
Discrete Fractional Clock Generation for
Systems-on-FPGA

Thomas B. Preußer
Steffen Köhler

Institut für Technische Informatik

TUD-FI05-07 Juni 2005

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Discrete Fractional Clock Generation for
Systems-on-FPGA

Thomas B. Preußer and Steffen Köhler

Dresden University of Technology, Dresden, Germany
{preusser,stk}@ite.inf.tu-dresden.de

Abstract. This article describes an inexpensive way of clock generation for
FPGA-based circuit cores, which reduces the number of external clock sources
and eases synchronization problems. We introduce a modified version of the
BRESENHAM line drawing algorithm and use it outside its original application
domain for the rational division of clocks. An optimized hardware design for
BRESENHAM-based clock division is presented and the quality of its output is
evaluated. The optimal initialization conditions in terms of phase shift and jit-
ter are identified and formally proven. Finally, the complexity characteristics of
a generic synthesizable VHDL design based on this algorithm are examined and
verified by synthesis examples. Special attention is paid to implementation results
in conjunction with different FPGA families.

Keywords
BRESENHAM Algorithm, Clock Division

1 Introduction

In a system-on-FPGA [Alte] consisting of several circuit cores, it is not uncommon for
each core to have its own clocking requirements. This is especially true for peripheral
interface cores as their clock frequencies are often tailored to application-specific crite-
ria, such as data rates or sampling intervals. In the past, external clock generator circuits
have been applied to fulfill the requirement for a flexible circuit clocking. One major
drawback of this approach that introduces new clock domains is the requirement of ex-
pensive cross-clock-domain FIFO cores for synchronization reasons. To overcome this,
the circuit clocks can be derived from the system clock. Maximum clock accuracy in
terms of phase jitter as well as low FPGA resource consumption can be assured through
the implementation of a fractional clock divider using the BRESENHAM algorithm. Ad-
ditionally, external clock generator circuits are no longer required.

The BRESENHAM algorithm is an ubiquitous algorithm in computer graphics as it
provides a fast incremental interpolation scheme originally used for line plotting. Its
major advantages are the elimination of expensive multiplications and divisions as well
as the numerical scaling to integer-only arithmetic. The first implementation of this
algorithm is due to Jack E. BRESENHAM and was written for an IBM 1401 controlling
a plotter [Bre65].

1

f l o a t c o n s t m = (y1−y0) / (x1−x0) ; / / s l o p e o f l i n e

i n t y = y0 ; / / i n i t i a l i z i n g y a c c u m u l a t i o n
f l o a t e = 0 ; / / c u r r e n t (s t i l l f r a c t i o n a l) y−e r r o r
f o r (i n t x = x0 ; x <= x1 ; x ++) {

p u t P i x e l (x , y) ; / / p u t c u r r e n t p i x e l
e += m; / / y−i n c r e m e n t f o r a u n i t x−s t e p
i f (e > 0 . 5) { / / would n e x t y−p i x e l be c l o s e r ?

e −= 1 . 0 ;
y ++;

}
}

Listing 1: Basic BRESENHAM Algorithm

Establishing a universal interpolation scheme, the algorithmic idea behind the BRE-
SENHAM algorithm is easily generalized to other domains beyond computer graphics.
In particular, this algorithm can be applied for synthetic clock division. It enables the
generation of any clock representable as a rational fraction of a reference clock with a
minimum phase jitter according to the resolution of the reference.

This article revises the BRESENHAM algorithm in its original context for line plot-
ting. It will then generalize this approach to the implementation of synthetic clock di-
vision and identify optimization potential arising in this domain of application. The
initialization condition for an optimal approximation of the desired clock division will
be presented and proven. The paper will close with the presentation of synthesis results
obtained for a choice of FPGA architectures from a generic synthesizable VHDL model
for the BRESENHAM clock divider.

2 Algorithm Fundamentals

The original application domain of the BRESENHAM algorithm is the approximate plot-
ting of straight lines on rastered devices. FPGA-accelerated rendering for desktop pub-
lishing utilizing the BRESENHAM algorithm has already been evaluated, e.g. in [MS98].

Given the coordinates of the start and end points of the line to be drawn, (x0, y0)
and (x1, y1), respectively, the coordinate growing faster for this line must be determined
first as to ensure a connected plot. Without loss of generality, assume x to be the faster
growing coordinate. Further, let, for the purpose of illustration, x0 ≤ x1 and y0 ≤ y1

such that all increments while iterating from the start to the end point of the line become
non-negative.

The pixels to color as part of the line to be plotted are now chosen as follows: A
variable x is iterated over the pixel coordinates x0 through x1. Doing so a variable y
initialized to y0 is only incremented when the deviation from the ideal, usually frac-
tional, y position is thereby reduced. By further calculating the error of the current y

position incrementally, all multiplication, division and rounding operations as implied

2

i n t c o n s t dx2 = 2∗ (x1 − x0) ;
i n t c o n s t dy2 = 2∗ (y1 − y0) ;

i n t y = y0 ; / / i n i t i a l i z i n g y a c c u m u l a t i o n
i n t e = x1 − x0 ;
f o r (i n t x = x0 ; x <= x1 ; x ++) {

p u t P i x e l (x , y) ; / / p u t c u r r e n t p i x e l
e += dy2 ;
i f (e > dx2) { / / would n e x t y−p i x e l be c l o s e r ?

e −= dx2 ;
y ++;

}
}

Listing 2: Integer-only BRESENHAM for Line Drawing

by the equation of the ideal line are eliminated in favor of incremental calculations. The
resulting algorithm can then be stated as in listing 1.

Further shifting the accumulated error e up by one half eliminates negative error
values, and scaling e and the slope m by 2 · dx = 2(x1 − x0) results in integer-only
arithmetic as illustrated in listing 2.

Finally, it should be noted that the BRESENHAM algorithm for line drawing utilizes
three state variables. x holds the current x coordinate during the iteration through the
relevant grid points, y and e together represent the corresponding exact y coordinate
where y holds the approximation of the plotted pixel.

3 Clock Division

As already mentioned, the BRESENHAM algorithm can be modified for the rational
division of clocks. To achieve this, the iteration overx is replaced by an endless loop and
only the parity (being odd or even) of y is used to determine the state of the generated
divided clock. Thus, one loop iteration – now without an x increment – represents one
cycle of the input clock whereas two increments of y represent a complete cycle of the
divided clock. Consequently, the requirement of y to be the coordinate growing more
slowly translates to the restriction that the generated clock can have at most half the
frequency of the input clock.

There are a few opportunities for the optimization of the original algorithm in the
context of clock division. In particular, the state variable x is fully eliminated and the
variable y is reduced to a single bit being alternated instead of incremented. Addi-
tionally, the inputs to the algorithm are no longer start and end points of a line but
enumerator and denominator of the fraction P

Q
the input clock is scaled by.

As will be discussed later, the initial value of the accumulated error e is not critical
for the periodic behavior of the generated clock signal. Thus, an initial even value may
be assumed. Noting that the inner loop of the algorithm only applies additive manipu-
lation by even values to e allows for a scaling of all involved values in half. Recalling

3

outC

Cin e

neg

01

T

2P 2P−Q

+ +

MUX

Fig. 1. BRESENHAM Clock Division

that two increments of y are required for a complete cycle of the output clock, 2 · dy

is scaled down to dy and substituted by 2 · P whereas 2 · dx is scaled down to dx and
substituted by Q. The resulting algorithm can then be cast into structure as depicted in
figure 1.

It should be noted that synthesizing this structure for a known fraction P
Q

yields fur-
ther potential for optimization. Arithmetic compaction of the constant adders is easily
performed by modern synthesis tools. Another minor reduction in hardware complexity
can be achieved when the parity of Q is taken into account. If Q is even, the lowest
significant bit of e and all the intermediate arithmetic will never change and can be
eliminated. Otherwise, if Q is odd, this bit will only toggle when Q is actually sub-
tracted and the output clock can thus be directly derived from the lowest significant bit
of e.

Although the algorithm works for any naturals P and Q as long as 2 · P ≤ Q,
it is advisable to ensure that P and Q have no common factor. Dividing both input
parameters by their greatest common factor gcf(P, Q) results in an equivalent output
behavior but is likely to reduce the generated logic. Most synthesizers will only be
capable of performing this reduction when the common factor is a power of two and
can thus easily be identified by constant lowest significant bits within the logic.

Assuming P and Q are free from common factors, the initialization condition in-
herited from the line drawing algorithm for the e register can be relaxed. The addition
of 2P and conditional subtraction of Q is easily identified as addition modulo Q. When
Q is odd, 2P and Q are free from common factors since P and Q are. Consequently,
the subsequent addition of 2P (mod Q) will cycle the remainder held in e through
all Q naturals in [0, Q). Likewise, e will cycle through all Q

2 even or odd naturals in
[0, Q) when Q is even – never touching the least significant bit. As a consequence, the
initial value of e does not matter in terms of the periodic behavior of the approximated
generated clock.

The BRESENHAM clock division ensures that there is no long-term phase drift as the
phase error is accumulated to zero over Q

gcf(Q,2P) cycles. During such a cycle, however,

4

Stage

0 1 2 3 4 5 6 7 8 9 10 11

Output Clock

Input Clock

Ideal Output

Time

cin

cout

0 1 2 3 4 5 6 7

Fig. 2. Waveform for Clock Scaling by 4

11

some jitter is incurred on the output clock as its edges are merely approximated at edges
of the input clock. It is thus vital to evaluate the quality of the generated clock signal.

From the previous discussion, the periodic behavior of the clock division is in-
dependent from the choice of the initial value of e. So assume e to be initialized to
einit = Q−P . Further, let a single cycle of the input clock serve as a time unit and call
a run of subsequent zeros or ones on the output clock a stage. Let the first stage num-
bered 0 begin at time t = 0 on a rising edge of the input clock. Any transition thereafter
on the output clock will start a new stage. It is now proven that any edge generated for
the output clock occurs at its ideal edge position rounded to the closest edge of the input
clock. The situation is illustrated for a 4

11 scaling in figure 2.
For determining the edges of the generated clock, note that e is loaded with the

value ei = (2i + 1) · P (mod Q) at time i. The number of the corresponding stage
is determined by counting the edges of the output clock since time t = 0. As an edge
is generated if and only if the addition of 2P modulo Q wraps, the stage number σi is
determined as:

σi =

⌊

(2i + 1) · P

Q

⌋

Substituting f := 2P
Q

with rational 0 < f ≤ 1 (from 2P ≤ Q) yields:

σi =

⌊(

i +
1

2

)

f

⌋

An edge occurs at time i if and only if a new stage is started, i.e.:

1 = σi − σi−1

=
⌊(

i + 1
2

)

f
⌋

−
⌊(

i − 1
2

)

f
⌋

⇔ ∃n ∈ N.
(

i − 1
2

)

f < n ≤
(

i + 1
2

)

f

i − 1
2 < n

f
≤ i + 1

2
n
f
− 1

2 ≤ i < n
f

+ 1
2

⇔ i =
⌈

n
f
− 1

2

⌉

=
⌈

n · Q

2P
− 1

2

⌉

= roundhalves down

(

n · Q

2P

)

5

cin

cout
e = P0

e = P0

e =0
Q
2

0 1 2 3 4 5 6 7 8 9 10 11

Output Clock
Input Clock

Ideal Output

Time

Points of same Phase
Differing Edge
Approximation

Fig. 3. Initialization and Phase Correspondence

(∗)

The times of the edges of the ideal output clocks are given by n · Q
2P

for naturals
n. Thus, it follows from (∗) that the actually generated clock is optimal in terms of the
resolution of the available input clock. The deviation of the generated edges from their
optimal point in time is bounded by half a cycle of the input clock.

It should be recalled that the derivation of (∗) used the assumption that e be ini-
tialized to Q − P . As discussed before, using any other initial value will produce the
same periodic behavior and thus the same relative jitter of the generated clock signal.
Other initial values will, however, yield clock signals that are usually only optimal in
the above sense for a different phase.

Consider figure 3 contrasting initializations of e to Q − P and
⌊

Q

2

⌋

− 2P for

the previous example scaling the input by 4
11 . These cases are distinguished by their

accumulated errors e0 in stage 0. The second is chosen such that e0 =
⌊

Q

2

⌋

, the initial
value corresponding to the line drawing algorithm as illustrated immediately below the
waveform. It should be noted that in this case, each edge of the generated output clock
corresponds to an increment of the y-coordinate.

So far, it has been silently assumed that the initial state of the output clock is cout =
0. As the BRESENHAM algorithm is merely used to determine the times of the clock
edges, this assumption is arbitrary. In fact, one of the examples given in figure 3 must
be viewed inverted to make the phase difference of the BRESENHAM edge generation
correspond directly to a phase difference of the clock signals.

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

R
eq

ui
re

d
Lo

gi
c

C
el

ls

ld Q

Stratix (EP1S80B956C6)
Stratix (linear approximation: y = 2.54*x)
Cyclone II (EP2C50F484C6)
Cyclone II (linear approximation: y = 2.39*x)
Flex10K (EPF10K20RC240-3)
Flex10K (linear approximation: y = 2.83*x)

Fig. 4. Complexity of Synthesis Results

There might arise the question why the optimum initialization is different for the
line drawing and the clock division applications. The resulting difference is exemplified
by the different approximation of the ideal clock edge between times t = 9 and t = 10.
For line drawing, t = 9 is chosen as it is closer to the following ideal edge than to the
preceding one. For clock generation, t = 10 is chosen as this is the closest approximate
available.

Finally, it should be noted that the bound on the deviation of each individual output
edge immediately implies that the difference of the output stages in duration can be at
most one cycle of the input clock. This property is used in the AnyClockTM chips by
Micrel [Mic]. They apply a BRESENHAM-based approach to switch between appropri-
ate 1

N
and 1

N−1 divisions to approximate a clock division by a rational between N − 1
and N .

4 Design Synthesis

The described BRESENHAM algorithm for clock division has been implemented by a
generic synthesizable VHDL model. All optimizations identified for this application
domain have been utilized. Assuming linear complexities for the two constant adders,
the 2:1 multiplexer as well as the e register, the complexity of the BRESENHAM clock
divider also grows linearly with the number of binary digits required for the represen-
tation of Q.

The VHDL design has been synthesized for different Altera FPGA architectures
[Altd,Alta,Altb] by the Quartus II design software, version 4.2. The synthesis results
are summarized in figure 4 confirming the anticipated linear dependency of the design

7

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

M
ax

im
um

 F
re

qu
en

cy
 [M

H
z]

ld Q

Stratix (EP1S80B956C6)
Stratix Maximum Frequency
Cyclone II (EP2C50F484C6)
Cyclone II Maximum Frequency
Flex10K (EPF10K20RC240-3)
Flex10K Maximum Frequency

Fig. 5. Maximum Frequencies of Designs

complexity of the bitwidth of Q. The results shown were obtained for Q = q

gcf(p,q)
and

P = p

gcf(p,q)
where q = 2 ∗ 3 ∗ 7 ∗ 17 ∗ 33 = 23562 and p is one of the elementwise

products of {1, 5, 19, 97} × P{2, 3, 7, 17, 33} with P identifying the power set. Note
that the x-axis in figure 4 does not represent the exact bit width of Q but the dual
logarithm of Q.

It can be observed that the design complexity in terms of logic cells is approximately
3 · ld Q. This factor is achieved as multiplexer and e register can be implemented inside
the same set of logic cells. In some cases for the Cyclone II and Stratix devices, the
synthesizer even managed to integrate one of the adders with the multiplexer and e reg-
ister by utilizing a synchronous load signal to selectively load the local or the external
addition result from the other adder. Thus, the design complexity is occasionally only
of the order 2 · ld Q.

The overall linear trend is interrupted by an upwards step at a bit width of 4. This
is likely due to the fact that the logic cells of the considered FPGAs support up to
four distinct inputs. The other derivations from the linear complexity dependency are
primarily due to simplifications possible by using constant parameters. Furthermore,
ld Q is just an approximate of Q’s bit width, which must be integer and thus is usually
slightly larger.

Figure 5 displays the maximum frequencies of the input clocks achieved for the
BRESENHAM dividers for the same selection of parameters as above. For small bit
widths, this frequency regularly coincides with the maximum frequency the device itself
supports. The performance deterioration on the Stratix and Flex10K devices becomes
apparent already at a bit width of 4 whereas the Cyclone II device is further driven at

8

its limit. Altogether, input clock frequencies well above 100 MHz are supported except
for the older Flex10K device family.

5 Conclusions

This paper explored the adaptation of the BRESENHAM line drawing algorithm for ratio-
nal clock division. The optimality of this adaptation in terms of the error of the approx-
imated generated clock edges has been proven. The linear dependency of the structural
complexity from the bit width of the fractional denominator has been justified and veri-
fied by several synthesis examples. Compared to available non-binary clock generation
concepts (e.g. NCO [Altc]), the BRESENHAM approach is especially advantageous in
terms of logic cell consumption and achievable reference clock frequency. The encap-
sulation of the rational clock divider into a parameterizable IP core will be a subject of
further investigations.

References

[Alta] Altera Corp., 101 Innovation Drive, San José, CA 95134, USA. Cyclone II Device Family
Data Sheet. http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1 01.pdf.

[Altb] Altera Corp., 101 Innovation Drive, San José, CA 95134, USA. Flex 10K Embedded
Programmable Logic Device Family. http://www.altera.com/literature/ds/dsf10k.pdf.

[Altc] Altera Corp., 101 Innovation Drive, San José, CA 95134, USA. The NCO Compiler
V2.2.0.
http://www.altera.com/products/ip/dsp/signal generation/m-alt-ncocompiler.html.

[Altd] Altera Corp., 101 Innovation Drive, San José, CA 95134, USA. Stratix Device Handbook.
http://www.altera.com/literature/hb/stx/stratix handbook.pdf.

[Alte] Altium Ltd., 12A Rodborough Rd, Frenchs Forest NSW 2086, Australia. System-on-
FPGA. http://www.qa-talk.com/news/alt/alt107.html.

[Bre65] Jack E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, Vol. 4(No. 1):Pages 25 – 30, 1965.

[Mic] Micrel, Inc., 1849 Fortune Drive, San José, CA 95131, USA. 3.3V AnyClockTM Frac-
tional N Synthesizer. http://www.micrel.com/ PDF/HBW/sy87729l.pdf.

[MS98] Donald MacVicar and Satnam Singh. Accelerating dtp with reconfigurable comput-
ing engines. In FPL ’98: Proceedings of the 8th International Workshop on Field-
Programmable Logic and Applications, From FPGAs to Computing Paradigm, pages
391–395. Springer-Verlag, 1998.

9

