
An Embedded Garbage Collection
Module with Support for Multiple
Mutators and Weak References

Thomas B. Preußer, Peter Reichel
Rainer G. Spallek

Institut für Technische Informatik

TUD-FI09-11 November 2009

Technische Berichte

Technical Reports
ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Fully-Concurrent Non-Blocking Embedded

Garbage Collection Module with Support for

Multiple Mutators and Weak References

Thomas B. Preußer Peter Reichel Rainer G. Spallek

Institut für Technische Informatik
Technische Universität Dresden

01062 Dresden, Germany

{thomas.preusser, rainer.spallek}@tu-dresden.de
peter@peterreichel.info

Abstract This report details the design of a
garbage collection (GC) module, which intro-
duces modern GC features to the domain of
embedded implementations. The described de-
sign supports weak references and feeds refer-
ence queues. Its architecture allows multiple
concurrent application cores operating as mu-
tators on the shared memory managed by the
GC module. The garbage collection is exact
and fully concurrent so as to enable the unin-
terrupted computational progress of the muta-
tors. It combines a distributed root marking
with a centralized heap scan of the managed
memory. It features a novel mark-and-copy
GC strategy on a segmented memory, which
thereby overcomes both the tremendous space
overhead of two-space copying and the com-
paction race of mark-and-compact approaches.
The proposed GC architecture has been prac-
tically implemented and proven using the em-
bedded bytecode processor SHAP as a sample
testbed. The synthesis results for settings up to
three SHAP mutator cores are given and online
functional measurements are presented. Basic
performance dependencies on the system con-
figuration are evaluated.

1 Introduction

The automatic reclamation of memory space no
longer in use is an essential feature of modern
software platforms. Widely known as garbage
collection (GC), it completely drains a promi-
nent source of programming errors and dramat-
ically increases programmer productivity. In
spite of its inherent costs in processing time and
memory bandwidth, it has even been adopted
in the embedded platform domain. Also there,
the increasing system complexity calls for higher
programmer productivity and increased prod-
uct confidence.

In addition to general time-to-market and de-
sign cost requirements, a few additional design
constraints are of prominent importance espe-
cially in the embedded platform domain. Em-
bedded systems should be frugal and just offer
the needed performance with the smallest fea-
sible silicon and the least possible power con-
sumption. However, the specified performance
is also often strongly required to be delivered so
that services are guaranteed to meet their dead-
lines. These aspects motivate the designated
and optimized implementation of essential func-
tionalities in spite of the additional design effort.
The garbage collection is one example for such
an optimization target, which has already been
approached by several research groups.

2 Embedded GC Module

While garbage collection automates the man-
agement of one essential system resource, the
heap memory; many other resources (files,
locks, queues, sockets etc.) remain subject to
the careful manual management by the pro-
grammer. Implementors of the representing ob-
jects of such resources usually seek to automate
the proper closing of the resource with the help
of the automated memory management. Due to
the indeterminism of many GC techniques, this
does not compensate for a missing programmer-
triggered release of the resource immediately
after its use but it is an appropriate fallback
ensuring an eventual clean shutdown of the re-
source. The classical means to achieve this cou-
pling was the finalizer, which, however, suffers
several issues in its application:

• It may be overridden and, thus, even be
deactivated by a careless programmer not
calling the inherited implementation of an
extended class.

• The order of finalizer invocation and their
executing threads are undetermined.

• Exceptions thrown during finalizer execu-
tion are ignored and do not generate any
feedback whatsoever.

These issues are solved by the use of weak ref-
erences in conjunction with reference queues.
This concept combines a clean collection of no
longer referenced objects with a notification of
the mutator, which is achieved by enqueuing the
associated reference objects. These objects act
as proxies representing the weak references to
their targets without keeping them alive. The
number of weak references to an object and,
thus, the number of notifyable observers is only
bounded by the system resources rather than
the concept itself. The observation of its life-
cycle does not require a cooperative implemen-
tation of the target, which eases the use of this
design pattern and eliminated potential pitfalls.
The processing of proxies enqueued to the noti-
fication queues is under the sole control of the
queue creator.

Besides the advantages over classical finaliz-
ers, weak references even without associated ref-
erence queues enable new flavors of reachability.

These can be used to mark certain associations
as nice to have but not critical. This allows the
caching of larger reconstructible data while still
allowing the GC to reclaim the occupied mem-
ory whenever needed.

Both finalization and weak references enjoy
thorough support in the Java2 Standard Edi-
tion (J2SE). Weak references even come in three
flavors: soft, weak and phantom, which sup-
port caching as well as pre-finalization and post-
finalization notification. In the Java2 Micro
Edition (J2ME), only the Connected Device
Configuration (CDC) requires the same set of
features. The Connected Limited Device Con-
figuration (CLDC) for more constrained devices
only knows about the single weak flavor of ref-
erences and adopted it only with version 1.1.
It avoids finalization totally. Thus, it is not at
all surprising that hardware GC or hardware-
assisted GC implementations do normally not
support any notion of weak references or even
classical finalization.

This report proposes a designated concurrent
hardware GC architecture that supports weak
and soft references as well as reference enqueu-
ing as known from the J2SE. Without finaliza-
tion support, the phantom references collapse
semantically with the weak ones1. This makes
them obsolete in a CLDC setting.

The proposed GC implements a copying ap-
proach within a segmented memory so as to re-
duce the 100 percent space overhead of clas-
sical copying GC significantly. It further em-
ploys designated tap units on the internal mu-
tator components to collect the root reference
set without explicit mutator assistance.

In the remainder of this report, Sec. 2 gives an
overview on the previous work undertaken on
hardware-assisted GC implementations. Sec. 3
describes the proposed GC architecture. Its

1In contrast to the other flavors of weak references,
the Java API particularity requires the unretriev-

able target of a phantom reference to be cleared
programmatically in order to become unreachable

in spite of an alive phantom reference to it. This
particularity appears to stem from the avoidance of
a software patent (http://forums.sun.com/thread.
jspa?threadID=5230019). It, in fact, prevents a
complete semantic blend of weak and phantom ref-
erences, which is, however, of no conceptional impor-
tance.

with Weak Reference Support 3

practical implementation is evaluated by Sec. 4
based on its integration into SHAP [19, 27].
Sec. 5, finally, concludes this report.

2 Related Work

Systems with minimal hardware support for
their GC implementations were built already in
the late 1970s and early 1980s as native LISP
machines [8,12,13], which featured type-tagged
memory words to identify pointers and hard-
ware-implemented read and write barriers.

The later Garbage Collected Memory Mod-
ule by Nilsen et. al [14–17, 21] implements an
object view upon the memory space. Upon re-
quest from the mutator, which needs to provide
a list of the root objects, it employs a copy-
ing approach for an independent garbage col-
lection. Although well documented, this system
has never been prototyped [11].

Srisa-an et. al [24, 25] describe a mark-and-
sweep accelerator backed by allocation bit vec-
tors. Additional 3-bit reference counting within
similar bit vectors is suggested for the fast recla-
mation of low-fanin objects. The scalability of
this approach is achieved by the caching of par-
tial vectors as directed by an undetailed soft-
ware component. Also, this architecture was
merely simulated as C++ model and has not
been included in any synthesized design.

The Komodo [18] architecture and its suc-
cessor jamuth [26] support a very fine-grained,
low-cost thread parallelism on instruction level.
This architecture enables the non-intrusive ex-
ecution of background system threads, one of
which can be designated to the garbage collec-
tion. Different implementations of mark-and-
sweep algorithms based on Dijkstra’s tri-color
marking are described.

Meyer [9] described a RISC architecture,
which features a separate register sets and stor-
age areas for pointers and other data. This
enables a clear distinction among these data
types as required for an exact garbage collec-
tion. A microprogrammed co-processor, finally,
implements the actual GC with a copying ap-
proach [10]. The required read barrier is later
backed by designated hardware so as to reduce
its latency significantly [11].

Gruian and Salcic [5] describe a hardware GC
for the Java Optimized Processor (JOP) [22,23].
The implemented mark-and-compact algorithm
requires the mutator to provide the initial set
of root references. As objects may be moved
during the compaction phase, read and write
accesses to them must be secured by appro-
priate locks. The mutator may otherwise pro-
ceed with its computation concurrently to the
garbage collection. Reference and data fields
inside heap objects are distinguished by appro-
priate layout information associated with each
object’s type. Root references on the stack are
determined conservatively only excluding data
words that do not resemble valid reference han-
dles.

In summary, several embedded GC imple-
mentations built on designated architectural
resources and may thus be called hardware-
assisted. The controlling algorithms are typi-
cally implemented in software albeit regularly
on a level as low as microcode. The implemen-
tations are frugal in the sense that they provide
an automatic memory management but without
any more extras. In particular, they avoid the
support of any extended object lifecycle man-
agement such as finalization, weak references or
even reference enqueuing. These systems are
obsolete even for the implementation of the cur-
rent CLDC 1.1. These drawbacks are targeted
by our GC architecture.

3 Garbage Collector Design

3.1 Fundamental Design

The desired GC architecture should provide sev-
eral functional features. First of all, it is to ab-
stract the memory to a managed object heap
with high-level object creation and field access
operations as well as automatic garbage collec-
tion. It is further to support weak references as
defined for the CLDC 1.1. Finally, the capabil-
ity to attach multiple mutators is desired.

The GC task obviously grows more complex
with the support of weak references. In order to
keep its implementation maintainable and ex-
tensible, the FSM implementation of SHAP’s
former memory manager [20] was abolished. In-
stead, several options for software-programmed

4 Embedded GC Module

Memory Access Management

Mark Management

Mark

Table

Mark

FIFO

Control

GC Bus

Mark

Control

W
ri

te
B

a
rr

ie
r

Allocation

Engine

Scan

Engine

Reference

Translation Buffer

Memory
Control

Unit

Root

Table Port

Memory

Bridge

Wishbone

GC Bus
(Ring)

Mutator
Ports

SHAP Core

M
e
m

o
ry

 M
a
n

a
g

e
m

e
n

t
U

n
it

System Bus

Memory

Figure 1: Memory Management Unit: Structural Overview

solutions were explored. The obvious solu-
tion to simply duplicate SHAP itself was soon
dismissed as its high-level Java programming
greatly relies on the memory object abstrac-
tion that first needs to be established by this
component. The continuous access to low-level
memory would further require a unnatural if
not abusive use of the language. Last but
not least, the microcode implementation used
by SHAP would establish a significant over-
head when compared to the still rather compact
memory management task. A reduced variant
duplicating only the core microcode engine, fi-
nally, disqualifies due to the low achieved gain
in abstraction level. Thus, the search was nar-
rowed to compact RISC cores with a functional
C toolchain, specifically, to the OpenFIRE [1]
and the ZPU [6].

Both of these cores are freely available but
quite contrary in philosophy. While the Open-
FIRE is a full-fledged RISC engine, the ZPU
takes a very frugal approach. It turned out that
the ZPU with a few replacements of emulated
by implemented instructions was well-sufficient
for the task of memory management. It fur-
ther provides the strong advantages of a concise
design structure, lower resource demand and a
high achieved clock frequency. In fact, an Open-
FIRE solution would require a second slower
clock domain or the reduction of the overall sys-
tem clock by 40%. Consequently, it was the
ZPU microarchitecture, which we chose to be
at the heart of our memory management.

As illustrated in Fig. 1, the ZPU assumes
the central control of the memory manage-
ment as memory control unit (MCU). It is

with Weak Reference Support 5

Local Root Scans

Central Heap Scan

Deactivate Write Barrier

Process Weak References

Activate Write Barrier

Recycle Reference Handles

Evacuate
Sparse

Segments

Figure 2: GC Cycle Overview

surrounded by several special-purpose hard-
ware components implementing time-critical
subtasks. Their functions will be detailed later.
The connection to the system Wishbone bus en-
ables the (slow) administrative communication
with the mutator cores. This not only serves
the communication of statistics data but is also
used for delivering weak reference proxies to the
runtime system for their possible enqueuing into
reference queues so that our design supports this
feature in addition to the CLDC requirements.

The memory access of the mutator cores
are prioritized over GC-related accesses. The
garbage collector, thus, operates on cycle steal-
ing, a very fine-grained utilization of other-
wise idle memory bandwidth enabled by the
mutator-independent concurrency of the mem-
ory management unit.

The overall GC cycle is summarized in Fig. 2.
It is initiated and supervised by the MCU. Some
tasks are, however, backed by dedicated hard-
ware components containing small specialized
state machines.

3.2 GC Strategy

The GC strategy should enable a smooth
turnover of memory in object allocation and re-
cycling. In order to guarantee an instant allo-
cation of objects, we chose a bump-pointer allo-

cation scheme simply forwarding the allocation
pointer by the number of the requested words.
Obviously, such an approach requires the com-
paction of the used storage to re-generate the
continuous allocation region. The two estab-
lished alternatives are the single-phase copying
garbage collection and the two-phase mark-and-
compact approach.

The traditional copying garbage collector [7]
uses two memory spaces to encode the liveness
of an object by its physical storage location.
With alternating roles, the current to-space con-
tains newly-allocated and other reached objects
transferred from from-space. Allocation in to-
space is performed continuously. While not re-
quiring a designated mark phase, this approach
regularly moves the whole living object graph
through memory without allowing any old sta-
ble part of it to settle somewhere. The require-
ment of one empty memory half establishes an
expensive overhead.

The classical mark-and-compact approach
builds the graph of living objects within a des-
ignated mark phase. This is succeeded by the
compaction phase, which condenses the living
objects, say, at the bottom of the memory. The
allocation of new objects can continue right be-
hind this condensed storage area. In a con-
current GC implementation, this approach may
suffer from a race between allocation and com-
paction where each allocation adds to the com-
paction work and, thus, delays the re-generation
of the allocation area. This approach was im-
plemented for JOP’s hardware-assisted GC [5].

While both of these approaches incur unde-
sirable drawbacks in their pure adoptions, these
can be mitigated by the partitioning of the avail-
able memory into disjunct, typically equally-
sized segments. From these, an initially empty
segment is designated to the allocation of new
objects, which is performed in a simple bump-
pointer manner. When the space within this
segment does no longer suffice the allocation of
a requested object, a hardware FIFO provides
the descriptor of an immediate replacement seg-
ment so that no time-consuming intervention of
the MCU is required. It only becomes respon-
sible for used segments. It regularly initiates
a heap scan to detect the objects no longer in
use and to update the segment utilization statis-

6 Embedded GC Module

Empty Used

Compaction

Alive Objects

Allocation Engine

Sparse

Full

FIFO FIFO

Figure 3: Segment Life Cycle

tics accordingly. It also selects segment with a
low remaining utilization to be cleaned out. All
its remaining living content is copied compactly
into an evacuation segment before the cleared
segment becomes available as empty storage.
The MCU will substitute the evacuation seg-
ment by a new empty one as soon as it fails to
receive an object surviving the collection of its
home segment.

The life cycle of the memory segments is illus-
trated in Fig. 3. While the general descriptor-
based administration of the segments is per-
formed by the MCU, there are specialized hard-
ware state machines for time-critical tasks. The
allocation engine reserving memory space for
new objects inside the memory access manage-
ment is even decoupled by FIFOs so that the
independent instant replacement of a filled al-
location segment is possible. Also the object
movement as part of the compaction process is
implemented as service provided by the memory
access management. This low-level integration
of this process enables transparent mutator ac-
cess even to objects being copied. In contrast
to JOP’s hardware GC, the mutator need not
protect object accesses by locks. Even if the ac-
cessed object is currently being moved, the ac-
cess will be guided correctly to either the old or

the new copy according to the instant position
of the copying pointer within the object.

The proposed algorithm establishes a novel
mark-and-copy approach operating on a seg-
mented memory. It enables continuous allo-
cation and concurrent garbage collection. A
race between allocation and collection has been
avoided as both are operating in distinct seg-
ments. The copying effort is reduced to sur-
viving objects co-residing with garbage in the
same segment. Segments with only short-lived
operational objects are freed as a whole without
any copying work. Segments with accumulated
old long-lived objects will remain untouched. In
addition to the spontaneous formation of ob-
ject generations, the collector can accelerate this
trend by the use of generational evacuation seg-
ments.

The critical parameter of the proposed ap-
proach is the segment size. Firstly, it restricts
the size of the largest allocatable object. Sec-
ondly, small segments increase the the manage-
ment overhead in terms of segment exchanges
and state information. On the other hand, large
segments force a coarse-grain memory manage-
ment with a potentially significant space over-
head approaching the behavior of a copying col-
lector. Hence, a set of well over 4 segments
should be, at least, available.

Having decided for a moving GC, measures
must be taken to ensure the stable identifi-
cation of each object throughout its life cycle
even in the possibility of its displacement. This
is achieved through fully-transparent handles,
which are the only identifications of objects ever
known to a mutator. The memory manager in-
ternally maps a handle to a state record com-
prising the current storage location of the refer-
enced object, the sizes of its reference and data
areas as well as some GC information.

3.3 Exact Garbage Collection

Targeting SHAP, a secure embedded bytecode
processor, it is imperative to implement an ex-
act garbage collector. Such a collector must be
able to safely distinguish references to heap ob-
jects from primitive data words as to obtain a
precise picture of the boundaries of the graph
of living objects. While conservative collection

with Weak Reference Support 7

approaches are equally safe in the sense that
they will never discard objects that are, in fact,
still in use, they may fail to collect applicable
garbage. Only relying on heuristics to exclude
definite non-references (such as bit pattern sig-
natures), unfortunate primitive values mirror-
ing valid references are capable to increase the
maintained object graph to zombie structures
beyond the living core. This bears the risk of
a decreasing system performance and even of
undue memory exhaustion. An exact GC, on
the other hand, ensures that the memory over-
head of an application as compared to its true
requirement is only induced by the collection
latency, i.e. the collection cycle time. Garbage
not discovered due to unfortunate data words
does not exist.

The exact distinction between prim-
itive data and references is achieved
through additional administrative metadata.
This may either be provided through high-level
structural information on the object layouts or
by a low-level tagging of individual memory
words. While type-tagged memory was, indeed,
used by the early LISP machines named above,
the modern established word-based memory
interfaces with corresponding standard software
data types do no longer provide the space even
for a single tagging bit. The overhead of a
parallel tag memory in a separate memory
region or even as physical module should be
avoidable on a platform where all memory
objects are laid out after the blueprints of a
handful of classes.

Meyer’s RISC architecture [9] offers a suit-
able implementation of a rigorous spatial sepa-
ration of primitive data and references into two
storage area within an object. It does, how-
ever, not cope well with inheritance. As a spe-
cialized subclass may arbitrarily add primitive
data or reference fields to the state of instances,
both of the storage areas must be able to grow.
Nonetheless, any object must still be viewable
as an instance of any superclass. Consequently,
at least one of the two storage areas must be
accessed in two sequential steps: (1) query the
runtime size of the other storage area to be
skipped, and (2) access the field at the given in-
dex behind this area. An approach without this
deficiency had, however, already been proposed

Class Info

Thin Lock

class A

class B
extends A0

−1

−2

−3

1

2

3

R
ef

er
en

ce
s

P
rim

iti
ve

 D
at

a

Figure 4: Bidirectional Object Layout

for the SableVM [4]: using a bidirectional class
layout, the index ranges of the fields in both
storage areas can grow independently. Thus, all
field accesses can be performed by a single in-
dexed memory access taking the central object
pointer as the base address. Although described
for a software implementation, this approach is
well suited for its adoption in a hardware archi-
tecture.

The distinction between primitive data and
references must, however, be extended beyond
the actual garbage-collected heap to values held
by the mutator cores. These values contain the
set of roots to the living object graph residing
in memory. Since local registers and the execu-
tion stack are typically a rather loose collection
of individual values, their tagging is a valuable
option. As no established external interfaces are
effected, this option is also feasible. Tagging is,
indeed, not as rigorous as the separated register
sets as suggested by Meyer’s RISC architecture.
On the other hand, it is more flexible in the use
of its internal storage resources avoiding work-
load effects such as unbalanced register pressure
due to architectural usage constraints. For our
adaptation for SHAP, we, thus, chose to em-
ploy reference tagging inside the mutator cores.
There, it is applied to registered values and the
integrated execution stack.

For our garbage collector, we adopted the
bidirectional object layout for heap objects as
illustrated by Fig. 4. The object layout is spec-
ified when the runtime and application classes
are linked for SHAP. The linker separates prim-
itive data and reference fields assigning them
indices growing independently in magnitude in

8 Embedded GC Module

declaration order. Static field values are held
accordingly within the Class objects represent-
ing their defining classes. While all arrays are
dimensioned on demand, the elements of refer-
ence arrays grow into the reference area while
the elements of primitive array extend into the
primitive data area. These measures ensure the
following heap properties:

1. Each value in the reference area of a living
object is either null (encoded as zero(0))
or a legal reference to a living object.

2. Memory outside the reference areas of the
living objects will not be scanned by the
garbage collector. Hence, the contained
values cannot keep any objects alive.

While the mutator should generally not trans-
form among primitive data and references, such
operations may be quite useful, for instance, for
the derivation of an identity hashcode. Only
one thing must be strictly forbidden: a muta-
tor may never invent a reference handle unless
it can prove that this reference is already exist-
ing and alive. The allocation of objects and the
assignment of reference handles as well as the
recycling of handles fallen out of use is the sole
responsibility of the memory management.

3.4 Object Graph Marking

A GC cycle must calculate the subgraph of
reachable objects rendering all other objects un-
reachable and, thus, no longer usable by a mu-
tator so that there occupied memory can be re-
claimed. An object is reachable by a mutator
if it is referenced (a) directly by the mutator or
(b) transitively by a field of a reachable object.
The set of objects directly reached through mu-
tator references is commonly referred to as the
root set.

The reachable object subgraph can be com-
puted simply by following its definition: After
querying the mutators for their held roots, a
graph search from the known reachable objects
is performed to explore the whole reachable sub-
graph. The technical challenge of this proce-
dure is its execution concurrently to the muta-
tors so as to allow their continuous computa-
tional progress and the concurrent modification

of the root sets and of the object graph. The on-
going alteration of the object graph somewhat
blurs the computation of its reachable subgraph.
Nonetheless, the following properties must be
met:

Correctness All objects that are reachable
when the computation completes belong to
the computed subgraph.

Boundedness No object that was never reach-
able throughout the computation belongs
to the computed subgraph.

While the correctness ensures that a garbage
collector is safe to use, its boundedness defines
its very purpose and ensures that all objects
that are unreachable when a GC cycle starts
will be reclaimed.

Our architecture builds upon a decentralized
collection of the root set. Each mutator core is
extended by its own root scan unit, which col-
lects the references contained in the local regis-
ters and stack into a mark table. As shown in
Fig. 1, all mutator cores are arranged in a ring
on a GC bus, which is mastered by the MMU.
This unit issues commands onto the ring and
receives their acknowledgements as they return
on the other end. This ring also serves the grad-
ual merger of the contents of the individual root
tables into the global root set. While the MMU
transmits an empty table, each core ORs the re-
ceived table with its own table contents before
forwarding it along the ring. The final results
is entered into the central mark table inside the
MMU.

The chosen ring structure has several advan-
tages over a direct connection of all root scan
units to the central mark table. First of all,
it guarantees a simple routing of rather short
signal paths only connecting ring neighbors. In
conjunction with the local root tables, it further
allows the root scan to be performed concur-
rently on all mutator cores without congestion
in the access to the central mark table.

The local root scans operate concurrently to
their associated mutator core. Once finished,
they are deactivated for the remainder of the
GC cycle so that further modifications of the lo-
cal root sets are not logged. Not unmarking lost
(overwritten) roots does not violate correctness

with Weak Reference Support 9

nor boundedness as these objects were reachable
when the GC cycle began. Not marking new
roots is also legal as they are either (a) refer-
ences loaded from memory and, thus, reachable
from the original root set or (b) newly-allocated
and, then, implicitly marked by the allocation
engine.

After the completion of all root scans, the ac-
tual computation of the reachable subgraph is
performed by the heap scan, which is an op-
timized implementation of the well-established
tri-color marking [2]. While the mark table
entries distinguish reached from unreached ob-
jects, the colors red or green are assigned to
references to divide the reachable objects into
those already scanned and those still requiring
processing. The meaning of the colors alter-
nates and is determined relatively to the color of
the active GC cycle. Initially, all references are
unscanned and have the color opposite to the
current cycle. Upon being scanned, a reference
assumes the cycle color. References to newly-
allocated objects are immediately assigned the
active color as they do not contain valid refer-
ences and need not be scanned. The heap scan is
completed when all reachable and, thus, marked
references have assumed the cycle color. After
disposing of the remaining unmarked and, thus,
unreachable references, the meaning of the col-
ors is exchanged and the initial condition that
all references are of the opposite color is re-
established for the next GC cycle.

While the completion of the scan could be
detected by another walk through the mark ta-
ble that does not produce any marked reference
without cycle color, we implemented a simple
but effective optimization. Each time a previ-
ously unmarked reference is marked in the mark
table, it is also copied into a mark FIFO. This
FIFO is read to determine objects that still have
to be scanned during the heap scan. Only when
it runs empty, the mark table is re-walked to
search for additional work but only if the walk
just completed did produce a FIFO overflow. As
all work has been safely finished when the FIFO
sufficed, a final unproductive walk of the table is
no longer needed. This implementation is also a
significant improvement for settings where the
scan of an object always only marks new table
entries that have just been passed. Without the

FIFO, this could degenerate to require a number
of walks through the full table that approaches
the table size.

The concurrent modification of the object
graph by the mutator must be accounted for so
as to avoid the violation of correctness while, of
course, only marking objects that were reach-
able at some time in the course of the scan.
In particular, it is necessary to ensure that no
mutator ever gets hold of a reference that re-
mains unmarked. This situation might occur
when a reference field of a still unscanned ob-
ject is read and overwritten by a different value
before it is scanned. While the mutator then
holds a reference into an object subgraph, the
reference to be followed by the heap scan has
been destroyed. To keep the effected subgraph,
nonetheless, alive, a write barrier is used to in-
tercept reference writes and to enter the over-
written reference into the mark table. Although
this might, indeed, keep truly unreachable sub-
graphs alive, boundedness is not violated as the
subgraph was reachable at some time during the
ongoing scan.

In the context of multiple mutators, the write
barrier is implemented using an atomic swap op-
eration on the backing memory as to outrule a
race condition among possibly concurrent read-
write sequences on the same storage location.
Although only required for the heap scan, we
chose to activate the write barrier even prior to
the initiation of the local root scans. This choice
relaxes the phase transition from root to heap
scan and avoids its system-wide synchronization
through an atomic rendezvous.

3.5 Weak Reference Support

In contrast to their regular strong counterparts,
weak references do not keep their referents alive.
An object may become eligible for garbage col-
lection in spite of the existence of paths via weak
references to it. If the collector decides to dis-
card the referent of a weak reference, the ref-
erence must be deprived of its capability to re-
trieve the referent, which is usually achieved by
clearing it to null. Reference queues may es-
tablish an additional notification scheme allow-
ing cleared references to be enqueued for pro-
cessing by an application thread.

10 Embedded GC Module

SoftReference WeakReference PhantomReference

Reference ReferenceQueue
* 0..1

Figure 5: Hierarchy of Reference Proxy Classes

The Java 2 Standard Edition knows of several
different strengths of weak references:

1. Soft references have a rather strong grip on
their referents. Even if an object is only
reachable going through a soft reference,
the garbage collector is urged not to sacri-
fice the object and clear the soft references
as long as the system has sufficient mem-
ory.

2. Weak references do not at all keep their ref-
erents alive. As soon as the GC determines
an object to be solely weakly reachable, it
will be discarded and the weak references
will be cleared.

3. Phantom references are a particularity that
allows the ultimate detection of the death
of an object. Phantom references are only
enqueued after all other references have
been cleared and the finalizer of the object
has been run.

As shown in Fig. 5, all of them derive from their
common superclass Reference and any instance
of these references is applicable for the use with
a reference queue, which is specified at construc-
tion time. Phantom references are not cleared
automatically2 and require a reference queue as
polling their referent using get() returns null

by definition so that the queue establishes the
only useful communication channel.

From this spectrum, the CLDC1.1 of the
Java 2 Micro Edition only requires the imple-
mentation of the weak references. Note that,
without the support for finalization, the role of
phantom references is assumed by the weak ref-
erences and their absence, thus, not a loss. Soft

2Apparently due to a software patent, c.f.
http://forums.sun.com/thread.jspa?threadID=

5230019

S W Reference Handle

0 0

0 1

Strong

Soft

Weak

undefined

StrengthTag

31 30 29 0

11

1 0

Figure 6: Tagging of Reference Strengths

references and reference queues are, however,
additional useful features, which we decided to
provide in the GC architecture for SHAP albeit
they are not required by the current CLDC.

Weak references are typically implemented
as proxy objects containing a special reference
member initialized to the referent from a regu-
lar strong reference provided to the constructor.
The garbage collector must be enabled to rec-
ognize these special references in order to treat
them appropriately in the heap scan and to clear
them when it is about to collect their referents.
This distinction is typically achieved through
the type of the proxy object so that the garbage
collector must recognize all subclasses of these
proxies and be aware of the special references
contained at a certain field offset.

The necessity to provide the GC with infor-
mation about the class hierarchy and the ob-
ject layout of reference objects is not desirable.
We avoided it by tagging the weak references
themselves. As the exact garbage collection has
been achieved through the bidirectional object
layout, signature bits assisting the conservative
garbage collector are no longer needed. Instead,
the memory manager uses two bits to distin-
guish different strength of references as shown
in Fig. 6. While these bits are generally cleared,
they are set by the constructors of reference

with Weak Reference Support 11

objects. Although not currently used, this ap-
proach enables a much more flexible use of weak
references even outside the hierarchy of the ref-
erence objects.

References of different strengths define differ-
ent degrees of reachability of the objects con-
tained in the managed heap. If these were to be
calculated during the heap scan, the scan time
would potentially multiply as parts of the ob-
jects graph are re-scanned in order to update the
reachability information after finding a stronger
reference to a subgraph root. Fortunately, this
effort is not necessary. Weak references are sim-
ply not followed during the heap scan. Merely,
their containing proxies are collected. After the
heap scan, the list of proxies is scanned for ref-
erences to unreached referents. Any one found
will be cleared, and the effected proxy will be
communicated to the mutators for its possible
enqueuing into a reference queue. Thus, the
weakly-reachable parts of the object graph are
simply not scanned and may then be regularly
discarded.

Soft references assume a special role as they
should only be followed as long as there is plenty
of memory available in the system. Therefore,
their treatment is decided in the beginning of a
garbage collection cycle according to the current
memory utilization. If memory is abundantly
available, they are treated like strong references,
otherwise they are treated like weak references
and are not followed during the scan.

Special care is to be taken upon the retrieval
of a strong reference from a weak proxy. Assume
that an object only remains reachable through a
weak reference. As long as the garbage collector
does not discover this condition, the reference is
not cleared but totally valid. The invocation of
the get() method on the WeakReference proxy
object will return with a normal strong refer-
ence to the referent effectively resurrecting the
object from the brink of death. A race condition
may now arise when such a resurrection inter-
feres with an ongoing heap scan, which would
normally ignore the weak reference. Hence, it
must be ensured that the reference to be re-
turned by get() is either entered into the mark
table prior to the completion of the heap scan
or invalidated by returning null. Not know-
ing whether an ongoing heap scan will render

the referent strongly-reachable or not, a con-
sistent resurrection with a mark table entry is
attempted first. Only if the scan has finished in
the meanwhile, the actually determined reach-
ability is evaluated. If necessary, null will be
returned in conformance to the inevitable clear-
ing of the original reference field.

While the memory manager collects cleared
weak reference objects, they must be processed
further by the mutators. For this purpose,
the runtime system forks a designated service
thread that maintains the communication with
the memory manager via its Wishbone connec-
tion to receive the list of cleared proxies of a col-
lection cycle. It is the responsibility of this run-
time service to enqueue these proxies appropri-
ately if they have associated reference queues.

4 Evaluation in SHAP

The described design was implemented for
SHAP and integrated into the runtime sys-
tem through adapted microcode implementa-
tions accessing the port to the memory access
manager as well as through regular Wishbone
I/O for less time-critical operations. The lat-
ter also provides fundamental statistical data
that we used for this evaluation. The runtime li-
brary was extended to enable application access
to the new features and to provide implementa-
tions for the reference proxy and the reference
queue classes. It was also turned into the first
client of the weak reference support by the im-
plementation of resource pools, which, for in-
stance, enable the proper interning of strings.

The reference design was implemented on
a Xilinx Spartan-3 XC3S1000, which is capa-
ble of holding up to three SHAP cores next
to the memory management unit. The uti-
lization of this reference platform is summa-
rized in Tab. 1. As indicated, the demand
on active resources grows linearly with the
number of integrated SHAP cores. While
most of the basic core-independent flip-flops
and LUTs may be attributed to the cen-
tral memory management, global Wishbone-
attached IO accounts for about a quarter of it.
The three Block RAMs outside the cores are

12 Embedded GC Module

Table 1: Device Utilization of Reference Platform

Cores FFs LUTs BRAMs

1 3206 7813 10
2 4465 11396 17
3 5720 14963 24

n ≈ 1257n + 1950 ≈ 3575n + 4240 7n + 3

 0

 10000

 20000

 30000

 40000

 50000

Read (Prim) Read (Ref) Write (Prim) Write (Ref)

C
o
u
n
t

Operation

Count of Memory Operations in a Million Cycles

FScript
SkyRoads

Figure 7: Frequency of Read and Write Operations

used as MCU storage also containing the GC
program and the global mark table.

While we chose a write barrier to capture
changes to the object graph in the course of
the heap scan, a read barrier would be equally
valid. Marking every reference read, it would
ensure that all subgraphs a mutator obtains a
reference into will be kept alive even if the read
reference becomes overwritten later. The de-
cision in favor of the write barrier is motivated
by the significantly lower frequency of writing as
compared to reading memory accesses as shown
in Fig. 7 for two sample applications running on
SHAP and also reported in earlier quantitative
analyses [3]. Thus, the choice of a write bar-
rier reduces barrier activations and, hence, the
competition for mark table access.

The processing of living weak reference prox-
ies constitutes a processing overhead as they are
enlisted during the heap scan to be revisited
thereafter in order to verify that their referents
have been reached or to clear and enqueue them.
This overhead grows linearly with the number of
living proxy objects. This is shown in Fig. 8 for
several scans of a heap with an identical object
population, which merely differs in the number
of weak reference proxies pointing to living ob-
jects rather than being cleared. While the heap
scan merely slows down marginally, the over-
head becomes clearly visible in the succeeding
weak reference processing. The lower impact
on the heap scan is due to its hardware-assisted
implementation inside the memory access man-
agement.

with Weak Reference Support 13

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500

D
u
ra

ti
o
n
 i
n
 C

lo
c
k
 C

y
c
le

s

Living Weak Reference Proxies

Heap Scan
Weak Processing

Figure 8: Overhead of Weak Reference Processing

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800 900
 0

 500

 1000

 1500

 2000

 2500

 3000

F
re

e
 S

e
g
m

e
n
ts

U
s
e
d
 R

e
fe

re
n
c
e
 H

a
n
d
le

s

Iteration

Soft Reference
Reclamation

Used Reference Handles
Free Segments

Figure 9: Soft References and Growing Memory Utilization

The distinguished treatment of soft references
according to the current memory utilization is
illustrated in Fig. 9. Initially, a set of few but
large objects is allocated and made solely soft-
reachable. Then, small objects are created con-

tinuously and kept reachable so that the mem-
ory is filled up. While the large objects are ini-
tially kept alive, the available empty segments
will eventually fall short of the threshold config-
ured to two segments. When this happens, the

14 Embedded GC Module

 0

 5000

 10000

 15000

 20000

 4 8 16 32 64 128 256 512 1024
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000
O

b
je

c
t
T

u
rn

o
v
e
r

[p
e
r

1
0
0
m

s
]

M
e
m

o
ry

 T
u
rn

o
v
e
r

[W
o
rd

s
 p

e
r

1
0
0
m

s
]

Object Size [Words]

GC Performance

Object Turnover
10

6
/(20.4+1.46*Size)

Memory Turnover
10

6
/(20.4/Size+1.46)

Figure 10: GC Performance

GC no longer follows soft references and will,
thus, collect all solely softly-reachable objects.
This reclamation of soft references is clearly
shown by the discontinuity in Fig. 9. There, the
collection of the large softly-reachable objects
frees a large chunk of three complete memory
segments while merely recycling a couple of ref-
erence handles.

Also, the performance of the garbage collec-
tor was evaluated within a SHAP system run-
ning at 50 MHz on the mentioned Spartan-3
FPGA with an attached 1MiByte SRAM, of
which about 50 KiByte are occupied by API and
application code. The benchmark application
spawns two threads. The first of these con-
stantly allocates heap objects of a pre-defined
size, which are abandoned immediately after
their allocation to become eligible for garbage
collection. The second thread only wakes up
every 100ms just to log the current object allo-
cation count, which is incremented by the first
thread upon each successful object creation.

The measurements were performed for dif-
ferent object sizes. Each measurement spans
over the arbitrary number of eight consecutive
100 ms intervals. In order to determine the sus-
tained turnover of objects and memory, which

includes both their allocation and their recy-
cling, these eight intervals are preceded by an-
other one to reach the desired saturation. The
reference system configuration provides a pool
of 213 reference handles and a memory space
consisting of 218 32-bit memory words.

The obtained object and memory turnovers
are plotted against the respective object sizes in
Fig. 10. Performance jitter between the measur-
ing intervals is only observable for object sizes
below 32 words and is depicted by the disper-
sion bars. Although small, this variation can be
directly attributed to an increased interference
of the GC module with the mutator core for
small objects. The performance-limiting factor
in these cases is apparently the pool of available
object handles rather than the actual memory
consumption. Also, the fairly constant object
turnover for object sizes below 32 words sug-
gests that the exhaustion of handles rather than
memory forces the GC into collection cycles.

As the object size grows beyond 32 words,
the object turnover decreases notably. In this
region, the performance is limited by the SHAP
core itself. Implementing a Java platform, it
has to zero the memory of a freshly allocated
object before initiating its construction. Thus,

with Weak Reference Support 15

 0

 5000

 10000

 15000

 20000

 25000

 4 8 16 32 64 128 256 512 1024

O
b
je

c
t
T

u
rn

o
v
e
r

[p
e
r

1
0
0
m

s
]

Object Size [Words]

GC Jitter

Measuring Interval
100 ms
25 ms

Figure 11: GC Jitter

the memory turnover, i.e. the object turnover
multiplied by the object size, is bounded by the
speed of zeroing. Merely the constant loop and
construction overhead for larger objects allows
a steady but slowing increase of the memory
turnover and prevents the object turnover from
halving with every doubling of the object size.
This dependency of the object turnover from
the object size is illustrated through its good
approximation by the given hyperbola. While
the numerator of this approximation is an ar-
bitrary scale to the GC performance, the con-
stant summand 20.4 and the coefficient 1.46 of
the denominator represent the constant over-
head and cost per object word, respectively.
The corresponding approximation of the mem-
ory turnover, which is simply scaled by the ob-
ject size, is also shown.

Fig. 11 provides some deeper insight into the
interference of the garbage collection with the
mutator progress. By the shortening of the
measuring intervals, the averaging effect hiding
the jitter in computational progress is reduced.
This is clearly apparent in the normalized ob-
ject turnover graphs for the interval length of
25 ms. But again, such jitter can only be ob-
served for small object sizes below 32 words.

It completely disappears for larger object sizes.
Special care is, thus, required when tasks with
short periods produce much garbage consisting
of many small objects. Otherwise, the concur-
rent garbage collections can successfully operate
in the background.

As shown in Fig. 12, the memory turnover suf-
fers when the memory size decreases, here to
half the space. The exhaustion of the mem-
ory available for allocation is underlined by the
increased performance jitter even beyond ob-
ject sizes of 32 words. This shows that the
garbage collector can no longer operate solely in
the background but has to draw memory band-
width from the mutator in order to sustain the
required collection speed.

Finally, Fig. 13 shows the effect of doubling
the number of available reference handles. Sup-
porting the thesis of an exhausted handle pool
for small object sizes in the initial measurement,
the object turnover is clearly increased in this
region while the figures for larger object sizes re-
main unaffected. Notably, the object turnover
slightly decreases for an object size of 32 words
at the borderline of these regions. Apparently,
the increased reference pool incurred an addi-
tional small but measurable processing cost.

16 Embedded GC Module

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 4 8 16 32 64 128 256 512 1024

M
e
m

o
ry

 T
u
rn

o
v
e
r

[W
o
rd

s
 p

e
r

1
0
0
m

s
]

Object Size [Words]

Impact of Memory Size

Memory Size
2

18
 Words

2
17

 Words

Figure 12: Impact of Memory Size

 0

 5000

 10000

 15000

 20000

 25000

 4 8 16 32 64 128 256 512 1024

O
b
je

c
t
T

u
rn

o
v
e
r

[p
e
r

1
0
0
m

s
]

Object Size [Words]

Impact of Pool of Reference Handles

Available References
2

13
 Handles

2
14

 Handles

Figure 13: Impact of Pool of Reference Handles

with Weak Reference Support 17

5 Conclusions

This report has demonstrated that the integra-
tion of advanced GC features is feasible even
for small embedded bytecode processors. The
presented solution makes thorough use of hard-
ware acceleration wherever applicable while em-
ploying a main C-programmed software control
for easy maintenance. The presented solution
implements a concurrent non-blocking garbage
collector with the support for multiple muta-
tors. Even going beyond the requirements of
the CLDC1.1, it includes the support for soft
references and reference enqueuing. The practi-
cal implementation of the garbage collector has
been proven and evaluated in the SHAP byte-
code processor. Basic dependencies of the GC
performance of the system configuration have
been illustrated and evaluated.

References

[1] A. Anton. OpenFIRE, 2007. http://www.
opencores.org/project,openfire2.

[2] E. W. Dijkstra, L. Lamport, A. J. Martin,
C. S. Scholten, and E. F. M. Steffens. On-
the-fly garbage collection: An exercise in
cooperation. Commun. ACM, 21(11):966–
975, 1978.

[3] M. W. El-Kharashi, F. ElGuibaly, and
K. F. Li. A quantitative study for
Java microprocessor architectural require-
ments. Part II: high-level language sup-
port. Microprocessors and Microsystems,
24(5):237–250, Sept. 2000.

[4] E. M. Gagnon and L. J. Hendren.
SableVM: A research framework for the ef-
ficient execution of Java bytecode. In Java
Virtual Machine Research and Technology
Symposium, pages 27–40, Apr. 2001.

[5] F. Gruian and Z. A. Salcic. Design-
ing a concurrent hardware garbage col-
lector for small embedded systems. In
Asia-Pacific Computer Systems Architec-
ture Conference, pages 281–294, 2005.

[6] Ø. Harboe. ZPU - the worlds smallest 32
bit CPU with GCC toolchain, 2008. http:
//www.opencores.org/project,zpu.

[7] J. Henry G. Baker. List processing in real
time on a serial computer. Commun. ACM,
21(4):280–294, 1978.

[8] J. Holloway, G. L. S. Jr., G. J. Suss-
man, and A. Bell. The SCHEME-79 chip.
Technical report, Massachusetts Institute
of Technology, Artificial Intelligence Lab.,
1980.

[9] M. Meyer. A novel processor architecture
with exact tag-free pointers. IEEE Micro,
24(3):46–55, 2004.

[10] M. Meyer. An on-chip garbage collec-
tion coprocessor for embedded real-time
systems. In RTCSA ’05: 11th IEEE In-
ternational Conference on Embedded and
Real-Time Computing Systems and Appli-
cations, pages 517–524, Washington, DC,
USA, 2005. IEEE Computer Society.

[11] M. Meyer. A true hardware read barrier. In
ISMM ’06: 5th International Symposium
on Memory Management, pages 3–16, New
York, NY, USA, 2006. ACM.

[12] D. A. Moon. Garbage collection in a large
LISP system. In LFP’84: 1984 ACM Sym-
posium on LISP and functional program-
ming, pages 235–246, New York, NY, USA,
1984. ACM.

[13] D. A. Moon. Architecture of the symbolics
3600. SIGARCH Comput. Archit. News,
13(3):76–83, 1985.

[14] K. D. Nilsen. Progress in hardware-assisted
real-time garbage collection. In IWMM
’95: International Workshop on Memory
Management, pages 355–379, London, UK,
1995. Springer-Verlag.

[15] K. D. Nilsen and W. J. Schmidt. Hard-
ware support for garbage collection of
linked objects and arrays in real-time.
In ECOOP/OOPSLA ’90 Workshop on
Garbage Collection, Oct. 1990.

18 Embedded GC Module

[16] K. D. Nilsen and W. J. Schmidt. Hardware-
assisted general-purpose garbage collection
for hard real-time systems. Technical Re-
port TR92-15, Iowa State University, 1992.

[17] K. D. Nilsen and W. J. Schmidt. Pre-
ferred embodiment of a hardware-assisted
garbage-collection system. Technical Re-
port TR92-17a, Iowa State University,
Nov. 1992.

[18] M. Pfeffer, T. Ungerer, S. Fuhrmann,
J. Kreuzinger, and U. Brinkschulte. Real-
time garbage collection for a multithreaded
Java microcontroller. Real-Time Syst.,
26(1):89–106, 2004.

[19] T. B. Preußer, M. Zabel, and P. Reichel.
The SHAP microarchitecture and Java vir-
tual machine. Technical Report TUD-FI07-
02, Fakultät Informatik, Technische Uni-
versität Dresden, Apr. 2007.

[20] P. Reichel. Entwurf und Implemen-
tierung verschiedener Garbage-Collector-
Strategien für die Java-Plattform SHAP,
2007.

[21] W. J. Schmidt and K. D. Nilsen. Per-
formance of a hardware-assisted real-time
garbage collector. In ASPLOS-VI: 6th
International Conference on Architectural
Support for Programming Languages and
Operating Systems, pages 76–85, New
York, NY, USA, 1994. ACM.

[22] M. Schoeberl. JOP: A Java optimized
processor. In On the Move to Meaning-
ful Internet Systems 2003: Workshop on
Java, volume 2889 of LNCS, pages 346–
359. Springer, Nov. 2003.

[23] M. Schoeberl. A Java processor architec-
ture for embedded real-time systems. J.
Syst. Archit., 54(1-2):265–286, 2008.

[24] W. Srisa-An, C.-T. D. Lo, and J. Chang.
Scalable hardware-algorithm for mark-
sweep garbage collection. In 26th Euromi-
cro Conference, volume 1, pages 274–281,
2000.

[25] W. Srisa-an, C.-T. D. Lo, and J. en Mor-
ris Chang. Active memory processor: A
hardware garbage collector for real-time
Java embedded devices. IEEE Transac-
tions on Mobile Computing, 2(2):89–101,
Apr. 2003.

[26] S. Uhrig and J. Wiese. Jamuth: an IP
processor core for embedded Java real-time
systems. In G. Bollella, editor, JTRES’07,
ACM International Conference Proceeding
Series, pages 230–237. ACM, 2007.

[27] M. Zabel, T. B. Preußer, P. Reichel, and
R. G. Spallek. Secure, real-time and multi-
threaded general-purpose embedded Java
microarchitecture. In 10th Euromicro Con-
ference on Digital System Design Archi-
tectures, Methods and Tools (DSD 2007),
pages 59–62. IEEE, Aug. 2007.

with Weak Reference Support 19

