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Abstract Context and lattice orbifolds have been discussed by M. Zick-
wolff [1,2], B. Ganter and D. Borchmann[3,4]. Preordering the folding
automorphisms by set inclusion of their orbits gives rise to further devel-
opment. The minimal elements of this preorder have a prime group order
and any group element can be dissolved into the product of group ele-
ments whose group order is a prime power. This contribution describes
a way to compress an orbifold annotation to sets of such minimal auto-
morphisms. This way a hierarchical annotation is described together with
an interpretation of the annotation. Based on this annotation an example
is given that illustrates the construction of an automaton for certain pat-
tern matching problems in music processing.

Key words: formal concept lattice, lattice orbifold, annotation, auto-
morphism group

1 Introduction

Lattice orbifolds have been described by Monika Zickwolff [1,2] as a useful tool
for the compression of formal concept lattices. Daniel Borchmann has extended
this theory in his diploma thesis to context orbifolds [3,4]. A binary relation
orbifold can be considered as a mathematical structure on the sets of orbits
of a given group of automorphisms of a binary relation structure that allows
to reconstruct the original relation. Thus, it can provide deeper insight into
the structure of such a relation. On the other hand it provides the means for
compressing a relational structure in a way that preserves the possibility for
certain algorithms to act on it.

In the work of Zickwolff, Ganter and Borchmann together with the theory also
a method of data compression by means of the stabilisers in the automorphism
group has been provided. This abridged annotation contains the automorphisms
that violate a certain kind of symmetry which can be described by the stabilisers
of the equivalence classes. Thus, it provides an insight how the lattice violates
the symmetry reflected by the folding group.

The latter approach starts from a global view at the orbifold and cuts out re-
dundant information treating all nodes in the Hasse diagram equally. Properties
like direction are not used for this kind of annotation.
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The work presented here, starts from a local view (a pair of neighbours) and
uses both direction and transitivity of the relation to minimise the annotation.
In this way it spares the necessity to save the stabilisers increasing the informa-
tion provided by the edge annotation in comparison with the classical abridged
annotation.

After some theoretical section an example is given that provides further in-
sight into applications of the theory provided in this article.

2 Preliminaries

If not stated otherwise algebraic structures are be denoted by double stroke
letters, the base set of an algebraic structure A by the same letter A in nor-
mal font. AutA is its automorphism group and 1 :=

(
{(1)}, ·, (1)

)
the trivial

group. For any permutation group G on a set A we denote the set of its or-
bits by A \\G := {xG | x ∈ A}. Obviously, for any group element g ∈ G and
any orbit U ∈ A \\G also its adjoint gUg−1 is an orbit. Throughout this pa-
per we refer to the set of volatile points of an automorphism g ∈ AutA as
Var g := {x ∈M | xg 6= x} and to its set of fixed points using the notation
Fix g := {x ∈M | xg = x}. Obviously, for any element g ∈ AutA the equation
A = Fix g ∪Var g holds. We say that a permutation g ∈ G acts semiregular on
a set M ⊆ A, iff M \Var g ∈ {∅,M} is true. Note that Var g is not restricted
to be a subset of M .

If (M,≤) is an ordered set and N ⊆ M then the corresponding order ideal
is defined by the set ↓≤N := {1 ∈ M | ∃y ∈ N : x ≤ y} and we write ↓≤ x
for ↓≤{x} if the context is clear. The neighbourhood relation is denoted by the
symbol ≺.

As defined in [3] an orbifold of an ordered set (M,≤M ) will be denoted
by a triple (M \\G,≤, λ) where xG ≤ yG :⇔ ∃g ∈ G : x ≤M yg and λ is
an annotational function which carries additional information that allows to
reconstruct the relation ≤M . The most generic choice of λ is defined in the same
article as a mapping λ : (M \\G) × (M \\G) → PG which fulfils the condition
λ(xG, yG) = {g ∈ G | x ≤M yg} for any x, y ∈ M . In this setting the stabiliser
Gx of an Element x can be retrieved from its annotation λ(xG, xG).1

A simplified description of order orbifolds is defined utilizing the fact

λ(xG, yG) \
⋃

xG<zG<yG

λ(xG, zG) · λ(zG, yG) =
⋃

g∈λ(x,y)
g 6∈λ(xG,zG)·λ(zG,yG)

xG<zG<yG

Gx · g ·Gy.

This consists of a transversal T of M \\G and an abridged annotaton function
λabr : T × T → PG, where λabr(x, y) is a set of double coset representatives,
i. e. it is a minimal set such that Gx · λabr(x, y) ·Gy = λ(x, y).

It is well known that orbits of automorphisms of a finite ordered set are
always antichains in this set.
1 For other settings see [1,2,4].
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3 Minimal Acting Automorphisms

Let A be an algebraic structure. The orbits of the cyclic subgroups of AutA can
be used to preorder the automorphism group. If we refer to some group G or its
base set G without further notice it is always meant to be G ≤ AutA.

Lemma 1. Let AutA the automorphism group of a finite algebraic structure A.
Then the binary relation v ⊆ AutA× AutA defined by

g v h :⇔ ∀U ∈ (A \\ 〈g〉)∃U ′ ∈ (A \\ 〈h〉) : U ⊆ U ′

is a preorder.

Proof. This follows directly from the definition: Reflexivity is obivious as the
equation A \\ 〈g〉 = A \\ 〈g〉 holds. Given three automorphisms f, g, h ∈ AutA
such that for each orbit U ∈ (A \\ 〈f〉) there exists an orbit U ′ ∈ (A \\ 〈g〉) with
U ⊆ U ′. If the same condition is true for the pair (g, h) we can find an orbit
U ′′ ∈ (A \\ 〈h〉) such that U ⊆ U ′ ⊆ U ′′. Thus transitivity holds, too. ut

As in any cyclic subgroup the implication 〈gn〉 ⊆ 〈g〉 ⇒ x〈g
n〉 ⊆ x〈g〉 holds, we

can fix the following corollary:

Corollary 1. For any group element g ∈ AutA and any natural number we get:
gn v g

In particular, this means that g ∈ AutA and n ∈ N imply Var gn ⊆ Var g.
On the other hand, the so defined relation v is usually no order relation

as for any g ∈ AutA we have A \\〈g〉 = A \\〈g−1〉, but in general the equation
g = g−1 does not hold.

If A is finite, then the preordered set (AutA,v) has minimal elements.

Definition 1. Let A be a finite algebraic structure. The minimal elements of
the preordered set (AutA,v) are called automorphisms with minimal action.

Corollary 2. Let g be minimal in (G,v), then the cyclic group 〈g〉 acts semireg-
ular on Var g.

Proof. Suppose 〈g〉 does not act semiregular on Var g. Then there exist elements
∃x, y ∈ Var g and a positive integer n ∈ N \ {0} such that xgn = x, yg

n 6= y.
This implies x〈gn〉 = {x} 6= x〈g〉. Thus, x〈gn〉 6∈ A \\ 〈g〉. Consequently, gn v g
and g 6v gn. Thus, g is not minimal. ut

Corollary 3. Let g ∈ G be minimal in (G,v). Then for any element h ∈ G :
huh−1 is minimal, too.

Proof. Suppose the existence of an element v ∈ G such that the set of its orbits
A \\〈v〉 is a refinement of A \\〈gug−1〉. Then, A \\〈g−1vg〉 = (A \\〈v〉)g is a refine-
ment of A \\〈u〉, as A = Ag

−1 . This means that u is not minimal. ut
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The set containing the minimal nontrivial automorphisms of (G,v) will be de-
noted by Min(G,v), in particular we define

(1) ∈Min(G,v) iff Min(G,v) \ {(1)} = ∅ and G 6= ∅.

Corollary 4. The subgroup 〈Min(G,v)〉 is a normal subgroup in G.

Hall’s theorem [5] tells us that we can dissolve each cyclic subgroup of G into a
product of cyclic groups whose orders are prime powers. Thus, we can generate
each cyclic group by a set of elements with pairwise coprime orders. This leads
us to the following corollary:

Corollary 5. Let G ≤ AutA. Then the set

P :=
{
g ∈ G

∣∣ |〈g〉| is a prime power
}

is a generating set of G.

For the construction of the Sylow groups, we can use the following lemma:

Lemma 2. Let g ∈ AutA an automorphism of finite order n ∈ N \ {0} and
g1, g2 ∈ 〈g〉 with |〈g1〉| = m1 and |〈g2〉| = m2. Then 〈ggcd(n/m1,n/m2)〉 ≤ 〈g1, g2〉.

Proof. As cyclic groups are Abelian, there exist integers a, b ∈ Z such that
gcd( n

m1
, n
m2

) = a n
m1

+ b n
m2

. Since g1 ∈ 〈gn/m1〉 and g2 ∈ 〈gn/m2〉, w. l. o.g. we
can assume g1 = gn/m1 and g2 = gn/m2 . Thus, we get ggcd(n/m1,n/m2) = ga1g

b
2.
ut

Consequently, the generating set of Corollary 5 contains all minimal elements
Min(G,v).

Lemma 3. Let G ≤ AutA be a finite automorphism group. Then the elements
of Min(G,v) have prime order.

Proof. Let |〈g〉| = pn where p is prime. Then
∣∣〈gpn−1〉∣∣ = p. As 〈g〉 is cyclic, its

order is the least common multiple of the sizes of its orbits. Thus, it has at least
one orbit of size pn, while the orbits in 〈gn−1〉 have either one or p elements.
Corollary 1 tells us, that the minimal Elements of (G,v) are those of prime
orders. ut

4 Automorphisms of ordered sets

Let G ≤ AutA and U1, U2 ≤ G such that U1 · U2 = G. Considering the implied
action of G on PA, a straight forward calculation shows for all X ⊆ PA that
X ∈ (A \\U1) \\U2 iff

⋃
X ∈ A \\G.

Let us consider some additional properties of automorphisms of finite lattices.
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Definition 2. Let (M,≤) be an ordered set, G ≤ Aut(M,≤), and x ∈ M . The
set

G↓≤ x := {g ∈ G | Var g ∩ ↓≤ x = ∅} (1)

is called downwards stabiliser of x in G.

Obviously the downwards stabiliser of a maximal element in a complete lattice
is 1. In fact G↓≤ x is a subgroup of the stabiliser Gx of x.

Corollary 6. Let V = (V,≤) be a finite lattice ordered set. And let x ∈ V
while y, z ∈ V are upper neighbours of x. Furthermore, if there exist two auto-
morphisms g, h ∈ G↓≤ x with the property zg = y = zh, then the equation
(↓≤ y)h−1g = ↓≤ y holds.

Proof. We know that yh−1g = y. So for any a ∈ ↓≤ y we know ah
−1g ≤ y as g

and h are automorphisms. ut

Thus, if two elements are in the same orbit their downwards stabilisers are related
by conjugation. This proves the following lemma:

Lemma 4. Let V = (V,≤) a finite lattice ordered set, G ≤ AutV, and let
x, y, z ∈ V while y and z are upper neighbours of x. Any automorphism g with
zg = y is an automorphism mapping V \ ↓≤ z to V \ ↓≤ y, while the equation
G↓≤ y = g−1G↓≤ zg holds.

Proof. Let g ∈ G↓≤ x with zg = y and let h ∈ G↓≤ z. Then for any a ∈ V \↓≤ z and
any b ∈ V \↓≤ y we get ag ∈ V \↓≤ y and bg

−1 ∈ V \↓≤ z as g is an automorphism.
As V \ ↓≤ y and V \ ↓≤ z are isomorphic by g, for any automorphism h ∈ G↓≤ z
the mapping f := g−1hg is an automorphism on V \ ↓≤ y and even f ∈ G↓≤ y,
as it is constant for any c ∈ ↓≤ y. Finally, we get gfg−1 = h. Thus, G↓≤ z is a
conjugate of G↓≤ y. The other direction of the implication is obvious. ut

As an immediate conclusion, we get that the downwards stabiliser of an element
is contained in the union of the downwards stabilisers of its upper neighbours:

Corollary 7. Let V = (V,≤) a finite lattice ordered set, G ≤ AutV, and let
x ∈ V and N = {y ∈ V | x ≺ y} the set of upper neighbours of x. Let further T a
transversal of N \\G and S ⊆ G such that TS = N . Then S ·⋃t∈T G↓≤ t ⊆ G↓≤ x.

In other words: At any point in the lattice we can restrict ourselves to a local
view. These considerations can be easily extended to finite ordered sets.

5 Orbifolds

In this section we define an orbifold representation using minimisations according
to the preorder discussed in Section 3.
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Definition 3. Let λ : T × T → PG be a mapping that assigns to each pair of
elements from a finite set T to a subset of another set G. A contiguous chain
of λ from x ∈ T to y ∈ T is defined as a subset C ⊆ T such that the relation
ρ := {(z, z′) ∈ T × T | λ(z, z′) 6= ∅} forms the neighbourhood relation of a
linear order with minimal element x and maximal element y. The set of all
such contiguous chains of λ between two elements x and y will be denoted by
CT,λ(x, y).

Further let the relation ≺′ ⊆ T × T be defined by x ≺′ y :⇔ ∃g ∈ G : x ≺ yg.
Using the non-commutative complex product

∏
in largest-left order, the operator

Λλ : T × T → PG is defined by Λ(x, x) = 1, and for x 6= y by

Λλ(x, y) :=
〈⋃





|C|∏

i=2
λ(zi−1, zi)

∣∣∣∣∣∣
C ∈ CT,λ(x, y), zi−1 ≺ zi,
{z1, z2, . . . , z|C|} = C





〉
∩Gx,y. (2)

Theorem 7 will provide us with another kind of annotation of an orbifold:

Definition 4. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV, T a
transversal of V \\G, and the relation ≺′ defined as above.

A mapping λhier : T × T → PG is called hierarchical annotation (of V , T
and G), if it fulfils the following conditions for all x, y ∈ T :
1. λhier(x, y) ⊆ G↓≤ x,
2. λhier(x, y) = ∅ if ∀y′ ∈ yG : x 6≺′ y′, and
3. x ≺′ y implies yλhier(x,y) = y

G↓≤ x

4. yλhier(x,y)Λλhier (0,x) = yGx .

Corollary 8. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV, and λ
a hierarchical annotation. Then the equation

〈⋃
x,y∈T λ(x, y)

〉
≤ G holds.

Example 1. Figure 1 shows a simple example of a lattice and its orbifold annot-
ated with three different annotations. Besides the hierarchical annotation the
annotations from Borchmann, Ganter and Zickwolff [1,2,3,4] have been included.

Before we explore some basic properties of hierarchical annotations we must
assure their existence:

Lemma 5. Let V = (V,≤) be a finite lattice ordered set, G ≤ AutV a group of
automorphisms, and T a transversal of V \\G. Then there exists a hierarchical
annotation λ : T × T → PG.

Proof. For any x, y ∈ T and any z ∈ V with x ≺ y, x ≺ z, if z ∈ y
G↓≤ x we

fix an arbitrary gx,y,z ∈ G↓≤ x such that z = ygx,y,z . In that case we define
λ1(x, y) := {gx,y,z | z ∈ y

G↓≤ x}. If z ∈ yGx \ yG↓≤ x and G↓≤ x = ∅ then the
orbits of y are predefined by all automorphisms that act below x thus, we define
λ1(x, y) := 1.

In any case where z ∈ yGx \yG↓≤ x , there exists an automorphism hx,y,z ∈ Gx
such that z ∈ yλ1(x,y)hx,y,z . Then there exist two elements x̂z, ŷz ∈ ↓≤′ x such



Annotating Lattice Orbifolds with Minimal Acting Automorphisms 7

1

2 3

8 4 9

5 6

7

(a) Original order
1

2

8 4

5

7

G

E

E

E

E

E

(b) Hierarchical
annotation.

1

2

8 4

5

7

G

G

G

G

E

E

(c) Full annota-
tion.

1

2

8 4

5

7

E

E

E

E

E

E

(d) Abridged an-
notation.

Figure 1. The lattice is folded by the group G = {(1), (2 3)(5 6)(8 9)}. As you can see
in 1(b), G4 = G, but λhier(4, 5) = {(1)}. The singleton E is defined by E := {(1)}.

that x̂z ≺′ ŷz and there is an automorphism hx,y,z ∈ G↓≤ x̂z \ Gŷz and an-
other automorphism ĥx,y,z ∈ Λ(x̂, x). Using this we define a second preliminary
annotation λ2(x̂z, ŷz, x, y) := {hx,y,zĥ−1

x,y,z | z ∈ yG \ yG↓≤ x}.
For all other combinations of elements x̂, ŷ, x, y we set λ1(x, y) := ∅ and

λ2(x̂, ŷ, x, y) := ∅. Finally we define:

λhier(x, y) := λ1(x, y) ∪
⋃

x̃,ỹ∈T,z̃∈ỹGx
λ2(x, y, x̃, ỹ, z̃).

Obviously such a function exists and fulfils the conditions of Definition 4. ut

Now, as we know how to describe the automorphism group G ≤ AutV by means
of automorphisms acting locally, we will use automorphisms that are minimal
under certain restrictions. The corresponding operator is defined as follows:

Definition 5. Let V = (V,≤) be a finite lattice ordered set, and G ≤ AutV an
automorphism group of V, while U ⊆ G is one of its subsets. For any x, y, z ∈ V
the elements of the set

Minx,y 7→z U := Minv{g ∈ U | xg = x, yg = z} (3)

are called minimal annotating automorphisms (fixing x and mapping y to z).
The elements of the set

Min↓ x,y 7→z U :=





Minx,y 7→z U ∩G↓≤ x Minx,y 7→z U ∩G↓≤ x 6= ∅
1 Minx,y 7→z U ∩G↓≤ x = ∅ and

Minx,y 7→z U 6= ∅
∅ else

(4)

are called upper minimal automorphisms.
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For applications it would be interesting to have an annotation that consists only
of minimal acting automorphisms. Unfortunately, that is not generally possible.
Nevertheless when Irred∨≤ : V → PV maps each element to the set of supremum
irreducible elements less or equal to it, we can proof the following lemma:

Lemma 6. For any finite lattice ordered set V = (V,≤), any automorphism
group G ≤ Aut(V,≤), and any transversal T ⊆ V of V \\G there exists a hier-
archical annotation that consists of upper minimal automorphisms, if for all
elements x, y ∈ T with x ≺ y and z ∈ Irred∨≤ y \Irred∨≤ x the following condition
holds:

(Irred∨≤ y \ Irred∨≤ x)G = zG (5)

Proof. It is a well-known fact, that for each automorphism g ∈ G and every
element x ∈ V the equation xg =

∨(
(Irred∨≤ x)g

)
.

Let x ≺′ y a pair of neighbours in (T,≤′) and x ≺ z a pair of neighbours in
(V,≤) such that z ∈ yG. Then we can modify the proof of Lemma 5 with the
following refinements:

1. If y ∈ Irred∨≤ y then choose for any z ∈ y
G↓≤ x a minimal automorphism

gx,y,z ∈Minx,y 7→z G and define λ1 as in Lemma 5.
2. For y ∈ Irred∨≤ y and z 6∈ yG↓≤ x there exist an automorphism g ∈ Gx \G↓≤ x

and an automorphism h ∈ λ1(x, y) such that z = yhg where g 6= (1). In that
case the action of 〈g〉 on z depends on the action on ↓≤ x. As (↓≤ x)〈g〉 ⊆ ↓≤ x
and the action of 〈g〉 on ↓≤ x is defined by the irreducibles also the ac-
tion on z depends on the irreducibles below it (everything else we have
already collected in λ1(x, y). Let 0 = x̂0 ≺′ x̂1 ≺′ . . . ≺′ x̂l = x be a
maximal chain from 0 to x of elements of V . Then there exists a chain
x0 ≺ x1 ≺ . . . ≺ xl such that xi ∈ x̂Gi . For each pair (xi, xi+1) we define
I(xi, xi+1) := Irred∨≤ xi+1 \ Irred∨≤ xi. Let g0 = (1). Given x̂gii = xi chose a
minimal automorphism mi from λ(x̂i, x̂i+1) that maps x̂i to x

gg−1
i

i+1 . This is
always possible as |I(xi, xi+1)G ∩ T | = 1. Then define gi+1 := migi. Finally
we get an automorphism gl that acts on ↓≤ x, implying glg−1 ∈ G↓≤ x.

3. If y 6∈ Irred∨≤ y there exist a unique irreducible ŷ ∈ T and an element x̂ ∈ T
such that ŷ ∈ (Irred∨≤ y \ Irred∨≤ x)G, x̂ ≺′ ŷ and x̂ < x hold. Obviously
ŷ 6≤ x. In that case we define λ1(x, y) := λ1(x̂, ŷ).

Induction over the height (the size of the longest chain) leads to the desired
annotation. Obviously we don’t need to define any λ2 to something different
than the empty set. Thus we can define λ := λ1 which fulfils the conditions of
Definition 4 and provides a labelling using upper minimal automorphism. ut

Definition 6. Let V = (V,≤) a finite lattice and G ≤ AutV a group of auto-
morphisms. Let further T ⊆ V a transversal of the orbit partition V \\G and
λ : T × T → PG a minimal acting annotation. Let further ≤′ defined by x ≤′ y
iff there exists an automorphism g ∈ G such that x ≤ yg. Then the triplet
(T,≤′, λ) is called minimal acting orbifold of V by G.
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Theorem 1 (Unfolding). Let V = (V,≤) a finite lattice and G ≤ AutV a
group of automorphisms and (T,≤′, λ) a hierarchical (minimal acting) orbifold
of V by G. Let further for C : T × T → PT the mapping that assigns a pair
x ≤′ y to the set of all contiguous chains of λ from x to y, and to the empty set
otherwise (i. e. if x 6≤′ y).

Then the ordered set (L,2) with the relation 2 ⊆ L× L defined by

L :=
⋃
{xΛ(0,x) | x ∈ T}, and (6)

x 2 y :⇔ ∃z, ẑ ∈ T, g ∈ Λ(0, ẑ) : zg = x, ẑg = y, z ≤′ ẑ (7)

equals (V,≤).

Proof. We prove this theorem by induction. As any finite lattice is also a com-
plete lattice the orbit of the minimal element 0 of (V,≤) is a singleton. That
implies that 0 ∈ T .

Let us start with the set L0 := {0} containing the infimum of the lattice and
the relation 20:= {(0, 0)}.

Let y ∈ V and suppose that for any x < y we have already proved that
↓2 x = ↓≤ x ⊆ V . Thus, for each x ∈ {x′ ∈ V | x′ ≺ y} there exists an
automorphism gx ∈ G such that xgx ∈ T . W. l. o. g. gx ∈ Λ(0, xgx) (otherwise
there exists g′ ∈ Λ(0, xgx) with xg′ = ygx). As T is a transversal of V , there is
also an automorphism gy ∈ G such that ygy ∈ T . From x ≤ y we know xgx ≤′ ygy
and thus, if gy ∈ λ(xgx , ygy ) · Λ(0, xgx) then also x 2 y.

Note that for any z the equation Λ(0, z) =
⋃
ẑ≺′z

(
λ(ẑ, z)Λ(0, ẑ)

)
holds. If

there exists an automorphism h ∈ λ(xgx , ygy ) such that ygx = (ygy )h then the
condition h · g−1

x ∈ h · Λ(0, xgx) ⊆ λ(xgx , ygy ) · Λ(0, xgx) holds. Thus, y ∈ L and
x 2 y. If there is no such element in λ(xgx , ygy ), then by Definition 4 we can
find an automorphism h ∈ λ(x, y) · Λ(0, x) which maps ygy to ygx . Thus, y ∈ L
and x 2 y hold in this case, too. As we had chosen x arbitrarily below y we have
proved ↓≤ y ⊆ ↓2 y.

Since L is constructed by automorphisms of V which map certain elements
of V to other elements of V , we know L ⊆ V . Suppose that for any two elements
x, y ∈ L the inequality x 2 y holds. Then we know that in equation (7) the
condition λ(z, ẑ) · Λ(0, z) ⊆ λfull(z, ẑ) holds if λfull is the full annotation as
discussed in [1,2,3,4]. Thus, we know that for any automorphism g ∈ λ(z, ẑ) ·
Λ(0, z) the inequality x = zg ≤ ẑg = y holds. Thus also x ≤ y.

As we have proved the condition ↓2 y = ↓≤ y ⊆ V , induction proves the
equation (L,2) = (V,≤) for y = 1 ∈ T . ut

6 An Example with Musical Background

In many parts of computational music theory pitches and notes are represented
by integers. This has been proved to be useful especially in technical applications.
As there are well-documented mathematical models available (see e. g., [6,7,8,9])
and an applied description is available in [10], here only the technically necessary
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parts are described. Let Z be considered as tone system. Then each subset C ⊆ Z
can be considered as a chord. In music theory it is not very common to talk
about tones. It is more common to talk about scales that consist of chromas.
Let o ∈ Z be an interval which we will call octave. Two tones which are an octave
apart are considered to have the same chroma. The transitive continuation of
this procedure leads to a structure of chromas that is isomorphic to Zo. Each
of its subsets is called harmony. For certain applications (e. g. in the software
“Mutabor” [11]) the form of harmonies of incoming streams of music (e. g. a
MIDI stream [12]) are of special interest. Two harmonies have the same form if
there exists a transposition that transforms one into the other.

Let H ⊆ Zo a harmony. Then for some chromatic interval i ∈ Zo the
mapping ti : PZo → PZo : H 7→ {p + i | p ∈ H} is called a transposi-
tion. The harmonic form F (H) of some harmony H is defined as the mapping
F : PZo → P(PZo) : H 7→ {ti(H) | i ∈ Zo}.

As for each interval i ∈ Zo there exists a transposition ti. These transpos-
itions can be considered as automorphisms of the ordered set (PZo,⊆), the
transposition group will be denoted by T. In fact this ordered set is a com-
plete lattice which is invariant under transposition. The harmonic forms can be
considered as the set of the orbits of the transpositions PZo \\T.

If we want to recognise a certain set of harmonies H we can build an auto-
maton that can be described by a concept lattice. Let H = K(G,M, I) be the
context defined by

G :=
⋃

H∈H
PH, M := Zo, and I := {(H, p) ∈ G×M | p ∈ H}. (8)

Then BH can be considered as automaton that recognises all finite words that
consist of letters which are included in one of the harmonies of H. Starting in
the concept (G, ∅), with each pitch p ∈ Zo the automaton switches state (A,B)
to state

(
(B ∪ {p})I , B ∪ {p}

)
. The latter is a state as with every Harmony H

the set of objects G includes each of its subsets H ′ ⊆ H. If such a state doesn’t
exist the automaton won’t recognise the word.

The naive approach to recognise harmonic forms uses the same idea. Let
F := {F (H) | H ∈ H} a set of harmonic forms. Then we define the lattice as
follows: F = K(G′,M ′, I ′) with

G := {ti(H), H ∈ H, i ∈ Zo}, M := Zo, and I := {(H, p) ∈ G×M | p ∈ H}.
(9)

The concept lattice B(F) has all transpositions as automorphisms. Figure 6
shows a concept lattice that can be used to recognise the major seventh chord
F ({0, 4, 7, 10}), the minor triad F ({0, 3, 7}) and all of their harmonic subforms.
The nodes are arranged orbit-wise. That means, each cluster is an orbit of
B(F) \\T. Thus, the automorphisms can be seen as cyclic permutations of the
endpoints of the edges. In comparison with the number of orbits the lattice is
large: 14 orbits are formed by 140 concepts.
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Figure 2. Concept lattice describing patterns to be matched

For an automaton that recognises harmonic forms it would be interesting to
compress the data as the generation of the lattice can be very time and space con-
suming if the chroma system contains more chromas. E. g. considering the pitch
bend parameter as part of a pitch in standard MIDI environments the number of
pitches increases from 12 to 12 · 214. In such a case an orbifold based representa-
tion of the lattice does not necessarily increase in size. Starting by a hierarchical
annotation of minimal acting automorphisms we can enhance the annotation by
replacing each automorphism by a pair consisting of the automorphism and the
character (pitch) that triggers its action. To avoid unnecessary operations the
automaton could save the automorphism that must be applied to the pattern
rather than applying it. In many cases (e. g., classification) it does not need to
be applied at all.

This approach provides two additional advantages: As we know the context
automorphisms, we can use a folded context to compute the order relation of
the concept orbifolds as described in [4]. On the other hand changing the size
of the chroma system can be done in several ways. The orbifold based approach
provides a promising base for analysing such operations in order to provide fast
algorithms that can be used in real time.
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7 Outlook
We have seen that orbifolds of certain lattices can be described using hierarch-
ical annotations, and that it is possible to minimise the action of the annotating
automorphisms without losing the possibility of unfolding such hierarchical or-
bifolds.

Nevertheless there are open topics that can improve the theory. In Lemma 6
Restriction (5) has technical reasons. At the moment it is an open question how
to deal with arbitrary lattices. It might be helpful to use systems of generators for
the annotation λ. That should be straight forward if care is taken on conjugated
subgroups.

Another easy extension would be to elaborate the idea for arbitrary ordered
sets.
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