
www.tu-dresden.de

Technische Universität Dresden
Herausgeber: Der Rektor

Axiomatizing Confident ℰℒK
gfp-GCIs of Finite

Interpretations

Daniel Borchmann

MATH–AL–08–2012 September 2012

PREPRINT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Axiomatizing Confident ℰℒK
gfp-GCIs of Finite

Interpretations

Daniel Borchmann
TU Dresden

Faculty of Mathematics and Sciences
Institute for Algebra

daniel.borchmann@mailbox.tu-dresden.de

September 4, 2012

Abstract

Constructing description logic ontologies is a difficult task that is normally conducted by experts.
Recent results show that parts of ontologies can be constructed from description logic interpretations.
However, these results assume the interpretations to be free of errors, which may not be the case for
real-world data. To provide some mechanism to handle these errors, the notion of confidence from
data mining is introduced into description logics, yielding confident general concept inclusions
(confident GCIs) of finite interpretations. The main focus of this work is to prove the existence of
finite bases of confident GCIs and to describe some of theses bases explicitly.

1 Introduction and Motivation
Description logic ontologies are a widely appreciated method to formalize large amounts of knowledge.
Examples for large-scale ontologies used in practice are SNOMED-CT [17], the Systematized Nomen-
clature of Medicine Clinical Terms, GALEN [15], a bio-medical ontology, and the Gene Ontology [2].

The construction of such ontologies is an expensive task, in terms of both time and money. This
is because of the complexity of the ontologies which requires its construction to be conducted by
human experts. In addition, the information which is to be formalized in an ontology is most often
only available in formats not accessible by machines, e. g. as textual publications.

However, there are efforts to overcome the latter problem of machine-inaccessible data. One such
effort is to publish data as so-called linked data [7], as it is promoted by the W3C SWEO Linking Open
Data community project1. Intuitively, one can understand linked data as a directed graph with labeled
edges. The format used to store these labeled graphs are RDF Triples. As of September 2011, the above
mentioned project has managed to publish over 295 interlinked data sets with an overall amount 31
billion RDF triples.

This growing amount of machine-readable information motivates the question whether it is
possible to automate the process of ontology construction. Surely, we cannot assume that ontology
construction can be done completely by machines. This would require data that both contains all
relevant information and is free of errors. This cannot be assumed for real-world data. Still, one can
ask whether it is possible to design algorithms that assist domain experts in designing ontologies.

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

1

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

From the point of view of description logics this idea has an additional appeal. On the one
hand, linked data can be understood as labeled, directed graphs. On the other hand, interpretations,
which are used to define semantics for description logics, can as well be regarded as labeled graphs.
Therefore, from the point of view of description logics, asking how we can construct ontologies from
RDF triples can be understood as the question on how to construct ontologies from description logic
interpretations.

In an ongoing collaboration between description logics and formal concept analysis, various
attempts have been made to approach the problem of constructing ontologies from interpretations [4,
5, 10, 16]. Using ideas from formal concept analysis seems natural here. This is because the method of
attribute exploration from formal concept analysis achieves a goal similar to constructing an ontology
from an interpretation. Attribute exploration roughly works as follows: given data in the form
of a formal context, attribute exploration interactively explores the valid implications of this formal
context. Here, a formal context can simply be understood as a set of objects, a set of attributes and
the information on which attributes which object possesses. Then, during the exploration process, an
expert is asked questions of the following kind: do all objects that posses all attributes from a set A
also posses all attributes from a set B? Equivalently, we can ask whether the attributes A imply the
attributes B in our formal context. We write those statements as A ÝÑ B and call it an implication. If
the implication A ÝÑ B is true, then the expert confirms it. If it is false, the expert has to provide a
counterexample, i. e. an object g together with its attributes C such that A Ď C and B Ę C. The attribute
exploration algorithm stops when there are no more implications left to ask.

The resulting set of implications can then be regarded as a formalization of the knowledge from
both the initial data (the formal context) and the participating expert. If attribute exploration could be
generalized to also work with interpretations, we would be able to construct from a finite interpretation
a large part of ontologies, namely the terminological part, in a semi-automatic way. As a result of such
an algorithm we would obtain a set of general concept inclusions (GCIs) that express connections between
certain concept descriptions in our given data.

There have been two attempts for such a generalization [10, 16]. In this work, we shall focus on the
approach of [10]. Therein, the description logic ℰℒKgfp [3] is used, which is an extension of ℰℒK and is
able to express cyclic concept descriptions. The usage of this description logic allows for an analogous
definition of the derivation operators from formal concept analysis in this description logic. Based on
this, the attribute exploration algorithm can be generalized to the description logic ℰℒKgfp and finite
interpretations, as it has been done in [10].

In [9], this generalized attribute exploration algorithm has been applied to real-world data, in
particular to parts of the DBpedia Project [8]. This experiment shows that the algorithm itself is
applicable to modest-size interpretations. However, the resulting set of general concept inclusions
reveals another problem: the exploration algorithm assumes the given interpretation to be free of
errors. This is a legitimate assumption for theoretical considerations, but does not hold in practice. It
would therefore be desirable to be able to somehow handle errors in interpretations. This is the main
motivation of this work.

To achieve some control over errors we shall transfer the notion of confidence from data mining [1]
to description logics. Roughly speaking, we allow general concept inclusions to have a limited amount
of exceptions. The motivation for this is the following: if our initial data contains some errors, some
connections between concept descriptions in this data may have been invalidated by these errors.
These connections are expressed as general concept inclusions. But if we allow these general concept
inclusions to have some exceptions, then few errors may not invalidate these general concept inclusions,
provided that not too of these errors occurred. We shall discuss this in more detail in the corresponding
section.

This publication is structured as follows. In the first two sections we shall introduce the necessary
definitions and facts from the fields of formal concept analysis and description logics. This will also

2

include the definition of model-based most-specific concept descriptions, which will play a major role in
our considerations. In particular, as we shall see in Section 4, model-based most-specific concept
descriptions are in a one-to-one correspondence to the intents of a particular formal context. The
notion of model-based most-specific concept-descriptions has been introduced in [10].

Afterwards, we shall introduce confident general concept inclusions in Section 5. This will be done
providing a detailed motivation, which also includes experimental results from [9].

Having defined confident general concept inclusions, we turn our focus to the following question:
given a finite interpretation, can we find a finite base for the confident GCIs of this interpretation?
Such a base would compromise all the information we can express using confident GCIs. But as the
number of GCIs is normally infinite, it is not clear whether we can actually find such a finite base.
Still, as we shall see in Section 6, finite bases always exists and can be computed effectively. To show
this, we shall use ideas from formal concept analysis that have been found by Luxenburger during his
work on partial implications [12]. What we can not achieve using Luxenburger’s ideas is to obtain a
non-redundant base of all confident GCIs of a finite interpretation. But as we shall see in Section 7, we
can use other ideas from Formal Concept Analysis to reduce the size of the base.

2 Formal Concept Analysis
In this section we want to introduce the necessary definitions from formal concept analysis [11] needed
in this work. This will include definitions for the notions already mentioned in the introduction, such
as the ones of formal contexts and implications. We shall also give a short introduction to the canonical
base of a formal context and its computation. However, as we are not going to present an exploration
algorithm for confident GCIs in this work, we will not give a description of attribute exploration here.
See [10] for more details on this.

2.1 Formal Contexts and Contextual Derivation Operators
Let us start by defining the notion of a formal context.

2.1 Definition Let G, M be two sets and let I Ď Gˆ M. Then the triple K = (G, M, I) is called a
formal context, whereas the set G is denoted as the set of objects of K and the set M is denoted as the set
of attributes of K. For g P G, m P M we read (g, m) P I as “object g has attribute m” and write g I m
in this case. ♢

If a formal context K = (G, M, I) is finite, i. e. if the sets G and M are finite, it is sometimes
convenient to depict K as a cross table, as shown in the following example.

2.2 Example Let G = t 2, 3, 5, 7 u, M = t 1, . . . , 10 u and

I = t (g, m) P GˆM | g divides m u.

Then K = (G, M, I) is a formal context, which is depicted as a cross table in Figure 1. Here, we have
a table where the rows are labeled with elements from G and the rows are labeled with elements from
M. In a cell corresponding to a pair (g, m) P Gˆ M we write a cross “ˆ” if and only if (g, m) P I.
Otherwise, we leave this cell blank or write a single dot “.” in it. ♢

Given a formal context K = (G, M, I) and some set A Ď G of objects one can ask what the largest
set of attributes is that all objects in A share. Likewise, one can ask for a set B Ď M of attributes what
the largest set of objects is that have all attributes in B. To answer this question we introduce the
derivation operators for a formal context K.

3

1 2 3 4 5 6 7 8 9 10
2 . ˆ . ˆ . ˆ . ˆ . ˆ

3 . . ˆ . . ˆ . . ˆ .
5 ˆ ˆ

7 ˆ . . .

Figure 1: A formal context depicted as cross table

2.3 Definition Let K = (G, M, I) and A Ď G, B Ď M. Then we define the derivations in the formal
context K as

A1 := tm P M | @g P A : g I m u,

B1 := t g P G | @m P B : g I m u.

The set A is called an extent of K if and only if A = (A1)1. The set B is called an intent of K if and only
if B = (B1)1. ♢

For convenience, we shall drop the extra parentheses and write shorter (A1)1 = A2 and (B1)1 = B2,
respectively.

As a first observation on the derivation operators let us note that the functions

¨1 : P(G) ÝÑ P(M),

¨1 : P(M) ÝÑ P(G)

form a so called Galois connection. For this let us recall that for a set P an order relation ďP is just a set
ďP Ď Pˆ P such that ďP is reflexive, antisymmetric and transitive.

2.4 Definition Let P, Q be two sets and let ďP and ďQ be order relations on P and Q, respectively.
Then the two mappings

ϕ : P ÝÑ Q,
ψ : Q ÝÑ P

form an antitone Galois connection between (P,ďP) and (Q,ďQ) if and only if for all x P P, y P Q holds

x ďP ψ(y) ðñ y ďQ ϕ(x). ♢

2.5 Proposition Let K = (G, M, I) be a formal context, A1, A2 Ď G, B1, B2 Ď M. Then the following
conditions hold:

∙ A1 Ď A2 ùñ A11 Ě A12,

∙ B1 Ď B2 ùñ B11 Ě B12,

∙ A1 Ď A21 ,

∙ B1 Ď B21 ,

∙ A11 = A31 ,

4

∙ B11 = B31 ,

∙ A11 Ď B1 ðñ A1 Ě B11.

Another easy observation regarding derivation operators is the following: If A Ď M and (Bi | i P I)
is a family of subsets of A such that

Ť

iPI Bi = A, then

A1 =
č

t B1i | i P I u, (2.1)

because for all g P G

g P A1 ðñ @m P A : g I m

ðñ @m P
ď

iPI

Bi : g I m

ðñ @i P I : g P B1i .

Finally, we can see easily that for 𝒜 Ď P(M) we always have
č

AP𝒜
A1 = (

ď

AP𝒜
A1). (2.2)

This is because for each g P G it is true that

g P
č

AP𝒜
A1 ðñ @A P 𝒜 : g P A1

ðñ @A P 𝒜@m P A : g I m

ðñ @m P
ď

AP𝒜
A : g I m

ðñ g P (
ď

AP𝒜
A1).

Of course, this also holds for sets ℬ Ď P(G), i. e.
č

BPℬ
B1 = (

ď

BPℬ
B)1.

2.2 Implications
If we have given a formal context K = (G, M, I), it may very well be that for all objects that have
certain attributes A Ď M always have the attributes B Ď M in addition. We say may say that the
attributes from A imply the attributes from B in the formal context K.

2.6 Definition Let M be a set. An implication A ÝÑ B on M is a pair (A, B) where A, B Ď M. In this
case, A is called the premise and B is called the conclusion of the implication A ÝÑ B. We shall denote
the set of all implications on M by Imp(M).

Let K = (G, M, I) be a formal context. An implication A ÝÑ B of K is an implication on M. The
set of all implications of K is denoted by Imp(K), i. e.

Imp(K) = Imp(M).

The implication A ÝÑ B holds in K (or is valid in K) if B Ď A2. We then write K |ù (A ÝÑ B). If 𝒥
is a set of implications of K such that each implication in 𝒥 holds in K, then we may denote this with
K |ù 𝒥 . The set of all implications of K that hold in K is denoted by Th(K). ♢

5

Note that the condition B Ď A2 is equivalent to A1 Ď B1 by Proposition 2.5, i. e. an implication
A ÝÑ B holds in K = (G, M, I) if and only if every object g P G that has all attributes in A also has
all attribute in B.

2.7 Definition Let K = (G, M, I) be a formal context and let 𝒥 be a set of implications of K. Then
an implication A ÝÑ B is entailed by 𝒥 if for every context K̃, in which all implications from 𝒥 hold,
the implication A ÝÑ B holds as well. ♢

Implications on a set M give rise to a certain class of mappings on the powerset lattices (P(M),Ď),
namely closure operators on M. Abstractly, these are mappings

c : P(M) ÝÑ P(M)

such that

∙ A Ď c(A), i. e. c is extensive,

∙ A Ď B ñ c(A) Ď c(B), i. e. c is monotone, and

∙ c(c(A)) = c(A), i. e. c is idempotent,

holds for all sets A, B Ď M. A set A Ď M is said to be closed under c if and only if c(A) = A.
Now every closure operator on the lattice (P(M),Ď) can be characterized by implications in the

way as it is described by the following definition.

2.8 Definition Let M be a set and ℒ Ď Imp(M). Then define for A Ď M

ℒ1(A) :=
ď

tY | (X ÝÑ Y) P ℒ, X Ď A u,

ℒi+1(A) := ℒ(ℒi(A)) (i P Ną0),

ℒ(A) :=
ď

iPNą0

ℒi(A).

The mapping ℒ : P(M) ÝÑ P(M) with A ÞÝÑ ℒ(A) is then called the closure operator induced by ℒ.
A set A Ď M is said to be closed under ℒ if and only if ℒ(A) = A. ♢

It is easy to see that every closure operator induced by a set of implications on a set M is indeed a
closure operator on M in the sense of the aforementioned definition.

Entailment for implications can be rephrased in terms of the induced closure operators. To show
this, we shall first prove two auxiliary claims before we consider the characterization of Lemma 2.11.

2.9 Proposition Let K = (G, M, I) be a formal context and let ℒ Ď Imp(K). If K |ù ℒ, then

ℒ(A) Ď A2

holds for each A Ď M.

Proof We show A1 Ď ℒ(A)1, as then

ℒ(A) Ď ℒ(A)2 Ď A2

by Proposition 2.5.

6

Let g P A1. If then (X ÝÑ Y) P ℒ with X Ď A, then g P A1 Ď X1 Ď Y1, since X ÝÑ Y holds in K.
Therefore,

g P
č

tY1 | (X ÝÑ Y) P ℒ, X Ď A u = (ℒ1(A))1

by Equation (2.1). With the same argumentation, we see that

g P (ℒi(A))1

holds for all i P Ną0, and hence we obtain

g P
č

iPI

(ℒi(A))1 = (
ď

iPI

ℒi(A))1 = (ℒ(A))1

using Equations (2.1) and (2.2). ˝

2.10 Proposition Let M be a set and ℒ Ď Imp(M). Then the formal context

Kℒ := (tℒ(A) | A Ď M u, M, Q)

satisfies X2 = ℒ(X) for all X Ď M.
Proof From Proposition 2.9 we already know the inclusion ℒ(X) Ď X2. For the converse inclusion
we shall show that (ℒ(X))2 = ℒ(X), since this together with X Ď ℒ(X) then implies X2 Ď ℒ(X),
using Proposition 2.5.

We compute

(ℒ(X))1 = tℒ(A) | A Ď M,ℒ(A) Ě ℒ(X) u.

In particular, ℒ(X) P (ℒ(X))1. Then

(ℒ(X))2 = tℒ(A) | A Ď M,ℒ(A) Ě ℒ(X) u1

=
č

tℒ(A) | A Ď M,ℒ(A) Ě ℒ(X) u

= ℒ(X)

as required. ˝

2.11 Lemma Let M be a set and let ℒ Ď Imp(M), (A ÝÑ B) P Imp(M). Then

ℒ |ù (A ÝÑ B) ðñ B Ď ℒ(A).

Proof Suppose that ℒ |ù (A ÝÑ B) and let K = Kℒ be a formal context such as described in
Proposition 2.10. Then

ℒ(X) = X2 (2.3)
holds for all X Ď M(K). Since ℒ |ù (A ÝÑ B), the implication A ÝÑ B holds in K as well and
therefore A1 Ď B1. Then Proposition 2.5 together with Equation (2.3) implies

B Ď A2 = ℒ(A).

Conversely, let B Ď ℒ(A) and let K be a formal context such that K |ù ℒ. Then

ℒ(A) Ď A2.

by Proposition 2.9. But then
B Ď ℒ(A) Ď A2,

hence A1 Ď B1 by Proposition 2.5 and therefore A ÝÑ B holds in K. ˝

7

2.3 Bases of Implications
Implications can be understood as logical objects for which we can decide validity in formal contexts.
This automatically yields the following definition of implicational bases, which results in a way to
represent all valid implications of a formal context in a compact way.

2.12 Definition Let K be a formal context. A set 𝒥 of implications of K is an implicational base (or just
a base) of K if the following conditions hold:

1) 𝒥 is sound for K, i. e. every implication in 𝒥 holds in K,

2) 𝒥 is complete for K, i. e. every implication holding in K follows from 𝒥 ,

Moreover, a base 𝒥 of K is said to be non-redundant if each proper subset of 𝒥 is not a base of K. ♢

An obvious base is the following.

2.13 Theorem Let K be a formal context. Then the set

ℒ := t A ÝÑ A2 | A Ď MK u

is a base of K.

Proof Obviously, ℒ is sound for K. To see that ℒ is also complete for K, let X ÝÑ Y be an implication
holding in K. By Lemma 2.11 we only have to show that Y Ď ℒ(X). However, since X ÝÑ Y holds in
K, we obtain Y Ď X2. On the other hand, X2 = ℒ(X) and the claim follows. ˝

Checking completeness of a set ℒ of implications may be a tedious task, as one has to consider all
valid implications of K. However, completeness of ℒ can be verified by considering the intents of K,
as the following lemma shows.

2.14 Lemma Let K = (G, M, I) be a formal context and let ℒ Ď Imp(M). Then ℒ is complete for K if and
only if

@U Ď M : ℒ(U) = U ùñ U = U2,

i. e. the closed sets of ℒ are intents of K.

Proof Suppose that ℒ is complete for K. Let U Ď M be such that U ‰ U2. Then because of U Ď U2

we have U Ę U2. But then the implication U ÝÑ U2 is valid in K. Since ℒ is complete for K,

ℒ |ù (U ÝÑ U2),

i. e. by Lemma 2.11,
U2 Ď ℒ(U).

This implies U ‰ ℒ(U) as required.
Now suppose that for each U Ď M that ℒ(U) = U implies U = U2. Since ℒ(ℒ(U)) = ℒ(U),

we obtain
ℒ(U) = ℒ(U)2

for each U Ď M. But this implies
U2 Ď ℒ(U)2 = ℒ(U)

and therefore ℒ |ù (U ÝÑ U2) again for each U Ď M. By Theorem 2.13, ℒ is complete for K. ˝

8

It is easy to see that if we reverse the direction of the implication in the previous lemma, that we
then obtain a characterization for ℒ to be sound for K.

The base that is described in Theorem 2.13 is not very practical, as it always contains an exponen-
tially many implications measured in the size of M. Luckily, we can explicitly describe a base that
always has minimal cardinality among all bases of a formal context.

2.15 Definition (K-pseudo-intent) Let K be a finite formal context and let 𝒦 Ď Imp(M). A set
P Ď M is said to be a 𝒦-pseudo-intent of K if and only if

i. P ‰ P2,

ii. 𝒦(P) = P and

iii. for all 𝒦-pseudo-intents Q Ĺ P it holds that Q2 Ď P.

If 𝒦 = H, then P is also called a pseudo-intent of K. ♢

Let us define for a formal context K and 𝒦 Ď Th(M) the canonical base of K with background
knowledge 𝒦 to be the set

Can(K,𝒦) := t P ÝÑ P2 | P a 𝒦-pseudo-intent of K u.

We can consider the canonical base for K with background knowledge 𝒦 as the smallest set of valid
implications of K such that Can(K,𝒦)Y𝒦 is a base for K. Intuitively, if we assume that we already
know the implications of 𝒦 but want to learn all valid implications of K, then Can(K,𝒦) is the
smallest set of valid implications that we need to add.

2.16 Theorem (Theorem 3.8 from [10]) Let K be a finite formal context and 𝒦 Ď Th(M). Then the set
Can(K,𝒦)Y𝒦 is base of K having the least number of elements among all bases of K containing 𝒦.

This theorem assumes the background knowledge 𝒦 to contain only valid implications of K.
However, this is not necessary. As we are going to consider invalid implications in this work as well,
we shall therefore formulate and prove the following theorem. Indeed, the same proofs as for the
case of valid background knowledge apply and we shall repeat them here for completeness. The first
part of the proof is the same as in [18]. The part of the proof that shows minimal cardinality is taken
from [10].

2.17 Theorem Let K = (G, M, I) be a formal context and let 𝒦 Ď Imp(M). Then Can(K,𝒦) is the set
of valid implications with minimal cardinality such that Can(K,𝒦)Y𝒦 is complete for K.

Proof Let us write
ℒ := Can(K,𝒦)Y𝒦.

Then we need so show three statements:

i. ℒ is a set of valid implications of K.

ii. ℒ is complete for K.

iii. ℒ has minimal cardinality for all sets ℳ of valid implications of K such that ℳY𝒦 is complete
for K.

9

It is apparent that ℒ contains only valid implications of K.
We shall go on and show completeness of ℒ for K. For this we use Lemma 2.14 and show that

every set U Ď M with ℒ(U) = U is already an intent of K.
Let U Ď M be such that ℒ(U) = U. If then V Ĺ U is an 𝒦-pseudo intent, then V2 Ď U, as

(V ÝÑ V2) P Can(K,𝒦). Furthermore, 𝒦(U) = U. Hence, if we assume U ‰ U2, then U is an
𝒦-pseudo intent of K. But then (U ÝÑ U2) P ℒ, contradicting the fact that U ‰ U2. Therefore,
U = U2 and ℒ is complete for K.

We shall now show the minimal cardinality of Can(K,𝒦). For this, let ℳ be another set of valid
implications of K such that ℳY𝒦 is complete for K. Without loss of generality we may assume that
ℳ only contains implications of the form U ÝÑ U2 for some U Ď M.

We now show that for each 𝒦-pseudo intent P of K there exists a set UP Ď M such that (UP ÝÑ

U2P) Pℳ. In addition, we shall show that if P and Q are two 𝒦-pseudo intents of K such that P ‰ Q,
then UP ‰ UQ. From these claim it immediately follows that |ℳ| ě |Can(K,𝒦)|, as we then have
an injective mapping P ÞÝÑ UP from Can(K,𝒦) to ℳ.

Now let P be a 𝒦-pseudo intent of K. Then P ‰ P2. As ℳY𝒦 is complete for K and 𝒦(P) = P,
there exists an implication (X ÝÑ X2) Pℳ such that X Ď P and X2 Ę P. Define UP := X.

Now let P and Q be two different 𝒦-pseudo intents of K and assume UP = UQ =: U. Then
U Ď P and U Ď Q, hence U Ď PX Q. Therefore, U2 Ď (PX Q)2. But then U2 = U2P Ę P and
U2 Ď (PXQ)2 imply (PXQ)2 Ę P. This implies (PXQ)2 Ę PXQ and thus

(PXQ)2 ‰ PXQ.

Since 𝒦(P) = P and 𝒦(Q) = Q, we obtain 𝒦(PXQ) = PXQ. But since (PXQ)2 ‰ PXQ and
𝒦(PXQ) = PXQ, there must exist an implication (R ÝÑ R2) P Can(K,𝒦) such that R Ď PXQ
and R2 Ę (PXQ). Without loss of generality, we assume R2 Ę Q. But since R is an 𝒦-pseudo intent
and R Ď Q, R ‰ Q cannot hold. Thus R = Q and Q Ď PXQ. This implies Q Ď P and Q = PXQ.
But Q2 Ę P as (PXQ)2 Ę P. Therefore, as Q and P are 𝒦-pseudo intents, Q cannot be different
from P and we obtain P = Q as desired. ˝

2.4 Computing the Canonical Base for Arbitrary Background Knowledge
Albeit its quite incomprehensible and recursive definition, the canonical base of K with background
knowledge 𝒦 allows an easy algorithm for its computation, see Algorithm 2.21. To describe this
algorithm, we shall first introduce some definitions and preliminary results.

Please note that the following considerations are not necessary for the understanding of the rest of
the work and may therefore be skipped. They are included to show how we can compute the canonical
base of a formal context with arbitrary (in particular invalid) background knowledge.

2.18 Definition Let M be a set and ă a strict linear order on M. Then the lectic order on M induced by
ă is the relation ă defined as

A ă B ðñ mină(A△ B) P B,

for A, B Ď M, where
A△ B := (AzB)Y (BzA)

is the symmetric difference of A and B.
For i P M we may say that A is lectically smaller then B at position i, written as A ăi B, if and only if

i = mină(A△ B) and i P B. ♢

10

2.20 Algorithm (Next Closure)

0 define next-closure(M , ă , A , c)
1 let (C := t i P M | A ăi A‘c i u)
2 if C = H
3 return nil
4 else
5 return A‘c maxă(C)
6 end if
7 end let
8 end

Note that A ă B if and only if there exists an i P M such that A ăi B. Also note that we shall
denote the reflexive closure of ă by ĺ, i. e.

A ĺ B ðñ A = B or A ă B

for A, B Ď M.
Let c be some closure operator on the set M. One of the remarkable properties of lectic orders is

that they admit a simple but efficient algorithm to compute for an arbitrary set A Ď M the lectically
next closed set after A that is closed under c, i. e. the set

minăt B Ď M | c(B) = B, A ă B u,

if it exists.
To ease the formulation, let us define for a set A Ď M and i P M

A‘c i := ℒ(t a P A | a ă i u Y t i u).

Then the following theorem holds, which is well-known in the field of formal concept analysis as the
Next-Closure algorithm.

2.19 Theorem (Theorem 5 of [11]) Let M be a set, ă a strict linear order relation on M, ă the lectic order
on P(M) induced byă, c a closure operator on M and A Ď M. Then if there exists a set B such that A ă B
and B is closed under c, then the lectically smallest such set is A‘c i, where i isă-maximal with the property
A ăi A‘c i.

This theorem immediately gives rise an effective algorithm as given in Algorithm 2.20. Under the
prerequisites of Theorem 2.19 it is true that

next-closure(M,ă, A, c) = minăt B Ď M | A ă B, c(B) = B u (2.4)

if this minimum exists and next-closure(M,ă, A, c) = nil otherwise. This algorithm will turn out
to be very useful in the following considerations.

We can now prove that Algorithm 2.21 can indeed be used to compute the canonical base for
arbitrary background knowledge.

2.22 Theorem Let K = (G, M, I) be a finite formal context, 𝒦 Ď Imp(K) and ă a linear order on M.
Then

Can(K,𝒦) = canonical-base(K,ă,𝒦).

11

2.21 Algorithm (Computing the Canonical Base with Background Knowledge)

0 define next-closed-non-intent (K , ă , A , c)
1 let (P := next-closure(M(K) , ă , A , c))
2 if P = nil then
3 return nil
4 else if P ‰ P2 then
5 return P
6 else
7 return next-closed-non-intent(M(K) , ă , P , c)
8 end if
9 end let

10 end
11

12 define first-closed-non-intent(K , ă , c)
13 if H ‰ H2 and c(H) = H then
14 return H

15 else
16 return next-closed-non-intent(K , ă , H , c)
17 end if
18 end
19

20 define canonical-base(K , ă , 𝒦)
21 let (i := 0 ,
22 Pi := first-closed-non-intent(K , ă , 𝒦) ,
23 ℒi := H)
24 if Pi = nil then
25 return ℒ
26 else
27 recur (ℒi+1 := ℒi Y t Pi ÝÑ P2i u ,
28 Pi+1 := next-closed-non-intent(K , ă , Pi , ℒi+1 Y𝒦) ,
29 i := i + 1)
30 end let
31 end define

12

Before we are going to prove this theorem, let us first argue that the auxiliary functions given in
Algorithm 2.21 yield what their names suggest.

2.23 Proposition Let K = (G, M, I) be a finite formal context,ă a strict linear order on M and c a closure
operator on M. Denote with ă the lectic order on P(M) induced by ă.

i. Let A Ď M and define
S := next-closed-non-intent(K,ă, A, c).

Then
S = minăt B Ď M | A ă B, B = c(B), B ‰ B2 u

if this minimum exists and S = nil otherwise.

ii. Define
T := first-closed-non-intent(K,ă, c).

Then
T = minăt B Ď M | B = c(B), B ‰ B2 u

if this minimum exists and T = nil otherwise.

Proof For the first statement observe that the algorithm considers in lectic order all sets C Ď M, A ă C
that are closed under c. Now, if a lectically smallest set C Ď M with A ă C exists such that C ‰ C2,
then it is finally found by the algorithm and returned as the resulting value. If, however, no such set
exists, the variable P in the algorithm will finally obtain the value M in the subsequent iteration will
return nil , as

next-closure(M,ă, M, c) = nil .

For the second statement suppose thatH ‰ H2 and c(H) = H. Then clearly

minăt B Ď M | B = c(B), B ‰ B2 u = H = first-closed-non-intent(K,ă, c).

IfH = H2 or c(H) ‰ H, then

H ă minăt B Ď M | B = c(B), B ‰ B2 u

and hence

minăt B Ď M | B = c(B), B ‰ B2 u = minăt B Ď M | H ă B, B = c(B), B ‰ B u
= next-closed-non-intent(K,ă,H, c)
= first-closed-non-intent(K,ă, c). ˝

We are now prepared for the proof of Theorem 2.22. Again, the proof is the same as for the classical
case, where the set 𝒦 is only allowed to contain valid implications of K. We shall give the proof
nevertheless to show that it yields the desired claim.

The main line of argumentation of the proof is the following: using induction we shall prove that
in each iteration i the set ℒi contains implications Pj ÝÑ P2j , j = 0, . . . , i´ 1, where P0, . . . , Pi´1 are
the lectically first 𝒦-pseudo intents of K. Hence, if the algorithm finishes in iteration k, the variable
ℒk contains all implications P ÝÑ P2 where P is a 𝒦-pseudo intent of K.

13

A simple argument used in these considerations is the following: if P, Q Ď M are two arbitrary
sets such that P Ĺ Q, then P ă Q. This is immediate from the definition of ă, as mină(P△ Q) is a
non-empty subset of Q, hence

mină(P△ Q) P Q

and therefore P ă Q.

Proof (Theorem 2.22) Let ă be the lectic order induced by ă. We shall prove by induction that in each
iteration i, the variables

P0, . . . , Pi´1

are the first i (with respect to ă) 𝒦-pseudo intents of K.
Let i = 0. By Proposition 2.23, the value of P0 is the ă-smallest subset P of M such that P = 𝒦(P)

and P ‰ P2. Hence, if Q ă P0 is such that Q = 𝒦(Q), then Q = Q2. In addition, if Q Ĺ P0, then
Q ă P0. Hence, there are no 𝒦-pseudo intents properly contained in P0, and therefore P0 is the
ă-smallest 𝒦-pseudo intent of K.

Now suppose that we are in iteration i ą 0 of the algorithm. Suppose that Pi ‰ nil . By Propo-
sition 2.23, Pi is the ă-smallest subset P of M such that (ℒi Y𝒦)(P) = P and P ‰ P2. Let Q Ĺ Pi
be a 𝒦-pseudo intent of K. Then Q ă Pi. By the induction hypotheses, Q = Pj for some j ă i and
therefore (Q ÝÑ Q2) P ℒi. As ℒi(Pi) = Pi and Q Ď Pi, it is true that Q2 Ď Pi. Together with the
observation that 𝒦(Pi) = Pi we see that Pi is a 𝒦-pseudo intent of K. Since Pi is ă-minimal with
respect to (ℒi Y𝒦)(Pi) = Pi and Pi ‰ P2i , it is also the ă-smallest 𝒦-pseudo intent lectically larger
then Pi´1, i. e.

P0, . . . , Pi

are the first i + 1 𝒦-pseudo intents of K. This completes the inductive step.
If Pi = nil , then each set Q Ď M with Pi´1 ă Q and (ℒi Y 𝒦)(Q) = Q satisfies Q = Q2.

Therefore, there do not exist any further 𝒦-pseudo intents after Pi´1. Since P0, . . . , Pi´1 are the first i
𝒦-pseudo intents, they are all 𝒦-pseudo intents of K. Therefore, ℒi = Can(K,𝒦) and the theorem
is proven. ˝

3 The Description Logics ℰℒK and ℰℒKgfp

Description logics are part of the field of Knowledge Representation, a branch of Artificial Intelligence.
Its main focus lies in the representation of knowledge using well-defined semantics. For this, de-
scription logics provide the notion of ontologies. These ontologies can be understood as a collection of
axioms. More specifically, description logic ontologies consist of assertional axioms and terminological
axioms. Examples for an assertional axioms are “Tom is a cat” and “Jerry is a mouse”, written in
description logic syntax as

Cat(Tom) and Mouse(Jerry).

An example for terminological axiom would be to say that “every cat hunts a mouse”, written as

Cat Ď Dhunts.Mouse.

The use of the existential quantifier may be a bit surprising here, but it can be explained as follows.
Consider the reformulation of “every cat hunts a mouse” to “whenever there is a cat, there exists a
mouse it hunts.” The above statement should be read with this reformulation in mind.

14

Another example would be to say that “nothing is both a cat and a mouse”, written as

Cat[Mouse Ď K.

Again, a reformulation may clarify the used syntax. The phrase “nothing is both a cat and a mouse” can
be understood as “whenever there is something that is both a cat and a mouse, we have a contradiction.”
The bottom sign K denotes this contradiction.

These examples are formulated in the description logic ℰℒK, the logic we shall mainly use in this
work. The constructors used in ℰℒK are conjunction[, existential restriction D and the bottom concept K.

During the course of our considerations, however, it shall turn out that ℰℒK does not suffice for all
our purposes. We shall therefore latter on introduce another description logic called ℰℒKgfp that can be
understood as an extension of ℰℒK that allows for cyclic concept descriptions. The main motivation to
consider this description logic shall become clear when we introduce model-based most-specific concept
descriptions, which allow us to reformulate notions from FCA in the language of description logics.

3.1 The Description Logic ℰℒK

We are now going to introduce the syntax and semantics of the description logic ℰℒK.

3.1 Definition Let NC and NR be two disjoint sets. The set 𝒞 of ℰℒ-concept description with signature
(NC, NR) is defined as follows:

i. If A P NC, then A P 𝒞 .

ii. If C, D P 𝒞 , then C[D P 𝒞 .

iii. If C P 𝒞 and r P NR, then Dr.C P 𝒞 .

iv. J P 𝒞 .

v. 𝒞 is minimal with these properties.

The elements of the set NC are called concept names and the elements of NR are called role names.
An ℰℒK-concept description over the signature (NC, NR) is either K or an ℰℒ-concept description

over the signature (NC, NR). ♢

For convenience we may sometimes omit to explicitly mention the signature of an ℰℒK-concept
description. We may also talk about concept descriptions if the description logic used is clear from the
context.

We have already seen some examples for ℰℒK-concept descriptions, but let us consider one more
example, this time a bit more formally.

3.2 Example As an example, let us consider the sets

NC = tCat, Mouse, Animal u,
NR = t hunts u.

Then
Cat[Dhunts.Mouse

is a valid ℰℒK-concept description. Informally, it can be understood as the set of all cats that are (at
this very moment) hunting a mouse. ♢

15

Tom

Cat, Animal

Jerry

Mouse, Animal

hunts

Figure 2: An example interpretation

Intuitively associating a meaning with an ℰℒK-concept description is not sufficient for a knowledge
representation formalism. Therefore, description logics define the semantics of concept descriptions
in terms of interpretations. Suppose we have given three pairwise disjoint sets NC of concept names,
NR of role names and NI of individual names. Then an interpretation can be understood as a directed
graph where the vertices are labeled with concept names from NC and edges are labeled with role
names from NR. Additionally, some of the vertices are explicitly named with elements from NI and
no vertex has more than one name.

3.3 Definition Let NC, NR and NI be pairwise disjoint sets. An interpretation ℐ = (∆ℐ , ¨ℐ) over the
signature (NC, NR, NI) consists of a set ∆ℐ and an interpretation function ¨ℐ such that

Aℐ Ď ∆ℐ for all A P NC,

rℐ Ď ∆ℐ for all r P NR,

aℐ P ∆ℐ for all a P NI .

In addition, the unique name assumption holds: If a, b P NI , a ‰ b, then aℐ ‰ bℐ . ♢

We may sometimes omit to explicitly mention the signature of an interpretation. Moreover, we
may also talk about interpretations with signature (NC, NR) if the set of individuals is not important
for the current context.

3.4 Example Let us choose again NC = tCat, Mouse, Animal u, NR = t hunts u and in addition
NI = tTom, Jerry u. An interpretation ℐ = (∆ℐ , ¨ℐ) over the signature (NC, NR, NI) would then be
given by

∆ℐ = t x1, x2 u,

¨ℐ = t (Cat, t x1 u), (Mouse, t x2 u), (Animal, t x1, x2 u) u,

Tomℐ = x1,

Jerryℐ = x2,

where we have specified the interpretation function ¨ℐ through its graph. Figure 2 shows the interpre-
tation ℐ as a directed and labeled graph. ♢

Given an interpretation ℐ = (∆ℐ , ¨ℐ), we can extend the interpretation function ¨ℐ to the set of all
ℰℒK-concept descriptions as follows. Let C be an ℰℒK-concept description with signature (NC, NR).

∙ If C = J, then Cℐ = ∆ℐ .

∙ If C = K, then Cℐ = H.

∙ If C = C1 [C2, then Cℐ = Cℐ
1 X Cℐ

2 .

16

∙ If C = Dr.C1 with r P NR, then

Cℐ = t x P ∆ℐ | Dy P ∆ℐ : (x, y) P rℐ and y P Cℐ
1 u.

Note that if C P NC, then Cℐ is already defined.

3.5 Definition If C is an ℰℒK-concept description with signature (NC, NR) and ℐ is an interpretation
over the signature (NC, NR), then Cℐ is said the be the extension of C in ℐ . The elements of Cℐ are
said to satisfy the concept description C and the elements of ∆ℐzCℐ are said to not satisfy the concept
description C. ♢

The notion of interpretations also allows us to speak of concept descriptions that are more specific
than other concept descriptions.

3.6 Definition Let C, D be two ℰℒK-concept descriptions over the signature (NC, NR). Then C is said
to be more specific then D (or C is subsumed by D), written as C Ď D, if and only if for all interpretations
ℐ with a suitable signature it holds

Cℐ Ď Dℐ .

Two ℰℒK-concept descriptions C and D are equivalent, written as C ” D, if and only if C is more
specific than D and D is more specific than C. In other words,

C ” D ðñ (C Ď D) and (D Ď C). ♢

We are now going to define the notion of an ontology more formally. For this, we shall introduce
the notions of assertional axioms and terminological axioms.

We start with the definition of assertional axioms and ABoxes.

3.7 Definition Let NC, NR and NI be pairwise disjoint sets. Then an assertional axiom over the signature
(NC, NR, NI) is of the form

A(a) or r(a, b)

for A P NC, r P NR and a, b P NI . An assertional axiom of the form A(a) is called a concept assertion,
an axiom of the form r(a, b) is called a role assertion.

An ABox (short for assertion box) over the signature (NC, NR, NI) is a finite set of assertional axioms
over the signature (NC, NR, NI).

Let ℐ be an interpretation over the signature (NC, NR, NI). Then a concept assertion A(a) holds in
ℐ if and only if aℐ P Aℐ . A role assertion r(a, b) holds in ℐ if and only if (aℐ , bℐ) P rℐ . We shall write

ℐ |ù A(a) and ℐ |ù r(a, b)

if A(a) and r(a, b) hold in ℐ , respectively. Finally, ℐ is a model of 𝒜 if and only if all assertional axioms
hold in ℐ . ♢

Again, we may not name the signature explicitly if it is clear from the context or not relevant.
We have already seen some examples for assertional axioms in the beginning of this section. There,

the ABox
𝒜 = tCat(Tom), Mouse(Jerry) u

represents the fact that in every model of 𝒜, the element associated with the individual Tom must
satisfy Cat and likewise the element associated with the individual Jerry must satisfy Mouse. Indeed,
the interpretation from Figure 2 is a model of 𝒜.

17

Besides assertional axioms, description logic ontologies allow for terminological axioms. These
axioms are able to formulate constraints between different concept descriptions.

3.8 Definition Let NC, NR be disjoint sets. Then an terminological axiom over the signature (NC, NR) is
of the form

C Ď D or A ” D,

where A P NC and C, D are ℰℒK-concept descriptions over the signature (NC, NR). Terminological
axioms of the form C Ď D are called general concepts inclusions (GCIs), axioms of the form A ” D are
called concept definitions. If C Ď D is a GCI, then C is called the subsumee and D is called the subsumer
of C Ď D.

Let NI be a set disjoint to both NC and NR and let ℐ be an interpretation over the signature
(NC, NR, NI). Then a general concept inclusion C Ď D holds in ℐ if and only if Cℐ Ď Dℐ . A concept
definition A ” C holds in ℐ if and only if Aℐ = Cℐ . An interpretation ℐ is a model of a set 𝒯 of
terminological axioms if and only if all axioms in 𝒯 hold in ℐ . ♢

3.9 Example We can define the notion of a hunting cat by the concept definition

HuntingCat ” Cat[Dhunts.J.

A general concept inclusions which expresses that every Cat is also an Animal would be

Cat Ď Animal. ♢

A word of caution is appropriate here. We have introduced the symbol Ď for denoting both
subsumption and general concept inclusions. This may cause some confusions, but is an established
convention in the world of description logics. It may even sometimes be that both meanings of this
sign occur together. In those situations we have to exercise some extra care on clearly distinguishing
both meanings of Ď.

The analogue of an ABox for terminological axioms is the notion of a TBox (terminological box). We
shall define two types of TBoxes, namely cyclic TBoxes and general TBoxes.

3.10 Definition Let NP, NR, ND be three disjoint sets. Let 𝒯 be a set of concept definitions of the form
A ” C, where A P ND and C is an ℰℒ-concept description over the signature (NP Y ND, NR). 𝒯 is
called a cyclic TBox over the signature (NP, NR) if and only if for each concept name A P NP there
exists exactly one concept definition A ” C P 𝒯 . The set NP is then called the set of primitive concept
names of 𝒯 and the set ND is called the set of defined concept names of 𝒯 . ♢

3.11 Example In the case of Tom and Jerry, it is often not really clear who hunts whom. We can
therefore define

HuntingCat ” Cat[Dhunts.HuntingMouse,
HuntingMouse ” Mouse[Dhunts.HuntingCat.

Clearly, these definitions depend on each other. The set containing these two concept definitions is a
cyclic TBox. Its defined concept names are tHuntingMouse, HuntingCat u. ♢

Concept definitions are not really necessary if we can use general concept inclusions. To see this,
let us recall the definition of a concept definition to hold in an interpretation ℐ . A concept definition
A ” C holds in ℐ if and only if Aℐ = Cℐ . But this is the case if and only if Aℐ Ď Cℐ and Aℐ Ě Cℐ .

18

Hence A ” C holds in ℐ if and only if A Ď C and C Ď A both hold in ℐ . Therefore, general concept
inclusions can express concept definitions. Thus, if we are given a cyclic TBox 𝒯1 that contains concept
definitions, we can always transform it into a set 𝒯2 containing only general concept inclusions such
that the models of 𝒯1 are precisely the models of 𝒯2. In this respect, sets containing only general
concept inclusions are a generalization of cyclic TBoxes. We shall call such sets general TBoxes.

3.12 Definition Let NC, NR be two disjoint sets. A general TBox over the signature (NC, NR) is then a
set of general concept inclusions C Ď D, where C, D are ℰℒK-concept descriptions over the signature
(NC, NR). ♢

We have just defined the semantics of both cyclic and general TBoxes. If 𝒯 is such a TBox, then an
interpretation ℐ is a model of 𝒯 if and only if all definitions in 𝒯 hold in ℐ . This semantics is called
descriptive semantics. As we shall see later, there are also other kinds of semantics for TBoxes. As a
particular example, we shall introduce greatest fixpoint semantics when we discuss the description logic
ℰℒKgfp.

We are now able to finally give a formal definition of the notion of an ontology.

3.13 Definition Let NC, NR, NI be pairwise disjoint sets, 𝒜 an ABox over the signature (NC, NR, NI)
and 𝒯 a cyclic or general TBox over the signature (NC, NR). Then the pair (𝒜, 𝒯) is called an ontology.

An interpretation ℐ over the signature (NC, NR, NI) is said to be a model of the ontology (𝒜, 𝒯) if
and only if ℐ is a model of both 𝒜 and 𝒯 . ♢

We have already argued that description logic ontologies are a useful tool to formalize knowledge.
Moreover, we have suggested that the construction of ontologies may be an expensive and time-
consuming task. To ease the construction, various attempts have been made to incorporate ideas from
formal concept analysis into the world of description logics [4, 5, 10, 16]. In the sequel, we shall present
the approach from [10].

In this work, various parallels between the fields of formal concept analysis and description logics
are noted. In particular, in both areas certain elements can be described. Let K = (G, M, I) be a formal
context. Then an object g P G can be described by a set A Ď M of attributes if x P A1. The same is
true for an interpretation ℐ = (∆ℐ , ¨ℐ). An element x P ∆ℐ is described by a concept description C if
x P Cℐ . Furthermore, in both K and ℐ we can obtain for a description A and C the set of objects A1

and elements Cℐ described by it.
However, in K we can associate for g a most-specific description B := t g u1. By Proposition 2.5,

g P B1, i. e. B describes g. If then g P A1, then t g u Ď A1, i. e. t g u2 Ď A3 = A1. But then B1 Ď A1,
and hence B describes the fewest objects of all sets A Ď M that describe g. In other words, B describes
g in the most specific way.

An analogous notion of a most-specific concept-description with respect to an interpretation ℐ has
been introduced in [10] as model-based most-specific concept description.

3.14 Definition Let ℐ = (∆ℐ , ¨ℐ) be a interpretation over a signature (NC, NR, NI) and let X Ď ∆ℐ .
Then a model-based most-specific concept description for X over ℐ is a concept description C over the
signature (NC, NR) such that

∙ X Ď Cℐ and

∙ for all concept descriptions D with X Ď Dℐ it holds C Ď D. ♢

Intuitively speaking, a model-based most-specific concept description for X Ď ∆ℐ is a most-specific
concept description that describes all elements in X.

Model-based most-specific concept descriptions may not exist. We shall see in the next example an
interpretation ℐ where some elements do not have model-based most-specific concept descriptions

19

x

r

Figure 3: An interpretation where t x u has no model-based most-specific concept description in ℰℒK.

in ℰℒK. To compensate for this we shall introduce the description logic ℰℒKgfp that allows for cyclic
concept descriptions. In this logic, model-based most-specific concept descriptions always exist.

The following example also occurs in a minor variation in [10].

3.15 Example Let NC = H and NR = t r u. We consider the interpretation ℐ = (∆ℐ , ¨ℐ) with
∆ℐ = t x u and rℐ = t (x, x) u. The interpretation depicted as a graph is shown in Figure 3.

Now suppose that C is an ℰℒK-concept description that is at the same time a model-based most-
specific concept description for X = t x u over ℐ . Because NC = H and NR = t r u, C is equivalent to
one of the concept descriptions

J, Dr.J, Dr.Dr.J, . . . ,

i. e.
C ” Dr. . . . Dr.

looomooon

n times

J

for some n P N. Then define
D := Dr. . . . Dr.

looomooon

n+1 times

J.

Then Dℐ = t x u and D Ď C, D ı C, contradicting the fact that C is a model-based most-specific
concept description of X over ℐ . ♢

On the other hand, if model-based most-specific concept descriptions exist, they are necessarily
equivalent. Therefore, if X is a set of elements of an interpretation ℐ , we can denote the model-based
most-specific concept description of X over ℐ by the special name Xℐ . This notation has been used to
stress the similarity to the derivation operators from formal concept analysis.

3.2 The Description Logic ℰℒK
gfp

As it was shown in Example 3.15, model-based most-specific concept descriptions need not necessarily
exist. However, it has been shown in [4, 10] that one can extend the description logic ℰℒK to the
description logic ℰℒKgfp which always has model-based most-specific concept descriptions.

3.16 Definition Let NP, NR be two disjoint sets and let 𝒯 be a cyclic TBox over the signature (NP, NR).
A concept definition A ” C P 𝒯 is said to be normalized, if C is of the form

C = B1 [. . .[Bm [Dr1.A1 [. . .[Drn.An

where m, n P N, B1, . . . , Bm P NP and A1, . . . , An P ND. If n = m = 0, then C = J. We call 𝒯
normalized if and only if it contains only normalized concept definitions.

An ℰℒgfp-concept description over the signature (NP, NR) is of the form

C = (A, 𝒯)

20

where 𝒯 is a normalized TBox over the signature (NP, NR) and A is a defined concept name of 𝒯 .
An ℰℒKgfp-concept description is either K or an ℰℒgfp-concept description. ♢

3.17 Example Let us reconsider the TBox from Example 3.11, i. e.

𝒯 := tHuntingCat ” Cat[Dhunts.HuntingMouse,
HuntingMouse ” Mouse[Dhunts.HuntingCat u.

Then 𝒯 is a normalized cyclic TBox and the pair

(HuntingMouse, 𝒯)

is a valid ℰℒKgfp-concept description. ♢

We have already defined the notion of ℰℒK-GCIs. Of course, this definition can be easily modified
to yield the notion of ℰℒKgfp-GCIs. These are just expressions of the form C Ď D, where C and D are
ℰℒKgfp-concept descriptions.

We shall sometimes omit the logic and call an ℰℒKgfp-concept description just a concept description
and likewise shall call an ℰℒKgfp-GCIs just a GCI.

As we have defined the syntax of ℰℒKgfp, the natural next step is to define the semantics of ℰℒKgfp.
This, however, is not as straight forward as in the case of ℰℒK, as we have to deal with circular concept
descriptions. As we shall see shortly, semantics can be defined using fixpoint semantics. This has been
done in [3, 13].

Let C be an ℰℒKgfp-concept description over the signature (NC, NR) and let ℐ = (∆ℐ , ¨ℐ) be an
interpretation over the same signature. If C = K, then certainly Cℐ = H. Hence let C = (A, 𝒯) and
let ND be the set of defined concept names of 𝒯 . Then A P ND.

The idea to define the set of elements of ℐ that satisfy C now works as follows: Let us suppose
that we can extend the interpretation function ¨ℐ to a function ¨ℐ1 that is also defined on the set ND of
defined concept names such that

Aℐ1 = Cℐ1

holds for all concept definitions A ” C P 𝒯 . Then ℐ1 is a model of 𝒯 and we could define

Cℐ1 = (A, 𝒯)ℐ1 := Aℐ1 .

Intuitively speaking, we extend ¨ℐ to all defined concept descriptions of 𝒯 such that this extension is a
model of 𝒯 . Then we take the interpretation of the symbol A and use it to define the extension of the
whole description C.

To use this approach to actually define an extension of C we have to address two issues. The first
is to guarantee that such extensions of ¨ℐ actually exist. Secondly, if such extensions exist, we have to
choose one of them to actually define the extension of C. We shall address these two issues in what
follows.

3.18 Definition Let ℐ be an interpretation over the signature (NC, NR, NI) and let 𝒯 be a TBox over
(NC, NR) with defined symbols ND. Then an interpretation 𝒥 over the signature (NC Y ND, NR, NI)
is an extension of the interpretation ℐ if and only if

∙ @A P NC : Aℐ = A𝒥 ,

21

∙ @r P NR : rℐ = r𝒥 and

∙ @a P NI : aℐ = a𝒥 .

We shall denote with Ext𝒯 (ℐ) the set of all extensions of ℐ . ♢

We can define an order relation ĺ on Ext(ℐ) by

ℐ1 ĺ ℐ2 ðñ Aℐ1 Ď Aℐ2 for all A P ND

for ℐ1, ℐ2 P Ext(ℐ). It is clear that (Ext𝒯 (ℐ),ĺ) is an ordered set.

3.19 Proposition For each interpretation ℐ over the signature (NC, NR, NI) and TBox 𝒯 over the signature
(NC, NR), the ordered set

(Ext𝒯 (ℐ),ĺ)

is a complete lattice.

Not all extensions 𝒥 P Ext𝒯 (ℐ) are actually models of 𝒯 . These are only those that satisfy

A𝒥 = C𝒥

for all (A ” C) P 𝒯 .
We can view this fact from another perspective. Let us define a mapping f : Ext𝒯 (ℐ) ÝÑ Ext𝒯 (ℐ)

by
A f (𝒥) := C𝒥

for all (A ” C) P 𝒯 and 𝒥 P Ext𝒯 (ℐ). Since for each A P ND, there is exactly one concept definition
(A ” C) P 𝒯 , the function f is well-defined. Furthermore, it is sufficient to define f (𝒥) only on
defined concept names. Thus f (𝒥) P Ext𝒯 (ℐ). Moreover, this mapping is monotone, i. e.

ℐ1 ĺ ℐ2 ùñ f (ℐ1) ĺ f (ℐ2)

for all ℐ1, ℐ2 P Ext𝒯 (ℐ). This is easy to see if one recalls that the concept description C is normalized,
i. e.

C = B1 [. . .[Bm [Dr1.A1 [. . .[Drn.An

where B1, . . . , Bm P NC and A1, . . . , An P ND.
We can now see that the extensions of ℐ that are models of 𝒯 are actually fixpoints of f . This is

because 𝒥 P Ext𝒯 (ℐ) is a model of 𝒯 if and only if

A𝒥 = C𝒥 for all A ” C P 𝒯 .

But this means that
A f (𝒥) = C𝒥 = A𝒥 ,

i. e. f (𝒥) = 𝒥 . Hence to show that there exist extensions of ℐ that are models of 𝒯 it is sufficient to
show that f has fixpoints. To do this, we use the fact that f is monotone and the following, well-known
theorem by Tarski [20].

22

3.20 Theorem Let (L,ď) be a complete lattice and let h : L ÝÑ L be a monotone mapping on (L,ď), i. e.

x ď y ùñ h(x) ď h(y)

holds for all x, y ď L. Then the set
F := t z P L | h(z) = z u

is such that (F,ď) is a complete sublattice of (L,ď). In particular, F ‰ H and there exists a least and greatest
fixpoint of h.

As a corollary we obtain the fact that the mapping f has fixpoints in Ext𝒯 (ℐ) and that there exists
a greatest fixpoint of f in Ext𝒯 (ℐ). We call this fixpoint the greatest fixpoint model (gfp-model) of 𝒯 in
ℐ . Having this, we are finally able to define the extension of the concept description C.

3.21 Definition Let C be an ℰℒKgfp-concept description over a signature (NC, NR) and let ℐ be an
interpretation over the signature (NC, NR, NI). Then

Cℐ :=

#

H if C = K

A𝒥 if C = (A, 𝒯) and 𝒥 is the gfp-model of 𝒯 in ℐ .
♢

The main result about ℰℒKgfp is now the following theorem from [4, 10].

3.22 Theorem (Theorem 4.7 of [10]) Let ℐ = (∆ℐ , ¨ℐ) be an interpretation and X Ď ∆ℐ . Then there exists
a model-based most-specific ℰℒKgfp-concept description of X over ℐ .

Now that we can guarantee the existence of model-based most-specific concept descriptions we
can consider some first properties. The following result can also be found in [4].

3.23 Lemma (Lemma 4.1 of [10]) Let ℐ be a finite interpretation. Then for each ℰℒKgfp-concept description
D and every X Ď ∆ℐ , it holds

X Ď Dℐ ðñ Xℐ Ď D.

Proof Suppose X Ď Dℐ . Then Xℐ Ď D holds by the definition of model-based most-specific concept
descriptions (Definition 3.14). This shows the direction from left to right.

Suppose conversely that Xℐ Ď D. Then Xℐ is a concept description that is satisfied by all elements
of X, therefore

X Ď (Xℐ)ℐ Ď Dℐ ,

as Xℐ Ď D implies (Xℐ)ℐ Ď Dℐ . This shows the converse direction. ˝

This lemma may remind one of the definition of a Galois connection, however the relation Ď is
not an order relation on the set of all model-based most-specific concept descriptions. This is because
model-based most-specific concept descriptions are only unique up to equivalence.

Yet, most of the properties of a Galois connection are still valid. More precisely, if ℐ is a finite
interpretation, C, D are concept descriptions and X, Y Ď ∆ℐ , then the following statements are true.

i. X Ď Y ùñ Xℐ Ď Yℐ ,

ii. C Ď D ùñ Cℐ Ď Dℐ ,

iii. X Ď (Xℐ)ℐ ,

23

iv. (Cℐ)ℐ Ď C,

v. Xℐ ” ((Xℐ)ℐ)ℐ ,

vi. Cℐ = ((Cℐ)ℐ)ℐ .

They can be proven in the same way as for any Galois connection. We shall often write Xℐℐ instead of
(Xℐ)ℐ .

Another property that was already claimed is that ℰℒKgfp can be considered as an extension of
the description logic ℰℒK. This may not be obvious at a first glance, since the definition of ℰℒKgfp-
concept descriptions is quite different from the one of ℰℒK-concept descriptions. Still, ℰℒKgfp can
be understood as an extension of ℰℒK. To see this we shall first define conjunction and existential
restriction for ℰℒKgfp-concept descriptions.

Let C, D be two ℰℒKgfp-concept descriptions over the signature (NC, NR). If C = K, then C[D :=
K and Dr.C := K. Likewise for D = K. Hence we may assume that both C, D are not the K concept
description. Then C = (AC, 𝒯C), D = (AD, 𝒯D) and we can assume that the defined concept names
of 𝒯C and 𝒯D are disjoint. Then let us define

C[D := (A, 𝒯C Y 𝒯D Y t A ” AC [AD u),

where A is a new name. Furthermore, if r P NR, then

Dr.C := (A, 𝒯C Y t A ” Dr.AC u)

where again A is a new name. These definitions preserve the semantics, i. e. for each interpretation
ℐ = (∆ℐ , ¨ℐ) it holds

(C[D)ℐ = Cℐ XDℐ ,

(Dr.C)ℐ = t x P ∆ℐ | Dy P ∆ℐ : (x, y) P rℐ and y P Cℐ u.

We can use these definitions to see that ℰℒKgfp can indeed be regarded as an extension of ℰℒK. For
this we assign for the ℰℒK-concept description J the ℰℒKgfp-concept description (A, t A ” Ju).
Furthermore, if B is a concept name, then it is equivalent to the ℰℒKgfp-concept description (A, t A ”
B u). Using the definitions for conjunction and existential restriction for ℰℒKgfp-concept descriptions,
we can inductively assign for each ℰℒK-concept description an equivalent ℰℒKgfp-concept description.
As these constructors preserve the semantics, ℰℒKgfp can be seen as an extension of ℰℒK.

3.3 Bases for GCIs of Interpretations
In the case of formal contexts, we were able to extract bases of implications form them. As we view
GCIs as the description logic analogue of implications, we want to do the same for GCIs and finite
interpretations.

In [10], the algorithm for computing the canonical base has been generalized to the description logic
ℰℒKgfp. This generalized algorithm is then able to compute bases of valid GCIs of a finite interpretation
ℐ . In this short subsection we want to introduce the notion of a base and some related definitions.

3.24 Definition Let ℐ be a finite interpretation over the signature (NC, NR, NI). The set of valid GCIs
of ℐ that consist of ℰℒKgfp-concept descriptions is denoted by Th(ℐ). ♢

24

One of the main results of [10] was to find a finite set of valid GCIs of ℐ such that every valid GCI
of ℐ was already entail by this finite set. These finite sets are then called bases of ℐ .

We are going to introduce the notion of base in a more general setting, namely for arbitrary sets of
GCIs.

3.25 Definition Let 𝒞 be a set of GCIs. Let 𝒟 be a set of GCIs.

i. 𝒟 is said to be sound for 𝒞 if and only if 𝒞 |ù 𝒟, i. e. every GCI in 𝒟 is entailed by 𝒞 ;

ii. 𝒟 is said to be complete for 𝒞 if and only if 𝒟 |ù 𝒞 , i. e. every GCI in 𝒞 is entailed by 𝒟;

iii. 𝒟 is said to be a base for 𝒞 if and only if 𝒟 is both sound and complete for 𝒞 .

If 𝒟 is a base of 𝒞 , then 𝒟 is said to be a non-redundant base of 𝒞 if and only if no proper subset of 𝒟 is
a base of 𝒞 . ♢

It is clear that if 𝒟 is a base of 𝒞 , then the set of GCIs entailed by 𝒟 and 𝒞 are the same.

3.26 Definition Let ℐ be a finite interpretation. Then a set ℬ of GCIs is said to be a base for ℐ if and
only if ℬ is a base for Th(ℐ). ♢

Equivalently, ℬ is a base for ℐ if and only if it contains only valid GCIs of ℐ and every valid GCI of
ℐ is already entailed from ℬ.

On of the main results of [10] is to prove the existence of finite bases for finite interpretations. The
following result shows one of these bases.

3.27 Theorem (Theorem 5.10 of [10]) Let ℐ be a finite interpretation. Then the set

ℬ2 := t
ę

U Ď (
ę

U)ℐℐ | U Ď Mℐ u

is a finite base for ℐ .

4 A Contextual Representation of All Model-Based Most-Specific
Concepts of a Finite Interpretation

We have already seen some parallels between the description logic ℰℒKgfp and formal concept analysis.
In [10], induced contexts are used to further investigate the connection between the operator ¨ℐ in
ℰℒKgfp and the derivations operators in FCA. This approach has also been used before, for example
in [6, 14, 16]. However, [10] uses induced contexts to provide a general framework to combine formal
concept analysis with description logics. Using this framework in the particular case of ℰℒKgfp, [10] was
able to obtain a formal context Kℐ that describes all model-based most-specific concept descriptions
of a finite interpretation ℐ . Although not mentioned explicitly in [10], with this context it is easy to
see that the lattice of intents of Kℐ is dually order-isomorphic to the lattice of equivalence classes of
the model-based most-specific concept descriptions of ℐ .

It is the main purpose of this section to introduce this result in a way suitable for this work. For
this, we shall start with introducing the notions of induced contexts and projections. Following this, we
shall present the formal context Kℐ as it has been introduced in [10]. The final goal is then to obtain
an order-isomorphism between that lattice (Int(Kℐ),Ď) and the set of all model-based most-specific
concept descriptions up to equivalence, ordered by Ě. Here, Ě denotes the reverse subsumption
relation.

25

4.1 Induced Contexts and Projections
In [10], one of the main definition used to investigate description logics from a formal concept analysis
perspective is the definition of induced contexts. Given a finite interpretation ℐ = (∆ℐ , ¨ℐ) and a set M
of concept descriptions, we can say that an element x P ∆ℐ has a concept description C as attribute if
and only if x P Cℐ , i. e. if x satisfies C.

4.1 Definition Let M be a set of concept descriptions and let ℐ be a finite interpretation. Then the
formal context induced by M and ℐ is defined to be (∆ℐ , M, J), where

(x, C) P J ðñ x P Cℐ . ♢

Indeed, induced contexts already allow us to consider extensions of certain concept descriptions
as extents of a suitable formal context. Under certain circumstances, we may even be able to represent
model-based most-specific concept descriptions as intents of an induced context.

To make this more precise, we need to be able to construct from a set U of concept descriptions
a new concept description. As sets of attributes are normally understood as describing objects that
have all attributes from this set, it is natural to assign to U the concept description that is obtained by
a conjunction of all elements of U.

4.2 Definition Let M be a set of concept descriptions and let U Ď M. Then define

ę

U :=

#

Ű

DPU D if U ‰ H

J otherwise

as the concept description defined by U.
A concept description C is said to be expressible in terms of M if there exists U Ď M such that

C ”
ę

U. ♢

Dually, we can construct from a given concept description C a set of concept descriptions from M
that is, in a certain sense, the best approximation of C in terms of M.

4.3 Definition Let M be a set of concept descriptions and let C be another concept description. Then
the set

prM(C) := tD P M | C Ď D u

is said to be the projection of C onto M. ♢

Projections indeed capture some notion of approximation. More precisely, let us consider the set
of all concept descriptions that we can obtain by conjunctions of elements of M. Under these concept
descriptions we search for a concept description U Ď M that is Ď-minimal with C Ď

Ű

U. In other
words, we look for a best upper approximation within the set of concept descriptions defined by subsets
of M. With the notion of projections it is easy to see that

U = prM(C).

As an interesting matter of fact, the mappings U ÞÝÑ
Ű

U and C ÞÝÑ prM(C) satisfy the main
property of a Galois connection. But note that because of Ď not being an order relation on the set of
all concept descriptions, these mappings actually cannot form a Galois connection.

26

4.4 Lemma Let M be a set of concept descriptions. Then for each U Ď M and for each concept description C
it is true that

C Ď
ę

U ðñ U Ď prM(C).

Proof Let us first show the direction from left to right. From C Ď
Ű

U we can conclude prM(
Ű

U) Ď
prM(C), since every concept description D P M satisfying

Ű

U Ď D also satisfies C Ď D. Further-
more, for each F P U we have

Ű

U Ď F, therefore U Ď prM(
Ű

U) and hence

U Ď prM(
ę

U) Ď prM(C)

as desired.
For the other direction let us suppose that U Ď prM(C). Then

Ű

U Ě
Ű

prM(C). Now since each
D P prM(C) satisfies D Ě C,

Ű

prM(C) Ě C holds as well. Therefore,

C Ď
ę

prM(C) Ď
ę

U

as desired. ˝

Although the mappings U ÞÝÑ
Ű

U and C ÞÝÑ prM(C) do not form a Galois connection they still
possess some similar properties. For example, the following properties hold:

i. C Ď D ùñ prM(D) Ď prM(C),

ii. U Ď V ùñ
Ű

V Ď
Ű

U,

iii. C Ď
Ű

prM(C) and

iv. U Ď prM(
Ű

U)

for all concept descriptions C, D and sets U, V Ď M. The proofs for these claims have already been
given along the lines of the proof of the previous lemma.

Our main motivation for the following considerations is now to find a contextual representation
of the model-based most-specific concept descriptions of a finite interpretation ℐ . For this, we need
some more preliminary results.

The first result gives a simple characterization of when a concept description C is expressible in
terms of M.

4.5 Proposition ([10]) Let M be a set of ℰℒKgfp-concept descriptions and let C be an ℰℒKgfp-concept descrip-
tion. Then C is expressible in terms of M if and only if

C ”
ę

prM(C).

Proof If C ”
Ű

prM(C), then clearly C is expressible in terms of M. Conversely, let N Ď M such that
C ”

Ű

N. Then C Ď D for each D P N and hence

N Ď prM(C),

which implies C Ě
Ű

prM(C). On the other hand, C Ď
Ű

prM(C) by Lemma 4.4 and hence C ”
Ű

prM(C) follows as required. ˝

The following two propositions give some first results on how the mappings U ÞÝÑ
Ű

U, C ÞÝÑ
prM(C) connect the description logic ℰℒKgfp and formal concept analysis.

27

4.6 Proposition (Lemma 4.11 and Lemma 4.12 from [10]) Let ℐ be a finite interpretation and M a set of
concept descriptions. Let C be an concept description expressible in terms of M. Then

Cℐ = prM(C)1

where the derivation are computed within the induced context of ℐ and M. Furthermore, every set O Ď ∆ℐ
satisfies

O1 = prM(Oℐ).

Proof Since C is expressible in terms of M, C ”
Ű

prM(C) by Proposition 4.5. Therefore

x P Cℐ ðñ x P (
ę

prM(C))ℐ

ðñ @D P prM(C) : x P Dℐ

ðñ x P prM(C)1

as prM(C)1 = t x P ∆ℐ | @D P prM(C) : x P Dℐ u.
For the second claim we observe

D P O1 ðñ @g P O : g P Dℐ

ðñ O Ď Dℐ

ðñ Oℐ Ď D

ðñ D P prM(Oℐ),

where O Ď Dℐ ðñ Oℐ Ď D holds due to Lemma 3.23. ˝

4.7 Proposition (Lemma 4.10 and 4.11 from [10]) Let ℐ be a finite interpretation and let M be a set of
concept descriptions. Let K be the formal context induced by M and ℐ . Then each B Ď M satisfies

B1 = (
ę

B)ℐ .

Let A Ď ∆ℐ . If Aℐ is expressible in terms of M, then
ę

A1 ” Aℐ .

Proof Remember that an object g P G(Kℐ) has an attribute m P M(Kℐ) if and only if g P mℐ . Hence

g P B1 ðñ @m P B : g P mℐ ðñ g P (
ę

B)ℐ .

Let A Ď ∆ℐ such that Aℐ is expressible in terms of M. By Proposition 4.5,

Aℐ ”
ę

prM(Aℐ).

By Proposition 4.6, prM(Aℐ) = A1 and hence the claim follows. ˝

In particular, if the set B in the previous proposition has the form B = tD u, then
Ű

B = D and
hence tD u1 = Dℐ for each D P M.

We now give the construction of the formal context Kℐ from [10]. This formal context will finally
allow us to understand model-based most-specific concept descriptions as intents of Kℐ .

28

4.8 Definition Let ℐ be a finite interpretation, NC be a set of concept names and NR be a set of role
names. Then define

Mℐ := tK u Y NC Y t Dr.Xℐℐ | X Ď ∆ℐ , r P NR u. ♢

4.9 Theorem (Lemma 5.9 from [10]) Let ℐ be a finite interpretation and let C be an concept description.
Then Cℐℐ is expressible in terms of Mℐ .

4.10 Definition Let ℐ be a finite interpretation. Then the formal context Kℐ is the formal context
induced by Mℐ and ℐ . ♢

A first simple result shows that the extents of Kℐ correspond to sets of elements of ℐ that are of
the form Xℐℐ .
4.11 Lemma Let ℐ be a finite interpretation and let X Ď ∆ℐ . Then Xℐℐ = X2, where the derivations are
computed in Kℐ .
Proof By Theorem 4.9, Xℐ is expressible in terms of Mℐ , hence by Proposition 4.5

Xℐ ”
ę

prMℐ
(Xℐ).

This implies

Xℐℐ =
(ę

prMℐ
(Xℐ)

)ℐ
= prMℐ

(Xℐ)1

= X2

by Proposition 4.7. ˝

4.2 Model-Based Most-Specific Concept Descriptions as Intents of a Formal Con-
text

Having defined the formal context Kℐ , we are now going to show that this formal context indeed
allows us to view model-based most-specific concept descriptions as intents of a formal context.
Indeed, we have already seen that all model-based most-specific concept descriptions are expressible
in terms of Mℐ , the set of attributes of Kℐ . It is therefore not surprising that the lattice of intents of
Kℐ and the equivalence classes of model-based most-specific concept descriptions ordered by Ě are
order-isomorphic.

Before we can define the corresponding Theorem 4.13 we need to show one more auxiliary result.
4.12 Proposition Let ℐ be a finite interpretation and let X Ď Mℐ . Then

X Ď prMℐ
(
ę

X) Ď X2,

where the derivation is computed in Kℐ .
Proof By Lemma 4.4, X Ď prMℐ

(
Ű

X) holds. Now

D P prMℐ
(
ę

X) ðñ
ę

X Ď D

ùñ (
ę

X)ℐ Ď Dℐ

ðñ X1 Ď tD u1

ðñ X2 Ě tD u2 Q D

ùñ D P X2

29

as required. ˝

We are now ready to formulate the main theorem of this section. In this theorem we shall describe
the desired contextual representation of model-based most-specific concept descriptions as intents of
Kℐ . However, before we do so we have to deal with a technical detail. This is because model-based
most-specific concept descriptions are only unique up to equivalence. In particular, Ď is in general not
an order relation on the set of all model-based most-specific concept descriptions. To overcome this
we use the standard trick of considering classes of equivalent concept descriptions instead.

Let M be a set of concept descriptions. Then let us define

M/” := t [X] | X P M u

where
[X] := tY P M | X ” Y u.

Furthermore, for X, Y P M we set

[X] Ď [Y] ðñ X Ď Y.

Note that this is well-defined because if X̂ P [X], Ŷ P [Y], then X̂ ” X, Ŷ ” Y and hence X Ď Y ðñ

X̂ Ď Ŷ. With this definition it is easy to see that (M/”,Ď) is an ordered set.

4.13 Theorem Let ℐ be a finite interpretation and let ℳ be the set of all model-based most-specific concept
descriptions of ℐ . Then the mappings

ę

: P(Mℐ) ÝÑℳ and prMℐ
: ℳ ÝÑ P(Mℐ)

describe an order-isomorphism between the ordered sets (P(Mℐ),Ď) and (ℳ/”,Ě) via

ϕ : P(Mℐ) ÝÑ ℳ/”
N ÞÝÑ [

Ű

N]

and ϕ´1([X]) = prMℐ
(X). More precisely, the following statements hold:

i.
Ű

U Pℳ for each U P Int(Kℐ).

ii. prMℐ
(C) P Int(Kℐ) for each C Pℳ.

iii. U Ď V implies prMℐ
(U) Ě prMℐ

(V) for all U, V Ď Mℐ .

iv. C Ď D implies
Ű

C Ě
Ű

D for all C, D Pℳ.

v. prMℐ
(
Ű

U) = U for each U P Int(Kℐ).

vi.
Ű

prMI
(C) ” C for each C Pℳ.

Additionally, U2 = prMℐ
((

Ű

U)ℐℐ) and Cℐℐ ”
Ű

(prMℐ
(C))2 for each set U Ď Mℐ and each concept

description C expressible in terms of Mℐ , where the derivations are computed in Kℐ .

Proof We show each claim step by step.
For i, let U P Int(Kℐ), i. e. U = U2. Then

ę

U =
ę

U2 ” (U1)ℐ = (
ę

U)ℐℐ

30

by Proposition 4.7. Hence
Ű

U ” (
Ű

U)ℐℐ and therefore
Ű

U Pℳ.
For ii, let C P ℳ, i. e. C ” Cℐℐ . By Theorem 4.9, C is expressible in terms of Mℐ and hence by

Proposition 4.6

prMℐ
(C) = prMℐ

(Cℐℐ)

= (Cℐ)1

= (prMℐ
(C))2,

thus prMℐ
(C) P Int(Kℐ).

Claims iii and iv are already contained in Lemma 4.4.
For v we need to show that

prMℐ
(
ę

U) = U

for U P Int(Kℐ). By Proposition 4.12, U Ď prMℐ
(
Ű

U) Ď U2, and since U = U2, equality follows.
Claim vi follows from Proposition 4.5, as C Pℳ is expressible in terms of Mℐ by Theorem 4.9.

Finally for U Ď Mℐ

prMℐ
((

ę

U)ℐℐ) = prMℐ
(U1ℐ)

= U2

by Proposition 4.7 and Proposition 4.6, and
ę

(prMℐ
(C))2 ” (prMℐ

(C)1)ℐ

= Cℐℐ

for every ℰℒKgfp-concept description C, again by Proposition 4.7 and Proposition 4.6. ˝

One has to be careful with the equivalence
Ű

(prMℐ
(C))2 ” Cℐℐ , which in general is only true if

C is expressible in terms of Mℐ , as the following example shows.
4.14 Example We shall consider a trivial example to show that

Ű

(prMℐ
(C))2 ” Cℐℐ is not necessarily

true if C is not expressible in terms of Mℐ . Let NC = H, NR = t r u and ℐ = (∆ℐ , ¨ℐ)where ∆ℐ = t x u
and rℐ = H. Then the model-based most-specific concept descriptions of ℐ are, up to equivalence,
just K and J, because

Hℐ = K,

t x uℐ = J.

Therefore,
Mℐ = tK, Dr.Ju

and

Kℐ =
K Dr.J

x . .

Now consider C = Dr.Dr.J. Then
Cℐℐ = Hℐ = K.

On the other hand,
ę

prMℐ
(C)2 =

ę

H2 =
ę

H = J.

Therefore, Cℐℐ ı
Ű

prMℐ
(C)2. ♢

31

5 Confident GCIs of Finite Interpretations
Recall our original motivation: we are interested in completely describing the knowledge of a finite
interpretation ℐ that can be formulated using GCIs. However, it is easy to see that just considering the
set of all valid GCIs is not practical, as it is infinite in general. More precisely, if C Ď D is valid in ℐ ,
then for each r P NR, the GCI Dr.C Ď Dr.D is also valid in ℐ . But what we can do is to look for a base
of all valid ℰℒKgfp-GCIs that are valid in ℐ . Such a base then captures all knowledge representable by
valid GCIs of ℐ and is therefore sufficient for our application. As it has been shown in [10], such a
finite base of all valid ℰℒKgfp-GCIs of ℐ always exists.

To consider only the valid knowledge of an interpretation ℐ has one disadvantage. The main
motivation why we want to represent this knowledge contained in ℐ is to obtain some knowledge
about the real world that is represented by ℐ . But this then requires ℐ to be perfect: each ℰℒKgfp-GCI valid
in ℐ corresponds to a valid statement in the real world and each true statement expressible in ℰℒKgfp

actually corresponds to some ℰℒKgfp-GCI valid in ℐ . This assumption is reasonable for theoretical
considerations but has practical limitations.

5.1 Example Let us consider the DBpedia data set [8], which collects data in form of RDF triples from
Wikipedia Infoboxes. The structure of these boxes is not formally specified and therefore the collection
of data has to be made on a heuristic basis. This in turn leads to a number of errors, both randomly
and systematically.

In [9] first experiments have been conducted to apply the theory of axiomatizing the ℰℒKgfp-GCIs
of finite interpretations from [10] to a small fraction of the DBpedia data set. For this, all individuals
in the DBpedia data set that occur in a child relation with some other individual haven been collected
in a set ∆DBpedia. This set contained 5626 individuals. Together with their properties and the child
relation, this gives rise to the interpretation ℐDBpedia, which was used in [9] as an example. One has to
note, however, that the child relation in DBpedia is more abstract one might assume. For example, in
ℐDBpedia, not only humans can have humans as children, but also authors can have theirs works as
children. Even populated places or music bands occur as children, a fact most likely due to the free
form of Wikipedia’s infoboxes. One can see this as an systematic error made during the collection.

Applying the theory of [10], a base ℒDBpedia of GCIs valid in ℐDBpedia has been obtained. However,
some of the GCIs found described facts that one may have assumed to be true more generally. Examples
for this are

Dc.Dc.J Ď Dc.(Person[Dc.J),
Dc.Work Ď Person,

Person[Dc.(Person[Dc.(Person[Dc.(Person[Dc.Dc.(Person[Dc.J))))
Ď Dc.(Person[Dc.(Person[Dc.(Person[Dc.(Person[Dc.Dc.Person)))),

OfficeHolder[Dc.Dc.(Person[Dc.J) Ď Dc.(Person[Dc.Dc.Person),
Person[Dc.Criminal Ď Criminal,

where we have abbreviated the child relation with a singleton c for better readability.
Now, if one would add the GCI Dc.J Ď Person to ℒDBpedia, the first two GCIs turn out to be

dispensable (i. e. they are trivial) and the other GCIs would become much simpler:

Dc.Dc.Dc.Dc.Dc.Dc.J Ď Dc.Dc.Dc.Dc.Dc.Dc.Person,
OfficeHolder[Dc.Dc.Dc.J Ď Dc.Dc.Dc.Person,

Dc.Criminal Ď Criminal,

32

given the fact that Criminal Ď Person is contained in ℒDBpedia.
Indeed, the fact that only persons can have children sounds quite natural even in the quite ab-

stract understanding of the child relation of DBpedia. However, the GCI Dc.J Ď Person does not
hold in ℐDBpedia, as there are 4 individuals that satisfy Dc.J but not Person, namely Teresa_Carpio,
Charles_Heung, Adam_Cheng and Lydia_Shum. However, these individuals denote real persons2 and
therefore should satisfy Person, an error in our interpretation ℐDBpedia. ♢

To understand the occurrence of errors we shall propose the following point of view on our given
data: The relevant part of the reality we are interested, our domain of interest, can be understood
as a finite interpretation ℐperfect. However, we do not have direct access to ℐperfect but to another
interpretation ℐ that originates from ℐperfect by errors. Our aim is then to find as much valid GCIs
from ℐperfect as possible by examining GCIs from ℐ .

We can then regard the interpretation ℐ as an approximation to ℐperfect that contains some errors.
The following definitions formulates this view more precisely.

5.2 Definition Let ℐ1, ℐ2 be two finite interpretations over the signature (NC, NR) such that ∆ℐ1 =
∆ℐ2 := ∆. Then we may call ℐ2 an approximation of ℐ1 and ℐ1 the origin of ℐ2. In this case, an error in
ℐ2 with respect to ℐ1 is

i. either a pair (x, C) P ∆ˆ NC such that x P (Cℐ1 △Cℐ2) or

ii. a pair (x, r) P ∆ˆ NR such that there exists an individual y P ∆ with (x, y) P (rℐ1 △ rℐ2).

If the interpretation ℐ1 is clear from the context, we may more informally speak of errors in ℐ2. ♢

Errors in interpretations may occur for a variety of reasons and it is not reasonable to assume that
an algorithm can automatically detect errors in general unless given some other source of information
on the origin. This is due to the simple fact that an error in an approximation ℐ of an interpretation ℐ1
may not necessarily be an error of ℐ if regarded as an approximation of ℐ2. Hence, when we are given
no additional information we cannot decide which of the interpretations ℐ1 or ℐ2 we are actually
considering as correct and so additional information is needed.

For the remainder of this section let ℐperfect be a finite interpretation and let ℐ be an approximation
of ℐperfect. Our idea of handling errors in ℐ is now as follows: instead of considering valid GCIs of ℐ
only, we may also consider GCIs that are “almost” valid in ℐ . With other words, we may consider
GCIs C Ď D such that the number of negative examples (or counterexamples) is “small” compared to
the number of positive examples. Here, a negative example for the GCI C Ď D is an element x P ∆ℐ
satisfying x P Cℐ but x R Dℐ . Analogously, a positive example for C Ď D is an element y P ∆ℐ
satisfying y R Cℐ or y P Dℐ . Furthermore, we shall express “small” using some chosen threshold
c P [0, 1], i. e. the number of positive examples should be at least c times the number of all individuals
z P ∆ℐ satisfying the premise C of the GCI.

Considering those GCIs is motivated by the assumption that if not too many random errors have
been made between ℐperfect and ℐ , the valid GCIs ℐperfect that do not hold in ℐ may still be GCIs which
are almost valid in ℐ . On the other hand, GCIs that are almost true in ℐ need not necessarily be GCIs
that are true in ℐperfect, so some extra caution should be exercised and the resulting GCIs should be
checked for usefulness afterwards. This is the point where an external source of information is needed
to validate the resulting GCIs.

It is the aim of this section is to introduce an approach to this idea based on the notion of confidence
as it is used in data mining [1]. We transfer this notion to the setting of ℰℒKgfp-GCIs to obtain confident
GCIs and discuss what we shall understand by a base of confident GCIs for a finite interpretation.

But before we do so, let us consider an introductory example, which we shall use throughout this
section to illustrate our definitions and motivations.

2Curiously enough, these are all artists from Hong Kong.

33

5.3 Example Let us consider the programming language family Lisp and its development history.
As an important and still actively used programming language, it has affected the design of many
modern programming languages. According to the Wikipedia article3, those languages include ML,
Haskell, Logo, Tcl, Forth, Smalltalk, Perl, Python, Ruby, Dylan and Lua. Furthermore, the family of
Lisp languages contains a lot of dialects, the most important of them being Scheme and Common Lisp.
Finally, there has been the programming language IPL, which influenced the design of Lisp.

We shall take these languages as individuals for our example interpretation. As role names we
choose influenced and dialectOf and as concept names we use programming paradigms supported by
programming languages such as Imperative, Functional, Lazy and so on. These paradigms are listed on
the Wikipedia articles for the corresponding languages. The resulting interpretation ℐLisp is shown in
Figure 4.

When we now apply the theory of [10], we obtain a base ℒ of all valid ℰℒKgfp-GCIs of ℐLisp. Now ℒ
contains 89 GCIs, some of which are very special as Concatenative Ď StackOriented (this only applies
to Forth) or Prototyping Ď Scripting (this only applies to Lua). But there are of course also GCIs in ℒ
that apply to more then one individual. Examples for this are the GCIs

Imperative Ď Functional
Dinfluenced.Imperative Ď Dinfluenced.(Imperative[ObjectOriented[Reflective)
Dinfluenced.Procedural Ď Dinfluenced.(Functional[Dinfluenced.(ObjectOriented

[Reflective[Imperative))
[Dinfluenced.(Functional[Procedural
[Dinfluenced.(ObjectOriented[Functional))

which apply to at least 6 individuals in ℐLisp, and

Dinfluenced.Functional[Dinfluenced.ObjectOriented
Ď Dinfluenced.(ObjectOriented[Functional),

Dinfluenced.Reflective Ď Dinfluenced(Functional[Reflective),
Dinfluenced.Dinfluenced.J

Ď Dinfluenced.Dinfluenced.(ObjectOriented[Reflective[Imperative),

which apply to 8, 8 and 10 individuals, respectively.
Now let us suppose that we are interested in axiomatizing ℐLisp without having access to it. Instead,

we only have given an interpretation ℐ 1Lisp that differs from ℐLisp in the following way:

∙ Lisp did not influence Haskell anymore, likewise with Smalltalk and Ruby and Dylan and Python;

∙ Common Lisp is not ObjectOriented anymore, likewise with Perl and Reflective, Lua and Functional
and Lisp and Functional;

∙ IPL now influenced ML, likewise with Forth and Common Lisp;

∙ Lisp is now ObjectOriented, likewise with Dylan and Meta.

The resulting interpretation ℐ 1Lisp is shown in Figure 5.
Now, in ℐ 1Lisp, all of the previously given GCIs are not valid anymore. However, for some of

them the number of positive examples in ℐ 1Lisp is still quite high compared to the number of negative

3http://en.wikipedia.org/wiki/Lisp_(programming_language)

34

http://en.wikipedia.org/wiki/Lisp_(programming_language)

IP
L

Li
sp

M
L

Lo
go Tc
l

Fo
rt

h

Sc
he

m
e

Sm
al

lta
lk

H
as

ke
ll

C
om

m
on

Li
sp

D
yl

an

Pe
rl

Py
th

on
Ru

by

Lu
a

As
se

m
bl

y
Fu

nc
tio

na
l

Pr
oc

ed
ur

al
Re

fle
ct

ive
M

et
a

Im
pe

ra
tiv

e
Fu

nc
tio

na
l

Fu
nc

tio
na

l
La

zy
M

od
ul

ar

Fu
nc

tio
na

l
O

bj
ec

tO
rie

nt
ed

Pr
oc

ed
ur

al
Fu

nc
tio

na
l

O
bj

ec
tO

rie
nt

ed
M

et
a

G
en

er
ic

Fu
nc

tio
na

l
Pr

oc
ed

ur
al

M
et

a

Sc
rip

tin
g

Im
pe

ra
tiv

e
Pr

oc
ed

ur
al

Pr
ot

ot
yp

in
g

O
bj

ec
tO

rie
nt

ed
Fu

nc
tio

na
l

O
bj

ec
tO

rie
nt

ed
Im

pe
ra

tiv
e

Re
fle

ct
ive

Fu
nc

tio
na

l

O
bj

ec
tO

rie
nt

ed
Im

pe
ra

tiv
e

Fu
nc

tio
na

l
Pr

oc
ed

ur
al

Re
fle

ct
ive

Fu
nc

tio
na

l
Im

pe
ra

tiv
e

O
bj

ec
tO

rie
nt

ed
Re

fle
ct

ive
Pr

oc
ed

ur
al

G
en

er
ic

O
bj

ec
tO

rie
nt

ed

Fu
nc

tio
na

l
Ed

uc
at

io
na

l
Pr

oc
ed

ur
al

Re
fle

ct
ive

O
bj

ec
tO

rie
nt

ed
Fu

nc
tio

na
l

Pr
oc

ed
ur

al
Ev

en
tD

riv
en

Im
pe

ra
tiv

e

Pr
oc

ed
ur

al
St

ac
kB

as
ed

Re
fle

ct
ive

C
on

ca
te

na
tiv

e

ha
sD

ia
le

ct
in

flu
en

ce
d

Figure 4: Development history of Lisp as an interpretation ℐLisp.

35

IP
L

Li
sp

M
L

Lo
go Tc
l

Fo
rt

h

Sc
he

m
e

Sm
al

lta
lk

H
as

ke
ll

C
om

m
on

Li
sp

D
yl

an

Pe
rl

Py
th

on
Ru

by

Lu
a

As
se

m
bl

y
Pr

oc
ed

ur
al

Re
fle

ct
ive

M
et

a
O

bj
ec

tO
rie

nt
ed

Im
pe

ra
tiv

e
Fu

nc
tio

na
l

Fu
nc

tio
na

l
La

zy
M

od
ul

ar

Fu
nc

tio
na

l
O

bj
ec

tO
rie

nt
ed

M
et

a

Pr
oc

ed
ur

al
Fu

nc
tio

na
l

M
et

a
G

en
er

ic

Fu
nc

tio
na

l
Pr

oc
ed

ur
al

M
et

a

Sc
rip

tin
g

Im
pe

ra
tiv

e
Pr

oc
ed

ur
al

Pr
ot

ot
yp

in
g

O
bj

ec
tO

rie
nt

ed

O
bj

ec
tO

rie
nt

ed
Im

pe
ra

tiv
e

Re
fle

ct
ive

Fu
nc

tio
na

l

O
bj

ec
tO

rie
nt

ed
Im

pe
ra

tiv
e

Fu
nc

tio
na

l
Pr

oc
ed

ur
al

Re
fle

ct
ive

Fu
nc

tio
na

l
Im

pe
ra

tiv
e

O
bj

ec
tO

rie
nt

ed
Pr

oc
ed

ur
al

G
en

er
ic

O
bj

ec
tO

rie
nt

ed

Fu
nc

tio
na

l
Ed

uc
at

io
na

l
Pr

oc
ed

ur
al

Re
fle

ct
ive

O
bj

ec
tO

rie
nt

ed
Fu

nc
tio

na
l

Pr
oc

ed
ur

al
Ev

en
tD

riv
en

Im
pe

ra
tiv

e

Pr
oc

ed
ur

al
St

ac
kB

as
ed

Re
fle

ct
ive

C
on

ca
te

na
tiv

e

ha
sD

ia
le

ct
in

flu
en

ce
d

Figure 5: Disturbed interpretation ℐ 1Lisp.

36

examples. For example, the GCI

DInfluenced.Reflective Ď DInfluenced.(Functional[Reflective)

now has 6 positive examples (namely Lisp, Scheme, Perl, Python, Haskell, Dylan) and 1 negative one
(namely IPL). Likewise, the GCI

DInfluenced.Functional[DInfluenced.ObjectOriented
Ď DInfluenced(ObjectOriented[Funcational),

which is valid in ℐLisp has in ℐ 1Lisp 8 positive and 1 negative examples. ♢

As we have argued before and seen in the previous example, it might be worthwhile to consider
GCIs of an interpretation which might not necessarily be true but hold in “a large number of cases”.
Thereby we understand a GCI C Ď D to hold in “a large number of cases” if the number of counterex-
amples of C Ď D is below a predefined percentage of all individuals to which C Ď D is applicable. To
make this into a formal definition we introduce the notion of confidence of GCIs as follows.

5.4 Definition (Confidence of GCIs) Let ℐ be a finite interpretation and let C, D be ℰℒKgfp-concept
descriptions. The confidence of C Ď D in ℐ is defined as

confℐ (C Ď D) :=

#

|(C[D)ℐ |
|Cℐ |

if Cℐ ‰ H

1 otherwise.

Let c P [0, 1]. Then the GCI C Ď D is a confident GCI of ℐ with minimal confidence c (or is said to
hold confidently in ℐ with minimal confidence c) if and only if confℐ (C Ď D) ě c. The set of all confident
ℰℒKgfp-GCIs with minimal confidence c is denoted by Thc(ℐ). ♢

5.5 Example i. For the interpretation ℐDBpedia we have

confℐDBpedia(DchildJ Ď Person) = 2547
2551 .

ii. For the interpretation ℐLisp we have

confℐLisp(DInfluenced.Reflective Ď DInfluenced.(Functional[Reflective)) = 6
7 ,

confℐLisp(DInfluenced.Functional[DInfluenced.ObjectOriented

Ď DInfluenced(ObjectOriented[Funcational)) = 8
9 . ♢

With the definition of confidence of GCIs we can now formulate our initial idea of handling errors
more formally. For this, let us assume that we are given a number c P [0, 1]. Then the GCIs that
are “almost” true in ℐ are now the GCIs in the set Thc(ℐ) of confident ℰℒKgfp-GCIs with minimal
confidence c. The heuristic idea now is that within Thc(ℐ) there are interesting GCIs that are valid
in ℐperfect. This is due to the idea that if a GCI C Ď D is valid in ℐperfect and if not too many errors
exist in ℐ , that then the confidence confℐ (C Ď D) is higher than c (under certain constraints on the
minimal confidence c) and hence (C Ď D) P Thc(ℐ).

On the other hand, if C Ď D is valid in ℐ but (C Ď D) R Thc(ℐ), then strictly more than c ¨ |Cℐ |
individuals from Cℐ must have been affected by errors. If, however, c ¨ |Cℐ | is not too small compared
to the errors that occurred, then (C Ď D) R Thc(ℐ) is very unlikely. This however implies that our
approach is reasonable only for GCIs C Ď D for which |Cℐ | is not too small, for otherwise random
errors may affect the confidence confℐ (C Ď D) enormously. This motivates the following definition.

37

5.6 Definition (Support of GCIs) Let ℐ be a finite interpretation and let C Ď D be an ℰℒKgfp-GCI.
Then the support of C Ď D in ℐ is defined to be

suppℐ (C Ď D) :=

#

|Cℐ |
|∆ℐ |

if ∆ℐ ‰ H

1 otherwise.

Let s P [0, 1]. Then we say that C Ď D has minimal support s if and only if suppℐ (C Ď D) ě s. ♢

If we now assume that the differences between ℐperfect and ℐ are not too big, then we can find
valid GCIs of ℐperfect as confident GCIs in ℐ .

5.7 Lemma Let NC, NR be two finite sets and let ℐ1, ℐ2 be two finite interpretations over the signature
(NC, NR) with ∆ℐ1 = ∆ℐ2 ‰ H. Let k P N be such that for each concept description E over the signa-
ture (NC, NR) it is true that

|Eℐ1 △ Eℐ2 | ď k.

If then C Ď D is an ℰℒKgfp-GCI such that confℐ1(C Ď D) ě c and suppℐ1
(C Ď D) ě s for some

s, c P [0, 1], then

confℐ2(C Ď D) ě c´ k ¨
1 + c

s ¨ |∆ℐ1 |+ k

suppℐ2
(C Ď D) ě s´

k
|∆ℐ1 |

.

Proof By the prerequisites of the Lemma,

|Cℐ1 △Cℐ2 | ď k,

|(C[D)ℐ1 △Cℐ2 | ď k.

In particular,

|Cℐ2 | ď |Cℐ1 |+ k,

|(C[D)ℐ1 | ě |(C[D)ℐ2 | ´ k.

With this we can now argue as follows:

confℐ2(C Ď D) =
|(C[D)ℐ2 |

|Cℐ2 |

ě
|(C[D)ℐ1 | ´ k
|Cℐ1 |+ k

and as confℐ1(C Ď D) ě c implies |(C[D)ℐ1 | ě c ¨ |Cℐ1 |, we furthermore obtain

confℐ2(C Ď D) ě
c ¨ |Cℐ1 | ´ k
|Cℐ1 |+ k

=
c ¨ |Cℐ1 |+ c ¨ k
|Cℐ1 |+ k

´
k + c ¨ k
|Cℐ1 |+ k

= c´ k ¨
1 + c

|Cℐ1 |+ k

ě c´ k ¨
1 + c

s ¨ |∆ℐ1 |+ k

38

since |Cℐ1 | ě s ¨ |∆ℐ1 | due to suppℐ1
(C Ď D) ě s. This yields the claim about confℐ1(C Ď D).

For suppℐ2
(C Ď D) we conclude likewise:

suppℐ2
(C Ď D) =

|Cℐ2 |

|∆ℐ2 |

ě
|Cℐ1 | ´ k
|∆ℐ1

=
|Cℐ1 |

|∆ℐ1 |
´

k
|∆ℐ1 |

ě s´
k

|∆ℐ1 |

as required. ˝

So far we have only considererd GCIs valid in ℐperfect and argued that they are likely to occur as
confident GCIs of ℐ . On the other hand, errors in ℐ may very well lead to GCIs confident in ℐ that are
not valid in ℐperfect.

5.8 Example In the case of ℐ 1Lisp we have seen that some valid GCIs of ℐLisp with high support are
still confident GCIs of ℐ 1Lisp with suitable parameters c. On the other hand, there exist GCIs that are
confident in ℐ 1Lisp with the same parameter but that are not valid in ℐLisp. An example for one of those
GCIs is

StackOriented Ď

Concatenative[Dinfluenced.(Meta[Generic[
Dinfluenced.(ObjectOriented[Functional[Meta[

Dinfluenced.(ObjectOriented[Functional[Reflective[Imperative))),

as we have added an influenced-successor for Forth, the only individual satisfying this GCI. Another
example is

Dinfluenced.Dinfluenced.(ObjectOriented[Functional[Reflective[Imperative)
[Functional Ď Dinfluenced.(Functional

[Dinfluenced.(ObjectOriented[Functional[Reflective[Imperative)),

which has support 8/15 and confidence 7/8 in ℐLisp. ♢

GCIs in Thc(ℐ) that are not valid in ℐperfect are not the ones we are interested in and they need
to be distinguished from the valid GCIs of ℐperfect in Thc(ℐ) by means of additional information, for
example a human expert.

However, we can easily obtain some additional insights into this problem, as the definition of
approximations is symmetrical: Instead of considering ℐ as an erroneous approximation of ℐperfect,
we can likewise consider ℐperfect as an erronous approximation of ℐ . Now, using Lemma 5.7 and
considering a GCI (C Ď D) P Thc(ℐ), we can may still deduce that the confidence of C Ď D in ℐperfect
is bounded from below. Hence GCIs in Thc(ℐ) may not be valid in ℐperfect, but are at least of bounded
confidence.

We shall now turn our attention to the following question: as we have already argued it might be a
reasonable idea to consider the set Thc(ℐ) of confident GCIs of ℐ in the presence of errors. However,

39

this set itself is in general an infinite set. To make this a practical approach we somehow need to be
able to represent Thc(ℐ) in a finite way. For this we shall use the definition of bases of confident GCIs,
i. e. sets ℬ that are bases of Thc(ℐ). Recall from Definition 3.26 that this means that ℬ Ď Thc(ℐ) and
that ℬ is complete for Thc(ℐ), i. e. that every GCI (C Ď D) P Thc(ℐ) already follows from ℬ. To
emphasize the description logic we are using, we may also say that ℬ is an ℰℒKgfp-base of Thc(ℐ).

In the case of c = 1, bases of Th1(ℐ) are just bases of ℐ . We therefore see that the definition
generalizes the classical notion of an ℰℒKgfp-base of valid GCIs of a finite interpretation. However, in
contrast to the case of valid GCIs, in the general case of confident GCIs we have to face the fact that
the set Thc(ℐ) is not necessarily closed under entailment.

5.9 Example Let us consider the interpretation ℐ 1Lisp again. For this interpretation we obtain

confℐ 1
Lisp

(ObjectOriented Ď Reflective) = 3
8

confℐ 1
Lisp

(ObjectOriented Ď Functional) = 5
8 ,

thus both GCIs are elements of Th3/8(ℐ 1Lisp). However, the GCI

ObjectOriented Ď Reflective[Functional

has only confidence 1/4 in ℐ 1Lisp and hence, albeit entailed by the above mentioned GCIs, is not an
element of Th3/8(ℐ 1Lisp). ♢

However, as our overall goal is to find an ℰℒKgfp-base ℒ of Thc(ℐ) such that an external expert
identifies all elements of ℒ as valid in the original interpretation ℐperfect, the fact that Thc(ℐ) might
not be closed under entailment is not an issue. Indeed, if all GCIs in ℒ are valid in ℐperfect, then all
GCIs entailed by ℒ (and hence by Thc(ℐ)) are valid in ℐperfect as well.

6 A Finite ℰℒKgfp-Base for the Confident GCIs of a Finite Interpre-
tation

We shall now consider the question whether the set Thc(ℐ) always has a finite ℰℒKgfp-base. As we
shall see, this question has an affirmative answer.

To see that Thc(ℐ) always has a finite ℰℒKgfp-base we shall use ideas of M. Luxenburger [12]. In his
work, Luxenburger considered partial implications. These are implications with an additional numeric
parameter controlling its confidence. As this is quite similar to our setting of confident GCIs it is only
natural to ask whether Luxenburgers results can be generalized in this direction.

We shall start this section by repeating some ideas from [12]. After this we shall show that these
ideas can indeed be used to find a finite base for Thc(ℐ). Finally, we shall discuss how this finite base
can be computed directly in Kℐ .

6.1 Partial Implications of Formal Contexts
The main focus of Luxenburgers work [12] lies in the investigation of partial implications. Essentially,
these are just implications equipped with a numerical parameter denoting its confidence. To define
this rigorously we shall first repeat the notion of confidence for implications.

40

6.1 Definition Let K = (G, M, I) be a finite formal context and let c P [0, 1]. Then for A, B Ď M, we
define the confidence of A ÝÑ B in K as

confK(A ÝÑ B) :=

#

1 if A1 = H
|(AYB)1|

|A1|
otherwise.

♢

The definition of confidence of implications is only a special case of the definition of confidence
for GCIs. Indeed, every finite formal context K = (G, M, I) can be understood as an interpretation
ℐK. This has already been noted in the general framework devised in [4, 10] to combine formal
concept analysis and description logics. To see this connection in our special case we can just define
NC = M, NR = H and ℐK = (G, ¨ℐ), where

mℐ := tm u1.

Then the only concept descriptions that are possible are essentially concept descriptions of the form

C = m1 [. . .[mn

for some n P N. But then

Cℐ =
n

ę

i=1

mℐ
i =

n
č

i=1

tmi u
1 = tm1, . . . , mn u

1

and we can identify sets A Ď M with concept descriptions
Ű

A over the signature (NC, NR). Further-
more, the GCIs that can be constructed in this way are in the same way in a one-to-one correspondence
to implications of K. It is easy to see that then for A, B Ď M,

confK(A ÝÑ B) = confℐK
(
ę

A ÝÑ
ę

B).

Using the notion of confidence for implications we can now define the notion of a partial implication.

6.2 Definition Let M be a set. Then a partial implication (A ÝÑ B, c) over the set M consists of two
sets A, B Ď M and a number c P [0, 1]. The partial implication (A ÝÑ B, c) is called a proper partial
implication if c ‰ 1.

Let K = (G, M, I) be a finite formal context. Then a partial implication (A ÝÑ B, c) over M is
said to hold in K if and only if

confK(A ÝÑ B) = c.

In this case we shall write K |ù (A ÝÑ B, c). If 𝒥 is a set of partial implications over M, then we
shall write K |ù 𝒥 if and only if every partial implication in 𝒥 holds in K. In this case, K is called a
model of 𝒥 . ♢

Let K = (G, M, I) be a formal context. Then we shall consider the set

𝒥 ă1(K) := t (A ÝÑ B, c) | A, B Ď M, c = confK(A ÝÑ B) ă 1 u

of all proper partial implications of K. In [12], the notion of bases ℒ of 𝒥 ă1(K) is considered. Here ℒ is
a base of 𝒥 ă1(K) if and only if

i. ℒ Ď 𝒥 ă1(K),

ii. ℒ |ù (A ÝÑ B, c) holds for all (A ÝÑ B, c) P 𝒥 ă1(K) and

41

iii. ℒ is Ď-minimal with this property.

Here we write ℒ |ù (A ÝÑ B, c) if and only if for every model L of ℒ, it holds L |ù (A ÝÑ B, c), i. e.

L |ù ℒ ùñ L |ù (A ÝÑ B, c)

for all formal contexts L with attribute set M.
Luxenburger restricts himself to finding a base of 𝒥 ă1(K) instead of 𝒥 (K). This is because for

the implications with confidence 1, i. e. valid implications of K, one can explicitly describe a minimal
base, as we have seen in Section 2.3.

Luxenburger does not explicitly describe a base for 𝒥 ă1(K). However, Stumme et. al. [19] later
used results from Luxenburger to describe a small set of association rules that can be understood as
bases. Association rules can be seen as a variant of partial implications that are equipped with two
parameters specifying their support and their confidence, respectively. However, we are not going to
introduce association rules here. Instead, we restrict ourselves to formulating the basic problem of [19]
in terms of partial implications and ignore the support of these implications. The problem then reads
as follows: given a formal context K = (G, M, I), a number c P [0, 1] and an implication A ÝÑ B, is
confK(A ÝÑ B) ě c? In other words, is there a number c1 ě c such that (A ÝÑ B, c1) is a partial
implication of K? Of course, one could simply compute the confidence of A ÝÑ B in K. However,
in [19] this is regarded as too expensive, as K may be represented as a data base and accessing all
items in the data base is expensive; but this would be necessary to compute the confidence of A ÝÑ B,
at least if done in an naïve way. Instead, one likes to have a small set ℒ of partial implications that
already determine the confidence of all partial implications of K with confidence at least c. In addition,
we are provided with a mechanism to compute the closure X2 of X in K for each X Ď M.

To find such a set, [19] uses the following result. The second claim of the lemma has already been
mentioned in [12, Proposition 1].

6.3 Lemma Let K be a finite formal context and let c P [0, 1]. Then for all A, B, C Ď M the following
statements hold.

i. confK(A ÝÑ B) = confK(A2 ÝÑ B2).

ii. confK(A ÝÑ C) = confK(A ÝÑ B) ¨ confK(B ÝÑ C) if A Ď B Ď C.

Based upon this lemma, we shall now describe a set ℒ of proper partial implications such that
confK(X ÝÑ Y) is determined by ℒ if 1 ą confK(X ÝÑ Y) ě c. In other words, for every model L

of ℒ, the confidence of X ÝÑ Y in L is the same.
We shall do this as follows. From the first statement of the lemma we can deduce that it is sufficient

to know the confidence of implications of the form A2 ÝÑ B2, i. e. ℒ only needs to contain partial
implications of the form (A2 ÝÑ B2, c) for some sets A, B Ď M and c P [0, 1].

Then, the second statement of the above lemma provides use with some kind of multiplicativity for
confidence of implications under certain circumstances. We utilize this fact in the following way: at
first, if A2 ÝÑ B2 is a partial implication, then we can assume without loss of generality that B2 Ě A2.
This is because

confK(A2 ÝÑ B2) = confK(A2 ÝÑ (A2 Y B2)2).

Now we use the second statement of the above lemma. From this we can see that we only need to
consider partial implications A2 ÝÑ B2 with A2 Ď B2 as elements of ℒ where A2 and B2 are directly
neighbored intents. In other words, there does not exist a set C such that A2 Ĺ C2 Ĺ B2. If such a set
C2 would exist, then

confK(A2 ÝÑ B2) = confK(A2 ÝÑ C2) ¨ confK(C2 ÝÑ B2).

42

Hence the confidence of A2 ÝÑ B2 is already determined by the confidence of A2 ÝÑ C2 and
C2 ÝÑ B2.

The set ℒ containing only partial implications of the form (A2 ÝÑ B2, c) where A2 Ď B2 are
directly neighbored is now as desired: if (X ÝÑ Y, c1) is a partial implication of K with c1 ě c and if
L is a model of ℒ, then

confK(X ÝÑ Y) = confL(X ÝÑ Y).

In other words, ℒ determines the confidence of X ÝÑ Y in K.

6.4 Theorem Let K = (G, M, I) be a finite formal context and let c P [0, 1). Define

ℒ(K, c) := t (A ÝÑ B, c1) | A, B Ď M, A2 = A, B2 = B,

c1 = confK(A ÝÑ B) P [c, 1), EC Ď M : A2 Ĺ C2 Ĺ B2 u.

Let X, Y Ď M and let 1 ě d ě c. Let L be a model of ℒ(K, c) such that for each A Ď M, A2 is the
same in both K and L. Then (X ÝÑ Y, d) is a proper partial implication of K if and only if (X ÝÑ Y, d) is
a proper partial implication of L.

Proof Let (X ÝÑ Y, d) be a proper partial implication of K. Then we can assume without loss
of generality that Y = Y2, X = X2 and that Y Ě X. Since L is finite, there exists a sequence
X = C1 Ĺ C2 Ĺ . . . Ĺ Cn = Y of directly neighbored intents of L (and also of K). Then

confL(X ÝÑ Y) =
n´1
ź

i=1

confL(Ci ÝÑ Ci+1).

But then
(Ci ÝÑ Ci+1, confK(Ci ÝÑ Ci+1)) P ℒ(K, c),

as confK(Ci ÝÑ Ci+1) ě d ě c. Since L is a model of ℒ(K, c) it holds

confK(Ci ÝÑ Ci+1) = confL(Ci ÝÑ Ci+1)

and therefore d = confL(X ÝÑ Y). Reversing the roles of K and L yields the other direction of the
claim, as K is a model of ℒ(K, c). ˝

6.2 A First Base
As the first statement of Lemma 6.3 implies, we can restrict our attention to partial implications
consisting of intents only. The next theorem shows that the same holds for confident GCIs. The crucial
observation here is that the GCI A Ď Aℐℐ is valid in ℐ for each finite interpretation ℐ and concept
description A. This is due to the fact that Aℐℐℐ = Aℐ by Lemma 3.23. Then

Aℐ Ď Aℐ = Aℐℐℐ

and therefore A Ď Aℐℐ is valid in ℐ .

6.5 Theorem Let ℐ be a finite interpretation and let ℬ be a finite ℰℒKgfp-base of ℐ . Let c P [0, 1) and

𝒞 := t Aℐℐ Ď Bℐℐ | A, B concept descriptions, 1 ą confℐ (Aℐℐ Ď Bℐℐ) ě c u.

Then ℬ Y 𝒞 is a base of Thc(ℐ).

43

Proof Clearly ℬY 𝒞 Ď Thc(ℐ) and it only remains to be shown that ℬY 𝒞 entails all ℰℒKgfp-GCIs with
confidence at least c in ℐ .

Let A Ď B be an ℰℒKgfp-GCI with confℐ (A Ď B) ě c. We have to show that ℬ Y 𝒞 |ù A Ď B. If
A Ď B is already valid in ℐ , then ℬ |ù A Ď B and nothing remains to be shown. We therefore assume
that 1 ą confℐ (A Ď B) ě c.

As A Ď Aℐℐ is valid in ℐ , ℬ |ù A Ď Aℐℐ . Furthermore, confI(A Ď B) = confℐ (Aℐℐ Ď Bℐℐ)
and hence (Aℐℐ Ď Bℐℐ) P 𝒞 . Finally,H |ù Bℐℐ Ď B. We therefore obtain

ℬ Y 𝒞 |ù A Ď Aℐℐ , Aℐℐ Ď Bℐℐ , Bℐℐ Ď B

and hence ℬ Y 𝒞 |ù A Ď B as required. ˝

The set 𝒞 defined in the previous theorem shall play some role in our further considerations.
Therefore, we shall give it an extra name and define

Conf(ℐ , c) := t Aℐℐ Ď Bℐℐ | A, B concept descriptions, 1 ą confℐ (Aℐℐ Ď Bℐ) ě c u.

The base ℬ YConf(ℐ , c) of the previous theorem is always a finite base of Thc(ℐ). To see this we
observe that model-based most specific concepts Aℐℐ arise as concept descriptions Xℐ for X Ď ∆ℐ .
Since there are only finitely many such X, there are only finitely many model-based most-specific
concept descriptions of ℐ , up to equivalence.

6.6 Corollary Let ℐ be a finite interpretation and let c P [0, 1). Then

Conf(ℐ , c) Ď tXℐ Ď Yℐ | X, Y Ď ∆ℐ , 1 ą confℐ (Xℐ Ď Yℐ) ě c u.

In particular, if ℬ is a finite base of ℐ , then ℬ YConf(ℐ , c) is a finite base of Thc(ℐ).

Proof Let Aℐℐ Ď Bℐℐ P Conf(ℐ , c). Then define X := Aℐ , Y := Bℐ . Obviously, X, Y Ď ∆ℐ and
confℐ (Xℐ Ď Yℐ) = confℐ (Aℐℐ Ď Bℐℐ) P [c, 1). This shows the claimed inclusion. The rest of the
corollary follows from Theorem 6.5. ˝

In [10] it has been shown that for finite interpretations ℐ there always exists a finite base. Hence
we obtain the following corollary.

6.7 Corollary If ℐ is a finite interpretation and c P [0, 1], then there always exists a finite base of Thc(ℐ).

6.3 Using the Neighborhood Relation
We now know that finite bases of Thc(ℐ) always exist. However, we can make the set Conf(ℐ , c)
smaller by using the idea of Theorem 6.4. For this, we shall first prove the multiplicativity property
for the confidence of GCIs.

6.8 Lemma Let ℐ be a finite interpretation and let (Ci | i = 0, . . . , n), n P N, be a finite sequence of concept
descriptions such that Cℐ

i+1 Ď Cℐ
i for all i = 1, . . . , n´ 1. Then

confℐ (C0 Ď Cn) =
n´1
ź

i=0

confℐ (Ci Ď Ci+1).

44

Proof Let us first assume that the set t i | Cℐ
i = Hu is not empty and let

i := mint i | Cℐ
i = Hu.

If i = 0, then Cℐ
j = H for all j P t 0, . . . , n u, hence confℐ (C0 Ď Cn) = 1 and confℐ (Cj Ď Cj+1) = 1

for all j P t 0, . . . , n u.
Otherwise, 0 ă i ď n. But then Cℐ

n = H and hence confℐ (C0 Ď Cn) = 0. Furthermore,
confℐ (Ci´1 Ď Ci) = 0 since Cℐ

i´1 ‰ H and Cℐ
i = H. Therefore,

n´1
ź

i=1

confℐ (Ci Ď Ci+1) = 0 = confℐ (C0 Ď Cn).

Finally, let us consider the case when t i | Cℐ
i = Hu is empty. Then we can calculate

n´1
ź

i=1

confℐ (Ci Ď Ci+1) =
n´1
ź

i=1

|Cℐ
i X Cℐ

i+1|

|Cℐ
i |

=
n´1
ź

i=1

|Cℐ
i+1|

|Cℐ
i |

=
|Cℐ

n |

|Cℐ
0 |

=
|Cℐ

0 X Cℐ
n |

|Cℐ
0 |

= confℐ (C0 Ď Cn). ˝

Using this lemma we can now formulate and prove the an analog to Theorem 6.4.

6.9 Theorem Let ℐ be a finite interpretation and let c P [0, 1]. Then the set

𝒟 := tXℐ Ď Yℐ | Y Ď X Ď ∆ℐ , 1 ą confℐ (Xℐ Ď Yℐ) ě c,

EZ Ď ∆ℐ : Y Ď Z Ď X and Yℐ ı Zℐ ı Xℐ u

satisfies 𝒟 |ù Conf(ℐ , c). In particular, if ℬ is a finite base of ℐ , then ℬ Y𝒟 is a finite base of Thc(ℐ).

Proof Let Aℐℐ Ď Bℐℐ P Conf(ℐ , c). As (A[B)ℐℐ Ď Bℐℐ always holds, Aℐℐ Ď Bℐℐ follows from
Aℐℐ Ď (A[B)ℐℐ . Furthermore, since (Aℐℐ [Bℐℐ)ℐ = Aℐℐℐ X Bℐℐℐ = Aℐ X Bℐ = (AX B)ℐ , we
obtain

confℐ (Aℐℐ Ď Bℐℐ) =
|(Aℐℐ [Bℐℐ)ℐ |

|Aℐℐℐ |

=
|(A[B)ℐ |
|Aℐℐℐ |

=
|(A[B)ℐℐℐ |
|Aℐℐℐ |

= confℐ (Aℐℐ Ď (A[B)ℐℐ)

45

since |Aℐℐℐ | ‰ 0, as otherwise confℐ (Aℐℐ Ď Bℐℐ) = 1. Therefore, Aℐℐ Ď (A[B)ℐℐ P Conf(ℐ , c)
and we shall show now that 𝒟 |ù (Aℐℐ Ď (A[B)ℐℐ).

Let us define X := Aℐ and Y := (A[B)ℐ . Then Y Ď X. As ℐ is finite, ∆ℐ is finite and therefore
the set

tZℐ | Y Ď Z Ď X, Yℐ ı Zℐ ı Xℐ u

is finite as well. Hence we can find a finite sequence (Ci | 0 ď i ď n) for some n P N of sets Ci Ď ∆ℐ
such that

i. Y := Cn, X := C0,

ii. Ci+1 Ĺ Ci for 0 ď i ă n,

iii. Cℐ
i ı Cℐ

i+1 for 0 ď i ă n,

iv. Cℐℐ
i = Ci for 0 ď i ď n,

v. Ci+1 Ď Z Ď Ci implies Cℐ
i ” Zℐ or Cℐ

i+1 ” Zℐ for 0 ď i ă n.

Then by Lemma 6.8

confℐ (Xℐ Ď Yℐ) =
n´1
ź

i=0

confℐ (Cℐ
i Ď Cℐ

i+1)

and therefore confℐ (Cℐ
i Ď Cℐ

i+1) P [c, 1]. As Cℐℐ
i Ď Cℐℐ

i+1 would imply Ci Ď Ci+1 and so Ci Ď Ci, we
obtain confℐ (Cℐ

i Ď Cℐ
i+1) ‰ 1. Hence, Cℐ

i Ď Cℐℐ
i+1 P 𝒟 for 0 ď i ă n. Thus

𝒟 |ù Cℐ
i Ď Cℐ

i+1, (0 ď i ă n)

and therefore 𝒟 |ù (Xℐ Ď Yℐ) = (Aℐℐ Ď (A[B)ℐℐ) as required. ˝

To ease further discussions, we shall give the set 𝒟 of the previous theorem an extra name. As this
definition is inspired by ideas from Luxenburger, let us define

Lux(ℐ , c) := tXℐ Ď Yℐ | Y Ď X Ď ∆ℐ , 1 ą confℐ (Xℐ Ď Yℐ) ě c,

EZ Ď ∆ℐ : Y Ď Z Ď X and Yℐ ı Zℐ ı Xℐ u.

6.4 Computing the Base from the Formal Context Kℐ

Recall the main results of Section 4. In this section we have shown certain similarities between the
description logic ℰℒKgfp on the one hand and formal concept analysis on the other hand. In particular,
in Theorem 4.13 we have shown that the lattice of intents of the formal context Kℐ is order-isomorphic
to the lattice of model-based most-specific concept descriptions (up to equivalence) of ℐ . In particular,
this means the directly neighbored intents of Kℐ correspond to directly neighbored model-based
most-specific concept descriptions of ℐ . But directly neighbored model-based most-specific concept
descriptions are needed in the computation of the set Lux(ℐ , c). It is therefore obvious that we can
make use of this order-isomorphism to do computations directly in Kℐ . To show this is the purpose
of this subsection.

We start by showing that computing confidence of a GCI in an interpretation ℐ can just as well
be done in the formal context Kℐ . Thereafter we show that indeed directly neighbored model-based
most-specific concept descriptions of ℐ correspond to directly-neighbored intents of Kℐ . We then use
these two facts to prove Theorem 6.13.

46

6.10 Lemma Let ℐ be a finite interpretation and let X, Y Ď ∆ℐ . Then

confℐ (Xℐ Ď Yℐ) = confKℐ (X1 ÝÑ Y1).

Proof By Lemma 4.11,

confℐ (Xℐ Ď Yℐ) =
|(Xℐ [Yℐ)ℐ |

|Xℐℐ |

=
|Xℐℐ XYℐℐ |

|Xℐℐ |

=
|X2 XY2|
|X2|

=
|(X1 YY1)1|
|X2|

= confKℐ (X1 ÝÑ Y1)

if |Xℐℐ | ‰ 0. Otherwise, |X2| = 0 and hence confℐ (Xℐ Ď Yℐ) = 1 = confKℐ (X1 ÝÑ Y1). ˝

We now show that direct neighborhood is preserved under the order-isomorphism from The-
orem 4.13. This result is formulated in Lemma 6.12. To show it we shall start with the following
proposition.

6.11 Proposition Let ℐ be a finite interpretation and let A Ď B Ď ∆ℐ . Then

1. Aℐ Ĺ Bℐ implies prMℐ
(Aℐ) Ľ prMℐ

(Bℐ) and

2. A1 Ľ B1 implies
Ű

A1 Ĺ
Ű

B1.

Proof It directly follows from Theorem 4.13 that Aℐ Ĺ Bℐ implies prMℐ
(Aℐ) Ě prMℐ

(Bℐ) and that
A1 Ľ B1 implies

Ű

A1 Ď
Ű

B1.
Let us assume that Aℐ ı Bℐ but prMℐ

(Aℐ) = prMℐ
(Bℐ). Then by Theorem 4.13,

Aℐ ”
ę

prMℐ
(Aℐ) =

ę

prMℐ
(Bℐ) ” Bℐ ,

as both Aℐ and Bℐ are model-based most specific concepts of ℐ , a contradiction.
Conversely, if A1 ‰ B1 but

Ű

A1 ”
Ű

B1, then again by Theorem 4.13,

A1 = prMℐ
(
ę

A1) = prMℐ
(
ę

B1) = B1

as A1, B1 P Int(Kℐ), again a contradiction. ˝

6.12 Lemma Let ℐ be a finite interpretation and let Y Ď Z Ď X Ď ∆ℐ . Then Z satisfies Yℐ ı Zℐ ı Xℐ if
and only if Y1 ‰ Z1 ‰ X1, where the derivations are computed in Kℐ .

Proof Suppose Yℐ ı Zℐ ı Xℐ , i. e. Yℐ Ĺ Zℐ Ĺ Xℐ . Then by Proposition 6.11, prMℐ
(Yℐ) Ľ

prMℐ
(Zℐ) Ľ prMℐ

(Xℐ) and by Proposition 4.6, Y1 Ľ Z1 Ľ X1.
Conversely, let Y1 Ľ Z1 Ľ X1. Then by Proposition 6.11,

Ű

Y1 Ľ
Ű

Z1
Ű

X1 and by Proposition 4.7,
Yℐ Ĺ Zℐ Ĺ Xℐ as required. ˝

47

With this result in conjunction with Lemma 6.10, Proposition 4.7 and Theorem 6.9, we immediately
obtain the following theorem.

6.13 Theorem Let ℐ be a finite interpretation and let c P [0, 1]. Then the set

ℰ := t
ę

X1 Ď
ę

Y1 | Y Ď X Ď ∆ℐ , 1 ą confKℐ (X1 ÝÑ Y1) ě c,

EZ Ď ∆ℐ : Y Ď Z Ď X and Y1 ‰ Z1 ‰ X1 u

is equal to Lux(ℐ , c) up to equivalence of the concept descriptions contained in the GCIs. In particular, if ℬ is
a finite base of ℐ , then ℬ Y ℰ is a finite base of Thc(ℐ).

With this theorem we see that we can do all of the actual computation directly in the formal context
Kℐ .

7 Reducing the Size of the Base
We have seen in the previous section that finite bases for Thc(ℐ) always exist. For this we have used
ideas from Luxenburger for partial implications and transferred them to confident GCIs. This allowed
us to not only prove the existence of finite bases of Thc(ℐ). Indeed, using these ideas from formal
concept analysis we were able to explicitly describe such a base, which can therefore be computed
effectively.

In this section we shall exploit the correspondence between the description logic ℰℒKgfp and formal
concept analysis a bit further. For this, we are going to make use of the results we have obtained in
Section 4.

More precisely, we shall use formal concept analysis to remove some redundancies from the
bases of Thc(ℐ) we have discussed so far. These bases where of the form ℬ YConf(ℐ , c) as defined
in Theorem 6.5 or ℬ Y Lux(ℐ , c) as defined in Theorem 6.9. For the following considerations, we
shall concentrate on a base of Thc(ℐ) of the form ℬ Y Conf(ℐ , c). This base does not need to be
non-redundant. Indeed, it may be the case that some GCIs in ℬ are already entailed by GCIs from
Conf(ℐ , c). As the computation of ℬ might be quite expensive, we shall show how we can make use
of the set Conf(ℐ , c) as background knowledge to allow for the computation of a smaller set ℬ̂ Ď ℬ such
that ℬ̂YConf(ℐ , c) is a base of Thc(ℐ). We shall call such a set ℬ̂ a completing sets for Conf(ℐ , c) and
ℐ .

Moreover, it is easy to see that we do not really need all GCIs in the set Conf(ℐ , c). As we have
already discussed in Theorem 6.9, the set Lux(ℐ , c) Ď Conf(ℐ , c) suffices. More generally, it is
sufficient to consider a base 𝒞 of Conf(ℐ , c). If then ℬ is a completing set for 𝒞, ℬ Y 𝒞 is a base for
Thc(ℐ). This will be shown in Section 7.1.

Using the notion of the canonical base introduced in Section 2 we shall then show that we are even
able to find a completing set of 𝒞 that is of minimal cardinality. To show this we shall adapt the proof
of [10, Theorem 5.18]. This theorem shows minimal cardinality of a finite base of ℐ . As we shall see,
we can use its proof to show that the canonical base of Kℐ with some suitable chosen background
knowledge yields a completing set of 𝒞 of minimal cardinality.

7.1 Completing Sets
We have already mentioned that the base ℬ Y Conf(ℐ , c) for Thc(ℐ) as described in Theorem 6.5
may be redundant. This even holds for the base ℬ Y Lux(ℐ , c) constructed in Theorem 6.9. This
redundancy might be undesired, because an ontology that is constructed from such a base then
contains redundant information. This in turn makes the ontology unnecessarily larger and reasoning

48

with this ontology more expensive. Therefore, one would like to construct ontologies as small as
possible.

In theory, this problem can be handled very easily. As we already have given a finite base ℬ Y
Conf(ℐ , c) of Thc(ℐ), we can successively search for GCIs in this set that are already entailed by
others. If such a GCIs exists, it is removed and the procedure starts anew. If no such GCI exists, the
set is obviously non-redundant.

This naïve algorithm however is not really suitable for handling large bases of Thc(ℐ). Instead, it
might be preferable to explicitly describe non-redundant bases. Doing this is an open problem for
bases of Thc(ℐ). Therefore, in this section we shall focus on removing some obvious redundancies
from our base ℬ YConf(ℐ , c) of Thc(ℐ).

We start with a simple observation. Let us consider the base ℬ Y Conf(ℐ , c) of Thc(ℐ) from
Theorem 6.5. In this base both sets ℬ and Conf(ℐ , c) can potentially be made smaller. Indeed, if
suffices to consider subsets 𝒞 Ď Conf(ℐ , c) such that all GCIs from Conf(ℐ , c) already follow from 𝒞 .
In addition, it is not necessary for the set ℬ to be a base of ℐ ; it merely suffices if ℬ is a set of valid
GCIs such that ℬ Y 𝒞 is complete for Thc(ℐ).

7.1 Theorem Let ℐ be a finite interpretation and let c P [0, 1]. Let 𝒞 Ď Conf(ℐ , c) such that 𝒞 |ù

Conf(ℐ , c) and let ℬ be a set of valid GCIs of ℐ such that ℬ Y 𝒞 entails all valid GCIs of ℐ . Then ℬ Y 𝒞 is a
base of Thc(ℐ).

Proof Let ℬ̂ be a finite base of ℐ . Then by Theorem 6.5 the set ℬ̂ YConf(ℐ , c) is a base of Thc(ℐ). We
show that the set ℬ Y 𝒞 entails all GCIs from ℬ̂ YConf(ℐ , c).

If (C Ď D) P Conf(ℐ , c), then by the prerequisites of the theorem it holds 𝒞 |ù (C Ď D).
Therefore, ℬ Y 𝒞 |ù Conf(ℐ , c).

If C Ď D is a GCI that holds in ℐ then ℬ Y 𝒞 |ù C Ď D, as ℬ Y 𝒞 entails all valid GCIs of ℐ . In
particular, ℬ Y 𝒞 |ù ℬ̂. ˝

This theorem now motivates the following definition.

7.2 Definition Let ℐ be an interpretation and let 𝒞 be a set of GCIs. Then a set ℬ of valid GCIs is
called a completing set for 𝒞 and ℐ if and only if ℬ Y 𝒞 is complete for ℐ . ♢

The above theorem is not very helpful in finding sets the ℬ and 𝒞 . Indeed, explicitly describing a
minimal set 𝒞 Ď Conf(ℐ , c) that is complete for the set Conf(ℐ , c) is an open problem. However, we
shall see shortly that we can utilize formal concept analysis to find completing sets for 𝒞 .

The idea behind this construction is the following: from formal concept analysis we know how to
find for a set ℒ of implications of a formal context K a set 𝒦 of valid implications of K such that ℒY𝒦
is complete for K, see Theorem 2.22. This theorem can be transferred to GCIs to yield Theorem 7.3.

Before we shall formulate this theorem let us give some motivation. Let 𝒞 be a set of GCIs. Then
we want to find a ℬ of GCIs such that ℬY 𝒞 is complete for ℐ . To use formal concept analysis here we
shall make use of the mappings C ÞÝÑ prMℐ

(C) and U ÞÝÑ
Ű

U that we have introduced in Section 4.
More precisely, we associate to 𝒞 the set

prMℐ
(𝒞) := tprMℐ

(X) ÝÑ prMℐ
(Y) | (X Ď Y) P 𝒞 u.

Then prMℐ
(𝒞) is a set of implications. Therefore, we can compute a set ℒ of valid implications of Kℐ

such that prMℐ
(𝒞)Yℒ is complete for Kℐ . Additionally, implications in ℒ are of the form U ÝÑ U2.

It then follows that the set

t
ę

U Ď (
ę

U)ℐℐ | (U ÝÑ U2) P ℒ u

49

together with 𝒞 is complete for ℐ , i. e. entails all valid GCIs of ℐ .
This connection has already been used in [10, Theorem 5.12], however only for the case where the

set 𝒞 contains valid GCIs. We shall generalize this theorem and its proof to also cover the case where
𝒞 may contain arbitrary GCIs.

7.3 Theorem Let ℐ be a finite interpretation and let 𝒞 be a set of GCIs. Let ℒ Ď Th(Kℐ) be such that

i. ℒY tprMℐ
(X) ÝÑ prMℐ

(Y) | (X Ď Y) P 𝒞 u is complete for Th(Kℐ) and

ii. ℒ only contains implications of the form A ÝÑ A2 with A Ď Mℐ .

Define
ℬ := t

ę

U Ď (
ę

U)ℐℐ | (U ÝÑ U2) P ℒ u.

Then ℬ Y 𝒞 is complete for ℐ .

To show completeness for the set ℬ Y 𝒞 from the above theorem let us recall the definition of the
set ℬ2 from Theorem 3.27. There, ℬ2 has been defined as

ℬ2 := t
ę

U Ď (
ę

U)ℐℐ | U Ď Mℐ u.

ℬ2 is a base for ℐ . In the proof of Theorem 7.3 we shall utilize this fact and show that ℬY 𝒞 is complete
for the set ℬ2.

Proof (of Theorem 7.3) We show that
ℬ Y 𝒞 |ù ℬ2

with the set ℬ2 as defined in Theorem 3.27. For this, let 𝒥 be a finite interpretation such that 𝒥 |ù

ℬ Y 𝒞 .
Let K now denote the formal context induced by Mℐ and𝒥 . Since we are dealing with two contexts

Kℐ and K now, we shall distinguish the derivation operators by writing ¨1ℐ and ¨1𝒥 , respectively. For
brevity, let us furthermore define

ℒ𝒞 := tprMℐ
(X) ÝÑ prMℐ

(Y) | (X Ď Y) P 𝒞 u.

We shall now show the following claims

i. K |ù ℒYℒ𝒞 ,

ii. K |ù (V ÝÑ V1ℐ 1ℐ) for each V Ď Mℐ , and

iii. 𝒥 |ù (
Ű

V Ď (
Ű

V)ℐℐ) for each V Ď Mℐ .

From the last claim we can conclude ℬ Y 𝒞 |ù ℬ2.
To prove the first claim, we shall start by showing a connection between the operators ¨ℐ , ¨𝒥 , ¨1ℐ

and ¨1𝒥 . For this, let U Ď Mℐ . Then by Proposition 4.7

(
ę

U)𝒥 = U1𝒥 . (7.1)

Since (
Ű

U)ℐℐ is expressible in terms of Mℐ as of Theorem 4.9, Proposition 4.5 yields

(
ę

U)ℐℐ ” (
ę

prMℐ
((

ę

U)ℐℐ)).

50

Therefore, we obtain with Theorem 4.13

((
ę

U)ℐℐ)𝒥 = (prMℐ
((

ę

U)ℐℐ))𝒥 = U1ℐ 1ℐ 1𝒥 . (7.2)

Now let (U Ď U1ℐ 1ℐ) P ℒ. Then J |ù (U Ď U1ℐ 1ℐ by the choice of 𝒥 . Hence (
Ű

U)𝒥 Ď ((
Ű

U)ℐℐ)𝒥

and by (7.1) and (7.2)
U1𝒥 Ď U1ℐ 1ℐ 1𝒥 .

This is the same as K |ù (U ÝÑ U1ℐ 1ℐ).
Let (X Ď Y) P 𝒞 . Then 𝒥 |ù (X Ď Y). Therefore,

X𝒥 Ď Y𝒥 .

As both Xℐℐ and Yℐℐ are expressible in terms of Mℐ , Proposition 4.5 yields

(
ę

prMℐ
(X))𝒥 Ď (

ę

prMℐ
(Y))𝒥 .

With (7.1) we obtain from this
(prMℐ

(X))1𝒥 Ď (prMℐ
(Y))𝒥

and thus
K |ù (prMℐ

(X) ÝÑ prMℐ
(Y)).

Therefore, we have shown that
K |ù ℒYℒ𝒞

as required by the first claim.
Now let V Ď Mℐ . Then certainly

Kℐ |ù (V ÝÑ V1ℐ 1ℐ).

Therefore, ℒY ℒ𝒞 |ù (V ÝÑ V1ℐ 1ℐ) as ℒY ℒ𝒞 is complete for Th(Kℐ). Now K |ù ℒY ℒ𝒞 and
therefore

K |ù (V ÝÑ V1ℐ 1ℐ),

which means nothing else but V1𝒥 Ď V1ℐ 1ℐ 1𝒥 . Then (7.1) and (7.2) yield

(
ę

V)𝒥 Ď (
ę

Vℐℐ)𝒥

which amounts to 𝒥 |ù (
Ű

V Ď (
Ű

V)ℐℐ), as it was claimed. ˝

We now apply this theorem to our special setting. For this we assume that we are given a complete
set of GCIs of the finite set Conf(ℐ , c). The idea is then to use Theorem 7.3 to compute a finite set ℬ
such that ℬ YConf(ℐ , c) is complete for ℐ . By Theorem 7.1 ℬ YConf(ℐ , c) is a finite base of Thc(ℐ).

However, the set ℬ may contain GCIs with redundant descriptions. These descriptions may be
redundant because some parts of it are subsumed by others. To see what is meant by this, let us
consider the following example.

7.4 Example Consider the interpretation ℐ in Figure 6. There, NC = H, NR = t r u and NI = t x, y u.

51

x
A

y
B

r

r

Figure 6: Example interpretation ℐ that contains subsumption dependencies between elements of Mℐ

For this interpretation ℐ we can compute

Hℐ = K t x uℐ = (A, t A ” Dr.A u)

t y uℐ = J t x, y uℐ = J.

Therefore,
Mℐ = tK, Dr.J, (A, t A ” Dr.A u) u.

Note that Dr.(A, t A ” Dr.A u) ” (A, t A ” Dr.A u).
If we then choose 𝒞 = H we can compute a set ℬ using Theorem 7.3 that is complete for ℐ , i. e.

that is a base for ℬ. More precisely, the context Kℐ has the following form:

Kℐ =

K Dr.J (A, t A ” Dr.A u)
x ˆ ˆ

y

The following implications then yield a non-redundant base of Kℐ :

tK u ÝÑ t (A, t A ” Dr.A u), Dr.Ju
t (A, t A ” Dr.A u) u ÝÑ tDr.Ju

t Dr.Ju ÝÑ t (A, t A ” Dr.A u) u

The second implication gives rise to the GCI

(A, t A ” Dr.A u) Ď Dr.J (7.3)

which holds in every interpretation, as (A, t A ” Dr.A u) is subsumed by Dr.J. This GCI is therefore
redundant. ♢

The phenomenon shown in the previous example arises from the fact that the subsumption
relations between concept descriptions in Mℐ is not present in the formal context Kℐ . However, we
can avoid this by explicitly including the knowledge about the subsumption relation. More precisely,
we can define

𝒮ℐ := tC Ď D | C, D P Mℐ , C Ď D u.

(Note that the first Ď denotes a GCI while the second denotes the fact that C is subsumed by D.) Then
we can apply Theorem 7.3 to the set 𝒞 Y 𝒮ℐ and obtain a set ℬ of GCIs that do not contain GCIs as
in (7.3).

The following theorem makes use of this. Recall that we have defined for a set 𝒟 of GCIs the set
prMℐ

(𝒟) to be
prMℐ

(𝒟) := tprMℐ
(C) ÝÑ prMℐ

(Y) | (X Ď Y) P 𝒟 u.

52

7.5 Corollary Let ℐ be a finite interpretation and c P [0, 1]. Let 𝒞 Ď Conf(ℐ , c) be complete for Conf(ℐ , c).
Define

ℒ := Can(Kℐ , prKℐ
(𝒞 Y 𝒮ℐ))

and
ℬ := t

ę

A Ď (
ę

A)ℐℐ | (A ÝÑ A2) P ℒ u.

Then ℬ Y 𝒞 is a base of Thc(ℐ).

Proof By Theorem 2.17, the set prKℐ
(𝒞 Y𝒮ℐ)Yℒ is complete for Kℐ and ℒ only contains implications

of the form A ÝÑ A2 for some A Ď Mℐ . Then by Theorem 7.3, the set ℬ Y 𝒞 Y 𝒮ℐ is complete for
ℐ . As 𝒮ℐ holds in every interpretation, ℬ Y 𝒞 |ù 𝒮ℐ and therefore ℬ Y 𝒞 is also complete for ℐ . By
Theorem 7.1, ℬ Y 𝒞 is a base of Thc(ℐ). ˝

7.2 Minimal Cardinality
The foregone considerations suggest that for a set 𝒞 Ď Conf(ℐ , c), the completing set

ℬ(𝒞) := t
ę

U Ď (
ę

U)ℐℐ | (U ÝÑ U2) P Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ)) u

may be small. Indeed, we shall show in this section that this completing set is of minimal cardinality.
More generally, we shall show that for an arbitrary set 𝒞 of GCIs, the set ℬ(𝒞) is a completing set of 𝒞
of minimal cardinality.

To show this we are going to adapt the proof from [10, Theorem 5.18]. In this theorem it is shown
that the base

ℬ𝒟𝒢 := t
ę

U Ď (
ę

U)ℐℐ | (U ÝÑ U2) P Can(Kℐ , prMℐ
(𝒮ℐ)) u

of ℐ has minimal cardinality among all bases of ℐ . It is obvious that

ℬ𝒟𝒢 = ℬ(H)

and hence [10, Theorem 5.18] is the special case 𝒞2 = H of our claim that ℬ(𝒞2) is a completing set of
minimal cardinality for 𝒞2 and ℐ .

Before we can prove our claim we have to introduce some preliminary results from [10], which
have also been used in the proof of [10, Theorem 5.18]. We shall however not give proofs for these
results as these proofs are not relevant for our considerations.

The first lemma shows another similarity between ℰℒKgfp-GCIs and formal concept analysis. More
precisely, if K is a formal context and A ÝÑ B is a valid implication of K, then A ÝÑ B already
follows from A ÝÑ A2. The same holds for the case of ℰℒKgfp-GCIs.

7.6 Lemma (Lemma 4.3 of [10]) Let ℐ be a finite interpretation and let C Ď D be a GCI valid in ℐ . Then
C Ď D follows from C Ď Cℐℐ .

The second lemma presents a description logic version of an argument we have used in Theo-
rem 2.17. In this proof, we have considered a pseudo-intent P of a formal context K. For this set P it is
true that P ‰ P2. If now ℒ is a base for K, then P ÝÑ P2 follows from ℒ. This means that there is an
implication (X ÝÑ Y) P ℒ such that

X Ď P and Y Ę P,

53

since otherwise ℒ(P) = P ‰ P2. More generally, if we have a set 𝒦 of implications and another
implication S ÝÑ T, T Ę S such that 𝒦 |ù (S ÝÑ T), then there must exist an implication
(X ÝÑ Y) P 𝒦 such that X Ď S and Y Ę S.

It has been noted in [10] that this property does not holds in general for ℰℒKgfp-GCIs. However, we
can obtain the following restriction of the argument.

7.7 Lemma (Lemma 5.16 of [10]) Let ℐ be a finite interpretation and let ℬ be a set of GCIs valid in ℐ . Let
C =

Ű

U where U Ď Mℐ and let D be a concept description such that C Ę D. Then if C Ď D follows from
ℬ, there exists a GCI (E Ď F) P ℬ such that

C Ď E and C Ę F.

Another notion that we shall use for our proof is again concerned with approximating concept
descriptions. Recall that for a concept description C and a finite interpretation ℐ we always have

C Ď
ę

prMℐ
(C).

Moreover,
Ű

prMℐ
(C) is the most specific concept description expressible in terms of Mℐ that sub-

sumes C. We can therefore regard
Ű

prMℐ
(C) as an upper approximation of C in terms of Mℐ .

Having defined a notion for an upper approximation it is naturally to ask whether it is also possible
to define a lower approximation. A definition for the analogous notion of a lower approximation is the
following.

7.8 Definition Let ℐ be a finite interpretation and let C be an concept description. If C ‰ K, then
there exists a set U Ď NC and a set Π of pairs of role names and concept descriptions such that

C ”
ę

U [
ę

(r,E)PΠ

Dr.E.

Then we define the lower approximation of C as

approxℐ (C) :=
ę

U [
ę

(r,E)PΠ

Dr.Eℐℐ .

If C = K, then approxℐ (C) := K. ♢

Of course, approxℐ (C) is expressible in terms of Mℐ . Moreover, approxℐ (C) is subsumed by C.

7.9 Lemma (Lemma 5.8 of [10]) Let ℐ be a finite interpretation and let C be a concept description. Then

approxℐ (C) Ď C.

One can show that approxℐ (C) is the least specific concept description that is subsumed by C and
expressible in terms of Mℐ . Therefore, approxℐ (C) can indeed be regarded as another approximation
in terms of Mℐ .

7.10 Lemma (Lemma 5.17 of [10]) Let ℐ be a finite interpretation, C be a concept description and U Ď Mℐ .
Then

Ű

U Ď C implies
Ű

U Ď approxℐ (C).

We are now prepared to prove our main claim formulated in the following theorem. Note that its
proof is an adaption from the proof of [10, Theorem 5.18].

54

7.11 Theorem Let ℐ = (∆ℐ , ¨ℐ) be a finite interpretation and let c P [0, 1]. Let 𝒞 Ď Conf(ℐ , c) be complete
for Conf(ℐ , c). Then

ℬ := t
ę

A Ď (
ę

A)ℐℐ | (A ÝÑ A2) P Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ)) u

has minimal cardinality among all completing sets of 𝒞 .

The following proof is complex and long, so let us sketch the main line of thoughts to ease its
understandability.

We want to show that ℬ has minimal cardinality. From our previous considerations it is clear that
ℬ is a completing set for 𝒞 . Thus, we focus on showing that ℬ has minimal cardinality.

For this we consider another completing set 𝒟 of 𝒞 . The main idea now is to utilize Theorem 2.17,
which states that Can(Kℐ , prMℐ

(𝒞Y𝒮ℐ)) has minimal cardinality among all sets of valid implications
that complete prMℐ

(𝒞 Y 𝒮ℐ) to a complete set of implications for Kℐ .
For this, we associate to 𝒟 the set

ℒ𝒟 := tprMℐ
(approxℐ (E)) ÝÑ prMℐ

(Eℐℐ) | (E Ď Eℐℐ) P 𝒟 u

of implications of Kℐ and show that ℒ𝒟 is a set of valid implications of Kℐ and that ℒ𝒟 Y prMℐ
(𝒞 Y

𝒮ℐ) is complete for Kℐ . Then by Theorem 2.17, |ℒ𝒟| ě |Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ). Because of

|ℒ𝒟| ď |𝒟| and |ℬ| = |Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ))|, we obtain |𝒟| ě |𝒞| and the claim follows.

One may ask whether we cannot consider the set

tprMℐ
(E) ÝÑ prMℐ

(Eℐℐ) | (E Ď Eℐℐ) P 𝒟 u

instead of ℒ𝒟 as given above, i. e. why we cannot leave out the lower approximation approxℐ (E).
This is because we cannot guarantee that the concept description E is expressible in terms of Mℐ .
But we can guarantee that approxℐ (E) is expressible in terms of Mℐ — this follows easily from its
definition. As we shall see in the following proof we need the fact that both premise and conclusion of
implications in ℒ𝒟 are expressible in terms of Mℐ . Therefore, we cannot use the set of implications
mentioned above.

Proof (of Theorem 7.11) By Theorem 7.1 and Theorem 7.3 we know that ℬ is a completing set for 𝒞 . It
therefore remains to show that ℬ has minimal cardinality among all completing sets of 𝒞 .

Let 𝒟 be a set of valid GCIs of ℐ such that 𝒟Y 𝒞 is a base of Thc(ℐ). By Lemma 7.6 we can assume
that 𝒟 contains only GCIs of the form C Ď Cℐℐ .

The number of GCIs in ℬ is equal to the number of implications in Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ)),

formally
|ℬ| = |Can(Kℐ , prMℐ

(𝒞 Y 𝒮ℐ))|. (7.4)

Now let
ℒ𝒟 := tprMℐ

(approxℐ (E)) ÝÑ prMℐ
(Eℐℐ) | (E Ď Eℐℐ) P 𝒟 u.

Then ℒ𝒟 contains at most as many implications as 𝒟 contains GCIs, i. e.

|ℒ𝒟| ď |𝒟|. (7.5)

We shall now going to show that ℒ𝒟 contains only valid implications of Kℐ and that ℒ𝒟 Y prMℐ
(𝒞 Y

𝒮ℐ) is complete for Kℐ . Then by Theorem 2.17 it follows that

|Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ))| ď |ℒ𝒟|

55

and therefore with (7.4) and (7.5)
|ℬ| ď |𝒟|.

Let us show that ℒ𝒟 contains only valid implications of Kℐ . For this, let

(prMℐ
(approxℐ (E)) ÝÑ prMℐ

(Eℐℐ)) P ℒ𝒟 .

As approxℐ (E) is expressible in terms of Mℐ ,

(prMℐ
(approxℐ (E)))1 = approxℐ (E)ℐ

by Proposition 4.6. By Lemma 7.9, approxℐ (E) Ď E and thus

approxℐ (E)ℐ Ď Eℐ ” (Eℐℐ)ℐ .

Since Eℐℐ can be expressed in terms of Mℐ , (Eℐℐ)ℐ = (prMℐ
(Eℐℐ))1 again by Proposition 4.6. Thus

(prMℐ
(approxℐ (E)))1 Ď (prMℐ

(Eℐℐ))1

which shows that the implication prMℐ
(approxℐ (E)) ÝÑ prMℐ

(Eℐℐ) holds in Kℐ .
Let us now show that ℒ𝒟 Y prMℐ

(𝒞 Y 𝒮ℐ) is complete for Kℐ . To ease readability, let us define

𝒦 := ℒ𝒟 Y prMℐ
(𝒞 Y 𝒮ℐ).

To show that 𝒦 is complete for Kℐ , we shall use Lemma 2.14. By this lemma it suffices to show that
for each U Ď Mℐ , if U ‰ U2, then 𝒦(U) ‰ U.

Hence let U Ď Mℐ such that U ‰ U2 and let us assume that U respects all implications in
prMℐ

(𝒞 Y 𝒮ℐ). As U ‰ U2, there exists a concept description D P MℐzU such that all x P U1 satisfy
x I D in the formal context Kℐ . Since

x I D ðñ x P Dℐ ,

we obtain U1 Ď Dℐ . By Proposition 4.6 we have U1 = (
Ű

U)ℐ . Hence (
Ű

U)ℐ Ď Dℐ and thus by
Lemma 3.23

(
ę

U)ℐℐ Ď D.

Because U is closed under all implications from prMℐ
(𝒮ℐ) and because of D P U, we obtain F Ę D

for all F P U, since otherwise F Ď D would imply D P U. But then
ę

U Ę D

as D is either a concept name or of the form D = Dr.Xℐℐ for some X Ď ∆ℐ . From (
Ű

U)ℐℐ Ď D thus
follows

ę

U Ę (
ę

U)ℐℐ .

Now Lemma 7.7 yields a GCI (E Ď F) P 𝒟 Y 𝒞 such that
ę

U Ď E and
ę

U Ę F. (7.6)

56

Suppose that (E Ď F) P 𝒞. Then E = Gℐℐ , F = Hℐℐ for some concept descriptions G, H. Then U
respects the implication

prMℐ
(Gℐℐ) ÝÑ prMℐ

(Hℐℐ),

i. e.
prMℐ

(Gℐℐ) Ď U ùñ prMℐ
(Hℐℐ) Ď U.

By Lemma 4.4 this is equivalent to
ę

U Ď Gℐℐ ùñ
ę

U Ď Hℐℐ .

But this contradicts (7.6) and therefore (E Ď F) R 𝒞 .
Hence, (E Ď F) P 𝒟 and thus F = Eℐℐ . We shall now show that U does not respect the implication

prMℐ
(approxℐ (E)) ÝÑ prMℐ

(Eℐℐ). This then shows 𝒦(U) ‰ U and the proof is finished.
From Lemma 7.10 and

Ű

U Ď E we obtain
Ű

U Ď approxℐ (E). Lemma 4.4 implies prMℐ
(approxℐ (E)) Ď

U.
Now assume that prMℐ

(Eℐℐ) Ď U. Then
Ű

U Ď prMℐ
(Eℐℐ). As Eℐℐ is expressible in terms of

Mℐ , Proposition 4.5 yields Eℐℐ ”
Ű

prMℐ
(Eℐℐ). But then

Ű

U Ď Eℐℐ , contradicting (7.6). Thus
prMℐ

(Eℐℐ) Ę U and hence U does not respect the implication prMℐ
(approxℐ (E)) ÝÑ prMℐ

(Eℐℐ).˝

Using Theorem 7.1 we immediately obtain the following corollary.

7.12 Corollary Let ℐ = (∆ℐ , ¨ℐ) be a finite interpretation and let c P [0, 1]. Let 𝒞 Ď Conf(ℐ , c) be
complete for Conf(ℐ , c). Then

ℬ := t
ę

A Ď (
ę

A)ℐℐ | (A ÝÑ A2) P Can(Kℐ , prMℐ
(𝒞 Y 𝒮ℐ)) u

has minimal cardinality among all sets of valid GCIs of ℐ with respect to ℬ Y 𝒞 being a base of Thc(ℐ).

8 Conclusions and Further Work
The results and considerations presented in this work are a first step in adapting the results from [10]
for interpretations containing errors. For this, we defined and motivated the notion of confident GCIs
of finite interpretations. Using ideas from formal concept analysis, we were able to explicitly describe
finite bases of confident GCIs. Even more, given a set 𝒞 Ď Conf(ℐ , c) that is complete for Conf(ℐ , c),
we were able to show how to compute minimal sets ℬ of valid GCIs such that ℬ Y 𝒞 is a base for
Thc(ℐ). Here, we again used ideas from formal concept analysis.

However, the results as presented here are not sufficient to achieve our initial goal of constructing
ontologies. For this, some further investigations are needed, some of which are the following.

An Exploration Algorithm for Confident GCIs Suppose that we are given a finite interpretation ℐ
from which we want to construct the terminological part of an ontology. We have argued that the
interpretation ℐ may contain errors. However, it may also be the case that ℐ might be incomplete. Let us
makes this more concrete: as argued in Section 5, the interpretation ℐ can be seen as an approximation
of a perfect interpretation ℐperfect. From the interpretation ℐ we want to construct the terminological
knowledge that is present in the interpretation ℐperfect. However, it might be that ℐ contains some
terminological knowledge that is not valid in ℐperfect. In other words, errors in ℐ have removed some
valid counterexamples from ℐperfect such that invalid GCIs are now valid ones. Within this respect we can
say that the interpretation ℐ is incomplete as it misses some crucial counterexamples to invalid GCIs.

57

Even worse, our approach of considering GCIs with a minimal confidence makes it likely that invalid
GCIs in ℐperfect may turn out as confident GCIs of ℐ , if only the number of valid counterexamples is
small enough. We have briefly discussed that in Section 5.

Let us consider a simple example to illustrate the point. Suppose that the interpretation ℐ contains
various kinds of birds. Then we may ask whether all birds fly, i. e. whether

ℐ |ù (Bird Ď CanFly).

ℐ may contain some errors which prevent this GCIs from being true. Then we can try to handle this
by considering the confident GCIs.

However, there are birds which do not fly (penguins). They are not errors in the data. Thus,
Bird Ď CanFly is simply not correct. But the GCI Bird Ď CanFly may still have enough confidence in
ℐ . It is even possible that penguins are not present in ℐ . Therefore we may say that ℐ is incomplete for
describing birds. Our heuristic idea that GCIs with high confidence are actually valid GCIs invalidated
by errors fails here. Also the notion of approximations of interpretations is not useful anymore, as it does
not allow the set of individuals to change.

An idea to overcome this issue is to use an external expert. This expert has to be able to distinguish
between GCIs that have been invalidated by errors and invalid GCIs. An exploration algorithm may
then use this expert to explore the confident GCIs of ℐ . More precisely, the expert is asked GCIs
C Ď D that have enough confidence in ℐ . She then has to decide whether C Ď D is true in the domain
of interest. If C Ď D is true and C Ď D is not valid in ℐ , the counterexamples in ℐ are errors and the
expert may correct them. If C Ď D is not valid, the expert has to provide a real counterexample for it.
Alternatively, if there are already counterexamples for C Ď D, then the expert may confirm some of
them as being valid counterexamples (i. e. as not being errors.)

A major problem that arises from this description is that we now have to deal with two kinds of
counterexamples in ℐ : those that have been confirmed or provided by the expert and those that have
not. In other words, providing one counterexample for C Ď D may not change the confidence of
C Ď D substantially, i. e. C Ď D may still be a confident GCI. But the counterexample provided by
the expert has another quality, because we know that it is true. Thus we have to work with possible
counterexamples and confirmed counterexamples.

A Finite ℰℒK-base In the bases we have discussed so far we have always allowed GCIs with ℰℒKgfp-
concept descriptions. This may be a problem if we want to use these GCIs as elements of a TBox
of an ontology. As discussed in [10] and as defined in this work, TBoxes use descriptive semantics.
However, the TBoxes in ℰℒKgfp-concept descriptions use greatest-fixpoint semantics. Handling these
two different semantics together is difficult, and two approaches are mentioned in [10].

As a solution to this problem, [10] shows that for a finite ℰℒKgfp-base of ℐ there always exists a
finite, equivalent ℰℒK-base of ℐ that can effectively be computed. Providing a similar results for bases
of Thc(ℐ) would also resolve the conflict between the two different kinds of semantics.

An Explicit Connection between Errors and Confidence In Section 5 we have shown in Lemma 5.7
how the confidence behaves if the interpretations of concept descriptions between two interpretations
does not vary too much. We have used this result to motivate that considering the confidence of GCIs
may be a good heuristic to identify GCIs that have been invalidated by errors. However, Lemma 5.7
does not involve the notion of errors as defined in Definition 5.2. A direct connection between errors
and the confidence of GCIs would be desirable.

Non-Redundant Bases of Conf(ℐ , c) and Thc(ℐ) In Section 7.2 we have shown how to find minimal
completing sets for bases 𝒞 of Conf(ℐ , c). But we have not discussed how such bases can be found.

58

Taking the whole set Conf(ℐ , c) does not seem very practical. The adaption of Luxenburgers idea
in Theorem 6.9 may provide a smaller set, but this is still unsatisfactory. Instead, it would be better
to explicitly describe some non-redundant base of Conf(ℐ , c) or even some base for Conf(ℐ , c) of
minimal cardinality.

It would be even better to be able to describe non-redundant bases of Thc(ℐ) explicitly. This is
because a non-redundant base 𝒞 of Conf(ℐ , c) together with a minimal completing set ℬ may yield a
redundant base ℬ Y 𝒞 of Thc(ℐ).

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in

Large Databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 207–216, May 1993.

[2] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael
Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P.
Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson,
Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene ontology: tool for the unification
of biology. Nature Genetics, 25:25–29, May 2000.

[3] F. Baader. Least common subsumers, most specific concepts, and role-value-maps in a description
logic with existential restrictions and terminological cycles. LTCS-Report LTCS-02-07, Chair for
Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology,
Germany, 2002. See http://lat.inf.tu-dresden.de/research/reports.html.

[4] Franz Baader and Felix Distel. A Finite Basis for the Set of ℰℒ-Implications Holding in a Finite
Model. In Raoul Medina and Sergei Obiedkov, editors, Proceedings of the 6th International Confer-
ence on Formal Concept Analysis, (ICFCA 2008), volume 4933 of Lecture Notes in Artificial Intelligence,
pages 46–61. Springer Verlag, 2008.

[5] Franz Baader and Felix Distel. Exploring finite models in the description logic ℰℒgfp. In Sébastien
Ferré and Sebastian Rudolph, editors, Proceedings of the 7th International Conference on Formal
Concept Analysis, (ICFCA 2009), volume 5548 of Lecture Notes in Artificial Intelligence, pages 146–
161. Springer Verlag, 2009.

[6] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Baris Sertkaya. Completing description logic
knowledge bases using formal concept analysis. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), pages 230–235. AAAI Press, 2007.

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1–22, March 2009.

[8] Christian Bizer, Jens Lehmann, Gergi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak,
and Sebastian Hellmann. DBpedia - a Crystallization Point of the Web of Data. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(3):154–165, 9 2009.

[9] Daniel Borchmann and Felix Distel. Mining of ℰℒ-GCIs. In Myra Spiliopoulou, Haixun Wang,
Diane J. Cook, Jian Pei, Wei Wang, Osmar R. Zaïane, and Xindong Wu, editors, ICDM Workshops,
pages 1083–1090. IEEE, 2011.

[10] Felix Distel. Learning Description Logic Knowledge Bases from Data Using Methods from Formal Con-
cept Analysis. PhD thesis, TU Dresden, 2011.

59

http://lat.inf.tu-dresden.de/research/reports.html

[11] Bernhard Ganter and Rudolph Wille. Formal Concept Analysis: Mathematical Foundations. Springer,
Berlin-Heidelberg, 1999.

[12] M. Luxenburger. Implications partielles dans un contexte. Mathématiques, Informatique et Sciences
Humaines, 29(113):35–55, 1991.

[13] Bernhard Nebel. Terminological Cycles: Semantics and Computational Properties. In Principles
of Semantic Networks, pages 331–362. Morgan Kaufmann, 1991.

[14] Susanne Prediger. Logical scaling in formal concept analysis. In Dickson Lukose, Harry S.
Delugach, Mary Keeler, Leroy Searle, and John F. Sowa, editors, ICCS, volume 1257 of Lecture
Notes in Computer Science, pages 332–341. Springer, 1997.

[15] A. L. Rector, W. A. Nowlan, and Galen Consortium. The galen project. Computer Methods and
Programs in Biomedicine, 45(1-2):75 – 78, 1994.

[16] Sebastian Rudolph. Relational exploration: combining description logics and formal concept analysis
for knowledge specification. PhD thesis, TU Dresden, 2006.

[17] Kent A. Spackman, Ph. D, Keith E. Campbell, Ph. D, Roger A. Côté, and D. Sc. (hon. Snomed
rt: A reference terminology for health care. In J. of the American Medical Informatics Association,
pages 640–644, 1997.

[18] Gerd Stumme. Attribute exploration with background implications and exceptions. In H.-H. Bock
and W. Polasek, editors, Data Analysis and Information Systems. Statistical and Conceptual approaches.
Proc. GfKl’95. Studies in Classification, Data Analysis, and Knowledge Organization 7, pages 457–469,
Heidelberg, 1996. Springer.

[19] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal. Intelligent structur-
ing and reducing of association rules with formal concept analysis. In Franz Baader, Gerhard
Brewka, and Thomas Eiter, editors, KI/ÖGAI, volume 2174 of Lecture Notes in Computer Science,
pages 335–350. Springer, 2001.

[20] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific Journal of
Mathematics, 1955.

60

	Introduction and Motivation
	Formal Concept Analysis
	Formal Contexts and Contextual Derivation Operators
	Implications
	Bases of Implications
	Computing the Canonical Base for Arbitrary Background Knowledge

	The Description Logics EL and ELgfp
	The Description Logic EL
	The Description Logic ELgfp
	Bases for GCIs of Interpretations

	A Contextual Representation of All Model-Based Most-Specific Concepts of a Finite Interpretation
	Induced Contexts and Projections
	Model-Based Most-Specific Concept Descriptions as Intents of a Formal Context

	Confident GCIs of Finite Interpretations
	A Finite ELgfp-Base for the Confident GCIs of a Finite Interpretation
	Partial Implications of Formal Contexts
	A First Base
	Using the Neighborhood Relation
	Computing the Base from the Formal Context KI

	Reducing the Size of the Base
	Completing Sets
	Minimal Cardinality

	Conclusions and Further Work

