View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Technische Universitat Dresden: Qucosa

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut fiir Software- und Multimediatechnik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211X

TUD-FI12-10 Dezember 2012

Claas Wilke et al.

Fakultat Informatik, Lehrstuhl Softwaretechnologie

Comparing Mobile Applications'
Energy Consumption

Technische Universitat Dresden

Fakultat Informatik

Institut flir Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie

01062 Dresden, Germany

https://core.ac.uk/display/236367894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparing Mobile Applications’ Energy Consumption *

Claas Wilke
Software Technology Group
TU Dresden, Germany
claas.wilke@tu-
dresden.de

Sebastian Gétz
Software Technology Group
TU Dresden, Germany

sebastian.goetz@acm.org

ABSTRACT

As mobile devices are nowadays used regularly and every-
where, their energy consumption has become a central con-
cern for their users. However, mobile applications often do
not consider energy requirements and users have to install
and try them to reveal information on their energy behav-
ior. In this paper, we compare mobile applications from
two domains and show that applications reveal different en-
ergy consumption while providing similar services. We de-
fine microbenchmarks for emailing and web browsing and
evaluate applications from these domains. We show that
non-functional features such as web page caching can but
not have to have a positive influence on applications’ energy
consumption.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Measurement, Performance

Keywords
Android, Energy Benchmarking, Greenness of Mobile Apps

1. INTRODUCTION

Mobile devices are nowadays very popular and are used reg-
ularly and everywhere. They are able to fulfill several tasks
such as emailing, web browsing, gaming, video capturing,
uploading, and replay. However, due to their round-the-
clock usage, their energy consumption has become an om-
nipresent problem. Hardware-intensive use cases such as
video capturing or GPS navigation can drain the devices’
batteries within hours leading to shorter device uptimes and
thus, limited quality of experience [5, 7, 13].

Hardware vendors have tackled this problem by designing
hardware being more energy-efficient, switching unutilized
components into low power or sleep states. However, most
software is still designed without considering these power
modes and thus, often hinders hardware components from

*A shorter version of this paper has been published at the
ACM Symposium on Applied Computing (SAC 2013) [10].

Sebastian Richly
Software Technology Group
TU Dresden, Germany
sebastian.richly@tu-
dresden.de

Georg Plschel
Software Technology Group
TU Dresden, Germany
georg.pueschel1@tu-
dresden.de

Christian Piechnick
Software Technology Group
TU Dresden, Germany
christian.piechnick@tu-
dresden.de

Uwe ABBmann
Software Technology Group
TU Dresden, Germany
uwe.assmann@tu-
dresden.de

switching into power saving states. As a consequence, they
consume more energy than necessary [6].

Building software applications for mobile devices is a highly
competitive market. Often multiple applications providing
similar services exist. In [11], we propose to introduce en-
ergy labels as additional guidance for users searching for ap-
propriate applications supporting individual usage require-
ments. In this paper we demonstrate that such a process
is necessary and sensible, by comparing mobile applications
of two typical usage domains w.r.t. to their energy con-
sumption. Based on the results we show that applications
providing similar services can have different energy charac-
teristics. We present two case studies: emailing and web
browsing; and define microbenchmarks to evaluate the en-
ergy consumption of mobile applications.

The core contributions of this paper are:

e Two microbenchmarks for Android email clients and
web browsers reusable to compare the profiled apps
with other Android applications from the same do-
mains.

e Measurement results showing that different applica-
tions can vary significantly in their energy consump-
tion for similar use cases leading to scenarios where one
application behaves better for some use cases, whereas
the other application behaves better for other use cases.
This results in a trade-off between different use cases
and their significance for the application user.

e Profiling results showing that advertisement can have
a major influence on an application’s energy behavior
depending on when and how often new banners are
loaded and displayed.

e Measurements showing that caching can but not has to
have a measurable influence on an application’s energy
consumption.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the profiling infrastructure used to perform
our measurements. Section 3 elaborates the two case studies,

Test Server Device under Test

Test Execution

A

Events

Power Rates

Results

12 3.5
B 8 3.2
10 82

Power Meter

Figure 1: Illustration of our profiling infrastructure.

their use cases and the measured results for the respective
applications. Afterwards, Section 4 discusses the limitations
and threats to validity of our results. Section 5 presents re-
lated work. Finally, Section 6 concludes our work.

2. PROFILING PROCESS

To comparably profile the energy consumption of mobile ap-
plications we designed the following profiling process (cf.
Fig. 1): typical use cases are implemented as executable
unit tests that are executed on an device under test (DUT).
In parallel, power rate probes are picked from the device’s
battery and afterwards, associated with the executed test
cases to compute their energy consumption. The individual
steps are described in more detail below.

Each individual test case represents a set of user interface
(UI) interactions of a user with the application under test
(AUT). For example, a test case can represent the composi-
tion and sending of a mail, consisting of a sequence of button
clicks and entered texts. Altogether, these test cases form
an executable test suite (or microbenchmark) for the AUT.
These tests can simply be adapted to other applications of
the same domain (i.e., the code to click buttons or to enter
texts has to be adapted to the Ul elements of the new AUT,
whereas the general intention of the test cases remains the
same).

The execution of the test cases is controlled from a test
server (e.g., a desktop PC) which deploys the test cases on
a DUT and triggers their execution. In parallel, the energy
consumption of the DUT is profiled with a power meter pick-
ing power rate probes at the DUT’s power supply in front
of the battery. On the test server, the measured power rates
are associated with events logged during the test cases’ ex-
ecution (i.e., the start and stop of the test cases and the re-
spective timestamps). Thus, the power rates are associated
to individual test runs and use cases. To compute the energy
consumption of the use cases, the idle energy consumption
(i-e., the consumption of the DUT without executing any
services and applications) is subtracted from the measured
energy consumption.

For our experiments we profile Android applications as An-
droid is nowadays the most broadly used as well as the most
open mobile platform. We extended the existing Android
Developer Tools [1] for our benchmarking process as de-
scribed in [11]. Although implementation details may differ,
similar profiling processes can be realized for other mobile
platforms such as iOS or Windows Phone. As external power
meter hardware we used a Yokogava WT210 with a mea-
surement accuracy of +0.2% for current and voltage and a
maximum profiling frequency of 10Hz. As DUT we used an
Asus Transformer TF101 running Android version 4.0.3 and
a Google Nexus 7 running Android version 4.1.1. All power
rates were profiled with a probe frequency of 10Hz. As the
display brightness has a significant influence on the devices’
energy consumption [7] but is not in the focus of our study,
we set the tablets’ display brightness to 55% and did not
modify the brightness during our tests.

3. CASE STUDIES

We now present two case studies comparing mobile applica-
tions from the same domain w.r.t. their energy consump-
tion. For both domains, we define a set of use cases repre-
senting a microbenchmark implemented as a set of unit test
cases for each AUT. Afterwards, we present and interpret
the measured results.

3.1 Email Client Case Study

The first case study consists of two different email clients.

3.1.1 Use Cases

We identified the following use cases:

e Setup an email account
e Drop an email account
e Check for new incoming mails

Read an email

Write an email

Forward an email

Delete an email

Besides the setup and drop account use cases, each use case
is executed with varying test data: we designed five mails to
parameterize the use cases: A short mail with a text of 460
characters (2KB), a longer mail containing 920 characters
(3KB), a mail with a picture attachment of 3.2MB, a mail
with a note (consisting of 110 characters), and a mail with
a speech memo of 40 seconds speech (62KB). Where mails
include attachments, the read mail use case includes the
opening of the attachment. Besides, the read use case was
executed twice during each iteration, to check, whether or
not a second execution is more efficient due to caching of
messages and/or attachments.

These combinations of use cases and test data resulted in
a test set of 33 test cases for each AUT. The composi-
tion and reading of mails has been implemented such that
they appear realistic as each character of a composed mail is

entered separately simulating the mails creation via a key-
board. Furthermore, the time to display opened mails for
reading depends on their content’s length.!

3.1.2 Tested Applications

For our study we compared the following email clients:

App Version Downloads
K-9 Mail 4.0.1 > 1,000,000
MailDroid 2.5.7 > 500, 000
MailDroid pro 2.5.7 > 50, 000

MailDroid is delivered in two different versions, a freely
available version including advertisement banners and a pro-
fessional version that can be purchased for about 15 Euros
and excludes advertisement. As network traffic required for
communication might influence the results, we decided to
test both versions of MailDroid.

All use cases have been tested using the same mail account
and the IMAP protocol. We disabled the pull/push func-
tionality to avoid side effects due to non-triggered mail down-
and uploads. Besides turning off the pull/push functional-
ity, we used the default settings for the tested applications.
For each application we started the profiling with a fully
charged battery and disabled all unnecessary services and
applications running in parallel on the Asus Transformer
TF 101. Each test was profiled 50 times per application. As
network communication device we used a local WiF1i rooter
connected to a 1GBit Internet connection.

3.1.3 Results

Fig. 2 shows the median execution times, power rates and en-
ergy consumption for all profiled use cases and applications.
A Kruskall-Wallis test led to rejected null hypotheses® for
all use cases (cf. Fig. 2(d)), leading to the conclusion that
the number of measured values is statistically sufficient to
compare the tested email applications.

Comparing execution times (cf. Fig. 2(a)), for some use
cases K-9 Mail performs a bit faster than MailDroid (both
the free and the professional version). Fetching and reading
mails can be performed a bit faster with K-9 Mail which
is majorly caused by its easier UI navigation (e.g., the first
email account is opened by default on app start up and does
not have to be selected manually). However, the faster per-
formance for downloading and opening attachments cannot
be simply explained by UI navigation. K-9 Mail performs
significantly faster for these use cases.

Considering the median power rates (cf. Fig 2(b)) and en-
ergy consumption (cf. Fig 2(c)), MailDroid’s free version
behaves much worse than K-9 Mail and MailDroid pro for
all tested use cases. As MailDroid pro does not show this
additional energy consumption, it can be assumed that the
loading of advertisement banners has a very bad influence

'Further information on the implemented test cases, their
source code and the measurement results can be obtained
from http://www.qualitune.org/?page_id=532.

2In a Kruskall-Wallis test, the null hypothesis assumes that
there are no measurable differences between the investigated
applications.

on energy consumption due to additional network commu-
nication. This assumption matches with results from prior
work, for example [5, 9] and the observation that energy con-
sumption increases more significantly for longer test cases,
where further advertisement banners are downloaded and
displayed. The energy consumption of K-9 Mail and Mail-
Droid pro differs only marginally for most of the tested use
cases. In general, K-9 Mail behaves a bit better. How-
ever, these differences are only a few deci-Joules caused by
its slightly shorter execution time for the use cases. The
differences increase for the opening attachment use cases
(due to MailDroid’s longer downloading time). Surprisingly,
both applications behave differently when handling picture
attachments. MailDroid requires more time and thus, also
more energy to fetch and open picture attachments, whereby
K-9 Mail requires more time and energy to send and forward
such attachments.

Summing up, whereas MailDroid consumes much more en-
ergy due to advertisement, K-9 Mail and MailDroid pro be-
have rather similarly. However, K-9 Mail comes for free
whereas MailDroid pro costs more than 15 Euros. Thus,
where free versions of email applications contain advertise-
ment banners, users should avoid them and should use other
freely available applications without advertisement instead,
saving up to 75% of the energy spent to write, send and read
emails.

3.2 Web Browser Case Study

The second case study comprises three web browsers.

3.2.1 Use Cases

For web browsers we defined the following use cases, based
on scenarios evaluated and tested in [8].

e Open a web page
e Open an image

e Download a file

Performing a web search

As tested web pages we setup five dummy web pages on
a test web server, consisting of raw HTML, HTML and
JavaScript, HTML and CSS, HTML with embedded im-
ages and HTML with embedded video. Besides, we tested
three popular web pages: Google.com, NYTimes.com and
YouTube.com. All web pages were loaded with and without
cleared browser caches. As test images we used two JPEGs
(3.2MB/351KB) and two GIFs (4.3MB/330KB). As down-
loads we used two PDFs (1.5MB/233KB). The images and
PDF's were also deployed on our test web server. Downloads
and images have been opened two times (cached and un-
cached). For web search we used the default browser search
engine by entering a keyword into the address field. As key-
word we used the 2011’s most often used keyword for news
search: "Fukushima’ [2].

These use cases resulted in a test set of 30 test cases per
AUT. The entering of URLs and keywords into the browsers’
address field has been implemented such that they appear

(yoaads) are|op
|- (el0u) a19j9p
- (sinmoid) a1919p
|- (Buoj) a1ejop
|- (uoys) a1sjep
- (yosads) pmy
|- (e10u) pMmy

- (sumoid) pmy
- (Buoy) pmy

- (uous) pmy
|- (yoeads) puas
I— (210u) puas
I— (2imoid) puas
- (Buoy) puas
|- (oys) puss
- «(yosads) peas
- (yoaads) peas
- «(a10U) peAI
|— (el0u) peas
- «(aumoid) peas
- (sumoid) peas

— «(Buoj) peas

(a) Median execution time.

I— (Buo)) peas
- «(oys) peal

- (uoys) peal

- (yooads) 106
|I— (a10uU) 106
— (aimoid) 106 +
I— (Buoy) 106
I— (uoys) 106
° - (suou) 106 o
& o
_23 |— 1unoooe doip = m ..m
858 a =23
] |I— 1unoooe dnjes 8
=3 g=3
BEEO BEEO
I I I I 7T 17T 1T 17T T°1
o o o o o O O © 9O 9o 9
g 8 8 §§EE8EEE
- - -

[spuooas] uoneinp [muw] ares samod

(yoaads) aya|op
[CIL)ESETET)
(aunmoid) a1919p
(Buoj) 1019p
(1ous) s1019p
(yooads) pmy
(er0u) pmy
(2umoid) pivy
(Buoy) pmy
(uioys) pmy
(yoaads) puas
(e10u) puss
(a1moid) puas
(Buoy) puas
(1Ioys) puas
«(yoaads) pea.
(yoaads) peas
«(910U) peas
(e10U) peal
«(21moyd) peas
(a1moid) peal
«(Buoy) peals
(Buoy) peas
«(1oys) peas
(1ioys) peas
(yosads) 106
(e10U) 196
(eamoid) 106
(Buoy) 196
(1oys) 106
(euou) 106
junodge doip

unoooe dmes

(b) Median power rates.

B K9 Mail
B MailDroid
O MailDroid Pro

30
20

60
50
40

[c] uondwnsuos

(yoaads) aro|op
(e10u) a19j9p
(a1moid) a1819p
(Buoy) e1jep
(110ys) a1019p
(yooads) pmy
(e10U) Py
(eamaid) pmy
(Buoy) pmy
(1ous) pmy
(yoaads) puas
(e10u) puss
(a1moid) puas
(Buoy) puss
(1oys) puas
«(yoaads) peal
(yosads) peal
«(e10U) peal
(e10U) peal
«(21mo1d) pea.
(eamoid) peal
«(Buo)) peas
(Buoj) peas
+(1oys) peal
(1ioys) peas
(yoaads) 106
(e10U) 196
(e1moyd) 106
(Buoj) 106
(uoys) 106
(suou) 106
junosoe doip

Junodoe dnjas

(c) Median energy consumption.

—— Duration
—— Power Rate
Energy

I I I
800 V00

anpen-d

I
000

(yoaads) are1ap
(e10U) B18]9P
(aumoid) a18jep
(Buoy) a1eep
(uoys) a¥aj9p
(yooads) pmy
(a10u) pwvy
(2umord) prvy
(Buoy) pwy
(uoys) pmy
(yosads) puas
(e10u) puss
(aumoaid) puss
(Buoy) puss
(1oys) puas
«(yo9ads) peal
(yoaads) peas
«(10U) pesl
(e10U) peas
«(@1moid) peas
(aumoid) peal
«(Buoj) peal
(Buoy) peas
«(1loys) pea
(1oys) peas
(yoaads) 106
(ey0U) 196
(a1noid) 106
(Buoy) 106
(1oys) 196
(suou) 106
junosoe doip

unoosoe dmaes

(d) Kruskall-Wallis test.

for all use cases

on

tes and energy consumpt

ime, power ra

t

ion

ian execut

Android email clients’ med
(* denotes cached mails). Below the p-values for the respective Kruskall-

Figure 2

tests.

1S

Wall

- = =T “GTI -

[}
[}
'
[}
L]
'
[
[}
'
[
[}
'
[}
[}
'
[}
[}
'
[
[}
'
[
[l
'
[
[}
]
[
. [l
3= '
1 ;
ag< '
>2 9 '
@9 < !
waz '
BEEO
17T 17T 1T T 11
(=] wn (=] [Te] o wn o
< o (3] N N - -~

[spuo9oas] uoneinp

«Yoreas
yoreas
+4ad Irews
4ad Irews
+dad abure|
d4ad abue|
¥OIdC Ilews
O3d([ews
19 Irews
419 lrews
¥93dC abre
93d(abue|
+d19 abue|
419 abue|
¥90NLNOA
90N NOA
¥SOWIL AN
SawWIL AN
«9|6o0D
916009
«(09pIn) aus
(oapIn) aus
«(ebew) ays
(ebew|) ans
«(SS0) ans
(ss0) aus
«(Sr) ens
(sr) aus
«(ured) aus

(ureyd) ays

a) Median execution time.

~

- -
R —

- -

= -+ =
-

-+

= = T -

D or

4

s € -

o = - =

@3 - -Em-

=T * - - -

Fog| -t -

waz k- ==

BEEO

T 17T 1T 1T T

o (=3 o (=] o o o

o [=3 [=3 (=] [=] (=]

N o © © < N

Eal —

[muwi] ares samod

«Yolreas
yaoleas
+30d Irews
4ad Irews
+1ad obure|
d4ad abue|
*O3dC Irews
93d([ews
319 Irews
19 Irews
*O3dr obue|
O3dr abue|
19 abuey
d19 abure|
*O0NLNOA
agnLNoA
#SOWIL AN
SawlL AN
+9|6009
3|6ooo
«(08pIA) aus
(oapin) aus
«(abew)) ays
(abewy) ans
«(SS0) aus
(ss0) aus
«(Sr) aus
(sr) ans
«(ureyd) aus

(ureyd) aus

(b) Median power rates.

T

T
T T
1

n

00
- -
f
- Om o
[3 -
v
- O0- o
_ -
5 o S
0
< 3
o E - -
LR - -Em-
=35 D - o 4
7} [N
G 2 £
woz "= h
BEEO
I I I I I
(=] wn o wn o
N - -

[c] uondwnsuos

«Yyoreas
yolreas
+4ad Irews
4ad lrews
«dad obure|
d4ad abue|
¥O3dC Ilews
93dr [ews
19 Irews
419 lrews
¥93dr abre|
93dr abue|
+d19 abue|
419 abue|
¥30NLNOA
aqnLNoA
¥SAWIL AN
sawiL AN
«9]6009
9|6oo
«(09pIA) BYS
(oapIn) aus
«(ebew) ayus
(ebew|) ans
«(SS0) ans
(ss0) aus
«(SC) ens
(sr) aus
+(urerd) aus

(ureyd) ans

(c) Median energy consumption.

—A— Duration
—— Power Rate

Energy

<
o

0

anjea—-d

«Yoreas
yoleas
+4ad Ilrews
4ad lrews
+4Qd abure|
d4ad abue|
¥OIdC Ilews
93dr [ews
19 Irews
419 Ilews
¥O3dr abire|
93dr abue|
+d19 abue|
419 abue|
£9QNLNOA
ELITIN
¥S9WIL AN
sawiL AN
96009
9|60
«(09pIA) BYS
[(ELIVETS
«(ebew) ayus
(ebewy) ays
«(SS0) ans
(Ss2) aus
«(SC) ens
(sr) aus
«(ured) aus

(ured) ays

(d) Kruskall-Wallis test.

Android web browsers’ median execution time, power rates and energy consumption for all use

cases (* denotes cached pages). Below the p-values for the respective Kruskall-Wallis tests.

Figure 3

realistic as each test case includes seven seconds for the en-
tering of URLs into the address field.

3.2.2 Tested Applications

We tested the following web browsers:

App Version Downloads
Easy Browser 1.1.6 > 50,000
NineSky Browser 2.5.1 > 500,000
Droid Surfing 1.2.8 > 10,000

Besides the enlisted browsers, we also tried to test Google
Chrome, Opera Mobile and Firefox. The testing of Google
Chrome failed due to a null pointer exception within the
app every time we entered an URL from the simulated UI
testing code. Thus, we had to exclude Google Chrome from
our study. For Opera Mobile we were able to run the tests.
However, we were not able to implement the test cases to
get notified from the app’s Ul after the loading of a page
completed, as Opera Mobile uses its own Ul widgets instead
of Android’s default widgets. Thus, we got measurement
results for Opera Mobile but they did not reflect the real
energy consumption of the profiled use cases. That’s why we
excluded the measured results for Opera Mobile. Finally, for
Firefox we were able to run all the use cases. Unfortunately,
Firefox timed out for the loading of all tested web pages
several times during the test run. Thus, we had to exclude
the measured results for Firefox as well as they included
large standard deviations and errors. However, in future
work we should be able to overcome these problems and to
profile Firefox, Google Chrome and Opera Mobile as well.

All browsers have been tested under their default configura-
tion w.r.t. caching and versioning of web pages. For each ap-
plication we started the profiling with a fully charged battery
and disabled all unnecessary services and applications run-
ning in parallel. As test device we used the Google Nexus 7.
Each test case was profiled 50 times per application. As
network communication device we used a local WiFi rooter
connected to a 1GBit Internet connection.

3.2.3 Results

Fig. 3 shows the median execution times, power rates and
energy consumption for all use cases and applications. A
Kruskall-Wallis test led to rejected null hypotheses for all
use cases except for the loading of PDFs and large images
(cf. Fig 3(d)). This lead to the conclusion that browsers
vary in their energy consumption for the same use cases. he
absence of differences differences for downloads may be ex-
plained by the simplicity of the task to download a file which
is probably implemented similarly for all tested browsers.

Comparing execution times, the browsers behave rather sim-
ilarly (cf. Fig. 3(a)). A major outlier is the NineSky Browser
that performs better than the Easy Browser and Droid Surf-
ing for all use cases that include the loading of larges images.

Considering their energy consumption, the browsers behave
almost similarly for the specially designed web pages. Sur-
prisingly, the Easy Browser and Droid Surfing behave better
than the NineSky Browser, although both include advertise-
ment which the NineSky Browser does not. However, for
use cases with longer execution times (due to the increased

number of loaded banners) this effect is compensated; which
is the case for real web pages and large images. In general
Easy Browser requires a less energy than Droid Surfing. The
reason might be the difference in their polling strategies for
new advertisement banners. The Easy Browser loads a ban-
ner once a web page is opened and then every sixty seconds.
Droid Surfing in contrast, loads a banner on app start up
and then every twenty seconds, which can lead up to three
times the banner traffic of the Easy Browser.

More surprising are the results for the caching mechanisms
of the tested applications. The Easy Browser does no pro-
vide any caching mechanism. Thus, no caching effects are
observable. Anyhow, the Easy Browser behaves similarly or
even better than the other teste browsers for the loading and
reloading of web pages and images. Caching in Droid Surfing
leads to reduced execution times for real pages (NY Times,
YouTube) and large images. However, energy consumption
reduces only marginally. The effect of caching in NineSky
Browser is only observable for large images. The loading
time of the large GIF is reduced by about five seconds, lead-
ing to reduced energy consumption as well. However, for
the other tested images, the effect is not observable, as ob-
viously, their loading time is too short for being affected by
the caching mechanism. But as it is unlikely that JPEGs
loaded on mobile devices exceed the size of 3.2MB, it can be
concluded that caching in NineSky Browser has no effect on
the loading on JPEG images. In general, the Easy Browser
behaves best for the loading of small images, although only
marginally better than both Droid Surfing and the NineSky
Browser. For the loading of large images the Easy Browser
and the NineSky Browser show similar energy consumption,
whereas Droid Surfing behaves worse which, again might be
caused by its additional advertisement traffic.

For PDF downloads, the execution times and energy con-
sumption of all tested browsers differ only marginally, prob-
ably due to the simplicity and similar implementation of this
task in the tested applications, as discussed above.

Summing up, the energy consumption of mobile browsers
varies while loading the same pages and images. Advertise-
ment banners can increase the browsers’ energy consump-
tion, however, other implementations can behave even worse
although excluding advertisement. For the loading of im-
ages, caching showed no measurable effect on the energy
consumption of both Droid Surfing and the NineSky Browser
(except for the case of large GIFs) and the Easy Browser be-
haves even better although it does not provide any caching
mechanisms.

4. THREATS TO VALIDITY

In the following, we discuss some threats to validity that
should be considered for our measurement results.

USB connection powering: The test cases are executed
on the DUT via a USB connection from a test runner PC.
Unfortunately, the USB connection provides the DUT with
energy during each test run which cannot be disabled while
running the tests. Thus, we used a second power meter
to profile the power rate at the USB cable during all test
runs and added the power rate to the DUT’s profiled energy
consumption which was rather low for all test runs and only

of small variation (0.09W..0.11W).

Generalizability for other mobile devices and hard-
ware settings: Our measurements were performed for each
case study on one specific Android device, an Asus Trans-
former TF101 for the email and a Google Nexus 7 for the
browser case study. It is very likely that other mobile devices
from other vendors, and even other hardware configurations
on the same device (e.g., using 3G instead of WiFi) will
behave differently and have different power rates while exe-
cuting the same applications and use cases. We assume that
similar differences between the tested applications will be
observable, but the total power rates as well as the relative
differences between the apps may vary on other devices.

Influences from helper applications: In some cases, An-
droid applications delegate services to other applications via
so-called Intents. For example, downloaded files are opened
by another application, depending on the file type (e.g., an
image or PDF viewer). Thus, the energy consumption of
this use case depends on the application to open the files
as well. Thus, for our tests we designed a dummy applica-
tion that simply receives the open file intent but does not
do anything to exclude this effect from the test runs.

Limited determinism of test cases: For some test cases,
their determinism is limited. First, network communication
can vary for each test run as data packages can be lost and
have to be resent again. Besides, the used WiFi router and
network hardware can influence the throughput and thus,
the application’s runtime behavior as well. Furthermore, the
content of real web pages such as Google or New York Times
can change between the individual test runs (e.g., by new
news to appear). We tried to limit this factor by shuffling
the individual test runs of all AUTs. However, these factors
can influence our test results. Nevertheless, we assume our
results to be quite representative as we executed each use
case 50 times for each AUT which was confirmed by the
performed Kruskall-Wallis tests.

Representativeness of test cases: The use and test cases
of our study have been designed manually and it can be
questioned whether or not they do represent realistic and
average usage scenarios of the test applications. Thus, to get
a better impression on how users use their applications and
to derive more realistic and appropriate scenarios, we are
currently conducting a user study evaluating representative
usage scenarios for Android applications such as mail clients
and web browsers.

Influence of application settings: Some of the AUTs
allow several settings to configure them w.r.t. the users’
needs (e.g., for some of the browsers, caching can be enabled
or disabled). We tested the applications with their default
settings only. Of course, adapting their settings could have
led to more energy-efficient results. However, we argue that
most users will use applications under their default settings
only. Thus, their default settings should be considered for
the comparative test runs. Future work could evaluate the
impact of altering the settings w.r.t. energy efficiency.

Influence of testing code: Of course, the code used to
run our workloads while profiling the applications’ energy

consumption causes additional energy consumption to be
executed. However, this energy consumption can be con-
sidered as similar for all tested applications, as similar se-
quences of Ul commands have to be executed for each AUT.
Furthermore, as we are more interested in relative than ab-
solute results, this energy consumption can be considered as
negligible.

S. RELATED WORK

The most important related work was done by Pathak et
al. [5, 6] who investigate Android applications’ energy con-
sumption while executing typical usage scenarios (e.g., web
browsing or chess gaming). Although they profile applica-
tions’ energy consumption—in contrast to our work—they
do not compare energy consumption for applications from
the same usage domain, but focus on the identification of
energy bugs within the profiled applications.

Thiagarajan et al. [8] investigate the energy consumption
required by mobile devices to download, render, and display
web pages during web browsing. They show that web pages
not especially designed for mobile devices can cause large
communication overhead as well as parsing and rendering
of large JavaScript and CSS files can significantly increase
energy consumption. They derive a set of recommendations
to design web pages being more energy-efficient for mobile
web browsing.

Xiao et al. [12] investigate the energy consumption of dif-
ferent mobile YouTube use cases executed on Nokia Sym-
bian phones. They define use cases for upload, download
and replay of videos and show that energy consumption
via WCDMA communication is about 1.5 times more costly
than WiFi communication.

Palit et al. [4] present a methodology to profile average en-
ergy consumption of mobile applications. They focus on pro-
filing average power rates for typical application use cases
executed on different mobile platforms (e.g., Android and
Blackberry) and identify parameters of hardware configura-
tions influencing the devices’ energy consumption [3]. Our
approach in contrast targets to compare the energy con-
sumption of similar applications on the same mobile devices.

In a study on FEuropean mobile network traffic, Vallina-
Rodriguez et al. show that today up to 80% of Android
network traffic is used for advertisement services and that
efficient caching could reduce the energy consumption of
advertisement-included applications by up to 50% [9]. In
this paper we confirmed these assumptions by showing that
advertisement can increase energy consumption of mobile
email applications by up to 75%.

6. CONCLUSION

In this paper we presented two case studies, comparing mo-
bile applications of the same domain w.r.t. their energy
consumption. We defined two microbenchmarks for email-
ing and web browsing.

We compared three mail clients (K-9 Mail, MailDroid, and
MailDroid pro) and showed that advertisement can increase
the their energy consumption by about 75%. Besides, we
identified only minor differences in use cases’ energy con-

The Energy-Aware App Store

Email Clients K-9 Mail
ﬂ K9 Dog Walkers
MP-3 Player 3 ——

Web Browser

MailDroid is your IMAP Idle and POP3 replacement for the default

clien -supported Webdav/POP3/IMAP Idle Push
sed on the

The only official Microsoft mobile app for Hotmail that gives you
easy access to Hotmail so you never miss an email.

MailDroid MailDroid is your IMAP Idle and POP3 email replacement for the
Flipdog Solutions, LLC defau is an ad-supported Webdav/POP3/IMAP Idle
m the ground up and and not based on

Figure 4: Prototypical implementation of an energy-
aware app store.

sumption for K-9 Mail and MailDroid pro caused by more
efficient UI navigation.

In a second study we compared three web browsers (Easy
Browser, Droid Surfing, and NineSky Browser) for loading
web pages as well as images and downloading PDF files.
We identified major differences in the browsers’ energy con-
sumption which in some cases are caused by advertisement
banners. However, both the Easy Browser and Droid Surfing
behaved better than the NineSky Browser for some use cases
although including advertisement. Furthermore, we showed,
that caching has no significant influence on the loading of
web pages, PDF files and images (except for the loading of
a large GIF file).

The microbenchmarks defined in this paper can be reused to
compare the investigated applications with further applica-
tions from the same domain. Besides, we plan further cases
studies such as MP3 and podcast players. For future work
we are also working on an app store providing energy labels
as further guidance for users looking for energy-efficient ap-
plications (cf. Fig. 4) [11].

7. ACKNOWLEDGMENTS

This research has been funded by the European Social Fund
(ESF) and Federal State of Saxony within the ZESSY pro-
ject #080951806, and within the Collaborative Research
Center 912 (HAEC), funded by the German Research Foun-
dation (DFQG).

Furthermore, we would like to thank Sebastian Betker, Se-
bastian Herrlich, Kevin Seppelt, Lukas Siedel, Robin Unger,
and Elisa Zschorlich for their help during a first implemen-
tation of the test cases used in this study.

8. REFERENCES
[1] Android Developer Tools. Website, Sept. 2012.
http://developer.android.com/guide/developing/tools/
adt.html.
[2] Google Zeitgeist 2011. Website, Sept. 2012.
http://www.googlezeitgeist.com/en/top-
lists/global /google-news-fastest-rising.

[3] A. Abogharaf, R. Palit, K. Naik, and A. Singh. A
Methodology for Energy Performance Testing of
Smartphone Applications. In Proceedings of the 7th
International Workshop on Automation of Software
Test (AST2012). IEEE, 2012.

[4] R. Palit, R. Arya, K. Naik, and A. Singh. Selection
and Execution of User Level Test Cases for Energy
Cost Evaluation of Smartphones. In Proceeding of the
6th international workshop on Automation of software
test, pages 84-90. ACM, 2011.

[5] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with Eprof. In Proceedings
of the 7th ACM european conference on Computer
Systems, pages 29-42, 2012.

[6] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is keeping my phone awake?: characterizing and
detecting no-sleep energy bugs in smartphone apps. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services (MobiSys
’12), pages 267-280. ACM, 2012.

[7] A. Shye, B. Scholbrock, and G. Memik. Into the Wild:
Studying Real User Activity Patterns to Guide Power
Optimizations for Mobile Architectures. In Proceedings
of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 168-178.
ACM, 2009.

[8] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh,
and J. Singh. Who killed my battery?: analyzing
mobile browser energy consumption. In Proceedings of
the 21st international conference on World Wide Web,
pages 41-50. ACM, 2012.

[9] N. Vallina-Rodriguez, J. Shah, A. Finamore,

Y. Grunenberger, H. Haddadi, and J. Crowcroft.
Breaking for Commercials: Characterizing Mobile
Advertising. In Proceedings of the Internet
Measurement Conference (IMC2012), New York, 2012.
ACM.

[10] C. Wilke, S. Richly, S. Gotz, C. Piechnick, G. Piischel,
and U. Amannn. Comparing Mobile Applications’
Energy Consumption. In SEGC' - Software
Engineering Aspects of Green Computing Track at the
28th ACM Symposium on Applied Computing
(SAC2013). ACM, 2013.

[11] C. Wilke, S. Richly, G. Piischel, C. Piechnick, S. Gétz,
and U. ABmannn. Energy Labels for Mobile
Applications. In Proceedings of the 1st Workshop for
the Development of Energy-aware Software (EEbS
2012), volume 208 of Lecture Notes in Informatcis
(LNI). Gesselschaft fiir Informatik, 2012.

[12] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski. Energy
consumption of mobile youtube: Quantitative
measurement and analysis. In Proceedings of the 2nd
International Conference onNext Generation Mobile
Applications, Services and Technologies
(NGMAST’08), pages 61-69. IEEE, 2008.

[13] Z. Zhuang, K. Kim, and J. Singh. Improving energy
efficiency of location sensing on smartphones. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages
315-330. ACM, 2010.

