
Background of the Analysis of a
Fully-Scalable

Digital Fractional Clock Divider

Thomas B. Preußer

Institut für Technische Informatik

TUD-FI06-03 September 2006

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Background of the Analysis of a
Fully-Scalable Digital Fractional Clock Divider

Thomas B. Preußer Technische Universität Dresden, Germany
Email: preusser@ite.inf.tu-dresden.de

Abstract— It was previously shown [1] that the BRE-
SENHAM algorithm [2] is well-suited for digital fractional
clock generation. Specifically, it proved to be the optimal
approximation of a desired clock in terms of the switching
edges provided by an available reference clock. Moreover,
some synthesis results for hardwired dividers on Altera
FPGAs showed that this technique for clock division
achieves a high performance often at or close to the
maximum frequency supported by the devices for moderate
bit widths of up to 16 bits.

This paper extends the investigations on the clock
division by the BRESENHAM algorithm. It draws out the
limits encountered by the existing implementation for both
FPGA and VLSI realizations. A rather unconventional
adoption of the carry-save representation combined with a
soft-threshold comparison is proposed to circumvent these
limitations. The resulting design is described and evaluated.
Mathematically appealing results on the quality of the
approximation achieved by this approach are presented.
The underlying proofs and technical details are provided
in the appendix.

I. INTRODUCTION

The BRESENHAM algorithm [2] is a long-known
algorithm for the generation of plots of straight lines.
It is the simplest and most fundamental representative
of a class of incremental algorithms used for the effi-
cient calculation of plots of curves on rastered devices
based solely on fixed-point arithmetic. Others include
the generation of plots for cyclic arcs [4] and elliptic
curves [5].

The application of a hardware implementation of the
BRESENHAM algorithm for fractional clock generation
is mentioned in [6]. It is formally proven to be the
optimal approximation of the desired clock in terms of
the switching edges provided by an available reference
clock in [1]. Latter work showed that a very straightfor-
ward implementation of a hardwired BRESENHAM clock
divider performs well for moderate bit widths of up to
16 bits on current FPGA hardware. This paper extends
on this work by showing the performance bounds of the
direct implementation and by proposing an approach that

Part of this work has been originally published in [3] copyrighted
to and available from IEEE. Permissions for sale or commercial
reproduction of this work are not granted.

neg

01

+ +

MUX

T Q

2P 2P−Q

cin e

cout

Fig. 1. Basic BRESENHAM Clock Division

trades some approximation quality for ideal scalability.
It is shown that the incurred quality loss is fairly small
and is not even present at all for most dividing fractions.

In the remainder of this paper: Sec. II reviews the
BRESENHAM algorithm in the context of discrete frac-
tional clock division. Sec. III proposes a design based
on carry-save arithmetic and soft-threshold comparison.
Its simulation and results about the quality of its gen-
erated clock are presented in Sec. IV. Sec. V concludes
the paper and recapitulates the observations and open
mathematical questions. The appendix, finally, contains
the lengthier proofs for lemmas used in the paper as
well as the source code for the simulative design quality
evaluation.

II. REVIEW OF BRESENHAM CLOCK DIVISION

The hardware design proposed in [1] to implement
the BRESENHAM clock division is reproduced in Fig. 1.
The frequency of the generated clock is fout = P

Q
fin.

The output clock is free of any long-term phase drift.
The initialization e = Q − P was used in [1] to prove
that the approximation of the ideal clock obtained by this
design is optimal. All other initializations were shown
to differ from this result merely in phase.

In [1] a few synthesis results for hardwired FPGA
implementations were presented. The design is, however,
equally applicable for a programmable VLSI block sim-
ply by turning the constant inputs 2P and 2P −Q into
configuration registers.

2 Background of the Analysis of a

For the further discussion, we will somewhat depart
from the special case of clock division, which causes
the appearance of 2P due to the need to generate two
edges for each complete clock cycle of the output clock.
In a more general discussion, p and q shall thus be used,
which satisfy p = 2P and q = Q for the clock division.
Recall the requirement q ≥ p that carries over from the
original line drawing application.

The operation implemented by each iteration is the
addition of p modulo q so that e iterates through re-
mainder classes of q using representatives from [0, q).
This choice certainly minimizes the bit width used in
the design but is nevertheless arbitrary. In fact, a whole
adder can be eliminated if the case when p−q instead of
p is to be added – call it the modulo event – is identified
by the value of e rather than by the sign of a speculative
addition. This can be achieved either (a) by choosing
representatives in a range [2n−1+p−q, 2n−1+p) trigger-
ing the modulo event by the most significant bit (MSB)
of e with value 2n−1 or, similarly, (b) by subtracting
instead of adding p and p − q combined with the sign
detection of the two’s complement representation of e,
again by its MSB. Latter approach gives e a range of
[−p, q − p).

The required bit widths for these implementations are
as follows:

(a) Since the MSB triggers the modulo event when the
representative assumes at least the value 2n−1, all
representatives must be positive to avoid a false
trigger. This yields:

2n−1 + p − q ≥ 0
2n−1 ≥ q − p

n − 1 ≥ ld(q − p)
n ≥ 1 + ld(q − p)

Further, (2n−1 − 1) + p must be representable in
n bits. Thus:

2n ≥ 2n−1 + p

2n−1 ≥ p

n − 1 ≥ ld p

n ≥ 1 + ld p

Joining both conditions yields:

n ≥ 1 + ld max{q − p, p}

(b) This case requires that the two’s complement
representation of n bits covers the whole range
[−p, q−p). Thus, −2n−1 ≤ −p and q−p ≤ 2n−1

need to be satisfied, which yields exactly the same
bound as case (a).

Therefore, both of these cases will never require
a smaller bit width than the original implementation
demanding a minimum bit width of ld q. Nonetheless,
they also require at most one bit more. Unless, the carry
propagation delay in the adder is absolutely tight, this

+

01
MUX

T Q

MSB

cin e

pp − q

cout

Fig. 2. Design (a) with Alternate Modulo Class Representatives

is definitely a good tradeoff. The resulting design, here
for case (a), is depicted in Fig. 2.

The performance-limiting factor of the designs seen
so far is the carry propagation within the adder. Even
when choosing fast binary adder implementations, the
achievable combinatorial delay is still Ω(log n) [7].
Optimizations for the original line drawing application
cannot be transfered to the clock division as they rely
on parallelization and / or the identification of identical
line segments [8]. Faster implementations in the clock
division domain are only possible by the elimination
of the carry propagation. If such can be found, their
adoption for line drawing is very well possible.

III. A FAST, HARDLY APPROXIMATING DESIGN

Addition can be performed faster when the redundant
representation of e is permissible. In fact, the coding of
e is arbitrary as long as the modulo events adding p− q

instead of p can be identified. So far, firm thresholds
(q, 2n−1 or 0) were used to trigger these events but
unfortunately:

Lemma 1: Be G a totally-ordered group and + :
G × G → G the group operation called addition. Then,
there is no representation for the members of G, which
allows both the addition and the comparison against
some fixed group member to be implemented faster than
Ω(log log |G|).

Proof: Assume there was such a representation.
Be t the group member that can be compared against
faster than Ω(log log |G|). So an input x can be identified
exactly as t by testing both x < t and t < x (or x ≤ t

and t ≤ x). Further, a circuit adding x + d and testing
the result for equality with t can identify any group
member a by setting d = −a + t. As this circuit can be
programmed to identify any group member a, it must
have w = dlogv |G|e input lines for x with v possible
input values per line to code all group members uniquely.
The reduction of these w input lines to a single signal

Fully-Scalable Digital Fractional Clock Divider 3

MUX

MUX

Configuration Cell (e.g. SRAM)

T Q

CSA

0 1

MSB

10

0

t
p p − q

ec
es
}

e

cout

cin

Fig. 3. Carry-Save Digital Clock Division Design

indicating equality or no takes, at least, dlogr we steps
when implemented using gates with at most r inputs
(also see [7]). As additon combined with comparison
thus is of Ω(log log |G|), not both of these operations
can be of lower order at the same time.

Applied to addition, this means that not both a fast
addition and a fast comparison against a firm threshold
are possible at the same time. In terms of the bit width
n, Ω(log n) is the best to achieve. A way out of this
dilemma is the soft-threshold comparison.

Consider the design given in Fig. 3. It resembles the
design from Fig. 2 except for the representation of e

and the identification of the modulo event. e is encoded
in carry-save representation, i.e. its numerical value is
the sum of two pseudo-components – es, the pseudo-
sum, and ec, the pseudo-carry. The modulo event is
triggered, depending on the configuration bit t, by a
single or by two bits set in the MSB position. The
performance of this design is no longer limited by a
carry propagation path. Its critical combinatorial path is
of O(1). Only, the signal controlling the wide p / p− q-
MUX is loaded heavily and thus likely to require some
effort in a practical design.

The quality of the clock generated by this design is
not clear at all. Due to the redundant nature of the carry-
save representation, certain values of e may trigger the
modulo event when represented one way and may not
when represented another. Thus, the series of values in
e is not predetermined by design and might not only
depend on the choices of p, q and t but also on the initial
value and representation of e. Yet, the modulo classes

with respect to q that are represented by the values of e

succeed in a well-defined order as the additions of p or
p − q are equivalent in terms of these classes.

As the number of states that e can assume is finite, a
cycle must be entered eventually. As the equal states of
e in successive iterations of this cycle represent the same
modulo class, the period of any such cycle is a multiple
of q (or q

gcf(p,q) if p and q are not relatively prime).
Since the additions of p and p − q also sum up to zero
over a whole cycle, their overall ratio equals that of the
original BRESENHAM clock division. Their distribution,
however, may differ so that the generated modulo events
no longer constitute the best approximation of the de-
sired clock at the output. So the quality of the output of
the proposed design will need to be evaluated.

For the design to work, it is absolutly vital that the
additions do not produce an arithmetic overflow. For a
width of n bits, an overflow would essentially cause a
mod2n-operation, which will only go consistent with
the calculation within the modulo classes of q in the
special case that q = 2n−k. So it must be ensured

1) that the addition of p never produces an outgoing
carry and

2) that the addition of p − q, which is actually a
subtraction, always produces an outgoing carry.

The first requirement implies that, if both MSBs of e

are set, the modulo event must be triggered. The second
requirement implies that the modulo event must not be
triggered if not at least one of the MSBs of e is set. As
these border cases are easily identified by the inspection
of only two bits, they were chosen as the two options to

4 Background of the Analysis of a

investigate. In the design, they can be configured via t.
Observe that the use of the carry-save representation

slightly differs from its application in common arith-
metic settings. Here, the numeric value of e is strictly
defined to be the positive sum of both unsigned pseudo-
components – without any modulo operation. Specifi-
cally, the n-bit-wide carry-save representation with es =
2n − 1 and ec = 1 is not another representation for the
value 0 but represents e = 2n. Further, note that the
application of the carry-save representation in the pro-
posed design allows the formation of equivalence classes
among the representations of an integer e. Interpreting
the two hardware bits at each bit position as encoding
one of the digits {0, 1, 2}, the two different encodings
of the digit 1 are not distinguished by the carry-save
adder and can thus be considered equivalent. So the two
representations 9+3 =

(

1001
0011

)

and 11+1 =
(

1011
0001

)

for 12
are equivalent as both recode to 10122. 7 + 5 =

(

0111
0101

)

,
on the other hand, recodes to 02122, thus not being
equivalent to those representations.

Definition 1: A representation of a natural number
in the redundant place-value system with the digits
{0, 1, 2} and the base 2 is called additive carry-save
representation.
As the additive carry-save representation is predominant
in this paper, all references to carry-save shall mean
additive carry-save unless explicitly stated otherwise.

The range of values traversed by e during a cycle is
no longer strictly confined to an interval of length q.
The smallest possible value that e can assume within a
cycle is reached after the smallest e that has a carry-
save representation triggering the modulo event; the
largest possible value of e within a cycle is reached after
the greatest e that has a carry-save representation not
triggering the modulo event. Thus, the cyclic values of
e lie somewhere in:

[2n−1 +p− q, 2 · (2n−1 − 1) −1 + p] if t = 0
[2n +p− q, (2n − 1) + (2n−1 − 1)−1 + p] if t = 1

These intervals be called the cyclic range E of e.
For the determination of the minimum implementation

bit width n, consider the following requirements:
• the negative number p−q must be representable as

a two’s complement of n bits,
• p must be representable as an unsigned natural of

n bits; for t = 1, it may not have a set MSB so
as not to provoke an outgoing carry from the CSA,
and

• the cyclic range of e must be representable in
additive carry-save with components at most n bits
wide.

The intersection of these requirements yields:

n ≥
{

max{ ld(p + 1), 1 + ld(q − p)} if t = 0
max{1+ ld(p + 1), 1 + ld(q − p)} if t = 1

15

13

14

16

17

18

19

20

21

22

23

24

25

15 22

+p − q

+p

Fig. 4. Lattice of e-Values for (p,q;n,t)=(4,7;4,1)

These bounds are fairly similar to the one found for
the modified original design of Fig. 2. So the main
investment into the carry-save implementation is the
coding overhead for the representation of e doubling the
register size. There is no significant gain or price paid in
a larger bit width. Multiplexer and adder thus essentially
have the same complexity.

The members of the cyclic range E can be organized
in a lattice-like graph. (Note that the term lattice is
merely inspired by the shape and has no relation to
the algebraic lattice established by certain posets.) An
example of such a lattice for (p, q) = (4, 7) with n = 4
and t = 1 is given in Fig. 4. Each edge of this graph
resembles a transition from one value of e to another. An
edge to the left implies that the value of the source node
has a carry-save representation triggering the modulo
event; an edge to the right analogously implies that it
can be represented in a way that the modulo event is
not triggered. Note that many values of e have carry-save
representations of both kinds. Further, observe that the
lattice has been drawn such that horizontally neighboring
nodes are two values representing the same modulo class
with respect to q.

As it turns out, the cycle for the case examplified
in Fig. 4 is unique and has a period of exactly q. For
the argument of uniqueness, observe that the carry-save
representations of 2n − 1 and (2n − 1) + 2n−1 (here 15
and 23) are unique, i.e. all equivalent according to the
discussion above. Further, the lack of an incoming carry
to the carry-save adder restricts the value of the least
significant digit of the sum to 0 or 1; it cannot be 2.
Thus, also (2n − 1)− 1 and ((2n − 1)+2n−1)− 1 (here

Fully-Scalable Digital Fractional Clock Divider 5

14 and 22) have unique representations since they are
even, which implies the least significant digit is 0, and
by truncating this 0 they become unique representations
of the bit width n− 1 (2n−1 − 1 and 2n−1 − 1 + 2n−2).
As every cycle must include a representative of any one
module class and both cyclic representatives of 15, 22
are uniquely represented, it is easy to verify that every
cycle must pass through the same representation of 19
(which is 20112). This, in turn, implies a unique and
primitive cycle of period q. Its simulation yields the path
boldened in Fig. 4. Most importantly, the distribution of
the modulo events on this path is equivalent to the one
produced by the original BRESENHAM clock division
design.

Unfortunately, this advantageous behavior does not
generalize. Simulation shows, however, that it is as-
tonishingly common. Moreso, the quotients p

q
that do

not yield a full-quality BRESENHAM-like sequence of
modulo events seem to cluster in well-defined, diamond-
shaped areas on the p-q-plane. These results are de-
scribed in detail in the following section.

IV. SIMULATION AND RESULTS

The goal of the simulation was to obtain some infor-
mation about the cyclic behavior of the proposed design:

• How many cycles are there?
• What are their periods?
• How well do they approximate the desired output

clock also as compared to the original BRESENHAM
clock division.

While the knowledge about the approximation quality
is an obvious goal, the others may require some ex-
planation. The number of the cycles the design may
possibly enter is valuable as a unique cycle may serve
to relax the initialization requirements. If it is sufficient
for a design to output the promised quality eventually,
no explicit initialization is required at all. Knowledge
about the period of the cycles may be a first step to
a provable quality assurance as no multi-q-cycle can
produce a better quality than the primitive BRESENHAM
cycle with period q.

The simulation must be restricted to some attractive
range. So the bit width n used in the simulation was
limited to its minimum ň and one bit wider. Note that
solutions found for some bit width can be easily scaled
to larger bit widths by shifting the involved constants p

and p − q as well as the initialization of e left by the
number of additional bits. No output quality is lost by
this scaling.

The quotients p
q

simulated were restricted to reduced
fractions where p and q are relatively prime. This ensures
that every cycle of e must include a representative of any
one modulo class of q. Thus, the set of initial values of
e that need to be considered to identify all cycles can

be limited to all representatives of exactly one of these
modulo classes from the cyclic range E.

Also, the cycle identification can be based purely on
the representatives of this modulo class. As if establish-
ing checkpoints at a horizontal cut through the lattice of
e-values, only the e reached after every q steps needs to
be compared against previously encountered states. Also
remembering the states of e reached by a simulation run
with another initialization of e helps to further reduce
the simulation effort as the cycle reached from this point
is already known so that the simulation for the current
initialization can be quit.

The set of initial states of e that need to be simulated
to identify all cycles comprises all additive carry-save
representations of all representatives of the chosen mod-
ulo class. Avoiding an explicit search for the smallest of
these sets, the modulo class containing 2n−1 was chosen
as at least this representative has a unique carry-save rep-
resentation. All other s(k) = 2n − 1+ k · q ∈ E (k ∈ Z)
for k 6= 0 may have several carry-save representations.
These can be generated by a sliding additive partition,
which may, however, produce duplicates only differing
in their coding of 1-valued digits. In order to reduce the
simulation effort, such duplicates need to be identified
and eliminated. Their identification can be based on a
simple bitwise XOR of their pseudo-components, which
essentially identifies the distribution of their 1-valued
digits:

Lemma 2: All additive carry-save representations
(and traditional carry-save representations when the en-
coding of 1-valued digits is irrelevant) of an integer e are
uniquely identified by the distribution of their 1-valued
digits.

Proof: (by Contradiction) Assume there would
be two carry-save representaions of e with the same
distribution of 1-valued digits. The numerical value of
only these 1-valued digits be e′. Since e has two different
carry-save representations, so has the difference e − e′

simply by substituting a 0 for every 1 in both represen-
tations of e. By this construction, both representations
of e− e′ are only comprised of the digits 0 and 2. Sub-
stituting a 1 for every 2 in these representations yields
two different, now conventional binary representations
of the value e−e′

2 → a contradiction.
For the estimation of the simulation effort for a single

reduced fraction p

q
, it is valuable to know the bounds on

• the number of representatives of the modulo class
chosen for the initial values within the cyclic range
E,

• the number of their distinct carry-save representa-
tions, and

• the simulation effort necessary for each of these
valid initializations.

The early dropout from all simulation runs, as soon as
e reaches a state already encountered before, limits the

6 Background of the Analysis of a

amortized effort spent on each initialization to the q steps
constituting one complete up-down traversal of the e-
lattice. The number of distinct carry-save representations
for each initial value s(k) is, according to Lemma 3
in the appendix, of O (s(k)a) with a = ld

(

1+
√

5
2

)

.
Applying the restriction that only the minimum value of
n and its successor are simulated, this reduces to O(qa).
The number of representatives of the chosen modulo
class within E grows with O

(

2n

q

)

, which reduces to
a small constant by the limited choices of n. Thus, the
overall simulation effort for a single reduced fraction p

q

is of O
(

q1+a
)

= O
(

q1.694242
)

.
The quality of the generated output is to be evaluated.

Using a cycle of the input clock as time unit, a suitable
measure can be obtained by the average distance square
of the integer times of the modulo events from their
optimal occurence on the continuous real timescale. As
the evaluation is to reflect the edge jitter rather than the
phase of the output clock, an arbitrary phase is allowed
to minimize this deviation.

The evaluation of the original BRESENHAM approx-
imation provides a baseline for comparison. As estab-
lished by Lemma 4 in the appendix, the average distance
error of this implementation can be explicitly given by
1
12 ·

(

1 − 1
p2

)

for the approximation of a fraction p

q
.

Note that this term only depends on the numerator of the
fraction and is always smaller than 1

12 , which establishes
the asymptotic bound for growing p.

The simulation for all reduced fractions p

q
with 1 ≤

p < q ≤ 4096 was implemented in Java [9]. Its results
permit the following observations:

• The e-cycles of the implementations of the mini-
mum bit width ň are unique (there is exactly one
cycle) and primitive (they have the minimum period
of q) for both choices of t.

• Cycles of the implementations of bit width ň+1 are
neither necessarily unique nor necessarily primitive.

– The smallest example yielding two cycles is
(p, q; n, t) = (2, 3; 4, 1) with primitive cycles
through 12102 and 21012.

– The smallest examples having a unique cycle
with period 2q is (p, q; n, t) = (2, 5; 4, ∗).

• Although there is a great similarity between the
results achieved for a single bit width n for both
choices of t, no two of the four simulated set-
tings yield the exact same quality result for all p

q
.

Moreso, none of the settings is better than some
other for all fractions.

• The results achieved for the minimal bit width ň are
usually at least as good as the ones achieved for a
bit width of ň + 1. The smallest exception to this
rule is 6

17 where the wider implementations achieve
original BRESENHAM quality while the minimum
ones do not.

• Original BRESENHAM quality is achievable for
most fractions in some of the settings (n, t) ∈
{ň, ň + 1} × {0, 1}. The smallest counterexample
where none achieves this quality is 6

13 .
Note that all these observations are no proven universal
statements yet. So there are quite a few open questions.

Most interestingly, the fractions p

q
that are the excep-

tions to the rules seem to cluster on or in diamond-
shaped areas around some p = m · q with p = 2q being
the most dominant. This does not appear to be a simple
consequence from the calculation of the minimum bit
width although the term relevant for the maximum
switches about this line. Similar patterns can be observed
when n is, for example, left constant for a single q as
by using n = 1 + ld q.

To appreciate the structure apparently inherent to the
problem, have a look at Fig. 5. Note that the quality
charts show a normalized quality measure obtained as
the quotient of the average error square of the orginal
BRESENHAM quality divided by that achieved by the
specified setting of the proposed design. Thus, shaded
areas represent those fractions, for which the original
quality cannot be totally achieved.

One is compelled to assume a regular repetitive pat-
tern in the plotted graphs. Although there is no reason
to believe that this observation is not to generalize,
the inherent nature of their formation could not yet be
discovered not to mention formally proven. Assuming
that a generalization was valid, slightly more than 93%
of all fractional divisions could be approximated with
the same quality as by the original BRESENHAM design
– already by one of the four investigated setups of the
proposed design.

V. CONCLUSIONS

Optimizations of the straightforward BRESENHAM
implementation for discrete fractional clock division
have been discussed. As only little could be achieved
for the original design, a further approximation step
introducing a soft-threshold comparison to implement
the modulo addition has been proposed. This approach
enabled a highly-scalable design with a critical combi-
natorial path independent from the bit width and only
one heavily-loaded logic signal.

The simulation of this design for fractions p
q

with
relatively small p and q suggested that the proposed
design achieves a high-quality clock output, for most
fractions even equivalent to the quality achieved by the
original BRESENHAM design.

Taking the required implementation bit width and
the choice of the two easily-identifyable thresholds as
parameters, no setting proved superior for all fractions
although, in most cases, the choice of the smallest
allowable bit width already yields the best results. Due

Fully-Scalable Digital Fractional Clock Divider 7

(a) Normalized Best Quality Achieved for ň (b) Normalized Best Quality Achieved for ň + 1

(c) Normalized Overall Best Quality Achieved (d) Fractions with Multiple or Non-Primitive Cycles for
ň + 1

Fig. 5. Visualized Simulation Results

to the observed uniqueness of the cycles in this minimal
setting, it may be used as the base of a programmable
implementation without extensive initialization logic re-
quired to ensure the entering of the correct high-quality
cycle.

Quite a few questions are raised by the simulation
results, which are still to be answered. Most importantly:

• Are all cycles for the minimum implementation bit
width unique and primitive?

• What choice of the parameters n and t yields the
best result for a reduced fraction p

q
?

• Can better results be obtained by allowing expanded
fractions?

• Can the original BRESENHAM quality be achieved
for every fraction?

• Can a best-quality setup of the proposed design be
identified efficiently?

Another interesting question that will hopefully be an-
swered by the work on the others is: What makes the
fractions within those diamond-shaped areas so special
to regularly be the exceptions to the rules?

REFERENCES

[1] T. B. Preußer and S. Köhler, “Discrete fractional clock generation
for systems-on-fpga,” Fakultät Informatik, Technische Univer-
sität Dresden, Tech. Rep. TUD-FI05-07, June 2005, ftp://ftp.inf.
tu-dresden.de/pub/berichte/tud05-07.pdf.

[2] J. E. Bresenham, “Algorithm for computer control of a digital
plotter,” IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[3] T. B. Preußer and R. G. Spallek, “Analysis of a fully-scalable
digital fractional clock divider,” in ASAP 2006 – Application-
specific Systems, Architectures and Processors, Sept. 2006.

[4] J. Bresenham, “A linear algorithm for incremental digital display
of circular arcs,” Commun. ACM, vol. 20, no. 2, pp. 100–106,
1977.

[5] M. L. V. Pitteway, “Algorithm for drawing ellipses or hyperbolae
with a digital plotter,” Computer Journal, vol. 10, no. 3, pp. 282–
289, Nov. 1967.

[6] 3.3V AnyClock Fractional N Synthesizer, Micrel, Inc., 1849 For-
tune Drive, San Jos’e, CA 95131, USA, http://www.micrel.com/
PDF/HBW/sy87729l.pdf.

[7] S. Winograd, “On the time required to perform addition,” J. ACM,
vol. 12, no. 2, pp. 277–285, 1965.

[8] E. Angel and D. Morrison, “Speeding up bresenham’s algorithm,”
IEEE Computer Graphics and Applications, vol. 11, no. 6, pp.
16–17, Nov. 1991.

[9] “Java technology,” Sun Microsystems, Inc., http://java.sun.com/.

8 Background of the Analysis of a

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14

N
um

be
r o

f C
ar

ry
-S

av
e

R
ep

re
se

nt
at

io
ns

 c
s(

n)

n

Fig. 6. Pattern Repetition in cs(n) in [0, 15]

APPENDIX

A. Number of Distinct Additive Carry-Save Representa-
tions

Lemma 3: The number of distinct additive carry-save
representations of a natural number n is O (na) where
a is the dual logarithm of the golden ratio Φ: a =

ld
(

1+
√

5
2

)

≈ 0.694242.
Proof: First, observe that the representation of 0 is

unique.
Now, consider an arbitrary odd number n = 2k + 1

(k ∈ N). The least-significant digits of all its carry-save
representations must be 1. Each of these representations
corresponds 1-to-1 to a representation of k by truncating
this 1.

Finally, consider an arbitrary even number n = 2k

(k ∈ N). The least-significant digits of all its carry-save
representations are either 0 or 2:

• Each representation ending in 0 corresponds 1-to-1
to a representation of 2k + 1 by substituting this 0
for a 1.

• Each representation ending in 2 corresponds 1-to-1
to a representation of 2k − 1 by substituting this 2
for a 1.

Thus, calling the function mapping a natural n to the
number of its distinct additive carry-save representations
cs, conclude:

cs : N → N

0 7→ 1 (1)
2k + 1 7→ cs(k) (2)
2k 7→ cs(2k − 1) + cs(2k + 1) (3)

Due to (2) the pattern of the functional graph is
copied from each interval (2t−1 − 1, 2t − 1] to the odd
numbers of the succeeding interval (2t − 1, 2t+1 − 1].
The even numbers in latter interval are filled by (3). This
is illustrated in Fig. 6 for 0 ≤ t ≤ 3.

t: Odd Maximum Even Maximum

+

t + 1: Odd Maximum Even Maximum

Fig. 7. Maximum Transition

The intervals t : (2t−1−1, 2t−1] are chosen such that
the left exclusive and the right inclusive border are odd
and have unique carry-save representations, a property
that carries from one interval to its successor. Starting
with t = 2, the intervals span at least across two integers.
Maxima in these intervals must be at even positions as,
due to (3) and ∀n ∈ N. cs(n) ≥ 1, both even neighbors
of an odd position have greater values.

Call a maximum value of an interval at an odd
position, its odd maximum; a maximum value at an
even position, which corresponds to an interval-wide
maximum, an even maximum. It can be established for
t = 3 : (3, 7] that the odd maximum (5, 2) is located
next to the even maxima (4, 3) and (6, 3).

Assume odd and even maxima neighbor each other
in an interval t : (2t−1 − 1, 2t − 1]. Copying to the
succeeding interval t + 1 places them at neighboring
odd positions according to (2). Since no other formerly
odd position can have a larger value than the former
odd maximum and no other formerly even position can
have a larger value than the former even maximum,
the even position in the succeeding interval between
the neighboring former odd and even maxima becomes
a new even and interval-wide maximum. This even
maximum is again neighbored by an odd maximum, the
former even maximum. Thus, even and odd maxima of
an interval are always direct neighbors. Furthermore, a
new interval-wide maximum is essentially the sum of the
maxima from the two proceeding intervals. This results
in the maxima to establish the FIBONACCI series:

y(t) = Ft+1 (4)

Starting with (3, 7], each interval has two maxima.
The relative position of the left of these interval maxima
can be determined by tracking the path established by the
copies of previous maxima as depicted by the boldened
path in Fig. 6 for t = 4. It is given by the partial sums
of the alternating geometric series 1

2 − 1
4 + 1

8 − +

Fully-Scalable Digital Fractional Clock Divider 9

 0

 50

 100

 150

 200

 250

 300

 350

 4095 2047 1023 511 255

N
um

be
r o

f C
ar

ry
-S

av
e

R
ep

re
se

nt
at

io
ns

 c
s(

n)

n

cs(n)
Left Interval Maxima: 1/√5*(3x+3)ld Φ

Interval Center Points: (2/3*(x+1))ld 1.5

Fig. 8. cs(n) with O(xa)-Bound and Interval Center Curve

For large t this value approaches towards:

1

2
− 1

4
+

1

8
− + . . . =

1

2

∞
∑

i=0

(

−1

2

)i

=
1

2
· 1

1 + 1
2

=
1

3

The absolute position of the left interval maxima thus
approaches for large t:

x(t) =
2

3
·
(

2t−1 − 1
)

+
1

3
·
(

2t − 1
)

=
2t+1

3
− 1 (5)

Further, BINET’s formula for the FIBONACCI numbers:

Fk =
1√
5

(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k

=
1√
5
Φk +

1√
5

(

1 −
√

5

2

)k

applied on (4) while ignoring the second addend
approaching zero for growing k, a parametric description
of the locations of the left interval maxima is obtained
together with (5). This can be generalized to a function
over all non-negative reals and transformed into the
explicit form:

y(x) =
1√
5
· Φld(3x+3)

=
1√
5
· (3x + 3)

ldΦ (6)

This function is concave and differentiable. As all
interval maxima of cs lie with a diminishing error about
this function, it can be concluded that

cs(n) ∈ O (na) with a = ld

(

1 +
√

5

2

)

Observe that the average value of cs within an interval
grows marginally slower – not only by another constant
coefficient but a slightly smaller exponent. While the
sum of the values of cs triples from one interval to
its successor (the odd positions are copied and they
contribute twice to the values of their even neighbors),
the width of the interval is only doubled. Verifying the
start condition for t = 1, the average value of cs in
the interval t : (2t−1 − 1, 2t − 1] is y(t) =

(

3
2

)t−1.
Combined with the center position of the symmetric

intervals x(t) =
(2t−1−1)+(2t−1)

2 = 3 · 2t−2 − 1, the

explicit form y(x) =
(

2
3 (x + 1)

)ld 3

2 can be obtained.
The central points of the intervals thus lay on a curve
only growing with Θ(xa) with a = ld 3

2 ≈ 0.584963.

B. Error of the Original BRESENHAM Approximation

Lemma 4: The average square error of the times of
the modulo events generated by the original BRESEN-
HAM implementation for a fraction p

q
from their ideal

occurence on a continuous time scale is 1
12

(

1 − 1
p2

)

when taking a full clock cycle of the reference clock as
time unit and neglecting the phase.

Proof: Assume the first modulo event at time
t0 = 0 starts a period with zero error to its ideal
occurence. All p ideally aligned events of this period
would have to occur at ti = i q

p
with i ∈ [0, p). As

shown in [1], the approximated events generated by
the original BRESENHAM implementation occur at times
Ti =

⌈

i q

p
− 1

2

⌉

.
The error incurred by the first approximation is ε1 =

T1−t1 = T1− q

p
where T1 is an integer and thus ε1 = k

p

with k ∈ Z. The following errors εi are essentially
multiples of ε1 such that εi = (ik)

p
. Due to the rounding

to the nearest integer, (ik) is that representative of the
modulo class of ik with respect to p, which has the
smallest absolute value (positive on a tie but this is
irrelevant for the result). Since q and p are relatively
prime so are k and p. Thus, ik iterates through all p

modulo classes of p within one period. So each of the
errors ε = j

p
with j ∈ Z∩

(

−p
2 , p

2

]

occurs exactly once.
As the phase of the generated clock is to be neglected,

an arbitrary but constant offset d to Ti is allowed to
improve the overall approximation quality. Given the
result above the overall sum of the quadratic errors
within a complete period can be given as:

s2 =

bp

2 c
∑

i=−b p−1

2 c

(

i

p
− d

)2

For odd p, this reduces to:

s2 = p · d2 +
p2 − 1

12p

10 Background of the Analysis of a

This term is obviously minimal for d = 0, i.e. without
a phase offset.
For even p, the following expression is obtained:

s2 = p · d2 − d +
p2 − 3p + 2

12p
+

1

4

This term assumes its minimum for a phase offset of
d = 1

2p
.

Both cases yield for the minimum:

s2 =
p2 − 1

12p

Averaging over all p approximations of a period yields
the desired term:

s2

p
=

p2 − 1

12p2
=

1

12

(

1 − 1

p2

)

Thus, the average quadratic error approaches 1
12 for

growing p. Smaller p achieve better results. Perfect
approximations are only achieved for p = 1. Most
notably, the approximation quality is independent from
q.

Note that this result only applies to fully reduced
fractions p

q
. If p and q are not relatively prime, a better

approximation is achieved as a smaller p can be obtained
by the reduction of the fraction.

Fully-Scalable
D

igital
Fractional

C
lock

D
ivider

11

C
.

Sim
ulation

Source
C

ode
Bresen.java Page 1/3

1: import java.io.PrintWriter;
2: import java.io.IOException;
3:
4: import java.util.ArrayList;
5: import java.util.Collection;
6: import java.util.HashMap;
7: import java.util.HashSet;
8: import java.util.Iterator;
9: import java.util.List;
10:
11: public class Bresen {
12: /**
13: * Structure to hold the parameters of a cycle and providing
14: * a method for its evaluation.
15: */
16: private static class Cycle {
17: public final int k;
18: public final Fraction qu;
19:
20: public Cycle(int k, Fraction qu) {
21: this.k = k;
22: this.qu = qu;
23: }
24: }
25:
26: /**
27: * Implements the quality measure, here the mean quadratic error to
28: * the perfect edges of the output clock normalized to (0,1] by
29: * $\frac{1}{1+\sqrt{x}}$.
30: */
31: private static Fraction eval(int p, int q, List<Integer> log) {
32: final int s = log.size(); // toggle event count
33: final Fraction pp = new Fraction(q, p); // perfect period
34: Fraction ph = new Fraction(0, 1); // phase to be determined
35:
36: Iterator<Integer> it;
37: for(it = log.iterator(); it.hasNext(); ph.add(it.next()));
38: ph.div(s);
39: ph.sub(new Fraction(pp).div(2).mul(s-1));
40:
41: Fraction sd2 = new Fraction(0, 1); // sum of distance (error) squares
42: it = log.iterator();
43: for(int i = 0; it.hasNext();) {
44: sd2.add(new Fraction(-i++, 1).mul(pp).sub(ph).add(it.next()).sqr());
45: }
46: return sd2.div(s);
47: }
48:
49: /**
50: * Determines all cycles for the quotient $\frac{p}{q}$ in the
51: * ModModel m.
52: */
53: private static Collection<Cycle> sim(int p, int q, ModModel m) {
54: /** Result Collection of all Cycles as List. */
55: final ArrayList<Cycle> res = new ArrayList<Cycle>();
56:
57: /** Set of representatives of start value mod class whose
58: * cycle they eventually lead into is already known. */
59: final HashSet<CS> solved = new HashSet<CS>();
60:
61: /** Prefetch a few model-specific values into local variables. */
62: final int n = m.n(p, q); // bit width n
63: final int t = m.t(); // threshold t in {0,1}
64: final int msh = n-1; // MSB-Shift
65: final int msk = ˜(˜0<<n); // Maske
66:
67: /** Set of representatives of start value mod class already
68: * seen during the simulation for the current start value.
69: * All of these eventually lead into the same cycle.
70: * They are mapped to the count of blocks of q simulation
71: * steps to help determine the period as k*q. */
72: final HashMap<CS, Integer> seen = new HashMap<CS, Integer>();

Bresen.java Page 2/3

73:
74: /** Discrete time points of toggle events as the number of the
75: * corresponding input clock edge. Used for quality evaluation. */
76: final ArrayList<Integer> log = new ArrayList<Integer>();
77:
78: for(final CS e : m.startValues(p, q)) {
79: // only simulate for representatives not already encountered
80: if(!solved.contains(e)) {
81: seen.clear();
82: log .clear();
83: seen.put(e, 0);
84:
85: int es = e.s(); // pseudo-components of e-register
86: int ec = e.c();
87: int i = 0; // counter for finished q-cycles
88: sim: while(true) {
89: // simulate a full q-cycle
90: for(int j = 0; j < q; j++) {
91: final boolean mod = (es>>msh)+(ec>>msh) > t;
92: final int d = mod? p-q : p;
93: final int esp = msk & (es^ec^d);
94: final int ecp = msk & (((es&ec)|(es&d)|(ec&d)) << 1);
95:
96: // drop out if we had an addition mod 2^n
97: if((es+ec+p-esp-ecp)%q != 0) break sim;
98: es = esp;
99: ec = ecp;

100: if(mod) log.add(i*q + j);
101: }
102:
103: final CS ee = new CS(es, ec);
104:
105: // reached a representative already solved?
106: if(solved.contains(ee)) break sim;
107:
108: // closed a cycle?
109: final Integer i0 = seen.put(ee, ++i);
110: if(i0 != null) {
111: final int k = i-i0; // number of q-cycles (period is k*q)
112:
113: // evaluate cycle and add it to solution
114: // the last k*p log-entries matter
115: final int s = log.size();
116: res.add(new Cycle(k, eval(p, q, log.subList(s-k*p, s))));
117: break sim;
118: }
119: }
120: // mark all representatives seen in this simulation as solved
121: solved.addAll(seen.keySet());
122: }
123: }
124: return res;
125: }
126:
127: /**
128: * EUKLIDian algorithm to determine the greatest common factor (gcf).
129: */
130: private static int gcf(int a, int b) {
131: while(b != 0) {
132: final int bb = b;
133: b = a%bb;
134: a = bb;
135: }
136: return a;
137: }
138:
139: /**
140: * Determine cycles of all quotients with p<q and L<=q<=U for all available
141: * ModModels and output results to dat-file "bresen<L>_<U>.dat".
142: */
143: private static void simRange(final int L, final int U) {
144: PrintWriter out = null;

12
B

ackground
of

the
A

nalysis
of

a

Bresen.java Page 3/3

145: Thread[] threads = new Thread[ModModel.models.size()];
146:
147: try {
148: final Collector clct =
149: new Collector(out = new PrintWriter("bresen"+L+"_"+U+".dat"), 1000);
150:
151: // simulation for ModModels
152: for(final ModModel m : ModModel.models) {
153: final Thread t = new Thread() {
154: public void run() {
155: for(int q = L; q <= U; q++) {
156: for(int p = 1; p < q; p++) {
157: if(gcf(q, p) > 1) continue;
158:
159: // simulate model for these p and q
160: final Collection<Cycle> cycles = sim(p, q, m);
161:
162: // obtain cycle length distribution and best quality
163: Cycle best = null;
164: for(final Cycle cyc : cycles) {
165: if((best == null)||(best.qu.compareTo(cyc.qu) > 0))
166: best = cyc;
167: }
168:
169: clct.addEntry(m, p, q,
170: new Collector.Entry(best.qu, best.k, cycles.size()));
171: }
172: }
173: }
174: };
175: t.start();
176: threads[m.getIndex()] = t;
177: }
178:
179: // wait for threads to finish
180: for(final Thread t : threads) {
181: try { t.join(); } catch(InterruptedException e) {}
182: }
183: }
184: catch(IOException e) {
185: e.printStackTrace();
186: }
187: finally {
188: if(out != null) out.close();
189: }
190: }
191:
192: public static void main(String[] args) throws Exception {
193: simRange(Integer.parseInt(args[0]), Integer.parseInt(args[1]));
194: }
195: }

CS.java Page 1/1

1: /**
2: * Represents a number in carry-save format. Equality is established
3: * without regard of the coding of a 1-valued digit position.
4: * A strict order consistent with this notion of equality is
5: * established. Hash codes of equal carry-save representations
6: * equal as well.
7: */
8: public class CS implements Comparable<CS> {
9: private final int v; // numeric value

10: private final int x; // 1-valued digits (XOR of pseudo-components)
11:
12: public CS(int s, int c) {
13: this.v = s+c;
14: this.x = s^c;
15: }
16:
17: public int s() { return x | ((v-x)>>1); } // digits 1 and 2
18: public int c() { return ((v-x)>>1); } // only digit 2
19:
20: public int hashCode() { return v^x; }
21:
22: public boolean equals(Object o) {
23: if(o instanceof CS) {
24: CS y = (CS)o;
25: return (v == y.v) && (x == y.x);
26: }
27: else return false;
28: }
29: public int compareTo(CS o) {
30: int d = v - o.v;
31: return (d != 0)? d : x - o.x;
32: }
33:
34: public String toString() {
35: final StringBuilder buf = new StringBuilder();
36: for(int ss = s(), xx = x; ss > 0; ss>>=1, xx>>=1) {
37: buf.append(((ss&1) == 0)? ’0’ : ((xx&1) == 0)? ’2’ : ’1’);
38: }
39: return buf.reverse().toString();
40: }
41: }

Fully-Scalable
D

igital
Fractional

C
lock

D
ivider

13

ModModel.java Page 1/2

1: import java.util.ArrayList;
2: import java.util.HashSet;
3: import java.util.Set;
4:
5: /**
6: * Represents a model determining the occurence of modulo events.
7: * This abstract class implements a generic method calculating
8: * a set of start values consisting of all carry-representations
9: * of all representatives of the module class of 2^n-1 within

10: * the cyclic range E. Concrete subclasses must specify the
11: * implementation bit width in dependence on q, fix the threshold
12: * to one of the values 0 or 1 and provide a name.
13: */
14: public abstract class ModModel {
15: private int idx = 0;
16: private void setIndex(int idx) { this.idx = idx; }
17: public int getIndex() { return idx; }
18:
19: abstract public String name();
20: abstract public int n(int p, int q);
21: abstract public int t();
22:
23: Set<CS> startValues(int p, int q) {
24: final HashSet<CS> res = new HashSet<CS>();
25: final int n = n(p, q);
26: final int s0 = (1<<n)-1;
27:
28: // uniquely-coded representative 2^n-1 of the mod class
29: res.add(new CS(s0, 0));
30:
31: int kl, ku; // lower and upper bound of k != 0
32: switch(t()) {
33: case 0:
34: // there may be smaller valid representatives of same class
35: kl = (p+1-(1<<(n-1)))/q - 1;
36: ku = -1;
37: break;
38:
39: case 1:
40: // there may be larger valid representatives of same class
41: kl = 1;
42: ku = ((1<<(n-1))-1+p)/q;
43: break;
44:
45: default:
46: throw new IllegalArgumentException("Threshold must be 0 or 1");
47: }
48:
49: // add all carry-save representations of all other valid
50: // representatives of mod class
51: for(int k = kl; k <= ku; k++) {
52: final int i = s0 + k*q;
53: final int js = 2-(i&1); // step
54: final int jl = -js & (i+2)/2; // lower bound
55: final int ju = (i<s0)? i : s0; // upper bound
56:
57: // sliding additive partition of value i
58: for(int j = jl; j <= ju; j += js) {
59: // equivalent representations are automatically discarded
60: res.add(new CS(j, i-j));
61: }
62: }
63:
64: return res;
65: }
66:
67: protected static int ldceil(int x) {
68: int r = 0;
69:
70: x--;
71: while(x > 0) {
72: r++;

ModModel.java Page 2/2

73: x>>=1;
74: }
75: return r;
76: }
77:
78: /**
79: * Concrete implementations of ModModel.
80: */
81: public static final ArrayList<ModModel> models = new ArrayList<ModModel>();
82: private static void addModel(ModModel m) {
83: m.setIndex(models.size());
84: models.add(m);
85: }
86:
87: static {
88: addModel(new ModModel() {
89: public String name() { return "T0"; }
90: public int n(int p, int q) {
91: final int na = ldceil(p+1);
92: final int nb = 1 + ldceil(q-p);
93: return (na > nb)? na : nb;
94: }
95: public int t() { return 0; }
96: });
97: addModel(new ModModel() {
98: public String name() { return "T1"; }
99: public int n(int p, int q) {
100: final int na = p+1;
101: final int nb = q-p;
102: return 1 + ldceil((na > nb)? na : nb);
103: }
104: public int t() { return 1; }
105: });
106: addModel(new ModModel() {
107: public String name() { return "U0"; }
108: public int n(int p, int q) {
109: final int na = ldceil(p+1);
110: final int nb = 1 + ldceil(q-p);
111: return 1 + ((na > nb)? na : nb);
112: }
113: public int t() { return 0; }
114: });
115: addModel(new ModModel() {
116: public String name() { return "U1"; }
117: public int n(int p, int q) {
118: final int na = p+1;
119: final int nb = q-p;
120: return 2 + ldceil((na > nb)? na : nb);
121: }
122: public int t() { return 1; }
123: });
124: }
125: }

14
B

ackground
of

the
A

nalysis
of

a

Collector.java Page 1/2

1: import java.io.PrintWriter;
2:
3: import java.util.HashMap;
4:
5: public class Collector {
6: public static class Entry {
7: public final Fraction quality;
8: public final int period;
9: public final int cycles;
10:
11: public Entry(Fraction quality, int period, int cycles) {
12: this.quality = quality;
13: this.period = period;
14: this.cycles = cycles;
15: }
16: }
17:
18: private static class Key {
19: public final int p;
20: public final int q;
21:
22: public Key(int p, int q) {
23: this.p = p;
24: this.q = q;
25: }
26:
27: public boolean equals(Object o) {
28: if(o instanceof Key) {
29: Key k = (Key)o;
30: return (p == k.p)&&(q == k.q);
31: }
32: else return false;
33: }
34:
35: public int hashCode() {
36: return (((q-2)*(q-1))>>1) + p;
37: }
38: }
39:
40: private static class Line {
41: private final Key k;
42:
43: private Entry[] entries;
44: private int empty;
45:
46: public Line(Key k) {
47: this.k = k;
48: this.entries = new Entry[this.empty = ModModel.models.size()];
49: }
50:
51: public boolean addEntry(ModModel m, Entry e) {
52: entries[m.getIndex()] = e;
53: return --empty == 0;
54: }
55:
56: public void print(PrintWriter out) {
57: {
58: Fraction bq = new Fraction(1, 0);
59: int msk = 0;
60:
61: for(final Entry e : entries) {
62: if(e.quality.compareTo(bq) < 0) bq = e.quality;
63: }
64: for(int i = 0; i < entries.length; i++) {
65: if(entries[i].quality.equals(bq)) msk |= 1 << i;
66: }
67:
68: out.printf("%4d %4d %4d\t", k.p, k.q, msk);
69: }
70: for(int i = 0; i < entries.length; i++) {
71: final Entry e = entries[i];
72: out.printf("%8d/%8d %2d %2d\t", e.quality.a(), e.quality.b(),

Collector.java Page 2/2

73: e.period, e.cycles);
74: }
75: out.println();
76: }
77: }
78:
79: private final int BUF_CAP;
80: private final HashMap<Key, Line> lines;
81: private final PrintWriter out;
82:
83: public Collector(PrintWriter out, int bufCap) {
84: this.BUF_CAP = bufCap;
85: this.lines = new HashMap<Key, Line>();
86: this.out = out;
87:
88: final StringBuilder bld = new StringBuilder("# Modells:");
89: final int n = ModModel.models.size();
90: for(int i = 0; i < n;) {
91: bld.append(’\t’).append(ModModel.models.get(i++).name());
92: }
93: out.println(bld);
94: }
95:
96: private Line getLine(Key k) {
97: while(true) {
98: Line l = lines.get(k);
99: if(l != null) return l;

100: if(lines.size() < BUF_CAP) {
101: lines.put(k, l = new Line(k));
102: return l;
103: }
104: try { wait(); } catch(InterruptedException ex) {}
105: }
106: }
107:
108: public synchronized void addEntry(ModModel m, int p, int q, Entry e) {
109: final Key k = new Key(p, q);
110: final Line l = getLine(k);
111: if(l.addEntry(m, e)) {
112: l.print(out);
113: lines.remove(k);
114: notifyAll();
115: }
116: }
117: }

Fully-Scalable
D

igital
Fractional

C
lock

D
ivider

15

Fraction.java Page 1/2

1: public class Fraction implements Comparable<Fraction> {
2: private long a;
3: private long b;
4:
5: public Fraction(int a, int b) {
6: this.a = a;
7: this.b = b;
8: reduce();
9: }

10: public Fraction(int a) { this(a, 1); }
11: public Fraction(Fraction o) {
12: a = o.a;
13: b = o.b;
14: }
15:
16:
17: public long a() { return a; }
18: public long b() { return b; }
19:
20:
21: public int compareTo(Fraction o) {
22: final long d = a*o.b - o.a*b;
23: return (d < 0)? -1 : (d > 0)? 1 : 0;
24: }
25: public boolean equals(Object o) {
26: if(o instanceof Fraction) {
27: final Fraction f = (Fraction)o;
28: return (a == f.a) && (b == f.b);
29: }
30: return false;
31: }
32:
33:
34: private void reduce() {
35: long aa = a;
36: long bb = b;
37:
38: while(bb != 0) {
39: final long bbb = bb;
40: bb = aa % bb;
41: aa = bbb;
42: }
43: if((a < 0) || (b < 0)) {
44: if(b < 0) aa = -Math.abs(aa);
45: else aa = Math.abs(aa);
46: }
47:
48: a /= aa;
49: b /= aa;
50: }
51:
52: public Fraction add(int o) {
53: a += b*o;
54: return this;
55: }
56: public Fraction add(Fraction o) {
57: a = a*o.b + b*o.a;
58: b *= o.b;
59: reduce();
60: return this;
61: }
62:
63: public Fraction sub(int o) {
64: a -= b*o;
65: return this;
66: }
67: public Fraction sub(Fraction o) {
68: a = a*o.b - b*o.a;
69: b *= o.b;
70: reduce();
71: return this;
72: }

Fraction.java Page 2/2

73:
74: public Fraction mul(int o) {
75: a *= o;
76: reduce();
77: return this;
78: }
79: public Fraction mul(Fraction o) {
80: a *= o.a;
81: b *= o.b;
82: reduce();
83: return this;
84: }
85:
86: public Fraction div(int o) {
87: b *= o;
88: reduce();
89: return this;
90: }
91: public Fraction div(Fraction o) {
92: a *= o.b;
93: b *= o.a;
94: reduce();
95: return this;
96: }
97:
98: public Fraction sqr() {
99: a *= a;

100: b *= b;
101: return this;
102: }
103:
104: public String toString() {
105: return new StringBuilder().append(’(’).append(a).append(’/’)
106: .append(b).append(’)’).toString();
107: }
108: }

