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Abstract
Understanding the interaction of polyelectrolytes with oppositely charged lipid membranes is
an important issue of soft matter physics, which provides an insight into mechanisms of inter-
actions between biological macromolecules and cell membranes. Despite the fact that many
(bio)macromolecules and filamentous supramolecular assemblies show semiflexible behavior,
prior to this work very little was known about the conformational dynamics and Brownian
motion of semiflexible particles attached to freestanding lipid membranes. In order to address
these issues, diffusion and conformational dynamics of semiflexible DNA molecules and fila-
mentous fd-virus particles electrostatically adsorbed to cationic freestanding lipid membranes
were studied on the single particle level by means of optical wide-field fluorescence microscopy.
Supergiant unilamellar vesicles (SGUVs) with diameters larger than 100 µm represent a

perfect model of a freestanding membrane. In this work, a method was developed that en-
abled the reliable and efficient electroformation of cationic SGUVs on ITO-coated coverslips.
The utilization of SGUVs as model freestanding lipid bilayers allowed for determination of the
previously unknown surface viscosity of DOPC/DOTAP membranes. In particular, the anal-
ysis of the translational diffusion coefficients of small (10, 20, 50 nm) membrane-attached
anionic polystyrene beads has shown that the surface viscosity of DOPC/DOTAP mem-
branes with CDOTAP = 1–7 mol% is independent of the DOTAP concentration and equals
η = (5.9± 0.2)× 10−10 Pa s m.
The fluorescence video-microscopy investigation of single DNA molecules attached to

cationic SGUVs revealed a previously unreported conformational transition of a membrane-
bound DNAmolecule from a 2D random coil, the original conformation in which DNA attaches
to the membrane, to a compact globule. This membrane-mediated DNA condensation is fa-
vored at high cationic lipid concentrations in the membrane and long DNA contour lengths.
The DNA compaction rate in the coil–globule transition is 124± 46 kbp/s, and the resulting
DNA globule sizes were found to be 250–350 nm at DOPC membranes containing 1 mol%
DOTAP and 130–200 nm for 7 mol% DOTAP, indicating a stronger compaction for higher
charge densities in the membrane. Additional experiments with freestanding cationic mem-
branes in the gel state and supported cationic lipid membranes with gel–fluid coexistence
suggest that the DNA collapse on a freestanding fluid cationic membrane may be initiated by
a local lipid segregation in the membrane and is accompanied by local membrane deforma-
tions, which eventually stabilize the compact DNA globule.
Furthermore, in this work single molecule studies of random-coil DNA molecules and fila-

mentous fd-virus particles on a freestanding cationic lipid bilayer with a low charge density
were carried out. The experiments revealed that these particles can be described as semi-
flexible chains in 2D. Taken together, DNA molecules and fd-virus particles cover a broad
range of the ratio of contour length and persistence length from 0.4 to 82. The results of
this work demonstrate that the mobility of such membrane-attached semiflexible particles is
strongly affected by hydrodynamics in the lipid membrane and the surrounding bulk fluid,
and can in essence be described using a hydrodynamics-based theory for a disk-shaped solid
membrane inclusion with a characteristic size approximately equal to the radii of gyration of
the particles.
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Introduction

As the basis of all living matter, the cell in its entity has been a puzzling and exciting
research focus for both biologist and physicists. A pivotal aspect of understanding the un-
derlying functionality of cells lies in the architectural structure that constitutes this highly
complex machinery. On the one hand, cells possess a membrane that acts as a selective
barrier by physically separating the cellular interior from the extracellular environment and
enclosed compartments from the cytoplasm. On the other hand, microfilaments, intermedi-
ate filaments and microtubules form a scaffold, the cytoskeleton, which maintains the cell
shape. Both membrane and cytoskeletal components can be transferred to and investigated
in a soft matter physics context in general and a biophysical context in particular. One aspect
of biophysics is to quantitatively investigate isolated systems, such as semiflexible polymers,
filaments and membranes in order to assign properties and decipher mechanisms that also
apply to the finely tuned and orchestrated working principles in an intact cell. In fact, many
of the macromolecules and filaments naturally found in cells can be described as semiflexible
filaments. This includes filaments constituting the cell cortex such as actin [1, 2, 3], as well
as microtubules [3, 4], DNA [5] and other macromolecules.
For the better part of the last century, basic research focused primarily on the distinct prop-

erties of isolated semiflexible molecules, filaments and lipid membranes with little considera-
tion of potential interactions with and dependencies of their respective natural environments.
The scientific advancement and accessibility of single molecule techniques, especially fluores-
cence microscopy, reinforced this tendency. However, mutual influences of these components
pose a fascinating problem as they provide substantiated insight into the mechanisms of inter-
play between (bio)macromolecules and cell membranes. In recent past, scientific approaches
shifted towards the investigation of the aforementioned interactions by utilizing artificial model
systems that mimic a natural environment without displaying the entire complexity of liv-
ing cells [6, 7]. An artificial model system can be realized by the adsorption of semiflexible
polyelectrolytes, for example DNA, to oppositely charged membranes. In 1999, Maier and
Rädler [8, 9] pioneered the application of double-stranded DNA on a flat supported cationic
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2 Introduction

lipid membrane in order to extract the conformational dynamics and Brownian motion of
a polymer in 2D. This was succeeded by studies of similar design but with different poly-
mers and/or lipid membrane content [6]. However, all of these experiments were conducted
with lipid membranes situated on a solid support, which alters the intrinsic properties of the
membranes by reducing the lipid mobility [10] and inhibiting the ability to deform locally
as a reaction to external perturbations. The obvious continuation on this matter would be
the investigation of systems which ensure that both membrane and attached semiflexible fil-
aments maintain their complete set of respective intrinsic properties. Surprisingly, very little
was known about the conformational dynamics and Brownian motion of single semiflexible
filaments in this context prior the present Work.
In order to address this subject, a reliable model system of a freestanding lipid membrane

needs to be established. Chapter 3 of this Thesis introduces an efficient protocol for the
electroformation of cationic supergiant unilamellar vesicles with diameters larger than 100
µm. These vesicles serve as a perfect experimental platform to investigate the conforma-
tional dynamics and Brownian motion of membrane-bound particles by means of fluorescence
wide-field microscopy and single particle tracking. Subsequent Chapters report on the con-
formational dynamics and Brownian motion of semiflexible double-stranded DNA molecules
and filamentous fd-virus particles, which are adsorbed to freestanding cationic lipid bilayers
at different membrane-particle interaction strengths controlled by the charge density in the
lipid membrane.



Chapter

1

Basic Concepts

1.1. Lipid bilayer membranes

Lipid bilayer membranes are one of the most important structures of living organisms. As a
physical barrier, they separate internal cellular structures from the surrounding environment
and organize the cellular interior into compartments. Together with proteins and protein
complexes, they allow for a selective permeability, e.g. by endocytosis and exocytosis, or are
used to maintain gradients, such as the proton gradient that allows for the production of the
biological energy storage unit ATP (adenosine triphosphate) in mitochondria and chloroplasts,
just to name a few of the countless processes dependent on lipid membranes.
Lipid bilayers are built from two layers of amphiphilic lipid molecules. Each amphiphilic

lipid molecule consists of a polar, and thus hydrophilic, head and non-polar, and thus hy-
drophobic, hydrocarbon chains. In general, the spontaneous self-assembly of a membrane
structure is driven by the principle of maximum entropy. If the individual lipids are dissolved
in an aqueous medium, the water molecules have to form an organized hydration shell around
the non-polar hydrocarbon chains and therefore this system’s entropy is reduced. As a conse-
quence, lipid molecules (self)-assemble in such a fashion that only the polar heads are exposed
to water, and entropy is gained in this case.
A lipid bilayer is formed if the average overall shape of the single lipid is close to that of a

cylinder. Such a membrane has a typical thickness of about 4 nm [11], defined by the size of
two lipid molecules, one sitting in the upper and the other in the lower leaflet of the bilayer.
Normally, lipid bilayers which are surrounded by water will form closed vesicles to shield all
hydrophobic parts. That is, if the energy needed to bend the membrane into the vesicle shape
is less than the interaction energy between water and the exposed hydrophobic chains at the
border of the membrane [12].
The mechanical properties of a lipid bilayer depend mainly on the type of the lipid head

groups, the hydrophobic chain lengths and the number and position of double bonds in the
chains. This section gives a brief overview on some lipid bilayer properties, such as the lipid
phase transition and the membrane elasticity. In the last part lipid model membranes used
in in vitro studies are discussed.

3



4 Basic Concepts

(a) (b) (c)

Figure 1.1: Schematic illustration of lipid membrane phases: (a) Lβ′ , (b) Pβ′ and (c) Lα. (adapted
from [13])

1.1.1. Phase transitions in lipid membranes

Lipids bilayers can undergo a phase transition between a solid-ordered or gel phase Lβ′ and a
liquid disordered or fluid phase Lα via a ripple phase Pβ′ . In the gel phase Lβ′ all hydrocarbon
chains are aligned and the head groups are highly ordered. When the temperature is raised
the ripple phase Pβ′ forms prior to melting and shows periodic one-dimensional ripples that
might be caused by periodic arrangements of gel and fluid domains [13]. Above the melting
temperature Tm the order in chains and of the head groups is lost and the membrane is in
the fluid phase Lα. The different phases are sketched in Figure 1.1.
The melting temperature Tm depends strongly on the length and saturation of the hydro-

carbon chains. Lipids with shorter chains have a lower Tm than lipids with longer chains and
lipids with unsaturated chains have a significantly lower Tm than those with saturated chains
due to higher disorder in the unsaturated chains that might assume a cis-conformation. For
example, Tm is −20 ◦C for membranes formed from unsaturated DOPC (18:1 PC),1 while
for saturated DSPC (18:0 PC) Tm = 54.7 ◦C, and a for membrane consisting of lipids with
shorter saturated chains like DMPC (14:0 PC) the melting temperature is only 23.6 ◦C [13].
If the lipid membrane consists of two – or more – lipids with different melting temperatures,

gel and fluid phases may coexist in a certain temperature interval between the two Tm. In
this case the gel phase domain will be enriched with the higher melting lipid and the fluid
phase domain will be enriched with the lower melting lipid [13].
Naturally, the area a single lipid occupies in the membrane is smaller in the high ordered

gel phase compared to the disordered fluid phase. For DMPC, an area per lipid of 47 Å2 was
measured at 10 ◦C in the gel phase [14]. This value increases to about 60 Å2 at 30 ◦C, when
the membrane is in the fluid phase [15].
Also the individual lipid mobility is different in both phases. Lipids in a highly ordered

gel-phase membrane move only very slowly, with reported diffusion coefficients in the range of
10−3–10−8 µm2/s [16]. In a fluid-phase membrane the lipid mobility is much higher and lateral
diffusion coefficients in the range between 1 and 10 µm2/s are observed [16]. For example, a
diffusion coefficient of 6.3 µm2/s was found for a fluorescent lipid analogue probe in a DOPC
vesicle at room temperature [17]. This drastic change in lipid mobility is also reflected in

1An 18:1 hydrocarbon chain consists of 18 carbon atoms with 1 double bond.
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the membrane viscosity felt by any object incorporated or associated with a membrane. The
membrane viscosity grows exponentially when approaching the phase transition from the fluid
to the gel phase [18].

1.1.2. Lipid membrane elasticity

A lipid bilayer membrane has elastic properties. From the three types of elastic deformations,
shearing, stretching and bending, only two remain in a fluid membrane because in reaction
to shearing forces the lipids react by flowing and rearranging [19]. The elastic reaction to
stretching forces is limited to only small deformations, because already area changes by about
one percent lead to rupture of the membrane [20]. The third elastic deformation, membrane
bending, is dominating the overall appearance of lipid bilayers, for example the shape that
vesicles assume.
The theoretical description of membrane bending originates from the works of Canham [21],

Helfrich [22] and Evans [23] in the 1970s. The bending energy per unit area gb at a certain
membrane position is given by the Helfrich equation [22]

gb = κ

2 (Cx + Cy − C0)2, (1.1)

with the principle radii of curvature Cx and Cy, the spontaneous curvature C0 and the bending
rigidity κ which is a measure of the softness of the lipid bilayer.
Since fluid lipid membranes are rather soft they undergo thermally induced fluctuations

which, in part, can be visualized by optical microscopy. A quasi spherical vesicle with radius
R that encloses a volume V = (4π/3)R2 by a membrane with area A = 4πR2 + ∆ might
show observable shape fluctuation if the excess area ∆ is large enough and the vesicle is
not additionally tensed, for example by a negative osmotic gradient between the enclosed
medium and the surrounding medium. In Figure 1.2 two giant unilamellar DOPC vesicles are
shown. While one seems perfectly spherical, the other shows large scale shape fluctuations,

(a) (b)

Figure 1.2: Fluorescent wide-field microscopy images of giant unilamellar DOPC vesicles. (a) Spher-
ical vesicle that does not show noticable shape fluctuations. (b) Distorted vesicle exhibiting strong
shape fluctuations. Scale bar: 5 µm. Fluorescent membrane label: 0.1 mol% DiO .
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resulting in significant distortions. The power spectral density of those shape fluctuations
around the mean spherical shape are dependent on the bending rigidity and thus were used
to determine κ [24, 25, 26, 27]. For DOPC vesicles κ was found to be about 2 ×10−20 J [25].
It is important to note that small scale fluctuations may be present on a membrane, even if
large scale fluctuations are not detectable by optical microscopy.

1.1.3. Lipid model membranes

Lipid bilayers are a highly versatile system, as due to their self-assembly they can be eas-
ily used as a model for minimal biological systems [28] whose properties can be easily al-
tered by the chosen lipid composition. Apart from a change of the pure mechanical proper-
ties, charged lipids, such as anionic phosphatidylserine (PS) or cationic trimethylammonium-
propane (TAP) lipids, can be introduced to create an electrostatic potential that leads to
attraction of oppositely charged biological molecules or colloidal particles to the membrane.
With these possibilities lipid membranes are an as important as fascinating object of interest
in biology, biochemistry, biophysics and more general, soft matter physics.
Several different types of lipid model membranes exist. In this Section and this Thesis,

the focus is on systems with single (unilamellar) lipid bilayers. In principle, three different
membrane model systems exist for unilamellar bilayers which are sketched in Figure 1.3: (i)
Unilamellar vesicles (see Figure 1.3(a)) which exist with a broad spectrum of sizes. Small
unilamellar vesicles (SUVs) with diameters from 10 nm to 100 nm, large unilamellar vesicles
(LUVs) with diameters from 100 nm to 1 µm and giant unilamellar vesicles (GUVs) with
diameters from 1 µm to 100 µm. For diameters larger 100 µm the term supergiant unilamellar
vesicles (SGUVs) is suggested in this Thesis. The lipid membrane of unilamellar vesicles is
on both sides in contact with the aqueous solution and of course, bent to obtain the usually
spherical vesicle shape. In contrast to this, (ii) the supported lipid bilayer (SLB) follows the
curvature of a solid support and is therefore, in the simplest case, flat (see Figure 1.3(b)).
A thin aqueous film between the lower leaflet of the bilayer and the solid support acts as
a lubricant that allows for the lateral mobility of lipids in the membrane. (iii) Another
possibility to form a flat but non-supported membrane, is the so called black lipid bilayer
(BLB), spanned over a solid aperture as drawn in Figure 1.3(c).
All types of model membranes have advantages and disadvantages and the chosen system

depends much on the specific scientific demands on the experiment. The flat membranes ob-
tained from SLBs and BLBs can be easily imaged using fluorescence microscopy. Furthermore,
the solid support of the SLB allows for atomic force microscopy (AFM) measurements.
The main disadvantages of the BLB is that it usually has a shorter long term stability com-

pared to vesicles and SLBs, and in addition, the experimental preparation process demands
the presence of hydrocarbon solvents. Traces of this solvent might be present in the readily
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(a) (b) (c)

Figure 1.3: Schematic drawing of lipid model membrane systems. (a) Unilamellar vesicle. (b) Sup-
ported lipid bilayer. (c) Black lipid membrane.

assembled bilayer [29]. This can be circumvented, if only micrometer-sized apertures are used
and GUVs are burst to form the bilayer over these holes [30], resulting in comparatively small,
micrometer sized, freestanding membrane areas.
The membrane properties of the very stable SLBs, on the other hand, are quite strongly

influenced by the solid support. The lipid mobility in a SLB can be strongly inhibited [10].
It was found that the diffusion coefficients of a membrane probe can be about five times
smaller in an SLB compared to a freestanding membrane [31]. Furthermore, the lipid phase
transition from gel to fluid phase is completely different, as the transition temperature region
is broadened and shifted to a higher Tm [32, 33]. For a supported DMPC membrane for
example, AFM reveals gel domains at a temperature as high as 30 ◦C [32]. These changes in
the melting temperature were attributed in part to an independent melting of the two bilayer
leaflets [33]. The solid support also changes the elastic behavior of the membrane resulting in
virtually complete suppression of thermally induced fluctuations [34]. In addition, membrane
defects as small as several nm are more than common, even in a SLB that seems homogeneous
in fluorescent microscopy [32, 33, 35, 36]. If the area per lipid is changed, for example due
to temperature changes, the bilayer reacts to this by formation or expansion of these defects
[35].
Unilamellar vesicles are stable, solvent free and the membrane is undisturbed by influences

of any support. However, only SGUVs have a membrane that can be considered flat on
the scale of tens of micrometers and thus allow for the efficient application of single particle
tracking in wide-field fluorescence microscopy (for details see Section 2.4.8). For these reasons,
SGUVs are an intriguing model system for freestanding lipid membranes.

1.2. Brownian motion

The random motion of microscopic objects in a liquid at rest is named after Robert Brown
who, in 1827, famously described the movement and rotation of pollen grains and smaller
particles released from the pollen if immersed in water [37]. Brown carried out additional
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studies to investigate the pollen of dead plants, pit-coal and a variety of minerals he was able
to grind to a powder. Since all particles exhibited a similar behavior, he ruled out that the
observed vivid particle motion was an active process of living matter. Brownian motion is
caused by the frequent collisions of the particles with the surrounding molecules of the medium
that move due to their thermal kinetic energy. In fluid media these collisions occur at a rate
kcoll = 1021 s−1 [38] leading to a random particle motion without memory at observation rates
kobs � kcoll for very small particles. However, this is not entirely true for observation rates >
1 kHz. Because in general, memory effects are present due to the inertia of the viscous liquid
medium in which the particles are immersed. But these memory effects vanish completely for
observation rates < 1 kHz and particles < 10 µm in water [39]. Therefore, Brownian motion
of these particles observed at millisecond time resolution constitutes a Markov process [40].

1.2.1. Principles of Brownian diffusion

The molecular interpretation of Brownian motion was proposed by Einstein in 1905 [41] and
confirmed experimentally by Perrin only a few years later [42] providing indirect evidence
for the existence of atoms and molecules. Quantitatively the stochastic process of Brownian
motion is described by the diffusion equation or Fick’s second law [40]

∂ρ(r, t)
∂t

= D∇2ρ(r, t), (1.2)

where D denotes the diffusion coefficient. The solution ρ(r, t) of Equation (1.2) is the condi-
tional probability to find a Brownian particle at an interval [r, r+dr] at time t (with t� k−1

coll),
provided that at time t = 0 it was at the origin. With proper normalization

∫
ρ(r, t)dr = 1

the unique solution ρ(r, t) for n-dimensional diffusion in a uniform unbounded medium is:

ρ(r, t) = 1
(4πDt) n

2
exp

(
− r2

4Dt

)
. (1.3)

This is an n-dimensional Gaussian distribution with variance σ2 = 2nDt. In every individual
dimension Brownian motion is described by

ρ(x, t) = 1√
4πDt

exp
(
− x2

4Dt

)
. (1.4)

With the known ρ(r, t) the mean squared displacement (MSD) of an ensemble of Brow-
nian particles can be calculated, leading to the Einstein-Smoluchowski relation of a linear
dependence between MSD and time [41, 43].

〈r2〉 =
∫

r2ρ(r, t)dr = 2nDt (1.5)
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In experimental works the fact that all n dimensions partition equally and independently to the
diffusion process is often used to reduce the analysis to a lower dimensionality, circumventing
the difficulties of three dimensional particle tracking.
Furthermore, because Brownian diffusion (also called normal diffusion) is a stationary er-

godic process the ensemble average is equivalent to a time average over a single particle
trajectory [44].

〈r2〉 =
∫
|r(t′ + t)− r(t′)|2dt′ (1.6)

The diffusion coefficient D follows the Einstein relation [38, 41]

D = kBT

ζ
, (1.7)

with the thermal energy 2 kBT and the friction coefficient ζ. In case of a spherical particle in a
uniform 3D viscous medium the Stokes relation applies, giving ζ = 6πµa with hydrodynamic
radius a and fluid bulk viscosity µ, resulting in

D = kBT

6πµa. (1.8)

By analogy to the translational Brownian diffusion, the rotational diffusion laws can be
derived [45]. The rotational motion of an object about a single fixed axis is described by the
angular MSD

〈θ2〉 =
∫
|θ(t′ + t)− θ(t′)|2dt′ = 2DRt (1.9)

and in case of a spherical particle in a uniform 3D viscous medium the rotational diffusion
coefficient DR is

DR = kBT

ζR
= kBT

8πµa3 . (1.10)

1.2.2. Diffusion of cylindrical membrane inclusions

While in the previous section the friction and thus the diffusion coefficient was determined
for particles which are freely suspended in a bulk fluid, Brownian motion also occurs for
particles embedded in quasi two-dimensional systems, as sketched in Figure 1.4. Diffusion
processes of membrane proteins or lipid domains in a lipid membrane are typical examples
for such systems, where a cylindrical inclusion with radius a is diffusing in a flat layer with
surface viscosity 3 η, which is surrounded by bulk fluids with viscosities µ1 and µ2. In such
a two-dimensional system a consistent definition of the friction ζ is more difficult. Here, the
translational mobility 1/ζ is not well defined if the hydrodynamic Stokes equations are reduced

2With the Boltzmann constant kB = 1.3806× 10−23 J K−1 and the absolute temperature T .
3The surface viscosity η of a thin layer of a homogeneous fluid is related to the bulk viscosity µ of the fluid
constituting the layer through the thickness h of the layer by η = µh
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µ1

η = µh

µ2

h
a

Figure 1.4: Sketch of a cylindrical object with radius a diffusing in a fluid membrane of hight h and
surface viscosity η surrounded by fluid media with bulk viscosities µ1 and µ2.

to only the viscous response of the 2D fluid surrounding the inclusion [46]. This arises from
the fact that for a steady, two-dimensional motion of a viscous, incompressible fluid around a
cylinder at rest, the necessary boundary condition of zero velocity at the surface of the cylinder
and constant velocity infinitely far away from the cylinder cannot be met simultaneously, the
so-called Stokes’ paradox [16].

Saffman and Delbrück (SD) were first to realize that diffusion in a membrane is essentially
a 3D problem, where the motion of the inclusion leads to a momentum transfer to the bulk
solvent above and below the membrane [47, 48]. To describe the influence of the bulk solvent
a hydrodynamic length scale, the so-called Saffman-Delbrück length, is introduced

lSD = η

(µ1 + µ2) . (1.11)

This length represents the distance in the membrane beyond which the normally logarithmi-
cally dependent long-range fluid flows in the membrane caused by the motion of the inclusion
can be neglected, because of a rapid decay due to the drag of the surrounding fluid [49]. Using
lSD, a reduced inclusion radius can be defined

ε = a/lSD. (1.12)

The model that Saffman and Delbrück developed was meant to describe the mobility of
membrane proteins whose radii are of order of a few nanometer, thus meeting the condition
ε � 1 given a typical SD length in the range of 250–2500 nm corresponding to membrane
surface viscosities in the the range of 5× 10−10 to 5× 10−9 Pa s m [50] surrounded by water
with the viscosity µ1,2 = 1×10−3 Pa s. The friction coefficient for translational motion found
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in the SD approximation [47, 48] is

ζSD
T = 4πη

ln (2/ε)− γ , (1.13)

with the Euler constant γ = 0.57721566490153 · · · . The friction coefficient for rotational
motion in the same approximation is

ζSD
R = 4πηa2. (1.14)

However, the Saffman-Delbrück model is only valid for membrane inclusions with sizes that
are at he same time: (i) significantly larger than the size of an individual lipid molecule
[51, 52], because of a breakdown of the hydrodynamic calculations for too small inclusion
radii [51]; and (ii) significantly smaller than the reduced inclusion radius ε.

A more general hydrodynamic model for the diffusion of membrane inclusions of arbitrary
radii and for arbitrary viscosities of the membrane and surrounding fluids was proposed by
Hughes, Pailthorpe and White (HPW) [53]. Since the solutions given in [53] demand compli-
cated numerical calculations before application to any measured data, for practical purposes
Petrov and Schwille (PS) published a closed-form expression to closely approximate the HPW
solutions [54, 55].

For translational diffusion of a membrane inclusion the friction coefficient is [54]

ζHPW PS
T = 4πη[1− (ε3/π) ln (2/ε) + c1ε

b1/(1 + c2ε
b2)]

ln (2/ε)− γ + 4ε/π − (ε2/2) ln (2/ε) , (1.15)

and thus the diffusion coefficient

DHPW PS
T = kBT

4πη
ln (2/ε)− γ + 4ε/π − (ε2/2) ln (2/ε)

[1− (ε3/π) ln (2/ε) + c1εb1/(1 + c2εb2)] (1.16)

with

c1 = 0.73761,

b1 = 2.74819,

c2 = 0.52119,

b2 = 0.51465.

The expression for the rotational friction is derived in [55]

ζHPW PS
R = 4πη3

(µ1 + µ2)2 [ε2 + 4ε3/(3π) + cR1ε
bR1/(1 + cR2ε

bR2)], (1.17)
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and with that the diffusion coefficient

DHPW PS
R = kBT (µ1 + µ2)2

4πη3
1

ε2 + 4ε3/(3π) + cR1εbR1/(1 + cR2εbR2) , (1.18)

where

cR1 = 0.31943,

bR1 = 2.91587,

cR2 = 0.60737,

bR2 = 0.68319.

Expressions (1.16) and (1.18) have been successfully used to describe the translational and
rotational diffusion of lipid membrane domains with radii of several micrometer [54, 55].

Asymptotic behavior

Expressions (1.16) and (1.18) describe the translational and rotational diffusion coefficients of
membrane inclusions in dependence of the inclusion size and the viscosities of the membrane
and the surrounding media.
For very small membrane inclusions, ε � 1, the translational and rotational diffusion co-

efficients are dominated by the influence of the membrane surface viscosity and described by
the SD approximation:

DSD
T = kBT

4πη (ln (2/ε)− γ), (1.19)

DSD
R = kBT

4πηa2 . (1.20)

Whereas in this case the translational diffusion coefficient has a week logarithmic depen-
dence on the viscosities of the surrounding media, the rotational diffusion coefficient is even
independent of the surrounding bulk viscosities. Furthermore in this approximation the size
dependence of both diffusion coefficients is weaker than for three-dimensional diffusion in a
bulk medium. For the translational diffusion coefficient of a particle in a bulk medium one
expects D ∼ a−1, and for the rotational diffusion coefficient DR ∼ a−3. In case of a particle
incorporated into a membrane for ε� 1 one finds DSD

T ∼ ln a for translational diffusion and
DSD

R ∼ a−2 for rotational diffusion.
For very large membrane inclusions, ε� 1, the translational and rotational diffusion coef-

ficients are both independent of the membrane surface viscosity and dominated by the bulk
viscosity of the surrounding media:

DHPW large
T = kBT

8(µ1 + µ2)a, (1.21)
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DHPW large
R = 3kBT

16(µ1 + µ2)a3 . (1.22)

The dependence on the inclusion size a in this approximation is similar to the free diffusion
in a bulk.

1.3. Semiflexible polymers and filaments

Polymers are, by definition, molecules that are built from repetitive sequences of monomeric
units. Many biological molecules match this definition and these biopolymers can be classi-
fied in three different categories: nucleic acids, proteins and polysaccharides. Importantly, the
structural appearance of biomacromolecules is closely correlated with their biological func-
tion and controlled by the flexibility of the polymer, the interactions of the individual building
blocks with each other and the interaction with the surrounding solvent medium [56]. The con-
formation of very large biopolymers such as DNA molecules, actin filaments or microtubules
and their dynamics can be resolved and investigated by fluorescence microscopy.
In the first part of this Section the basic theoretical description of semiflexible linear biopoly-

mers by the worm-like chain (WLC) model is introduced and theoretical models for diffusion of
polymers in a membrane are discussed. In the last part of this Section, the general properties
of semiflexible double-stranded DNA molecules and fd-virus particles are discussed.

1.3.1. Theoretical description of single semiflexible biopolymers

The worm-like chain (WLC) model first formulated by Kratky and Porod in 1949 [57] treats
a single, isolated polymer chain as a continuous thin elastic filament that obeys Hooke’s law
under small deformations. In many cases, conformations, thermal shape fluctuations and the
response to external forces of large linear biopolymers, such as actin [1, 2, 3, 58], microtubules
[3, 4] and DNA [5, 59, 60, 61], are successfully described by the WLC model.
Figure 1.5 shows a sketch of a semiflexible filament. At two positions on the filament s and

s′ the unit tangent vector t is displayed. The total bending energy Eb of such a filament of
length L is [56]:

Eb =
∫ L

0

κ

2

(
δt
δs

)2
ds, (1.23)

with the characteristic bending rigidity κ. In three-dimensional space, the directional corre-
lation function of the tangential vector decays exponentially,

〈t(s) · t(s′)〉3D = exp
(
−|s

′ − s|
lp

)
. (1.24)

Here, the persistence length lp serves as a measure of the length scale at which the orientational
correlation within the filament is lost and therefore it can be used as an indicator of the
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t(s)

t(s‘ )

s
s‘

Figure 1.5: Sketch of a semiflexible filament with unit tangent vectors t at filament positions s and
s′.

filament flexibility. The relation between the bending rigidity and the persistence length is
lp = κ/(kBT ) [56].
The characteristic size of a polymer can be characterized by the radius of gyration Rg, the

square-root of the second moment of the mass distribution of the polymer filament. In the
WLC model, the mean squared radius of gyration depends on the length of the filament and
the persistence length [56]:

〈R2
g〉 = lp

3L2

[
L3 − 3L2lp + 6Ll2p − 6l3p

(
1− exp

(
−L
lp

))]
, (1.25)

with the limiting forms

〈R2
g〉 = 1

12L
2 , L� lp (stiff rod) (1.26)

〈R2
g〉 = 1

3Llp , L� lp (Gaussian random coil). (1.27)

The conformation of a polymer is also reflected by its end-to-end distance dee, and a closed
form expression for the mean squared end-to-end distance exists in the WLC model [56],

〈d2
ee〉 = 2l2p

[
L

lp
− 1 + exp

(
−L
lp

)]
, (1.28)

with the limiting forms

〈d2
ee〉 = L2 , L� lp (stiff rod) (1.29)

〈d2
ee〉 = 2Llp , L� lp (Gaussian random coil). (1.30)

All the equations above are valid in three-dimensional space. However, if the polymer is
confined to a two-dimensional space, the directional correlation function of the tangential
vector

〈t(s) · t(s′)〉2D = exp
(
−|s

′ − s|
2lp

)
, (1.31)

decays with twice the persistence length lp of a filament in three-dimensional space [59].
Therefore, in Equations (1.25) and (1.28), lp has to be replaced by 2lp for the consistent use
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of the persistence length lp = κ/(kBT ). With that, one obtains for the mean squared radius
of gyration of a semiflexible polymer in 2D

〈R2
g〉2D = 2lp

3L2

[
L3 − 6L2lp + 24Ll2p − 48l3p

(
1− exp

(
− L

2lp

))]
, (1.32)

with the limiting forms

〈R2
g〉2D = 1

12L
2 , L� lp (stiff rod) (1.33)

〈R2
g〉2D = 2

3Llp , L� lp (Gaussian random coil), (1.34)

and for the mean squared end-to-end distance in 2D,

〈d2
ee〉2D = 8l2p

[
L

2lp
− 1 + exp

(
− L

2lp

)]
, (1.35)

with the limiting forms

〈d2
ee〉2D = L2 , L� lp (stiff rod) (1.36)

〈d2
ee〉2D = 4Llp , L� lp (Gaussian random coil). (1.37)

1.3.2. Diffusion of polymers in a thin viscous film

For a polymer which is adsorbed to a freestanding fluid lipid membrane one can expect
similarities in the dependence of the translational and rotational diffusion to the diffusion of
cylindrical membrane inclusions described by the HPW hydrodynamic theory (see Section
1.2.2). The similarity should manifest mainly in the presence of a transition from membrane
viscosity dominated diffusion for small polymer sizes compared to the hydrodynamic length
scale lSD = η/(µ1 + µ2), to bulk viscosity dominated diffusion for large polymer sizes.
No theoretical treatment of the diffusion of semiflexible polymer on a membrane can be

found in the literature. However, for both limiting cases, the very soft Gaussian chain random
coil and the very stiff straight rod, theoretical predictions of translational and rotational
diffusion coefficients exist.

Diffusion of a Gaussian chain polymer in a membrane

The diffusion of a Gaussian polymer chain of arbitrary size in a fluid membrane is described
in the work of Ramachandran, Komura, Seki and Gompper [62] referred to as RKSG in the
following. They use the radius of gyration of the polymer as the characteristic inclusion size.
For the translational diffusion of a Gaussian polymer of arbitrary Rg the diffusion coefficient



16 Basic Concepts

is [62]

DRKSG
T = kBT

4πη
1
ε4

[
(πerfi(ε)− Ei(ε2)) exp(−ε2) + 4

√
π

3 ε3

+ ε2 − (ln ε2 + γ)(ε2 − 1)− 2
√
πε

]
,

(1.38)

with the reduced inclusion size ε = Rg/lSD and Euler’s constant γ. It is important that γ is
used up to 14th digit at least because otherwise the computation for small ε is inaccurate and
unstable. The function erfi(x) is the imaginary error function and Ei(x) is the exponential
integral.

Furthermore, in [62] the relaxation times of a polymer in a membrane are given. As the
longest relaxation time is equivalent to the rotational relaxation time τR, the rotational dif-
fusion coefficient DR = 1/(2τR) can be calculated and is

DRKSG
R = kBT

(32/π)ηR2
g

[
π2 −

√
2π3/2ε+ 2 ln(π/ε2)ε2 +

√
2πε3

]
(π2 + ε4) . (1.39)

Diffusion of a stiff straight rod in a membrane

In the limit of a stiff straight rod of length L, translational and rotational diffusion in a
membrane are described by a model by Levine, Liverpool and MacKintosh (LLM) [63, 64].
Independently at the same time, a theory giving similar results was developed by Fischer
[65, 66]. Both theories assume filaments with high aspect ratios of filament length to filament
diameter and calculate the viscous drag coefficients and drag forces, respectively. They treat
the lateral diffusion of the filament differently than the HPW and RKSG theory. Instead of the
mean two-dimensional diffusion coefficient DT, the diffusion parallel (D‖) and perpendicular
(D⊥) to the filament’s long axis orientation are investigated, whereDT = (D‖+D⊥)/2. This is
meaningful and necessary due to anisotropy in hydrodynamic drag experienced by a strongly
anisotropic object such as a rod-like filament with high aspect ratio. With an increasing
length L of the rod the anisotropy in the viscous drag is found to become larger resulting in
progressively more different values of the diffusion coefficients D‖ and D⊥ [63, 64, 65].

In the LLM and Fischer theories the filament length L is used as the characteristic inclusion
size. For both theories no closed-form expression for the description of the diffusion coefficients
of filaments of arbitrary lengths are available. However, the asymptotic behavior for very
large and very short rods compared to the hydrodynamic length scale are reported, and are
summarized in Table 1.1.



Semiflexible polymers and filaments 17

Table 1.1.: Overview of asymptotic behavior of diffusion coefficients for small and large polymers in a
fluid membrane (surface viscosity η) surrounded by bulk media (viscosities µ1, µ2) according to RKSG
theory (Gaussian chain) and LLM and Fischer theories (both for straight rod) and comparison to the
HPW theory for a cylindrical disk.

asymptotic behavior of small and large inclusions effective radius a
(cylindrical disk, HPW)

ε� 1 ∗ ε� 1 ∗ ε� 1 ∗ ε� 1 ∗

HPW [53] (cylindrical disk of radius a)

DT
kBT

4πη

(
ln 2lSD

a
− γ
)

kBT

8(µ1 + µ2)a — —

DR
kBT

4πηa2
kBT

(16/3)(µ1 + µ2)a3 — —

RKSG [62] (flexible Gaussian chain with radius of gyration Rg)

DT
kBT

4πη

(
ln lSD

Rg
− γ

2 + 3
4

)
kBT

3
√
π(µ1 + µ2)Rg

a ≈ 0.71Rg a ≈ 0.66Rg

DR
kBT

(32/π)ηR2
g

kBT

(32/
√

2π3)(µ1 + µ2)R3
g

a ≈ 0.9Rg a ≈ 0.91Rg

LLM [63, 64] (stiff straight rod of length L)

D⊥
stated to scale similar to HPW;
converges to same values as D‖

kBT

π(µ1 + µ2)L — a ≈ 0.39L
≈ 1.36Rg

†

D‖
stated to scale similar to HPW;
converges to same values as D⊥

kBT

π(µ1 + µ2)L ln
(

0.43 L

lSD

)
— different

scaling

DR
kBT

1.48ηL2
kBT

0.25(µ1 + µ2)L3
a ≈ 0.34L a ≈ 0.36L
≈ 1.19Rg

† ≈ 1.25Rg
†

Fischer [65, 66] (stiff straight rod of length L)

D⊥
kBT

4πη

(
ln 8lSD

L
− γ − 1/2

)
kBT

π(µ1 + µ2)L
a ≈ 0.41L a ≈ 0.39L
≈ 1.43Rg

† ≈ 1.36Rg
†

D‖
kBT

4πη

(
ln 8lSD

L
− γ + 1/2

)
kBT

π(µ1 + µ2)L ln
(

0.48 L

lSD

)
a ≈ 0.15L different

scaling≈ 0.53Rg
†

DR
kBT

(π/2)ηL2
‡ kBT

(π/12)(µ1 + µ2)L3
a ≈ 0.35L a ≈ 0.37L
≈ 1.22Rg

† ≈ 1.27Rg
†

∗ ε = a/lSD for HPW; ε = Rg/lSD for RKSG; ε = L/lSD for LLM and Fischer
† rod length L related to the radius of gyration Rg according to Equation (1.33)
‡ assuming a missprint in [66], otherwise DR = (kBT )/((π/4)ηL2) and a ≈ 0.25L ≈ 0.87Rg for ε� 1

Comparison of the asymptotic expressions for diffusion coefficients of a Gaussian chain
polymer and a stiff straight rod in a membrane with the asymptotic expressions for
diffusion coefficients of a cylindrical membrane inclusion

In order to compare the RKSG, LLM and Fischer theories with the HPW theory, the asymp-
totic behavior of the diffusion coefficients in case of very small (ε� 1) and very large reduced
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characteristic size (ε� 1) are summarized in Table 1.1. If the scaling is similar to the HPW
theory the effective inclusion radius a of a respective cylindrical disk is provided.
Interestingly, all asymptotic expressions of RKSG, LLM and Fischer scale similar to the

asymptotic behavior expected for a cylindrical membrane inclusion according to HPW [53],
with the sole difference in scaling found for the translational diffusion coefficients parallel to
a very long stiff straight rod in the LLM and Fischer theory.
Judging from the asymptotic expressions, the rotational diffusion coefficients of a flexible

Gaussian chain in a viscous membrane according to RKSG can be described by the HPW
model for a cylindrical membrane inclusion with a radius a that is only 10 % smaller than
the radius of gyration of the polymer chain. The rotational diffusion of a stiff straight rod
according to LLM and Fischer, on the other hand, can as well be described by the HPW
model for a cylindrical membrane inclusion with a radius a which in this case is about 20 %
larger than the radius of gyration of the rod-like filament.
For the translational diffusion similar arguments can be made. The translational diffusion

coefficients of a flexible Gaussian chain according to RKSG can be described by the HPW
model for a cylindrical membrane inclusion with a radius a that is about 30–40 % smaller than
the radius of gyration of the polymer chain. And the translational diffusion coefficients for
diffusion perpendicular to a stiff straight rod according to LLM and Fischer, can be described
by the HPW model for a cylindrical membrane inclusion with a radius a which is about 40 %
larger than the radius of gyration of the rod-like filament.

1.3.3. DNA

Deoxyribonucleic acid (DNA) is responsible for the storage of the biological information, and
the double helix structure of a double-stranded DNA (dsDNA) molecule is probably the most
recognizable structure of all biomolecules. A single strand of the DNA molecule is built from
sequences of the four different bases, or nucleotides, adenine (A), thymine (T), guanine (G)
and cytosine (C) linked via a sugar-phosphate backbone. The second strand of a dsDNA
inversely matches the other in a way that the base pairs A-T and G-C are formed, which
link the two strands by two and three hydrogen bonds per base pair, respectively. Under
physiological conditions, the dsDNA molecule assumes the so called B-form (native form), a
double helix structure in which adjacent base pairs are separated by 3.4 Å (see Figure 1.6).
A rotation of 36 ◦ between consecutive base pairs leads to a repetition of the helical structure
after 10.5 bp. The diameter of a dsDNA molecule is about 20 Å [67].
Since they are storing the genetic code, organisms rely on an accurate reproduction of DNA

molecules. As a consequence, the DNA of an organism has a very specific length. In bacteria
cells, circular plasmid DNA exists in addition to the DNA packed in the chromosome. These
DNA molecules of usually several kbp length can be easily produced and purified for in vitro
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Figure 1.6: Double helical structure of DNA (B-form). Images were created using Jmol and the
structure data of DNA [68] available at [69]

investigations. Shorter DNA fragments of defined length can be obtained using restriction
enzymes that cut the DNA at a specific target motif. Therefore, DNA is an experimentally
highly versatile molecule to probe its very own physical properties and its interaction with
other components, such as a lipid membrane, at different length scales.
The phosphate groups along the DNA backbone have a low pKa value of about 1. This

means that at pH 7 all phosphate groups are deprotonated and therefore, negatively charged
[67]. The resulting charge of a dsDNA molecule is 2 e− per bp or 5.9 e− per nm.
Since DNA is a strong polyelectrolyte, its persistence length is dependent on the ionic

strength of the surrounding medium, as the presence of counterions screens electrostatic re-
pulsion forces. The overall persistence length lp is a sum of the intrinsic persistence length
lp,0 and the electrostatic persistence length lp,e [70, 71],

lp = lp,0 + lp,e. (1.40)

If the ionic strength is decreased, the electrostatic interactions stiffen the DNA molecule,
and the electrostatic persistence length lp,e growths. At physiological buffer conditions the
DNA persistence length of lp ≈ 50 nm was measured by multiple techniques [72, 73]. Single
molecule imaging of very long T4-DNA (165.6 kbp) revealed that the persistence length can
increase up to 1.7 µm at a salt concentration of 10−6 M [74].

1.3.4. fd-virus

The fd-virus is a filamentous bacteriophage that infects Escherichia coli (E. coli) bacteria.
It is one of the simples organisms possible, as it consists only of a filamentous protein shell
enclosing a circular single stranded DNA of 6408 nucleotides [75] that encodes five different
types of shell proteins. The major part of the coating is build from about 2800 units of one
small protein and only at the ends, five of each of the other proteins form the caps [76].
As the length of the DNA determines the length of the individual fd-virus [77], the virus
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length distribution is highly monodisperse [78]. A wild type fd-virus has a length L0 = 880
nm and a diameter of only 6.6 nm [75].
The outer surface of the protein shell is strongly negatively charged and exhibits a line

charge density along the filament of about 10 e− per nm at pH 7.4 [79].
When grown in some E. coli host strains the fd-virus tends to form purely linear multimeric

structures, resulting in rod like filaments of multiple length of a single virus. This is especially
the case for E. coli strains that possess the DNA repair protein recA+ [77]. If multimers are
formed, the length distribution of viruses is very polydisperse. However, the individual fd-
virus length is not random, as multimers, called [fd]m, have a length m-times that of the
monomer, where m is an integer number. This means that the degree of multimerization of
an individual virus filament can be easily determined by fluorescence imaging microscopy and
virus multimers can be sorted and analyzed with knowledge of their exact size. Multimers
with m as large as 10 are not uncommon.
Due to the protein shell of the virus filament, the persistence length is much larger than

that of a dsDNA molecule. Light scattering experiments revealed the most commonly used
value of lp = 2.2 µm [76]. More recently, lp = 2.8 ± 0.7 µm was found using a filament
shape fluctuation analysis, that made use of long multimeric viruses observed by fluorescence
microscopy [80]. As the persistence length is larger than the length of monomers or dimers of
the fd-virus, these particles are very stiff and almost rod-like, whereas longer multimers are
more flexible and show thermally induced shape fluctuations.
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2

Materials and Methods

2.1. Materials

This section gives an overview of all materials used in the experiments conducted for this
thesis.

Lipids

All lipids were purchased in chloroform solution from Avanti Polar Lipids (USA).
Structures of zwitterionic phospholipids DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)
and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), as well as cationic lipids
DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), and DMTAP (1,2-dimyristoyl-3-
trimethylammonium-propane) are shown in Figure 2.1. In addition for some experiments
the anionic lipid DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine) and the cationic lipid
EDOPC (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine) were used.
The membranes formed by the unsaturated acyl chain lipids DOPC and DOTAP are in the

fluid state for all molar mixtures of the two at room temperature (24 ◦C). Membranes from
mixtures of lipids with saturated acyl chains DMPC and DMTAP can be in the gel state at
this temperature depending on the molar fraction of DMTAP. While the fluid–gel transition
temperature Tm of pure DMPC is about 24.5 ◦C it increases to Tm = 26.8 ◦C when 9 mol.%
DMTAP are added and up to a maximum Tm = 37.1 ◦C for 43 mol.% of DMTAP [81].

DNA

Linearized double-stranded λ-phage plasmid DNA of 48.502 kbp and double stranded DNA
fragments of 20 kbp, 10 kbp and 5 kbp were purchased from Fermentas (Germany).

fd-virus

A sample of Alexa-488 labeled wild type fd-virus was supplied by Dr. M. Paul Lettinga
(Forschungszentrum Jülich, Germany). Viruses were grown in a JM101 host E.Coli strain
and stored in 20 mM phosphate buffer at pH 7.5.

21
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Figure 2.1: Structure formulas of zwitterionic phospholipids DOPC (a), DMPC (b) and of cationic
lipids DOTAP (c) and DMTAP (d).

Water and buffer

Experiments were carried out in deionized, ELGA purified water, dd-H2O. Before use, water
was degassed to remove carbon dioxide and oxygen in order to gain a pH value of about 7
and decrease photo-oxidation of the fluorescent dyes. Following the degassing under vacuum
in a desiccator, the volume above the water within the vessel was filled with nitrogen. The
water was transferred into the sample chamber immediately thereafter.
For atomic force microscopy experiments 1x PBS (137 mM NaCl, 2.7 mM KCl, 10 mM

Na2HPO4 and 2 mM KH2PO4) was used.

Fluorescent beads

Yellow-green fluorescent, carboxylate-modified polystyrene beads (FluoSpheres) were ordered
from Invitrogen (Germany). These negatively charged beads with diameters of 20 nm, 40 nm
and 100 nm were ultra-centrifuged at 100,000 g for 30 minutes, the supernatant was removed,
and the beads were resuspended in dd-H2O and diluted up to 106 times before use.
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Figure 2.2: Structure formulas and spectra of absorption (grey) and fluorescence emission (black) of
the fluorescent labels DiD (a, b), YOYO-1 (c, d), and Alexa-488 succinimidyl ester (e, f) as available
by the producer.

Fluorescent dyes and labels

Lipid membranes were labeled with the red fluorescent membrane label DiD (1,1’-dioctadecyl-
3,3,3’,3’-tetramethylindodicarbocyanine; Sigma, Germany; see Figure 2.2(a,b)). The interca-
lating green fluorescent YOYO-1 (Invitrogen, Germany; see Figure 2.2(c,d)) was used to label
DNA. Alexa-488 succinimidyl ester (Invitrogen, Germany; see Figure 2.2(e,f)) was used to
fluorescently label fd-virus particles.
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ITO-coated coverslips

Glass coverslips, #1.5, from Mentzel Gläser (Germany) with a diameter of 25 mm were
coated with a 100 nm thick indium-tin oxide (ITO) layer (In2O3 : SnO2, 90 : 10) by reactive
magnetron sputtering at GeSim (Grosserkmannsdorf, Germany).

2.2. Formation of lipid model membranes

The interaction of negatively charged DNA macromolecules, fd-virus particles, and
polystyrene beads with lipid membranes was studied using synthetic cationic lipid model
membranes prepared according to standard protocols. The formation of mica supported lipid
bilayers (SLBs) and electroformed giant unilamellar vesicles (GUVs) are described in this
section.

2.2.1. Supported lipid bilayers

For all SLB experiments the same chamber design as shown in Figure 2.3 is used. A thin
sheet of freshly cleaved mica is glued to a plasma-cleaned glass coverslip by a thin film of
518 F immersion oil (Zeiss, Germany). A cylindrical plastic ring is attached with NOA 88
UV-glue (Norland, NJ, USA) on top of the mica sheet creating the sample chamber. Since
mica easily cleaves along its [001] planes, the substrate surface is very smooth and well suited
to support the lipid membrane. The membrane is very close to the substrate but lubricated
in a thin film of water between the lower leaflet of the lipid bilayer and the support, allowing
for motion of the lipids in the membrane.
A flat lipid membrane formed on a flat substrate can be obtained in different ways which

will be described in what follows.

Supported lipid bilayers from liposomes

SLBs can be deposited on the substrate by bursting and fusing small unilamellar vesicles
(SUVs) [82]. SUVs are produced by first drying the desired lipid mixture dissolved in chloro-
form under a stream of nitrogen in a 1.5 ml glass vial for 10 min and desiccating in vacuum
for 1 h. The resulting lipid film on the bottom of the glass vial is rehydrated in 10 mM Hepes
buffer (pH 7.0) for 1 h at a temperature above the highest gel-fluid transition temperature
Tm of the involved lipids. Afterwards, the sample is vortexed for three minutes to produce a
suspension of multilamellar vesicles (lipid concentration: 10 mg/ml) which can be stored at
-20 ◦C for several weeks. The multilamellar vesicle solution is diluted to a final lipid concen-
tration of 0.7 mg/ml and placed in a bath sonicator at T > Tm, where shear forces destroy
the multilamellar vesicles and create SUVs.
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Figure 2.3: Formation of a mica supported lipid bilayer from SUVs. To create the sample chamber
with the supporting mica substrate, a thin freshly cleaved sheet of mica is attached to the coverslip
using a thin film of immersion oil. A plastic cylinder is glued on top of the mica with a UV-glue,
sealing the chamber that is afterwards filled with the SUV solution containing Ca2+ ions to facilitate
SUV fusion, bursting, and SLB formation.

The SUV solution is filled into the sample chamber and incubated for 10 min (T > Tm) with
3 mM CaCl2 added. SUVs attach to the mica support, burst, and fuse to form a continuous
single SLB with the help of the Ca2+ ions [83], as depicted in Figure 2.3. To remove excess
SUVs, the sample chamber is repeatedly washed (no less than 10 times) with buffer (T > Tm).
During the final step the washing buffer can be replaced by deionized water. It is important
to make sure that the SLB stays covered with the aqueous medium at all times and is never
allowed to dry.

Supported lipid bilayers by spin coating

Alternatively, another method to create cationic SLBs was used, leading to a very homoge-
neous membrane without artifacts, such as remaining holes or SUVs attached to the surface,
as observed by fluorescence microscopy. To this end, the protocol [84] describing the rehy-
dration of a lipid film deposited by spin coating and initially intended to form multiple SLBs
was slightly altered to obtain a single supported membrane.
Lipid mixtures in chloroform are dried under a stream of nitrogen and dissolved in hex-

ane/methanol (97:3 v/v) with a lipid concentration of about 7 mg/ml. A droplet of 30 µl of
this solution is placed on the mica surface and spun at 3000 rpm for 40 s on a spincoater.
After overnight desiccation under vacuum the lipid film is rehydrated in deionized water at
T > Tm for 1 h and subsequently gently washed several times. Using deionized water or
10 mM Hepes buffer without additional salt prevents formation of bilayer stacks but instead
results in a single homogeneous lipid bilayer on the mica support.
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Figure 2.4: Electroformation of GUVs and SGUVs using ITO-coated coverslip electrodes. The lipid
mixture in chloroform is spread in a snake like pattern on the lower of the two ITO-coated coverslips
and dried under vacuum. The left-hand side shows the assembly of the electroformation chamber
simultaneously serving as observation chamber. It is built from two ITO-coated coverslips with their
ITO-coated surfaces facing each other, separated by a silicon rubber spacer of 3 mm height that has
inlet and outlet openings to fill the chamber and exchange the medium after vesicle formation. A
copper tape strip is attached with conductive glue to each ITO coverslip providing contacts for the
function generator. A sinusoidal ac electric field of 10 Hz and 1.2 Vrms is applied, facilitating GUV
and SGUV formation from the hydrated lipid film in low salt aqueous medium (right-hand side).

2.2.2. Electroformation of giant and supergiant unilamellar vesicles

Giant and supergiant unilamellar vesicles (GUVs and SGUVs) were grown using the elec-
troformation technique developed by Angelova and co-workers. A lipid film is spread and
dried on electrodes made of platinum wire [85, 86] or ITO coating on glass coverslips [87].
Rehydrating the lipids in a low salt aqueous medium and applying an electric field facilitates
swelling of the lipid film and formation of giant vesicles with a single lipid bilayer membrane.
The quality of the resulting vesicles strongly depends on the properties of the spread lipid film
and the lipids used [11, 85, 88]. If the deposited lipid film contains too many stacked bilayers
(& 50), GUVs with 1 µm to 10 µm diameter are formed. Fewer layers in the lipid film (5 to
30) lead to creation of larger SGUVs (100 µm diameter and more) sitting in a dome shape on
the electrode [85, 88].
Electroformation based on ITO coated coverslip electrodes first proposed in [87] was chosen

for all (S)GUV experiments, the advantage of the ITO coverslips being the large and planar
growth area and their transparency to visible light, which allows for further experiments in
the same chamber without removing the (S)GUVs from the electrodes.
For the purpose of mimicking a freestanding bilayer, SGUVs with diameters >100 µm are

desirable. At this size the membrane at the upper pole region of the vesicle has a very
low curvature at a lateral extension of 10 to 20 µm, thus enabling tracking and conformation
analysis for single macromolecule and particles. Additionally, SGUVs should be sparse enough
to allow interaction of the added particles of interest with a particular SGUV’s membrane
but without interference of other close by vesicles. The following preparation procedure yields
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sparse vesicle densities with normally 5 to 10 SGUVs per mm2 electrode area.
First, a lipid solution in chloroform with a total lipid concentration of 10 mg/ml is prepared.

Then, 0.7 µl of this lipid solution is spread in a snake-like pattern without overlap on a 1.5×1.5
cm2 area, using a 5 µl Hamilton syringe. At this concentration a lipid film of approximately
10 bilayer thickness is formed, assuming an area per lipid of 0.72 nm2 [15]. After drying the
deposited lipid film on the ITO glass for 30 min in vacuum, the electroformation chamber is
assembled as depicted in Figure 2.4. The ITO-coated surfaces of the coverslips face each other
and are separated by a 3 mm thick silicon rubber ring that has inlet and outlet openings but
otherwise seals the chamber. Copper tape contacts (SPI, USA) are conductively attached to
the ITO-coated surfaces allowing for a connection to a voltage source. The assembled vesicle
formation chamber is slowly filled with 300 µl of deionized water, and afterwards a sinusoidal
ac electric field of 10 Hz and 1.2 Vrms is applied for 120 min. Electroformation is carried out
at a temperature above the highest gel–fluid transition temperature Tm of the involved lipids.
Using the inlet and outlet openings of the rubber spacer, the medium surrounding the

SGUVs can be exchanged after vesicle electroformation, and the particles of interest – the
ones whose interaction with the membrane is to be studied – can be flushed in at a controlled
rate using a syringe pump. Low flow rates of 5 to 10 µl/min are advisable in order to protect
the relatively fragile SGUVs bound to the coverslip surface from strong shear forces created
by the flow.

2.3. Fluorescence microscopy

2.3.1. Fluorescent labeling

To visualize the interaction of the lipid membrane and polyelectrolytes or colloids adsorbed to
its surface by means of fluorescence microscopy, the individual components are labeled with
the fluorescent dyes shown in Figure 2.2. The dyes were chosen such that the red fluorescence
of the membrane is well distinguishable from the green fluorescence of the polyelectrolytes
or colloids. They can be separately detected with the use of appropriate emission filters
allowing for only minimal bleed-through of the fluorescence signal to the other channel when
simultaneously imaged.

Lipid membrane

A small fraction of 0.1 mol% of the red fluorescent lipid analogue dye DiD was added to
the chloroform dissolved lipid mixtures before formation of the lipid model membranes. This
fluorescent dye was shown not to alter the mechanical membrane properties if less than 2
mol% were added [89]. Note that DiD has a single positive charge located at the head group
as seen in Figure 2.2(a).
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DNA

DNA molecules were labeled with the green fluorescent intercalating dye YOYO-1. The
fluorescence quantum yield of this marker is about 1000-fold higher when it intercalates into
DNA than in free aqueous solution [90], and therefore the unbound probe creates only little
background fluorescence. A labeling density of 0.2 dye/bp was chosen. At this labeling ratio
close to the saturation value of about 0.25 dye/bp [91, 92], a homogeneous distribution of the
dye molecules over all DNA molecules in the sample is ensured. At lower dye/bp ratios, the
staining might induce long-lived inhomogeneous labeling distributions of the DNA molecules
caused by the high affinity of the dye to the DNA [91]. While the DNA persistence length is
not affected by the labeling [92] at a ratio of 0.2 dye/bp, it was shown that due to binding
of the YOYO-1 the DNA contour length grows by about 30 % [92]. This means the known
nominal length of DNA fragments can be converted into a contour length using a distance of
0.442 nm/bp.
In order to prevent inter-chain linking between different DNA molecules by the bisinterca-

lating YOYO-1, the dye is added only to a dilute DNA solution of about 3 ng/µl. In detail, 9
µl of 10 µM YOYO-1 in dd-H2O are added to 91 µl of DNA (base pair concentration: 5 µM)
in 10 mM HEPES buffer, pH 7.0. The sample incubated for no less than one hour at room
temperature after gentle mixing by repeated pipetting of the staining solution.

fd-virus

The viruses were supplied already labeled with the green fluorescent Alexa-488 succinimidyl
ester (Figure 2.2(e,f)). The staining had been performed according to a procedure described
in [93] resulting in homogeneously labeled viruses with about 300 Alexa-488 dye molecules
per unit virus length.

Photobleaching

Fluorescent dyes in the exited state are vulnerable to reactions with molecular oxygen.
These reactions can destroy the fluorophore and permanently render the molecule to be
non-fluorescent – the phenomenon known as photobleaching. Moreover, not only the dye
molecule might be destroyed. It is known that the DNA intercalating dye YOYO-1 can cause
photo-induced DNA double strand breaking (photocleavage) due to the generation of hydroxyl
radicals [94].
In order to prevent photobleaching and photocleavage, degassed water with a reduced con-

centration of dissolved oxygen was used in all experiments. Furthermore, the exciting laser
power density was kept low, usually at values of only a few hundred mW/cm2, and never ex-
ceeding 5 W/cm2. The possibility to employ chemical agents that reduce photobleaching and
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-cleavage was not explored, to minimize the number of unknown interactions of the ingredients
in the sample.

2.3.2. Microscopy setup

The epifluorescence setup is built around a commercial Zeiss Axiovert 200 inverted microscope
body and schematically sketched in Figure 2.5. The optical path for the fluorescence excitation
uses the 488 nm and 647 nm lines of an Innova 70C Spectrum Ar/Kr ion gas laser (Coherent,
Germany) operated in the multi-line mode. The laser lines are coupled into a single-mode
optical fiber, after which a telescope is installed to expand the beam diameter. Using two
mirrors, one of which is placed on a horizontally adjustable micrometer table, the beam is
coupled into the back port of the microscope via a lens which focusses the laser beam reflected
off a dichroic mirror onto the back-focal spot of the objective. As a result, a parallel beam
leaves the objective propagating along the optical axis and illuminating the sample in the wide-
field mode. In this configuration fluorescent structures in the sample located at distances of
up to 0.6 mm above the coverslip can be explored. An LD C-Apochromat (40x, 1.1 numerical
aperture (NA), water immersion) long-distance objective (Zeiss) was used for experiments
with GUVs.
Alternatively, the micrometer table can be used to shift the focussed laser beam laterally

away from the focal spot of the objective within the back-focal plane, thereby creating an angle
at which the parallel beam exits the objective. If the lateral distance to the focal spot and thus
the exiting angle is large enough, total internal reflection of the laser beam at the interface of
the coverslip and the sample medium can be achieved. In this case only fluorophores within a
distance of about 100 nm above the coverslip are efficiently excited by the evanescent field of
the reflected laser beam. Total internal fluorescence microscopy (TIRF) was therefore applied
to image DNA molecules on a supported lipid bilayer. This provided high signal to noise ratios
of the resulting image due to the reduction of background fluorescence. In TIRF experiments
an α Plan Apochromat (100x, 1.46 NA, oil immersion) objective (Zeiss) was used.
In the emission pathway, fluorescence is collected by the same objective, and after passing

through the dichroic mirror, leaves the microscope at a side port. After that, it enters a W-
View beamsplitter (Hamamatsu, Germany), where the green and red channel are divided and
detected by an iXon 3 DU 897 electron multiplying charge coupled device (EMCCD) camera
(Andor, Ireland). The separation of the two channels in the beamsplitter is realized by a 560
nm short-pass dichroic mirror reflecting the red and transmitting the green fluorescence. After
passing through the HQ 525/50 and HQ 700/75 emission bandpass filters in the respective
green and red pathways, both signals are rejoined laterally next to each other on the chip
of the camera, using a set of mirrors and a 560 nm long-pass dichroic mirror. The pixel
resolution of the resulting image is 389 nm/pixel using the 40x objective and 158 nm/pixel for
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Figure 2.5: Schematic sketch of the epifluorescence microscopy setup. An Ar/Kr ion gas laser provides
the 488 nm and 647 nm laser lines selected by an AOTF and coupled into a single mode optical fiber.
After the fiber lenses L1 and L2 expand the beam diameter. Finally the laser is coupled into the
microscope using a mirror M and lens L3 mounted on a micrometer table. Lens L3 focuses the beam
to the back focal plane of the objective after being reflected off the excitation dichroic mirror D1. By
lateral displacement of the micrometer table the focussed beam can be moved within the back focal
plane of the objective, creating angles of the exiting laser large enough to allow TIRF microscopy
due to total internal reflection of the beam at the coverslip–sample medium interface. The collected
fluorescence emission passes D1 and is spectrally separated by the emission dichroic mirror D2. After
passing through bandpass emission filters E1 or E2 the dichroic mirror D3 facilitates the spacial
separation of the two spectral channels on the chip of the EMCCD camera that is used to acquire the
fluorescence images.

the 100x objective. To obtain a higher pixel resolution for experiments with fd-virus on GUVs,
an additional lens was placed in the emission pathway, leading to 75 nm/pixel when the 40x
objective was deployed. The camera controls an acousto-optic tunable filter (AOTF) in the
excitation laser pathway, blocking the fluorescence excitation when no image is acquired and
thereby reducing unnecessary photobleaching of the fluorophores. Furthermore, the AOTF is
used to select the laser lines illuminating the sample.

2.3.3. The point spread function and the lateral optical resolution limit

Point spread function of a fluorescent dipole image by a fluorescence microscope

The point spread function (PSF) describes the diffraction intensity pattern recorded at an
area detector – such as a CCD camera chip – in the image space that originates from a single
point-like source in the object space, imaged by an optical system. It is rotationally symmetric
in the image plane and called the Airy pattern if the optical system has a circular aperture. In
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Figure 2.6: PSF of a microscope for a fluorescent dipole. (a) Schematic of a fluorescent dipole p
with orientation φp, θp in the object space imaged by a lens, creating an Airy pattern on the detector
in the image space. (b) Normalized PSF of a fluorescent dipole averaged over all dipole orientations
with homogeneous circular polarized wide field excitation, imaged by an objective with NA = 1.1 and
water immersion refractive index n = 1.33. The Intensity pattern along the image space coordinate r
is rotational symmetric in the image plane for every axial distance z of the dipole from the objective
focal plane in the object space. The intensity values are color coded using a logarithmic scaling.

fluorescence microscopy the point source is constituted by an emission dipole of a fluorescent
dye molecule. Figure 2.6(a) sketches a fluorescent dipole p imaged by an ideal lens. The
intensity distribution of the emitted fluorescence recorded at the image plane along an angle
φ can be calculated as a function of the dipole orientation φp, θp in object space [95]:

I =[|I0|2 + |I2|2 + 2<{I0I
∗
2} cos (2(φp − φ))] sin2 θp + 4|I1|2 cos2 θp, (2.1)

where I0, I1 and I2 are the integrals
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∫ α

0
cos1/2 θ sin θ(1 + cos θ)J0

(
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)
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i2u

sin2 θ
2

sin2 α

)
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)
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I2 =
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v sin θ
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sin2 θ
2
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)
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Jl are Bessel functions of the first kind of order l. Here the normalized optical coordinates u
and v are used:

u = 2πn sin2 α

λ
z v = 2πn sinα

λ
r (2.3)

with the semi-aperture α, the refractive index of the immersion fluid n, the wavelength of light
in vacuum λ, the axial distance z of the dipole position from the focal plane in object space,
and the lateral distance r =

√
x2 + y2 from the origin in the image plane. The numerical
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aperture NA of the objective is calculated as NA = n sinα.
Assuming fast free rotation of the dipole and a much longer image acquisition times com-

pared to the fluorescence lifetime, averaging over all dipole orientations is justified and allows
to calculate the detected intensity distribution in the image plane [95]:

Iav =
∫ π

0

∫ 2π

0
I sin θpdφpdθp = 8π

3
(
|I0|2 + 2|I1|2 + |I2|2

)
. (2.4)

The total PSF of the system is determined by detection PSF and excitation PSF:

PSFsys = PSFexc · PSFdet. (2.5)

In case of ideal wide-field microscopy and isotropic excitation PSFexc is a constant, and
therefore PSFdet, as defined in Equation (2.4), determines the shape of PSFsys.
The integrals of Equation (2.2) can be numerically solved taking advantage of the Hankel

transform:

f2(ν) = 2π
∫ ∞

0
f1(ρ)Jl(2πνρ)ρdρ (2.6)

f1(ρ) = 2π
∫ ∞

0
f2(ν)Jl(2πρν)νdν, (2.7)

where the substitution of ρ = 1
2π

sin θ
sinα is used. An algorithm presented in [96] that allows

for fast and stable numerical calculation of the Hankel transform was used to calculate the
PSF of a fluorescent dipole with wavelength λ = 520 nm imaged by an ideal water immersion
objective with NA = 1.1 and n = 1.33. The resulting normalized PSF is shown in Figure
2.6(b) with the logarithmic scaling of the intensities.

Lateral optical resolution limit

Due to the statistical nature of the fluorescence emission the image of several emitting dipoles
is an incoherent linear superposition which can be described by the convolution of the PSF and
the spatial distribution of the dipoles in the object space [97]. While the position of a single
fluorescent particle can be determined very accurately by finding the center position of the
PSF (see Section 2.4), the optical resolution limit is defined by the distance two fluorophores
can have which still allows one to distinguish between the two of them.
The lateral optical resolution limit depends on the wavelength of the detected light and

several definitions are common. According to Abbé, the limit is reached if two point sources
are positioned at a distance of the full width at half maximum (FWHM) of the PSF and it can
be approximated as 0.5λ/NA [98]. The resulting intensity profile is shown in Figure 2.7(a).
Another definition of the resolution limit, being the distance that the first minimum of the
PSF has to its central maximum, was introduced by Lord Rayleigh [99] and can be estimated
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Figure 2.7: Resulting intensity of two - in focus - point sources at the lateral optical resolution limit.
(a) Lateral optical resolution limit according to Abbé: intensity pattern (red) as a result of two point
sources (blue and green) at a distance equal to the FWHM of the PSF. (b) Lateral optical resolution
limit according to Rayleigh: resulting intensity pattern (red) if one point source (blue or green) is
positioned at a distance of the first minimum in the PSF of the other.

by 0.61λ/NA (see Figure 2.7(b)).
The intensity distributions shown in Figure 2.7 are based on the assumption of an arbitrarily

large number of photons emitted. In the reality of a single molecule experiment, the limited
photon emission and detection, as well as noise, complicate the distinction of two particles.
Sources of noise can be, for example, background fluorescence, scattered light, dark counts,
and read out noise of the detector. It must be noted that by the use of modern deconvolution
algorithms two or more particles especially with known and similar brightness can be resolved
at much shorter distances than the above defined optical resolution. However, for simpler
and faster particle tracking algorithms based on the initial identification of a local brightness
maximum, the optical resolution limit is a good estimate.

2.4. Single particle tracking

The method of tracking single particle position found its first important application in the
quantitative experimental analysis of Brownian motion carried out by Perrin in 1909 [42].
With the invention of digital CCD image sensors and their fast evolution in the late 20th
century until the present day, single particle tracking became one of the standard methods used
in the field of life sciences. Progressively more sensitive sensors allow for recording of positions
and intensities of single fluorescent dye molecules. With this ability, the understanding of
single molecule behavior and functionality progressed significantly over the past 25 years, due
to the possibility to study the heterogeneity of individual molecules rather than the average
ensemble behavior.
In the scope of this Thesis, single particle tracking is used to determine the mobility of

particles as well as conformational behavior of micrometer-sized DNA molecules and fd-viruses
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and its development with time.
On the way from the acquisition of a time series of fluorescent images to the determination

of lateral and/or rotational diffusion coefficients that characterize the particle mobility, three
main steps are necessary: (i) The high-accuracy determination of the particle positions and
orientations in every image of the stack. (ii) Identification of particles in consecutive frames,
thus retrieving their trajectories. (iii) Analysis of the statistics of the steps the particles made
from frame to frame to obtain the diffusion coefficient.
In this Section a detailed description of the procedures used to determine diffusion coeffi-

cients of beads, DNA molecules and fd-viruses adsorbed to cationic lipid membranes is given.
Analysis software scripts were written in MATLAB (MathWorks). In part they are based on
the algorithms described by Grier, Crocker and Weeks [100] and implemented in MATLAB by
Blair and Dufresne [101], to retrieve the trajectories (step (ii)), and for the particle position
determination (step (i)).

2.4.1. Tracking of particle positions

In order to find sub-resolution sized particles, e.g. fluorescent beads, in an image, the first
step is to apply a Gaussian kernel filter with a size of 3 × 3 pixels and standard deviation
σ =
√

2 pixels, to remove pixel shot noise. Furthermore, a constant background is subtracted
from the signal (see Figure 2.8(a) and (b)). Afterwards, positions of particles are defined to a
pixel accuracy by finding local intensity maxima above a certain useful threshold in the image.
Using these rough coordinates, a refined position determination in a region of interest (ROI)
slightly larger than the particle size can be employed. In general, there are two possible ways
to get the accurate particle position with a sub-pixel resolution.
In the centroid method, the particle position (x0, y0) is defined by the center of intensity

(COI) and can be obtained by simple summation over the ROI:

x0 = 1
I0

∑
x,y

xI(x, y)

y0 = 1
I0

∑
x,y

yI(x, y)
(2.8)

with
I0 =

∑
x,y

I(x, y). (2.9)

This method is fast, but the accuracy is rather strongly affected by the residual noise [102].
Alternatively, the PSF can be approximated by a two-dimensional Gaussian, with the am-

plitude A and width B, and a nonlinear least-squares fit thereof to the intensity signal of the
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Figure 2.8: Tracking of polystyrene beads and DNA molecules adsorbed to lipid membranes using
the centroid position determination method. (a) Original image of fluorescent beads with a 50 nm
radius on a membrane. (b) Image (a) after filtering with a Gaussian kernel of 3 × 3 pixels size and
σ =
√

2 pixels followed by background subtraction. (c) COI determined sub-pixel positions of the two
beads in the upper half of (a) and (b), marked by red crosses in the filtered image (upper frame) and
white crosses in the original image (lower frame). Similarly the COI method can be used to detect the
position of extended objects. (d) Original image of λ-DNA on a membrane, (e) filtered image thereof.
In (f) the COI determined position of the molecule is indicated by the red cross. Scale bars: 5 µm.

particle determines its center position.

I(x, y) = A exp
(
−(x− x0)2 + (y − y0)2

B2

)
(2.10)

While this procedure is slower than the centroid method, it is less affected by the remaining
photon noise [102]. It can yield an accuracy down to the nm level if the total number of
detected photons originating from the particle is high, the pixel size of the detector is optimized
with respect to the detected signal and the background noise, and the particle is immobilized
[103, 104].
The choice of the method depends on the signal quality and the particle mobility in relation

to the time resolution. The accuracy of position determination decreases due to the motion of
the particle during the acquisition time of the image. As long as the centroid method yields
an accuracy of the immobilized particle ξ in the range of

√
D∆t, with the diffusion coefficient

D and the time between consecutive frames ∆t, it is favored over the slower method of
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Gaussian fitting. As discussed below (see Section 2.4.5), the inaccuracy of the particle position
determination can be accounted for in the data analysis.
The centroid method also is very useful to determine the position of molecules with di-

mensions larger than the optical resolution. For example, an extended λ-DNA molecule on
a supported lipid membrane occupies a space of several micrometers, but its local conforma-
tional details fall well below the optical resolution limit, which makes a full filament contour
analysis impossible. In this case, the coarse-grained centroid method allows for accurate po-
sition tracking without the knowledge of the exact DNA contour, as shown in Figure 2.8(d-f).

2.4.2. Tracking rod-like filaments

Extended rod-like filaments which are virtually stiff at length scales of the optical resolution
limit, like fd-virus filaments with a persistence length of about 2.2 µm, can be localized even
more accurately than the much more flexible DNA molecules by a complete contour determi-
nation. Figure 2.9 illustrates the process of contour refinement and position determination
of a fd-virus filament of 6 times the monomeric length, the [fd]6 virus. The nominal contour
length of such a filament is 6× 0.88 µm = 5.28 µm.
The refined contour determination of fd-virus filaments is carried out in this work using an

implementation of a filament refinement routine originally developed for actin and microtubule
filaments [105]. The procedure consists of the following steps implemented in MATLAB:
(i) To find the rough position of a filament, the original image I(x, y) (Figure 2.9(a)) has

to be filtered to enhance the structures of interest and reduce the noise. First, the image
I(x, y) is filtered by convolving it with a Gaussian kernel of size w and a standard deviation
of the Gaussian distribution σ =

√
2 pixels to obtain I(x, y)Gauss. To reduce the background

intensity, an average filtered image I(x, y)average, where every pixel is the result of averaging
over the surrounding w×w pixels in I(x, y), is created and subtracted from I(x, y)Gauss. The
kernel size w is chosen much larger than the width across the filament. Typically the width
of the filament in the original image is about 5 pixels, and a kernel size of w = 21 pixels is
used to obtain I(x, y)rough. The resulting image I(x, y)rough = I(x, y)Gauss − I(x, y)average is
shown in Figure 2.9(b).
(ii) To obtain a mask of pixel positions belonging to the filament (Figure 2.9(c)) a proper

thresholding has to be employed on I(x, y)rough. The threshold value δ is determined by the
average intensity 〈I(x, y)〉 and the standard deviation σI(x,y) of the image I(x, y)rough using
the relation δ = 〈I(x, y)〉+mσI(x,y), with an adjustable constant m, normally of about a value
of 2. In addition, a minimum number of pixel positions in a connected area can be defined
by eliminating small regions where residual noise might exceed δ.
(iii) Skeletonizing of the pixel position mask to a single line of one pixel thickness (Figure

2.9(d)) is performed with the use of the function bwmorph provided by the MATLAB image
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Figure 2.9: Contour and position determination of a rod-like fd-virus filament. (a) Fluorescence
image of an [fd]6 virus adsorbed to a lipid membrane. (b) Gaussian-filtered and background-reduced
image of the virus filament (kernel size w = 21 pixels) for a rough filament position determination. (c)
Mask of pixels belonging to the region where the filament is located. (d) Skeletonized mask indicating
the rough position of the filament contour. (e) Gaussian-filtered background-reduced image of the
virus filament (w = 5) for contour refinement. The white lines are drawn at every fourth pixel of the
rough filament skeleton (d) perpendicular to the local filament orientation. The contour position is
determined using the centroid method on the intensity distribution of image (e) along each line. (f)
Intensity profile along the red line in (e) is shown in black and the respective intensity profile of in the
non-filtered image (a) in gray. The COI position is indicated by the vertical dashed blue line. Profiles
outside the filament range as stressed by the white arrows in (e) need to removed by thresholding.
(g) Original image overlaid with the refined equidistant contour (white line) and the center-of-mass
particle position (red cross) calculated from this contour. Scale bar: 5 µm.
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processing toolbox. The retrieved skeleton defines the first rough set of xy position coordinates
of the filament that needs further refinement.
(iv) To carry out a skeleton refinement, intensity distributions along the lines perpendicular

to the local filament orientation at each position (xi, yi) need to be found. In [105] fitting the
positions (xi, yi) to a polynomial is suggested, thereby allowing to obtain the polynomial’s
derivative and thus defining the local orientation Θ(xi, yi) at every skeleton position (xi, yi).
This approach fails if the filament is not stiff enough and two different values y can be found
at the same x value. In these cases the local filament orientation can only be described
in coordinates along the filament contour. The m positions (xi, yi) need to be continuous
from i = 1 . . .m, with (x1, y1) as the starting and (xm, ym) as the ending position of the
estimated filament contour. The two end positions have the unique characteristic that only
one other position of all (xi, yi) is found as one of the eight neighboring pixels, whereas for
all other positions along the filament two neighbors can be found. Arbitrarily, one of the
two end positions is taken as the filament starting point and consecutively every position
(xi+1, yi+1) has to be found as the one neighboring pixel remaining that was not already
added to the filament contour. After all (xi, yi) are sorted, the local filament orientation can
be calculated as Θ(xi, yi) = arctan([yi+n−yi−n]/[xi+n−xi−n]). Typically, n = 2 proved useful
which leads to averaging the local filament orientation over a length of order of the optical
resolution limit.1 As a result, for a set of m positions (xi, yi) the orientation Θ(xi, yi) is only
defined for i = (n + 1), . . . , (m − n). Values for Θ(x1...n, y1...n) are set to Θ(xn+1, yn+1) and
for Θ(x(m−n+1)...m, y(m−n+1)...m) are set to Θ(xm−n, ym−n). Furthermore, to compensate for
pixels lost at the filament ends in the skeletonization process, six pixel positions are added to
each end using the respective orientations. The new set of positions shall be referred to as
(xk, yk) and includes all (xi, yi).
(v) With all Θ(xk, yk) determined, another Gaussian-filtered and background-reduced ver-

sion I(x, y)fine of the original image is calculated to carry out the refined contour determina-
tion. This time a smaller kernel size of w = 5 pixels, close to the width of the filament in the
original image, is used. Figure 2.9(e) shows I(x, y)fine overlaid with white lines drawn per-
pendicular to the local filament orientation at every fourth pixel position along the filament.
For every (xk, yk) the ROI [xk − β : xk + β, yk − β : yk + β] is rotated by Θ(xk, yk) around
the center position (xk, yk), using bilinear interpolation methods available in standard image
rotation functions of MATLAB. Here, β has to be larger than the used Gaussian kernel size.
The intensity profile perpendicular to the filament f(y⊥, xk) at position xk is then defined
along the vertical axis y⊥ at the center of the rotated image. The black curve in Figure 2.9(f)
shows the intensity profile along the red line in Figure 2.9(e). The refined center position ȳ⊥
(indicated by the vertical dashed blue line in Figure 2.9(f)) of f(y⊥, xk) is determined by the

1At a pixel size of 75 nm/pixel the the distance between (xi+2, yi+2) and (xi−2, yi−2) is 300 nm if the filament
is oriented along the x- or y-axis
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COI method. This position needs to be projected back into the original image coordinates
for the refined contour position (x̄k, ȳk):

x̄k = xk − (ȳ⊥ − yk) sin(Θ(xk, yk))

ȳk = yk + (ȳ⊥ − yk) cos(Θ(xk, yk))
(2.11)

In step (iv) the skeleton was artificially extended by six pixel positions at each end. By this
procedure more positions than actually belonging to the filament are obtained. To determine
the correct filament size, positions exceeding the filament need to be removed. This is ac-
complished by a second threshold δf that determines whether the intensity profile f(y⊥, xk)
belongs to the filament or not. The white arrows in Figure 2.9(e)) point at intensity profile
lines at each filament end that need to be neglected. The average intensity at all initial2 skele-
ton positions in the filtered image 〈I(xi, yi))fine〉 is compared to the average 〈f(ymax⊥ , xk)〉 of
the maximum of f(ymax⊥ , xk) and its next neighbor values f(ymax⊥ −1, xk) and f(ymax⊥ +1, xk).
Setting δf to about 30 to 50 % of 〈I(xi, yi))fine〉 provides a good condition on whether (x̄k, ȳk)
belongs to the filament or not.
(vi) In a final step the refined contour positions (x̄k, ȳk) need to be arranged equidistantly to

each other along the filament contour. By linear interpolation the set of m equidistant refined
contour positions (x̃k, ỹk) is obtained and the overall filament position can be recovered:

x0 = 1
m

m∑
k=1

x̃k

y0 = 1
m

m∑
k=1

ỹk

(2.12)

In Figure 2.9(g)) the original image is overlaid with the refined contour (white line), and the
overall filament position (x0, y0) is indicated by the red cross. The recovered filament length
of the shown [fd]6 virus is L = ∑m−1

k=1
√

(x̃k+1 − x̃k)2 + (ỹk+1 − ỹk)2 = 5.27 µm, which agrees
perfectly with the expected length of 6× 0.88 µm = 5.28 µm.

2.4.3. Gyration radius and orientation of extended particles

In addition to the center-of-mass position (x0, y0), the overall orientation θ of extended par-
ticles can be determined. If a full contour recovery, as for fd-virus filaments, is possible, the
orientation of the particle in the image is easily obtained from the direction of the end-to-end
vector dee between the first and the last contour position (see Figure 2.10(a)):

θee = arctan
(eee · ey

eee · ex

)
, (2.13)

2before adding positions to the ends
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Figure 2.10: Orientation of elongated particles with known and unknown filament contour positions.
(a) Orientation θee as the angle between the end-to-end vector dee (green line) and the x-axis. This
method to determine the orientation is only possible if the contour positions (x̃k, ỹk) (yellow line
overlaid on the filtered image of an fd-virus filament) are known and dee is connecting the first and the
last position of the contour (red crosses). (b) Orientation θ as the angle between the long particle axis
dlong (green line) and the x-axis. For filaments without known contour, eigenvector elong to the largest
eigenvalue λ2

long of the gyration tensor Gij of the image intensity defines the long axis orientation of the
imaged molecule. (c) Alternatively to dee, the gyration tensor of the refined filament contour (x̃k, ỹk)
(yellow line) can be used, to determine the long axis dlong and θ.

with the unit vectors ex and ey of x- and y-axis and the unit vector eee along the end-to-end
vector.

If no full contour analysis is possible, i.e. no end positions are known, the orientation
of the long axis of the filament determines the particle orientation. This direction can be
obtained from the two-dimensional gyration tensor Gij that is describing the second moments
of intensity of the Gaussian-filtered and background-reduced image:

Gij = 1∑
m,n Imn

∑
m,n

(rmn,i − r0,i)(rmn,j − r0,j)Imn (2.14)

Here, Imn is the intensity of the pixel [m,n] of the Gaussian-filtered and background-reduced
image, rmn,i is the cartesian coordinate (x for i = 1 or y for i = 2) of pixel [m,n] and r0,i is
the center position of the particle (x0 for i = 1 or y0 for i = 2).

Gij has two eigenvalues λ2
long and λ2

short, with λ2
long ≥ λ2

short. The respective eigenvectors
elong and eshort determine the orientation of the long axis, and perpendicular to it, the short
axis of the imaged particle and define its orientation which can be expressed in terms of a
polar angle

θ = arctan
(

elong · ey
elong · ex

)
. (2.15)

Furthermore, the eigenvalues can be used to calculate the gyration radius Rg:

Rg =
√
λ2

long + λ2
short (2.16)
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In Figure 2.10(b) the long axis (green) as well as the short axis (red) obtained via the gyration
eigenvectors of a λ-DNA molecule are shown. The long axis defines the orientation of the
filament without the necessity to determine the DNA contour.
While being the single possibility to determine the orientation of macromolecules without

known contour, the gyration tensor method can also be used as an alternative to the end-to-
end orientation when the contour of a semiflexible rod-shaped particle is available. In this
case, the full map of image intensities is not necessary, and the gyration tensor can instead be
calculated from a known set of m equidistant contour points (x̃k, ỹk) shown as a yellow line
in Figure 2.10(c):

Gij = 1
m

m∑
k=1

(r̃k,i − r0,i)(r̃k,j − r0,j), (2.17)

where r̃k,i is the k-th point belonging to the contour (x̃k for i = 1 or ỹk for i = 2) and r0,i

is the center-of-mass position in the respective coordinate. The overall orientation θ of the
filament contour determined in this way is exactly equal to θee if the filament is a straight line;
generally, however, θ 6= θee. The eigenvalues of the gyration tensor of the filament contour
(Equation (2.17)) allows one to calculate the gyration radius Rg according to Equation (2.16).

2.4.4. Constructing particle trajectories

After all particle positions are determined in every frame of an image time stack, the particles
need to be identified in every consecutive frame to determine the displacements of individual
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Figure 2.11: Trajectory reconstruction by identification of particles in different frames. Tracked
positions 1, 2, and 3 (orange dots) of fluorescent beads with 50 nm radius diffusing on a lipid membrane
at time t (a), and new positions 1’ , 2’ and 3’ (magenta dots) after a time interval between frames
∆t = 1.5 s (b). Scale bar 5 µm. (c) A least cost algorithm identifies the particles of frame (a) in frame
(b) by minimizing the total squared displacement between all positions. The resulting displacements
are indicated by the black arrows, and particle trajectories are constructed from consecutive steps.
Gray arrows show the other displacement possibilities. For example, particle 1 could have moved to
positions 1’, 2’ or 3’. By introducing a maximum displacement between frames ∆rmax, as visualized by
the dashed black circle around position 1, the displacement to position 3’ (via the dashed grey arrow)
is eliminated.
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particles and merge them into single particle trajectories. A least cost algorithm is used that
relates all n particle positions in the previous image to all m particle positions in the current
image. By finding the minimal total squared displacement the most likely particle displace-
ments are chosen [100]. A maximum allowed displacement ∆rmax is introduced. This reduces
the amount of possible displacements that need to be considered and thereby significantly
enhances the speed of the particle identification process, especially when the number of par-
ticles is large. Furthermore, if a particle position in the current frame is not associated with
a position of any other particle in the previous frame, a punitive ∆r2

max is added to the total
squared displacement. It is important to set ∆rmax large enough in relation to the diffusion
constant D and the time between consecutive frames because D will be underestimated other-
wise. At ∆rmax = 2.55

√
4D∆t, the determined D will reach 99 % of its actual value [106]. For

all tracking procedures used in the present Thesis ∆rmax was set to at least 4
√

4D∆t. Figure
2.11 illustrates the above process of trajectory construction using two images of fluorescent
beads separated by ∆t = 1.5 s.

2.4.5. Determination of translational diffusion coefficients

The diffusion coefficient is obtained from the displacements ∆r(t) = ∆x(t) + ∆y(t) retrieved
from the particle trajectory. It is either possible to analyze every particle trajectory on
its own and determine the overall D as a mean of the distribution of individual particle
diffusion coefficients, or to merge all displacements of different particles together and analyze
the collective distributions. The latter approach assumes the equality of all particle properties
and a spatially homogeneous environment. In the following the diffusion analysis based on the
first approach to analyze single trajectories will be described, as it allows one to investigate
the behavior of individual particles.
A trajectory of N positions (xi, yi) and a time between frames ∆t, as shown in Figure

2.12(a), is split into its N −m displacements ∆ri(t), where n is an integer determining the
number of time steps between frames. The N −m step distances ∆ri(t) can be calculated as:

∆ri(t) =
√

∆x2
i (t) + ∆y2

i (t), (2.18)

with t = m∆t, ∆xi(m∆t) = xi+m − xi and ∆yi(m∆t) = yi+m − yi.
As shown in Section 1.2.1, all one-dimensional displacements ∆x(m∆t) and ∆y(m∆t) are

Gaussian distributed for all time steps m∆t in case of normal diffusion (see Equation (1.4)).
The displacements can be histogrammed and analyzed using a Gaussian distribution with
variance σ2 = 2Dm∆t:

ρ(∆x(m∆t),m∆t)d∆x = N −m√
4πDm∆t

exp
(
−∆x2(m∆t)

4Dm∆t

)
d∆x (2.19)
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Figure 2.12: Determination of translational diffusion coefficients from trajectories. (a) The gray dots
are the first ten points – labeled from 1 to 10 – of a simulated particle trajectory with D = 1 µm2/s
and ∆t = 0.1 s. Shown in black are the nine displacements between consecutive images ∆ri(∆t) that
constitute the trajectory. Furthermore, all eight displacements ∆ri(2∆t) are shown in green. (b) The
distribution of all step distances ∆ri(∆t) of a simulated trajectory with 1000 positions is shown by
the histogram and overlaid with the theoretical Rayleigh distribution in red, calculated from Equation
(2.22) with the known parameters of the simulated trajectory D = 1 µm2/s and ∆t = 0.1 s. (c)
MSD 〈∆r2(m∆t)〉 up to m = 10 calculated from the same trajectory as in (b). Error bars indicate
the statistical reliability of each point according to [44] (Equation (2.24)). The red line shows the
theoretically expected linear growth with time at 4Dm∆t for a two-dimensional MSD.

Here, for correct normalization, the prefactor (N − m) is needed to reflect the number of
displacements contributing to the distribution. For creating the displacement histogram an
adequate bin size d∆x has to be found. It is calculated according to the Freedman-Diaconis
rule for using a histogram as a density estimator [107] for a normal distribution:

d∆x = 2IQR (∆x(m∆t)) (N −m)−
1
3 , (2.20)

with the interquartile range IQR as a measure of the width of the distribution.
Alternatively, the distribution of the two-dimensional step distances ∆r(m∆t) can be ana-

lyzed. Using Equation (1.3), the distribution of the two dimensional case is

ρ(∆r(m∆t),m∆t)d∆xd∆y = N −m
4πDm∆t exp

(
−∆r2(m∆t)

4Dm∆t

)
d∆xd∆y, (2.21)

and after substitution of d∆xd∆y = sinφ∆rd∆rdφ and integration over φ from 0 to 2π

ρ(∆r(m∆t),m∆t)d∆r = (N −m)∆r(m∆t)
2Dm∆t exp

(
−∆r2(m∆t)

4Dm∆t

)
d∆r. (2.22)

Equation (2.22) is a Rayleigh distribution with variance σ2 = 2Dm∆t. Figure 2.12 (b) shows
the histogram of displacements at m = 1 for a simulated trajectory with N = 1000 which is
overlaid with the theoretical expectation according to Equation (2.22).
Analysis of the distributions of displacements ∆x and ∆y or of the step distances ∆r
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is the easiest way to investigate whether the diffusion of a single particle or all particles
combined is indeed normal and isotropic in a homogeneous environment, since deviations of
the former situation result in changes of the distribution shape. For example, for proteins
forming dynamic wave patterns upon interaction with a supported membrane, the analysis
of the Rayleigh distribution revealed different mobilities of the proteins depending on their
relative lateral position within the wave [108]. However, the histogramming of a finite amount
of displacements can – even if done correctly – affect the determination of D, which poses a
disadvantage of this method.
If a normal distribution of displacements can be assumed, the method most commonly

used to determine D from a trajectory is the calculation and analysis of the mean squared
displacement (MSD). Using Equation (1.5), the two-dimensional MSD calculated from the
squared displacements, can be related to D as follows:

〈∆r2(m∆t)〉 = 1
N −m

N−m∑
i=1

∆x2
i (m∆t) + ∆y2

i (m∆t) = 4Dm∆t. (2.23)

The statistical uncertainty of each point in the MSD depends on the length of the trajectory
and therefore the number of independent displacements over which the average is taken. The
relative statistical error can be calculated as follows [44]:

∆〈∆r2(m∆t)〉
〈∆r2(m∆t)〉

∼=
[

2m2 + 1
3m(N −m)

] 1
2

(2.24)

for N − m � m. Equation (2.24) accounts for the fact that while for m = 1 all N − 1
displacements are independent, correlations appear for m > 1; at m = 2, the displacements
from trajectory position (x1, y1) to (x3, y3) and from (x2, y2) to (x4, y4) are not entirely in-
dependent since both ’include’ the displacement from (x2, y2) to (x3, y3), and so on. As an
example, in Figure 2.12(c) the first ten points of a MSD calculated from a simulated trajectory
of N = 1000, including the statistical errors according to Equation (2.24) are shown. The
estimation of the statistical error was shown to be valid, as long as the localization accuracy
ξ is at least of order of

√
D∆t [109]. All MSDs were fitted with a weighted fit accounting for

the statistical error.
Ideally the length of an analyzed trajectory should be very long to obtain the diffusion

coefficient with a high accuracy. However, in the reality of an experiment, particle trajectories
have a length shorter than the number of accumulated frames for many reasons: a particle
leaving the ROI, a particle having a brightness below the intensity threshold in one of the
frames, or just getting very close to another particle, to name a few. Generally all trajectories
analyzed in this thesis consisted of at least N = 50 positions. For some experiments this
threshold for using the trajectory to extract the information on the diffusion coefficient was
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Figure 2.13: Statistical uncertainty of the diffusion coefficient determination, depending on the tra-
jectory length N . For each N , ranging from 50 to 1000, 104 trajectories were simulated and analyzed
using a weighted fit to the MSD with m = 5 points. The standard deviation σD of the resulting
distribution of diffusion coefficients was determined and the relative error σD/D is plotted and can be
fitted as σD/D = (1.2± 0.01)/

√
N (red curve).

set as high as N = 400 positions. Calculating the mean diffusion coefficient for an experiment
from a set of diffusion coefficients obtained from individual trajectories of quite a broad
length distribution, ranging from N = 50 to N = 2000, requires a sound statistical weighting
of the individual D according to the trajectory length. Various works give an estimate of
the standard deviation σD of a distribution of D [44, 109, 110]. In all of them the scaling of
σD ∼ 1/

√
N is suggested, multiplied by a constant prefactor which depends on the number of

fitted MSD points and potential offsets due to noise therein. Here, the following formula was
used to calculate the weighted mean D̄ of a distribution of diffusion coefficients Di extracted
from trajectories of individual particles:

D̄ =
∑
Di/σ

2
Di∑ 1/σ2
Di

. (2.25)

A constant prefactor in σD does not change the result and the scaling of the error with 1/
√
N

in principle is enough. Nonetheless, to validate the analysis method for the experimental
data using weighted fitting of the MSD up to m = 5, a computer simulation of trajectories
was carried out. The resulting standard deviations of the diffusion coefficient distributions
obtained from 104 trajectories for every trajectory length N were investigated. An empirical
dependence

σD ≈
1.2D√
N

(2.26)

was found based on the simulations (see Figure 2.13) and used to calculate the weighted mean
D̄ where necessary.
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Influence of dynamic and static localization errors on the MSD

As mentioned above, the determined particle positions (x(t), y(t)) are only accurate up to a
total localization error that results from two sources.

The first one is, the static localization error. In an experiment, the position of an immobile
particle can only be obtained to a certain accuracy due to a finite amount of collected photons
and various sources of noise [103, 111]. The measured position – for example in the x direction
– is

x(t) = x̂(t) + χ(t), (2.27)

with the real particle position x̂(t) and random error χ(t) with the zero mean 〈χ(t)〉 = 0 and
nonzero variance 〈χ2(t)〉 = ξ2. It is also assumed that this error is not correlated in time:
〈χ(t)χ(t′)〉 = ξ2δ(t− t′).

Second, the dynamic localization error resulting from the motion of the particle during the
time of the image acquisition tacq leading to an averaged position x̄(t, tacq).

x̄(t, tacq) = 1
tacq

∫ tacq

0
x̂(t− t′)dt′ (2.28)

The localization errors change the variance σ2 of the displacement distributions and need to
be accounted for in the analysis. In case of normal Brownian motion this amounts to adding
constant terms for the dynamic and the static error [109, 111, 112, 113]:

σ2(m∆t) = 2D
(
m∆t− tacq

3

)
+ 2ξ2 (2.29)

This translates to the two dimensional MSD as

〈∆r2(m∆t)〉 = 4D
(
m∆t− tacq

3

)
+ 4ξ2. (2.30)

The term for the dynamic error −4Dtacq/3 can easily be included in the fit of the MSD since
tacq is known and controlled by the experimenter. The static error 4ξ2 can be determined
experimentally by measuring the localization precision ξ2 of immobilized particles of the same
kind as the mobile particles. The MSD – starting from m = 1 – can be fitted with a fixed
constant offset applying this knowledge. However, ξ2 depends on the particle brightness, e.g.
the number of photons collected [103, 109, 110]. Since intensity fluctuations or brightness vari-
ations between particles cannot always be avoided, it proved useful to include a free constant
term in the fit of the MSD that accounts for the static error in the position determination.
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2.4.6. Determination of rotational diffusion coefficients

The rotational diffusion coefficient DR can be determined using a similar approach as the one
used in case of the lateral diffusion coefficient. Using an angular trajectory of N orientations
θi, N −m displacements ∆θi(m∆t) = θi+m − θi can be calculated, and for rotation about a
single fixed axis the MSD can be calculated as follows (see Equation (1.9)):

〈∆θ2(m∆t)〉 = 1
N −m

N−m∑
i=1

∆θ2
i (m∆t) = 2DRm∆t. (2.31)

As in case of translational diffusion, the angular MSD obtained from experimental data can
be analyzed with a constant offset term to account for static and dynamic localization errors
(see Section 2.4.5).
Notably, there is an important difference in the determination of the angular trajectory

compared to the translational trajectory which, if not accounted for, can yield faulty results.
While the translational trajectory is directly derived from the set of unique coordinates x and
y, the angle θ can only be determined within the range of (0, 2π) at best. If Equations (2.13)
and (2.15) are used, this range is reduced further to π, as the arctangent is discontinuous
and gives values only from −π/2 to π/2. The arctangent-based approach is suitable for
determination of the orientation of a filament which is point symmetric to its center-of-mass,
because no more accurate definition of the orientation than up to π exists. With only non-
unique coordinates recovered, the trajectory has to be constructed from angular displacements
between consecutive frames before analysis. This additionally worsens the situation, since
one cannot decide whether a center-of-mass symmetric filament rotated clockwise or counter-
clockwise. The only condition where the complete trajectory can be recovered is the situation
when no steps larger than π/2 can be made. This results in a limited ability to reconstruct
the correct trajectories for large DR at a specific experimental time resolution ∆t, because
with increasing DR the probability of steps which are larger than π/2 grows.
Figure 2.14(a-c) shows examples of simulated angular trajectories (blue curve) for a frame

time ∆t = 32 ms 3, the values of θ as recovered by the image analysis (red curve) and the recon-
structed angular trajectory (black curve) for three different values ofDsim

R . AtDsim
R = 1 rad2/s

the probability that displacements between consecutive frames ∆θ are larger than π/2 is so
low that within the N = 1000 simulated orientational positions virtually none occurs and the
original trajectory is recovered perfectly (Figure 2.14(a)). Therefore, also the angular MSDs
calculated from the original (blue open squares) and the reconstructed trajectory (black tri-
angles) are identical (see Figure 2.14(d)), and the rotational diffusion coefficients determined
using the MSD obtained for the original (simulated) trajectory Dorig

R and reconstructed tra-

332 ms is the shortest sampling time possible in full chip read out mode of the EMCCD camera used in the
present work.
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Figure 2.14: Ability to recover angular trajectories and rotational diffusion coefficients with growing
DR at constant frame time ∆t = 32 ms. (a, d, g) Dsim

R = 1 rad2/s; (b, e ,h) Dsim
R = 5 rad2/s; and (c,

f, i) Dsim
R = 10 rad2/s. (a), (b) and (c) Comparison of simulated (blue curves) and reconstructed an-

gular trajectories (black curves). Reconstructed trajectories were recovered using the angles obtained
directly from the image (red curves). Displacements larger π/2 in the simulated original trajectory
lead to deviations (black arrow) between original and reconstructed trajectory. (d), (e), and (f) MSDs
calculated from the simulated original angular trajectory (blue open squares) and the reconstructed
angular trajectories (black triangles) in (a), (b) and (c), respectively. (g), (h) and (i) Angular cor-
relation functions computed using the simulated original angles (blue open squares) and the angles
obtained from the image (red circles) in (a), (b) and (c), respectively.

jectory Drec
R are the same. At a larger Dsim

R = 5 rad2/s the probability of large displacements
rises, and the reconstructed trajectory differs from the simulated trajectory starting from the
first occurrence of ∆θ > π/2, as indicated by the arrow in Figure 2.14(b). Still, the overall
shape of the reconstructed trajectory is similar to the original one and if only the first few
points of the respective MSDs are considered, the determination of DR is barely affected
(see Figure 2.14(e)). With a further increase to Dsim

R = 10 rad2/s the shape of the recon-
structed trajectory differs significantly from the original trajectory (Figure 2.14(c)). Under
these circumstances the determination of Drec

R using the MSD is strongly affected, as shown
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in Figure 2.14(f). The clear tendency towards the underestimation of Drec
R is apparent, as the

MSD values calculated from the reconstructed trajectory (black triangles) are significantly
smaller than those calculated from the original trajectory (blue open squares).

To avoid this problem, one can alternatively evaluate the angular correlation function of
〈cos2 ∆θ(m∆t)〉. Computing this function does not require reconstruction of a trajectory, and
therefore, uses the full range of defined orientations of a filament with displacements as large
as π instead of π/2. The angular correlation for every time step m∆t can be easily calculated
using the N eigenvectors of the orientation elong,i or the normalized end-to-end vector eee,i

respectively (see Section 2.4.3):

〈cos2 ∆θ(m∆t)〉 = 1
N −m

N−m∑
i=1

(ei · ei+m)2 (2.32)

The theoretical expression for 〈cos2 θ(t)〉 can be derived starting with the rotational diffusion
equation (similar to Equation (1.2)):

∂ρ(θ, t)
∂t

= DR
∂2

∂θ2 ρ(θ, t). (2.33)

Here, ρ(θ, t) is the one-dimensional conditional probability to find the orientation of a Brown-
ian particle at an interval [θ, θ+dθ] at time t, provided that at time t = 0, θ = 0. Multiplying
Equation (2.33) with sin2 θ and taking an integral over θ from 0 to 2π

∂

∂t

∫ 2π

0
sin2 θρdθ = DR

∫ 2π

0
sin2θ

∂2ρ

∂θ2 dθ, (2.34)

yields, after two consecutive partial integrations of the right hand side, to the following equa-
tions:

∂

∂t
〈sin2 θ〉 = 2DR(1− 2〈sin2 θ〉). (2.35)

The solution of this equation is

〈sin2 θ〉 = 1
2[1− exp(−4DRt)], (2.36)

and therefore with the use of the identity 〈sin2 θ〉 = 〈1− cos2 θ〉 = 1− 〈cos2 θ〉 one obtains

〈cos2 θ(t)〉 = 1
2[1 + exp(−4DRt)]. (2.37)

To account for dynamic and static localization errors of the orientation, an amplitude A of
the exponential term can be introduced and included as a parameter in the nonlinear least



50 Materials and Methods

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

500

1000

1500

2000

fre
qu

en
cy

DR, rad2/s
4 6 8 10 12 14 16

0

500

1000

1500

2000

2500

3000

fre
qu

en
cy

DR, rad2/s

 MSD
 correlation

 MSD
 correlation

(a) (d)

0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

0.5

<θ
 2
>,

 ra
d 2

t, s
0.00 0.05 0.10 0.15
0

1

2

3

<θ
 2
>,

 ra
d 2

t, s

0.00 0.05 0.10 0.15
0.6

0.7

0.8

0.9

1.0

<c
os

 2
 θ

>

t, s
0.00 0.05 0.10 0.15

0.4

0.5

0.6

0.7

0.8

<c
os

 2
 θ

>

t, s

(b) (e)

(c) (f)

DR       = 0.98 ± 0.04 rad 2/sMSD DR       = 8.1 ± 0.1 rad 2/sMSD

DR    = 1.02 ± 0.03 rad 2/scor DR    = 10.0 ± 0.6 rad 2/scor

Figure 2.15: Histograms of rotational diffusion coefficients obtained from 104 angular trajectories to
validate the DR determination using the angular MSD (gray bars) as in Equation (2.31) fitted with a
constant offset and the angular correlation (red bars) as in Equation (2.38). A static error ξ = 0.175 rad
= 10◦ and the dynamic error due to motion blur over the image acquisition time tacq = 30 ms were
included in the trajectory simulation to reproduce the experimental situation. (a) Diffusion coefficient
distributions for Dsim

R = 1 rad2/s. The mean values of the diffusion coefficients are D̄MSD
R = 1.00±0.09

rad2/s and D̄cor
R = 1.00± 0.1 rad2/s using the MSD and the angular correlation method, respectively.

(b) Diffusion coefficient distributions for Dsim
R = 10 rad2/s. The mean values of the retrieved diffusion

coefficients are D̄MSD
R = 8.3± 0.6 rad2/s and D̄cor

R = 10.2± 2.1 rad2/s.

square fit of 〈cos2 ∆θ(m∆t)〉 to

〈cos2 ∆θ(m∆t)〉 = 1
2 [1 +A exp(−4DRm∆t)] , (2.38)

form ≥ 1. For high contributions of the static error A < 1 and if the dynamic error dominates
A > 1. Fits were carried out up to m = 5 for all experiments.
The angular correlation functions 〈cos2 ∆θ(m∆t)〉 calculated from the original angles (blue

curves in Figure 2.14(a-c)) and the angles as obtained from the image (red curves in Figure
2.14(a-c)) are displayed in Figure 2.14(g-i). As can be seen, the correlation functions (blue
open squares as calculated from the original values of θ and red circles as calculated from the
angles directly obtained from the image) are identical for all Dsim

R . This allows one to obtain
the correct value of DR even if the rotational diffusion coefficient is as high as 10 rad2/s, and
the MSD analysis fails (see Figure 2.14(c,f,i)).
In order to further demonstrate the possibilities of the analysis using the angular correlation

method, a set of 104 angular trajectories for each of the two rotational diffusion coefficients
Dsim

R = 1 rad2/s and Dsim
R = 10 rad2/s was simulated and analyzed. The distributions

of diffusion coefficients, as determined from the 104 simulated angular trajectories of 1000
orientations each, and ∆t = 32 ms are shown in Figure 2.15. They have been obtained by
the analysis of the angular MSD (gray bars) and the angular correlation function (red bars).
A static error ξ = 0.175 rad = 10◦ and a dynamic error due to motion blur over the image
acquisition time tacq = 30 ms were included in the trajectory simulation to reproduce the
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experimental situation. For an initial diffusion coefficient Dsim
R = 1 rad2/s both methods are

able to recover the correct mean, with D̄MSD
R = 1.00±0.09 rad2/s and D̄cor

R = 1.00±0.1 rad2/s
(see Figure 2.15(a)). However, as shown in Figure 2.15(b), the MSD method clearly fails to
reproduce the larger diffusion coefficient Dsim

R = 10 rad2/s, whereas the angular correlation
method recovers the correct mean value of DR: D̄MSD

R = 8.3±0.6 rad2/s and D̄cor
R = 10.2±2.1

rad2/s.
Generally, the validity of all experimental analysis performed in this work was checked by

simulations with the experimentally relevant parameters.

2.4.7. Anisotropy in the translational diffusion of extended particles

In this Thesis the translational diffusion of an fd-virus particle attached to a membrane is
investigated. The fd-virus has a strong shape anisotropy with a ratio of about 130 between
filament length and diameter for a virus monomer. As a consequence one expects that the
viscous drag for motion parallel to the elongation of the virus is significantly different compared
to the viscous drag normal to the elongation.
Generally, for extended particles which have a shape anisotropy, the viscous drag coefficient,

and therefore the general diffusion coefficient, is not a scalar but a tensor. Consequently, the
translational diffusion can be decomposed into the scalar diffusion coefficients perpendicular to
the long axis of the particle D⊥ and parallel to the long axis of the particle D‖ which reflect
the respective viscous drag experienced by the particle. The value of the two-dimensional
translational diffusion coefficient is related to the decomposed diffusion coefficients as DT =
(D⊥ + D‖)/2 [114], where D⊥ ≤ D‖ due to smaller hydrodynamic friction for the motion
parallel to the long axis of the particle.
In order to determine the anisotropy of the translational diffusion, two one-dimensional

trajectories describing the motion parallel and perpendicular to the instantaneous orientation
of the particle have to be found. For every particle position in the lab frame, we introduce
a local coordinate system ζ‖, ζ⊥ determined by the instantaneous orientation of the particle.
It is defined such that ζ‖ is oriented along the eigenvector elong of the long particle axis,
and ζ⊥ is oriented along the eigenvector eshort of the short particle axis (see Figure 2.16(a)
and Section 2.4.3). Starting from the first particle position of a trajectory in the lab frame,
the displacement to the subsequent particle position has to be decomposed into the local
coordinates ∆ζ‖ and ∆ζ⊥. ∆ζ‖ and ∆ζ⊥ are obtained using the displacement vector in the
lab frame ∆r and the eigenvectors defining the instantaneous local coordinate system:

∆ζ‖ = elong · ∆r

∆ζ⊥ = eshort · ∆r.
(2.39)

The consecutive ∆ζ‖ and ∆ζ⊥ are used to reconstruct the corresponding one-dimensional
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Figure 2.16: (a) Decomposing the lateral displacements of an extended Brownian particle in a local
coordinate system ζ‖, ζ⊥ defined by the particle’s instantaneous orientation. (b) Loss in translational
diffusion anisotropy with growing rotational diffusion, and successful correction.

trajectories of the particle motion in the particle frame which are analyzed as described above
(see Section 2.4.5) to obtain the translational diffusion coefficients for diffusion parallel D̂‖
and perpendicular D̂⊥ to an elongated particle.

Since Brownian particles undergo translational and rotational motion at the same time, the
anisotropy in the determined translational diffusion coefficients D̂‖ and D̂⊥, is dissipatively
coupled to the rotational motion. This phenomenon was first explored theoretically by Perrin
for free three-dimensional diffusion of ellipsoids [115, 116]. As a consequence, D̂‖ and D̂⊥

deviate from D⊥ and D‖, and become equal when measured at timescales ∆t � τR, with
the rotational relaxation time τR = 1/(2DR) and the time ∆t between consecutive recorded
particle positions and orientations. Recently, this transition was investigated experimentally,
for two-dimensional diffusion of an ellipsoid [114].

If the ∆t is of order of τR, the experimentally determined diffusion coefficients D̂‖ and D̂⊥
are affected by the loss of memory of the initial particle orientation, leading to a reduced
anisotropy of the diffusion coefficients [114]:

D̂‖ = DT +
D‖ −D⊥

2
1− exp(−4DR∆t)

4DR∆t

D̂⊥ = DT −
D‖ −D⊥

2
1− exp(−4DR∆t)

4DR∆t ,

(2.40)

where D‖ and D⊥ are the diffusion coefficients that would be obtained if ∆t� τR, i.e. if the
rotational diffusion did not induce any loss of memory of the initial particle orientation. The
above formulas are valid under the assumption that D⊥ ≤ D‖.

However, with knowledge about DR and ∆t, the corrected diffusion coefficients D‖ and D⊥
reflecting the anisotropy in the viscous drag experienced by the particle can be calculated
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using Equation (2.40) and DT = (D⊥ +D‖)/2 = (D̂⊥ + D̂‖)/2:

D‖ = DT +
D̂‖ − D̂⊥

2
4DR∆t

1− exp(−4DR∆t)

D⊥ = DT −
D̂‖ − D̂⊥

2
4DR∆t

1− exp(−4DR∆t) .

(2.41)

To illustrate this possibility, particle trajectories with a translational diffusion anisotropy
typical for the experiments described below, Dsim

⊥ = 0.5 µm2/s perpendicular and Dsim
‖ = 1.5

µm2/s parallel to an extended particle, were simulated. The trajectories consisted of 106

positions but only every 1000th position was taken into account for analysis leading to a
frame time ∆t = 0.032 s. 1000 trajectories were calculated for each of the different rotational
diffusion coefficients Dsim

R = 1, 5, 10, 15, 20 rad2/s, and analyzed using the trajectory decom-
position method according to the instantaneous particle orientation, as described above. The
analysis yielded the translational diffusion coefficients D̂‖ and D̂⊥ that become progressively
closer to each other and the mean diffusion coefficient Dsim

T = 1 µm2/s with an increase in
Dsim

R , as shown in Figure 2.16(b). By using equation (2.41), the correct translational diffusion
anisotropy represented by the diffusion coefficients D⊥ and D‖ are recovered.

2.4.8. Diffusion on curved surfaces of supergiant vesicles

In the present work, SGUVs are used as a model system for freestanding lipid membranes.
Figure 2.17(a) shows a reconstructed 3D fluorescence image of such a vesicle with a diameter
of about 200 µm. As depicted in Figure 2.17(b), particles which interact with the lipid
membrane can be conveniently investigated by means of fluorescence microscopy if the focal
plane coincides with the pole of the vesicle. The acquired image of particles adsorbed to the
curved membrane is a two-dimensional projection of the three-dimensional situation. This
section is dedicated to find the maximal systematic error that occurs, when the curved vesicle
membrane surface is treated as flat in the analysis of the experimental data of membrane-
adsorbed particles.
First, in addition to the x, y coordinates describing the image plane in the image space Σ,

a local coordinate system Σ′ on the vesicle surface has to be defined, as illustrated in Figure
2.17(c). The maximal deviations from the true translational and orientational displacements
and particle size, introduced by the treatment of the curved membrane surface as flat, need to
be found. This problem does not depend on the azimuthal angle Φ and further considerations
are based on the situation where Φ = 0. Here, the planes spanned by x, z and x′, z′ coincide
and y is parallel to y′ (see Figure 2.17(c)). The area of the membrane surface at which
no significant image distortions due to defocussing occur and which is thus available for
experimental observations, is defined by the depth of focus h in the z direction. From the
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Figure 2.17: SGUVs as a model of a freestanding lipid membranes for diffusion measurements of
membrane adsorbed particles. (a) Reconstructed 3D fluorescence image of a dome-like SGUV. Scale
bar: 100 µm. (b) Schematic illustration of the image acquisition process in experiments addressing
diffusion of membrane-bound particles by placing the focal plane of the objective at the top pole of
the SGUV. (c) Sketch of the SGUV in the coordinate system Σ in which the x, y plane is the image
plane and definition of the local particle coordinate system Σ′ at the vesicle surface. (d) Sketch of the
SGUV with the particle position at an azimuth angle Φ = 0. At this angle the x, z and x′, z′ planes
coincide and y′ is parallel to y. For a depth of focus h all particles on the pole of the vesicle within a
radius RROI from the center appear to be in focus. The respective ROI in the image plane is shown in
gray. (e) Rotation of a rod-like particle of length 2L in the particles local coordinate system Σ′ on the
surface of the SGUV and (f) the projection of the rotation to the image plane in Σ. Position 1 marks
the particle orientation θ = θ′ = π/2 and position 2 marks the particle orientation θ = θ′ = 0.

PSF shown in Figure 2.6(b) in Section 2.3.3 one can see that this is approximately the case
for deviations from the focal plane . 0.75 µm and thus h = 1.5 µm. The smallest radius of
SGUVs used to investigate particle–membrane interactions was R = 50 µm. In this case the
projected membrane area which can be observed in focus is defined by the radius RROI =√
R2 − (R− h)2 = 12.1 µm. The resulting ROI is indicated by the gray area in Figure

2.17(c). The largest deviations from the true particle trajectories, as well as particle sizes
that are introduced by treating the membrane as flat, are found at the rim of this area. Here,
the curvature angle of the vesicle surface in relation to the image plane is the highest. While
at Φ = 0 and x = RROI no lateral deviations occur in the y direction, with dy = dy′, all lateral
deviations are found along the x axis. The increment dx′ is related to the inclination angle
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of the sphere Θ as dx′ = RdΘ. Using Θ = arcsin(x/R) and therefore dΘ = 1/
√
R2 − x2 dx,

yields at x = RROI

dx = γdx′. (2.42)

where γ =
√

1− (RROI/R)2. For the smallest vesicles used, with R = 50 µm and RROI =
12.1 µm, the distortion factor γ = 0.97, i.e. the largest possible systematic error in lateral
displacements and filament length is 3 %, if in the analysis of experimental data the polar
vesicle surface in the ROI is simply assumed flat. The maximum systematic error this small
and usually well below the statistical error is tolerable and does not justify complete remapping
of determined position displacements and particle sizes with respect to the vesicle center,
especially given that the center determination might be subjected to errors as well.
To access the systematic error of rotational displacements due to the curved vesicle surface,

one should consider the rotation of a rod-like particle of length 2L. At Φ = 0, the particle
orientations are recovered correctly at θ = θ′ = 0 and θ = θ′ = π/2. Figure 2.17(e) shows
the rotation of the particle in its local coordinate system Σ′ and Figure 2.17(f) the projection
thereof to the image coordinate system Σ. Angular increments at the two extreme cases
θ = θ′ = π/2 (marked as position 1 in Figure 2.17(e,f)) and θ = θ′ = 0 (marked as position 2
in Figure 2.17(e,f)) shall be considered. The line elements of the rotational displacement of
the particle end are ds′ =

√
dx′2 + dy′2 and ds =

√
dx2 + dy2.

At position 1 (θ = π/2) the filament is oriented along the y axis, the filament length is not
distorted and ds′ = dx′ as well as ds = dx. Using ds′ = dx′ = Ldθ′, ds = dx = Ldθ and
dx = γdx′ the relation between the angular increments dθ and dθ′ is

dθ = γdθ′. (2.43)

At position 2 (θ = 0) the filament is oriented along the x axis, leading to a filament length
distortion of γL in Σ and ds′ = dy′ as well as ds = dy. Using ds′ = dy′ = Ldθ′, ds = dy =
γLdθ and dy = dy′ the relation between the angular increments dθ and dθ′ in this case is

dθ = γ−1dθ′. (2.44)

This results in underestimation of the angular displacement at position 1 by 3 % and
overestimation of the angular displacement at position 2 by 3 % for the SGUV with R = 50
µm and RROI = 12.1 µm. Again, the small maximum systematic error does not justify the
complete remapping of all coordinates, which allows one to conclude that for all experimental
purposes the slightly curved surface of the imaged SGUV pole ROI can be considered flat.





Chapter

3

Cationic Supergiant Unilamellar Vesicles as
an Experimental Model of Freestanding
Lipid Membranes

Vesicles with radii of 50 µm or larger (supergiant unilamellar vesicles, SGUVs) can serve
as a perfect model system mimicking a freestanding lipid bilayer. Especially useful in this
respect are vesicles containing charged (anionic or cationic) lipids, which allow for investigation
of charge-induced interactions between freestanding lipid membranes and colloidal particles
or (bio)macromolecules. In this case, the interaction forces between the membrane and a
colloidal particle or macromolecule can be reduced to electrostatics [18, 117, 118, 119, 120,
121, 122, 123], which makes it possible to study charge-related effects under the conditions
of a minimum experimental system. Typically, experiments of this type are based on optical
(fluorescence) microscopy with the help of which one can observe attachment/detachment
of particles to the membrane, as well as Brownian motion and/or conformational dynamics
of membrane-attached particles. SGUVs are particularly handy in these experiments. If
microscopy observations are carried out on the upper pole of an SGUV the combination of
the large vesicle size with a typical focal depth of a wide-field optical microscope (∼ 1.5 µm)
allows one to image more than 450 µm2 of essentially flat freestanding membrane, as discussed
in Section 2.4.8.
While GUVs and SGUVs of zwitterionic and/or anionic lipids can be easily electroformed

virtually without any restrictions on the vesicle size, production of cationic vesicles with
radii exceeding 10–20 µm using the standard electroformation procedure, as described in
Section 2.2.2, appears to be notoriously difficult for the unknown reason, a conclusion based
on previous reports [117] and personal observation in the experiments performed for this
thesis. The first part of this chapter is focused on the goal to optimize the experimental
procedure and to ensure the reproducible and efficient formation of cationic SGUVs.
One of the important parameters controlling the behavior of membrane-bound particles,

including their mobility, is the surface viscosity of the membrane. In the second part of this
chapter, the membrane surface viscosity of freestanding cationic DOPC/DOTAP membranes
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used in this thesis is experimentally determined.

3.1. Efficient electroformation of cationic SGUVs

For studies of the interaction between colloidal particles/(bio)macromolecules and lipid mem-
branes a good quality of the produced SGUV sample is essential. Apart from a significant
amount of SGUVs in the sample, only very few small freely floating vesicles or tubular mem-
brane structures are acceptable. These unwanted membrane structures would otherwise in-
teract with the injected particles that are to bind to the SGUV membrane, before they reach
there desired destination. Unfortunately, the quality of cationic SGUV samples obtained by
the standard electroformation procedure (Section 2.2.2) was found to vary strongly in both
respects, the maximum vesicle size obtained and smaller membrane structures present in the
sample. In order to develop a procedure which would provide a consistent quality of cationic
SGUVs, we carried out a systematic study on cationic SGUV electroformation using ITO-
coated coverslips, which is presented in this section.

3.1.1. Experimental details

Standard vesicle electroformation

Vesicle electroformation using ITO-coated glass coverslips was carried out according to the
procedure described in Section 2.2.2. The lipid composition for vesicle electroformation was 5
mol% of DOTAP and 95 mol% of DOPC for cationic SGUVs; 100 mol% of DOPC for zwitteri-
onic SGUVs; and 5 mol% of DSPC and 95 mol% of DOPC for anionic SGUVs. The fluorescent
lipid analogue DiD (0.1 mol%) was added to the lipid mixture to allow for fluorescence imaging
of the obtained vesicles.
Control experiments with a different cationic lipid were carried out using 5 mol% of EDOPC

and 95 mol% of DOPC.

Standard ITO coverslip cleaning procedure

ITO-coated coverslip electrodes are rather expensive, which is why a repeated use of those
electrodes is a normal experimental practice. In order to reuse ITO glass electrodes after
electroformation, the chamber is disassembled, and the copper tape contacts are removed
from the ITO glass coverslips using acetone to dissolve the conductive glue. The ITO surface
is cleaned by swabbing with 80:20 (v/v) ethanol–dd-H2O mixture, followed by swabbing with
acetone and again with ethanol; finally, it is rinsed with deionized water and dried under a
flow of nitrogen.
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Mild annealing of ITO coverslips in air

ITO-coated coverslips cleaned with the standard cleaning procedure were annealed imme-
diately before starting the preparations for the electroformation procedure. For annealing,
ITO-coated coverslips were placed with the ITO-coated surface facing air on a heating plate
with the temperature set to 150 ◦C. After 20 min, the coverslips were removed from the heater
and left to cool down to the room temperature, after which the lipid film was deposited on
one of the coverslips, and the normal electroformation procedure was carried out as described
above.

Atomic force microscopy

Atomic force microscopy (AFM) measurements were carried out using a NanoWizard I sys-
tem (JPK Instruments, Germany). In all cases ITO-coated coverslips were imaged in 1× PBS
pH 7.4 at the room temperature (21 ◦C). PBS buffer was used to improve the spatial AFM
resolution by screening long-range electrostatic forces which otherwise impede the AFM mea-
surement if the ionic strength of the surrounding aqueous medium is too low [124]. The AFM
was operated in the contact mode using non-coated silicon triangular cantilevers (CSC21,
MikroMasch, Estonia) with a typical spring constant of 2 N/m. Each ITO-coated coverslip
was scanned at three different spots of a size of 3 × 3 µm at a resolution of 512 × 512 pixels.
To additionally characterize the image topography, surface-height histograms were computed
for each of the AFM height images.

3.1.2. Aging effects of ITO coverslips with use

By relating the successful and failed attempts to produce SGUVs from cationic lipid mixtures
with all experimental parameters, we managed to correlate the electroformation success rate
with aging of ITO-coated coverslips. We found that the total number of times N the coverslips
had previously been used to prepare vesicles is a convenient and reliable measure of their aging.
The use of a new (N = 0) set of ITO-coated coverslips consistently leads to efficient for-

mation of SGUVs, as shown in Figure 3.1(a,b). The fluorescence microscopy image in Figure
3.1(a) shows GUVs which are attached to the ITO surface in a dome-like fashion, and have
no small and floating membrane structures around them. SGUVs with diameters > 200 µm
are frequently found within the sample. The maximum achievable size of vesicles substan-
tially decreases already when the coverslips were used for the third time (N = 2) (see Figure
3.1(c,d)). Most GUVs are still attached to the coverslip but no vesicles with diameters > 200
µm can be found. Finally for N > 3, the vesicle quality becomes absolutely unacceptable
(Figure 3.1(e,f)). Only a few GUVs with diameters mostly about 20 µm but no SGUVs are
found, and in addition the sample contains many very small freely floating vesicles and tubular
membrane structures.
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Figure 3.1: Fluorescence microscopy images of cationic GUVs (DOPC/DOTAP 95:5) grown on ITO-
coated coverslips and distributions of vesicle diameters demonstrating the effects of coverslip aging
expressed in the number of times N the coverslips were previously used. (a, b) for N = 0 (as received
from the producer), (c,d) for N = 2, and (e,f) for N = 4. . Membrane fluorescent labeling: 0.1 mol%
DiD. Scale bars: 50 µm.

This is an unexpected and remarkable finding, especially taking into account the extreme
reliability of the electroformation technique when it is used to produce GUVs and SGUVs
consisting of zwitterionic or anionic lipid mixtures, irrespectively of whether new or used
ITO-coated coverslips are employed.
A pair of ITO-coated coverslips was used to carry out a set of electroformation experiments

demonstrating this behavior, by contrasting the successful electroformation of SGUVs from
zwitterionic DOPC and anionic DOPC/DOPS lipid mixtures to the lack of success in SGUV
formation using the cationic lipid mixture of DOPC/DOTAP (see Figure 3.2). The already
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(a) (b) (c)

Figure 3.2: Fluorescent microscopy images of vesicles grown consecutively on the same pair of
ITO-coated coverslips. (a) Zwitterionic GUVs consisting of DOPC, N = 3. (b) Cationic vesicles
(DOPC/DOTAP 95:5), N = 4. (c) Anionic vesicles (DOPC/DOPS 95:5), N = 5. Membrane fluores-
cent labeling: 0.1 mol% DiD. Scale bars: 50 µm.

three times used (N = 3) pair of ITO-coated coverslips was employed in GUV electrofor-
mation with zwitterionic lipids (DOPC). As expected, SGUVs were effortlessly produced in
this case (Figure 3.2(a)). The same pair of ITO-coated coverslips (for which now N = 4) was
subsequently cleaned using the standard cleaning procedure and employed in electroformation
with the cationic lipid mixture (DOPC/DOTAP 95:5). In this case, no SGUVs were found,
and the few GUVs which could be observed were small and surrounded by tubular structures
(Figure 3.2(b)). After yet another cleaning using the standard procedure, the ITO-coated
coverslips were reused again (N = 5), this time for electroformation with an anionic lipid
mixture (DOPC/DOPS 95:5), and SGUVs were again effortlessly formed in large amounts
(Figure 3.2(c)).

3.1.3. Improved electroformation efficiency through mild annealing of the ITO
coating

By serendipity, we found that the properties of ITO-coated coverslips previously used for
production of lipid vesicles could be completely restored if, prior to electroformation, ITO-
coated coverslips are annealed in air for ca. 20 min at 150 ◦C. If this method is applied, cationic
SGUVs can be reliably produced (Figure 3.3), and the amount of SGUVs with diameters > 100
µm is even increased compared to the use of untreated new ITO-coated coverslips.
One should emphasize that the lipid ratios reported here are related to the original lipid

mixture which was deposited on ITO-coated coverslips. It is presently beyond our technical
capabilities to check whether the composition of electroformed vesicles is identical to that of
the original lipid mixture. What is, however, clear from our previous experiments [121], is
that the concentration of the cationic lipid in electroformed vesicles is at least correlated with
that in the original lipid mixture.
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Figure 3.3: Fluorescence microscopy image (a) of cationic GUVs (DOPC/DOTAP 95:5) grown on
ITO-coated coverslips and distribution of vesicle diameters (b) demonstrating the effect coverslip re-
covery after annealing: N = 5, but annealed in air for 20 min at 150 ◦C prior to electroformation.
Membrane fluorescent labeling: 0.1 mol% DiD. Scale bar: 50 µm.

It should be emphasized that the effect is not limited to the DOPC/DOTAP 95:5 lipid mix-
ture. The same effect is observed also for DOPC/DOTAP mixtures with the cationic DOTAP
content from 2–10 mol%. At DOTAP concentrations of 1 mol% and below, SGUVs can be
easily formed using the standard coverslip cleaning procedure. For DOTAP concentrations of
15 mol% and higher, we found that electroformation of GUVs with diameters larger than 20
µm is inhibited.
We also explored the behavior of a lipid mixture containing another cationic lipid, EDOPC,

and found that essentially the same phenomenology is observed for DOPC/EDOPC lipid
mixtures.

3.1.4. Surface properties of ITO investigated by AFM

Measurements described in this Section were performed in collaboration with Grzegorz
Chwastek

Using AFM, we found that the aging effect observed in the form of the progressively dete-
riorating quality of electroformed cationic GUVs is accompanied by morphological changes
of the surface of ITO-coated coverslips. We found that the AFM height images of new, as
received from the producer, coverslips show small (50–100 nm in diameter, ca. 2 nm deep)
pores with a typical surface density of 20–40 µm−2 (Figure 3.4(a)). Also, the pores can be
clearly seen in the surface height histogram (Figure 3.4(b)) contributing to a pronounced
shoulder in the range of −2.5 nm to −1 nm. Interestingly, after repeated use of the coverslip
for vesicle electroformation, these pores virtually completely disappear for N > 3 (Figure
3.4(c,d)). Remarkably, annealing-induced recovery of the ability of ITO-coated coverslips to
produce cationic SGUVs was reflected in the ITO surface topography and accompanied by
reappearance of pores with the same parameters as for the new ITO-coated coverslips (Figure
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Figure 3.4: Surface topography of ITO-coated coverslips determined by atomic force microscopy
(AFM height images) and the respective height histograms demonstrating the effects of ITO surface
aging expressed in terms of the number of times N the coverslip was used in electroformation and
recovery after annealing: N = 0 (as received from the producer) (a, b); N = 4 (c, d); N = 5, but
annealed in air for 20 min at 150 ◦C prior to AFM measurements (e, f). Scale bars: 1 µm.

3.4(e,f)).
One can speculate that there might be a direct connection between the quality of elec-

troformed cationic GUVs and the surface properties of the ITO layer reflected in its surface
topography. Indeed, it has been shown previously [125, 126] that the ITO surface is prone to
develop a carbon-rich contamination layer that cannot be entirely removed by organic solvents
[126]. Oxidative treatment of the ITO surface removes the contamination and substantially
increases the work function of the ITO surface [125, 126]. Annealing in air might play a role
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of a mild oxidative surface treatment, thereby restoring the properties of the ITO layer. Nev-
ertheless, the exact mechanisms of both the effect of aging of the ITO surface on the growth
of cationic lipid vesicles and its reversal by annealing in air, still remain open questions which
are outside the scope of this Thesis.

3.2. Membrane surface viscosity determination

The membrane surface viscosity is an important parameter influencing the behavior of colloids
or macromolecules bound to a lipid membrane. For this reason, experimental methods to
determine the membrane surface viscosity are often based on the analysis of the dynamic
behavior of membrane-bound particles. With the development of the Saffman-Delbrück theory
for the diffusion of small membrane inclusions in the 1970s [47, 48] (see Section 1.2.2) the
possibility arose to determine the membrane surface viscosity from diffusion coefficients of
membrane proteins with known size [127], and this approach is used to the present day [128].
A variety of other experimental methods exist, such as membrane tether formation from lipid
vesicles [50, 129], the analysis of diffusion coefficients of lipid membrane domains [54] or their
shape fluctuations [130], and the so-called falling ball viscosimetry [18][131][132].
However, in relation to the importance of the membrane surface viscosity for dynamic

processes the data available in the literature are rather sparse. To the best of the author’s
knowledge, no value for the surface viscosity for a commonly used DOPC membrane, let alone
the specific DOPC/DOTAP lipid mixture, has been published before the work on this Thesis
had started. The closest composition previously studied, is an anionic DOPC/DOPG 3:1
membrane with the reported surface viscosity of 3 × 10−10 Pa s m [128].
In order to determine the membrane surface viscosity of the DOPC/DOTAP membranes

used in this Thesis, an experimental approach based on the measurement of the translational
diffusion of small (10–50 nm radius) anionic polystyrene beads adsorbed to a freestanding
cationic lipid membrane, was developed.
In this Section this method and its application to the determination of the surface viscosity

of freestanding DOPC/DOTAP bilayers is described in detail.

3.2.1. Anionic polystyrene beads as probes of the membrane surface viscosity

Carboxylated fluorescent polystyrene beads with three different radii – 10, 20, and 50 nm –
in dd-H2O at a concentration not exceeding 10−11 M were injected into a chamber containing
electroformed DOPC/DOTAP SGUVs. 300 µl of the bead solution was injected into this
chamber using a syringe pump at an injection rate of 10 µl/min, to ensure the integrity of the
surface-attached vesicles. After injection the cationic beads attached to the lipid membrane
of the vesicles, mediated by the electrostatic forces between the oppositely charged colloids
and membrane. Particles were bound to the membrane at a typical surface density of 0.05
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Figure 3.5: (a) Fluorescence image of anionic fluorescent polystyrene beads (50 nm radius) adsorbed
to the upper pole region of an SGUV membrane (DOPC/DOTAP 99:1). Scale bar: 5 µm. (b) TEM
image of polystyrene beads with 50 nm radius. (c) TEM image of clustered polystyrene beads as
obtained by the producer. Scale bar: 100 nm. (d) Brightness of the tracked fluorescent beads in image
(a). Particle number 4 is indicated by the red arrow in (a) and shows an elevated brightness about
three fold higher than the 12 other particles. Clustered particles are removed from the data analysis
if their brightness is at least 50 % higher than the average brightness of the majority of particles.

µm−2 and exercised two-dimensional Brownian motion, which could be recorded by observing
the top pole of the surface-attached SGUVs (see Section 2.4.8). Beads on a membrane area
of approximately 300 µm2 (disc-like with ∼ 20 µm diameter) could be observed in focus. The
vesicles did not exhibit detectable shape undulations and observed membrane area did not
change its position over the course of the experiments.
A fluorescence microscopy image of 50 nm radius beads attached to a 99:1 DOPC:DOTAP

membrane is shown in Figure 3.5(a). There, all particles show a very similar brightness
as expected for beads of the same kind and size, except for one particularly bright particle
highlighted by the red arrow. The bright particle, however, is a result of a production defect
occasionally found in every bead sample. Transmission electron microscopy (TEM) of dried
bead solution reveals that most beads are single and of homogeneous size. An example of
single 50 nm radius beads is shown in Figure 3.5(b). But as depicted in Figure 3.5(c), clustered
beads such as a dimer that possesses a permanent neck-like link are present as well.
To remove the effect of the coagulated beads from the diffusion analysis, the particle bright-

ness obtained as the integrated intensity I0 over the ROI which was used to track the individual
particles (see Section 2.4.1) is evaluated. If the intensity of a particle is higher by more than
a factor of 1.5 compared to the average intensity of the majority of particles, the particle
trajectory is discarded from further analysis. Figure 3.5(d) shows the intensities obtained
from the particles of the image in Figure 3.5(a). The bright particle is clearly identified as
particle # 4 and shows an intensity about three times higher than the average intensity of
the 12 other beads.
The lateral displacements were calculated from all particle trajectories which passed the

brightness filtering and combined to construct a time dependent MSD for every single vesicle.
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The individual points of the MSD were calculated from at least 5000 displacement steps. For
every bead size and membrane composition a minimum of five vesicles were investigated and
the mean lateral diffusion coefficient D was calculated as described in Section 2.4.5.
One should stress that no clustering due to mutual attraction of membrane adsorbed beads

was observed under the described experimental conditions. However, the formation of ordered
domain-like structures due to membrane-mediated mutual attraction of membrane adsorbed
beads could be observed when significantly higher – approximately 1000 fold – bead concen-
trations were injected into the vesicle chamber [133]. This phenomenon has also been observed
in previous reports [119, 134, 135] but is still not understood in full detail. The absence of
clustering effects in the present work is important, as only the mobility of single beads is of
interest in determining the membrane surface viscosity.

3.2.2. Viscosity of water

Knowing the membrane inclusion size – the radius of the membrane-adsorbed beads – the
last system parameter needed to determine the membrane surface viscosity, is the viscosity
of the surrounding medium µ. On both sides, the freestanding lipid bilayer is surrounded by
deionized water. Its viscosity is temperature-dependent and can be calculated according to
an empirical formula derived in [136]:

log
(

µ(TC)
µ(20 ◦C)

)
= 20− TC
TC + 96[1.2364− 1.37× 10−3(20− TC) + 4.7× 10−6(20− TC)2], (3.1)

with the temperature TC in ◦C and the viscosity of water at 20 ◦C, µ(20 ◦C) = 1.002 mPa s.
At the temperature TC = 24 ◦C measured at the sample, Equation (3.1) yields µ = 0.91
mPa s, the value used in the further analysis.

3.2.3. Membrane surface viscosity of DOPC/DOTAP membranes

SGUVs formed from a lipid mixture of DOPC with different fractions of cationic DOTAP
CDOTAP, ranging from 1 mol% to 7 mol% were probed using anionic polystyrene beads with
the radius a = 10 nm. The resulting translational diffusion coefficients shown in Figure
3.6(a) are virtually independent of the DOTAP fraction in the DOPC membrane. This means
that the membrane surface viscosity is constant within the range of membrane compositions
investigated here and in the following parts of this Thesis. On the other hand, one finds a
clear dependence of the translational diffusion coefficient of beads on their radius at a fixed
DOTAP concentration, as shown in Figure 3.6(b).
The translational diffusion coefficient of a particle with the characteristic radius a bound to

a membrane with surface viscosity η and surrounded by water with viscosity µ is essentially
independent of the particle’s three-dimensional shape and presence or absence of protrusions
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Figure 3.6: Translational diffusion of anionic polystyrene beads electrostatically bound to a cationic
DOPC/DOTAP membrane. (a) Translational diffusion coefficients of 10 nm radius beads adsorbed to
DOPC membranes with different cationic DOTAP content CDOTAP, ranging from 1 mol% to 7 mol%.
The gray dashed line represents the mean value of the obtained diffusion coefficients. (b) Translational
diffusion coefficients of polystyrene beads with radii a = 10 nm, 20 nm and 50 nm adsorbed to a
freestanding DOPC/DOTAP 99:1 membrane. The red curve represents the fit to the HPW model for
the translational diffusion of membrane inclusions according to Equation (1.16), yielding a membrane
surface viscosity η = (5.9± 0.2)× 10−10 Pa s m. Experiments were carried out at the temperature of
24 ◦C.

into the bulk medium, if the membrane is viscous enough [137, 138]. The condition of a
viscous enough membrane is met if the ratio η/(aµ) > 4 [138]. This means that for membrane
bound particles of a characteristic radius not exceeding 50 nm a membrane surface viscosity η
larger than 1.8 ×10−10 Pa s m is sufficient to neglect the exact particle shape. Following this
argument, it is possible to treat the spherical beads as cylindrical membrane inclusions and
analyze their diffusion using the HPW theory [53] and the closed-form approximation thereof
[54]. Making use of Equation (1.16), the HPW theory is applied to the bead size-dependent
diffusion coefficients, yielding the membrane surface viscosity η = (5.9± 0.2)× 10−10 Pa s m.
The corresponding fit to the experimental data is plotted as a red curve in Figure 3.6(b). This
result is in fair agreement with a previous study, reporting η = 3× 10−10 Pa s m [128] for an
anionic DOPC/DOPG 3:1 membrane consisting of lipids with similar hydrocarbon chains.

3.3. Conclusion

To conclude, we developed a method which allows for reliable and efficient electroformation
of cationic SGUVs on ITO-coated coverslips. It consists in mild annealing of the ITO-coated
surface coverslips in air at 150 ◦C before the standard vesicle electroformation procedure. The
resulting cationic SGUVs with radii larger than 50 µm present a perfect experimental platform
to study the interaction of colloidal particles and (bio)macromolecules with a freestanding
bilayer using optical wide-field fluorescence microscopy. The SGUVs do not exhibit detectable
thermal shape undulations and the observable membrane stays in the focus position over the
course of tens of minutes. The membrane area on the top pole of the dome-like SGUVs, which
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can be simultaneously observed in focus, is approximately 300–700 µm2 large. This region of
interest is situated at a distance of at least 50 µm to any surface. This distance is much larger
than the Saffman–Delbrück length in this system, which allows one to consider the membrane
as effectively freestanding.
The use of the SGUV as a model freestanding lipid bilayer allowed us to determine the sur-

face viscosity of DOPC/DOTAP membranes. In particular, the analysis of the translational
diffusion coefficients of small (10, 20, 50 nm) membrane-attached anionic polystyrene beads
using the HPW PS expression has shown that the surface viscosity of DOPC/DOTAP mem-
branes with CDOTAP = 1–7 mol% is independent of the DOTAP concentration and equals
η = (5.9± 0.2)× 10−10 Pa s m.
Thus, our experiments with DNA macromolecules adsorbed to fluid freestanding cationic

membranes show a change in DNA conformation from a 2D random coil to a compact globule
depending on the fraction of cationic lipids in the bilayer and the length of the DNA. The
globule state is favored for high cationic lipid concentrations and long DNA contour lengths.
On the contrary, at low cationic lipid concentrations the majority of the membrane-adsorbed
DNA molecules is in a random coil conformation. In the latter case, the DNA–membrane
interactions are apparently too weak to facilitate a DNA coil–globule transition. At cationic
lipid concentrations close to those where all adsorbed DNA molecules collapse to globules,
partially collapsed DNA molecules are observed for long DNA molecules of 48.5 kbp and 20
kbp. In the observed events of membrane-mediated DNA coil–globule transition we found that
the DNA collapse is a fast process with a compaction rate of 124 ± 46 kbp/s. Fluorescence
microscopy experiments clearly show that the size of the membrane-bound DNA globules does
not exceed 500 nm. By relating the translational diffusion coefficients of completely collapsed
DNA globules to the radius of a membrane inclusion an estimate of the DNA globule size was
obtained and found to be 250–350 nm at DOPC membranes containing 1 mol% DOTAP and
130–200 nm for 7 mol% DOTAP, indicating a stronger compaction for higher charge densities
in the membrane.
Additional experiments with freestanding cationic membranes in the gel state and sup-

ported cationic lipid membranes with gel–fluid coexistence suggest that the DNA collapse on
a freestanding fluid cationic membrane may be initiated by a local lipid segregation in the
membrane and accompanied by local membrane deformations, which stabilize the compact
DNA globule.
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4

Behavior of DNA Macromolecules on
Cationic Lipid Membranes: Effects
of DNA–Membrane Interaction Strength
and Membrane Properties

4.1. DNA on fluid freestanding cationic membranes

Understanding the interaction of polyelectrolytes with oppositely charged lipid membranes
is an important issue of soft matter physics, which provides an insight into mechanisms of
interactions of biological macromolecules with cell membranes. Although the question has
been addressed during the past decade both experimentally and theoretically [6, 139], the
understanding is far from complete, and some important unresolved questions, including the
effects of the membrane local curvature and bending elasticity, remain to be addressed. A
perfect model polymer to study electrostatic polyelectrolyte-membrane interactions is double-
stranded DNA whose length and structure can be precisely controlled using the modern
biotechnological methods.

These advantages were used in a seminal work by Maier and Rädler [8, 9] where it was
demonstrated that DNA molecules adsorbed at a fluid cationic lipid bilayer on a flat support
assume a 2D random coil conformation and exercise translational Brownian motion. These
results have since become a textbook example of polymer coil dynamics in 2D [140].

A completely different picture is observed when double-stranded DNA interacts with small
(20–100 nm) cationic liposomes: In this case DNA molecules wrap around liposomes and
eventually form densely packed liquid crystalline DNA-lipid globules [141] with the typical
size of 100–200 nm [142, 143]. Formation of DNA-lipid globules is an example of a more
general phenomenon known as DNA condensation [144, 145]. DNA condensation by cationic
liposomes has attracted particular attention in view of its potential use in gene therapy [146]
and importance for understanding the prebiotic chemistry [143].

69
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The striking contrast between the behavior of DNA at flat supported cationic lipid bilayers
and at strongly curved small cationic liposomes naturally leads to the question of what kind
of behavior can be expected upon interaction of DNA with freestanding cationic lipid bilayers,
which, in contrast to solid-supported membranes, can locally deform in response to an external
force.
Recent experiments on interaction of DNA with cationic membranes supported on struc-

tured surfaces demonstrated the importance of the local bilayer curvature in DNA-membrane
interactions [147]. Obviously, freestanding bilayers, capable of bending locally in response
to an external perturbation, may show new unexpected ways of interaction with charged
semiflexible DNA molecules.
Surprisingly, very little is known about interaction of DNA with freestanding cationic lipid

bilayers. The only study in this direction was carried out in a series of works [117, 118]. The
experimental approach used in these works could not, however, provide any information on
conformation and dynamics of single DNA molecules.

4.1.1. Experimental details

Freestanding fluid cationic membranes were modeled by SGUVs consisting of DOPC and dif-
ferent cationic DOTAP fractions ranging from 1 to 10 mol%. The membrane was fluorescently
labeled with 0.1 mol% DiD. Vesicles were electroformed in dd-H2O according to the procedure
described in [148] and Sections 2.2.2 and 3.1. As mentioned above, the vesicles did not exhibit
noticeable thermal shape undulations.
Double-stranded DNA was fluorescently labeled with YOYO-1 (see Section 2.3.1) and di-

luted in dd-H2O to a concentration of 10−7 M. 300 µl of this solution of DNA fragments
with lengths of either 5 kbp, 10 kbp and 20 kbp, or full length linear λ-DNA (48.512 kbp)
were injected at a rate of 10 µl/min into the SGUV chamber. This injection of a dilute DNA
solution left the DNA molecules at a considerable distance to the vesicles attached at the
bottom coverslip. DNA molecules diffused freely in the solution surrounding the SGUVs and
finally could reach the SGUV surface. After the injection, DNA was left to incubate with the
cationic SGUVs for at least one hour.
Following the incubation period, a typical particle density of membrane-adsorbed DNA

molecules of 0.01 µm−2 was obtained. Fluorescent images were acquired at a rate of 10 fps
with the exposure time of 50 ms. Several movies, each consisting of a few thousand frames,
were recorded on the top pole of a single vesicle and at least ten individual vesicles were
investigated for every DNA length and membrane composition.
DNA molecules were tracked and translational diffusion coefficients were obtained by the

methods described in Section 2.4.
Control experiments on mica-supported lipid membranes were carried out using the
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DOPC/DOTAP 90:10 membrane composition. SLBs on mica were formed from SUVs, as
described in Section 2.2.1. Fluorescently labeled λ-DNA in dd-H2O (10−7 M) was added after
bilayer formation and allowed to interact with the cationic supported membrane for approx-
imately ten minutes, after which repetitive and careful washing with dd-H2O was applied to
remove unbound DNA from the solution. Afterwards, the sample was left to equilibrate for
several hours.
All experiments were carried out at the room temperature of 24 ◦C.

4.1.2. DNA condensation on freestanding fluid cationic lipid bilayers

One of the objectives of this Thesis is to compare the behavior of DNA molecules interacting
with a freestanding fluid cationic lipid membrane with the previously reported behavior of
DNA molecules on a supported fluid cationic lipid membrane [8, 9]. Therefore, as a starting
point the experimental situation of DNA molecules on a supported membrane was recreated
with an approach similar to that described in [8, 9]. In those control experiments, after
attaching to supported cationic lipid bilayers, DNA molecules assumed a 2D random coil
conformation (Figure 4.1(a)) and exercised translational Brownian motion, in agreement with
the previous reports [8, 9].
In experiments on DNA interaction with freestanding cationic membranes, some minutes

after injection of DNA to the chamber containing cationic SGUVs, a fraction of DNAmolecules
attached to the vesicle surface, whereas the rest of DNA stayed in solution. Attachment of
DNA to SGUVs never affected the conformation or behavior of the vesicles. This is in contrast
with observations [117, 118], where vesicle destabilization was induced by local application of
a highly concentrated DNA solution, which is obviously not the case in our experiments.
DNA molecules not interacting with cationic membranes and remaining in the surrounding

fluid always showed random coil conformations (Figure 4.1(b)). Their translational diffusion

(a) (b) (c)

Figure 4.1: Fluorescence microscopy images of λ-DNA molecules: (a) adsorbed on a supported fluid
cationic lipid bilayer, (b) free in water surrounding cationic GUVs, (c) adsorbed on a freestanding fluid
cationic lipid bilayer (SGUV). Membrane composition DOPC/DOTAP 90:10. Scale bars: 5 µm.
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coefficients determined from single particle tracking were a factor of 1.6–1.9 lower than those
of DNA in the presence of 100 mM NaCl [73], which is expected due to an increase in the
polyelectrolyte persistence length at low ionic strengths [74] resulting in a larger hydrodynamic
radius.
Compared to the adsorption of DNA molecules to a supported cationic bilayer, a strikingly

different behavior is observed for DNAmolecules adhering to freestanding cationic membranes.
As shown in Figure 4.1(c), the membrane-attached DNA molecules are much more compact
or collapsed.
In order to investigate this new and surprising phenomenon, a systematic study was carried

out, using DNA molecules of different lengths in the range of 5–48.5 kbp and freestanding
membrane compositions with different cationic DOTAP content in the range of 1–7 mol%.
We found that for very long λ-DNA molecules (45.8 kbp) at a very low DOTAP concentration
of 1 mol% the majority of DNA molecules exhibits a 2D random coil conformation and only
some DNA molecules appear compacted (Figure 4.2(a)). This picture changed significantly
already for membranes containing 2 mol% of DOTAP. Here, most of the λ-DNA molecules
are compacted and only a few show a partially collapsed conformation, but almost none are
found in a random coil conformation (Figure 4.2(b)). After attachment to membranes with a
DOTAP concentration between 3 mol% and 7 mol% all membrane-bound λ-DNA molecules
appear as compact globules (Figure 4.2(c)).
When investigating shorter DNA fragments of 20 kbp length, the critical DOTAP concen-

tration at which almost all membrane-bound DNA molecules are compacted shifts to a higher
value. In contrast to λ-DNA, a large amount of 20 kbp membrane-attached DNA molecules
remains in the random coil or only partially collapsed conformation and only some are fully
collapsed at 2 mol% of DOTAP (Figure 4.2(d)). Again, at higher DOTAP concentrations all
membrane-bound 20 kbp DNA molecules are compacted to globules (Figure 4.2(e)).
This trend of a higher percentage of DOTAP required to compact membrane-bound DNA

continues if the DNA length is shortened further. At 3 mol% DOTAP, still a large fraction of
10 kbp DNA molecules appear as random coils (Figure 4.2(f)), but all 10 kbp DNA molecules
are collapsed at a membrane with 7 mol% DOTAP (Figure 4.2(g)). For 5 kbp DNA, some
random coils are still found for the DOTAP content of 7 mol% in the membrane (Figure
4.2(h)), the particle in the the lower left corner of the image shows an elongated shape (coil),
the two particles in the middle of the image do not show any shape anisotropy (globule).
The phase diagram constructed on the basis of the experimental data clearly illustrates this

tendency. DNA collapse is especially favored at high concentrations of the cationic lipid and
for long DNA fragments, whereas coexistence of globules and partially collapsed or essentially
non-collapsed DNA molecules is observed at low DOTAP concentrations and/or for short
DNA fragments (Figure 4.3).
Storing the samples at room temperature for 18 h did not lead to noticeable changes in
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

Figure 4.2: Fluorescence microscopy images of DNA molecules of different lengths adsorbed free-
standing fluid cationic bliayers (SGUVs) with different cationic DOTAP content. (a)–(c) λ-DNA at
DOPC membranes with: (a) 1 mol%, (b) 2 mol% and (c) 7 mol% DOTAP. (d)–(e) 20 kbp DNA at
DOPC membranes with: (d) 2 mol% and (e) 7 mol% DOTAP. (f)–(g) 10 kbp DNA at DOPC mem-
branes with: (f) 3 mol% and (g) 7 mol% DOTAP. (h) 5 kbp DNA at a DOPC membranes with 7 mol%
DOTAP. Scale bars: 5 µm.

both the distribution of conformations and area density of membrane-bound DNA molecules,
which means that the phase diagram reflects the equilibrium situation. Also, control ex-
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Figure 4.3: Phase diagram of coil–globule transition of DNA molecules at freestanding cationic lipid
(DOPC/DOTAP) bilayers. In the right-hand panel, the fraction of condensed DNA is encoded by the
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periments with a reduced DNA labeling density of 0.02 dye/bp did not affect the observed
phenomenology.
Several observations of DNA globules attached to cationic GUVs have been reported pre-

viously [119, 149, 150]. In these studies, in contrast to our investigation, DNA condensation
in the bulk media surrounding the GUVs was possible, and therefore these results were inter-
preted by their authors in terms of attachment of a preformed DNA globule to the membrane
surface.
The fact that in our experiments no DNA globules are observed in the fluid surrounding

GUVs suggests that the DNA collapse takes place after a DNA molecule attaches to the
membrane. The proof of this scenario can, of course, only be provided by a direct observation
of the collapse event. Indeed, a number of collapse events of single DNA molecules initially
attached in a random coil conformation to the vesicle surface were observed and documented,
as exemplified in Figure 4.4 for a full length λ-DNA molecule and Figure 4.5 for a 20 kbp DNA
molecule. There, a single λ-DNA molecule attached to a GUV in an extended conformation
and radius of gyration Rg ≈ 2.3 µm suddenly collapses into a subresolution-sized globule with
Rg ≈ 0.3 µm, the collapse event taking less than 0.5 s (Figure 4.4(e)). In case of a 20 kbp
DNA molecule the collapse from a random coil with Rg ≈ 1.1 µm to the subresolution-sized
globule takes less than 0.1 s (Figure 4.5(e)). The collapsed DNA globules stay attached to
the vesicle membrane. The mobility of the membrane adsorbed DNA molecules increases
significantly after the collapse, as is evident from the molecule’s trajectory (Figure 4.4(f) and
Figure 4.5(f)) before and after the collapse event.
In all experiments, immediately upon attachment to the membrane, DNA molecules first

assumed a 2D random coil conformation. In this extended conformation, the size of DNA
molecules is characterized by the radius of gyration Rg which can be determined from the
fluorescent images. For the shortest DNA fragments of 5 kbp one finds Rg = 0.48± 0.04 µm
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Figure 4.4: (a)–(d) Fluorescence microscopy images showing the collapse of a λ-DNA molecule bound
to a freestanding cationic lipid membrane. (a) t = 10.9 s, (b) t = 12.3 s, (c) t = 12.4 s, (d) t = 13.8
s. (e) Time dependence of the two-dimensional radius of gyration of the DNA molecule; arrows i, ii,
iii, and iv correspond to images (a)–(d). (f) Brownian motion trajectory of the DNA molecule before
(gray) and after (black) the collapse. Bilayer composition: DOPC/DOTAP 90:10. Scale bar: 5 µm.
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Figure 4.5: (a)–(d) Fluorescence microscopy images showing the collapse of a 20 kbp DNA molecule
bound to a freestanding cationic lipid membrane. (a) t = 1.5 s, (b) t = 6.2 s, (c) t = 6.3 s, (d) t = 10
s. (e) Time dependence of the two-dimensional radius of gyration of the DNA molecule; arrows i, ii,
iii, and iv correspond to images (a)–(d). (f) Brownian motion trajectory of the DNA molecule before
(gray) and after (black) the collapse. Bilayer composition: DOPC/DOTAP 97:3. Scale bar: 5 µm.
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and for the longest DNA, λ-DNA, Rg = 1.84± 0.22 µm. Only after staying for some time as
a 2D random coil, DNA molecules could collapse into a tightly packed globule. All observed
collapse events took place typically within ≤ 100 s after a DNA molecule attached to the
membrane.
The compaction rate in the observed membrane-mediated DNA coil–globule transitions was

found to be 124± 46 kbp/s (8 events). Interestingly, when resolvable, the collapse was always
initiated by the compaction in the region of the ends of the DNA chain. An initial compaction
in the center region of the DNA chain was never observed. The same is true for the observed
partially collapsed DNA molecules, which exhibited a compaction at one or both ends of the
DNA molecule, but not in the center.
Interestingly, the membrane-mediated DNA coil–globule transition agrees with observations

of DNA condensation under different conditions, where DNA molecules in solution were com-
pacted by multivalent cations, basic proteins, cationic surfactants, small cationic liposomes,
alcohol, and neutral crowding polymers [144, 145]. This DNA condensation in solution re-
sults in highly compact and regular structures such as toroids or rods. These structures are
formed to minimize the free energy of the system with contributions from the DNA elasticity,
the electrostatic interactions of the charged DNA phosphate groups and the hydration of the
DNA molecule in the solvent medium.
More to that, the membrane-mediated DNA coil–globule transition in our experiments is

in qualitative agreement with the mean-field theory for conformational transitions of flexible
polyelectrolytes in bulk media [151]. This theory also predicts existence of stable, partially
collapsed DNA molecules due to intrachain segregation [145, 152]. Furthermore, the DNA
compaction rate observed in our experiments is in good agreement with the compaction rate of
55 kbp/s reported for DNAmolecules in solution which were compacted by cationic surfactants
[153].
The DNA coil–globule transition is observed on freestanding fluid cationic membranes but

never observed for DNA molecules on a fluid supported bilayer with the identical lipid compo-
sition. At the same time, theoretical studies of polyelectrolyte interaction with an inflexible
flat charged membrane (see, e.g., [154, 155, 156]) do not predict formation of a polymer
globule. This allows us to make a conclusion that the local membrane deformation due to
interaction with the polyelectrolyte macromolecule [157] and/or local lipid segregation [158]
is essential for DNA condensation at freestanding lipid bilayers.

4.1.3. Diffusion of DNA globules

The observed membrane-mediated DNA coil–globule transition poses the question of the de-
gree of compaction of the globule. Clearly, the DNA globules have a size smaller or equal
to the resolution of optical fluorescence wide-field microscopy. Unfortunately, it appeared to
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Figure 4.6: Translational diffusion coefficients of DNA globules bound to DOPC/DOTAP SGUVs as
a function of concentration of the cationic lipid for different DNA lengths: 5 kbp, 10 kbp, 20 kbp, 48.5
kbp (a) and DNA length for different DOTAP concentrations: 1 mol%, 2 mol%, 3 mol%, 5 mol%, 7
mol% (b).

be impractical to use high resolution techniques such as atomic force microscopy (AFM) or
transmission electron microscopy (TEM) on the SGUV samples, as for both techniques the
bursting of SGUVs with previously adsorbed DNA molecules and adhering the membrane to a
substrate is necessary. In a combined fluorescence microscopy and AFM setup, DNA globules
can be localized using the fluorescent labeling, but the AFM investigation failed because the
DNA globules were dragged along by the cantilever even in the tapping mode. TEM exper-
iments, on the other hand, were difficult to interpret, most likely because after bursting the
vesicle with adsorbed collapsed DNA, the DNA globules were efficiently shielded by a mem-
brane layer from the environment, so that negative staining with uranyl acetate appeared to
be inefficient.
An alternative to estimate the DNA globule sizes presents itself by the indirect method

of relating the size of the DNA globules to their mobility manifested in their translational
Brownian motion on the membrane.
In the experiments with membrane-adsorbed polystyrene beads described in Section 3.2

the membrane viscosity η = (5.9 ± 0.2) × 10−10 Pa s m was found for freestanding cationic
DOPC/DOTAP membranes independent of the DOTAP fraction CDOTAP in the range of
1–7 mol%. In contrast to the behavior of the beads, the translational diffusion coefficient of
membrane-bound DNA globules shows quite a pronounced dependence on the cationic lipid
content CDOTAP (Figure 4.6(a)), whereas it varies only weakly with the DNA contour length
(Figure 4.6(b)). Assuming that the diffusion of membrane-bound DNA globules is related to
their size according to the HPW theory (see Section 1.2.2), the very weak dependence of the
globule diffusion on the DNA contour length suggests that for DNA with the contour length of
5–48.5 kbp, the resulting globules are compacted at a given DOTAP concentration to similar
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Figure 4.7: Relation of DNA globule diffusion and DNA globule size. Diffusion coefficients of
polystyrene beads (black squares) adsorbed to a freestanding DOPC/DOTAP 99:1 membrane and
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sizes independent of the DA contour length.
The growth of D with CDOTAP clearly reflects the expected better compaction of DNA

globules at higher cationic lipid content due to more efficient screening of the DNA charges.
At the same time, the presence of the reproducible minimum at CDOTAP = 2 mol% followed
by a growth at 1 mol% is quite puzzling, and no clear explanation of this unexpected behavior
can be offered at the moment.
Using the closed-form approximation of the HPW theory [54] (Equation (1.16)) and the

membrane viscosity of 5.9 × 10−10 Pa s m, the hydrodynamic radius a of DNA globules
can be estimated based on their diffusion coefficient. At CDOTAP = 1 mol%, a = 250–350
nm, whereas at CDOTAP = 7 mol%, a = 130–200 nm (Figure 4.7). These obtained DNA
globule sizes are generally in agreement with predictions for interhelix distances in DNA-lipid
complexes [159].
The exact conformation of a DNA molecule in the globule remains open to speculation. As

the membrane is flexible and able to bend, it is not even clear whether the DNA would be
compacted in a two- or rather three-dimensional arrangement.
To check wether a two-dimensional pancake conformation would be possible, one can esti-

mate the area of a disc with the radius equal to the above-determined hydrodynamic radius
a and compare it to the 2D area which can possibly be occupied by a single DNA molecule.
A 2D λ-DNA globule of radius 200 nm at its strongest compaction leads to a disc area of
0.126 µm2 that shall be related to a single λ-DNA in the conformation of a densely packed
two-dimensional pancake. Dense packing in this scenario would mean that the DNA molecule
is arranged in a spiral, most probably with a hole in the middle whose radius should be of
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Figure 4.8: Fluorescent images of a 20 kbp DNA adsorbed to a freestanding membrane,
DOPC/DOTAP 99:1, in a random coil conformation. At high excitation powers, photochemical effects
lead to cleavage of the DNA molecule. Excitation power density: ∼ 10 W/cm2. Scale bar: 5 µm.

order of the DNA persistence length, to avoid overly strong local bending of the DNA. With
a DNA molecule diameter of approximately 2 nm and a contour length of 21.4 µm (including
a 30 % extension in length due to YOYO-1 labeling) one obtains an area of 0.043 µm2. How-
ever, one would expect that the cationic lipids serve as counterions and dress the DNA upon
compaction. This increases the thickness by about 3.6 nm, the thickness of a DOPC bilayer
[160]. The area occupied by the λ-DNA in this situation would be 0.12 µm2, leaving enough
space for a hole of 40–50 nm radius in the middle of the pancake. This estimate suggests a
highly ordered chain conformation in the DNA globule that can only become more random if
the globule has a three-dimensional structure.
Another observation indicates high ordering and possible wrapping of DNA with the cationic

membrane in the globule conformation. Non-collapsed membrane-adsorbed DNA is easily
photocleaved if the intensity of the laser used to excite YOYO-1 is substantially higher than
1 W/cm2. An example of such a photocleavage event is shown in Figure 4.8. This essentially
means that the DNA is still exposed to oxygen in the surrounding medium and not enwrapped
by the cationic membrane. DNA globules, on the other hand, are stable and inert to such
photochemical effects, since no detachment of DNA parts from a globule was ever observed.
This means that the chain organization of the DNA molecule in the globule is either very
tight and regular, not allowing photocleaved fragments to leave the globule, or the DNA
is shielded from oxygen by complete dressing with – and possibly incorporation into – the
cationic membrane, or both. A further indication of complete membrane dressing of the DNA
molecule in the globule conformation is the fact that fluorescence of YOYO-1 labeled DNA
globules is virtually impossible to photobleach.

4.1.4. Implications of the coil–globule transition of membrane-bound DNA
macromolecules for cell biology

The compaction of long DNAmolecules interacting with fluid lipid membranes is an interesting
observation that might explain parts of the mechanism of naked DNA uptake by cells which
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is considered a “black box” [161] to the present day. The uptake of naked DNA is the simplest
non-viral transfection method for cells in culture and in organisms. It was observed for a large
variety of different cells and organisms, DNA types, and circumstances of administering (see
[161, 162] and references therein).
Despite this large variety, some recurrent similarities are observed. Naked DNA binds to

the cellular membrane and is believed to be incorporated via an endocytic pathway [161,
162, 163, 164, 165]. The gene expression indicating uptake of DNA by cells is a competitive
process which is inhibited by adding excess amounts of non-expressing DNA or simply other
polyanionic macromolecules [161, 162, 166, 165]. In light of these observations, and the striking
absence of an identified specific receptor, one can suggest that the uptake of naked DNA is
initiated by nonspecific electrostatic interactions of the DNA with positive charges at the
cellular membrane, originating from cationic lipids such as sphingosine or cationic domains of
membrane proteins.
The size of long DNA molecules, such as λ-DNA, in a coil conformation in solution is

easily & 1 µm and an additional spreading due to assumption of a 2D conformation upon
attachment to the membrane can be expected. At this size the long DNA would be far too
large to be incorporated directly into an endosome. Therefore, the ability of the DNA molecule
to undergo a transition to a 100–200 nm sized globule on a fluid deformable membrane would
be a crucial prerequisite for the endocytic pathway of DNA internalization.

4.2. DNA on freestanding and supported cationic gel-phase
membranes

The membrane-mediated coil-globule transition of DNA molecules is only observed upon ad-
sorption to a fluid freestanding cationic lipid bilayer, but not at a fluid supported cationic
lipid bilayer. The reason for the ability of DNA molecules to collapse when adsorbed to
the freestanding membrane may be found in local lipid segregation and/or local membrane
deformation.
In order to confirm that the effects of membrane deformation and lipid segregation are

responsible for the condensation of membrane-adsorbed DNA molecules, in this Section a
freestanding cationic membrane with a DMPC/DMTAP 90:10 lipid composition, which is
in the gel state at the room temperature of 23 ◦C [81], is used. For a gel-phase membrane
the lipid mobility and thus the possibility of lipid segregation in response to adsorbed DNA
molecules is strongly reduced. In addition, the membrane flexibility of a freestanding gel-
phase bilayer is strongly suppressed. Therefore, if the assumptions above are correct, no
condensation of membrane-adsorbed DNA molecules should be expected. Furthermore, the
strength of the interaction between DNA molecules and the lipid bilayer can be tested, to
answer the question, whether DNA molecules are able to glide on the surface of the cationic
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membrane or their mobility is strongly coupled to the mobility of the membrane lipids.
In an additional experiment with supported cationic gel-phase membrane bilayers, the in-

fluence of lipid segregation on the conformation of membrane-bound DNA molecules can be
investigated. The binary lipid mixture of DMPC/DMTAP 90:10 exhibits a gel-fluid phase
coexistence in the range of approximately 27–29 ◦C [81]. The gel–fluid membrane transition
temperature is increased by the addition of DMTAP to a DMPC membrane [81], which means
that for a gel-fluid phase coexistence, the cationic DMTAP is enriched in the gel-phase mem-
brane domains. In case where a supported membrane with such a composition is cooled down
from the temperature corresponding to the fluid state to a temperature corresponding to co-
existence of the gel and fluid state, micrometer-sized domains of the cationic lipid-enriched
gel phase will appear whose further growth and mobility will be arrested due to pinning to
defects on the substrate. Using this membrane property, an artificial charge segregation can
be created, and the conformational behavior of membrane-adsorbed DNA molecules in such
a system can be investigated.

4.2.1. Experimental details

For experiments with gel-phase membranes, a cationic lipid composition of DMPC/DMTAP
90:10 was used. The membrane was fluorescently labeled with 0.1 mol% DiD.
SGUVs were produced by electroformation (see Sections 2.2.2 and 3.1), with a minor but

important change in the spreading of the lipid-chloroform solution on the ITO coverslip.
Instead of a lipid concentration in chloroform of 10 mg/ml, a tenfold lower concentration
of 1 mg/ml was used. At the same time the volume of the lipid solution that was spread
was increased by the same factor of ten. Ultimately, the same amount of lipids was spread,
but instead of applying a single snake-like pattern, the lipid solution was spread repeatedly
over the same area. This adjustment was necessary, as for the unknown reason the normal
procedure did yield vesicles, most of which, however, had smaller sizes and were detached
from the coverslip surface. Using the low concentration and repeated spreading of the lipid
solution, on the other hand, ensured formation of SGUVs sitting in a dome-like fashion on
the ITO-coated coverslip similar to the DOPC/DOTAP vesicles. The electroformation was
carried out at 50 ◦C, above the gel–fluid phase transition temperature.
Differential scanning calorimetry experiments [81] showed that the phase transition tem-

perature of the DMPC:DMTAP 90:10 membrane is found approximately at 27–29 ◦C for a
sample of multilamellar vesicles. A similar transition temperature is expected for the SGUV
membrane. To qualitatively confirm the SGUV membrane phase-state, fluorescence bleaching
and recovery experiments were carried out at temperatures above and below the expected
transition temperature. At 23 ◦C indeed no recovery of fluorescence in the bleached area of
the vesicle membrane was observed, indicating that the membrane is in the gel-phase, while at
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30 ◦C fluorescence did recover, indicating that the membrane is in the fluid-phase. Therefore,
at these temperatures fluorescently labeled DNA was injected into the SGUV chamber in the
same fashion as described above in Section 4.1.1, to investigate the difference in the behav-
ior of DNA molecules adsorbed to a freestanding fluid-phase and a freestanding gel-phase
membrane.

Therefore, in experiments with DMPC/DMTAP vesicles with a fluid-phase membrane the
sample was kept at 30 ◦C by temperature-feedback controlled heating of the microscope
objective and the sample chamber. For experiments with DMPC/DMTAP vesicles with a
gel-phase membrane the sample was kept at the room temperature of 23 ◦C.

Supported lipid bilayers (SLBs) of DMPC/DMTAP 90:10 lipid composition were formed
on mica using the spin coating method as described in Section 2.2.1. The rehydration of the
dried lipid film was carried out in dd-H2O at 50 ◦C.

The temperature range of gel–fluid phase coexistence of 27–29 ◦C for a DMPC/DMTAP
90:10 membrane is expected to be broadened and shifted to higher temperatures if the mem-
brane is placed on a solid support (see discussion in Section 1.1.3). This was verified by flu-
orescence photobleaching and recovery experiments of the fluorescent membrane label DiD.
Only at a temperatures above 42 ◦C the membrane appears to be in the fluid phase, which is
indicated by a homogenous distribution of the fluorescence of DiD and its fast recovery after
photobleaching. If the temperature is decreased by about one degree, small, immobile, dark
domains appear, while the bright part of the surrounding membrane is still in the fluid state.
It was found that the membrane label DiD is squeezed out of gel domains [167] and that for
the closely related membrane dye DiI, the fluorescence intensity is reduced in the gel phase
of a DMPC membrane compared to the fluid phase [168]. This indicates that the appearing
dark regions are membrane domains in the gel state. The immobility of the gel domains most
likely caused by pinning to defects on the substrate is a typical observation for SLBs. At
about 38 ◦C the entire membrane including the brighter regions around the dark domains
goes into the gel phase, as no recovery after photobleaching is observed.

Fluorescently labeled DNA in dd-H2O at a concentration of 10−7 M was added to the SLB
sample, incubated for about ten minutes, and afterwards thoroughly washed with dd-H2O to
remove the DNA molecules remaining in solution, all at a temperature of about 50 ◦C.

To sample containing the SLB and membrane-adsorbed DNA molecules was placed on the
microscope and kept a the desired temperature using temperature-feedback controlled heating
of the microscope objective and the sample chamber.
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4.2.2. Behavior of DNA molecules adsorbed to freestanding cationic gel-phase
membranes

For experiments with cationic gel-phase membranes, λ-DNA molecules were injected into the
DMPC/DMTAP 90:10 SGUV sample at 23 ◦C. Shortly after the injection, DNA molecules
adsorb to the freestanding cationic gel-phase membrane and are arrested at the position of ad-
sorption in a shape that does not change over the course of time (Figure 4.9(a)). The observed
DNA shape is more extended than that of a DNA globule resulting from membrane-mediated
DNA condensation on a freestanding cationic fluid membrane of the same DMPC/DMTAP
90:10 lipid composition at 30 ◦C (Figure 4.9(b)) or a DOPC/DOTAP lipid composition at a
similar temperature of 24 ◦C (Figures 4.1(c) and 4.2). On the other hand, the conformation
of the λ-DNA adsorbed to the gel-phase membrane (Figure 4.9(a)) is much less extended
than the random coil conformation of non-collapsed λ-DNA molecules on a fluid freestanding
bilayer (Figure 4.2(a)) but agrees well with the 2D projection of the shape the DNA molecules
diffusing freely in the surrounding medium (Figure 4.1(b)).
These observations allow one to draw two conclusions. First, DNA molecules are tightly

bound to the membrane, they cannot glide on the surface of a gel-state cationic membrane and
their extremely low mobility matches the lipid mobility in the gel-state membrane. Second,
as shown by the experiments with freestanding cationic gel-phase membranes, membrane-
attached DNA molecules indeed cannot undergo a coil–globule transition without local lipid
segregation in the membrane and/or dynamic local membrane deformations.
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Figure 4.9: Fluorescent images of λ-DNA adsorbed to SGUVs with the lipid composition of
DMPC/DMTAP 90:10. (a) λ-DNA on a freestanding gel-phase membrane at 23 ◦C. (b) λ-DNA
on a freestanding fluid-phase membrane at 30 ◦C. Scale bars: 5 µm.
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4.2.3. Conformational behavior of DNA molecules at the fluid–gel transition of
SLBs

When DNA molecules adsorb to the fluid cationic SLB with a lipid composition of
DMPC/DMTAP 90:10, which is heated to a temperature of 44 ◦C, the phenomenology of
their behavior is similar to what is observed for DNA on a fluid DOPC/DOTAP SLB [8, 9]
(see also Figure 4.1(a)). Namely, they assume a 2D random coil conformation and exercise
Brownian motion (Figure 4.10(a)).
If the temperature of the sample is reduced below 42 ◦C, small, immobile, dark gel-

membrane domains appear (Figure 4.10(b, middle)). If the diffusing random coil DNA
molecules adsorbed at the fluid membrane regions meet the gel-phase domains an interest-
ing effect is observed. The DNA molecules bind to the gel-phase domains and get strongly
compacted. Figure 4.10(b) shows that one of the three 20 kbp DNA molecules is compacted
completely at the position of a gel-membrane domain (the rightmost DNA molecule in the
image), the second one diffuses at a distance to the gel domains and still remains in the coil
conformation (the leftmost DNA molecule in the image), and the third one is partially com-
pacted, with the DNA compaction located at the position where the macromolecule has met
the gel-phase domain (the DNA molecule in the middle of the image).
In the course of the experiment, while the membrane is slowly further cooled down to 38

◦C, all these membrane-bound DNA molecules finally reach the gel-phase domains and get
compacted (Figure 4.10(c)). Note that membrane domain pattern is kept when the final tran-
sition to the gel state is reached, although at this temperature the bright membrane regions
in Figure 4.10(c, middle) are in the gel state as well. (This was confirmed by fluorescence
photobleaching)
Generally, not necessarily every membrane-adsorbed DNA molecule gets compacted in the

fluid–gel transition process. In case the DNA does not reach a previously formed gel domain,
it can get arrested in a coil conformation when the whole membrane finally converts into the
gel state.
Interestingly, the compaction of DNA molecules adsorbed to a SLB upon interaction with

a gel-phase domain is reversible. If the sample is heated back above the membrane gel–fluid
coexistence temperature, the dark gel domains disappear, and the previously compacted DNA
molecules decompact, assume a random coil conformation again (Figure 4.10(d)), and resume
their Brownian motion on the membrane.
As previously discussed in the introduction to this Section, the gel domains of a

DMPC/DMTAP membrane are expected to be enriched with cationic DMTAP lipids com-
pared to the surrounding fluid membrane regions. This leads to a higher charge density in
the gel domains which is further enhanced by a tighter lipid packing expected in the gel state
[14, 15]. This, phase separation-induced lipid (and charge) segregation in the membrane is
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Figure 4.10: Fluorescent images of 20 kbp DNA adsorbed to a supported lipid bilayer passing through
the fluid–gel and gel–fluid phase transition. Lipid bilayer composition: DMPC/DMTAP 90:10. (a)
44 ◦C. Two-dimensional DNA coils (left hand side) adsorbed to a homogeneous fluid bilayer (right
hand side). (b) Approximately 40 ◦C. DNA molecules in random coil, and compacted and partially
compacted conformation (left hand side). Appearance of small dark gel-membrane domains in the
fluid lipid bilayer (middle) and merged image of the two channels (right hand side). (c) 38 ◦C. DNA
molecules in compacted conformation (left hand side). Lipid bilayer in gel phase with dark domains
(middle) and merged image of the two channels (right hand side). (a) 44 ◦C. Decompacted DNA coils
(left hand side) at a homogeneous fluid bilayer (right hand side). Scale bars: 5 µm.

able to cause the compaction of SLB-adsorbed DNA molecules. The DNA compaction can be
fully reversed if membrane is heated above the gel–fluid phase transition temperature. As a
consequence, the membrane-gel domains, and along with them the artificial lipid segregation,
disappear.
The observed compaction and decompaction of DNA molecules on supported membranes
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that pass the fluid–gel phase transition can be repeated many times by repetitive cooling
and heating of the sample. This indicates that the compacted membrane-bound DNA are
not completely dressed with lipids and or enwrapped by the membrane. This assumption
is further strengthened by the observation that the fluorescence excitation with laser powers
of about 10 W/cm2 does cause photo-destruction of the compacted DNA chains that are
attached to a gel-phase domain of a supported lipid membrane. If the membrane is heated
above the phase transition after such a treatment one observes very short photocleaved DNA
fragments which diffuse away on the membrane from the location where the initially large
DNA molecule was compacted.
This behavior is entirely different compared to the observations of the DNA globules formed

on a fluid freestanding lipid membrane as discussed in Section 4.1.3. There, once the DNA
molecule assumes a globule conformation a reverse decompaction was never observed and the
DNA globules are not affected by photobleaching and photocleaving. Therefore, one may
suggest that on freestanding fluid membranes the DNA coil–globule transition is initiated by
a local lipid segregation and is accompanied by local membrane deformations, which stabilize
the compact DNA globule.

4.3. Conclusion

Thus, our experiments with DNA macromolecules adsorbed to fluid freestanding cationic
membranes show a change in DNA conformation from a 2D random coil to a compact globule
depending on the fraction of cationic lipids in the bilayer and the length of the DNA. The
globule state is favored at high cationic lipid concentrations and long DNA contour lengths.
On the contrary, at low cationic lipid concentrations the majority of the membrane-adsorbed
DNA molecules is in a random coil conformation. In the latter case, the DNA–membrane
interactions are apparently too weak to facilitate a DNA coil–globule transition. At cationic
lipid concentrations close to those where all adsorbed DNA molecules collapse to globules,
partially collapsed DNA molecules are observed for long DNA molecules of 48.5 kbp and 20
kbp. In the observed events of membrane-mediated DNA coil–globule transition we found that
the DNA collapse is a fast process with a compaction rate of 124 ± 46 kbp/s. Fluorescence
microscopy experiments clearly show that the size of the membrane-bound DNA globules does
not exceed 500 nm. By relating the translational diffusion coefficients of completely collapsed
DNA globules to the radius of a membrane inclusion an estimate of the DNA globule size was
obtained and found to be 250–350 nm at DOPC membranes containing 1 mol% DOTAP and
130–200 nm for 7 mol% DOTAP, indicating a stronger compaction for higher charge densities
in the membrane.
Additional experiments with freestanding cationic membranes in the gel state and sup-

ported cationic lipid membranes with gel–fluid coexistence suggest that the DNA collapse on
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a freestanding fluid cationic membrane may be initiated by a local lipid segregation in the
membrane and accompanied by local membrane deformations, which stabilize the compact
DNA globule.





Chapter

5

Brownian Motion and Conformational
Dynamics of DNA and fd-Virus on
Freestanding Membranes with Low Cationic
Lipid Concentration

Many biological macromolecules and supramolecular assemblies can be described as semiflex-
ible polymers and filaments (see Section 1.3), and a large number of them “interact” with
biological membranes. Surprisingly though, very little is known about the diffusion and con-
formation of individual semiflexible particles bound to lipid membranes.

Semiflexible filamentous particles which are adsorbed to a freestanding lipid membrane
should exhibit an interesting diffusion behavior. In particular, a double crossover in the
behavior of their diffusion coefficients as a function of their size can be expected. One crossover
should be found when the particle size a goes from the regime a� lSD to the regime a� lSD,
where lSD is the hydrodynamic length scale (Saffman-Delbrück length) which characterizes
the influence of the viscous membrane on the diffusion of the adsorbed particle. The other
crossover in diffusion behavior can be expected due to the conformation of the particle in case
where the particle size large enough (a & lSD), and its contour length L goes from the regime
L � lp (stiff rod) via the regime L ≈ lp (semiflexible filament) to the random coil regime
L� lp, where lp is the persistence length of the filament.

To address experimentally the diffusion and conformation of semiflexible particles adsorbed
to a membrane, we use long (> 5 kbp) DNA molecules that assume a random coil conformation
on a freestanding membrane with a low cationic lipid content (see Section 4.1.2, [121]) and
semiflexible fd-virus particles. The sizes of the above filamentous semiflexible particles can
be easily controlled using biotechnology methods, and their conformations are resolvable by
fluorescence wide-field microscopy. Additionally, their sizes can be tuned to sample a range
of scales above and below the SD length of the membrane.

The DNA molecules are comparatively soft with a persistence length of few hundreds of
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nanometers under low salt conditions [74, 169]. At a contour length of about 21.4 µm for
YOYO-1 labeled λ-DNA the ratio of contour length L and persistence length lp, L/lp, is large
and the conformation of the molecule is expected to be a random coil. On the other hand,
the fd-virus is rather stiff with a persistence length of about 2 µm to 3 µm [76, 80]. As a
result, the ratio of L/lp ranges from L/lp ≈ 0.5 for the virus monomer to about L/lp ≈ 4 for
the longest virus particles observed in this study. Therefore, fd-virus particles and long DNA
molecules complement each other in covering a broad range of the filament flexibility from
the stiff rod to the random coil regime. At the same time, both DNA and fd-virus particles
can be assumed as infinitely thin because their thickness (2 nm for DNA [67] and 6.6 nm for
fd-virus [75]) is very small compared to their contour lengths.
At the moment, hydrodynamics-based theories exist which describe the Brownian motion

of polymers and filaments on freestanding membranes only in the limiting regimes of a stiff
rod [63, 64, 65, 66] and a 2D Gaussian chain [62]. In this Chapter we experimentally test
these theories and their applicability limits for the quantitative description of the rotational
and translational diffusion coefficients of membrane-bound semiflexible particles.

5.1. Experimental details

The experimental procedure for YOYO-1 labeled DNA molecules of 5 kbp, 10 kbp, 20 kbp
and 48.5 kbp was exactly the same as described in Section 4.1.1 in the previous Chapter. In
contrast to the previous Chapter, experiments described in this Chapter were carried out only
with SGUVs electroformed from lipid mixtures of 99 mol% DOPC and 1 mol% DOTAP.
For the fd-virus experiments, SGUVs of the same membrane composition were used. An

aqueous suspension of virus particles fluorescently labeled with Alexa488 was diluted in dd-
H2O to a concentration of approximately 10−9 M estimated from the particle density in
solution via fluorescent imaging. The fd-virus solution contained monomeric viruses, as well
as but multimeric virus particles with longer contour lengths. The dilution included a three
times repetition of ultracentrifugation at 100,000 g for 30 minutes. After every centrifugation
step 1.45 ml out of the 1.5 ml of supernatant were replaced with dd-H2O. The centrifugation
led to a higher fraction of the longer multimeric virus particles as almost exclusively monomeric
viruses were removed from the sample with the supernatant. The final fd-virus solution was
injected into the sample chamber containing the cationic SGUVs at a rate of 10 µl/min with
the help of a syringe pump and left to incubate for about 1h.
All experiments were carried out at the room temperature of 24 ◦C.
Movies consisting of several thousand frames were taken for DNA molecules adsorbed to at

least ten different SGUVs per DNA length at a frame rate of 10 Hz and exposure time of 50
ms, at a resolution of 389 nm/pixel for 48.5 kbp and 20 kbp and 158 nm/pixel for 10 kbp and
5 kbp.
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For the fd-virus, a higher lateral resolution of 75 nm/pixel was used, and images were
acquired at the maximum full-frame readout rate of the camera with a frame time of 32 ms
and exposure time of 30 ms. Trajectories consisting of 200 to 2000 steps were obtained and
analyzed and the respective diffusion coefficients were averaged for the virus multimers: 49
trajectories for [fd]1, 26 for [fd]2, 16 for [fd]3, 4 for [fd]4, 15 for [fd]5, 4 for [fd]6, 3 for [fd]7, 9
for [fd]10, and 1 for [fd]11.
Positions and orientations, as well as radii of gyration of individual DNA molecules were

obtained using the first and second moments of the image intensity distribution, respectively.
The same parameters and additionally the filament contour length of the fd-virus particles
were obtained by the particle contour analysis. For detailed description of the methods see
Sections 2.4.1, 2.4.2 and 2.4.3.
Rotational and translational diffusion coefficients of DNA molecules and fd-virus particles

adsorbed at freestanding lipid membranes were obtained using the methods described in
Sections 2.4.5, 2.4.6, and Appendix A.1.

5.2. Conformation of membrane-adsorbed fd-virus particles and
random-coil DNA molecules

5.2.1. Radius of gyration and persistence length of random-coil DNA molecules
on a freestanding membrane

We have found that under the conditions of our experiments DNA molecules attach to the
SGUVs membrane with low cationic lipid content and immediately after adsorption assume a
two-dimensional random coil conformation and exercise rotational and translational Brownian
motion. Figure 5.1 shows typical snapshots of the fluorescently labeled DNA molecules of
various lengths which are adsorbed to a freestanding fluid membrane.
DNA molecules equilibrate very fast upon binding to a freestanding membrane: No de-

tectable difference in the conformation and radius of gyration of membrane-bound DNA
molecules is found when they are observed at different times after the adsorption, ranging
from minutes to several hours.
The dependence of the radius of gyration Rg of DNA macromolecules on their contour

lengths L can provide the important information on the conformational state of the membrane-
adsorbed macromolecules. For example, in their study of DNA adsorbed at supported lipid
bilayers, Maier and Rädler found that the radius of gyration scales as Rg ∼ Lν with ν =
0.79 ± 0.04 [8, 9]. This observation was interpreted in [8, 9] in terms of strong excluded-
volume interactions within the DNA chain for which the theory predicts ν = 3/4 in 2D [170].
[70, 71]
Remarkably, for DNA molecules adsorbed at a freestanding cationic lipid bilayer we find
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Figure 5.1: Snapshots of fluorescently labeled DNA adsorbed to a freestanding cationic
DOPC/DOTAP 99:1 membrane, illustrating the motion, size and shape fluctuations of DNA molecules
of different length. (a) 5 kbp, (b) 10 kbp, (c) 20 kbp, (d) 48.5 kbp. Fluorescent label: YOYO-1. Scale
bars: 5 µm.

a strikingly different dependence (Figure 5.2). We clearly see that the Rg(L) dependence
does not follow the power law expected for the 2D swollen chain. Even more interestingly,
the dependence is well described by the expression expected for a semiflexible chain in 2D
(Equation (1.32)). Fitting the data with this expression gives the persistence length lp =
260 ± 40 nm. It should be noted that the persistence length of a polyelectrolyte depends on
the ionic strength of its environment: lp = lp,0 + lp,e. Here, lp,0 is the intrinsic persistence
length of the polyelectrolyte and lp,e is the electrostatic contribution [70, 71]. The persistence
length of ∼ 260 nm we found for DNA on freestanding membranes is considerably larger than
the intrinsic persistence length of DNA lp,0 ≈ 30–50 nm [72, 74, 171]. This may reflect the
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Figure 5.2: Radius of gyration Rg of 2D random coil DNA molecules adsorbed to a freestanding fluid
cationic membrane versus the DNA contour length L. A fit to the WLC model (red curve) yields a
persistence length lp = 0.26 ± 0.04 µm. Also shown are the asymptotics of the WLC model, the stiff
rod (gray dash dotted line) and a Gaussian chain random coil (gray dotted line). The blue dashed line
indicates a scaling with L3/4 which is expected for strong influence of volume exclusion effects between
polymer chain segments. The contour length L of YOYO-1 labeled DNA fragments with the known
nominal length in bp was determined as described in Section 2.3.1.

electrostatic stiffening of the DNA chain under our experimental conditions. Moreover, the
value of lp,e ≈ 210–230 nm corresponds to what is found for DNA in a bulk solution at a
monovalent salt concentration of about 1.5× 10−4 M [74, 169]. This explanation seems to be
reasonable, since the membrane charge density is low (1 mol% cationic lipids), and no salt
was added to the surrounding medium (dd-H2O).1

It is possible to reconcile the seemingly contradictory pictures observed in the previous
experiments by Maier and Rädler [8, 9] and in the present work using the results of the study
by Yoshinaga et al. [172]. In this study it was found that a DNA molecule adsorbed at a 2D
substrate shows three distinct scaling regimes in the dependence of the end-to-end distance
on the contour length dee ∼ Lν : (i) ν ≈ 1 for L < 4lp (stiff rod), (ii) ν ≈ 0.5 for 4lp < L < Lc

(2D ideal chain), and (iii) ν ≈ 0.75 for L > Lc (2D self-avoiding walk, which corresponds
to a polymer with strong excluded-volume interactions, or swollen polymer chain in two
dimensions). Lc is the critical length separating regimes (ii) and (iii). This critical length can
be expressed via the corresponding critical number Nc of Kuhn segments: Lc = 4lpNc (for a
chain in 2D). The theoretical estimates by Yoshinaga et al. show that Nc � 16l2p/B, where
B is the second virial coefficient of the polymer chain. Obviously, all these three regimes will
also be observed in the scaling behavior of the radius of gyration Rg. The only difference will
be that the crossover between the regimes will take place at contour lengths larger by a factor

1At the same time one cannot exclude an additional DNA stiffening due to interaction with the freestanding
membrane which might lead to local deformations of the latter on the scale of a few nanometers. This issue
deserves further experimental and theoretical investigation.
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of two compared to the behavior of the end-to-end distance.

If one adopts this picture, then our experimental results correspond to the crossover between
regimes (i) and (ii) (from the stiff rod to the ideal chain), while the results of Maier and Rädler
belong to regime (iii) (self-avoiding walk). The question remains, why the DNA molecules
with contour lengths in the same range studied in these two experiments show behavior which
belongs to different scaling regimes. The answer in our opinion lies in the different strength
of the electrostatic interaction between the DNA chain segments in our work and the study
by Maier and Rädler. Indeed, according to their estimates, at the experimental conditions of
their work (10 mol% cationic lipids, 10 mM NaCl in buffer) electrostatic interactions along
the DNA chain are insignificant, so that the persistence length of DNA is virtually unaffected
by electrostatics: lp ≈ 50 nm [8, 9]. In this case, according to experimental observations and
theoretical estimates of Yoshinaga et al. [172], the radius of gyration of DNA molecules longer
than 6 kbp should indeed show the scaling characteristic of the 2D self-avoiding walk regime
(iii). On the other hand, considerable electrostatic stiffening of the DNA chain in case of our
experiments (lp ≈ 260 nm) should bring the DNA molecules with the lengths from 5 kbp to
48.5 kbp to the crossover region between regimes (i) and (ii), while the crossover to regime
(iii) is expected to take place only for DNA molecules with the contour length L & 100 kbp,
and therefore should not be observed in our experiments.

Based on this observation and results of the work of Yoshinaga et al. [172] it is possible
to obtain the lower estimate of the second virial coefficient of the DNA in our experiments,
B & 64l3p/Lλ-DNA ≈ 0.05 µm2. This is considerably larger than the corresponding estimate
of 0.013 µm2 obtained by Maier and Rädler based on their experimental data, which is again
in agreement with our assumption of the stronger effect of electrostatic interactions in our
experiments. Using these results we can also obtain an estimate of the interaction width of
the DNA chain. Taking B as the excluded area of a polymer segment on the 2D surface,
B ' 4lpw, where w is the interaction width of the polymer segment, we obtain w & 50 nm. If
we attribute the segment-segment interaction to electrostatic repulsion, this interaction width
would correspond to the Debye length λD ' w/2 = 25 nm of an aqueous solution with the
ionic strength I . 1.5×10−4 M, which is in surprisingly good agreement with the value of the
ionic strength at which the persistence length of DNA is lp ≈ 260 nm [74, 169] (see above).

Thus we conclude that upon adsorption to a freestanding cationic lipid bilayer with a low
charged lipid fraction, which is surrounded by solvent with a very low ionic strength, DNA
with the contour lengths of up to 48.5 kbp behaves as a 2D semiflexible polymer.
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Figure 5.3: Snapshots of fluorescently labeled fd-virus particles adsorbed to a freestanding cationic
DOPC/DOTAP 99:1 membrane, illustrating translational and rotational motion and thermal shape
fluctuations of fd-virus multimers. (a) Monomers, [fd]1. (b) Dimer, [fd]2. (c) Trimers, [fd]3. (d)
Hexamer, [fd]6. (e) Decamer, [fd]10. Fluorescent label: Alexa488. Scale bars: 5 µm.

5.2.2. Radius of gyration and persistence length of membrane-adsorbed fd-virus
particles

Several fluorescent image time series of fd-virus particles of various lengths adsorbed to a
freestanding fluid cationic lipid bilayer are shown in Figure 5.3 to illustrate translational and
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Figure 5.4: Length of membrane adsorbed fd-virus particles determined by full contour analysis. (a)
Histogram of determined virus lengths normalized by the expected fd monomer length L0 = 0.88 µm.
(b) Determined virus length normalized by the quantized virus length mL0 depending on the degree
of multimerization m. The green lines indicate a relative error of ±5 %.

rotational motion and thermally induced shape fluctuations as a function the filament length.
As it has been discussed earlier (Sections 1.3.4 and 2.1), in our experiments we used fd-

viruses grown in a JM101 E. coli host strain, which leads to occasional appearance of mul-
timeric virus particles. As a result, the virus sample represents a mixture of the monomeric
and multimeric fd-virus particles. Since the m-mer virus particle is produced by a linear
unidirectional growth process starting from a monomer, one can speculate that the relative
fraction of an m-mer fm scales as fm/f1 ∼ pm−1, where p is the probability of forming a
dimer virus particle. This means that the number of higher multimers in the sample is ex-
ponentially small, which indeed qualitatively agrees with our experimental observations. The
development of a size separation procedure, which would allow one to obtain monodisperse
samples of fd-virus particles was outside the scope of the present thesis, and experiments were
carried out with a mixture of virus particles with different lengths.
This experimental situation requires the determination of the lengths of the individual virus

particles and thus identification of the degree of multimerization m, based on the analysis of
experimental images.
The length obtained by the contour analysis allows for a clear identification of the degree

of multimerization m (Figure 5.4(a)). Moreover, the length determination of individual virus
particles agrees to the expected length of mL0 within better than 0.4/m × 100 % (Figure
5.4(b)).
After carrying out the full contour analysis, the filament end-to-end distance dee is known,

and the radius of gyration Rg can be calculated for the individual fd-virus multimers. In the
WLC model for semiflexible polymers dee and Rg are related to the persistence length of the
filament lp and the filament length L according to Equations (1.35) and (1.32), respectively.
A least squares fit to the data yields lp = 2.2± 0.1 µm for both dee and Rg (see Figure 5.5).
This result is in perfect agreement with the value of 2.2 µm found in the literature [76].
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Figure 5.5: Stiffness of membrane adsorbed fd-virus particles. (a) End-to-end distance dee versus
the determined virus length L. A fit to the WLC expression (red curve, Equation (1.35)) yields a
persistence length lp = 2.2 ± 0.1 µm. (b) Radius of gyration Rg versus L. Fitting the data with the
WLC expression (red curve, Equation (1.32)) gives a persistence length lp = 2.2 ± 0.1 µm. In both
cases the stiff rod limit is indicated by a gray dashed line.

It is apparent from Figure 5.5 that virus monomers and dimers [fd]1 and [fd]2 can be
considered as stiff rods, because their end-to-end distance and radius of gyration only deviate
from the corresponding asymptotic dependences by less than 2 %. As a result, in the further
analysis these virus particles will be considered as rod-like with the contour lengths L0 = 0.88
µm and 2L0 = 1.56 µm and radii of gyration of L0/

√
12 = 0.25 µm and 2L0/

√
12 = 0.51 µm.

On the other hand, trimers [fd]3 and higher order multimers exhibit considerable shape
undulations. Therefore, the gyration radii of [fd]m, m ≥ 3, were determined from the contour
analysis as described in Section 2.4.3.

5.3. Brownian motion of membrane-bound semiflexible DNA
molecules in the random coil conformation

Random-coil DNA molecules, which are adsorbed to a freestanding fluid membrane with
low cationic lipid fractions (DOPC/DOTAP 99:1), can be described as a 2D semiflexible
polymer with the persistence length lp = 0.26 ± 0.04 µm (see Section 5.2.1). Therefore, the
shortest DNA fragment (5 kbp) has a ratio of the contour length and the persistence length
L/lp ≈ 8.5, and for the longer λ-DNA L/lp ≈ 82. This means that the membrane-adsorbed
DNA molecules are comparatively flexible.
The rotational and translational diffusion coefficients DR and DT of these random-coil DNA

molecules with lengths of 5, 10 , 20, and 48.5 kbp, which are adsorbed to a freestanding lipid
membrane, show a size dependence on the radius of gyration that is expected in the transition
regime from the bulk-viscosity-dominated diffusion, with a dependence on the molecule size
similar to that for free diffusion in bulk solution, to a membrane-viscosity-dominated diffusion,
with a weaker size dependence (Figure 5.6).
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Figure 5.6: Translational and rotational diffusion of DNA random coils adsorbed to a freestanding
cationic DOPC/DOTAP 99:1 membrane. (a) Rotational diffusion coefficient DR versus radius of
gyration Rg of the DNA coil. A fit to the RKSG theory yields a membrane surface viscosity η =
(6.4 ± 1.9) × 10−10 Pa s m. (b) Translational diffusion coefficient DT versus radius of gyration Rg.
A fit to the RKSG theory yields a membrane surface viscosity η = (6.9 ± 1.2) × 10−10 Pa s m.
Temperature: 24 ◦C.

The freestanding DOPC/DOTAP 99:1 membrane, to which the DNA is attached, was
already well characterized in Section 3.2.3, and its membrane surface viscosity was found to
be η = (5.9± 0.2)× 10−10 Pa s m. The bulk viscosity of the surrounding water is also known,
µ = 0.91 × 10−3 Pa s at 24 ◦C (see Section 3.2.2, [136]). The resulting Saffman–Delbrück
length for a freestanding DOPC/DOTAP 99:1 membrane is therefore lSD = 324 nm. With
radii of gyration of order of lSD and larger, the effects of the transition from membrane-
dominated diffusion to bulk-dominated diffusion are indeed expected to be observed in this
case (see Section 1.4).
Recently, Ramachandran, Komura, Seki and Gompper (RKSG) developed a hydrodynamic-

based theory for translational diffusion and conformational dynamics of a Gaussian polymer
chain in a viscous membrane [62]. One can obtain the rotational diffusion coefficients using
their expression for the longest conformational relaxation time (see Section 1.3.2). Therefore,
it is interesting to compare rotational and translational diffusion coefficients for the relatively
flexible membrane-bound DNA molecules with the expectations of the RKSG theory.
Indeed, our experimental data are well described by the RKSG theory: a least squares

fitting of the data using the RKSG theory for rotational diffusion (Equation (1.39)) and
translational diffusion (Equation (1.38)) yields the membrane surface viscosities η = (6.4 ±
1.9) × 10−10 Pa s m and η = (6.9 ± 1.2) × 10−10 Pa s m, respectively. These membrane
viscosities are in a very good agreement with the previously determined value of η = (5.9 ±
0.2) × 10−10 Pa s m. To illustrate the influence of the membrane viscosity on the diffusion
coefficients of membrane-adsorbed polymers in the RKSG theory, additional curves for η =
3× 10−10 Pa s m and η = 9× 10−10 Pa s m are shown in Figure 5.6.
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This allows us to conclude that the RKSG theory can be successfully applied to quantita-
tively describe the translational and rotational diffusion coefficients of semiflexible polymers
which are adsorbed to a freestanding fluid lipid membrane for L/lp ratios down to 8.5. This is
a remarkable finding, as the RKSG theory is originally designed to describe flexible Gaussian-
chain polymers.
A comparison of our results for the rotational and translational diffusion coefficients of

random-coil DNA molecules on a freestanding lipid membrane (Figure 5.6) to the values for
the diffusion coefficients reported for DNA molecules of similar length but adsorbed to a
supported lipid bilayer [8, 9] shows a striking difference: λ-DNA molecules on a freestanding
lipid membrane show a ∼100 times faster translational diffusion and a ∼400 times faster
rotational diffusion than λ-DNA molecules adsorbed to a supported lipid membrane [8, 9].
This shows once again the significant differences between experiments with freestanding and
supported lipid membranes.

5.4. Brownian motion of membrane-bound semiflexible fd-virus
particles – Transition from semiflexible filament to stiff rod

We found that fd-virus particles which are adsorbed to a freestanding fluid cationic lipid
membrane with a DOPC/DOTAP 99:1 composition behave as semiflexible filaments in 2D
with the persistence of lp = 2.2±0.1 µm (see Section 5.2.2). The contour length of membrane-
bound fd-virus particles lies in the range of 0.88–9.68 µm. Therefore, L/lp ranges from 0.4 for
[fd]1 to 4.4 for the longest observed filament [fd]11 and covers the transition from a straight
stiff rod to a thermally fluctuating semiflexible filament. At the same time, the reduced
radius of gyration ε = Rg/lSD ranges from 0.8 to 8, if one assumes the membrane surface
viscosity of 5.9× 10−10 Pa s m and lSD = 324 nm. Therefore, the contour length dependence
of the diffusion coefficients of fd-virus particles should exhibit two crossovers. On the one
hand, the crossover from the membrane-dominated drag for the short filaments (L < lSD) to
bulk-controlled drag for the long filaments (L > lSD) is expected. On the other hand, the
crossover in the conformation from the stiff rod (L < lp) to semiflexible filament (L > lp) in
case L & lSD should affect the size dependence of the diffusion coefficients as well.
For membrane-adsorbed fd-virus particles we obtain the rotational diffusion coefficient DR

and the two-dimensional translational diffusion coefficient DT, and in addition the transla-
tional diffusion coefficients D‖ and D⊥ for motion parallel and perpendicular to the particle
orientation, whose difference reflects the significant anisotropy in the hydrodynamic drag
caused by the highly anisotropic shape of the fd-virus particles (Figure 5.7). The rotational
diffusion coefficient and the translational diffusion coefficients depend on the particle size ex-
pressed by its radius of gyration in a similar fashion as it was observed for membrane-bound
DNA in Section 5.3.
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Figure 5.7: Rotational and translational diffusion fd-virus particles adsorbed to a freestanding
DOPC/DOTAP 99:1 bilayer analyzed using the RKSG theory. (a) Rotational diffusion coefficient
DR versus radius of gyration Rg. Using the RKSG theory the data are best fit if the membrane sur-
face viscosity is η = 9.1 × 10−10 Pa s m. (b) Translational diffusion coefficient D‖ and D⊥ and their
arithmetic mean DT versus radius of gyration Rg. Using the RKSG theory DT is best described if the
membrane surface viscosity is η = 2.9× 10−10 Pa s m.

Given the success of the RKSG theory (see Section 1.3.2) in describing the translational
and rotational diffusion coefficients of membrane-adsorbed semiflexible random coil DNA
molecules even down to L/lp = 8.5 (Section 5.3), one can try to apply the RKSG theory to
the diffusion coefficients DR and DT obtained for the stiffer fd-virus particles as well, keeping
in mind it might not be fully applicable in this case.
The size dependence of translational and rotational diffusion coefficients of membrane-

bound fd-virus particles can be described surprisingly well using the RKSG theory. However,
the membrane surface viscosities required for the RKSG theory to quantitatively describe the
experimental data deviate from the expected value of η = 5.9 × 10−10 Pa s m (see Section
3.2.3). For rotational diffusion the quantitative description by the RKSG theory (Expression
(1.39)) requires a membrane surface viscosity η = 9.1× 10−10 Pa s m (Figure 5.7(a)), which
is by a factor of about 1.5 higher than the expected value. For translational diffusion the
quantitative description by the RKSG theory (Expression (1.39)) requires a membrane surface
viscosity η = 2.9 × 10−10 Pa s m (Figure 5.7(b)), which is by a factor of about 2 lower than
the expected value. These deviations from the expected membrane surface viscosity show
that, as expected, the RKSG theory designed for a flexible Gaussian chain does not allow
for an entirely correct quantitative description of the diffusion coefficients of stiff membrane-
adsorbed particles. However, the deviations by only a factor not exceeding 2 between the
RKSG predictions and the expectations are surprisingly small, taking into account that fd-
virus particles are by far not a flexible Gaussian polymer.
In order to test the limits of the ability of the RKSG theory to describe the behavior of

semiflexible particles adsorbed to a lipid membrane, the experimentally obtained diffusion
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Figure 5.8: Limits of the RKSG theory. (a) Rotational diffusion coefficient DR of membrane-adsorbed
fd-virus particles (blue circles) and DNA random coils (green squares) normalized by the expectations
according to RKSG for η = 5.9 × 10−10 Pa s m and plotted against the ratio of filament length L
and filament persistence length lp. (b) Translational diffusion coefficient DT of membrane-adsorbed
fd-virus particles (blue circles) and DNA random coils (green squares) normalized by the expectations
according to RKSG for η = 5.9× 10−10 Pa s m and plotted against L/lp.

coefficients DR and DT of both membrane adsorbed fd-virus particles and DNA random coils
were normalized by the predictions of RKSG for a membrane with the expected viscosity
η = 5.9 × 10−10 Pa s m and plotted versus the ratio L/lp in Figure 5.8. For the rotational
diffusion the experimental data agree with the predictions by the RKSG theory down to
L/lp ≈ 7 (Figure 5.8(a)). The translational diffusion is apparently even less sensitive to the
influence of the more rod-like conformation of the shorter filaments, and in this case the
predictions by RKSG are met down to surprisingly low ratios of L/lp ≈ 3 (Figure 5.8(b)).

In the very stiff regime, where the RKSG theory is not applicable anymore, the theories by
Levine, Liverpool and MacKintosh [63, 64] and Fischer [65, 66] for needle-like objects which
exhibit 2D Brownian motion in a thin viscous film are expected to predict the rotational
diffusion coefficients DR and the rotational diffusion coefficients parallel and perpendicular to
the particle orientation (D‖ and D⊥) for the membrane-bound fd-virus particles (see Section
1.3.2). Especially this should be the case for the two shortest fd-virus particles [fd]1 and [fd]2,
which behave as stiff rods. Both these virus particles have a contour length L considerably
shorter than the fd-virus persistence length lp = 2.2±0.1 µm. With the ratios of the filament
length to its diameter of 133 for [fd]1 and 167 for [fd]2, they match the conditions of a thin
needle-like object, assumed by the LLM and Fischer theories.

Much to our surprise, the rotational diffusion coefficient DR, as well as the translational
diffusion coefficients D‖ and D⊥ of the membrane-bound fd-virus particles can only be quan-
titatively described by the LLM and Fischer theories if their predictions for DR, D‖ and D⊥
are multiplied by a constant prefactor of about 1.5 in all cases. At the moment the reason for
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Figure 5.9: Diffusion of fd-virus particles adsorbed to a freestanding DOPC/DOTAP 99:1 bilayer
surrounded by water. (a) Ratio of translational diffusion coefficients D‖/D⊥ versus the contour length
L and theoretical expectations for different membrane surface viscosities in the stiff rod limit. (b)
Ratio of translational and rotational diffusion coefficients D‖/DR and D⊥/DR versus L and theoretical
expectations for a membrane surface viscosity η = 5.9×10−10 Pa s m in the stiff rod limit. Because no
closed-form theoretical expression for the diffusion coefficients of stiff rods of arbitrary length is given,
the curves according to LLM were digitized from figures in reference [64].

this is unclear.
Therefore, the ratiosD‖/D⊥ as well asD‖/DR andD⊥/DR are investigated in the following,

as a constant prefactor is canceled out in these ratios.
The LLM and Fischer theories predict a progressively growing difference between D‖ and

D⊥ with growing filament length (see Section 1.3.2).
Indeed, a growing difference between D‖ and D⊥ with growing virus length and thus the

growth of the ratio D‖/D⊥ is observed for membrane-bound virus particles [fd]1 up to [fd]4
(Figure 5.9(a)). The value of the ratio perfectly matches the theoretical predictions by LLM
up to L/lp . 2, if a membrane with the surface viscosity of 5.9 × 10−10 Pa s m is assumed,
as indicated by the solid curve in Figure 5.9(a). To illustrate how a different membrane
viscosity is expected to change the values of the ratio D‖/D⊥, the corresponding curves for
η = 3 × 10−10 Pa s m and η = 9 × 10−10 Pa s m are shown in Figure 5.9(a) as well. With
stronger deviations from the stiff-rod conformation for longer filaments, the ratio deviates
from the expectations for a stiff rod and stays around a constant value of approximately two.
When the ratios of the lateral diffusion coefficients and the rotational diffusion coef-

ficient, D‖/DR and D⊥/DR, are investigated (Figure 5.9(b)) one observes that at η =
5.9 × 10−10 Pa s m the behavior of the shortest virus [fd]1 is well described by the LLM
theory, but the experimental data start to deviate from the theoretical expectations already
for [fd]2, i. e. earlier then for the translational diffusion coefficients. This again points to
a higher sensitivity of the rotational diffusion to the conformation of a particle compared to
the translational diffusion. This also means that the LLM theory as applied to the rotational
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Figure 5.10: Rotational and translational diffusion fd-virus particles adsorbed to a freestanding
DOPC/DOTAP 99:1 bilayer analyzed using the HPW PS theory. (a) Rotational diffusion coefficient
DR versus radius of gyration Rg. Using the HPW PS theory the data are best fit if the membrane
surface viscosity is η = (6.3 ± 0.7) × 10−10 Pa s m. (b) Translational diffusion coefficient D‖ and
D⊥ and their arithmetic mean DT versus radius of gyration Rg. Using the HPW theory D⊥ is best
described if the membrane surface viscosity is η = (6.5± 1.1)× 10−10 Pa s m.

diffusion is only applicable for L/lp . 0.4.

The rotational and translational diffusion coefficients of fd-virus particles adsorbed to a
freestanding cationic membrane, cannot be quantitatively described over the complete range
of particle sizes by either the theories by LLM and Fischer for a stiff rod or by the RKSG
theory for a flexible 2D Gaussian chain. However, a transition from the membrane-dominated
diffusion to bulk-dominated diffusion with growing fd-virus lengths is clearly observed.
In Section 1.3.2 it was discussed that for both asymptotics ε� 1 and ε� 1 the rotational

diffusion of stiff straight rods and Gaussian chain polymers can be described by the Hughes,
Pailthorpe and White theory [53] for a cylindrical membrane inclusion of radius a, which
deviate only by about 20 % from the radius of gyration of the respective filaments: in the rigid
rod limit a ≈ 1.2Rg, and in the Gaussian chain limit a ≈ 0.9Rg. For this reason the transition
region from a stiff rod to a Gaussian chain may be well described by the HPW theory for a
rigid disk-like particle with the characteristic size 0.9Rg < a < 1.2Rg. Therefore, for simplicity
we can choose a = Rg. Making use of the closed-from approximation for the rotational HPW
theory [55] (Expression (1.18), HPW PS) one finds that the rotational diffusion of fd-virus
filaments adsorbed to a freestanding cationic membrane is indeed well described by this theory
(Figure 5.10(a)). A least squares fit yields η = (6.2± 0.7)× 10−10 Pa s m, which is in perfect
agreement with the expected value of (5.9± 0.2)× 10−10 Pa s m.
A similar argument can be made for the translational diffusion coefficient D⊥ for motion

perpendicular to the long axis of the filament. According to the results of the LLM and
Fischer theories, it can be described by rescaling the expressions of the HPW theory (see
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Figure 5.11: Limits of the HPW theory. (a) Rotational diffusion coefficientDR of membrane-adsorbed
fd-virus particles (blue circles) and DNA random coils (green squares) normalized by the expectations
according to HPW PS for η = 5.9 × 10−10 Pa s m and plotted against the ratio of contour length
L and filament persistence length lp. (b) Translational diffusion coefficient perpendicular to the long
axis of the filament D⊥ of membrane-adsorbed fd-virus particles (blue circles) and DNA random coils
(green squares) normalized by the expectations according to HPW PS for η = 5.9× 10−10 Pa s m and
plotted against L/lp.

Section 1.3.2).2 Indeed, D⊥ of membrane-adsorbed fd-virus is reasonably well described by
the closed-form approximation of the translational HPW theory [54] (Expression (1.16), HPW
PS) and the fit yields η = (6.5± 1.1)× 10−10 Pa s m. However, it appears that the diffusion
coefficients of the shortest fd filaments are slightly underestimated and for the longest fd
filaments are slightly overestimated by the HPW theory.
In order to test the limits of the ability of the HPW theory with a = Rg to describe the

diffusion of semiflexible particles adsorbed to a lipid membrane, the experimentally obtained
diffusion coefficients DR and D⊥ of both membrane adsorbed fd-virus particles and DNA
random coils were normalized by the predictions of HPW PS for a membrane with the expected
viscosity η = 5.9× 10−10 Pa s m and plotted versus the ratio L/lp in Figure 5.11.
The rotational diffusion coefficients of membrane-adsorbed semiflexible particles are well

described by the HPW PS theory within a broad range of L/lp, which includes the rotational
diffusion coefficients of all observed fd-virus particles. Only at L/lp & 8 the rotational diffusion
coefficients obtained for membrane-adsorbed DNA molecules deviate systematically from the
theoretical predictions according to HPW PS (Figure 5.11(a)).
For the translational diffusion coefficients D⊥ of membrane-adsorbed semiflexible particles

we find that the HPW PS theory is able to describe well the translational diffusion for 0.8 .

L/lp . 3 and for L/lp & 30, but shows considerable deviations outside these ranges (Figure
5.11(b)).
In essence, our results for diffusion of membrane-attached semiflexible particles and the

2This is not the case for the translational diffusion coefficient D‖ for motion parallel to the particle orientation,
which scales differently than the HPW theory in case ε� 1 (see Section 1.3.2).
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discussion of the hydrodynamics-based theories in Section 1.3.2 show that rotational diffusion
coefficient and the translational diffusion coefficient for motion perpendicular to the particle
orientation can be successfully predicted by the HPW theory for cylindrical membrane inclu-
sions with a characteristic size that is approximately equal to the radius of gyration of the
particle.

5.5. Conclusion

To conclude, we find that DNA macromolecules and fd-virus particles adsorbed to a free-
standing cationic membrane with low cationic lipid content (DOPC/DOTAP 99:1) behave
as semiflexible filaments in 2D with a persistence length of 260 nm in case of DNA, and 2.2
µm in case of fd-virus particles. The results obtained for DNA are successfully explained by
strong electrostatic interactions which significantly stiffen DNA molecules adsorbed to the
freestanding membrane with low charge density.
We find that membrane-adsorbed DNA molecules and fd-virus particles show a diffusion

behavior which is influenced by the viscous membrane in agreement with the hydrodynamics-
based theories which describe the diffusion of membrane inclusions. For a quantitative de-
scription of the rotational and translational diffusion coefficients of the semiflexible DNA
molecules and fd-virus particles, which are electrostatically adsorbed to a freestanding cationic
DOPC/DOTAP 99:1 bilayer, we test the applicability of hydrodynamics-based theories.
The RKSG theory [62], which was developed for a 2D Gaussian polymer chain in a mem-

brane, can correctly predict the translational diffusion coefficients of filamentous semiflexible
particles adsorbed to a membrane for L/lp & 3. Rotational diffusion was found to be more
sensitive to the particle conformation, and in this case the applicability range of the RKSG
theory shifts to longer contour lengths L/lp & 7.
The LLM [63, 64] and Fischer [65, 66] theories, which were developed for stiff rods in a thin

viscous membrane, can predict the ratio of the translational diffusion coefficients for motion
parallel and perpendicular to the membrane-adsorbed semiflexible particle for L/lp . 1.5
and the ratios of the translational diffusion coefficients and the rotational diffusion coefficient
for L/lp . 0.4. However, these theories fail to predict the absolute values of the diffusion
coefficients unless their predictions for the diffusion coefficients are multiplied by a constant
prefactor of about 1.5.
Remarkably, the HPW PS theory for a disk-shaped solid membrane inclusion with the

characteristic size equal to the radius of gyration of the particle is able to predict the rota-
tional diffusion coefficients of semiflexible particles in the range of L/lp ≈ 0.4–4.4 and the
translational diffusion coefficients for motion perpendicular to the filament in the range of
L/lp ≈ 0.8–3 and L/lp & 30.
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A.1. Simulation of image acquisition for diffusion of fd-virus
particles

When evaluating the translational diffusion coefficients obtained in the experiment of
membrane-adsorbed fd-virus particles, a problematic deviation of nearly five percent from
the expectations in the ratio (D̂‖ + D̂⊥)/(2DT) = 1 was found for the shortest and thus
fastest moving [fd]1 virus (Figure A.1(a)). By definition, the translational diffusion coefficient
DT obtained from the analysis of the MSD of two-dimensional diffusion of the center of mass
must be equal to the arithmetic mean of the diffusion coefficients D̂‖ and D̂⊥ obtained from
the analysis of the diffusion parallel and perpendicular to the long axis of the elongated par-
ticle in its own system of coordinates (for details see Section 2.4.7). A systematic deviation
from this relation points to a problem in the determination of at least one of the translational
diffusion coefficients mentioned above.
At this point the reader shall be reminded of the fact that a deviation of the experimentally

determined values of D̂‖ and D̂⊥ from the diffusion coefficients D‖ and D⊥, which reflect
the correct anisotropy in the drag for translational motion parallel and perpendicular to the
elongated particle, is expected if the time interval between the consecutive images ∆t is of
order of or larger than 1/DR. The reason for that is found in a change of orientation for fast
rotating particles between consecutive recorded images. This is discussed in detail in Section
2.4.7 and can be accounted for by a suitable correction, if DT, DR and the frame time ∆t are
known. However, the arithmetic mean of D‖ and D⊥, as well as D̂‖ and D̂⊥ must always be
equal to DT irrespectively of wether the correction is introduced or not.
Notice that all the above reasoning is developed for the situation corresponding to the

infinitely short image acquisition time, when the motion blur of the object does not play
any role. It was concluded that most likely, the problem resided in a combination of a finite
exposure time and fast motion of the [fd]1 particles. To verify this, a series of simulations was
carried out. Movies of fd-virus monomers, dimers and trimers with the respective filament
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Figure A.1: Simulation of the diffusion of membrane-adsorbed fd-viruses and comparison to experi-
ment in order to investigate potential systematic errors in the determination of diffusion coefficients.
(a) Ratio (D̂‖ + D̂⊥)/(2DT) plotted versus DR for diffusion coefficients obtained from experiments.
(b)–(f) Ratio of diffusion coefficients from the analysis of simulated movies of [fd]1, [fd]2 and [fd]3 with
diffusion coefficients and properties similar to those obtained in the experiment. Frame time ∆t = 32
ms. Simulated image acquisition time 30 ms. (g) Typical simulated images of [fd]1, [fd]2 and [fd]3.

length, diffusion coefficients, lateral resolution and time resolution as in the experiment were
created. For every particle length 100 movies each consisting of 1000 images were simulated
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and analyzed.
If the image acquisition time was not accounted for in the simulations, which means no

motion blur was introduced, the relationship (D̂‖ + D̂⊥)/(2DT) = 1 was recovered correctly,
with the expected deviations of D̂‖ and D̂⊥ from Dsim

‖ and Dsim
⊥ (similar to Figure 2.16(b) in

Section 2.4.7).
A different picture was obtained if a finite image acquisition time of 30 ms, similar to the one

used in our experiments, was included in the simulations. Illustrative examples of simulated
images for [fd]1, [fd]2 and [fd]3 with motion blur due to the image acquisition time are shown
in Figure A.1(g). In this case, the ratio of the obtained translational diffusion coefficients
(D̂‖ + D̂⊥)/(2DT) shows the same systematic deviation for the fast rotating monomer as in
the experiment (see Figure A.1(b)).
A more detailed investigation of the analyzed simulation data reveals that the two-

dimensional translational diffusion coefficient Dsim
T and the rotational diffusion coefficient

Dsim
R are recovered correctly for all considered virus lengths (Figure A.1(c,d)).
Surprisingly, also the obtained perpendicular diffusion coefficient D̂⊥ matches the value of

the simulated diffusion coefficient Dsim
⊥ (Figure A.1(e)). In fact, a 13 % larger value of D̂⊥

compared to Dsim
⊥ is expected according to Equation (2.40) for [fd]1 with the given diffusion

coefficients Dsim
⊥ = 0.6 µm2/s, Dsim

‖ = 1.15 µm2/s, Dsim
R = 5.3 rad2/s and a frame time

∆t = 32 ms. This means that D̂⊥ is underestimated as a result of the presence of the motion
blur. In this case, applying the correction according to Equation (2.41), which assumes
infinitely short image acquisition times, would result in a large systematic error of about 10
% for D⊥.
The determined values of D̂‖, on the other hand, agree well with the expected deviations

from Dsim
‖ due to rotation and limited time resolution (Figure A.1(e)).

An ad-hoc solution to the problem with the diffsuion data of the [fd]1 particles is to assume
D⊥ = D̂⊥ without any correction. This assumption is backed by the simulation of fd-virus
diffusion and holds within a less than 2 % error, when employing the relevant experimental
conditions (Figure A.1(e)). With the known D⊥ and DT, one can calculate D‖ using the
relation D‖ = 2DT −D⊥.





List of Abbreviations

A adenine

AFM atomic force microscopy

AOTF acousto-optic tunable filter

ATP adenosine-5’-triphosphate

BLB black lipid bilayer

C cytosine

CCD charge-coupled device

COI center of intensity

dd-H2O double distilled water

DiD 1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine

DMTAP 1,2-dimyristoyl-3-trime-thylammonium-propane

DNA deoxyribonucleic acid

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane

ds-DNA double-stranded DNA

DSPC 1,2-Distearoyl-sn-glycero-3-phosphocholine

EDOPC 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine

EMCCD electron-multiplying charge-coupled device

FWHM full width at half maximum
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112 Abbreviations

G guanine

GUV giant unilamellar vesicles

HPW Hughes, Pailthorpe and White; hydrodynamic theory for cylindrical membrane
inclusions

HPW PS Petrov and Schwille; closed-form approximation of HPW theory

IQR interquartile range

ITO indium-tin oxide

LLM Levine, Liverpool and MacKintosh; hydrodynamic theory for needle-like mem-
brane inclusions

LUV large unilamellar vesicles

MSD mean squared displacement

PBS phosphate buffered saline

PS phosphatidylserine

PSF point spread function

RKSG Ramachandran, Komura, Seki and Gompper; hydrodynamic theory for Gaussian
chain membrane inclusions

ROI region of interest

SD Saffman and Delbrück

SGUV supergiant unilamellar vesicles

SLB supported lipid bilayer

SUV small unilamellar vesicles

T thymine

TAP cationic trimethylammoniumpropane

TEM transmission electron microscopy

TIRF total internal reflection fluorescence

WLC worm like chain
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