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Abstract 
Background: When assessing the association between a factor X and a subsequent outcome Y in 

observational studies, the question that arises is what are the variables to adjust for to reduce bias due 

to confounding for causal inference on the effect of X on Y. Disregarding such factors is often a 

source of overestimation because these variables may affect both X and Y. On the other hand, 

adjustment for such variables can also be a source of underestimation because such variables may be 

the causal consequence of X and part of the mechanism that leads from X to Y.  

Methods: In this paper, we present a simple method to compute control variables in the presence of 

age at onset data on both X and a set of other variables. Using these age at onset data, control variables 

are computed that adjust only for conditions that occur prior to X. This strategy can be used in 

prospective as well as in survival analysis. Our method is motivated by an argument based on the 

counterfactual model of a causal effect.  

Results: The procedure is exemplified by examining of the relation between panic attack and the 

subsequent incidence of MDD.  

Conclusions: The results reveal that the adjustment for all other variables, irrespective of their 

temporal relation to X, can yield a false negative result (despite unconsidered confounders and other 

sources of bias). 
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Introduction 

 

A frequent aim in clinical and epidemiological studies is to examine the association between 

two variables, say X (e.g., panic attack) and Y [e.g., major depression (MDD)]. Researchers 

thereby often aim at separating “real” from “spurious” relations between these phenomena. 

This distinction is closely related to the question of what other factors should be matched or 

controlled for in statistical models. The meaning of “real” or “spurious”, however, often 

remains obscure unless it arises from the investigator’s substantive aims. As we will see, for 

causal inference, X has to precede Y, and other factors should only be considered if they 

precede X. The temporal order, for instance between exposure X and outcome Y, can be 

established (a) in an experiment where X is a manipulated condition, (b) in a prospective 

cohort study where X is measured at an assessment prior to the assessment of Y, or (c) by 

collecting age at onset data on both X and Y in a cross-sectional study. Clearly, (a) is 

preferable to (b), and (b) is preferable to (c) with regard to minimizing measurement errors.  

In this paper, we propose a simple method to calculate control variables to adjust for factors 

occurring before X. For this purpose, age at onset data on X and other variables are required. 

These other variables contain events that precede X and events that follow X. Age at onset 

data allows the establishment of the temporal relation. In the next section, the counterfactual 

model of a causal effect is reviewed, which provides the basis for our adjustment method. 

After discussing some aspects of bias due to confounding, the proposed method is introduced. 

The last section illustrates our procedure through an example on the relation of panic attack 

with subsequent onset of MDD.  
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The counterfactual model of a causal effect 

 

We assume that X is a binary factor, with the values X=0 and X=1 representing two different 

treatment or exposure levels to be compared (e.g., X=1, one or more panic attacks vs X=0, no 

panic attack). Let i denote the index for an individual. The standard model for a causal effect 

in an individual i at fixed time of assignment to X=1 vs X=0 is based on the difference in an 

outcome Yi under Xi=1 (Yi1) and Xi=0 (Yi0):  

Yi1 – Yi0. 

For a binary outcome, this model is equivalent to the occurrence of the event Yi=1 under one 

but not under the other condition. In the example above, an individual would develop 

subsequent MDD if she or he had a panic attack up to a fixed time, but did not develop MDD 

in the absence of panic attack by that time. Panic attack would have caused MDD in that 

individual. It has been argued that the counterfactual model of a causal effect captures most 

aspects of causal questions in health studies [7, 11].  

Clearly, for a fixed individual at a fixed time, the outcome is observable only for one of both 

exposure levels. A person either has a panic attack up to a certain point in time or not. Thus, 

the outcome under the unobserved or counterfactual condition (counterfactual or potential 

outcome) has to be estimated. Note that there are usually no objective criteria to determine 

individual causal effects in psychiatric studies. Hence, the best thing to do is often to estimate 

population average effects in the target population while aggregating several individuals. 

Only under several assumptions, including lack of confounding (see below), absence of 

measurement, and selection bias, the average causal effect of X on Y can be estimated without 

bias [12, 19].  

 

 

Bias due to confounding 

 

In observational studies, the assignment to X=0 vs X=1 (e.g., no panic attack vs panic attack) 

is not randomized, and the difference in Y (e.g., subsequent onset of MDD) between X=1 vs 

X=0 is typically biased as an estimate of the causal effect of X on Y. One reason is that a 

vector of other variables Z (here, e.g., prior disorders, childhood conditions, genetic factors) 

may affect both X and Y (bias due to confounding; e.g., [19]). In practice, however, usually 

not all components of Z are observed or even known. This is also the case for the relation 

between panic attack and subsequent MDD. Moreover, it is often impossible to decide 

whether adjusting for a certain observed component Zk reduces the bias in the estimation of 

the causal effect or not. This is, for instance because one does not know how the remaining 

components of Z distribute across X=0 and X=1 before and after adjustment for Zk (e.g., 

[15]). However, there exist criteria for sets of confounders that are sufficient to adjust for [6, 

15].  

We will focus only on the observed components Z1,..., Zm of Z assuming that controlling for 

these variables reduces the bias due to confounding. Note that for normally distributed 

outcomes, adjustment that does not alter the bias due to confounding is nevertheless 

recommended because of variance reduction [19]. For non-normally distributed outcomes 

such as binary events in logistic regression or survival analysis, however, this adjustment 

rather leads to unnecessarily broad confidence intervals (CIs) [19].  

In practice, one observes a set of variables other than the exposure X and the outcome Y, 

denoted with W1,..., Wm. These might be related to both X and Y. For simplicity, the 

following discussion assumes that there is only one such variable, denoted with Wk. There are 

two commonly used strategies to address this problem. The first strategy is to ignore Wk. Not 

considering potential bias due to confounding caused by other confounders and other sources 

of bias, this strategy tends to overestimate the causal effect if Wk is related either positively or 



negatively with both X and Y. The second strategy is to adjust for Wk irrespective of its 

temporal relationship with X. This may underestimate the causal effect because Wk might be 

the causal consequence of X and may itself affect Y. Here, controlling for Wk would partition 

away a part of the mechanism that leads from X to Y (again disregarding other potential 

confounders and other sources of bias). For a more sophisticated presentation of these issues, 

see the literature on graphical models (e.g., [2, 23]) and on causal graphs (e.g., [6, 14, 15]).  

 

 

Calculation of control variables 

 

Often, the temporal relation among different variables is unknown or it varies across 

individuals. For mental disorders and syndromes, however, information about their temporal 

ordering is often provided through age at onset data. With instruments like the Composite 

International Diagnostic Interview [24], the age at onset is assessed retrospectively for all 

disorders for which the diagnostic criteria are met.   

 

Prospective analyses 

 

We propose a simple method to adjust only for events that occur before the exposure X  

because events that happen between exposure and outcome might be part of the causal 

mechanism leading from X to Y. Suppose that we want to carry out a prospective analysis of 

the following kind: Assume that the exposure X represents a condition (e.g., panic attack) 

assessed at the baseline investigation of a prospective study. X is the lifetime status of that 

condition; X=1 indicates that an individual has met the criteria for the condition until the age 

at assessment; X=0 means that diagnostic criteria were not met by the age at assessment, and 

thus, no age at onset is available. For individuals with X=1, the age at onset of X, denoted 

with AOX, is observed in terms of completed age years (e.g., age at onset of panic attack). 

The outcome Y is defined as first incidence of another condition (e.g., MDD) during the 

follow-up period of a study. Thus, all individuals meeting the criteria for Y already at baseline 

assessment are omitted from the analysis. Finally, other conditions W1,..., Wm are measured 

at baseline assessment, each of which, Wk (e.g., specific phobia), having an age at onset 

variable AOk (among those with Wk=1).  

The aim is now to calculate a control variable Zk for each pair of variables Wk and AOk. 

With such a control, we aim to adjust individuals with X=0 to those with X=1 with respect to 

the occurrence of disorder k before the age at onset of disorder X (AOX) (e.g., persons with 

and without panic attack with respect to prior occurring specific phobia). Herewith, the 

counterfactual behavior of individuals with X=0 is estimated with respect to the outcome Y 

(e.g., incidence of major depression) if they had the same rate of disorder k before the age at 

which X “typically” begins in individuals with X=1. Thus, among individuals with X=0, the 

control variable is coded as “being present” (Zk=1) only if it occurs prior to the typical age at 

onset of X. Note that coding all individuals with X=0 and Wk=1 as Zk=1 would tend to 

underestimate the causal effect of X on Y because a longer risk period for developing Wk=1 

(namely, the entire lifetime period until baseline assessment) would be assigned to individuals 

with X=0. For individuals with X=1, Zk is coded as 1 if the individual age of onset of Wk 

precedes the one of X. Adjustment will then be done by entering the control variables Z1, 

Z2,..., Zm into the regression equation (e.g., logistic regression, see below) as main effect 

terms.  

For the typical age at onset, we choose the median (medX) instead of the mean because the 

median is more robust against outliers or unrealistic values, which are sometimes observed in 

age at onset data (e.g., age at onset <5 years what, however, cannot be definitely ruled out to 



be true for some disorders). Such unusual values can have a strong impact on the mean 

particularly in small samples, a drawback not shared by the median.  

 

 

Coding of the control variables 

 

We propose to code Zk as follows:  

Among individuals with X=1:  

Zk=1 if Wk=1 (disorder k is present) and AOk≤ AOX (age at onset precedes or equals 

individual onset of X),  

Zk=0 if Wk=0 (disorder k is not present) or AOk> AOX (age at onset later than the individual 

age at onset of X).  

Among individuals with X=0:  

Zk=1 if Wk=1 (disorder k is present) and AOk≤ medX (age at onset precedes or equals the 

median age at onset of X computed among all cases with disorder X),  

Zk=0 if Wk=0 (disorder k is not present) or AOk> medX (age at onset later than the median 

age at onset of X).  

A problem with this method is how to handle “tied” observations with AOk=AOX (or 

AOk=medX, respectively), that is, individuals where the disorder Wk occurred at the same 

age than disorder X (or at the same age than medX, respectively). In general, it would be 

more appropriate to randomize the coding here (code Zk=0 or Zk=1 with equal probabilities). 

However, this method is more difficult to implement, and correct statistical inference would 

require carrying out multiple randomizations (i.e., repeat the random coding for tied 

observations). Each randomization would yield a new dataset, and statistical inference would 

be based on a kind of “average” and a joint variance estimate across these multiple datasets as 

done in inference based on multiple missing data imputation [21]. The method used here to 

code Zk as 1 if AOk=AOX (or AOk=medX, respectively) might tend to yield conservative 

results for the effect of X on Y (despite other biases) because Wk might have occurred after X 

(or medX, respectively) in some of these individuals, thus possibly being the consequence, 

not the cause of X.  

For studies with a broad age range of respondents at the baseline assessment, we propose to 

apply our coding strategy stratified by birth year groups. This accounts for variation in age at 

onset according to the year of birth. This variation might be caused by “agecensoring” (for 

young individuals, a high age at onset cannot be observed, see below) or by cohort effects.  

 

Survival analysis 

 

In some applications, it will be preferable to use survival analysis, for example, Cox 

regression (e.g., Thernau and Grambsch 2000), instead of carrying out a prospective analysis. 

In survival analysis, the data are organized as follows: For each individual, different rows in 

the dataset correspond to different years of observation. The number of rows is given by (a) 

the age at onset of Y if the event coded with Y=1 has ever happened to the individual or (b) 

the age at assessment if that event has never happened. For instance, suppose an individual 20 

years of age at the assessment has developed MDD at the age of 15. This person would have 

15 lines in the dataset indicating the age periods of 0–1, 1–2,..., and 14–15 years. The 

remaining age period after onset of depression (16–20 years) in that individual is not 

informative for the question which factors affect the onset of Y. The rows in the dataset also 

contain the values of the covariates, which may depend on age (see below).  

Survival analysis has the advantage that it accounts for age censoring in the outcome Y; that 

is, the individuals differ in age at assessment. For example, if Y is the onset of MDD, some 

individuals at lower age might turn to MDD cases after the time of assessment (and up to the 



maximum age observed in the study). Age censoring is accounted for by assigning a higher 

weight to higher age periods in older individuals—age periods that are unobserved for 

younger individuals. The variable X, which is to be evaluated against the subsequent onset of 

Y, might also depend on age. Imagine that an individual experiences the first panic attack at 

the age of 10. Before that age, the person is a non-case of lifetime panic attack, and from that 

age, the person is a case. As X has to precede Y, the definition of X(age) has to be shifted 

backward by 1 year. Hence, X(age) should be coded as follows: 

 X(age)=1 if the condition was ever present by age-1, X(age)=0 otherwise. The situation is 

analogous to the one in prospective analyses described above at fixed age: The covariate is the 

presence of disorder X before the specific age, and the outcome is the incidence of Y in the 

subsequent year of age. One can compute overall or age-specific differences in onset rates of 

Y between X(age)=1 and X (age)=0, for example, with hazard ratios from Cox regression 

(having an analogous interpretation as risk ratios). Control variables Wk(age) can be 

calculated exactly in the same way as above, but separately for each year of age. Note that 

more sophisticated methods also take feedback mechanisms into account: The outcome Yat 

age t might not only be affected by factors occuring before t (confounding), but it may also 

impact later time-dependent causes of the outcome Y after t [3, 16, 17]. Our approach is 

restricted to the onset of prior conditions and disregards such feedback mechanisms. 

However, it is easy to conduct with standard software (as compared to g-estimation which 

requires special software) and improves the predominant strategies to adjust for all or none 

other disorders.  

The differences between survival and prospective analysis are rather interpretational ones. 

First, in survival analysis, the temporal relation between X and Y (not only the one between X 

andW1,...,Wm) also has to be assessed with age at onset data and cannot be established by the 

presence of two assessments. Establishing the temporal order by age at onset data is likely to 

be more prone to errors. On the other hand, the prospective analysis is restricted to the 

individuals who never had the disorder Y at baseline. Depending on the age at assessment, 

many individuals with an early onset might be lost for the analysis. Likewise, the results 

would be restricted to those with a late onset, those who might constitute a special group of 

individuals.  

 

 

The effect of using different adjustment strategies: an example from the EDSP Study 

 

Data for the following analysis were taken from the Early Developmental Stages of 

Psychopathology (EDSP) Study [9, 27]. The EDSP Study is a prospective, general population 

study on mental and substance use disorders among adolescents and young adults in Greater 

Munich, Germany. We assessed Diagnostic and Statistical Manual of Mental Disorders 

(DSM) diagnoses (DSM-IV; American Psychiatric Association [1]) using the Munich version 

of the CIDI (M-CIDI, DIA-X; [25]). The probands were between 17 and 28 years old at the 

last assessment (T2).  

We analyzed the prospective association between panic attack at the baseline investigation 

(T0) and the onset of MDD during the follow-up period (T1/T2). The average follow-up time 

was 41.7 months (range 34.1–49.6 months, SD=3.0). Among the older cohort (18–24 years 

old at T0), the follow-up period was assessed at T2 only, and among the younger cohort, T1 

and T2 together covered the entire follow-up period. A total of 2,548 participants completed 

T0 and T2, of whom N=326 met the criteria for MDD or a hypomanic or manic episode at 

baseline, leaving N=2,222 individuals for the analysis. As the study was designed with special 

interest in early stages of mental and substance use disorders, probands 14–15 years old at T0 

were sampled at twice the probability of individuals 16–21 years old, and 22- to 24-year-olds 

were sampled at half this probability. To account for these intended differences in sampling 



probabilities as well as non-response at T0 according to age, sex, and location, data were 

weighted to match the distribution of these variables in the registry database of the source 

population. This was done with an iterative procedure resulting in (weighted) distributions of 

age, sex, and location that approximately equal those in the population [7, 9, 27].  

For the calculation of control variables, we used the following seven diagnoses, including 

substance use disorders and the most frequent anxiety disorders: alcohol dependence, alcohol 

abuse, nicotine dependence, abuse or dependence of any illicit substance, social phobia, any 

specific phobia, and phobia NOS. The control variables were calculated stratified by the age 

groups 14–15, 16–17, 18–19, 20–21, and 22–24 years at T0 and were entered as main effect 

terms into the model equation. Odds ratios (ORs) were computed from logistic regressions, 

and robust confidence intervals that accounted for the weighting scheme are based on the 

Huber–White sandwich estimator [20]. Analyses were carried out with the LOGISTIC 

procedure of Stata 8.0 [22].  

Table 1 is the cross-table between panic attack at baseline and the onset of an MDD at follow-

up. Only a weighted 8.4% of the individuals without panic attack at baseline met the criteria 

for an incident MDD at follow-up, compared to 20.7% of those with at least one panic attack 

at baseline.  

As shown in Table 2, the OR adjusted for sex and age was 2.67 (95% CI=1.34–5.32). After 

further adjusting for the seven disorders at baseline while disregarding their temporal relation 

with panic attack, the OR decreased considerably to 1.80 (95% CI=0.89–3.67) and was no 

longer statistically significant.  

When adjusting for these disorders only if they occurred prior to panic attack, using control 

variables as defined above, an OR emerged that lay between the above two ORs (2.11, 1.02–

4.37), again being statistically significant. However, results should not be reduced to a 

dichotomy, and requiring p<0.05 is nothing but a social convention. Adjusting only for 

precedent disorders yields a higher OR with a higher left boundary of the CI, thus, more 

evidence for a causal effect (Höfler and Seaman, unpublished paper) than if we adjusted for 

all disorders irrespective of their age at onset. Note that this moderate association might easily 

be explained by unconsidered confounders, other sources of bias (e.g., measurement and 

selection), and uncertainty on these biases because the left boundary of the confidence 

interval is close to 1 [5, 18, Höfler and Seaman, unpublished paper].  

 

 

Comment 

 

In this article, we proposed a method of adjusting for factors prior to the exposure factor 

under investigation (X) using age at onset data. The performance of this method depends 

strongly on psychometric properties of age at onset data. Wittchen et al. [26] examined 

validity and reliability of age at onset data from the CIDI. The study used different raters at 

both occasions and a duration of 1 to 3 days between the assessments. Age at onset questions 

yielded at least fair agreement for most questions among DSM-III cases (intraclass 

correlations of 0.69 or higher; besides questions on “nervousness”, “mania 2”, “first drunk” 

and “depression 2”). In the same paper, validity was assessed among former psychiatric 

inpatients over a 7-year follow-up period and was compared to the age at the index admission. 

Again, here among ICD cases, intraclass correlations were at least satisfactory for most 

questions (besides among “neurotic” individuals). However, it should be mentioned that the 

agreement rates (equal age at onset at both occasions) for both reliability and validity were 

sometimes lower than 50%. Studies on age at onset of substance use have shown that 

individuals tended to shift the reported age at onset toward the time of assessment (“forward 

telescoping”; Johnson et al. [4, 8, 13]. Hence, there seems to be substantial uncertainty in the 

exact reporting of age at onset, especially when the onset occurred a long time ago. This is 



primarily of a concern when the temporal relation between two disorders with similar ages at 

onset is to be established.  

Hence, the possibility to use age at onset data for covariate adjustment as proposed in this 

paper does not replace the necessity of studies that establish the temporal relation of X to 

other variables through the study design because “you can’t fix by analysis what is screwed 

up in design” [10]. However, when such studies are not feasible, our method provides a sound 

procedure to account for conditions prior to the exposure X. 
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