
 

 

Faculty of Forest, Geo and Hydro Sciences   

 
 
 
 
 
 
 
 
 
 
Finite element method for coupled thermo-hydro-
mechanical processes in discretely fractured and non-
fractured porous media 
 
 
 
 
 
 
Dissertation for awarding the academic degree  
Doktoringenieur   (Dr.-Ing.)  
 
 
Submitted by  
M.Env.Sc. Norihiro Watanabe 
 
 
 
 
 
Supervisor: 
 
Mr. Prof. Dr.-Ing. Olaf Kolditz 
Technische Universität Dresden 
 
Mr. Prof. Dr.-Ing. habil. Heinz Konietzky 
Technische Universität Bergakademie Freiberg 
 
 
 
 
 
Leipzig, November 2011 



 

2 

 
 
Explanation of the doctoral candidate 
 
 
This is to certify that this copy is fully congruent with the original copy of the dissertation with 
the topic:     
 
 
„Finite element method for coupled thermo-hydro-mechanical processes in discretely 
fractured and non-fractured porous media“ 
   
 
 
 
 
 
……………………………………….…. 
Place, Date  
 
 
 
 
……………………………………….…. 
Signature (surname, first name)  
 
 



Finite Element Method for Coupled
Thermo-Hydro-Mechanical Processes in Discretely

Fractured and Non-fractured Porous Media

by

Norihiro Watanabe

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN ENGINEERING

Dresden University of Technology

October 2011





Abstract

Numerical analysis of multi-field problems in porous and fractured media is an important
subject for various geotechnical engineering tasks such as the management of geo-resources
(e.g. engineering of geothermal, oil and gas reservoirs) as well as waste management. For
practical usage, e.g. for geothermal, simulation tools are required which take into account
both coupled thermo-hydro-mechanical (THM) processes and the uncertainty of geological
data, i.e. the model parametrization. For modeling fractured rocks, equivalent porous
medium or multiple continuum model approaches are often only the way currently due to
difficulty to handle geomechanical discontinuities. However, they are not applicable for
prediction of flow and transport in subsurface systems where a few fractures dominates the
system behavior. Thus modeling coupled problems in discretely fractured porous media is
desirable for more precise analysis.

The subject of this work is developing a framework of the finite element method (FEM)
for modeling coupled THM problems in discretely fractured and non-fractured porous media
including thermal water flow, advective-diffusive heat transport, and thermoporoelasticity.
Pre-existing fractures are considered. Systems of discretely fractured porous media can
be considered as a problem of interacted multiple domains, i.e. porous medium domain
and discrete fracture domain, for hydraulic and transport processes, and a discontinuous
problem for mechanical processes. The FEM is required to take into account both kinds
of the problems. In addition, this work includes developing a methodology for the data
uncertainty using the FEM model and investigating the uncertainty impacts on evaluating
coupled THM processes. All the necessary code developments in this work has been carried
out with a scientific open source project OpenGeoSys (OGS).

In this work, fluid flow and heat transport problems in interactive multiple domains
are solved assuming continuity of filed variables (pressure and temperature) over the two
domains. The assumption is reasonable if there are no infill materials in fractures. The
method has been successfully applied for several numerical examples, e.g. modeling three-
dimensional coupled flow and heat transport processes in discretely fractured porous media
at the Gross Schoenebck geothermal site (Germany), and three-dimensional coupled THM
processes in porous media at the Urach Spa geothermal site (Germany).

To solve the mechanically discontinuous problems, lower-dimensional interface elements
(LIEs) with local enrichments have been developed for coupled problems in a domain in-
cluding pre-existing fractures. The method permits the possibility of using existing flow
simulators and having an identical mesh for both processes. It enables us to formulate
the coupled problems in monolithic scheme for robust computation. Moreover, it gives an
advantage in practice that one can use existing standard FEM codes for groundwater flow
and easily make a coupling computation between mechanical and hydraulic processes. Ex-
ample of a 2D fluid injection problem into a single fracture demonstrated that the proposed
method can produce results in strong agreement with semi-analytical solutions.

An uncertainty analysis of THM coupled processes has been studied for a typical geother-
mal reservoir in crystalline rock based on the Monte-Carlo method. Fracture and matrix
are treated conceptually as an equivalent porous medium, and the model is applied to
available data from the Urach Spa and Falkenberg sites (Germany). Reservoir parame-
ters are considered as spatially random variables and their realizations are generated using
conditional Gaussian simulation. Two reservoir modes (undisturbed and stimulated) are
considered to construct a stochastic model for permeability distribution. We found that
the most significant factors in the analysis are permeability and heat capacity. The study
demonstrates the importance of taking parameter uncertainties into account for geothermal
reservoir evaluation in order to assess the viability of numerical modeling.



Zusammenfassung

Die numerische Analyse von Mehrfeldproblemen in porösen und geklüfteten Medien
ist ein wichtiges Thema für unterschiedliche geotechnische Aufgabenstellungen wie der
wirtschaftlichen Nutzung von Georessourcen (z.B. Bewirtschaftung von geothermischen,

Öl- und Gasreservoiren) oder der Verwahrung von Rückständen technischer Prozesse. Für
die praktische Anwendung, z.B. im Bereich der geothermischen Energiegewinnung, werden
Simulationsinstrumentarien benötigt, die sowohl thermisch-hydraulisch-mechanisch (THM)
gekoppelte Prozesse als auch die Unsicherheiten geologischer Daten, die zu Problemen bei
der Modellparametrisierung führen, berücksichtigen. Wegen der Schwierigkeiten bei der
Beschreibung geomechanischer Diskontinuitäten kommen für die Modellierung von geklüftet-
em Gestein gegenwärtig vorrangig das Modell des äquivalenten porösen Kontinuums oder
Mehrkontinua-Konzepte zur Anwendung. Diese Ansätze sind jedoch nicht für die Vorher-
sage von Fliess- und Transportproblemen in Untertagesystemen verwendbar, bei denen das
Systemverhalten durch die Existenz mehrerer Klüfte dominiert wird. Somit ist eine präzisere
Analyse von gekoppelten Prozessen in klüftig-porösen Medien anzustreben.

Gegenstand dieser Arbeit ist die Entwicklung eines spezifischen Konzepts für die Mod-
ellierung von gekoppelten THM-Problemen in geklüfteten und nicht geklüfteten porösen
Medien im Rahmen der Finite-Element-Methode (FEM). Dieses Konzept soll die ther-
misch induzierte Porenwasserströmung, den advektiven und diffusiven Wärmetransport
sowie thermo-poro-elastische Materialmodelle für die Gesteinsmatrix beinhalten. Vorbeste-
hende Klüfte werden im Modell berücksichtigt. Die betrachteten Systeme von klüftig-
porösen Medien können bezüglich der hydraulischen und Transportprozesse als Kombina-
tion interagierender, multipler Gebiete betrachtet werden (d.h. Gebiete poröser Medien und
Gebiete separierter Klüfte), bezüglich der mechanischen Deformationsprozesse hingegen als
Problemstellung mit Unstetigkeiten. Von relevanten FEM-Konzepten wird gefordert, dass
sie beide Problemstellungen berücksichtigen. Zusätzlich beinhaltet diese Arbeit die Entwick-
lung einer Methodologie zur Behandlung von Datenunsicherheiten im Rahmen des FEM-
Modells sowie die Untersuchung der Auswirkungen dieser Unsicherheiten auf die Analyse
von gekoppelten THM-Prozessen. Die für die dargelegte Arbeit erforderlichen Softwareen-
twicklungen wurden im Rahmen des wissenschaftlichen open-source Projekts OpenGeoSys
(OGS) umgesetzt.

Im Rahmen des präsentierten Konzepts wird für die Strömungs- und Wärmetransport-
probleme in den interagierenden, multiplen Gebieten die Stetigkeit der Feldvariablen (Poren-
druck, Temperatur) über die Gebietsgrenzen hinweg vorausgesetzt. Diese Annahme ist
physikalisch zweckmässig, wenn die Klüfte kein Füllmaterial enthalten. Die entwickelte
Methode wurde erfolgreich in diversen numerischen Beispielen genutzt, wie etwa der Mod-
ellierung von dreidimensionalen, gekoppelten Strömungs- und Wärmetransportprozessen in
klüftig-porösen Medien des Geothermie-Standorts Gross Schönebeck (Deutschland) und von
räumlichen, gekoppelten THM-Vorgängen in porösen Medien des Geothermiestandorts Bad
Urach (Deutschland).

Für die Lösung des diskontinuierlichen, geomechanischen Problems wurden Übergangs-
elemente mit niedrig-dimensionierten Ansatzfunktionen (LIEs) sowie lokaler Anreicherung
zur Simulation gekoppelter Probleme in Gebieten mit vorbestehenden Klüften entwickelt.
Diese Vorgehensweise gestattet es, existierende Strömungsmodelle zu nutzen und die un-
terschiedlichen physikalischen Prozesse auf identischen Berechnungsgittern zu simulieren.
Damit können die gekoppelten Modelle im Rahmen numerisch robuster, monolithischer
Lösungskonzepte formuliert werden. Weiterhin kann in der numerischen Praxis der Vorteil
genutzt werden, existierende FEM-Standardsoftware zu verwenden (die z.B. zur Model-
lierung von Grundwasserströmungen entwickelt wurde) und diese vergleichsweise unprob-



lematisch in ein gekoppeltes System zur Lösung geohydraulischer und geomechanischer
Vorgänge zu integrieren. Am zweidimensional aufbereiteten Beispiel der Injektion eines
Fluids in eine einzelne Kluft konnte gezeigt werden, dass das entwickelte Verfahren Ergeb-
nisse generiert, die sehr gut mit semianalytischen Lösungen übereinstimmen.

Basierend auf dem Monte-Carlo-Verfahren wurden Unsicherheitsanalysen für gekoppelte
THM-Prozesse für ein typisches Geothermie-Reservoir im kristallinen Gestein durchgeführt.
Hierbei wurden Klüfte und Gesteinsmatrix konzeptionell als äquivalentes poröses Kontin-
uum betrachtet. Für die Studie standen Daten der Standorte Bad Urach und Falkenberg
(Deutschland) zur Verfügung. Die Reservoirparameter wurden als Variablen mit zufälliger
räumlicher Verteilung angesehen, die Berechnung der statistischen Realisierungen erfolgte
auf der Basis von bedingten Gauss-Simulationen. Zwei Reservoirzustände (gestört und
ungestört) wurden für die Generierung einer stochastischen Permeabilitätsverteilung unter-
sucht. Es konnte festgestellt werden, dass Permeabilität undWärmekapazität die Parameter
mit dem grössten Einfluss auf die Berechnungsergebnisse darstellen. Diese Studie demon-
strierte, dass die Berücksichtigung von Parameterunsicherheiten ein wichtiger Aspekt für die
Realisierbarkeit numerischer Modelle im Bereich der Bewertung geothermischer Reservoire
ist.

v
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1 Introduction

1.1 Motivation

Numerical analysis of multi-field problems in porous and fractured media is an important
subject for various geotechnical engineering tasks such as the management of geo-resources
(e.g. engineering of geothermal, oil and gas reservoirs) as well as waste management (e.g.
chemo-toxic and nuclear waste, CO2 sequestration), see e.g. (Alonso et al., 2005; Doughty
and Pruess, 2004; Stephansson et al., 2004). The use of computer modeling in the planning
and management of the development of geothermal fields has become standard practice
during the last decades. During that time models have been developed for more than
100 geothermal fields worldwide (Stephansson et al., 2004). Due to geological complexity
and the number of processes involved, such as geometry, hydraulics, thermal effects, geo-
chemical reaction and stress changes, simulation tools are required which take into account
both coupled thermo-hydro-mechanical-chemical (THMC) processes and the uncertainty
of geological data, i.e. the model parameterization (Noorishad et al., 1984; Tsang, 1991;
Stephansson et al., 2004).

The analysis of coupled processes, in particular feedbacks of mechanical, thermal and
geochemical effects to the flow system, is important for both hydrothermal (Clauser, 2003)
and hot-dry-rock (HDR) systems (Bower and Zyvoloski, 1997; McDermott et al., 2006;
Tsang, 1991). The behavior of HDR systems, particularly their fluid and heat transport
characteristics, is affected by complex interactions among multiple physical and geochemical
processes. HDR systems are designed to extract the heat energy stored in hot subsurface
rocks by circulating fluids, often brine, through artificial or natural hydraulic pathways
such as fractures or pores. Fluid injection causes large changes in pressure and temperature,
thus inducing dynamic redistribution of in-situ stresses. This subsequently affects hydraulic
properties such as permeability and porosity, due to geometrical changes of fractures and
pore spaces. Thus the interactions take place vice versa between fluid and rock. Additional
coupling occurs through pressure and temperature dependent fluid properties.

Any transport processes in subsurface systems are complicated when the fracture net-
works exist. Fractures provide the most likely pathway for the transmission of fluid, contam-
inants, and heat through the geologic underground. It is important to realize the interaction
between the structure of the medium and the occurring physical processes within. Thus,
the hydraulic behavior and the resulting transport of components as well as heat essentially
depends on the structure of the fracture network, i.e. the connectivity of the fracture sys-
tem. Moreover, the hydraulic properties of fractures strongly depend on the mechanical
stress situation (Kolditz, 1997). The ordinary porous medium approach is frequently not
applicable for prediction of flow and transport in fractured rock. More precise considera-
tion of fracture geometries is required, although it is reasonable to choose carefully a limited
number of major fractures which can adequately represent characteristics of the systems.

Furthermore, data uncertainty is one of the major problems in subsurface reservoir
analysis. Direct borehole measurements are very limited due to technical issues and costs.
Normally data are available from core samples and well bore logging for the local scale and
geophysical measurements (e.g. microseismic monitoring) for a larger scale (e.g. Tenzer
et al. (2000) for Urach Spa site and Weidler et al. (2002) for Soultz site). Thus, subsur-
face models are derived from limited information and include uncertainties. Dealing with
uncertainty is a common necessity e.g. for safety assessment of nuclear waste repositories
(Rautman and Treadway, 1991).
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1.2 Previous research

Discussions about previous research are briefly presented below. More details about specific
points are given in the corresponding sections.

Numerical THM models have been developed and applied to several HDR sites such as
Soultz-sous-Foréts in the Rhine Valley (Kohl et al., 1995) and Urach Spa in the Swabian
Alb (McDermott and Kolditz, 2006). More recently, chemical effects have been introduced
into the coupled analysis (Kiryukhin et al., 2004; Kuhn, 2004; Taron et al., 2009; Taron
and Elsworth, 2009). Of significant interest is the ability of dissolution and precipitation
processes to alter pore structure and bulk reservoir permeability.

Models can be classified by their conceptualization of the fractured reservoir geometry
(discrete fractures or fracture networks, equivalent porous media). Discrete fracture network
(DFN) models are available for the simulation of fluid, mass and heat transport even for
realistic geological structures, e.g. Bruel (1995); Kolditz (1995); Kolditz and de Jonge (2004)
for the Soultz HDR reservoir. Their applicability in the context of fully coupled THM
analysis, however, is still restricted to simplified problems (Walsh et al., 2008). Equivalent
porous media approaches are used for THM analysis of fractured rock instead (Birkholzer
et al., 2008) as well as THM modeling in geotechnics (Guimaraes et al., 2007; Kohlmeier,
2006).

From the mathematical point of view, THM processes lead to a non-linear coupled
initial-boundary-value-problem which needs to be solved numerically for most of application
cases. Among the available numerical methods, finite differences (FDM), volumes (FVM)
and elements (FEM) are mainly used (de Boer, 2005; Borja and Aydin, 2004; Borsetto
et al., 1981; Kohl, 1992; Lewis and Schrefler, 1998; Noorishad et al., 1984; Rutqvist et al.,
2008). In addition, presence of fractures or faults in a domain of interest means one has
to solve geomechanically discontinuous problems if the fractures are explicitly modeled.
Treatment of such discontinuities makes it difficult for continuity based numerical methods,
e.g. FDM, FEM, to simulate fully coupled THM problems in DFN models. Discontinuous
methods, e.g. discrete element method (DEM), is one of the most attractive methods for
modeling large displacements for moderately fractured rock masses where a large number of
fractures have to be considered, or where large-scale displacements of individual blocks are
possible (Cundall and Hart, 1992; Jing, 2003). Application of the DEM to coupled problems
can be achieved by combining other continuous numerical methods. Solving fully coupled
problems within the DEM has been studied in limited cases, e.g. no fluid is assumed in the
rock matrix (Heinicke et al., 2009; Min et al., 2004; Wang and Konietzky, 2009).

Irrespective of the specific numerical method, the calculation of coupled THM problems
is very expensive. This is mainly due to two reasons: degree of freedom (i.e. number of
field variables) and strong coupling among non-linear processes. There are several ways to
improve the computational efficiency, e.g. more efficient numerical algorithms, optimization
of memory management in the code, and parallelization techniques. Among them, parallel
computing provides the most powerful speed-up. Due to decreasing hardware cost in recent
years, parallel computation is becoming very attractive for applied research (Schrefler et al.,
2000; Shioya and Yagawa, 2005; Tezduyar and Sameh, 2006; Topping and Khan, 1996).

For HDR geothermal systems, aspects of uncertainty have been so far investigated in
the framework of sensitivity analysis and parameters identification. Fractal and statistical
DFN models have been developed, e.g. by Tezuka and Watanabe (2000). DFN models
can represent the structural reservoir geology, but they are still restricted to simplified
processes. Inversion methods have been used to identify physical rock parameters in order
to reproduce the observed reservoir behavior (Lehmann et al., 1998).

2



1.3 Objective

Although numerous studies have been successfully achieved for modeling geothermal reser-
voir behavior, challenges still remain in terms of process coupling, conceptual modeling,
data uncertainty, and computational efficiency as follows:

• Further investigation of geochemical (C) process, e.g. dissolution and precipitation,
is important for evaluation of the long-term reservoir performance because of their
impacts on hydraulic conductivity of the system.

• Modeling the mechanics related coupled problems in discretely fractured porous me-
dia, such as THM, is desirable to more focus on dominant players in the systems, i.e.
hydraulically dominant fractures, for more precise analysis. Equivalent media or mul-
tiple continuum model approaches are often only the way currently due to difficulty
to handle geomechanical discontinuities.

• Uncertainty in evaluation of HDR geothermal reservoirs has been partly investigated.
Influence of data uncertainty on evaluating coupled THM problems in HDR geother-
mal reservoirs needs to be figured out.

• Improvement of the computation time is necessary to run a set of simulations to
analyze the reservoir behavior, e.g. scenario-oriented analysis or probabilistic analysis.

Related with the above problems, this PhD work focuses on the following challenges:

(1) Development of the FEM for modeling coupled THM problems in discretely fractured
porous media including thermal water flow, advective-diffusive heat transport, and
thermoporoelasticity

(2) Monte-Carlo analysis of impacts of data uncertainty on THM coupled processes in a
typical geothermal reservoir in crystalline rock

(3) Enhancement of computational efficiency for the Monte-Carlo analysis utilizing parallel
computation on distributed memory systems

This work has a focus on the most important physical processes, i.e. THM. Geochemical
effects will be explored in future work.

1.4 Numerical codes OpenGeoSys

This PhD work has been carried out with a scientific open source project OpenGeoSys
(http://www.opengeosys.net). OpenGeoSys (OGS) aims the development of numerical
methods for the simulation of THMC processes in porous and fractured media. OGS
greatly relies on multi-dimensional FEM. The codes are implemented in C++, which is
object-oriented with an focus on the numerical solution of coupled multi-field problems
(multi-physics). Parallel versions of OGS are available relying on both MPI (Message Pass-
ing Interface) and OpenMP (Open Multi-Processing) concepts. Application areas of OGS
are currently CO2 sequestration, geothermal energy, water resources management, hydrol-
ogy, and waste deposition.

3



1.5 Dissertation structure

This dissertation is structured in the following. Section 2 explains the problem of interest in
discretely fractured porous media and its mathematical model. Section 3 shortly describes
the framework of the developed FEM. Section 4 demonstrates applications of the methods
as well as the uncertainty analysis. Finally, summary and outlook are given in section 5.
Publications produced by this work are included at the end.

4



2 Conceptual and mathematical model

2.1 Conceptual modeling of fractured rocks

Fractured rocks can be classified into different materials: porous, fractured, and fractured
porous media. The conceptual model of a fractured porous medium reflects the occurrence
and the significance of both discontinuities within rock (fractures) and pore space within
the rock matrix. Fractures provide the most likely pathway for the transmission of fluid,
contaminants, and heat through the geologic underground. Bear and Berkowitz (1987)
distinguish between primary porosity (porosity of the rock matrix) and secondary porosity
(porosity of fractures). The rock matrix can reveal a quite different hydraulic and transport
behavior. Although the rock matrix may be impervious, or essentially impervious, to flow,
it can play a primary role for retardation of contaminants or for heat storage. Finally,
storage (due to porosity) and transfer (due to conductivity) are the essential properties of
fractured rock which have to be described by appropriate models (Kolditz, 1997).

A conceptual model has to be chosen by the scale of the problem, the geological charac-
teristics of the area of the investigation, and the purpose of the simulation (Dietrich et al.,
2005). In general, following concepts exist for fractured rock model as illustrated in Figure
1.

• Discrete fracture model

• Continuum model (equivalent porous media)

• Multiple continuum model

• Hybrid model of discrete fracture and continuum models

Basic concepts are discrete fracture models, and continuum models (Kolditz, 1997). A
discrete fracture model can be used if the considered processes are governed by the fractures
alone. The continuum approach is applicable to fractured media as long as an representative
elementary volume (REV) can be found for it.

The concept of the multi-continua approach was originally proposed by Barenblatt et al.
(1960). This conceptual model is an extension of the ordinary single-continuum approach
for the case of strongly heterogeneous media such as fractured rocks. For this purpose,
the heterogeneous medium is subdivided into multiple interacting homogeneous subsystems
(e.g. one representing the fracture network and the other for the rock matrix). In fact, the
multi-continua model presumes the existence of a REV which is common to all subsystems.
This approach is definitely advantageous for expressing the different characteristics of frac-
tures and rock matrix. The fracture continuum covers the conductive part, whereas the
matrix continuum regards to the storage capacity of the whole domain. The multi-continua
approach deals with a situation where the hydraulic and/or transport systems are not in
an equilibrium state at the microscopic scale. Exchange processes take place between the
solid and the fluid phases, or between zones of mobile and immobile groundwater in layered
aquifers, or even between fractures and rock matrix in fractured porous aquifers.

The hybrid model for a fractured porous medium is coupling the two basic concepts
which specially account for exchange processes between fractures and the enclosed rock
matrix. This hybrid approach implies the possibility of homogenization of the rock matrix
at a macroscopic scale (i.e. the characteristic length scale of fractures). The term rock
matrix denotes a quite heterogeneous medium at a microscopic scale which is interweaved
by numerous microfissures and pores. It is assumed, however, that these microstructures
are well connected, and thus, the hydraulic and transport characteristics of the rock matrix

5



Figure 1: Model concepts for the description of fractured porous media (Dietrich et al., 2005)
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can be described by averaged quantities, i.e. the continuum approach of a porous medium
can be applied (Kolditz, 1997).

This work focuses on a subsurface system where high conductive and long fractures
sparsely distribute in background rock matrices. Both the fractures and rock matrices are
filled with groundwater, i.e. saturated conditions. One can describe groundwater flow in
the system by considering a combination of discrete fractures as hydraulic conduits, and
rock matrices as porous media, respectively (Guvanasen and Chan, 2000; Baca et al., 1984;
Dietrich et al., 2005; Woodbury and Zhang, 2001; Segura and Carol, 2004). This is based
on an assumption that groundwater in the discrete fractures dominantly flows along the
fracture plane. In addition, it is assumed that the domain is composed of continuous
porous medium blocks with embedded connected planes representing the discrete fractures
(Guvanasen and Chan, 2000).

2.2 Mathematical modeling of coupled THM processes

The physical system incorporates non-isothermal liquid flow in a deforming porous medium
connected with discontinuities, i.e. discrete fractures. Local equilibrium of thermodynam-
ics is assumed and macroscopic balance equations are considered to derive the governing
equations. Macroscopic hydro-mechanical (HM) behavior of the system is described by the
Biot’s consolidation theory and its extension to discrete fractures. More details on THM
mechanics for porous media can be found e.g. in Coussy (2004); Ehlers and Bluhm (2002);
Lewis and Schrefler (1998), and for discretely fractured porous media, e.g. in Noorishad
and Tsang (1996); Guvanasen and Chan (2000); Rutqvist and Stephansson (2003).

Discrete fractures are conceptualized in a different way depending on which process is
considered. In hydraulic and transport process, discrete fractures can be idealized as lower-
dimensional geometries, e.g. lines in two-dimensional space. This implies that fluid pressure
or temperature is uniform across the fracture width. In mechanical process, the fractures
can be considered as a pair of surfaces between which normal and shear displacements are
permissible.

In the following sections, details of each process are presented. To describe mathematical
models, one can explain them with focusing on each physical process whereas others would
focus on each medium, i.e. porous media or fractures. In order to more clearly explain
about interaction between porous media and discrete fractures, the former is taken in the
following. The corresponding field variables are liquid phase pressure p, temperature T ,
and solid displacement vector u. We use superscripts l and s to indicate the liquid phase
and the solid phase in porous media, and m and f to indicate porous media and discrete
fractures, respectively.

2.3 Hydraulic process

2.3.1 Porous medium

Mass conservation law Fluid flow in deformable and saturated porous media is de-
scribed by the following volume balance equation based on mass balance equations of both
liquid and solid phases in porous medium,

Ss
∂p

∂t
− β

∂T

∂t
+∇ · qH + α∇ · ∂u

∂t
= QH (1a)

where Ss = (α−n)/Ks+n/K l is the constrained specific storage of the medium with α the
Biot-Willis coefficient for the porous medium, n porosity, Ks the compressibility of solid
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and K l the compressibility of liquid. qH is the volumetric Darcy flux, β = (α− n)βs + nβl

is the thermal expansion coefficient, and QH is fluid source/sink term representing the
effect of a fluid exchange with the fractures, or fluid extraction (injection) from a wellbore.
The specific storage comprises a mechanical alteration in response to pressure. Volumetric
change of pore space due to change in the stress field is expressed as ∇ · (∂u/∂t).

Darcy’s law When the flow is assumed to follow the Darcy’s law, the volumetric flux qH

is

qH =
k

µ
(−∇p+ ρlg) (1b)

where k is intrinsic permeability tensor, µ is fluid dynamic viscosity, ρl is fluid density, and
g is the gravitational acceleration vector.

2.3.2 Discrete fracture

Mass conservation law Assuming no infill materials in fractures, the volume balance
equation for the discrete fracture can be described in its local coordinates from the mass
balance law as

bmSs
∂p

∂t
+ α

∂bm
∂t

+ ∇̄ · (bh q̄H)− β
∂T

∂t
+ q+H + q−H = 0 (2a)

where bm and bh denotes a mechanical and hydraulic (hydraulically effective) aperture,
respectively. Ss = α/K l, β = αβl are specific storage, thermal expansion coefficient for a
fracture, respectively. ∇̄ is the divergence operator in local coordinate systems. q+H and q−H
are the leakage flux from each side of the fracture surfaces to the surrounding porous media.
The volumetric change of unit space due to change in the stress field is expressed as ∂b/∂t.

Parallel plate concept The parallel plate concept can be applied when the flow is lami-
nar and the fracture is considered as a uniform plate (Snow, 1969; Zimmerman and Bodvars-
son, 1996). For detailed studies regarding non-linear flow in fractures, and thus violations to
Darcys law, please refer to the literature (Kolditz, 2001). The flux equation in unit volume
for the discrete fracture is defined as

q̄H
f =

b2h
12µ

Ī(−∇̄pf + ρlg). (2b)

where Ī is the unit tensor assuming isotropic permeability. We can see that in equation (2a)
the volumetric change of unit space due to change in the stress field is expressed as ∂b/∂t,
while the permeability tensor in equation (2b) is given by the cubic law. The equations
above denote that the fracture aperture b has impact on the volumetric change of space
and also the hydraulic conductivity. Thus the flow equations are nonlinear when variation
of the fracture aperture is not negligible for the flow system.

2.4 Thermal process

2.4.1 Porous medium

Energy balance The energy balance equation for heat transport in porous media is given
as

cpρ
∂T

∂t
+∇ · qT = QT (3a)
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where cpρ = nclpρ
l+(1−n)cspρs is heat storage of porous medium with n porosity, clp specific

heat capacity of fluid, csp specific heat capacity of rock and ρs rock density. qT is heat flux,
and QT is source/sink term including the effect of a heat exchange with the fractures.

Heat flux Considering advective and diffusive mechanism, heat flux qT is described as

qT = −λ∇T + clpρ
lqH T (3b)

where λ = nλl+(1−n)λs is heat conductivity of porous medium with λl heat conductivity
of fluid, λs heat conductivity of rock. qH denotes the Darcy flux.

2.4.2 Discrete fracture

Energy balance The energy balance equation for heat transport in the discrete fracture
is

bmc
l
pρ

l ∂T

∂t
+ ∇̄ · q̄T + q+T + q−T = 0 (4a)

where q̄T is heat flux and QT is heat source/sink term. q+T and q−T are the leakage heat flux
from each side of the fracture surfaces to the surrounding porous media.

Heat flux The advective and diffusive heat flux q̄T is defined as

q̄T = −bmλl∇̄T + bhc
l
pρ

lq̄H T. (4b)

Notice that mechanical aperture bm is used to calculate the volumetric flux with respect to
fluid volume, i.e. caused by diffusion mechanism, whereas bh is used with respect to fluid
movement, i.e. caused by advection mechanism.

2.5 Mechanical process

2.5.1 Concept of effective stress

In porous media and fractures saturated with liquids, the main characteristics of the solid
phase constitutive relation can be written in terms of the effective stress σ′. The effective
stress σ′ is defined as

σ
′ = σ + αpI (5)

where I is the unit tensor. The Biot’s constant is introduced in the equation in order to
account for the deformability of the solid grains. The Biot’s constant is given as

α = 1− KT

Ks

(6)

with the bulk modulus of the skeleton KT and of the grain material Ks. α = 1 for incom-
pressible grains (1/Ks ≈ 0).
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2.5.2 Porous medium

Stress equilibrium Non-isothermal consolidation of porous media with slowly moving
fluids can be considered as a quasi-static stress equilibrium problem. The linear momentum
balance equation in the terms of stress tensor can be written as

∇ · (σ′ − αpI) + ρg = 0 (7a)

The density of the porous medium is composed by two phases, liquid and solids ρ = nρl +
(1− n)ρs.

Constitutive law The constitutive law for stress-strain behavior including the thermo
elasticity is defined as

dσ′ = C (dǫ− αT∆T I) (7b)

with C a forth-order material tensor, ǫ the total strain, αT thermal expansion coefficient and
∆T temperature increment. For nonlinear, generalized analysis, equation (7b) is written in
an incremental form with the material tensor C. The isotropic elasticity tensor C is,

C := λδijδkl + 2Gδikδjl (7c)

where δ is the Kronecker delta, G = E/(2(1 + ν)) shear modulus with Young’s modulus E
and Poisson ratio ν. λ = 2Gν/(1 − 2ν) is the so called Lamé constant.

Strain-displacement relationship Assuming small deformation, the kinematics is de-
scribed by

ǫ =
1

2
(∇u+ (∇u)T ) = ∇su (7d)

where superscript T means the transpose of the matrix. Displacement vector u is the
primary variable to be solved by substituting the constitutive law.

2.5.3 Discrete fractures

Fracture relative displacement A discrete fracture can be approximated by a pair
of surfaces between which normal and shear displacements are permissible. Displacement
difference between two sides of the surfaces is defined as a fracture relative displacement. In
a local coordinate system of the fracture plane, the local relative displacement w is given
as

w =

{

wt

wn

}

=

{

u+t − u−t
u+n − u−n

}

(8a)

where subscripts t and n denote tangential and normal directions to the fracture plane,
respectively. Superscripts + and − indicate one side of the surfaces and the other side,
respectively. The local relative displacement can be written with the one in a global coor-
dinate system JuK, which is the global relative displacement, as

w = R JuK (8b)

R =

[

cos θ sin θ
− sin θ cos θ

]

(8c)
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Figure 2: Discrete fracture model

where R is a rotation matrix transforms global coordinates to the local coordinates in two-
dimensional space with an angle θ. Hence a change of a fracture aperture b, which is one
of the key parameters characterizing the flow in the fracture, can be expressed with either
w or JuK as

∆b = mfTw = mf TRJuK (8d)

with the mapping vector mf = {0, 1}T .

Stress equilibrium The HM equilibrium conditions in the fracture are governed by frac-
ture mechanical stresses and liquid pressure between the surfaces as

σ
f = σ

′f − αmf p (8e)

where σ
f = {σf

t ,σ
f
n}T is the total stress vector applied on the fracture plane in tangential

and normal directions. Similar to poroleasticity theory, σ′f is the effective stress, and pf is
the liquid pressure in the fracture.

Constitutive law Relationship between the effective stress and the fracture relative dis-
placement is described by the stiffness tensor K as

dσ′f = Kdw (8f)

K =

[

ktt ktn
knt knn

]

(8g)

where ktt and knn are the joint shear and normal stiffness, respectively. ktn and knt govern
coupling effects between normal and shear displacements. Often the joint stiffness coeffi-
cients are nonlinear about normal and shear stress applied on the fracture plane. Commonly
used fracture closured laws are, for example, Goodman’s hyperbolic model and the Barton-
Bandis model (Rutqvist and Stephansson, 2003).
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3 Finite element method

3.1 Introduction

In this section, application of the finite element method (FEM) to coupled THM problems
in discretely fractured porous media is presented. Modeling concept and partial differential
equations to be solved are already described in the previous chapter. Related numerical
methods such as coupling procedures and parallelization are also shortly presented to give
an overview of numerical analysis utilizing the FEM.

3.2 Representation of discrete fractures and porous media

The ability to handle non-uniform and distorted computational domains has been one of
attractive features of the FEM. The geometric object can be represented by a mesh of 1-D,
2-D and/or 3-D basic elements (geometric units) such as lines, triangles, quadrilaterals,
tetrahedrons, hexahedra and pyramids. Which type of element is most appropriate for a
particular problem depends on several factors, such as domain geometry, required accuracy,
computational costs etc (Kolditz, 2002).

Domains composed of discrete fractures and porous media can be discretized by combi-
nation of multiple element types (Table 1). In most cases, discrete fractures can be idealized
as lower-dimensional geometric objects so that they can be represented by, for example, lines
in two-dimensional space. If solutions are assumed to be continuous over domains of the
fractures and porous media, the discrete fracture elements must be located on edges of
porous medium elements and both kind of elements share the same nodes. Example of a
numerical mesh is shown for Grimsel fracture network in three-dimensional space in Figure
3. The geometric data is provided by the German Federal Institute for Geosciences and
Natural Resources (BGR). Discrete fractures are represented by triangle elements and sur-
rounded by tetrahedral elements as porous media. Often mesh refinement is required near
the fractures due to appearance of steep gradient of solutions.

Table 1: Element types for discretely fractured porous media

Space
Element type

Porous media Discrete fractures

2D tetrahedral, hexahedral, prismatic triangle, quadrilateral
3D triangle, quadrilateral lines

3.3 Weak formulation

The Method of Weighted Residuals (MWR) and the Green’s theorem are applied to derive
weak formulations of the governing equations given in the previous section. The weak forms
for the volume balance equations (1a),(2a), the energy balance equations (3a),(4a) and the
momentum balance equation (7a) can be written as below respectively,

Hydraulic process

∫

Ω

ωSs
∂p

∂t
dΩ +

∫

Ω

ω
Tα∇ · ∂u

∂t
dΩ +

∫

Ω

ωβ
∂T

∂t
dΩ−

∫

Ω

∇ωT · qH dΩ
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Figure 3: Example of a mesh for discretely fractured porous media: overall view (top) and enlarged
in vicinity of fracture networks (bottom)
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+

∫

Γ
q

H

ω (qH · n) dΓ−
∫

Ω

ωQH dΩ = 0 (9a)

∫

Γd

ω bmSs
∂p

∂t
dΓ +

∫

Γd

ωα
∂bm
∂t

dΓ +

∫

Γd

ωβ
∂T

∂t
dΓ−

∫

Γd

∇ωT · (bhqH) dΩ

+

∫

Γ
q

H

ω bh(qH · n) dΓ +

∫

Γd

ω q+H dΓ +

∫

Γd

ω q−H dΓ = 0 (9b)

Heat transport process

∫

Ω

ωcpρ
∂T

∂t
dΩ +

∫

Ω

ωcpρqH · ∇T dΩ−
∫

Ω

∇ωT · (−λ∇T ) dΩ

+

∫

Γ
q

T

ω (−λ∇T · n) dΓ−
∫

Ω

ωTQT dΩ = 0 (10a)

∫

Γd

ω bmc
l
pρ

l ∂T

∂t
dΓ +

∫

Γd

ωclpρ
l bhqH · ∇T dΓ−

∫

Γd

∇ωT · (−bmλl∇T ) dΓ

+

∫

Γ
q

T

ω
(

−bmλl∇T · n
)

dΓ +

∫

Γd

ω q+T dΓ +

∫

Γd

ω q−T dΓ = 0 (10b)

Mechanical process

∫

Ω

∇s
ω

T : (σ′ − αpI) dΩ−
∫

Ω

ω
T · ρg dΩ−

∫

Γt

ω
T · t̄ dΓ

−
∫

Γd

ω
+T · t+

d
dΓ−

∫

Γd

ω
−T · t−

d
dΓ = 0 (11)

Here ω ∈ V1 ⊂ H1
Γ
(Ω)1 is the linear test function, and ω ∈ Vn ⊂ H1

Γ
(Ω)n is the quadratic

test function in n dimensional space. Ω denotes the model domain with Γ as domain
boundary, where boundary conditions have to be specified for all field functions p, T , and
u, respectively. t+

d
, t−

d
are traction vectors applied on two sides of a fracture plane d.

Assuming continuity of the traction force at the fracture plane

t+
d
= −t−

d
, (12)

the weak form (11) can be written as

∫

Ω

∇s
ω

T : (σ′ − αpI) dΩ−
∫

Ω

ω
T · ρg dΩ−

∫

Γt

ω
T · t̄ dΓ

+

∫

Γd

JωKT · t−
d
dΓ = 0 (13)

where JωK = ω
+ − ω

− denotes jump of the test function at discontinuities. The traction
force t−

d
can be expressed by the stress in a fracture (8e).
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3.4 Galerkin finite element method

The basic steps in the finite element approximation are (1) domain discretization by fi-
nite elements, (2) discretization of the integral (weak) formulations of the PDEs, and (3)
generation of interpolation functions to approximate the unknown values of field variables.
Domain discretization is already mentioned in the previous section.

We use the standard Galerkin method to spatially discretize the weak forms (9a),(9b),
(10a), (10b), (11) of the THM balance equations. Primary variables of the multi-field prob-
lem are liquid phase pressure p, temperature T , and displacement vector u (fracture relative
displacement JuK). All variables are approximated by admissible interpolation functions in
the Taylor-Hood finite element space,

ph = NpP (14a)

T h = NTT (14b)

uh = NuU (14c)

where P, T, U are the vectors of the nodal values of the unknowns. Np, NT , Nu are
the shape functions respectively. Achieving a reasonable numerical stability and accuracy
requires the use of linear interpolation functions for pressure and temperature variables and
quadratic interpolation functions for displacement variables (Korsawe et al., 2006).

As we assume continuity of pressure and temperature over the two systems, i.e. porous
media and discrete fractures, (pm = pf , Tm = T f ∀x ∈ Γd), and have elements for the
both systems sharing the same nodes, the nodal vector of pressure and temperature for
the fractures becomes a subset of those for porous media. Therefore, after discretization
in space, weak forms for two distinct systems can be superimposed. In addition, by su-
perimposing the flux contributions at each node from both element types, the terms for
flux exchange between the two systems (q+, q−) balance off and its explicit calculation is
unnecessary (Woodbury and Zhang, 2001; Segura and Carol, 2004).

Finally, finite element formulations of the governing equations can be written in a matrix
form as

Hydraulic process
Mm

H Ṗm +Km
H Pm +CmT U̇− fmH = 0 (15a)

Mf
H Ṗf +Kf

H Pf +CfT ˙JUK − ffH = 0 (15b)

Heat transport process
Mm

T Ṫm +Km
T Tm − fmT = 0 (15c)

Mf
T Ṫf +Kf

T Tf − ffT = 0 (15d)

Mechanical process
∫

Ω

BT
σ
′ dΩ−CmPm +

∫

Γd

NfT

u t′−
d

dΓ−CfPf − fM = 0 (15e)

where P, T and U are the primary node variables of fluid pressure, temperature and
displacements. M, K and C are process-specific mass, Laplace and coupling matrices. f
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is the right-hand-side term contained the contributions of the coupled processes. B is the
strain-displacement matrix. Details of the process-specific matrices are as follows:

Mm
H =

∫

Ω

NmT

p SsN
m
p dΩ (16a)

Km
H =

∫

Ω

∇NmT

p

k

µ
∇Nm

p dΩ (16b)

fmH = −Km
Hρ

lg −
∫

Γq

NmT

p q̄ dΓ (16c)

Mf
H =

∫

Γd

bmNfT

p SsN
f
p dΓ (16d)

Kf
H =

∫

Γd

∇NfT

p (bh
k

µ
∇Nf

p) dΓ (16e)

ffH = −Kf
Hρ

lg −
∫

Γq

NfT

p q̄ dΓ (16f)

Cm =

∫

Ω

BTαmmNm
p dΩ (16g)

Cf =

∫

Γd

NfT

u αRTmfNf
p dΓ (16h)

Mm
T =

∫

Ω

NmT

T cpρN
m
T dΩ (16i)

Km
T =

∫

Ω

NT
T c

l
pρ

lqH · ∇NT dΩ +

∫

Ω

∇NT
Tλ∇NT dΩ (16j)

fmT =

∫

Γ

NT
TqT · ndΓ +

∫

Ω

NT
TQT dΩ (16k)

Mf
T =

∫

Γd

NfT

T clpρ
lNf

T dΓ (16l)

Kf
T =

∫

Γd

NT
T bhc

l
pρ

lqH · ∇NT dΓ +

∫

Ω

∇NT
T bmλ

l∇NT dΩ (16m)

fmT =

∫

Γ

NT
TqT · ndΓ +

∫

Γd

NT
TQT dΓ (16n)

fM =

∫

Ω

NmT

u ρg dΩ +

∫

Γt

NmT

u t̄ dΓ (16o)

(16p)

withm a mapping vector asmm = (1, 1, 1, 0), mf = (0, 1) ∀x ∈ R
2 andmm = (1, 1, 1, 0, 0, 0),

mf = (0, 0, 1) ∀x ∈ R
3. D is the elastic constitutive tensor.

We keep σ
′, t′−

d
in the equation (15e) in order to easily rewrite the equations into an

incremental form and also for, which is adequate for the nonlinear analysis. Incremental
form of the integration terms for σ′ and t′−

d
appeared in equation (15e) can be formulated

with nodal unknowns U and JUK as,
∫

Ω

BT∆σ
′ dΩ =

∫

Ω

BTDeBdΩ∆U (17a)
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∫

Γd

NfT

u ∆t′−
d

dΓ =

∫

Γd

NfT

u RTKRNf
u dΓ∆JUK (17b)

where De is the elastic material tensor.
Time discretization to approximate the solutions of the ordinary differential equations

(15a), (15b), (15c) and (15d) is accomplished through the first order finite difference scheme.
The momentum balance equation is considered as a quasi-static problem.

3.5 Coordinate transformation for discrete fracture elements

Discrete fractures can be represented by lower-dimensional elements, e.g. 1-D elements
in R

2 and 2-D elements in R
3. The elements are mapped into R

1 and R
2, respectively.

Integrations for discrete fracture space require coordinate transformation.

Coordinate transformation Consider that x is a directional vector in global coordinates
(x-y-z), and x′ is that in local coordinates (x’-y’). Coordinate transformation between the
two coordinates can be achieved with a rotational matrix R as

x = Rx′. (18)

In two-dimensional space, the rotational matrix is

R2D =

[

cos θ − sin θ
sin θ cos θ

]

(19)

with a rotational angle θ between x and x′. The cosine and sine functions can be simply
calculated by the following formulas:

cos θ =
vx
|v| , sin θ =

vy
|v| (20)

where v is a vector aligning with x′. In three-dimensional space, the rotation matrix is
given as

R3D =





cos(x′, x) cos(x′, y) cos(x′, z)
cos(y′, x) cos(y′, y) cos(y′, z)
cos(z′, x) cos(z′, y) cos(z′, z)



 (21)

with the directional cosines cos(x′i, xj), which is a cosine of angle between the axes x′i and
xj. A directional cosine is calculated as

cos(v,x) =
v · x
|v| (22)

for a vector v and a unit vector x. The vector x′ can be given by

x′ = x1 − x0 (23)

y′ = z′ × x′ (24)

z′ = x′ × (x2 − x1) (25)
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Directional material parameters Directional material parameters, e.g. permeability
tensor k, have to be evaluated in appropriate coordinate systems. A parameter in local
coordinates k′ can be transformed into the one in global coordinates k as:

k = Rk′RT (26)

Shape functions Coordinate transformation of directional shape functions associated
with vector variables u = {ux, uy, uz}T is given by

uh
e (x, y, z) = Ru′

e
h
(x′, y′) =

∑

i

[

RNi(r, s)u
′

i

]

=
∑

i

[

RNi(r, s)R
Tui

]

(27)

where i is an elemental node index.

Derivatives of shape functions Derivatives of scalar shape functions are given by

∇N(x, y, z) = J−1

x−x′∇N(x′, y′) = J−1

x−x′

(

J−1

x′−r∇N(r, s)
)

= RT
(

J−1

x′−r∇N(r, s)
)

(28)

Assuming a perfectly flat plane, J−1

x−x′ can be replaced by R. Derivatives of directional
(vector) shape functions are

∇N(x, y, z) = ∇
[

RN(x′, y′)RT
]

= R
[

J−1

x′−r∇N(r, s)
]

RT (29)

Example in evaluating a conductive matrix An example of the coordinate transfor-
mation is explained for a directional permeability tensor in the volume balance equation
for discrete fractures. The fracture permeability is usually given in its local coordinate
systems. Thus the information has to be transformed into global coordinates to evaluate
the equation.

Consider a line element e representing a fracture in 2-D spaces. The element is placed on
a perfectly flat plane. It is known that the fracture has a permeability tensor k′ defined in
local coordinate systems which can be transformed into global coordinates with a rotation
matrix Rf . To evaluate a conductive matrix K in the balance equation, local coordinates

have to be transformed into global coordinates. Conductive matrix Kf
e can be formulated

in natural coordinate systems as

Kf
e =

∫

Γe

bh∇N(x)T
k

µ
∇N(x)dΓ (30)

=

∫ +1

−1

bh
(

RT
e J

−1∇N(r)
)T Rfk

′RT
f

µ

(

RT
e J

−1∇N(r)
)

detJdr (31)

where Re is a rotation matrix for elements and J is the Jacobian matrix transferring the
physical coordinates to the natural coordinates.
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3.6 Approximation of geomechanical discontinuities

3.6.1 Introduction

From a mathematical standpoint, discrete fractures are considered as mechanical disconti-
nuities. The fracture acts as an interface between rock blocks, where displacements at the
edge of one block are not identical to the other side. This makes it difficult to solve the
problem using continuity based numerical methods such as the FEM (Jing, 2003).

Major approaches to include the discontinuities within the FEM can be the followings:

• Interface elements approach

• Enrichment approach: generalized/extended FEM

The FEM with interface elements (IEs) is a widely used approach for geotechnical engineer-
ing. Essentially, this approach approximates a discontinuous function with a continuous
function by representing a fracture as a solid entity with/without thickness. The approach
was first proposed as zero-thickness elements or Goodmans’s joint elements (Goodman et al.,
1968) and has attracted attention because of its simplicity to implement into conventional
FEM (Jing, 2003). The IEs have also been utilized for coupled HM or THM problems with
pre-existing fractures (Guvanasen and Chan, 2000; Noorishad et al., 1992; Ng and Small,
1997).

An additional approach utilized to represent fractures is an enrichment approximation
such as the extended finite element method (XFEM) developed for a crack analysis (Be-
lytschko and Black, 1999; Moës et al., 1999). One can find a comprehensive review of the
method in the literature (Abdelaziz and Hamouine, 2008; Fries and Belytschko, 2010). The
XFEM handles discontinuities directly in an approximation space with jump functions, i.e.
local enrichment functions, and consequently there is no need to represent them in a mesh.
This significantly reduces the cost of re-meshing for crack growth, which is required in a con-
ventional FEM. Disadvantages include higher computational cost due to a variable number
of degrees of freedom and greater complexity in numerical integration, such as subdivision
of elements.

Both approaches may start with the following assumptions: (1) Effect of fractures ap-
pears in the relationship of boundary forces of two intact rocks. (2) Fractures behave as
spring systems which make a link between two intact rocks.

In the following, zero-thickness interface elements and lower-dimensional interface ele-
ments with local enrichments [EP2] are presented for an example illustrated in Figure 4.
The domain Ω is bounded by a boundary Γ and includes a discontinuity Γd. The domain
can be subdivided into Ω+ and Ω− along the discontinuity plane. The normal vector n+

d

indicates the direction of Ω+ from the discontinuity plane. The displacement function u(x)
is strongly discontinuous at the discontinuity plane Γd (Figure 6).

3.6.2 Zero-thickness interface elements

Goodman et al. (1968) has proposed zero thickness joint elements to model mechanical
behavior of rocks including a specific discontinuity. The model does not explicitly have
a fracture aperture in a numerical mesh, but it is represented as relative displacements.
Interpolation function assumes values are same along y′ axis and are vary along x′ axis. Al-
though the Goodman’s joint element is originally 4-nodes linear element, it can be extended
to 6-nodes quadratic elements which correspond to quadratic elements used for intact rocks
(Figure 5).

19



Figure 4: Domain with a discontinuity

Figure 5: Zero-thickness interface elements in 2D, quadratic

Relative displacement Relative displacements w are given by difference between solid
displacements u at upper (+) and lower (−) surfaces:

w =

{

u+n − u−n
u+s − u−s

}

=

[

−1 1 0 0
0 0 −1 1

]











u−n
u+n
u−s
u+s











= LHu′ = RLHu (32)

where u′ is a nodal vector of displacement in local coordinates given as

u′ =
{

u′1 u
′

2 . . . u
′

6 v
′

1 v
′

2 . . . v
′

6

}T
(33)

and R is a rotational matrix. L and H are defined as

L =

[

−1 1 0 0
0 0 −1 1

]

, H =







N 0 0 0
0 N 0 0
0 0 N 0
0 0 0 N






(34)

with a shape function vector for quadratic line elements N.

Effective stress vector Internal effective stress vector in the fracture σ
′f can be ex-

pressed as

dσ′f = Kdw = KRLH du (35)
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Figure 6: Single discontinuity (left) and the approximated displacement field with jump (right)

with the joint stiffness matrix K. It leads for the integration form to
∫

Γd

JωKTdσ′f dΓ =

∫

Γd

(RLHω)T dσ′f dΓ =

∫

Γd

(RLHω)TKRLH dΓ du . (36)

3.6.3 Lower-dimensional interface elements with local enrichments

Watanabe et al. (2011) has developed lower-dimensional interface elements (LIEs) with
local enrichments [EP2]. The method represents the displacement function u(x) with local
enrichments. To express the discontinuous function u(x) using continuous functions, a
function a(x) ∈ V ∈ H1

0 (Ω) is introduced with a finite dimensional space V, and the
function is called a displacement jump function. The function is defined as

a(x) =







u+(x)− u−(x) if x is on Γd

and not on the edges of Γd

0 else
(37)

where a(x) implies the displacement jump on the discontinuity plane Γd. We then introduce
another function û(x) ∈ V, called a regular displacement function with a definition, û = u−

on Γ−

d
. Hence the displacement function can be expressed with the two functions as below.

u(x) =

{

û(x) + a(x) if x is on Γ+
d

û(x) else
(38)

An example of the discontinuous displacement function is illustrated in Figure 6. As shown
in Figure 6 (left), the displacement at node i on the side of the domain Ω+, which is
expressed as u+

i , is defined by superposition of ûi and ai. On the other side, u−

i is defined
only by ûi. While Figure 6 (right) depicts the displacement function within the threshold
of the discontinuity.

Using the above definitions, we approximate the displacement function u(x) by using
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local enrichments. The FE approximation is given as

uh(x) =
∑

i∈I

Nm
i (x)ûi +

∑

i∈Id

Nm
i (x)ψd(x)ai (39)

where the first term corresponds to the standard FE approximation with the regular dis-
placement ûi, and the second term corresponds to the local enrichment approximation with
the jump function ai. I is the set of all nodes in the domain, Nm

i (x) ∈ V is a shape function
for porous media at node i, Id is a nodal subset of the enrichment on the discontinuity Γd,
and ψd(x) is a global enrichment function. For strong discontinuity problems, the global
enrichment function can be described by the Heaviside step function as

ψd(x) = H(fd(x)) =

{

1 for x ∈ Ω+

0 for x ∈ Ω− (40)

with the Level-set function fd(x) implicitly representing the discontinuity plane. The func-
tion fd(x) is, in this case, a signed distance function giving positive if x is in a region Ω+,
and negative in Ω−.

Relative displacement The fracture relative displacement in global coordinates JuK(x)
can be defined with the displacement jump function a(x). As shown in Figure 6, for a single
discontinuity, the jump function is identical to the fracture relative displacement,

JuK = a. (41)

A FE approximation of the fracture relative displacement function JuK(x) is in a stan-
dard FEM manner from the equation (41). The approximation is given as,

JuKh(x) =
∑

i∈Id

Nf
i (x)ai (42)

where Id is the set of all nodes on the discontinuity Γd, N
f
i (x) is a shape function for

discrete fractures at node i, which satisfies Nf
i (x) ∈ V, Nf

i (x) ∈ Nm
i (x) for consistency of

JuKh(x) in equation (39) and (42).

Effective stress vector Internal effective stress vector in the fracture σ
′f can be ex-

pressed as

dσ′f = Kdw = KRNdJuK . (43)

It leads for the integration form to
∫

Γd

JωKTdσ′f dΓ =

∫

Γd

(RNδa)T dσ′f dΓ =

∫

Γd

(RNδa)TKRN dΓ da . (44)

3.7 Solution procedures and computational efficiency

3.7.1 Coupling strategy for T-H-M

Coupling strategy for the coupled THM problems has to be chosen depending on strength
of coupling between processes: (1) fully monolithic, (2) partly partitioned, and (3) fully
partitioned. If all processes strongly couple each other, fully monolithic method, i.e. solving
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all three equations in a simultaneous equation, would be appropriate. The second approach
is for a case that coupling between two equations is much stronger than that with the rest
one. Fully partitioned approach can be applied when all equations are weakly coupled.

For non-isothermal single phase flow in deformable porous media, partitioned approach
can be applied for simulating the long-term behavior. As far as time step size is enough large,
HM coupling effects are not strong. If fracture aperture change is allowed, HM processes
become a strong coupling problem. Thermal coupling effects in those two processes are less
significant. Thus one can partition the equations to HM and T, and solve the two equations
individually.

3.7.2 Parallelization

In the finite element (FE) analysis of coupled THM problems, computation time depends
mainly on number of field variables and coupling among processes. The number of field
variables is related with a mesh size and solved physical processes, i.e. number of matrices
and size of each matrix to be solved. Because coupling among the process is made in
an iterative way, more coupling iteration count means more computation time because it
requires recalculation of all processes each time.

The parallelization method is based upon the domain decomposition concept in order
to split the topological discretization of whole model domain (i.e. finite element mesh) into
several sub-domains. Then the finite element contributions are assembled for each of those
sub-domains. Finally the sub-domain contributions are reconciled to obtain a solution of
the original problem for the whole domain. In general, the parallelization concept consists
of following three basic steps: (1) domain decomposition, (2) partitioning of global assembly
of the algebraic equation systems; i.e. assembly of local sub-domain matrices and vectors of
each T-H-M process, and (3) partitioning of the global linear solver. We consider geometric
parallelism, which means that all CPU nodes of a parallel machine run the same code for the
existing domain decomposition. Message Passing Interface (MPI) is used to make parallel
computation. The domain is decomposed with excellent software METIS (Karypis and
Kumar, 1998). The parallel finite element method for THM coupled problems is in detail
described by Wang et al. (2009).
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Figure 7: Schematic of the parallel finite element method (Wang et al., 2009)
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4 Examples and Applications

4.1 Selected verification examples

4.1.1 Example 1: 2D groundwater flow problem

Figure 8: Fracture geometry

This example is presented to validate the hybrid
model of discrete fractures and porous media for
modeling groundwater flow. Consider a 2D infinite
horizontal plane of porous media with an embedded
fracture at the center of the domain. Uniform flow
with specific discharge q0 occurs from the left side to
the right of the domain. The fracture geometry is
illustrated in Figure 8. The fracture has a length of
L and is inclined with angle α. The fracture aper-
ture b may vary with positions. In this example, it
is assumed that the shape corresponds to that ob-
tained from the normal displacements of the sides of
a pressurized crack in an elastic medium. This gives
b = bmax

√
1− x′2 where x′ is the normalized local

coordinate systems. bmax is the aperture at the cen-
ter x′ = 0. Assuming the volume of the fracture is sufficiently small as compared to that
of porous media, the flow in the porous media can be modeled ignoring the width of the
fracture. The flow in the fracture is assumed to be laminar along the fracture surface. Hy-
draulic conductivity of the fracture is constant and independent of the aperture variation.
The pressure variation across the fracture is neglected.

Table 2: Model parameters

Parameter
Fracture angle 45 ◦

Maximum fracture aperture 0.05 m
Fracture length 2.0 m
Fracture hydraulic conductivity 1.0× 10−3 m/s
Porous medium hydraulic conductivity 1.0× 10−5 m/s
Specific discharge 1.0× 10−4 m/s

Numerical solution for this problem can be obtained by solving the steady state liquid
flow equation with a hybrid model of a discrete fracture and porous media. The fracture is
represented as a 1D hydraulic conduit. The domain is set up in a finite space as a square
with length of 10 m as depicted in Figure 9. To compare numerical results in a finite domain
with an analytical solution (Strack, 1982) in an infinite domain, pressure calculated by the
analytical solution with specific discharge q0 = 1.0 × 10−4 m/s is utilized as prescribed
pressure at the lateral boundaries, i.e. pin = 496465 Pa and pout = −496465 Pa. The
numerical model assumes that the fracture aperture does not vary with positions and has
constant value even at the endpoints, b = bmax.

Pressure distribution obtained by the analytical solution is shown in Figure 10. Lateral
uniform flow is disturbed in the vicinity of the inclined fracture where groundwater flows
faster than in surrounding porous media. Figure 11 presents the pressure profile along a
diagonal line from the bottom-left to the top-right. Although the numerical solution adopts
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Figure 9: Computational area
Figure 10: Pressure distribution obtained by
the analytical solution

the idealized fracture geometry, results show good agreements between the numerical and
the analytical solution.
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Figure 11: Pressure profile along a diagonal line from the bottom-left to the top-right
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4.1.2 Example 2: 2D coupled hydro-mechanical problem

This example illustrates a fluid injection problem into a single discrete fracture surrounded
by an impermeable rock matrix in 2D space and validates the proposed lower-dimensional
interface elements with local enrichments for the nonlinear, coupled HM problem [EP2]. The
test case is designed to mimic the semi-analytical similarity solution available in Wijesinghe
(1986).

As illustrated in Figure 12, the major fracture lies horizontally in the middle of an
impermeable rock block. The fracture is subjected to a uniform in-situ stress σyy normal to
the fracture. Initially, fracture aperture is uniformly b0 = 1.0× 10−2 mm and fluid pressure
is p0 = 11.0 MPa along the fracture. At time t = 0+, fluid is injected at the left-most edge
of the fracture (in the form of constant boundary pressure, p = 11.9 MPa) and a sudden
increase of pressure in the fracture results. The injection pressure induces elastic fracture
opening and a subsequent increase of fracture permeability and storage capacity. Stress in
the surrounding rocks is 50 MPa and fluid pressure is 11 MPa. Boundary fluid pressure is
fixed at t = 0+ to 11.9 MPa at the left and 11 MPa at the right. Line elements were used
to represent the discrete fracture and quadrilateral elements for surrounding rock matrix.
Very fine vertical discretization is required near the fracture, i.e. ∆y=0.001 m. The time
step is selected as 10 s and a Newton-Raphson iteration is utilized to solve the nonlinear
equation.
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Figure 12: Fluid injection into a discrete fracture-rock matrix system

Simulation results are presented in Figure 13 for pressure and fracture aperture profile
along the fracture. When fluid is injected, the fracture aperture is instantaneously opened
to nearly 1.9 ×10−2 mm at the injection point (x = 0 m). With time, this fracture opening
behavior gradually propagates toward the right-most, low-pressure edge of the fracture.
Linear constitutive laws dictate a linear variation in fracture aperture relative to fluid
pressure. Figure 13 shows, as in all previous examples, strong agreement between the
proposed numerical method and the semi-analytical solution.
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Table 3: Material parameters

Fluid
Density 1000.0 kg/m3

Viscosity 0.001 Pa s

Fracture
Initial aperture 1.0× 10−5 m
Specific storage 0.0 Pa−1

Joint normal stiff-
ness

100 GPa/m

Joint shear stiffness 100 GPa/m
Biot constant 1.0

Rock (porous medium)
Density 2716.0 kg/m3

Specific storage 1.0×10−10 Pa−1

Permeability 1.0×10−21 m2/s
Porosity 0.1 %
Young’s modulus 60 GPa
Poisson ratio 0.0
Biot constant 1.0
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Figure 13: Profile along the fracture: pressure (top) and aperture (bottom)
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4.2 Deep geothermal reservoir modeling

Coupled thermo-hydro (TH) or hydrothermal model in discretely fractured porous media is
applied to the geothermal research wells Gross Schoenebeck in 40 km north of Berlin, Ger-
many. Geometric layout of the reservoir is simplified in this example to reduce complexity
in a numerical analysis. The engineered geothermal reservoir is located in -3850 m to -4258
m depth with the average temperature of 150 ◦C. It has a borehole doublet and four vertical
hydraulic fractures (Figure 14). One fracture with the dimension of 143 m height and 160
m length is connected with the injection well, E GrSk3/90, and the other three with the
production well, Gt GrSk4/05. The reservoir has six sub-horizontal geological layers. Rock
types are silt- and mudstone, sandstone and volcanic rocks. Sub-layers with sandstones
at the depth between -3999 m to -4133 m are thought as more hydraulically active area
than others due to higher permeability. The highest in-situ reservoir is found as 4-8 mD
in sandstones from the laboratory experiments. The hydraulic fractures are oriented to
18 ◦azimuth which is perpendicular to minimum horizontal stress. Fracture transmissibil-
ity has been known as 1 Dm for all hydraulic fractures so that an aperture is derived as
2.28×10−4 m. Fluid injection is assumed to be temperature of 70 ◦C and with salinity of
265 g/l. For further details about the reservoir information, please refer to Blöcher et al.
(2010).

Figure 14: Simplified geometric layout of the Gross Schoenebeck reservoir

In the present model, fluid pressure initially distributes in the range of 41-47 MPa
according to a hydrostatic condition. Initial temperature is uniformly 150 ◦C in the entire
domain. It is assumed that the injection well has an overpressure of 5 MPa and the three
production wells have an underpressure of 5 MPa. Fluid is injected with temperature of
70◦C. Mechanical process is not considered, i.e. only fluid flow and heat transport processes
(a coupled TH problem) are taken into account. The fractures are represented with 2D
triangle elements and rock matrices are with 3D tetrahedral elements. Material properties
used in the simulation are listed in Table 4, 5. Geothermal fluids are non-linear functions
of salinity, temperature and pressure (McDermott et al., 2006). To stabilize the numerical
oscillations, the SUPG method is used combined with the mass lumping techniques.
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Table 4: Rock properties

Unit Lithology ρs n kx(= 4kz) csp λs E ν αT

[kg/m3] [%] [m2] [J/kg K] [W/m K] [GPa] [-] [1/K]

I Silt- and mud-
stone

2650 1 4.93×10−17 920 1.9

55 0.2 10−5IIA Siltstone to
fine grained
sandstone

2650 3 3.95×10−15 920 1.9

IIB Fine grained
sandstone

2650 8 1.97×10−15 920 2.9

IIC Fine to
medium
grained sand-
stone

2650 15 7.90×10−15 920 2.8

III Conglomerates
from fine sand-
stone to fine
grained grave

2650 0.1 9.87×10−17 1000 3.0

IV Ryolithe and
Andesite

2650 0.5 9.87×10−17 1380 2.3

Table 5: Hydraulic fracture properties

Well Type Unit bh k
[m] [m2]

E GrSk3/90 2 x gel-proppant,
2 x water

IIB, IIC, III 2.28×10−4 4.33×10−9

Gt GrSk4/05
water III, IV 2.28×10−4 4.33×10−9

gel-proppant IIB, IIC 2.28×10−4 4.33×10−9

gel-proppant IIA, IIB 2.28×10−4 4.33×10−9

The first results of the coupled TH model in porous media connected to hydraulic
fractures represented as discrete fractures are presented. Figure 15 shows the simulated
streamline in the reservoir during the fluid circulation. The injected fluid mainly flows in
the geological unit IIA, IIB, IIC which has the higher permeability. Flow velocity in porous
media is observed in the range of 10−3-10−5 m/s. Less fluid flows through the unit III, IV
where the permeability is two orders of magnitude less than the unit IIA, IIB, IIC. Because
the two outlet fractures close to the inlet fracture are located in the high permeable units,
injected fluid mostly flows to those fractures and connected production wells.

In the reservoir, temperature decrease of the rocks is observed due to the cold water
injection. After nearly 5 years of the simulation period, the cooling front, i.e. temperature
is 1◦C below the initial rock temperature, reaches the one of the production wells, which
is closest to the injection well (Figure 16). Temperature changes at the three production
wells are presented in Figure 17. Temperature drawdown of 10%, which is economically
desirable criteria for the geothermal systems (Baria and Petty, 2008), is observed after 14
years at the production well which is the closest to the injection, 17 years at the production
well which is the secondly closest to the injection.
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Figure 15: Stream line in the reservoir

This numerical study includes several simplifications, such as geometric layout, uniform
initial temperature distribution. Existing fault networks around the reservoir certainly
affects the flow system. Couple behavior with mechanical process has to be considered for
comprehensive evaluation of the reservoir performance. For instance, Blöcher et al. (2009)
have presented impacts of poroelastic response on porosity and permeability in sandstone.
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Figure 16: Temperature evolution after injection for nearly 5 years: the light blue iso-surface is
149◦C , the dark blue is 70◦C

Figure 17: Temperature drop at production wells
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4.3 Parameter uncertainty analysis

One of the main tasks of the computer modeling for geothermal systems is prediction of the
long-term reservoir performance during heat extraction. Economically desirable character-
istics of the reservoirs are, for example, the reservoir life of 15-20 years, and temperature
drawdown at the end of the project life < 10% (Baria and Petty, 2008). However, numerical
simulations are uncertain because reservoir parameters are derived from limited information
and include uncertainties. Influence of parameter uncertainty on the reservoir evaluation
has to be investigated for the planning and management of the geothermal resource usage.

The present statistical approach to the uncertainty analysis [EP1] consists of three
parts: (1) determination of statistical models for parameter distributions, (2) stochastic
realizations of parameter fields using conditional Gaussian simulation based on the defined
stochastic models, and (3) Monte-Carlo analysis with numerical simulation of fully coupled
THM processes using randomly generalized multiple parameter distributions. Parameters
are considered as spatial random variables. Parameter distributions have spatial correlation
as well as heterogeneity over the reservoir. As the parameters in principle can be measured
in the borehole (i.e. from cores), the parameter values are assumed to be known along
the boreholes. The stochastic properties of the random field are given by the probability
distribution and spatial correlation.
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Figure 18: Sensitivity of THM parameters on thermal evolution after 15 years heat extraction

Uncertainty analysis for parameters in THM models was conducted based on data from
the geothermal site in Urach Spa. In order to figure out importance of parameter certainty
on geothermal reservoir modeling, sensitivity analysis was carried out for parameters in
coupled THM models. Study parameters are medium properties (permeability k, porosity
n), rock thermal properties (specific heat cp, heat conductivity λ) and rock mechanical
properties (Young’s modulus E, Poisson ratio ν). Statistical properties of the parameters
are assumed by sampling minimum and maximum value. 10 stochastic simulations were
conducted for each parameter. Results of the sensitivity analysis are presented in Figure 18
in terms of standard deviation of predicted temperature profiles after 15 years operation.
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The results show uncertainty of permeability makes the strongest variance. Next to per-
meability, rock specific heat capacity representing heat storage effects, is the second most
important parameter. The variances of porosity, Young’s modulus, and Poisson ratio are of
less importance under the given range in this study.

After the sensitivity analysis, we focus on the effects of hydraulic stimulation on reser-
voir permeability. As a result of massive hydraulic stimulation, we consider a reservoir type,
where hydraulic stimulation is conducted in two boreholes with a quadratic permeability
enhancement factor and the porosity-permeability relationship corresponds to that from
the Falkenberg site. The mean value of undisturbed permeability is 21.8×10−18 m2 and the
standard deviation is 7.17×10−18. Heterogeneity of the undisturbed reservoir is represented
using a spherical Variogram model with a correlation length of 50 m range. Hydraulic stim-
ulation is mimicked by a scaling factor between 1 (undisturbed) and 100 (fully stimulated)
which is a function of the distance to the borehole. Example of a stochastically generated
permeability field is illustrated in Figure 19.

Figure 19: Example of heterogeneous permeability field generated by the stochastic model

To perform a representative Monte-Carlo simulation with the stimulated reservoir, we
conduct 100 stochastic simulations. Figure 20 shows result of the Monte-Carlo analysis in
terms of uncertainty ranges of temperature profiles in the reservoir after 15 years. Results
show a maximum temperature difference of about 40 K at certain place in the reservoir. It
can also be seen that the uncertainty, i.e. variance, is largest at places where temperature
gradients are highest, i.e. around the propagating cooling front with maximum standard
deviation about 8 K. This is because uncertainty of permeability affects the dominating
advective heat transport. The results show there is no apparent temperature drop-down
at the production well after 15 years heat extraction. However, if the system is operated
longer than this period, uncertainty in estimating the end of the project life, i.e. 10 %
temperature drop-down, increases because the obtained uncertain range 40 K is nearly 9%
of the initial production temperature.

Despite the achievements, the stochastic THM concept has to be further developed in
future work. Due to the limited available information, it is difficult to obtain statistical
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Figure 20: Monte-Carlo analysis: uncertainty ranges of temperature profiles after 15 years heat
extraction, 20% (dark gray area), 80% (dotted line), 100% (light gray area)

properties of geothermal HDR reservoirs. Using the Monte-Carlo method, differences in the
statistical properties of the spatial distributions will affect the results and potentially bring
more uncertainty into the analysis. In addition, it is the fact that parameters are related
each other such as porosity-permeability, porosity-rock heat conductivity. The combined
parameter variabilities and their effects on reservoir evolution need further investigation.
Furthermore, the presented statistical model can be applied only to an equivalent hetero-
geneous porous medium approach which corresponds to highly fractured reservoirs. The
conceptual model of uncertain fractured-porous media requires further development of nu-
merical methods in particular appropriate multi-scale approaches.

4.4 Parallelization

4.4.1 Parallelization of 3D THM problems in porous media

The parallelization scheme presented in section 3.7.2 was applied to solve THM coupled
problems in a 3D reservoir model for Urach Spa [EP6]. Hexahedral elements are used in a
mesh with 6,600 elements and 7,920 nodes. Figure 21 (left) shows an example of a decom-
posed mesh for parallel computing with 8 CPUs. Figure 21 (right) shows the decrease of the
two different computation times, i.e. CPU time and elapsed time, with increasing numbers
of CPUs. With 8 CPUs the both time can be reduced by more than factor 5. A further
increasing of CPUs however is not leading to a better parallel performance. The elapsed
time with 16 CPUs reduces little and the time with 32 CPUs does not reduce anymore.
This is due to two reasons: First, with increasing numbers of domains the inter-processor
communication increases, i.e. there is a usual saturation of the speed-up depending on the
problem size. For the rather small problem size (6,600 elements) the use of more than 8
CPUs is not sufficient. Second, the job management system is automatically distributing
the parallel job on available CPUs which may be located on different nodes. The intercon-
nection between the nodes is a bottleneck for Cluster machines. The used Linux cluster
”LiClus” consists of nodes containing 8×DualCore CPUs which are connected via infini-
band. The parallel speed-up, therefore, also depends on the distribution of the parallel job
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on the cluster nodes.

1 2 4 8 16 32
Number of CPUs

0

20

40

60

80

100

R
el

at
iv

e 
co

m
pu

ta
tio

n 
tim

e 
[%

]

Elapsed time
CPU time

Figure 21: Domain decomposition for 8 CPUs (left) and improvement of computational time (right)

4.4.2 Parallelization of Monte-Carlo analysis

The uncertainty analysis using a combination of Monte-Carlo simulation and numerical
modeling of coupled THM problems is computationally very expensive. Parallel computing
is necessary to finish the entire analysis in practical time, including a large number of
fully coupled THM simulations. To efficiently use the parallel computing, the analysis
can be parallelized in two levels [EP1]. First, simulations of Monte-Carlo method can be
conducted in parallel because they are independent processes. Second, in each stochastic
simulation, numerical modeling of coupled THM problems can be parallelized as described
above. Validity of this approach has been confirmed in the analysis of the uncertainty
analysis presented in the previous subsection. For this specific THM problem, the optimum
use is exploiting 8 CPUs per parallel job. Therefore, 10 parallel jobs were submitted at
the same time to 80 CPUs, i.e. 10 stochastic simulations can be processed in parallel. As
a result, the entire Monte-Carlo analysis consisting of 100 statistical realizations could be
finished within one day using the parallel cluster instead of 2 months which would have
been necessary on a single CPU computer.
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5 Conclusions and recommendations

5.1 Conclusions

In this work, the framework of the finite element method (FEM) for coupled thermo-hydro-
mechanical (THM) problems in discretely fractured and non-fractured porous media was
developed. The model takes into account non-isothermal single-phase flow in deformable
porous media connected to discretely fractures. The developed FEM aims to be applied for
geotechnical engineering applications such as engineered geothermal systems where discrete
fractures play decisive roles to describe heat transport mechanism and subsequent reservoir
performance.

Efforts, particularly, have been made for explicit treatment of discrete fractures. In a
mathematical standpoint, systems of discretely fractured porous media have to be treated
in different ways for hydraulic and heat transport processes, and mechanical process. In hy-
draulic and heat transport processes, the systems behave like interacted multiple domains,
i.e. porous medium domain and discrete fracture domain. In this study, assuming continuity
of filed variables (pressure and temperature) over the two domains, superposition of equa-
tions for the two distinct systems enables us to solve the equations in one algebraic system.
On the other hand, the systems in mechanical process have to take care of displacement
discontinuities along discrete fractures. Discrete fractures can be explicitly represented by
either conventional interface elements or enrichment methods.

Lower dimensional interface elements with local enrichments have been developed espe-
cially for coupled problems in a domain including preexisting fractures. The method de-
veloped in this work supports multiple and intersected fractures in two-dimensional space.
The method permits the possibility of using existing flow simulators and having an iden-
tical mesh for both processes. It gives an advantage in practice that one can use existing
standard FEM codes for groundwater flow and easily make a coupling computation between
mechanical and hydraulic processes. Example of a 2D fluid injection problem into a single
fracture demonstrated that the proposed method can produce results in strong agreement
with semi-analytical solutions.

The developed FEM has been applied for uncertainty analysis of the geothermal reser-
voir behavior. Effects of model parameter uncertainty on long-term geothermal reservoir
evolution have been analyzed by the Monte-Carlo method with stochastic models of hetero-
geneous parameter distributions. The stochastic model has been established mainly based
on available data from the Urach Spa. Sensitivity analysis shows that permeability and rock
specific heat capacity are the most influential reservoir parameters. Less relevant is rock
heat conductivity. The variability of porosity and the mechanical parameters, i.e. Young’s
modulus and Poisson ratio, in the site specific range is negligible with given parameter
ranges.

Numerical modeling of mechanics-related coupled processes in discretely fractured rock
is still a big challenge in practice due to the presence of real fracture systems distributed
in three-dimensional space. Successful analysis of the system behavior would rely on pre-
processing stage, i.e. picking up the most important fractures representing characteristics
of the system. In addition, quantification of model uncertainty is almost mandatory for any
practical applications.

5.2 Recommendations

The developed FEM has to be further extended to three-dimensional space where discrete
fractures distribute. This extension implies also development of robust solvers for both linear
and nonlinear equations as well as utilization of parallel computation due to a large number
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of degree of freedom and multi-scale physical processes. Extension of lower-dimensional
interface elements to three dimensions could be helpful because it allows us to use a single
mesh for all coupled process, i.e. helping us to save computational memory and conduct
robust calculations due to availability of monolithic coupling.

More complex physical models can be incorporated to simulate various phenomena in
subsurface. For example, the non-Darcian flow in fractures has to be taken into account
when the flow is not laminar (Kolditz, 2001). Furthermore, fractures could work like an
impermeable barrier due to the presence of infill material and it causes pressure variation
between two fractures surfaces, i.e. pressure is not continuous anymore over porous medium
domains and discrete fracture domains.

Parameter uncertainty analysis can integrate the information about interrelationships
between parameters such as porosity-permeability, porosity-rock heat conductivity. Me-
chanical alternation of porous media could affect not only its structural parameters and
hydraulic properties but also thermal properties, which affect performance of geothermal
systems. In addition, fractures are uncertain objects themselves as normally only statistical
information is available to describe fractures properties such as frequency, size, roughness
and fractures aperture distributions. Development of stochastic fractured-porous media
models is desirable.
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