager theory,
see appendix D. Here, we use the results of chapter 2 as a justification for describing
the tissue as a viscous fluid at long times. The discussion of the Ericksen stress for a
two-component fluid then suggests the form of the terms arising from gradients in φ that
have to be taken into account in the total stress. We thus assume that the traceless part
of the stress is given by

σ̃αβ = 2ηṽαβ −B
[
(∂αφ)(∂βφ)− 1

3(∂γφ)(∂γφ)δαβ
]

(4.10)

in three dimensions. Here, B is a measure of interfacial tensions caused by finite volume
fraction gradients, its physical dimension being [Force].

In principle, the isotropic stress σ is given by an equation of state, which can now
contain additional terms proportional to |∇φ|2. Close to a reference cell number density
n0, one could write

σ = −P (nA, nB)− B̄|∇φ|2 , (4.11)

where the first term represents the pressure that is related to a compression of cells. Note
that B̄ 6= B in general. In the following, however, we assume that the tissue is incom-
pressible, which simplifies the analysis significantly. For an incompressible system, the
pressure P plays the role of a Lagrange multiplier in order to ensure the constraint (4.6).
The contribution due to a finite gradient of the volume fraction can therefore be absorbed
in the definition of the isotropic part of the stress and we can consider σ as the Lagrange
multiplier. The system of equations is closed by specifying the rates of proliferation kA
and kB. In principle, they can depend on the volume fraction φ, the isotropic stress σ as
well as on the biochemical environment of the cells. Here, we will assume that the latter
dependence can be neglected because of a fixed biochemical environment.

4.3 Linear stability of a homogeneous, steady state

In order to better understand the possible dynamics of the tissue, we discuss the linear
stability of possible stationary steady states of the system. One can distinguish two
scenarios. First, we consider the stability of a homeostatic state of a tissue made up of
a single type of cells; second, we consider a homeostatic state of a tissue with both cell
populations present.

Single cell-type homeostatic state

Let us consider a tissue comprised uniquely of cells of type B. The average volume
fraction at the steady state then is φ0 = 0, and the isotropic stress σ = −PB is chosen
such that

kB(φ = 0, σ = −PB) = 0 , (4.12)

where PB is the homeostatic pressure of cells of type B (cf. sec. 2.3). How does the
tissue respond to a small perturbation of φ by introducing cells of type A? Linearizing
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Eq. (4.7) and switching to the Fourier domain for spatial coordinates, we find that

∂tφ = −q2Dφ+ φkA
∣∣
0,−PB

(4.13)

to first order in φ. Note that we implicitly allow for the spontaneous appearance of a
few cells of type A. The convective terms drop out to first order. Short wave-length
stability then requires D > 0 to prevent a local demixing of cells, which would give rise
to a divergence of large-q modes. Overall stability of the homogeneous composition of
the tissue requires kA(0,−PB) < 0, i.e., that at the homeostatic pressure of cells of type
B, apoptosis wins over cell division for cells of type A. If kA(0,−PB) > 0, however, A
cells will divide more than cells of type B and continue to spread in the tissue.

Homeostatic state with two cell populations

Let us assume that there exists a homogeneous steady state with finite volume fraction
φ∗ and stress σ∗ such that

kA(φ∗, σ∗) = kB(φ∗, σ∗) = 0 . (4.14)

We introduce the variations δφ = φ− φ∗ and δσ = σ − σ∗ and express the effective cell
division rates to linear order as

kA = kA,φδφ+ kA,σδσ , kB = kB,φδφ+ kB,σδσ , (4.15)

where we used the respective short-hand notations kA,φ = ∂kA/∂φ etc. To linear order
in the perturbations, the evolution equation for φ then becomes

∂tδφ = −q2Dδφ+ φ ∗ (1− φ∗)(kA,φ − kB,φ)δφ+ φ ∗ (1− φ∗)(kA,σ − kB,σ)δσ . (4.16)

Short wave-length stability requires D > 0. At constant, externally imposed stress σ∗,
the homeostatic state is stable if kA,φ−kB,φ < 0. If the proliferation rates do not depend
on the volume fraction φ, the homeostatic state is marginally stable; in fact, φ∗ can take
all possible values as long as kA(σ∗) = kB(σ∗) = 0. In the case of a finite pressure
variation δσ, the coexistence stationary state is stable if kA,σ − kB,σ < 0. Again, a
similar argument applies: If both rates of proliferation do not depend on σ, the state is
marginally stable and homeostasis is determined by φ only.

4.4 Non-stationary steady states: Traveling wavefront solu-
tions

It may well be, however, that for finite φ, no stationary homeostatic state exists. In
these cases, one cell population eventually takes over, depending on the sign of kA− kB.
Here, we ask whether traveling wave solutions exist that describe the advancing front of
a population of cells, say, of type A, that outcompetes a second population composed of
cells of a different type B. For infinite systems, i.e., very large tissues, these solutions can
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be considered as non-stationary steady states. For such solutions to exist, two conditions
have to be met. First, they require the existence of a stable, stationary state for a tissue
composed solely of cells of type A and that the corresponding homeostatic state of a
tissue that consists only of cells of type B is unstable. For simplicity, we assume here
that the cell proliferation rates kA and kB depend on isotropic stress only, and we suppose
that both cells of type A and cells of type B have well-defined homeostatic states with
different homeostatic pressures PA > PB.

Second, in order for a generic traveling wavefront solution to exist, Galilean invariance
must be broken. Otherwise, boundary conditions determine the dynamics instead of the
latter being governed by local interaction. Mathematically speaking, the wave speed
selection problem would be ill defined if the interface velocity was defined up to a constant.
Therefore, we consider population dynamics on a substrate, where friction between cells
and the substrate breaks Galilean invariance. The tissue is then at the homeostatic state
A with φ = 1 at one end and at the homeostatic B with φ = 0 at the other, independent
of boundary conditions on the pressure.

4.4.1 Basic equations, non-dimensionalization, traveling waves

In the following, we consider a thin tissue of height h which is confined to a solid substrate.
Following the discussion in section 2.4.2 in chapter 2, we express the force balance in the
plane as

∂kςik = γvi , (4.17)

where latin indices stand for Cartesian coordinates (x, y) in the plane, and ςik =
∫ h

0 dz σik
is the surface stress or tension tensor.1 Cell-substrate friction is described by the fric-
tion coefficient γ, and we neglect again possible dependencies on φ. In the presence of
gradients of φ, another term is allowed by symmetry, and we could add a momentum
source ∝ ∂iφ to the right-hand side of the above equation. Here, we only consider pas-
sive friction as described by (4.17), however. We distinguish an isotropic and a traceless
component of the tension according to ςik = ςδik + ς̃ik. For an incompressible system, ς
becomes a Lagrange multiplier to ensure the constraint

∂ivi = φkA + (1− φ)kB . (4.18)

The constitutive equation for the traceless part then describes a viscous fluid with inter-
facial tension in two dimensions, and we have

ς̃ik = 2η′ṽik −B′
[
(∂iφ)(∂kφ)− 1

2(∂lφ)2δik
]
, (4.19)

where η′ ∼ hη (see sec. 2.4.2) and B′ ∼ hB has the physical dimension [Force]×[Length].
1In this context, we use surface stress and tension interchangeably. For the isotropic part of the

tension, we also say pressure or surface pressure in order to underline its close correspondence to pressure
in a three-dimensional bulk tissue.
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Mechanical coupling of stress and proliferation

In order to close the system of equations, we also need to specify the rates of proliferation
kA and kB. Instead of imposing a fixed proliferation rate set by the environmental
conditions, we assume that cell proliferation depends on the isotropic stress. Note that
in general, cell proliferation rates could also depend on the volume fraction φ. Here,
we want to focus on mechanical interactions between cell populations, however, and
deliberately neglect this dependence. In line with the arguments put forward in the
previous chapters, we therefore consider

kA = κA(ς + PA) , (4.20a)
kB = κB(ς + PB) , (4.20b)

where κA,B are susceptibilities and PA and PB are the respective homeostatic (surface)
pressures at which cell division and apoptosis balance. In general, PA 6= PB, which allows
for a mechanical competition between the two cell populations.

In the case of an incompressible tissue, we can use the constraint (4.18) to express
the isotropic part of the tension in terms of the volume fraction φ and the divergence of
the cell flow,

ς =
∂ivi − φκAPA − (1− φ)κBPB

φκA − (1− φ)κB
. (4.21)

Dynamics

Let us consider an infinite, thin incompressible tissue comprising two cell populations A
and B whose respective volume fractions are homogeneous along the y-direction. Then,
φ = φ(x, t) and the problem becomes effectively one-dimensional since all derivatives
along y vanish identically. We can write v = vex and J = Jex, and force balance (4.17)
reduces to

∂xς + η′∂2
xv −B ∂xφ∂2

xφ = γv . (4.22)

For an incompressible tissue, we can use Eq. (4.21) for the isotropic part of the tension,
and we obtain a differential equation for the average cell velocity v. For simplicity, we
consider κA = κB ≡ κ and chose PB = 0. The above equation then leads to

λ̃2∂2
xv − v = γ−1

(
PA +B∂2

xφ
)
∂xφ , (4.23)

where we defined the characteristic length λ̃ =
√

(1 + η′κ)/(κγ) that describes the spatial
decay of perturbations due to friction. Note that although ς does no longer appear as a
Lagrange multiplier in the force balance, it is determined by the constraint on ∂xv. The
relative flow directly follows from (4.8) as J = −D∂xφ.

How does the volume fraction φ evolve in time? Using the above expressions for the
cell proliferation rates with κA = κB and PB = 0 as well as the constitutive equation for
the relative flow, equation (4.7) now reads

∂tφ+ v∂xφ = D∂2
xφ+ φ(1− φ)κPA . (4.24)
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For the above parameter choice, kA−kB = κPA is constant, and the evolution equation for
φ corresponds to the well-known Fisher wave equation with an additional convective term.
The Fisher wave equation was initially put forward to describe the spatial spread of a
favored gene in a population of a reproducing species [62], and it has been studied to great
detail since (see [134, chapter 11] for a thorough discussion and additional references).
Most notably, it is known to exhibit traveling wavefront solutions, and one can expect that
such solutions persist in the presence of a convective term. Different authors investigated
the effect of additional convective flows on the population dynamics described by the
Fisher equation with and without noise [46, 90, 149]. However, these convective flows
were decoupled from the population dynamics and caused by environmental conditions
in which the population were considered to spread. Here, the situation is different:
The convecting velocity v depends itself on the shape of the interface described by φ
due to the differential cell division and thus—more broadly speaking—because of the
mechanical coupling between cell division and stress, where also the interfacial tension
∝ B′ contributes to.

Non-dimensionalization

The evolution equation for φ introduces a characteristic time scale t0 and a characteristic
length scale l0 according to

t0 = (κPA)−1 , l0 =
√
D/(κPA) . (4.25)

We can then non-dimensionalize the above equations by defining starred, dimensionless
variables t∗ = t/t0, x∗ = x/l0, and v∗ = vt0/l0, and the equations for the fields φ(x∗, t∗)
and v∗(x∗, t∗) become

∂t∗φ+ v∗∂x∗φ = ∂2
x∗φ+ φ(1− φ) , (4.26a)

λ∗2∂2
x∗v
∗ − v∗ = α

(
1 + β∂2

x∗φ
)
∂x∗φ . (4.26b)

For notational brevity, we drop the asterisks in the following and refer always to the non-
dimensionalized quantities. The dimensionless numbers λ(∗), α, and β are parameters of
the problem and given by

λ2 =
(1 + η′κ)PA

γD
, (4.27a)

α =
PA
γD

, (4.27b)

β =
B′κ

D
. (4.27c)

Note that α = λ2/(1 + η′κ) ≤ λ2. Using a Green’s function approach, equation (4.26b)
for the velocity field is formally solved by

v(x, t) = − α

2λ

∫ +∞

−∞
dx′ e−

|x−x′|
λ
(
1 + β∂2

x′φ(x′, t)
)
∂x′φ(x′, t) , (4.28)
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where we used v(±∞, t) = 0. By plugging this expression for v into Eq. (4.26a), one
obtains a highly nonlinear integro-differential equation for φ, which we cannot solve
analytically. Before we study some simple limit cases, however, let us consider the form
the equations take when we assume the solutions to describe traveling waves.

Traveling wave solutions

We look for solutions of the volume fraction φ(x, t) such that the spatial profile of the
interface between the two cell populations remains constant and evolves in time according
to φ(x, t) = Φ(z), where we introduced the co-moving coordinate z = x − ct. Here, c is
the velocity of the traveling wave with a profile described by Φ(x− ct). In line with our
introductory remarks above, we assume that the tissue is in a distinct homeostatic state
for x→ ±∞, and we choose here

lim
z→−∞

Φ = 1 , lim
z→+∞

Φ = 0 . (4.29)

For later convenience, we define the origin by choosing Φ(0) = 0.5.
The isotropic tension σ takes the respective homeostatic value at x→ ±∞, i.e.,

lim
z→−∞

ς = −PA , lim
z→+∞

ς = −PB , (4.30)

and the average cell velocity vanishes at ±∞. For finite x, the velocity profile can
analogously be written as v(x, t) = V (z), and V can be found from Φ according to
Eq. (4.28),

V (z) = − α

2λ

∫ +∞

−∞
dz′ e−

|z−z′|
λ
(
1 + βΦ′′(z′)

)
Φ′(z′) . (4.31)

The evolution equation for φ, Eq. (4.26a), now reads

[−c+ V (z)] Φ′(z) = Φ′′(z) + Φ (1− Φ) . (4.32)

Mathematically speaking, this equation is now an eigenvalue problem for the wave speed
c, i.e., it is to be determined whether a solution Φ exists and what it looks like for any
given c. For the original Fisher equation, i.e., in the case of V ≡ 0, there exist solutions
for all wave speeds c ≥ cmin = 2, and corresponding profiles Φ(z) can be determined via
a perturbative series expansion approach. It has been shown that as long as the leading
edge of an initial profile decays faster than e−z for z → ∞, the steady-state traveling
wave eventually advances with c = cmin.

4.4.2 Limiting cases: diffusion vs. convection

In this section, we try to give approximate solutions to the interface profiles and the wave
speed of the traveling wave solutions in two different limits, namely for λ� 1 and λ� 1.
These limits correspond to two different modes of interface propagation, as we will show
below. Whereas the former allows to make immediate use of established quantitative
methods developed for the original Fisher equation—and thus to discuss that equation
along the way—, the latter rather allows for a qualitative discussion of the dynamics
than for a precise calculation of the interface profile.
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Diffusion-dominated regime (λ � 1)

Let us discuss the limit λ � 1 first. Since 1 + η′κ ≥ 1, this limit necessarily implies√
PA �

√
γD, see Eq. (4.27). Note that α = λ2/(1 + η′κ) ≪ 1 in that case. Therefore,

the convective flow due to cell division can be considered to be small. In the following, we
assume that the interface width is of order ∼ 1� λ, since it is set by the characteristic
length scale l0; we will check this assumption later for consistency. Then, one can consider
that the cell velocity along the interface at z is set by the local perturbation at z only.
Formally, this is expressed by

lim
λ→0

e−
|z−z′|
λ

2λ
= δ(z − z′) ,

and the convective velocity in the co-moving frame becomes

V (z) ≈ −α
[
1 + β Φ′′(z)

]
Φ′(z) . (4.33)

As long as β ∼ 1, the convective velocity is negligible against the propagation speed
c & 2 because α ≪ 1. The second term can become important, however, if β � 1. We
therefore consider a convective velocity

V (z) ≈ −ν Φ′′(z) Φ′(z) , (4.34)

where we neglected the first term ∝ α and introduced the coefficient ν = αβ. Since
α ≪ 1, we assume ν < 1 (and most probably ν � 1 as long as not β ≫ 1). In this
limit, the evolution equation for φ leads to a modified Fisher equation of the form

−cΦ′ =
[
1 + ν

(
Φ′
)2]

Φ′′ + Φ (1− Φ) . (4.35)

The convective term effectively adds to the diffusion in a nonlinear way. Because it
scales with (Φ′)2, however, it does not influence the diffusive dynamics at the leading
edge. Therefore, one can expect that it does not increase the wave propagation speed c
but changes the shape of the interface profile.

The solutions Φ to equation (4.35) are trajectories in the phase plane (Φ,Φ′) that
satisfy

dΦ′

dΦ
=
−c− Φ(1− Φ)

Φ′[1 + ν (Φ′)2]
. (4.36)

The two singular points (0, 0) and (1, 0) correspond to the two stationary states at z →
±∞, respectively. For a linear stability analysis around these two singular points, the
additional term due to convection does not play any role, and we find the same result as
for the original Fisher wave equation. The singular point (0, 0) is a stable node for c ≥ 2,
and a stable spiral if c < 2. A solution Φ to the above equation for c < 2 would thus
imply that Φ < 0 eventually, which is not consistent with the physical interpretation
of Φ as a volume fraction of cells of a given type. Therefore, c ≥ 2, and we can solve
Eq. (4.35) for Φ using a perturbation series approach. Our following presentation follows
closely the argument developed by Murray [134].
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We introduce a change of variable in the vicinity of the front, which is located at
z = 0, such that we can expand Φ as a Taylor series in a small parameter ε. We therefore
define

Φ(z) = g(ξ) , (4.37)

where ξ = z/c ≡ √εz, i.e., ε = 1/c2. Since c ≥ cmin = 2, we have 0 < ε ≤ 1/4. In the
new variables, the equation for Φ becomes

−g′ = ε
[
1 + ν ε (g′)2

]
g′′ + g (1− g) , (4.38)

with
g(−∞) = 1 , g(∞) = 0 ,

and we require g(0) = Φ(0) = 1/2 as before.
From Eq. (4.38) we see that the convective term is of second order in ε and thus does

not change the wavefront profile to first order in ε compared to the asymptotic solution
of the original Fisher equation. We can compute the full asymptotic solution by looking
for solutions for Eq. (4.38) that can be written as a regular perturbation series in ε. We
thus consider

g(ξ; ε) = g0(ξ) + εg1(ξ) + ε2g2(ξ; ν) + . . . , (4.39)

where

g0(−∞) = 1 , g0(∞) = 0 , g0(0) = 1/2 ; and
gi(±∞; ν) = 0 , gi(0; ν) = 0 for i = 1, 2, . . . .



4.4. Non-stationary steady states: Traveling wavefront solutions 109

Inserting the above series into Eq. (4.38) and equating powers of ε, one obtains

dg0

dξ
= −g0 (1− g0) (4.40)

to zeroth order, which is solved by

g0(ξ) =
1

1 + eξ
. (4.41)

Note that this solution satisfies the boundary conditions and the requirement g0(0) = 1/2
specified above; a plot of this function is shown in Fig. 4.2(a). From this approximate
solution we can obtain an estimate for the width of the interface: Assuming that the
characteristic interface width L is inversely proportional to the steepness of the interface
profile at z = 0, see Fig. 4.2(a), we obtain L ∼ (4c) ∼ 10 for c ≈ 2. Our initial
approximation is therefore consistent with the approximative solution found above.

The terms to first and the second order in ε are given by

O(ε) :
dg1

dξ
+ g1 (1− 2g0) = −d2g0

dξ2
, (4.42)

O(ε2) :
dg2

dξ
+ g2 (1− 2g0) = −d2g1

dξ2
− ν

(
dg0

dξ

)2 d2g0

dξ2
+ g2

1 . (4.43)

The functions g1(ξ), g2(ξ; ν), . . . can recursively be determined from the functions gi of
lower order. We find that the convective term, which acts as a nonlinear contribution
to diffusion, appears at second order and higher, which implies that the deviation of the
interface profile from the profile for a “classic” Fisher wavefront will be small. We give
here the solutions for g1(ξ) and g2(ξ; ν), where we write

g2(ξ; ν) = g2(ξ) + νh2(ξ)

in order to distinguish the contribution that arises from finite convective fluxes. One
then obtains

g1(ξ) =
eξ

(1 + eξ)
2

[
ξ + ln

4

(1 + eξ)
2

]
, (4.44a)

g2(ξ) =
eξ
(
1− eξ

)
2 (1 + eξ)

3

{
4ξ −

[
6 + 4 ln 2 + (ξ + 2 ln 2)2 − 4 ln (1 + eξ)

(
1 + ln

4eξ

1 + eξ

)]}
,

(4.44b)

h2(ξ) = −e
ξ
(
1− eξ

)2 (
1 + 6eξ + e2ξ

)
32 (1 + eξ)

6 , (4.44c)

which we plot in Fig. 4.2(b). Already for the minimum wave speed cmin = 2, these
corrections are small. Note furthermore that the contribution due to convection, νh2(ξ),
which is of second order in 1/c2, is negligible compared to the second order correction
ga(ξ) for the original Fisher equation as long as ν ≈ 1.
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Convection-dominated regime (λ � 1)

Let us discuss the limit λ � 1, while β . 1. Since α = λ2/(1 + η′κ), this limit does
not necessarily imply α � 1 but could also arise from η′κ � 1 while PA ∼ γD, see
also Eqs. (4.27). Does this limit allow any conclusions on the interface dynamics? The
integral on the right-hand side of Eq. (4.31) which gives the convective velocity in the
co-moving frame varies with z and vanishes as z → ±∞. However, we can approximate
the integral for |z| � λ, assuming that Φ′ decays faster than e|z′|/λ, i.e., Φ′ ∼ 1− eaz′ for
z′ → −∞ and Φ′ ∼ e−az

′ for z′ → +∞, where a � 1/λ. This assumption is consistent
with the limit λ � 1 and can be checked a posteriori. In this case, the interface width
is of order L = a−1, and the convective velocity is approximately constant along the
interface. We can then write∫ +∞

−∞
dz′ e−

|z−z′|
λ
(
1 + βΦ′′

)
Φ′ ≈

∫ +∞

−∞
dz′

(
1 + βΦ′′

)
Φ′

=

[
Φ +

β

2

(
Φ′
)2]+∞

−∞
= −1 for |z| � λ ,

and we find that the convective velocity V is approximately given by

V (z) ≈ α

2λ
(4.45)

as long as |z| � λ. To first order and close to the interface, the equation for Φ becomes
the classic Fisher equation

−c̃Φ′ = Φ′′ + Φ (1− Φ) , (4.46)

where c̃ = c− α
2λ . The interface profile is given to lowest order in 1/c̃2 by

Φ0(z) =
1

1 + ez/c̃
. (4.47)

For an initially compact interface, the steady-state traveling wave solution is given by
c̃ = 2, and the actual wave speed thus amounts to c = 2 + α

2λ . We find that a = c̃ ∼ 1
and indeed a−1 � λ. Convection simply adds to the propagation velocity as it is set by
diffusion and differential growth along the interface. Strictly speaking, the limit λ � 1
does not necessarily imply that the dynamics is convection-dominated, which is the case
only if λ/α� 1. Although the interface might be sharp on length scales compared to λ,
the pressure profile decreases on a characteristic length scale set by λ. Therefore, cells
of type A divide in a region of width λ behind the sharp interface, and cells of type
B undergo apoptosis in a corresponding region ahead of the advancing interface. This
mechanism propels the interface with an approximately constant, additional velocity.
This contribution can become quite important if PA & γD. Note however that δV (z) =
V (z) − α

2λ scales with α/λ as well. For simplicity, let us consider an infinitely sharp
interface. The velocity then decays as V (z) ∼ V (0)e−|z|/λ, which is an upper limit on the
variation with z for interfaces of finite width L. Therefore, one can expect that deviations
from the predicted interface profile become important as soon as α

λ (e−L/λ − 1) ∼ 1; in
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other words, we can expect that the above approximation holds as long as λ� α
λL ∼ 10αλ

if we assume c̃ ≈ 2.
Now consider λ� 1 and β � 1. In this case, the above approximation of the integral

close to the interface breaks down: As βΦ′′ now varies strongly from βΦ′′ � −1 to
βΦ′′ � 1 along the interface, the dependence of z of the exponential term can no longer
be neglected. As Φ′′ > 0 at the leading edge of the wavefront and Φ′′ < 0 towards
the trailing edge, the convective velocity is increased at the front and decreased at the
back. One can expect that this effectively expands the interface and thus speeds up the
wavefront propagation.

4.4.3 Numerical results

In order to test the validity of the approximate solutions discussed above, and to explore
the dynamics in general, we solved Eqs. (4.26) numerically in the time domain. For a
sharp initial profile, the dynamics eventually leads to traveling waves with a well-defined
interfacial profile φ = Φ(x − ct) and fixed wave speed c, both of which depend on the
values of λ, α, and β. For details on the implementation please refer to appendix C,
section C.3.

Propagation velocity

The respective wave speeds of the traveling wave solutions for different parameter values
are shown in Fig. 4.3, where we distinguished between the three cases β = 0, β = 100,
and β = 1000 for better readability. Note that the speed of the traveling waves with
λ = 1000 is indeed well approximated by 2 + α

2λ as indicated by the dashed blue line.
For λ ≤ 1, the wave speed remains constant as long as β ≤ 100, as predicted above in
the limit for vanishing λ. These observations of wave propagation velocities therefore
seem to confirm the approximations discussed in the previous section, which we check
for consistency with the observed wavefront profiles below.

It is interesting to note the effect of a (significantly strong) surface tension coefficient
β on the observed wave speeds. For β = 0, the wave speed c is bounded from above
by 2 + α

2λ , and c increases with λ for fixed α/λ (see upper panel). For large enough β,
the reverse can be observed: For finite λ, the wave speed c actually exceeds 2 + α

2λ and
decreases with λ for fixed α/λ, see Fig. 4.3 (lower panel). This can be understood as a
trade-off between damping of the convective velocity, which decreases with λ, and the
averaging-out of the contribution βΦ′′ in the integral on the right-hand side of Eq. (4.31),
which switches sign along the interface.

Wavefront shapes

The actual wavefront profiles Φ(z) and the corresponding average cell velocities V (z) for
the individual traveling wave solutions are shown in Fig. 4.4. For comparison, we plot
also the solution to the original Fisher wave equation as obtained by the perturbation
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series approach for c = 2 to second order,

Φ2(z) ' g0(z/2) +
1

2
g1(z/2) ,

as a solid black line (cf. Eqs. (4.41) and (4.44a)). The respective wavefront shapes (upper
panel) and corresponding velocity profiles (lower panel) are shown in three different blocks
for increasing α/λ from top to bottom, and separately for increasing β from left to right.

For small “propulsion strength” α/λ = 0.1, the Fisher wave profile is a good approxi-
mation for all characteristic decay lengths λ and non-dimensionalized surface tensions β,
see Fig. 4.4(a-c). Even for large β, where the convective flow varies considerably along
the interface for λ = 1 and λ = 10, see Fig. 4.4(f), this variation is still negligible against
the minimum wave speed cmin = 2 due to diffusion and differential proliferation.

For α/λ = 1, the interface profile is still captured well by the Fisher wave profile
as long as the convective velocity is approximately constant along the interface. This is
perfectly true for traveling waves with λ = 100, as can be seen in panels Fig. 4.4(j-l). For
λ ≤ 10 and β = 1000, these variations get of the order of 1, and the interface profile starts
to be distorted, see Fig. 4.4(l,i). Note also how the perturbation at the interface does not
extent into the tissue far from the interface for λ = 1 (Fig. 4.4(j)), which implies that
the interface is not propelled by cell division and apoptosis far from the border. Thus,
the wave speed is still fixed by the diffusion and differential proliferation mechanism in
the absence of convection, although the “strength” α/λ is the same for all curves shown
here.

The same arguments hold for the case α/λ = 10. For the parameter values chosen,
only for curves with λ = 1000 does the approximation discussed in the previous section
hold. Because the variation in the convective velocity across the interface roughly scales
as δV ∼ α

λ
L
λ , where L is the width of the interface, these variations can no longer be

neglected for λ = 10 and lead to wavefront shape distortions already for β = 0, which
become even more important for β = 100, see Fig. 4.4(m,p;n,q). For β = 1000, finally,
the velocity variation becomes important for λ = 100 as well, and the corresponding
wavefront shape deviates from the Fisher solution, see Fig. 4.4(r,o).

4.5 Discussion

What can we conclude from the theory developed in this chapter and the results presented
above? In order to capture the growth dynamics of tissues that consist of more than
one cell type, we extended our description of growing tissues developed in the previous
chapters to tissues comprised of two distinct cell types. As a natural consequence of
the concepts introduced before, such as the coupling between net cell division rate and
isotropic stress, one finds that the two distinct cell populations can interact mechanically
without having to take complicated cell signaling mechanisms explicitly into account. The
resulting description of the multicellular dynamics extends earlier work insofar as smooth
interfaces along which the volume fraction φ of cells of one type varies continuously can
be considered. We derived a dynamic equation for φ that takes the form of a classical
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Fisher wave equation with an additional convective term, see Eq. (4.7). The nonlinear
growth term is proportional to the difference of the respective net cell division rates of
cells of either type. Note that this difference is not necessarily a constant as is the case
in the “original” Fisher equation. Relative flow between the two cell types is described
by a diffusion coefficient D, which might also be a nonlinear function of the cell number
densities. The convective velocity, which is the average cell velocity, is determined by
force balance in the tissue. This coupling of an additional convective velocity to mechanics
is truly distinct of usual Fisher wave dynamics. Initially, the Fisher wave equation was
proposed to describe the expansion of an allele with selective advantage in a given species,
where mechanical effects obviously do not play a role [62]. The Fisher equation was later
used to describe the growth of bacterial colonies [40, 134]. Here, interactions between
bacteria are lumped into a simple nonlinear proliferation rate, or a finite carrying capacity
of the medium. In these descriptions, bacteria do not need to be in mechanical contact
and physical forces are not considered.

On long time scales, we consider the tissue to behave as a viscous fluid, in accordance
with the results obtained in the previous chapters. In the presence of finite gradients
of the volume fraction φ, however, symmetry allows for an additional term in the off-
diagonal part of the stress, which corresponds to the Ericksen stress in the case of a
classical two-component fluid. In order to investigate the dynamics of interfaces between
cells of different type independent of boundary conditions, we consider the tissue dynam-
ics in a thin-film approximation, where friction between cells and the substrate breaks
Galilean invariance. In this case, traveling wave solutions can exist if the homeostatic
state (as defined earlier) of a “winner” cell type is stable against small perturbations
and—reciprocally—the homeostatic state of a “loser” cell type unstable.

We studied the traveling wave solutions for a simple choice of the dependence of the
net division rates of each cell type on the isotropic plane stress, or tension. This de-
pendence is characterized by a difference PA of the respective homeostatic pressures and
a (common) susceptibility κ describing the response of the cell division rates on stress.
Basically, one can distinguish two different regimes: If PA < γD, where γ is the friction
coefficient between cells and the substrate, the convective velocity is negligible compared
to the wave propagation due to diffusive relative flow of cells and differential cell divi-
sion/apoptosis along the interface. In this case, the wave speed c is approximately given
by c ≈ 2

√
DκPA, as can be shown by making use of the solution to the original Fisher

wave equation. However, vanishing D does not imply that the interface does not evolve
in time: If PA � γD(1 + ηκ), where η is the tissue viscosity, the wave propagation is
mainly driven by proliferation and apoptosis of cells on the respective sides of the inter-
face. In this regime, the wave speed scales as c ∼ PA/

√
(κ−1 + η)γ, which is independent

of D. This propagation exists also for sharp interfaces, i.e., for cell populations that abut
but are mechanically separated. Such interfaces are ubiquitous in development, where
e.g. compartment boundaries have spurred some interest. Interestingly, the phenomenon
of cellular competition described in the introduction to this chapter seems to be confined
to individual compartments and does proceed across compartment boundaries. One pos-
sible explanation might be that the compartment boundary acts as a mechanical barrier
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that could be associated to an increase in tension along the interface [113, 129].
Some technical remarks are due here. For simplicity, we neglected any additional

biochemical coupling between the two cell types in our analysis. As long as a stable,
stationary state with finite volume fraction φ∗ exists towards which any volume fraction
φ 6= φ∗ would eventually relax due to cell division and apoptosis for any given tension ς,
the described traveling wave dynamics would similarly exist. Any interface between the
homeostatic state with φ = φ∗ and the unstable homeostatic states φ = 0 or φ = 1 would
eventually propagate. Note however that the hypothesized homeostatic state is only
marginally stable if the cell division rates depend on pressure, in which case the dynamics
does not obviously follow. Furthermore, we restricted our analysis to constant, positive
diffusion coefficient D. For passive systems, equilibrium thermodynamics requires D > 0.
Cells are active agents far from equilibrium, however, and D < 0 could be allowed in
principle. Negative diffusion would correspond to active cell sorting-out, and interfaces
could be considered to be sharp in that case.

Last but not least, we only considered traveling waves in a linear geometry. It is
straightforward to write down the corresponding equations in the case of an axisymmetric
geometry. Strictly speaking, traveling waves φ = Φ(r − ct) as a function of the radius r
with constant c do not exist, because the Laplace operator that appears in the diffusion
term depends now explicitly on r. This dependence vanishes as 1/r for r →∞, however,
and the solutions we discussed here are approximate solutions for the radial interfacial
profile at long times. More importantly, due the circular geometry the interfacial tension
now adds to the stress exerted on the expanding tissue. This affects the convective
velocity, which follows from force balance. Whereas we can neglect this effect in the
diffusion dominated regime, it can become quite important when PA & γD. One finds
a critical radius Rc ≈ B/(PAL) for the position of an interface of width L below which
the interfacial tension dominates over the expansion pressure PA. Interestingly, this will
not lead to a suppression of the expanding tissue, however. Rather, we can expect that
the tissue expands slowly via diffusion with a very broad interface profile before the
convection-dominated mode of propulsion eventually takes over once the critical radius
is reached.
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Chapter 5

General conclusion and outlook

In this thesis, we studied several aspects of the physics of growing cellular tissues. The
ability to grow and divide is a unique feature of living cells, and eventually allowed the
evolution of ever more complex forms of life. From a physics point of view, biological
tissues are out-of-equilibrium systems in constant exchange with their environment, and
cell proliferation is one of the most compelling manifestations thereof.

During division and apoptosis, cells generate active forces; in the realm of continuum
mechanics, these can be described as force dipoles. In a first part of this thesis (chapter 2),
we discussed the effect of these active stress sources on the tissue material behavior. The
stress increments due to cell division and apoptosis are anisotropic in general, where the
anisotropy of the source stress is linked to the average orientation of cell division. In a
perfectly isotropic system, cell divisions are random and not aligned on average. Finite
anisotropic stresses orient the cell division axis on average, however, and the tissue can
relax elastic stresses by cell division; a similar argument holds for the stresses associated
with apoptosis events. The growing tissue therefore effectively behaves as a viscoelastic
fluid with a characteristic relaxation time set by the rates of cell division and apoptosis.
At long times, the tissue is able to flow in response to external forces. This stress-
relaxation mechanism may be relevant for tissue formation in development, where cell
generation times are short compared to the time scale of morphogenesis.

A similar mechanism of “active” stress relaxation can be found in a phenomenological
theory of polar, active gels using an Onsager approach [39, 110]. Such a generic theory
does not rely on specific assumptions to derive the governing equations, which follow
from symmetry arguments and local entropy production. The apparent similarity lends
hope that generic theories may inform biophysical descriptions of tissue mechanics even
though the underlying assumption that the system is close to thermodynamic equilibrium
does not hold for tissues in a straightforward way. It is therefore worthwhile to explore
how far the analogy regarding the hydrodynamics of polar, active gels holds.

When considering tissues with a global polarity pattern, we furthermore found that
oriented cell divisions do not only relax stress but can give rise to additional source
terms in the stress that persist at long times. These active stresses, which occur when
the cell division axis is aligned on average, can drive cell flow by oriented cell divisions

117
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and may play a role in convergence-extension tissue morphogenesis. For simplicity, we
assumed the global order to remain constant. However, recent work of Aigouy and co-
workers found that the planar cell polarity in the Drosophila wing imaginal disc aligns
with the shear flow of cells [7]. In order to develop a comprehensive understanding of
the underlying tissue dynamics, it is therefore certainly of interest to investigate time-
dependent polarity patterns and their coupling to the cell flow. Also, one can imagine
that for some tissues, polarity may form spontaneously as in isotropic-to-nematic phase
transitions. Here, further research might indeed be informed by the theory of liquid
crystals and the aforementioned polar, active gels [39, 49, 110].

In section 2.4, we discussed zebrafish epiboly as a possible example of tissue fluidiza-
tion during growth. During epiboly, blastoderm cells and cells of the enveloping layer
(EVL) proliferate and spread on the underlying yolk cell. We showed that cell prolif-
eration in conjunction with the spherical geometry gives rise to shear stresses, which
in turn can orient the axis of cell division in the absence of any other directional cues.
Depending on cell-substrate friction, our model furthermore suggests that the rate of cell
division might be modulated along the animal-vegetal axis. The predicted orientation
of cell division has indeed been observed in early stages of epipoly [44]. However, it is
not clear to which degree this orientation is caused by cell polarity cues other than the
mechanical cues due to shear stress [167]. A thorough experimental analysis of the tissue
dynamics during epiboly seems a promising endeavor in order to disentangle different
contributions. Similarly, a quantitative study of the spatial distribution of cell divisions
in the EVL might give hints on the strength of mechanical coupling between the EVL and
the underlying cell mass. An appropriate theoretical description of zebrafish epiboly may
also require additional effects to be taken into account, as for example mass exchange in
the radial direction.

Another remark concerns our choice of constitutive equation in the absence of cell
division and apoptosis. In this limit, we considered the tissue to behave as an elastic solid,
partly informed by experimental observations [59].1 Our approach can be generalized in
a straightforward way to include other stress relaxation mechanisms, for example those
related to cell shape fluctuations [121], see also the discussion at the end of chapter 2.
However, it is less clear how our account of cell division and apoptosis translates to
arbitrary tissue rheologies in the absence of cell division and apoptosis, which is a question
that may provide additional conceptual insight. Note also that we neglected nonlinear
effects for simplicity, which may be relevant to explain a possible shear thinning [16] or
strain hardening [71] response of biological tissues. Regarding the latter, a pragmatic
approach may be to consider all next-higher order terms allowed by symmetry in order
to investigative their respective role in the overall tissue response.

An even more interesting problem though might be the effect of active cell motility
on large-scale tissue dynamics. Recent work by different groups focused on collective

1From a statistical physics perspective, we presented a mechanism of bulk melting of an elastic solid
which does not exist for conventional solids, i.e. crystals. The stress relaxation mechanism related to
cell division and apoptosis bears some resemblance to melting of two-dimensional crystals by unbound
dislocation pairs that distort the crystal lattice [136]; however, bulk melting in three-dimensional crystals
has not been observed [48].
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cell migration in epithelial sheets [13, 148, 155, 175, 182]. Angelini and co-workers sug-
gested that confluent, proliferating epithelia approach a glass-like state as the cell density
increases, based on the analysis of cell velocity correlations. They found that the char-
acteristic velocity-correlation relaxation time at the glass transition corresponds to the
average cell division time [13], which corroborates our results regarding tissue fluidiza-
tion. At lower cell densities, migration dominates over diffusive motion of cells, with
a rheology similar to that of active particle suspensions [13, 18, 92]. Puliafito and col-
leagues report a similar structural transition for freely expanding epithelial cell colonies
and establish a link between cell density and proliferation rate. They find that the rate
of cell division is reduced for increasing cell density [155], and their observation raises
the question to which extent cell proliferation remains determinant for the collective dy-
namics at cell densities below the glass transition mentioned above. In order to address
this issue and related questions, it seems promising to explicitly account for active cell
migration within the framework put forward in this thesis. Active migration necessarily
implies momentum transfer between cells and the substrate, and one might attempt to
model active migration as a random body force acting on the cells [155]. As we have
shown in section 2.4, the interplay of cell-substrate friction and tissue viscosity defines
a characteristic length scale, which might then account for the finite correlation lengths
of the velocity fluctuations observed in experiments [13, 155, 175]. Certainly, more work
needs to be done in order to shed light on the rich dynamical behavior that arises from
the interplay of the cell migration and proliferation.

In section 2.3, we discussed the homeostatic state at which cell division and apoptosis
balance on average. In a constant biochemical environment, the rates of cell division and
apoptosis vary with the mechanical stress, and the homeostatic state corresponds to a
well-defined homeostatic pressure. A remarkable property of tissues at the homeostatic
state is that their bulk compressional modulus vanishes; in contrast with conventional
materials, particle number (i.e. cell number) is not a conserved quantity when the homeo-
static state is perturbed. The dynamics close to the homeostatic state is characterized by
a second viscoelastic relaxation time, which describes the response of the net cell division
rate to pressure. Recent experiments with multicellular tissue aggregates demonstrated
the pressure-dependence of the cell division and apoptosis rates in the bulk of tissue
spheroids, although cell proliferation at the spheroid surface seems to be regulated dif-
ferently [130]. Note that this study suggests that the homeostatic pressure is negative,
which does not contradict the framework put forward in this thesis. In the experiments
with expanding epithelial cell colonies mentioned earlier, Puliafito and colleagues also
found that cell division is reduced within the bulk of the cell colony as compared to the
stronger-proliferating rim after a size threshold is reached [155]. The authors suggest
that migrating cells at the margin exert a finite tension on the cell sheet, which locally
promotes proliferation; in the center of the colony, cells are not under tension and unable
to divide [155]. In this context, it may be worthwile to study the interplay of applied
tensions, cell-substrate interactions and cell proliferation within our framework in order
to explore the concept of homeostatic pressure for sheet-like tissues in two dimensions.

Our analysis of noise due to cell division and apoptosis allowed us to calculate an
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effective diffusion coefficient for cells in the homeostatic state (section 2.5). When con-
sidering the height fluctuations of a tissue covered by a tensionless membrane, we found
that these fluctuations can give rise to fracture of the tissue layer at a characteristic
length scale set by the membrane’s bending modulus. Here, we restricted our analysis
to the regime of small fluctuations around the average tissue height for simplicity. It
would be interesting to extend the calculation to the nonlinear regime, however, given
that the cell division noise is multiplicative and scales with the tissue volume. This also
manifests itself in the height-dependent diffusion coefficient of a stiff piston covering a
tissue at the homeostatic state, which implies giant fluctuations related to the vanishing
tissue compressibility.

In the second part of this thesis (chapter 3), we addressed the effects of the permeat-
ing extracellular fluid on tissue dynamics. To this end, we introduced a two-component
description of tissues that takes both a cell phase and the interstitial fluid into consid-
eration. Note that a second material component is necessary in order to keep track of
total mass balance in the presence of cell division and apoptosis: cell division and apop-
tosis can then be described as an effective material turn-over between the two phases.
In the two-component description, internal forces due to friction between the extracel-
lular fluid and the cell phase appear naturally in the tissue force balance equation. The
two-component descriptions allowed us to clarify the nature of the homeostatic pressure
which is the isotropic part of the cell stress tensor, not to be confused with the hydro-
static pressure of the interstitial fluid. An illustrative example is the neck of a giraffe:
Although the fluid pressure may exhibit a barometric profile due to gravitational forces,
where fluid pressure decreases with height, cell pressure may be constant throughout the
tissue and the giraffe’s neck at the homeostatic state.

Moreover, the ratio between the tissue viscosity and the cell-fluid friction coefficient
defines a characteristic length scale over which stresses are transferred from the cell phase
to the fluid. This is illustrated by the dynamics of a moveable semi-permeable piston
subject to an excess pressure that encloses a tissue at its homeostatic state, where one
can distinguish different dynamical regimes depending on the value of this characteristic
length. If this characteristic length is large compared to tissue size, we find that the
tissue dynamics is correctly described by the one-component theory. For sufficiently high
friction or low tissue viscosity, however, this length is small and the response to pressure
remains confined to a small region of the tissue and the one-component description fails
to account for the observed dynamics. The order of magnitude of this characteristic
length in real tissues is not clear, however, see also the discussion at the end of chapter 3,
and no precise predictions of the role of permeation can be made. It would be informative
to design specific experiments that measure tissue permeability for different cell types,
thus allowing an estimation of the effects in biologically relevant situations. Regarding
the theory, the next step could consist in the consideration of biochemical regulation of
growth. Although it is generally assumed that nutrient supply is governed by diffusion
and fast compared to the time scale of cell division and apoptosis [153], convective flows
of nutrients solved in the extracellular fluid may become relevant in certain situations.
Also, it is reasonable to assume that due to increased cell pressure, the pore size in
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the tissue changes and the permeability of the tissue decreases. It would be worthwile
to explore whether such nonlinearities could give rise to instabilities of the cell volume
fraction.

Finally, we devoted the last part of this thesis (chapter 4) to the mechanical com-
petition between two populations of cells of different type. Extending the framework
developed in chapter 2, we found the equations that govern the dynamics of a smooth
interface between two such cell populations. Here, the dynamical equation for the vol-
ume fraction of one of the cell types formally corresponds to the Fisher equation with
an additional convective term. Under the assumption that the respective rates of cell
proliferation of either cell type are under mechanical control, this correspondence can be
made more explicit. We found that if the homeostatic pressures of the two cell types
differ, the more resilient cell population invades the other one, a situation that reminds
of tumor growth within a healthy tissue. In the presence of cell-substrate friction, trav-
eling wavefront solutions for the tissue interface exist, and our analysis showed that two
different limit cases can be distinguished. In a first regime where diffusion dominates, rel-
ative fluxes due to diffusion allow the “malignant” cells to spread, and their resilience lets
them take over locally. If the difference in the homeostatic pressures between “malignant”
and “healthy” tissues is large and cell-substrate friction low, convective flows dominate
the interface dynamics. In this regime, the interface between the two cell populations
is propelled by excessive proliferation of the tumor and corresponding cell death in the
healthy tissue. Our work thus demonstrates the importance of cell-cell interactions and
fluctuations that determine the effective diffusion of cells at the tissue interface. Even in
situations where surface tension effects may prevent a small mutant cell population to
spread, see also the work of Basan et al. [17], diffusion allows to smoothen the interface
and leads thus to subsequent outcompetition of the healthy tissue by the mutant cell
population.

A straightforward extension of this work would be to consider geometries other than
the one discussed here in order to arrive at more realistic models of tumor expansion.
Another step would be to combine the dynamics of two different cell types with the the-
ory developed in chapter 3, which additionally takes the interstitial fluid into account.
Finite tissue permeability may then play the role of the cell-substrate friction and allows
for the existence of traveling wave solutions in a three-dimensional geometry. Also, more
detailed theoretical modeling could be informed by research on biochemical interactions
between tumor and host tissue: much of cancer research has been focusing on the ge-
netic prerequisites and regulation of cancer [190], and along with research on the tumor
microenvironment such research is certainly to come. Last but not least, the problem
of interacting cell populations arises in the context of tissue renewal. Here, stem cells
proliferate and give rise to daughter cells that eventually differentiate. Our approach to-
wards the mechanics of interacting cell populations should in principle allow to capture
the dynamics of such self-renewing cell populations, and taking cell differentiation into
account could be a promising avenue of further research.
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Appendix A

Force dipoles in elastic media

A.1 Point force dipoles

For an isotropic elastic medium, the Hookian law is expressed as

σel
αβ = Cαβγνuγν , (A.1)

where uαβ = 1
2(∂αuβ +∂βuα) is the total elastic strain. The tensor of elastic constants is

given by Cαβγν = χ δαβδγν + 2µ (δαγδβν − δαβδγν/3) , where χ and µ are bulk and shear
elastic moduli, respectively. Force balance reads

∂βσ
el
αβ = −fα , (A.2)

where fα is a force density that describes stress sources acting on the material. If the
forces are known, the above equation allows to determine the elastic deformation uα for
given boundary conditions.

Any given force distribution can be characterized by its moments with respect to the
spatial coordinate r. The first moment is simply the sum of all forces in a given volume,

Fα =

∫
dV fα(r) . (A.3)

If the first moment is finite, it generally dominates the elastic deformation at long range.
The second moment defines a tensor which is called a force dipole. The force dipole of a
force distribution fα is given by

Pαβ =

∫
dV rαfβ(r) . (A.4)

Although the sum of all forces within a given volume might vanish, its force dipole may
still be finite.

In the main text, we consider cell division and apoptosis events as point force dipoles.
The first moment of the microscopic force distributions necessarily vanishes, because
the forces are of internal origin and not possibly balanced otherwise. A point force
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an

−an

be

Figure A.1. The two opposed point forces form a point force
dipole in the limit of b → 0. Here, both forces are collinear and
e = n.

dipole dαβ can be thought of as two point forces brought infinitely close together such
that the product (force)×(distance) remains constant. Consider the force distribution
fα(r) = f1,α(r) + f2,α(r), where f1,α(r) = anαδ(r − r1) and f2,α(r) = −anαδ(r − r2).
Here, a is a force amplitude and n a unit vector denoting the direction of the force.
Obviously,

∫
dV fα(r) = 0. Now let r2 = r1− be, where b is a length and e a unit vector

defined by the relative position of the two point forces. A sketch of such a force dipole
is shown in Fig. A.1. In the limit of b→ 0, we obtain

fα(r) = lim
b→0

anα [δ(r− r1)− δ(r− r1 + be)]

= −dαβ∂βδ(r− r1) , (A.5)

where we defined the dipole moment dαβ = abnαeβ . As b → 0, the force amplitude
a → ∞ such that ab = const. The force density given by equation (A.5) thus describes
a point force dipole at r1. Not suprisingly, for the second moment defined in Eq. (A.4)
we find Pαβ = dαβ . Note that in principle, more than two point forces can be combined
in this way in order to describe more complex force distributions. Because cell division
and apoptosis do not exert any net torque, we only require the dαβ to be symmetric.
We can now introduce the force dipole density Dαβ =

∑
n d

(n)
αβ δ(r − rn) that describes

a collection of point force dipoles. Note that the force distribution described by these
dipoles is given by fα = −∂βDαβ . In the coarse-grained description, we locally average
over a small volume and obtain a smooth function Dαβ(r).

A.2 Green’s function of force dipoles in elastic media

Let Gαβ denote the Green’s function of an elastic medium such that the deformation
field u due to a point force f at r′ is given by

uα(r) = Gαβ(r− r′)fβ . (A.6)

The point force Greens’ function can in principle be determined from Eqs. (A.1) and
(A.2), which is discussed e.g. in [112]. For any force dipole dαβδ(r′), we can introduce
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the force distribution fd
α(r′) = −dαβ∂βδ(r′), see the previous section. This implies

ua(r) = −
∫

d3r′Gαβ(r− r′) dβγ∂γ′δ(r
′)

= +

∫
d3r′ ∂γ′Gαβ(r− r′) dβγδ(r

′)

= −
∫

d3r′Gαβ,γ(r− r′) dβγδ(r
′) , (A.7)

where ∂γ′ = ∂/∂x′γ and Gαβ,γ = (∂/∂xγ)Gαβ . Here, we have used the translational
invariance of an infinite medium which is expressed by the fact that Gαβ(r, r′) = Gαβ(r−
r′) . Thus we have

uαβ =
1

2
(∂αuβ + ∂βuα) (A.8)

= −1

2

∫
d3r̃ {Gαγ,δβ(r− r̃) +Gβγ,δα(r− r̃)} dγδδ(r̃) (A.9)

≡
∫

d3r̃ Hαβγδ(r− r̃) dγδδ(r̃) , (A.10)

where we have defined the force dipole Green’s function Hαβγδ for the elastic strain
uαβ . When the point force Green’s functions Gαβ is known, we can now calculate Hαβγδ

straightforward. For an isotropic, infinite elastic medium one obtains

A−1Hαβγδ(r) = − 1

r3
[δαβδγδ − (1− 2ν)(δαγδβδ + δαδδβγ)]

+
3

r5
[rαrβδγδ + rαrγδβδ + rβrγδαδ + rγrδδαβ

−(1− 2ν)(rαrδδβγ + rβrδδαγ)]− 15

r7
rαrβrγrδ , (A.11)

with A = (3χ − µ)/(24πχµ) and Poisson’s ratio ν = (3χ − 2µ)/(6χ − 2µ) . See also
reference [24] for a discussion of single cells acting as force dipoles in elastic media and
corresponding Green’s functions in more complicated geometries.

A.3 Analogy to electrostatics

There is a formal analogy between stresses in an elastic medium in the presence of force
dipoles

σαβ = Cαβγνuγν −Dαβ , (A.12)

and electrostatics in polarizable media,

Dα = ε0Eα + Pα . (A.13)

Here, Dα is the dielectric displacement, ε0 is the vacuum permittivity, Eα the electric
field, and Pα the polarization. Note that ∂αDα = ρext , where ρext is the free charge den-
sity, and Pα =

∑
n p

(n)
α δ(r− rn) is a dipole density; also, ∂αEα = (ρext−

∑
n ∂αp

(n)
α δ(r−
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rn))/ε0 . The analogy is then σαβ ↔ Dα, uαβ ↔ Eα, Dαβ ↔ −Pα, f ext
α ↔ −ρext,

and ε0 ↔ Cαβγν . A similar analogy between the elastic deformation around dislocation
lines and the magnetic field around lines of constant current has been pointed out by
[112, 147].



Appendix B

Detailed calculation of the cellular
diffusion constant

In this appendix, we show the detailed calculation of the diffusion coefficient of cells both
for the one-component and for the two-component theory of tissues at the homeostatic
state. Whereas we use exactly the same description of the tissue material properties as
put forward in the main text, and consider the same form of the noise due to cell division
and apoptosis, we take here the finite decay times of the velocity-velocity correlations
into account. In cases where the slow diffusion approximation which we used in the main
text is not appropriate, we give the expression of the diffusion coefficient which can be
used to determine its value graphically or numerically.

B.1 One-component description

In three dimensions, the diffusion constant is defined as

D = lim
t→∞

〈r2
p(t)〉
6t

, (B.1)

where rp stands for the position of a tracer particle. The position can be expressed in
terms of the flow field vα(r, t) in which the particle moves, and we find

D =
1

3

∫ ∞
0

dt 〈vα(rp(t), t)vα(rp(0), 0)〉

=
1

3

∫ ∞
0

dt

∫
d3q

(2π)3

∫
d3q′

(2π)3

〈
ei[qrp(t)+q′rp(0)] vα(q, t)vα(q′, 0)

〉
. (B.2)
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Under the assumptions that particle position and velocity fluctuations decouple, the
diffusion coefficient is thus given by

D =
1

3

∫ ∞
0

dt

∫
d3q

(2π)3

∫
d3q′

(2π)3

〈
ei[qrp(t)+q′rp(0)]

〉
〈vα(q, t)vα(q′, 0)〉

=
1

3

∫ ∞
0

dt

∫
d3q

(2π)3

〈
ei[qrp(t)+q′rp(0)]

〉
Cvv(q, t)

=
1

3

∫ ∞
0

dt

∫
d3q

(2π)3
e−q

2DtCvv(q, t) , (B.3)

where we introduced the velocity-velocity correlation function Cvv(q, t) defined by

〈vα(q, t)vα(q ′, 0)〉 = (2π)3δ(q + q ′)Cvv(q, t) (B.4)

and assumed a Gaussian distribution of particle position fluctuations,〈
eiq[rp(t)−rp(0)]

〉
=

∫
d3r

1

(4πDt)3/2
e−

r2

4Dt eiqr

= e−q
2Dt . (B.5)

Equation (B.3) allows in principle to calculate the diffusion coefficient without any further
approximation. Note however that D is given only in an implicit form. In the main
text, we calculated the diffusion constant under the assumption that diffusion is slow
compared to the relaxation of the velocity-velocity correlations, an approximation we
discuss in detail below.

Velocity-velocity correlation function

In order to calculate the velocity-velocity correlations, we solve for the velocity fluctu-
ations in the Fourier domain as driven by the stress fluctations, see Eqs. (2.63) in the
main text. We then find the Fourier transform Ĉvv(q, ω) according to

〈vα(q, ω)vα(q ′, ω′)〉 = (2π)4δ(q + q ′)δ(ω + ω′)Ĉvv(q, ω) , (B.6)

and obtain

Ĉvv(q, ω) =
2

q2

[(
ζ

η̄

)2 kd
nh

1 + ω2τ2
a

1 + ω2τ̄2
+

2

3

θ

η̄2

1 + ω2τ2

1 + ω2τ̄2
+

θ

η2

]
. (B.7)

Here, η̄ = ζ + 4
3η is again the longitudinal viscosity and

τ̄ =
ζτa + 4

3ητ

η̄
= ττa

χ+ 4
3µ

χτ + 4
3µτa

as in the main text.
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In the time domain, the velocity correlations decay exponentially. In the one-component
theory, there is a single relaxation time, which is τ̄ . The explicit form of the velocity-
velocity correlations in the time domain can be obtained in a straightforward way from
the Fourier transform∫

dω

2π
e−iωt

1 + ω2τ2
1

1 + ω2τ2
2

=

(
τ1

τ2

)2

δ(t) +
τ2

2 − τ2
1

2τ3
2

e−t/τ2 . (B.8)

Please note that the δ-correlated contribution is an “artefact” of the one-component
theory, in the sense that it disappears in the two-component theory (see below).

Calculation of the diffusion constant in the slow diffusion limit

With the approximation that e−q2Dt ' 1 for all times t . τ̄ at which the velocity-velocity
correlations are finite, Eq. (B.3) simplifies to

D ' 1

3

∫ ∞
0

dt

∫
d3q

(2π)3
Cvv(q, t)

=
1

6

∫
d3q

(2π)3
Ĉvv(q, ω)|ω=0 ≡ D0 . (B.9)

In this limit, the diffusion coefficient can be calculated directly from Ĉvv(q, ω), and we
obtain

D0 =
1

12π2

∫ qmax

0
dq Ĉvv(q, ω)|ω=0

=
1

6πa

{
1

η̄2

[
ζ2kd

nh
+

2

3
θ

]
+

θ

η2

}
, (B.10)

which is the result presented in the main text, see Eq. (2.70). Here, we chose qmax = π/a
as a high wave number cut-off, where a is a cell radius.

Validity of the slow diffusion result

The approximation e−q2Dt ' 1, or D ' D0, holds for all q and on all relevant time scales
if

q2
maxD0τ̄ � 1 , (B.11)

where we recall that τ̄ is the relaxation time of the velocity-velocity correlations. Let us
get an estimate for q2

maxD. Using the estimations

kd = O(τ−1
a ) , (B.12a)

n−1
h = O(πa3) , (B.12b)

θ = O(η2kd/nh) , (B.12c)
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we find

q2
maxD0 ≈

1

τa

[(
χτ

χτ + µτa

)2

+

(
µτa

χτ + µτa

)2
]
.

2

τa
. (B.13)

In order to check the validity of assumption (B.11), we thus simply need to check whether
τ̄ � τa.

The value of τ̄ depends on the ratio of the bulk elastic modulus χ to the shear elastic
modulus µ. In the incompressible limit, i.e., for χ � µ, we find τ̄ ≈ τa, and it turns
out that the slow diffusion approximation (B.11) is not guaranteed to hold: in this case,
q2

maxD0τ̄ = O(1). If χ ≈ µ, on the other hand, we obtain τ̄ ≈ 2ττa/(τ + τa) and thus

q2
maxD0τ̄ . 4

τ

τ + τa
. (B.14)

Thus, for the one-component description, the slow diffusion approximation does not hold
in general, and the result for the diffusion coefficient needs to be checked. For a tissue
where χ ≈ µ and τ � τa, however, assumption (B.11) turns out to hold and D ' D0.
Note however that in any case, the slow diffusion assumption is never grossly violated,
i.e., the velocity-velocity correlations never decay much more slowly than the particles
diffuse away. Therefore, we would not expect corrections to be strong. For the one-
component theory, which corresponds to the limit of vanishing friction in the description
with permeation (see below), this argument can be made more precise.

Corrections due to finite relaxation time

Starting from expression (B.3) for the diffusion coefficient, we can carry out the integral
over time without any further approximation once we have Cvv(q, t) =

∫
dω
2π e

−iωtĈvv(q, ω),
which we find from (B.7) with the transformation (B.8). One then obtains

D =
1

6π2

∫ π/a

0
dq

(
A+B

1

1 + q2Dτ̄

)
, (B.15)

where we defined the constants

A =

(
ζ

η̄

)2 kd

nch

(τa
τ̄

)2
+

2

3

θ

η̄2

(τ
τ̄

)2
+

θ

η2
, (B.16a)

B =

(
ζ

η̄

)2 kd

nch

τ̄2 − τ2
a

τ̄2
+

2

3

θ

η̄2

τ̄2 − τ2

τ̄2
. (B.16b)

We find that for the one-component theory, the diffusion constant is thus implicitly given
by

D =
1

6πa

(
A+B

arctan (πa
√
Dτ̄)

π
a

√
Dτ̄

)
. (B.17)
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For π
a

√
Dτ̄ � 1, we recover the result obtained in the limit of slow diffusion,

D ' 1

6πa
(A+B)

=
1

6πa

[(
ζ

η̄

)2 kd

nch
+

2

3

θ

η̄2
+

θ

η2

]
. (B.18)

We know that π
a

√
Dτ̄ = O(1) at most. For π

a

√
Dτ̄ = 3, the arctan-term in Eq. (B.17)

is of order 0.4, which is significantly different from 1. In this case, we cannot a priori
neglect the corrections due to the finite relaxation time. Note however that for τ̄ ' τ ' τa
these corrections are supposedly small. For τ � τa, on the contrary, the diffusion constant
has to be determined graphically or numerically from Eq. (B.17) for given values of A
and B.

B.2 Two-component description

In the two-component description of tissues, the expression for the cellular diffusion
constant is slightly more involved, as a finite permeability may effectively slow down the
diffusive motion of cells. The calculation is essentially the same as for the one-component
theory; here, we simply give the expressions one ends up with in the two-component
theory.

Velocity-velocity correlation function

When taking permeation into account, the velocity-velocity correlations include addi-
tional terms due to the friction between the interstitial fluid and the cell phase. From
the velocity fluctuations calculated in the main text, see Eqs. (3.58), we now find

Ĉvv(q, ω) =
2

q2

[(
ζ

η̄ + κ̄

)2 kd
nh

1 + ω2τ2
a

1 + ω2τ2
1 + ω4τ4

2

+
2

3

θ

(η̄ + κ̄)2

1 + ω2τ2

1 + ω2τ2
1 + ω4τ4

2

+
θ

(η + κ̄)2

1

1 + ω2τ2
3

]
(B.19)

for the correlation function. We recall the abbreviations used in the main text, the q-
dependent friction coefficient κ̄ = κ/[(1−φ)q2] (with the physical dimension of a viscosity)
and the longitudinal tissue viscosity η̄ = ζ + 4

3η, as well as the permeation-independent
time scale

τ̄ =
ζτa + 4

3ητ

η̄
= ττa

χ+ 4
3µ

χτ + 4
3µτa

(B.20)
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that already appeared in the one-component theory (see above). Furthermore, we intro-
duced the three time scales

τ2
1 =

[η̄τ̄ + κ̄(τ + τa)]
2

(η̄ + κ̄)2
− 2

κ̄ττa
η̄ + κ̄

, (B.21a)

τ2
2 =

κ̄ττa
η̄ + κ̄

, (B.21b)

τ3 =
κ̄τa
η + κ̄

, (B.21c)

which appear in the expression of Ĉvv(q, ω).
In the time domain, the velocity correlations decay exponentially. The respective

relaxation times are not identical with the time scales defined above; they can be obtained
from the Fourier transforms∫

dω

2π
e−iωt

1

1 + ω2τ2
3

=
1

2

e−t/τ3

τ3
(B.22)

and∫
dω

2π
e−iωt

1 + ω2τ2
0

1 + ω2τ2
1 + ω4τ4

2

=
1

4

[
e−t/τ̃1

τ̃1

(
1 +

2τ2
0 − τ2

1√
τ4

1 − 4τ4
2

)

+
e−t/τ̃2

τ̃2

(
1− 2τ2

0 − τ2
1√

τ4
1 − 4τ4

2

)]
. (B.23)

Here, two relaxation times τ̃1 and τ̃2 appear which are given by

τ̃1 =

√
2τ2

2√
τ2

1 +
√
τ4

1 − 4τ4
2

, (B.24a)

τ̃2 =

√
2τ2

2√
τ2

1 −
√
τ4

1 − 4τ4
2

, (B.24b)

where τ4
1 − 4τ4

2 ≥ 0 as can be checked with (B.21). Note that all three relaxation times
τ3, τ̃1 and τ̃2 depend on the wave number q via the q-dependent friction coefficient κ̄.

Calculation of the diffusion constant in the slow diffusion limit

With the approximation that e−q2Dt ' 1 for all times t at which the velocity-velocity
correlations are finite, the diffusion coefficient can be calculated directly from Ĉvv(q, ω),
see Eq. (B.9), and we obtain

D0 =
1

12π2

∫ qmax

0
dq Ĉvv(q, ω)|ω=0

=
1

6πa

{
s(πaλ)

[(
ζ

η̄

)2 kd

nch
+

2

3

θ

η̄2

]
+ s(πa λ̄)

θ

η2

}
, (B.25)
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which is the result presented in the main text, see Eq. (3.64). Here, qmax = π/a is
the high wave number cut-off, where a is a cell radius, and we recall the definitions
λ2 = (1− φ)η̄/κ, λ̄2 = (1− φ)η/κ and

s(x) = 1 +
1

2(1 + x2)
− 3

2

arctanx

x

as introduced in the main text, see also Fig. 3.7 for a plot of s(x).

Validity of the slow diffusion result

As was the case for the one-component theory, the approximation e−q2Dt ' 1, orD ' D0,
holds for all q and on all relevant time scales if

q2
maxD0τmax � 1 , (B.26)

where τmax is now the longest relaxation time of the velocity-velocity correlations. Using
again the estimations (B.12), we now find

q2
maxD0 ≈

1

τa

[(
χτ

χτ + µτa

)2

+

(
µτa

χτ + µτa

)2
]
s(πaλ) +

1

τa
s(πa λ̄)

.
2

τa
s(πaλ) . (B.27)

In order to check the validity of assumption (B.26), we need to compare τmax to τa and
check the role of s(πaλ).

The longest relaxation time in the problem is given by τ̃2. We introduce τ2
1′ ≡ τ2

1 +2τ2
2

such that we can express τ̃2 as

τ̃2 = τ1′

√
2
(
τ2
τ1′

)2

√
1− 2

(
τ2
τ1′

)2
−
√

1− 4
(
τ2
τ1′

)2

= τ1′

[
1−

(
τ2

τ1′

)2

−
(
τ2

τ1′

)4

+ . . .

]
, (B.28)

in order to get an estimate for τmax = τ̃2. Because(
τ2

τ1′

)2

=
(η̄ + κ̄)κ̄ττa

[η̄τ̄ + κ̄(τ + τa)]2

=
ττa[1 + (λq)2]

[(λq)2τ̄ + τ + τa]2
< 1 (B.29)
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(even � 1 for many cases that can be made precise) – and as an upper bound –, we
therefore consider as slowest relaxation time τmax = τ̃2 ' τ1′ , or directly

τmax = τ1′(qmax) =
η̄τ̄ + κ̄(τ + τa)

η̄ + κ̄

∣∣∣
qmax

=
(λqmax)2τ̄ + τ + τa

1 + (λqmax)2
. (B.30)

Note once more that the dependence on q is due to the finite permeability of the tissue;
here, we consider the slowest relaxation time for the cut-off wave number qmax. The
value of τ̄ , which turns out to be the relaxation time in the limit of vanishing friction,
depends on the ratio of the bulk elastic modulus χ to the shear elastic modulus µ, see
the discussion for the one-component description above.

We now discuss approximation (B.26) for various strengths of friction, i.e., different
ratios λ/a:

a) friction dominated regime, λ� a/π:

Independent of χ/µ, the longest relaxation time is given by τmax = τ + τa, and we
obtain

q2
maxD0τmax ≈ 2

τ + τa
τa

s(πaλ) . (B.31)

Because s(x) vanishes as x4, the slow diffusion approximation (B.26) is justified,
even for τ � τa; in fact, no diffusion is taking place at all.

b) intermediate regime, λ ≈ a/π:
In this regime, one can still argue that τmax ≈ τ + τa, i.e., both relaxation times
are present for both χ� µ and χ ≈ µ. Thus, we find

q2
maxD0τmax ≈ 2

τ + τa
τa

s(1) .
1

5

τ + τa
τa

. (B.32)

For τ . τa, this seems to be sufficiently smaller than one, and one may say that
the approximation D ' D0 is reasonable. For τ � τa, however, this is no longer
the case, and the calculation of D needs to be refined.

c) negligible friction, λ� a/π:

In this limit, the longest relaxation time depends on χ/µ: For an incompressible
tissue (χ� µ), the relaxation time is given by τmax = τa, and we find

q2
maxD0τmax = O(1) χ� µ ; (B.33)

for χ ≈ µ, we have τmax ≈ 2ττa/(τ + τa), such that

q2
maxD0τmax ≈

4τ

τ + τa
χ� µ . (B.34)

Thus, in the regime of negligible friction, the slow diffusion approximation does not
hold in general, and the result for the diffusion coefficient needs to be checked. Note
that this limit corresponds to a one-component description of the tissue dynamics.
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Note that in all possible scenarios, the slow diffusion assumption is never grossly
violated, i.e., the velocity-velocity correlations never decay much more slowly than the
particles diffuse away. This is not surprising, somehow, given that this holds true also
in the one-component description and that permeation can only slow down diffusion.
Again, we would not expect corrections to be strong. In the limit of vanishing friction,
this argument can be made more precise. We essentially find the same result as in the
one-component description.

Corrections due to the finite relaxation time in the limit of vanishing friction

Starting from expression (B.3) for the diffusion coefficient, we can carry out the integral
over time without any further approximation once we have Cvv(q, t), which we find from
(B.19) with the transformations (B.22) and (B.23). Thus, we now get

D =
1

6π2

∫ π/a

0
dq f(q) , (B.35)

where f(q) = q2
∫∞

0 dt e−q
2DtCvv(q, t) is given by

f(q) =
1

2
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)2 kd

nch
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τ4

1 − 4τ4
2
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1√

τ4
1 − 4τ4
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+
1

3
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(λq)4

[1 + (λq)2]2

[
1

1 + q2Dτ̃1

(
1 +

2τ2 − τ2
1√

τ4
1 − 4τ4

2

)
+

1

1 + q2Dτ̃2

(
1− 2τ2 − τ2

1√
τ4

1 − 4τ4
2
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+
θ

η2

(λ̄q)4

[1 + (λ̄q)2]2
1

1 + q2Dτ3
. (B.36)

Different limits can be recovered from the above expression. In the limit of high friction,
f(q) vanishes as (λq)4, where q ≤ qmax = π/a. This is in line with the result obtained
for D above, Eq. (B.25), where s(x) ∝ x4 for x� 1.

Let us discuss the limit of vanishing friction, i.e., small κ. Strictly speaking, friction
cannot be neglected for any finite κ as soon as q < 1/λ. We take this into account by
integrating f(q) from a long wavelength, low wave number cut-off qc = λ−1 up to the
short wavelength, high wave number cut-off qmax = π/a, which introduces corrections of
order π

aλ due to permeation.
Thus, for λq � 1, the relaxation times τ̃1 and τ3 vanish, which corresponds to δ-

correlated contributions to the velocity fluctuations in the time domain. Only the relax-
ation time τ̃2 remains finite, with τ̃2 → τ̄ , and we write

D =
1

6π2

∫ π/a

1/λ
dq

(
A+B

1

1 + q2Dτ̄

)
. (B.37)
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Here, we used the definitions of A and B introduced above, Eq. (B.16); note the low
wave-number cut-off 1/λ due to the finite friction that eventually dominates at long
wavelengths which we did not consider in the one-component theory. We obtain the
same result as in the one-component theory, see Eq. (B.17), up to a correction of order
O( a

πλ) due to permeation,

D =
1

6πa

(
A+B

arctan (πa
√
Dτ̄)

π
a

√
Dτ̄

)
+O( a

πλ) . (B.38)

For π
a

√
Dτ̄ � 1, one recovers the result obtained in the limit of slow diffusion, zero

friction,

D ' 1

6πa

[(
ζ

η̄

)2 kd

nch
+

2

3

θ

η̄2
+

θ

η2

]
. (B.39)



Appendix C

Numerical methods

C.1 Single-cell based model of growing tissues

Here, we provide details of the simulation scheme for dynamic tissues presented in chap-
ter 2 and the respective parameter choices.

Dissipative particle dynamics for growing tissues

We describe the tissue by an ensemble of interacting cells, where each cell is represented
by two positional variables. This allows us to capture the anisotropy of cell growth and
division. In the following, we refer to these positional variables as point particles. The
two particles that define a cell interact with the particles of surrounding cells via a pair
potential that accounts for cell mechanics and cell-cell adhesion. The potential depends
on the distance r between the interacting particles and contains a short-range repulsive
and a mid-range attractive contribution. Particles farther apart than a certain cutoff
length Rpp do not interact. The potential is given by

V CC(r) =

{
f0R5

pp

4r4 + (f0 + f1) r + V0 r ≤ Rpp ,

0 r > Rpp .
(C.1)

Here, f0 and f1 are coefficients that describe repulsion and attraction, respectively, and
V0 = − (5f0/4 + f1)Rpp is chosen such that the potential vanishes continuously at r =
Rpp . In addition, two particles that belong to the same cell interact via a potential that
describes axial cell growth. The growth potential is given by

V G(r) =
B

r + r0
, (C.2)

where B is an expansion strength and r0 a characteristic length. Note that particles that
belong to the same cell do not interact via the cell-cell potential V CC .

Cell division and apoptosis are implemented as follows. When the distance between
the two particles of a cell exceeds a size threshold Rc, the cell divides. After the division
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each of the original particles constitutes a daughter cell. For each daughter cell, a new
particle is then placed randomly within a short distance rc from the original particle.
While cell division is implemented in this deterministic manner, apoptosis is included by
removing cells randomly at a constant rate ka.

Cell-cell friction is described using dissipative particle dynamics (DPD) [86, 97, 141].
We use an implementation of DPD where each particle is assigned a massm and is subject
to friction forces due to motion relative to particles of neighboring cells (friction γCC) and
relative to the second particle of the same cell (friction γG). In addition, we introduce a
friction γB with respect to a background medium in order to dampen movement of the
center of mass of the whole system induced by cell division or apoptosis.

Furthermore, random forces are introduced to account for noise. For simplicity, we
choose white noise obeying a fluctuation-dissipation relation with respect to the friction
coefficients γCC , γG, and γB, so that the noise strength can be characterized by an
effective temperature Tnoise.

Standard tissue and units

The parameters of our model are specified with respect to a unit of length l0, a unit of
time t0, and a unit of pressure p0. We define a standard tissue which we refer to when
exploring the parameter space. The parameter values of the standard tissue in the units
l0, t0, and p0 are given in Table C.1 of this supplementary material. These values are
chosen such that important properties of the standard tissue take approximately the value
of 1 in the units l0, t0, and p0: For the standard tissue confined in a box of volume Vbox

with periodic boundary conditions, we obtain the cell density ρ = 〈N〉
Vbox
' l−3

0 , where 〈N〉
denotes the average number of cells at the homeostatic state. Moreover, for the average
cell division rate kd of the standard tissue in the homeostatic state we have kd ' t−1

0 .
Finally, the homeostatic pressure ph of the standard tissue is ph ' p0 . Parameter values
of simulations that deviate from the standard case are specified relative to the standard
values denoted by an asterisk, i.e., B∗ = 0.5 denotes an expansion strength which is
decreased by a factor of two with respect to the standard tissue.

Boundary conditions and measurement procedures

To measure the diffusion constant of cells in our simulations, the tissue is grown to its
homeostatic state in a cubic compartment with lateral dimension 4Rpp using periodic
boundary conditions in all three directions. We then track particles and determine their
mean squared displacement (MSD) which shows a linear behavior in time. The diffusion
constant is obtained from a linear fit to the slope of the MSD.

For a measurement of the homeostatic pressure and the tissue viscosity, the tissue
is grown between two walls with fixed distance and periodic boundary conditions in the
plane. We chose a bounce-back boundary condition at the walls in order to mimic a
no slip boundary condition [9]. In short, the velocity of a particle is reversed the very
moment it hits the wall. In the homeostatic state, the homeostatic pressure is determined
from the momentum exchange between the tissue and the walls.
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Parameter Value Unit Description
f0 1.398 · 10−1 p0l

2
0 repulsive cell-cell potential coefficient

f1 2.918 · 10−1 p0l
2
0 attractive cell-cell potential coefficient

Rpp 1.387 l0 range of pair potentials
B 5.616 p0l

4
0 cellular expansion pressure constant I

r0 1.387 l0 cellular expansion pressure constant II
Rc 1.11 l0 threshold distance for cell division
rc 1.387 · 10−5 l0 distance at which new particles are placed
ka 1 t−1

0 rate of cell death
γCC 4.206 · 10−2 p0l0t0 intracellular dissipation constant

between particles of the same cell
γG 2.103 · 10−2 p0l0t0 intercellular dissipation constant between par-

ticles of different cells, but of the same tissue
γB 4.206 · 10−5 p0l0t0 background friction coefficient
Rt 1.387 l0 range of dissipative friction forces

when the cell divides
kBTnoise 8.096 · 10−1 p0l

3
0t
−1
0 noise strength in the tissue

m 2.185 · 10−6 p0l
−1
0 t20 mass of particle

Table C.1. Standard tissue parameters. This table lists all parameters of our simulation and
gives their values in simulation units l0, t0, and p0 for the standard tissue.

In order to determine the tissue viscosity, the top wall moves with a prescribed velocity
relative to the bottom wall. In this case, the bounce-back boundary condition at the top
wall is implemented in its rest frame. This creates a shear stress σxz in the tissue. Both
the shear stress and the pressure are accessible by measuring the momentum exchange
of particles with the wall. (In the shear simulations, we choose a box size of 5Rpp and
γB = 0 .) However, since bounce-back boundary conditions do not provide perfect no slip
boundary conditions, we measure and fit the velocity profile vx(z) in the tissue directly.
Then the shear viscosity is given by η = σxz/(∂zvx) .
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C.2 Viscoelastic tissue growing against a piston

Here, we give the details of the numerical method used to solve for the dynamics of the
piston both in the limit of an elastic tissue response and for the viscoelastic case where
isotropic and anisotropic relaxation times are identical.

Elastic relaxation dynamics

In the elastic limit, the evolution of the tissue deformation uc(x) is described by a diffusion
equation, see Eq. (3.25); the boundary condition at x = L(t), which depends on time, is
given by Eq. (3.26). Using the characteristic length lel and time tel discussed in the main
text,

lel = Del/vel , tel = Del/v
2
el , (C.3)

we non-dimensionalize the equations according to x∗ = x/lel and t∗ = t/tel. With
u∗ = uc/lel and p∗ = δP/χ̄ we thus obtain

∂tu = ∂2
xu , (C.4a)

u̇|L = − (p+ ∂xu|L) , (C.4b)

where we dropped the asterisks denoting non-dimensionalized quantities for convenience.
Because of the moving boundary at L(t), we cannot implement these equations in a

straightforward way. Therefore, we introduce the new coordinate

x̃ = x
L0

L(t)
(C.5)

and the corresponding deformation field

ũ(x̃, t) ≡ u(x̃L(t)
L0
, t) (C.6)

that is defined on x̃ ∈ [0, L0] for all t. Here, L0 = L(0). In the new coordinates,
equations (C.4) now become

∂tũ =

(
L0

L(t)

)2

∂2
x̃ũ+ x̃

L̇(t)

L(t)
∂x̃ũ , (C.7a)

∂tũ|L0 = −
(
p+

L0

L(t)
∂x̃u|L0

)
. (C.7b)

We discretize the quantities in space and time according to

uin = ũ(n∆x, i∆t) , Li = L(i∆t) , (C.8)

where n = 0, 1, . . . , N = L0/∆x and i ∈ N0. Additionally, we consider L̇i = (uiN −
ui−1
N )/∆t for i ≥ 1 and set L̇0 = −p. According to the problem discussed in the main

text, the initial conditions are specified as u0
n = 0 and L0 = L0. We then use a simple

explicit Euler integration scheme to solve equations (C.7) in time. More precisely, we
determine ui+1

n , n = 1, . . . , N−1, from the diffusion equation and ui+1
N from the boundary

condition at L. Note also that ui0 = 0 for all times. For the plots shown in Fig 3.3 in
the main text, we used p = 0.01 and the lattice spacing ∆x = 0.05 and ∆t = 10−4

throughout, except for the inset for L0 = 100 where ∆x = 0.1.
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Full viscoelastic behavior

In order to check our analytical results obtained in the viscous limit, we numerically
solve the full viscoelastic equations for the cell flow field. Note that for simplicity, we
assume that the isotropic and anisotropic relaxation times are equal, i.e., τ = τa, which
allows us to write an evolution equation for vc(x) and the corresponding time-dependent
boundary condition at x = L(t), see Eqs. (3.31) and (3.32) in the main text. We now
non-dimensionalize all quantities using the characteristic length scale λ and the time
scale τ , and we obtain

∂tv = −v + ∂2
xv , (C.9a)

(1 + ∂t)L = −α−1 (p+ ∂xv|L) . (C.9b)

Here, α = lel/λ =
√
tel/τ as in the main text, see also (C.3).

In order to circumvent the problem of the moving boundary, we introduce again
the Lagrangian coordinate x̃ = L0/L(t) and the corresponding velocity field ṽ(x̃, t) ≡
v(x̃L(t)/L0, t). In the new coordinates, equations (C.9) now read

∂tṽ = −ṽ +

(
L0

L(t)

)2

∂2
x̃ṽ + x̃

L̇(t)

L(t)
∂x̃ṽ , (C.10a)

∂tṽ|L0 = −ṽ|L0 − α−1

(
p+

L0

L(t)
∂x̃ṽ|L0

)
. (C.10b)

Using the same discretization scheme as above, we integrate the above equations with a
simple explicit Euler method. More precisely, we solve the system of equations

vi+1
n − vin

∆t
= −vin +

(
L0

Li

)2 vin+1 + vin−1 − 2vin
∆x2

+ n
viN
Li

vin+1 − vin−1

2∆x
, (C.11a)

vi+1
N − viN

∆t
= −viN − α−1

(
p+

L0

Li
viN − viN−1

∆x

)
, (C.11b)

for each time step i ≥ 0. Note that we used L̇i = viN . The initial conditions are specified
as v0

n = 0 for n = 0, . . . , N − 1, v0
N = −p/α, and L0 = L0. The position of the piston at

time i+1 follows as Li+1 = Li+∆tviN . A numerical solution of the viscoelastic dynamics
is shown in Fig. C.1.
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Figure C.1. Viscoelastic tissue dynamics in the limit of long times. Here, we show a comparison
of the numerically solved full viscoelastic dynamics with the analytical solutions obtained in the
purely viscous limit. (Left panel) Solid lines represent the numerical solution of the viscoelastic
dynamics; here, we used ∆x = 5 · 10−4 and ∆t = 10−8. Dashed lines show the solution to
Eq. (3.38) which was obtained by using a standard ODE solver. (Right panel) Solid lines represent
again the numerically obtained viscoelastic dynamics; here, ∆x = 0.01 and ∆t = 10−6. Dashed
lines show the analytical solution in the viscous limit, L(t) = L0− v0t/(1 +α), see main text for
details.

C.3 Interface propagation dynamics

In this section, we detail the numerical integration scheme used to solve the interface
propagation dynamics given by Eqs. (4.26) discussed in chapter 4.

We discretize the volume fraction φ and the convective cell velocity v in space and
time according to

φin = φ(n∆x, i∆t) , vin = v(n∆x, i∆t) , (C.12)

where n = 0, 1, . . . , N , N = L0/∆x, and i ∈ N0. At each time i, we calculate the
velocity as a function of the volume fraction using the solution given in Eq. (4.28). Here,
we integrate from 0 to L0, however, assuming that the error is small due to the vanishing
gradient of φ. More precisely, we set

vin = − α

2λ
∆x

N−1∑
k=1

e−
|n−k|∆x

λ

(
1 + β

φik+1 + φik−1 − 2φik
∆x2

)
φik+1 − φik−1

2∆x

+ boundary terms (C.13)

and calculate φi+1
n using a simple forward Euler method with Eq. (4.26a). For all simu-

lations shown, we used L0 = 1000, ∆x = 0.2, and ∆t = 0.001; the initial condition was
specified as

φ0
n =

1

1 + en∆x−100
. (C.14)
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Two-component fluids

In this appendix, we discuss the equilibrium thermodynamics and close-to-equilibrum hy-
drodynamics of a classical two-component fluid. The particle number densities of the two
components and the total momentum density obey balance equations, which are stated
in the first section. Both particle number density balance equations can be restated as
a conservation equation of mass and a time evolution equation for the mass fraction of
one of the species. We then discuss the equilibrium thermodynamics of the fluid and the
corresponding equations of state for a homogeneous system. In this framework, the in-
compressible limit is straightforward and is discussed in detail. In the second section, we
use the formalism of irreversible thermodynamics to establish the thermodynamic fluxes
and forces (in isothermal conditions), which allows us to write down the hydrodynamic
equations close to equilibrium. We show that free-energy contributions of density gradi-
ents give rise to an anisotropic Ericksen stress without explicitly altering the flux-force
relationships.

D.1 Equilibrium thermodynamics

Particle number balance and mass conservation

We consider a fluid that consists of two molecular species a and b with particle number
densities na and nb, respectively. The balance equations for these densities read

∂tna + ∂α(nav
a
α) = 0 , (D.1a)

∂tnb + ∂α(nbv
b
α) = 0 , (D.1b)

where vaα and vbα are the respective velocity fields. Note that we do not consider reactions
involving the conversion of one species into the other. With the molecular masses ma

and mb of the constituents, the total mass density of the system ρ and the center-of-mass
velocity vα are given by

ρ = nama + nbmb , (D.2a)

vα = namav
a
α + nbmbv

b
α . (D.2b)
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We denote the mass fraction of species a by φ,

φ =
nama

nama + nbmb
. (D.3)

Introducing the relative mass flux between the two species

jα = ρφ(1− φ)(vaα − vbα) , (D.4)

the balance equations (D.1) combine to

∂tρ+ ∂α(ρvα) = 0 , (D.5a)

∂tφ+ vα∂αφ = −ρ−1∂αjα . (D.5b)

The velocities of the respective species can be written as vaα = vα + jα/(ρφ) and vbα =
vα − jα/[ρ(1− φ)].

Equations of state

At equilibrium, the system is described by equations of state that give the pressure
as well as the chemical potential in terms of the particle densities na and nb. Let us
first give some definitions and introduce the relevant quantities before discussing the
incompressible limit. For a homogeneous system, the total free energy can be written as

F (Na, Nb, V ) = V f(NaV ,
Nb
V ) , (D.6)

where f(na, nb) is a free-energy density that depends on the particle number densities.
The total pressure of the fluid is given by

P = −∂F
∂V

∣∣∣
Na,Nb

= −f + µana + µbnb , (D.7)

where we introduced the chemical potentials

µa =
∂f

∂na

∣∣∣
nb
, µb =

∂f

∂nb

∣∣∣
na
. (D.8)

From Eq. (D.7) we obtain the Gibbs-Duhem relation, which reads

dP = nadµa + nbdµb . (D.9)

The molecular volumes Ωa and Ωb follow as

Ωa =
∂µa
∂P

∣∣∣
Na,Nb

, Ωb =
∂µb
∂P

∣∣∣
Na,Nb

. (D.10)

The compressibility κ of the fluid is finally defined as

κ = − 1

V

V

P

∣∣∣
Na,Nb

, (D.11)
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and one obtains

κ−1 = na
∂µa
∂V

∣∣∣
Na,Nb

+ nb
∂µb
∂V

∣∣∣
Na,Nb

.

In the incompressible limit, we have κ−1 → ∞; however, the implications of this limit
on the free energy or the particle number densities, respectively, is not obvious from the
above equation.

In the following, we thus consider the free-energy density in terms of the variables ρ
and φ, i.e., we write

f = f(ρ, φ) ⇒ F = V f(Nama+Nbmb
V , Nama

Nama+Nbmb
) . (D.12)

From the definitions above, pressure and compressibility follow as

P = −f + ρ
∂f

∂ρ

∣∣∣
φ

(D.13)

and

κ−1 = ρ2∂
2f

∂ρ2

∣∣∣
φ
. (D.14)

In the limit of κ → 0, we thus find that the free energy is infinitely peaked at the
equilibrium value of ρ. Thus, in the incompressible limit, ρ = ρ0(φ) becomes fixed. In
order to discuss the incompressible limit in more detail, we can thus define a free-energy
density

f(ρ, φ) =
χ

2

(
ρ

ρ0(φ)
− 1

)2

+ ρh(φ) (D.15)

and consider the limit χ → ∞. Before doing that, however, we first give the chemical
potentials and molecular volumes in terms of the new variables ρ and φ.

Using the above definitions, we find that the chemical potentials µa and µb are now
given by

µa = ma

(
∂f

∂ρ

∣∣∣
φ

+
1− φ
ρ

∂f

∂φ

∣∣∣
ρ

)
, (D.16a)

µb = mb

(
∂f

∂ρ

∣∣∣
φ
− φ

ρ

∂f

∂φ

∣∣∣
ρ

)
. (D.16b)

It is furthermore useful to note the following expressions (that follow directly from the
ones above),

µ̄ =
µa
ma
− µb
mb

=
1

ρ

∂f

∂φ

∣∣∣
ρ
, (D.17a)

naµa + nbµb = ρ
∂f

∂ρ

∣∣∣
φ
, (D.17b)
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as well as

na∂αµa + nb∂αµb = ρ∂α
∂f

∂ρ

∣∣∣
φ
− ∂f

∂φ

∣∣∣
ρ
∂αφ , (D.18a)

µa∂αna + µb∂αnb =
∂f

∂ρ

∣∣∣
φ
∂αρ+

∂f

∂φ

∣∣∣
ρ
∂αφ . (D.18b)

The Gibbs-Duhem relation (D.9) still holds, of course. The molecular volumes Ωa and
Ωb are given by

Ωa =
ma

ρ

[
1 + (1− φ)

(
∂2f

∂ρ2

∣∣∣
φ

)−1
∂

∂ρ

(
1

ρ

∂f

∂φ

∣∣∣
ρ

) ∣∣∣
φ

]
, (D.19a)

Ωb =
mb

ρ

[
1− φ

(
∂2f

∂ρ2

∣∣∣
φ

)−1
∂

∂ρ

(
1

ρ

∂f

∂φ

∣∣∣
ρ

) ∣∣∣
φ

]
, (D.19b)

and we have
naΩa + nbΩb = 1 . (D.20)

Incompressible limit

In principle, the equation of state (D.13), which gives P = P (ρ, φ), allows to express ρ as
a function of the pressure and the volume fraction, ρ = ρ(P, φ), and thus to switch to P
and φ as variables. Here, we use the free-energy density (D.15) in order to give explicit
expressions for the equations of state derived above, under the assumption that χ� P .
Then, the limit χ→∞ can be carried out after having replaced ρ by ρ(P, φ).

For the free energy defined above, the pressure is given by

P =
χ

2

[(
ρ

ρ0

)2

− 1

]
. (D.21)

With ρ = ρ0(φ) (1 + ε) we find ε =
√

1 + 2P/χ− 1, which gives

ρ(P, φ) = ρ0(φ)

[
1 +

P

χ
− 1

2

(
P

χ

)2
]

(D.22)

to second order in P/χ. In the incompressible limit, i.e., for χ→∞, the density becomes
independent of pressure and is fixed to ρ = ρ0(φ). Using relation (D.22), we then find

µa =
ma

ρ0
P

(
1− P

2χ

)[
1− (1− φ)

ρ′0
ρ0

]
+ma(1− φ)h′ , (D.23a)

µb =
mb

ρ0
P

(
1− P

2χ

)[
1 + φ

ρ′0
ρ0

]
−mbφh

′ (D.23b)
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to linear order in P/χ. Furthermore, the molecular volumes are given by

Ωa =
ma

ρ0

(
1− P

χ

)[
1− (1− φ)

ρ′0(φ)

ρ0(φ)

]
, (D.24a)

Ωb =
mb

ρ0

(
1− P

χ

)[
1 + φ

ρ′0(φ)

ρ0(φ)

]
(D.24b)

to linear order. Note that in the incompressible limit, i.e., χ→∞, the molecular volumes
become independent of pressure. As a consequence, the volume fraction ϕ = naΩa

becomes a function of mass fraction φ = nama only; constant φ implies constant ϕ and
vice versa. Furthermore, the chemical potentials can now be written as

µa(P, φ) = PΩa(φ) + µ̃a(φ) , µb(P, φ) = PΩb(φ) + µ̃b(φ) . (D.25)

Note that in the incompressible limit,

µ̄ =

(
Ωa(φ)

ma
− Ωb(φ)

mb

)
P + ˜̄µ(φ) .

If the mass densities of both particles are the same, µ̄ becomes a function of φ only.
In summary, the incompressibility of a two-component fluid thus implies that the total

mass density ρ is fixed and depends on the mass/volume fraction of the constituents only.
If the specific mass densities ma,b/Ωa,b of the constituents are constant and independent
of pressure, the total mass density is fixed and the fluid is incompressible. For equal mass
densities of the constituents, ρ = ρ0 = ma/Ωa = mb/Ωb independent of composition; for
ρa ≡ ma/Ωa 6= mb/Ωb ≡ ρb constant, we find ρ = ρ0(φ) = ρaρb/[(1 − φ)ρa + φρb].
Note furthermore that in the incompressible limit, the pressure is no longer determined
by thermodynamics since ∂F/∂V becomes ill-defined, but has to be determined via
the hydrodynamic equations, i.e., force balance. The pressure then acts as a Lagrange
multiplier in order to ensure the constraint ρ = ρ0(φ).

D.2 Hydrodynamics

In this section, we derive the thermodynamic fluxes and forces close to equilibrium. We
consider a free-energy density that can depend on the density gradients in order to allow
for interfacial tension. The total free energy of the system, including kinetic energy, is
given by

F =

∫
d3r

{
1

2
ρvαvα + f(na, nb, ∂αna, ∂αnb)

}
. (D.26)

The variation of the free energy then follows as

δF =

∫
δV

d3r

{
1

2
ρvαvα + f

}
+

∫
V

d3r δ

{
1

2
ρvαvα + f

}
=

∫
δV

d3r

{
1

2
ρvαvα + f

}
+

∫
V

d3r

{
vαδ(ρvα)− 1

2
vαvαδρ+ µaδna + µbδnb

}
+

∫
V

d3r ∂α

{
∂f

∂(∂αna)
δna +

∂f

∂(∂αnb)
δnb

}
, (D.27)
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where the variation includes a deformation V → V + δV and possible changes of the
free-energy density. Here, the chemical potentials are the functional derivatives of the
free-energy density with respect to the particle number densities, i.e.,

µ =
δf

δn
=
∂f

∂n
− ∂α

∂f

∂(∂αn)
. (D.28)

The partial derivatives imply that the other variables including gradients are kept con-
stant.

Ericksen stress

Before deriving the entropy production rate, we consider a pure translation uγ of the
system in order to determine the reactive Ericksen stress. With

∫
δV d3r =

∫
∂V dSγuγ

and δA→ −uγ∂γA, one finds

δF =

∫
dSβuα

{
(f − naµa − nbµb)δαβ −

∂f

∂(∂βna)
∂αna −

∂f

∂(∂βnb)
∂αnb

}
+

∫
d3r uγ {na∂γµa + nb∂γµb} . (D.29)

From this expression we can read off the Erickson stress,

σe
αβ = (f − naµa − nbµb) δαβ −

∂f

∂(∂βna)
∂αna −

∂f

∂(∂βnb)
∂αnb . (D.30)

The Gibbs-Duhem relation follows as

∂βσ
e
αβ = −na∂αµa − nb∂αµb , (D.31)

where we used that the free energy does not change due to a pure translation, or coor-
dinate transformation, as long as f does not explicitly depend on the coordinates.

What does the Ericksen stress look like in terms of the variables ρ and φ and their
respective gradients? For a free-energy density f = f(ρ, ∂αρ, φ, ∂αφ), one finds for the
chemical potentials

µa =
∂f

∂na

∣∣∣
nb,∂αna,∂αnb

− ∂α
∂f

∂(∂αna)

∣∣∣
na,nb,∂αnb

= ma

(
δf

δρ
+

1− φ
ρ

δf

δφ

)
, (D.32a)

µb = mb

(
δf

δρ
− φ

ρ

δf

δφ

)
. (D.32b)

In fact, the expressions derived in the previous section for a homogeneous system carry
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over by replacing the partial derivatives with functional derivatives, i.e.,

µ̄ =
1

ρ

δf

δφ
, (D.33a)

naµa + nbµb = ρ
δf

δρ
, (D.33b)

na∂αµa + nb∂αµb = ρ∂α
δf

δρ
− δf

δρ
∂αφ , (D.33c)

µa∂αna + µb∂αnb =
δf

δρ

∣∣∣
φ
∂αρ+

δf

δφ

∣∣∣
ρ
∂αφ . (D.33d)

Finally, the Ericksen stress reads

σe
αβ =

(
f − ρδf

δρ

)
δαβ −

∂f

∂(∂βρ)
∂αρ−

∂f

∂(∂βφ)
∂αφ . (D.34)

For an incompressible fluid with ρ = const., the Ericksen stress becomes

σe
αβ = −Pδαβ −

∂f

∂(∂βφ)
∂αφ , (D.35)

where the pressure P has to be determined from the hydrodynamic equations.

Entropy production

In order to determine the entropy production rate close to equilibrium, we calculate the
total rate of change of the free energy of the system, Ḟ = dF/dt, which we obtain from
the variation of the free energy (D.27) with the replacements

∫
δV d3r →

∫
dSγvγ and

δA→ ∂tA. For f = f(ρ, φ, ∂αρ, ∂αφ), the rate of change is thus given by

Ḟ =

∫
dSγvγ

{
1

2
ρvαvα + f

}
+

∫
d3r

{
vα∂t(ρvα)− 1

2
vαvα∂tρ+

δf

δρ
∂tρ+

δf

δφ
∂tφ

}
+

∫
d3r ∂α

{
∂f

∂(∂αρ)
∂tρ+

∂f

∂(∂αφ)
∂tφ

}
. (D.36)

Using the conservation equations given in the previous section,

∂tρ = −∂β(ρvβ) ,

∂tφ = −vβ∂βφ− ρ−1∂βjβ ,

as well as the momentum balance equation

∂t(ρvα) + ∂β(ρvαvβ) = ∂βσαβ , (D.37)

we ultimately find

Ḟ =

∫
dSβvα σαβ −

∫
d3r

{
(σαβ − σe

αβ)vαβ − jα∂αµ̄
}

−
∫

dSα

{
jαµ̄+

∂f

∂(∂αρ)
ρ∂βvβ +

∂f

∂(∂αφ)

1

ρ
∂βjβ

}
. (D.38)
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The free energy F = E − TS changes due to work, entropy production, and additional
free-energy fluxes through the surface,

Ḟ = Ẇ − T
∫

dV θ +

∫
dSαJ

F
α ,

where θ is the rate of entropy production per unit volume. Consequently, we can identify
the thermodynamic fluxes and forces that contribute to entropy production:

flux↔ force

σd
αβ ↔ vαβ ,

jα ↔ −∂αµ̄ ,

where σd
αβ = σαβ − σe

αβ is the dissipative stress. For an incompressible system, the total
stress σαβ is thus given by

σαβ = −Pδαβ + 2ηṽαβ −
∂f

∂(∂βφ)
∂αφ , (D.39)

where we used the expression for the Ericksen stress derived above. For symmetry rea-
sons, the lowest order term of gradients in φ is of the form 1

2B(∂αφ)2, and the traceless
part of the stress becomes

σ̃αβ = 2ηṽαβ −B
[
(∂αφ)(∂βφ)− 1

d(∂γφ)2δαβ
]
. (D.40)

Since P is a Lagrange multiplier, one can absorb all isotropic contributions of the Ericksen
stress in P and write σαβ = −Pδαβ + σ̃αβ . Note also that in the incompressible limit,
µ̄ = ˜̄µ(φ) (see above), and the relative flux becomes

jα = −D∂αφ , (D.41)

with D ∝ ∂ ˜̄µ/∂φ.
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