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� -Equivalenes and Re�nementfor Petri Nets Based Design �Igor V. TarasyukA.P. Ershov Institute of Informatis SystemsSiberian Division of the Russian Aademy of Sienes6, Aad. Lavrentiev ave., 630090 Novosibirsk, Russiaitar�iis.nsk.suAbstratThe paper is devoted to the investigation of behavioral equivalenes of onurrent systems modeled byPetri nets with silent transitions. Basi � -equivalenes and bak-forth � -bisimulation equivalenes knownfrom the literature are supplemented by new ones, giving rise to omplete set of equivalene notions ininterleaving / true onurreny and linear / branhing time semantis. Their interrelations are examinedfor the general lass of nets as well as for their sublasses of nets without silent transitions and sequentialnets (nets without onurrent transitions). In addition, the preservation of all the equivalene notions byre�nements (allowing one to onsider the systems to be modeled on a lower abstration levels) is investigated.Keywords: Petri nets with and without silent transitions, sequential nets, basi and bak-forth � -equiva-lenes, re�nement.1 IntrodutionThe notion of equivalene is entral in any theory of systems. It allows to ompare systems taking into aountpartiular aspets of their behavior.Petri nets [16℄ beame a popular formal model for design of onurrent and distributed systems. One of themain advantages of Petri nets is their ability for strutural haraterization of three fundamental features ofonurrent omputations: ausality, nondeterminism and onurreny.Silent transitions are transitions labeled by speial silent ation � whih represents an internal ativity ofa system to be modeled and it is invisible for external observer. It is well-known that Petri nets with silenttransitions are more powerful than usual ones.Equivalenes whih abstrat of silent ations are alled � -equivalenes (these are labeled by the symbol �to distinguish them of relations not abstrating of silent ations). In reent years, a wide range of semantiequivalenes was proposed in onurreny theory. Some of them were either diretly de�ned or transferred fromother formal models to Petri nets. The following basi notions of � -equivalenes are known from the literature.� � -trae equivalenes (they respet only protools of behavior of systems): interleaving (��i ) [17℄, step (��s )[17℄, partial word (��pw) [25℄ and pomset (��pom) [18℄.� Usual � -bisimulation equivalenes (they respet branhing struture of behavior of systems): interleaving($�i ) [14℄, step ($�s) [17℄, partial word ($�pw) [24℄ and pomset ($�pom) [18℄.� ST-� -bisimulation equivalenes (they respet the duration or maximality of events in behavior of systems):interleaving ($�iST ) [24℄, partial word ($�pwST ) [24℄ and pomset ($�pomST ) [24℄.� History preserving � -bisimulation equivalenes (they respet the \past" or \history" of behavior of sys-tems): pomset ($�pomh) [9, 10℄.�The paper was ompleted during postdotoral researh of the author supported by DFG-stipend from the PostgraduateProgram\Spei�ation of Disrete Proesses and Systems of Proesses by Operational Models and Logis"at TU Dresden. Current e-mail:tarasyuk�ts.inf.tu-dresden.de. In addition, a partial support was obtained from the Russian Foundation for Basi Researh,grant 00-01-00898. 1



� History preserving ST-� -bisimulation equivalenes (they respet the \history" and the duration or maxi-mality of events in behavior of systems): pomset ($�pomhST ) [9, 10℄.� Usual branhing � -bisimulation equivalenes (they respet branhing struture of behavior of systemstaking a speial are for silent ations): interleaving ($�ibr) [12, 13℄.� History preserving branhing � -bisimulation equivalenes (they respet \history" and branhing strutureof behavior of systems taking a speial are for silent ations): pomset ($�pomhbr) [9℄.� Isomorphism (') (i.e. oinidene of systems up to renaming of their omponents).Another type of equivalene notions alled bak-forth bisimulation equivalenes are based on the idea thatbisimulation relation do not only require systems to simulate eah other behavior in the forward diretion (asusually) but also when going bak in history. They are losely onneted with equivalenes of logis with pastmodalities.These equivalene notions were initially introdued in [15℄. In the framework of transition systems withoutsilent ations interleaving bak-forth bisimulation equivalene ($ibif ) was de�ned and proved to merge with$i. On transition systems with silent ations it was shown that bak-forth variant ($�ibif ) of interleaving� -bisimulation equivalene oinide with $�ibr.In [6, 7, 8℄, the new variants of step, partial word and pomset bak-forth bisimulation equivalenes werede�ned in the framework of prime event strutures without silent ations.In [19℄, the new idea of di�erentiating the kinds of bak and forth simulations appeared (following this idea,it is possible, for example, to de�ne step bak pomset forth bisimulation equivalene). The set of all possiblebak-forth equivalene notions was proposed in interleaving, step, partial word and pomset semantis for primeevent strutures without silent ations. The new notion of � -equivalene was proposed for event strutureswith silent ations: pomset bak pomset forth ($�pombpomf ) � -bisimulation equivalene. It's oinidene with$�pomhbr was proved.To hoose most appropriate behavioral viewpoint on systems to be modeled, it is very important to have aomplete set of equivalene notions in all semantis and understand their interrelations. This branh of researhis usually alled omparative onurreny semantis. To larify the nature of equivalenes and evaluate howthey respet internal ativity and onurreny in systems to be modeled, it is atual to onsider also orrelationof these notions on nets without silent transitions and onurreny-free (sequential) ones. Treating equivalenesfor preservation by re�nements allows one to deide whih of them may be used for top-down design.Working in the framework of Petri nets with silent transitions, in this paper we ontinue the researh of[20, 21, 22℄ and extend the set of basi notions of � -equivalenes by interleaving ST-branhing � -bisimulation one($�iSTbr), pomset history preserving ST-branhing � -bisimulation one ($�pomhSTbr ) and multi event strutureone (��mes). Let us note that an idea to introdue $�pomhSTbr appeared initially in [19℄ on the model of eventstrutures. We omplete bak-forth � -equivalenes from [19℄ by 6 new notions: interleaving bak step forth($�ibsf), interleaving bak partial word forth ($�ibpwf ), interleaving bak pomset forth ($�ibpomf ), step bakstep forth ($�sbsf ), step bak partial word forth ($�sbpwf) and step bak pomset forth ($�sbpomf ) � -bisimulationequivalenes. We ompare all bak-forth � -equivalenes with the set of basi behavioral relations.We also investigate the interrelations of all the onsidered � -equivalenes with equivalenes whih do notabstrat of silent ations.In [5℄, SM-re�nement operator for Petri nets was proposed, whih \replaes" their transitions by SM-nets,a speial sublass of state mahine nets. We treat all the onsidered � -equivalene notions for preservation bySM-re�nements. We show that $�iSTbr; $�pomhSTbr and ��mes, i.e. all the new basi equivalenes onsideredin this paper, are preserved by SM-re�nements. Thus, we have branhing and onit preserving equivaleneswhih may be used for multilevel design. In the literature, a stability w.r.t. SM-re�nements was proved onlyfor $�pomhST in [5℄ and for $�iST in [10℄. The preservation result for other ST-� -bisimulation equivalenes wasproved in [24℄, but it was done on event strutures and an other re�nement operator was used. The preservationof trae � -equivalenes was not established before. Thus, our results for $�pwST ; $�pomST ; ��pw and ��pom arealso new.In addition, we investigate the interrelations of all the � -equivalene notions on nets without silent transitionsand sequential nets. We prove that on nets without silent transitions � -equivalenes oinide with equivalenenotions whih do not abstrat of silent ations. We demonstrate that on sequential nets interleaving and pomset� -equivalenes are merged, and bak-forth � -equivalenes oinide with forth � -equivalene relations.The rest of the paper is organized as follows. Basi de�nitions are introdued in Setion 2. In Setion 3,we propose basi � -equivalenes and investigate their interrelations. In Setion 4, bak-forth � -bisimulationequivalenes are de�ned and ompared with basi � -equivalene notions. All the onsidered � -equivalenes areompared with ones whih do not abstrat of silent ations in Setion 5. In Setion 6, we establish whih � -equivalene relations are preserved by SM-re�nements. Setion 7 is devoted to omparison of the � -equivalenes2



on nets without silent transitions and sequential nets. Conluding Setion 8 ontains a review of the mainresults obtained and some diretions of further researh.2 Basi de�nitionsIn this setion, we present some basi de�nitions used further.2.1 MultisetsA multiset is an extension of a set notion allowing an existene of several idential elements in the latter.De�nition 2.1 Let X be some set. A �nite multiset M over X is a mapping M : X !N (N denotes the setof natural numbers) s.t. jfx 2 X jM (x) > 0gj <1.M(X) denotes the set of all �nite multisets over X. When 8x 2 X M (x) � 1; M is a proper set. Theardinality of a multiset M is de�ned in suh a way: jM j = Px2X M (x). We write x 2 M if M (x) > 0and M � M 0, if 8x 2 X M (x) � M 0(x). We de�ne (M + M 0)(x) = M (x) + M 0(x) and (M � M 0)(x) =maxf0;M (x)�M 0(x)g.2.2 Labeled netsA labeled net is a Petri net s.t. its transitions may be \labeled" by ation (a sort of ativity) names.Let At = fa; b; : : :g be a set of ation names or labels. The symbol � 62 At denotes a speial silentation whih represents internal ativity of system to be modeled and invisible to external observer. We denoteAt� = At [ f�g.De�nition 2.2 A labeled net is a quadruple N = hPN ; TN ; FN ; lN i, where:� PN = fp; q; : : :g is a set of plaes;� TN = ft; u; : : :g is a set of transitions;� FN : (PN � TN ) [ (TN � PN )!N is the ow relation with weights;� lN : TN ! At� is a labeling of transitions with ation names.Given labeled nets N = hPN ; TN ; FN ; lN i andN 0 = hPN 0 ; TN 0 ; FN 0 ; lN 0 i. A mapping � : PN[TN ! PN 0[TN 0is an isomorphism between N and N 0, denoted by � : N ' N 0, if:1. � is a bijetion s.t. �(PN ) = PN 0 and �(TN ) = TN 0 ;2. 8p 2 PN 8t 2 TN FN (p; t) = FN 0(�(p); �(t)) and FN (t; p) = FN 0(�(t); �(p));3. 8t 2 TN lN (t) = lN 0 (�(t)).Labeled nets N and N 0 are isomorphi, denoted by N ' N 0, if 9� : N ' N 0.Given a labeled net N and some transition t 2 TN , the preondition and postondition of t, denoted by �t andt� respetively, are the multisets de�ned in suh a way: (�t)(p) = FN (p; t) and (t�)(p) = FN (t; p). Analogousde�nitions are introdued for plaes: (�p)(t) = FN (t; p) and (p�)(t) = FN (p; t). Let ÆN = fp 2 PN j �p = ;g bea set of initial (input) plaes of N and NÆ = fp 2 PN j p� = ;g be a set of �nal (output) plaes of N .A labeled net N is ayli, if there exist no transitions t0; : : : ; tn 2 TN s.t. t�i�1 \ �ti 6= ; (1 � i � n) andt0 = tn. A labeled net N is ordinary if 8t 2 TN �t and t� are proper sets (not multisets).Let N = hPN ; TN ; FN ; lN i be ayli ordinary labeled net and x; y 2 PN [TN . Let us introdue the followingnotions.� x �N y , xF+N y, where F+N is a transitive losure of FN (strit ausal dependene relation);� x �N y , (x �N y) _ (x = y) (a relation of ausal dependene);� x#Ny , 9t; u 2 TN (t 6= u; �t \ �u 6= ;; t �N x; u �N y) (a relation of onit);� #N x = fy 2 PN [ TN j y �N xg (the set of strit predeessors of x).A set T � TN is left-losed in N , if 8t 2 T (#N t) \ TN � T .3



2.3 Marked netsA marked net is a labeled net having ative elements alled tokens in its plaes. Suh the plaes are onsideredto be \marked". Thus, a behavior of a marked net an be onsidered, in aordane to the speial rules of the\token game."A marking of a labeled net N is a multiset M 2M(PN ).De�nition 2.3 A (marked) net is a tuple N = hPN ; TN ; FN ; lN ;MN i, where hPN ; TN ; FN ; lN i is a labeled netand MN 2M(PN ) is the initial marking.Given nets N = hPN ; TN ; FN ; lN ;MN i and N 0 = hPN 0 ; TN 0 ; FN 0 ; lN 0 ;MN 0 i. A mapping � : PN [ TN !PN 0 [ TN 0 is an isomorphism between N and N 0, denoted by � : N ' N 0, if:1. � : hPN ; TN ; FN ; lN i ' hPN 0 ; TN 0 ; FN 0 ; lN 0i;2. 8p 2 PN MN (p) = MN 0 (�(p)).Nets N and N 0 are isomorphi, denoted by N ' N 0, if 9� : N ' N 0.Let M 2 M(PN ) be a marking of a net N . A transition t 2 TN is �reable in M , if �t � M . If t is �reablein M , its �ring yields a new marking fM = M � �t + t�, denoted by M t! fM . A marking M of a net N isreahable, if M = MN or there exists a reahable marking M of N s.t. M t! M for some t 2 TN . Mark(N )denotes a set of all reahable markings of a net N .2.4 Partially ordered setsA partially ordered set (poset) is a speial formalism used for a semanti desription of onurrent systems.Posets allow one to speify ausal dependenies of events of a modeled system. Conurreny is interpreted asausal independene.De�nition 2.4 A labeled partially ordered set (lposet) is a triple � = hX;�; li, where:� X = fx; y; : : :g is some set;� �� X �X is a strit partial order (irreexive transitive relation) over X, a ausal dependene relation;� l : X ! At� is a labeling funtion.Let � = hX;�; li be lposet and x 2 X;Y � X. Then # x = fy 2 X j y � xg is a set of strit predeessors ofx. A restrition of � to the set Y is de�ned as follows: �jY = hY;� \(Y � Y ); ljY i.Let � = hX;�; li and �0 = hX 0;�0; l0i be lposets.A mapping � : X ! X 0 is a label-preserving bijetion between � and �0, denoted by � : � � �0, if:1. � is a bijetion;2. 8x 2 X l(x) = l0(�(x)).We write � � �0, if 9� : � � �0.A mapping � : X ! X 0 is a homomorphism between � and �0, denoted by � : � v �0, if:1. � : � � �0;2. 8x; y 2 X x � y ) �(x) �0 �(y).We write � v �0, if 9� : � v �0.A mapping � : X ! X0 is an isomorphism between � and �0, denoted by � : � ' �0, if � : � v �0 and��1 : �0 v �. Two lposets � and �0 are isomorphi, denoted by � ' �0, if 9� : � ' �0.De�nition 2.5 Partially ordered multiset (pomset) is an isomorphism lass of lposets.4



2.5 Event struturesAn event struture is an extension of a pomset notion whih allows one to speify onits between events, i.e.the situations when an ourrene of one event exludes that of another.De�nition 2.6 A labeled event struture (LES) is a quadruple � = hX;�;#; li, where:� X = fx; y; : : :g is a set of events;� �� X �X is a strit partial order over X, a ausal dependene relation, whih satis�es to the prinipleof �nite auses: 8x 2 X j # xj <1;� # � X � X is an irreexive symmetrial onit relation, whih satis�es to the priniple of onitheredity: 8x; y; z 2 X x#y � z ) x#z;� l : X ! At� is a labeling funtion.Let � = hX;�;#; li be LES and Y � X. A restrition of � to the set Y is de�ned as follows: �jY = hY;�\(Y � Y );# \ (Y � Y ); ljY i.Let � = hX;�;#; li and �0 = hX 0;�0;#0; l0i be LES's. A mapping � : X ! X0 is an isomorphism between� and �0, denoted by � : � ' �0, if:1. � : hX;�; li ' hX 0;�0; l0i;2. 8x; y 2 X x#y , �(x)#0�(y).Two LES's � and �0 are isomorphi, denoted by � ' �0, if 9� : � ' �0.De�nition 2.7 A multi-event struture (MES) is an isomorphism lass of LES's.2.6 ProessesA proess [4℄ may be onsidered as a formalism desribing a partiular omputation of a modeled system.Usually, proesses are deterministi, sine in a omputation no two events may be involved into a onit (allof them will our).De�nition 2.8 A ausal net is an ayli ordinary labeled net C = hPC; TC ; FC; lCi, s.t.:1. 8r 2 PC j�rj � 1 and jr�j � 1, i.e. plaes are unbranhed;2. 8x 2 PC \ TC j #C xj <1, i.e. a set of auses is �nite.Let us note that on the basis of any ausal net C = hPC ; TC ; FC; lCi one an de�ne lposet �C = hTC ;�N\(TC � TC); lCi.The fundamental property of ausal nets is [2℄: if C is a ausal net, then there exists a sequene of transition�rings ÆC = L0 v1! � � � vn! Ln = CÆ s.t. Li � PC (0 � i � n); PC = [ni=0Li and TC = fv1; : : : ; vng. Suh asequene is alled a full exeution of C.De�nition 2.9 Given a net N and a ausal net C. A mapping ' : PC [ TC ! PN [ TN is an embedding ofC into N , denoted by ' : C ! N , if:1. '(PC) 2 M(PN ) and '(TC ) 2M(TN ), i.e. sorts are preserved;2. 8v 2 TC �'(v) = '(�v) and '(v)� = '(v�), i.e. ow relation is respeted;3. 8v 2 TC lC (v) = lN ('(v)), i.e. labeling is preserved.Sine embeddings respet the ow relation, if ÆC v1! � � � vn! CÆ is a full exeution of C, then M = '(ÆC) '(v1)�!� � � '(vn)�! '(CÆ) = fM is a sequene of transition �rings in N .De�nition 2.10 A �reable in markingM proess of a net N is a pair � = (C;'), where C is a ausal net and' : C ! N is an embedding s.t. M = '(ÆC). A �reable in MN proess is a proess of N .5



We write �(N;M ) for a set of all �reable in marking M proesses of a net N and �(N ) for the set of allproesses of a net N . The initial proess of a net N is �N = (CN ; 'N ) 2 �(N ), s.t. TCN = ;. If � 2 �(N;M ),then �ring of this proess transforms a markingM into fM =M�'(ÆC)+'(CÆ) = '(CÆ), denoted byM �! fM .Let � = (C;'); ~� = ( eC; ~') 2 �(N ); �̂ = ( bC; '̂) 2 �(N;'(CÆ)). A proess � is a pre�x of a proess ~�, ifTC � TeC is a left-losed set in eC. A proess �̂ is a suÆx of a proess ~�, if TbC = TeC n TC . In suh a ase aproess ~� is an extension of � by proess �̂, and �̂ is an extending proess for �, denoted by � �̂! ~�. We write� ! ~�, if � �̂! ~� for some �̂.A proess ~� is an extension of a proess � by one transition, denoted by � v! ~� or � a! ~�, if � �̂! ~�; TbC = fvgand lbC(v) = a .A proess ~� is an extension of a proess � by sequene of transitions, denoted by � �! ~� or � !! ~�, if9�i 2 �(N ) (1 � i � n) � v1! �1 v2! : : : vn! �n = ~�; � = v1 � � �vn and lbC(�) = !.A proess ~� is an extension of a proess � by multiset of transitions, denoted by � V! ~� or � A! ~�, if� �̂! ~�; �bC= ;; TbC = V and lbC(V ) = A.2.7 Branhing proessesA branhing proess [11℄ is an extension of a notion of a (usual, deterministi) one s.t. there may exist alternativeevents in it. So, it may be onsidered as a \ompilation" of di�erent omputations in the only unit, allowingone to observe all the interplays of events and take into aount both ausality and nondeterminism on equalbasis.De�nition 2.11 An ourrene net is an ayli ordinary labeled net O = hPO; TO; FO; lOi, s.t.:1. 8r 2 PO j�rj � 1, i.e. there are no bakwards onits;2. 8x 2 PO [ TO :(x#Ox), i.e. onit relation is irreexive;3. 8x 2 PO [ TO j #O xj <1, i.e. set of auses is �nite.Let us note that on the basis of any ourrene net O one an de�ne LES �O = hTO ;�O \(TO � TO);#O \(TO � TO); lOi.Let O = hPO; TO; FO; lOi be ourrene net and N = hPN ; TN ; FN ; lN ;MN i be some net.De�nition 2.12 A mapping  : PO [ TO ! PN [ TN is an embedding O into N , notation  : O ! N , if:1.  (PO) 2M(PN ) and  (TO) 2M(TN ), i.e. sorts are preserved;2. 8v 2 TO lO(v) = lN ( (v)), i.e. labeling is preserved;3. 8v 2 TO � (v) =  (�v) and  (v)� =  (v�), i.e. ow relation is respeted;4. 8v; w 2 TO (�v = �w) ^ ( (v) =  (w)) ) v = w, i.e. there are no \superuous" onits.De�nition 2.13 A branhing proess of a net N is a pair $ = (O; ), where O is an ourrene net and : O ! N is an embedding s.t. MN =  (ÆO).We write }(N ) for a set of all branhing proesses of a net N . The initial branhing proess of a net Noinides with it's initial proess, i.e. $N = �N .Let $ = (O; ); ~$ = ( eO; ~ ) 2 }(N ); O = hPO; TO; FO; lOi ; eO = hPeO; TeO; FeO; leOi. A branhing proess$ is a pre�x of a proess ~$, if TO � TeO is a left-losed set in eO. In suh a ase branhing proess ~$ is anextension of $, and $̂ is an extending branhing proess for $, denoted by $ ! ~$.A branhing proess $ of a net N is maximal, if it annot be extended, i.e. 8$ = (O; ) s.t. $ ! ~$ :TeO n TO = ;. A set of all maximal branhing proesses of a net N onsists of the unique (up to isomorphism)branhing proess $max = (Omax;  max). In suh a ase an isomorphism lass of ourrene net Omax isan unfolding of a net N , notation U(N ). On the basis of unfolding U(N ) of a net N one an de�ne MESE(N ) = �U(N) whih is an isomorphism lass of LES �O for O 2 U(N ).3 Basi � -equivalenesIn this setion, we propose basi � -equivalenes: trae, bisimulation and onit preserving. They will form abasi \frame" of relations for our further investigation.6



3.1 � -trae equivalenesTrae equivalenes are the simplest ones. In trae semantis, a behavior of a system is assoiated with the set ofall possible sequenes of ativities, i.e. protools of work or omputations. Thus, the points of nondeterministihoie between several extensions of a partiular omputation are not taken into aount.Let us introdue formal de�nitions of the trae relations.We denote the empty string by the symbol ".Let � = a1 � � �an 2 At�� . We de�ne vis(�) as follows (in the following de�nition a 2 At� ).1. vis(") = ";2. vis(�a) = � vis(�)a; a 6= � ;vis(�); a = �:De�nition 3.1 A visible interleaving trae of a net N is a sequene vis(a1 � � �an) 2 At� s.t. �N a1! �1 a2!: : : an! �n, where �N is the initial proess of a net N and �i 2 �(N ) (1 � i � n). We denote a set of all visibleinterleaving traes of a net N by V isIntTraes(N ). Two nets N and N 0 are interleaving � -trae equivalent,denoted by N ��i N 0, if V isIntTraes(N ) = V isIntTraes(N 0).Let � = A1 � � �An 2 (M(At� ))�. We de�ne vis(�) as follows (in the following de�nition A 2M(At� )).1. vis(") = ";2. vis(�A) = � vis(�)(A \At); A \At 6= ;;vis(�); otherwise:De�nition 3.2 A visible step trae of a net N is a sequene vis(A1 � � �An) 2 (M(At))� s.t. �N A1! �1 A2!: : : An! �n, where �N is the initial proess of a net N and �i 2 �(N ) (1 � i � n). We denote a set of allvisible step traes of a net N by V isStepTraes(N ). Two nets N and N 0 are step � -trae equivalent, denotedby N ��s N 0, if V isStepTraes(N ) = V isStepTraes(N 0).Let � = hX;�; li is lposet s.t. l : X ! At� . We denote vis(X) = fx 2 X j l(x) 2 Atg and vis(�) = �jvis(X).De�nition 3.3 A visible pomset trae of a net N is a pomset vis(�), an isomorphism lass of lposet vis(�C )for � = (C;') 2 �(N ). We denote a set of all visible pomsets of a net N by V isPomsets(N ). Two nets Nand N 0 are partial word � -trae equivalent, denoted by N ��pw N 0, if V isPomsets(N ) v V isPomsets(N 0) andV isPomsets(N 0) v V isPomsets(N ).De�nition 3.4 Two nets N and N 0 are pomset � -trae equivalent, denoted by N ��pom N 0, if V isPomsets(N )= V isPomsets(N 0).3.2 � -bisimulation equivalenesBisimulation equivalenes ompletely respet points of nondeterministi hoie in the behavior of a modeledsystem, unlike trae ones.Let C = hPC ; TC; FC; lCi be ausal net. We denote vis(TC ) = fv 2 TC j lC(v) 2 Atg and vis(�C ) =�C\(vis(TC )� vis(TC )).3.2.1 Usual � -bisimulation equivalenesUsual bisimulation equivalenes are the simplest (and weakest) ones in the bisimulation semantis. They requirea mutual simulation of the parts of a \new" omputations whih extend the \present" ones, i.e. \extending"parts.De�nition 3.5 Let N and N 0 be some nets. A relation R � �(N ) � �(N 0) is a ?-� -bisimulation between Nand N 0, ? 2finterleaving, step, partial word, pomsetg, denoted by R : N$�?N 0; ? 2 fi; s; pw; pomg, if:1. (�N ; �N 0) 2 R.2. (�; �0) 2 R; � �̂! ~�,(a) jvis(TbC )j = 1, if ? = i;(b) vis(�bC ) = ;, if ? = s; 7



) 9~�0 : �0 �̂0! ~�0; (~�; ~�0) 2 R and(a) vis(�bC0 ) v vis(�bC ), if ? = pw;(b) vis(�bC ) ' vis(�bC0 ), if ? 2 fi; s; pomg.3. As item 2, but the roles of N and N 0 are reversed.Two nets N and N 0 are ?-� -bisimulation equivalent, ? 2finterleaving, step, partial word, pomsetg, denoted byN$�?N 0, if 9R : N$�?N 0; ? 2 fi; s; pw; pomg.3.2.2 ST-� -bisimulation equivalenesST-bisimulation equivalenes respet (in some sense) the duration of event ourrenes in a omputation sup-posing that these events happen not instantaneously, but have the beginning and the end. The relations requirea mutual simulation of extending parts of omputations plus the parts onsisting of events whih are ative now(i.e. that whih have begun but have not �nished yet).We begin with the de�nition of ST-proess whih is a speial struture ontaining the information about asausal dependenies of events in the present omputation as the events whih �nished their work and are notative at the present moment.De�nition 3.6 ST-� -proess of a net N is a pair (�E ; �P ) s.t. �E; �P 2 �(N ); �P �W! �E and 8v; w 2TCE (v �CE w) _ (lCE (v) = � ) ) v 2 TCP .In suh a ase �E is a proess whih began working, �P orresponds to the ompleted part of �E , and�W | to the still working part. Obviously, �CW= ;. We denote a set of all ST-� -proesses of a net N byST � ��(N ). (�N ; �N ) is the initial ST-� -proess of a net N . Let (�E ; �P ); (~�E ; ~�P ) 2 ST � ��(N ). We write(�E ; �P )! (~�E ; ~�P ), if �E ! ~�E and �P ! ~�P .De�nition 3.7 Let N and N 0 be some nets. A relation R � ST � ��(N )� ST � ��(N 0)�B, where B = f� j� : vis(TC ) ! vis(TC0 ); � = (C;') 2 �(N ); �0 = (C 0; '0) 2 �(N 0)g is a ?-ST-� -bisimulation between N andN 0, ? 2finterleaving, partial word, pomsetg, denoted by R : N$�?STN 0; ? 2 fi; pw; pomg, if:1. ((�N ; �N ); (�N 0 ; �N 0); ;) 2 R.2. ((�E ; �P ); (�0E; �0P ); �) 2 R ) � : vis(�CE ) � vis(�C0E ) and �(vis(TCP )) = vis(TC0P ).3. ((�E ; �P ); (�0E; �0P ); �) 2 R; (�E ; �P )! (~�E ; ~�P ) ) 9~�; (~�0E ; ~�0P ) : (�0E ; �0P )! (~�0E ; ~�0P ); ~�jvis(TCE) =�; ((~�E ; ~�P ); (~�0E; ~�0P ); ~�) 2 R, and if �P �! ~�E; �0P �0! ~�0E;  = ~�jvis(TC), then:(a) �1 : vis(�C0 ) v vis(�C ), if ? = pw;(b)  : vis(�C ) ' vis(�C0 ), if ? = pom.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are ?-ST-� -bisimulation equivalent, ? 2finterleaving, partial word, pomsetg, denoted byN$�?STN 0, if 9R : N$�?STN 0; ? 2 fi; pw; pomg.3.2.3 History preserving � -bisimulation equivalenesHistory preserving bisimulation equivalenes respet \histories" of work, i.e. require a mutual modeling of thewhole omputations, from the beginning to the end.De�nition 3.8 Let N and N 0 be some nets. A relation R � �(N )��(N 0)�B, where B = f� j � : vis(TC )!vis(TC0 ); � = (C;') 2 �(N ); �0 = (C0; '0) 2 �(N 0)g, is a pomset history preserving � -bisimulation betweenN and N 0, denoted by N$�pomhN 0, if:1. (�N ; �N 0 ; ;) 2 R.2. (�; �0; �) 2 R ) � : vis(�C ) ' vis(�C0 ).3. (�; �0; �) 2 R; � ! ~� ) 9~�; ~�0 : �0 ! ~�0; ~�jvis(TC) = �; (~�; ~�0; ~�) 2 R.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are pomset history preserving � -bisimulation equivalent, denoted by N$�pomhN 0, if 9R :N$�pomhN 0. 8



3.2.4 History preserving ST-� -bisimulation equivalenesHistory preserving ST-bisimulation equivalenes may be onsidered as modi�ation of history preserving oness.t. the beginnings and the ends of events are taken into aount.De�nition 3.9 Let N and N 0 be some nets. A relation R � ST � � �(N ) � ST � � �(N 0) � B, where B =f� j � : vis(TC ) ! vis(TC0 ); � = (C;') 2 �(N ); �0 = (C 0; '0) 2 �(N 0)g, is a pomset history preservingST-� -bisimulation between N and N 0, denoted by R : N$�pomhSTN 0, if:1. ((�N ; �N ); (�N 0 ; �N 0); ;) 2 R.2. ((�E ; �P ); (�0E; �0P ); �) 2 R ) � : vis(�CE ) ' vis(�C0E ) and �(vis(TCP )) = vis(TC0P ).3. ((�E ; �P ); (�0E; �0P ); �) 2 R; (�E ; �P )! (~�E ; ~�P ) ) 9~�; (~�0E ; ~�0P ) : (�0E ; �0P )! (~�0E ; ~�0P ); ~�jvis(TCE) =�; ((~�E ; ~�P ); (~�0E; ~�0P ); ~�) 2 R.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are pomset history preserving ST-� -bisimulation equivalent, denoted by N$�pomhSTN 0, if9R : N$�pomhSTN 0.3.2.5 Usual branhing � -bisimulation equivalenesUsual branhing bisimulation equivalenes are the simplest of branhing bisimulation ones and may be onsideredas a modi�ation of a notion of usual bisimulation. The word \branhing" is used to indiate that theserelations \really" respet all aspets of branhing with speial are for silent ations. Note that (non-branhing)bisimulation notions take no speial are for silent ations in the points of nondeterministi hoie, but suhations may play an important role in the behavior of a modeled system.In Figure 1, a distinguish ability of the usual and the branhing bisimulation equivalenes is demonstrated fortwo nets N and N 0. All these equivalenes require the initial proesses �N and �N 0 to be related by bisimulation.Further, if present proesses � and �0 are bisimilar, and one of them is extended, then the proess of anothernet an be extended so that to model the behavior of the �rst net abstrating from invisible ations. In suh aase, the new, extended proesses ~� and ~� should be also bisimilar.Branhing � -bisimulation equivalenes are more strit than usual ones, sine they require that some inter-mediate proesses should be also bisimilar. An extension by invisible ation � , represented in Figure 1(a), issimulated by an extension by sequene of invisible ations. In addition, the new proess ~� of the �rst net shouldbe related with the present proess � of the seond net. An extension by visible ation a, depited in Figure1(b), is simulated by an extension by a sequene of ations s.t. only one of them (namely, a) is visible. Inaddition, the present proess � should be related with �1 whih is reahed immediately before the extension byan ation a. The new proess ~� should be bisimilar with �2 whih is reahed immediately after the extensionby an ation a. These additional relations haraterizing a notion of \branhing" are depited by dashed linesin Figure 1.For some net N and �; ~� 2 �(N ) we write �) ~� when 9�̂ = ( bC; '̂) s.t. � �̂! ~� and vis(TbC ) = ;.De�nition 3.10 Let N and N 0 be some nets. A relation R � �(N ) � �(N 0) is an interleaving branhing� -bisimulation between N and N 0, denoted by N$�ibrN 0, if:1. (�N ; �N 0) 2 R.2. (�; �0) 2 R; � a! ~� )(a) a = � and (~�; �0) 2 R or(b) a 6= � and 9��0; ~�0 : �0 ) ��0 a! ~�0; (�; ��0) 2 R; (~�; ~�0) 2 R.3. As item 2, but the roles of N and N 0 are reversed.Two nets N and N 0 are interleaving branhing � -bisimulation equivalent, denoted by N$�ibrN 0, if 9R :N$�ibrN 0. 9



-u u u� � � �-u u u u u�(N )�(N 0) � ~��0 �01 �02 ~�0�N�N 0 ������������ � �a� �� � � �a(b) -u u u -u u u�(N )�(N 0) � ~��0 ~�0�N�N 0 � ��(a) ��������������������� �� �??????Figure 1: A distinguish ability of the usual and the branhing � -bisimulation equivalenes3.2.6 History preserving branhing � -bisimulation equivalenesHistory preserving branhing bisimulation equivalenes are modi�ations of history preserving bisimulation onesin aordane to the speial \branhing" idea.De�nition 3.11 Let N and N 0 be some nets. A relation R � �(N ) � �(N 0) � B, where B = f� j � : TC !TC0 ; � = (C;') 2 �(N ); �0 = (C0; '0) 2 �(N 0)g, is a pomset history preserving branhing � -bisimulationbetween N and N 0, denoted by N$�pomhbrN 0, if:1. (�N ; �N 0 ; ;) 2 R.2. (�; �0; �) 2 R ) beta : vis(�C ) ' vis(�C0 ).3. (�; �0; �) 2 R; � ! ~� )(a) (~�; �0; �) 2 R or(b) 9~�; ��0; ~�0 : �0 ) ��0 ! ~�0; ~�jvis(TC) = �; (�; ��0; �) 2 R; (~�; ~�0; ~�) 2 R.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are pomset history preserving branhing � -bisimulation equivalent, denoted byN$�pomhbrN 0, if 9R : N$�pomhbrN 0.3.2.7 ST-branhing � -bisimulation equivalenesST-branhing bisimulation equivalenes are modi�ations of ST-bisimulation ones in aordane to the \branh-ing" idea.Let (�E ; �P ); (~�E ; ~�P ) 2 ST � � �(N ). We write (�E; �P )) (~�E ; ~�P ), if �E ) ~�E and �P ) ~�P .De�nition 3.12 Let N and N 0 be some nets. A relation R � ST � � �(N ) � ST � � �(N 0) � B, whereB = f� j � : vis(TC ) ! vis(TC0 ); � = (C;') 2 �(N ); �0 = (C 0; '0) 2 �(N 0)g is an interleaving ST-branhing� -bisimulation between N and N 0, denoted by R : N$�iSTbrN 0, if:1. ((�N ; �N ); (�N 0 ; �N 0); ;) 2 R.2. ((�E ; �P ); (�0E; �0P ); �) 2 R ) � : vis(�CE ) � vis(�C0E ) and �(vis(TCP )) = vis(TC0P ).3. ((�E ; �P ); (�0E; �0P ); �) 2 R; (�E; �P )! (~�E ; ~�P ) )(a) ((~�E ; ~�P ); (�0E; �0P ); �) 2 R or 10



(b) 9~�; (��0E ; ��0P ); (~�0E ; ~�0P ) : (�0E ; �0P )) (��0E ; ��0P )! (~�0E ; ~�0P ); ~�jvis(TCE) = �; ((�E ; �P ); (��0E ; ��0P ); �) 2R; ((~�E ; ~�P ); (~�0E ; ~�0P ); ~�) 2 R.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are interleaving ST-branhing � -bisimulation equivalent, denoted by N$�iSTbrN 0, if 9R :N$�iSTbrN 0.3.2.8 History preserving ST-branhing � -bisimulation equivalenesHistory preserving ST-branhing bisimulation equivalenes are modi�ations of history preserving ST-bisimulati-on ones in aordane to the \branhing" idea.De�nition 3.13 Let N and N 0 be some nets. A relation R � ST � � �(N ) � ST � � �(N 0) � B, whereB = f� j � : vis(TC ) ! vis(TC0 ); � = (C;') 2 �(N ); �0 = (C 0; '0) 2 �(N 0)g is a pomset history preservingST-branhing � -bisimulation between N and N 0, denoted by R : N$�pomhSTbrN 0, if:1. ((�N ; �N ); (�N 0 ; �N 0); ;) 2 R.2. ((�E ; �P ); (�0E; �0P ); �) 2 R ) � : vis(�CE ) ' vis(�C0E ) and �(vis(TCP )) = vis(TC0P ).3. ((�E ; �P ); (�0E; �0P ); �) 2 R; (�E; �P )! (~�E ; ~�P ) )(a) ((~�E ; ~�P ); (�0E; �0P ); �) 2 R or(b) 9~�; (��0E ; ��0P ); (~�0E ; ~�0P ) : (�0E ; �0P )) (��0E ; ��0P )! (~�0E ; ~�0P ); ~�jvis(TCE) = �; ((�E ; �P ); (��0E ; ��0P ); �) 2R; ((~�E ; ~�P ); (~�0E ; ~�0P ); ~�) 2 R.4. As item 3, but the roles of N and N 0 are reversed.Two nets N and N 0 are pomset history preserving ST-branhing � -bisimulation equivalent, denoted byN$�pomhSTbrN 0, if 9R : N$�pomhSTbrN 0.3.3 Conit preserving � -equivalenesConit preserving equivalenes opmletely respet onits in the behavior of a modeled system. The behavioris assoiated with the event struture.Let � = hX;�;#; li be a LES s.t. l : X ! At� . We denote vis(X) = fx 2 X j l(x) 2 Atg andvis(�) = �jvis(X).De�nition 3.14 A visible MES-trae of a net N , denoted by vis(�), is an isomorphism lass of LES vis(�O )for $ = (O; ) 2 }(N ). We denote a set of all visible MES-traes of a net N by V isMEStruts(N ). Twonets N and N 0 are MES-� -onit preserving equivalent, denoted by N ��mes N 0, if V isMEStruts(N ) =V isMEStruts(N 0). Let us note that, due to uniqueness of maximal branhing proess, this is the same as torequire vis(E(N )) = vis(E(N 0)).3.4 Interrelations of basi � -equivalenesIn this setion, we ompare basi � -equivalenes and obtain the lattie of their interrelations as a result.In the following, the symbol ` ' will denote \nothing", and the signs of equivalenes subsribed by it areonsidered as that of without any subsribtion.Theorem 3.1 Let $;$$2 f�� ;$� ;'g; ?; ?? 2 f ; i; s; pw; pom; iST; pwST; pomST; pomh; pomhST; ibr;pomhbr; iSTbr; pomhSTbr;mesg. For nets N and N 0 N $? N 0 ) N $$?? N 0 i� in the graph in Figure 2there exists a direted path from $? to $$??.Proof. (() Let us hek the validity of the impliations in the graph in Figure 2.� The impliations$�s!$�i ; $2 f�� ;$�g, are valid sine isomorphism of lposets with empty preedenerelation is isomorphism of singleton ones.� The impliations $�pw!$�s ; $2 f�� ;$�g, are valid sine homomorphism of lposets is isomorphism oflposets with empty preedene relation.� The impliation$�pwST !$�iST is valid sine homomorphism of lposets is isomorphism of singleton ones.11
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�$�pomhSTbr$�iSTbr ?��	 ??'�������9Figure 2: Interrelations of basi � -equivalenes� The impliations$�pom!$�pw; $2 f�� ;$�g, are valid sine isomorphism of lposets is homomorphism.� The impliation ��mes!��pom is valid sine isomorphi LES's have isomorphi sets of lposets.� The impliation $�i !��i is proved as follows. Let R : N$�iN 0. If �N a1! �1 a2! : : : an! �n, then thereexists a sequene (�N ; �N 0); : : : ; (�n; �0m) 2 R s.t. �N 0 a01! �01 a02! : : : a0m! �0m; vis(a1 � � �an) = vis(a01 � � �a0m),and vie versa, due to the symmetry of bisimulation.� The impliation$�s !��s is proved as the previous one but with use of A1; : : : ; An 2M(At� ) instead ofa1; : : : ; an 2 At� .� The impliation $�pw !��pw is proved as follows. Let R : N$�pwN 0 and � = (C;') 2 �(N ). Sine�N �! �, then 9(�; �0) 2 R s.t. �0 = (C 0; '0) and vis(�C0 ) v vis(�C ). Hene, V isPomsets(N 0) vV isPomsets(N ). The inlusion V isPomsets(N ) v V isPomsets(N 0) is proved similarly, due to thesymmetry of bisimulation.� The impliation $�pom !��pom is proved as the previous one but with use of isomorphism instead ofhomomorphism.� The impliation$�iST !$�s is proved as previous ones with use of the fat that a step � A! ~�, where A =fa1; : : : ; ang 2 M(At), orresponds to the sequene of ST-� -proesses (�0; �0); : : : ; (�n; �0); : : : ; (�n; �n)s.t. � = �0 a1! : : : an! �n = ~�.� The impliations$�?ST ! $�?; ? 2 fpw; pomg are proved with onstruting on the basis of the relationR : N$�?STN 0 the new relation S : N$�?N 0, de�ned as follows: S = f(�; �0) j 9� ((�; �); (�0; �0); �) 2 Rg.� The impliation $�pomhST ! $�pomh is proved with onstruting on the basis of the relation R :N$�pomhSTN 0 the new relation S : N$�pomhN 0, de�ned as follows: S = f(�; �0; �) j ((�; �); (�0; �0); �) 2Rg.� The impliation$�pomh !$�pom is proved with onstruting on the basis of the relation R : N$�pomhN 0the new relation S : N$�pomN 0, de�ned as follows: S = f(�; �0) j 9� ((�; �); (�0; �0); �) 2 Rg.� The impliation$�pomhST !$�pomST follows from the de�nitions.� The impliation$�ibr !$�i follows from the de�nitions.� The impliation$�pomhbr !$�pomh follows from the de�nitions.� The impliation$�pomhbr !$�ibr is proved with onstruting on the basis of the relationR : N$�pomhbrN 0the new relation S : N$�ibrN 0, de�ned as follows: S = f(�; �0) j 9� (�; �0; �) 2 Rg.12



� The impliation$�iSTbr !$�ibr is proved with onstruting on the basis of the relation R : N$�iSTbrN 0the new relation S : N$�ibrN 0, de�ned as follows: S = f(�; �0) j 9� (�; �0; �) 2 Rg.� The impliation$�iSTbr !$�iST follows from the de�nitions.� The impliation$�pomhSTbr !$�iSTbr follows from the de�nitions.� The impliation $�pomhSTbr ! $�pomhbr is proved with onstruting on the basis of the relation R :N$�pomhSTbrN 0 the new relation S : N$�pomhbrN 0, de�ned as follows: S = f(�; �0; �) j ((�; �); (�0; �0); �)2 Rg.� The impliation$�pomhSTbr !$�pomhST follows from the de�nitions.� The impliation '!$�pomhSTbr is obvious.� The impliation '!��mes is obvious.()) An absene of additional nontrivial arrows in the graph in Figure 2 is proved by the following examples.� In Figure 3(a), N$�ibrN 0, but N 6��s N 0, sine only in the net N 0 ations a and b annot happen onur-rently.� In Figure 3(), N$�iSTbrN 0, but N 6��pw N 0, sine for the pomset orresponding to the net N there is noeven less sequential pomset in N 0.� In Figure 3(b), N$�pwSTN 0, but N 6��pom N 0, sine only in the net N 0 ation b an depend on ation a.� In Figure 5(a), N ��mes N 0, but N$= �iN 0, sine only in the net N 0 ation � an happen so that in theorresponding initial state of the net N ation a annot happen.� In Figure 4(a), N$�pomN 0, but N$= �iSTN 0, sine only in the net N 0 ation a an start so that no ationb an begin to work until �nishing a.� In Figure 4(b), N$�pomSTN 0, but N$= �pomhN 0, sine only in the net N 0 after ation a ation b an happenso that ation  must depend on a.� In Figure 5(b), N$�pomhN 0, but N$= �iSTN 0, sine only in the net N 0 ation a an start so that the ationb an never our.� In Figure 5(), N$�pomhSTN 0, but N$= �ibrN 0, sine in the net N 0 an ation a an happen so that it willbe simulated by sequene of ations �a in N . Then the state of the net N reahed after � must be relatedwith the initial st ate of a net N , but in suh a ase the ourrene of ation b from the initial state of N 0annot be imitated from the orresponding state of N .� In Figure 5(d), N$�pomhbrN 0, but N$= �iSTN 0, sine in the net N 0 an ation  may start so that duringwork of the orresponding ation  in the net N an ation a may happen in suh a way that the ation bnever our.� In Figure 4(), N$�pomhSTbrN 0, but N 6��mes N 0, sine only the MES orresponding to the net N 0 hastwo onit ations a.� In Figure 4(d), N ��mes N 0, but N 6' N 0, sine un�reable transitions of the nets N and N 0 are labeled bydi�erent ations (a and b). utThus, we obtained a number of interesting results.In Petri nets with silent transitions ST- and history preserving equivalenes are independent unlike thesituation with their analogues on nets without silent transitions. Moreover, we have a new dimension ofbranhing equivalenes. So, we proposed additional notions of $�pomhST and $�ibr; $�pomhbr .In this paper, we obtained also two new notions $�iSTbr and $�pomhSTbr whih are results of appliation ofST- and branhing idea to both interleaving and pomset semantis.In addition, the equivalene ��mes imply only trae equivalenes, and no more, unlike on nets without silenttransitions, where its analogue was the strongest notion in pomset semantis.13
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Figure 4: Examples of basi � -equivalenes (ontinued)14
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� JĴN()

Æ��Æ��Æ��Æ��Æ��Æ��
u uuab a ��
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4 Bak-forth � -bisimulation equivalenesIn this setion, we propose bak-forth � -bisimulation equivalenes. The distintive feature of these relations isthat they require a mutual simulation not only in forward diretion (as usual) but also in bakward diretion.4.1 Sequential runsA sequential run is a speial struture ontaining the information about as ausal dependenies of events in thepresent omputation as the order in whih they have happened.De�nition 4.1 A sequential run of a net N is a pair (�; �), where:� a proess � 2 �(N ) ontains the information about ausal dependenies of transitions whih brought tothis state;� a sequene � 2 T �C s.t. �N �! �, ontains the information about the order in whih the transitions ourwhih brought to this state.Let us denote the set of all sequential runs of a net N by Runs(N ).The initial sequential run of a net N is a pair (�N ; "), where " is an empty sequene. Let us denote by j�ja length of a sequene �.Let (�; �); (~�; ~�) 2 Runs(N ). We write (�; �) �̂! (~�; ~�), if � �̂! ~�; 9�̂ 2 T �eC � �̂! ~� and ~� = ��̂. We write(�; �)! (~�; ~�), if (�; �) �̂! (~�; ~�) for some �̂.Let (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0) and � = v1 � � �vn; �0 = v01 � � �v0n. Let us de�ne a mapping��0� : TC ! TC0 as follows: ��0� = f(vi; v0i) j 1 � i � ng. Let �"" = ;.Let (�; �) 2 Runs(N ) and � = v1 � � �vn; �N v1! : : : vi! �i (1 � i � n).Let us introdue the following notations:� �(0) = �N ,�(i) = �i (1 � i � n);� �(0) = ",�(i) = v1 � � �vi (1 � i � n).4.2 De�nitions of bak-forth � -bisimulation equivalenesNow we are ready to present de�nitions of bak-forth � -bisimulation equivalenes.De�nition 4.2 Let N and N 0 be some nets. A relation R � Runs(N ) � Runs(N 0) is a ?-bak ??-forth � -bisimulation between N and N 0;?; ?? 2finterleaving, step, partial word, pomsetg, denoted by R : N$�?b??fN 0; ?; ?? 2 fi; s; pw; pomg, if:1. ((�N ; "); (�N 0 ; ")) 2 R.2. ((�; �); (�0; �0)) 2 R� (bak)(~�; ~�) �̂! (�; �),(a) jvis(TbC )j = 1, if ? = i;(b) vis(�bC ) = ;, if ? = s;) 9(~�0; ~�0) : (~�0; ~�0) �̂0! (�0; �0); ((~�; ~�); (~�0; ~�0)) 2 R and(a) vis(�bC0 ) v vis(�bC ), if ? = pw;(b) vis(�bC ) ' vis(�bC0 ), if ? 2 fi; s; pomg;� (forth)(�; �) �̂! (~�; ~�),(a) jvis(TbC )j = 1, if ?? = i;(b) vis(�bC ) = ;, if ?? = s; 16



) 9(~�0; ~�0) : (�0; �0) �̂0! (~�0; ~�0); ((~�; ~�); (~�0; ~�0)) 2 R and(a) vis(�bC0 ) v vis(�bC ), if ?? = pw;(b) vis(�bC ) ' vis(�bC0 ), if ?? 2 fi; s; pomg.3. As item 2, but the roles of N and N 0 are reversed.Two nets N and N 0 are ?-bak ??-forth � -bisimulation equivalent, ?; ?? 2 finterleaving, step, partial word,pomsetg, denoted by N$�?b??fN 0, if 9R : N$�?b??fN 0; ?; ?? 2 fi; s; pw; pomg.Let us note that bak extensions of sequential runs are deterministi, i.e. for (�; �) 2 Runs(N ) there existsonly one (~�; ~�) 2 Runs(N ) s.t. (~�; ~�) �̂! (�; �) and j~�j = i (0 � i � j�j). In suh a ase (~�; ~�) = (�(i); �(i)).4.3 Interrelations of bak-forth � -bisimulation equivalenesLet us ompare bak-forth � -bisimulation equivalenes.Proposition 4.1 Let ? 2 fi; s; pw; pomg. For nets N and N 0 N$�pwb?fN 0 , N$�pomb?fN 0.Proof. (() Isomorphism of lposets is homomorphism.()) Let R : N$�pwb?fN 0. Let us prove R : N$�pomb?fN 0.1. Obviously, ((�N ; "); (�N 0 ; ")) 2 R.2. Let ((�; �); (�0; �0)) 2 R.� (bak)Let (~�; ~�) �̂! (�; �). Then 9(~�0; ~�0) : (~�0; ~�0) �̂0! (�0; �0); ((~�; ~�); (~�0; ~�0)) 2 R and vis(�bC0 ) v vis(�bC ).Due to the symmetry of a bisimulation, the bak extension (~�0; ~�0) �̂0! (�0; �0) must be imitated bysome extension (~��; ~��) ��! (�; �) s.t. vis(� �C ) v vis(�bC0 ). Due to determinism of bak extensions,vis(TbC ) = vis(T �C ). Then vis(�bC ) = vis(� �C ). Consequently, vis(�bC ) ' vis(�bC0 ).� (forth)Obviously.3. As item 2, but the roles of N and N 0 are reversed. utProposition 4.2 Let ? 2 fi; s; pw; pomg. For nets N and N 0 N$�?bifN 0 , N$�?b?fN 0.Proof. (() Isomorphism of ausal nets, isomorphism and homomorphism of lposets of ausal nets, isomorphismof lposets of ausal nets with empty preedene relation imply label preserving bijetion of lposets of ausalnets.()) Let R : N$�?bifN 0. Let us prove R : N$�?b?fN 0.1. Obviously, ((�N ; "); (�N 0 ; ")) 2 R.2. Let ((�; �); (�0; �0)) 2 R.� (bak)Obviously.� (forth)Let (�; �) �̂! (~�; ~�). The extension by �̂ orresponds to the extension by some sequene of transitions.Then 9(~�0; ~�0) : (�0; �0) �̂0! (~�0; ~�0); ((~�; ~�); (~�0; ~�0)) 2 R, where the extension by �̂0 orresponds tothe extension by sequene of transitions whih imitates the orresponding one in the net N .Due to the symmetry of a bisimulation, the bak extension (�; �) �̂! (~�; ~�) must be imitated by someextension (�0; �0) ��0! (~��0; ~��0), s.t.(a) vis(� �C0 ) v vis(�bC ), if ? = pw;(b) vis(�bC ) ' vis(� �C0 ), if ? 2 fi; s; pomg.Due to determinism of bak extensions, vis(TbC0 ) = vis(T �C0 ). Then vis(�bC0 ) = vis(� �C0 ).3. As item 2, but the roles of N and N 0 are reversed. utIn Figure 6, dashed lines embrae oiniding bak-forth � -bisimulation equivalenes.Hene, interrelations of bak-forth � -bisimulation equivalenes may be represented by graph in Figure 7.17



$�ibif $�ibsf $�ibpwf $�ibpomf????$�sbif $�sbsf $�sbpwf $�sbpomf????$�pwbif $�pwbsf $�pwbpwf $�pwbpomf????$�pombif $�pombsf $�pombpwf $�pombpomf���� ���� ����Figure 6: Merging of bak-forth � -bisimulation equivalenes$�ibif $�ibsf $�ibpwf $�ibpomf???$�sbsf $�sbpwf $�sbpomf?$�pombpomf� �� ��Figure 7: Interrelations of bak-forth � -bisimulation equivalenes4.4 Interrelations of bak-forth � -bisimulation equivalenes with basi� -equivalenesLet us onsider ompare bak-forth � -bisimulation equivalenes with basi � -equivalenes.For some net N and (�; �); (~�; ~�) 2 Runs(N ) we write (�; �)) (~�; ~�) when (�; �)! (~�; ~�) and �) ~�.Let for some nets N and N 0 (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0) and (�E ; �P ) 2 ST � ��(N ); (�0E ; �0P ) 2ST � ��(N 0).We shall use the following notations.� (�; �)$�ibif (�0; �0) if 9R : N$�ibifN 0 s.t. ((�; �); (�0; �0)) 2 R and analogously for $�pombpomf .� �$ibr�0 if 9R : N$�ibrN 0 s.t. (�; �0) 2 R.� �$�pomhbr�0 if 9R : N$�pomhbrN 0 9� s.t. (�; �0; �) 2 R.� (�E ; �P )$�iSTbr(�0E ; �0P ) if 9R : N$�iSTbrN 0 9� s.t. ((�E ; �P ); (�0E ; �0P ); �) 2 R and analogously for$�pomhSTbr .Lemma 4.1 (X-Lemma 1) Let for nets N and N 0 N$�ibifN 0 and (�; �); (~�; ~�) 2 Runs(N ); (�0; �0); (~�0; ~�0) 2Runs(N 0) s.t. (�; �) ) (~�; ~�); (�0; �0) ) (~�0; ~�0). Then (�; �)$�ibif (~�0; ~�0) and (~�; ~�)$�ibif (�0; �0) implies(�; �)$�ibif(�0; �0) and (~�; ~�)$�ibif(~�0; ~�0).Proof. As proof of the following Lemma 4.2, but using proess extensions by one ation only. utLemma 4.2 (X-Lemma 2) Let for nets N and N 0 N$�pombpomfN 0 and (�; �); (~�; ~�) 2 Runs(N ); (�0; �0);(~�0; ~�0) 2 Runs(N 0) s.t. (�; �)) (~�; ~�); (�0; �0)) (~�0; ~�0). Then (�; �)$�pombpomf (~�0; ~�0) and (~�; ~�)$�pombpomf(�0; �0) implies (�; �)$�pombpomf (�0; �0) and (~�; ~�)$�pombpomf (~�0; ~�0).Proof. It is enough to prove (~�; ~�)$�pombpomf (~�0; ~�0), sine the fat (�; �)$�pombpomf (�0; �0) is proved similarly.Let (�; �) ) (~�; ~�); (�0; �0) ) (~�0; ~�0) and (�; �)$�pombpomf (~�0; ~�0); (~�; ~�)$�pombpomf (�0; �0). We have only tohek similation of the net N by N 0 in bak and forth diretions, sine simulation of N 0 by N is proved bysymmetry.� (bak)Let (��; ��) �̂! (~�; ~�); �̂ = ( bC; '̂). Then, sine (~�; ~�)$�pombpomf (�0; �0); 9��0 = ( �C 0; �'0); (��0; ��0) s.t.(��0; ��0) ��0! (�0; �0); (��; ��)$�pombpomf (��0; ��0) and vis(�bC ) ' vis(� �C0 ).Let us note if (��0; ��0) �̂0! (~�0; ~�0); �̂0 = ( bC0; '̂0) then we have vis(� �C0 ) = vis(�bC0 ). Consequently, vis(�bC ) 'vis(�bC0 ). 18



� (forth)Let (~�; ~�) �̂! (��; ��); �̂ = ( bC; '̂). Let us note if (�; �) ��! (��; ��); �� = ( �C; �') then we have vis(�bC ) = vis(� �C ).Sine (�; �)$�pombpomf (~�0; ~�0); 9�̂0 = ( bC0; '̂0); (��0; ��0) s.t. (~�0; ~�0) �̂0! (��0; ��0); (��; ��)$�pombpomf (��0; ��0) andvis(� �C ) ' vis(�bC0 ). Consequently, vis(�bC ) ' vis(�bC0 ). utProposition 4.3 For nets N and N 0 N$�ibifN 0 , N$�ibrN 0.Proof. As proof of the following Proposition 4.4, but using proess extensions by one ation only and Lemma4.1. utProposition 4.4 For nets N and N 0 N$�pombpomfN 0 , N$�pomhbrN 0.Proof. See Appendix A. utProposition 4.5 For nets N and N 0 N$�iSTbrN 0 ) N$�ibsfN 0.Proof. For � 2 �(N ) we denote [�℄ = f�� j �� 2 �(N ); (�; �)$�iSTbr(��; ��)g. Let (�; �) 2 Runs(N ) and� = v1 � � � ; vn. A trae of (�; �) is de�ned by trae(�; �) = [�N ℄lC(v1)[�(1)℄ � � � [�(n � 1)℄lC(vn)[�(n)℄. A traemodulo stuttering of (�; �), denoted by stutt(�; �), is obtained from trae(�; �) by replaing all triples of a kindR�R by R.Let N$�iSTbrN 0; (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0) and stutt(�; �) = R1a1R2 � � �Rn�1anRn; stutt(�0; �0)= R01a01R02 � � �R0m�1a0mR0m. We say that stutt(�; �) and stutt(�0; �0) are isomorphi, denoted by stutt(�; �) 'stutt(�0; �0), if:1. n = m;2. 8i (1 � i � n) ai = a0i;3. 8i (1 � i � n) and �i 2 Ri; �0i 2 R0i : (�i; �i)$�iSTbr(�0i; �0i).Let us de�ne a relation S as follows: S = f((�; �); (�0; �0)) j (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0);stutt(�; �) ' stutt(�0; �0)g. Let us prove S : N$�ibsfN 0.1. ((�N ; "); (�N 0 ; ")) 2 S, sine �N$�pomhbr�N 0 .2. Let ((�; �); (�0; �0)) 2 S.� (bak)Let (~�; ~�) �̂! (�; �) and jvis(TbC )j = 1. Then 9i (1 � i � n) (~�; ~�) 2 Ri from trae(�; �). Sinestutt(�; �) ' stutt(�0; �0), then 9k (1 � k � n) s.t. Ri orresponds to R0k from trae(�0; �0).Then ~�$�iSTbr�0(k). Consequently, ((~�; ~�); (�0(k); �0(k))) 2 S. Let us onsider the bak extension(�0(k); �0(k)) �̂0! (�0; �0). We have jvis(TbC0 )j = 1 and vis(�bC ) ' vis(�bC0 ).� (forth) Obviously, sine $�iST implies$�s .3. As item 2, but the roles of N and N 0 are reversed. utTheorem 4.1 Let $;$$2 f�� ;$� ;'g and ?; ?? 2 f ; i; s; pw; pom; iST; pwST; pomST; pomh; pomhST; ibr;iST br; pomhSTbr; pomhbr;mes; ibsf; ibpwf; ibpomf; sbsf; sbpwf; sbpomfg. For nets N and N 0 N $? N 0 )N $$?? N 0 i� in the graph in Figure 8 there exists a direted path from $? to $$??.Proof. (() A onsequene of Theorem 3.1 and the following substantiations.� The impliation$�ibsf !$�ibr is valid sine by Proposition 4.3$�ibr =$�ibif and isomorphism of lposetswith empty preedene relation is isomorphism of singleton ones.� The impliations$�?bpwf !$�?bsf ; ? 2 fi; sg is valid sine homomorphism is isomorphism of lposets withempty preedene relation. 19
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CCCCCCCCCCW��������� ��������� ���������
' �' $�pomhSTbr$�iSTbr? ?��	 �������� ?Figure 8: Interrelations of bak-forth � -bisimulation equivalenes with basi � -equivalenes� The impliations$�?bpomf !$�?bpwf ; ? 2 fi; sg is valid sine isomorphism of lposets is homomorphism.� The impliations$�ib?f !$�?; ? 2 fs; pw; pomg is proved with onstruting on the basis of the relationR : N$�sb?fN 0 the new relation S : N$�?N 0, de�ned as follows: S = f(�; �0) j 9�; �0 ((�; �); (�0; �0)) 2 Rg.� The impliations $�sb?f ! $�ib?f ; ? 2 fs; pw; pomg are valid sine isomorphism of lposets with emptypreedene relation is isomorphism of singleton ones.� The impliation$�pomhbr !$�sbpomf is valid sine by Proposition 4.4$�pomhbr =$�pombpomf and homo-morphism is isomorphism of lposets with empty preedene relation.� The impliation$�iSTbr !$�ibsf is valid by Proposition 4.5.()) An absene of additional nontrivial arrows in the graph in Figure 8 is proved by the following examples.� In Figure 3(), N$�sbsfN 0, but N 6��pw N 0.� In Figure 9, N$�sbpwfN 0, but N 6��pom N 0.� In Figure 4(a), N$�ibpomfN 0, but N$= �sbsfN 0.� In Figure 3(b), N$�iSTbrN 0, but N$= �sbsfN 0. utThus, we obtained several important results onerning interrelations of bak-forth and basi relations.First, we have oinidenes $�ibif =$�ibr and $�pombpomf =$�pomhbr providing branhing haraterizationof bak-forth simulation.The seond interesting result is that$�iST implies only$�ibsf , not$�sbsf . Hene, $�iST is not strong enoughto provide step bak simulation. This situation is unlike that on Petri nets without silent transitions.4.5 Logial haraterizationIn this subsetion, we demonstrate that several important bak-forth (and branhing) bisimulation equivalenesoinide with that of of temporal logis having past modalities. These results provide a logial haraterizationof bisimulation equivalenes (or, symmetrially, an operational haraterization of logial ones).20



bÆ��Æ��u???aÆ��Æ��u???N Æ��u���= ZZZ~ bÆ��Æ��u?
?

??aÆ��Æ��u???N 0 Æ��u���= ZZZ~ZZZ~ ���=$�sbpwf$�pwST6��pomFigure 9: Example of bak-forth � -bisimulation equivalenes4.5.1 Logi BFLA bak-forth logi (BFL) has been proposed in [15℄ in the framework of transition systems for a logial desrip-tion of the interleaving bak interleaving forth bisimulation equivalene.De�nition 4.3 Let the symbol > denotes the truth and a 2 At. A formula of BFL is de�ned as follows:� ::= > j :� j � ^	 j h ai� j hai�We de�ne [a℄� = :hai:� and [ a℄� = :h ai:�.We write BFL for the set of all formulas of BFL.De�nition 4.4 Let N be some net and (�; �) 2 Runs(N ). The satisfation relation j=N2 Runs(N )�BFL isde�ned as follows:1. (�; �) j=N > | always;2. (�; �) j=N :�, if (�; �) 6j=N �;3. (�; �) j=N � ^	, if (�; �) j=N � (�; �) j=N 	;4. (�; �) j=N h ai�, if 9(~�; ~�) 2 Runs(N ) (~�; ~�) �̂! (�; �), where �̂ = ( bC; '̂); vis(lbC (TbC)) = a and(~�; ~�) j=N �;5. (�; �) j=N hai�, if 9(~�; ~�) 2 Runs(N ) (�; �) �̂! (~�; ~�), where �̂ = ( bC; '̂); vis(lbC (TbC )) = a and (~�; ~�) j=N�.De�nition 4.5 We write N j=N �, if (�N ; ") j=N �. Two nets N and N 0 are logial equivalent in BFL,denoted by N =BFL N 0, if 8� 2 BFL N j=N � , N 0 j=N 0 �.Let N be a net and � 2 �(N ); a 2 At. The set of visible extensions of a proess � by an ation a (image set)is de�ned as follows: V isImage(�; a) = f~� j � �̂! ~�; �̂ = ( bC; '̂); vis(lbC (TbC)) = ag. A net N is a �nite-imageone, if 8� 2 �(N ) 8a 2 At jV isImage(�; a)j <1.Theorem 4.2 [15℄ For two image-�nite nets N and N 0 N$�ibrN 0 , N$�ibifN 0 , N =BFL N 0.In Figure 5(), N$�pomhSTN 0, but N 6=BFL N 0, beause for � = hai[ a℄hbi> N 6j=N �, but N 0 j=N 0 �,sine in the net N 0 an ation a an happen so that it will be simulated by sequene of ations �a in N . Thenthe state of the net N reahed after � must be related with the initial state of a net N , but in suh a ase theourrene of ation b from the initial state of N 0 annot be imitated from the orresponding state of N .Thus, in interleaving semantis, we obtained a logial haraterization of branhing and bak-forth relationsor, symmetrially, an operational haraterization of equivalene imposed by bak-forth logi.21



4.5.2 Logi SPBFLA pomset bak-forth logi with invisible ations (SPBFL) has been proposed in [19℄ in the framework of eventstrutures for a logial desription of the pomset bak pomset forth bisimulation equivalene.De�nition 4.6 Let the symbol > denotes the truth and � be a pomset with labeling into At. A formula ofSPBFL is de�ned as follows: � ::= > j :� j � ^	 j h �i� j hai�We de�ne [a℄� = :hai:� and [ �℄� = :h �i:�.We write SPBFL for the set of all formulas of SPBFL.Let us note that in the formula hai�, orresponding to the ase of forth extension, we use an ation a, nota pomset �, sine $pombif =$pombpomf . Hene, it is suÆient to onsider forth extensions by one ation only.De�nition 4.7 Let N be some net and (�; �) 2 Runs(N ). The satisfation relation j=N2 Runs(N )�SPBFLis de�ned as follows:1. (�; �) j=N > | always;2. (�; �) j=N :�, if (�; �) 6j=N �;3. (�; �) j=N � ^	, if (�; �) j=N � and (�; �) j=N 	;4. (�; �) j=N h �i�, if 9(~�; ~�) 2 Runs(N ) (~�; ~�) �̂! (�; �), where �̂ = ( bC; '̂); vis(�bC ) 2 � and (~�; ~�) j=N �;5. (�; �) j=N hai�, if 9(~�; ~�) 2 Runs(N ) (�; �) �̂! (~�; ~�), where �̂ = ( bC; '̂); vis(lbC (TbC )) = a and (~�; ~�) j=N�.De�nition 4.8 We write N j=N �, if (�N ; ") j=N �. Two nets N and N 0 are logial equivalent in BFL,denoted by N =SPBFL N 0, if 8� 2 SPBFL N j=N � , N 0 j=N 0 �.Theorem 4.3 [19℄ For two image-�nite nets N and N 0 N$�pomhbrN 0 , N$�pombpomfN 0 , N =SPBFL N 0.In Figure 4(b), N =BFL N 0, but N 6=SPBFL N 0, beause for � = [a℄[b℄hih (a; b)ki> ((a; b)k denotesthe pomset where b depends on a, and a; b are independent with ), N j=N �, but N 0 6j=N 0 � sine only in thenet N 0 after ation a ation b an happen so that ation  must depend on a.Thus, in pomset semantis, we obtained a logial haraterization of branhing and bak-forth relations or,symmetrially, an operational haraterization of equivalene imposed by bak-forth logi.5 Interrelations of equivalenes with � -equivalenesIn this setion, we ompare equivalenes whih do not abstrat of silent ations with all the onsidered � -equivalenes.Proposition 5.1 Let $2 f�;$g; ? 2 fi; s; pw; pom; iST; pwST; pomST;mes; sbsf; sbpwf; sbpomfg; ?? 2fs; pw; pomg. For nets N and N 0:1. N $? N 0 ) N $�? N 0;2. N$iN 0 ) N$�ibrN 0;3. N$iSTN 0 ) N$�iSTbrN 0;4. N$pomhN 0 ) N$�pomhSTbrN 0;5. N$??N 0 ) N$�ib??fN 0.and all the impliations are strit.Proof.1. By de�nitions. 22
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� JĴ?Figure 10: Example of interrelations of equivalenes and � -equivalenes2. We prove with onstrution one the basis of the relationR : N$pomhN 0 the new relation S : N$�pomhSTN ,de�ned as follows: S = f((�E ; �P ); (�0E ; �0P ); �) j (�E ; �0E; �) 2 R; (�E; �P ) 2 ST � � �(N ); (�0E ; �0P ) 2ST � ��(N 0); �(TCP ) = TC0P g.3. By de�nitions.4. By de�nitions.5. We prove with onstrution one the basis of the relation R : N$??N 0 the new relation S : N$�ib??fN 0,de�ned as follows: S = f((�; �); (�0; �0)) j (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0); j�j = j�0j; lC (�) =lC0(�0); 8i (0 � i � j�j) (�(i); �0(i)) 2 Rg.The stritness of the impliations is proved by the following examples.� In Figure 10, N$�pomhSTbrN 0, but N 6�i N 0, sine only in the net N 0 an ation a an happen in the initialstate.� In Figure 5(a), N ��mes N 0, but N 6�i N 0, sine only in the net N 0 an ation � an happen in the initialstate. utWe obtained several interesting results.It is lear that abstration of silent ations results weaker equivalene notions. So, impliation 1 fromProposition 5.1 is rather obvious. But the other impliations are not so trivial.Impliations 2{4 show that the branhing idea is appliable only if to respet silent ations.Impliation 5 shows that interleaving bak simulation results new equivalenes only in the ase of respet ofsilent ations.6 Preservation of the � -equivalenes by re�nementsIn this setion, we treat the onsidered � -equivalenes for preservation by transition re�nements. We use SM-re�nement, i.e. re�nement by a speial sublass of state-mahine nets introdued in [5℄.De�nition 6.1 An SM-net is a net D = hPD; TD; FD; lD;MDi s.t.:1. 8t 2 TD j�tj = jt�j = 1, i.e. eah transition has exatly one input and one output plae;2. 9pin; pout 2 PD s.t. pin 6= pout and ÆD = fping; DÆ = fpoutg, i.e. net D has unique input and uniqueoutput plae.3. MD = fping, i.e. at the beginning there is unique token in pin.De�nition 6.2 Let N = hPN ; TN ; FN ; lN ;MN i be some net, a 2 lN (TN ) and D = hPD; TD; FD; lD;MDi beSM-net. An SM-re�nement, denoted by ref(N; a;D), is (up to isomorphism) a net N = hPN ; TN ; FN ; lN ;MN i,where: 23



� PN = PN [ fhp; ui j p 2 PD n fpin; poutg; u 2 l�1N (a)g;� TN = (TN n l�1N (a)) [ fht; ui j t 2 TD; u 2 l�1N (a)g;� FN (�x; �y) = 8>>>><>>>>: FN (�x; �y); �x; �y 2 PN [ (TN n l�1N (a));FD(x; y); �x = hx; ui; �y = hy; ui; u 2 l�1N (a);FN (�x; u); �y = hy; ui; �x 2 �u; u 2 l�1N (a); y 2 p�in;FN (u; �y); �x = hx; ui; �y 2 �u; u 2 l�1N (a); x 2 �pout;0; otherwise;� lN (�u) = � lN (�u); �u 2 TN n l�1N (a);lD(t); �u = ht; ui; t 2 TD; u 2 l�1N (a);� MN (p) = � MN (p); p 2 PN ;0; otherwise:An equivalene is preserved by re�nements, if equivalent nets remain equivalent after applying any re�nementoperator to them aordingly.The following proposition demonstrates that some onsidered in the paper equivalene notions are notpreserved by SM-re�nements.Proposition 6.1 Let ? 2 fi; sg; ?? 2 fi; s; pw; pom; pomh; ibr; pomhbr; ibsf; ibpwf; ibpomf; sbsf; sbpwf;sbpomfg. Then the � -equivalenes ��? ; $�?? are not preserved by SM-re�nements.Proof.� In Figure 11, N$�sN 0, but ref(N; ;D) 6��i ref(N 0; ;D), sine only in ref(N 0; ;D) the sequene ofations 1ab2 an happen. Consequently, the � -equivalenes between ��i and $�s are not preserved bySM-re�nements.� In Figure 12, N$�pomN 0, but ref(N; a;D)$= �i ref(N 0; a;D), sine only in ref(N 0; a;D) after ourreneof ation a1 ation b an not happen. Consequently, no equivalene between $�i and $�pom is preservedby SM-re�nements.� In Figure 13, N$�pomhbrN 0, but ref(N; a;D)$= �i ref(N 0; a;D), sine only in ref(N 0; a;D) an ation 1may happen so that after the orresponding ation 1 in the net N an ation a may happen in suh away that the ation b never our. Consequently, no equivalene between $�i and $�pomhbr is preservedby SM-re�nements. Let us note that this �gure is a translation of an example on event strutures from[19℄ to the framework of Petri nets.In Figure 14, lines embrae � -equivalenes whih are not preserved by SM-re�nements due to examples inFigures 11{13. utLet us onsider whih � -equivalenes are preserved by SM-re�nements.Proposition 6.2 Let ? 2 fpw; pomg. For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \ At and SM-net D N ��?N 0 ) ref(N; a;D) ��? ref(N 0; a;D).Proof. See Appendix B. utProposition 6.3 Let ? 2 fi; pw; pomg. For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \ At and SM-netD N$�?STN 0 ) ref(N; a;D)$�?ST ref(N 0; a;D).Proof. See Appendix C. utProposition 6.4 [5, 10℄ For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \ At and SM-net D N$�pomhSTN 0 )ref(N; a;D)$�pomhST ref(N 0; a;D).Proposition 6.5 For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \At and SM-net D N$�iSTbrN 0 )ref(N; a;D)$�iSTbrref(N 0; a;D). 24
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�

Æ�� Æ��"" QQQs"" ?


�

SSw SSwQQQsFigure 11: The � -equivalenes between ��i and $�s are not preserved by SM-re�nementsProof. Like proof of the ase ? = i in Proposition 6.3, but with hek of branhing simulation. utProposition 6.6 For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \ At and SM-net D N$�pomhSTbrN 0 )ref(N; a;D)$�pomhSTbrref(N 0; a;D).Proof. Like proof of Proposition 6.4, but with hek of branhing simulation. utProposition 6.7 For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) \At and SM-net D N ��mes N 0 )ref(N; a;D) ��mes ref(N 0; a;D).Proof. See Appendix D. utProposition 6.8 For nets N; N 0 s.t. a 2 lN (TN ) \ lN 0 (TN 0 ) and SM-net D N ' N 0 ) ref(N; a;D) 'ref(N 0; a;D).Proof. Obviously. utTheorem 6.1 Let $2 f�� ;$� ;'g and ? 2 f ; i; s; pw; pom; iST; pwST; pomST; pomh; pomhST; ibr; pomhbr;iSTbr; pomhSTbr;mes; ibsf; ibpwf; ibpomf; sbsf; sbpwf; sbpomfg. For nets N; N 0 s.t. a 2 lN (TN )\ lN 0(TN 0 )\At and SM-net D the following holds: N $? N 0 ) ref(N; a;D) $? ref(N 0; a;D) i� the equivalene $? isin oval in Figure 15.Proof. By Propositions 6.1{6.8. utThus, we obtained several interesting results onerning preservation by re�nements.First, ��pw; ��pom and ��mes are preserved by this operation.The seond result is that all the ST-equivalenes withstand this operation too. Our new ST-equivalenesare proved to be helpful in top-down design. If one wants to have for multilevel design a notion of branh-ing equivalene and needs only interleaving semantis, he takes $�iSTbr. In pomset semantis, $�pomhSTbr isappropriate. 25
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7 The � -equivalenes on some net sublassesIn this setion, we onsider the � -equivalenes on nets without silent transitions and sequential nets.7.1 The � -equivalenes on nets without silent transitionsLet us onsider the � -equivalenes on nets without silent transitions, where no transition is labeled by the ation� .Proposition 7.1 Let $2 f�;$g; ? 2 fi; s; pw; pom; iST; pwST; pomST;mes; sbsf; sbpwf; sbpomfg; ?? 2fs; pw; pomg. For nets without silent transitions N and N 0:1. N $? N 0 , N $�? N 0;2. N$iN 0 , N$�ibrN 0;3. N$iSTN 0 , N$�iSTbrN 0;4. N$pomhN 0 , N$�pomhSTbrN 0;5. N$??N 0 , N$�ib??fN 0.Proof. (()1. By de�nitions.2. We prove with onstrution one the basis of the relationR : N$�pomhSTN 0 the new relation S : N$pomhN ,de�ned as follows: S = f(�; �0; �) j ((�; �); (�0; �0); �) 2 Rg.3. By de�nitions.4. By de�nitions.5. We prove with onstrution one the basis of the relation R : N$�ib??fN 0 the new relation S : N$??N 0,de�ned as follows: S = f(�; �0) j 9�; �0((�; �); (�0; �0)) 2 Rg.()) By Proposition 5.1, beause nets without silent transitions are a sublass of that of with silent transitions.utIn Figure 16, dashed lines embrae the � -equivalenes oiniding on nets without silent transitions.Theorem 7.1 Let $;$$2 f�;$;'g; ?; ?? 2 f ; i; s; pw; pom; iST; pwST; pomST; pomh; ibr;mes; sbsf;sbpwf; sbpomfg. For nets without silent transitions N and N 0 N $? N 0 ) N $$?? N 0 i� in the graph inFigure 17 there exists a direted path from $? to $$??.Proof. By Proposition 7.1 and Theorem 1 from [20℄. utThus, we have several interesting results.It is lear that abstration of silent ations plays no role in Petri nets without silent transitions. Hene, weobtain oinidene of relations abstrating of silent ations with that of not abstrating, and equality 1 fromProposition 7.1 is obvious. But the other equalities are not so trivial.Equalities 2{4 show that the branhing idea is appliable only if to respet silent ations.Equality 5 shows that interleaving bak simulation results new equivalenes only in the ase of respet ofsilent ations.
29
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7.2 The � -equivalenes on sequential netsLet us onsider the � -equivalenes on sequential nets, where no two transitions an be �red onurrently.De�nition 7.1 A net N = hPN ; TN ; FN ; lN ;MN i is sequential, if 8M 2Mark(N ) :9t; u 2 TN : �t+�u �M .Proposition 7.2 For sequential nets N and N 0:1. N ��i N 0 , N ��pom N 0;2. N$�iN 0 , N$�pomhN 0;3. N$�iSTN 0 , N$�pomhSTN 0;4. N$�ibrN 0 , N$�pomhbrN 0;5. N$�iSTbrN 0 , N$�pomhSTbrN 0.Proof.1. (() By Theorem 3.1.()) Let N ��i N 0, then V isIntTraes(N ) = V isIntTraes(N 0). To prove N ��pom N 0, it is suÆient toestablish the equality V isPomsets(N ) = V isPomsets(N 0). It follows immediately, sine V isPomsets(N )and V isPomsets(N 0) are totally ordered multisets (hains), and there is on-to-one orrespondene betweenV isIntTraes(N ) and V isPomsets(N ) (V isIntTraes(N 0) and V isPomsets(N 0) respetively).2. By Proposition 5.4 from [5℄.3. Similar to the item 2.4. Similar to the item 2.5. Similar to the item 2. utIn Figure 18, dashed lines embrae the � -equivalenes oiniding on sequential nets.Theorem 7.2 Let $;$$2 f�� ;$� ;'g; ?; ?? 2 f ; i; iST; ibr; iST br;mesg. For sequential nets N and N 0N $? N 0 ) N $$?? N 0 i� in the graph in Figure 19 there exists a direted path from $? to $$??.Proof. (() By Proposition 7.2 and Theorem 4.1.()) An absene of additional nontrivial arrows in the graph in Figure 19 is proved by the following exampleson sequential nets.� In Figure 5(a), N ��mes N 0, but N$= �iN 0.� In Figure 5(), N$�iN 0, but N$= �ibrN 0.� In Figure 5(b), N$�iN 0, but N$= �iSTN 0.� In Figure 4(), N$�iSTbrN 0, but N 6��mes N 0. utThus, we obtained several important results.First, it is lear that on sequential nets all pomsets of proesses are stritly ordered and they are simplehains. So, all interleaving and pomset equivalenes oinide, and equality 1 from Proposition 7.2 is obvious.But the other equalities are not so trivial.The basi is equality 2 showing oinidene of interleaving and pomset history preserving relations. Thus,history preservation idea on sequential nets provide no speial equivalene notions.Equalities 3{5 are sequenes of 2. They additionally take into aount ST-, branhing ideas and both ideastogether. 31
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��s ��pw ��pom����i ���ibr?Figure 20: Interrelations of plae � -bisimulation equivalenes.8 ConlusionIn this paper, we supplemented by new ones and examined a group of basi � -equivalenes and bak-forth� -bisimulation equivalenes. We ompared them with relations whih do not abstrat of silent ations. We alsoompared them on the whole lass of Petri nets as well as on their sublasses of nets without silent transitionsand sequential nets. All the onsidered � -equivalenes were heked for preservation by SM-re�nements. So,we an use the � -equivalene notions that are preserved by SM-re�nements, for top-down design of onurrentsystems.Further researh may onsist in the investigation of � -variants of plae bisimulation equivalenes [2℄ whih areused for e�etive semantially orret redution of nets. In [23℄, we have already investigated plae equivalenesfor Petri nets without silent transitions. So, our aim is to extend these results to wider net lass. In [3, 1℄,a notion of interleaving plae bisimulation equivalene (��i ) was proposed, and its usefulness for behaviorpreserving simpli�ation of Petri nets with silent transitions was demonstrated. It was mentioned that � -variants of plae bisimulations provide muh more redutions than usual ones beause of merging many silenttransitions.In interleaving semantis, it is possible to de�ne branhing plae relation (��ibr) as well. It would be veryinteresting to treat also non-interleaving variants of plae � -bisimulations (��s ;��pw and ��pom) in order to respettrue onurreny aspets during redution of nets. Thus, we obviously have the diagram of interrelations shownin Figure 20.A hard question here is to �nd whether any of three relations ��i ;��s and ��pw oinide like it was for theorresponding notions not abstrating of silent ations (we had oinidene of all the three analogous relationsin that ase). At the present moment, we have only ounterexamples showing that ��ibr and ��pom do not implyeah other and do not merge with any of three mentioned � -equivalenes. In addition, we should establishinterrelations of the plae notions with all � -equivalenes we proposed in this paper.What is about preservation by SM-re�nements, the results of [23℄ demonstrate that no plae � -bisimulationrelation is preserved by the transformation.Obviously, on Petri nets without silent transitions plae � -equivalenes oinide with the orrespondingrelations that do not abstrat of silent ations. In partiular, ��ibr merges with �i. On sequential nets, allnon-interleaving plae relations oinide with interleaving ones. Hene, only ��i and ��ibr are remained.Thus, we presented several ideas onerning plae � -bisimulations. We leave general researh in this areafor the future.Referenes[1℄ C. Autant, W. Pfister, Ph. Shnoebelen. Plae bisimulations for the redution of labeled Petri netswith silent moves. Proeedings of International Conferene on Computing and Information, 1994.[2℄ C. Autant, Ph. Shnoebelen. Plae bisimulations in Petri nets. Leture Notes in Computer Siene616, pages 45{61, 1992.[3℄ C. Autant. Petri nets for the semantis and the implementation of parallel proesses. Ph.D. Thesis,Institut National Polytehnique de Grenoble, May 1993 (in Frenh).[4℄ E. Best, R. Devillers. Sequential and onurrent behavior in Petri net theory. Theoretial ComputerSiene 55, pages 87{136, 1987.[5℄ E. Best, R. Devillers, A. Kiehn, L. Pomello. Conurrent bisimulations in Petri nets. Ata Infor-matia 28, pages 231{264, 1991.[6℄ F. Cherief. Bak and forth bisimulations on prime event strutures. Leture Notes in Computer Siene605, pages 843{858, 1992. 33
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A Proof of Proposition 4.4Let us note that the following proof is a translation of that for event strutures from [19℄ to the framework ofPetri nets.For � 2 �(N ) we denote [�℄ = f�� j �� 2 �(N ); �$�pomhbr ��g. Let (�; �) 2 Runs(N ) and � = v1 � � � ; vn. Atrae of (�; �) is de�ned by trae(�; �) = [�N ℄lC(v1)[�(1)℄ � � � [�(n � 1)℄lC(vn)[�(n)℄. A trae modulo stutteringof (�; �), denoted by stutt(�; �), is obtained from trae(�; �) by replaing all triples of a kind R�R by R.(() Let N$�pomhbrN 0; (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0) and stutt(�; �) = R1a1R2 � � �Rn�1anRn;stutt(�0; �0) = R01a01R02 � � �R0m�1a0mR0m. We say that stutt(�; �) and stutt(�0; �0) are isomorphi, denoted bystutt(�; �) ' stutt(�0; �0), if:1. n = m;2. 8i (1 � i � n) ai = a0i;3. 8i (1 � i � n) and �i 2 Ri; �0i 2 R0i : �i$�pomhbr�0i.Let us de�ne a relation S as follows: S = f((�; �); (�0; �0)) j (�; �) 2 Runs(N ); (�0; �0) 2 Runs(N 0); stutt(�; �)' stutt(�0; �0)g. Let us prove S : N$�pombpomfN 0.1. ((�N ; "); (�N 0 ; ")) 2 S, sine �N$�pomhbr�N 0 .2. Let ((�; �); (�0; �0)) 2 S.� (bak)We have 9� : vis(�C ) ' vis(�C0 ). Let (~�; ~�) �̂! (�; �). Then 9i (1 � i � n) (~�; ~�) 2 Ri fromtrae(�; �). Sine stutt(�; �) ' stutt(�0; �0), then 9k (1 � k � n) s.t. Ri orresponds to R0k fromtrae(�0; �0). Then ~�$�pomhbr�0(k). Consequently,((~�; ~�); (�0(k); �0(k))) 2 S and 9� : vis(�eC ) ' vis(�C0 (k)). Let us onsider the bak extension(�0(k); �0(k)) �̂0! (�0; �0). Sine � and ~� are isomorphisms, we have vis(�bC ) ' vis(�bC0 ).� (forth) Obviously.3. As item 2, but the roles of N and N 0 are reversed.()) Let N$�pombpomfN 0. Let us de�ne a relation S as follows: S = f(�; �0; ��0� ) j (�; �)$�pombpomf (�0; �0)g.Let us prove S : N$�pomhbrN 0.1. (�N ; �N 0 ; ;) 2 S sine �"" = ; and (�N ; ")$�pombpomf (�N 0 ; ").2. Let (�; �0; ��0� ) 2 S. Then by de�nition of S; (�; �)$�pombpomf (�0; �0) and bak extension (�N ; ") �! (�; �)is imitated by (��0; ") ��0! (�0; �0) for some ��0 s.t. �N 0 ) ��0 . If � = (C;') and ��0 = (C; �'), we have��0� : vis(�C ) ' vis(�C 0). Sine vis(T 0C ) = vis(TC 0 ), where �0 = (C 0; '0), we have ��0� : vis(�C ) ' vis(�C0 ).3. Let (�; �0; ��0� ) 2 S and � v! ~�. Then by de�nition of S; (�; �)$�pombpomf (�0; �0) and (�; �) ! (~�; �v).The following two ases are possible.(a) leC (v) 6= � .Sine N$�pombpomfN 0, we have 9v0i; w0j (1 � i � n; 1 � j � m); v0; �01; �02 s.t. (�0; �0) v01! � � � v0n!(�01; �0v01 � � �v0n) v0! (�02; �0v01 � � �v0nv0) w01! � � � w0m! (~�0; �0v01 � � �v0nv0w01 � � �w0m); (~�; �v)$�pombpomf(~�0; �0v01 � � �v0nv0w01 � � �w0m) and leC(v) = leC0 (v0); 8i; j (1 � i � n; 1 � j � m) leC0 (v0i) = leC0 (w0j) = � .Consequently, �0 v01! � � � v0n! �01 v0! �02 w01! � � � w0m! ~�0.The bak extension (�02; �0v01 � � �v0nv0)! (~�0; �0v01 � � �v0nv0w01 � � �w0m) is imitated by empty bak exten-sion of (~�; �v). Hene, (~�; �v)$�pombpomf (�02; �0v01 � � �v0nv0). Therefore (~�; �02; ��0v01���v0nv0�v ) 2 S.Let us onsider the bak extension (�01; �0v01 � � �v0n) ! (�02; �0v01 � � �v0nv0). It is imitated by somebak extension (��; ��) ) (�; �) ! (~�; �v) s.t. (��; ��)$�pombpomf (�01; �0v01 � � �v0n). Sine (�0; �0) )(�01; �0v01 � � �v0n) and (�; �)$�pombpomf (�0; �0), by Lemma 4.2 we have (�; �)$�pombpomf (�01; �0v01 � � �v0n).So, we obtain (�; �01; ��0v01���v0n� ) 2 S.Hene, we have simulation, sine �0 ) �01 a! ~�02 and (�; �01; ��0v01���v0n� ) 2 S; (~�; �02; ��0v01���v0nv0�v ) 2 S.35



(b) leC (v) = � .Sine N$�pombpomfN 0, we have 9�0i (1 � i � n) s.t. (�0; �0)) (�01; �0v1)) � � � ) (�0n; �0v01 � � �v0n) =(~�0; �0v01 � � �v0n) and (~�; �v)$�pombpomf (~�0; �0v01 � � �v0n).i. If n = 0, we have proved.ii. If n � 1, and the bak extension (�0n�1; �0v01 � � �v0n�1) ) (�0n; �0v01 � � �v0n) is simulated by theempty bak extension of (~�; �v) we have proved for n = 1, and for n � 2 we shall ontinue suha reasoning. Two ases are possible.In the �rst ase, we shall obtain (~�; �v)$�pombpomf (�0; �0) and (~�; �0; ��0�v) 2 S.In the seond ase, we shall obtain 9m (1 � m � n� 1) s.t. (~�; �v)$�pombpomf (�0m; �0v01 : : : v0m)and (~�; �0m; ��0v01:::v0m�v ) 2 S.The bak extension (�0m�1; �0v01 � � �v0m�1) ) (�0m; �0v01 � � �v0m) is imitated by some bak ex-tension (��; ��) ) (�; �) s.t. (��; ��)$�pombpomf (�0m�1; �0v01 � � �v0m�1). By Lemma 4.2, we have(�; �)$�pombpomf (�0m�1; �0v01 � � �v0m�1). So, we obtain (�; �0m�1; ��0v01���v0m�1� ) 2 S.Hene, we have simulation, sine �0 ) �0m�1 �! ~�0m and (�; �0m�1; ��0v01���v0m�1� ) 2 S;(~�; �0m; ��0v01:::v0m�v ) 2 S.4. As item 3, but the roles of N and N 0 are reversed. utB Proof of Proposition 6.2Let N = ref(N; a;D); N 0 = ref(N 0; a;D). Let us note that ausal nets of proesses of SM-nets are simplehains, i.e. nets s.t. eah element has exatly one predeessor (exept for the unique input plae) and onesuessor (exept for the unique output plae).Constrution (*)1. Let �� = (C; �') 2 �(N ). Then any element of C, whih is not embedded into PN [ TN , has the followingproperties:� has a form he; fi (e 2 PCD [ TCD ; �D = (CD; 'D) 2 �(D) and f 2 TC ; � = (C;') 2 �(N )) and isembedded into hx; ui; x 2 TD [ (PD n fpin; poutg); u 2 l�1N (a);� has a unique predeessor hemin; fi whih is embedded into htmin; ui; tmin 2 p�in;� belongs to the unique maximal hain # (orresponding to the net CD) originating from hemin; fiwhere all the elements are embedded into that of type hy; ui; y 2 TD [ (PD n fpin; poutg), and theonly onnetions of # with the rest of the proess are:{ through the input plaes of hemin; fi (always);{ (a) through the output plaes of the maximal transition of the hain hemax; fi whih is embeddedin htmax; ui; tmax 2 �pout;(b) unless the hain stops on a maximal plae before.Consequently, eah suh hain # ontaining in the net C, may be replaed:(a) by transition f whih is embedded into u, sine they have the same inputs and outputs;(b) by transition f whih is embedded into u, with new output plaes orresponding to u, sine theyhave the same outputs, and there is nothing after f (in this ase, f is a maximal transition).The resulting objet will be proess � = (C;') 2 �(N ).2. Sine N ��? N 0; ? 2 fpw; pomg, we an always �nd �0 = (C0; '0) 2 �(N 0) and � s.t.:� ��1 : vis(�C0 ) v vis(�C ), if ? = pw;� � : vis(�C ) ' vis(�C0 ), if ? = pom.We an suppose that all maximal transitions of C0 are visible. Otherwise, 9�01 = (C 01; '01) 2 �(N 0) withthis property s.t. �01) �0. Let us note that in this ase vis(�C0 ) ' vis(�C01 ). Then take �01 instead of �0.3. For any #, onstruted previously, let us replae in C 0 the transition �(f) whih is embedded into u0, byopy #0 of the hain #, where names of elements he; fi are replaed by he; �(f)i. Two ases are possible:36



(a) if the hain is omplete, �(f) and #0 have the same outputs (from u0);(b) if the hain is inomplete, i.e. it terminates by plae, we drop all output plaes of �(f).It is possible, sine in this ase f is maximal, � does not disregard maximal visible transitions inboth the ases ? 2 fpw; pomg, hene �(f) is also maximal among visible transitions.In addition, all the maximal transitions of C0 are visible, hene no invisible transition an be after�(f), and it is maximal among all transitions.In both ases �(f) and #0 have the same inputs (in u0).It is lear that the onstruted objet is a proess ��0 = (C0; �'0) 2 �(N 0).4. Let g 2 vis(TC ). Let us de�ne a mapping �� as follows.��(g) = � �(g); g does not belong to any hain;he; �(f)i; g = he; fi belongs to some hain #: ut(End of Constrution (*))Let �� = (C; �') 2 �(N ). Then 9��0 = (C 0; �'0) 2 �(N 0) obtained from �� by Constrution (*).We have to prove the following statements.� ���1 : vis(�C 0) v vis(�C ), if ? = pw;� �� : vis(�C ) ' vis(�C 0 ), if ? = pom.First, let us onsider the ase ? = pw.Let g; h 2 vis(TC ). Five ases are possible:1. g and h do not belong to any hains;2. g belongs to the hain #, h does not belong to any hain;3. g does not belong to any hain, h belongs to the hain #;4. g and h belong to the same hain #;5. g belongs to the hain #1, h belongs to the hain #2 and #1 6= #2.Let us onsider the ase 5, sine the ases 1{4 are simpler. Then g = he1; f1i; h = he2; f2i, where e1 2vis(TCD1 ); e2 2 vis(TCD2 ) for �D1 = (CD1; 'D1); �D2 = (CD2; 'D2) 2 �(D); f1; f2 2 vis(TC ); f1 and f2 arere�ned in C into #1 and #2 respetively. We have: ��(g) �C0 ��(h) ) ��(he1; f1i)) �C0 ��(he2; f2i) ) (byde�nition of ��) he1; �(f1)i �C0 he2; �(f2)i ) (sine the only onnetions of hains with the rest of the proessare through their minimal and maximal transitions) hemax1; �(f1)i �C0 hemin2; �(f2)i ) (by Constrution(*)) �(f1) �C0 �(f2) ) (sine ��1 : vis(�C0 ) v vis(�C )) f1 �C f2 ) (by Constrution (*)) hemax1; f1i �Chemin2; f2i ) he1; f1i �C he2; f2i ) g �C h.The ase ? = pom is onsidered analogously with the exeption that all the impliations are replaed bysymbols \if and only if".Thus, 8�� 2 �(N ) 9��0 2 �(N 0) s.t. it has desirable properties.In another diretion the proof is symmetrial. utC Proof of Proposition 6.3Let N = ref(N; a;D); N 0 = ref(N 0; a;D) and R : N$�?STN 0; ? 2 fi; pw; pomg.Constrution (**)1. Let (��E; ��P ) 2 ST ��(N ) and �E; �P 2 �(N ) are onstruted from ��E and ��P respetively by part 1 ofConstrution (*) from Proposition 6.2.Claim C.1 (�E ; �P ) 2 ST ��(N ).Proof. Let g; h 2 vis(TCE ) and g �CE h. Four ases are possible:37



(a) lCE (g) 6= a 6= lCE (h);(b) lCE (g) = a 6= lCE (h);() lCE (g) 6= a = lCE (h);(d) lCE (g) = a = lCE (h).Let us onsider the ase (d), sine the ases (a){() are simpler. Then g and h are re�ned in CE into di�er-ent hains #1 and #2 with elements of the form he1; gi and he2; hi respetively, where e1 2 vis(TCD1 ); e2 2vis(TCD2 ) for �D1 = (CD1; 'D1); �D2 = (CD2; 'D2) 2 �(D). We have: g �CE h ) (by Constrution (*))hemax1; gi �CE hemin2; hi ) (sine (��E ; ��P ) 2 ST � �(N ) and hemin2; hi 2 TCE ) hemax1; gi 2 TCP )(by Constrution (*)) g 2 TCP .Let g 2 TCE and lCE (g) = � ) (sine g is not re�ned in CE) lCE (g) = � ) (sine (��E ; ��P ) 2 ST ��(N ))g 2 TCP ) (sine g is not re�ned in CE) g 2 TCP . ut2. Let us �nd (�0E; �0P ) 2 ST � �(N 0) and � s.t. ((�E ; �P ); (�0E ; �0P ); �) 2 R.3. We obtain ��0E ; ��0P 2 �(N ) from �0E and �0P respetively by part 3 of Constrution (*) from Proposition6.2.It is possible to apply this onstrution, sine � does not disregard maximal visible transitions in all theases ? 2 fi; pw; pomg, and all the maximal transitions of ST-proesses are visible.Claim C.2 (��0E ; ��0P ) 2 ST ��(N 0).Proof. Let g0; h0 2 vis(TC 0E ) and g0 �C0E h0. Five ases are possible:(a) g0 and h0 do not belong to any hains;(b) g0 belongs to the hain #0, h0 does not belong to any hain;() g0 does not belong to any hain, h0 belongs to the hain #0;(d) g0 and h0 belong to the same hain #0;(e) g0 belongs to the hain #01, h0 belongs to the hain #2 and #1 6= #02.Let us onsider the ase (e), sine the ases (a){(d) are simpler. Then g0 = he1; f 01i; h0 = he2; f 02i, wheree1 2 vis(TCD1 ); e2 2 vis(TCD2 ) for �D1 = (CD1; 'D1); �D2 = (CD2; 'D2) 2 �(D); f 01; f 02 2 vis(TC0E ); f 01and f 02 are re�ned in C 0E into di�erent hains #01 and #02 respetively. We have: g0 �C0E h0 ) he1; f 01i �C0Ehe2; f 02i ) (sine the only onnetions of hains with the rest of the proess are through their minimaland maximal transitions) hemax1; f 01i �C0E hemin2; f 02i ) (by Constrution (*)) f 01 �C0E f 02 ) (sine(�0E ; �0P ) 2 ST � �(N 0)) f 01 2 TC0P ) (by Constrution (*)) g0 = he1; f 01i 2 TC0P .Let g0 2 TC0E and lC 0E (g0) = � ) (sine g0 is not re�ned in C0E) lC0E (g0) = � ) (sine (�0E ; �0P ) 2ST ��(N 0)) g0 2 TC0P ) (sine g0 is not re�ned in C0E) g0 2 TC0P . ut4. Let g 2 vis(TCE ). Let us de�ne a mapping �� as follows.��(g) = � �(g); g does not belong to any hain;he; �(f)i; g = he; fi belongs to some hain #: ut(End of Constrution (**))Let S onsists of elements of the form ((��E ; ��P ); (��0E ; ��0P ); ��) whih are obtained by Constrution (**) fromelements ((�E ; �P ); (�0E; �0P ); �) 2 R. Let us prove S : N$?STN 0.1. Obviously, ((�N ; �N ); (�N 0 ; �N 0); ;) 2 S.2. Let ((��E ; ��P ); (��0E ; ��0P ); ��) 2 S. Obviously, by Constrution (**) we have �� : vis(�CE ) � vis(�C 0E ) and��(vis(TCP )) = vis(TC 0P ), sine �(vis(TCP )) = vis(TC0P ).38



3. Let ((��E ; ��P ); (��0E; ��0P ); ��) 2 S and (��E ; ��P )! (~��E ; ~��P ).The element ((��E ; ��P ); (��0E ; ��0P ); ��) is obtained from some element ((�E ; �P ); (�0E; �0P ); �) 2 R by Con-strution (**).By part 1 of Constrution (**) we obtain (~�E ; ~�P ) 2 ST ��(N ) from (~��E ; ~��P ).Obviously, (�E ; �P )! (~�E ; ~�P ).Sine R : N$�?STN 0; ? 2 fi; pw; pomg, we have: 9 ~�; (~�0E ; ~�0P ) s.t.: (�0E ; �0P )! (~�0E ; ~�0P ); ~�jvis(TCE) = �and ((~�E ; ~�P ); (~�0E ; ~�0P ); ~�) 2 R.By part 3 of Constrution (**) we obtain (~��0E ; ~��0P ) 2 ST ��(N ) from (~�0E; ~�0P ).It is possible to apply this onstrution, sine ~� does not disregard maximal visible transitions in all theases ? 2 fi; pw; pomg, and all the maximal transitions of ST-proesses are visible.By part 4 of Constrution (**) we obtain ~�� from ~�.Claim C.3 (��0E ; ��0P )! (~��0E ; ~��0P ).Proof. It is enough to prove that TC0E � T~C0E , sine the proof of the fat TC0P � T~C0P is analogous.Let g0 2 TC0E . Two ases are possible:(a) g0 does not belong to any hain;(b) g0 belongs to some hain #0.Let us onsider the ase (b), sine the ase (a) is trivial. Then g0 = he; f 0i, where e 2 TCD for �D =(CD; 'D) 2 �(D); f 0 2 TC0E ; f 0 is re�ned in C0E into #0. We have: g0 = he; f 0i = (9f 2 TCE ; �(f) = f 0)he; �(f)i = (sine (�E ; �P )! (~�E; ~�P ) implies f 2 T ~CE ) he; ~�(f)i 2 (by de�nition of ~��0E) T~C0E . utClaim C.4 ~��jvis(TCE ) = ��.Proof. Let g 2 vis(TCE ). Two ases are possible:(a) g does not belong to any hain;(b) g belongs to some hain #.Let us onsider the ase (b), sine the ase (a) is trivial. Then g = he; fi, where e 2 vis(TCD ) for�D = (CD; 'D) 2 �(D); f 2 vis(TCE ); f is re�ned in CE into #. We have: ~��(he; fi) = he; ~�(f)i = (sinef 2 vis(TCE ) and ~�jvis(TCE) = �) he; �(f)i = (by de�nition of ��) ��(he; fi). utClaim C.5 ((~��E ; ~��P ); (~��0E ; ~��0P ); ~��) 2 S.Proof. Obviously, by Constrution (**). utLet ��P ��! ~��E ; ��0P ��0! ~��0E , where �� = (C; �'); ��0 = (C0; �'0) and  = ~��jvis(TC).We have to prove the following statements.� �1 : vis(�C 0) v vis(�C ), if ? = pw;�  : vis(�C ) ' vis(�C 0), if ? 2 fi; pomg.The following two laims are helpful.Remark C.1 Sine by Claim C.4 ~��jvis(TCE ) = �� and from (��E ; ��P ) 2 ST ��(N ) follows ��(vis(TCP )) =vis(TC 0P ), we have ~��(vis(T~CE n TCP )) = vis(T~C 0E n TC 0P ).Hene, ~��(vis(TC )) = vis(TC 0). 39



Remark C.2 Sine f 2 vis(TCP ) implies he; fi 2 vis(TCP ), then he; fi 62 vis(TCP ) implies f 62 vis(TCP ).Hene, he; fi 2 vis(T~CE n TCP = TC) implies f 2 vis(TeCE n TCP ) = vis(TC ).The rest of the proof is analogous to that of from Proposition 6.2.4. As item 3, but the roles of N and N 0 are reversed. utD Proof of Proposition 6.7Let N = ref(N; a;D); N 0 = ref(N 0; a;D). Let us note that ourrene nets of branhing proesses of SM-netare trees, i.e. nets with exatly one predeessor of eah element (with exeption of the unique input plae).Constrution (***)1. Let �$ = (O; � ) 2 }max(N ). Then eah element of O whih is not embedded into PN [ TN , has thefollowing properties:� has a form he; fi (e 2 POD [TOD ; $D = (OD;  D) 2 }max(D) and f 2 TO; $ = (O; ) 2 }max(N ))and is embedded into hx; ui; x 2 TD [ (PD n fpin; poutg); u 2 l�1N (a);� has a unique predeessor heimin; fi (1 � i � n) whih is embedded into htimin; ui; timin 2 p�in;� belongs to the unique maximal tree #i (belonging to the set of trees # = [ni=1#i, whih orrespondsto the net OD), originating from heimin; fi, where all elements are embedded into elements of theform hy; ui; y 2 TD [ (PD n fpin; poutg) and the only onnetions of #i with the rest of the proessare:{ through the input plaes of heimin; fi (always);{ through the output plaes of maximal elements of tree heijmax; fi (1 � j � m), whih are transi-tions embedded into htijmax; ui; tijmax 2 �pout.Let us note that all eimin (1 � i � n) have the same onnetions with the rest of the proess (as well as alleijmax (1 � i � n; 1 � j � m)). Consequently, eah suh set of trees # ontaining in O, may be replaedby transition f whih is embedded into u, sine they have the same inputs and outputs. The resultingobjet will be branhing proess $ = (O; ) 2 }max(N ).2. Sine N ��mes N 0, we an always �nd $0 = (O0;  0) 2 }max(N 0) and � s.t. � : vis(�O ) ' vis(�O0 ).3. For #, onstruted previously, let us replae in O0 the transition �(f), whih is embedded into u0, by aopy #0 of #, where all names of elements he; fi are replaed by he; �(f)i. Then �(f) and #0 have the sameoutputs (from u0) and the same inputs (in u0).It is lear that the onstruted objet is branhing proess �$0 = (O0; � 0) 2 }max(N 0).4. Let g 2 vis(TO ). Let us de�ne a mapping �� as follows.��(g) = � �(g); g does not belong to any set of trees;he; �(f)i; g = he; fi belongs to some set of trees #: ut(End of Constrution (***))Let �$ = (O; � ) 2 }(N ). Then 9 �$0 = (O0; � 0) 2 }(N 0) obtained from �$ by Constrution (***).We have to prove the following statement: �� : vis(�O ) ' vis(�O0 ).Let g; h 2 vis(TO ). Five ases are possible:1. g and h do not belong to any sets of trees;2. g belongs to the set of trees #, h does not belong to any set of trees;3. g does not belong to any set of trees, h belongs to the set of trees #;4. g and h belong to the same set f trees #;5. g belongs to the set of trees #1, h belongs to the set of trees #2 and #1 6= #2.40



Let us onsider the ase 5, sine the ases 1{4 are simpler. Then g = he1; f1i; h = he2; f2i, where e1 2vis(TOD1 ); e2 2 vis(TOD2 ) for $D1 = (OD1;  D1); $D2 = (OD2;  D2) 2 }(D); f1; f2 2 vis(TO ); f1 and f2 arere�ned in O in di�erent sets of trees #1 and #2 respetively. Let us prove the preservation of preedene andonit relations.� g �O h , he1; f1i �O he2; f2i , (sine the only onnetions of #1 and #2 with rest of the proessare through their minimal and maximal transitions and all minimal (maximal) transitions have the sameonnetions with the rest) 8i; j; k heijmax1; f1i �O hekmin2; f2i , (by Constrution (***)) f1 �O f2 ,(sine � : vis(�O ) ' vis(�O0 )) �(f1) �O0 �(f2) , (by Constrution (***)) 8i; j; k heijmax1; �(f1)i �O0hekmin2; �(f2)i , he1; �(f1)i �O0 he2; �(f2)i , (by de�nition of ��) ��(he1; f1i) �O0 ��(he2; f2i) ,��(g) �O0 ��(h).� g#Oh , he1; f1i#Ohe2; f2i , (sine the only onnetions of #1 and #2 with rest of the proessare through their minimal and maximal transitions and all minimal (maximal) transitions have the sameonnetions with the rest) 8i; k heimin1; f1i#Ohekmin2; f2i , (by Constrution (***)) f1#Of2 , (sine � :vis(�O ) ' vis(�O0 )) �(f1)#O0�(f2) , (by Constrution (***)) 8i; k heimin1; �(f1)i#O0hekmin2; �(f2)i ,he1; �(f1)i#O0he2; �(f2)i , (by de�nition of ��) ��(he1; f1i)#O0 ��(he2; f2i) , ��(g)#O0 ��(h).Thus, 8 �$ 2 }max(N ) 9 �$0 2 }max(N 0) s.t. it has desirable properties.In another diretion the proof is symmetrial. ut
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