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A Class of Stohasti Petri Nets with Step Semantisand Related Equivalene NotionsPeter Buhholz Igor V. Tarasyuk �Department of Computer Siene A.P. Ershov Institute of Informatis SystemsTehnial University of Dresden Siberian Division of the Russian Aademy of Sienes01069 Dresden, Germany 6, Aad. Lavrentiev pr., 630090 Novosibirsk, Russiap.buhholz�inf.tu-dresden.de itar�iis.nsk.suAbstratThis paper presents a lass of Stohasti Petri Nets with onurrent transition �rings. It is assumed thattransitions our in steps and that for every step eah enabled transition deides probabilistially whetherit wants to partiipate in the step or not. Among the transitions whih want to partiipate in a step, amaximal number is hosen to perform the �ring step. The observable behavior of a net is desribed by labelsassoiated with transitions. For this lass of nets the dynami behavior is de�ned and equivalene relationsare introdued. The equivalene relations extend the well-known trae and bisimulation equivalenes forsystems with step semantis to Stohasti Petri Nets with onurrent transition �ring. It is shown that theequivalene notions form a lattie of interrelations.Keywords: Stohasti Petri Nets, Step Semantis, Equivalene Relations, Bisimulation.1 IntrodutionStohasti Petri Nets (SPNs) are an established model type for the quantitative analysis of Disrete EventDynami Systems (DEDSs). SPNs have been proposed about twenty years ago [9, 15℄ and are mainly onsideredon a ontinuous time sale whih usually means that exponential or phase type distributions are assoiated withtransitions. In this way, the stohasti proess underlying an SPN is a Continuous TimeMarkov Chain (CTMC)whih an be generated and analyzed with well-known methods [20℄. One partiular haraterization of thislass of SPNs is that only single transitions �re, suh that the well-known interleaving semantis is the basiapproah for de�ning the dynami behavior of SPNs. This interleaving behavior is also used for GeneralizedStohasti Petri Nets (GSPNs) [1, 6℄ whih inlude transitions with exponential �ring delay and that with zero�ring delay. Even for suh immediate transitions with instantaneous �ring interleaving semantis is ommonlyonsidered. For SPNs and GSPNs, labeling of transitions has been introdued reently [3, 4℄. After de�nition oftransition labeling it is possible to de�ne bisimulation equivalene for SPNs and GSPNs suh that equivalent netsbehave identially from a stohasti point of view. Details about the approah whih introdues bisimulationfor CTMCs with labeled transitions an be found in [2, 3, 11, 12℄.Apart from ontinuous time distributions also disrete time distributions an be assigned to transitions ofPetri nets. Usually geometri distributions or mixtures of geometri distributions are used. First approaheshave been published about 15 years ago [16℄, but also more reent extensions of the basi lass of nets withdisrete time steps have been proposed [23, 24℄. To distinguish ontinuous and disrete time SPNs, we denotethe former as CTSPNs and the latter as DTSPNs. DTSPNs desribe an underlying Disrete Time MarkovChain (DTMC). The major problem with this model lass is that transitions �re onurrently suh that stepsinstead of interleavings have to be onsidered. This makes the interpretation and analysis of the model lassmore omplex. For DTSPNs labeling of transitions and an adequate de�nition of equivalene has not beenintrodued yet.In this paper, we present an introdution of a new lass of DTSPNs with labeled transitions. The dynamibehavior of this lass of nets is haraterized by steps instead of single transitions. The underlying stohastiproess is still a DTMC, however, transitions of the DTMC desribe sets of transitions that �re onurrently.�The paper was prepared during postdotoral researh of the author supported by DFG-stipend from the PostgraduateProgram\Spei�ation of Disrete Proesses and Systems of Proesses by Operational Models and Logis" at TU Dresden. Current e-mail:tarasyuk�ts.inf.tu-dresden.de. In addition, a partial support was obtained from the Russian Foundation for Basi Researh,grant 00-01-00898. 1



Thus, ommonly used notions de�ning bisimulation or trae equivalene of probabilisti proesses [7, 14℄ arenot adequate for this type of model.The outline of the rest of the paper is as follows. In the next Setion 2 a new lass of DTSPNs andthe underlying stohasti proess is introdued. Afterwards some examples are presented. Then, in Setion3, equivalene relations are de�ned for the presented lass of nets, and interrelations between the di�erentequivalene relations are outlined. Setion 4 introdues briey the long run behavior of DTSPNs and desribeswhih behavior is preserved by whih equivalene relation. In the onluding Setion 5 we remind the mainresults of the paper and propose some diretions of future researh.2 A lass of Disrete Time Stohasti Petri NetsIn this setion, we introdue basi notions used throughout the paper and present several examples.2.1 Formal de�nitions of the model and its behaviorDTSPNs whih are the basi net lass onsidered in this paper are de�ned as follows.De�nition 2.1 A DTSPN is a seven tuple N = (P; T;W;�;
; L;Min) where:� P and T are �nite sets of plaes and transitions respetively suh that P [ T 6= ; and P \ T = ;;� W : (P � T ) [ (T �P )!N is funtion desribing the weights of ars between plaes and transitions andvie versa;� � : T ! R+ is the transition weight funtion;� 
 : T ! (0; 1℄ is the transition probability funtion;� L : T ! At� is the transition labeling funtion assigning labels from a �nite set of visible ations At oran invisible ation � to transitions (i.e., At� = At [ f�g);� Min : P !N is the initial marking.The initial markingMin is a spei� ase of a marking whih assigns natural numbers to plaes. The markingof the net is modi�ed by �ring transitions. A transition t 2 T is enabled at marking M if M (p) � W (p; t) forall p 2 P . Let Ena(M ) be the set of all transitions that are enabled at marking M . Firings of transitions areatomi operations, and transitions may �re onurrently. We assume that �rings of transitions take plae insteps. A transition t 2 Ena(M ) tries to �re in the next step with probability 
(t). Let U � Ena(M ) be a setof transitions that try to �re in the next step. The probability that transitions from the set U try to �re isgiven by: PF [U ℄ = Yt2U 
(t) � Yt2Ena(M)nU(1�
(t)): (1)However, not neessarily the whole bath U an �re onurrently beause transitions may be in onit suhthat only a subset of transitions is able to �re. All transitions from a set U an �re if:8p 2 P :M (p) �Xt2UW (p; t): (2)If not all transitions from U an �re, then maximal subsets are hosen.A set V � Ena(M ) is a maximal �reable subset at marking M if (2) holds for V and no more transitionsfrom Ena(M ) n V an be added when (2) has to hold. By MaxFire(M ) we denote the set of all maximal�reable subsets at marking M .Similarly, a set V � U is a maximal �reable subset of U at marking M if (2) holds for V and no moretransitions from U nV an be added when (2) has to hold. By MaxFire(U;M ) we denote the set of all maximal�reable subsets of U at marking M .We extend the weight funtion to sets of transitions. If V � T then:�(V ) =Xt2V �(t):2



If transitions from the set U try to �re, but annot �re onurrently sine (2) does not hold, then a maximal�reable subset of transitions, i.e., one element from MaxFire(U;M ), is hosen. Subsets are hosen aordingto the normalized weights. I.e., a subset V 2MaxFire(U;M ) is hosen with probability:PC[V; U ℄ = �(V ),0� XW2MaxFire(U;M)�(W )1A : (3)For eah V 2 MaxFire(M ) let SubEna(V;M ) be the set of all subsets of Ena(M ) that inlude V . Theprobability of observing V 2MaxFire(M ) is given by:PT [V;M ℄ = XU2SubEna(V;M)PF [U ℄ � PC[V; U ℄: (4)Observe that (3) de�nes a probability distribution over all sets of transitions from MaxFire(M ). Sets oftransitions that do not belong to MaxFire(M ) annot �re onurrently at marking M and thus reeive zeroprobability.We have not onsidered the labeling of transitions yet. However, the idea of labeling is that transitionsreeive the same label if they are indistinguishable for an external observer. We assume that the set of labelsAt� ontains a spei� label � that is not visible. Thus, transitions labeled with � annot be observed andalled invisible.We de�ne the visible labeling funtion V isL on sets of transitions whih assoiates with them multisets ofvisible ations. If V � T then: V isL(V ) = X(t2V )^(L(t)6=�)L(t):Denote a set of all multisets over a set X by M(X). Let A be a multiset of visible transition labels, i.e.,A 2M(At). Then Trans(A) = fV � T j V isL(V ) = Agis the set of all subsets of transitions whih are labeled with A.The probability of observing A at marking M is then given by:PL[A;M ℄ = XV2Trans(A)\MaxFire(M)PT [V;M ℄: (5)Firing of sets of transitions yields a suessor marking. If V �res in M , then the suessor marking fM isde�ned omponentwise as: fM (p) = M (p)�Xt2V W (p; t) +Xt2V W (t; p):Let V be a set of transitions whih an �re onurrently at markingM resulting to fM and P = PT [V;M ℄.We use the shorthand notation M V�!P fM for suh a �ring step. We shall write M V�! fM if M V�!P fM forsome P > 0. For one-element set of transitions V = ftg we write M t�!P fM and M t�! fM .By onsidering only the labels and not the onrete transitions, we obtain steps desribed by multisets oftransition labels. Thus, M A�!P fM desribes a step starting at marking M , performing transitions labeledwith A and ending at fM . The probability of the step P = PS[A;M;fM ℄ is omputed as:PS[A;M;fM ℄ = XfV2Trans(A)jM V�!P eMgP:We shall write M A�! fM if M A�!P fM for some P > 0. For one-element multiset of ations A = fag wewrite M a�!P fM and M a�! fM .De�nition 2.2 For a DTSPN N we de�ne:� The reahability set RS(N ) as the minimal set of markings M for whih the following onditions hold:{ Min 2 RS(N ); 3



{ if M 2 RS(N ) and M A�!P fM for P > 0, then fM 2 RS(N ).� The reahability graph RG(N ) as a direted labeled graph with a set of nodes RS(N ) and an ar labeledwith A; P between nodes M and fM whenever M A�!P fM holds.� The underlying Disrete Time Markov Chain (DTMC) DT (N ) with state spae RS(N ) and a transitionM �!P fM whenever at least one ar between M and fM exists in RG(N ). In this ase, the probability Pis omputed as: P = XA2M(At)PS[A;M;fM ℄:The previous de�nition proposes the set of reahable markings, the orresponding reahability graph whihpreserves transition labels and probabilities and the underlying Disrete Time Markov Chain. Observe that thereahability graph may inlude ars with non-zero probability whih orrespond to the empty multiset. In thisase, a marking is modi�ed by �ring internal transition labeled with � . An external observer who an only seevisible transitions labeled with some ation from At annot notie suh a step. At the level of the DTMC,transition steps an no longer be distinguished, and we observe the stohasti proess as usual for disrete timemodels like SPNs in disrete time [16, 23, 24℄.If we assume that an observer does not know when a step takes plae, (s)he annot see �ring of a set ofinternal transitions resulting in an empty multiset of transition labels. This behavior an be desribed bytransforming the reahability graph by skipping unobservable transitions. The approah is similar to buildingthe observational graph in untimed models [8℄. A step M ;�!P fM with P > 0 takes plae when fM is reahablefromM by �ring a set of internal transitions. To skip steps of internal transitions, we use the following reursivede�nition of internal transition probabilities:PSk[;;M;fM ℄ =8><>: PM2RS(N) PSk�1[;;M;M℄ � PS[;;M;fM ℄ if k � 1;1 if k = 0 and M = fM ;0 otherwise.PSk[;;M;fM ℄ desribes the probability of reahing fM fromM by k steps of internal transitions. Furthermorewe de�ne: PS�[;;M;fM ℄ = 1Xk=0PSk[;;M;fM ℄whih is the probability of reahing fM from M by steps of internal transitions and:PS�[A;M;fM ℄ = XM2RS(N)PS�[;;M;M ℄ � PS[A;M;fM ℄whih is the probability of reahing fM from M by an arbitrary number of internal steps, followed by anobservable step A.A trap is a loop of internal transitions starting and ending at some markingM whih ours with probability1. If RG(N ) ontains a trap, then the net stuks in a sequene of internal transitions whih annot be left.PS�[;;M;fM ℄ is �nite as long as no traps exist whih will be assumed in the sequel. If PS�[;;M;fM ℄ is �nite,then PS�[A;M;fM ℄ de�nes a probability distribution, i.e.:XA2M(At)n; XeM2RS�(N)PS�[A;M;fM ℄ = 1:The result follows from standard results on absorbing Markov hains [13℄. Thus, we an de�ne a newtransition system with the transition relation M A�!!P fM where P = PS�[A;M;fM ℄ and A 6= ;.We shall write M A�!! fM if M A�!!P fM for some P > 0. For one-element multiset of ations A = fag wewrite M a�!!P fM and M a�!! fM .We denote by RS�(N ) and RG�(N ) the observable reahability set and graph respetively. Note thatRS(N ) 6= RS�(N ) whenever markings exist that are entered by invisible steps only (see also the examplesgiven below). RG�(N ) desribes the viewpoint of an person who observes steps only if they inlude visibletransitions. 4
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RG�(N )JJJJ℄ ����7fag;r42 fbg;r43Figure 1: First example net and the orresponding reahability graphsTransition probabilities PS�[�℄ de�ne a DTMC with state spae RS�(N ) and transition probabilities:PS�[M;fM ℄ = XA2M(At)PS�[A;M;fM ℄whih will be denoted as the embedded DTMC.Following the terminology of [10℄, we have introdued a generative model. However, in ontrast to otherstohasti models [7, 10, 14℄ whih are based on some form of stohasti automata where only single eventsour, we onsider here the onurrent exeution of di�erent transitions. This is a very natural view for Petrinets whih allow distributed state desriptions and parallel exeutions of transitions. Let us also note that wedo not allow selfonurreny, i.e., onurrent �ring of a transition with itself (multisets of transitions).2.2 Examples of DTSPNsA �rst example is shown in Figure 1. It desribes simple net with two observable transitions t1 (labeled by a),t2 (labeled by b) and one � -labeled transition t3. The reahability graph RG(N ) and the observable reahabilitygraph RG�(N ) are also depited in the �gure. To de�ne probabilities we use the following numbering ofmarkings: 1. (110), 2. (011), 3. (101), 4. (002). The values qij and rij are probabilities whih reeive the valuesshown below. Weights of transitions are not relevant in this example beause the net ontains no onit. Foronveniene we use the following notation: 
(ti) = 1 � 
(ti) (1 � i � 3). Now we present the probabilitiesqij (1 � i; j � 4):q11 = 
(t1) � 
(t2) q12 = 
(t1) �
(t2) q13 = 
(t1) �
(t2) q14 = 
(t1) �
(t2) q22 = 
(t2)q24 = 
(t2) q33 = 
(t1) q34 = 
(t3) q41 = 
(t3) q44 = 
(t3)For the de�nition of rkl (1 � k; l � 4) the values qij de�ned above are used:r12 = r42 = q121�q11 r13 = r43 = q131�q11 r14 = r44 = q141�(1�q11) = q14q11 r24 = 1 r34 = 1The seond example is shown in Figure 2. It desribes a net with two observable transitions t1 (labeledby a), t2 (labeled by b) and two � -labeled transitions t3 and t4. To avoid an overloading of notations, if twoars with di�erent labels exist in RG(N ) or RG�(N ), then only one ar is shown, and both labels are printedbeneath the ar (i.e., fag; fbg desribes that one ar labeled with fag and one ar fbg are present). To de�neprobabilities we use the following numbering of markings: 1. (110), 2. (011), 3. (101), 4. (002), 5. (020) and 6.(200). Observe that RS�(N ) ontains only the markings 1{4. Markings 5 and 6 are not reahable, i.e., after anobservable event, the net annot be in one of these markings. We use the notation qAij for the probability of thetransition in RG(N ) between i and j whih is labeled with set A (for one-element multisets like A = fag we shallomit the urly braes). If only one transition between i and j exists, then label A is suppressed. Similarly rAij isused for transition probabilities in RG�(N ). For the presentation of the probabilities we use the abbreviations:�34 = �(t3)�(t3) + �(t4) and �43 = �(t4)�(t3) + �(t4) :Thus, we obtain the probabilities qAij (1 � i; j � 6):5
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(t1) � 
(t2) q12 = 
(t1) � 
(t2)q13 = 
(t1) �
(t2) q14 = 
(t1) �
(t2)q21 = 
(t2) �
(t3) � (�34 �
(t4) + 
(t4)) q;22 = 
(t2) � 
(t3) � 
(t4)qb22 = 
(t2) �
(t4) � (�43 �
(t3) + 
(t3)) q23 = 
(t2) �
(t3) � (�34 �
(t4) + 
(t4))q24 = 
(t2) �
(t3) � 
(t4) q25 = 
(t2) �
(t4) � (�43 �
(t3) + 
(t3))q31 = 
(t1) �
(t4) � (�43 �
(t3) + 
(t3)) q32 = 
(t1) �
(t4) � (�43 �
(t3) + 
(t3))q;33 = 
(t1) � 
(t3) � 
(t4) qa33 = 
(t1) � 
(t3) � (�34 �
(t4) + 
(t4))q34 = 
(t1) �
(t3) � 
(t4) q36 = 
(t1) �
(t3) � (�34 �
(t4) + 
(t4))q41 = 
(t3) �
(t4) q42 = 
(t3) �
(t4)q43 = 
(t3) � 
(t4) q42 = 
(t3) � 
(t4)q52 = 
(t2) q55 = 
(t2)q63 = 
(t1) q66 = 
(t1)For the de�nition of probabilities rAkl (1 � k; l � 4), we use the probabilities qAij:r12 = q12=(1� q11) r13 = q13=(1� q11) r14 = q14=(1� q11)ra22 = q21 � r12=(1� q;22) rb22 = (qb22 + q25)=(1� q;22) r23 = (q23 + q21 � r13)=(1� q;22)rb24 = q24=(1� q;22) rfa;bg24 = q21 � r14=(1� q;22) r32 = (q32 + q31 � r12)=(1� q;33)ra33 = (qa33 + q36)=(1� q;33) rb33 = q31 � r13=(1� q;33) ra34 = q34=(1� q;33)rfa;bg34 = q31 � r14=(1� q;33) ra42 = (q41 � r12 + q43 � r32)=(1� q44) rb42 = q42 � rb22=(1� q44)ra43 = q43 � ra33=(1� q44) rb43 = (q41 � r13 + q42 � r23)=(1� q44) ra44 = q43 � ra34=(1� q44)rb44 = q42 � rb24=(1� q44) rfa;bg44 = q41 � rfa;bg14 =(1� q44)3 Equivalene Relations for DTSPNsDi�erent equivalenes have been proposed in the ontext of Petri nets [19, 21℄. Furthermore relations have beende�ned for probabilisti systems [7, 14℄. However, in the probabilisti ase usually some sort of probabilistiinterleaving is assumed suh that only single transitions our and not sets of transitions. A widely used lassof equivalene relations whih have been de�ned in di�erent settings are trae and bisimulation equivalenes.Consequently, we propose the orresponding notions for DTSPNs.3.1 Trae equivalenesTrae equivalenes are the simplest ones. In trae semantis, a behavior of a system is assoiated with the setof all possible sequenes of ativities, i.e., protools of work or omputations. Thus, the points of hoie of anexternal observer between several extensions of a partiular omputation are not taken into aount.Let us introdue formal de�nitions of the trae relations. These notions resemble that of trae relations forstandard Petri nets from [21℄, but additionally have to take into aount probabilities of ourrenes of sequenesof (multisets of) ations. For this reason we have to ollet probabilities of happening (multisets of) ationsalong all possible paths whih orrespond to our sequene in the observable reahability graphs RG�(N ) and6



RG�(N 0) of two ompared nets N and N 0. Sine we have already abstrated from partiular transitions in suhgraphs, the paths di�er only by markings belonging to them. Thus, we should alulate a sum of probabilitiesfor all paths aording our sequene and di�erentiating at least by one marking.De�nition 3.1 An interleaving trae of a DTSPN N is a pair (�;P), where � = a1 � � �an 2 At� and:P = XfM1;:::;MnjMin a1�!!P1M1 a2�!!P2 ��� an�!!PnMng nYi=1Pi:We denote a set of all interleaving traes of a DTSPN N by IntTraes(N ). Two DTSPNs N and N 0 areinterleaving trae equivalent, denoted by N �i N 0, if:IntTraes(N ) = IntTraes(N 0):De�nition 3.2 A step trae of a DTSPN N is a pair (�;P), where � = A1 � � �An 2M(At)� and:P = XfM1;:::;MnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi:We denote a set of all step traes of a DTSPN N by StepTraes(N ). Two DTSPNs N and N 0 are steptrae equivalent, denoted by N �s N 0, if:StepTraes(N ) = StepTraes(N 0):3.2 Bisimulation equivalenesBisimulation equivalenes ompletely respet points of hoie of an external observer in the behavior of amodeled system, unlike trae ones.To de�ne probabilisti bisimulation equivalenes, we have to onsider a bisimulationas an equivalene relationwhih partitions states of the union of the observable reahability graphs RG�(N ) andRG�(N 0) of two omparednets N and N 0. For nets N and N 0 to be bisimulation equivalent, their initial markingsMin and M 0in should berelated by the bisimulation having the following transfer property: two markings are related if at eah of themthe same (multisets of) ations an our, and the resulting markings belong to the same equivalene lass. Inaddition, sums of probabilities for all suh ourrenes should be the same for both ompared markings. Thus,for our de�nitions, we follow the approah of [14℄. Hene, the di�erene of bisimulation from trae equivalenesis that we do not onsider all possible ourrenes of (multisets of) ations from the initial markings, but onlysuh that lead (stepwise) to markings belonging to the same equivalene lass.First we introdue several helpful notations. Let for a DTSPN N L � RS�(N ). For someM 2 RS�(N ) andA 2M(At) we write M A�!!Q L if: Xf eM2LjM A�!!P eMgP = Q:We shall write M A�!! L if M A�!!Q L for some Q > 0. For one-element multiset of ations A = fag wewrite M a�!!Q L and M a�!! L.Let X be some set. The number of elements in X is denoted as jXj. We denote the artesian produt of Xwith itself X �X by X2. Let E � X2 be an equivalene relation on X. Then an equivalene lass (w.r.t. E)of an element x 2 X is de�ned by [x℄E = fy 2 X j (x; y) 2 Eg. The equivalene E partitions X by the set ofequivalene lasses X=E = f[x℄E j x 2 Xg.De�nition 3.3 Let N be a DTSPN. An equivalene relation R � RS�(N )2 is an interleaving bisimulationbetween two markings M1 and M2 of N (i.e., (M1;M2) 2 R), denoted by R : M1$iM2, if 8a 2 At 8L 2RS�(N )=R: M1 a�!!Q L , M2 a�!!Q L:Two markings M1 and M2 are interleaving bisimulation equivalent, denoted by M1$iM2, if 9R :M1$iM2.To introdue a bisimulation between two DTSPNs N and N 0 we should onsider a \omposite" set orreahable states, i.e., RS�(N ) [RS�(N 0). 7



De�nition 3.4 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is an interleavingbisimulation between N and N 0, denoted by R : N$iN 0, if R :Min$iM 0in.Two DTSPNs N and N 0 are interleaving bisimulation equivalent, denoted by N$iN 0, if 9R : N$iN 0.De�nition 3.5 Let N be a DTSPN. An equivalene relation R � RS�(N )2 is a step bisimulation between twomarkings M1 and M2 of N , denoted by R :M1$sM2, if 8A 2 M(At) 8L 2 RS�(N )=R:M1 A�!!Q L , M2 A�!!Q L:Two markings M1 and M2 are step bisimulation equivalent, denoted by M1$sM2, if 9R : M1$sM2.De�nition 3.6 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [RS�(N 0))2 is a step bisimulationbetween N and N 0, denoted by R : N$sN 0, if R :Min$sM 0in.Two DTSPNs N and N 0 are step bisimulation equivalent, denoted by N$sN 0, if 9R : N$sN 0.It is straightforward to show that the union of two (interleaving or step) bisimulations is also an (interleavingor step) bisimulation suh that the largest bisimulation relation exists uniquely up to the ordering of equivalenelasses. Consequently, for a given DTSPN equivalent nets with a minimal state spae exist.3.3 Bakward bisimulation equivalenesFor untimed systems apart from bisimulation in forward diretion, also bisimulation in bakward diretion hasbeen de�ned [17, 18℄. However, the de�nition introdued in [17℄ is not a straightforward extension of forwardbisimulation whih would simply mean to de�ne a bakward bisimulation as a bisimulation on the transitiongraph after reversing the diretion of ars. The authors in [17℄ argue why suh a de�nition is not useful intheir ontext of untimed systems and de�ne bakward bisimulation based on paths preserving the history thatbrought the system to a state. This de�nition annot be transferred to our viewpoint of stohasti systems.Instead we de�ne here bakward bisimulation by extending forward bisimulation using two additional onditionson the initial marking and on outgoing transition probabilities. The latter implies that we de�ne some form ofbak and forth bisimulation. However, we use the notation bakward bisimulation for the resulting equivalenewhih has shown to be useful for stohasti automata networks [5℄ and an be transferred naturally to DTSPNs.Like bisimulation, whih will from now on also be denoted as forward bisimulation, bakward bisimulationis de�ned using equivalene relations. For L � RS�(N ); M 2 RS�(N ) and A 2 M(At) we de�ne L A�!!Q Mas follows: Xf eM2Lj eM A�!!PMgP = Q:We shall write L A�!! M if L A�!!Q M for some Q > 0. For one-element multiset of ations A = fag wewrite L a�!!Q M and L a�!!M .De�nition 3.7 Let N be a DTSPN. An equivalene relation R � RS�(N )2 is an interleaving bakward bisim-ulation between two markings M1 and M2 of N , denoted by R :M1$ibM2, if 8a 2 At 8L 2 RS�(N )=R:M1 a�!!Q RS�(N ) , M2 a�!!Q RS�(N ); L a�!!Q M1 , L a�!!Q M2 and [Min℄R = fMing:Two markings M1 and M2 are interleaving bakward bisimulation equivalent, denoted by M1$ibM2, if9R :M1$ibM2.Observe that bakward bisimulation has a part looking forward in the future due to idential probabilitysums of leaving a marking via a-labeled transitions and a part looking bakwards due to idential probabilitiesof inoming transitions from eah other equivalene lass. The de�nition of bakward bisimulation for two netslooks a little bit more ompliated than the orresponding de�nition for forward bisimulation beause we annotassume that inoming transition probabilities are the same for equivalent markings from di�erent nets. Insteadit has to be assured that the probability ow from one equivalene lass to another is the same in both netsand for eah net separately the ow into eah marking of an equivalene lass has to be the same. To simplifythe mentioned de�nitions we propose the following indiator funtion � whih reovers a DTSPN by a markingbelonging to it. Let N be a DTSPN and M 2 RS�(N ), then �(M ) = N . Thus, this is just a onvenientnotation allowing one to avoid a treatment of di�erent ases when markings of two nets are onsidered together.8



De�nition 3.8 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is an interleav-ing bakward bisimulation between N and N 0, denoted by R : N$ibN 0, if 8a 2 At 8L;K 2 (RS�(N ) [RS�(N 0))=R 8M1;M2 2 L:M1 a�!!Q RS�(�(M1)) , M2 a�!!Q RS�(�(M2)); [Min℄R = fMin;M 0ing andK a�!!Q� jL\RS�(�(M1))jjK\RS�(�(M1))j M1 , K a�!!Q� jL\RS�(�(M2))jjK\RS�(�(M2))j M2:Two DTSPNs N and N 0 are interleaving bakward bisimulation equivalent, denoted by N$ibN 0, if 9R :N$ibN 0.For markingsM1 and M2 belonging to the same net, the onditions on inoming probabilities redue to therequirement of idential inoming probabilities.De�nition 3.9 Let N be a DTSPN. An equivalene relation R � RS�(N )2 is a step bakward bisimulationbetween two markings M1 and M2 of N , denoted by R :M1$sbM2, if 8A 2M(At) 8L 2 RS�(N )=R:M1 A�!!Q RS�(N ) , M2 A�!!Q RS�(N ); L A�!!Q M1 , L A�!!Q M2 and [Min℄R = fMing:Two markings M1 and M2 are step bakward bisimulation equivalent, denoted by M1$sbM2, if 9R :M1$sbM2.De�nition 3.10 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is a step bak-ward bisimulation between N and N 0, denoted by R : N$sbN 0, if 8A 2 M(At) 8L;K 2 (RS�(N ) [RS�(N 0))=R 8M1;M2 2 L:M1 A�!!Q RS�(�(M1)) , M2 A�!!Q RS�(�(M2)); [Min℄R = fMin;M 0ing andK A�!!Q� jL\RS�(�(M1))jjK\RS�(�(M1))j M1 , K A�!!Q� jL\RS�(�(M2))jjK\RS�(�(M2))j M2:Two DTSPNs N and N 0 are step bakward bisimulation equivalent, denoted by N$sbN 0, if 9R : N$sbN 0.As before the union of bakward bisimulations is a bakward bisimulation.3.4 Bak and forth bisimulation equivalenesA natural way of de�ning a new equivalene is to ombine bakward and forward bisimulation. We de�nehere only bak and forth bisimulation equivalenes for two nets, the remaining de�nitions an be transferredsimilarly.First, we de�ne an interleaving relation.De�nition 3.11 Two DTSPNs N and N 0 are interleaving bak and forth bisimulation equivalent, denoted byN$ibfN 0, if N$iN 0 and N$ibN 0.A de�nition of a step equivalene is introdued similarly.De�nition 3.12 Two DTSPNs N and N 0 are step bak and forth bisimulation equivalent, denoted byN$sbfN 0, if N$sN 0 and N$sbN 0.3.5 Examples of the equivalenesLet us present some examples of equivalene relations.As we have seen, one an onsider bisimulation between a net and itself, i.e., a bisimulation between markingsof the net and bisimulation between di�erent nets. Let us �rst onsider equivalene of markings of a single netfor the net shown in Figure 1. Markings (110) and (002) of N are forward bisimilar, if r12 = r42, r13 = r43and r44 = r14 whih holds by de�nition of the transition probabilities. If we assume that a and b are identialsymbols, then (011) and (101) are forward bisimulation equivalent independently of �(t1) and �(t2) as longas both values are non-zero whih has been assumed when RS�(N ) has been generated. Observe that thebisimulation is not a bakward bisimulation. 9
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���/SSSSSo Figure 3: Nets related via di�erent equivalenesFor bisimulation between di�erent nets we onsider the example shown in Figure 3. We assume that on-iting transitions have the same weights and �ring probabilities. All nets have a very simple struture withoutonurrently enabled transitions suh that interleaving behavior is idential to the step one.The following equivalene relations exist between the nets:N1 �s N2 �s N3 �s N4 N1$sN2$sN4 N1$sbN3$sbN4 N1$sbfN4Observe that there is no bisimulation relation between N2 and N3, i.e., N2$= iN3 and N2$= ibN3.3.6 Interrelations of the equivalenesIn this setion, we ompare the introdued equivalenes and obtain the lattie of their interrelations.Proposition 3.1 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?N 0 ) N �? N 0:Proof. See Appendix A. utIn a similar way we show that bakward bisimulation implies trae equivalene.Proposition 3.2 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?bN 0 ) N �? N 0:Proof. See Appendix B. utThe following proposition onerns relations of bak and forth bisimulations with other ones.10



$ib $sb�i �s$i $s$ibf $sbf?? ��� 66�������R ���I ���	' $?Figure 4: Interrelations of the equivalenesProposition 3.3 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?bfN 0 ) N$?N 0 and N$?bN 0:Proof. The result follows from the de�nitions of bak and forth bisimulations. utThus, we obtained several important results for our equivalenes stating that bisimulation (forward orbakward) relations imply trae ones. This helps us to establish interrelations of the introdued equivalenenotions.Theorem 3.1 Let $;$$2 f�;$g and ?; ?? 2 fi; s; ib; sb; ibf; sbfg. For DTSPNs N and N 0 the followingholds: N $? N 0 ) N $$?? N 0i� in the graph in Figure 4 there exists a direted path from $? to $$??.Proof. (() Let us hek the validity of the impliations in the graph in Figure 4.� The impliations $s!$i; $2 f�;$g, and $sb ! $ib; $sbf ! $ibf , are valid sine ations areone-element multisets.� The impliations $? )�?; $?b )�?; ? 2 fi; sg, are valid by Proposition 3.1 and Proposition 3.2respetively.� The impliations$?bf )$?; $?bf )$?b; ? 2 fi; sg, are valid by Proposition 3.3.()) An absene of additional nontrivial arrows in the graph in Figure 4 is proved by the following examples.As in the previous examples we assume that oniting transitions have equal weights and probabilities.� In Figure 5(a), N$ibfN 0, but N 6�s N 0, sine only in the DTSPN N 0 ations a and b annot happenonurrently.� In Figure 5(b), N �s N 0, but N$= iN 0 and N$= ibN 0, sine only in the DTSPN N 0 an ation a an happenso that no ation b an happen afterwards.� In Figure 3, N1$sN2, but N1$= ibN2, sine only in N2 there is a plae with two input transitions labeledby b. Hene, the probability for a token to go to this plae is always more than for that with only oneinput b-labeled transition.� In Figure 3, N1$sbN3, but N1$= iN3, sine only in the DTSPN N1 an ation a an happen so that asequene of ations b annot happen just after it. ut
11



a bÆ��Æ��u u? ?(a)N $ibf6�s b aÆ��Æ��a bÆ��u?? ??��� AAUN 0 (b)N bÆ��a aÆ��u��� AAU??�s$= i$= ibbÆ��aÆ��u N 0???Figure 5: Examples of the equivalenes4 Stationary Behavior of DTSPNsA natural observation of the behavior of a dynami system is the observation of traes starting from the initialmarking of the DTSPN. Depending on the hosen viewpoint steps or only single transitions are observed. Traeshave been used to de�ne trae equivalene. Consequently, trae equivalent DTSPNs have the same traes, andsine trae equivalene is the weakest relation we have de�ned, all other equivalenes also preserve traes.An alternative and ommonly used viewpoint in stohasti systems is to onsider the DTSPN in its steadystate. For this behavior we onsider only nets with an in�nite behavior and assume that the embedded DTMC isirreduible or ontains at least only one irreduible subset of markings. The embedded steady state distributionafter the observation of a visible event is the unique solution of the set linear equation:ps�(M ) = XeM2RS�(N) ps�(fM ) � PS�[fM;M ℄subjet toPM2RS�(N) ps�(M ) = 1.We onsider in the following only step behavior but the results an be easily formulated for interleavingbehavior as well. First, extend the notion of step traes by de�ning step traes starting at some markingM 2 RS�(N ) as (M;�;P), where � = A1 � � �An 2 At� and:P = XfM1;:::;MnjM A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi:Thus, in the de�nition of StepTraes(N ) we replae Min by M . Let StepTraes(N;M ) be the set of allstep traes of DTSPN N starting at marking M . The set of all step traes in steady state is de�ned as:StStepTraes(N ) = f(M;�; ps(M ) � P) jM 2 RS�(N ) ^ (�;P) 2 StepTraes(N;M )g:Now we show that forward or bakward bisimulation equivalent nets have the same steady state traes,whereas trae equivalene does not preserve steady state traes.Proposition 4.1 1. Let N and N 0 be two forward bisimulation equivalent DTSPNs, then 8L 2 (RS�(N ) [RS�(N 0))=R: XM2L\RS�(N) ps�(M ) = XM 02L\RS�(N 0) ps�(M 0):2. Let N and N 0 be two bakward bisimulation equivalent DTSPNs, then 8L 2 (RS�(N ) [RS�(N 0))=R:XM2L\RS�(N) ps�(M ) = XM 02L\RS�(N 0) ps�(M 0);8M;fM 2 L \RS�(N ); 8M 0;fM 0 2 L\RS�(N 0) :ps�(M ) = ps�(fM ) and ps�(M 0) = ps�(fM 0):12



b aÆ��Æ��u??��� AAU��- ��� ÆN �s b aÆ��Æ��u?��� AAU��- ��� ÆN 0 Æ��?a? ?Figure 6: Two step trae equivalent nets with StStepTraes(N ) 6= StStepTraes(N 0)Proof. The proof is an extension of the orresponding results for the ontinuous time ase [2, 3℄. utTheorem 4.1 Let N and N 0 be bakward or forward bisimulation equivalent DTSPNs, then:StStepTraes(N ) = StStepTraes(N 0):Proof. See Appendix C. utThe impliation stated in the previous theorem annot be reversed, sine for step trae equivalent nets Nand N 0, we may have StStepTrae(N ) 6= StStepTrae(N 0). This an be seen by the two nets shown in Figure6. For net N , the probability of being in one of both possible markings is 1=2. Consequently, a trae startswith probability 1=2 with an a. For net N 0 the probability of being in one of the three possible markings afterobservation of a transition equals 1=3. Consequently, the probability of observing a trae starting with a equals1=3.One should note that the stationary distribution is de�ned here aording to the embedded distributionafter observing a step of visible transitions. This distribution di�ers from the stationary distribution of the netat an arbitrary time. The latter behavior has to be analyzed on RS(N ) instead of RS�(N ) and is not preservedby any of the proposed equivalenes even if we restrit the observation to visible transitions.5 ConlusionIn this paper, we introdued a new lass of Stohasti Petri Nets with labeled transitions and a step semantisfor transition �ring. For this lass of nets we proposed several equivalene relations and showed that theseequivalenes preserve interesting aspets of system behavior. Equivalene relations an be used to omparedi�erent systems and to ompute for a given system a minimal equivalent representation [3℄. The latter aspetis espeially interesting for bisimulation equivalenes, for whih eÆient algorithms exist to ompute the largestbisimulation for a given net. By representation eah equivalene lass of this relation by a single marking weobtain a minimal representation at the state transition level. As a result of omparing the equivalenes inaordane to di�erentiating power, we obtained a lattie of impliations. Thus, we provided the new variant ofStohasti Petri Nets with step semantis, and this naturally orresponds to non-interleaving harater of themodel. This an be onsidered as the main ontribution of the paper.Possible extension of this work an be an attempt to de�ne other bisimulation equivalenes in interleavingand step semantis. For example, branhing bisimulation [19℄ an be onsidered as well as variants of bak-forthequivalenes de�ned in [17, 18℄. For these equivalenes we annot use observable state graphs, sine we may needlower level information. For example, to de�ne branhing relations, we should respet ourrenes of invisibletransitions and states where they onit with other ones. Thus, we annot just abstrat of invisible transitionsfrom very beginning. To propose notions of bak-forth bisimulations, we need an information about the path ofevents whih ame to the present state. Hene, it is not enough even to onsider paths of transitions whih ledfrom the initial marking to the present one, sine the same transitions an happen onurrently or sequentiallyresulting the same marking (in non-safe nets). In suh a ase, we should have something like proesses forstohasti nets and ollet events for out of paths from suh proesses. We may also de�ne true onurrentequivalenes for stohasti nets suh that partial word or pomset ones [19, 22℄. Step semantis proposed in thepresent paper an be the �rst stage to true onurrent semantis for stohasti nets. These diretions are leftfor future researh. 13
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In addition, we have: XfMn+12Ln+1 jMnAn+1�!! Pn+1Mn+1gPn+1 = Qn+1;again by the de�nition of transition relation between markings and sets of markings. Let us note that thesum above does not depend on partiular Mn 2 Ln, i.e., it is the same for all paths of SG�(N ) startingat Min and going through L1; : : : ;Ln.As a result of multiplying left and right parts of the two equalities above, we obtain:XfM12L1;:::;Mn2LnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng0BB� XfMn+12Ln+1jMnAn+1�!! Pn+1M1gPn+11CCA � nYi=1Pi = nYi=1Qi! � Qn+1:By distributivity law and with the use of the above note on independene of the sum of urrent probabilitieson onrete marking Mn, we onlude: XfM12L1;:::;Mn+12Ln+1jMin A1�!!P1M1 A2�!!P2 ���An+1�!! Pn+1Mn+1g n+1Yi=1 Pi = n+1Yi=1 Qi:This ends a proof of the lemma. utLet us note that the result of this lemma an also be applied to N 0.Now we have only to note that summation by all equivalene lasses is the same as summation by allmarkings, i.e.: XfM1;:::;MnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi = XfL1 ;:::;LnjMin A1�!!Q1L1 A2�!!Q2 ��� An�!!QnLng nYi=1Qi =XfL1;:::;LnjM 0in A1�!!Q1L1 A2�!!Q2 ��� An�!!QnLng nYi=1Qi = XfM 01;:::;M 0njM 0in A1�!!P01M 01 A2�!!P02 ��� An�!!P0nM 0ng nYi=1P 0i:Hene, (A1 � � �An;P) 2 StepTraes(N 0), and we obtain StepTraes(N ) � StepTraes(N 0). The reverseinlusion is proved by symmetry. utB Proof of Proposition 3.2As before it is enough to prove that StepTraes(N ) � StepTraes(N 0).Let R : N$sbN 0. We prove the inlusion by indution over the length of traes.� n = 1:Sine the initial markings are the only markings in their equivalene lass we have 8A 2 M(At) 8L 2RS�(N )=R: Min A�!!Q L , M 0in A�!!Q L:However, Q is in this ase exatly the probability of observing A in the �rst step or the probability oftrae A. Furthermore, let ps�[A;M ℄ be the probability of being at marking M after observing A fromMin. Then 8L 2 RS�(N )=R the following relation holds (see [5℄):16



ps�[A;L\RS�(N )℄ = XM2L\RS�(N) ps�[A;M ℄ = XM 02L\RS�(N 0)ps�[A;M 0℄ = ps�[A;L\RS�(N 0)℄In addition, ps�[A;M1℄ = ps�[A;M2℄ forM1;M2 2 L\RS�(N ) and ps�[A;M 01℄ = ps�[A;M 02℄ forM 01;M 02 2L \RS�(N 0). I.e., the equalities hold for any two markings of the same net suh that they are from oneequivalene lass.Consequently, we have ps�[A;M ℄ = ps�[A;L℄=jL\RS�(N )j forM 2 RS�(N ) and ps�[A;M 0℄ = ps�[A;L℄=jL \RS�(N 0)j for M 0 2 RS�(N 0).� n ! (n+ 1):Assume that the above relations are proved for all traes of length n. Let A1 � � �An be the trae of lengthn and let An+1 be the multiset of ations observed in step n+ 1. The probability of observing An+1 in Nequals: XM2RS�(N) ps�[A1 � � �An;M ℄ � XeM2RS�(N)PS�[An+1;M;fM ℄Due to equality of probabilities in an equivalene lass this probability an be rewritten as:XL XK ps�[A1 � � �An;L \RS�(N )℄ � PS�[An+1;L\RS�(N );K\RS�(N )℄jL \RS�(N )jwhere the summation ranges over all L;K 2 (RS�(N ) [RS�(N 0))=R. By de�nition this equals:XL XK ps�[A1 � � �An;L\RS�(N 0)℄ � PS�[An+1;L\RS�(N 0);K\RS�(N 0)℄jL \RS�(N 0)jwhih is the probability of observing An+1 in N 0. The probabilities of being in M 2 K 2 RS�(N )=R afterobserving An+1 are omputed as:ps�[A1 � � �An;M ℄ =XL ps�[A1 � � �An;L \RS�(N )℄jL \RS�(N )j � PS�[An+1;L\RS�(N );K\RS�(N )℄jK \RS�(N )jwhih is the same for a all M 2 K 2 RS�(N )=R. Sine the above relation holds both for N and N 0, it iseasy to show that also ps�[A1 � � �An;L\RS�(N )℄ = ps�[A1 � � �An;L \RS�(N 0)℄holds for all L 2 (RS�(N ) [RS�(N 0))=R whih ompletes the indution step. utC Proof of Theorem 4.1We prove the theorem for bakward bisimulation equivalene the proof for forward bisimulation equivalene issimilar.We prove the theorem by indution over the length n of a trae.� n = 1:The following relations hold for the probability of observing A1 in steady state:PL PK PM2L\RS�(N) ps�(M ) PeM2K\RS� (N)PS�[A1;M;fM ℄ = PL ps�(L)PK PS�[A1;L;K℄ =PL PK PM 02L\RS�(N 0) ps�(M 0) PeM 02K\RS� (N 0)PS�[A1;M 0;fM 0℄where: 17



PS�[A;L;K℄ = PM2L\RS�(N) PeM2K\RS�(N)PS�[A;M;fM ℄= PM 02L\RS�(N 0) PeM 02K\RS� (N 0)PS�[A;M 0;fM 0℄� n! (n + 1):The proof for n = 1 is based on equal probabilities of the equivalene lasses and equal probabilities ofstates inside the equivalene lasses. Thus, we only have to prove that the identity holds after observingan arbitrary step. Together with the proof for n = 1 this proves the required identity of traes. Bothequalities hold after observing a step A if they hold before observing a the step sine we have:PK PM2K\RS� (N) ps�(M ) PeM2L\RS�(N)PS�[A;M;fM ℄ =PK ps�(K)PL PS�[A;L;K℄ =PK PM 02K\RS� (N 0) ps�(M 0) PeM 02L\RS� (N 0)PS�[A;M 0;fM 0℄whih implies that probabilities of being in equivalene lass L are idential for N and N 0.Let ps�A(M ) be the probability of being in M 2 L\RS�(N ) after observing A starting with probabilitiesps�: ps�A(M ) =PK PeM2K\RS� (N) ps�(fM )PS�[A;fM;M ℄=PK ps�(K) � PS� [A;K;L℄jL\RS�(N)j=PK PeM2K\RS� (N) ps�(fM )PS�[A;fM;M ℄ = ps�A(M )whih shows that 8M;M 2 L \RS�(N ) : ps�A(M ) = ps�A(M ). By a symmetri argument the equality ofprobabilities in an equivalene lass for states from RS�(N 0) an be proved. ut
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