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A Class of Sto
hasti
 Petri Nets with Step Semanti
sand Related Equivalen
e NotionsPeter Bu
hholz Igor V. Tarasyuk �Department of Computer S
ien
e A.P. Ershov Institute of Informati
s SystemsTe
hni
al University of Dresden Siberian Division of the Russian A
ademy of S
ien
es01069 Dresden, Germany 6, A
ad. Lavrentiev pr., 630090 Novosibirsk, Russiap.bu
hholz�inf.tu-dresden.de itar�iis.nsk.suAbstra
tThis paper presents a 
lass of Sto
hasti
 Petri Nets with 
on
urrent transition �rings. It is assumed thattransitions o

ur in steps and that for every step ea
h enabled transition de
ides probabilisti
ally whetherit wants to parti
ipate in the step or not. Among the transitions whi
h want to parti
ipate in a step, amaximal number is 
hosen to perform the �ring step. The observable behavior of a net is des
ribed by labelsasso
iated with transitions. For this 
lass of nets the dynami
 behavior is de�ned and equivalen
e relationsare introdu
ed. The equivalen
e relations extend the well-known tra
e and bisimulation equivalen
es forsystems with step semanti
s to Sto
hasti
 Petri Nets with 
on
urrent transition �ring. It is shown that theequivalen
e notions form a latti
e of interrelations.Keywords: Sto
hasti
 Petri Nets, Step Semanti
s, Equivalen
e Relations, Bisimulation.1 Introdu
tionSto
hasti
 Petri Nets (SPNs) are an established model type for the quantitative analysis of Dis
rete EventDynami
 Systems (DEDSs). SPNs have been proposed about twenty years ago [9, 15℄ and are mainly 
onsideredon a 
ontinuous time s
ale whi
h usually means that exponential or phase type distributions are asso
iated withtransitions. In this way, the sto
hasti
 pro
ess underlying an SPN is a Continuous TimeMarkov Chain (CTMC)whi
h 
an be generated and analyzed with well-known methods [20℄. One parti
ular 
hara
terization of this
lass of SPNs is that only single transitions �re, su
h that the well-known interleaving semanti
s is the basi
approa
h for de�ning the dynami
 behavior of SPNs. This interleaving behavior is also used for GeneralizedSto
hasti
 Petri Nets (GSPNs) [1, 6℄ whi
h in
lude transitions with exponential �ring delay and that with zero�ring delay. Even for su
h immediate transitions with instantaneous �ring interleaving semanti
s is 
ommonly
onsidered. For SPNs and GSPNs, labeling of transitions has been introdu
ed re
ently [3, 4℄. After de�nition oftransition labeling it is possible to de�ne bisimulation equivalen
e for SPNs and GSPNs su
h that equivalent netsbehave identi
ally from a sto
hasti
 point of view. Details about the approa
h whi
h introdu
es bisimulationfor CTMCs with labeled transitions 
an be found in [2, 3, 11, 12℄.Apart from 
ontinuous time distributions also dis
rete time distributions 
an be assigned to transitions ofPetri nets. Usually geometri
 distributions or mixtures of geometri
 distributions are used. First approa
heshave been published about 15 years ago [16℄, but also more re
ent extensions of the basi
 
lass of nets withdis
rete time steps have been proposed [23, 24℄. To distinguish 
ontinuous and dis
rete time SPNs, we denotethe former as CTSPNs and the latter as DTSPNs. DTSPNs des
ribe an underlying Dis
rete Time MarkovChain (DTMC). The major problem with this model 
lass is that transitions �re 
on
urrently su
h that stepsinstead of interleavings have to be 
onsidered. This makes the interpretation and analysis of the model 
lassmore 
omplex. For DTSPNs labeling of transitions and an adequate de�nition of equivalen
e has not beenintrodu
ed yet.In this paper, we present an introdu
tion of a new 
lass of DTSPNs with labeled transitions. The dynami
behavior of this 
lass of nets is 
hara
terized by steps instead of single transitions. The underlying sto
hasti
pro
ess is still a DTMC, however, transitions of the DTMC des
ribe sets of transitions that �re 
on
urrently.�The paper was prepared during postdo
toral resear
h of the author supported by DFG-stipend from the PostgraduateProgram\Spe
i�
ation of Dis
rete Pro
esses and Systems of Pro
esses by Operational Models and Logi
s" at TU Dresden. Current e-mail:tarasyuk�t
s.inf.tu-dresden.de. In addition, a partial support was obtained from the Russian Foundation for Basi
 Resear
h,grant 00-01-00898. 1



Thus, 
ommonly used notions de�ning bisimulation or tra
e equivalen
e of probabilisti
 pro
esses [7, 14℄ arenot adequate for this type of model.The outline of the rest of the paper is as follows. In the next Se
tion 2 a new 
lass of DTSPNs andthe underlying sto
hasti
 pro
ess is introdu
ed. Afterwards some examples are presented. Then, in Se
tion3, equivalen
e relations are de�ned for the presented 
lass of nets, and interrelations between the di�erentequivalen
e relations are outlined. Se
tion 4 introdu
es brie
y the long run behavior of DTSPNs and des
ribeswhi
h behavior is preserved by whi
h equivalen
e relation. In the 
on
luding Se
tion 5 we remind the mainresults of the paper and propose some dire
tions of future resear
h.2 A 
lass of Dis
rete Time Sto
hasti
 Petri NetsIn this se
tion, we introdu
e basi
 notions used throughout the paper and present several examples.2.1 Formal de�nitions of the model and its behaviorDTSPNs whi
h are the basi
 net 
lass 
onsidered in this paper are de�ned as follows.De�nition 2.1 A DTSPN is a seven tuple N = (P; T;W;�;
; L;Min) where:� P and T are �nite sets of pla
es and transitions respe
tively su
h that P [ T 6= ; and P \ T = ;;� W : (P � T ) [ (T �P )!N is fun
tion des
ribing the weights of ar
s between pla
es and transitions andvi
e versa;� � : T ! R+ is the transition weight fun
tion;� 
 : T ! (0; 1℄ is the transition probability fun
tion;� L : T ! A
t� is the transition labeling fun
tion assigning labels from a �nite set of visible a
tions A
t oran invisible a
tion � to transitions (i.e., A
t� = A
t [ f�g);� Min : P !N is the initial marking.The initial markingMin is a spe
i�
 
ase of a marking whi
h assigns natural numbers to pla
es. The markingof the net is modi�ed by �ring transitions. A transition t 2 T is enabled at marking M if M (p) � W (p; t) forall p 2 P . Let Ena(M ) be the set of all transitions that are enabled at marking M . Firings of transitions areatomi
 operations, and transitions may �re 
on
urrently. We assume that �rings of transitions take pla
e insteps. A transition t 2 Ena(M ) tries to �re in the next step with probability 
(t). Let U � Ena(M ) be a setof transitions that try to �re in the next step. The probability that transitions from the set U try to �re isgiven by: PF [U ℄ = Yt2U 
(t) � Yt2Ena(M)nU(1�
(t)): (1)However, not ne
essarily the whole bat
h U 
an �re 
on
urrently be
ause transitions may be in 
on
i
t su
hthat only a subset of transitions is able to �re. All transitions from a set U 
an �re if:8p 2 P :M (p) �Xt2UW (p; t): (2)If not all transitions from U 
an �re, then maximal subsets are 
hosen.A set V � Ena(M ) is a maximal �reable subset at marking M if (2) holds for V and no more transitionsfrom Ena(M ) n V 
an be added when (2) has to hold. By MaxFire(M ) we denote the set of all maximal�reable subsets at marking M .Similarly, a set V � U is a maximal �reable subset of U at marking M if (2) holds for V and no moretransitions from U nV 
an be added when (2) has to hold. By MaxFire(U;M ) we denote the set of all maximal�reable subsets of U at marking M .We extend the weight fun
tion to sets of transitions. If V � T then:�(V ) =Xt2V �(t):2



If transitions from the set U try to �re, but 
annot �re 
on
urrently sin
e (2) does not hold, then a maximal�reable subset of transitions, i.e., one element from MaxFire(U;M ), is 
hosen. Subsets are 
hosen a

ordingto the normalized weights. I.e., a subset V 2MaxFire(U;M ) is 
hosen with probability:PC[V; U ℄ = �(V ),0� XW2MaxFire(U;M)�(W )1A : (3)For ea
h V 2 MaxFire(M ) let SubEna(V;M ) be the set of all subsets of Ena(M ) that in
lude V . Theprobability of observing V 2MaxFire(M ) is given by:PT [V;M ℄ = XU2SubEna(V;M)PF [U ℄ � PC[V; U ℄: (4)Observe that (3) de�nes a probability distribution over all sets of transitions from MaxFire(M ). Sets oftransitions that do not belong to MaxFire(M ) 
annot �re 
on
urrently at marking M and thus re
eive zeroprobability.We have not 
onsidered the labeling of transitions yet. However, the idea of labeling is that transitionsre
eive the same label if they are indistinguishable for an external observer. We assume that the set of labelsA
t� 
ontains a spe
i�
 label � that is not visible. Thus, transitions labeled with � 
annot be observed and
alled invisible.We de�ne the visible labeling fun
tion V isL on sets of transitions whi
h asso
iates with them multisets ofvisible a
tions. If V � T then: V isL(V ) = X(t2V )^(L(t)6=�)L(t):Denote a set of all multisets over a set X by M(X). Let A be a multiset of visible transition labels, i.e.,A 2M(A
t). Then Trans(A) = fV � T j V isL(V ) = Agis the set of all subsets of transitions whi
h are labeled with A.The probability of observing A at marking M is then given by:PL[A;M ℄ = XV2Trans(A)\MaxFire(M)PT [V;M ℄: (5)Firing of sets of transitions yields a su

essor marking. If V �res in M , then the su

essor marking fM isde�ned 
omponentwise as: fM (p) = M (p)�Xt2V W (p; t) +Xt2V W (t; p):Let V be a set of transitions whi
h 
an �re 
on
urrently at markingM resulting to fM and P = PT [V;M ℄.We use the shorthand notation M V�!P fM for su
h a �ring step. We shall write M V�! fM if M V�!P fM forsome P > 0. For one-element set of transitions V = ftg we write M t�!P fM and M t�! fM .By 
onsidering only the labels and not the 
on
rete transitions, we obtain steps des
ribed by multisets oftransition labels. Thus, M A�!P fM des
ribes a step starting at marking M , performing transitions labeledwith A and ending at fM . The probability of the step P = PS[A;M;fM ℄ is 
omputed as:PS[A;M;fM ℄ = XfV2Trans(A)jM V�!P eMgP:We shall write M A�! fM if M A�!P fM for some P > 0. For one-element multiset of a
tions A = fag wewrite M a�!P fM and M a�! fM .De�nition 2.2 For a DTSPN N we de�ne:� The rea
hability set RS(N ) as the minimal set of markings M for whi
h the following 
onditions hold:{ Min 2 RS(N ); 3



{ if M 2 RS(N ) and M A�!P fM for P > 0, then fM 2 RS(N ).� The rea
hability graph RG(N ) as a dire
ted labeled graph with a set of nodes RS(N ) and an ar
 labeledwith A; P between nodes M and fM whenever M A�!P fM holds.� The underlying Dis
rete Time Markov Chain (DTMC) DT (N ) with state spa
e RS(N ) and a transitionM �!P fM whenever at least one ar
 between M and fM exists in RG(N ). In this 
ase, the probability Pis 
omputed as: P = XA2M(A
t)PS[A;M;fM ℄:The previous de�nition proposes the set of rea
hable markings, the 
orresponding rea
hability graph whi
hpreserves transition labels and probabilities and the underlying Dis
rete Time Markov Chain. Observe that therea
hability graph may in
lude ar
s with non-zero probability whi
h 
orrespond to the empty multiset. In this
ase, a marking is modi�ed by �ring internal transition labeled with � . An external observer who 
an only seevisible transitions labeled with some a
tion from A
t 
annot noti
e su
h a step. At the level of the DTMC,transition steps 
an no longer be distinguished, and we observe the sto
hasti
 pro
ess as usual for dis
rete timemodels like SPNs in dis
rete time [16, 23, 24℄.If we assume that an observer does not know when a step takes pla
e, (s)he 
annot see �ring of a set ofinternal transitions resulting in an empty multiset of transition labels. This behavior 
an be des
ribed bytransforming the rea
hability graph by skipping unobservable transitions. The approa
h is similar to buildingthe observational graph in untimed models [8℄. A step M ;�!P fM with P > 0 takes pla
e when fM is rea
hablefromM by �ring a set of internal transitions. To skip steps of internal transitions, we use the following re
ursivede�nition of internal transition probabilities:PSk[;;M;fM ℄ =8><>: PM2RS(N) PSk�1[;;M;M℄ � PS[;;M;fM ℄ if k � 1;1 if k = 0 and M = fM ;0 otherwise.PSk[;;M;fM ℄ des
ribes the probability of rea
hing fM fromM by k steps of internal transitions. Furthermorewe de�ne: PS�[;;M;fM ℄ = 1Xk=0PSk[;;M;fM ℄whi
h is the probability of rea
hing fM from M by steps of internal transitions and:PS�[A;M;fM ℄ = XM2RS(N)PS�[;;M;M ℄ � PS[A;M;fM ℄whi
h is the probability of rea
hing fM from M by an arbitrary number of internal steps, followed by anobservable step A.A trap is a loop of internal transitions starting and ending at some markingM whi
h o

urs with probability1. If RG(N ) 
ontains a trap, then the net stu
ks in a sequen
e of internal transitions whi
h 
annot be left.PS�[;;M;fM ℄ is �nite as long as no traps exist whi
h will be assumed in the sequel. If PS�[;;M;fM ℄ is �nite,then PS�[A;M;fM ℄ de�nes a probability distribution, i.e.:XA2M(A
t)n; XeM2RS�(N)PS�[A;M;fM ℄ = 1:The result follows from standard results on absorbing Markov 
hains [13℄. Thus, we 
an de�ne a newtransition system with the transition relation M A�!!P fM where P = PS�[A;M;fM ℄ and A 6= ;.We shall write M A�!! fM if M A�!!P fM for some P > 0. For one-element multiset of a
tions A = fag wewrite M a�!!P fM and M a�!! fM .We denote by RS�(N ) and RG�(N ) the observable rea
hability set and graph respe
tively. Note thatRS(N ) 6= RS�(N ) whenever markings exist that are entered by invisible steps only (see also the examplesgiven below). RG�(N ) des
ribes the viewpoint of an person who observes steps only if they in
lude visibletransitions. 4
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RG�(N )JJJJ℄ ����7fag;r42 fbg;r43Figure 1: First example net and the 
orresponding rea
hability graphsTransition probabilities PS�[�℄ de�ne a DTMC with state spa
e RS�(N ) and transition probabilities:PS�[M;fM ℄ = XA2M(A
t)PS�[A;M;fM ℄whi
h will be denoted as the embedded DTMC.Following the terminology of [10℄, we have introdu
ed a generative model. However, in 
ontrast to othersto
hasti
 models [7, 10, 14℄ whi
h are based on some form of sto
hasti
 automata where only single eventso

ur, we 
onsider here the 
on
urrent exe
ution of di�erent transitions. This is a very natural view for Petrinets whi
h allow distributed state des
riptions and parallel exe
utions of transitions. Let us also note that wedo not allow self
on
urren
y, i.e., 
on
urrent �ring of a transition with itself (multisets of transitions).2.2 Examples of DTSPNsA �rst example is shown in Figure 1. It des
ribes simple net with two observable transitions t1 (labeled by a),t2 (labeled by b) and one � -labeled transition t3. The rea
hability graph RG(N ) and the observable rea
habilitygraph RG�(N ) are also depi
ted in the �gure. To de�ne probabilities we use the following numbering ofmarkings: 1. (110), 2. (011), 3. (101), 4. (002). The values qij and rij are probabilities whi
h re
eive the valuesshown below. Weights of transitions are not relevant in this example be
ause the net 
ontains no 
on
i
t. For
onvenien
e we use the following notation: 
(ti) = 1 � 
(ti) (1 � i � 3). Now we present the probabilitiesqij (1 � i; j � 4):q11 = 
(t1) � 
(t2) q12 = 
(t1) �
(t2) q13 = 
(t1) �
(t2) q14 = 
(t1) �
(t2) q22 = 
(t2)q24 = 
(t2) q33 = 
(t1) q34 = 
(t3) q41 = 
(t3) q44 = 
(t3)For the de�nition of rkl (1 � k; l � 4) the values qij de�ned above are used:r12 = r42 = q121�q11 r13 = r43 = q131�q11 r14 = r44 = q141�(1�q11) = q14q11 r24 = 1 r34 = 1The se
ond example is shown in Figure 2. It des
ribes a net with two observable transitions t1 (labeledby a), t2 (labeled by b) and two � -labeled transitions t3 and t4. To avoid an overloading of notations, if twoar
s with di�erent labels exist in RG(N ) or RG�(N ), then only one ar
 is shown, and both labels are printedbeneath the ar
 (i.e., fag; fbg des
ribes that one ar
 labeled with fag and one ar
 fbg are present). To de�neprobabilities we use the following numbering of markings: 1. (110), 2. (011), 3. (101), 4. (002), 5. (020) and 6.(200). Observe that RS�(N ) 
ontains only the markings 1{4. Markings 5 and 6 are not rea
hable, i.e., after anobservable event, the net 
annot be in one of these markings. We use the notation qAij for the probability of thetransition in RG(N ) between i and j whi
h is labeled with set A (for one-element multisets like A = fag we shallomit the 
urly bra
es). If only one transition between i and j exists, then label A is suppressed. Similarly rAij isused for transition probabilities in RG�(N ). For the presentation of the probabilities we use the abbreviations:�34 = �(t3)�(t3) + �(t4) and �43 = �(t4)�(t3) + �(t4) :Thus, we obtain the probabilities qAij (1 � i; j � 6):5



a bÆ
��Æ
��Æ
��u u? ?JĴ 
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ond example net and the 
orresponding rea
hability graphsq11 = 
(t1) � 
(t2) q12 = 
(t1) � 
(t2)q13 = 
(t1) �
(t2) q14 = 
(t1) �
(t2)q21 = 
(t2) �
(t3) � (�34 �
(t4) + 
(t4)) q;22 = 
(t2) � 
(t3) � 
(t4)qb22 = 
(t2) �
(t4) � (�43 �
(t3) + 
(t3)) q23 = 
(t2) �
(t3) � (�34 �
(t4) + 
(t4))q24 = 
(t2) �
(t3) � 
(t4) q25 = 
(t2) �
(t4) � (�43 �
(t3) + 
(t3))q31 = 
(t1) �
(t4) � (�43 �
(t3) + 
(t3)) q32 = 
(t1) �
(t4) � (�43 �
(t3) + 
(t3))q;33 = 
(t1) � 
(t3) � 
(t4) qa33 = 
(t1) � 
(t3) � (�34 �
(t4) + 
(t4))q34 = 
(t1) �
(t3) � 
(t4) q36 = 
(t1) �
(t3) � (�34 �
(t4) + 
(t4))q41 = 
(t3) �
(t4) q42 = 
(t3) �
(t4)q43 = 
(t3) � 
(t4) q42 = 
(t3) � 
(t4)q52 = 
(t2) q55 = 
(t2)q63 = 
(t1) q66 = 
(t1)For the de�nition of probabilities rAkl (1 � k; l � 4), we use the probabilities qAij:r12 = q12=(1� q11) r13 = q13=(1� q11) r14 = q14=(1� q11)ra22 = q21 � r12=(1� q;22) rb22 = (qb22 + q25)=(1� q;22) r23 = (q23 + q21 � r13)=(1� q;22)rb24 = q24=(1� q;22) rfa;bg24 = q21 � r14=(1� q;22) r32 = (q32 + q31 � r12)=(1� q;33)ra33 = (qa33 + q36)=(1� q;33) rb33 = q31 � r13=(1� q;33) ra34 = q34=(1� q;33)rfa;bg34 = q31 � r14=(1� q;33) ra42 = (q41 � r12 + q43 � r32)=(1� q44) rb42 = q42 � rb22=(1� q44)ra43 = q43 � ra33=(1� q44) rb43 = (q41 � r13 + q42 � r23)=(1� q44) ra44 = q43 � ra34=(1� q44)rb44 = q42 � rb24=(1� q44) rfa;bg44 = q41 � rfa;bg14 =(1� q44)3 Equivalen
e Relations for DTSPNsDi�erent equivalen
es have been proposed in the 
ontext of Petri nets [19, 21℄. Furthermore relations have beende�ned for probabilisti
 systems [7, 14℄. However, in the probabilisti
 
ase usually some sort of probabilisti
interleaving is assumed su
h that only single transitions o

ur and not sets of transitions. A widely used 
lassof equivalen
e relations whi
h have been de�ned in di�erent settings are tra
e and bisimulation equivalen
es.Consequently, we propose the 
orresponding notions for DTSPNs.3.1 Tra
e equivalen
esTra
e equivalen
es are the simplest ones. In tra
e semanti
s, a behavior of a system is asso
iated with the setof all possible sequen
es of a
tivities, i.e., proto
ols of work or 
omputations. Thus, the points of 
hoi
e of anexternal observer between several extensions of a parti
ular 
omputation are not taken into a

ount.Let us introdu
e formal de�nitions of the tra
e relations. These notions resemble that of tra
e relations forstandard Petri nets from [21℄, but additionally have to take into a

ount probabilities of o

urren
es of sequen
esof (multisets of) a
tions. For this reason we have to 
olle
t probabilities of happening (multisets of) a
tionsalong all possible paths whi
h 
orrespond to our sequen
e in the observable rea
hability graphs RG�(N ) and6



RG�(N 0) of two 
ompared nets N and N 0. Sin
e we have already abstra
ted from parti
ular transitions in su
hgraphs, the paths di�er only by markings belonging to them. Thus, we should 
al
ulate a sum of probabilitiesfor all paths a

ording our sequen
e and di�erentiating at least by one marking.De�nition 3.1 An interleaving tra
e of a DTSPN N is a pair (�;P), where � = a1 � � �an 2 A
t� and:P = XfM1;:::;MnjMin a1�!!P1M1 a2�!!P2 ��� an�!!PnMng nYi=1Pi:We denote a set of all interleaving tra
es of a DTSPN N by IntTra
es(N ). Two DTSPNs N and N 0 areinterleaving tra
e equivalent, denoted by N �i N 0, if:IntTra
es(N ) = IntTra
es(N 0):De�nition 3.2 A step tra
e of a DTSPN N is a pair (�;P), where � = A1 � � �An 2M(A
t)� and:P = XfM1;:::;MnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi:We denote a set of all step tra
es of a DTSPN N by StepTra
es(N ). Two DTSPNs N and N 0 are steptra
e equivalent, denoted by N �s N 0, if:StepTra
es(N ) = StepTra
es(N 0):3.2 Bisimulation equivalen
esBisimulation equivalen
es 
ompletely respe
t points of 
hoi
e of an external observer in the behavior of amodeled system, unlike tra
e ones.To de�ne probabilisti
 bisimulation equivalen
es, we have to 
onsider a bisimulationas an equivalen
e relationwhi
h partitions states of the union of the observable rea
hability graphs RG�(N ) andRG�(N 0) of two 
omparednets N and N 0. For nets N and N 0 to be bisimulation equivalent, their initial markingsMin and M 0in should berelated by the bisimulation having the following transfer property: two markings are related if at ea
h of themthe same (multisets of) a
tions 
an o

ur, and the resulting markings belong to the same equivalen
e 
lass. Inaddition, sums of probabilities for all su
h o

urren
es should be the same for both 
ompared markings. Thus,for our de�nitions, we follow the approa
h of [14℄. Hen
e, the di�eren
e of bisimulation from tra
e equivalen
esis that we do not 
onsider all possible o

urren
es of (multisets of) a
tions from the initial markings, but onlysu
h that lead (stepwise) to markings belonging to the same equivalen
e 
lass.First we introdu
e several helpful notations. Let for a DTSPN N L � RS�(N ). For someM 2 RS�(N ) andA 2M(A
t) we write M A�!!Q L if: Xf eM2LjM A�!!P eMgP = Q:We shall write M A�!! L if M A�!!Q L for some Q > 0. For one-element multiset of a
tions A = fag wewrite M a�!!Q L and M a�!! L.Let X be some set. The number of elements in X is denoted as jXj. We denote the 
artesian produ
t of Xwith itself X �X by X2. Let E � X2 be an equivalen
e relation on X. Then an equivalen
e 
lass (w.r.t. E)of an element x 2 X is de�ned by [x℄E = fy 2 X j (x; y) 2 Eg. The equivalen
e E partitions X by the set ofequivalen
e 
lasses X=E = f[x℄E j x 2 Xg.De�nition 3.3 Let N be a DTSPN. An equivalen
e relation R � RS�(N )2 is an interleaving bisimulationbetween two markings M1 and M2 of N (i.e., (M1;M2) 2 R), denoted by R : M1$iM2, if 8a 2 A
t 8L 2RS�(N )=R: M1 a�!!Q L , M2 a�!!Q L:Two markings M1 and M2 are interleaving bisimulation equivalent, denoted by M1$iM2, if 9R :M1$iM2.To introdu
e a bisimulation between two DTSPNs N and N 0 we should 
onsider a \
omposite" set orrea
hable states, i.e., RS�(N ) [RS�(N 0). 7



De�nition 3.4 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is an interleavingbisimulation between N and N 0, denoted by R : N$iN 0, if R :Min$iM 0in.Two DTSPNs N and N 0 are interleaving bisimulation equivalent, denoted by N$iN 0, if 9R : N$iN 0.De�nition 3.5 Let N be a DTSPN. An equivalen
e relation R � RS�(N )2 is a step bisimulation between twomarkings M1 and M2 of N , denoted by R :M1$sM2, if 8A 2 M(A
t) 8L 2 RS�(N )=R:M1 A�!!Q L , M2 A�!!Q L:Two markings M1 and M2 are step bisimulation equivalent, denoted by M1$sM2, if 9R : M1$sM2.De�nition 3.6 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [RS�(N 0))2 is a step bisimulationbetween N and N 0, denoted by R : N$sN 0, if R :Min$sM 0in.Two DTSPNs N and N 0 are step bisimulation equivalent, denoted by N$sN 0, if 9R : N$sN 0.It is straightforward to show that the union of two (interleaving or step) bisimulations is also an (interleavingor step) bisimulation su
h that the largest bisimulation relation exists uniquely up to the ordering of equivalen
e
lasses. Consequently, for a given DTSPN equivalent nets with a minimal state spa
e exist.3.3 Ba
kward bisimulation equivalen
esFor untimed systems apart from bisimulation in forward dire
tion, also bisimulation in ba
kward dire
tion hasbeen de�ned [17, 18℄. However, the de�nition introdu
ed in [17℄ is not a straightforward extension of forwardbisimulation whi
h would simply mean to de�ne a ba
kward bisimulation as a bisimulation on the transitiongraph after reversing the dire
tion of ar
s. The authors in [17℄ argue why su
h a de�nition is not useful intheir 
ontext of untimed systems and de�ne ba
kward bisimulation based on paths preserving the history thatbrought the system to a state. This de�nition 
annot be transferred to our viewpoint of sto
hasti
 systems.Instead we de�ne here ba
kward bisimulation by extending forward bisimulation using two additional 
onditionson the initial marking and on outgoing transition probabilities. The latter implies that we de�ne some form ofba
k and forth bisimulation. However, we use the notation ba
kward bisimulation for the resulting equivalen
ewhi
h has shown to be useful for sto
hasti
 automata networks [5℄ and 
an be transferred naturally to DTSPNs.Like bisimulation, whi
h will from now on also be denoted as forward bisimulation, ba
kward bisimulationis de�ned using equivalen
e relations. For L � RS�(N ); M 2 RS�(N ) and A 2 M(A
t) we de�ne L A�!!Q Mas follows: Xf eM2Lj eM A�!!PMgP = Q:We shall write L A�!! M if L A�!!Q M for some Q > 0. For one-element multiset of a
tions A = fag wewrite L a�!!Q M and L a�!!M .De�nition 3.7 Let N be a DTSPN. An equivalen
e relation R � RS�(N )2 is an interleaving ba
kward bisim-ulation between two markings M1 and M2 of N , denoted by R :M1$ibM2, if 8a 2 A
t 8L 2 RS�(N )=R:M1 a�!!Q RS�(N ) , M2 a�!!Q RS�(N ); L a�!!Q M1 , L a�!!Q M2 and [Min℄R = fMing:Two markings M1 and M2 are interleaving ba
kward bisimulation equivalent, denoted by M1$ibM2, if9R :M1$ibM2.Observe that ba
kward bisimulation has a part looking forward in the future due to identi
al probabilitysums of leaving a marking via a-labeled transitions and a part looking ba
kwards due to identi
al probabilitiesof in
oming transitions from ea
h other equivalen
e 
lass. The de�nition of ba
kward bisimulation for two netslooks a little bit more 
ompli
ated than the 
orresponding de�nition for forward bisimulation be
ause we 
annotassume that in
oming transition probabilities are the same for equivalent markings from di�erent nets. Insteadit has to be assured that the probability 
ow from one equivalen
e 
lass to another is the same in both netsand for ea
h net separately the 
ow into ea
h marking of an equivalen
e 
lass has to be the same. To simplifythe mentioned de�nitions we propose the following indi
ator fun
tion � whi
h re
overs a DTSPN by a markingbelonging to it. Let N be a DTSPN and M 2 RS�(N ), then �(M ) = N . Thus, this is just a 
onvenientnotation allowing one to avoid a treatment of di�erent 
ases when markings of two nets are 
onsidered together.8



De�nition 3.8 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is an interleav-ing ba
kward bisimulation between N and N 0, denoted by R : N$ibN 0, if 8a 2 A
t 8L;K 2 (RS�(N ) [RS�(N 0))=R 8M1;M2 2 L:M1 a�!!Q RS�(�(M1)) , M2 a�!!Q RS�(�(M2)); [Min℄R = fMin;M 0ing andK a�!!Q� jL\RS�(�(M1))jjK\RS�(�(M1))j M1 , K a�!!Q� jL\RS�(�(M2))jjK\RS�(�(M2))j M2:Two DTSPNs N and N 0 are interleaving ba
kward bisimulation equivalent, denoted by N$ibN 0, if 9R :N$ibN 0.For markingsM1 and M2 belonging to the same net, the 
onditions on in
oming probabilities redu
e to therequirement of identi
al in
oming probabilities.De�nition 3.9 Let N be a DTSPN. An equivalen
e relation R � RS�(N )2 is a step ba
kward bisimulationbetween two markings M1 and M2 of N , denoted by R :M1$sbM2, if 8A 2M(A
t) 8L 2 RS�(N )=R:M1 A�!!Q RS�(N ) , M2 A�!!Q RS�(N ); L A�!!Q M1 , L A�!!Q M2 and [Min℄R = fMing:Two markings M1 and M2 are step ba
kward bisimulation equivalent, denoted by M1$sbM2, if 9R :M1$sbM2.De�nition 3.10 Let N and N 0 be two DTSPNs. A relation R � (RS�(N ) [ RS�(N 0))2 is a step ba
k-ward bisimulation between N and N 0, denoted by R : N$sbN 0, if 8A 2 M(A
t) 8L;K 2 (RS�(N ) [RS�(N 0))=R 8M1;M2 2 L:M1 A�!!Q RS�(�(M1)) , M2 A�!!Q RS�(�(M2)); [Min℄R = fMin;M 0ing andK A�!!Q� jL\RS�(�(M1))jjK\RS�(�(M1))j M1 , K A�!!Q� jL\RS�(�(M2))jjK\RS�(�(M2))j M2:Two DTSPNs N and N 0 are step ba
kward bisimulation equivalent, denoted by N$sbN 0, if 9R : N$sbN 0.As before the union of ba
kward bisimulations is a ba
kward bisimulation.3.4 Ba
k and forth bisimulation equivalen
esA natural way of de�ning a new equivalen
e is to 
ombine ba
kward and forward bisimulation. We de�nehere only ba
k and forth bisimulation equivalen
es for two nets, the remaining de�nitions 
an be transferredsimilarly.First, we de�ne an interleaving relation.De�nition 3.11 Two DTSPNs N and N 0 are interleaving ba
k and forth bisimulation equivalent, denoted byN$ibfN 0, if N$iN 0 and N$ibN 0.A de�nition of a step equivalen
e is introdu
ed similarly.De�nition 3.12 Two DTSPNs N and N 0 are step ba
k and forth bisimulation equivalent, denoted byN$sbfN 0, if N$sN 0 and N$sbN 0.3.5 Examples of the equivalen
esLet us present some examples of equivalen
e relations.As we have seen, one 
an 
onsider bisimulation between a net and itself, i.e., a bisimulation between markingsof the net and bisimulation between di�erent nets. Let us �rst 
onsider equivalen
e of markings of a single netfor the net shown in Figure 1. Markings (110) and (002) of N are forward bisimilar, if r12 = r42, r13 = r43and r44 = r14 whi
h holds by de�nition of the transition probabilities. If we assume that a and b are identi
alsymbols, then (011) and (101) are forward bisimulation equivalent independently of �(t1) and �(t2) as longas both values are non-zero whi
h has been assumed when RS�(N ) has been generated. Observe that thebisimulation is not a ba
kward bisimulation. 9



b aab Æ
��Æ
��Æ
��Æ
��u
N3 ?ZZZ~���>��/JJ℄ ?'- ��	 b baabÆ
�� Æ
��Æ
��Æ
��Æ
��u
 
N4 ��/JJ℄ ?? ������AAAAAK' $b��� AAU����3 QQQQk? ?- �b abÆ
��Æ
��Æ

��u
N1 ��/JJ℄ ? b baabÆ
�� Æ
��Æ
��Æ
��Æ
��u
 
N2 ��/JJ℄ ?? ������AAAAAK' $b��� AAU����3 QQQQk? ?- ���� AAU?AAAAAK bZZZ~QQQs#- JĴ 
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���/SSSSSo Figure 3: Nets related via di�erent equivalen
esFor bisimulation between di�erent nets we 
onsider the example shown in Figure 3. We assume that 
on-
i
ting transitions have the same weights and �ring probabilities. All nets have a very simple stru
ture without
on
urrently enabled transitions su
h that interleaving behavior is identi
al to the step one.The following equivalen
e relations exist between the nets:N1 �s N2 �s N3 �s N4 N1$sN2$sN4 N1$sbN3$sbN4 N1$sbfN4Observe that there is no bisimulation relation between N2 and N3, i.e., N2$= iN3 and N2$= ibN3.3.6 Interrelations of the equivalen
esIn this se
tion, we 
ompare the introdu
ed equivalen
es and obtain the latti
e of their interrelations.Proposition 3.1 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?N 0 ) N �? N 0:Proof. See Appendix A. utIn a similar way we show that ba
kward bisimulation implies tra
e equivalen
e.Proposition 3.2 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?bN 0 ) N �? N 0:Proof. See Appendix B. utThe following proposition 
on
erns relations of ba
k and forth bisimulations with other ones.10



$ib $sb�i �s$i $s$ibf $sbf?? ��� 66�������R ���I ���	' $?Figure 4: Interrelations of the equivalen
esProposition 3.3 Let ? 2 fi; sg. For DTSPNs N and N 0 the following holds:N$?bfN 0 ) N$?N 0 and N$?bN 0:Proof. The result follows from the de�nitions of ba
k and forth bisimulations. utThus, we obtained several important results for our equivalen
es stating that bisimulation (forward orba
kward) relations imply tra
e ones. This helps us to establish interrelations of the introdu
ed equivalen
enotions.Theorem 3.1 Let $;$$2 f�;$g and ?; ?? 2 fi; s; ib; sb; ibf; sbfg. For DTSPNs N and N 0 the followingholds: N $? N 0 ) N $$?? N 0i� in the graph in Figure 4 there exists a dire
ted path from $? to $$??.Proof. (() Let us 
he
k the validity of the impli
ations in the graph in Figure 4.� The impli
ations $s!$i; $2 f�;$g, and $sb ! $ib; $sbf ! $ibf , are valid sin
e a
tions areone-element multisets.� The impli
ations $? )�?; $?b )�?; ? 2 fi; sg, are valid by Proposition 3.1 and Proposition 3.2respe
tively.� The impli
ations$?bf )$?; $?bf )$?b; ? 2 fi; sg, are valid by Proposition 3.3.()) An absen
e of additional nontrivial arrows in the graph in Figure 4 is proved by the following examples.As in the previous examples we assume that 
on
i
ting transitions have equal weights and probabilities.� In Figure 5(a), N$ibfN 0, but N 6�s N 0, sin
e only in the DTSPN N 0 a
tions a and b 
annot happen
on
urrently.� In Figure 5(b), N �s N 0, but N$= iN 0 and N$= ibN 0, sin
e only in the DTSPN N 0 an a
tion a 
an happenso that no a
tion b 
an happen afterwards.� In Figure 3, N1$sN2, but N1$= ibN2, sin
e only in N2 there is a pla
e with two input transitions labeledby b. Hen
e, the probability for a token to go to this pla
e is always more than for that with only oneinput b-labeled transition.� In Figure 3, N1$sbN3, but N1$= iN3, sin
e only in the DTSPN N1 an a
tion a 
an happen so that asequen
e of a
tions b
 
annot happen just after it. ut
11
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��aÆ
��u N 0???Figure 5: Examples of the equivalen
es4 Stationary Behavior of DTSPNsA natural observation of the behavior of a dynami
 system is the observation of tra
es starting from the initialmarking of the DTSPN. Depending on the 
hosen viewpoint steps or only single transitions are observed. Tra
eshave been used to de�ne tra
e equivalen
e. Consequently, tra
e equivalent DTSPNs have the same tra
es, andsin
e tra
e equivalen
e is the weakest relation we have de�ned, all other equivalen
es also preserve tra
es.An alternative and 
ommonly used viewpoint in sto
hasti
 systems is to 
onsider the DTSPN in its steadystate. For this behavior we 
onsider only nets with an in�nite behavior and assume that the embedded DTMC isirredu
ible or 
ontains at least only one irredu
ible subset of markings. The embedded steady state distributionafter the observation of a visible event is the unique solution of the set linear equation:ps�(M ) = XeM2RS�(N) ps�(fM ) � PS�[fM;M ℄subje
t toPM2RS�(N) ps�(M ) = 1.We 
onsider in the following only step behavior but the results 
an be easily formulated for interleavingbehavior as well. First, extend the notion of step tra
es by de�ning step tra
es starting at some markingM 2 RS�(N ) as (M;�;P), where � = A1 � � �An 2 A
t� and:P = XfM1;:::;MnjM A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi:Thus, in the de�nition of StepTra
es(N ) we repla
e Min by M . Let StepTra
es(N;M ) be the set of allstep tra
es of DTSPN N starting at marking M . The set of all step tra
es in steady state is de�ned as:StStepTra
es(N ) = f(M;�; ps(M ) � P) jM 2 RS�(N ) ^ (�;P) 2 StepTra
es(N;M )g:Now we show that forward or ba
kward bisimulation equivalent nets have the same steady state tra
es,whereas tra
e equivalen
e does not preserve steady state tra
es.Proposition 4.1 1. Let N and N 0 be two forward bisimulation equivalent DTSPNs, then 8L 2 (RS�(N ) [RS�(N 0))=R: XM2L\RS�(N) ps�(M ) = XM 02L\RS�(N 0) ps�(M 0):2. Let N and N 0 be two ba
kward bisimulation equivalent DTSPNs, then 8L 2 (RS�(N ) [RS�(N 0))=R:XM2L\RS�(N) ps�(M ) = XM 02L\RS�(N 0) ps�(M 0);8M;fM 2 L \RS�(N ); 8M 0;fM 0 2 L\RS�(N 0) :ps�(M ) = ps�(fM ) and ps�(M 0) = ps�(fM 0):12
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e equivalent nets with StStepTra
es(N ) 6= StStepTra
es(N 0)Proof. The proof is an extension of the 
orresponding results for the 
ontinuous time 
ase [2, 3℄. utTheorem 4.1 Let N and N 0 be ba
kward or forward bisimulation equivalent DTSPNs, then:StStepTra
es(N ) = StStepTra
es(N 0):Proof. See Appendix C. utThe impli
ation stated in the previous theorem 
annot be reversed, sin
e for step tra
e equivalent nets Nand N 0, we may have StStepTra
e(N ) 6= StStepTra
e(N 0). This 
an be seen by the two nets shown in Figure6. For net N , the probability of being in one of both possible markings is 1=2. Consequently, a tra
e startswith probability 1=2 with an a. For net N 0 the probability of being in one of the three possible markings afterobservation of a transition equals 1=3. Consequently, the probability of observing a tra
e starting with a equals1=3.One should note that the stationary distribution is de�ned here a

ording to the embedded distributionafter observing a step of visible transitions. This distribution di�ers from the stationary distribution of the netat an arbitrary time. The latter behavior has to be analyzed on RS(N ) instead of RS�(N ) and is not preservedby any of the proposed equivalen
es even if we restri
t the observation to visible transitions.5 Con
lusionIn this paper, we introdu
ed a new 
lass of Sto
hasti
 Petri Nets with labeled transitions and a step semanti
sfor transition �ring. For this 
lass of nets we proposed several equivalen
e relations and showed that theseequivalen
es preserve interesting aspe
ts of system behavior. Equivalen
e relations 
an be used to 
omparedi�erent systems and to 
ompute for a given system a minimal equivalent representation [3℄. The latter aspe
tis espe
ially interesting for bisimulation equivalen
es, for whi
h eÆ
ient algorithms exist to 
ompute the largestbisimulation for a given net. By representation ea
h equivalen
e 
lass of this relation by a single marking weobtain a minimal representation at the state transition level. As a result of 
omparing the equivalen
es ina

ordan
e to di�erentiating power, we obtained a latti
e of impli
ations. Thus, we provided the new variant ofSto
hasti
 Petri Nets with step semanti
s, and this naturally 
orresponds to non-interleaving 
hara
ter of themodel. This 
an be 
onsidered as the main 
ontribution of the paper.Possible extension of this work 
an be an attempt to de�ne other bisimulation equivalen
es in interleavingand step semanti
s. For example, bran
hing bisimulation [19℄ 
an be 
onsidered as well as variants of ba
k-forthequivalen
es de�ned in [17, 18℄. For these equivalen
es we 
annot use observable state graphs, sin
e we may needlower level information. For example, to de�ne bran
hing relations, we should respe
t o

urren
es of invisibletransitions and states where they 
on
i
t with other ones. Thus, we 
annot just abstra
t of invisible transitionsfrom very beginning. To propose notions of ba
k-forth bisimulations, we need an information about the path ofevents whi
h 
ame to the present state. Hen
e, it is not enough even to 
onsider paths of transitions whi
h ledfrom the initial marking to the present one, sin
e the same transitions 
an happen 
on
urrently or sequentiallyresulting the same marking (in non-safe nets). In su
h a 
ase, we should have something like pro
esses forsto
hasti
 nets and 
olle
t events for out of paths from su
h pro
esses. We may also de�ne true 
on
urrentequivalen
es for sto
hasti
 nets su
h that partial word or pomset ones [19, 22℄. Step semanti
s proposed in thepresent paper 
an be the �rst stage to true 
on
urrent semanti
s for sto
hasti
 nets. These dire
tions are leftfor future resear
h. 13
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h to dis
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hasti
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e on Analysis and Optimizations of Systems, Springer LNIS199, pages 198{204, 1994.A Proof of Proposition 3.1It is enough to prove for ? = s, sin
e ? = i is a parti
ular 
ase of the previous one with one-element multisetsof a
tions.Let R : N$sN 0 and (M1;M2) 2 R. By the de�nition of step bisimulation we have 8A 2 M(A
t) 8 eL 2(RS�(N ) [RS�(N 0))=R: M1 A�!!Q eL , M2 A�!!Q eL:Let L = [M1℄R = [M2℄R. Then we 
an rewrite the above identity as:L A�!!Q eL;sin
e for all markings from equivalen
e 
lass L their probabilities of moving into eL as a result of o

urren
eof multiset of a
tions A 
oin
ide (they are equal to Q).Let (A1 � � �An;P) 2 StepTra
es(N ). Sin
e R : N$sN 0 and taking into a

ount the previous identity, wehave: Min A1�!!Q1 L1 A2�!!Q2 � � � An�!!Qn Ln , M 0in A1�!!Q1 L1 A2�!!Q2 � � � An�!!Qn Ln:Let us also note that starting from markings of N (N 0) to some set of markings L � (RS�(N ) [RS�(N 0))we 
an rea
h only markings of the same net, sin
e observable state graphs of two nets do not 
ommuni
ate.Now we intend to show that the sum of probabilities of all paths going through markings from L1; : : : ;Ln 
o-in
ides with the produ
t of Q1; : : : ; Qn, whi
h is essentially the probability of the path going through L1; : : : ;Lnin RG�(N )=R.Lemma A.1 For DTSPN N and all n (1 � n � jRG�(N )=Rj) the following holds:XfM12L1;:::;Mn2LnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi = nYi=1Qi:Proof. (of lemma) We shall prove by indu
tion on n.� n = 1:We have to prove that: XfM12L1 jMin A1�!!P1M1gP1 = Q1:This follows from the de�nition of transition relation between markings and sets of markings.� n ! (n+ 1):By indu
tion hypothesis, we have the following equality:XfM12L1;:::;Mn2LnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi = nYi=1Qi:15



In addition, we have: XfMn+12Ln+1 jMnAn+1�!! Pn+1Mn+1gPn+1 = Qn+1;again by the de�nition of transition relation between markings and sets of markings. Let us note that thesum above does not depend on parti
ular Mn 2 Ln, i.e., it is the same for all paths of SG�(N ) startingat Min and going through L1; : : : ;Ln.As a result of multiplying left and right parts of the two equalities above, we obtain:XfM12L1;:::;Mn2LnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng0BB� XfMn+12Ln+1jMnAn+1�!! Pn+1M1gPn+11CCA � nYi=1Pi = nYi=1Qi! � Qn+1:By distributivity law and with the use of the above note on independen
e of the sum of 
urrent probabilitieson 
on
rete marking Mn, we 
on
lude: XfM12L1;:::;Mn+12Ln+1jMin A1�!!P1M1 A2�!!P2 ���An+1�!! Pn+1Mn+1g n+1Yi=1 Pi = n+1Yi=1 Qi:This ends a proof of the lemma. utLet us note that the result of this lemma 
an also be applied to N 0.Now we have only to note that summation by all equivalen
e 
lasses is the same as summation by allmarkings, i.e.: XfM1;:::;MnjMin A1�!!P1M1 A2�!!P2 ��� An�!!PnMng nYi=1Pi = XfL1 ;:::;LnjMin A1�!!Q1L1 A2�!!Q2 ��� An�!!QnLng nYi=1Qi =XfL1;:::;LnjM 0in A1�!!Q1L1 A2�!!Q2 ��� An�!!QnLng nYi=1Qi = XfM 01;:::;M 0njM 0in A1�!!P01M 01 A2�!!P02 ��� An�!!P0nM 0ng nYi=1P 0i:Hen
e, (A1 � � �An;P) 2 StepTra
es(N 0), and we obtain StepTra
es(N ) � StepTra
es(N 0). The reversein
lusion is proved by symmetry. utB Proof of Proposition 3.2As before it is enough to prove that StepTra
es(N ) � StepTra
es(N 0).Let R : N$sbN 0. We prove the in
lusion by indu
tion over the length of tra
es.� n = 1:Sin
e the initial markings are the only markings in their equivalen
e 
lass we have 8A 2 M(A
t) 8L 2RS�(N )=R: Min A�!!Q L , M 0in A�!!Q L:However, Q is in this 
ase exa
tly the probability of observing A in the �rst step or the probability oftra
e A. Furthermore, let ps�[A;M ℄ be the probability of being at marking M after observing A fromMin. Then 8L 2 RS�(N )=R the following relation holds (see [5℄):16



ps�[A;L\RS�(N )℄ = XM2L\RS�(N) ps�[A;M ℄ = XM 02L\RS�(N 0)ps�[A;M 0℄ = ps�[A;L\RS�(N 0)℄In addition, ps�[A;M1℄ = ps�[A;M2℄ forM1;M2 2 L\RS�(N ) and ps�[A;M 01℄ = ps�[A;M 02℄ forM 01;M 02 2L \RS�(N 0). I.e., the equalities hold for any two markings of the same net su
h that they are from oneequivalen
e 
lass.Consequently, we have ps�[A;M ℄ = ps�[A;L℄=jL\RS�(N )j forM 2 RS�(N ) and ps�[A;M 0℄ = ps�[A;L℄=jL \RS�(N 0)j for M 0 2 RS�(N 0).� n ! (n+ 1):Assume that the above relations are proved for all tra
es of length n. Let A1 � � �An be the tra
e of lengthn and let An+1 be the multiset of a
tions observed in step n+ 1. The probability of observing An+1 in Nequals: XM2RS�(N) ps�[A1 � � �An;M ℄ � XeM2RS�(N)PS�[An+1;M;fM ℄Due to equality of probabilities in an equivalen
e 
lass this probability 
an be rewritten as:XL XK ps�[A1 � � �An;L \RS�(N )℄ � PS�[An+1;L\RS�(N );K\RS�(N )℄jL \RS�(N )jwhere the summation ranges over all L;K 2 (RS�(N ) [RS�(N 0))=R. By de�nition this equals:XL XK ps�[A1 � � �An;L\RS�(N 0)℄ � PS�[An+1;L\RS�(N 0);K\RS�(N 0)℄jL \RS�(N 0)jwhi
h is the probability of observing An+1 in N 0. The probabilities of being in M 2 K 2 RS�(N )=R afterobserving An+1 are 
omputed as:ps�[A1 � � �An;M ℄ =XL ps�[A1 � � �An;L \RS�(N )℄jL \RS�(N )j � PS�[An+1;L\RS�(N );K\RS�(N )℄jK \RS�(N )jwhi
h is the same for a all M 2 K 2 RS�(N )=R. Sin
e the above relation holds both for N and N 0, it iseasy to show that also ps�[A1 � � �An;L\RS�(N )℄ = ps�[A1 � � �An;L \RS�(N 0)℄holds for all L 2 (RS�(N ) [RS�(N 0))=R whi
h 
ompletes the indu
tion step. utC Proof of Theorem 4.1We prove the theorem for ba
kward bisimulation equivalen
e the proof for forward bisimulation equivalen
e issimilar.We prove the theorem by indu
tion over the length n of a tra
e.� n = 1:The following relations hold for the probability of observing A1 in steady state:PL PK PM2L\RS�(N) ps�(M ) PeM2K\RS� (N)PS�[A1;M;fM ℄ = PL ps�(L)PK PS�[A1;L;K℄ =PL PK PM 02L\RS�(N 0) ps�(M 0) PeM 02K\RS� (N 0)PS�[A1;M 0;fM 0℄where: 17



PS�[A;L;K℄ = PM2L\RS�(N) PeM2K\RS�(N)PS�[A;M;fM ℄= PM 02L\RS�(N 0) PeM 02K\RS� (N 0)PS�[A;M 0;fM 0℄� n! (n + 1):The proof for n = 1 is based on equal probabilities of the equivalen
e 
lasses and equal probabilities ofstates inside the equivalen
e 
lasses. Thus, we only have to prove that the identity holds after observingan arbitrary step. Together with the proof for n = 1 this proves the required identity of tra
es. Bothequalities hold after observing a step A if they hold before observing a the step sin
e we have:PK PM2K\RS� (N) ps�(M ) PeM2L\RS�(N)PS�[A;M;fM ℄ =PK ps�(K)PL PS�[A;L;K℄ =PK PM 02K\RS� (N 0) ps�(M 0) PeM 02L\RS� (N 0)PS�[A;M 0;fM 0℄whi
h implies that probabilities of being in equivalen
e 
lass L are identi
al for N and N 0.Let ps�A(M ) be the probability of being in M 2 L\RS�(N ) after observing A starting with probabilitiesps�: ps�A(M ) =PK PeM2K\RS� (N) ps�(fM )PS�[A;fM;M ℄=PK ps�(K) � PS� [A;K;L℄jL\RS�(N)j=PK PeM2K\RS� (N) ps�(fM )PS�[A;fM;M ℄ = ps�A(M )whi
h shows that 8M;M 2 L \RS�(N ) : ps�A(M ) = ps�A(M ). By a symmetri
 argument the equality ofprobabilities in an equivalen
e 
lass for states from RS�(N 0) 
an be proved. ut
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