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Preface

Complexity reduction is one of the most important techniques in data analysis. With
all the huge amounts of large data sets, for instance medical and biological taxonomies,
this possibly applies today more than ever before. Moreover, in many fields, data may
also be vague or uncertain. Thus, whenever we have an instrument for data analysis,
the question of how to apply complexity reduction methods and how to treat fuzzy data
arises rather naturally. In this thesis, we take a very successful tool for data analysis,
namely Formal Concept Analysis, and discuss precisely these two questions. In fact, we
propose different methods for complexity reduction based on qualitative analyses, and we
elaborate on various methods for handling fuzzy data. These two issues split the thesis
into two parts. The first part mainly deals with the data reduction, whereas we focus on
fuzzy data in the second part. Although each chapter may be read almost on its own,
each one builds on and uses results from its predecessors. The main crosslink between
the chapters is given by the reduction methods and fuzzy data. In particular, we will
also discuss complexity reduction methods for fuzzy data, combining the two issues that
motivate this thesis.

Formal Concept Analysis ([GW96]) is an instrument for data analysis based on lattice
theory. Starting with a set of formal objects, a set of formal attributes and an incidence
relation indicating which object has which attribute, one obtains a formal context com-
bining these three components. The context, in turn, allows for the computation of the
formal concepts. These concepts are understood as units with a conceptual extent and a
conceptual intent, an idea that can be already found in the so-called Logic of Port Royal
([Duq87]). The extent of a concept contains all the objects shared by the attributes from
its intent. Dually, the intent of a formal concept contains all the attributes that the objects
from its extent have in common. The order on the concepts is given by the subconcept-
superconcept relation. Together with this relation the set of all concepts forms a complete
lattice, the so-called concept lattice, that represents the basis for further data analysis.

In the first part of the thesis we focus on complexity reduction of those kind of qualitative
data that can be represented by a formal context. Usually, data reduction is performed
by Factor Analysis and related techniques, which are deeply rooted in statistical and
numerical methods and offer a quantitative analysis. These methods search for a preferably
low number of unobserved underlying “latent” attributes that explain the covariation
among the observed attributes. In Chapter 2 we step away from such approaches by
performing a non-metrical analysis. First, we build on some already established links
between Factor Analysis of binary data and Formal Concept Analysis ([KS04, Kep06,
BV10a]). Our “latent” attributes, called Boolean factors, correspond to formal concepts
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and offer optimal factorisations of binary data, i.e., those factorisations with the smallest
possible number of elements. However, such Boolean factors may be large in number
and may have limited expressiveness due to their unary nature. Thus, it can hardly be
expected that much of a complex data set can be captured by only a few Boolean factors.
Wishful thinking suggests to group these factors into well-structured families, which then
may be interpreted as many-valued factors. These are given by the conceptual standard
scales of Formal Concept Analysis. Here we focus on one-dimensional ordinal scales that
give rise to ordinal factors. Such an ordinal factor represents a chain of Boolean factors.
As it will turn out, the Boolean and the ordinal factors are closely connected with the
order dimension of the concept lattice, yielding an application of the latter. We also
give necessary and sufficient conditions for finding out whether an arbitrary set of factors
indeed provides a factorisation. We claim that the newly developed many-valued factors
are easy to understand and useful in applications, and support this by analyses we run on
real-world data sets. These are chosen in a way such that they cover different areas and
data collecting methods. The analyses’ results show that these many-valued factorisations
are serious competitors to the latent attributes from ordinary Factor Analysis. Indeed,
their expressiveness turns out to be similar to that of Factor Analysis based on metric
data.
The frequent appearance of triadic data in psychological applications motivated the

generalisation of Factor Analysis and related techniques for triadic data. This issue and the
fact that Boolean factors yield optimal factorisations lead us to the development of triadic
Boolean factors. Once again the factors are easy to understand as they correspond to the
well-studied triadic concepts from Triadic Concept Analysis ([LW95]). Our expectation
that triadic Boolean factors yield optimal factorisations of triadic data confirms to be true
in Chapter 3. Given the interpretation of triadic concepts, the triadic Boolean factors
are facilely comprehendable and their handling is unlaboured. This is intended to become
explicit in our factorisations of real-world data sets. Further, other results from the dyadic
setting may also be generalised to the triadic framework. This includes the necessary and
sufficient conditions for checking whether an arbitrary set of factors yields a factorisation.
Further, we present some tools from ordinary Factor Analysis in our triadic setting in
order to show that our triadic factors can keep up with classical approaches. Apart from
that, this chapter shall be concerned with mappings that transform a description of a given
object in terms of attributes and conditions into a description of the same object in terms
of factors. For the dyadic case, such mappings were utilised in [Out10] for improving
classification of binary data. In the triadic setting we ask for transformations between
the attribute× condition space and the factor space. As it will turn out, these mappings
constitute an isotone Galois connection.
In Chapter 4 we show that the results of Hierarchical Classes Analysis ([DR88]), a

method developed for applications in personality organisation and implicit belief systems,
coincide with the Boolean and triadic Boolean factors. Hence, the formal concept analyt-
ical approach to Factor Analysis and the application driven necessity of data reduction
meet in the common point of Boolean and triadic Boolean factorisations. We show how
this connection allows the two methods to benefit from each other. On the one hand,
Hierarchical Classes Analysis opens new doors for the application of Boolean and triadic
Boolean factors. On the other hand, Hierarchical Classes Analysis gains structural expla-
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nation, graphical representations and algorithmic issues. At the end of the chapter, we
develop a fuzzy variant of Hierarchical Classes Analysis providing a novel fundament for
further applications. This leads us directly into the world of fuzzy data that is explored
in the second part of the thesis.

Fuzzy data is used when there is no sharp boundary between being a member and
not being a member of a class. Thus, fuzzy data often occur in real-world data sets.
In Formal Fuzzy Concept Analysis ([Pol97, Běl02b]) the incidence relation of the formal
context is replaced by a fuzzy relation that provides the truth value to which an object
has an attribute. The notions “formal concept”, “concept order”, “concept lattice”, etc.
are transformed into the fuzzy setting by considering their fuzzy counterparts.
Attribute exploration ([Gan84, GW96]) is a formal concept analytical tool for knowledge

discovery by interactive determination of the implications holding between a given set of
attributes. The corresponding algorithm questions the user in an efficient way about the
implications between the attributes. As a result of the exploration process one obtains a
representative set of examples for the entire theory and a set of implications from which
all implications that hold between the considered attributes can be deduced. The method
was successfully applied in different real-life applications for binary data. In Chapter 5,
we show that attribute exploration can be successfully generalised to the fuzzy setting.
We also turn our attention to a variant of attribute exploration, the so-called attribute
exploration with background knowledge. In this case, the exploration process is shortened
by taking into account some background knowledge that the user has at the beginning of
the exploration. We show that the proposed method can also be generalised to the fuzzy
setting. In order to apply the two methods in practice we develop appropriate algorithms.
In Chapter 6 we present a method for complexity reduction of fuzzy data, more precisely

of the fuzzy concept lattice of a given formal fuzzy context. This is a different kind of
data reduction than the conceptual factorisations dealt with in the first part of the thesis,
as we allow the users to express their preferences over the attribute set. Based on these
preferences the users only obtain those formal fuzzy concepts that are relevant to them.
Our main goal is to allow preferences stated on compounded attributes, i.e., on qualities
that include more than one trait. However, we treat attributes with only one trait as well.
Since the users are allowed to enter their preferences, it is very likely that their inputs
are somewhat redundant. This would make the further handling of these favouritisms
more difficult than necessary. Therefore, we also develop techniques for removing these
redundancies. Having a non-redundant set of preferences allows the user to review his
choices and alter them conveniently.
In the last chapter we combine fuzzy data with a notion we already got acquainted

with in the previous part, namely “triadic data”, and come to a framework that we call
Fuzzy-valued Triadic Concept Analysis. As already mentioned, triadic data is encountered
in psychological interviews. When uncertainty comes into play, it may be promising to
use fuzzy-valued triadic data. The same applies for image analysis, experimental design,
spectroscopy and chromatography, to name but a few. Since Fuzzy-valued Triadic Concept
Analysis is a new framework we first present what builds the fundamentals of Formal
Concept Analysis in this setting. Afterwards, we study implications in such data sets.
These implications can be between attributes under some conditions or between tuples
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of attributes and conditions. Since we may arbitrarily interchange the roles of objects,
attributes and conditions in a triadic context, this gives rise to nine different families of
implications in a fuzzy-valued triadic context. As we will see, the results from Chapter 5
play an essential role for this matter. In the last section we bring another notion familiar
from the previous part into our new setting and explore the fuzzy-valued triconceptual
factorisations. Once again many results from the dyadic and triadic crisp settings hold for
the new framework. Thereby, we establish a tight connection between the main topics of
this thesis.
Some original results of this thesis have already been published in journals and con-

ference proceedings [Glo10, Glo11b, Glo11a, Glo11d, Glo12b, Glo12a]. We refer to these
publications at the beginning of each chapter, but do not cite each specific result, except
those that were created in collaboration with one or more coauthors [BGV12, GG12].
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1
Preliminaries

The purpose of this chapter is to present the basic notions and results that are needed
in the course of this thesis. This preliminary chapter should not be understood as an
introduction to the underlying mathematical theories. For this aim we give adequate
references in each section. The reader who is already familiar with one or more of the
fields from the sections of this chapter may easily skip them.

1.1. Order-theoretic Notions

This section presents the rudimentary bases of order theory. For more details we refer to
standard literature such as [DP02, Bir67, Grä03, Ern82].
A binary relation R on a set P is called a (partial) order on P if it is reflexive, anti-

symmetric and transitive, i.e., if the following properties are satisfied for all x, y, z ∈ P :

• xR x, (reflexivity)

• xR y and yR x implies x = y, (antisymmetry)

• xR y and yR z implies xR z. (transitivity)

A binary relation R on a set P is called an equivalence relation if it is reflexive, transitive
and symmetric, where the last condition is given by

• xR y implies yR x. (symmetry)

An ordered set (partially ordered set, poset) is a pair (P,≤), where P is a set and ≤
is an order relation on P . We write x < y to indicate x ≤ y and x ≠ y. Let x, y ∈ P with
x < y. Then, x is a lower neighbour of y if there is no z ∈ P with x < z < y. In this case y
is an upper neighbour of x. Two elements x, y ∈ P are called comparable if x ≤ y or y ≤ x
holds, otherwise they are incomparable. A subset of (P,≤) is called a chain if any two
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1. Preliminaries

of its elements are comparable. A subset in which any two elements are incomparable is
called an antichain. The width of a finite poset (P,≤) is the maximal size of an antichain
in it. The length is the maximal size of a chain in (P,≤) minus one.
A mapping ϕ ∶ P → Q between two ordered sets (P,≤) and (Q,≤) is called an order-

embedding if for all x, y ∈ P the following condition is satisfied

x ≤ y⇐⇒ ϕ(x) ≤ ϕ(y).

If ϕ satisfies only the ⇒-part, then it is called order-preserving. A bijective order-
embedding is called (order-)isomorphism.
Let (P,≤) be a poset and X a subset of P . A lower bound of X is an element p ∈ P

with p ≤ x for all x ∈X. Dually one can define an upper bound. An element p ∈ P is called
the supremum of X if p is the least upper bound of X. In case it exists, the supremum
of X is usually denoted by ⋁X. Dually the greatest lower bound of a subset X is called
the infimum of X. If it exists, it is denoted by ⋀X. The poset P is called a lattice if
for all elements x, y ∈ P the binary supremum x ∨ y ∶= ⋁{x, y} and the binary infimum
x ∧ y ∶= ⋀{x, y} always exist. An ordered set in which every subset has a supremum and
an infimum is called a complete lattice.
For an element v of a complete lattice V we define

v● ∶=⋁{x ∈ V ∣ x < v} and v● ∶=⋀{x ∈ V ∣ x > v}.

We call v ⋁-irreducible (supremum-irreducible) if v ≠ v●. Dually, v is called ⋀-irreducible
(infimum-irreducible) if v ≠ v●. Further, a set X ⊆ V is called supremum-dense in V , if
every element from V can be represented as the supremum of a subset of X and, dually,
infimum-dense, if v = ⋀{x ∈X ∣ v ≤ x} for all v ∈ V .
A closure system on a set P is a set of subsets which contains P and is closed under

arbitrary intersections, i.e., U ⊆ P(P ) is a closure system if P ∈ U and X ⊆ U implies
⋂X ∈ U . A closure operator ϕ on P is a mapping ϕ ∶ P(P ) → P(P ) satisfying the
following conditions:

• X ⊆ Y Ô⇒ ϕ(X) ⊆ ϕ(Y ), (monotony)

• X ⊆ ϕ(X), (extensivity)

• ϕϕ(X) = ϕ(X) (idempotency)

for all X,Y ⊆ P . The closure operator assigns to each subset X ⊆ P its closure ϕ(X) ⊆ P .
Given a closure system U on P one finds the corresponding closure operator on P by

ϕU(X) ∶=⋂{Y ∈ U ∣X ⊆ Y }.

Conversely, given a closure operator ϕ one finds the corresponding closure system by

Uϕ ∶= {ϕ(X) ∣X ⊆ P}.

Further, we always have that ϕUϕ = ϕ and UϕU = U , so closure operators and closure
systems are in a one-to-one correspondence.
A Galois connection is a pair of mappings (ϕ,ψ) between two ordered sets (X,≤) and

(Y,≤), i.e., ϕ ∶X → Y and ψ ∶ Y →X that satisfies
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1.2. Vagueness and the Fuzzy Approach

• x1 ≤ x2 Ô⇒ ϕ(x1) ≥ ϕ(x2),

• y1 ≤ y2 Ô⇒ ψ(y1) ≥ ψ(y2),

• x ≤ ψϕ(x) and y ≤ ϕψ(y)

for all x,x1, x2 ∈ X and y, y1, y2 ∈ Y . Galois connections can also be characterised by a
single condition. They are precisely those pairs of mappings (ϕ,ψ) for which we have

x ≤ ψ(y)⇐⇒ y ≤ ϕ(x).

1.2. Vagueness and the Fuzzy Approach

Consider the predicates “old”, “tall”, “big”, “red”, “heap” etc. These are all vague. Indeed,
it is often unclear whether or not they apply to a given object. There are people that are
certainly tall and some that are surely not. However, there are people where there is not
a definite answer to the question whether they are tall or not. Such considerations violate
the classical principle of bivalence. Seemingly, vague predicates, like the ones listed above,
lack well-defined extensions. For instance, there is no sharp boundary between the tall
people and the others. We refer to [KS97] for the treatment of vague predicates. The
work includes different (reprinted) essays on the topic.
One of the most outstanding problems vagueness induces are the sorites paradoxes1.

The interest in them was lost after the antiquity and rose again after Russell’s seminal
paper ([Rus23]). Let us consider the example which gave the name to these paradoxes.
Suppose we have a big heap of sand. If we remove a sand grain, the heap still remains
big. This means, by consecutively removing a sand grain from the heap, it always remains
big. But after finitely many steps we obtain a heap consisting of one sand grain, which
is obviously not big. The first vague expression in “big heap” is the notion “big”. What
does a “big heap” mean? How tall or wide must it be such that we can consider it big?
Let us suppose a big heap means as big as a human. This means that by removing just
one grain of sand, the heap turns from being big to not being big. This is not intuitive.
And why exactly do we compare big heaps to humans? How big are these humans? This
is a good example of how vague some frequently used notions actually are. We obtain the
paradox of the heap by consecutively applying the rule of inference modus ponens which
states the following: If P and Q are sentences such that

if P is true and P implies Q, then Q is true.

In Subsection 1.2.2 we will see that such paradoxes can be easily solved through fuzzy
logic. Even further, the latter allows a (more) proper treatment of vagueness.

1.2.1. From Two-valued to Many-valued Logic

As we have seen, vague predicates have borderline cases, fuzzy boundaries, are susceptible
to sorites paradoxes, and a bivalent approach to them is not sufficient. However, a many-

1The word "sorites" derives from the Greek word for heap. The original characterisation of the paradox
is attributed to Eubulides of Miletus.
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1. Preliminaries

valued logic/fuzzy logic might be! But before we came to fuzzy logic there had been a
long way to go:
The first steps towards fuzzy logic were made by many-valued logics. Although there

are some pioneer works about the latter ([Pei85, Mac96]), the first milestone was put in
[Łuk18] by Łukasiewicz, where a three-valued logic was mentioned. The first occurrence of
an infinite logic was in [Łuk22], which was further elaborated in [ŁT30]. There are many
notable names and papers that contributed to the development of many-valued logics.
We will mention further just some, those which are often cited as the most important
ones. A detailed bibliography can be found for instance in [Háj98] and [KY95]. Heyting
introduced in [Hey30] a three-valued propositional calculus related to intuitionistic logic.
Gödel presented in [Göd32] an infinite hierarchy of finitely-valued systems, the infinite-
valued logic of it is now called the Gödel logic. An extensive work about many-valued
logics is [Got88] by Gottwald.
The t-norms play an important role in our setting. They were developed by Menger

in [Men42]. His purpose was to construct metric spaces where instead of using numbers
for describing distances between two elements one uses probability distributions. The
definition of t-norms used nowadays was given by Schweizer and Sklar in [SS60]. In [Lin]
it was shown that using the Łukasiwicz, Goguen and Gödel t-norms, one can construct all
continuous t-norms.
1965 is the year of birth of fuzzy sets, when Zadeh published [Zad65]. Before that,

many-valued logic was mainly considered as a theoretical field. The first work on fuzzy
logic seems to be [Gog69] by Goguen. He also studied fuzzy sets with values in a lattice
([Gog67]). Important works of Zadeh include [Zad75a] on linguistic variables (for instance,
age with possible values young, medium, old), [Zad75b] on fuzzy logic, and [Zad96] pre-
senting the generalised version of modus ponens and compositional rule of inference. Very
important contributions to the syntax and semantics of fuzzy logic were given by Pavelka
in [Pav79].
Let us quote some important statements which show the evolution of logic over time:

The same thing cannot at the same time both belong and not belong to the same
object and in the same respect. [. . . ] Of any object, one thing must either be
asserted or denied. Aristotle

Logic changes from its very foundations if we assume that in addition to
truth and falsehood there is some third logical value or several such values.

Łukasiewicz

More often than not, the classes of objects encountered in the real physical world
do not have precisely defined criteria of membership. [. . . ] Yet, the fact re-
mains that such imprecisely defined “classes” play an important role in human
thinking, particularly in the domains of pattern recognition, communication of
information, and abstraction. Zadeh

Zadeh notes that the descriptions used by humans are neither black nor white and that
there is a gradual transition from black to white. Further, he points out that classical
mathematics is not able to grasp these unsharp notions. Contradicting the principle of
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1.2. Vagueness and the Fuzzy Approach

bivalence, Zadeh states that there are different cases of belonging to a fuzzy set besides
“fully belonging” and “fully not belonging”. Hence, being a member of a fuzzy set is a
graded matter.
Zadeh has always made the useful distinction between the two different meanings of

fuzzy logic. Let us cite from [Mar94]:

In a narrow sense, fuzzy logic, FLn, [. . . ] is an extension of multivalued logic.
However, the agenda of FLn is quite different from that of traditional multival-
ued logic. In particular, such key concepts in FLn as the concept of a linguistic
variable, canonical form, fuzzy if-then-rule, quantification and defuzzification,
the compositional rule of inference, [. . . ] are not addressed in traditional sys-
tems. [. . . ] In wide sense, fuzzy logic, FLw, is a fuzzily synonymous with
the fuzzy set theory, which is the theory of classes with unsharp boundaries.

Marks II

Fuzzy theory was successfully used in both theoretical and real-world applications. Con-
sidering the latter, its main breakthrough came with the development of a fuzzy controller
by Mamdani and Assilian in [MA75]. In [Adl85] the CADIAG-2 system was presented
which is a fuzzy expert system making inferences from patient data. We do not aim
here to list the various applications of fuzzy theory, extensive references can be found, for
instance, in [KY95].

1.2.2. Fuzzy Sets and Fuzzy Logic

First let us come back to the sorites paradoxes. In order to handle them within the
framework of fuzzy logic we need the fuzzy version of modus ponens: Let tv(P ), tv(Q)
and tv(P → Q) be the truth values of the sentences P , Q and P → Q, respectively. The
fuzzy version of modus ponens states:

if tv(P ) ≥ a and tv(P → Q) ≥ b, then tv(Q) ≥ a&b (1.1)

where a and b are some truth values and & is the conjunction. We apply the fuzzy version of
modus ponens, choosing P (n) ∶=A heap with n sand grains is big. Suppose n is big enough.
We start with tv(P (n)) = 1 and tv(P (n)→ P (n−1)) = 0.999. Thus, tv(P (n−1)) = 0.999.
We apply modus ponens once more choosing tv(P (n − 1)→ P (n − 2)) = 0.999. We obtain
tv(P (n − 2)) = 0.9992. This way we no longer come to the conclusion that a heap with
one sand grain is big with truth value 1.
In the following we proceed as in [Háj98, Běl02b], illustrating the underlying structures

of fuzzy theory. We want to compare truth values and require therefore an order on the
set of truth values. The set of truth values is denoted by L and one usually takes for it the
real unit interval [0,1] with its natural ordering, where 0 denotes (full) falsity and 1 (full)
truth. We would also like to have for two truth values a and b a value that is the least
truth value which is greater than both of them and dually a value that is the greatest truth
value which is least than both a and b. Therefore, we require the existence of suprema
and infima for arbitrary truth values. These requirements lead us to the structure of a
(complete) lattice.
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1. Preliminaries

Now we are looking for operations on L which shall model the logical connectives. Since
fuzzy theory is a generalisation of classical mathematics, these operations should coincide
with the classical ones, if we restrict them to the truth values 0 and 1, i.e., L = {0,1}.
We denote the conjunction by ⊗ which shall be a binary operation on L. Considering the
above requirement, 1 ⊗ 1 = 1 and 1 ⊗ 0 = 0 ⊗ 1 = 0 ⊗ 0 = 0 should hold. We also want the
truth values of a ⊗ b and b ⊗ a to be equal. This leads us to the commutativity of ⊗. In
a similar way, we ask for associativity of ⊗. Altogether, (L,⊗,1) must be a commutative
monoid. If a1 ≤ b1 and a2 ≤ b2 hold, it is intuitive to require a1 ⊗ a2 ≤ b1 ⊗ b2, i.e., ⊗ shall
be non-decreasing. The conjunction ⊗ coincides with the notion of a (continuous) t-norm.
We refer to [KMP00] for properties and constructions of t-norms.
Let us take another look at the fuzzy version of modus ponens. The rule is sound,

because through it we cannot assign a greater truth value to Q than it has, see (1.1). We
consider a special case of fuzzy modus ponens by taking tv(P ) = a, tv(P → Q) = b and
tv(Q) = c. Then, ⊗ gives us:

1. The lower estimation of Q which translates to: b ≤ a→ c implies a⊗ b ≤ c;

2. the highest possible lower estimation of the truth value of Q such that the rule still
remains sound. This corresponds to: If a⊗ b ≤ c, then b ≤ a→ c.

The two conditions give us

a⊗ b ≤ c if and only if b ≤ a→ c. (1.2)

This condition is called the adjointness property. If ⊗ is a continuous t-norm, then there
is a unique operation → satisfying the adjointness property for all a, b, c ∈ L, namely
a→ c ∶= ⋁{b ∈ L ∣ a⊗ c ≤ b}. The algebraic structures which satisfy it are called residuated
lattices. An early paper about them is [DW39] by Dilworth and Ward. In the following we
will consider special kinds of residuated lattices, namely those that have an extra operation
on them.

Definition 1.1. A complete residuated lattice with (truth-stressing) hedge is an algebra
L ∶= (L,∧,∨,⊗,→,∗ ,0,1) such that:

• (L,∧,∨,0,1) is a complete lattice,

• (L,⊗,1) is a commutative monoid,

• 0 is the least and 1 the greatest element,

• the adjointness property (1.2) holds for all elements from L.

The hedge (−)∗ is a unary operation on L satisfying:

i) a∗ ≤ a,

ii) (a→ b)∗ ≤ a∗ → b∗,

iii) a∗∗ = a∗,

iv) 1∗ = 1

6



1.2. Vagueness and the Fuzzy Approach

for every a, b ∈ L. The elements of L are called truth degrees, ⊗ and → are called multi-
plication and residuum, respectively. The last two represent the truth functions of “fuzzy
conjunction” and “fuzzy implication”, respectively.

Until explicitly said otherwise, L denotes a linearly ordered residuated lattice in this
thesis. The hedge (−)∗ is a (truth function of) logical connective “very true”, see [Háj98,
Háj01]. Properties (i)-(iv) have natural interpretations, i.e., (i) can be read as “if a is very
true, then a is true”, (ii) can be read as “if a→ b is very true and if a is very true, then b
is very true”, etc.
As we have already discussed, a common choice of L is a structure with L = [0,1], ∧

and ∨ being minimum and maximum, respectively, and ⊗ being a continuous t-norm with
its corresponding residuum →. The three most important pairs of adjoint operations on
the unit interval are:

Łukasiewicz: a⊗ b ∶= max(0, a + b − 1) with a→ b = min(1, 1 − a + b),

Gödel: a⊗ b ∶= min(a, b) with a→ b = { 1, a ≤ b,
b, a ≩ b,

Goguen: a⊗ b ∶= ab with a→ b = { 1, a ≤ b,
b/a, a ≩ b.

Typical examples for the hedge are

identity: a∗ ∶= a, for all a ∈ L,

globalisation: a∗ ∶= { 0, a ∈ L ∖ {1},
1, a = 1.

Residuated lattices have numerous properties, for an overview see for instance [Běl02b].
We will list some of them which will be needed in the forthcoming chapters. Any residuated
lattice L satisfies the following properties:

(x⊗ y)→ z = x→ (y → z), (1.3)
x⊗⋁

i∈I
yi =⋁

i∈I
(x⊗ yi), (1.4)

x→⋀
i∈I
yi =⋀

i∈I
(x→ yi), (1.5)

⋁
i∈I
xi → y =⋀

i∈I
(xi → y), (1.6)

⋀
i∈I
⋀
j∈J

(xi → yj) = (⋁
i∈I
xi)→ (⋀

j∈J
yj), (1.7)

for all x,xi, y, yi, yj ∈ L.
A fuzzy set (L-set) A in a universe U is a mapping A ∶ U → L, where A(u) is interpreted

as “the degree to which u belongs to A”. We write u ∈ A, if and only if A(u) = 1. If
U = {u1, . . . , un}, then A can be denoted by A = {a1/u1, . . . ,

an/un} meaning that A(ui)
equals ai for each i ∈ {1, . . . , n}. The α-cut of A is a subset αA of U defined by

αA ∶= {u ∈ U ∣ A(u) ≥ α}. (1.8)
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1. Preliminaries

Let LU denote the collection of all L-sets in U . The operations on L-sets are defined
component-wise. For instance, the intersection of L-sets A,B ∈ LU is an L-set A∩B in U
such that (A ∩B)(u) ∶= A(u) ∧B(u) for each u ∈ U , etc. For A,B ∈ LU , the subsethood
degree is defined by

S(A,B) ∶= ⋀
u∈U

(A(u)→ B(u)),

which generalises the classical subsethood relation ⊆. Therefore, S(A,B) represents the
degree to which A is a subset of B. In particular, we write A ⊆ B if and only if S(A,B) = 1,
i.e., A(u) ≤ B(u) for all u ∈ U . Further, we write A ⊂ B if and only if A(u) < B(u) for all
u ∈ U .
Binary fuzzy relations (L-relations) between X and Y can be thought of as L-sets in

the universe X × Y . A binary L-relation ≈ on a set X is called an L-equality if it satisfies
the following conditions:

(x ≈ x) = 1,
(x ≈ y) = (y ≈ x),
(x ≈ y)⊗ (y ≈ z) ≤ (x ≈ z),
(x ≈ y) = 1 implies x = y

for all x, y, z ∈ X. Further, a binary L-relation R between X and Y is compatible w.r.t.
the L-equalities ≈X and ≈Y if

R(x1, x2)⊗ (x1 ≈X x2)⊗ (y1 ≈Y y2) ≤ R(y1, y2)

for all x1, x2 ∈X and y1, y2 ∈ Y .

Definition 1.2. An L-order on a set X with an L-equality relation ≈ is a binary L-relation
≾ which is compatible w.r.t. ≈ and satisfies

x ≾ x = 1,
(x ≾ y) ∧ (y ≾ x) ≤ x ≈ y,
(x ≾ y)⊗ (y ≾ z) ≤ x ≾ z

for all x, y, z ∈ X. If ≾ is an L-order on a set X with an L-equality ≈, we call the pair
((X,≈),≾) an L-ordered set.

Fuzzy closure operators (L∗-closure operators) were introduced in [BG96] and studied
further by Bělohlávek at al., see for instance [Běl01, BFV05]. The definition given in
[BG96] mirrors more a crisp thinking, representing a special case of the one given in
[Běl01]. Therefore, we will use the latter.

Definition 1.3. An L∗-closure operator on a set X is a mapping C ∶ LX → LX satisfying

A ⊆ C(A), (1.9)
S(A1,A2)∗ ≤ S(C(A1),C(A2)), (1.10)

C(A) = C C(A) (1.11)
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1.2. Vagueness and the Fuzzy Approach

for all A,A1,A2 ∈ LX and where (−)∗ denotes the hedge of the residuated lattice L. A
system S ∶= {Aj ∈ LX ∣ j ∈ J} is an L∗-closure system if for each A ∈ LX it holds that

⋂
j∈J

(S(A,Aj)∗ → Aj) ∈ S, (1.12)

where

(⋂
j∈J

S(A,Aj)∗ → Aj)(x) ∶= ⋀
j∈J

(S(A,Aj)∗ → Aj(x))

for every x ∈X.

For the globalisation, (1.10) and (1.12) become

A1 ⊆ A2 Ô⇒ C(A1) ⊆ C(A2) and ⋂
j∈J

(S(A,Aj)∗ → Aj) = ⋂
j∈J,A⊆Aj

Aj ,

respectively. Only these variants of L∗-closure operators and systems were studied in
[BG96].
There is a simple yet useful characterisation of L∗-closure systems:

Theorem 1.4 ([Běl01]). A system S on LX closed under arbitrary intersections is an
L∗-closure system if and only if for each a ∈ L and A ∈ S it holds that (a∗ → A) ∈ S,
where a∗ → A is an L-set given by (a∗ → A)(x) ∶= a∗ → A(x) for all x ∈X.

In [BFV05] an L∗-kernel operator was studied which is defined as follows:

Definition 1.5. An L∗-kernel operator on a set X is a mapping κ ∶ LX → LX satisfying

κ(A) ⊆ A,
S(A1,A2)∗ ≤ S(κ(A1), κ(A2)),

κ(A) = κκ(A)

for every A,A1,A2 ∈ LX . A system S ∶= {Aj ∈ LX ∣ j ∈ J} is an L∗-kernel system if for
each A ∈ LX it holds that

(⋃
j∈J

S(A,Aj)∗ ⊗Aj) ∈ S,

where
(⋃
j∈J

S(A,Aj)∗ ⊗Aj)(x) ∶= ⋁
j∈J

(S(A,Aj)∗ ⊗Aj(x))

for every x ∈X.

Once again, if we choose for (−)∗ the globalisation, we obtain

A1 ⊆ A2 Ô⇒ κ(A1) ⊆ κ(A2) and (⋃
j∈J

S(A,Aj)∗ ⊗Aj) = ⋃
j∈J,A⊆Aj

Aj .

Theorem 1.6 ([BFV05]). A system S on LX closed under arbitrary unions is an L∗-kernel
system if and only if for each a ∈ L and A ∈ S it holds that (a∗ ⊗A) ∈ S, where a∗ ⊗A is
an L-set given by (a∗ ⊗A)(x) ∶= a∗ ⊗A(x) for all x ∈X.
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1. Preliminaries

Further, we are also interested in Galois connections in the fuzzy setting. These have
been developed in [Běl02b] and will be introduced in the next definition. Note however,
that this definition changes when we use hedges (see Definition 1.38, page 27).

Definition 1.7. An L-Galois connection between the sets X and Y is a pair (ϕ,ψ) of
mappings

ϕ ∶ LX → LY and ψ ∶ LY → LX

satisfying the following conditions:

S(X1,X2) ≤ S(ϕ(X2), ϕ(X1)),
S(Y1, Y2) ≤ S(ψ(Y2), ψ(Y1)),

X1 ⊆ ψϕ(X1),
Y1 ⊆ ϕψ(Y1)

for every X1,X2 ∈ LX and Y1, Y2 ∈ LY .

1.3. Formal Concept Analysis

Developed at the beginning of the 80s by a research group around Wille, Formal Concept
Analysis is an instrument for data analysis based on lattice theory.
In Port Royal Logic a concept is understood as a unit with a conceptual extent and a

conceptual intent.2 Formal Concept Analysis deals with a mathematical formalisation of
this notion. The starting point in Formal Concept Analysis is a set of (formal) objects,
a set of (formal) attributes and an incidence relation indicating which object has which
attribute. These three components are combined into a formal context from which the
concept lattice is computed. A formal concept of this lattice contains in its extent all the
objects shared by the attributes from its intent. Dually, the intent of a formal concept
contains all the attributes which the objects from its extent have in common. The order
on the concepts is given by the subconcept-superconcept relation. The concept lattice is
the basis for further data analysis. It can be represented graphically in order to facilitate
the communication, and it can be explored by algebraic methods. The formal context
specifies the frame in which the analysis is valid. If one abandons this frame, the validity
of the analysis might get lost. Therefore, the most important step in Formal Concept
Analysis is the selection of a suitable formal context.
In this section, almost every result and definition is taken from [GW96] which is the

main reference for Formal Concept Analysis.

Definition 1.8. A formal context K = (G,M, I) consists of two sets G and M and a binary
relation I ⊆ G ×M . The elements of G are called objects, the ones of M attributes and
(g,m) ∈ I is read “the object g has the attribute m”. The relation I is called the incidence
relation of the context.

Finite contexts can be represented through cross tables, see Figure 1.1. The rows of the
table are named after the objects and the columns after the attributes. A cross in row g

and column m means (g,m) ∈ I.
2See [Duq87] for further explanations and references.
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1.3. Formal Concept Analysis

Definition 1.9. For A ⊆ G and B ⊆M the derivation operators are defined by

A′ ∶= {m ∈M ∣ (g,m) ∈ I for all g ∈ A},
B′ ∶= {g ∈ G ∣ (g,m) ∈ I for all m ∈ B}.

Hence, we have two mappings both labelled with (−)′. In general, there should be no
confusion which operator maps from where to where. However, in order to distinguish
the two mappings, it might be useful to use notations like (−)↑ and (−)↓. The first
operator associates to an object set A the attributes these objects have in common and the
second operator associates to a set B of attributes the objects they share. The derivation
operators form a Galois connection between the powerset lattices of G and M . Hence,
their compounds are closure operators.

Definition 1.10. A pair (A,B) is called a formal concept of the context (G,M, I) if A ⊆ G,
B ⊆M , A′ = B and B′ = A hold. Then, A is called the extent and B is called the intent of
the concept (A,B). The set of all formal concepts of (G,M, I) is denoted by B(G,M, I).

The preposition formal in the nomenclature of “formal context” and “formal concept”
shall point out that these are just mathematical definitions modelling the issue described
above. The preposition formal will often be omitted.
Formal concepts represent maximal rectangles filled with crosses in the cross table rep-

resentation of the context.
One may also be interested in preconcepts, as we will see in the upcoming chapters. A

preconcept is a tuple (A,B) with A ⊆ G and B ⊆M such that A′ ⊆ B and B′ ⊆ A.
For an object g ∈ G, we write g′ instead of {g}′ for the object intent {m ∈ M ∣ g I m}

of the object g. Correspondingly, m′ denotes the attribute extent of the attribute m ∈M .
Further, we denote by γg the object concept (g′′, g′) and by µm the attribute concept
(m′,m′′).

Example 1.11. The context from Figure 1.1 ([SW91]) was obtained in a therapy with a
patient suffering from anorexia nervosa. The interviewing method used in the therapy was
repertory grid. Such grids can be easily transformed into formal contexts, as detailed in
Section 2.3.
The context from Figure 1.1 has 23 concepts, which can be read from the concept lattice,

as we will see later on. But first, let us take a look at some concepts. For instance,

({father, mother, brother-in-law},{dutiful, hearty, superficial, ambitious})

is a formal concept. Its meaning is that the father, mother and brother-in-law have exactly
the attributes dutiful, hearty, superficial and ambitious in common. Dually, the attributes
from the intent are shared only by the persons from the extent. Of course, this holds
from the point of view of the patient. In addition to the attributes from the intent of the
previous concept, the father and the brother-in-law are also attentive, i.e.,

({father, brother-in-law},{dutiful, hearty, attentive, superficial, ambitious})

is another formal concept.
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Anorexia

vu
ln
er
ab

le

w
ith

dr
aw

n

co
nfi

de
nt

du
tif
ul

he
ar
ty

di
ffi
cu

lt
at
te
nt
iv
e

ea
sil
y
off

en
de

d

no
t
ira

sc
ib
le

an
xi
ou

s

ta
lk
at
iv
e

su
pe

rfi
ci
al

se
ns
iti
ve

am
bi
tio

us

myself × × × × × × × × × ×
my ideal × × × × × × × ×
father × × × × × × × × × × × ×
mother × × × × × × × × × × ×
sister × × × × × × × × × ×
brother-in-law × × × × × × ×

Figure 1.1.: Data from an anorexia nervosa therapy ([SW91])

One may wish to browse between the formal concepts, for instance going from the
more general concepts to the more concrete ones. Formal Concept Analysis models
the subconcept-superconcept relation in the following self-evident way: For two concepts
(A,B), (C,D) of the context (G,M, I) we define

(A,B) ≤ (C,D) ∶⇐⇒ A ⊆ C (⇐⇒ B ⊇D),

in which case we say that (A,B) is a subconcept of (C,D) or that (C,D) is a superconcept
of (A,B). With this relation the set of all formal concepts B(G,M, I) is an ordered set.
We call B(G,M, I) ∶= (B(G,M, I),≤) the concept lattice of the context (G,M, I). The
following Basic Theorem on Concept Lattices ensures that this notion is not misleading:
The concept lattice actually is a (complete) lattice. But it says even more: For every
complete lattice one can find an isomorphic concept lattice.

Theorem 1.12 ([Wil82]). For every context (G,M, I) the ordered set B(G,M, I) is a com-
plete lattice in which infima and suprema are given by:

⋀
t∈T

(At,Bt) = (⋂
t∈T

At,(⋃
t∈T

Bt)
′′
) ,

⋁
t∈T

(At,Bt) = ((⋃
t∈T

At)
′′
,⋂
t∈T

Bt) .

A complete lattice (L,≤) is isomorphic to B(G,M, I) if and only if there are mappings
γ̃ ∶ G→ L and µ̃ ∶M → L such that γ̃(G) is supremum-dense in (L,≤), µ̃(M) is infimum-
dense in (L,≤) and gIm is equivalent to γ̃g ≤ µ̃m for all g ∈ G and all m ∈ M . In
particular, (L,≤) ≅B(L,L,≤).

It is practical to use the reduced labelling instead of writing next to each concept its
extent and intent, which would overload the diagram. The object concept γg is the least
concept containing g in its extent and dually µm is the greatest concept containing m in
its intent. Therefore, it is sufficient to label the object concepts with the corresponding
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1.3. Formal Concept Analysis

objects, and the attribute concepts with the respective attributes. We can find the extent
and intent of any concept in the following way: The extent is formed by collecting all
objects which are located at the circle of the concept and which can be reached by de-
scending line paths from the concept. The intent consists of all attributes located at the
concept and along ascending line paths.

Example 1.13. The concept lattice of the anorexia context is displayed in Figure 1.2. For
instance, the first concept from Example 1.11 is the concept labelled “superficial” and the
second one is between the concepts labelled “superficial” and “talkative”. Further, we can
also read from the concept lattice the attributes every object has and the objects to which
any attribute belongs. For instance, take the brother-in-law and follow the lines going up
from his object concept. We see that he is confident, dutiful, hearty, attentive, talkative,
superficial and ambitious.

myself
father

mother
sistermy

ideal

brother-in-law
talkative

confident

attentive

dutiful

ambitious,
hearty

vulnerable,
not irascible
sensitive

anxious,
difficult,
withdrawn

easily offended

superficial

Figure 1.2.: Concept lattice of the anorexia nervosa context

There is an efficient way of computing all concepts of a given formal context, namely
by means of the NextClosure algorithm ([Gan84, GW96]). The algorithm enumerates all
concepts in the so-called lectic order ([Gan84, GW96]). This order is linear on the power
set of the attribute set, and it assures that every closure is computed only once. The
algorithm is implemented in different freewares, for instance in ConExp3 and Conexp-clj4.

3http://conexp.sourceforge.net/
4http://daniel.kxpq.de/math/conexp-clj/
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These also contain numerous tools and methods of Formal Concept Analysis including
attribute implications, attribute exploration, which we will become acquainted with in the
next subsections.

There are context manipulations which do not change the structure of the concept
lattice. Usually these operations are carried out before starting the computation of the
concept lattice. Such an operation is clarification, which reduces the number of objects
and attributes. All objects that have equal rows in the context may be removed except
one. For attribute clarification we look for equal columns.

Definition 1.14. A context (G,M, I) is called clarified, if for any objects g, h ∈ G from
g′ = h′ it always follows that g = h and, correspondingly, m′ = n′ implies m = n for all
m,n ∈M .

Another operation which does not change the structure of the concept lattice is the
reducing. This allows removing attributes which can be written as combination of other
attributes, i.e., for m ∈ M and X ⊆ M such that m ∉ X but m′ = X ′. This means that
µm = ⋀x∈X µx, i.e., the set µ(M ∖ {m}) is infimum-dense in B(G,M, I). The information
contained in the reducible attribute m is not lost, because we can reproduce it through
the attributes from X. Using the Basic Theorem we get:

B(G,M, I) ≅B(G,M ∖ {m}, I ∩ (G × (M ∖ {m}))).

Definition 1.15. A clarified context (G,M, I) is called row reduced, if every object con-
cept is ⋁-irreducible, and column reduced, if every attribute concept is ⋀-irreducible. A
context, which is both row and column reduced, is reduced.

Full rows, objects g with g′ =M , and full columns, attributes m with m′ = G, are always
reducible. When dealing with a finite context, we can remove simultaneously reducible
objects and attributes, because in this case every element of the concept lattice is the join
of ⋁-irreducible and the meet of ⋀-irreducible elements. There is another possibility for
the reduction, namely via the arrow relation:

Definition 1.16. For a context (G,M, I), an object g ∈ G and an attribute m ∈M we write:

g ↙m ∶⇐⇒ { g  I m and
if gI ⊆ hI and gI ≠ hI , then h I m,

g ↗m ∶⇐⇒ { g  I m and
if mI ⊆ nI and mI ≠ nI , then g I n,

g↗↙m ∶⇐⇒ g ↙m and g ↗m.

We may write the arrow relation into the cross table, because it refers to pairs (g,m)
that are not contained in the incidence relation. To perform a reducing by means of the
arrow relation one proceeds as follows: Insert the arrow relation into the clarified cross
table and then remove rows and columns which do not contain a double arrow.

There are various operations which allow the construction of new contexts from given
ones. We list just a few of them, others can be found in [GW96]. Let K ∶= (G,M, I),
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1.3. Formal Concept Analysis

K1 ∶= (G1,M1, I1) and K2 ∶= (G2,M2, I2) be formal contexts. We define the following
contexts

Kc ∶= (G,M, (G ×M) ∖ I) the complementary context to K,

Kd ∶= (M,G, I−1) the dual context to K,
K1 ∣ K2 ∶= (G,Ṁ1 ∪ Ṁ2, İ1 ∪ İ2) the apposition of K1 and K2,

if G = G1 = G2,

K1
K2

∶= (Ġ1 ∪ Ġ2,M, İ1 ∪ İ2) the subposition of K1 and K2,

if M =M1 =M2

where Ġj ∶= {j} ×Gj , Ṁj ∶= {j} ×Mj and İj ∶= {((j, g), (j,m)) ∣ (g,m) ∈ Ij} for j ∈ {1,2}.

In practice most data tables do not have the form of cross tables and hence cannot be
described directly by formal contexts. In the following we will show how Formal Concept
Analysis deals with such data sets.

Definition 1.17. A many-valued context (G,M,W, I) consists of sets G,M and W and a
relation I ⊆ G ×M ×W such that

(g,m,w) ∈ I and (g,m, v) ∈ I always imply w = v.

The elements of G are called objects, the ones of M (many-valued) attributes and those
of W values. Then, (g,m,w) ∈ I, also denoted by m(g) = w, is read “the attribute m has
the value w for the object g”.

We want to obtain the concepts of the many-valued context. Therefore, we first trans-
form it into a one-valued context through the conceptual scaling:

Definition 1.18. A scale for the attribute m of a many-valued context is a (one-valued)
context Sm ∶= (Gm,Mm, Im) with m(G) ⊆ Gm. The objects of a scale are called scale
values, the attributes are called scale attributes.

The concepts of the derived one-valued context are considered to be the concepts of the
many-valued context for this scaling. The scaling process is not uniquely determined and
depends on the interpretation of the many-valued attributes. Through scaling we answer
question like: Should the values of a many-valued attribute be evaluated as being mutually
exclusive? As a hierarchy? The answers are given by the chosen scales. Formally, every
context can be used as a scale. However, the notion of “scale” will be used just for contexts
that have a clear conceptual structure.
To obtain the corresponding one-valued context for (G,M,W, I), we “somehow” join

together the different scales. This can also be done through various methods. The simplest
one is the plain scaling, where the object set G remains unchanged and every attribute
m ∈M is replaced by the scale attributes of the scale Sm. In this way, the attribute set of
the derived context becomes the disjoint union of the attribute sets of the scales.
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Definition 1.19. If (G,M,W, I) is a many-valued context and Sm,m ∈M are scale contexts,
then the derived context with respect to the plain scaling is the context (G,N,J) with

N ∶= ⋃
m∈M

Ṁm,

where Ṁm ∶= {m} ×Mm and

g J (m,n) ∶⇐⇒m(g) = w and w Im n.

The most frequently used scales are the following elementary ones for n ∈ N:

• The nominal scale Nn ∶= (n,n,=) is used whenever the attribute values mutually
exclude each other. Through the nominal scale there is a partition of the objects
into extents. The classes correspond to the values of the attributes. For the special
case that n = 2, we call Nn the dichotomic scale;

• the (one-dimensional) ordinal scale On ∶= (n,n,≤) scales many-valued attributes, the
values of which are ordered and the “stronger” attribute values imply the “weaker”
ones. The attribute values form a chain of extents, which can be interpreted as a
hierarchy;

• often in questionnaires the possible answers are opposite and one can also choose a
statement with intermediate value. The order of the characteristics is bipolar. In
such cases using (one-dimensional) interordinal scales In ∶= (n,n,≤) ∣ (n,n,≥) can
be very helpful. The concept extents of the interordinal scale are the intervals of the
characteristics.

1.3.1. Attribute Implications

The formal context and the corresponding concept lattice are two different representation
methods of the same issue. Considering implications gives us a third interesting illustra-
tion. By investigating attribute implications we study the possible attribute combinations,
the attribute logic, of the respective situation. In addition, we can also reconstruct the
concept lattice with the help of these implications.
An attribute implication in M is denoted by A → B, where A,B ⊆ M . First of all we

are interested in the implications of a given formal context.

Definition 1.20. A subset T ⊆M respects an implication A→ B if A ⊈ T or B ⊆ T . Further,
T respects a set L of implications if T respects every single implication in L. A→ B holds
in a set {T1, T2, ....} of subsets if each of the subsets Ti respects the implication A→ B. An
implication A→ B holds in a context (G,M, I) if it holds in the system of object intents.
If this is the case, we also call A→ B an implication of the context (G,M, I) or say that,
within the context (G,M, I), A is a premise of B.

It is easy to observe that an implication A→ B holds in (G,M, I) if and only if B ⊆ A′′

which is equivalent to A′ ⊆ B′. Further, the implication A→ B holds if and only if A→m

holds for every m ∈ B.5 Another way to describe that the implication A → m holds, is
5We write A→m instead of A→ {m}.
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to say that the infimum of the attribute concepts corresponding to the attributes in A

must be less or equal than the attribute concept of m, i.e., ⋀{µn ∣ n ∈ A} ≤ µm. This
observation helps us to read the implications from the concept lattice: A→m holds if the
concept denoted by m is above the infimum of all concepts denoted by an n from A.

Example 1.21. Take another look at the concept lattice from Figure 1.2. For instance, we
have the following two implications:

confident → attentive, ambitious, hearty,
attentive, superficial → dutiful, ambitious, hearty.

One should keep in mind that the implications hold in the context built by the anorexia
nervosa patient. Other patients might have different implications in their contexts.

We can observe that there are many implications holding in even a small context like
the anorexia nervosa. In the following we will see that it is not necessary to save all the
implications of a context. For every context there exists a set of implications from which
all the implications of the context can be derived. But first we have to answer the question:
When does an implication follow from another implication?

Definition 1.22. An implication A→ B follows (semantically) from a set L of implications
if each subset of M respecting L also respects A→ B. A set L of implications of (G,M, I)
is called complete if every implication of (G,M, I) follows from L. Further, L is called
non-redundant if none of the implications follows from the others.

Guigues and Duquenne ([GD86]) have developed a method for obtaining these complete
and non-redundant implication bases, provided the attribute setM is finite. First we need
the definition of a pseudo-intent:

Definition 1.23. P ⊆ M is called a pseudo-intent of (G,M, I) if and only if P ≠ P ′′ and
Q′′ ⊆ P holds for every pseudo-intent Q ⫋ P .

Theorem 1.24. The set of implications

L ∶= {P → P ′′ ∣ P pseudo-intent}

is complete, non-redundant and minimal (w.r.t. its cardinality). We call this set the
Duquenne-Guigues-base or the stem base.

1.3.2. Attribute Exploration

Attribute exploration, as introduced in [Gan84], is a tool for knowledge discovery by in-
teractive determination of the implications holding between a given set of attributes. This
method is especially useful when the examples, objects having the considered attributes,
are infinite, hardly to enumerate or (partially) unknown. With the examples (possibly
none) of the user’s knowledge the object set of the context is built step-by-step. The user
is asked whether “some” implication holds. If the answer is affirmative, the implication is
added to the stem base and the next implication is considered. If, however, the implication
is false, the user has to provide a counterexample. This method assumes that the user can
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distinguish between true and false implications and that he can provide counterexamples
for false implications. This is a crucial point since once a decision was taken about the
validity of an implication, the choice cannot be reversed. Therefore, the counterexamples
may not contradict the so-far confirmed implications. The procedure ends when all impli-
cations of the current stem base hold in general. The result of the attribute exploration is
a set of implications which are true in general for the attributes under consideration and
a representative set of examples for the whole theory.
The following proposition justifies why we do not have to reconsider the already con-

firmed implications:
Proposition 1.25 ([GW96]). Let K be a context and P1, P2, . . . , Pn be the first n pseudo-
intents of K with respect to the lectic order. If K is extended by an object g the object
intent g′ of which respects the implications Pi → P ′′

i , i ∈ {1, . . . , n}, then P1, P2, . . . , Pn are
also the lectically first n pseudo-intents of the extended context.

Attribute exploration was successfully applied in both theoretical and practical research
domains. On the one hand it facilitated the discovery of implications between properties
of mathematical structures, see for example [Sac01, KPR06, RK10]. On the other hand it
was also used in real-life scenarios, for instance in civil engineering ([EKSW99]), chemistry
([BN97]), information systems ([Stu99]), etc.
There are also further variants of attribute exploration, for instance attribute exploration

with background knowledge for the case that the user knows in advance some implications
between the attributes that hold ([Gan99, Stu96]). Another possibility is to perform
concept exploration as presented in [Wil87]. By replacing the implications with Horn
clauses from predicate logic one obtains the so-called rule exploration developed in [Zic91].

1.4. Triadic Concept Analysis

The triadic approach to Formal Concept Analysis was introduced by Wille and Lehmann
in [LW95]. Triadic Concept Analysis is based upon Peirce’s pragmatic philosophy with
his three so-called universal categories. These categories can be interpreted as the quality
of feeling, the reaction as an element of the phenomenon and the medium, between a
Second and a First or as representation as an element of the phenomenon, respectively
([Pei31, LW95]). This raises the question of how can these three categories be formulated
in the language of Formal Concept Analysis. Obviously a dyadic relation is not sufficient
to express the three categories. However, a triadic relation is!
We start by giving a brief introduction to the mathematical foundation of Triadic Con-

cept Analysis, as presented in [LW95, Wil95], and answer by this the question about
Peirce’s three categories.
The underlying structure of Triadic Concept Analysis is the triadic context which con-

tains the information about the part of the world we aim to analyse. It is defined as
follows:
Definition 1.26. A triadic context (shortly tricontext) is a quadruple (G,M,B,Y ) where
G,M and B are sets and Y is a ternary relation between them, i.e. Y ⊆ G ×M ×B. The
elements of G,M and B are called objects, attributes and conditions, respectively, and
(g,m, b) ∈ Y is read: “the object g has the attribute m under the condition b”.
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Until explicitly said otherwise, K denotes a tricontext in this section. For a better
handling of the three sets we denote a tricontext by K = (K1,K2,K3, Y ).

Definition 1.27. A triadic concept (shortly triconcept) of a tricontext (K1,K2,K3, Y )
is defined as a triple (A1,A2,A3) with Ai ⊆ Ki (i = 1,2,3) that is maximal with re-
spect to component-wise set inclusion in satisfying A1 × A2 × A3 ⊆ Y . For a triconcept
(A1,A2,A3), the components A1,A2 and A3 are called the extent, the intent and the
modus of (A1,A2,A3), respectively. We denote by T(K) the set of all triconcepts of K.

Small tricontexts can be represented by three-dimensional cross tables. An example can
be seen in Figure 1.3. Pictorially, a triconcept (A1,A2,A3) is a maximal rectangular box
full of crosses in the three-dimensional cross table representation of (K1,K2,K3, Y ). This
fact already follows from the definition of triconcepts, as for any triconcept (A1,A2,A3)
and for any subsets Xi ⊆ Ki (i = 1,2,3) with X1 × X2 × X3 ⊆ Y , the containments
A1 ⊆X1,A2 ⊆X2 and A3 ⊆X3 always imply (A1,A2,A3) = (X1,X2,X3).
As in the dyadic case we wish for operators that associate the components of triconcepts

with each other. For the triadic case these operators are more technical and can be defined
in various ways, as we will see in the following.

Definition 1.28. For {i, j, k} = {1,2,3} with j < k and for X ⊆ Ki and Z ⊆ Kj ×Kk, the
(−)(i)-derivation operators are defined by

X ↦X(i) ∶= {(aj , ak) ∈Kj ×Kk ∣ (ai, aj , ak) ∈ Y for all ai ∈X},

Z ↦ Z(i) ∶= {ai ∈Ki ∣ (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Z}.

These derivation operators correspond to the derivation operators of the dyadic contexts
defined by K(i) ∶= (Ki,Kj ×Kk, Y

(i)), where

a1Y
(1)(a2, a3) ∶⇐⇒ a2Y

(2)(a1, a3) ∶⇐⇒ a3Y
(3)(a1, a3) ∶⇐⇒ (a1, a2, a3) ∈ Y.

Due to the structure of tricontexts further derivation operators can be defined for the
computation of triconcepts.

Definition 1.29. For {i, j, k} = {1,2,3} and for Xi ⊆ Ki, Xj ⊆ Kj and Ak ⊆ Kk the
(−)Ak -derivation operators are defined by

Xi ↦XAk
i ∶= {aj ∈Kj ∣ (ai, aj , ak) ∈ Y for all (ai, ak) ∈Xi ×Ak},

Xj ↦XAk
j ∶= {ai ∈Ki ∣ (ai, aj , ak) ∈ Y for all (aj , ak) ∈Xj ×Ak}.

These derivation operators correspond to the derivation operators of the dyadic contexts
defined by Kij

Ak
∶= (Ki,Kj , Y

ij
Ak

) where

(ai, aj) ∈ Y ij
Ak

∶⇐⇒ (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Example 1.30. The data from Figure 1.3 contains the rating of users about different services
provided by hostels from Seville. The users are taken from three hostel booking websites,
namely hostelworld, hostels and hostelbookers.6

6The sites can be found under http://www1.hostelworld.com, http://www.hostels.com, and
http://www.hostelbookers.com. The data was extracted in June 2010.
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0 1 2
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 × × × × ×
1 × × × × × × × × × × × × ×
2 × × × × × × × × × × × × × × × ×
3 × × × × × × × × × × × × × × × ×
4 × × × × × × × × × × × × × × × ×
5 × × × × × × × × × × × × × ×

Figure 1.3.: Tricontext “Hostels”

Although the example is small, it is paradigmatic from more points of view. First of all,
it reflects a triadic setting as the hostels are rated regarding the quality of their services
from different points of view. Second, the example reflects the usual setting in Web 2.0
applications: Users provide data about certain topics interactively. And since we are in
the triadic setting, the third aspect is that this example is also in accordance with the
idea presented in [DW01], because it arises from the report of different persons about the
same situation.
We constructed the corresponding tricontext in the following way:

• the object set contains the hostels Nuevo Suizo, Samay, Oasis Backpacker, One, Ole
Backpacker, Garden Backpacker;

• the attribute set is given by the services character, safety, location, staff, fun, clean-
liness;

• the conditions are given by the users of the three websites;
• since we have chosen the hostels with best ratings, the attribute values are - (good)

or , (excellent) and are considered as tags. In the tricontext we make a cross in
the corresponding line of object, attribute and condition if the hostel’s service was
considered excellent by the users of the platform.

We number the elements of K1,K2 and K3 consecutively, i.e., Ki ∶= {0, . . . , ∣Ki∣} with
i = 1,2,3.
This tricontext has 18 triconcepts. We omit listing them all because they can be read

from the trilattice, the triadic counterpart of the concept lattice, displayed in Figure 1.4.
But until we learn how to read such diagrams let us first take a look at some triconcepts.
For instance, ({0,1,2,5},2,K3)7 is a triconcept and it means that the hostels from its
intent were rated as excellent regarding location from all users of the three platforms. Yet
another example is (K1,{2,3},{1,2}), meaning that all hostels were rated excellent for
their location and safety from the users of hostelworld and hostels.

We have already mentioned that there exists something called a trilattice which is the
triadic counterpart of a concept lattice. The “ingredients” of concept lattices are the
concepts and an order on them. Hence, let us turn our attention to the so-far missing
order on the triconcepts.

7For better legibility we omit curly brackets around singletones.
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The structure on the set of all triconcepts T(K) is the set inclusion in each component
of the triconcept. There is for each i ∈ {1,2,3} a quasiorder ≲i and its corresponding
equivalence relation ∼i defined by

(A1,A2,A3) ≲i (B1,B2,B3) ∶⇐⇒ Ai ⊆ Bi and (1.13)
(A1,A2,A3) ∼i (B1,B2,B3) ∶⇐⇒ Ai = Bi, (1.14)

for all i ∈ {1,2,3}. These quasiorders satisfy the antiordinal dependencies ([Wil95]): For
{i, j, k} = {1,2,3}, (A1,A2,A3) ≲i (B1,B2,B3) and (A1,A2,A3) ≲j (B1,B2,B3) imply
(A1,A2,A3) ≳k (B1,B2,B3) for all triconcepts (A1,A2,A3) and (B1,B2,B3) of K. For
i ≠ j, the relation ∼i ∩ ∼j is the identity on T(K), i.e., if we have two components of the
triconcept, then the third one is uniquely determined by them. Further, [(A1,A2,A3)]i
denotes the equivalence class of ∼i containing the triconcept (A1,A2,A3). The quasiorder
≲i induces an order ≤i on the factor set T(K)/ ∼i of all equivalence classes of ∼i which is
characterised by

[(A1,A2,A3)]i ≤i [(B1,B2,B3)]i ⇐⇒ Ai ⊆ Bi.

Thus, (T(K)/ ∼1,≤1), (T(K)/ ∼2,≤2) and (T(K)/ ∼3,≤3) can be identified with the ordered
set of all extents, intents and modi of K, respectively. Generally, every ordered set with
smallest and greatest element is isomorphic to the ordered set of all extents, intents and
modi, respectively, of some tricontext, as shown in [Wil95]. This means that unlike in the
dyadic case, the extents, intents and modi, respectively, do not form a closure system in
general.

A triordered set is defined as a relational structure (S,≲1,≲2,≲3) for which the relations
≲i are quasiorders on S such that ≲i ∩ ≲j ⊆ ≳k for {i, j, k} = {1,2,3} and ∼1 ∩ ∼2 ∩ ∼3= idS
where ∼i ∶= ≲i ∩ ≳i (i = 1,2,3). Suprema and infima are defined as: For {i, j, k} = {1,2,3}
and Xi,Xk ⊆ S, an element u of S is called an ik-bound of (Xi,Xk) if u ≳i x for all x ∈Xi

and u ≳k x for all x ∈ Xk. An ik-bound u of (Xi,Xk) is called an ik-limit of (Xi,Xk) if
u ≳j v for all ik-bounds v of (Xi,Xk). There exists at most one ik-limit u of (Xi,Xk)
with u ≲k v for all ik-limits v of (Xi,Xk) in (S,≲1,≲2,≲3). This element u is called the
ik-join of (Xi,Xk) and is denoted by bik(Xi,Xk).
A complete trilattice is defined as a triordered set L ∶= (L,≲1,≲2,≲3) in which the ik-

joins exist for all i ≠ k in {1,2,3} and all pairs of subsets of L. An example of a complete
trilattice is given in Figure 1.4, where the graphical representation is explained in details.
An analogous structure to the concept lattice is given by T(K) ∶= (T(K),≲1,≲2,≲3) for

the triadic setting. Let {i, j, k} = {1,2,3}, let Xi and Xk be sets of triconcepts and let
Xi ∶= ⋃{Ai ∣ (A1,A2,A3) ∈ Xi} and Xk ∶= ⋃{Ak ∣ (A1,A2,A3) ∈ Xk}. The ik-join of
(Xi,Xk) is defined to be the triconcept

b(Xi,Xk) ∶= (B1,B2,B3) with (1.15)
Bi ∶=XXkXk

i ,

Bj ∶=XXk
i ,

Bk ∶= (XXk,Xk
i ×XXk

i )(k).

In order to introduce the Basic Theorem of Triadic Concept Analysis ([Wil95]) we still
need to present some order-theoretic notions about complete trilattices. To this end,
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let L ∶= (L,≲1,≲2,≲3) be a complete trilattice. An order filter of the quasiordered set
(L,≲i) (i = 1,2,3) is a subset F of L such that x ∈ F and x ≲i y always imply y ∈ F .
We denote by Fi(L) the set of all order filters of (L,≲i). A principal filter of (L,≲i) is
defined by [x)i ∶= {y ∈ L ∣ x ≲i y}. Further, a subset X of Fi(L) is called i-dense with
respect to L if each principal filter of (L,≲i) is the intersection of some order filters from
X . The principal filter generated by the triadic concept (A1,A2,A3) in (T(K),≲i) equals
⋂ai∈Ai

{(B1,B2,B3) ∈ T(K) ∣ ai ∈ Bi} ∈ Fi(T(K)). Therefore, the i-dense set κi(Ki) of
order filters of (T(K),≲i) (i = 1,2,3) is given by

κi(ai) ∶= {(B1,B2,B3) ∈ T(K) ∣ ai ∈ Bi}

for ai ∈Ki.
Now we are prepared to present the Basic Theorem of Triadic Concept Analysis:

Theorem 1.31 ([Wil95]). Let K = (K1,K2,K3, Y ) be a tricontext. Then, T(K) is a complete
trilattice of K with the ik-joins given by ({i, j, k} = {1,2,3}):

∇ik(Xi,Xk) ∶= bik(⋃{Ai ∣ (A1,A2,A3) ∈ Xi},⋃{Ak ∣ (A1,A2,A3) ∈ Xk}).

In general, every complete trilattice L ∶= (L,≲1,≲2,≲3) is isomorphic to T(K) if and only
if there exist mappings κ̃i ∶Ki → Fi(L) (i = 1,2,3) such that κ̃i(Ki) is i-dense with respect
to L and

A1 ×A2 ×A3 ⊆ Y ⇐⇒
3
⋂
i=1

⋂
ai∈Ai

κ̃i(ai) ≠ ∅

for all A1 ⊆ K1,A2 ⊆ K2 and A3 ⊆ K3. In particular, we have L ≅ T(L,L,L,YL) with
YL ∶= {(x1, x2, x3) ∈ L3 ∣ (x1, x2, x3) is joined}.

The trilattice of the Hostel context is displayed in Figure 1.4. The ordered structures of
objects, attributes and conditions are given by Hasse diagrams. On the right and upper
part of the figure are the Hasse diagrams of objects and conditions, respectively and on the
left part the upside-down Hasse diagram of the attributes. The structure of the triconcepts
is given by the 3-net in the centre of the diagram. Each circle in the 3-net represents a
triconcept which extent, intent and modus can be read through the discontinuous lines
connecting the circle with the three Hasse diagrams. A discontinuous line from the circle
to an object means that the extent of the triconcept contains that object and all the objects
below it. An analogous statement holds for the modus. Since the Hasse diagram of the
attributes is upside-down, the intent contains all the attributes attached to and above the
discontinuous line. For instance, take the second circle from the left in the third horizontal
line from the top. It corresponds to the triconcept ({1,2,3,4,5},{1,2,3,5},{1,2}). For
now we ignore that some circles are drawn larger. (As it will turn out later those correspond
to the factors of the triconceptual factorisation.)
In [Bie88], a foundation of the theory of trilattices was presented including, among oth-

ers, an equation theory for trilattices, completion theorems of triordered sets and trilattices
and triadic Galois connections.
Attribute implications were first generalised to the triadic setting in [Bie88]. Due to

the nature of tricontexts, there are various ways to define implications. Stronger triadic
implications were developed in [GO04]. We will study these later on in connection with our
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Figure 1.4.: Trilattice of the tricontext “Hostels”

fuzzy-valued triadic setting which we develop in Chapter 7. Here we just give a flavour
of the crisp triadic implications developed in [GO04]. For a given discrete tricontext
K = (K1,K2,K3, Y ) and for R,S ⊆ K2 and C ⊆ K3, the expression R

C→ S is called
conditional attribute implication. For R,S ⊆ K3 and C ⊆ K2 the expression R

C→ S is
called attributional condition implication. Implications of the form R → S are called
attribute× condition implications, where R,S ⊆K2 ×K3.
There are various applications of Triadic Concept Analysis. The most prominent one

is the BibSonomy8 platform which is a social bookmark and publication system. The
mining of frequent triconcepts was developed in [JHS+06]. Another important application
is Factor Analysis in a triadic setting which we will present in Chapter 3. Pioneer work
regarding the investigation of adverse drug reactions with Triadic Concept Analysis can
be found in [SBNP11].

1.5. Formal Fuzzy Concept Analysis

There are various approaches to Formal Fuzzy Concept Analysis. A survey on the different
methods can be found in [BV05e]. Let us mention just a few. The paper by Burusco
and Fuentes-Gonzáles ([BFG75]) seems to be one of the first works that connects Formal
Concept Analysis and Fuzzy theory. However, the derivation operators lack some useful
properties which hold in the crisp setting. In the independent works of Yahia ([YJ01]) and
Krajči ([Kra03]) the extent of the concept is a crisp set and its intent is fuzzy. In [KSVĎ02]
the approach is based on alpha-cuts. The author of [Kra04] considers different residuated

8http://www.bibsonomy.org/
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lattices for objects, attributes and the incidence relation. In [BSZ05] the formal fuzzy
concepts are obtained through crisp sets which are evaluated in formal fuzzy contexts.
We will consider the method developed independently by Pollandt ([Pol97]) and Bělohlá-

vek ([Běl02b]) as the standard one. The hedges proved themselves to be useful, as they
are able to model fuzzy events both from a fuzzy and a more crisp view. Further, hedges
are of avail especially for attribute implications in a fuzzy setting but also for reducing
the size of the fuzzy concept lattice. Therefore, we will consider a more general approach
to Formal Fuzzy Concept Analysis, namely the one which incorporates residuated lattices
and hedges ([BV07]). Definitions and propositions about formal fuzzy contexts, derivation
operators and fuzzy concept lattices are taken from [Pol97, Běl02b, BV07].

Definition 1.32. A triple (G,M, I) is called an L-context (formal context with fuzzy at-
tributes) if I ∶ G ×M → L is an L-relation between the sets G andM , and L is the support
set of some residuated lattice with hedge. Elements from G and M are called objects and
attributes, respectively.

The L-relation I assigns to each g ∈ G and each m ∈M the truth degree I(g,m) ∈ L to
which the object g has the attribute m.
We are interested in the fuzzified version of the derivation operators. In the most general

way, one may use different hedges on the objects and on the attributes.

Definition 1.33. For L-sets A ∈ LG and B ∈ LM , the derivation operators are defined by

A↑(m) ∶= ⋀
g∈G

(A(g)∗G → I(g,m)), (1.16)

B↓(g) ∶= ⋀
m∈M

(B(m)∗M → I(g,m)) (1.17)

for g ∈ G and m ∈M .

Then, A↑(m) is the truth degree of the statement “m is shared by all objects from A”,
and B↓(g) is the truth degree of “g has all attributes from B”. The operators (−)↑ and
(−)↓ form a so-called Galois connection with hedges ([BV07]). If we use for the hedges
the identity, then we have the L-Galois connection introduced in Definition 1.7 (page 10).
However, if we choose hedges different from the identity, then the situation changes. We
will discuss this topic later on.

Definition 1.34. An L-concept (formal fuzzy concept) is a tuple (A,B) ∈ LG × LM such
that A↑ = B and B↓ = A. Then, A is called the extent and B the intent of (A,B).

We denote the set of all L-concepts of a given context (G,M, I) by B(G∗G ,M∗M , I). If
a hedge is the identity, we omit the superscription. Further, if we consider the same hedge
on the objects and attributes, we simply write (−)∗ instead of (−)∗G and (−)∗M .
Concepts serve for classification. Consequently, the super- and subconcept relation plays

an important role. We call (A1,B1) a subconcept of (A2,B2), written (A1,B1) ≤ (A2,B2),
if and only if A1 ⊆ A2 (or, equivalently, B1 ⊇ B2). Then, (A2,B2) is a superconcept of
(A1,B1). The set of all L−concepts ordered by this concept order forms a complete (fuzzy)
lattice (with hedge), the so-called L-concept lattice (see Theorems 1.36 and 1.39 later on)
which is denoted by B(G∗G ,M∗M , I) ∶= (B(G∗G ,M∗M , I),≤).
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small (s) large (l) far (f) near (n)
Mercury (Me) 1 0 0 1
Venus (V ) 1 0 0 1
Earth (E) 1 0 0 1
Mars (Ma) 1 0 0.5 1
Jupiter (J) 0 1 1 0.5
Saturn (S) 0 1 1 0.5
Uranus (U) 0.5 0.5 1 0
Neptune (N) 0.5 0.5 1 0
Pluto (P ) 1 0 1 0

Figure 1.5.: L-context about planets ([Běl02b])

Example 1.35. Consider the L-context about planets ([Běl02b]) from Figure 1.5. This
is our running example on which we will illustrate the notions from Formal Concept
Analysis in a fuzzy setting. Using the identity as the hedge, we obtain 38 L-concepts
with the Łukasiewicz logic and 25 with the Gödel logic. For instance, an L-concept
is ({0.5/Ma, 0.5/U, 0.5/N,P},{s, f}) meaning that Pluto (the example was created, when
Pluto was still a planet) is a small and far planet, whereas Mars, Uranus and Neptune be-
long just partially to the class of small and far planets. Another example of an L-concept is
({0.5/Me, 0.5/V , 0.5/E,Ma, 0.5/U, 0.5/N, 0.5/P},{s, 0.5/f, 0.5/n}). Its meaning is the following:
Mars belongs to the class of small, partially far and partially near planets, whereas the
other planets from the extent belong just partially to this class. The L-concept lattice for
the Gödel structure is displayed in Figure 1.6. Such diagrams are to be read in a similar
way as their crisp counterparts.

Depending on the chosen hedge, we have different characterisations of the L-concept
lattice. First, let us use the identity.

Theorem 1.36 ([Pol97, Běl02b]). Let (G,M, I) be an L-context. Then, B(G,M, I) is a
complete lattice in which infima and suprema are given by

⋀
t∈T

(At,Bt) =
⎛
⎝⋂t∈T

At,(⋃
t∈T

Bt)
↓↑⎞
⎠
,

⋁
t∈T

(At,Bt) =
⎛
⎝
(⋃
t∈T

At)
↑↓
,⋂
t∈T

Bt
⎞
⎠
.

A complete lattice V = (V,≤) is isomorphic to B(G,M, I) if and only if there are mappings
γ̃ ∶ G ×L→ V and µ̃ ∶M ×L→ V such that γ̃(G ×L) is supremum-dense in V, µ̃(M ×L)
is infimum-dense in V, and a⊗ b ≤ I(g,m) is equivalent to γ̃(g, a) ≤ µ̃(m,b) for all g ∈ G,
m ∈M and a, b ∈ L.

The theorem can be shown either by means of Fuzzy theory ([Běl02b]) or by applying
double-scaling ([Pol97], we will get there in a minute). In [Běl02b] an even stronger char-
acterisation of L-concept lattices was given. In addition to the results of Theorem 1.36

25



1. Preliminaries
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0.5
/s 0.5

/n

Figure 1.6.: L-concept lattice of the context from Figure 1.5 with the Gödel structure

there is a binary L-relation ≾ on B(G,M, I) given by

((A1,B1) ≾ (A2,B2)) ∶= S(A1,A2) (= S(B2,B1)).

Together with this relation, B(G,M, I) is an L-ordered set (see Definition 1.2, page 8).
For further details we refer the reader to [Běl02b].
Double-scaling is a procedure developed in [Pol97] that transforms an L-context into a

crisp formal context. The method works as follows: Let (G,M, I) be an L-context and
define for an L-set A ∈ LG the crisp set A◻ by

A◻ ∶= {(g, ν) ∣ g ∈ G,ν ∈ L, ν ≤ A(g)}. (1.18)

Hence, A◻ ⊆ G◻ ∶= G ×L. Further, let now A ⊆ G ×L and define for it the L-set A♢ by

A♢(g) ∶=⋁{ν ∈ L ∣ (g, ν) ∈ A} (1.19)

for all g ∈ G. Analogous crisp and L-sets can be constructed for attribute sets. For the
L-relation I between G and M define a crisp incidence relation I◻ between G◻ and M◻

given by

(g, ν) I◻ (m,λ) ∶⇐⇒ ν ⊗ λ ≤ I(g,m), (1.20)

where ⊗ is the multiplication in the residuated lattice L. We have the following important
result:

Theorem 1.37 ([Pol97]). Let (G,M, I) be an L-context and (G◻,M◻, I◻) the corresponding
double-scaled context. Then, B(G,M, I) ≅B(G◻,M◻, I◻).
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In the rest of this section we will study the case of general hedges, where the results are
taken from [BV07]. If we choose hedges different from the identity, then the size of the
L-concept lattice is decreasing. The closer we come to the globalisation, the smaller the
lattice becomes. For instance, if we replace the identity with the globalisation, then we
obtain 17 L-concepts with the Łukasiewicz logic for the L-context about planets. Some
studies about how the size of the L-concept lattice changes when applying different hedges
can be found in [BV07].
Let us denote by (−)⇑ and (−)⇓ the derivation operators from (1.16) and (1.17) obtained

by using for both hedges the identity, respectively. First note that A↑ = (A∗G)⇑ and
B↓ = (B∗M )⇓ hold for arbitrary hedges (−)∗G and (−)∗M and for any L-sets A ∈ LG and
B ∈ LM in a given L-context (G,M, I). However, in general, neither A ⊆ A↑↓ nor B ⊆ B↓↑
is true. Therefore, we need a different notion of Galois connections for hedges.

Definition 1.38. A Galois connection with hedges (−)∗G and (−)∗M between sets G and
M is a pair (ϕ,ψ) of mappings ϕ ∶ LG → LM and ψ ∶ LM → LG satisfying

S(A∗G , ψ(B)) = S(B∗M , ϕ(A)),

ϕ(⋃
t∈T

A∗G
t ) = ⋂

t∈T
ϕ(At),

ψ (⋃
s∈S

B∗M
s ) = ⋂

s∈S
ψ(Bs)

for all A,At ∈ LG and B,Bs ∈ LM with t ∈ T and s ∈ S.

The derivation operators form a Galois connection with hedges.
Denote

∗G(L) ∶= {a∗G ∣ a ∈ L} and ∗M(L) ∶= {a∗M ∣ a ∈ L}.

Now we may find an analogous isomorphism to the one given by Theorem 1.37 between
crisp concept lattices and concept lattices with hedges: Every concept lattice with hedges
B(G∗G ,M∗M , I) is isomorphic to the crisp concept lattice B(G× ∗G(L),M × ∗M(L), I◻),
where I◻ is given by (1.20). We may characterise the concept lattices with hedges as
follows:

Theorem 1.39 ([BV07]). Let (G,M, I) be an L-context. Then, B(G∗G ,M∗M , I) is a com-
plete lattice in which infima and suprema are given by

⋀
t∈T

(At,Bt) =
⎛
⎝
(⋂
t∈T

At)
↑↓
,(⋃
t∈T

B∗M
t )

↓↑⎞
⎠
,

⋁
t∈T

(At,Bt) =
⎛
⎝
(⋃
t∈T

A∗G
t )

↑↓
,(⋂
t∈T

Bt)
↓↑⎞
⎠
.

A complete lattice V = (V,≤) is isomorphic to B(G∗G ,M∗M , I) if and only if there are
mappings γ̃ ∶ G × ∗G(L) → V and µ̃ ∶ M × ∗M(L) → V such that γ̃(G × ∗G(L)) is
supremum-dense in V, µ̃(M × ∗M(L)) is infimum-dense in V, and a ⊗ b ≤ I(g,m) is
equivalent to γ̃(g, a) ≤ µ̃(m,b) for all g ∈ G, m ∈M and a, b ∈ L.
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Theorem 1.36 is basically a special case of this one, i.e., take the identity for (−)∗G and
(−)∗M . Once again, we may use the double-scaling to show this theorem.

We have collected the necessary theory to compute L-concepts. But how to do this
efficiently? One may either double-scale the L-context and use the softwares from the
crisp case to compute the L-concept lattice, or do it straightforward in the fuzzy setting.
For the latter we have a fuzzified version of the NextClosure algorithm which was pre-
sented in [Běl02a]. For this we need the fuzzy lectic order ([Běl02a]) which is defined as
follows: Let L = {l0 < l1 < ⋅ ⋅ ⋅ < ln = 1} be the support set of some residuated lattice and
M = {1,2, . . . ,m} the attribute set of the context. For (x, i), (y, j) ∈M ×L, we write

(x, li) ≤ (y, lj) ∶⇐⇒ (x < y) or (x = y and li ≥ lj).

For B ∈ LM and (x, i) ∈M ×L we define

B ⊕ (x, i) ∶= ((B ∩ {1,2, . . . , x − 1}) ∪ {li/x})↓↑.

Furthermore, for B,C ∈ LM define

B <(x,i) C ∶⇐⇒ B ∩ {1, . . . , x − 1} = C ∩ {1, . . . , x − 1} and B(x) < C(x) = li. (1.21)

We say that B is lectically smaller than C, written B < C, if B <(x,i) C for some (x, i)
satisfying (1.21). As in the crisp case, we have that B+ ∶= B⊕(x, i) is the least intent which
is greater than a given B with respect to < and (x, i) is the greatest with B <(x,i) B⊕(x, i)
(for details we refer to [Běl02a]).

1.5.1. Attribute Implications

Attribute implications in a fuzzy setting were mainly developed and studied in a series of
papers by Bělohlávek and Vychodil, for instance in [BV06a, BCV04]. They also appear
in [Pol97], however there a crisp-like approach to pseudo-intents is presented. We will
comment on this later on.
A fuzzy attribute implication (over the attribute set M) is an expression A⇒ B, where

A,B ∈ LM . The verbal meaning of A ⇒ B is: “if it is (very) true that an object has all
attributes from A, then it also has all attributes from B". The notions “being very true",
“to have an attribute", and the logical connective “if-then" are determined by the chosen
residuated lattice L. For an L-set N ∈ LM of attributes, the degree ∣∣A ⇒ B∣∣N ∈ L to
which A⇒ B holds in N is defined by

∣∣A⇒ B∣∣N ∶= S(A,N)∗ → S(B,N).

If N is the L-set of all attributes of an object g, then ∣∣A ⇒ B∣∣N is the truth degree to
which A ⇒ B holds for g. For a set N ⊆ LM , the degree ∣∣A ⇒ B∣∣N ∈ L to which the
implication A⇒ B holds in N is defined by

∣∣A⇒ B∣∣N ∶= ⋀
N∈N

∣∣A⇒ B∣∣N .

For an L-context (G,M, I), let Ig ∈ LM (g ∈ G) be an L-set of attributes such that
Ig(m) = I(g,m) for eachm ∈M . Clearly, Ig corresponds to the row labelled g in (G,M, I).
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The degree ∣∣A ⇒ B∣∣(G,M,I) ∈ L to which A ⇒ B holds in (each row of) K = (G,M, I) is
defined by

∣∣A⇒ B∣∣K = ∣∣A⇒ B∣∣(G,M,I) ∶= ∣∣A⇒ B∣∣N , (1.22)

where N ∶= {Ig ∣ g ∈ G}. Denote by

Int(G∗,M, I) ∶= {B ∈ LM ∣ (A,B) ∈B(G∗,M, I) for some A}

the set of all intents of B(G∗,M, I). Since N ∈ LM is the intent of some concept if and
only if N = N ↓↑, we have that Int(G∗,M, I) = {N ∈ LM ∣ N = N ↓↑}. Further, the degree
∣∣A⇒ B∣∣B(G∗,M,I) ∈ L to which A⇒ B holds in (the intents of) B(G∗,M, I) is defined by

∣∣A⇒ B∣∣B(G∗,M,I) ∶= ∣∣A⇒ B∣∣Int(G∗,M,I).

Lemma 1.40 ([BV05c]). Let (G,M, I) be an L-context. Then,

∣∣A⇒ B∣∣(G,M,I) = ∣∣A⇒ B∣∣B(G∗,M,I) = ∣∣A⇒ B∣∣Int(G∗,M,I) = S(B,A↓↑),

for each fuzzy attribute implication A⇒ B.

Example 1.41. As we have already seen, implications in a fuzzy setting do not simply hold
or not, they hold with some truth value. To illustrate this fact, consider once again the
L-context K given in Figure 1.5 (page 25). We use the Łukasiewicz logic and the identity
for the hedge. Then, ∣∣n⇒ s∣∣K = 0.5 and hence ∣∣n⇒ 0.5/s∣∣K = 1. These two implications
mean that near implies small only partially, or expressed in other words, near implies
partially small. Another implications is ∣∣{0.5/l, 0.5/n} ⇒ {l, f}∣∣K = 0.5. If we replace the
identity with the globalisation, the truth values of the implications change. For instance,
we have ∣∣n⇒ s∣∣K = 1 and ∣∣{0.5/l, 0.5/n}⇒ {l, f}∣∣K = 1.

1.5.2. Non-redundant Bases of Fuzzy Attribute Implications

Due to the large number of implications in a fuzzy and even in a crisp formal context, one
is interested in the stem base of the implications. The stem base problem for the fuzzy
setting was studied in [BCV04, BV05c, BV05b]. Neither the existence nor the uniqueness
of it is guaranteed in general for a given L-context. How these problems can be overcome
is the topic of the rest of this subsection. For a more detailed description we refer the
reader to the before cited papers.
Let T be a set of fuzzy attribute implications. An L-set of N ∈ LM is called a model

of T if ∣∣A ⇒ B∣∣N = 1 for each A ⇒ B ∈ T . The set of all models of T is denoted by
Mod(T ), i.e.,

Mod(T ) ∶= {N ∈ LM ∣ N is a model of T}.

The degree ∣∣A ⇒ B∣∣T ∈ L to which A ⇒ B semantically follows from T is defined by
∣∣A⇒ B∣∣T ∶= ∣∣A⇒ B∣∣Mod(T ). The set T of fuzzy attribute implications is called complete
(in (G,M, I)) if ∣∣A ⇒ B∣∣T = ∣∣A ⇒ B∣∣(G,M,I) for each A ⇒ B. If T is complete and no
proper subset of T is complete, then T is called a non-redundant base.

Theorem 1.42 ([BCV04]). T is complete if and only if Mod(T ) = Int(G∗,M, I).
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As in the crisp case, a non-redundant base of a given L-context can be obtained through
the pseudo-intents.

Definition 1.43. P ⊆ LM is called a system of pseudo-intents if for each P ∈ LM we have:

P ∈ P ⇐⇒ (P ≠ P ↓↑ and ∣∣Q⇒ Q↓↑∣∣P = 1 for each Q ∈ P with Q ≠ P ).

In case we choose for (−)∗ the globalisation, then, due to the properties of the glob-
alisation, the formalisation of pseudo-intents from Definition 1.43 becomes: P ⊆ LM is a
system of pseudo-intents if

P ∈ P ⇐⇒ (P ≠ P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q ⫋ P ). (1.23)

Note that this was the only kind of system of pseudo-intents studied in [Pol97].

Theorem 1.44 ([BV05c]). Let L be a finite residuated lattice with globalisation. Then, for
each (G,M, I) with finite M there is a unique system of pseudo-intents P given by (1.23).

Note that this theorem does not hold for general hedges.

Theorem 1.45 ([BV05c]). T ∶= {P ⇒ P ↓↑ ∣ P ∈ P} is complete and non-redundant, called
the stem base. If (−)∗ is the globalisation, then T is unique and minimal.

For Z ∈ LM and for each natural number n we put

ZT
∗

∶= Z ∪⋃{B ⊗ S(A,Z)∗ ∣ A⇒ B ∈ T and A ≠ Z},

ZT
∗
n ∶= { Z, n = 0,

(ZT ∗n−1)T ∗ , n ≥ 1,

where B ⊗S(A,Z)∗ is computed component-wise. We define an operator clT on L-sets in
M by

clT(Z) ∶=
∞
⋃
n=0

ZT
∗
n . (1.24)

Theorem 1.46 ([BCV04]). If (−)∗ is the globalisation, then clT is an L∗-closure operator
and {clT(Z) ∣ Z ∈ LM} = P ∪ Int(X∗, Y, I).

According to this theorem, if (−)∗ is the globalisation, then we can obtain all intents
and all pseudo-intents of a given L-context by computing the fix points of clT. In [BCV04]
an algorithm for the computation of all intents and all pseudo-intents in lectic order was
proposed.
However, there is also an alternative way for obtaining the stem base of an L-context

using the globalisation. This method was developed in [BV05d]. Basically one takes the
simple-scaled context (G,M × L, I◻) and computes its stem base. Afterwards, the so-
obtained crisp implications are transformed into fuzzy ones. These represent a complete
set of implications of (G,M, I). Of course, the set is redundant, because there are not
just implications between attributes but also between truth values. Note that this method
only works in case we are using the globalisation.
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globalisation identity 1 identity 2
n ⇒ s, n ⇒ 0.5/s, n ⇒ 0.5/s,

f, 0.5/n ⇒ l, f, 0.5/n ⇒ 0.5/l, f, 0.5/n ⇒ 0.5/l,
0.5/l ⇒ f , l ⇒ f, 0.5/n, l, 0.5/n ⇒ f ,
l, f ⇒ 0.5/n, s, 0.5/l, 0.5/f ⇒ 0.5/n. s, 0.5/l, 0.5/f ⇒ 0.5/n.

0.5/s, 0.5/n ⇒ s, n,
s, f, 0.5/l ⇒ l, n.

Figure 1.7.: Different stem bases of the L-context given in Figure 1.5

Example 1.47. Consider once again the L-context K given in Figure 1.5 (page 25). In this
example we work with the Łukasiewicz logic. If we use the globalisation, then we obtain
the unique stem base given in the first column of the table from Figure 1.7. The other
two columns show the two different stem bases of the same L-context obtained by using
the identity.

Now, if we choose a general hedge in the residuated lattice, things get messy. The
computation of the systems of pseudo-intents for general hedges was studied in [BV05b].
For an L-context (G,M, I) we compute the following:

V ∶= {P ∈ LM ∣ P ≠ P ↓↑}, (1.25)
E ∶= {(P,Q) ∈ V × V ∣ P ≠ Q and ∣∣Q⇒ Q↓↑∣∣P ≠ 1}. (1.26)

In case of a non-empty V , G ∶= (V,E ∪ E−1) is a graph. For Q ∈ V , P ⊆ V define the
following subsets of V :

Pred(Q) ∶= {P ∈ V ∣ (P,Q) ∈ E},
Pred(P) ∶= ⋃

Q∈P
Pred(Q).

Described verbally, Pred(Q) is the set of all elements from V which are predecessors of Q
(in E). Further, Pred(P) is the set of all predecessors of any Q ∈ P.
We will compute the systems of pseudo-intents through maximal independent sets.

Therefor, the following results are useful:

Theorem 1.48 ([BV05b]). (i) Let ∅ ≠ P ⊆ LM . If V ∖P = Pred(P), then P is a maximal
independent set in G.

(ii) Let P ⊆ LM . Then, P is a system of pseudo-intents if and only if V ∖P = Pred(P).

It is well-known that the maximal independent sets of a graph can be efficiently enu-
merated in lexicographic order with only polynomial delay between the output of two
successive independent sets ([JYP88]). In [DS11] it was shown that the pseudo-intents
cannot be enumerated in lexicographic order with polynomial delay unless P = NP. These
two results do not contradict each other because they address different issues. The first one
is encountered when we enumerate the maximal independent sets of the graph G which is
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the input of the corresponding algorithm. These sets correspond to the systems of pseudo-
intents. Whereas the result from [DS11] takes as input a formal context enumerating its
pseudo-intents.
Example 1.49. We start with a very simple example. Let ({g},{a, b}, I) be an L-context
with I(g, a) = 0.5 and I(g, b) = 0. Further, we use the three-element Łukasiewicz logic
with (−)∗ being the identity. First, we compute V as given by (1.25) and obtain

V = {{0.5/a,0.5 /b},{0.5/b},{},{0.5/a, b},{b},{a}}.

Afterwards, we compute the binary relation E as given by (1.26). It is displayed in
Figure 1.8. Considering the undirected diagram of Figure 1.8 we obtain the graph G.
There, we have four maximal independent sets, namely

P1 = {{},{0.5/a, b},{a}}, P2 = {{0.5/b},{a}},
P3 = {{b},{a}}, P4 = {{0.5/a,0.5 /b},{a}}.

The sets P1 and P3 do not satisfy condition ii) of Theorem 1.48 and are therefore not

{0.5/a,0.5 /b}

{0.5/b}

{}

{0.5/a, b}

{b} {a}

Figure 1.8.: Binary relation E

systems of pseudo-intents. However, P2 and P4 do satisfy this condition and hence they
are systems of pseudo-intents yielding the stem bases displayed in Figure 1.9.

T2 T4

(1) 0.5/b⇒ a (3) 0.5/a,0.5 /b⇒ a

(2) a⇒0.5 /b (4) a⇒0.5 /b

Figure 1.9.: Stem bases

It is still an open question which conditions have to be satisfied in order to have a system
of pseudo-intents for a given L-context using a general hedge. Further, if it exists, when
is it unique? And finally, when is the system of pseudo-intents minimal?
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Factor Analysis
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Introduction to Part I

Factor Analysis, in particular Principal Component Analysis, is a popular technique for
analysing metric data. It allows for complexity reduction, representing a large part of
the given data by a preferably low number of unobserved “latent” attributes. In the
forthcoming chapters we will translate this statistical method into the language of Formal
Concept Analysis, leaving the statistical part aside.
In Chapter 2 we first build on some already established connections between Factor

Analysis of binary data and Formal Concept Analysis. The factors of such an analysis
are called Boolean factors and are actually formal concepts. Afterwards, we develop the
so-called many-valued factorisations that group the Boolean factors into well-structured
families. These families are given by the conceptual standard scales of Formal Concept
Analysis. Since this is a new technique, we apply it on different real-world data sets. The
results show that these many-valued factorisations are serious competitors to the latent
attributes from ordinary Factor Analysis.
In Chapter 3 we turn our attention to the factorisation of triadic data with triadic

Boolean factors. Such a generalisation is wishful due to two aspects. First, triadic data
has numerous applications and various data reduction methods were generalised to the
triadic case. Second, as we will see in Chapter 2, Boolean factors yield factorisations with
the smallest possible number of elements and thus we expect the same from their triadic
counterparts. This speculation comfirms to be true in Chapter 4.
Up until Chapter 4 we deal with the formal concept analytical formalisation of the

Factor Analysis problem presenting different mathematical results. We claim that those
factorisations are easy to understand and may keep up with ordinary data reduction
techniques. This claim confirms to be true in Chapter 4. There we show that the so-
called Hierarchical Classes Analysis, that was developed for applications in personality
organisation and implicit belief systems, is reducible to our conceptual factorisation both
for dyadic and triadic data. Further, we develop the fuzzy variant of Hierarchical Classes
Analysis.
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Conceptual Factorisations

Factor Analysis is a commonly used complexity reduction technique for metric data. Re-
cently a factor analytical approach was discussed for qualitative data, for data that can be
represented by a formal context, and a nice strategy for finding so-called Boolean factors
was found. The further development of this area is the topic of Section 2.1.
However, such Boolean factors have limited expressiveness due to their unary nature.

It can hardly be expected that much of a complex data set can be captured by only a
few Boolean factors. But even a large factorisation may be useful provided the factors are
conceptually “well behaved” and can be grouped into well-structured families, which then
may be interpreted as many-valued factors. These are given by the conceptual standard
scales of Formal Concept Analysis. In Section 2.2 we focus on the case of (one-dimensional)
ordinal scales. Note that Section 2.1 and 2.2 are mainly based on [GG12].
Since the many-valued factors are newly developed, they have to be tested. It is yet

unclear whether there is more behind them than a robust mathematical theory. Thus,
in Section 2.3 we apply the method on three different real-world data sets. We find out
that the many-valued factors are serious competitors to latent attributes, being easily
interpretable and relatively small in number.
In [Běl08] and [BV09a] the Boolean factors from Section 2.1 were generalised to the

fuzzy setting. Since in the upcoming chapters we will build on these results, we briefly
overview them in Section 2.4.
An overall conclusion of the chapter is given in its last section.

2.1. Boolean Factors

The starting point of a Boolean matrix factorisation/Boolean Factor Analysis ([MME90])
is an n×m binary matrix X which is decomposed into the Boolean matrix product A○B of
an n× k binary matrix A and a k ×m binary matrix B such that k is as small as possible.
Such k is called by some authors the Schein rank ([Kim82]) of X and is denoted by ρ(X).
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2. Conceptual Factorisations

The Boolean matrix product A ○B is defined by

(A ○B)ij ∶=
k

⋁
l=1
Ail ⋅Blj (2.1)

for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, where ⋁ denotes the maximum and ⋅ the usual product.
Decompositions of binary matrices, not necessarily through the Boolean matrix product,

have been widely investigated with different methods and approaches. For a brief survey
see for instance [BV10a]. Among them, there are also approaches based on methods
that were initially developed for real-valued matrices, for example [SSU03, TT06, ZV06].
There one starts with a binary matrix and ends up with two real-valued matrices as its
decomposition. However, it is well-known (see for instance [MMG+08, TMGM06]) that
applying decomposition methods that were designed for real-valued data to binary data
distorts the meaning of the data and yields results that are difficult to interpret. On the
other hand, decomposition methods based on the Boolean matrix product are interpreted
in a straightforward way and are therefore preferable ([MMG+08]).
Apparently, the first to link Formal Concept Analysis with the decomposition of binary

matrices were Snášel and Keprt ([KS04, Kep06]). Their work was pushed forward by
Bělohlávek and Vychodil (see e.g. [BV10a]). However, as we will see in Chapter 4, there is
also another approach, Hierarchical Classes Analysis by De Boeck and Rosenberg, that is
reducible to the formal concept analytical one. For better compatibility with the language
of Formal Concept Analysis we slightly deviate from these authors’ terminology.
In this section we mainly present the results from [GG12] and recall some from [BV10a].

We start by introducing the factorisation of formal contexts through formal concepts.
Thereafter, we show how such a factorisation can be found, and we study some of its
properties. Having the theoretical background, we focus afterwards on algorithmic issues
and on so-called approximate factorisations, which explain only roughly the data. Such
factorisations are useful due to their small number of factors that explain a large portion
of the data. The developed notions are illustrated on the data from the anorexia nervosa
therapy.

Definition 2.1. A factorisation of a formal context (G,M, I) consists of formal contexts
(G,F, IGF ) and (F,M, IFM) such that

g I m ⇐⇒ g IGF f and f IFM m for some f ∈ F.

The elements of F are called Boolean factors, (G,F, IGF ) and (F,M, IFM) are the fac-
torisation contexts. We write

(G,M, I) = (G,F, IGF ) ○ (F,M, IFM)

to indicate a factorisation.

As one can easily see, the object-attribute relation of (G,M, I) is expressed through the
factorisation contexts: An object g has an attributem if and only if there is a factor f such
that f applies to g and m is a particular manifestation of f . Thus, the first factorisation
context represents the relationship between objects and factors and the second one between
factors and attributes.
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2.1. Boolean Factors

To each factorisation there corresponds a factorising family

{(Af ,Bf) ∣ f ∈ F}

given by
Af ∶= {g ∈ G ∣ g IGF f} and Bf ∶= {m ∈M ∣ f IFM m}.

Such families are easy to characterise: A family {(Af ,Bf) ∣ f ∈ F} is a factorising family
of (G,M, I) if and only if

I = ⋃
f∈F

Af ×Bf . (2.2)

Expressed in words this says that the factorising families are precisely those families of
preconcepts of (G,M, I) that cover all incidences. As an obvious consequence we get that
each factorisation is uniquely determined by its factorising family.
Each preconcept can be enlarged to a formal concept (though not uniquely). Each

factorising family therefore may, without increasing the number of Boolean factors, be
made to a factorising family of concepts. Such a factorisation will be called conceptual.
A key question of the abovementioned investigations concerned finding optimal factori-

sations, i.e., those with the number of factors being the Schein rank of (G,M, I). The
task of filling a given relation I ⊆ G ×M by as few as possible “rectangles” A ×B ⊆ I had
been studied earlier under the name set dimension (see [GW96] and the literature cited
there), and is known to be difficult. There is a close connection to the 2-dimension of
the complementary context, which is the number of atoms of the smallest Boolean alge-
bra that admits an order embedding of the concept lattice of the complementary context
B(G,M,G×M ∖ I). Indeed, the following proposition is an easy consequence of [BV10a]
and the dimension theory in [GW96]:

Proposition 2.2 ([GG12]). The smallest possible number of Boolean factors of (G,M, I)
equals the 2-dimension of B(G,M,G ×M ∖ I).

Thus, we find the connection between the conceptual factorisation and Boolean Factor
Analysis with its matrix product defined in (2.1). By replacing the crosses with ones and
the blanks with zeros we obtain a Boolean matrix from (G,M, I). We denote this matrix
by I. Its size is n ×m, where n ∶= ∣G∣ and m ∶= ∣M ∣. In a similar fashion we build the
corresponding binary matrices AF and BF to the factorisation contexts, i.e., we set

(AF )il ∶=
⎧⎪⎪⎨⎪⎪⎩

1, i ∈ f IGF

l ,

0, i ∉ f IGF

l ,
(BF )jl ∶=

⎧⎪⎪⎨⎪⎪⎩

1, j ∈ f IF M

l ,

0, j ∉ f IF M

l ,

for all l ∈ {1, . . . , k}, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Choosing k ∶= ∣F ∣ indeed provides us
with the Schein rank of I, as shown in the previous proposition.

Example 2.3. Consider the formal context about the anorexia nervosa therapy from Sec-
tion 1.3 that we display here once again in Figure 2.1. For now ignore that some crosses
are larger. One may find a factorisation of it with five Boolean factors in several ways.
One way is displayed in Figure 2.2. The first two factors contain the characteristics with
negative connotation. The third is a general factor as it contains the fewest attributes and
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g1 : myself × ⨉ ⨉ × ⨉ × × ⨉ × ×
g2 : my ideal ⨉ × ⨉ ⨉ × ⨉ ⨉ ×
g3 : father × × × × × × × × × × × ×
g4 : mother × × × × × ⨉ × × × × ×
g5 : sister × × × × × × × × × ×
g6 : brother-in-law × × × × × × ×

Figure 2.1.: Anorexia nervosa context from Figure 1.1 with tight crosses
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f2
× × × × × × × ×

f3
× × × ×

f4
× × × × × × ×

f5
× × × × × × ×

Figure 2.2.: A conceptual factorisation of the formal context from Figure 2.1.

applies to almost each family member. It may express the caring of the family members
towards other persons and duties. The fourth factor is typical for the brother-in-law. He
has his “own factor” because he is the only talkative person. The last factor shows the
common ground between the patient and her ideal.
We said before that the optimal factorisation is of size five. This can be seen from the

concept lattice of the complementary context to the anorexia nervosa context displayed in
Figure 2.3. Indeed, the black shaded substructure does not fit into a Boolean algebra with
four atoms. Thus, the whole lattice cannot be embedded into such an algebra. Therefore,
the smallest possible number of Boolean factors is five.
Such a factorisation is not very pleasing, since there is a trivial factorisation with six

Boolean factors, as detailed in a minute.

Note that in a conceptual factorisation of (G,M, I) the second factorisation context is
determined by the first. Indeed, we get from Bf = AIf that

f IFM m ⇐⇒ m ∈ AIf = (f IGF )I .

Proposition 2.4 ([GG12]). For any conceptual factorisation with factor set F the dual
attribute order of (G,F, IGF ) is the same as the object order of (F,M, IFM).
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2.1. Boolean Factors

Figure 2.3.: Concept lattice of the complementary context to the anorexia nervosa context from
Figure 2.1

Proof. If f IGF
1 ⊆ f IGF

2 , then Af1 = f IGF
1 ⊆ f IGF

2 = Af2 and thus Bf1 = AIf1
⊇ AIf2

= Bf2 .
Therefore, f IF M

1 ⊇ f IF M
2 . The converse is similar.

In general the condition given in this proposition is not sufficient. The next theorem
characterises the conceptual factorisation contexts. It turns out that a conceptual factori-
sation links each factor context to the complementary context of the other.

Theorem 2.5 ([GG12]). (G,F, IGF ) and (F,M, IFM) are the factorisation contexts of a
conceptual factorisation if and only if

1. all intents of (G,F, IGF ) are extents of (F,M,F ×M∖ IFM), and

2. all extents of (F,M, IFM) are intents of (G,F,G × F∖ IGF ).

Proof. Start with a conceptual factorisation, and recall that

g I m ⇐⇒ gIGF ∩mIF M ≠ ∅,

which is equivalent to
g  I m ⇐⇒ gIGF ⊆ F ∖mIF M .

For arbitrary g ∈ G we ask if the object intent gIGF is the intersection of attribute extents of
(F,M,F ×M∖ IFM). Suppose not. Then there must be some f ∈ F which is contained in
all attribute extents of (F,M,F ×M∖ IFM) that contain gIGF , but which does not belong
to gIGF . From g ∉ f IGF = Af we infer that g ∉ BI

f = (f IF M )I . Consequently, there must be
some m ∈ f IF M with g  I m. This, as stated above, is equivalent to gIGF ⊆ F ∖mIF M . But
then F ∖mIF M is an attribute extent of (F,M,F ×M∖ IFM) containing gIGF and not f ,
a contradiction.
For the converse direction suppose that the conditions are satisfied. In order to show

that the factorisation is conceptual, we need to prove that (f IGF )I ⊆ f IF M and dually
(f IF M )I ⊆ f IGF hold for all f ∈ F . Now assume that m ∉ f IF M , which is the same as
f ∉ mIF M . Since mIF M is an extent of (F,M, IFM), there must be, according to the
second condition, an object intent of (G,F,G × F∖ IGF ) containing mIF M , but not f . In
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2. Conceptual Factorisations

other words, there must be an object g ∈ f IGF such that gIGF ∩mIF M = ∅. Thus g  I m,
i.e., m ∉ (f IGF )I .

Note that every formal context (G,M, I) is a conceptual factorisation context in its
trivial factorisations, one of them being

(G,M, I) = (G,M, I) ○ (M,M,→),

where m → n ∶⇐⇒ n ∈ mII . The other is defined dually. Theorem 2.5 therefore imposes
no restriction on single factorisation contexts.
The following two results are straightforward. However none of them holds generally in

ordinary Factor Analysis due to the statistical tools used in that framework. Thus, these
propositions might be interpreted as robustness results for the conceptual factorisations.
They say that the conceptual factorisation is invariant under dualisation and clarification
of the formal context in the sense detailed in the propositions.

Proposition 2.6. The conceptual factorisation contexts (G,F, IGF ) and (F,M, IFM) of
(G,M, I) are the dual contexts to the conceptual factorisation contexts (F,G, I−1

GF ) and
(M,F, I−1

FM) of (M,G, I−1), respectively.

Proof. According to the Duality Principle of Concept Lattices ([GW96]) for any formal
context (G,M, I) it holds that B(M,G, I−1) ≅ B(G,M, I)d, where the isomorphism is
given by (A,B) ↦ (B,A). Hence, if we find a conceptual factorisation of (G,M, I) with
the corresponding factorising family {(Af ,Bf) ∣ f ∈ F}, then {(Bf ,Af) ∣ f ∈ F} is the
factorising family of (M,G, I−1). Indeed, from I = ⋃f∈F Af ×Bf it trivially follows that
I−1 = ⋃f∈F Bf ×Af .

Proposition 2.7. The clarified conceptual factorisation contexts of (G,M, I) are the same
as the conceptual factorisation contexts of the clarified context of (G,M, I).

Proof. From [GW96] we know that for each context (G,M, I) its clarified context can be
associated as follows:

(G/kerγ,M/kerµ, I○),

where kerγ is the equivalence relation on G given by

(g, h) ∈ kerγ ∶⇐⇒ γg = γh.

The definition of kerµ is correspondingly. The equivalence classes of kerγ are the objects
of the context (G/kerγ,M/kerµ, I○) and those of kerµ are the attributes. The incidence
relation I○ is given by

([g]kerγ , [m]kerµ) ∈ I○ ∶⇐⇒ g I m.

Let F be the factor set of a conceptual factorisation of the formal context (G,M, I).
For any g, h ∈ G we trivially obtain gIGF = hIGF from gI = hI . An analogous remark holds
for attributes. Further, let Fker be the factor set and let {(Af /kerγ,Bf /kerµ) ∣ f ∈ F} be
the factorising family of (G/kerγ,M/kerµ, I○) given by

Af /kerγ ∶= {g ∈ G/kerγ ∣ g IGF f} and Bf /kerµ ∶= {m ∈M/kerµ ∣ f IFM m}.
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2.1. Boolean Factors

Now suppose that F ∖Fker ≠ ∅, i.e., there is some factor l ∈ F such that l ∉ Fker. Thus, we
have

I○ = ⋃
f∈F∖{l}

Af /kerγ ×Bf /kerµ,

which implies

I = ⋃
f∈F∖{l}

Af ×Bf ,

a contradiction. The converse is similar.

We have already mentioned that finding an optimal factorisation is difficult. Indeed,
it has been shown in [BV10a] that the set-basis problem is reducible to conceptual fac-
torisation. As it is well-known that the set basis problem is NP-complete, it follows that
conceptual factorisation is NP-hard. Let us present this result briefly.
In the set basis problem we have a collection S = {S1, . . . , Sn} of sets Si ⊆ {1, . . . ,m}

and a natural number k. The problem consists in answering the question whether there
is a collection C = {C1, . . . ,Ck} of subsets Cl ⊆ {1, . . . ,m} such that for every Si there is
a subset Di ⊆ {C1, . . . ,Ck} with ⋃Di = Si. The corresponding optimisation problem lies
in finding a C of least cardinality, that satisfies the above conditions, for a given S. The
set basis problem is easily reducible to the factorisation problem: Given S, one defines
an n ×m binary matrix I by Iij = 1 if and only if j ∈ Si. One can show that I can be
decomposed into the Boolean matrix product A○B of an n×k and a k×m binary matrix A
and B, respectively, if and only if Cl (l = 1, . . . , k) and Di, defined by j ∈ Cl iff Blj = 1 and
Cl ∈Di iff Ail = 1, are a solution to the set basis problem given by S. Then, I corresponds
to a formal context and the matrices A and B to its factorisation contexts. Therefore, the
problem of finding a conceptual factorisation with ∣F ∣ = k as small as possible is NP-hard
and the corresponding decision problem is NP-complete.
In our setting the universe U to be covered corresponds to the incidence relation of the

context and the family S of subsets of the universe U that is used for finding a cover
corresponds to the set of all concepts. We are looking for C ⊆ S with the smallest number
of sets such that ⋃C = U .
Although the factorisation problem is difficult, there exists a greedy approximation

algorithm for the set covering optimisation problem which achieves an approximation
ratio ≤ ln(∣U ∣) + 1, see [CLRS01]. In [BV10a] a greedy approximation algorithm for the
conceptual factorisation was presented. It selects formal concepts which cover the most
part of the incidence relation until there is nothing left to be covered.
In [BV10a] it was shown that mandatory factors, i.e., those which are present in each

factorisation, correspond to concepts which are both object and attribute concepts. In
[GG12] we took a step forward: An incident object-attribute pair (g,m) ∈ I is called tight
if and only if there is no pair (h,n) ∈ I such that

[γh,µn] ⊊ [γg, µm].

It is easy to see that for a conceptual factorisation it suffices to cover the tight incidences
by formal concepts, because the other incidences will then automatically be covered. This
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is sometimes useful for the computation of the set dimension, since it reduces the size of
the corresponding set covering problem. The tight incidences correspond to the double
arrows of the complementary context. The larger crosses in Figure 2.1 match the tight
incidences.

As we have already seen, even for a small formal context numerous factors are needed
in a conceptual factorisation. Thus, generally, Factor Analysis seeks for an approximate
factorisation. Such a factorisation fits just partially the data and is adequate whenever the
the user is roughly interested in the information contained in the data. The approximate
factorisations are of two kinds: with negative discrepancies, where not the entire incidence
relation of the context is covered by the factorisation; and with positive discrepancies,
where some blank entries are “covered” with crosses, i.e., one explains more than there is.
Of course, one may combine the two kinds of approximate factorisations.
Conceptual factorisations with negative discrepancies were studied in [BV10a]. It turned

out that in practice it is often the case that exact factorisations may require a large number
of factors, however a relative small number of them covers most part of the incidence
relation.

Example 2.8. We have already found out that the anorexia nervosa context can be fac-
torised using five Boolean factors that are displayed in Figure 2.2. However, the factor
set F1 ∶= {f2} already covers 55,17% of the incidence relation! So, by using just one
factor we can explain more than a half of the data. The factor sets F2 ∶= {f2, f3} and
F3 ∶= {f2, f3, f5} cover 75,86% and 86,21% of the incidence relation, respectively. The
factors f1 and f4 tighten also the factorisation, however not as drastically as the other
ones. Thus, the more factors we add to the factorisation, the tighter it becomes.

A dense rectangle in a formal context (G,M, I) is a tuple (A,B) with A ⊆ G and B ⊆M
such that A×B ⊈ I, i.e., it is a rectangle in the cross table which allows blank entries. The
computation of dense rectangles was studied in [GV93, BV06b], however the factorisation
problem was not considered. Here we will use the terminology from [GV93] and denote
by zd the number of blank entries in a dense rectangle d ∶= (A,B), i.e., zd ∶= ∣(A ×B) ∖ I ∣.
Further, we denote by ρzd

∶= z/(∣A∣⋅∣B∣) the density of d. Now, a factorisation with positive
discrepancies is a set D of dense rectangles such that

I ⊆ ⋃
(A,B)∈D

A ×B.

Obviously, the lower the density is that we allow for the dense rectangles, the more precise
the factorisation becomes.

Example 2.9. The following three dense rectangles yield an approximate factorisation with
positive discrepancies of the formal context from Figure 2.1:

({g1, g3, g4, g3},M ∖ {m8,m11,m12}),
({g2, g6},{m1,m3,m4,m5,m7,m9,m13,m14}),
({g3, g4, g6},{m4,m5,m8,m11,m12,m14}).

Their densities are 0.11,0.19 and 0.17, respectively, and they cover 11 blank entries.
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Now we come to the last issue of this section, which addresses the transformations be-
tween the space of attributes and the space of factors. Given a formal context (G,M, I) and
a conceptual factorisation of it with factorisation contexts (G,F, IGF ) and (F,M, IFM),
one is naturally interested in how to transform a description of a given object in terms
of attributes into a description of the same object in terms of factors. That is, one asks
for transformations between the attribute space and the factor space. Such mappings
were studied in [BV10a] and were utilised in [Out10] for improving classification of binary
data. For a better compatibility with the language of Formal Concept Analysis, we devi-
ate once again from the notation used by the authors and define ϕ ∶ P(M) → P(F ) and
ψ ∶P(F )→P(M) by

ϕ(P ) ∶= {f ∈ F ∣ f IF M ⊆ P}, (2.3)
ψ(S) ∶= ⋃

f∈S
f IF M , (2.4)

for P ∈P(M) and S ∈P(F ). In [BV10a] it was shown that

ϕ(gI) = gIGF and ψ(gIGF ) = gI

for any g ∈ G. Thus, ϕ maps the rows of (G,M, I) to the rows of (G,F, IGF ), and ψ maps
the rows of (G,F, IGF ) to the rows of (G,M, I). One may show that these mappings form
an isotone Galois connection.

2.2. Ordinal Factors

The set F of Boolean factors may be large and should then, for the sake of better in-
terpretability, be divided into conceptually meaningful subsets. An ordinal factor, for
instance, simply represents a chain of Boolean factors.

Proposition 2.10 ([GG12]). If (G,F, IGF ) and (F,M, IFM) are conceptual factorisation
contexts and E ⊆ F , then (G,E, IGF ∩ (G × E)) and (E,M, IFM ∩ (E ×M)) are also
conceptual factorisation contexts.

Proof. Let

(G,M, IE) ∶= (G,E, IGF ∩ (G ×E)) ○ (E,M, IFM ∩ (E ×M)).

Each (Ae,Be), e ∈ E, is a formal concept of (G,M, I) and, since IE ⊆ I, also of (G,M, IE).

Definition 2.11. If (G,F, IGF ) and (F,M, IFM) are conceptual factorisation contexts of
(G,M, I) and E ⊆ F , then (G,E, IGF ∩ (G × E)) is called a (many-valued) factor of
(G,M, I).

Many-valued factors are closely related to the scale measures described in [GW96]:

Definition 2.12. Let K ∶= (G,M, I) and S ∶= (GS,MS, IS) be formal contexts. An S-measure
is a map

σ ∶ G→ GS

with the property that the preimage σ−1(E) of every extent E of S is an extent of K. An
S-measure is called full, if every extent of (G,M, I) is the preimage of some S-extent.
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Proposition 2.13 ([GG12]). S ∶= (G,F, IGF ) is a factor of (G,M, I) if and only if the
identity map is an S-measure.

Proof. Clearly S ∶= (G,F, IGF ) is a factor of (G,M, I) if and only if each attribute extent
f IGF is an extent of (G,M, I).

Definition 2.14. A factor (G,F, IGF ) of (G,M, I) is called an S-factor if it has a surjective
full S-measure. If S is an elementary ordinal, or nominal, etc., scale, we speak of an
ordinal or nominal factor, etc. Moreover, we say that (G,M, I) has an ordinal (nominal,
etc.) factorisation if and only if it has a first factorising context that can be written as an
apposition of ordinal (nominal, etc.) factors.

In other words: The first factorisation context of an ordinal factorisation must be a
derived context of a many-valued context with respect to some ordinal scaling.

Example 2.15. Consider once again our running example from Figure 2.1. It can be
ordinally factored, using eight Boolean factors, as shown in Figure 2.4. Obviously, the
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Figure 2.4.: An ordinal factorisation of the formal context from Figure 2.1

first factorisation context is a derived context of an ordinally scaled many-valued context
with two many-valued attributes, and the second factorisation context is the dual of such
a derived context, but with reverse scaling. Such many-valued contexts are given in
Figure 2.5. The conceptual scales for the first and the second factorisation context are
shown in Figure 2.6. For Figure 2.5 we used the following symbolic notation of the ordinal
factorisation defined in Figure 2.4:

gi IGF f
k
j ⇐⇒ fk(gi) ≥ j and fkj IFM mi ⇐⇒ fk(mi) < j.

Thus, we have

g I m ⇐⇒ fk(g) > fk(m) for some k.

Expressed differently, it holds that

g  I m ⇐⇒ fk(g) ≤ fk(m) for all k.
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K =

f1 f2

g1 2 2
g2 3 1
g3 1 4
g4 0 4
g5 1 3
g6 4 0

○

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11

m
12

m
13

m
14

f1 4 4 1 2 0 4 0 4 4 4 3 3 4 0
f2 0 1 4 2 0 1 4 3 0 1 4 3 0 0

Figure 2.5.: Many-valued factorisation contexts for the ordinal factorisation from Figure 2.4

≥ 1 ≥ 2 ≥ 3 ≥ 4
0
1 ×
2 × ×
3 × × ×
4 × × × ×

< 1 < 2 < 3 < 4
0 × × × ×
1 × × ×
2 × ×
3 ×
4

Figure 2.6.: Conceptual scales for the two many-valued factorisation contexts in Figure 2.5.

It is somewhat tempting, but highly experimental, to plot the two factors as it is usual
in (numerical) Factor Analysis. Such a diagram is shown in Figure 2.7. Note that we
did not include the attributes “hearty” and “ambitious” as they apply to each family
member. A representation like this may however be misleading, since it displays purely
ordinal data in a metric fashion. An additional source of misinterpretation is that the two
“dimensions” represent ordinal, not interordinal (“bipolar”) data. However, the diagram
indicates that ordinal factor analysis, when interpreted correctly, has some expressiveness
similar to Factor Analysis based on metric data.
Analysing the many-valued factorisation contexts or the “biplot” we observe that one

factor contains the attributes with positive connotations, whereas the other one contains
the attributes with negative connotations. Further, we can see that, as it is the case in
ordinary Factor Analysis, the objects “load high” on only one factor, i.e., the objects have
many attributes of only one of the factors. The sole exception is “myself” that is located
in the middle of both factors.

Obviously, Proposition 2.6 and Proposition 2.7 also hold in this setting, i.e., the ordinal
factorisation is “invariant” under the dualisation and the clarification of formal contexts.
The first however does not hold in case we transform the factorisation contexts into many-
valued ones.
The following proposition is evident:

Proposition 2.16 ([GG12]). A formal context is an ordinal factor of (G,M, I) if and only
if its attribute extents are a linearly ordered family of concept extents of (G,M, I).

For an ordinal factorisation there must be a partition {Fd ∣ d ∈ D} of the set F of
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attentive confident dutiful talkative,
superficial

vulnerable,
not irascible,

sensitive

withdrawn,
difficult,
anxious

dutiful

easily
offended,

superficial

myself

my ideal

father
mother

sister

brother-in-law

Figure 2.7.: A “biplot” of the data in Figure 2.1, based on the ordinal factorisation in Figure 2.4.
Note that no metric information is encoded here. The diagram is based on ordinal
data only.

factors such that within each class the attribute order of (G,F, IGF ) is linear. According
to Proposition 2.4 the attribute order is dual to that of (M,F, IFM

d). This gives the
following proposition:

Proposition 2.17 ([GG12]). For any ordinal factorisation the dual of the second factorisa-
tion context is also a derived context of the same many-valued context, but with reversely
ordered ordinal scales.

Definition 2.18. A relation R ⊆ G ×M is called a Ferrers relation if and only if there
are subsets A1 ⊂ A2 ⊂ A3 . . . ⊆ G and M ⊇ B1 ⊃ B2 ⊃ B3 ⊃ . . . such that R = ⋃iAi × Bi.
Further, R is called a Ferrers relation of concepts of (G,M, I) if and only if there are
formal concepts (A1,B1) ≤ (A2,B2) ≤ (A3,B3) ≤ . . . such that R = ⋃iAi ×Bi.

It is well known and easy to see that a relation R ⊆ G ×M is a Ferrers relation if and
only if the concept lattice B(G,M,R) is a chain.
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2.2. Ordinal Factors

Proposition 2.19 ([GG12]). Any Ferrers relation R ⊆ I is contained in a Ferrers relation
of concepts of (G,M, I).

Proof. If Ai × Bi ⊆ I, then Ai × Bi ⊆ A′′
i × A′

i holds. Thus, if R = ⋃iAi × Bi ⊆ I, then
R ⊆ R ∶= ⋃iA′′

i ×A′
i ⊆ I, and R is a Ferrers relation of concepts.

Definition 2.20. The width of a factorising family F of concepts is the largest number of
pairwise incomparable elements of F . The ordinal factorisation width of (G,M, I) is the
smallest width of a factorising family of concepts.

Theorem 2.21 ([GG12]). The following are equivalent:

1. (G,M, I) has ordinal factorisation width ≤ n.

2. (G,M, I) has an ordinal factorisation with ≤ n ordinal factors.

3. B(G,M,G ×M ∖ I) has order dimension ≤ n.

4. I can be written as a union of ≤ n Ferrers relations.

Proof. (1) ⇒ (2): (G,M, I) has ordinal factorisation width ≤ n if and only if there is a
factorising family F of concepts, which as an ordered subset of the concept lattice has
width ≤ n. By a classical theorem of Dilworth this implies that F can be covered by ≤ n
chains, i.e., linear ordered families of concepts, each of which induces an ordinal factor.
This proves (2).

(2) ⇒ (4): The factorising family of an ordinal factor is a chain of concepts, and the
incidences occurring in such a chain form a Ferrers relation.

(3)⇔ (4) is well known, see for instance [GW96].
(4)⇒ (1): If I can be written as a union of ≤ n Ferrers relations, then it can, according

to Proposition 2.19, also be written as a union of ≤ n Ferrers relations of concepts. These
concepts form a factorising family of width ≤ n.

Example 2.22. Consider once more the formal context from Figure 2.1 (page 40). Its

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11

m
12

m
13

m
14

g1 2 2 1 1 2 1 2 2 2 1
g2 2 1 1 1 1 2 2 1
g3 2 2 2 1 2 1 2 2 2 2 2 1
g4 2 2 2 2 2 2 2 2 2 2 2
g5 2 2 2 1 2 1 2 2 2 1
g6 1 1 1 1 1 1 1

Figure 2.8.: Two Ferrers relations, the union of which is the incidence relation of the formal context
in Figure 2.1.

incidence relation I can indeed be covered by two Ferrers relations, as can be seen from
Figure 2.8, where 1 and 2 symbolise the two different relations. Note that the two relations
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are not disjoint. Thus, to improve readability, we entered a “2” in a context cell, if the
corresponding cross is contained in the second Ferrers relation and not in the first.
So the ordinal width of the formal context in Figure 2.1 equals two (a smaller value is

obviously impossible). This was to be expected, since an ordinal factorisation with two
ordinal factors was given in Figure 2.5. Moreover the order dimension of the lattice in
Figure 2.3 (page 41) is apparently equal to two.

myself
father

mother
sistermy

ideal

brother-in-law
talkative

confident

attentive

dutiful

ambitious,
hearty

vulnerable,
not irascible
sensitive

anxious,
difficult,
withdrawn

easily offended

superficial

1

1

1

1

2

2

2

2

Figure 2.9.: Concept lattice of the anorexia nervosa context. The encircled numbers mark a fac-
torising family of concepts of width two.

The concept lattice of the formal context in Figure 2.1 is shown in Figure 2.9. Two chains
are marked in the diagram. These cover all (tight) incidences, i.e., whenever (g,m) ∈ I,
then the interval [γg, µm] contains some concept from one of these chains. Therefore,
these concepts form a factorising family of width two.

An immediate consequence of Theorem 2.21 is that for any k ≥ 3 the decision problem
whether a formal context has factorisation width ≤ k is NP-complete. This follows from
Yannakakis’ result ([Yan82]) that “order dimension ≤ k ” is hard to decide for k ≥ 3.
Another consequence is that one can easily determine the factorisation width of some
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elementary scales:

Corollary 2.23 ([GG12]). 1. (G,M, I) has ordinal factorisation width 1 if and only if I
is Ferrers.

2. The (one-dimensional) contraordinal scale has ordinal factorisation width 2, inde-
pendent of its size (> 1).

3. The interordinal scale has ordinal factorisation width 2, independent of its size (> 1).

The corollary gives first clues of how algorithmically difficult interordinal and contraor-
dinal factorisation (yet to be developed) will be. The nominal scale with n scale values
obviously has ordinal factorisation width n.

The underlying ideas of Nonmetric Factor Analysis, developed by Coombs and Kao
([Coo64, CK55]), are similar to those of the ordinal factorisations. As the title suggests,
the authors distance themselves as well from a metric handling of data. The theory was
further expanded by Doignon, Ducamp and Falmagne in [DDF84].

2.3. Applications

In this section we put the ordinal factorisation to work and test it on three real-world data
sets. These are chosen in a way such that they cover different areas and data collecting
methods. Our first case study is done on a repertory grid data from [CH08]. It was ob-
tained by asking a man with numerous tattoos to make character judgements about people
based on their looks. In the second study we analyse the data set from [VD89] concerning
psychiatric symptoms. The data was analysed in [BVG01] with a Latent Class approach,
and we compare the results from there with the ones obtained by the ordinal factorisation.
In the last case study we use a data set collected for the purpose of performing ordinal
factorisations. The data was registered in June 2012 in the otolaryngology clinic at the
university hospital “Titu Maiorescu” from Bucharest, Romania by an otolaryngologist.
Usually in Factor Analysis one is interested in an approximate factorisation rather than

in an exact one. Moreover, one wishes for few factors that explain a large part of the data
and 2-3 factors are preferable.
As we have already discussed in Section 2.1 the approximate factorisations are of two

kinds, with positive and with negative discrepancies. The latter are easy to obtain. One
does not cover the entire incidence relation of the context. We will use this kind of approx-
imate factorisation. Our algorithm works as follows: First it selects a maximal Ferrers
relation that covers most of the incidence relation. Afterwards maximal Ferrers relations
are selected that cover most of the yet uncovered incidence relation. The halting condi-
tion of the algorithm is the number of factors to be extracted. Note that the so-obtained
factors are not necessarily present in an optimal or/and an exact ordinal factorisation.
One may also attempt to perform an approximate factorisation with positive discrep-

ancies. This is however not only trickier from the algorithmic point of view but also with
regard to the interpretation. In the previous case we knew that not the entire information
of the data is contained in the factorisation, whereas in this case we are altering the data
by adding new object-attribute tuples to the incidence relation.
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2. Conceptual Factorisations

If we are looking for a factorisation with two ordinal factors we may apply an additional
trick. Before presenting it, we have to introduce incomparability graphs. The incompara-
bility graph (V,E) of a formal context (G,M, I) is given by

V ∶= (G ×M) ∖ I,
{(g,m), (h,n)} ∈ E ∶⇐⇒ (g,m) ∉ I, (h,n) ∉ I, (g, n) ∈ I, (h,m) ∈ I.

It was shown in [DDF84] that the Ferrers-dimension, the number of optimal ordinal fac-
tors, is two if and only if the incomparability graph is bipartite. Thus, one could try to
alter the context such that its incomparability graph is bipartite.

Tattoo Data

The first to propose the application of Formal Concept Analysis on repertory grid data
were Wolff and Spangenberg in [SW91]. We have already seen in the previous section the
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happy 2 2 2 2 2 1 3 2 1 5 1 5 miserable
patient 2 1 2 2 2 3 2 3 4 5 2 5 noxious
caring 5 2 3 1 2 5 1 1 2 5 1 4 neutral
kind 2 2 2 2 1 2 2 1 2 5 2 3 callous

sense of 1 1 1 1 1 3 2 2 2 5 2 5 dour
humour
sociable 5 3 5 5 5 4 5 1 1 2 1 4 hermit-

like
friendly 2 2 2 2 5 2 2 2 1 4 2 4 aloof
active 1 1 2 1 1 1 1 1 2 1 1 4 dead beats

confident 1 1 1 1 1 4 2 2 2 3 1 5 weak
organised 1 1 1 2 3 3 2 5 4 2 1 4 shambles

hard 2 2 3 1 2 2 2 1 2 1 1 4 lazy
working
honest 1 1 1 2 1 1 1 1 1 2 2 4 slimy

Figure 2.10.: Repertory grid taken from [CH08]
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results of an ordinal factorisation on such data, i.e., the grid from the anorexia nervosa
therapy. In [CH08] the authors have applied Formal Concept Analysis on a different real-
world data set. The latter was obtained from a 57 year old man with approximately ten
tattoos. He made his first tattoo with the age of 19 and his last one was ready a few
weeks before the grid was filled out. Here we reproduce the initial data from [CH08] in
Figure 2.10.
Let us first explain briefly how such grids are designed and how they are transformed into

formal contexts. First the interviewee has to choose persons from their close environment.
Afterwards, he/she is required to compare and contrast successive sets of three persons,
triads, from those already named. In this process the interviewee has to state some way in
which two persons from the triad are alike and some way the third person is different from
the other two. These pairs of attributes/characteristics are called constructs, whereas the
first attribute is called the left pole and the second one the right pole. Thereafter, the
interviewee has to assign to each person exactly one value from a scale for each construct.
These values yield a bipolar ordering, indicating which pole of the construct characterises
the person. Usually the scale values range from 1 to 5 or from 1 to 7. In our data
set the values range from 1 to 5. The values 1 and 2 are associated to the left pole,
where 1 means that the left pole characterises the person, and 2 is a gradation of 1. The
right pole is associated with the values 4 and 5, where 5 denotes the decision that the
person was assigned to the right pole, and 4 is a gradation of 5. The value 3 indicates
that a person can neither be characterised by the left pole nor by the right pole, or that
both attributes apply in the same extent. Let us take a look at the second row of the
grid from Figure 2.10. “Ideal self” is characterised as patient, the persons that have a
2 are considered fairly patient, whereas “Someone who conforms” is seen as noxious and
“Someone with a tattoo” is regarded as fairly noxious. The persons that have a 3 are
neither seen as patient nor as noxious. The so-obtained data can be easily represented by
a formal context. The persons build the object set. Both poles of each construct become
an attribute. The incidence relation is determined by the values, i.e., 1 and 2 are assigned
to the left pole, the values 4 and 5 to the right pole and a score of 3 is indicated by a
blank.
The so-obtained formal context can be factorised with four ordinal factors. However,

by choosing two ordinal factors we can explain 77,44% of the incidence relation. These
two factors were obtained by the approximate algorithm described above. The factors are
“plotted” in Figure 2.11. Once again this diagram does not contain metric information, it is
based only on ordinal data. One can easily see that the first factor contains the judgements
with positive connotations, whereas the second factor contains those with negative ones.
However, if we perform an exact ordinal factorisation, then the description of two factors
roughly corresponds to the approximate factors. The other two factors represent a mixture
between positive and negative judgements. In ordinary Factor Analysis it is desirable that
the objects load high on only one factor, i.e., have many attributes of one factor. We can
see from the “biplot” that this is also the case for our ordinal factorisation.
The outcome of the approximate factorisation is quite satisfying. On the one hand, it

covers a large proportion of the incidence data. On the other hand, the description yields
information about the positive and negative judgements of the interviewee.
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Psychiatric Symptoms Data

Our second case study is on the data set collected by Van Mechelen and De Boeck ([VD89]).
It consist of yes-no judgements made by a psychiatrist about the presence of 23 psychiatric
symptoms on 30 patients. The data is displayed in Figure 2.12. It was re-analysed in
[BVG01] with a variant of Latent Class Analysis. In such a data analysis technique one
attempts to detect the latent classes, in this example the diseases, and associate to them
the measured variables, in our case the symptoms. The authors from [BVG01] have settled
for a solution with three latent classes for the data in Figure 2.12. These were described
as follows: Class 1 is associated with high probabilities on the symptoms agitation, ideas
of persecution and hallucinations. These symptoms indicate a psychosis syndrome. Class
2 is associated with depression, anxiety and suicide, and can be interpreted as an affective
syndrome. Class 3 is associated primarily with alcohol abuse. Moreover, the authors show
for each symptom the probabilities to which it belongs to each of the three classes. From
there we find out that there are also other symptoms, besides the ones listed before, that
belong to the classes with a high probability. Here we show just those attributes that have
at least 20%.

Class 1 Class 2 Class 3
ideas of persecution ≈ 90% depression ≈ 95% leisure time impairment ≈ 95%
hallucinations ≈ 90% leisure time impairment ≈ 85% daily routine impairment ≈ 90%
inappropriate affect ≈ 80% daily routine impairment ≈ 85% alcohol abuse ≈ 70%
agitation ≈ 70% social isolation ≈ 70% inappropriate affect ≈ 55%
leisure time impairment ≈ 70% anxiety ≈ 70% memory impairment ≈ 40%
daily routine impairment ≈ 70% suicide ≈ 60% antisocial acts ≈ 40%
social isolation ≈ 45% inappropriate affect ≈ 50% retardation ≈ 40%
anxiety ≈ 40% somatic concerns ≈ 20% social isolation ≈ 30%
depression ≈ 35% negativism ≈ 30%
suicide ≈ 20%
somatic concerns ≈ 20%

Of course it is neither adequate nor fair to compare the outcome of the Latent Class analy-
sis with the outcome of the ordinal factorisation as they are based on different philosophies
and techniques. However, the results of the ordinal factorisation are substantiated by the
results of the Latent Class technique. For the conceptual factorisation we used just a part
of the symptoms and left seven attributes out, namely disorientation, obsession, lack of
emotion, speech disorganisation, overt anger, grandiosity and drug abuse. This choice is
justified by the fact that these attributes have probabilities between little above zero and
under 20% of appearing in any of the three classes. The formal context obtained after
removing these attributes can be factorised with seven ordinal factors. However, we are
looking for three factors and therefore apply the approximate ordinal factorisation. These
factors are “tri-plotted” in Figure 2.13 and they cover 82,54% of the incidence relation of
the context. Even more, there is a strong correspondence between the ordinal factors and
the latent classes. The most evident one is between the third latent class and the third
ordinal factor. In both cases “leisure time impairment” and “daily routine impairment”
are the most common symptoms and “social isolation” the least common one. Moreover,
the one-valued attributes contributing to the formation of the ordinal factor are a subset
of the attributes that occur in the latent class with high probability. Though the orderings
are a little bit different. The first latent class may be identified with the second ordinal
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g24 × × × × × × × ×
g25 × × × × × × × ×
g26 × × × × × × × ×
g27 × × × × × × × × ×
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Figure 2.12.: Psychiatric symptoms data from [VD89]
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2. Conceptual Factorisations

factor. For both “inappropriate affect” and “agitation” are common and “suicide” is the
most specific one, i.e., it appears seldom. The second latent class corresponds to the first
ordinal factor. In both cases the first seven attributes are the same, the only difference lies
in the position of the attribute “depression”. In contrast to the latent class, the ordinal
factors contains more “most specific” attributes. The attributes of the latent class are a
subset of the ordinal factors’ attributes.
In the analysis of this real-world data set we have seen that there is quite a tight relation

between the outcome of the ordinal factorisation and the Latent Class analysis. Thus, the
ordinal factors obtained by the conceptual factorisation are verified by the latent classes.

Otolaryngology Data

The data to be analysed in the following was collected by an otolaryngologist in June 2012
at the otolaryngology clinic of the university hospital “Titu Maiorescu” from Bucharest,
Romania for the purpose of ordinal factorisation.
The column “Principal symptoms” refers to the most pronounced symptoms of the

patients and “Secondary symptoms” contains those symptoms that were more or less
unincisive. In “Principal diagnosis” the principal diagnoses of the otolaryngologist are
noted, whereas in “Secondary diagnosis” alternative diagnoses are contained. Let us first
explain some notions from the data set:

• dysphagia = swallow difficulties;

• odynophagia = pain while swallowing;

• nasal obstruction = blockage of the nasal passages;

• lump in throat = the feeling of having a foreign body in the throat;

• rhinorrhea = “runny nose”;

• epistaxis = nosebleed;

• otalgia = pain in the ear;

• otorrhea = drains to the outside of the ear;

• tinnitus = perception of sound in the absence of it;

• vertigo = dizziness;

• autophony = unusually loud hearing of a person’s own voice.

We have scaled the many-valued context as follows: For every attribute value we have
introduced a one-valued attribute. We have made a cross in the corresponding line of the
patient and the corresponding column of the attribute if the patient suffered from that
symptom, indifferent from being principally or secondary, or if he was diagnosed principally
or secondary with that disease. Further, purulent, mucous and serous rhinorrhea imply
the attribute ”rhinorrhea”. Moreover, any acute or chronic form of a disease implies the
disease. We have ignored the many-valued attributes “age” and “sex”.
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2.3. Applications

With this data set we will perform two case studies. First, we apply the ordinal factori-
sation on a subcontext of the scaled context containing almost all the symptoms. After
finding the ordinal factors, we associate to each of them a disease based on the symptoms
they contain. Thereafter we try to validate them. We can do so since we have the true
diagnoses of the patients. In the second experiment we consider the symptoms which are
typical for throat and nose illnesses. Once again, with the help of the initial data sets, we
will try to validate the ordinal factors.
First let us take a subcontext of the scaled context containing each symptom that

appeared more than twice in the original data set. The “ignored” attributes can be
seen as atypical symptoms. Further, instead of taking all forms of rhinorrhea and nasal
obstruction we just consider the attributes “rhinorrhea” and “nasal obstruction”. The
so-obtained context has 14 attributes, 57 concepts, 93 maximal Ferrers relations and its
concept lattice has 18 atoms. The latter is due to the fact that almost each patient has a
unique symptom and disease pattern. We find an optimal factorisation of the context with
10 ordinal factors. Although 10 factors are quite many, we are not surprised of the outcome
since in the initial data set there are 35 different diagnoses 13 of which appear just once.
Listed below are the diseases, written in italics, that correspond to the description of the
factors and the symptoms are ordered from most common to most specific. A separation
of attributes by a semicolon means that they are contained in different intents, whereas
a comma symbolises that they belong to the same intent. Note that we only used the
attributes of the factors in order to associate them the corresponding disease. The ordinal
factors are:

• otitis media: hearing loss; ear fullness; headache, autophony

• otitis media: hearing loss; autophony; ear fullness, headache

• acute otitis media: hearing loss; otorrhea

• deviated septum: otalgia; hearing loss; nasal obstruction, tinnitus

• tonsillitis: headache; rhinorrhea; nasal obstruction; dysphagia, otalgia

• tonsillitis: odynophagia; dysphagia; rhinorrhea

• pharyngitis: lump in throat; dysphagia

• sinusitis: nasal obstruction; rhinorrhea; odynophagia

• acute sinusitis: fever; headache; odynophagia

• vestibular syndrome: vertigo; tinnitus; hearing loss; headache.

Thus, there are two manifestation types of otitis media having the same symptoms but in
a different ordering. A similar remark holds for tonsillitis. Note that not each diagnosis
from the initial data set is present as an ordinal factor. If one examines the patients that
“load high” on the factors, i.e., those that have many of their attributes, one finds out
that these patients, with a few exceptions, were indeed diagnosed to have that disease.
Further, one may be interested in 2-3 factors that explain most of the data. Finding

these would give us some information about the diseases which are most common. We have
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2. Conceptual Factorisations

headache rhinorrhea nasal
obstruction

dysphagia,
otalgia

hearing
loss

vertigo

tinnitus

headache

39

42

51

31

53,24,29,
35,36,47

12,20,30,
40,46,50

Figure 2.14.: A “biplot” of an ordinal factorisation of the otolaryngology data based on two ap-
proximate ordinal factors

chosen 2 factors which cover 50% of the incidences. They are “biplotted” in Figure 2.14.
We did not include the patients which suffer only from the most common symptom of
the two diseases, i.e., from either nasal obstruction for the first factor or headache for the
second. The symptoms of the first ordinal factor belong to deviated septum, which was
diagnosed in 35 cases, whereas the second one corresponds to vestibular syndrome. The
latter was diagnosed only 3 times, however none of its symptoms, besides the last one,
were covered by the first factor. Further, by comparing the “biplot” with the original data
set it turns out that the patients that “load high” on the factors indeed suffer from the
corresponding disease.

Let us take now a different subcontext containing the symptoms that are typical for
throat and nose diseases and that were diagnosed at least twice in the original data set.
This time we also include the different forms of rhinorrhea and nasal obstruction. The
so-obtained context has 12 attributes, 51 concepts, 23 maximal Ferrers relations and its
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2.3. Applications

concept lattice has 15 atoms. The optimal factorisation consists of 7 ordinal factors. As
we stated before the high number of factors is not surprising since in the initial data
set there are numerous diagnoses. Further, there are distinct manifestations of the same
disease, either through different symptoms or through various orderings of the attributes
within the factor. The ordinal factors are listed below. The diseases, written in italics,

nasal
obstruction

chronic
nasal

obstruction
rhinorrhea headache purulent

rhinorrhea

headache

rhinorrhea

serious
rhinorrhea

lump in
throat

35, 36

12,20,30,
46,50

40

5,47

29

6,23,
27,45

9,17,34,
43,45,48

13,49

47
3,24

Figure 2.15.: A “biplot” of an ordinal factorisation of the otolaryngology data based on two ap-
proximate ordinal factors for symptoms that are typical for nose and throat diseases

correspond to the description of the factors and the symptoms are ordered from most
common to most specific. Note once again that the semicolon separates the attributes
from different intents, whereas the comma separates the attributes of the same intent.
The ordinal factors are:

• chronic sinusitis: rhinorrhea; mucous rhinorrhea; headache; trembling headache

• chronic sinusitis: headache; rhinorrhea; serous rhinorrhea; nasal obstruction; chronic
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nasal obstruction

• acute sinusitis: rhinorrhea; purulent rhinorrhea; nasal obstruction; chronic nasal
obstruction; odynophagia

• pharyngitis: lump in throat; dysphagia

• deviated septum: nasal obstruction; chronic nasal obstruction; headache; rhinorrhea;
dysphagia

• deviated septum: fever; headache; trembling headache

• acute tonsillitis: odynophagia; dysphagia; rhinorrhea; serous rhinorrhea.

Notice once again that we only used the attributes contained in the factors to determine
their meanings. The most common disease seems to be sinusitis, which in the initial data
set was diagnosed 26 times. Although deviated septum was diagnosed in 35 cases, it
appears here only twice. One could conclude that the latter has less manifestation forms
than sinusitis.
We are interested in two factors that explain most part of the data. These are “biplotted”

in Figure 2.15 and explain 63,71% of the incidences. Both factors describe sinusitis. This
is not surprising in view of the fact that the optimal factorisation contains 3 factors out of
7 that describe sinusitis. Once more the factors are validated by the initial data set, as the
patients that “load high” on the two factors indeed suffer from sinusitis. In Figure 2.15
we did not include the patients that have only the most common symptoms from either
of the two factors.

In the previous case study the data was obtained by a checklist inspecting whether or
not the patients suffer from the symptoms of the list. The data used in this study contains
the records about the symptoms and the diseases of the patient without any restrictions.
Our analyses have shown that even on such a freely-obtained data set the ordinal factors
perform well.

2.4. Conceptual Factorisation of L-Contexts

The factorisation of L-contexts was introduced in [Běl08] and further studied in [BV09a].
In accordance with the rest of this thesis we deviate from the authors’ notations.

Definition 2.24. A factorisation of an L-context (G,M, I) consists of two L-contexts
(G,F, IGF ) and (F,M, IFM) such that

I(g,m) = l⇐⇒ IGF (g, f)⊗ IFM (f,m) = l for some f ∈ F.

The set F is called the factor set, its elements the (L-)factors, and (G,F, IGF ) and
(F,M, IFM) are said to be the factorisation contexts. We write

(G,M, I) = (G,F, IGF ) ○ (F,M, IFM)

to indicate a factorisation.
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As in the crisp setting, we may associate to each factorisation a factorising family
{(Af ,Bf) ∣ f ∈ F} given by the L-sets Af ∈ LG and Bf ∈ LM defined as Af(g) ∶= IGF (g, f)
and Bf(m) ∶= IFM(f,m) for all g ∈ G and m ∈ M . A family {(Af ,Bf) ∣ f ∈ F} is a
factorising family of (G,M, I) if and only if

I = ⋃
f∈F

Af⊗Bf (2.5)

where Af ⊗Bf is the L-set Af ⊗Bf ∶ G ×M → L given by

(Af⊗Bf)(g,m) ∶= Af(g)⊗Bf(m) (2.6)

for all g ∈ G and m ∈M . Expressed differently, {(Af ,Bf) ∣ f ∈ F} is a factorising family
of (G,M, I) if and only if

I = ⋃
f∈F

f IGF ⊗ f IF M .

Once more these factorising families correspond precisely to those families of L-preconcepts
of (G,M, I) that cover the L-relation I. Similarly to the crisp case a tuple (A,B) is called
an L-preconcept if A ∈ LG and B ∈ LM such that A↑ ⊆ B and B↓ ⊆ A. By enlarging these
preconcepts we obtain a factorising family of L-concepts. In the following we will call
such factorisations L-conceptual. Note however that this enlargement is not unique. The
advantage is thus that we are searching in a smaller set for a covering of the L-relation
without increasing the number of factors.
From the definition of the factorisation contexts it is straightforward to see that the

relationship between objects and attributes from (G,M, I) is explained by the factors of
F . Indeed, object g has attribute m if and only if there is a factor f which applies to g
and for which m is one of its manifestations. As we are dealing with L-sets the notions
“applies to” and “is a manifestation of” have truth values. Thus, for a factor f there is a
degree Af(g) to which f applies to g and a degree Bf(m) to which m is a manifestation
of f . To obtain the degree to which “f applies to g and m is a manifestation of f”, we
have to compute Af(g)⊗Bf(m).
It was shown in [Běl08] that using L-concepts in the factorisation of L-contexts yields

the smallest possible number of factors. It follows trivially from the crisp case that finding
an optimal factorisation is NP-hard. In the light of this fact [Běl08] and [BV09a] provide
us with greedy approximation algorithms. Further, in the crisp case we were able to
characterise mandatory factors, i.e., factors that have to be present in every factorisation.
However, this is not possible in the fuzzy case. We will see in Section 4.4 that different
L-concepts may yield the same maximal rectangle. Whether this occurs depends highly
on the choice of the residuated lattice and the L-context.

2.5. Conclusion

In this chapter we presented Factor Analysis of qualitative data in a somewhat new light.
First we focused on factorisations with Boolean factors. These factors have reduced ex-
pressiveness due to their unary nature. This drawback leads us to the many-valued factori-
sations, particularly ordinal factorisations, that group the Boolean factors into conceptual
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scales. The so-obtained factors provide us with a compact representation of the data that
is easily interpretable.
Usually in Factor Analysis one plots the factors in order to have a better overview and a

graphical representation that allows the user to quickly grasp the outcome of the analysis.
Therefore, we have developed such diagrams for our setting. However, unlike ordinary
biplots, the ones presented in this chapter do not encode metric data.
The ordinal factorisations and their formal concept analytical interpretation are newly

developed. Thus, the method has to be applied in practice to see whether there is more
behind it than an abstract mathematical theory. To address this matter, we have run
some analyses in Section 2.3. Their outcome shows that ordinal factors seem to be serious
competitors of latent attributes used in ordinary Factor Analysis and related techniques,
having a similar expressiveness.
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Triadic Factor Analysis

The importance of triadic (three-way) data in psychology lies in the modelling of human
perception. Typical examples are people associating characteristics to other members of
their group, evaluating situations, measurements undertaken several times and so on. Fac-
tor Analysis and related data analysis techniques were generalised to the triadic case, for
example Three-mode Factor Analysis ([Tuc66]), Three-mode Principal Components Anal-
ysis ([Kro83]) and Three-way Hierarchical Classes Analysis ([LVDR99], see Section 4.2 for
the connection between this research field and the one presented in this chapter). Other
applications of three-way factorisation include image analysis, experimental design, spec-
troscopy, chromatography, see [SBG04]. Due to the wide applicability of Three-way Factor
Analysis, it arose as a natural wish to also generalise the concept analytical approach to
the triadic case.
This chapter is based on [BGV12, Glo10].1 Here we present these results from a more

general point of view, in accordance with Chapter 2. Further, we also show new results
originating from the generalisation of findings from the dyadic case.
The works [BV10b, Glo10] were not the first to study the decomposition of triadic data

with Triadic Concept Analysis. The first connection was established in [KSOG94], how-
ever, through a different approach. We will comment on this aspect later, after introducing
our framework.
As we have already pointed out in Section 2.1, applying decomposition methods to

binary data that were designed for real-valued data distorts the meaning of the data and
of the results (see for instance [MMG+08, TMGM06]). On the other hand, decomposition
methods based on the Boolean matrix product are interpreted in a straightforward way
and are therefore preferable ([MMG+08]). As it will turn out, the decomposition involving
the Boolean matrix product admits a natural generalisation for the case of triadic binary

1During the revision period of [Glo10] it turned out there is yet unpublished work of Bělohlávek and
Vychodil dealing with the same subject [BV10b]. Hence, [BGV12] resulted as a joint paper covering
the content of the aforementioned works of the authors as well as some new aspects.
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data.
In order for the reader to have a better overview of what is happening in this chapter

we present its structure: In Section 3.1 we develop the mathematical foundation of our
framework proving that triconcepts yield optimal factorisations of triadic data and provide
further mathematical insight into the triadic factorisation problem. In Section 3.2 we
introduce mappings which transform a description of a given object in terms of attributes
and conditions into a description of the same object in terms of factors. The proper
algorithms for the factorisation of triadic data are developed in Section 3.3. There are
situations in which the users are just roughly interested in the information contained in the
data. Then, approximate factorisations are adequate. These are the topic of Section 3.4.
In Section 3.5 we generalise some factor analytical tools to our setting. The last section
contains an overall conclusion of the results presented in this chapter.
Until explicitly said otherwise, K will denote a tricontext for the remainder of this

chapter.

3.1. Triconceptual Factorisations

We start our work by introducing the so-called dyadic cuts of a tricontext, which will prove
themselves useful for our framework.

Definition 3.1. For a tricontext K = (K1,K2,K3, Y ) a dyadic-cut (shortly d-cut) is defined
by

ciα ∶= (Kj ,Kk, Y
jk
α ),

where {i, j, k} = {1,2,3} and α ∈Ki.

Obviously, d-cuts are a special case of Kij
Xk

= (Ki,Kj , Y
ij
Xk

) for Xk ⊆ Kk and ∣Xk∣ = 1.
Thus, each d-cut is itself a dyadic context. For every tricontext there are three families of
d-cuts:

c1 ∶= {c1
g ∶= (K2,K3, Y

23
g )}g∈K1 , (3.1)

c2 ∶= {c2
m ∶= (K1,K3, Y

13
m )}m∈K2 , (3.2)

c3 ∶= {c3
b ∶= (K1,K2, Y

12
b )}b∈K3 . (3.3)

Hence, (3.1) represents cuts in K for each object g ∈ K1. The family {c1
g}g∈K1 of d-cuts

contains (at most) ∣K1∣ d-cuts. Such a d-cut is itself a dyadic context, namely (K2,K3, Y
23
g )

with g ∈ K1. For a fixed g ∈ K1 the d-cut c1
g contains the incidence relation between the

attribute and condition sets of K under the object g. Equation (3.2) represents cuts in
K for every attribute m ∈ K2. Such a d-cut contains the relationships between all the
objects and all the conditions for the attribute which generated the d-cut. Accordingly,
equation (3.3) represents cuts in K for each condition b ∈ K3. Such a d-cut contains
the relationships between all the objects and all the attributes for the condition which
generated the d-cut.
Obviously, one can reconstruct the tricontext K from the d-cuts by “gluing” them to-

gether. For the d-cut families of a tricontext the following equations hold:

Y = ⋃
g∈K1

{g} × Y 23
g = ⋃

m∈K2

{m} × Y 13
m = ⋃

b∈K3

{b} × Y 12
b .
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For different d-cuts of a d-cut family we may have identical dyadic contexts. This happens
whenever the incidence relation between Ki and Kj is the same for some elements from
Kk with {i, j, k} = {1,2,3}.

We are ready now to start the investigation of conceptual factorisations in a triadic
setting.

Definition 3.2. A factorisation of a tricontext (K1,K2,K3, Y ) consists of formal contexts
(K1, F, I1), (K2, F, I2) and (K3, F, I3) such that

(a1, a2, a3) ∈ Y ⇐⇒ (ai, f) ∈ Ii for some f ∈ F and for i = 1,2,3.

The set F is called the factor set, its elements the (triadic Boolean) factors, and (Ki, F, Ii)
(i = 1,2,3) are said to be the factorisation contexts. We write

(K1,K2,K3, Y ) = ○ ((K1, F, I1), (K2, F, I2), (K3, F, I3))

to indicate a factorisation.

From the definition of the factorisation contexts it is straightforward to see that they
represent relationships between objects and factors, attributes and factors, conditions and
factors, respectively. Therefore, (a1, f) ∈ I1 means that the object a1 can be described
through the factor f . In the same way, (a2, f) ∈ I2 means that the attribute a2 is a
particular manifestation of the factor f , and (a3, f) ∈ I3 stands for the fact that the factor
f exists under the condition a3.
As in the dyadic case, we may associate to each factorisation a factorising family

{(A1
f ,A

2
f ,A

3
f) ∣ f ∈ F}, 2

given by
Aif ∶= {ai ∈Ki ∣ ai Ii f} for i = 1,2,3.

Such families are easy to characterise: A family {(A1
f ,A

2
f ,A

3
f) ∣ f ∈ F} is a factorising

family of (K1,K2,K3, Y ) if and only if

Y = ⋃
f∈F

A1
f ×A

2
f ×A

3
f ,

or, expressed differently, if and only if

Y = ⋃
f∈F

f I1 × f I2 × f I3 .

Once again the factorising families are precisely the families of triadic preconcepts3 of
(K1,K2,K3, Y ) covering all incidences. By enlarging these preconcepts we obtain a fac-
torising family of triconcepts. In the following we will call such factorisations triconceptual.

2There should be no confusion with this notation and the one introduced for d-cuts. The latter is used
in tricontexts whereas this one is defined for the dyadic factorisation contexts.

3A triple (A1, A2, A3) is called a triadic preconcept of (K1, K2, K3, Y ) if Ai ⊆ Ki (i = 1, 2, 3) such that
A

Aj

i ⊆ Ak for all {i, j, k} = {1, 2, 3}.
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3. Triadic Factor Analysis

Similarly to the dyadic case this enlargement is not unique. The advantage is thus that
we are searching in a smaller set for a covering of the ternary incidence relation of the
tricontext without increasing the number of triadic Boolean factors.
We may uniquely determine a factorisation context through the other two. Indeed,

we conclude from ai Ii f and aj Ij f that ak ∈ Akf = (Aif)
Aj

f = (f Ii)f
Ij . Note that the

derivation operators are applied in K.
There are however different representations among the factorisation contexts. For in-

stance, we may be interested in the relationship between objects and attributes for each fac-
tor independent from the conditions. Then, we define the tricontext KJ

12 ∶= (K1,K2, F, J),
where

(a1, a2, f) ∈ J ∶⇐⇒ a1 I1 f and a2 I2 f.

Each factor d-cut in KJ
12 represents the relationship between the objects and attributes for

that factor. However, one may also be interested in the relationship between attributes
and conditions independent from the objects. Then, in a similar manner as before, one
can build KJ

23. To put it more generally, we have tricontexts KJ
ij ∶= (Ki,Kj , F, J), where

(ai, aj , f) ∈ J ∶⇐⇒ ai Ii f and aj Ij f.

It is easy to reconstruct the factorisation from these contexts. Indeed, we have

(ai, aj , ak) ∈ Y ⇐⇒ (ai, aj , f) ∈ J and ak Ik f for some f ∈ F. (3.4)

As we will shortly see, these alternative representations of the factorisation contexts are
not just useful for the interpretation.
That a triconceptual factorisation indeed covers the incidence relation of a tricontext is

clear. It is however unclear if such factorisations serve the main purpose of a factorisation.
The major aim of a factorisation, independent from the nature of the data, is to find an
optimal factorisation, i.e., the smallest possible number of factors covering the incidence
relation. In the dyadic case, we could show that the formal concepts yield an optimal
factorisation using the 2-dimension. However, in the triadic case, we are lacking the
notion of dimension. Therefore, we will take a slightly different approach to show that the
triconcepts indeed yield an optimal factorisation. As this result is the most important of
all, it appears in various articles from the literature.

Theorem 3.3 ([BGV12, BV10b, Glo10]). Triconceptual factorisations yield optimal fac-
torisations, i.e., the smallest possible number of factors.

Proof. Let K = (K1,K2,K3, Y ) be a tricontext and let (Ki,H, Ji) be formal contexts for
i = 1,2,3 such that

Y = ⋃
h∈H

hJ1 × hJ2 × hJ3 .

Obviously, for every h ∈H we have hJ1 ×hJ2 ×hJ3 ⊆ Y . Therefore, hJ1 ×hJ2 ×hJ3 must be
contained in some maximal rectangular box full of crosses. We know that these correspond
to triconcepts. Thus, there is (Ah1 ,Ah2 ,Ah3) ∈ T(K) such that

hJ1 × hJ2 × hJ3 ⊆ Ah1 ×Ah2 ×Ah3
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3.1. Triconceptual Factorisations

for every h ∈ H. Now, we build factorisation contexts (Ki, F, Ii) (i = 1,2,3) such that for
every h ∈H, f Ii = Ahi holds for some f ∈ F and i = 1,2,3. Thus, hJi ⊆ f Ii for all h ∈H and
the corresponding f ∈ F . We have the following:

Y = ⋃
h∈H

hJ1 × hJ2 × hJ3 ⊆ ⋃
f∈F

f I1 × f I2 × f I3 ⊆ Y.

Since ∣F ∣ ≤ ∣H ∣, we are done.

Note that a tricontext can be factorised using different sets of triconcepts and that the
cardinalities of these sets may differ from one another. However, the above theorem states
that among all these triconceptual factorisations there is at least one with the smallest
possible number of factors.
We know now that triconcepts provide optimal factorisations. But how large can such

a triconceptual factorisation be? We give an upper bound for this matter:

Theorem 3.4 ([BGV12]). Let K = (K1,K2,K3, Y ) be a tricontext with ∣K1∣ = p, ∣K2∣ = q
and ∣K3∣ = r and let F be the factor set of an optimal triconceptual factorisation of K.
Then,

∣F ∣ ≤ min{pq, pr, qr}.

Proof. We will use the ik-bounds b13(a1, a3) (see Equation (1.15) on page 21) to obtain a
triconceptual factorisation with factor set F , i.e., let

f Ii ∶= {Bi ∣ Bi i-th component of b13(a1, a3), a1 ∈K1, a3 ∈K3}

for i ∈ {1,2,3} and f ∈ F . Obviously, we have n ∶= ∣F ∣ ≤ ∣K1∣ ⋅ ∣K3∣ = pr. As b13(a1, a3) is a
triconcept we have that

n

⋃
l=1
f I1
l × f I2

l × f I3
l ⊆ Y.

On the other hand, if (a1, a2, a3) ∈ Y , then (a1, a2, a3) ∈ b13(a1, a3) holds and therefore
(a1, a2, a3) ∈ ⋃nl=1 f

I1
l × f I2

l × f I3
l . Thus, we have shown ∣F ∣ ≤ pr. Similarly, one can prove

∣F ∣ ≤ pq and ∣F ∣ ≤ qr, finishing the proof.

Now we describe mandatory factors ofK, i.e., triconcepts that have to be present in every
factorisation of K. In the dyadic case, mandatory factors of a dyadic context (G,M, I)
are exactly those dyadic concepts of (G,M, I) that are both object concepts and attribute
concepts ([BV10a]). In the triadic case, the concepts of (K1,K2,K3, Y ) that can be seen as
analogous to object and attribute concepts are bij(ai, aj) for {i, j} = {1,2}, bjk(bj , bk) for
{j, k} = {2,3}, and bik(ci, ck) for {i, k} = {1,3} where a1, c1 ∈K1, a2, b2 ∈K2, b3, c3 ∈K3.

Lemma 3.5 ([BGV12]). Let (K1,K2,K3, Y ) be a tricontext, a1, c1 ∈ K1, a2, b2 ∈ K2, and
b3, c3 ∈K3. If there exist {ia, ja} = {1,2}, {ib, jb} = {2,3} and {ic, jc} = {1,3} such that

biaja(aia , aja) = bibjb(bib , bjb) = bicjc(cic , cjc),

then the triconcept (D1,D2,D3) described equivalently by any of the formulas bixjx(xix , xjx)
is the only triconcept for which

{a1, c1} × {a2, b2} × {b3, c3} ⊆D1 ×D2 ×D3. (3.5)
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Proof. (3.5) follows from the fact that the p-th and q-th component of bpq(xp, xq) contain
xp and xq, respectively. Let (C1,C2,C3) ∈ T(K1,K2,K3, Y ) be a triconcept that satisfies
{a1, c1}× {a2, b2}× {b3, c3} ⊆ C1 ×C2 ×C3. Then, {aia} ⊆ Cia and {aja} ⊆ Cja . Since D3 is
the third component of biaja(aia , aja), we have

D3 = {aia}{aja} ⊇ CCja
ia

= C3.

In a similar way, one proves D1 ⊇ C1 and D2 ⊇ C2. Since (C1,C2,C3) ∈ T(K1,K2,K3, Y ),
the maximality of triconcepts implies (C1,C2,C3) = (D1,D2,D3).

Definition 3.6. A triconcept (D1,D2,D3) ∈ T(K1,K2,K3, Y ) is called mandatory if in
every triconceptual factorisation of (K1,K2,K3, Y ) with factor set F there is f ∈ F such
that f Ii =Di, i = 1,2,3.

The following lemma is a crucial observation when it comes to describing mandatory
triconcepts.

Lemma 3.7 ([BGV12]). For a triconcept d ∈ T(K1,K2,K3, Y ) and a1 ∈ K1, a2 ∈ K2 and
a3 ∈K3, the following conditions are equivalent:

(i) d is the only concept of (K1,K2,K3, Y ) that covers (a1, a2, a3).

(ii) There exists {i, j, k} = {1,2,3} such that

d = bij(ai, aj) = bjk(aj , ak) = bik(ai, ak). (3.6)

(iii) For every {i, j, k} = {1,2,3} we have

d = bij(ai, aj) = bjk(aj , ak) = bik(ai, ak).

Proof. “(i)⇒(ii)”: If d covers (a1, a2, a3), then a1, a2, and a3 are related. Therefore,
bij(ai, aj), bjk(aj , ak), and bik(ai, ak) all cover (a1, a2, a3). Since d is the only triconcept
covering (a1, a2, a3), (3.6) follows.
“(ii)⇒(i)”: Follows from Lemma 3.5.
“(ii)⇒(iii)”: Assume that (3.6) holds for some {i, j, k} = {1,2,3}. Then, bji(aj , ai) has

the same k-th component as bij(ai, aj) and therefore contains ak. Since the i-th and j-th
components of bji(aj , ai) contain ai and aj , bji(aj , ai) covers (a1, a2, a3). Because (ii)
implies (i), d is the only triconcept that covers (a1, a2, a3), whence d = bji(aj , ai). In the
same way one proves that d = bkj(ak, aj) and d = bki(ak, ai), yielding (iii).
“(iii)⇒(ii)”: Trivial.

Theorem 3.8 ([BGV12]). A concept d ∈ T(K1,K2,K3, I) is mandatory if and only if there
exist a1 ∈K1, a2 ∈K2, and a3 ∈K3 that satisfy (ii), or, equivalently (iii) of Lemma 3.7.

Proof. Clearly, d is mandatory if and only if there exist a1 ∈ K1, a2 ∈ K2, and a3 ∈ K3
such that d is the only triconcept that covers a1, a2, and a3. The claim thus follows from
Lemma 3.7.
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Remark 3.9. A claim such as (iii) in the scenario from Lemma 3.7 does not hold in Lemma
3.5. In fact, consider a tricontext K = ({a1, c1},{a2, b2, x2},{b3, c3}, Y ) with

Y = {a1, c1} × {a2, b2} × {b3, c3} ∪ {a1} × {x2} × {b3, c3}

such that x2 is distinct from both a2 and b2. Then, d ∶= ({a1, c1},{a2, b2},{b3, c3}) is
the only triconcept covering {a1, c1} × {a2, b2} × {b3, c3}. On the one hand we have the
equalities d = b12(a1, a2) = b23(b2, b3) = b13(c1, c3). However, on the other hand we have
that b21(a2, a1) = ({a1},{a1, b2, x2},{b3, c3}) /= d.

Example 3.10. Let us consider the example about hostels from Figure 1.3 (page 20). The
factorisation contexts of the triconceptual factorisation are displayed in Figure 3.1 and 3.2.
The triconcepts used in the factorisation are drawn larger in the trilattice from Figure 1.4
(page 23).

f1 f2 f3 f4 f5 f6 f7 f8

Nuevo S. × ×
Samay × × × × ×
Oasis B. × × × × × × ×
One × × × × × ×
Ole B. × × × × × ×
Garden B. × × × × ×

f1 f2 f3 f4 f5 f6 f7 f8

character × × ×
safety × × × × ×
location × × × × × ×
staff × × × × × × ×
fun × ×
cleanliness × × × × × ×

Figure 3.1.: Factorisation contexts for objects and attributes

f1 f2 f3 f4 f5 f6 f7 f8

hostelworld × × × ×
hostels × × × × × × ×
hostelbookers × × × × × ×

Figure 3.2.: Factorisation context for conditions

The factors also have a verbal description which can be read from the factorisation
contexts. In our case the factors are the overall ratings of the users. The context on
the left in Figure 3.1 associates to each object the factors which describe it (hostels are
described by their ratings), the context on the right associates to each attribute the factors
which contain it (which services are taken into account for each rating) and the context in
Figure 3.2 shows which factor exists under which condition (which users contributed to the
formation of each rating). Let us once again number the elements from Ki consequently,
i.e., Ki ∶= {0, . . . , ∣Ki∣} with i ∈ {1,2,3}. For example, f1 stands for best location because
the users from all platforms (f I3

1 =K3) have rated the hostels from f I1
1 as having the best

location. Factor f4 can be interpreted as hostels with best facilities because all users agreed
that the hostels 1,2,3,4 are excellent concerning safety, staff and cleanliness. Factor f5
shows that the users from platform 1 and 2 consider that every hostel is excellent regarding
location and staff. The best deals, according to the users from the second platform, are
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3. Triadic Factor Analysis

represented by f2. On the other hand, the users from the third platform consider the
hostels from f I1

6 the best deals.
The triconceptual factorisation offers the possibility to describe the hostels through 8

factors while in the tricontext they are described through 6 attributes under 3 conditions,
i.e., 18 items. Thus, the factors yield a more parsimonious way of information representa-
tion.

Let us see how some results from Section 2.1 can be translated into the triadic setting.

Proposition 3.11. For any triconceptual factorisation with factor set F the intersection of
the attribute orders of (Ki, F, Ii) and (Kj , F, Ij) is contained in the dual attribute order
of (Kk, F, Ik) for {i, j, k} = {1,2,3}.

Proof. Suppose we have
f Ii ⊆ hIi and f Ij ⊆ hIj

for some f, h ∈ F . Then,

Aif = f
Ii ⊆ hIi = Aih and Ajf = f

Ij ⊆ hIj = Ajh

both hold. As two components of a triconcept uniquely determine the third one, we
immediately obtain

Akf = (Aif ×A
j
f)
(k) ⊇ (Aih ×A

j
h)
(k) = Akh,

finishing the proof.

Now we may characterise the factorisation contexts. The conditions are the triadic
analogons of the dyadic ones. As we will see, the alternative definition of factorisation
contexts given by condition (3.4) (page 70) turns out to be very useful for this task.

Theorem 3.12. (K1, F, I1), (K2, F, I2) and (K3, F, I3) are factorisation contexts of a tri-
conceptual factorisation if and only if every intent of (Ki, F, Ii) is a modus of the tricontext
(Kj ,Kk, F, (Kj ×Kk × F ∖ J)), for all {i, j, k} = {1,2,3} and j < k.

Proof. First let us note the following equivalences:

(a1, a2, a3) ∈ Y ⇐⇒ (ai, f) ∈ Ii for some f ∈ F and i = 1,2,3
⇐⇒ (ai, aj , f) ∈ J and ak Ik f for some f ∈ F and {i, j, k} = {1,2,3}

⇐⇒
3
⋂
i=1
aIi
i ≠ ∅.

Hence, we also have
(a1, a2, a3) ∉ Y ⇐⇒ aIk

k ⊆ F ∖ {aIi
i ∩ a

Ij

j }.

Let (Ki, F, Ii) (i = 1,2,3) be factorisation contexts. We have to show that for any ai ∈Ki

the object intent aIi
i is the intersection of modi of

(Kj ,Kk, F, J
c) ∶= (Kj ,Kk, F, (Kj ×Kk × F ∖ J)).

Assume this is not true. Then, there must be some f ∈ F which is contained in all modi of
(Kj ,Kk, F, J

c) that contain aIi
i but which does not belong to aIi

i , i.e., f ∉ aIi
i . This, on the
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3.1. Triconceptual Factorisations

other hand, is equivalent to ai ∉ f Ii = Aif , and therefore ai ∉ (Ajf ×A
k
f)
(i) = (f Ij × f Ik)(i),

where (−)(i) is applied in (K1,K2,K3, Y ). Thus, there must be elements aj ∈ f Ij and
ak ∈ f Ik such that (ai, aj , ak) ∉ Y . As we have noted at the beginning, the latter is
equivalent to aIi

i ⊆ F ∖ (aIj

j ∩ aIk

k ). Since F ∖ (aIj

j ∩ aIk

k ) is a modus of (Kj ,Kk, F, J
c)

containing aIi
i but not f , we have reached a contradiction.

For the converse direction suppose the three conditions are fulfilled. The derivation
operators of (Kj ,Kk, F, J) are denoted by (−)(j)J , (−)(k)J and (−)(l)J . For (Kj ,Kk, F, J

c)
we proceed similarly with the subscription Jc. We have to show that the factorisation is
triconceptual. In order to do so we have to prove that (f Ij)fIk ⊆ f Ii or equivalently
that (f Ij × f Ik)(i) ⊆ f Ii for any f ∈ F and for all {i, j, k} = {1,2,3}. We will show the
second statement. To this end, suppose ai ∉ f Ii which is equivalent to f ∉ aIi

i . Since
f ∈ F there must exist elements bi ∈ Ki, aj ∈ Kj and ak ∈ Kk such that (bi, aj , ak) ∈ Y ,
i.e., bi, aj , ak are related with f in the factorisation contexts. Further, since aIi

i is an
intent of (Ki, F, Ii), there must be, according to the condition, a modus (aj × ak)(l)Jc of
(Kj ,Kk, F, J

c) containing aIi
i but not f (as discussed above, (aj×ak)(l)J = ∅ or equivalently

(aj × ak)(l)Jc = F cannot happen). Expressed differently, there are aj ∈ f Ij and ak ∈ f Ik

such that aIi
i ∩(aj ×ak)(l)J = ∅. Consequently, for any h ∈ (aj ×ak)(l)J we have (ai, h) ∉ Ii.

Thus, (ai, aj , ak) ∉ Y and consequently ai ∉ (f Ij × f Ik)(i).

Trivially, the triconceptual factorisation is “invariant” under the clarification and the
interchange of the roles of objects, attributes and conditions in tricontexts in the sense
detailed for the dyadic case in Proposition 2.6 and Proposition 2.7 (page 42).
For computational simplicity we will present also the matrix notation for triconceptual

factorisations. This allows a better manipulation of the factorisation contexts when de-
signing and implementing software. By replacing in the cross table the crosses by 1’s and
the blanks by 0’s we obtained in the dyadic case the corresponding Boolean matrix. If we
proceed alike in the triadic case we obtain from the three-dimensional cross table a Boolean
3d-matrix (shortly 3d-matrix) that is a rectangular box Bp×q×r such that bijk ∈ {0,1} for
all i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, k ∈ {1, . . . , r}. For a 3d-matrix B we write B = B1 | . . . | Br,
where the B1, . . . ,Br are p × q binary matrices called layers.
In order to define the Boolean 3d-matrix product for a triconceptual factorisation with

factor set F , we first have to build matrices AF ,BF ,CF which basically are the Boolean
matrix representation of the factorisation contexts, i.e.,

(AF )il ∶=
⎧⎪⎪⎨⎪⎪⎩

1, i ∈ f I1
l ,

0, i ∉ f I1
l ,

(BF )jl ∶=
⎧⎪⎪⎨⎪⎪⎩

1, j ∈ f I2
l ,

0, j ∉ f I2
l ,

(CF )kl ∶=
⎧⎪⎪⎨⎪⎪⎩

1, k ∈ f I3
l ,

0, k ∉ f I3
l ,

for all l ∈ {1, . . . , ∣F ∣}.

Definition 3.13. For p×n, q×n and r×n binary matrices P,Q and R, the Boolean 3d-matrix
product (shortly 3d-product) is defined as the ternary operation

○ (P,Q,R)ijk ∶=
n

⋁
l=1
Pil ⋅Qjl ⋅Rkl, (3.7)

with i ∈ {1, . . . , p}, j ∈ {1, . . . , q} and k ∈ {1, . . . , r}. As in the dyadic case, ⋁ denotes the
maximum and ⋅ is the usual product.
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3. Triadic Factor Analysis

As we have already stated at the beginning, the first link between factorisation of
triadic data and Triadic Concept Analysis was established in [KSOG94]. The authors
were concerned with a covering of Y by triconcepts, however in a way different from the
one proposed here. Indeed, they search for a triconcept that covers a large part of Y .
The subrelation of Y corresponding to such a triconcept is then removed from Y . Such
a removal continues until Y contains no entries. It is easy to find an example showing
that the method from [KSOG94] may produce decompositions with a larger than optimal
number of factors.
In [Mie11] the factorisation of triadic data was also studied but without any connection

to Triadic Concept Analysis and without the factor analytical interpretation presented
here. The paper contains various algorithms for the factorisation problem. There is
a small overlap in the theoretical part, namely it also contains the assertion from our
Theorem 3.4.

3.2. Transformation Between the Attribute and Condition Space
and the Factor Space

The results of this section were already presented in [BGV12]. In contrast to that work,
however, we present the problem in the notation of Triadic Concept Analysis and elaborate
further on the topics.
In Section 2.1 we have already got acquainted with transformations between the space

of attributes and the space of factors. These were developed for the dyadic case in [BV10a]
and were utilised in [Out10] for improving classification of binary data. In this section
we aim to generalise these mappings to the triadic case. That is, given a tricontext
K = (K1,K2,K3, Y ) (or equivalently a p × q × r 3d-binary matrix Y ) with its factorisation
contexts (Ki, F, Ii) (i = 1,2,3), one wishes for mappings that transform a description of a
given object in terms of attributes and conditions into a description of the same object in
terms of factors. That is, one asks for transformations between the attribute× condition
space and the factor space.
In the attribute× condition space, the object g ∈ K1 is represented by the object d-cut

of g, i.e., by (K2,K3, Y
23
g ). In the factor space, g is represented by a row of (K1, F, I1),

namely by gI1 . As presented in [BGV12], these transformations can be modelled as follows:
Let n ∶= ∣F ∣. Define mappings ϕ ∶ {0,1}q×r → {0,1}n and ψ ∶ {0,1}n → {0,1}q×r for
P ∈ {0,1}q×r and S ∈ {0,1}n by

(ϕ(P ))l ∶= ⋀qj=1⋀
r
k=1 ((Bjl ⋅Ckl)→ Pjk) , (3.8)

(ψ(S))jk ∶= ⋁nl=1 (Sl ⋅Bjl ⋅Ckl) , (3.9)

where Bj_ and Ck_ are the j-th and k-th rows of the factorisation matrices corre-
sponding to (K2, F, I2) and (K3, F, I3), respectively, for l ∈ {1, . . . , n}, j ∈ {1, . . . , q} and
k ∈ {1, . . . , r}. Here, →, ⋅, ⋀, and ⋁ denote the truth function of classical implication, the
usual product, minimum, and maximum, respectively. If P represents a description of an
object i in terms of attributes and conditions and S a description in terms of factors, then
given the interpretation of the factor matrices, ϕ and ψ have the following meaning: (3.8)
says that factor l applies to i if and only if object i has every attribute j under every
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3.2. Transformation Between the Attribute and Condition Space and the Factor Space

condition k such that j is a manifestation of l and k is one of the conditions under which
l appears; (3.9) says that object i has attribute j under condition k if there exists a factor
l such that l applies to i, j is a manifestation of l, and k is one of the conditions under
which l appears.
We may redefine these mappings in the language of Triadic Concept Analysis as follows:

ϕ ∶P(K2 ×K3)→P(F ) and ψ ∶P(F )→P(K2 ×K3) given by

ϕ(P ) ∶= {f ∈ F ∣ f I2 × f I3 ⊆ P}, (3.10)
ψ(S) ∶= {(k2, k3) ∈ f I2 × f I3 ∣ f ∈ S}, (3.11)

for P ∈P(K2 ×K3) and S ∈P(F ).
The next theorem shows that ϕ and ψ can be considered as appropriate transformations

between the attribute× condition space and the factor space.

Theorem 3.14 ([BGV12]). For any g ∈K1 we have

ϕ(g(1)) = gI1 and ψ(gI1) = g(1).

That is, ϕ maps the object d-cuts of (K1,K2,K3, Y ) to the rows of (K1, F, I1), and ψ

maps the rows of (K1, F, I1) to the object d-cuts of (K1,K2,K3, Y ).

Proof. The assertions follow directly from (3.10) and (3.11). We have

ϕ(g(1)) = {f ∈ F ∣ f I2 × f I3 ⊆ g(1)},
ψ(gI1) = {(k2, k3) ∈ f I2 × f I3 ∣ f ∈ gI1}

for any g ∈K1. Indeed, ψ(gI1) = g(1) results from the definition of triconceptual factorisa-
tions (Definition 3.2). For the first item let g ∈K1 such that g ∈ f I1 for some f ∈ F . Thus,
for any (k2, k3) ∈ f I2 × f I3 we have (g, k2, k3) ∈ Y by Definition 3.2. Hence, (k2, k3) ∈ g(1)
and thereby f I2 × f I3 ⊆ g(1). The converse is similar.

The next lemma, which follows easily from the definition of the two mappings, shows
that ϕ and ψ form an isotone Galois connection.

Lemma 3.15 ([BGV12]). For P,Q ∈P(K2 ×K3) and S,T ∈P(F ), we have

P ⊆ QÔ⇒ ϕ(P ) ⊆ ϕ(Q), (3.12)
S ⊆ T Ô⇒ ψ(S) ⊆ ψ(T ), (3.13)
ψ(ϕ(P )) ⊆ P, (3.14)
S ⊆ ϕ(ψ(S)). (3.15)

Keeping in mind the results of Theorem 3.14 the conditions (3.12)–(3.15) represent nat-
ural requirements. Indeed, (3.12) says that the more attributes under more conditions an
object has, the more factors apply, while (3.13) asserts the converse relationship. Con-
sequently, for an object, having “more attributes” and “more conditions” is positively
correlated with having “more factors”. (3.14) means that common attributes in common
modi associated to all the factors which apply to a given object are contained in the
collection of all attributes and modi possessed by that object. The meaning of (3.15) is
analogous.
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Corollary 3.16. For P,Pj ∈P(K2 ×K3) and S,Sj ∈P(F ) with j ∈ J , we have

ϕ(P ) = ϕψϕ(P ),
ψ(S) = ψϕψ(S),

ϕ(⋂
j∈J

Pj) = ⋂
j∈J

ϕ (Pj) ,

ψ(⋃
j∈J

Sj) = ⋃
j∈J

ψ (Sj) .

A geometry behind the transformations is described by the following assertion. For
P ∈P(K2 ×K3) and S ∈P(F ), we put

ϕ−1(S) ∶= {P ∈P(K2 ×K3) ∣ ϕ(P ) = S},
ψ−1(P ) ∶= {S ∈P(F ) ∣ ψ(S) = P}.

Recall that for a universe U , a subset C ⊆ P(U) is called convex if Y ∈ C whenever
X ⊆ Y ⊆ Z for some X,Z ∈ C.

Theorem 3.17 ([BGV12]). (1) ϕ−1(S) is a convex partially ordered subspace of the attribute
and condition space, and ψ(S) is the least element of ϕ−1(S).
(2) ψ−1(P ) is a convex partially ordered subspace of the factor space, and ϕ(P ) is the
largest element of ψ−1(P ).

Proof. By standard application of the properties of isotone Galois connections.

According to Theorem 3.17, the space K2 × K3 of attributes and conditions and the
space F of factors are partitioned into an equal number of convex subsets. The subsets
of the space of attributes and conditions have least elements and the subsets of the space
of factors have greatest elements. Hence, ϕ maps every element of any convex subset of
the space of attributes and conditions to the greatest element of the corresponding subset
of the factor space, whereas ψ maps every element of some convex subset of the space of
factors to the least element of the corresponding convex subset of the space of attributes
and conditions.

3.3. Algorithms

It follows trivially from the dyadic case that finding an optimal triconceptual factorisation
is an instance of the set covering problem. Thus, the problem is NP-hard and the corre-
sponding decision problem is NP-complete. Recall that there exists a greedy approxima-
tion algorithm for the set covering optimisation problem which achieves an approximation
ratio ≤ ln(∣U ∣)+ 1, see [CLRS01]. In our setting the universe U to be covered corresponds
to the incidence relation of the tricontext. The family S of subsets of the universe U that
is used for finding a cover corresponds to the set of all triconcepts T(K1,K2,K3, Y ). In
this setting, we are looking for C ⊆ S as small as possible such that ⋃C = U .
In [BGV12] we presented two algorithms for the triconceptual factorisation problem.

As this part of the work goes back to the other authors, we will present here just a brief
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overview of the results obtained for the algorithms. The first algorithm, Algorithm 1,
computes all triconcepts of the tricontexts. Afterwards, it searches in a greedy manner
for those triconcepts which cover most part of the incidence relation. This algorithm
can be significantly improved to get a better performance in terms of computation time.
Indeed, the main drawback of it is that it first computes the set S of all triconcepts of
(K1,K2,K3, Y ) and then selects (usually) a small subset of it for the triconceptual fac-
torisation by iteratively going through S. It is well-known that the number of elements in
S is usually large and may be larger than exponential with respect to min(∣K1∣, ∣K2∣, ∣K3∣)
in the worst case. As a result, since the first algorithm iterates through S every time it
computes a new factor, it has an exponential time delay complexity. Therefore, a second
algorithm, Algorithm 2, was designed to overcome this problem. It finds the factorisa-
tion directly without the need to compute all triconcepts. The way the second algorithm
works leads to a polynomial time delay complexity. The algorithm is based on the idea
of incremental modification of a promising triconcept by extending its intent and modus
such that the concept covers as much of the remaining values in U as possible.

15% 19% 23% 27% 31%
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Figure 3.3.: Empirical comparison of the numbers of factors computed by Algorithm 1 and Algo-
rithm 2 (x-axis: percentage of 1s in randomly generated three-dimensional matrices;
y-axis: numbers of factors; black nodes: average numbers of factors computed by
Algorithm 1; white nodes: average numbers of factors computed by Algorithm 2).

Remark 3.18. In practice, Algorithm 1 produces better results than Algorithm 2 in terms
of the number of computed factors. This is expected since Algorithm 1 uses the whole
set of triconcepts to search for the factors. On the other hand, Algorithm 2 is faster
than Algorithm 1 by an order of magnitude. This is because the expensive operation of
computing all triconcepts is omitted in Algorithm 2. Even if Algorithm 2 delivers worse
results (on average), our empirical experiments have shown that the average difference
of results obtained by both the algorithms is negligible if we compute the triconceptual
factorisation for tricontexts with a relatively low number of elements contained in Y .
The results of the experiments related to this issue are depicted in Figure 3.3. The

graph in Figure 3.3 shows two curves corresponding to the average numbers of factors
computed by Algorithm 1 (curve with black nodes) and Algorithm 2 (curve with white
nodes) using a sample of 300,000 randomly generated tricontexts of various sizes, the
incidence relation of each context containing about ten thousand entries. One can see
that with growing density of crosses in the context, the difference between the average
numbers of factors grows and Algorithm 2 computes more factors than Algorithm 1. With
smaller percentages of crosses, the difference is negligible. Since most large real-world
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data sets represented by tricontexts are typically sparse (very low percentages of crosses),
Algorithm 2 is a preferred choice since it delivers almost as good results as Algorithm 1
in considerably less time.

3.4. Approximate Factorisations

For a large tricontext numerous factors are needed, even for an optimal factorisation. In
cases where the users would like to know just roughly about the information contained in
the data, approximate factorisation is adequate. Then the requirement on the model is
weaker in the sense that it has to fit the data set only partially. These approximations
can be of two kinds, namely with negative discrepancies and with positive discrepancies.
In the first type there are crosses in the tricontext which remain uncovered, i.e., not the
entire ternary relation of the tricontext is explained, and the second type covers some
blank entries with crosses, i.e., one explains more than there is. Trivially, one can combine
the two kinds.

Negative Discrepancies

For a given tricontext (K1,K2,K3, Y ) we will be searching for approximate factorisation
contexts (Ki, F, Ii) (i = 1,2,3) such that

⋃
f∈F

f I1 × f I2 × f I3 ⊆ Y.

These inexact factorisation contexts approximate Y from below. By adding further ele-
ments to F , we obtain a more precise approximation. Such approximate factorisations for
the dyadic case were presented in [BV10a].
For the tricontext in Figure 1.3 (page 20) we consider the approximate factorisations

given by the factor sets F1 = {f4}, F2 = {f4, f5}, F3 = {f4, f5, f2} and F4 = {f4, f5, f2, f6}
(see figures 3.1 and 3.2 on page 73). Notice that just using an optimal factor we are
able to cover 45% of the incidence relation of the tricontext. The set F2, containing just
a quarter of the total number of factors, covers 65%. The factor sets F3 and F4 also
tighten the approximation but not as drastically as the first two factors. Although the
first four factors cover 85% of the incidence relation, the last 4 factors are needed to cover
the remaining 15%. While the exact optimal factorisation contains eight factors we can
explain 65% of the data by using just two factors through the approximate factorisation.
Usually one is interested in the degree of approximation, i.e., a ratio to which the

approximate factorisation contexts explain the tricontext. This ratio is given by

∣⋃f∈F f I1 × f I2 × f I3 ∣
∣Y ∣

. (3.16)

Obviously, the ratio equals 1 (or 100%) if and only if F is an exact factorisation. From the
point of view of approximation, one is interested in finding, given a ratio r, a factor set
F such that the degree of approximation given by (3.16) is at least r. In other words, we
are interested in factors which explain at least 100 ⋅ r% of the input data. Notice that the
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algorithms presented in Subsection 3.3 ([BGV12]) can be easily modified to compute ap-
proximate factorisations by adding an additional parameter r and a new halting condition
which stops looking for further factors whenever the threshold value r has been reached.
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Figure 3.4.: Relative frequency histograms of degrees of approximation obtained by using one up
to four factors of randomly-generated 7-factorisable three-dimensional matrices.

Remark 3.19. In [BGV12] a series of experiments were performed to explore the behaviour
of approximate decompositions, in particular to observe the (average) numbers of factors
that are needed to achieve a high approximation degree (for instance, 80% and higher).
The experiments show that with the first few factors computed, either of the algorithms
presented in Section 3.3 (usually) achieve relatively high degrees of approximation. This
observation is based on experiments with approximate factorisations of randomly gener-
ated tricontexts with various densities.
Figure 3.4 depicts relative frequency histograms of degrees of approximation obtained by

using the first four factors in a sample of 850,000 randomly generated 7-factorisable three-
dimensional matrices of various sizes, each matrix containing about one million entries.
The top-left histogram shows the degree of approximation obtained by using the first
factor. The top-right histogram shows the degree of approximation obtained by using the
first two factors. Analogously, the bottom-left and bottom-right histograms refer to the
first three and first four factors. The hatched areas of the histograms are delimited by
the intervals of the mean degrees of approximation ± the standard deviations. The mean
values are also presented in the diagrams. As one can see, the first two factors cover
nearly 70% of the input data (on average), and the first four factors cover nearly 90%
of the input data. Thus, even if the generated matrices are 7-factorisable, i.e., 7 factors
are needed to achieve 100% degree of factorisation (the exact factorisation), only the first
four factors are sufficient to achieve 90% degree of approximation which can be quite
surprising. Hence, the approximate decomposition can help to reveal important factors
covering most part of the data. In this particular case of 7-factorisable matrices, we can
say that (typically) the first four factors are the most important ones.

Concluding, while exact factorisation may require a large number of factors, a consid-
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erably smaller number of factors may cover a large portion of the data.

Positive Discrepancies

If we are looking for an approximate factorisation with positive discrepancies, i.e.,

Y ⊆ ⋃
f∈F

f I1 × f I2 × f I3 ,

we have to compute dense rectangular boxes (dense boxes) instead of full rectangular
boxes. Dense boxes correspond to triples (A1,A2,A3) with Ai ⊆ Ki (i = 1,2,3) allowing
blanks (0 entries). A dense box (A1,A2,A3) has the interpretation “most objects from
A1 have most attributes from A2 under most conditions from A3”. In many cases the
factorisation through dense boxes is justified by the errors and noisiness contained in the
data.
For the dyadic case the computation of dense rectangles of a given formal context was

studied in [GV93, BV06b], however the factorisation problem was not considered.
As in [GV93], for a dense box d = (A1,A2,A3), we denote the number of zeros contained

in A1 ×A2 ×A3 by zd and its density by ρd ∶= zd/(∣A1∣ ⋅ ∣A2∣ ⋅ ∣A3∣). Note that triconcepts
have density 0.

Definition 3.20. The factorisation of a tricontext (K1,K2,K3, Y ) with dense boxes is a set
of dense boxes D = {(A1,B1,C1), . . . , (An,Bn,Cn)} such that

Y ⊆ ⋃
(A,B,C)∈D

A ×B ×C.

The most straightforward approach to obtain factorisations with positive discrepancies,
i.e., with dense boxes, is to consider formal concepts of d-cuts and compute the corre-
sponding triconcepts with a given density α.
For example, in the tricontext from Figure 1.3 (page 20) let us consider the con-

cept (A,B) ∶= ({0,1,2,3,4,5}, {2,3}) of the d-cut c1
2. Now (A × B)(3) = {1,2}, but

A × B is also partially contained in the d-cut of condition 0. If we take the dense box
d1 ∶= ({0,1,2,3,4,5},{2,3},{0,1,2}), then we get zd1 = 3 and ρd1 = 1/12. By using
this dense box we eliminate a factor from the optimal triconceptual factorisation (see
Figure 3.1 and 3.2), namely ({0,1,2,5},2,{0,1,2}), because the incidence is already cov-
ered by the dense box. Proceeding alike, we obtain the factorisation by dense boxes
D = {d1, d2, d3}, where d2 ∶= ({2,3,4,5},{0,1,2,3,4,5},{0,1,2}) with ρd2 = 1/8 and
d3 ∶= ({1,3,4,5},{0,1,2,3,5},{0,1,2}) with ρd3 = 1/10. Of course we have to specify
at the beginning which is the maximal allowed density. Through this method we obtained
a factorisation containing 3 dense boxes instead of 8 triconcepts.
The lower the density is that we allow for the dense boxes, the more precise the factori-

sation becomes.
In the algorithms presented in Section 3.3 we may replace the conditions for triconcepts

by conditions for α-dense boxes. In [GV93] more approaches for the computation of dense
blocks (dense dyadic concepts) were presented. We are particularly interested in the one
which allows blocks with a given density α. The algorithm can be easily generalised to the
triadic case. The difference to the approach presented before is that any two components
of a dense box do not necessarily form a dyadic concept.
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3.5. Factor Analytical Tools

In this section we generalise some tools from ordinary Factor Analysis to our framework.
It turns out that such methods can be easily applied in our setting.

3.5.1. Confirmatory Factor Analysis

So far we have presented Exploratory Factor Analysis, however Factor Analysis can also be
used in a confirmatory way. In this approach the researcher has to make some assumptions
about the number and/or the structure of the factors. Such hypothesis must be done under
consideration of the attributes, how they interact with another, and which are likely to
be contained in the same factor. If the hypothesis is appropriate for the data, then the
validity of the factor analytical model tends to be more accepted.
When the researcher has to make assumptions just on the number of factors, there

is no difference between Confirmatory and Exploratory Factor Analysis as the structure
of factors is not influenced. If the researcher makes assumptions on the structure of
factors, he/she has to specify the attributes belonging to each factor. Such hypothesised
factorisation could yield an exact factorisation, however due to possible errors in the
data or wrong assumptions of the user it is very likely that it would be an approximate
factorisation. Further it could happen that such factorisations are not necessarily optimal.
After applying Confirmatory Factor Analysis one could check whether the entire incidence
relation of the context was covered and perform Exploratory Factor Analysis on it. The
comparison between the results of the confirmatory and exploratory methods proved to
be useful, see for instance [Lon83].
Algorithm 1 performs Confirmatory Factor Analysis on a triadic data set. The user

must enter the tricontext K = (K1,K2,K3, Y ) and two factorisation contexts, namely
(K2, F, I2) and (K3, F, I3), of the hypothetical triconceptual factorisation. The algorithm
first computes the components of the triconcepts for each f ∈ F , lines 2 − 5, and removes
the rectangular boxes, not necessarily maximal, generated by them from U in line 6. The
factorisation context (K1, F, I1) is built in line 7. In order to know which part of the
incidence relation remains uncovered, we store the negative discrepancies induced by the
hypothetical factorisation in line 9.

Algorithm 1: ConfirmatoryFactorAnalysis(K, (K2, F, I2), (K3, F, I3))
1 set U to Y ;
2 foreach f ∈ F do
3 set A2 to f I2 ;
4 set A3 to f I3 ;
5 set A1 to (A2 ×A3)(1);
6 set U to U ∖ (A1 ×A2 ×A3);
7 set f I1 to A1;
8 end
9 set negDis to {(i, j, k) ∣ (i, j, k) ∈ U};
10 return (K1, F, I1), negDis
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3. Triadic Factor Analysis

The algorithm can be modified in line 5 in order to accept dense boxes with some density
instead of triconcepts or rectangular boxes.
Another possible way to use Confirmatory Factor Analysis is to check whether the

factorisation of a data set is applicable on another data set. Suppose we have performed
a study on more groups of people and we have computed an optimal factorisation of the
first data set. The question arises whether this factorisation also applies to the persons
from another study group or/and whether it applies to all persons participating in the
study.
Let us now put the confirmatory triconceptual factorisation to work.

Example 3.21. We want to find out whether the triconceptual factorisation of the hostels
from Seville works as well if we apply it to hostels from other cities. Recall that the hostels
from Figure 1.3 (page 20) were chosen such that they were the best rated hostels in Seville
that were present in all three hostel booking websites. Their triconceptual factorisation
is given in Figure 3.1 and 3.2 (page 73). Let us now choose hostels from Malaga under
the exact same conditions, and let us extract the data analogously. We obtain what is
displayed in Figure 3.5. Again, we made a cross in the corresponding cell of the hostel,
service and hostel booking website if the service of the hostel was rated as excellent by
the users of the website.
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0: Oasis B. Malaga × × × ⨉ × × × ⨉ × × ×
1: Picasso’s Corner × ⨉ × × ⨉
2: Melting Pot × × × ⨉ × × × × ⨉ × × × × × ⨉ ×
3: Residencia Univ. × × ⨉ × ⨉ ⨉
4: Pink House × ⨉ ⨉ × × × × ×

Figure 3.5.: Hostels from Malaga

We will use Algorithm 1 with the tricontext K from Figure 3.5 and the attribute and
condition factorisation contexts from the Seville example given in Figure 3.1 and 3.2.
Whenever we write (−)I2 and (−)I3 we refer to the factorisation contexts for the hos-
tels from Seville. In turn, we use the derivation operators (−)(1) and (−)I1 to refer to
the tricontext about the hostels from Malaga and its factorisation context for objects,
respectively. Recall that factor f1 stands for best location since all the users agreed on
this matter. For f1 we have (f I2

1 × f I3
1 )(1) = K1, so this factor is also present in a (not

necessarily optimal) factorisation of the hostels from Malaga. Even more, (f I1
1 , f I2

1 , f I3
1 )

is a triconcept of K. Further, we have f I1
3 = {0,2}, f I1

5 = {0,2,4} and f I1
6 = {2}. All these

factors can be found in the new data set but not all of them induce triconcepts of K. The
other factors cannot be found in the data since we have f I1

2 = f I1
4 = f I1

7 = f I1
8 = ∅. Thus, our

assumption that both data sets have the same underlying structure of factors turned out

84



3.5. Factor Analytical Tools

to be wrong. However, there is a significant overlap between the two structures. Indeed,
half of the factors from the triconceptual factorisation for the hostels from Seville apply to
the hostels from Malaga. Using the factors that are present in the data, {f1, f3, f5, f6}, we
are able to cover 67,39% of the incidence relation, where the larger crosses in Figure 3.5
are those that have not been covered by the confirmatory triconceptual factorisation.

f1 f2 f3 f4 f5

Oasis Malaga × × × ×
Picasso’s Corner ×
Melting Pot × × × ×
Residencia Univ. × ×
Pink House × × ×

f1 f2 f3 f4 f5

character ×
safety × ×
location × × × × ×
staff × × × ×
fun ×
cleanliness × × ×

Figure 3.6.: Factorisation contexts for objects and attributes

f1 f2 f3 f4 f5

hostelworld × × ×
hostels × × ×
hostelbookers × × × ×

Figure 3.7.: Factorisation context for conditions

Note however that factor f1 and f5 from the Seville hostels appear also in the optimal
factorisation of the hostels from Malaga. The entire conceptual factorisation is displayed
in Figure 3.6 and Figure 3.7. For this data set we have only five factors. This is due to
the fact that the data is sparser and that the users from the three hostel booking website
tend to agree more in their opinions.

3.5.2. Projection of External Elements

Suppose that we have already computed the triconceptual factorisation of a tricontext
K = (K1,K2,K3, Y ) but want to introduce new objects, attributes or conditions without
recomputing the factorisation. For these new elements we want to check how good they fit
the factor model. We will study the case for new objects. The projection of new attributes
or conditions is done analogously. For the dyadic case such projections were studied among
others in [DRV93].
Let us denote the factor set of K by F and the new object by g. This new object

induces a tricontext (g,K2,K3, J). How good g fits a factor f ∈ F can be determined by
the following formula:

projf(g) ∶=
∣{g}(1) ∩ (f I2 × f I3)∣

∣f I2 × f I3 ∣
.

Obviously, 0 ≤ projf(g) ≤ 1 for all f ∈ F . The higher the value of projf(g) is, the better
factor f explains the object g. If projf(g) = 1, we say “object g can be fully projected on
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3. Triadic Factor Analysis

factor f” and we can extend the extent f I1 by g. Now, if

g(1) ⊆⋃{f I2 × f I3 ∣ f ∈ F,projf(g) = 1}, (3.17)

then the whole incidence relation of (g,K2,K3, J) is explained by some factors of F , i.e.,
object g fits the factor model and we can extend the first factorisation context. If the above
equation is not fulfilled, then g cannot be explained by F and we would need additional
factors for an exact factorisation of (K1 ∪ {g},K2,K3, Y ∪ J).

Example 3.22. Consider once again our running example from Figure 1.3 (page 20) with
its triconceptual factorisation given in Figure 3.1 and 3.2 (page 73). We want to add

0 1 2
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

6: Triana B. × × × × × × × × × × × × × ×
7: Living Roof × × × × × × × × × × ×

Figure 3.8.: Projection of new objects

new hostels to the tricontext in Figure 1.3 which are displayed in Figure 3.8. We have
projf5(6) = projf6(6) = projf7(6) = 1 and 6(1) ⊆ ⋃{f I2 × f I3 ∣ f ∈ {f5, f6, f8}} satisfying
Equation 3.17. Thus, the hostel Triana Backpackers fits the triconceptual factorisation.
On the other hand, the hostel Living Roof cannot be explained by the factorisation.
For this hostel, the factor f5 is the only one on which the hostel can be fully projected.
However this factor does not cover the entire incidence relation of ({7},K2,K3, J). Hence,
this hostel does not satisfy Equation 3.17 and it is therefore not explained fully by the
factorisation.

3.6. Conclusion

We proposed a new approach to Factor Analysis of three-way binary data. The approach
utilises triconcepts as factors. Such a choice is justified by a theorem showing that triadic
concepts provide us with optimal factorisations of triadic binary data. In addition, as
illustrated by an example, triadic concepts are easily interpretable, resulting in a simply
to understand output of the Factor Analysis. Further, we gave an upper bound for the
number of factors, described those triconcepts which are present in any factorisation of a
given tricontext, and characterised the factorisation contexts. We also introduced map-
pings which transform a description of a given object in terms of attributes and conditions
into a description of the same object in terms of factors. We proposed a greedy algorithm
for computing suboptimal triconceptual factorisations and provided its experimental eval-
uation. Moreover, we studied the triconceptual factorisations with positive and negative
discrepancies. In order to obtain a better fitting of our approach to Factor Analysis we
also generalised some factor analytical tools to our framework.
Due to the wide applicability of Factor Analysis in a triadic setting it arose as a natural

wish to generalise also the conceptual factorisation to the triadic setting. This generali-
sation is also of major importance to show that the conceptual factorisation might be as
powerful as Factor Analysis.
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4
Hierarchical Classes Analysis

Hierarchical Classes Analysis was developed by De Boeck and Rosenberg at the end of
the 80’s ([DR88]). It is a discrete, categorical data analysis model for binary data. Its
development was driven by applications in personality organisation and implicit belief
systems. Let us mention beforehand that there is a great similarity between the conceptual
factorisation and Hierarchical Classes Analysis.
Although the development of Hierarchical Classes Analysis started almost thirty years

ago, there is still recent work going on in this field, especially concerning generalisations
of the model to non-binary and non-dyadic data. We will also study these variants.
This chapter does not aim to develop some complex mathematical theory. As we will

see this is also not necessary. Our main goal is to connect Hierarchical Classes Analysis
with the conceptual factorisations and to show how they can benefit from each other. We
will establish this connection by translating the notions of Hierarchical Classes Analysis
into the language of Formal Concept Analysis and conceptual factorisation. Our aim is
to present the whole picture. Therefore, we will investigate the motivations, theoretical
frameworks and algorithmic approaches of the methods.
The results regarding the connection between conceptual factorisation and Hierarchical

Classes Analysis for binary data presented in Section 4.1 are partially based on the work
developed in [Glo11b]. Those findings motivated us to investigate the link between the
two methods also for non-dyadic and numerical data. A brief survey of this field was given
in [Glo11a].
Before we start our work let us present the body of this chapter. In Section 4.1 we

give a brief introduction to Hierarchical Classes Analysis for binary dyadic data and study
its connection to conceptual factorisation. As there exists a tight link between the two
methods, we investigate the similarities of them also for other kinds of data. In Section 4.2
we study the triadic versions of Hierarchical Classes Analysis and establish a link between
these methods and triconceptual factorisation. Section 4.3 deals with Hierarchical Classes
Analysis for numerical data. Completely new land is reached in Section 4.4, where we de-
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4. Hierarchical Classes Analysis

velop the theory for Hierarchical Classes Analysis in a fuzzy setting. An overall conclusion
of this chapter is given in Section 4.5.

4.1. Hiclas

We start our investigation by giving a brief introduction to Hierarchical Classes Analysis
and translate the notions into the language of Formal Concept Analysis. The interested
reader may find a more detailed introduction to Hierarchical Classes Analysis in [DR88,
DRV93].
In Hierarchical Classes Analysis a p×q binary matrixW is decomposed into the Boolean

matrix product X ○Y T of a p×n binary matrix X and a q×n binary matrix Y with n being
the Schein rank of W , i.e., the smallest possible value such that W = X ○ Y T where Y T

is the transpose matrix of Y . The matrices X and Y have as columns the characteristic
vectors of the object and attribute bundles (see below), respectively.
In the following we just present the definitions and notions for objects, the ones for

attributes can be done analogously by interchanging objects with attributes.
The object by attribute data from Hierarchical Classes Analysis is a binary matrix which

corresponds to the Boolean matrix representation of a formal context. In Hierarchical
Classes Analysis two objects are called equivalent if and only if the same attributes apply
to them. An object class is the set of all objects that are equivalent to one another in
a given object by attribute data. If the objects g1, . . . , gn form an object class, we write
[g1, . . . , gn]. The class of objects to which none attributes apply is called the undefined
class.
Each object class is characterised by the set of attributes that apply to all objects of the

class. Therefore, the object classes can be ordered by the super-/subset relation of their
attribute sets. This order is a partial one, called the hierarchy of object classes.
We may translate the above presented notions from Hierarchical Classes Analysis into

the language of Formal Concept Analysis as follows:

Definition 4.1. In a formal context (G,M, I) two objects g1, g2 ∈ G are called equivalent
if and only if g′1 = g′2. The set

[g1] ∶= {g ∈ G ∣ g′ = g′1}

is called the object class of the object g1. We define a partial order relation between the
classes of G, the so-called hierarchy of object classes, as follows:

[g1] ≤ [g2] ∶⇐⇒ g′1 ⊆ g′2,

for any objects g1, g2 ∈ G.

Example 4.2. Consider the context given in Figure 4.1 with its object set G = {1, . . . ,10}
and attribute set M = {a, . . . , h}. Objects 1 and 2 are equivalent and therefore form an
object class. There are all in all six object classes, namely [1,2], [3,4], [5], [6,7], [8] and
[9,10], where the last one is an undefined class, because no attribute applies to its objects.
The attribute classes are [a, b], [c, d], [e, f] and [g, h]. This example does not contain an
undefined attribute class.
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a b c d e f g h
1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × ×
7 × × × ×
8 × × × ×
9
10

9,10

6,7

3,4

1,2

5

8

g, h

a, bc, de, f

Figure 4.1.: A formal context and its concept lattice. The concepts corresponding to the black
coloured circles are used in the conceptual factorisation.

The association relation between the hierarchy of object and of attribute classes allows a
simultaneous graphical representation of the two hierarchies. An object class is associated
with all attribute classes that apply to the objects of that object class. By the association of
an object class with an attribute class, the first is also associated with all the superordinate
classes of the second one and vice versa. Therefore, it is sufficient to associate the bottom
classes of the two hierarchies. Graphically, one hierarchy is represented upside-down and
the association relation by zigzag lines. The graphical representation of the context from
Figure 4.1 is displayed in Figure 4.2 and the concept lattice in Figure 4.1, where the black
coloured circles correspond to concepts used in the conceptual factorisation.
The object (attribute) classes are ordered through the super-/subset relation of their

attribute (object) sets. However, the undefined object (attribute) class is not included into
the hierarchy of objects (attributes), because it interferes with the graphical representation.
Including the undefined classes into the hierarchies would make them the bottom classes
and, through the association relation of the bottom classes, every object class would be
associated with every attribute class.
The graphical representation of the Hierarchical Classes Analysis model contains all the

object and all the attribute concepts. There are, however, cases where these concepts
are not enough for the correct representation of the association relation or/and for the
optimal factorisation. Therefore, the diagram may contain also other concepts, whereas,
the concept lattice contains all the concepts of a given context.
The object set which corresponds to an attribute class can be decomposed into object

classes such that their size is maximal and their number minimal. These objects are then
called object bundles. An object bundle is a set of objects which is associated with the
same bottom class of attributes. The three relations of the model can be reconstructed
from the bundles.
In the language of Formal Concept Analysis we give the following definition of bundles:

Definition 4.3. An object (attribute) bundle is the extent (intent) of some formal concept.

Example 4.4. The graphical representation sometimes requires empty classes for the cor-
rect illustration of the association relation. For instance, in Figure 4.2 the hierarchy of
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object classes contains an empty bottom class, because the classes [3,4] and [5] both
apply to the attribute class [c, d]. A direct zigzag line from [3,4] and [5] to [c, d] is not
permitted because the two object classes are not bottom classes.

[g,h]

[a,b] [c,d] [e,f]

[6,7] [ ] [8]

[3,4] [5]

[1,2] [9,10]

Figure 4.2.: Hiclas representation

The object bundles are {1,2,3,4,6,7}, {1,2,3,4,5} and {1,2,5,8} and the attribute
bundles are {a, b, g, h},{c, d, g, h} and {e, f, g, h}. The bundle decomposition is given in
Figure 4.3.
Note that, for the optimal factorisation, the Hierarchical Classes Analysis model yields

the same set of formal concepts as the conceptual factorisation. This is not surprising,
because we have already seen that both methods actually use formal concepts for the
factorisation/decomposition. Let us fix this result in the following proposition:

Proposition 4.5. For an optimal decomposition there is a one-to-one correspondence be-
tween the factorisation contexts of a conceptual factorisation and the object-attribute bun-
dles from Hierarchical Classes Analysis.

However, when it comes to algorithms, the situation slightly changes. This is caused
by the fact that the factorisation problem is NP-hard and the two approaches tackle the
problem differently.
The Hiclas algorithm was presented in [DR88, LV01] and it computes for a binary matrix

W the best fitting Hierarchical Classes Analysis model for a given solution rank n. The
algorithm assumes thatW = Z+E, whereW,Z and E are p×q matrices, Z =X○Y T withX
and Y being p×n and q×n binary matrices, respectively, and E is the discrepancies matrix.
Then, X and Y are estimated by a least square approach. The user must specify the
number of bundles, the rank, of the solution. The algorithm starts an iterative procedure
based on either an initial set of attribute or object bundles. The initial bundle set can
be determined by: 1) a rational heuristic; 2) a random generation procedure; or 3) the
user’s input; where the first two are built into the algorithm. Hiclas can also be used in
a confirmatory way through method 3). The algorithm stops either when the pre-entered
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Object Bundles Attribute Bundles
Obj. OB1 OB2 OB3 Attr. AB1 AB2 AB3
1 1 1 1 a 1 0 0
2 1 1 1 b 1 0 0
3 1 1 0 c 0 1 0
4 1 1 0 d 0 1 0
5 0 1 1 e 0 0 1
6 1 0 0 f 0 0 1
7 1 0 0 g 1 1 1
8 0 0 1 h 1 1 1
9 0 0 0
10 0 0 0

Figure 4.3.: Bundle decomposition of the context from Figure 4.1

rank is reached or when the number of discrepancies does not decrease in any further
iteration. The optimal number of bundles is considered to be the number beyond which
the discrepancies decrease slightly.

We have already seen the theoretical framework, algorithmic approach of Hierarchical
Classes Analysis and its connection to conceptual factorisation. As its development was
motivated by applications, we are interested in the analyses where Hierarchical Classes
Analysis was used. Indeed, the method proved itself successful in many applications. For
instance in sociometrics ([DR88]), in the analysis of data involving patients with medically
unexplained somatic symptoms ([GSE+98]), in studies in social personality ([Ros88]), in
splitted personality analysis ([RG]), and so on. Based on our results we may conclude
that conceptual factorisation can be also applied for such studies.

Comparison of the Models

As we have seen, Hierarchical Classes Analysis as well as conceptual factorisation seek to
decompose a formal context/binary matrix into two factorisation contexts/binary matrices
such that the number of factors is as small as possible. Both methods actually use formal
concepts for this purpose, i.e., there is a one-to-one correspondence between concepts and
object-attribute bundles. The major differences lie in the graphical representation and the
algorithms. Concerning the latter, the algorithms of both methods search for the smallest
possible subset of formal concepts which covers the incidence relation of a context, but
their approaches are different. Due to the fact that the factorisation problem is NP-hard,
a greedy approximation algorithm was considered in [BV10a]. This algorithm is efficient
but can possibly yield suboptimal solutions, as discussed in Section 2.1. Commonly,
data used in Factor Analysis is very large and this algorithm is applicable. A brute-
force set covering algorithm is applicable on moderate size data. Further, we may use an
approximate factorisation with positive or/and negative discrepancies, see Section 2.1. On
the other hand, the Hiclas algorithm is based on a branch-and-bound approach and always
yields an optimal factorisation. However, a branch-and-bound approach can be applied
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only on smaller data sets due to its high complexity. Therefore, Hiclas was implemented
to compute factorisations with up to 15 bundles.
Note that Formal Concept Analysis and Hierarchical Classes Analysis were first linked

in [CY05]. However, back then the factorisation problem was not considered. Hence, this
work does not represent a competitor for our approach presented here.

Hierarchical Classes Analysis was developed to find the latent variables hidden in data
about patients suffering from different disorders. We have already mentioned above that
this technique was successfully applied in various clinical evaluations. The 2-dimension
originates from a completely different research field. However, the two problems meet
through the conceptual factorisation. For the 2-dimension the factorisation is a significant
application. But the other side also profits from this connection. Indeed, the conceptual
factorisation/Hierarchical Classes Analysis is based on a solid mathematical framework.

Hierarchical Classes Analysis was generalised in [LVD01] to the treatment of ordinal
data. The roots of this generalisation lie in the Nonmetric Factor Analysis developed by
Coombs and Kao [CK55] that we have already mentioned in Chapter 2. The three standard
relations of Hierarchical Classes Analysis are adapted to the new data type. The main
concern of [LVD01] lies in finding an appropriate algorithm for the optimisation of the
nonmetric models. The outcome uses a least square and least absolute deviation function.
However, since there are no connections between [LVD01] and our ordinal factorisation,
we will stop the investigation of that work here.

4.2. Triadic Hiclas

Based on the results from the previous section, we also expect similarities between the
conceptual factorisation and Hierarchical Classes Analysis in the triadic setting. As we
will see in the following, this is indeed the case. There are two different approaches to
Hierarchical Classes Analysis in the triadic setting, the Indclas model and the Tucker3
model, which we will study in the upcoming subsections.
Both methods have a common core. They are applicable on three dimensional binary

data matrices. The three dimensions, the so-called modes, are considered to be objects,
attributes and sources. In Triadic Concept Analysis we identify this data matrix with a
tricontext by replacing the zeros with blanks and the ones with crosses. Further, the three
modes correspond to objects, attributes and conditions, respectively.

4.2.1. Indclas

Indclas, a triadic version of Hierarchical Classes Analysis, was presented in [LVDR99]. It
decomposes a binary p× q × r 3d-matrix W into p×n, q ×n and r ×n binary matrices P,Q
and R with n being as small as possible. Then, the matrices P,Q and R are called object
bundle, attribute bundle and source bundle matrices, respectively, and n is said to be the
rank of the model. The decomposition is done through the Boolean 3d-matrix product
given by

Wijk =
n

⋁
l=1
Pil ⋅Qjl ⋅Rkl,
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for all i ∈ {1, . . . , p}, j ∈ {1, . . . , q} and k ∈ {1, . . . , r}. This matrix product is identical with
the one used in the triconceptual factorisation, see Definition 3.13 (page 75).
For an element x of either of the three modes,W (x) denotes the set of tuples of elements

from the other two modes that are associated with x in W . This operator corresponds to
the (−)(i)-derivation operators in Triadic Concept Analysis, see Definition 1.28 (page 19).
The association relation is a ternary relation between the three modes given by the

Boolean 3d-matrix product.
Two elements x and y of some mode are equivalent if W (x) =W (y). Equivalent objects

(attributes, sources) constitute an object (attribute, source) class. Consequently, equivalent
objects (attributes, sources) have identical bundle patterns in the Indclas model. The
object and attribute bundles are defined as in the dyadic case and the source bundles
analogously.
An element x is hierarchically below an element y if W (x) ⊆ W (y). This order is a

partial one and forms the hierarchical order in each mode.
To sum up, the notions presented above translate into the language of Triadic Concept

Analysis in the following way:

Definition 4.6. Let (K1,K2,K3, Y ) be a tricontext. Two elements x, y ∈Ki with i ∈ {1,2,3}
are equivalent if and only if x(i) = y(i). For an object (attribute, condition) x ∈ Ki with
i ∈ {1,2,3} its object (attribute, condition) class is defined by

[x] ∶= {y ∈Ki ∣ y(i) = x(i)}.

An object (attribute, condition) bundle is the extent (intent, modus) of some triconcept.

Consequently, the i-th rows of the three bundle matrices correspond to the components
of some triconcept. Similarly to the dyadic case we have the following result:

Proposition 4.7. For an optimal factorisation there is a one-to-one correspondence between
the factorisation contexts of a triconceptual factorisation and the three bundles of Indclas.

Example 4.8. Consider the tricontext (K1,K2,K3, Y ) from Figure 4.4 with its object set
K1 = {1, . . .7}, attribute set K2 = {a, . . . e} and condition set K3 = {A,B,C}. For object

A B C

a b c d e a b c d e a b c d e

1 × × × × × × × × × × ×
2 × × × × × × × × × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × × × × × × × × ×
6 × × × × × × × × × × × × ×
7 × × × × × ×

Figure 4.4.: Example of a tricontext

7 we obtain W (7) = {(a,B), (d,B), (e,B), (a,C), (d,C), (e,C)} and hence W (7) = 7(1).
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Object Bundles Attribute Bundles Source Bundles
Obj. OB1 OB2 OB3 OB4 Attr. AB1 AB2 AB3 AB4 Sour. SB1 SB2 SB3 SB4
1 0 1 1 0 a 0 0 1 1 A 1 0 1 0
2 0 1 1 0 b 1 1 0 0 B 0 1 0 1
3 0 0 0 1 c 1 1 0 0 C 1 1 1 1
4 1 0 0 0 d 1 1 1 1
5 0 1 1 1 e 0 0 1 1
6 1 1 1 0
7 0 0 0 1

Figure 4.5.: Indclas bundle decomposition of the tricontext from Figure 4.4

The objects 1 and 2 share the same attributes under each mode (source) and thus, are
equivalent. Consequently, they form an object class.
The decomposition of the tricontext is given by the object, attribute and source bundles

in Figure 4.5. These bundles correspond to the following four triconcepts:

({4,6},{b, c, d},{A,C}),
({1,2,5,6},{b, c, d},{B,C}),
({1,2,5,6},{a, d, e},{A,C}),
({3,5,7},{a, d, e},{B,C}),

which are exactly the triconcepts used in the triconceptual factorisation. The circles
corresponding to these triconcepts are drawn larger in the trilattice from Figure 4.7.

Now let us turn our attention to the graphical representation. The Indclas graphical
representation of the tricontext from Figure 4.4 is given in Figure 4.6. In the upper part
of the diagram the hierarchical order of object classes is displayed, in the lower part the
upside-down hierarchy of attribute classes, and in the middle the circles containing the
corresponding sources. The zigzag lines represent the association relation. Compared
to the graphical representation of the dyadic case, the zigzag lines in the triadic setting
include circles which contain the sources that belong to the corresponding bundles. We
can read the association relation from the diagram as follows: Object x is associated with
attribute y by source z if and only if object x is connected with attribute y by a path that
goes through source z. For instance, in Figure 4.6 a path goes from the object class [4]
to the attribute classes [b, c] and [d] through the circle containing the sources A and C.
However, through this graphical representation the hierarchical order of the sources is

lost. One has to draw a separate diagram for the hierarchy of the source classes. To
also include the hierarchical order of the source classes into the diagram, the trilattice
representation is adequate. The trilattice of the tricontext from Figure 4.4 is displayed
in Figure 4.7 (see the text next to Figure 1.4 on page 23 for details on how to read such
diagrams). The triconcepts belonging to the triconceptual factorisation are drawn larger
in the trilattice.
The Indclas algorithm is an alternating elementary binary discrete least squares proce-

dure ([LVDR99]), which starts from an initial configuration of bundles. The algorithm is
a generalisation of the one from the dyadic case.
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[d]

[b,c] [a,e]

[ ] [ ] [ ] [ ]

A C B C A C B C

[4] [ ] [ ] [3,7]

[1,2]

[6] [5]

Figure 4.6.: Indclas representation of Figure 4.5

The triadic version of Hierarchical Classes Analysis was successfully applied in differ-
ent analyses of patients suffering from mental disorders. For instance in [LVDR99] thirty
case descriptions of psychiatric inpatients (objects) were evaluated based on twenty-three
symptoms (attributes) by fifteen clinicians (sources/conditions). Once again we may con-
clude that triconceptual factorisation would be applicable in the analysis of such clinical
data.

4.2.2. Tucker3 Hierarchical Classes Analysis

The Tucker3 Hierarchical Classes Analysis was developed in [CVL03] as a generalisation
of Indclas. It has the same underlying structure as Indclas but the matrices P,Q and R
are constructed differently. The Tucker3 model does not restrict these matrices to have
the same rank, i.e., the number of bundles in a decomposition may differ from mode to
mode. Additionally, the Tucker3 model allows a more complex linking structures among
the hierarchies.
The Tucker3 model implies the decomposition of a p × q × r 3d-binary matrix W into a

p × n1 binary object bundle matrix P , a q × n2 binary attribute bundle matrix Q, a r × n3
binary source bundle matrix R and an n1×n2×n3 binary 3d-matrix T , where (n1, n2, n3) is
the rank of the model. Then, T is a ternary association relation between the three bundle
matrices and is called the core array.
The equivalence and hierarchical relations of the Tucker3 model are defined in a com-

pletely identical manner as in the Indclas model. However, the association relation of the
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K3

A

B

C

b, c

d

a, e

K2

1,2

3,7

5

4

6

K1

Figure 4.7.: Trilattice of the tricontext from Figure 4.4. The larger circles correspond to the tri-
concepts used in the triconceptual factorisation.

Obj. Attr. Source Source
Bundles Bundles Bundles Obj. Attr. Bundles

Obj. O1 O2 O3 Attr. A1 A2 Sour. S1 S2 Bund. Bund. S1 S2
1 0 1 0 a 1 0 A 0 1 O1 A1 1 0
2 0 1 0 b 0 1 B 1 0 O1 A2 0 0
3 1 0 0 c 0 1 C 1 1 O2 A1 0 1
4 0 0 1 d 1 1 O2 A2 1 0
5 1 1 0 e 1 0 O3 A1 0 0
6 0 1 1 O3 A2 0 1
7 1 0 0

Figure 4.8.: Tucker3 bundle decomposition of the tricontext from Figure 4.4

Tucker3 model is defined differently, namely by

Wijk =
n1

⋁
i1=1

n2

⋁
i2=1

n3

⋁
i3=1

Pii1 ⋅Qji2 ⋅Rki3 ⋅ Ti1i2i3

for all i ∈ {1, . . . , p}, j ∈ {1, . . . , q} and k ∈ {1, . . . , r}. Then, Wijk = 1 if and only if there
exist object, attribute and source bundles to which object i, attribute j and source k,
respectively, belong to and which are associated in the core array T . In Figure 4.8 the
Tucker3 bundle decomposition of the tricontext from Figure 4.4 is given. From it we can
read for example that object 3 is associated with attribute a through source B, because
the bundles O1, A1 and S1 to which the elements belong to, respectively, are associated
in the core array T .

The graphical representation of the Tucker3 model is similar to the Indclas model.
However, the Tucker3 model provides a different linking between the three modes in the
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diagram due to its association relation. In the graphical representation of the Tucker3
model a path is drawn between the bottom classes of the object and attribute hierarchies
if they are associated in the core array T . The path contains a circle with the sources of
the source bundle for which the association holds. Every association relation contained in
the core array is allowed to be represented.

[d]

[b,c] [a,e]

A C B C A C B C

[4] [3,7][1,2]

[6] [5]

Figure 4.9.: Tucker3 representation

In the Indclas model the i-th rows of P,Q and R represented the extent, intent and
modus, respectively, of some triconcept. The matrices P,Q and R in the Tucker3 model
still have as rows extents, intents and modi, respectively, however the i-th rows of them
do not necessarily belong to the same triconcept. As a triconcept is uniquely determined
by two of its components, the same extent, intent or modus can appear in different tricon-
cepts. The Tucker3 model takes advantage of these equivalence relations (∼i for i ∈ {1,2,3},
see (1.14) on page 21) and contains in its bundles just one representative for each equiva-
lence class. The core array on the other hand connects the three bundles with each other,
i.e., it “puts” the components of the triconcepts together.
It is arguable whether the Tucker3 model is better than the Indclas one. The price

one has to pay for a possibly more compact representation of the bundles is quite high,
because there is a supplementary matrix needed to link the bundles with each other.

4.2.3. Comparison of the Models

As we have seen in the previous two subsections, all approaches to Triadic Hierarchical
Classes Analysis use formal triconcepts for the bundle decomposition. Once again, the
mathematical formalisations are different. The Indclas model decomposes a 3d-matrix
into object, attribute and source bundles, which basically correspond to the factorisation
contexts of the triconceptual factorisation. The Tucker3 Hiclas uses the equivalences on
the components of the triconcepts, but the factorisation is also done with triconcepts.
The Tucker3 Hiclas presents the three bundle matrices in a possibly more compact way,
however it requires a fourth matrix for the association of the bundle matrices. Thus, with
the knowledge gained from Triadic Concept Analysis we may clarify the difference between
the Indclas and the Tucker3 models.
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The factorisation problem is reducible to the set covering problem and hence is NP-hard.
Therefore, greedy approximation algorithms were considered in [BGV12, BV10b, Glo10]
for the triconceptual factorisation. Once again we may use approximate factorisations
with positive and negative discrepancies, see Section 3.4.
In general, the Indclas algorithm performs better than the greedy approximation algo-

rithms since it is a branch-and-bound algorithm. However it is not applicable to large
data sets due to complexity issues.
Indclas and Triadic Concept Analysis were first linked in [Hwa07], however, once again

the factorisation problem was not considered.
Concluding, there is once more a one-to-one correspondence between triconceptual fac-

torisation and the triadic versions of Hierarchical Classes Analysis. Further, we have seen
how the methods may benefit from each other, i.e., structural explanations, graphical
representations, algorithms and applications.

4.3. Disjunctive Hiclas-R and RV-Hiclas

The disjunctive Hiclas-R model was presented in [VLC07]. It decomposes of a p×q matrix
W with integer entries from V = {1, . . . , v} into a binary p × n1 object bundle matrix P ,
a binary q × n2 attribute bundles matrix Q and an n1 × n2 core matrix T which takes n3
different non-zero values, where n3 ≤ v. The rank of the model is (n1, n2, n3).
Similarly to the Tucker3 model, the Hiclas-R model also allows that the numbers of

object and attribute bundles are different from each other.
The equivalence and hierarchical relations are defined analogously to the binary Hiclas

model, but in this case we have integer values instead of binary values as matrix entries.
Two objects x, y are equivalent if they have identical rows in the data table W , i.e.,
W (x) =W (y). The equivalence of attributes is defined on the columns, i.e., two attributes
are equivalent if they have identical columns in the data table. An object x is hierarchically
below an object y, written x ≤ y, ifW (x) ≤W (y) with respect to the component-wise order.
The association relation is given by

Wij =
n1

⋁
h=1

n2

⋁
k=1

Pih ⋅Qjk ⋅ Thk,

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Object i is associated with attribute j at the
maximum value of association indicated by the core matrix T for the pair of bundles
which contain object i and attribute j.
The RV-Hiclas model is a generalisation of the Hiclas-R model, the main difference

between the two are the matrix entries. The RV-Hiclas model contains real-valued data.
Therefore, in the following we work with the RV-Hiclas model.

Example 4.9. Consider the data table with real values given in Figure 4.10. Objects b and
c have identical rows, thus they are equivalent. We have, for instance, W (c) ≤W (d) with
respect to the component-wise order, and hence object c is hierarchically below object d.
Figure 4.11 contains the RV-Hiclas bundle decomposition of the data from Figure 4.10.
According to it, object d is associated with attribute β in value 1, because the object
bundle OB3 (to which object d belongs) and the attribute bundle AB3 (to which attribute
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α β γ

a 0.25 0 0.25
b 0 0.5 0.25
c 0 0.5 0.25
d 0 1 0.25

Figure 4.10.: Data table with real values

β belongs) are associated in the core matrix with value 1. Note that object d belongs to
the object bundle OB2 as well. However, the value to which OB2 and AB3 are associated
in the core matrix is 0.5 and this does not represent the maximum of association between
d and β.

Obj. Bundles Attr. Bundles Core matrix T
Obj. OB1 OB2 OB3 Attr. AB1 AB2 AB3 AB1 AB2 AB3
a 1 0 0 α 1 0 0 OB1 0.25 0 0
b 0 1 0 β 0 0 1 OB2 0 0.25 0.5
c 0 1 0 γ 1 1 0 OB3 0 0 1
d 0 1 1

Figure 4.11.: RV-Hiclas bundle decomposition of the data from Figure 4.10

The graphical representation of the RV-Hiclas model is similar to the Tucker3 model
but the circles contain the maximum values of the association instead of the sources. The
graphical representation of the data from Figure 4.10 is displayed in Figure 4.12. From
the diagram we can also read the association relation. For example, a path goes from d

to β which includes a circle containing the value 1.

[γ]

[α] [ ] [β]

0.25 0.25 0.5 1

[a] [b,c] [ ]

[d]

Figure 4.12.: RV-Hiclas representation of Figure 4.11

The Hiclas-R and RV-Hiclas models can also be formulated in the language of Formal
Concept Analysis. We can scale the integer-valued data (many-valued context) into a
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dyadic formal context and perform a conceptual factorisation. For the data from Fig-
ure 4.10 an ordinal or nominal scaling could be applied. In the previous models there was
a one-to-one correspondence between the object (attribute) bundles and extents (intents).
However, this is not the case for the Hiclas-R and RV-Hiclas models. If we consider the
corresponding nominal and ordinal scaled contexts, then for example the object bundle
{b, c, d} is an extent of the ordinal scaled context and {d} is an extent of the nominally
scaled context. Hence, there is no connection between the methods regarding numerical
data.

4.4. Fuzzy Hierarchical Classes Analysis

Up until now we have taken notions from Hierarchical Classes Analysis and translated
them into the language of Formal Concept Analysis. In this section we will do the opposite
step, namely use the conceptual factorisation from the fuzzy setting and reinterpret them,
mutatis mutandis, from the point of view of Hierarchical Classes Analysis. The so obtained
result will then be the fuzzy approach to Hierarchical Classes Analysis. Why do we do
that if we already know how to factorise contexts with fuzzy attributes? Well, first of all
we would like to spread these results to other communities as well, and second we would
like to have an even tighter connection between the two techniques. Further, to the best
of our knowledge, this is the first attempt of bringing Hierarchical Classes Analysis and
fuzzy theory together.
First of all, let us make some remarks about concepts in a fuzzy setting. These will

motivate our approach to Fuzzy Hierarchical Classes Analysis.

Remark 4.10. In the crisp case each maximal rectangle full of crosses corresponds uniquely
to a formal concept. The only possible exceptions are the concepts (G,G′) and (M ′,M)
if and only if G′ = M ′ = ∅. However, this remark does not hold for the fuzzy setting.
First of all, different L-concepts of an L-context may yield the same maximal rectangle.
Further the rectangles do not have to be maximal with respect to their values. For an
L-concept (A,B) its corresponding maximal rectangle A⊗B is an L-set given by (2.6)
(page 65). It has the value A(g)⊗B(m) for the tuple (g,m). Now, if (A1,B1), (A2,B2)
are different L-concepts, we may have A1⊗B1 = A2⊗B2 or A1⊗B1 ≤ A2⊗B2 with
respect to the point-wise order or, of course, none of the mentioned situations. Where
does this non-uniqueness of maximal rectangles come from? This can be traced back to
the properties of the different fuzzy logics. Suppose we have a residuated lattice L with
L being its support set and a, b ∈ L. Applying the Gödel logic, we assume without loss of
generality that a ⊗ b = min(a, b) = a. However, there can be some c ∈ L such that c ≠ b
and a ≤ c. Thus, min(a, b) = min(a, c) = a. Through the Łukasiewicz logic we obtain
a⊗b = max(a+b−1,0). It is possible to have c, d ∈ L such that a⊗b = c⊗b. Finally, for the
Goguen t-norm we obtain similar remarks. Indeed, for different tuples (a, b), (c, d) ∈ L2,
a⊗ b = c⊗ d may hold.

We already know from Section 2.4 that L-concepts provide us with optimal factorisations
of L-contexts and that the factorising families correspond to the families of preconcepts
covering the L-relation of the context. It will turn out that L-preconcepts are more suitable
than L-concepts in the setting of Fuzzy Hierarchical Classes Analysis.
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Definition 4.11. Let (G,M, I) be an L-context and L the support set of the residuated
lattice. Two objects g1, g2 ∈ G are equivalent for values l1, l2 ∈ L if {l1/g1}↑ = {l2/g2}↑.
Equivalent objects form an object class. For two objects g1, g2 ∈ G we call g1 hierarchically
below g2 for values l1, l2, written {l1/g1} ≤ {l2/g2}, if {l1/g1}↑ ⊆ {l2/g2}↑.

Note that an object can be hierarchically below itself for different values. For instance,
g1 ∈ G may yield {l1/g1} ≤ {l2/g1} for some l1, l2 ∈ L. Obviously, if two objects g1, g2 ∈ G
have identical rows in the context, then they are equivalent for any value l ∈ L, i.e.,
{l/g1}↑ = {l/g2}↑ for all l ∈ L.
Similarly to the other models of Hierarchical Classes Analysis, we build object and

attribute bundle matrices which are defined as follows:

Definition 4.12. Let (G,M, I) be an L-context with ∣G∣ = n and ∣M ∣ = m. Further let
F ∶= {(A1,B1), . . . , (Ak,Bk)} be a subset of L-preconcepts of (G,M, I) covering I, i.e.,

I=
k

⋃
l=1
Al⊗Bl.

The object bundle matrix P has as rows the characteristic vectors of the extents from F
and the attribute bundle matrix Q has as rows the characteristic vectors of the intents
from F . An object bundle is associated with an attribute bundle if and only if they form
an L-preconcept. The fuzzy matrix product is given by

(P ○Q)ij ∶=
n

⋁
l=1
Pil ⊗Qlj

for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

In other words, we compute the t-norm multiplication between each element of the l-th
column of P with each element of the l-th row of Q, where l runs over {1, . . . , n}, and take
the maximum of these products.

Example 4.13. Instead of interpreting the values in the data table from Figure 4.10 as
real, we will consider them as fuzzy ones. We automatically see that objects b and c are
equivalent and attribute α is hierarchically below attribute γ. The optimal factorisation

Obj. OB1 OB2 Attr. AB1 AB2
a 0.25 0 α 0.25 0
b 0 0.5 β 0 1
c 0 0.5 γ 0.25 0.25
d 0 1

Obj. OB1 OB2 OB3 Attr. AB1 AB2 AB3
a 1 0 0 α 0.25 0 0
b 0.5 0.5 1 β 0 1 0.5
c 0.5 0.5 1 γ 0.25 0.25 0.25
d 0 1 1

Figure 4.13.: Optimal bundles with the Gödel (left) and the Łukasiewicz logic (right)

of it with the Gödel logic contains two L-preconcepts and with Łukasiewicz logic three
L-preconcepts. They are displayed in Figure 4.13. The graphical representations are given
in Figure 4.14. For comparison, the optimal L-conceptual factorisations are given by the
following L-concepts: With the Gödel logic we have

({a},{0.25/α, 0.25/γ}), ({0.5/b0.5/c, d},{β, 0.25/γ}),
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and with the Łukasiewicz logic we have

({a, 0.75/b, 0.75/c, 0.75/d,},{0.25/α, 0.25/γ}),
({0.5/b, 0.5/c, d},{β, 0.25/γ}),
({0.5/a, b, c, d},{0.5/β, 0.25/γ}).

[0.25/γ]

[0.25/α] [β]

[0.5/b, 0.5/c, d][0.25/a]

[0.25/γ]

[0.25/α] [0.5/β]

[β] [ ]

[b, c][ ]

[d]

[a]

[0.5/b, 0.5/c]

Figure 4.14.: Graphical representation of the bundles from Figure 4.13

The only thing we are still missing is the graphical representation of the Hierarchical
Classes Analysis model in the fuzzy setting. The graphical representation of the bundle
decomposition from Figure 4.13 is displayed in Figure 4.14. Once again we will draw the
object classes and connect them according to the hierarchical ordering. Note that we use
a crisp-like subsethood relation and not a fuzzy one, see Definition 4.11. Afterwards, we
do the same for the attribute bundles, but we draw them upside-down and below the
object hierarchy. Finally, we draw the zigzag lines between the two hierarchies as given by
the association relation. In analogy to other Hierarchical Classes models there are cases
when empty classes are needed for the correct representation of the association relation.
The graphical representation is similar to the RV-Hiclas model but instead of using circles
with association values, the object and the attribute classes contain their fuzzy membership
values. Further, we associate only the components of the same L-preconcept with another.
For comparison, the L-concept lattices are displayed in Figure 4.16 and 4.17 for the Gödel
and Łukasiewicz logic, respectively.
Using the fuzzy Hiclas graphical representation for the optimal conceptual factorisation

with the Łukasiewicz logic, one obtains the diagram from Figure 4.15. As it can easily be
seen, changing the preconcepts into concepts overcomplicates the diagram. Hence, pre-
concepts are sufficient for an optimal factorisation and also yield easier to read diagrams.
Comparing our fuzzy approach to Hierarchical Classes Analysis and the RV-Hiclas model

we see that the first is a more parsimonious method. First of all, because it does not require
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[0.25/γ]

[0.25/α]

[0.5/β]

[β][ ]

[ ][b, c][a]

[d][0.75/b, 0.75/c]

[0.75/d]

[0.5/b, 0.5/c]

[0.5/a]

Figure 4.15.: Fuzzy Hiclas graphical representation of the fuzzy conceptual factorisation with the
Łukasiewicz logic

a third matrix, namely the core matrix. However, there is an association just between ex-
tents and intents of the same concept, whereas the bundle decomposition provides a linking
between different object and attribute bundles. Second, the fuzzy approach yields in gen-
eral a smaller number of factors than the bundle decomposition, due to the properties of
the t-norms. A drawback in the fuzzy approach is that it is applicable just for values of the
unit interval. Therefore, a data matrix containing different values has to be transformed
in such a form. However, the results can then be transformed back to their initial value
domains.

a

0.25/a

b, c

d, 0.5/b, 0.5/c

0.25/d, 0.25/b, 0.25/c
α

0.25/α

0.25/γ

γβ

0.5/β

Figure 4.16.: L-concept lattice of the L-context from Figure 4.10 with the Gödel logic. The black
circles correspond to the L-concepts used in the L-conceptual factorisation.
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0.25/γ

0.25/β0.25/α
a

0.5/γ
0.5/β
b, c

0.75/β0.5/α
0.75/a

0.75/γ β

d
0.75/b,
0.75/c

0.5/a

0.75/α
0.75/d

γ
0.5/b, 0.5/c, 0.5/d

0.25/a
α

0.25/b, 0.25/c, 0.25/d

Figure 4.17.: L-concept lattice of the L-context from Figure 4.10 with the Łukasiewicz logic. The
black circles correspond to the L-concepts used in the L-conceptual factorisation.

4.5. Conclusion

We presented a comparison between conceptual factorisation and Hierarchical Classes
Analysis regarding discrete, triadic and real data. It turned out that both methods use
formal concepts as factors in the factorisation of binary and triadic data. For the case
concerning real data there is however no one-to-one correspondence between L-concepts
and the bundles.
Further, we presented a generalisations of Hierarchical Classes Analysis to the fuzzy

setting. Such a generalisation is useful for patient data, because sometimes it is difficult
to decide to which extent a patient suffers from a symptom. We have translated the
usual notions from Hierarchical Classes Analysis into the fuzzy setting. Thereby we used
L-preconcepts for the bundle matrices since they yield a smoother graphical representation
than L-concepts.
Hence, the formal concept analytical approach to Factor Analysis and the application

driven data reduction necessity meet in the common point of Boolean and triadic Boolean
factorisations. We showed how the two methods may benefit from each other. On the one
hand we have seen in what kind of analyses conceptual factorisations may be used. On
the other hand we have presented the results from Hierarchical Classes Analyses in a new
light. Further, we have more options for the graphical representation and the algorithmic
approach.
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Introduction to Part II

Fuzzy data has found numerous applications in both theoretical and real-world research
fields. We have already pointed out some of them in Section 1.2. However, the list is much
longer, starting with approximate reasoning, pattern recognition including clustering and
image processing, fuzzy systems like neural networks, automate and dynamic systems, and
by far not ending with data bases and decision making. An extensive overview of these
and further applications can be found in [KY95].
In the forthcoming chapters we aim to enlarge the list by adding further methods and

frameworks for using fuzzy data within Formal Concept Analysis.
In Chapter 5 we generalise a very powerful tool, attribute exploration, into the fuzzy

setting. Attribute exploration is used for knowledge discovery and found numerous appli-
cations in both theoretical and practical research fields. Thus, bringing fuzzy data and
attribute exploration together, the outcome can have nothing but numerous applications!
The method presented in Chapter 6 allows the users to model their preferences over the

attribute set of a formal fuzzy context. Based on these preferences the users only obtain
the formal fuzzy concepts that are relevant to them. Trivially, the method belongs to the
family of data reduction tools, however it can easily be performed and understood by the
users as the only input they have to provide is a sort of order on the attributes.
In Chapter 7 we combine fuzzy data with a notion we already got acquainted with in

the previous part, namely “triadic data” and come to a framework which we call Fuzzy-
valued Triadic Concept Analysis. We first present what builds the fundamentals of Formal
Concept Analysis in this setting. Afterwards, we study implications in such data sets.
There are mainly two kinds, but the symmetry of triadic contexts allows us to investigate
nine different implication families. In the last section we bring yet another notion familiar
from the previous part into our new setting by developing the fuzzy-valued triconceptual
factorisations.
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5
Attribute Exploration in a Fuzzy Setting

Attribute exploration is a very powerful tool. We have already seen the result that builds
its theoretical basis, namely Proposition 1.25 (page 18). This is what represents its key
to success. Thus, the crucial step is to generalise this proposition to the fuzzy setting.
We have seen in Subsection 1.5.2 that the choice of the hedge in the residuated lattice
influences the existence, uniqueness and minimality of the stem base. Therefore, we will
split the development of attribute exploration in a fuzzy setting into two cases, namely
the one where we use the globalisation as the hedge, Section 5.1, and the one where
we use general hedges, Section 5.2. In Section 5.3 we add background knowledge to the
exploration process. That is, we add implications between attributes about which we know
in advance that they hold. This has the advantage of shortening the exploration process
since less questions have to be answered and fewer counterexamples have to be provided.
The first two sections are based on [Glo12b], whereas the results from Section 5.3 are

presented here for the first time.

5.1. Exploration with Globalisation

We start by developing the theoretical ingredients for a successful attribute exploration
in a fuzzy setting with the globalisation. Afterwards, we turn our attention to its prac-
tical parts. First, we develop an appropriate algorithm for this technique, and thereafter
illustrate the method by an example.
Recall that we obtain a unique and minimal set of pseudo-intents for a given L-context

whenever we use the globalisation as the hedge, see Theorem 1.45 (page 30).
Let us turn our attention to the fuzzy version of Proposition 1.25. Although its proof

would be straightforward by the isomorphism between the concepts lattices of an L-context
(G,M, I) with globalisation and its double-scaled context (G,M × L, I◻), see Subsec-
tion 1.5.2, we give here the proof based on fuzzy logic.
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Proposition 5.1. Let L be a finite residuated lattice with globalisation. Further, let P be
the unique system of pseudo-intents of a finite L-context K with P1, . . . , Pn ∈ P being the
first n pseudo-intents in P with respect to the lectic order. If K is extended by an object
g, the object intent g↑ of which respects the implications Pi ⇒ P ↓↑i for all i ∈ {1, . . . , n},
then P1, . . . , Pn remain the lectically first n pseudo-intents of the extended context.

Proof. Let K = (H,M,J) be the initial context and let (G,M, I) be the extended context,
namely G =H ∪ {g} and J = I ∩ (H ×M).
First we need to clarify the notion “g↑ respects all implications”. It means that {l/g}↑ is

a model of all implications for any truth value l ∈ L. The hedge (−)∗ we are using is the
globalisation, and therefore {l/g}↑ = {0/g}↑ =M respects all implications for any l ∈ L∖{1}.
Hence, it suffices to check that {1/g}↑ is a model of all implications.
Now we are prepared for the proof which will be done by induction over the number of

pseudo-intents.
Let n = 1 and P ∈ P be the lectically smallest pseudo-intent of (H,M,J). We extend

(H,M,J) by an object g, the object intent gI of which is a model of P ⇒ P JJ . Thus,
P JJ = P II . Now suppose that there exists a pseudo-intent Q of (G,M, I) that is lectically
smaller than P . Since QJ ⊆ QI , we have QII ⊆ QJI = QJJ . Further, since Q is a
pseudo-intent of (G,M, I) it follows that Q ≠ QJJ . As P is the lectically smallest pseudo-
intent of (H,M,J), there is no pseudo-intent R of (H,M,J) with R ⊆ Q < P , where <
is meant with respect to the lectic order. By the definition of pseudo-intents we obtain
that Q is a pseudo-intent of (H,M,J), contradicting that P is the smallest pseudo-intent
of (H,M,J). Hence, there does not exist a pseudo-intent Q of (G,M, I) such that Q
is lectically smaller than P . Particularly, we have Q ⊆ P , implying that P is indeed a
pseudo-intent of (G,M, I), namely the smallest one.
Now we show the induction step from n − 1 to n. To this end let P1, . . . , Pn−1 be the

lectically first (n − 1) pseudo-intents of (G,M, I) and let gI be a model of Pi ⇒ P JJi
for every i ∈ {1, . . . , n}. We have to show that Pn is the lectically next pseudo-intent of
(G,M, I) after Pn−1. For contradiction, suppose it is not, i.e., assume that there exists a
pseudo-intent Q of (G,M, I) such that Pn−1 < Q < Pn. Obviously, from Pi ⊆ Q we obtain
P JJi = P IIi = Q for all i ∈ {1, . . . , n − 1}. Further, from QJJ ⊆ QII ≠ Q we obtain that Q is
a pseudo-intent of (H,M,J). Thus, since Pn−1 < Q it follows that Q = Pn, contradicting
Q < Pn. Therefore, there is no pseudo-intent Q of (G,M, I) such that Pn−1 < Q < Pn. Since
P1, . . . , Pn−1 are lectically smaller pseudo-intents of (G,M, I) than Pn, we have shown that
Pn is a pseudo-intent of (G,M, I), namely the lectically next one.

We have now the key to a successful attribute exploration in the fuzzy setting, at least
when we use the globalisation. With this result we are able to generalise the attribute
exploration algorithm to the fuzzy setting as presented by Algorithm 2. Its input is the
L-context K and the residuated lattice L. The first intent or pseudo-intent is the empty
set. If it is an intent, add it to the set of intents of the context. Otherwise, ask the expert
whether the implication is true in general. If so, add this implication to the stem base,
otherwise ask for a counterexample and add it to the context (line 2 − 11). Until A is
different from the whole attribute set, repeat the following steps: Search for the largest
attribute i in M with its largest value l such that A(i) < l. For this attribute compute
its closure with respect to the clT-closure operator given by (1.24) (page 30) and check
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Algorithm 2: FuzzyExploration(K,L)
1 L ∶= ∅; A ∶= ∅;
2 if A = A↓↑ then
3 add A to Int(K)
4 else
5 Ask expert whether A⇒ A↓↑ is valid;
6 if yes then
7 add A⇒ A↓↑ to L
8 else
9 Ask for counterexample g and add it to K
10 end
11 end
12 while A ≠M do
13 for i = n, . . . ,1 and l = maxL, . . . ,minL with A(i) < l do
14 B ∶= clT(A);
15 if A↘ i = B ↘ i and A(i) < B(i) then
16 A ∶= B;
17 if A = A↓↑ then
18 add A to Int(K)
19 else
20 Ask expert whether A⇒ A↓↑ is valid;
21 if yes then
22 add A⇒ A↓↑ to L
23 else
24 Ask for counterexample g and add it to K
25 end
26 end
27 end
28 end
29 end
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whether the result is the lectically next intent or pseudo-intent (line 12 − 16). Thereby,
A↘ i ∶= A ∩ {1, . . . , i − 1}. If the result is an intent, add it to the set of intents (line 17−18),
otherwise ask the user whether the implication provided by the pseudo-intent holds. If
the implication holds, add it to the stem base otherwise ask the user for a counterexample
(line 20 − 24).
The algorithm generates interactively the stem base of the L-context. As in the crisp case

we enumerate the intents and pseudo-intents in the lectic order. Due to Proposition 5.1
we are allowed to extend the context by objects whose object intents respect the already
confirmed implications. This way, the pseudo-intents already contained in the stem base
do not change. Hence, the algorithm is sound and correct.

Example 5.2. We want to explore the size and distance of the planets. We include some of
them into the object set and obtain the context displayed in Figure 5.1. In this example
we use the Łukasiewicz logic with the globalisation as hedge.

small (s) large (l) far (f) near (n)
Earth 1 0 0 1
Mars 1 0 0.5 1
Pluto 1 0 1 0

Figure 5.1.: Initial context

We start the attribute exploration. The first pseudo-intent is {∅} and we are asked

Do all objects have the attribute small to degree 1?

This is of course not true and we provide a counterexample:

small (s) large (l) far (f) near (n)
Jupiter 0 1 1 0.5

The next pseudo-intent is {n} and we are asked

Do objects having attribute near to degree 1 also have attribute small to degree 1?

This is true and we confirm the implication. The next pseudo-intent is {f, 0.5/n} which
yields the following question:

Do objects having attributes far and near to degree 1 and 0.5, respectively,
also have attribute large to degree 1?

We also confirm this implication since it is true. The algorithm proceeds with

Do objects having attribute large to degree 0.5 also have the attributes
large, far and near to degree 1,1 and 0.5, respectively?

This implication is not true for our planet system and we give a counterexample:
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small (s) large (l) far (f) near (n)
Uranus 0.5 0.5 1 0

The following four implications are true, so we will confirm them:
0.5/l ⇒ f ,
l, f ⇒ 0.5/n,

0.5/s, 0.5/n ⇒ s, n,
s, 0.5/l, f ⇒ l, n.

And the attribute exploration has stopped. Now we have an extended L-context, namely
the one containing Jupiter and Uranus besides the objects given in Figure 5.1. Note
that we did not have to include all the planets into the object set, just a representative
part of them. The other planets with their attributes are displayed in Figure 5.2. These
objects contain just redundant information and the knowledge provided by them is already
incorporated into the stem base of the extended context.

small (s) large (l) far (f) near (n)
Mercury 1 0 0 1
Venus 1 0 0 1
Saturn 0 1 1 0.5
Neptune 0.5 0.5 1 0

Figure 5.2.: Superfluous planets

Hence, the result of the exploration is the set of implications of the stem base and an
extended L-context containing the representative objects for the whole theory.
Concluding, we are able to perform a successful attribute exploration in a fuzzy setting

provided we choose the globalisation as the hedge. In the forthcoming section we will
study the same problem but use a general hedge in the residuated lattice.

5.2. Exploration with General Hedges

In this section it turns out that there are several obstacles that make a straightforward
generalisation of attribute exploration to a fuzzy setting using general hedges impossible.
At the end of the section we will discuss which approaches may lead to a successful explo-
ration. However, it is also an open question whether an exploration in such a framework
is desirable.
Recall that when using a general hedge in the residuated lattice, neither the existence

nor the uniqueness of stem base is ensured. We have already presented these results from
[BV05b] in Subsection 1.5.2 where we also explained how the computation of stem bases
in this general framework can be done (see Theorem 1.48 and Example 1.49 on page 31).
Let us start with an example.

Example 5.3. Consider once again the L-context from Example 1.49 (page 32), namely
({g},{a, b}, I) with I(g, a) = 0.5 and I(g, b) = 0 and L being the three-element Łukasiewicz

113



5. Attribute Exploration in a Fuzzy Setting

chain with the identity hedge. We have already computed its systems of pseudo-intents
and the corresponding stem bases in Example 1.49 and display them once again here in
Figure 5.3.

T2 T4

(1) 0.5/b ⇒ a (3) 0.5/a, 0.5/b ⇒ a

(2) a ⇒ 0.5/b (4) a ⇒ 0.5/b

Figure 5.3.: Stem bases

Now we could start an attribute exploration, for instance in T4. The algorithm would
ask us:

Do objects having attribute a and b both to degree 0.5 also have attribute a to degree 1?

Let us answer this question affirmatively. The next question is:

Do objects having attribute a to degree 1 also have attribute b to degree 0.5?

We deny this implication and provide a counterexample, the object h with I(h, a) = 1 and
I(h, b) = 0. This counterexample obviously respects the already confirmed implication so
the context is extended by the new object h. For this extended context we want to find its
stem bases and therefore compute the sets V and E as given by (1.25) and (1.26) (page 31).
From the graph G = (V,E∪E−1) we obtain four maximal independent sets, three of which
form systems of pseudo-intents since they fulfil the condition from Theorem 1.48. The
stem bases which they induce are displayed in Figure 5.4. At the beginning we have

T ′4 T ′′4 T ′′′4

(5) 0.5/b ⇒ a (6) {} ⇒ 0.5/a (8) b ⇒ a

(7) 0.5/a, b ⇒ b

Figure 5.4.: Stem bases of the extended context

confirmed implication (3) from Figure 5.3. However, this implication is now not present
in any stem base of the extended context.

By extending the context with objects that respect the already confirmed implications,
the latter may disappear from the stem base of the extended context. Hence, we do not
have an analogon of Proposition 1.25 for general hedges.
The attribute exploration with general hedges raises a lot of questions and open prob-

lems. We have more than one stem base for a context. These bases are equally powerful
with respect to their expressiveness. The major problem however is how to perform an at-
tribute exploration successfully. It is an open problem how to enumerate the pseudo-intents
obtained by general hedges such that the already confirmed implications still remain in the
stem base of the extended context. One could for instance make some constraints on the
counterexamples. However, such an approach is not in the spirit of attribute exploration.
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As we have already discussed in Subsection 1.5.2, the problem originates from the issues
regarding the stem bases of L-contexts with general hedges. There, it is yet unclear which
conditions have to be satisfied in order to have a system of pseudo-intents. Further open
questions regard the uniqueness and minimality of such systems.

5.3. Exploration with Background Knowledge

The user may know some implications between attributes in advance. We will call such
kind of implications background implications. In the rest of this section we will focus on
finding a minimal list of implications, which together with the background implications
will describe the structure of the concept lattice.
The theory about background knowledge for the crisp case was developed in [Stu96]

and a more general form of it in [Gan99]. In the latter, the implications (Horn clauses)
are replaced by so-called cumulated clauses which make the task of finding a minimal
base cumbersome. The results presented in [Stu96] for implication bases with background
knowledge follow by some slight modifications of the results about implication bases with-
out background knowledge presented in [GW96]. The same applies for the fuzzy variant of
this method. Hence, if we choose the empty set as the background knowledge, we obtain
the results presented in [BV06a, BCV04].
Particularly appealing is the usage of background knowledge in the exploration process.

This proves itself to be very useful and time saving for the user. He/she will have to
answer less questions, as the algorithm does not start from scratch. Hence, the user will
have to enter also less counterexamples.
We start by investigating the stem bases of L-contexts relative to a set of background

implications. Afterwards we show how some notions and results for fuzzy implications and
their stem bases change for our new setting. Note that we will present these results for
general hedges. However, when it comes to the exploration we do not have any other choice
than to consider the globalisation. In order to arrive at the exploration with background
knowledge we will present the lectic order, the “key proposition” and an appropriate
algorithm for attribute exploration in this setting. At the end we explore the characteristics
of the planets using background knowledge and compare the results with the exploration
without background knowledge.

Definition 5.4. Let K be a finite L-context and let L be a set of background implications.
A set B of fuzzy implications of K is called L-complete if every implication of K is entailed
by L ∪ B. We call B, L-non-redundant if no implication A ⇒ B from B is entailed by
(B ∖ {A⇒ B}) ∪L. If B is both L-complete and L-non-redundant, it is called an L-base.

Note that if we have L = ∅ in the above definition, then all L-notions are actually the
notions introduced for sets of fuzzy implications. This remark holds also for the other
notions introduced in this section.
Until explicitly said otherwise, the attribute sets of L-contexts and the residuated lat-

tices L will be considered finite.
For any set L of background implications and any L-set X ∈ LM we define an L-set
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XL ∈ LM by

XL ∶=X ∪⋃{B ⊗ S(A,X)∗ ∣ A⇒ B ∈ L}. (5.1)

Further, we define an L-set XLn ∈ LM for each non-negative integer n as follows:

XLn ∶= { X, n = 0,
(XLn−1)L, n ≥ 1. (5.2)

An operator L on these sets is defined by

L(X) ∶=
∞
⋃
n=0

XLn . (5.3)

From [BV06c] we know that the operator defined by (5.3) is an L∗-closure operator for a
finite set M of attributes and a finite residuated lattice L.

Definition 5.5. For an L-context (G,M, I), a subset P ⊆ LM is called a system of L-pse-
udo-intents of (G,M, I) if for each P ∈ LM the following holds

P ∈ P ⇐⇒ (P = L(P ) ≠ P ↓↑ and ∣∣Q⇒ Q↓↑∣∣P = 1 for each Q ∈ P with Q ≠ P ).

As in the case without background knowledge (see (1.23), page 30), the usage of the
globalisation simplifies the definition of the system of L-pseudo-intents. We have that
P ⊆ LM is a system of pseudo-intents if

P ∈ P ⇐⇒ (P = L(P ) ≠ P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q ⫋ P ).

Theorem 5.6. The set of fuzzy implications

BL ∶= {P ⇒ P ↓↑ ∣ P is an L-pseudo-intent} (5.4)

is an L-base of K. We call it the L-Duquenne-Guigues-base or the L-stem base.

Proof. First note that all implications from BL are implications of (G,M, I). We start
by showing that BL is complete, i.e., ∣∣A ⇒ B∣∣BL∪L = ∣∣A ⇒ B∣∣(G,M,I) for every fuzzy
implication A ⇒ B. We have ∣∣A ⇒ B∣∣(G,M,I) = ∣∣A ⇒ B∣∣Int(G∗,M,I) by Lemma 1.40
(page 29). Hence, it suffices to prove

∣∣A⇒ B∣∣BL∪L = ∣∣A⇒ B∣∣Int(G∗,M,I)

for every fuzzy attribute implication A⇒ B. For any L-set N ∈ LM , N ⇒ L(N) is entailed
by L, therefore, we have N = L(N).
Each intent N ∈ Int(G∗,M, I) is a model of BL. Now let N ∈ Mod(BL) and assume that

N ≠ N ↓↑, i.e., N is not an intent. Since N ∈ Mod(BL) we have ∣∣Q⇒ Q↓↑∣∣N = 1 for every
L-pseudo-intent Q ∈ P. By definition, N is an L-pseudo-intent and therefore N ⇒ N ↓↑

belongs to BL. But now, we have

∣∣N ⇒ N ↓↑∣∣N = S(N,N)∗ → S(N ↓↑,N)
= 1∗ → S(N ↓↑,N)
= S(N ↓↑,N)
≠ 1,
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which is a contradiction because N does not respect this implication.
To finish the proof, we still have to show that BL is L-non-redundant. To this end let

P ⇒ P ↓↑ ∈ BL. We show that this implication is not entailed by (BL∖{P ⇒ P ↓↑})∪L =∶ L.
As P = L(P ), it is obviously a model of L. We have ∣∣Q ⇒ Q∣∣P = 1 for every L-pseudo-
intent Q ∈ P different from P , since P is an L-pseudo-intent. Therefore, P ∈ Mod(L). We
also have that ∣∣P ⇒ P ↓↑∣∣P = S(P ↓↑, P ) ≠ 1 and thus P is not a model of BL ∪L. Hence,

∣∣P ⇒ P ↓↑∣∣(G,M,I) = ∣∣P ⇒ P ↓↑∣∣BL∪L
≠ ∣∣P ⇒ P ↓↑∣∣L,

showing that L is not complete and therefore BL ∪L is non-redundant.

In general we write P ⇒ P ↓↑ ∖ {m ∈M ∣ P (m) = P ↓↑(m)} instead of P ⇒ P ↓↑.
Note that computing the Duquenne-Guigues-base and closing the implications from

it with respect to the L operator will yield a different set of implications than the
L-Duquenne-Guigues-base. Let us take a look at the following example.

Example 5.7. Consider the L-context given in Figure 5.5. In order to ensure that its stem
base and L-stem-base exist, we use the globalisation. Further, we use the Gödel logic. The
Duquenne-Guigues-base is displayed in the left column of Figure 5.6. For the background
implications L ∶= {b ⇒ a, d ⇒ a, {a, c} ⇒ b} we obtain the L-Duquenne-Guigues-base
displayed in the middle column of the figure. If we close the pseudo-intents of the stem

a b c d
x 1 0.5 0 0
y 1 0 0 0
z 0 0 1 0
t 0 0 0 0.5 y

x

t z

a

0.5/b

b, d

c
0.5/d

Figure 5.5.: An L-context and its L-concept lattice with the Gödel logic and the globalisation as
hedge

base with respect to the L operator, we obtain implications of the form L(P ) ⇒ P ↓↑

which are displayed in the right column of the figure. As one easily sees, the latter set of
implications and the L-Duquenne-Guigues-base are different. The set

{L(P )⇒ P ↓↑ ∣ P is a pseudo-intent with L(P ) ≠ P ↓↑}

contains an additional implication, namely {a, b, c}⇒ d.

As in the crisp case, the fuzzy attribute exploration can be extended to the usage of
background knowledge, i.e., the interactive determination of the L-Duquenne-Guigues-
base for a given set L of background implications. We start by showing that the set of all
intents and all L-pseudo-intents is an L∗-closure system:
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stem base L-stem base L(P )⇒ P ↓↑

0.5/b ⇒ a, 0.5/b ⇒ a, 0.5/b ⇒ a,
0.5/a ⇒ a, 0.5/a ⇒ a, 0.5/a ⇒ a,

d ⇒ a, b, c, c, 0.5/d ⇒ a, b, d, a, d ⇒ b, c,

c, 0.5/d ⇒ a, b, d, a, 0.5/d ⇒ b, c, d, c, 0.5/d ⇒ a, b, d,
b ⇒ a, c, d, a, d ⇒ b, c, a, b ⇒ c, d,

a, 0.5/d ⇒ b, c, d, a, b ⇒ c, d. a, 0.5/d ⇒ b, c, d,
a, c ⇒ b, d. a, b, c ⇒ d.

Figure 5.6.: Different stem bases

Lemma 5.8. Let (G,M, I) be an L-context, let L be a set of fuzzy implications of (G,M, I).
Further, let P and Q be intents or L-pseudo-intents such that

S(P,Q)∗ ≤ S(P ↓↑, P ∩Q),
S(Q,P )∗ ≤ S(Q↓↑, P ∩Q).

Then, P ∩Q is an intent.

Proof. Obviously, P and Q are models of any fuzzy implication from BL ∪ L except of
P ⇒ P ↓↑ and Q⇒ Q↓↑. First we show that P ∩Q is a model of

L ∶= L ∪ (BL ∖ {P ⇒ P ↓↑,Q⇒ Q↓↑}).

To this end, let A ⇒ B be a fuzzy implication from L. Since P,Q ∈ Mod(L), we have
S(A,P )∗ ≤ S(B,P ) and S(A,Q)∗ ≤ S(B,Q). Hence,

S(A,P ∩Q)∗ = (S(A,P ) ∧ S(A,Q))∗

≤ S(A,P )∗ ∧ S(A,Q)∗

≤ S(B,P ) ∧ S(B,Q)
= S(B,P ∩Q),

showing that P ∩ Q is a model of L. We still have to prove that P ∩ Q is a model of
{P ⇒ P ↓↑,Q⇒ Q↓↑}. By assumption, we have

S(P,P ∩Q)∗ = S(P,Q)∗ ≤ S(P ↓↑, P ∩Q)

that is equivalent to ∣∣P ⇒ P ↓↑∣∣P∩Q = 1. Analogously, one can show ∣∣Q ⇒ Q↓↑∣∣P∩Q = 1,
finishing the proof.

Note that if we choose for (−)∗ the globalisation, then P ∩Q is an intent provided that
P and Q are (L-pseudo-)intents with P ⊈ Q and Q ⊈ P .
Now we are interested in the closure of an L-set with respect to the implications of the
L-base BL. Therefore, we first define for each L-set X ∈ LM and each non-negative integer
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n the L-sets XL● ,XL●n ∈ LM as follows:

XL
●

∶=X ∪⋃{B ⊗ S(A,X)∗ ∣ A⇒ B ∈ BL,A ≠X}, (5.5)

XL
●
n ∶= { X, n = 0,

(XL●n−1)L● , n ≥ 1. (5.6)

Further, we define an operator L● on these sets by

L●(X) ∶=
∞
⋃
n=0

XL
●
n . (5.7)

Lemma 5.9. If (−)∗ is the globalisation, then L● given by (5.7) is an L∗-closure opera-
tor and {L●(X) ∣ X ∈ LM} coincides with the set of all L-pseudo-intens and intents of
(G,M, I).

Proof. In order to show that L● is an L∗-closure operator we have to prove the conditions

X ⊆ L●(X), (5.8)
S(X1,X2)∗ ≤ S(L●(X1),L●(X2)), (5.9)
L●(L●(X)) = L●(X) (5.10)

for every L-sets X,X1,X2 ∈ LM . Condition (5.8) follows directly by the definition of L●.
For (5.9) we have

If S(X1,X2) < 1, then S(X1,X2)∗ = 0 ≤ S(L●(X1),L●(X2)),

and we are done. If, however, S(X1,X2)∗ = 1, then X1 ⊆ X2. As BL is given by (5.4), we
have

XL
●

=X ∪⋃{Q↓↑ ∣ Q ∈ P,Q ⊂X}.

Hence, if Q ⊂ X1, then Q ⊂ X2 and therefore we have XL●1 ⊆ XL
●

2 . Now this yields
S(L●(X1),L●(X2)) = 1.
For (5.10), we have to prove the two inclusions. The second one, L●(X) ⊆ L●(L●(X)),

follows by the definition of L●. For the first, it suffices to check (L●(X))L● ⊆ L●(X). If
Q ⊂ L●(X), then Q ⊂XL●n holds for some n. Therefore, we have

Q↓↑ ⊆XL
●
n+1 ⊆ L●(X).

Hence, (L●(X))L● ⊆ L●(X), yielding L●(L●(X)) ⊆ L●(X).
Now we show that {L●(X) ∣X ∈ LM} is exactly the set of intents and L-pseudo-intents.

From the properties of the globalisation and the definition of L● it follows that

P ∪ Int(G∗,M, I) ⊆ {L●(X) ∣X ∈ LM}.

To prove the converse inclusion, we have to show that L● ∈ P, and it suffices to check
L●(X) ≠ (L●(X))↓↑. Now let Q ∈ P such that Q ⊂ L●(X). Then,

Q↓↑ ⊆ (L●(X))L
●

= L●(X).

Hence, we have ∣∣Q⇒ Q↓↑∣∣L●(X) = 1.
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Remark 5.10. Note that for a general hedge, L● does not need be an L∗-closure operator.
For instance, choose the Goguen structure and the identity for the hedge (−)∗. Further,
let L ∶= {0.3/y⇒ y}. Then,

L●({0.2/y})(y) ≥ ({0.2/y})L
●

(y) = {0.2/y} ∪ {y ⊗ (0.3→ 0.2)}
= {0.2/y} ∪ {0.(66)/y}

= {0.(66)/y},

and L●({0.3/y})(y) = {0.3/y}. Hence, L● does not satisfy the monotony property, because
we have {0.2/y} ⊆ {0.3/y} but L●({0.2/y}) ⊈ L●({0.3/y}).

Due to the previous remark and the fact that we are only able to perform a successful
attribute exploration if the chosen hedge is the globalisation, we will consider only this
hedge in the rest of this section.
The lectic order is defined analogously as in Section 1.5, see (1.21). The only difference

lies in the definition of “⊕”. This time we are using the L∗-closure operator (−)L● instead
of (−)↓↑. The next theorem follows trivially from [GW96, Běl02a].

Theorem 5.11. The lectically first intent or L-pseudo-intent is ∅L●. For a given L-set
A ∈ LM the lectically next intent or L-pseudo-intent is given by the L-set A⊕(m, l), where
(m, l) ∈M ×L is the greatest tuple such that A <(m,l) A⊕ (m, l). The lectically last intent
or L-pseudo-intent is M .

Now we are prepared to present the main proposition regarding attribute exploration
with background knowledge in a fuzzy setting.

Proposition 5.12. Let L be a finite residuated lattice with globalisation. Further, let P be
the unique system of L-pseudo-intents of a finite L-context K with P1, . . . , Pn ∈ P being
the first n L-pseudo-intents in P with respect to the lectic order. If K is extended by an
object g, the object intent g↑ of which respects the implications from

L ∪ {Pi ⇒ P ↓↑i ∣ i ∈ {1, . . . , n}},

then P1, . . . , Pn remain the lectically first n L-pseudo-intents of the extended context.

Proof. The proof of this proposition is a consequence of Proposition 5.1 (page 109), its
variant without background knowledge, and the results we obtained so far in this section.
Let once again K = (H,M,J) be the initial context and let (G,M, I) be the extended
context, namely G = H ∪ {g} and J = I ∩ (H ×M). To put it briefly, since gI is a model
of Pi ⇒ P JJi for all i ∈ {1, . . . , n} we have that P JJi = P IIi . By the definition of L-pseudo-
intents and the fact that every L-pseudo-intent Q of (H,M,J) with Q ⊂ Pi is lectically
smaller than Pi, we have that P1, . . . , Pn are the lectically first n L-pseudo-intents of
(G,M, I).

The algorithm for the attribute exploration with background knowledge in the fuzzy
setting is the same as the one without background knowledge (Algorithm 2), except that
we are using another closure operator, namely the operator given by (5.7). Further, the
user has to enter the background implications in advance.
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Example 5.13. Let us explore once again the size and distance of planets but this time using
background implications. We start with the initial L-context from Figure 5.1 (page 112)
with the three-element Łukasiewicz logic and the globalisation as hedge. Further, we use
the following implications as background knowledge

n⇒ s,

f, 0.5/l⇒ l,

l, f ⇒ 0.5/n,
0.5/l⇒ f,

0.5/l, 0.5/n⇒ l, f.

We start the attribute exploration. The first L-pseudo-intent is {∅} and we are asked

Do all objects have the attribute small to degree 1?

This is of course not true and we provide a counterexample:

small (s) large (l) far (f) near (n)
Jupiter 0 1 1 0.5

The next L-pseudo-intent is {l} and we are asked

Do objects having attribute large to degree 1 also have attributes
far and near to degree 1 and 0.5, respectively?

This is true and we confirm the implication. The next L-pseudo-intent is {0.5/l, f} which
yields the following question:

Do objects having attributes large and far to degree 0.5 and 1, respectively, also have
attributes large and near to degree 1 and 0.5, respectively?

The implication does not hold and we provide a counterexample

small (s) large (l) far (f) near (n)
Uranus 0.5 0.5 1 0

The following two L-pseudo-intents provide us with true implications. These are

0.5/s, 0.5/n⇒ s, n,

s, 0.5/l, f ⇒ l, n.

And the attribute exploration has stopped. Once again we have an extended L-context,
namely the one containing Jupiter and Uranus besides the objects given in Figure 5.1. Also
this time we did not have to include all the planets into the object set, just a representative
part of them. The other planets with their attributes are displayed in Figure 5.2 (page 113).
The three implications we confirmed during the exploration process represent the L-base of
our extended context relative to the background implications we provided at the beginning.
We have seen that by the use of background knowledge we were able to shorten the
exploration process.
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5.4. Conclusion

Attribute exploration is one of the most powerful tools of Formal Concept Analysis having
applications both in theoretical and practical research fields. In this chapter we have
presented a generalisation of attribute exploration into the fuzzy setting.
For general hedges there is not yet a method to perform an attribute exploration. The

problem can be traced back to the issues regarding the stem bases of L-contexts with
general hedges. In this case, generally, the existence and uniqueness of stem bases is not
ensured. Further, the set of intents and pseudo-intents does not form an L-closure system.
As it turned out we are able to perform a successful attribute exploration in the fuzzy

setting provided the chosen hedge is the globalisation. We carried the investigation of
the exploration process forward and presented its variant with background knowledge.
However, before arriving at this kind of exploration we had to develop the appropriate
structures for obtaining stem bases relative to background knowledge. Our expectations
that using background knowledge will shorten the process of the fuzzy attribute exploration
confirmed to be true in Section 5.3. We have prepared the theoretical fundamentals of
attribute exploration in a fuzzy setting. The method has to be tested on real-world data
sets in order to establish itself as its crisp variant has done.
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6
User preferences

Our starting point in this chapter are the attribute dependency formulas introduced in
[BS05]. These reduce the size of the concept lattice by allowing the users to model their
preferences within the framework of Formal Concept Analysis. We keep the idea of mod-
elling users’ preferences, but deviate from the approach presented in [BS05]. In this chapter
we develop a framework that allows the users to state their favouritisms on compound at-
tributes, i.e., on those that contain more than one trait. In order to have a general setting,
we develop our method for fuzzy data. We have already published some results of this
work in [Glo12a].
First we briefly present the attribute dependencies from [BS05] in Section 6.1. There-

after, the main work starts in Section 6.2, beginning with the development of our so-called
fuzzy attribute dependency formulas. After studying some properties of these formulas we
turn our attention to the computation of their non-redundant bases. This is motivated
by the fact that the users are very likely to enter the formulas redundantly. Having a
set of non-redundant formulas facilitates their further investigation and altering. In Sec-
tion 6.3 we briefly discuss some other alternatives for modelling users’ preferences in a
fuzzy setting. We also show that an approach to fuzzy functional dependencies studied
in the literature arises as a special case of our fuzzy attribute dependency formulas. An
overall conclusion of this chapter is given in Section 6.4.

6.1. Attribute Dependencies

Attribute dependency formulas were introduced in [BS05] and further studied in a series
of papers, see for instance [BV09b]. They were developed as a method for controlling
the size of crisp concept lattices. The most appealing aspect of this technique is that the
reduction is done based on the user’s preferences. Indeed, the user is allowed to define a
sort of order on the attributes. In accordance with these preferences, the user receives just
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6. User preferences

the “interesting” concepts, “interesting” from his point of view based on the preferences
he entered.

Example 6.1. Let us give a small example. Suppose we have a formal context about
the products of a women clothing store. The attributes can be subdivided into groups,
namely: Designer (Prada, Escada, Desigual, etc.), fabric (cotton, silk, jeans, leather, etc.),
color (red, blue, yellow, etc.), type of clothing (skirt, t-shirt, blouse, dress, etc.), aim (work,
dinner, sport, etc.). A customer may now define her preferences, for instance, “color is less
important than designer”, “type is less important than aim”. Then, the concepts shown
to the user will contain mainly information about the designer and the aim. However,
another customer may define another set of preferences. Hence, from the same context
different sets of formal concepts will be extracted for different customers, based on their
preferences.

In [BS05] such preferences were modelled in the language of Formal Concept Analysis
as follows: An attribute dependency formula (AD formula) over a set M of attributes is

A ⊑ B,

where A,B ⊆M . The meaning of the formula is “the attributes from A are less important
than the attributes from B”. The attributes from A and B should be of the same type,
respectively, as we have seen above, i.e., “color is less important than designer”. The AD
formula A ⊑ B is true in N ⊆M , written N ⊧ A ⊑ B, if

if A ∩N ≠ ∅, then B ∩N ≠ ∅.

A formal concept (C,D) ∈B(G,M, I) satisfies A ⊑ B if D ⊧ A ⊑ B.

Example 6.2. Suppose we have the context about clothes and the AD formula “color is
less important than designer”. A formal concept of this context may be ({skirt1, skirt3,
skirt7},{red, skirt}). This formal concept does not satisfy the AD formula, because the
intersection of its intent with the less important attributes is {red} whereas the intersection
with the more important attributes is the empty set. Therefore, we will not show this
concept to the user.

There are a lot of interesting results about AD formulas presented in the above cited
papers. In this brief outline we will mainly focus on the computation of non-redundant
bases of AD formulas, i.e., such non-redundant sets of AD formulas T1 from which all the
AD formulas of a given set T of AD formulas follow.
An attribute set N ⊆M is called a model of a set T of AD formulas if N ⊧ A ⊑ B, for

every A ⊑ B ∈ T . We denote by Mod(T ) the set of all models of T , i.e.,

Mod(T ) ∶= {N ⊆M ∣ N ⊧ A ⊑ B, for every A ⊑ B ∈ T}.

Theorem 6.3 ([BV09b]). Mod(T ) is a kernel system.

Lemma 6.4 ([BV09b]). For A,B,N ⊆M , we have

N ⊧ A ⊑ B ⇐⇒ N ⊧ B ⇒ A,

where B ⇒ A is an attribute implication and N is the complement of N .
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Remark 6.5. This lemma permits the computation of a minimal and non-redundant base
of AD formulas for a given set T of AD formulas. The algorithm works as follows: First,
one associates to each T a closure operator C. Afterwards, one uses NextClosure ([Gan84,
GW96]) to compute a minimal base T1 (of attribute implications) associated to C. Finally,
Tmin ∶= {B ∖A ⊑ A ∣ A⇒ B ∈ T1} is the minimal and non-redundant base of AD formulas
we were searching for.

6.2. Fuzzy Attribute Dependencies

In this section we develop fuzzy attribute dependency formulas for compounded attributes,
i.e., for qualities which include more than one trait. For instance, the notion “wealth”
might be considered as a compounded attribute consisting of “investment” and “fluency”.
A person who is wealthy has to have high values on both investment and fluency.
Also in this case the user has to enter a sort of order on the attributes, this time on the

groups of attributes, and fix the truth values for their relevance.
First, we introduce our formulas and illustrate their usefulness on an example. After

we have investigated some of their basic properties, we turn our attention to the prob-
lem that builds the core of this section. There we will develop two methods to eliminate
redundancies from fAD formulas. This is an important technique, because the user is
allowed to enter the formulas and it is therefore very likely that they are somewhat redun-
dant, making their further handling more difficult than necessary. The first method acts
in a straightforward way and the second one is based on a connection between the fAD
formulas and fuzzy attribute implications.

Definition 6.6. A fuzzy attribute-dependency formula (fAD) over a set M of attributes is
an expression A ⊑ B, where A,B ∈ LM are L-sets of attributes. The fAD A ⊑ B is true
in an L-set N ∈ LM for α,β ∈ L ∖ {0} and α ≤ β, written N ⊧α,β A ⊑ B, if the following
condition is satisfied:

if S(A,N) ≥ α, then S(B,N) ≥ β. (6.1)

For an fAD formula or a set T of fAD formulas, the values α and β are called the thresholds
of A ⊑ B or T . An L-concept (C,D) ∈B(G,M, I) satisfies A ⊑ B if D ⊧α,β A ⊑ B.

For notational simplicity we will sometimes omit α and β from ⊧α,β provided they are
clear from the framework.
The set of all L-concepts from B(G,M, I) that satisfy a given set T of fAD formulas is

denoted by BT (G,M, I), i.e.,

BT (G,M, I) ∶= {(C,D) ∈B(G,M, I) ∣D ⊧ A ⊑ B for every A ⊑ B ∈ T}.

We call BT (G,M, I) together with the restricted concept order the L-concept lattice of
(G,M, I) constrained by T and denote it by BT (G,M, I).
The fAD formulas permit a two-sided modelling of the extracted L-concepts. On the

one hand, α and β provide the thresholds to which an intent has to contain all elements of
A and B. On the other hand, the truth degrees of the elements contained in A and B fix
the thresholds to which we want the attributes to be contained in the intent of a concept
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6. User preferences

satisfying the fAD formula. Such formulas gives us much leeway. Although the thresholds
are fixed for all formulas, we may control the importance of the attributes by the L-sets
A and B. We will illustrate this fact in the forthcoming example.
In applications it is particularly useful to associate to the truth values of a residuated

lattice L a Likert scale L. This allows the user to have a better understanding of the truth
values. For instance, let L = {0,0.25,0.5,0.75,1} be the support set of some residuated
lattice. Its associated Likert scale could be L = {not important, less important, important,
very important, most important}, i.e, 0 =not important, 0.25 =less important, etc.

Example 6.7. Let us consider the L-context given in Figure 6.1. It represents the evaluation
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1 0 0.5 0.5 1 1 0 0 0.5 0.5 0.5 1 1
2 1 1 1 1 1 1 1 1 0.5 0.5 0 0
3 0.5 0.5 0.5 1 1 0 1 1 1 1 0.5 0.5
4 1 0.5 1 1 1 0 1 1 0.5 0.5 1 1
5 0 0.5 0 0.5 0.5 0 0 0.5 0.5 0.5 0 0
6 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 0.5
7 0 0.5 0 0 0.5 0 0 0.5 0 0.5 0 0

Figure 6.1.: L-context about employees

of the employees of a small business regarding some qualities. Here, each quality is a
compound of two or more traits. For example, an employee is a “good team player” if
he/she is collaborative and not discriminative. Another example is “good organisational
skills” which is evaluated based on the attributes “time management”, “problem solving”
and “analytical thinking”. The context has 44 L-concepts with the Gödel logic which are
far too many to be analysed by a busy manager. The manager however knows how good or
bad the employees do their jobs and he is interested more in their collaboration than their
organisational skills and more in their adaptivity than in their confidentiality. Therefore,
he chooses the following two fAD formulas

{0.5/c, d, e} ⊑ {a, b} and {0.5/i, 0.5/j} ⊑ {f, g, h}, (6.2)

with α = 0.5 and β = 1. Then, he obtains 11 L-concepts, which are displayed in Figure 6.2.
The manager reconsiders his choices and realises that the company does neither send its
employees to business trips nor to other companies and the employees should know their
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6.2. Fuzzy Attribute Dependencies

Extent Intent
1 2 3 4 5 6 7 a b c d e f g h i j k l

1 0 0 0 0 0 0.5 0 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0.5 0 0 0 0.5 0 1 1 1 1 1 1 1 1 1 1 0 0
3 0 1 0 0 0 0.5 0 1 1 1 1 1 1 1 1 0.5 0.5 0 0
4 0 0 0 0 0 1 0 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 0.5
5 0 1 0 0 0 1 0 1 1 0.5 1 1 1 1 1 0.5 0.5 0 0
6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 1 0 0 1 0 0 1 0 1 0 0
7 0.5 1 0.5 0.5 0.5 1 0.5 0 1 0 0 1 0 0 1 0 0.5 0 0
8 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0.5 0 0 1 0 0 1 0 1 0 0
9 0.5 1 1 1 0.5 1 0.5 0 0.5 0 0 1 0 0 1 0 0.5 0 0
10 1 1 1 1 0.5 1 0.5 0 0.5 0 0 1 0 0 0.5 0 0.5 0 0
11 1 1 1 1 1 1 1 0 0.5 0 0 0.5 0 0 0.5 0 0.5 0 0

Figure 6.2.: L-concepts satisfying the fAD formulas from (6.2)

Extent Intent
1 2 3 4 5 6 7 a b c d e f g h i j k l

12 0 0 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 1 1 1 1
13 0 0.5 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 1 1 0 0
14 0 1 0.5 0.5 0 0.5 0 1 1 1 1 1 0 1 1 0.5 0.5 0 0
15 0 0 0.5 0.5 0 1 0 1 1 0.5 1 1 0 1 1 0.5 0.5 0.5 0.5
16 0 1 0.5 0.5 0 1 0 1 1 0.5 1 1 0 1 1 0.5 0.5 0 0

Figure 6.3.: L-concepts satisfying the fAD formula from (6.3) and the first fAD formula from (6.2)

priorities. Therefore, he changes the second fAD formula into

{0.5/i, 0.5/j} ⊑ {g, 0.5/h}. (6.3)

Obviously the concepts from the first set of fAD formulas are a subset of the concepts
from the second set of fAD formulas. The latter yields 16 concepts that are displayed in
Figure 6.2 and 6.3.

Remark 6.8. The fAD formulas may be used with the Gödel and Goguen logic independent
from the nature of the formulas. However, this is less advisable for the Łukasiewicz logic,
as we will show in the following. Suppose we have the fAD formula 0.5/x ⊑ 0.3/z1 with
thresholds α = β = 0.5 and an L-set N = {0.5/x, y}. Obviously, we have N ⊧ 0.5/x ⊑ 0.3/z
(because S(0.5/x,N) = 1 and S(0.3/z,N) = 0.7) while N(z) = 0. Hence, such formulas are
of little avail for the user with the Łukasiewicz logic. However, if every component of the
fAD formula has the truth value 1, the situation changes. Using the Łukasiewicz logic we
then have 1→ l = min{1 − 1 + l,1} = min{l,1} for every l ∈ L.

We have developed a framework for modelling users’ preferences in a fuzzy setting.
Further, we illustrated how the method works in practice. Now let us investigate some
properties of these formulas.

1We sometimes omit curly brackets around singletones.
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Proposition 6.9. Let T be a set of fAD formulas. Then, BT (G,M, I) is a complete lattice,
which is a ⋁-sublattice of B(G,M, I).

Proof. Clearly, BT (G,M, I) ⊆ B(G,M, I) and BT (G,M, I), with the restricted concept
order, is a partially ordered subset of B(G,M, I). Further, note that BT (G,M, I) is
bounded from below because the least L-concept of B(G,M, I) is (M ↓,M), concept which
is compatible with every fAD formula. Now, we have to show that BT (G,M, I) is closed
under arbitrary suprema in B(G,M, I). To this end let (Aj ,Bj) ∈BT (G,M, I) (j ∈ J) be
L-concepts. For any fAD formula A ⊑ B ∈ T we have Bj ⊧ A ⊑ B for every j ∈ J . Now, if
there exists j ∈ J such that Bj(a) < α for some a ∈M with A(a) > 0, then ∩j∈JBj(a) < α
and we are done because then ∩j∈JBj ⊧ A ⊑ B. Contrary, if for all j ∈ J and all a ∈M such
that A(a) > 0 we have Bj(a) ≥ α, then ∩j∈JBj(a) ≥ α for all a ∈ M satisfying A(a) > 0.
Since Bj ⊧ A ⊑ B holds for all j ∈ J , then we also have that Bj(b) ≥ β for all j ∈ J and
b ∈ M such that B(b) > 0. Due to the same argument as before, we have ∩j∈JBj(b) ≥ β
for all b ∈ M such that B(b) > 0 and so it follows that ∩j∈JBj ⊧ A ⊑ B, showing that
BT (G,M, I) is closed under arbitrary suprema.

Thus, after selecting the relevant formal concepts for the users we still have a complete
lattice. This can be used in the further analysis of the data. For instance, the user can
browse between the formal concepts, going from the more general concepts to the more
concrete ones.

Remark 6.10. 1. Note that in general BT (G,M, I) is not closed under arbitrary in-
fima in B(G,M, I). In order to show this, let (Aj ,Bj) ∈ BT (G,M, I) (j ∈ J) be
L-concepts. For any fAD formula A ⊑ B ∈ T , we have that Bj ⊧ A ⊑ B for every
j ∈ J . If there is at least one j ∈ J such that S(A,Bj) ≥ α and S(B,Bj) ≥ β, then
S(A,⋃j∈J Bj) ≥ α and S(B,⋃j∈J Bj) ≥ β hold, and due to ⋃j∈J Bj ⊆ (⋃j∈J Bj)↓↑, we
also have that (⋃j∈J Bj)↓↑ ⊧ A ⊑ B. However, if we have S(A,Bj) < α for all j ∈ J ,
then S(A, (⋃j∈J Bj)↓↑) ≥ α and S(B, (⋃j∈J Bj)↓↑) < β may happen, which yields
(⋃j∈J Bj)↓↑ /⊧ A ⊑ B.

2. The top elements of BT (G,M, I) and B(G,M, I) may be different from each other.
They are the same if T does not contain an fAD formula A ⊑ B such that every
attribute from A is shared by all objects from G with a the truth degree ≥ α and
there is at least one attribute from B which is not shared by all objects from G with
a truth value ≥ β. If there is no such fAD formula in T , then (G,G↑) satisfies every
fAD formula from T and hence is the upper bound of BT (G,M, I).

Denote by fADF the set of all fAD formulas. Then, ⊧ induces two mappings between
fADF (the formulas) and all L-concepts (the models/structures). The two mappings are

Str ∶P(fADF )→P(B(G,M, I)),
Fml ∶P(B(G,M, I))→P(fADF ).

Let T be a set of fAD formulas and let C ∈P(B(G,M, I)) be a subset of concepts. Define

Str(T ) ∶= {(A,B) ∈B(G,M, I) ∣ (A,B) ⊧ ϕ for each ϕ ∈ T},
Fml(C) ∶= {ϕ ∈ fADF ∣ (A,B) ⊧ ϕ for each (A,B) ∈ C}.
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Obviously, the mappings Str and Fml form a crisp Galois connection between (the power
sets of) fADF and B(G,M, I).

The next lemma shows further properties of the fAD formulas. On the one hand, it
allows us to reduce the number of formulas in a simple way. On the other hand, it permits
the testing of semantic entailment on simpler formulas. Before presenting this lemma, we
need to introduce some further notions.

Definition 6.11. An L-set N ∈ LM is a model of a set T of fAD formulas if N ⊧ A ⊑ B
holds for each A ⊑ B ∈ T . Let Mod(T ) denote the set of all models of T , i.e.,

Mod(T ) ∶= {N ∈ LM ∣ N ⊧ A ⊑ B, for each A ⊑ B ∈ T}.

An fAD formula A ⊑ B follows semantically from T , written T ⊧ A ⊑ B, if for each
N ∈ Mod(T ), we have N ⊧ A ⊑ B.

Lemma 6.12. i) N ⊧ A ⊑ {l1/y1, . . . ,
ln/yn} if and only if N ⊧ A ⊑ {li/yi} for all i ∈ {1, . . . , n}.

ii) For each set T of fAD formulas and each fAD formula ϕ, we have T ⊧ ϕ if and only if
⌊T ⌋ ⊧ ϕ, where ⌊T ⌋ ∶= {A ⊑ {l/y} ∣ A ⊑ B ∈ T and B(y) = l}.

Proof. i) If N trivially satisfies the formula, S(A,N) < α, then we are done. Now sup-
pose it does satisfy the formula in a non-trivial way. Thus, we have S(A,N) ≥ α and
S({l1/y1, . . . ,

ln/yn},N) ≥ β. By the definition of S, the latter holds if and only if we have
S({li/yi},N) ≥ β for all i ∈ {1, . . . , n}. Thus, N ⊧ A ⊑ {li/yi} for all i ∈ {1, . . . , n}.
ii) We have to show that Mod(T ) = Mod(⌊T ⌋). Suppose this is not the case. Then, there
must be a model N ∈ Mod(T ) such that N ∉ Mod(⌊T ⌋). Let A ⊑ B ∈ T be an fAD for-
mula. Since N is a model of T , we have N ⊧ A ⊑ B. By i), for any l/b ∈ B it holds that
M ⊧ A ⊑ l/b, a contradiction. Therefore, S(Mod(T ),Mod(⌊T ⌋)) = 1. Analogously, one can
show S(Mod(⌊T ⌋),Mod(T )) = 1, yielding that Mod(⌊T ⌋) = Mod(T ).

Due to Lemma 6.12 we may merge fAD formulas with the same left-hand side into a
single fAD formula. The new formula is true in a model if and only if all its component
fAD formulas are true in that model. Further, this lemma allows us also to test semantic
entailment in fAD formulas A ⊑ {l/y} rather than on the whole A ⊑ B.
As we already stated at the beginning, it is very likely that the formulas entered by the

user, are redundant. Wishful thinking suggests to have a set of non-redundant formulas,
because these are then easier to follow and to modify. Therefore, in the following we will
develop methods for removing such redundancies. In order to do so, we will first study
the connection between the models of fAD formulas and L∗-closure systems in a series of
propositions. It will turn out that any L∗-closure system can be described by a set of fAD
formulas.

Proposition 6.13. Let T be a set of fAD formulas. Then, Mod(T ) is an L∗-closure system
with (−)∗ being the globalisation.

Proof. Let {Nj ∈ Mod(T ) ∣ j ∈ J}. We will show that Mod(T ) is closed under arbitrary
intersection, i.e., ⋂j∈J Nj is a model of T . For any fAD formula A ⊑ B ∈ T , we have
Nj ⊧ A ⊑ B for every j ∈ J . But now, if there is j ∈ J such that Nj(a) < α for some a ∈M

129



6. User preferences

with A(a) > 0, then ∩j∈JNj(a) < α and we are done since then ∩j∈JNj ⊧ A ⊑ B. Contrary,
if for all j ∈ J and all a ∈M with A(a) > 0 we have Nj(a) ≥ α, then ∩j∈JNj(a) ≥ α for all
a ∈ M with A(a) > 0. Since Nj ⊧ A ⊑ B holds for all j ∈ J , we also have that Nj(b) ≥ β
for all j ∈ J and b ∈ M with B(b) > 0. Due to the same argument as before, we obtain
∩j∈JNj(b) ≥ β for all b ∈ M with B(b) > 0 and hence we have ∩j∈JNj ⊧ A ⊑ B, showing
that Mod(T ) is closed under arbitrary intersections.
According to Theorem 1.4 (page 9) Mod(T ) is an L∗-closure system if and only if it is

closed under arbitrary intersections and a∗ → N is a model of T for any N ∈ Mod(T ) and
any a ∈ L. Due to the first part of this proof, we just have to show the latter. However,
this condition only holds if (−)∗ is the globalisation. Then, we have

S(A,a∗ → N) = a∗ → S(A,N) = { 1, a = 0,
S(A,N), a = 1,

i.e., a∗ → N trivially satisfies any fAD formula if a = 0 or we do not gain anything new to
N in the case that a = 1.

In order to use general hedges but still have the result of the previous proposition we
have to impose some restrictions on the thresholds.

Corollary 6.14. Let T be a set of fAD formulas with thresholds α = β = 1. Then, Mod(T )
is an L∗-closure system.

Proof. The first part from the proof of Proposition 6.13 still holds. For the second part
we still have to show that a∗ → N is a model of T for any N ∈ Mod(T ) and any a ∈ L. Let
A ⊑ B ∈ T . Then, we have

S(A,a∗ → N) = a∗ → S(A,N) = { 1, a∗ = 0 or a = S(A,a∗ → N) = 1,
S(A,N), else.

Due to the fact that we chose α = β = 1 we have S(A,N) = 1 or S(A,N) = 0. Since the
same applies to S(B,a∗ → N), we are done.

Based on the previous two results we have the following:

Proposition 6.15. Let S be an L∗-closure system on M . The following hold:

(i) There is a set T of fAD formulas over M with thresholds α = β = 1 such that
S = Mod(T ).

(ii) There is a set T of fAD formulas over M such that S = Mod(T ) provided that (−)∗
is the globalisation.

Proof. i) Define a set T of fAD formulas by T ∶= {A ⊑ CS(A) ∣ A ∈ LM}, where CS(A) is
the closure of A given by the L∗-closure operator CS . Let N ∈ S, i.e., N = CS(N). We
have to show that N is a model of T . Thus let N ⊧ A ⊑ CS(A) for every A ⊑ CS(A) ∈ T .
If S(A,N) < 1, then N ⊧ A ⊑ CS(A) and we are done. Now take S(A,N) ≥ 1, mean-
ing that A ⊆ N . Since CS is a closure operator we have CS(A) ⊆ CS(N) = N , hence
S(CS(A),N) ≥ 1, i.e., N ⊧ A ⊑ CS(A). Thus, N is a model of T and we have the first
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inclusion, namely S ⊆ Mod(T ).
For the converse, let N ∈ Mod(T ). Since S(N,N) ≥ 1 obviously holds, we must also have
S(CS(N),N) ≥ 1, yielding that N = CS(N), i.e., N ∈ S and hence Mod(T ) ⊆ S.
ii) Is similar to i), with the necessary changes as shown in Proposition 6.13 and Corol-
lary 6.14.

According to Proposition 6.13, Mod(T ) is an L∗-closure system, so it must exist an
L∗-closure operator CMod(T ) ∶ LM → LM such that N = CMod(T )(N) if and only if
N ∈ Mod(T ). Hence, by definition, CMod(T )(N) is the least model in Mod(T ) which
contains N . This definition of the L∗-closure operator does not provide a useful method
for computing the closure of a given N . First, because one has to iterate over all models
in Mod(T ) and second, such an iteration may be impossible if L is infinite, because then
Mod(T ) is infinite.
Similarly to (fuzzy) attribute implications we proceed as follows: For any set T of fAD

formulas with thresholds α,β and for any L-set N ∈ LM of attributes, we define an L-set
NT ∈ LM of attributes as follows:

NT ∶= N ∪⋃{β ⊗B ∣ A ⊑ B ∈ T, S(A,N) ≥ α}. (6.4)

Further, we define an L-set NTn ∈ LY of attributes for each non-negative integer by

NTn ∶= { N, n = 0,
(NTn−1)T , n ≥ 1, (6.5)

and define an operator clT ∶ LM → LM by

clT(N) ∶=
∞
⋃
n=0

NTn . (6.6)

Proposition 6.16. For each N ∈ Mod(T ) we have clT(N) = N .

Proof. By definition N ⊆ NT holds. Conversely, for any A ⊑ B ∈ T and any N ∈ Mod(T )
we have N ⊧ A ⊑ B. If S(A,N) < α, then NT = N . If S(A,N) ≥ α, then S(B,N) ≥ β must
hold since N ∈ Mod(T ). From S(B,N) ≥ β we get β ⊗B ⊆ N by the adjointness property
and hence NT = N ∪{β⊗B} = N . The definitions of NTn and clT yield N = NT0 = NT1 = ⋯
for every N ∈ Mod(T ). Thus, N = ⋃∞n=0N

Tn = clT(N).

The next lemma shows that the L∗-closure operator defined on the models of T coincides
with the clT-operator defined in (6.6).

Lemma 6.17. Let T be a set of fAD formulas over M . Further let both M and L be finite.
Then, clT is an L∗-closure operator such that CMod(T )(N) = clT(N) for each N ∈ LM .

Proof. CMod(T ) is an L∗-closure operator, therefore it suffices to check that CMod(T ) and
clT coincide. To this end let N ∈ LM be an L-set of attributes. By the definition of clT we
have N ⊆ clT(N). We still have to show that clT(N) belongs to Mod(T ) and that clT(N)
is the least model containing N . First of all note that the finiteness of L and M imply
that LM is finite and that there exists a non-negative integer k such that clT(N) = NTk .
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Hence there can be only finitely many proper inclusions in NT0 ⊆ NT1 ⊆ ⋯ ⊆ NTk ⊆ ⋯.
Thus, there always exists some k satisfying clT(N) = NTk and NTk = NTk+1 = ⋯.
It remains to show that clT(N) ∈ Mod(T ), i.e., for any fAD formula A ⊑ B ∈ T we

have that clT(N) ⊧ A ⊑ B. If S(A, clT(N)) < α, we are done. Now suppose that we have
S(A, clT(N)) ≥ α. It follows that clT(N) = N ∪{β⊗B}. Obviously, S(B,N ∪{β⊗B}) ≥ β,
proving that clT(N) is a model of T which contains N . For any X ∈ Mod(T ) such that
N ⊆ X we have to show that clT(N) ⊆ X. This easily follows by the properties of closure
operators and by Proposition 6.16. In fact, we have clT(N) ⊆ clT(X) =X.

Based on the previous result we present Algorithm 3 for the computation of the closure
CMod(T )(N) of an L-set N ∈ LM of attributes with respect to a set T of fAD formulas
provided that L and M are finite.

Algorithm 3: Closure(N,T )
1 repeat
2 take A ⊑ B ∈ T such that S(A,N) ≥ α and S(B,N) < β;
3 set N to N ∪ {β ⊗B};
4 until forall A ⊑ B ∈ T , (S(A,N) < α) or (S(A,N) ≥ α and S(B,N) ≥ β);
5 return N

Now let us investigate the connection between fAD formulas and implications. There-
fore, denote by Imp(T ) the set of implications obtained by the set of fAD formulas T , i.e.,

Imp(T ) ∶= {A⇒ B ∣ for all A ⊑ B ∈ T}.

If we choose more restrictive values for α and β, we have the following connection between
fuzzy implications and fAD formulas:

Proposition 6.18. If we choose α = β = 1, then for every set T of fAD formulas it holds

Mod(Imp(T )) ⊆ Mod(T ).

Proof. Let T be a set of fAD formulas and A⇒ B an implication from Imp(T ). Further,
let N ∈ Mod(Imp(T )). Since N is a model of Imp(T ), we have

∣∣A⇒ B∣∣N = S(A,N)→ S(B,N) = 1.

The latter holds whenever S(A,N) ≤ S(B,N). Since we chose α = β = 1 this means that
N is a model of T .

Definition 6.19. Two sets T1 and T2 of fAD formulas are called equivalent, written T1 ≡ T2,
if for each ϕ1 ∈ T1 and each ϕ2 ∈ T2 we have T1 ⊧ ϕ2 and T2 ⊧ ϕ1.

Proposition 6.20. Let T1 and T2 be sets of fAD formulas. Then, the following are equiva-
lent:

(i) Mod(T1) = Mod(T2);

(ii) for any fAD formula ϕ we have T1 ⊧ ϕ⇐⇒ T2 ⊧ ϕ;
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(iii) T1 ≡ T2.

Proof. “i)⇒ ii)” follows directly by the definition of ⊧.
“ii)⇒ iii)” Let ϕ1 ∈ T1. Then, T1 ⊧ ϕ1 because ϕ1 is true in every model of T1. By ii)
we have that T2 ⊧ ϕ1. Dually, one can show that T1 ⊧ ϕ2 follows from ϕ2 ∈ T2. Hence,
T1 ≡ T2.
“iii)⇒i)” Assume that Mod(T1) and Mod(T2) are two different L-sets. Then, there must
be an L-set N ∈ LM such that N ∈ Mod(T1) and N ∉ Mod(T2). This means that there
is A ⊑ B ∈ T2 such that N /⊧ A ⊑ B. However, by iii) we have that T1 ≡ T2, which
yields T1 ⊧ A ⊑ B, and because N is a model of T1 we have N ⊧ A ⊑ B, a contradic-
tion. For S(Mod(T2),Mod(T1)) < 1 one can proceed analogously. Thus, we have that
Mod(T1) = Mod(T2) showing i).

Now we are prepared to introduce non-redundant bases.

Definition 6.21. A set T1 of fAD formulas is called a non-redundant base of T if T ≡ T1
and there is no T2 ⊂ T1 with T2 ≡ T . A set T1 of fAD formulas is called a minimal base of
T if T ≡ T1 and for each T2 with T ≡ T2, we have ∣T1∣ ≤ ∣T2∣.

Obviously, if T1 is a minimal base of T , then T1 is a non-redundant base of T . The
converse is not true in general.
For a given set T of fAD formulas we may compute a non-redundant base as follows:

First note that if T1 ∶= T ∖ {A ⊑ B} and T1 ⊧ A ⊑ B, then T ≡ T1. We may then remove
fAD formulas A ⊑ B from T step-by-step until there is no T1 ⊂ T such that T1 ≡ T . The
computation of a non-redundant base with this method is quite laborious. In what follows
we present another connection between fuzzy attribute implications and fAD formulas
which will considerably simplify this task, provided that (−)∗ is the globalisation.

Lemma 6.22. Let T be a set of fAD formulas. We have

Mod(T ) = Mod(Imp(T ∗)),

where

Imp(T ∗) ∶= {α⊗A⇒ β ⊗B ∣ for all A ⊑ B ∈ T, α, β thresholds of T} (6.7)

where the truth values of the implications from Imp(T ∗) are computed by using the glob-
alisation.

Proof. Let N ∈ Mod(T ) and A ⊑ B ∈ T . There are two cases:
1) S(A,N) ≥ α and S(B,N) ≥ β both hold. Then, for every attribute m ∈ M , we have
A(m) → N(m) ≥ α which by the adjointness property gives us α ⊗ A(m) ≤ N(m) and
therefore S(α⊗A,N) = 1. Thus, S(β ⊗B,N) = 1. Hence, we have

∣∣α⊗A⇒ β ⊗B∣∣N = S(α⊗A,N)∗ → S(β ⊗B,N) = 1∗ → 1 = 1.

2) We have S(A,N) < α, which is equivalent to S(α⊗A,N) < 1. Therefore,

∣∣α⊗B ⇒ β ⊗B∣∣N = S(α⊗A,N)∗ → S(β ⊗B,N) = 0→ S(β ⊗B,N) = 1.
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Cases 1) and 2) show that N is a model of Imp(T ∗).
For the converse let N ∈ Mod(Imp(T ∗)). Then, we have

∣∣α⊗A⇒ β ⊗B∣∣N = S(α⊗A,N)∗ → S(β ⊗B,N) = 1 (6.8)

for any fuzzy attribute implication A ⇒ B ∈ Imp(T ∗). Equation 6.8 holds if and only if
one of the following cases apply:

1) (S(α⊗A,N)∗ = 1 and S(β ⊗B,N) = 1)⇐⇒ (S(A,N) ≥ α and S(B,N) ≥ β),
2) S(α⊗A,N)∗ = 0⇐⇒ S(α⊗A,N) < 1⇐⇒ S(A,N) < α.

In both cases, it follows that N ⊧α,β A ⊑ B.

Thus for an L-set N ∈ LM we have

N ⊧α,β A ⊑ B ⇐⇒ (∣∣α⊗A⇒ β ⊗B∣∣N = 1 with (−) ∗ being the globalisation).

With this link between fAD formulas and fuzzy attribute implications we may easily
compute a minimal base for any set T of fAD formulas. First we build the set Imp(T ∗)
associated to T as given by (6.7). Afterwards, we compute a minimal base of attribute
implications BT ∗ for this set. Finally, from BT ∗ we obtain a minimal base of fAD formulas
for T by

BT ∶= {A⧫ ⊑ B⧫ ∖A⧫ ∣ A⇒ B ∈ BT ∗},

where

A⧫ ∶=⋁{C ∈ LM ∣ α⊗C = α⊗A} and B⧫ ∶=⋁{D ∈ LM ∣ α⊗D = α⊗B}. (6.9)

Example 6.23. Let (G,M, I) be an L-context with M = {a, b . . . , h}. We will use the
three-element Gödel logic. Suppose the user enters the following fAD formulas:

{a, b} ⊑ {0.5/c, 0.5/d}, {a, b} ⊑ {e, f},
{e, f} ⊑ {c, d}, {g, h} ⊑ {c, d},
{e, f} ⊑ {0.5/g, 0.5/h},

with thresholds α = 0.5 and β = 1. We may now use (6.7) to transform these formulas into
attribute implications in a fuzzy setting. Afterwards, we may compute a stem base for
these implications. We obtain:

{0.5/e, 0.5/f}⇒ {c, d, 0.5/g, 0.5/h},
{0.5/a, 0.5/b}⇒ {c, d, e, f, 0.5/g, 0.5/h},
{0.5/g, 0.5/h}⇒ {c, d}.

Using (6.9) we obtain the following minimal non-redundant base of fAD formulas:

{e, f} ⊑ {c, d, 0.5/g, 0.5/h},
{a, b} ⊑ {c, d, e, f, 0.5/g, 0.5/h},
{g, h} ⊑ {c, d}.

The possibility of computing a non-redundant base allows the user to review his choices
and alter them conveniently.
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6.3. Related Works

We presented here an approache for modelling users’ preferences in a fuzzy setting. How-
ever, there might be other formulas/models of formulas which are meaningful for the user.
For instance, a variant might be the following: An L-set N ∈ LM is a model of the fAD for-
mula A ⊑ B with A,B ∈ LM if ⋁m∈M(A∩N)(m) ≤ ⋁m∈M(B∩N)(m). Another alternative
could be: An L-set N ∈ LM is a model of the fAD formula A ⊑ B if ⋁a∈AN(a) ≤ ⋁b∈BN(b).
In both cases an L-concept satisfies the formula if its intent is a model of the formula.
A somehow different approach of modelling users’ preferences within the framework of

crisp Formal Concept Analysis was presented in [Obi12]. Starting with the users pref-
erences on objects, one obtains a preference relation on concepts and afterwards on the
attributes. The method embeds preference logic into the tools of Formal Concept Analysis.

Straightforward Generalisation

Let us go back now to the starting point of our fuzzy attribute dependency formulas.
Unlike those formulas ours were developed for compound attributes. Thus, one could ask
how the method developed in [BS05] translates into the language of Formal Fuzzy Concept
Analysis. Let us briefly discuss this matter.
A fuzzy attribute-dependency formula (fAD formula) over a set M of attributes is an

expression A ⊑ B, where A,B ∈ LM are L-sets of attributes. The fAD formula A ⊑ B is
true in an L-set N ∈ LM , if the following condition is satisfied:

if A ∩N ≠ ∅2, then B ∩N ≠ ∅.

The verbal meaning of A ⊑ B is once again “the attributes from A are less important
than the attributes from B”. However, such formulas may not be sufficient in yielding the
interesting concepts in accordance with the users’ preferences. For instance, there might
be some attribute m ∈M such that m ∈ A∩N but there might be just one attribute n ∈M
such that (B ∩N)(n) > 0 and further (B ∩N)(n) = 0.000 . . .001. This is of little use for
our knowledge discovery and concept reduction. Indeed, the user’s interest might not be
awaken by concepts which contain just a small fragment of his preferences. Therefore,
we have to use some thresholds to control the values in the intersection. For two L-sets
C,D ∈ LM and a truth value α ∈ L ∖ {0}, we say that C ∩D is α-true if there is at least
one attribute m ∈M such that (C ∩D)(m) ≥ α. Now, we may redefine the notion of truth.
The fAD formula A ⊑ B is true in an L-set N ∈ LM for α,β ∈ L ∖ {0} and α ≤ β, written
N ⊧α,β A ⊑ B, if the following condition is satisfied:

if A ∩N is α-true, then B ∩N is β-true. (6.10)

In applications the user has to enter a set of fAD formulas and values for α and β which
will then be used for every entered fAD formula. A model of a set T of fAD formulas is
an L-set N ∈ LM such that N ⊧α,β A ⊑ B for all A ⊑ B ∈ T . We denote by

Mod(T ) ∶= {N ∈ LM ∣ N ⊧α,β A ⊑ B for each A ⊑ B ∈ T}
2
∅ ∈ LM is an L-set such that ∅(m) = 0 for all m ∈ M .
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the set of all models of T . In the discrete case we have seen that Mod(T ) is a kernel
system. What about this result in the fuzzy setting? Due to Theorem 1.6 (page 9) it
suffices to show that Mod(T ) is closed under arbitrary unions and that a∗ ⊗N ∈ Mod(T )
holds for all a ∈ L and N ∈ Mod(T ). The first is easy to see. Thus, we have

{Nj ∈ Mod(T ) ∣ j ∈ J}Ô⇒ ⋃
j∈J

Nj ∈ Mod(T ).

The second condition is satisfied if and only if ∗ is the globalisation. Then,

(a∗ ⊗N)(m) = a∗ ⊗N(m) = { 0, a = 0,
N(m), a = 1,

holds for all m ∈M , i.e., we either have 0 and a∗ ⊗N trivially satisfies any fAD formula,
or we do not gain anything new. Thus, we have a similar situation as in Proposition 6.13,
namely that the models form an L∗-closure and L∗-kernel system, provided the hedge
is the globalisation. For such formulas the requirement that Mod(T ) should form an
L∗-closure or L∗-kernel system with general hedges seems to be too strong.
In this setting we have the dual of Lemma 6.12. Indeed, N ⊧ {l1/y1, . . . ,

ln/yn} ⊑ B holds
if and only if N ⊧ {li/yi} ⊑ B holds for all i ∈ {1, . . . , n}. Note that such an assertion
does not hold for the fAD formulas for compound attributes. Suppose N satisfies an fAD
formula {l1/y1,

l2/y2} ⊑ B such that S({l1/y1,
l2/y2},N) < α and S(B,N) < β. Further, let

S({l1/y1},N) < α and S({l2/y2},N) ≥ α. Obviously, N ⊧ {l1/y1} ⊑ B but N /⊧ {l2/y2} ⊑ B,
because S(B,N) < β.

Connection to Functional Dependencies

Let us now we present connections between our fuzzy attribute dependency formulas and
other research areas. We will give a very brief overview about functional dependencies in
order for the reader to get familiar with the notion and to follow the established connec-
tion.3
Codd’s relational model of data ([Dat00]) is the core of relational data bases. The model

has many extensions, some of which are obtained through fuzzy logics. In [BV11] several
of these fuzzy extensions were studied and compared with a general framework ([BV05a]),
called functional dependencies. These functional dependencies are of the form A ⇒ B,
where A and B are L-sets of attributes. Such formulas are interpreted in so-called ranked
tables over domains with similarities ([BV11]). The meaning of the formula is “for any
two table rows: Similar values of attributes from A imply similar values of attributes from
B”.
The data table coincides with a data table of a classical relational model. The fuzzifica-

tion is obtained through the domain similarities and the ranking. To each pair of values
from a given domain, the domain similarities assign them a degree of similarity. The
degree to which a row (tuple) of the data table satisfies a query is given by the ranking,
value which belongs to the unit interval.
A (fuzzy) functional dependence (FD) is defined by A⇒ B, where A and B are L-sets

of attributes, i.e., A,B ∈ LY . Further, for a ranked data table D, tuples t1, t2 and an L-set
3Special thanks to Bělohlávek and Vychodil for pointing this out to me.
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C ∈ LY of attributes, the degree t1(C) ≈D t2(C) to which t1 and t2 have similar values on
the attributes from C is given by

t1(C) ≈D t2(C) ∶= (D(t1)⊗D(t2))→ ⋀
y∈Y

(C(y)→ (t1[y] ≈y t2[y])). (6.11)

The degree ∣∣A⇒ B∣∣D to which a FD A⇒ B is true in D is defined by

∣∣A⇒ B∣∣D ∶= ⋀
t1,t2

((t1(A) ≈D t2(A))∗ → (t1(B) ≈D t2(B))) . (6.12)

Then, t1(C) ≈D t2(C) is the truth degree of the statement “if t1, t2 are from D, then t1
and t2 have similar values on y for each attribute y from C”. Further, ∣∣A⇒ B∣∣D stands
for the truth degree of “for any tuples t1, t2: If t1 and t2 have similar values on attributes
from A, then t1 and t2 have similar values on attributes from B”.
The extension of Codd’s model by Raju and Majumdar ([RM88]) is said to be one of

the most influential one on FDs over domains with similarities. In the literature there are
several approaches based on this work. Most of them consider FD formulas A⇒ B, where
both A and B are crisp. The authors in [BV11] use the globalisation and the identity
for the hedge (−)∗ in order to show that some methods developed by various authors
regarding fuzzy relational data bases are just special cases of their approach.
We are particularly interested in the method presented in [CVC94], where the authors

use thresholds to determine the truth value of an FD in a given relational data table D.
A FD is of the form A⇒α,β B with α = (cy)y∈A and β = (cy)y∈B. Then, A⇒α,β B is true
in D if

if for each y ∈ A we have t1[y] ≈y t2[y] ≥ cy,
then for each y ∈ B we have t1[y] ≈y t2[y] ≥ cy.

The following lemma presents the connection between these kind of FDs and the ones
defined by [BV11].

Lemma 6.24 ([BV11]). For (−)∗ being the globalisation, L = [0,1], and any →, A⇒ B is
true in D according to [CVC94] if and only if ∣∣Ac ⇒ Bc∣∣D = 1 according to (6.12), where
Ac(y) = cy for y ∈ A and Ac(y) = 0 for y ∉ A.

From [BV05a] we know that it is possible to construct a ranked table over domains
with similarities D for each L-context K such that the stem base of K coincides with the
“stem base” of D and vice versa. Therefore, using Lemma 6.24, we conclude that the
FD’s developed in [CVC94] represent a special case of our fuzzy attribute dependencies,
provided that the hedge is the globalisation.

6.4. Conclusion

In this chapter we presented a new method of modelling users’ preferences in a fuzzy
setting. The preferences are expressed by the users in the form of formulas on compound
attributes. These allow the users to express their preferences on groups of attributes, i.e.,
on features that contain more than just one trait. Based on these preferences the users
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obtain only the formal fuzzy concepts that are “interesting” for them. These concepts
form again a complete lattice that represents the further basis of the data analysis.
After investigating some properties of these formulas, we turned our attention to the

computation of non-redundant bases. Such methods are useful as the users enter the
formulas and it is therefore very likely that these are redundant. Having a set of non-
redundant formulas makes it possible for the user to handle them more easily and alter
them conveniently. As it turned out, there is a close connection between fAD formulas
and attribute implications in a fuzzy setting. Finally, we showed a connection between
our framework and some approaches to functional dependencies.
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Fuzzy-valued Triadic Concept Analysis

The usual way to fuzzify Triadic Concept Analysis is to consider all three components of
a triadic concept as L-sets. For instance, such an approach was presented in [BO10]. A
more general approach was developed in [OK10], where different residuated lattices were
considered for the objects, attributes and conditions. A somehow different strategy was
considered in [Cla09] using alpha-cuts.
In [Glo11d] we presented a different approach to Triadic Concept Analysis in a fuzzy

setting. This work, together with the technical report [Glo11c], represents the basis of this
chapter. Our approach differs from the other ones in considering just two components in
a triadic concept as fuzzy and one as crisp. This is motivated by the fact that in some
situations it is not appropriate to regard all sets as fuzzy. For example, it is not natural
to say that “half of a person is old”, however we may say “a person is half old”.
First, we translate the notions of triadic context, concept and concept lattice to our

setting in Section 7.1. Unlike the other works, we generalise all triadic derivation operators.
Afterwards, we focus on implications. These have a wide-spread applicability, describe
the concept lattice and support knowledge discovery. Thus, it arises as a natural wish
to generalise implications to the fuzzy-valued triadic setting. This was done, as it seems,
for the first time in [Glo11d], the results of which we present in Section 7.2. At the end,
in Setion 7.3, we present another valuable method of Formal Concept Analysis for our
fuzzy-valued setting: the conceptual factorisation.

7.1. Context and Concepts

The starting point of each variant of Formal Concept Analysis is the formal context.
Therefore, it will be our first concern to introduce fuzzy-valued tricontexts. Afterwards,
we turn our attention to the definition of the derivation operators for our setting. The
(−)Ak -derivation operators can be obtained in various ways, see [Glo11d, Glo11c]. How-
ever, here we will present just one of them, which has the advantage of leading to a
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7. Fuzzy-valued Triadic Concept Analysis

unified framework. In order to generalise all triadic derivation operators to our setting, we
will need the double-scaling of fuzzy-valued tricontexts. This allows us to transform the
fuzzy-valued tricontext into a crisp tricontext. The trilattices of the two are isomorphic.
Having generalised all triadic derivation operators to the fuzzy-valued setting, we will fo-
cus on how they interact with each other. Further, we will investigate some properties
of the concepts and present different characterisations of them. We conclude the theory
of our fuzzy-valued triadic setting by the Basic Theorem of Fuzzy-valued Triadic Concept
Analysis.
Note that there are some overlaps between this section and the work presented in [OK10].

The latter contains a more general approach to the properties of fuzzy triadic concepts
since it that setting all three components of the concept are fuzzy sets.

Definition 7.1. A fuzzy-valued triadic context (shortly f-valued tricontext) is a quadruple
K ∶= (K1,K2,K3, Y ), where Y is a ternary L-relation between the sets Ki (i ∈ {1,2,3}),
i.e., Y ∶K1×K2×K3 → L and L is the support set of some residuated lattice. The elements
of K1,K2 and K3 are called objects, attributes and conditions, respectively. To every
triple (k1, k2, k3) ∈ K1 ×K2 ×K3, the L-relation Y assigns a truth value Y (k1, k2, k3) to
which the object k1 has the attribute k2 under the condition k3.

An f-valued tricontext can be represented as a three-dimensional table, the entries of
which are fuzzy values (see Figure 7.1). These contexts can be understood as follows:
They are tricontexts with each condition d-cut (K1,K2, Y

12
k3

) (see Definition 3.1, page 68)
being an L-context.
Until explicitly said otherwise, K will denote an f-valued tricontext for the remainder

of this chapter.
For our f-valued setting we want to obtain the corresponding (−)Ak and (−)(i)-derivation

operators, whose crisp variants we have seen in Definition 1.28 and 1.29 (page 19). Since
the first two components of an f-valued triconcept will be L-sets and the third one crisp (see
Definition 7.2), we lose the symmetry of the derivation operators from the crisp setting.
For the (−)Ak -derivation operators we distinguish between two cases, namely when Ak is
a crisp set and when it is fuzzy. There are various ways of defining these operators, some
of which we investigated in [Glo11c]. However, here we will show a unified framework for
them.1 Let Xi,Ai,Aj ∈ LKi ({i, j} = {1,2}) and X3,A3 ⊆K3. We define

XA3
i (kj) ∶= ⋀

ki∈Ki

(Xi(ki)→ Y ij
A3

(ki, kj)) , (7.1)

X
Aj

i (k3) ∶= ⋀
ki∈Ki

(Xi(ki)→ Y i3
Aj

(ki, k3))
∗
, (7.2)

XAi
3 (kj) ∶= ⋀

k3∈K3

(X3(k3)→ Y j3
Ai

(kj , k3)) , (7.3)

where (−)∗ is the globalisation in order to ensure that XAj

i is a crisp set and

Y ij
Ak

(ki, kj) ∶= ⋀
kk∈Kk

(Ak(kk)→ Y (ki, kj , kk)) (7.4)

1A similar approach, developed independently, was presented in [BO10].
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for {i, j, k} = {1,2,3}. We obtain the dyadic L-context Kij
Ak

∶= (Ki,Kj , Y
ij
Ak

) with its
derivation operators given by (7.1), (7.2) and (7.3).
Having the first kind of fuzzy-valued triadic derivation operators, we may now define

what a formal concept in this setting is:

Definition 7.2. A fuzzy-valued triadic concept (shortly f-valued triconcept) of an f-valued
tricontext (K1,K2,K3, Y ) is a triple (A1,A2,A3) with A1 ∈ LK1 , A2 ∈ LK2 and A3 ⊆ K3
such that AAj

i = Ak for all {i, j, k} = {1,2,3}. The components A1,A2 and A3 are called
the (f-valued) extent, the (f-valued) intent, and the modus of (A1,A2,A3), respectively.
We denote by T(K) the set of all f-valued triconcepts.

An f-valued triconcept (A1,A2,A3) can be understood as follows: The tuple (A1,A2) is
an L-concept and A3 contains all the conditions under which this L-concept exists.
Let us illustrate the so-far introduced notions by an example.

Example 7.3. Figure 7.1 shows an f-valued tricontext with values from the 3-element chain
{0,0.5,1}. The object set K1 = {S1, S2, S3, S4, S5} contains 5 groups of students, the at-
tribute set K2 = {f, s, v} contains 3 feelings, namely fevered (f), serious (s), vigilant (v),
and the condition set K3 = {E,P,F} contains the events: doing an exam (E), giving a pre-
sentation (P ) and meeting friends (F ). Using the Łukasiewicz logic, we obtain 28 f-valued

E P F

f s v f s v f s v

S1 1 1 1 1 0.5 0.5 0 0.5 1
S2 1 0.5 1 0.5 0 0 0 0 0.5
S3 0.5 0.5 0.5 0.5 0.5 0 0 0 0.5
S4 0.5 0 0.5 0.5 0.5 0.5 0 0.5 0.5
S5 1 1 1 1 0.5 0.5 0 0.5 1

Figure 7.1.: F-valued tricontext

triconcepts and with the Gödel logic 34. For example, ({S1, S2, S3, S4, S5},{0.5/v},{E,F})
is an f-valued triconcept meaning that all students are partially vigilant while doing an
exam and meeting their friends. Another example is ({S1, S2,

0.5/S3, S5},{f, 0.5/s, v},{E})
meaning that the first, second and fifth group of students are fevered, vigilant and par-
tially serious while doing an exam, whereas this description applies just partially to the
third group of students.

The set T(K) of all f-valued triconcepts of K = (K1,K2,K3, Y ) is structured by the crisp
quasiorders ≲i and their corresponding equivalence relations ∼i defined by

(A1,A2,A3) ≲i (B1,B2,B3) ∶⇐⇒ Ai ⊆ Bi and (7.5)
(A1,A2,A3) ∼i (B1,B2,B3) ∶⇐⇒ Ai = Bi (i = 1,2,3). (7.6)

Note that for i ∈ {1,2} we are dealing with fuzzy subsethood, i.e., Ai,Bi ∈ LKi and Ai ⊆ Bi
means S(Ai,Bi) = 1, whereas for ≲3 we have A3,B3 ⊆ K3 and the crisp subsethood is
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7. Fuzzy-valued Triadic Concept Analysis

considered. Analogous remarks hold for the equivalence relations ∼i. By [(A1,A2,A3)]i
we denote the equivalence class of ∼i containing the f-valued triconcept (A1,A2,A3). The
quasiorder ≲i induces an order ≤i on the factor set T(K)/ ∼i of all equivalence classes of
∼i which is characterised by

[(A1,A2,A3)]i ≤i [(B1,B2,B3)]i ⇐⇒ Ai ⊆ Bi.

Note that in [BO10] the authors also considered L-quasiorders and L-equivalence relations.
However, for the structure of the f-valued trilattice, our crisp quasiorders are sufficient.
As we will see later, T(K) ∶= (T(K),≲1,≲2,≲3) is the fuzzy-valued counterpart of the

trilattice from Triadic Concept Analysis. But before we come to this matter, let us first
investigate the connection between f-valued tricontexts and crisp tricontexts.
According to [Pol97] (see also Theorem 1.37, page 26), we may transform an L-context

through double-scaling into a crisp context, the concept lattice of which is isomorphic to
the concept lattice of the L-context. By double-scaling each condition d-cut we obtain the
corresponding double-scaled triadic crisp context K̃ for an f-valued tricontext K. We will
now present the construction of K̃ ∶= (K◻

1 ,K
◻
2 ,K3, Ỹ ), the double-scaled tricontext, for a

given f-valued tricontext K = (K1,K2,K3, Y ). Let Xi ∈ LKi and Zi ⊆Ki ×L with i ∈ {1,2}
and let L be the support set of some residuated lattice. We define

X◻
i ∶= {(ki, ν) ∣ ki ∈Ki, ν ∈ L, ν ≤Xi(ki)} ⊆K◻

i ∶=Ki ×L,
Z♢
i (ki) ∶=⋁{ν ∣ (ki, ν) ∈ Zi} ∈ LKi

for each ki ∈Ki. Then, Ỹ ⊆K◻
1 ×K◻

2 ×K3 is a crisp ternary relation defined by

((k1, ν), (k2, λ), k3) ∈ Ỹ ∶⇐⇒ ν ⊗ λ ≤ Y (k1, k2, k3).

Theorem 7.4. T(K) ≅ T(K̃).

Proof. For the proof we will use the adjointness property (1.2) (page 6) and the properties
of residuated lattices given on page 7.
Let K̃ ∶= (K◻

1 ,K
◻
2 ,K3, Ỹ ) be the double-scaled tricontext of the f-valued tricontext

K ∶= (K1,K2,K3, Y ). We will show that an isomorphism is given by

ϕ ∶ T(K)→ T(K̃) with ϕ(A1,A2,A3) ∶= (A◻
1 ,A

◻
2 ,A3)

by proving that its inverse is given by

ψ ∶ T(K̃)→ T(K) with ψ(X1,X2,X3) ∶= (X♢
1 ,X

♢
2 ,X3).

In order to do so, we need to show the following: For all f-valued triconcepts (A1,A2,A3),
(B1,B2,B3) ∈ T(K) and for all (crisp) triconcepts (X1,X2,X3) ∈ T(K̃) we have

ϕ(A1,A2,A3) ∈ T(K̃), (7.7)
ψ(X1,X2,X3) ∈ T(K), (7.8)
ψϕ(A1,A2,A3) = (A1,A2,A3), (7.9)
ϕψ(X1,X2,X3) = (X1,X2,X3), (7.10)
(A1,A2,A3) ≲i (B1,B2,B3)⇐⇒ ϕ(A1,A2,A3) ≲i ϕ(B1,B2,B3) (7.11)
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for all i ∈ {1,2,3}.2 For statement (7.7) we have

(A◻
1 )A3 = {(k2, λ) ∈K◻

2 ∣ ∀((k1, ν), k3) ∈ A◻
1 ×A3 ∶ ((k1, ν), (k2, λ), k3) ∈ Ỹ }

= {(k2, λ) ∈K◻
2 ∣ ∀k1 ∈K1,∀ν ≤ A1(k1) ∶ λ⊗ ν ≤ Y 12

A3(k1, k2)}
= {(k2, λ) ∈K◻

2 ∣ ∀k1 ∈K1 ∶ λ⊗A1(k1) ≤ Y 12
A3(k1, k2)}

= {(k2, λ) ∈K◻
2 ∣ λ ≤ ⋀

k1∈K1

(A1(k1)→ Y 12
A3(k1, k2))} (by (1.2))

= {(k2, λ) ∈K◻
2 ∣ k2 ∈K2, λ ≤ AA3

1 (k2)}

= (AA3
1 )◻

= A◻
2 .

One proceeds similarly for (A◻
2 )A3 = A◻

1 , (A◻
i )
A◻j = A3 and AA

◻
i

3 = A◻
j for all {i, j} = {1,2}.

Thus, we have (A◻
1 ,A

◻
2 ,A3) ∈ T(K̃).

For statement (7.8) we have

(X♢
1 )X3(k2) = ⋀

k1∈K1

(X♢
1 (k1)→ Y 12

X3(k1, k2))

= ⋀
k1∈K1

(⋁{ν ∣ (k1, ν) ∈X1}→ Y 12
X3(k1, k2))

=⋀{ν → Y 12
X3(k1, k2) ∣ (k1, ν) ∈X1} (by (1.7))

=⋁{λ ∈ L ∣ ∀(k1, ν) ∈X1 ∶ λ ≤ ν → Y 12
X3(k1, k2)}

=⋁{λ ∈ L ∣ ∀((k1, ν), k3) ∈X1 ×X3 ∶ ((k1, ν), (k2, λ), k3) ∈ Ỹ } (by (1.2))
=⋁{λ ∈ L ∣ (k2, λ) ∈XX3

1 }

= (XX3
1 )♢(k2)

for all k2 ∈ K2. Therefore, (X♢
1 )X3 = (XX3

1 )♢ = X♢
2 . Analogously, one can show that

(X♢
2 )X3 = X♢

1 , (X♢
i )

X♢
j = X3 and X

X♢
i

3 = X♢
j for all {i, j} = {1,2}. Thus, we have

(X♢
1 ,X

♢
2 ,X3) ∈ T(K).

For statement (7.9) we have

A◻♢
1 (k1) =⋁{ν ∈ L ∣ (k1, ν) ∈ A◻

1}
=⋁{ν ∈ L ∣ ν ≤ A1(k1)}
= A1(k1)

for all k1 ∈ K1. Thus, A◻♢
1 = A1 holds and analogously A◻♢

2 = A2. Hence, we have
ψϕ(A1,A2,A3) = (A1,A2,A3).
Statement (7.10): For all triconcepts (X1,X2,X3) ∈ T(K̃) it holds that XXj

i = Xk for

2By abuse of notation we use ≲i both for the quasiorders on the f-valued triconcepts as well as on the
crisp triconcepts.
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all {i, j, k} = {1,2,3}, and therefore we have

X♢
1 (k1) = (XX3

2 )♢ (k1)
=⋁{ν ∣ (k1, ν) ∈XX3

2 }
=⋁{ν ∈ L ∣ ∀(k2, λ) ∈X2 ∶ ((k1, ν), (k2, λ)) ∈ Ỹ 12

X3}
=⋁{ν ∈ L ∣ ∀(k2, λ) ∈X2 ∶ ν ≤ λ→ Y 12

X3(k1, k2)}
= ⋀
(k2,λ)∈X2

(λ→ Y 12
X3(k1, k2))

for all k1 ∈K1. Hence,

X♢◻
1 = {(k1, ν) ∣ k1 ∈K1, ν ∈ L, ν ≤X♢

1 (k1)}
= {(k1, ν) ∣ ∀(k2, λ) ∈X2 ∶ k1 ∈K1, ν ∈ L, ν ≤ λ→ Y 12

X3(k1, k2)}
= {(k1, ν) ∣ ∀(k2, λ) ∈X2 ∶ ((k1, ν), (k2, λ)) ∈ Ỹ 12

X3}

=XX3
2 =X1.

Thus, X♢◻
1 =X1 holds and analogously X♢◻

2 =X2, i.e., ϕψ(X1,X2,X3) = (X1,X2,X3).
For the last item (7.11), let (A1,A2,A3), (B1,B2,B3) ∈ T(K). We have

(A1,A2,A3) ≲1 (B1,B2,B3)
⇐⇒ A1 ⊆ B1
⇐⇒ A1(k1) ≤ B1(k1) for all k1 ∈K1
⇐⇒ {(k1, ν) ∣ k1 ∈K1, ν ∈ L, ν ≤ A1(k1)} ⊆ {(k1, ν) ∣ k1 ∈K1, ν ∈ L, ν ≤ B1(k1)}
⇐⇒ A◻

1 ⊆ B◻
1

⇐⇒ ϕ(A1,A2,A3) ≲1 ϕ(B1,B2,B3),

where the last equivalence is due to (7.7). One proceeds analogously for ≲2, and the proof
for ≲3 is straightforward as A3 remains a crisp set.

This theorem allows the proper generalisation of the (−)(i)-derivation operators into
our setting, which seems to be the first generalisation of these operators into the fuzzy
setting. And finally, the most important consequence is the fuzzy-valued triadic version
of the Basic Theorem of Triadic Concept Analysis (Theorem 7.8) which we will present at
the end of this section.

Let us now turn our attention to the generalisation of the (−)(i)-derivation operators to
our setting. As in the case of the (−)Ak -derivation operators we will distinguish between
different cases for the (−)(i)-derivation operators. In case of the (−)(i)-derivation operators
with Z = Xj ×X3 ⊆ LKj ×K3 and Xi ∈ LKi for {i, j} = {1,2}, the situation is easy. They
are defined by

Z(i)(ki) ∶= ⋀
kj∈Kj ,k3∈K3

(Z(kj , k3)→ Y (i)(ki, kj , k3)) ,

X
(i)
i (kj , k3) ∶=

⎛
⎝ ⋀
ki∈Ki

(Xi(ki)→ Y (i)(ki, kj , k3)), k3
⎞
⎠
,
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where Z(kj , k3) ∶=Xj(kj)⋅X3(k3). These derivation operators correspond to the derivation
operators of the dyadic L-contexts defined by

K(i) ∶= (Ki,Kj ×K3, Y
(i)) with Y (i)(ki, kj , k3) ∶= { Y (ki, kj , k3), i < j,

Y (kj , ki, k3), i > j.

The (−)(3)-derivation operator for Z ∶=X1 ×X2 ∈ LK1 ×LK2 and X3 ⊆K3 is defined by

Z(3) ∶= {k3 ∈K3 ∣ ∀(k1, k2) ∈ Z ∶ Z(k1, k2) ≤ Y (k1, k2, k3)} (7.12)

where Z(k1, k2) ∶= X1(k1) ⊗ X2(k2). The corresponding dyadic L-context is given by
K(3) ∶= (K1 ×K2,K3, Y

(3)) with the L-relation Y (3)(k1, k2, k3) ∶= Y (k1, k2, k3). One can
easily show that

Z(3)(k3) = ⋀
(k1,k2)∈K1×K2

(Z(k1, k2)→ Y (3)(k1, k2, k3))
∗
,

where (−)∗ is the globalisation in order to ensure that Z(3) is crisp. We basically search
for the condition d-cuts which contain the maximal rectangle generated by Z.
The situation for X(3)3 is quite tricky. Applying the derivation operators in K(3) for X3,

we get a truth value l ∈ L such that l = l1 ⊗ l2 instead of a tuple (l1/k1,
l2/k2) consisting

of L-sets. To obtain such a tuple, first we have to compute the double-scaled context K̃.
Afterwards, we use the crisp (−)(3)-derivation operator in K̃ to find the components of the
triconcept. Finally, we transform these into L-sets as described in the construction of K̃.
This way, we obtain tuples of the form (l1/k1,

l2/k2) consisting of object and attribute L-sets
instead of the truth value l1 ⊗ l2. The operator is well-defined due to the isomorphism
between K and K̃.

Having generalised all derivation operators from the crisp case into our setting, we may
now investigate the interplay between them. Further, we will study some characterisations
and properties of f-valued triconcepts, the fuzzy-valued counterparts of those presented in
[Wil95].

Proposition 7.5. For all f-valued triconcepts (A1,A2,A3) and (B1,B2,B3) of K and for
{i, j, k} = {1,2,3} we have

(A1,A2,A3) ≲i (B1,B2,B3) and (A1,A2,A3) ≲j (B1,B2,B3)
imply (A1,A2,A3) ≳k (B1,B2,B3).

Further, ∼i ∩ ∼j is the identity on T(K) whenever i ≠ j.

Proof. From Ai ⊆ Bi and Aj ⊆ Bj it follows that Ak = (Ai × Aj)(k) ⊇ (Bi × Bj)(k) = Bk,
showing the first part of the proposition. The definition of f-valued triconcepts implies
that two components of an f-valued triconcept uniquely determine its third component.
This, on the other hand, shows the second part of the proposition.

Proposition 7.6. Let (A1,A2,A3) ∈ T(K) be an f-valued triconcept. Then, the following
hold:
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i) (A1,A2,A3) is maximal with respect to component-wise set inclusion;

ii) Ai = (Aj ×Ak)(i) for {i, j, k} = {1,2,3} with j < k.

Proof. i) Let (A1,A2,A3) ∈ T(K). Further let (X1,X2,X3) ∈ LK1 ×LK2 ×P(K3) such that
Ai ⊆ Xi for all i ∈ {1,2,3}. Thus, if X1 ×X2 ×X3 ⊆ Y , then Xi ⊆ (Aj ×Ak)(i) = Ai for all
{i, j, k} = {1,2,3}. Hence, we have (A1,A2,A3) = (X1,X2,X3).
ii) For the proof of this item we use some of the properties of residuated lattices listed on
page 7. Let (A1,A2,A3) be an f-valued triconcept. Then, we have

AA3
1 (k2) = ⋀

k1∈K1

(A1(k1)→ Y 12
A3(k1, k2))

= ⋀
k1∈K1

⎛
⎝
A1(k1)→ ⋀

k3∈K3

(A3(k3)→ Y (k1, k2, k3))
⎞
⎠

= ⋀
k1∈K1

⋀
k3∈K3

(A1(k1)→ (A3(k3)→ Y (k1, k2, k3))) (by (1.5))

= ⋀
k1∈K1,k3∈K3

((A1(k1)⊗A3(k3))→ Y (k1, k2, k3)) (by (1.3))

= (A1 ×A3)(2)(k2)

for all k2 ∈K2. Thus, A2 = AA3
1 = (A1×A3)(2). In a similar way we obtain A1 = (A2×A3)(1).

For the (−)(3)-derivation operator the situation is straightforward because we obtain it
through the double-scaled context. Hence, for all {i, j, k} = {1,2,3} with j < k we have
Ai = (Aj ×Ak)(i).

Proposition 7.7. For {i, j, k} = {1,2,3} let there be L-sets Xi ∈ LKi (crisp set Xi ⊆ Ki, if
i = 3) and Xk ∈ LKk (crisp set Xk ⊆ Kk, if k = 3) such that Aj ∶= XXk

i , Ai ∶= AXk
j and

Ak ∶= (Ai × Aj)(k) (if i < j) or Ak ∶= (Aj × Ai)(k) (if i > j). Then, (A1,A2,A3) is an
f-valued triconcept denoted by bik(Xi,Xk) having the smallest k-th component under all
f-valued triconcepts (B1,B2,B3) with the largest j-th component satisfying Xi ⊆ Bi and
Xk ⊆ Bk. Particularly, bik(Ai,Ak) = (A1,A2,A3) for each f-valued triconcept (A1,A2,A3)
of K.

Proof. Without loss of generality we can assume (i, j, k) = (1,2,3). Obviously, X1 ⊆ A1
and X3 ⊆ A3. We start by proving that (A1,A2,A3) is indeed an f-valued triconcept. From
Proposition 7.6 we know that A3 = (A1 ×A2)(3) = AA2

1 . Hence, A2 ⊆ AA3
1 ⊆ XX3

1 = A2 and
A2 = AA3

1 . Similarly, we obtain A1 = AA3
2 . Therefore, (A1,A2,A3) satisfies the conditions

from the definition of an f-valued triconcept.
For the second statement of the proposition, let (B1,B2,B3) ∈ T(K) with X1 ⊆ B1 and

X3 ⊆ B3. Then, B2 ⊆ A2, because B2 = BB3
1 ⊆ XX3

1 = A2. If B2 = A2, then by similar
considerations as before, we obtain B1 ⊆ A1. Hence, we have A3 = AA2

1 ⊆ BB2
1 = B3, which

proves the first part of the statement. Now, if (A1,A2,A3) is an f-valued triconcept, then
AA3

1 = A2 and AA3
2 = A1. Therefore, bik(A1,A3) = (A1,A2,A3) follows by the first part of

the proposition.

Now we may present the fuzzy-valued version of the Basic Theorem of Triadic Concept
Analysis (Theorem 1.31).
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Theorem 7.8. Let K = (K1,K2,K3, Y ) be an f-valued tricontext. Then, T(K) is a complete
trilattice of K with the ik-joins for two sets Xi and Xk of f-valued triconcepts given by

∇ik(Xi,Xk) ∶= bik(⋃{Ai ∣ (A1,A2,A3) ∈ Xi},⋃{Ak ∣ (A1,A2,A3) ∈ Xk})

for {i, j, k} = {1,2,3}. In general, every complete trilattice V ∶= (V,≲1,≲2,≲3) is isomorphic
to T(K) if and only if there exist mappings κ̃i ∶ Ki × L → Fi(V ) and κ̃3 ∶ K3 → F3(V )
such that κ̃i(Ki × L) and κ̃3(K3) are i-dense (i = 1,2) and 3-dense with respect to V ,
respectively, and

(A1⊗A2) ×A3 ⊆ Y ⇐⇒ ⋂
a1∈K1

κ̃1(a1,A1(a1)) ∩ ⋂
a2∈A2

κ̃1(a2,A2(a2)) ∩ ⋂
a3∈A3

κ̃1(a3) ≠ ∅

for all A1 ∈ LK1 ,A2 ∈ LK2 and A3 ⊆K3.

Proof. The proof is straightforward by applying the isomorphism between the f-valued
tricontext and its double-scaled context given by Theorem 7.4 (page 142).

Example 7.9. To keep things manageable we will draw the complete f-valued trilattice of
a smaller f-valued tricontext, namely of the following:

A B

a b a b
x 1 0 1 1
y 1 0.5 1 0.5
z 0.5 0 0 1

With the Gödel logic the f-valued tricontext has 11 f-valued triconcepts, which can be
seen in the complete f-valued trilattice displayed in Figure 7.2. The diagram can be read
in an analogous way to its crisp counterpart. See the text next to Figure 1.4 (page 23).

K3 A

B

z

x

0.5
/y

0.5
/z

y

b

0.5
/b a

0.5
/a

Figure 7.2.: F-valued trilattice
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7. Fuzzy-valued Triadic Concept Analysis

7.2. Implications

In this section we study f-valued implications as generalisations of those elaborated for
the crisp case in [GO04]. There, the authors presented various triadic implications,
which are stronger than the ones developed in [Bie88]. For a given crisp tricontext
K = (K1,K2,K3, Y ) and for A,B ⊆ K2 and X ⊆ K3, the expression A

X→ B is called
conditional attribute implication. Further, for A,B ⊆ K3 and X ⊆ K2, the expression
A

X→ B is called attributional condition implication. Implications of the form A → B with
A,B ⊆K2×K3 are called attribute× condition implications. Our main aim in the upcoming
subsections is to generalise such implications to our setting. This was done, as it seems,
for the first time in [Glo11d].

7.2.1. F-valued Conditional Attribute vs. Attributional Condition Implications

In this subsection we study two kinds of implications in a tricontext that we introduce
formally in a moment. For our running example from Figure 7.1 (page 141) they look as
follows:

• If we are moderately vigilant during an exam, then we are also fevered.

• If we are serious during an exam, then we feel the same during our presentation.

We start with the first kind of implications, the so-called f-valued conditional attribute
implications. After showing how such implications can be computed, we present a method,
based on [GO04], to describe all such implications. Since we may arbitrarily interchange
the roles of objects, attributes and conditions in a tricontext, we come to the second kind
of implications. For both families of implications we also show different ways of handling
them, and we illustrate the notions on our running example from Figure 7.1.

Definition 7.10. Let K = (K1,K2,K3, Y ) be an f-valued tricontext. For A,B ∈ LK2 and
X ⊆K3 the truth value ∣∣A X⇒ B∣∣K in K of the expression A X⇒ B is given by

∣∣A X⇒ B∣∣K ∶ = ∣∣A⇒ B∣∣K12
X
.

Such an implication is called an f-valued conditional attribute implication.

Note that these implications are ordinary fuzzy implications since we are working in the
L-context K12

X . Therefore, using the theory presented in Subsection 1.5.1, we may further
characterise these implications by

∣∣A X⇒ B∣∣K = S(A, Int(K12
X ))∗ → S(B, Int(K12

X ))
= S(B,AXX),

where Int(K12
X ) denotes the set of all intents of K12

X .

Example 7.11. Consider the f-valued tricontext K given in Figure 7.1 (page 141) with
the Gödel logic and the identity as hedge. We have for instance the f-valued conditional
attribute implications ∣∣0.5/s E⇒ f ∣∣K = ∣∣0.5/s P⇒ f ∣∣K = 0.5. The first implication means
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that whenever the students are partially serious during an exam, they might also be
fevered. The same holds for this implication during a presentation given by the students.
The implication does not hold (holds with truth value zero) when they are meeting their
friends. Another implication which does not hold is ∣∣v P⇒ 0.5/s∣∣K. However, if we replace
the identity hedge on the objects with the globalisation, then we obtain ∣∣v P⇒ 0.5/s∣∣K = 1.

For an f-valued tricontext K denote by Imp(K2) the set of all fuzzy implications on
K2, i.e.,

Imp(K2) ∶= {A⇒ B ∣ A,B ∈ LK2}.

We construct the dyadic context

CImp2(K) ∶= (Imp(K2),K3, I)

with I(A ⇒ B,x) ∶= ∣∣A x⇒ B∣∣K where A ⇒ B ∈ Imp(K2) and x ∈ K3. It is sufficient to
consider only implications of the form A ⇒ m where m ∈ LM ∖A. In CImp2(K) we may
use the derivation operators for dyadic L-contexts given by (1.16) and (1.17) (page 24)
to obtain the L-concepts of CImp2(K). Then, (C,D) ∈B(CImp2(K)) contains in its extent
all the implications that hold under all conditions from D, i.e., the implications from
(K1,K2, Y

12
d ) with d ∈ D. In the crisp case, each extent is an implicational theory, i.e.,

the set of all implications of some formal context. Hence, every extent has a stem base.
Thus, the implicational theories in CImp2(K) are ordered by the conditions under which
they hold. In order to ensure in our setting that each extent has a stem base, we need to
use the globalisation for (−)∗G and may use an arbitrary hedge for (−)∗M , as discussed in
Subsection 1.5.2.
In accordance with the idea presented in [GO04] we label the L-lattice of CImp2(K)

as follows: The attribute labelling is done in the usual way. For the object labelling
the situation is more cumbersome. Each set of implications from Imp(K2) generates an
extent of CImp2(K) and an implicational theory, where the latter is always contained in
the first. The object labels shall be distributed such that every extent is generated as
an implicational theory by the labels attached to it and to its subconcepts. Therefore,
the bottom element of the lattice will contain the stem base of all f-valued conditional
attribute implications. The other nodes are labelled with the L-stem base relative to the
union of the extents below it. We have studied such relative stem bases in Section 5.3.
By labelling the lattice in the usual way we would overload the diagram. Another variant
would be to clarify the context. However, afterwards it would be difficult to reconstruct
the initial extents.
The L-lattice of CImp2(K) is displayed in Figure 7.3. For instance, the implication

{s, 0.5/v}⇒ v3 at the bottom of the lattice means that whenever the students are serious
and partially vigilant they are also vigilant during any of the three events. The implication
0.5/v ⇒ 0.5/f on the left side means that whenever the students are partially vigilant
during a presentation or an exam, they are also partially fevered during the same event.
Yet another example is the top most implication {f, 0.5/s} ⇒ v on the right side of the
lattice. It means that whenever the students are fevered and partially serious while giving

3Once again we sometimes omit curly brackets around singletones.
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F

0.5
/F

0.5
/P

P

E

0.5
/E

s,
0.5
/v⇒v,

s,
0.5
/f⇒f,

v,
0.5
/f⇒f

f, 0.5
/s, v ⇒ s

0.5
/s, v ⇒ s

v⇒
0.5
/s,

0.5
/f,

0.5
/v⇒

0.5
/s

0.5
/f⇒f,

0.5
/s⇒s,

0.5
/v⇒v

0.5
/f⇒

0.5
/v,

0.5
/s⇒

0.5
/v,

f,
0.5
/v⇒v

0.5
/v⇒

0.5
/f,

0.5
/s⇒f

f, 0.5
/s⇒ v

0.5
/f, 0.5

/v ⇒ 0.5
/s

Figure 7.3.: L-concept lattice of CImp2(K) for the context from Figure 7.1 with the Gödel logic and
the globalisation on the objects

a presentation, they are also vigilant. This description applies only partially while they
are meeting their friends.
An implication R ⇒ S between the intents of CImp2(K) means that if A R⇒ B holds,

then A S⇒ B must hold as well. The implication R ⇒ S is a fuzzy attribute implication
and therefore its truth value may be computed by (1.22) (page 29). Since we used the
globalisation in CImp2(K) for (−)∗G , the stem base of the context exists and is uniquely
determined. This is

E, 0.5/P ⇒ P,

E, 0.5/V ⇒ V.

The drawback of this approach is that the intents (subsets ofK3) are L-sets unlike the modi
of (K1,K2,K3, Y ) are crisp. In order to have crisp intents for the concepts of CImp2(K) we
may use the dual version of the approach presented in [Kra03]. There, for an L-context
(G,M, I), the derivation operators ↾ ∶P(G)→ LM and ⇂ ∶ LM →P(G) are defined by

A↾(m) ∶= ⋀
g∈A

I(g,m),

B⇂ ∶= {g ∈ G ∣ for all m ∈M ∶ B(m) ≤ I(g,m)}
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for A ∈P(G) and B ∈ LM . A formal concept in this setting is a tuple (A,B) with A ∈P(G)
and B ∈ LM such that A↾ = B and B⇂ = A. The set of all formal concepts ordered by the
set inclusion on one component forms a complete lattice. One may show, see [BV05e],
that the following connection exists between the derivation operators just presented and
the ordinary fuzzy derivation operators (−)↑, (−)↓ ((1.16) and (1.17), page 24):

A↾ = A↑ and B⇂ = 1(B↓) = (B↓)∗

where 1(−) is the 1-cut (see (1.8), page 7) and (−)∗ is the globalisation. Further, the
concept lattice obtained through the method from [Kra03] is isomorphic to the so-called
crisply generated concept lattice, see [BSZ05].
With the dual of this method we may now reanalyse the context CImp2(K). The outcome

is displayed in Figure 7.4. The labelling is done in the same way as for the concept
lattice from Figure 7.3. The difference between the two methods is that in the first
case we consider the identity on the attributes, whereas in the second case we use the
globalisation. Hence, implications which held in the first case just under some L-set can
now be found in the top concept. Further, the f-valued conditional attribute implications in
the second case are not separated as much as in the first one. For instance, for implications
A1 ⇒ B1,A2 ⇒ B2 from Imp2(K) we might have {A1 ⇒ B1}↑ ≠ {A2 ⇒ B2}↑, while
{A1 ⇒ B1}↾ = {A2 ⇒ B2}↾. This happens whenever the 1-cuts of the (−)↑-derivation
operators of the two sets are equal.

P

FE

s,
0.5
/v⇒v,

s,
0.5
/f⇒f,

v,
0.5
/f⇒f

f,
0.5
/s, v⇒s,

f⇒
0.5
/s,

0.5
/f,

0.5
/v⇒

0.5
/s

0.5
/s⇒

0.5
/v,

0.5
/f⇒

0.5
/v,

f,
0.5
/v⇒v

0.5
/v⇒

0.5
/f,

0.5
/s⇒f

0.5
/v⇒v,

v,
0.5
/s⇒s

Figure 7.4.: L-concept lattice of CImp2(K) for the context from Figure 7.1 with the Gödel logic and
the method from [Kra03]

In a tricontext we may arbitrarily interchange the roles of objects, attributes and con-
ditions. Therefore, a tricontext has a sixfold symmetry. By interchanging attributes with
conditions in Definition 7.10, we obtain the attributional condition implications defined as
follows:
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7. Fuzzy-valued Triadic Concept Analysis

Definition 7.12. Let K = (K1,K2,K3, Y ) be an f-valued tricontext. For A,B ⊆ K3 and
X ∈ LK2 the truth value ∣∣A X⇒ B∣∣K in K of the expression A X⇒ B is given by

∣∣A X⇒ B∣∣K ∶ = ∣∣A⇒ B∣∣K13
X
.

Such an implication is called f-valued attributional condition implication.

Once again we have

∣∣A X⇒ B∣∣K = S(A, Int(K13
X ))∗ → S(B, Int(K13

X ))
= S(B,AXX).

Example 7.13. Consider the context K given in Figure 7.1 with the Gödel logic and the
identity as hedge. We have for instance the f-valued attributional condition implications
∣∣E v⇒ F ∣∣K = 0.5. The implication means that whenever the students are vigilant during
an exam, the same applies partially also while they are meeting their friends. However,
if we replace the identity hedge on the objects with the globalisation, then we have that
∣∣E v⇒ F ∣∣K = 1.

Similarly to the case of f-valued conditional attribute implications, we may also construct
for an f-valued tricontext K the dyadic L-context

CImp3(K) ∶= (Imp(K3),K2, I)

where

Imp(K3) ∶= {A⇒ B ∣ A,B ⊆K3} and (7.13)

I(A⇒ B,x) ∶= ∣∣A x⇒ B∣∣K (7.14)

with A ⇒ B ∈ Imp(K3) and x ∈ K2. The concept lattice of CImp3(K) for our running
example from Figure 7.1 is displayed in Figure 7.5. We used the same trick for the labelling
as for the f-valued conditional attribute implications. Now, (C,D) ∈B(CImp3(K)) contains
in its extent all the implications (between the conditions from K3) that hold under all
attributes (elements of K2) from D. Note that in CImp3(K) as well as for the computation
of the truth values of the implications from Imp(K3), we used the globalisation for (−)∗G

in order to ensure that the stem bases exist. Take for instance the right most implication
E ⇒ P . It says: If the students during an exam are partially fevered and partially serious,
that they have the same emotion during a presentation.
The stem base of CImp3(K) consists of the following implications:

{ }⇒ 0.5/s,
0.5/s, f ⇒ f,

0.5/f, 0.5/s⇒ s,
0.5/f, 0.5/s, 0.5/v⇒ f, s.

Once again there are more variants of defining CImp3(K) depending on the outcome we
desire. On the one hand we can use the method from [Kra03] as we did in the case of

152



7.2. Implications

0.5
/s

0.5
/f

f

v

s

0.5
/v

P ⇒ E,
F ⇒ E

E, F ⇒ P

E, P ⇒ F

E ⇒ P

E ⇒ F

Figure 7.5.: L-concept lattice of CImp3(K) for the context from Figure 7.1 with the Gödel logic and
the globalisation on the objects

f-valued conditional attribute implications. On the other hand we may use the following
definition of CImp3(K) since the extents of the f-valued tricontext K are L-sets:

CImp3(K) ∶= (Imp(K3),LK2 , I)

where Imp(K3) and I are given by (7.13) and (7.14) with A⇒ B ∈ Imp(K3) and x ∈ LK2 .
However, we are missing the theory for contexts, whose attribute sets are L-sets.
An open question, also in the crisp case, is the interplay between the f-valued conditional

attribute implications and the f-valued attributional condition implications. A further
research topic is the exploration of such (f-valued) implications.

7.2.2. F-valued Attribute ×Condition Implications

As presented for the discrete case, the two classes of implications studied so far are not
powerful enough to express all possible kinds of implications in a tricontext. Therefore, we
will generalise the so-called attribute× condition implications to our fuzzy-valued setting.
For our running example these express implications of the form

• If we are moderately serious during our presentation, then we are fevered during the
exam.

• If we are fevered during the exam, then we are partially serious while meeting our
friends.

First, let us introduce some notations. For A1,A ∈ LKi and X1,X ∈ LKj ({i, j} = {1,2})
the degree S(A1 ×X1,A ×X) to which A1 ×X1 is a fuzzy subset of A ×X is defined by

S(A1 ×X1,A ×X) ∶= ⋀
(ki,kj)∈Ki×Kj

((A1 ×X1)(ki, kj)→ (A ×X)(ki, kj)) (7.15)
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where

(A ×X)(ki, kj) ∶= A(ki)⊗X(kj). (7.16)

We can use this definition even if X and X1 are crisp sets, however with some slight
modification. We define

(A ×X)(ki, kj) ∶= A(ki) ⋅X(kj). (7.17)

Definition 7.14. Let (K1,K2,K3, Y ) be an f-valued tricontext. For A,B ∈ LK2 ×K3 the
truth value ∣∣A⇒ B∣∣K in K of the expression A⇒ B is given by

∣∣A⇒ B∣∣K ∶ = ∣∣A⇒ B∣∣K(1) .

We call such an implication an f-valued attribute× condition implication.

These are the attribute implications of the L-context K(1) = (K1,K2×K3, Y
(1)). Hence,

we have

∣∣A⇒ B∣∣K = S(A, Int(K(1)))∗ → S(B, Int(K(1)))
= S(B,A(1)(1)).

For our running example with the Gödel logic and the identity as the hedge, we have for
instance the implication (P, 0.5/v)⇒ (E,f) which holds with the truth values 0.5. It ex-
presses that the following holds only partially: If the students are partially vigilant during a
presentation, then they are also fevered during an exam. An f-valued attribute× condition
implication which does not hold is (P, v)⇒ (E, s). However, if we replace the identity on
the objects with the globalisation, then the latter implication holds with truth value 1.
The L-concept lattice of K(1) with the globalisation on the objects is displayed in Fig-

ure 7.6. We use the globalisation in order to ensure the existence of the stem base. For
a better legibility we simplified the attribute labelling as follows: If two tuples have the
same first component, then we make a single tuple from them by taking the union of their
second components, i.e., if we have (A,a) and (A, b), then we write (A,{a, b}). The same
remark holds for the implications from the stem base for this context.
The L-concept lattice of K(1) contains eight concepts, whereas the stem base contains

fourteen implications! This is not very helpful. We displayed the implications in Figure 7.7.
As one can see, they are numerous and hard to handle.
In the crisp case one could determine the attribute× condition implications from the

conditional attribute or attributional condition implications. Indeed, from the crisp con-
ditional attribute implication A X⇒ B with A,B ⊆ K2 and X ⊆ K3, we could compute the
corresponding attribute× condition implication by

A × {x}⇒ B × {x} for all x ∈X.

However this is not the case in our f-valued setting. We obtain the truth value of the
f-valued conditional attribute implication A

X⇒ B with A,B ∈ LK2 and X ⊆ K3 from
the context K12

X , i.e., Y 12
X is given as the infimum over all elements from X. Therefore,
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S1, S5

S2S3S4

(P,{s, v}), (F,{f, s})

(E, s), (P, f), (F, v)

(P, 0.5
/v), (F, 0.5

/s) (E,{f, v})

(P, 0.5
/s) (E, 0.5

/s)

(E,{0.5
/f, 0.5

/v}),
(P, 0.5

/f),

(F, 0.5
/v)

Figure 7.6.: L-concept lattice of K(1) for the context from Figure 7.1 with the Gödel logic and the
globalisation on the objects

(E,{0.5/f, 0.5/v}), (P, 0.5/f), (F,{0.5/s, 0.5/v})⇒ (P,{0.5/s, 0.5/v}),
(E,{0.5/f, 0.5/v}), (P, 0.5/f), (F, 0.5/v)⇒ (E,{f, s, v}), (P,{f, 0.5/s, 0.5/v}), (F, 0.5/s),
(E,{0.5/f, 0.5/v}), (P, f), (F, 0.5/v)⇒ (E,{f, s, v}), (P,{0.5/s, 0.5/v}), (F,{f, 0.5/s}),

(E,{0.5/f, 0.5/v}), (P,{s, 0.5/f}), (F, 0.5/v)⇒ (E,{f, s, v}), (P,{f, v}), (F,{f, s, v}),
(E,{0.5/f, 0.5/v}), (P,{0.5/f, 0.5/s, 0.5/v}), (F,{s, 0.5/v})⇒ (E,{f, s, v}), (P,{f, s, v}), (F,{f, v}),

(E,{s, 0.5/f, 0.5/v}), (P, 0.5/f), (F, 0.5/v)⇒ (E,{f, v}), (P,{f, 0.5/s, 0.5/v}), (F,{v, 0.5/s}),
(E,{0.5/f, 0.5/v}), (P,{0.5/f0.5/v}), (F, 0.5/v)⇒ (P, 0.5/s), (F, 0.5/s),

(E,{0.5/f, 0.5/v}), (P,{0.5/f, 0.5/s, v}), (F,{0.5/s, 0.5/v})⇒ (E,{f, s, v}), (P,{f, s}), (F,{f, s, v}),
{ }⇒ (E,{0.5/f, 0.5/v}), (P, 0.5/f), (F, 0.5/v),

(E,{f, v, 0.5/s}), (P,{0.5/f, 0.5/v}), (F, 0.5/v)⇒ (E, s), (P,{f, 0.5/v), (F,{v, 0.5/s}),
(E,{f, 0.5/v}), (P, 0.5/f), (F, 0.5/v)⇒ (E,{0.5/s, v}),

(E,{0.5/f, 0.5/v}), (P, 0.5/f), (F,{0.5/f, 0.5/v})⇒ (E,{f, s, v}), (P,{f, s, v}), (F,{f, s, v}),
(E,{0.5/f, 0.5/s, 0.5/v}), (P,{0.5/f, 0.5/s, 0.5/v}), (F,{0.5/s, 0.5/v})⇒ (E,{f, s, v}), (P, f), (F, v),

(E,{0.5/f, v}), (P, 0.5/f), (F, 0.5/v)⇒ (E,{f, 0.5/s}).

Figure 7.7.: Stem base of the L-context K(1)
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we cannot directly compute the truth value ∣∣A x⇒ B∣∣K for x ∈ X and hence also not
the truth value of A × {x} ⇒ B × {x}. Going the other way around, namely transform-
ing the f-valued attribute× condition implications into f-valued conditional attribute and
attributional condition implications, yields a similar situation.
Taking into account the previous two remarks on f-valued attribute× condition impli-

cations, one probably wants to avoid them, as they lose the smooth handling their crisp
variants have.
One could also be interested in f-valued object×attribute or object× condition implica-

tions. For our example, the first kind would be for instance If the first group of students is
fevered, then the second one is serious. One should always keep in mind the expressiveness
of such implications. Thus, the second kind of implications, between tuples of attributes
and conditions, do not make much sense for our example.

7.3. Fuzzy-valued Triconceptual Factorisation

Now we turn our attention to the conceptual factorisation problem and generalise the
results from Section 3.1 to our fuzzy-valued setting.
We start by defining what a conceptual factorisation in our fuzzy-valued setting is.

Afterwards, we investigate some properties of these factorisations, for instance, their op-
timality and size. Further, we show how the f-valued triconceptual factorisation works by
illustrating it on our running example. For practice, we need an appropriate algorithm do-
ing the job, which we present thereafter. We conclude the section with the transformations
between the space of attributes× conditions and the space of factors.

Definition 7.15. A factorisation of an f-valued tricontext (K1,K2,K3, Y ) consists of two
L-contexts (K1, F, I1) and (K2, F, I2) and a formal context (K3, F, I3) such that

Y (a1, a2, a3) = l ⇐⇒ (I1(a1, f)⊗ I2(a2, f)) ⋅ I3(a3, f) = l for some f ∈ F.

The set F is called the factor set, its elements the (f-valued triadic) factors, and (Ki, F, Ii)
(i = 1,2,3) are said to be the factorisation contexts. We write

(K1,K2,K3, Y ) = ○ ((K1, F, I1), (K2, F, I2), (K3, F, I3))

to indicate a factorisation.

Similarly to the crisp triadic case, the factorisation contexts represent relationships
between objects and factors, attributes and factors, conditions and factors, respectively.
Hence, the object a1 has the attribute a2 under the condition a3 if there is a factor f which
applies to a1, for which a2 is one of its manifestations and which exists under condition
a3. As we have seen in Section 2.4, the first two are graded relations, whereas the third
one is crisp.
We may carry on with the translations from the crisp triadic case into the f-valued

triadic setting. To each factorisation we associate a factorising family

{(A1
f ,A

2
f ,A

3
f) ∣ f ∈ F}

156



7.3. Fuzzy-valued Triconceptual Factorisation

given by the L-sets A1
f ∈ LK1 , A2

f ∈ LK2 and the crisp set A3 ⊆K3 defined by

A1
f(k1) ∶= I1(k1, f), A2

f(k2) ∶= I2(k2, f) and A3
f ∶= {a3 ∈K3 ∣ a3 I3 f}

for all k1 ∈ K1 and k2 ∈ K2. Once more, a family {(A1
f ,A

2
f ,A

3
f) ∣ f ∈ F} is a factorising

family of (K1,K2,K3, Y ) if and only if

Y = ⋃
f∈F

(A1
f⊗A2

f) ×A
3
f , (7.18)

where A1
f ⊗A2

f is the L-set given by (2.6) (page 65). Further, (7.18) is equivalent to

Y = ⋃
f∈F

(f I1 ⊗ f I2) × f I3 .

Once again the factorising families are precisely those families of f-valued triadic precon-
cepts4 of (K1,K2,K3, Y ) covering the L-relation Y . By enlarging these f-valued precon-
cepts we obtain a factorising family of f-valued triconcepts. In the following we will call
such factorisations f-valued triconceptual. Similar to the crisp dyadic and crisp triadic
case the enlargement is not unique.
We may uniquely determine a factorisation context through the other two. Indeed, in

K from Aif and Ajf we find the set Akf = (Aif)
Aj

f for each f ∈ F .

Proposition 7.16. For any f-valued triconceptual factorisation with factor set F the in-
tersection of the attribute orders of (Ki, F, Ii) and (Kj , F, Ij) is contained in the dual
attribute order of (Kk, F, Ik) for {i, j, k} = {1,2,3}.

Proof. The proof goes exactly in same way as the one for its crisp version (Proposition 3.11,
page 74), we just have to replace crisp sets and derivation operators by fuzzy ones.

This time we may also choose between different representations among the factorisation
contexts. For instance, we might be interested in the relationship between objects and
attributes for each factor independent from the condition. Then, we may define the
tricontext KJ

12 ∶= (K1,K2, F, J), where

J (a1, a2, f) ∶= I1(a1, f)⊗ I2(a2, f).

Each factor d-cut in KJ
12 represents the relationship between the objects and attributes for

that factor. However, one may also be interested in the relationship between attributes
and conditions independent from the objects. Then, in a similar manner as before, one
can build KJ

23 with
J(a2, a3, f) ∶= I2(a2, f) ⋅ I3(a3, f).

It is easy to reconstruct the factorisation from these contexts. Indeed, we have

Y (ai, aj , ak) = l⇐⇒ l = { J(ai, aj , f) ⋅ Ik(ak, f), k = 3,
J(ai, aj , f)⊗ Ik(ak, f), else. (7.19)

4A triple (A1, A2, A3) with A1 ∈ LK1 , A2 ∈ LK2 and A3 ⊆ K1 is called an f-valued triadic preconcept if
A

Aj

i ⊆ Ak for all {i, j, k} = {1, 2, 3}.
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In the previous section we have seen that the f-valued triadic derivation operators satisfy
the same properties as triadic derivation operators. A similar remark holds for the f-valued
triconcepts. Therefore, we may generalise the results about triconceptual factorisations
from Section 3.1 into our f-valued triadic setting. Even more, the results need not to be re-
proven since the proofs were entirely based on the properties of the derivation operators
and the maximality of the concepts. Therefore, we will just list these results without
proofs.

Theorem 7.17. Fuzzy-valued triconceptual factorisations yield optimal factorisations, i.e.,
the smallest possible number of factors.

Theorem 7.18. Let K = (K1,K2,K3, Y ) be an f-valued tricontext with ∣K1∣ = p, ∣K2∣ = q
and ∣K3∣ = r and let F be the factor set of an f-valued triconceptual factorisation. Then,
∣F ∣ ≤ min{pq, pr, qr}.

Trivially, the f-valued triconceptual factorisation is “invariant” under clarification and
interchanging of objects, attributes and conditions in f-valued tricontexts in the sense
described for the crisp dyadic case in Proposition 2.6 and Proposition 2.7 (page 42).

Example 7.19. We illustrate the f-valued triconceptual factorisation on the f-valued tri-
context given in Figure 7.1 (page 141). Recall that the number of f-valued triconcepts
is 34 with the Gödel logic and 28 with the Łukasiewicz logic. The factorisation contexts
with both logics are displayed in Figure 7.8 and 7.9. One immediately sees that we have
six factors in both cases. Hence, by using the triconceptual factorisation we are able to
describe the objects through six factors instead of three attributes under three conditions.
In our toy example the number of objects is higher than the number of attributes and
conditions. If we switch K1 and K2 in the context, we would still have six factors and the
data reduction would be even higher. In lieu of describing the elements from K2 through
five times three items, we would have just six factors.

f1 f2 f3 f4 f5 f6

S1 1 1 1 1 0.5 1
S2 0.5 1 0.5 0 0 0.5
S3 0.5 0.5 0.5 0 0.5 0.5
S4 0 0.5 0.5 1 1 0.5
S5 1 1 1 1 0.5 1

f s v

f1 1 1 1
f2 1 0 1
f3 0 0 1
f4 0 0.5 0.5
f5 1 1 0
f6 1 0 0

d
E P F

f1 ×
f2 ×
f3 × ×
f4 × ×
f5 ×
f6 × ×

d

Figure 7.8.: Factorisation contexts using the Gödel logic

The factors from the two factorisations are quite similar. For instance, f1 is the same
in both cases. Denote by (−)IiG and (−)IiŁ (i = 1,2,3) the derivation operators in the
factorisation contexts for the Gödel logic and the Łukasiewicz logic, respectively. We see
that the factors usually satisfy

f I1G = f I1Ł , f I3G = f I3Ł and f I2G ⊆ f I2Ł
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f1 f2 f3 f4 f5 f6

S1 1 1 1 1 0.5 1
S2 0.5 1 0.5 0.5 0 0.5
S3 0.5 0.5 0.5 0.5 0 0.5
S4 0 0.5 0.5 1 0.5 0.5
S5 1 1 1 1 0.5 1

f s v

f1 1 1 1
f2 1 0.5 1
f3 0 0.5 1
f4 0 0.5 0.5
f5 1 1 1
f6 1 0.5 0.5

d
E P F

f1 ×
f2 ×
f3 × ×
f4 × ×
f5 ×
f6 × ×

d

Figure 7.9.: Factorisation contexts using the Łukasiewicz logic

or
f I2G = f I2Ł , f I3G = f I3Ł and f I1G ⊆ f I1Ł .

Hence, we basically obtain the “same” f-valued triconcepts in both cases. The difference
mainly lies in the different logic and its consequence on some elements of the concepts.
Let us now look at the interpretation of the factors. The first two are typical for the case

when the students give an exam and they describe the emotions of the students during
this situation. The third factor shows a connection between “giving an exam” and “meet-
ing friends”. During both events the students are vigilant and, depending on the logic,
partially serious. The fourth and sixth factor establish a link between the emotions of the
students during a presentation with the emotions while meeting their friends and during
an exam, respectively. The fifth factor is characteristic for the presentation. Further, we
can see that there are two factors which are typical for the exam situation and one for the
presentation. The emotions the students have while meeting their friends are subsumed
under the emotions of the other events.

In order to apply the f-valued triconceptual factorisation in practice we need an appro-
priate algorithm. We obtain it by combining the algorithm from [Běl08] for computing
conceptual factorisations of dyadic L-contexts and the one from [BGV12] for the compu-
tation of crisp triconceptual factorisations. We already know that finding a conceptual
factorisation, independent from the nature of the data, is reducible to the set covering prob-
lem. Therefore, it is NP-hard and the corresponding decision problem is NP-complete.
Recall that there exists a greedy approximation algorithm for the set covering optimisation
problem which achieves an approximation ratio ≤ ln(∣U ∣) + 1, where U is to be covered,
see [CLRS01]. This time, the universe U corresponds to Y , the ternary L-relation of the
f-valued tricontext K. The family S of subsets of the universe U that is used for finding
a cover corresponds to the set of all f-valued triconcepts T(K). In this setting, we are
looking for C ⊆ S as small as possible such that ⋃C = U .
Algorithm 4, the implementation of the above-mentioned greedy approach in our setting,

works as follows: It determines the f-valued triconceptual factorisation families of the
triconceptual factorisation by first computing the set of all f-valued triconcepts which are
stored in S (lines 1–8) and then iteratively selecting triconcepts from S, maximising their
overlap with the remaining tuples in U and computing the triconceptual factorisation
families (lines 9–21). Note that the f-valued triconcepts are computed by a reduction to
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Algorithm 4: ComputeFactors(K1,K2,K3,Y )
1 set S to ∅;
2 foreach (D1, J) ∈B(K1,K2 ×K3, Y

(1)) do
3 foreach (D2,D3) ∈B(K2,K3, J) do
4 if D1 = (D2 ×D3)′ then
5 add (D1,D2,D3) to S;
6 end
7 end
8 end
9 set F to ∅;
10 set U to Y ;
11 while U ≠ ∅ do
12 set j to 1;
13 select (D1,D2,D3) ∈ S which maximises ∣U ∩ ((D1⊗D2) ×D3)∣;
14 foreach i ∈ {1,2,3} do
15 set Aifj

to Di;
16 end
17 set j to j + 1;
18 set U to U ∖ ((D1⊗D2) ×D3);
19 remove (D1,D2,D3) from S;
20 end
21 return (A1

fj
,A2

fj
,A3

fj
) for all j

the dyadic case, as it was done for crisp tricontexts in [JHS+06]. In line 2, we iterate over
all dyadic L-concepts in B(K1,K2 ×K3, Y

(1)). In line 3, we iterate over all concepts in
B(K2,K3, J) where J was obtained as an intent in the previous line. The condition in line
4 is needed to check whether D1 is maximal (note that (−)′ in line 4 denotes a derivation
operator induced by the dyadic L-context (K1,K2 ×K3, Y

(1))), i.e., whether (D1,D2,D3)
is an f-valued triconcept.

As we have already pointed out in Section 2.1 transformations between the space of
attributes and the space of factors proved themselves to be useful in the crisp dyadic case,
see for instance [Out10]. Therefore, we generalise these mappings into our f-valued triadic
setting. Define ϕ ∶P(LK2 ×K3)→ LF and ψ ∶ LF →P(LK2 ×K3) by

ϕ(P )(f) ∶= S(f I2 × f I3 , P ),

ψ(Q)(k2, k3) ∶= { (0,{∅}), f I3(k3) = 0 for all f ∈ F,
(⋁f∈F ((Q(f)⊗ f I2(k2))) ⋅ f I3(k3),{k3}) , else

for P ∈P(LK2 ×K3) and Q ∈ LF .

Theorem 7.20. For any g ∈K1 we have

ϕ(g(1)) = gI1 and ψ(gI1) = g(1).
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That is, ϕ maps the object dyadic cuts of (K1,K2,K3, Y ) to the rows of (K1, F, I1) and ψ
maps the rows of (K1, F, I1) to the object dyadic cuts of (K1,K2,K3, Y ).

Proof. In this proof we use the properties of residuated lattices listed on page 7 and the
definitions of the f-valued triadic (−)Ak -derivation operators. Evidently, ψ(gI1) = g(1)

follows directly from the definition of the f-valued triconceptual factorisation and of ψ.
For ϕ(g(1)) = gI1 first note that

g(1)(k2, k3) = ( ⋀
k1∈K1

(g(k1)→ Y (1)(k1, k2, k3)), k3)(k2, k3)

= (Y (g, k2, k3), k3)(k2, k3)
= Y (g, k2, k3)

for all k2 ∈ K2 and k3 ∈ K3. Then, using the fuzzy subsethood from (7.15) (page 153) we
have

ϕ(g(1))(f) = S(f I2 × f I3 , g(1))

= ⋀
(k2,k3)∈K2×K3

((f I2 × f I3)(k2, k3)→ g(1)(k2, k3)) (by (7.15))

= ⋀
(k2,k3)∈K2×K3

((f I2 × f I3)(k2, k3)→ Y (g, k2, k3))

= ⋀
k2∈K2

⋀
k3∈K3

((f I2(k2) ⋅ f I3(k3))→ Y (g, k2, k3)) (by (7.17))

= ⋀
k2∈K2

⋀
k3∈K3

((A2
f(k2) ⋅A3

f(k3))→ Y (g, k2, k3))

= ⋀
k2∈K2

⋀
k3∈K3

(A2
f(k2)→ (A3

f(k3)→ Y (g, k2, k3))) (by (1.3))

= ⋀
k2∈K2

(A2
f(k2)→ ⋀

k3∈K3

(A3
f(k3)→ Y (g, k2, k3))) (by (1.5))

= ⋀
k2∈K2

(A2
f(k2)→ Y 12

A3
f
(g, k2)) (by (7.4))

= (A2
f)
A3

f (g)
= (A1

f)(g)
= gI1(f)

finishing the proof.

Hence, we may further generalise the results from Section 3.2. Indeed, we have the
following:

Lemma 7.21. For P,Q ∈P(LK2 ×K3) and S,T ∈ LF , we have

P ⊆ QÔ⇒ ϕ(P ) ⊆ ϕ(Q),
S ⊆ T Ô⇒ ψ(S) ⊆ ψ(T ),
ψ(ϕ(P )) ⊆ P,
S ⊆ ϕ(ψ(S)).
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Corollary 7.22. For P,Pj ∈P(LK2 ×K3) and S,Sj ∈ LF with j ∈ J , we have

ϕ(P ) = ϕψϕ(P ),
ψ(S) = ψϕψ(S),

ϕ(⋂
j∈J

Pj) = ⋂
j∈J

ϕ(Pj),

ψ(⋃
j∈J

Sj) = ⋃
j∈J

ψ(Sj).

Once again we find the geometry behind the transformations through their inverse
mappings. Therefore, define

ϕ−1(S) ∶= {P ∈P(LK2 ×K3) ∣ ϕ(P ) = S},
ψ−1(P ) ∶= {S ∈ LF ∣ ψ(S) = P}

for P ∈P(LK2 ×K3) and S ∈ LF .

Theorem 7.23. (1) ϕ−1(S) is a convex partially ordered subspace of the attribute and
condition space and ψ(S) is the least element of ϕ−1(S).
(2) ψ−1(P ) is a convex partially ordered subspace of the factor space and ϕ(P ) is the
largest element of ψ−1(P ).

7.4. Conclusion

In this chapter we presented a new framework for fuzzy-valued triadic data together with
some useful methods for handling them. In Section 7.1 we mainly focused on the funda-
mentals, presenting fuzzy-valued triadic contexts, concepts and derivation operators and
investigated some of their properties. In this connection, the link between the fuzzy-valued
tricontext and its double-scaled context proved itself to be very useful. In Section 7.2 we
developed various kinds of fuzzy-valued triadic implications, which arose by generalisations
from the crisp case presented in [GO04]. A valuable method of Formal Concept Analysis,
the conceptual factorisation, was generalised into our setting in Section 7.3. The motiva-
tion for the last two sections is given by the wish of having as many methods from Formal
Concept Analysis as possible for our setting. Such methods allow a deeper investigation
of fuzzy-valued data and enhance their applicability.
This chapter may be considered as a pioneer work in connecting Triadic Concept Ana-

lysis and Formal Concept Analysis with fuzzy attributes. Although there are also other
works in this direction ([BO10, OK10]), there are many aspects and methods from Formal
Concept Analysis left unexplored. Further, yet unanswered questions regarding the con-
nection between the different kinds of crisp triadic implications could shed light on this
matter for the fuzzy-valued triadic implications.
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