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AbstratThis paper deals with deision problems related to the star problem in trae monoids, whihmeans to determine whether the iteration of a reognizable trae language is reognizable. Dueto a theorem by G. Rihomme from 1994 [32, 33℄, we know that the star problem is deidablein trae monoids whih do not ontain a submonoid of the form fa; g� � fb; dg�.Here, we onsider a more general problem: Is it deidable whether for some reognizabletrae language IR and some reognizable or �nite trae language IP the intersetion IR \ IP�is reognizable? If IP is reognizable, then we show that this problem is deidable i� theunderlying trae monoid does not ontain a submonoid of the form fa; g� � b�. In the ase of�nite languages IP, we show several deidability and undeidability results.
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1 IntrodutionFree partially ommutative monoids, also alled trae monoids, were introdued by P. Cartierand D. Foata in 1969 [5℄. In 1977, A. Mazurkiewiz proposed trae monoids as a potentialmodel for onurrent proesses [25℄, whih marks the beginning of a systemati study of traemonoids by mathematiians and theoretial omputer sientists, see e.g., [7, 8℄.One main stream in trae theory is the study of reognizable trae languages, whih an beonsidered as an extension of the well studied onept of regular languages in free monoids. A majorstep in this researh is E. Ohma�nski's PhD thesis from 1984 [30℄. Some of the results onerningregular languages in free monoids an be generalized to reognizable languages in trae monoids.However, there is one major di�erene: The iteration of a reognizable trae language does notneessarily yield a reognizable language. This fat raises the so alled star problem: Given areognizable language L, is L� reognizable? In general, it is not known whether the star problemis deidable. The main result after a stream of publiations dealing with this problem is a theoremstated by G. Rihomme in 1994, saying that the star problem is deidable in trae monoidswhih do not ontain a partiular submonoid alled C4 [32, 33℄. It is not known whether thestar problem is deidable in trae monoids with a C4-submonoid. It is even unknown for �nitetrae languages.Reently, D. Kirsten has shown that in trae monoids with a C4-submonoid it is undeidablewhether for two reognizable trae languages IR and IP the intersetion IR\IP� yields a reognizablelanguage [19, 22℄. He also remarked that this problem is deidable in trae monoids without aP3-submonoid due to results by J. Sakarovith. Here, we show that this problem is alreadyundeidable in the trae monoids with a P3-submonoid. Consequently, the trae monoids withouta P3-submonoid are exatly the trae monoids in whih we an deide reognizability of IR \ IP�for reognizable languages IR and IP.Seondly, we improve D. Kirsten's result to �nite languages IP. In fat, in trae monoids witha C4-submonoid, we annot deide reognizability of IR \ IP� for reognizable languages IR and�nite languages IP.Surprisingly, the ombination of both improvements yields a deidable problem: In P3, i.e. infa; bg��b�, we an deide for a reognizable language IR and a �nite language IP whether IR\IP� isreognizable. Moreover, provided that IP ontains a trae of the form � �b+�, we an deide whetherIR \ IP� is reognizable.The paper is organized as follows. After this introdution, Setion 2 gives a formal overviewonsisting of an explanation of notions from algebra, formal language theory up to an overview of thestar problem. In Part 2.5, we state our results in omplete detail and disuss some open questions.In Setion 3, we reall some lassi results onerning automata and reognizable languages whihwe will use in our main proofs. In Setions 4 and 5, we give the proofs of the deidability andundeidability results, respetively.2 Formal De�nitions2.1 PreliminariesWe introdue some notions from algebra and trae theory. By IN, we denote the set f0; 1; 2; : : :g.We allow to denote some singleton set by its element, e.g., we write 5 to denote both the number�ve and the singleton set onsisting of the number �ve.Assume some monoid IM. We denote its identity by �IM, or shortly by �. Usually, we denotethe produt in IM by juxtaposition but sometimes by � or �IM to avoid onfusion.For every n 2 IN and m 2 IM, we de�ne the n-fold produt by m0 = �IM and mn+1 = mnm.We extend the produt and the n-fold produt to subsets of IM as usual. Note that for every subset1



2 2 FORMAL DEFINITIONSL � IM, we have L0 := f�IMg. In partiular, ;0 = f�IMg. For subsets L � IM, we de�ne thenon-empty iteration L+ as the union L1 [ L2 [ L3 [ : : : We denote the iteration of L by L� andde�ne it by L� := �IM [ L+. For integers i � j, we denote by Li;:::;j the union Li [ Li+1 [ : : : [Lj .Assume two monoids IM and IM0. We denote their artesian produt by IM � IM0. For somesubsets L � IM and L0 � IM0, we denote their artesian produt by L� L0, or sometimes, by �LL0�to visualize the omponentwise onatenation.Again, assume two monoids IM and IM0. We all a funtion h : IM! IM0 a homomorphism i� hpreserves the produt and the identity. We extend the notion of homomorphisms to subsets of IMas usual. We denote the inverse of some homomorphism h by h�1. We all h an isomorphism i� his both injetive and surjetive, i.e., i� for every m 2 IM0, the set h�1(m) is a singleton. Then, wean regard h�1 as a homomorphism from IM0 to IM. We all two monoids IM and IM0 isomorphii� there exists an isomorphism between them.2.2 Monoids, Languages and TraesBy an alphabet, we mean a �nite set of symbols. We all its elements letters. Assume an alphabet �.We denote the free monoid over � by ��. For every word w 2 ��, we all the number of letters ofw the length of w, and denote it by jwj. We denote by alph(w) set of letters whih our in w.P. Cartier and D. Foata introdued the onept of the free partially ommutative monoidsin 1969 [5℄. In 1977, A. Mazurkiewiz onsidered this onept as a potential model for onurrentsystems [25℄. Sine then, free partially ommutative monoids are examined by both mathematiiansand theoretial omputer sientists. For a general overview, I reommend the surveys [7, 8℄.We all a binary relation I over some alphabet � an independene relation i� I is irreexiveand symmetri. For every pair of letters a and b with aIb, we say that a and b are independent,otherwise a and b are dependent. We all the pair (�; I) an independene alphabet. We all twowords w1; w2 2 �� equivalent w.r.t. I i� we an transform w1 into w2 by �nitely many exhanges ofindependent adjaent letters whih we denote by w1 �I w2. For instane, if a and  are independentletters, baaba, baaba, and baaba are mutually equivalent words.The relation �I is an ongruene relation w.r.t. the onatenation. For every word w 2 ��,we denote by [w℄I the ongruene lass of w. We all the fatorization of the free monoid ��under �I the trae monoid over � and I and denote it by IM(�; I) . We all its elements, i.e.,the ongruene lasses [w℄I traes, its subsets trae languages or shortly languages. The funtion[ ℄I is a homomorphism from �� to IM(�; I). As long as no onfusion arises, we omit the index Iat [ ℄I . We denote by [ ℄�1I the inverse of the homomorphism [ ℄I , i.e, for any trae t 2 IM(�; I),[t℄�1I denotes the set of all words in the trae (ongruene lass w.r.t. �I) t.If I is the empty relation over �, then the trae monoid IM(�; I) is isomorphi to the freemonoid ��. If I is the largest irreexive relation over �, i.e., two letters a and b are independenti� a and b are di�erent, then IM(�; I) is isomorphi to the free ommutative monoid over �.Beause the words in some trae di�er only in the order of their letters, we an de�ne the lengthjtj and the alphabet alph(t) of some trae t as the length and the alphabet of any word in the trae(ongruene lass) t, respetively.Assume some independene alphabet (�; I). Every subset � � � indues some independenealphabet �� ; I \ (���) � whih we denote for short by (�; I).Assume that we an split � into two non-empty, disjoint subsets � and � suh that (���) � I,i.e., we have aIb for any letters a 2 � and b 2 �. Then, we all the independene alphabet non-onneted. The trae monoid IM(�; I) is isomorphi to the artesian produt IM(�; I)� IM(�; I).Conversely, assume two independene alphabets (�; I�) and (�; I�) suh that � \ � = ;.The artesian produt IM(�; I�)� IM(�; I�) is isomorphi to the trae monoid IM(�; I) where� = � [� and I = I� [ I� [ (���) [ (���):



2.3 Automata and Reognizable Sets 3Hene, we an regard the artesian produt of two (disjoint) trae monoids as a trae monoid.Later, two trae monoids will play a ruial role: the so-alled P3 and C4 whih are de�ned (up toisomorphism) by fa; g� � b� and fa; g� � fb; dg�, respetively.We all some independene alphabet (�; I) onneted if we annot split � into two non-empty,disjoint subsets � and � with (���) � I.For some independene alphabet (�; I), we all some trae t 2 IM(�; I) non-onneted (resp.onneted) if the independene alphabet (alph(t); I) is non-onneted (resp. onneted). Equiva-lently, some trae t 2 IM(�; I) is non-onneted i� there are two non-empty traes t1; t2 2 IM(�; I)with t = t1t2 suh that alph(t1)� alph(t2) � I. Some trae �uv� in P3 or C4 is onneted i� u or vis the empty word �. For some trae language L 2 IM(�; I), we denote by NC(L) and Cn(L) theset of the onneted and non-onneted traes in L, respetively. We all some trae language Lonneted i� NC(L) = ;.We all a homomorphism h between two trae monoids IM(�; I�) and IM(�; I�) onneted i�for every t 2 Cn(IM(�; I�)), we have h(t) 2 Cn(IM(�; I�))Assume traes t1; t2 2 IM(�; I). We all t1 a pre�x of t2 (for short t1 v t2) i� t2 2 t1 IM(�; I),i.e., i� there is some trae s 2 IM(�; I) suh that t2 = t1s. We all t1 a proper pre�x of t2 (forshort t1 < t2) i� t1 v t2 and t1 6= t2. We all t1 and t2 pre�x-onsistent (for short t1 u t2) i� thereis some t 2 IM(�; I) with t1 v t and t2 v t, i.e., i� the languages t1 IM(�; I) and t2 IM(�; I) are notdisjoint. If IM(�; I) is a free monoid, then t1 u t2 i� t1 v t2 or t2 v t1.Assume that IM(�; I) is isomorphi to some artesian produt IM(�; I) � IM(�; I). Then, twotraes �u1v1�; �u2v2� 2 IM(�; I) are pre�x-onsistent i� u1 u u2 and v1 u v2.Assume two alphabets � and � and a homomorphism h : �� ! ��. We all h a pre�x-homo-morphism i� for any letters a 6= b in � we have h(a) 6v h(b). We all h a bipre�x-homomorphismi� additionally for any letters a 6= b in � there is not any w 2 �� with wh(a) = h(b).2.3 Automata and Reognizable SetsWe introdue the notion of reognizable languages as far as we need it in this paper, for a moregeneral overview we reommend [2, 10℄.Assume some monoid IM. An IM-automaton is a triple A = [Q;h; F ℄, where Q is a �nitemonoid, h is a homomorphism h : IM ! Q and F is a subset of Q. We de�ne its language byL(A) = h�1(F ). We all Q the monoid of A and the elements of Q states. We all F the set ofaepting states of A and h the homomorphism of A. Without loss of generality, we an assumethat h is a surjetive homomorphism from IM to Q.We all some subset (resp. language ) L � IM reognizable i� there is some IM-automaton withL = L(A). We denote the lass of all reognizable sets over IM by REC(IM). In free monoids,reognizable languages are usually alled regular languages.It is a lassi result that for any monoid IM, REC(IM) ontains the empty set ;, IM itself andit is losed under union, intersetion, omplement, and inverse homomorphisms [2, 10℄. We need atheorem by J. Mezei onerning reognizable sets in Cartesian Produts, f. [2, 10℄.Theorem 2.1 Assume two monoids IM and IM0. Some set T is reognizable in IM � IM0 i�there are an integer n, sets K1; : : : ;Kn 2 REC(IM) and sets L1; : : : ; Ln 2 REC(IM0) suh that wehave T = (K1 � L1) [ : : : [ (Kn � Ln). 2The next lemma shows a widely used tehnique (f. [2℄).Lemma 2.2 Assume some monoid IM and reognizable sets L1; : : : ; Ln � IM for some n > 0.There are a �nite monoid Q, a surjetive homomorphism h : IM ! Q, and sets F1; : : : ; Fn � Qsuh that for i 2 f1; : : : ; ng, the automaton [Q;h; Fi℄ de�nes Li. 2



4 2 FORMAL DEFINITIONSProof: Assume for i 2 f1; : : : ; ng automata [Qi; hi; Gi℄ for Li. We de�ne Q = Q1 � : : :�Qn.The homomorphism h maps every p 2 IM to (h1(p); : : : ; hn(p)). For i 2 f1; : : : ; ng we de�neFi = Q1 � : : :�Qi�1 �Gi �Qi+1 � : : : �Qn. It is an easy veri�ation that for i 2 f1; : : : ; ng theautomaton [Q;h; Fi℄ de�nes Li. To obtain a surjetive homomorphism h, we have to restrit Q andFi for i 2 f1; : : : ; ng to h(IM) and h(IM) \ Fi, respetively. 2For any trae monoid IM(�; I), REC(IM(�; I)) ontains all �nite subsets of IM(�; I) and is losedunder onatenation [11℄ and iteration of onneted reognizable trae languages [30, 6, 26℄. In traemonoids, reognizable languages are not losed under homomorphisms. However, we have thefollowing theorem:Theorem 2.3 Assume two trae monoids IM(�; I�) and IM(�; I�), a homomorphismh : IM(�; I�)! IM(�; I�), and some language L � IM(�; I�).1. If h is onneted, then reognizability of L implies reognizability of h(L).2. If h is injetive, then reognizability of h(L) implies reognizability of L. 2Assertion (1) is due to C. Dubo [9℄. It is a generalization of the well-known fat that homo-morphisms between free monoids preserve reognizability. Assertion (2) is obvious, beause wehave L = h�1(h(L)) and the losureship of reognizable sets under inverse homomorphisms.The survey artile [29℄ gives an overview on reognizable trae languages inluding proofs of thelosure properties.We need the following useful lemma onerning reognizable trae languages and the notionsof onneted and non-onneted traes.Lemma 2.4 Assume some trae monoid IM(�; I). Some language L � IM(�; I) is reognizable i�both NC(L) and Cn(L) are reognizable. 2Proof: We have L = NC(L) [ Cn(L), i.e., reognizability of both NC(L) and Cn(L) impliesreognizability of L.Assume that L is reognizable. We have NC(L) = L \ NC(IM(�; I)) and Cn(L) = L nNC(L),i.e., it suÆes to show that NC(IM(�; I)) is reognizable. We an onstrut an IM(�; I)-automaton[2�; alph; F ℄ for NC(IM(�; I)), where 2� denotes the power set of � with set union as produt.The set F onsists of the subsets � � � suh that indued subalphabet (�; I) is non-onneted. 2Let us shortly mention the notion of rational sets. Assume some monoid IM. The set of rationalexpressions REX(IM) is the smallest set whih ontains the symbol ;, the elements in IM and islosed as follows: For some expressions r; r1; r2 2 REX(IM), the expressions r�, (r1[r2), and (r1r2)belong to REX(IM). Every rational expression r de�nes a language L(r) as usual.We have Kleene's lassi result whih asserts that in free monoids the reognizable sets andthe rational sets oinide [37℄. In trae monoids, we have just one diretion due to a more generalresult by J. MKnight [2, 10℄: Every reognizable trae language is rational. Moreover, we antransform every automaton into a rational expression whih de�nes the same language. However,there are rational trae languages whih are not reognizable unless the underlying trae monoidis a free monoid. See [3℄ for more information on rational trae languages.



2.4 The Star Problem 52.4 The Star ProblemThe following questions onerning the gap between the lasses of reognizable and rational lan-guages in trae monoids arise:Reognizability Problem: Can we deide whether the language of a rational expression is areognizable language?Star Problem: Can we deide whether the iteration of a reognizable language yields a reogniz-able language?J. Sakarovith answered the �rst question in 1992.Theorem 2.5 Assume a trae monoid IM(�; I). The following three assertions are equivalent:(1) IM(�; I) does not ontain an P3-submonoid.(2) The rational languages of IM(�; I) form an (e�etive) Boolean algebra.(3) We an deide whether the language of a rational expression yields a reognizable language. 2The equivalene of (1) and (2) is proved in [4, 1, 35℄, assertion (3) is added in [36℄.During the reent 16 years, many papers have dealt with the star problem. However, onlypartial results have been ahieved. We give a brief survey about its history. The star prob-lem in the free monoid is trivial due to S. C. Kleene, and it is deidable in free ommutativemonoids due to S. Ginsburg and E. Spanier [15, 16℄. In 1984, E. Ohma�nski examined reog-nizable trae languages in his PhD thesis [30℄ and stated the star problem. During the eighties,E. Ohma�nski [30℄, M. Clerbout and M. Latteux, [6℄ and Y. M�etivier [26℄ independentlyproved that the iteration of a onneted reognizable trae language yields a reognizable traelanguage. In 1992, J. Sakarovith found the solution of the reognizability problem shown inTheorem 2.5. This solution implies the deidability of the star problem in trae monoids whihdo not ontain a P3-submonoid. The attempt to extend Sakarovith's haraterization to thestar problem failed, just in the same year, P. Gastin, E. Ohma�nski, A. Petit, and B. Rozoyshowed the deidability of the star problem in P3 [12℄.During the subsequent years, Y. M�etivier and G. Rihomme developed these ideas. Theyshowed deidability of the star problem for trae languages ontaining at most four traes as wellas for �nite sets ontaining at most two onneted traes [27, 28℄. Finally, G. Rihomme provedthe following theorem [24, 33℄.Theorem 2.6 The star problem is deidable in trae monoids without C4-submonoid. 2Reently, D. Kirsten andG. Rihomme showed the equivalene between the star problem and theso-alled �nite power problem, whih means to determine whether some reognizable language L hasthe �nite power property, i.e., whether there is some integer n suh that L� = L0 [ L1 [ : : : [ Ln.Further, they redued the remaining ases of the star problem to some partiular languages inertain trae monoids [24℄.Reently, D. Kirsten introdued the so-alled generalized star problem (for short GSP) [19, 22℄:Generalized Star Problem: Can we deide whether for two reognizable languages IR, IP insome trae monoid the intersetion IR \ IP� yields a reognizable language?In the partiular ase that IR is the omplete trae monoid, the GSP is exatly the star problem.As a onlusion from Theorem 2.5, the GSP is deidable in trae monoids without P3-submonoid.To deide whether IR \ IP� is reognizable, we onstrut rational expressions for IR and IP, resp.,a rational expression for IR \ IP� by Theorem 2.5(2) and �nally, we determine by Theorem 2.5(3)whether this expression de�nes a reognizable language.Reently, D. Kirsten has shown the following result [19, 22℄:Theorem 2.7 Assume some trae monoid IM(�; I) with a C4-submonoid. The GSP is undeid-able in IM(�; I). 2



6 2 FORMAL DEFINITIONS2.5 Main Results, Conlusions, and Future StepsIn this paper, we show various improvements of Theorem 2.7. We also show some deidabilityresults for partiular ases of the GSP. Weaker versions of our theorems were already announedin [23℄. Theorem 2.10 already ourred in [21℄ among other results.On one hand, we show the following improvements of Theorem 2.7:Theorem 2.81. It is undeidable whether for some reognizable language IP � P3 = fa; g��fbg� the inter-setion �afa;g�b� � \ �fa;g�ab� � \ IP� is reognizable.2. There is some �xed reognizable language IR � C4 suh that it is undeidable whether forsome �nite language IP � C4 the intersetion IR \ IP� is reognizable.3. It is undeidable whether for some reognizable language IP � C4 = fa; g��fb; dg� theintersetion �afa;g�fb;dg� � \ IP� is reognizable. 2Note that the intersetion in Assertion (1) just means to selet the traes from IP� whose �rstomponent starts and ends with the letter a. We prove Assertion (1) in Part 5.1 by a redutionto some undeidable problem onerning piture languages. Beause the GSP is deidable in traemonoids without P3-submonoid, we obtain the following orollary from Assertion (1):Corollary 2.9 Assume some trae monoid IM(�; I). It is deidable whether for two reognizablelanguages IR; IP � IM(�; I) the intersetion IR \ IP� is reognizable i� IM(�; I) does not ontain aP3-submonoid. 2In Part 5.2, we show Assertions (2) and (3) by a redution to a variant of the PCP. An examplefor some language IR in Assertion (2) is the languageIR =  faaaaaaa; aaaaaag+aafbbbdbbdddbddb; bbbdbbdddbdddg+bb!(f. Remark 5.13 on page 23.) On the other hand, at least in the trae monoid P3, the GSP isdeidable as far as IP satis�es some property:Theorem 2.10 It is deidable whether for two reognizable languages IR; IP � P3 = fa; g��fbg�the intersetion IR \ IP� is reognizable, provided that IP satis�es at least one of the followingproperties:1. There is some integer n suh that NC(IP) � �fa;g�b1;:::;n�, or2. some trae of the form � �b+� belongs to IP. 2We give its proof in Setion 4. We will use Hashiguhi's distane automata in a ruial way aswell as some pumping tehniques. For luidity, we state the following orollary whih is an obviousonlusion from Theorem 2.10:Corollary 2.11 It is deidable whether for two reognizable languages IR; IP � P3 = fa; g��fbg�the intersetion IR \ IP� is reognizable, provided that NC(IP) is �nite. 2Clearly, if NC(IP) is �nite, then IP satis�es Property (1) in Theorem 2.10. However, IP = �fa;g�b �satis�es Property (1) in Theorem 2.10, although NC(IP) is in�nite, i.e., Corollary 2.11 is weakerthan Theorem 2.10.Although Theorem 2.8(3) seems to be lose to an answer to the star problem, we do notknow whether it is undeidable in C4. We regard the star problem as the most important open



2.5 Main Results, Conlusions, and Future Steps 7question in this area. We leave it to the reader to use our results to obtain a onjeture for thestar problem. Corollary 2.9 states a haraterization of the trae monoids with a deidable GSP.An open question is to haraterize the trae monoids in whih the GSP is deidable under therestrition to �nite languages IP. For instane, in the trae monoid fa; g� � � � d� = P3 � d�we an neither apply Theorem 2.8(2) nor Corollary 2.11. The attempt to show some variants ofTheorem 2.10 and Corollary 2.11 for P3 � d� by adapting the proof ideas for Theorem 2.10 leadsto serious problems, e.g., to some notion of Hashiguhi's distane automata over P3 . . .One more remaining problem is to show some ommon improvement of Theorem 2.8(2) andTheorem 2.8(3), i.e., to show Theorem 2.8(2) for IR = �afa;g�fb;dg� � whih means to show Theorem 2.8(3)for �nite languages IP.Finally, a question is whether one an show Theorem 2.8(1) for the intersetion �afa;g�b� � \ IP�.



8 3 SOME CLASSIC RESULTS3 Some Classi ResultsIn this setion, we reall some lassi notions and results whih we will use in our main proofs.In Part 3.1, we deal with transition automata by M. O. Rabin and D. Sott and distaneautomata by K. Hashiguhi. Then, we onsider transition automata over trae monoids.In Part 3.3, we reall piture languages and �nally, in Part 3.4, we deal with a variant of Post'sCorrespondene Problem whih will be very suitable in the proof of Theorem 2.8.3.1 Transition Automata over Free MonoidsWe reall some notions from automata theory. At �rst, we deal with two tehnial lemmas on-erning reognizable languages in free monoids.Lemma 3.1 Assume some alphabet � and some automaton [Q;h; F ℄ suh that h : �� ! Q is asurjetion. For every q 2 Q, there is some word w 2 h�1(q) with jwj < jQj. 2Proof: Assume some q 2 Q and some w 2 h�1(q). If jwj< jQj, then we are done. Assume jwj � jQj.Choose letters a1; : : : ; ajwj 2 � suh that a1 : : : ajwj = w. Beause jwj � jQj, there are two integers0� i < j � jwj with h(a1 : : : ai) = h(a1 : : : aj), i.e., q = h(a1 : : : ajwj) = h(a1 : : : aiaj+1 : : : ajwj) andja1 : : : aiaj+1 : : : ajwjj < jwj. By applying suh a ut as many times a neessary, we onstrut someword w0 with jw0j < jQj and h(w0) = q. 2See [10, p. 101℄ for a proof of the following lemma.Lemma 3.2 Some language L � b� is reognizable i� there are some �nite language L0 � b� andintegers z, n, m1; : : : ;mn suh that L = Si2f0;:::;ngLi with Li = bmi(bz)� for i 2 f1; : : : ; ng. 2Clearly, we an assume z;m1; : : : ;mn > 0. If L is given by some automaton, then we an onstrutL0 and the integers z, n, and m1; : : : ;mn.Transition automata originate from M. O. Rabin and D. Sott [31℄. See [2, 10℄ for moreinformation. A transition automaton is a quadruple A = [Q; s;E; F ℄, where� Q is a �nite set alled the states,� s 2 Q is alled the initial state,� E � Q� ��Q is a set alled the edges, and� F � Q are alled the aepting states.We all a path in A a �nite sequene of edges (q1; a1; q2)(q2; a2; q3) : : : (qn; an; qn+1) for some n � 0.We all the word a1 : : : an the label of this path. We all a path aepting i� q1 = s and qn+1 2 F .The language of A, denoted by L(A), onsists of the labels of aepting paths.Sometimes, it is quite onvenient to onsider transition automata as devies whih proess withsome (read-only) head over a tape. In the beginning, the automaton rests in the initial state s, thetape ontains some word w 2 ��, and the head of the automaton is over the �rst letter of w. If the�rst letter of w is a and there is some edge (s; a; q) 2 E, then the automaton an read a, i.e., it anhange the state to q and move the head to the seond letter of w.It is a lassi result in automata theory that transition automata over free monoids de�ne exatlythe reognizable languages (f. [2, 10℄). Moreover, we an transform every transition automaton intoa ��-automaton whih de�nes the same language, and vie versa. Further, for every reognizablelanguage L � �� with � 62 L, we an onstrut a transition automaton [Q; s;E; F ℄ for L suh that� jF j = 1 and� E � (Q n F )� �� (Q n s)



3.2 Transition Automata over Trae Monoids 9provided that L is given by, e.g., some transition automaton or some ��-automaton (f. [2, 10℄).We an generalize transition automata by allowing that E is a �nite subset of Q � �+ � Q.Then, the label of some path (q1; u1; q2)(q2; u2; q3) : : : (qn; un; qn+1) is the onatenation u1 : : : un.As above, we de�ne the language of suh an automaton as the set of the labels of any aeptingpath. We an transform some transition automaton [Q; s;E; F ℄ with E � (Q � �+ � Q) into atransition automaton [Q0; s; E0; F ℄ with E0 � (Q0���Q0) whih de�nes the same language. If weonsider suh an automaton as a devie over some tape, then this generalization simply means thatthe automaton an read several letters in one step.We an further generalize transition automata by allowing that E is some (not neessarily�nite) subset of Q� �+ �Q. However, these generalized transition automata exeed the oneptof reognizable languages in ��. Nevertheless, we will use them as a onvenient tool in the proofof Proposition 4.4.Distane automata were introdued by K. Hashiguhi [17, 18℄. We assume some element 1whih is bigger than every integer. A distane automaton is a tuple A = [Q; s;E; F; Æ℄ where� [Q; s;E; F ℄ is a transition automaton, and� Æ : Q���Q! f0; 1;1g is a funtion alled distane funtion suh that for every q; q0 2 Qand a 2 � we have Æ(q; a; q0) =1 i� (q; a; q0) 62 E.Opposed to K. Hashiguhi who onsidered distane automata with several initial states, we justdeal with distane automata with exatly one initial state.We de�ne the language of some distane automaton A = [Q; s;E; F; Æ℄ as the language of thetransition automaton [Q; s;E; F ℄. We de�ne the distane of some path (q1; a1; q2) : : : (qn; an; qn+1)as the sum Æ(q1; a1; q2) + Æ(q2; a2; q3) + : : : + Æ(qn; an; qn+1) where the sign \+" denotes ommoninteger addition. We denote the distane of some word w 2 L(A) by Æ(w) and de�ne it as the leastinteger n suh that there is an aepting path in A with the label w and the distane n. We de�nethe distane of every word w 62 L(A) by Æ(w) = 1. We all some distane automaton A limitedin distane i� there is some integer Æmax suh that for every word w 2 L(A) we have Æ(w) � Æmax.We use the following strong result by K. Hashiguhi [17, 18℄ in a ruial way.Theorem 3.3 It is deidable whether some distane automaton is limited in distane. 23.2 Transition Automata over Trae MonoidsWe assume some trae monoid IM(�; I) within this part. Transition automata over IM(�; I) arede�ned as transition automata over ��. However, the label of some path (q1; a1; q2)(q2; a2; q3) : : :(qn; an; qn+1) is the trae [a1a2 : : : an℄ 2 IM(�; I). Transition automata over IM(�; I) de�ne exatlythe rational languages over IM(�; I).A transition automaton A = [Q; s;E; F ℄ respets I i� for every p; q; r 2 Q and for everyindependent a; b 2 � with (p; a; q); (q; b; r) 2 E we have some q0 2 Q and (p; b; q0); (q0; a; r) 2 E.Transition automata over IM(�; I) whih respet I de�ne the reognizable languages over IM(�; I).Similarly to transition automata over free monoids, we an also allow that E is some �nite oreven in�nite subset of Q� IM(�; I)�Q. However, in�niteness of E exeeds the onept of rationaltrae languages.If IM(�; I) is a isomorphi to a monoid �����, then we an onsider transition automata over�� � �� as devies whih proess with two heads over two tapes, respetively. In the beginning,the automaton is in the initial state s, and some trae �uv� 2 �� ��� is represented on the tapes,i.e., u and v are represented on the �rst and seond tape, respetively. If there is some instrution(s; a; q) 2 E, and u starts with some letter a 2 �, then the automaton an read a, i.e., it hangesits state to q, moves the �rst head to the seond letter of u, and does not move the seond head.If we allow instrutions Q� ��������Q, then the automaton an move both heads in one step.



10 3 SOME CLASSIC RESULTS3.3 Piture LanguagesPitures and piture languages are a generalization of words and word languages. We use somevery basi notions from the theory of piture languages. See [14℄ for a reent survey. Assumesome alphabet �. For two integers m;n � 1, a piture p over � of the size (m;n) is a map-ping p : f1; : : : ;mg � f1; : : : ; ng ! �. We all the numbers m and n the height and width ofp and denote them by hgt(p) and wdt(p), respetively. For onveniene, we de�ne the mappingp̂ : f0; : : : ;m+ 1g � f0; : : : ; n+ 1g ! � [ f#g. For every i 2 f1; : : : ;mg and j 2 f1; : : : ; ng, p̂i;jyields pi;j. Otherwise, p̂ yields #. We denote the set of all pitures over � by ���.Assume two pitures p and s. The olumn onatenation p Æ s is de�ned i� hgt(p) = hgt(s).Let us denote the size of p and s by (m;n) and (m;n0), respetively. Then, p Æ s is de�ned by:p Æ s = 0B� p1;1 � � � p1;n s1;1 � � � s1;n0... . . . ... ... . . . ...pm;1 � � � pm;n sm;1 � � � sm;n0 1CAThe extension of the olumn onatenation to piture languages is obvious.We all a set of pitures of the size (2; 2) over � [ f#g a loal representation over �. Suh aloal representation de�nes a piture language L(�). A piture p belongs to L(�) i� every (2; 2)sub-piture of p belongs to �:L(�) = �p 2 ��� ���� i 2 f0; : : : ;hgt(p)g; j 2 f0; : : : ;wdt(p)g :  p̂i;j p̂i;j+1p̂i+1;j p̂i+1;j+1 ! 2 ��.We use the following theorem from [13℄.Theorem 3.4 It is not deidable whether the language of a loal representation is empty orwhether it is �nite. 2D. Giammarresi and A. Restivo showed several losure properties of the lass of piture lan-guages of loal representations [13℄. We just need the following result:Lemma 3.5 Assume an alphabet � and a letter b 62 �. We an transform some loal representation� over � into a loal representation �0 over � [ fbg suh that L(�0) = L(�) Æ fbg��. 2Proof (sketh): For any a;  2 � we replae tiles � a # # �; �# # # �; � a ## #� 2 � by � a b b �; �# # b �; � a b# #�,respetively, and we insert new tiles �# #b b �; � b bb b �; � b b# #�; �# #b # �; � b #b #�; � b ## #� into �0. 23.4 A variant of Post's Correspondene ProblemPost's Correspondene Problem (for short PCP) is one of the most ommon undeidable problems.A PCP instane onsists of two alphabets � and � and two homomorphisms �; � : �� ! ��.Assume suh an instane for the rest of this part. A solution is a non-empty word w 2 �+ suhthat �(w) = �(w). The existene of a solution is undeidable. An in�nite sequene i1; i2; i3 : : : ofletters in � is alled an in�nite solution i� for any integer n, the words �(i1 : : : in) and �(i1 : : : in)are pre�x onsistent. We have the following result due to K. Ruohonen [34℄.Theorem 3.6 Assume a PCP instane suh that both � and � are bipre�x homomorphisms. It isundeidable whether it has a solution and it is undeidable whether it has an in�nite solution. 2We need the following lemma:Lemma 3.7 A PCP instane has an in�nite solution i� there are in�nitely many words w 2 ��suh that �(w) and �(w) are pre�x onsistent. 2



3.4 A variant of Post's Correspondene Problem 11Proof: Assume a PCP-instane onsisting of �, �, �, and �. If it has is an in�nite solutioni1; i2; : : :, then we have �(i1 : : : in) u �(i1 : : : in) for n � 0, i.e., for in�nitely many words i1 : : : in.Conversely, let L � �� denote the in�nite language whih onsists of the words in w 2 ��suh that �(w) u �(w). Clearly, L is pre�x-losed. We indutively onstrut an in�nite solution.Assume some integer n and some word i1 : : : in 2 �� suh that i1 : : : in satis�es two properties:Firstly, �(i1 : : : in) u �(i1 : : : in), i.e., i1 : : : in 2 L. Seondly, i1 : : : in is a pre�x of in�nitely manywords in L. Then, there is at least one letter in+1 2 � suh that i1 : : : in+1 satis�es the sameproperties. We an use the empty word � as initial value for the iteration. 2



12 4 SOME DECIDABLE CASES4 Some Deidable CasesIn this setion, we prove Theorem 2.10. Assume two disjoint alphabets � and � and some letterb 62 � within this setion. To prove Theorem 2.10, we have to show the deidability of a speial aseof the GSP, i.e., we have to show that the reognizability of IR \ IP� is deidable for reognizablelanguages IR; IP � �� � b�, provided that IP is �nite or some trae of the form � �b+� belongs to IP.Some of our intermediary results also hold for trae monoids of the form �� � ��.In Part 4.1, we onsider some easy propositions whih allow us to redue the GSP to restritedlanguages IR. Then, we onsider two ases of Theorem 2.10. In Part 4.2, we show the deidabilityof the GSP in trae monoids �� � �� restrited to reognizable languages IP � (�+ � �0;:::;n) forsome integer n. This inludes the ase that IP is a �nite subset of �+ � ��.In Part 4.3, we use Hashiguhi's distane automata to show the deidability of the GSP intrae monoids �� � �� provided that some trae of the form � �b+� belongs to IP.4.1 Some Obvious ObservationsFor some �nite language IR � (�����) and any language IP � (�����), the intersetion IR\ IP�is reognizable beause it is �nite. We generalize this obvious fat.Proposition 4.1 Assume two reognizable languages IR; IP � (�����). The intersetion IR\ IP�is reognizable if IR satis�es one of the following onditions:1. We have IR � (�� � �0;:::;n) for some integer n, or2. IR is a onneted language. 2Proof: By Lemma 2.4, NC(IP) and Cn(IP) are reognizable. The onatenation of some traest1; : : : ; tm 2 (�� � ��) for some m yields a non-onneted trae if one of the traes t1; : : : ; tm isnon-onneted. Hene, if IR is onneted, then we have IR\IP� = IR\Cn(IP)� whih is reognizableby the losure properties of reognizable trae languages.Assume that IR satis�es (1). We have IP� = Cn(IP)��NC(IP)Cn(IP)���. Beause every non-onneted trae in �� � �� ontains at least one letter from �, we haveIR \ IP� = IR \ Cn(IP)��NC(IP)Cn(IP)��0;:::;nThis language is reognizable by the losure properties of reognizable trae languages. 2Proposition 4.2 Assume two reognizable languages IR, IP in some trae monoid. Assume someinteger n and reognizable languages IR1; : : : ; IRn with IR1 [ : : : [ IRn = IR. Then, the intersetionIR \ IP� is reognizable i� for i 2 f1; : : : ; ng the intersetion IRi \ IP� is reognizable. 2Proof: For i 2 f1; : : : ; ng, we have IRi \ IP� = IRi \ (IR \ IP�). Hene, reognizability of IR \ IP�implies reognizability of IRi \ IP�. Conversely, we have IR \ IP� = (IR1 \ IP�) [ : : : [ (IRn \ IP�).Thus, reognizability of IRi \ IP� for i 2 f1; : : : ; ng implies reognizability of IR \ IP�. 2From these propositions, we immediately see that for two reognizable languages IR; IP�(�����)the intersetion IR \ IP� is reognizable, provided that NC(IR) is �nite.



4.2 A Deidable Case in �� � �� 134.2 A Deidable Case in �� � ��Now, we work on the GSP for restrited languages IP.Proposition 4.3 Assume two reognizable languages IR; IP � (�� � ��). We an deide whetherIR \ IP� is reognizable if IP � (�+ � �0;:::;n) for some integer n. 2We forbid that the empty trae belongs to IP. However, this is not really a restrition, beauseIP� = (IP n ����)�. Note that Proposition 4.3 inludes the ase that IP is a �nite subset of �+���.Proof: Let [Q;h; F ℄ be some automaton for IR. We have Cn(IP) � (�� � �). We abbreviateCn(IP)�NC(IP)Cn(IP)� by IPCNC. We show the equivalene of three assertions:1. The language IR \ IP� is reognizable.2. There is some integer n0 suh that (IR \ IP�) � (�� � �0;:::;n0).3. The intersetion IR \ IPjQj+1;:::;2jQj+1CNC is empty.� (2))(1) We have IR \ IP� = (�� � �0;:::;n0) \ (IR \ IP�) whih is �(�� � �0;:::;n0) \ IR� \ IP�.By Proposition 4.1 (1), this language is reognizable.� (1))(2) Assume that IR \ IP� is reognizable, but nevertheless, an integer n0 in (2) doesnot exist. By Mezei's Theorem, the intersetion IR \ IP� onsists of �nitely many artesianproduts (K � L) � (�� � ��) with K 6= ; and L 6= ;. Beause an integer n0 in assertion (2)does not exist, we an hoose a artesian produt (K�L) � (IR\ IP�) suh that L is in�nite.Choose some w 2 K. We have (w�L) � (IR\IP�) � IP�. Beause every trae in IP ontainsat least one letter in �, we have (w � L) � IP0;:::;jwj. Beause every trae in IP ontains atmost n ourrenes of letters from �, the length of the words in L annot exeed njwj.This ontradits that L is in�nite.� (2))(3) We assume that the intersetion in (3) is not empty. Consequently, there is aninteger l 2 f jQj+1; : : : ; 2jQj+1 g and there are traes t1; : : : ; tl 2 IPCNC � IP� suh thatt1 : : : tl 2 IR. Beause jQj < l, there are two integers i; j with 0 < i < j � l suh thath(t1 : : : ti) = h(t1 : : : tj). Then, \we an pump h(ti+1 : : : tj)". For k � 0, we haveh(t1 : : : ti) = h(t1 : : : ti)h(ti+1 : : : tj)k and h(t1 : : : tl) = h(t1 : : : ti)h(ti+1 : : : tj)kh(tj+1 : : : tl)This value belongs to F suh that we have (t1 : : : ti)(ti+1 : : : tj)�(tj+1 : : : tl) � IR. We also have(t1 : : : ti)(ti+1 : : : tj)�(tj+1 : : : tl) � IP�, beause t1; : : : ; tl 2 IP�. The traes ti+1; : : : ; tj ontainat least one non-onneted trae, i.e., they ontain one letter from �. Hene, by pumpingti+1 : : : tj , we see that an integer n0 as in assertion (2) annot exist.� (3))(2) Let us assume that an integer n0 does not exist. Every trae in IP ontains at mostn ourrenes of letters in �. However, there are traes in IR \ IP� ontaining arbitrarymany ourrenes of letters in �. Consequently, there are arbitrary big integers l suh thatIPlCNC ontains traes in IR. So assume an integer l � jQj + 1 suh that there are traest1; : : : ; tl 2 IPCNC with t1 : : : tl 2 IR. If l � 2jQj+ 1, then we are done.So assume l > 2jQj + 1. As above, there are two integers i; j with 0 < i < j � jQj + 1 suhthat h(t1 : : : ti) = h(t1 : : : tj). We have j � i � jQj. As above, we have t1 : : : titj+1 : : : tl 2 IR.Hene, t1 : : : titj+1 : : : tl belongs to the intersetion IR \ IPl�j+iCNC . By applying suh a ut asmany times as neessary, we obtain some trae in IR \ IPjQj+1;:::;2jQj+1CNC .Beause the losure properties of reognizable trae languages are e�etive, we an onstrut anautomaton for IR \ IPjQj+1;:::;2jQj+1CNC and deide whether its language is empty. 2



14 4 SOME DECIDABLE CASES4.3 Another Deidable Case in �� � b�In this part, we omplete the proof of Theorem 2.10 by showing the following proposition:Proposition 4.4 Assume two reognizable languages IR; IP � ��� b� suh that IP ontains sometrae of the form � �b+�. We an deide whether the intersetion IR \ IP� is reognizable. 2Proof: We an split IR into NC(IR) and Cn(IR). By Proposition 4.2 and 4.1 (2), it suÆes toonsider the intersetion NC(IR) \ IP�. Hene, we assume that IR ontains only non-onnetedtraes in the rest of the proof.By Mezei's Theorem, we an split IR into �nitely many artesian produts and apply Proposi-tion 4.2. Consequently, it suÆes to onsider the ase that IR = K � L for reognizable languagesK � �� and L � b�. We have � 62 K [ L, beause IR ontains not any onneted trae.If L is �nite, we know by Proposition 4.1 (1) that IR \ IP� is reognizable. Hene, it suÆes toonsider in�nite languages L in the rest of the proof.By Lemma 3.2, we an split L into a �nite language and �nitely many languages of the formbm(bz)� for some integers m; z > 0. By splitting L, we an split IR to use Proposition 4.2, again.Hene, it suÆes to onsider languages L = bm(bz)� for some integers m; z > 0.We an assume � �bz� 2 IP�. If � �bz� 62 IP�, then we proeed as follows: Assume some n > 0 suhthat � �bn� 2 IP. The language L is the union of the languages bm+jz(bnz)� for j 2 f0; : : : ; n � 1g.Then, � �bnz� 2 IP�. As above, we an split IR by splitting L and use Proposition 4.2.Now, we transform the language IP into a reognizable language IP0 with IR \ IP� = IR \ IP0�suh that IP0 satis�es some additional properties.IP0 = Cn(IP)�NC(IP)Cn(IP)� [ NC(Cn(IP)�)By Lemma 2.4, both Cn(IP) and NC(IP) are reognizable. Hene, by the losure properties ofreognizable trae languages, the language IP0 is reognizable.Of ourse, we have IP0 � IP�, and thus, IP0+ � IP�. Further, every trae in IP0+ is non-onnetedsuh that we have IP0+ � NC(IP�). Assume some trae t 2 NC(IP�). There is some integer n > 0and traes t1; : : : ; tn 2 IP with t1 : : : tn = t. If t1; : : : ; tn 2 Cn(IP), then we have t = t1 : : : tn 2NC(Cn(IP)�) � IP0 � IP0+. Otherwise, we have t 2 IP0k, where k is the number of non-onnetedtraes among t1; : : : ; tn. Hene, we have NC(IP�) � IP0+, i.e., we have NC(IP�) = IP0+. Beausethere are only non-onneted traes in IR and in partiular ���� 62 IR, we have IR \ IP� = IR \ IP0�.Consequently, we an deide whether IR \ IP� is reognizable by deiding whether IR \ IP0� isreognizable.Let P0; P1; : : : be the unique family of languages in �� suh thatIR \ IP0� = �P0bm� [ � P1bm+z� [ � P2bm+2z� [ : : :Beause every trae in IP0 ontains the letter b, we have for any integer iIR \ IP0 0;:::;m+iz \ � ��bm+iz� = � Pibm+iz�Hene, � Pibm+iz� and by Mezei's Theorem Pi are reognizable for any integer i.Beause ��bz� 2 Cn(IP)�, we have IP0��bz� � IP0. Beause L = bm(bz)�, we have IR��bz� � IR.Thus, for every �uv� 2 IR \ IP0�, we have �uv���bz� 2 IR \ IP0�. Hene, we have P0 � P1 � P2 : : :We show the equivalene of four assertions:



4.3 Another Deidable Case in �� � b� 151. IR \ IP0� is reognizable.2. There is some integer l suh that for i � l we have Pl = Pi.Below, we will state assertion (3) and (4). If the integer l in (2) exists, then we haveIR \ IP0� = �P0bm� [ : : : [ � Pl�1bm+(l�1)z� [ � Plbm+lz(bz)��whih is reognizable by Mezei's Theorem.Conversely, assume that the integer l in (2) does not exist. Let i1; i2; : : : an in�nite sequene ofintegers suh that the languages Pi1 ; Pi2 ; : : : are mutually di�erent. Then, the homomorphism insome automaton for IR\ IP0� has to map the traes � �bm+iz� for i 2 fi1; i2; : : :g to mutually di�erentstates, i.e., any automaton for IR \ IP0� has in�nitely many states. Hene, suh an automatonannot exist, and thus, IR \ IP0� is not reognizable.In the rest of proof, we onsider the deidability of the existene of the integer l in assertion (2).By Mezei's Theorem, we have IP0 = (K1 � L1) [ : : : [ (Kk � Lk) for some integer k and reog-nizable languages K1; L1; : : : ;Kk; Lk. We have � 62 K1; L1; : : : ;Kk; Lk. By Mezei's Theorem andLemma 2.2, we onstrut automata for K;K1; : : : ;Kk as follows: We onstrut a �nite monoid P ,a surjetive homomorphism g : �� ! P , and subsets G;G1; : : : ; Gk � P with K = g�1(G) andKi = g�1(Gi) for i 2 f1; : : : ; kg. We also onstrut a �nite monoid Q, a surjetive homomorphismh : b� ! Q, and sets F; F1; : : : ; Fk � Q with L = h�1(F ) and Li = h�1(Fi) for i 2 f1; : : : ; kg.We onstrut a distane automaton whih is limited in distane i� some integer l in (2) exists.However, at �rst, we onstrut some transition automaton A with (possibly) in�nitely many edgesas a preliminary tool to explain the idea. Its set of states is P �Q. Its initial state is ��P�Q�, where�P and �Q are the identities in P and Q, respetively. Its set of aepting states are G�F , i.e., theartesian produt of the aepting states of the automata forK and L. For every state �pq� 2 (P�Q)and every trae �uv� 2 IP0, we insert an edge ��pq�; u; �p�g(u)q�h(v)��. Probably, A has in�nitely many edges,i.e., A is not neessarily a transition automaton. Nevertheless, we an use the terms \path in A",\aepting path in A". . . We state assertion (3).3. There is some integer n suh that any word whih A aepts is the label of a path whihonsists of at most n edges.Before we show the equivalene (2),(3), we show that A aepts exatly the words whih are �rstomponents of traes in IR \ IP0�, i.e., the language of A is the union P0 [ P1 [ : : : Assume someinteger i and some �uv� 2 IP0i. Clearly, there is a path in A from ��P�Q� to �g(u)h(v)� whih onsists of iedges and is labeled with u. If additionally �uv� 2 IR, then we have g(u) 2 G and h(v) 2 F , andthus, A aepts u.Conversely, assume some integer i and some path in A from ��P�Q� to some state �pq� whihonsists of i edges and is labeled with some word u. Then, we have p = g(u) and there is sometrae �uv� 2 IP0i with h(v) = q. If additionally �pq� 2 F �G, then �uv� 2 IR, and thus, �uv� 2 IR \ IP0i.We show (2))(3). Let n = m+ lz. Assume some word w 2 L(A). We have w 2 Pl, and thus,� wbm+lz� 2 IR \ IP0�. Beause the letter b ours in every trae in IP0, we have � wbm+lz� 2 IP01;:::;m+lz.Hene, A aepts w by a path onsisting of at most m+ lz edges.We show (3))(2). Choose some integer l suh that m + lz � njQj. Assume some wordw 2 P0 [ P1 : : : There is some n0 � n suh that A aepts w by a path onsisting of n0 edges.Hene, there are traes t1; : : : ; tn0 2 IP0 suh that t1 : : : tn0 2 IR \ IP0� and the �rst omponent oft1 : : : tn0 is w. For i 2 f1; : : : ; n0g, we denote ti = �uivi�. By Lemma 3.1, there is some word v0i 2 b�suh that jv0ij < jQj and h(vi) = h(v0i), for i 2 f1; : : : ; n0g. Let t0i = �uiv0i�. We have t01 : : : t0n0 2 IR,beause h(vi) = h(v0i). The �rst omponent of t01 : : : t0n0 is w. The seond omponent of t01 : : : t0n0onsists of less than n0jQj letters, i.e., less than njQj letters. Hene, we have w 2 Pl.



16 4 SOME DECIDABLE CASESIt remains to show the deidability of the existene of the integer n in assertion (3). We onstruta distane automaton A0 whih is limited in distane i� the integer in assertion (3) exists.The distane automaton A0 has the same states, initial state, and aepting states as A. It hasbeside the states of A some additional states. Assume any two states �pq�; �p̂̂q� 2 P �Q. Above, weinserted probably in�nitely many edges between these two states. We examine the set of all edgelabels of edges (i.e. paths of length one) between �pq� and �p̂̂q� in A. We de�neT = [for any p02P; q02Q with pp0=p̂; qq0=q̂;and p02Gi; q02Fi for some i2f1;:::;kg g�1(p0)Assume some edge ��pq�; u; �p̂̂q�� in A. There is some v 2 b� suh that �uv� 2 IP0 and �p̂̂q� = �p�g(u)q�h(v)�.To verify u 2 T , we set p0 = g(u) and q0 = h(v). We have �uv� 2 IP0, i.e., there is some i 2 f1; : : : ; kgwith �uv� 2 Ki � Li. Then, we have p0 = g(u) 2 Gi and q0 = h(v) 2 Fi.Conversely, assume some u 2 T . Let p0 = g(u). Choose some q0 whih satis�es the propertiesin the expression for T . Beause h is a surjetion, there is some v 2 �� with h(v) = q0. There issome i 2 f1; : : : ; kg with p0 = g(u) 2 Gi and q0 = h(v) 2 Fi. Hene, �uv� 2 (Ki � Li) � IP0. Thus,there is some edge ��pq�; u; �p�g(u)q�h(v)��, i.e., ��pq�; u; �p̂̂q�� in A.Consequently, for any word u 2 ��, there is some edge ��pq�; u; �p̂̂q�� in A i� u 2 T .We an onstrut a transition automaton for T . We onstrut some transition automaton for Twith exatly one aepting state suh that the initial state has no inoming edges and the aeptingstate has no outgoing edges. Further, its edge labels are single letters from �. Instead of insertingin�nitely many edges between �pq� and �p̂̂q�, we insert the transition automaton for T between thesestates, i.e., �pq� and �p̂̂q� are its initial and aepting state. The transition automaton for T simulatesthe formerly in�nitely many edges between �pq� and �p̂̂q�. The edges to �p̂̂q� get the distane 1, allother edges get the distane 0.We proeed this for every pair of states �pq�; �p̂̂q� 2 P �Q. We obtain the distane automaton A0with the same language as A but �nitely many edges. We state assertion (4).4. The distane automaton A0 is limited in distane.We an easily verify (3),(4). Moreover, if both (3) and (4) are true, then the least integer n tosatisfy (3) is exatly the biggest value Æ(w) for w 2 L(A0) = L(A). We an deide by Theorem 3.3whether assertion (4) is true. Hene, we an deide the reognizability of IR \ IP0�. 2



175 Some Undeidable Cases5.1 The Problem in �� � b� in generalAlthough we worked very hardly in the previous setion, there are ases whih remained open.Surprisingly, improving Proposition 4.4 by utting the presumption that some trae of the form� �b+� belongs to IP is not possible, beause the problem beomes undeidable.Within this subsetion, we onsider an alphabet � and piture languages over �. We furtheronsider the alphabet � = �[f#;&g. Assume two integers n;m � 1 and a piture p over � of thesize (m;n). A word w 2 �� represents p i� w onsists of the lines of p̂ with & as separators, i.e.,w = &#n+2 &#p1;1 : : : p1;n# &#p2;1 : : : : : : pm;n# &#n+2 &We de�ne some language IK � �� byIK = &#3#��&#�+#�+&#3#�&:The language IK is reognizable. The words in IK are not neessarily representations of pituresover �, beause \the lines an have di�erent lengths".We all some trae t 2 ���b� fair i� t = �(&#n(&#�n�2#)+&#n&bn � for some n � 3. The �rstomponent of every fair trae represents a piture over �. Moreover, for every piture p over �there is exatly one fair trae whose �rst omponent represents p.We de�ne a transition automaton A. It has the states start, hk (for hek), and a. The statesstart and a are the initial and aepting state, respetively. The instrutions (edges) of A are:0. [start; ���nIKb� �; a℄1. [start; ���&� �; hk℄2. [hk; ��[#b �; hk℄3. [hk; �&��b+ �; a℄4. [hk; �(�[#)��� �; a℄Lemma 5.1 Assume some trae t2(���b�). The automaton A aepts t i� t is not fair. 2Proof: Assume a trae t2 (���b�) whih is not fair. If the �rst omponent of t does not belongto IK, then A aepts t by instrution (0). Otherwise, there are two words w1; w3 2 �� and a wordw2 2 (� [#)+, suh that t = �w1&� ��w2v ��&w3� � and jw2j 6= jvj. At �rst, the automaton parses �w1&� �using instrution (1). Then, it uses instrution (2) as many times as possible. Then, depending onwhether jw2j < jvj or jw2j > jvj, it uses instrution (3) or (4), resp., to terminate.Conversely, assume some trae t 2 (���b�) suh that A aepts t. If A uses instrution (0),then t annot be fair. Assume A starts with (1). Then, it uses instrution (2) several times, and itterminates with instrution (3) or (4). After using instrution (1), A has parsed a trae of the form�w1&� � for some w1 2 ��. Then, A uses several times instrution (2). Let n 2 IN be the numberhow often A uses instrution (2). Thus, it parsed some trae �w1&w2bn � for some w2 2 (� [ #)n.After that, the automaton terminates using instrution (3) or (4). If it uses (3), then it parsed a�rst omponent with a subword &w2& with jw2j = n. However, beause it used instrution (3)there are more than n letters  in the seond omponent. If it uses instrution (4), then there issome subword w2x 2 (� [ f#g) in the �rst omponent, but, there are n letters b in the seondomponent. Either way, t is not fair. 2



18 5 SOME UNDECIDABLE CASESNow, we extend the automaton A. We assume a loal representation � over �. We extend theautomaton A suh that it aepts not only the unfair traes but also the fair traes whose �rstomponent enodes a piture whih does not belong to L(�).We use one heap trik. We do not use �. Assume a letter $ 2 � whih does not our in �.By Lemma 3.5, we onstrut a loal representation �0 for the piture language L(�) Æ f$g��.The language L(�0) is either empty or it ontains pitures of arbitrary width. We extend A suhthat it aepts the unfair traes and the fair traes whose �rst omponent enodes a piture whihdoes not belong to L(�0).We de�ne the automaton A�0 . It has the same states as A and additionally, for every two lettersa;  2 � [#, the state hka. The instrutions of A�0 are the instrutions of A and additionally:5. [start; ���ab �; hka℄ for every a;  2 � [#6. [hka; ��b�; hka℄ for every a;  2 � [#7. [hka; �de��� �; a℄ for every a; ; d; e 2 � [# with � a d e� 62 �0Lemma 5.2 Assume some trae �wv� 2 (�� � b�). The automaton A�0 aepts �wv� i� either� �wv� is not fair, or� �wv� is fair and w enodes some piture p 2 ��� with p 62 L(�0). 2Proof: If �wv� is not fair, then A�0 aepts �wv� as A aepts this trae (f. Lemma 5.1).Let us assume that �wv� is fair, and w enodes a piture p 62 L(�0). Let (m;n) denote the sizeof p. Then, we have v = bn+2. There are integers i, j with 0 � i � m and 0 � j � n suh that� p̂i;j p̂i;j+1p̂i+1;j p̂i+1;j+1� 62 �0. We denote p̂i;j, p̂i;j+1, p̂i+1;j, and p̂i+1;j+1 by a, , d, and e, respetively.We fatorize w. There are w1; w2; w3 2 �� suh that jw2j = n+1 and w = w1aw2dew3. Hene,A�0 an aept �wv� by using instrution (5) [start; �w1ab �; hka℄, then using instrution (6) n + 1times, and �nally using (7) [hka; �dew3� �; a℄.Conversely, assume some trae �wv� whih A�0 aepts. If �wv� is not fair, then we are done.We onsider the ase that t is fair, i.e., t enodes some piture p. Let (m;n) be the size of p.Then, v = bn+2.The automaton A�0 annot aept �wv� by instrution (0) or by a run starting with (1). Hene,it suÆes to onsider the ase that A�0 aepts �wv� by starting with instrution (5). Then, Aaepts �wv� by a run using instrution (5) one, several times instrution (6), and one instru-tion (7). Beause v = bn+2, it has to use instrution (6) exatly n+ 1 times. Then, there are fourletters a; ; d; e from the instrutions (5) and (7) in the run of the automaton and there are wordsw1; w2; w3 2 �� suh that w = w1aw2dew3 and jw2j = n + 1. Hene, the letters a; ; d; e form asubpiture in p̂ of size (2; 2) whih does not belong to �0, i.e., p 62 L(�0). 2Now, we an show the following onnetion:Proposition 5.3 The language of A�0 is reognizable i� L(�) is empty. 2Proof: Assume that L(�) is empty. Then, L(�0) is also empty. Thus, A�0 aepts the ompletemonoid �� � b� whih is a reognizable language.Conversely, assume that L(�) is not empty, but nevertheless, L(A�0) is reognized by the auto-maton [Q;h; F ℄. Beause L(�0) = L(�) Æ f$g��, the language L(�0) ontains pitures of arbitrarywidth. Hene, we an hoose p; s 2 L(�0) with wdt(p) 6= wdt(s) suh that h�wp� � = h�ws� �, wherewp and ws are the words whih enode p and s, respetively. We have h� wpbwdt(p)+2� = h� wsbwdt(p)+2�.Thus, either both or none of the traes � wpbwdt(p)+2� and � wsbwdt(p)+2� belongs to L(A�0). However,� wpbwdt(p)+2� 62L(A�0) by Lemma 5.2. On the other hand � wsbwdt(p)+2�2L(A�0), beause it is not fair. 2



5.1 The Problem in �� � b� in general 19Based on A�0 , we de�ne the reognizable language IP. We introdue a new letter k 62 � and onsiderthe monoid (�[k)�� b�. We denote by � the homomorphism � : �(�[k)�� b��!(��� b�) whiherases the letter k. Note that � is a onneted homomorphism. Hene, �(T ) yields a reognizablelanguage for reognizable languages T .Let n = j(� [#)j2 + 2. Hene, we an assign for a;  2 (� [#) the state hka and the statehk a number between 1 and n� 1.Now, we de�ne the language IP by de�ning several languages whose union yields IP. We areinterested in traes whose �rst omponent is of the form (�k�)��. We distinguish two kinds ofthese traes: well-formed traes whih are traes whose �rst omponent is (�kn)��, and trash-traes, i.e., traes whose �rst omponent belongs to (�k�)�� n (�kn)��. We de�ne a so-alledtrash language IPT .IPT = �(�k�)�� n (�kn)��b� �The traes in IPT are not well-formed. Moreover, the onatenation of any trae in IPT and anyother trae yields a trae in IPT , i.e., there are not any well-formed traes in �(�[k)�b� �IPT �(�[k)�b� �.We de�ne IP0. It onsists of well-formed traes.IP0 = n �uv� 2 �(�kn)��b� � �����uv� 2 ��� n IKb� �o = �(�kn)��b� � \ ��1��� n IKb� �The language IP0 is related to instrution (0) of the automaton. Aordingly, we de�ne IP1; : : : ; IP4.IP1 = �(�kn)�&k� � IP2 = �kn�1(�[#)kb � IP3 = �kn�1&(kn�)�b+ � IP4 = �kn�1(�[#)(kn�)�� �Before we ontinue to de�ne IP, we examine the parts of IP whih we already de�ned. Let IPT;:::;4denote the union IPT [ IP0 [ : : : [ IP4. We examine the well-formed traes in IP�T;:::;4. We annotobtain a well-formed trae if we onatenate some traes in IPT;:::;4 and we use a trae in IPT .Moreover, we easily see that the well formed traes in IP�T;:::;4 are the traes in IP0 and the traesin IP1IP�2(IP3 [ IP4). Consequently, we have natural onnetion between the well-formed traes inIP�T;:::;4 and the paths of A. Therefore, if we erase the letter k in some well-formed trae in IP�T;:::;4,then we either obtain an unfair trae (f. Lemma 5.1). Moreover, by applying � on the well-formedtraes in IP�T;:::;4 we obtain any unfair trae.Now, we de�ne the remaining parts of IP. For every a;  2 � [ #, we de�ne three languagesIP5;a, IP6;a, and IP7;a. For every a;  2 � [#, we hoose some distint 1 < z < n.IP5;a = �(�kn)aknkzb � IP6;a = �kn�z�kzb �IP7;a = n �kn�zdkze(kz�)�� � ��� d; e 2 (� [#) with � a d e� 62 �0 oNow, we de�ne IP as the union:IP = IPT [ IP0 [ : : : [ IP4 [ Sa;2(�[#)(IP5;a [ IP6;a [ IP7;a)The language IP is reognizable, beause it is the union of �nitely many reognizable languages.We examine the well-formed traes in IP�. We have�(�kn)��b� � \ IP� = IP0 [ IP1IP�2IP3 [ IP1IP�2IP4 [ Sa;2(�[#)(IP5;aIP�6;aIP7;a)Remark 5.4 Consequently, there is a orrespondene between the well-formed traes in IP� and theaepting paths in A�0 . For every well-formed trae �uv� 2 IP�, we have ��uv� 2 L(A�0). Conversely,for every t 2 L(A�0), there is some well-formed trae �uv� 2 IP� suh that ��uv� = t. 2



20 5 SOME UNDECIDABLE CASESNow, we an show the following onnetion:Proposition 5.5 The intersetion �(�k�)��b+ � \ IP� is reognizable i� L(A�0) is reognizable. 2Proof: We split �(�k�)��b+ � into two reognizable languages by �(�k�)��b+ � = IPT [ �(�kn)��b+ � and applyProposition 4.1. We have IPT \ IP� = IPT , i.e., IPT \ IP� is reognizable. Hene, �(�k�)��b+ � \ IP� isreognizable i� the set of the well-formed traes in IP� is reognizable. Consequently, it suÆes toshow that the set of the well-formed traes in IP� is reognizable i� L(A�0) is reognizable.Assume that �(�kn)��b+ � \ IP� is reognizable. By Remark 5.4, we haveL(A�0) = ���(�kn)��b+ � \ IP��Beause � preserves reognizability, L(A�0) is reognizable. Conversely, assume L(A�0) is reog-nizable. By Remark 5.4, we have�(�kn)��b+ � \ IP� = �(�kn)��b+ � \ ��1(L(A�0))The set ��1(L(A�0)) is reognizable beause of the losure of reognizable sets under inversehomomorphisms. We immediately see that �(�kn)��b+ � \ IP� is reognizable. 2From Theorem 3.4, Lemma 5.3, Proposition 5.4, we obtain the following orollary:Corollary 5.6 Assume some alphabet � and two letters b; k 62 �. It is not deidable whether fora reognizable language IP � (� [ k)� � b�, the intersetion �(�k�)��b� � \ IP� is reognizable. 2Finally, we boil down this result to P3.Theorem 5.7 It is not deidable whether for some reognizable language IP � fa; g� � b�, theintersetion �(a�)�ab� � \ IP� is reognizable. 2Proof: Assume suh an algorithm. Then, we an ontradit Corollary 5.6. Assume �, b, k,and IP as in Corollary 5.6. We show how to deide whether �(�k�)��� � \ IP� is reognizable.Let h : (� [ k)� ! fa; g� be an injetive homomorphism with h(k) 2 (a�)� and h(�) � (a�)�a.We extend h to an injetive and onneted homomorphism h : (� [ k)� � b� ! fa; g� � b� bysetting h��b� = ��b�. Then, �(�k�)��b� � \ IP� is reognizable i� h��(�k�)��b� � \ IP�� is reognizable.We have h��(�k�)��b� � \ IP�� = h�(�k�)��b� � \ h(IP)� = �(a�)�ab� � \ h(IP)�We an deide reognizability of the last set by the assumed algorithm. 25.2 The Problem in �� � ��In this part, we onsider the problem whether IR \ IP� is reognizable for reognizable languagesin trae monoids of the form �� � ��. We assume a PCP-instane onsisting of alphabets � and� and bipre�x homomorphisms �; � : �� ! ��. We assume j�j = 2. Let l be an integer suh thatfor every i 2 �, we have j�(i)j < l and j�(i)j < l.In our onstrutions, below, it will be more onvenient to onsider monoids �����. Note thatthe monoid �� ��� is isomorphi to a trae monoid �� � �� where � is any disjoint opy of �.Similar to the previous part, we onstrut some automaton step by step. At �rst, we onsideran automaton A with the states start, loop1, and err. The states start and err are the initial andaepting state, respetively. The instrutions (edges) of A are:



5.2 The Problem in �� � �� 210. [start; ����; loop1℄1. [loop1; �aa�; loop1℄ for every a 2 �2. [loop1; �ab�; err℄ for every a; b 2 � with a 6= b3. [err; �a��; err℄ and [err; ��a�; err℄ for every a 2 �Lemma 5.8 Assume some trae �uv�2(�����). The automaton A aepts �uv� i� u u= v. 2Proof: Assume that u and v are not pre�x onsistent, i.e., there are x; u0; v0 2 �� and a 6= b 2 �suh that �uv� = �xau0xbv0�. Then, A aepts �uv� by instrution (0), several times instrution (1) toparse �xx�, instrution (2) to parse �ab�, and several times instrution (3) to parse �u0v0�.Conversely, if u u v, then A is fored to use instrution (0) and several times instrution (1),i.e., it remains in the state loop1. 2We de�ne the automaton A0 by adding a state loop2 and some edges to A:4. [start; ����; loop2℄5. [loop2; ��(i)�(i)�; loop2℄ for every i 2 �6. [loop2; �uv�; err℄ for u; v 2 �1;:::;l with �uv� u= ��(i)�(i)� for every i 2 �Lemma 5.9 The automaton A0 aepts some trae �uv�2(�����) i� one of the following onditionsis true:(A) u u= v,(B) for every w 2 �� with ��(w)�(w)� u �uv�, we have �(w) < u and �(w) < v. 2Proof: At �rst, we show that if u and v satisfy (A) or (B), then A aepts �uv�. If u and v satisfyondition (A), then A0 aepts �uv� as A does (f. Lemma 5.8).Assume that u and v satisfy (B). Let w 2 �� be the longest word with ��(w)�(w)� u �uv�. The wordw is unique, beause � and � are bipre�x homomorphisms.There are non-empty words u0; v0 2 �+ suh that �uv� = ��(w)u0�(w)v0�. Assume there is an i 2 �suh that ��(i)�(i)� u �u0v0�. Then, we also have ��(wi)�(wi)� u �uv�. If u0 < �(i) or v0 < �(i), then we haveu < �(wi) or v < �(wi) whih ontradits ondition (B). Hene, we have �(i) v u0 and �(i) v v0.Then, we have ��(wi)�(wi)� v �uv� whih ontradits the hoie of the longest word w. Thus, for everyi 2 �, we have ��(i)�(i)� u= �u0v0�.Above, we de�ned an integer l suh that j�(i)j < l and j�(i)j < l for i 2 �. We fatorizeu0 into u1; u2 2 �� suh that ju1j = minfju0j; lg. Aordingly, we fatorize v0 into v1; v2 2 ��.We have �uv� = ��(w)u1u2�(w)v1v2 �. Beause for every i 2 �, we have ��(i)�(i)� u= �u0v0�, we also have ��(i)�(i)� u= �u1v1�.Consequently, there is some instrution (6) [loop2; �u1v1�; err℄ in A0.Now, it is immediate that A0 aepts �uv� = ��(w)u1u2�(w)v1v2 �. It uses instrution (4) and jwj timesinstrution (5) to parse ��(w)�(w)�. Then, it uses instrution (6) to parse �u1v1� and several times instru-tion (3) parse �u2v2� and to terminate.Conversely, assume words u; v 2 �� suh that A0 aepts �uv�: If A0 aepts �uv� by run whihuses just the instrutions (0) to (3), then u and v are not pre�x onsistent. Hene, we just have toonsider the ase that A0 aepts �uv� by a run (4)(5)�(6)(3)�. Therefore, we have �uv� = ��(z)u1u2�(z)v1v2 �



22 5 SOME UNDECIDABLE CASESfor some z 2 ��, u1; v1 2 �+, and u2; v2 2 ��, and A0 parsed ��(z)�(z)�, �u1v1�, and �u2v2� by instrutions(5) (jzj times), instrution (6), and (3) respetively.We show that u and v satisfy ondition (B). Assume some word w 2 �� with ��(w)�(w)� u ��(z)u1u2�(z)v1v2 �.If jwj � jzj, then we have w v z, beause � and � are bipre�x homomorphisms. Then, we have�(w) v �(z) < �(z)u1u2 = u and �(w) v �(z) < �(z)v1v2 = v, i.e., (B) is veri�ed. So assumethat jzj < jwj. We have z < w. Choose the i 2 � suh that zi v w. From ��(w)�(w)� u ��(z)u1u2�(z)v1v2 �, wehave ��(zi)�(zi)� u ��(z)u1u2�(z)v1v2 �. Then, we also have ��(i)�(i)� u �u1u2v1v2 � and ��(i)�(i)� u �u1v1�. Thus, A0 annot parse�u1v1� by instrution (6) as we assumed, above. Consequently, there is not any word w 2 �� with��(w)�(w)� u �uv� and jzj < jwj. 2Lemma 5.10 If the PCP instane has no in�nite solution, then there is some integer n suh thatA0 aepts every trae �uv� 2 ����� with juj � n and jvj � n. 2Proof: If the PCP instane has no in�nite solution, then there are only �nitely many wordsw 2 �� suh that �(w) u �(w) (f. Lemma 3.7). Let n0 be an integer suh that for every w 2 ��with jwj � n0, we have �(w) u= �(w). Let n = n0l.Assume words u; v 2 �� with juj � n and jvj � n. If u u= v, then A0 aepts �uv� (f. ondition (A)of Lemma 5.9). Assume uu v. We show that u and v satisfy ondition (B) in Lemma 5.9. Assumesome w 2 �� suh that ��(w)�(w)� u �uv�. If jwj < n0, then j�(w)j < n. Beause juj � n, we have�(w) < u. Aordingly, we have �(w) < v. Assume jwj � n0. Let w0 be the pre�x of w withjw0j = n0. Then, we have �(w0) u= �(w0). We have ��(w0)�(w0)� u �uv�. We have j�(w0)j � n and n � juj,i.e., we have �(w0) v u. Aordingly, we obtain �(w0) v v. This ontradits that u and v are pre�xonsistent. Consequently, u and v satisfy ondition (B) in Lemma 5.9. 2Lemma 5.11 If the PCP instane has a an in�nite solution, then there is an in�nite sequene ofwords u1 < u2 < : : : 2 �� and for every integers 0 < i < j there is some word v suh that A0 doesnot aept �uiv �, but A0 aepts �ujv �. 2Proof: Let i1i2 : : : be an in�nite solution. We hoose a sequene w1 < w2 : : : 2 �� of pre�xesof i1i2 : : : suh that for every i > 0, we have j�(wi)j < j�(wi+1)j, i.e., we have �(wi) < �(wi+1).We set for i > 0, ui = �(wi). Then, we have u1 < u2 < : : :Assume some 0 < i < j. We show the existene of the desired word v 2 ��. Let z be the longerword of �(wi) and �(wi). We have �(wi) v z, �(wi) v z, and z < �(wj). Let a 2 � be a lettersuh that �(wj) u= za. Let v = za.The trae �uiv � = ��(wi)za � does not satisfy ondition (A) in Lemma 5.9, beause �(wi) v z < za.It does not satisfy (B), beause we have ��(wi)�(wi)� u ��(wi)za � but we have not �(wi) < �(wi). Hene,A0 does not aept �uivi� = ��(wi)za �. However, it aepts �ujvi� = ��(wj)za �, beause �(wj) u= za. 2Now, we an de�ne suitable languages. . .We enrih � by new letters s, l1, l2, and e whih standfor start, loop1, loop2, and err, respetively. We set � = � [ fs; l1; l2; eg, and examine reognizablelanguages in �� � ��. We de�neIR = �(el1l2s�)+e(el1l2s�)+e� � �� � ��We further de�ne �nite languages IP0; : : : ; IP6 � �� � �� whih orrespond to the instrutions (0)to (6) of A0. Let IP = IP0 [ : : : [ IP6.IP0 = n�el1el1�oIP1 = n �l2sael1l2sael1� ��� a 2 �o



5.2 The Problem in �� � �� 23IP2 = n �l2sael2sbe� ��� a; b 2 �; a 6= boIP3 = n �l1l2sae� � ��� a 2 �o [ n � �l1l2sae� ��� a 2 �oIP4 = n�el1l2el1l2�oTo de�ne IP5 and IP6, we introdue a mapping  : �+ ! �+. For any a 2 � and any w 2 �+, wede�ne (a) = a and (wa) = (w) el1l2s a. For instane, we have (ab) = a el1l2s b el1l2s .IP5 = n �s(�(i))el1 l2s(�(i))el1 l2� ��� i 2 �oIP6 = n �s(u)es(v)e� ���u; v 2 �1;:::;l with �uv� u= ��(i)�(i)� for every i 2 �oThere is an obvious orrespondene between the traes in IR \ IP� and the runs of A0. It aeptssome trae �uv� 2 (�� ���) i� �el1l2s(u)eel1l2s(v)e� 2 IR \ IP�. Hene, we obtain the following proposition:Proposition 5.12 The set IR\ IP� is reognizable i� the PCP instane has no in�nite solution. 2Proof: Assume that the PCP instane has no in�nite solution. By Lemma 5.10, there is some nsuh that A0 aepts any trae �uv� 2 (�����) if both juj � n and jvj � n. To show reognizabilityof IR \ IP�, we split IR into three reognizable languagesIR1 = IR \ ��0;:::;5n�� � IR2 = IR \ � ���0;:::;5n� IR3 = IR \ ��5n+1���5n+1���By Proposition 4.2 and 4.1, it suÆes to show that IR3\IP� is reognizable. We show reognizabilityof IR3 \ IP� by showing IR3 \ IP� = IR3, i.e., we show IR3 � IP�. Indeed, every trae in IR3 is of theform �el1l2s(u)eel1l2s(v)e� for some u; v 2 �� with juj � n and jvj � n. By Lemma 5.10, A0 aepts �uv�, andthus, we have �el1l2s(u)eel1l2s(v)e� 2 IP�. Consequently, IR3 � IP�.Conversely, assume that the PCP instane has an in�nite solution, but nevertheless, IR\ IP� isreognized by some automaton [Q;h; F ℄. Let u1 < u2 : : : be an in�nite sequene as in Lemma 5.11.We hoose two integers 0 < i < j suh that h�el1l2s(ui)e� � = h�el1l2s(uj)e� �. Then, for every wordv 2 �+, the automaton [Q;h; F ℄ aepts either none or both of the traes �el1l2s(ui)eel1l2s(v)e � and �el1l2s(uj)eel1l2s(v)e �.Hene, for any v 2 �+, A0 aepts either both or none of the traes �uiv � and �ujv �. This ontraditsLemma 5.11. 2Proof of Theorem 2.8(2): By Proposition 5.12 and Theorem 3.6, it is undeidable whether forsome �nite language IP � (�� � ��) the intersetion IR \ IP� is reognizable. By hoosing someonneted and injetive homomorphism from �� � �� to C4, we obtain Theorem 2.8(2). 2Remark 5.13 For instane, we an use the homomorphism h : (�� � ��) ! (fa; g� � fb; dg�)whih maps �e��, �l1��, �l2��, �s��, �a��, �b�� to �aa� �, �aba� �, �abb� �, �ba� �, �bba� �, �bbb� �, and the traes in �� �similarly to traes in � �fb;dg��. 2We make some slight modi�ations to prove Theorem 2.8(3). We de�ne so-alled trash languagesPT = Sx;y2�; xy=2fel1; l1l2; l2s; s�;�eg��xy�� IPT = ���PT � [ �PT���



24 5 SOME UNDECIDABLE CASESClearly, PT and IPT are in�nite reognizable languages in �� and �� � ��, respetively. We de�neanother languageIP0 = IP [ IPT [ f�l1��; ��l1�; �l1l2� �; � �l1l2�gNow, we an show the following Proposition:Proposition 5.14 The intersetion �e���� �\ IP0� is reognizable i� the PCP instane has no in�nitesolution. 2Proof: At �rst, we assume that the PCP instane has an in�nite solution, but �e���� � \ IP0�is reognized by some automaton [Q;h; F ℄. There is some in�nite sequene u1 < u2 < : : : byLemma 5.11. We hoose 0 < i < j suh that h�el1l2s(ui)e� � = h�el1l2s(uj)e� �. By Lemma 5.11,there is some word v 2 �� suh that A0 aepts �ujv �, but it does not aept �uiv �. Beause A0aepts �ujv �, we have �el1l2s(uj)eel1l2s(v)e � 2 (IR \ IP�) � (�e���� � \ IP0�). We have hosen i and j suh thath�el1l2s(ui)e� � = h�el1l2s(uj)e� �. Consequently, we have �el1l2s(ui)eel1l2s(v)e � 2 (�e���� � \ IP0�).We examine some fatorization of �el1l2s(ui)eel1l2s(v)e � into traes from IP0. There are some integer kand traes t1; : : : ; tk 2 IP0 suh that t1 : : : tk = �el1l2s(ui)eel1l2s(v)e �. Clearly, t1; : : : ; tk 62 IPT . We hoose thebiggest integer k0 � k suh that t1; : : : ; tk0 2 IP. We have t1; t2 2 IP, i.e., k0 � 2.Now, we show that we have t1 : : : tk0 2 (IR \ IP�). It suÆes to show t1 : : : tk0 2 IR. If k0 = k,then we have t1 : : : tk0 = t1 : : : tk = �el1l2s(ui)eel1l2s(v)e � 2 IR. So assume k0 < k. We examine t1 : : : tk0 .We have tk0+1 2 f�l1��; ��l1�; �l1l2� �; � �l1l2�g. Consequently, one of the two last letters of t1 : : : tk0 is theletter e, i.e., the �rst or the seond omponent of t1 : : : tk0 ends with the letter e. By an indutionon t1, t1t2, . . . , t1t2 : : : tk0, we an show that the �rst and the seond omponent of t1 : : : tk0 endwith the same letter. Consequently, both omponents of t1 : : : tk0 end with the letter e. Further,t1 : : : tk0 v t1 : : : tk = �el1l2s(ui)eel1l2s(v)e �. Thus, t1 : : : tk0 2 IR.Consequently, there are u0; v0 2 �� with �u0v0� v �uiv � suh that we have t1 : : : tk0 = �el1l2s(u0)eel1l2s(v0)e�.Beause t1 : : : tk0 2 (IR \ IP�), the automaton A0 aepts the trae �u0v0�, i.e., it an reah the stateerr by reading �u0v0�. Beause �u0v0� v �uv�, the automaton A0 also aepts �uiv �. This is a ontradition.Conversely, assume that the PCP instane has no in�nite solution. By Lemma 5.10, there issome n suh that A0 aepts any trae �uv� 2 (�����) if both juj � n and jvj � n. To showreognizability of �e���� � \ IP0�, we split �e���� � into reognizable languagesIR0 = �e���� � \ IPTIR1 = �e���� � \ ��0;:::;5n�� �IR2 = �e���� � \ � ���0;:::;5n�IR3 = ��e���� � n IPT� \ �e��fe; l1; l2ge��fe; l1; l2g�IR4 = �e���� � n IPT n IR1 n IR2 n IR3By Proposition 4.2, we an show reognizability of �e���� �\IP0� by showing reognizability of IRi\IP0�for i 2 f0; : : : ; 4g. We have IR0 � IPT � IP0 � IP0�, and thus, IR0 \ IP0� yields IR0 whih isreognizable. Reognizability of IR1 \ IP0� and IR2 \ IP0� follows from Proposition 4.1.We show that IR4 \ IP0� = ;. Assume some t 2 (IR4 \ IP0�). Traes from IPT annot our infatorizations of t, otherwise we have t 2 IPT , i.e., t 62 IR4. The seond omponent of t is non-empty,otherwise t 2 IR2 and t 62 IR4.
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