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Kurzdarstellung

Das Zusammenspiel von Hadronen und Modifikationen ihrer Eigenschaften auf der einen Seite und

spontaner chiraler Symmetriebrechung und Restauration auf der anderen Seite wird untersucht. Es

werden die QCD Summenregeln für D und B Mesonen in kalter Materie berechnet. Wir bestimmen die

Massenaufspaltung von D − D̄ und B − B̄ Mesonen als Funktion der Kerndichte und untersuchen den

Einfluss verschiedener Kondensate in der Näherung linearer Dichteabhängigkeit. Die Analyse beinhaltet

ebenfalls Ds und D∗0 Mesonen. Es werden QCD Summenregeln für chirale Partner mit offenem Charm-

freiheitsgrad bei nichtverschwindenden Nettobaryonendichten und Temperaturen vorgestellt. Es wird

die Differenz sowohl von pseudoskalaren und skalaren Mesonen, als auch von Axialvektor- und Vek-

tormesonen betrachtet und die entsprechenden Weinberg-Summenregeln hergeleitet. Basierend auf QCD

Summenregeln werden die Auswirkungen eines Szenarios auf das ρ Meson untersucht, in dem alle chiral

ungeraden Kondensate verschwinden wohingegen die chiral symmetrischen Kondensate ihren Vaku-

umwert behalten. Die komplementären Folgerungen einer Massenverschiebung und Verbreiterung der ρ

Mesonanregung werden diskutiert. Ein alternativer Zugang basierend auf gekoppelten Dyson-Schwinger-

und Bethe-Salpeter-Gleichungen für Quarkbindungszustände wird untersucht. Zu diesem Zwecke wird

die analytische Struktur des Quarkpropagators in der komplexen Ebene numerisch untersucht und die

Möglichkeit getestet die Anwendbarkeit auf den Sektor der schwer-leicht Quark Systeme im skalaren und

pseudoskalaren Kanal, wie dem D Meson, durch Variation des Impulsteilungsparameters zu erweitern.

Die Lösungen der Dyson-Schwinger-Gleichung in der Wigner-Weyl-Phase der chiralen Symmetrie bei

nichtverschwindenden Stromquarkmassen wird benutzt um den Fall einer expliziten Symmetriebrechung

ohne spontane Symmetriebrechung zu untersuchen.

Abstract

The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand

and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD

sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass

splitting of D − D̄ and B − B̄ mesons as a function of the nuclear matter density and investigate the

impact of various condensates in linear density approximation. The analysis also includes Ds and D∗0
mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero

baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well

as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on

QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry

breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum

values. The complementarity of mass shift and broadening is discussed. An alternative approach which

utilizes coupled Dyson-Schwinger and Bethe-Salpter equations for quark-antiquark bound states is

investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex



plane numerically and test the possibility to widen the applicability of the method to the sector of

heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the

momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl

phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit

but without dynamical chiral symmetry breaking.
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1 Introduction and motivation

Within the present standard model of particle physics the building blocks of matter are quarks and

leptons. These fermions interact via gravity, as well as weak, electromagnetic and strong interaction -

the four known forces in nature. Apart from gravity, these interactions may be described by virtue of

gauge field theories, where the interaction is transferred by gauge bosons. One such theory is quantum

chromodynamics (QCD) which is believed to describe the strong interaction. The gauge bosons of QCD

are called gluons. At the time when this thesis has been written, the last missing piece of the standard

model is the Higgs boson, which is predicted in order to explain the masses of the gauge bosons carrying

the weak interaction force. Moreover, the interaction of the Higgs boson with the fermion fields within

the standard model also gives rise to the bare masses of the quarks and some of the leptons. Recently, first

results of the Higgs boson search from the ATLAS and ALICE experiments at the Large Hadron Collider

at CERN have been presented [ATL, ALI], and physicists around the world are excitingly awaiting the

final announcements. However, the main contribution to the mass of matter that surrounds us has a

different origin. The mass of “usual matter” resides in nuclei composed of nucleons, i.e. protons and

neutrons. Nucleons belong to the hadrons and the fundamental degrees of freedom within an environment

below the deconfinement transition of QCD (to be explained later on) are hadrons. Hadrons are strongly

interacting, subatomic states of quarks and gluons, which interact via and form bound states by virtue

of the strong interaction. They may be cataloged by their spin. Bosonic hadrons are called mesons and

consist of an even number of valence quarks. Fermionic hadrons are called baryons and consist of an odd

number of valence quarks, see Fig. 1.0.1. Valence quarks are the quarks which determine the quantum

numbers of the hadron. The bare masses of quarks are well known from several experiments and gluons

are supposed to be massless due to the exact local SUc(3) gauge symmetry. But against naive intuition,

summing up all constituent masses of a hadron, one can not explain its mass, which would be expected

to be smaller than the sum of the constituent masses due to the binding energy. In contrast, the hadron

masses are much larger than the sum of their constituents masses.

Let us consider, for example, the nucleon. In the naive quark model it consists of three light quarks

with the sum of their bare current quark masses as obtained from several high energy experiments being

less than 20 MeV, while the nucleon mass is about 938 MeV [Nak10]. Hence, the masses are even of

different scales. In this special case, i.e. for nucleons, we might think of nearly massless quarks but

nucleons would still have a mass of several hundreds MeV. Another example is given by the D± meson,

which consists of a charm quark with a mass ofmc = 1.25 . . . 1.45 GeV and a down quark with a mass of

md = 4 . . . 8 MeV [Nak10]. However, the mass of the D± meson is about mD± = 1.87 GeV [Nak10],

which is again larger than the sum of its constituent masses. This mass difference is a direct result of the

1



1 Introduction and motivation

u±±±du±±±u±±±

u±±±ddd

u

du

cc

ddd

Figure 1.0.1: Illustrative picture depicting (from left to right) a ρ and ω meson (left), a proton (middle)
and a D meson (right) in the constituent quark model. All hadrons are color-less, and the
confining interactions carried by the gluons are depicted by curly lines.

complicated structure of the strong interaction which binds quarks and gluons into hadrons. The given

examples tell us that genuine quark masses, as supposed to be generated by the Higgs mechanism in the

electro-weak sector of the standard model, are of minor importance in an explanation of the mass of

the matter around us. It is the strong interaction which has to be understood in order to understand our

“massive world”.

One of the main goals of hadron physics is to understand the origin of hadron masses in terms of their

underlying structure of quarks and gluons and the strong interaction, which binds them together to bound

states. As already pointed out, QCD is the accepted theory which describes the strong interaction at

quark-gluon level. It is a non-Abelian gauge field theory which provides basic features of the strong

interaction such as “asymptotic freedom” (basic details of QCD which are needed throughout this

work are reviewed in App. A.3). The phenomenon of “asymptotic freedom” means that in scattering

experiments at large momentum transfer a projectile, say an electron, being scattered off a proton behaves

as being scattered off almost free quarks. At low momenta, only the quarks are observed which constitute

the quantum numbers of the hadron. The thus observed quarks are the above mentioned valence or

current quarks and their masses, as measured in high energy experiments, are the so-called current-quark

masses. Indeed, it can be shown [Gro73] that QCD entails this feature as it tells us that the coupling

strength of strong interaction decreases with increasing momentum, such that in the limit of infinite

energy the quarks behave as free (in the sense of non-interacting) quarks. This also enables one to apply

perturbative techniques in the high momentum or small distance regime.

Another property of the interaction among quarks is that one can not observe isolated individual quarks.

Looking up free quarks in the particle data booklet [Nak10] reveals this circumstance with the simple

sentence: “All searches since 1977 have had negative results.” This feature of the strong interaction

is called confinement. In vacuum or in a strongly interacting medium, below a certain temperature or

chemical potential (i.e. density), quarks are always bound into hadrons as color singlets. Only above this

temperature and/or chemical potential quarks and gluons are the fundamental degrees of freedom. The

transition from hadronic to quark-gluon degrees of freedom is called the deconfinement phase transition.

May it be a strict law of nature that there are no free quarks or may it just be extremely seldom and

difficult to observe free quarks, any theory of the strong interaction must provide a confining mechanism

2



1 Introduction and motivation 1.1 Dynamical chiral symmetry breaking

in order to explain this “non-observation.” Unfortunately, a rigorous theoretical treatment of confinement

within QCD is still missing. Indeed, the (mathematical) rigorous establishing of a Yang-Mills theory

(non-Abelian gauge theory, e.g. QCD, without quarks) with mass gap and confinement is one of the seven

Millennium Prize problems stated by the Clay Mathematics Institute.

One of the most common and well-established techniques of quantum field theory is that of perturbation

series – an expansion in the coupling constant. If the coupling is sufficiently small the expansion is hoped

to be convergent and may be applied to evaluate quantities within the theory or to draw conclusions from

experiments. In case of the strong interaction the thus derived coupling increases with increasing distance.

This is in line with confinement as the attraction between quarks therefore increases with increasing

separations until the energy of the quarks is large enough to create quark–anti-quark pairs, such that it is

not possible to isolate a single quark. QCD reflects this by its non-Abelian character, which accounts for

the self-interaction of the gluons and causes the growing coupling. Along these lines the interaction of

the valence quarks with the sea-quarks (virtual quark–anti-quark pairs) and gluons account for the heavily

increased constituent quark mass addressed before, which is known as antiscreening or mass dressing.

However, since the coupling strength of the strong interaction grows with decreasing momentum (or

increasing distance), perturbative techniques are not applicable in a scenario of two quarks separating

from each other. Also for the task of calculating bound state properties one has to look for different

methods in order to perform calculations in the low momentum regime.

1.1 Dynamical chiral symmetry breaking

Apart from asymptotic freedom, which governs the high-energy domain, or color-confinement, which is

a low energy phenomenon, the dynamical (or spontaneous) breakdown of chiral symmetry (DCSB) is

another important low-energy property of the strong interaction. It is always noteworthy that symmetries

play a significant role in physics. By Noether’s theorem [Noe18] every differentiable symmetry guarantees

the existence of a conservation law. For example, energy-momentum conservation can be traced back

to translational invariance in space and time. A system where the symmetry is spontaneously broken

therefore strongly deviates from a system where the symmetry is realized.

For vanishing quark masses M → 0, the classical, i.e. not quantized, chromodynamical Lagrangian

L = ψ̄
(
iD̂ −M

)
ψ − 1

4
GAµνG

µν
A , (1.1.1)

with Nf flavors, is invariant with respect to the global chiral SUR(Nf) × SUL(Nf) transformations.1

The quantity ψ = (q1, . . . , qNf
) collects the Dirac spinors of Nf quark flavors, D̂ = γµDµ denotes the

covariant derivative contracted with the Dirac matrix γµ, GAµν is the gluon field-strength tensor, µ, ν, are

Lorentz indices, and A is a color index in the adjoint representation.

1In Eq. (1.1.1) the classical Lagrangian is given. For the canonically quantized Lagrangian see App. A.3. Canonical
quantization necessitates the introduction of gauge fixing and Faddeev-Popov ghost terms [Pas84]. These, however, do not
alter the transformation properties w.r.t. the chiral transformations discussed here.

3



1 Introduction and motivation 1.1 Dynamical chiral symmetry breaking

Focusing for the time being on the Nf = 2 light (massless) quark sector, the corresponding left-handed

transformations read for the left-handed quark field ψL = 1
2 (1− γ5)ψ and the right-handed quark field

ψR = 1
2 (1 + γ5)ψ

ψL → e−i
~θL·~σ2ψL, ψR → ψR, (1.1.2a)

while the right-handed transformations are

ψR → e−i
~θL·~σ2ψR, ψL → ψL, (1.1.2b)

where ~σ are the isospin Pauli matrices, and ψ =
(
u
d

)
denotes the quark iso-doublet. Equation (1.1.2)

represents isospin transformations acting separately on the right-handed and left-handed parts of the

quark field operator ψ = ψL + ψR, i.e. the three-component vectors ~θR and ~θL contain arbitrary real

numbers. Gluons and heavier quarks remain unchanged with respect to the transformations (1.1.2).

Consider, for example, a quark current which has the quantum numbers of the ρ meson,2 i.e. is given

by the vector–isospin-vector current

~jµ =
1

2
ψ̄γµ

~σ

2
ψ. (1.1.3a)

If a chiral transformation according to (1.1.2) is applied to ψ̄ and ψ, it becomes mixed with the axial-

vector–isospin-vector current3

~jµ5 =
1

2
ψ̄γµγ5~τψ (1.1.3b)

which has the quantum numbers of the a1 meson. Indeed, experiments show that the vector current

(1.1.3a) couples strongly to the ρ meson, while the axial-vector current (1.1.3b) couples to the a1 meson

[Sch05]. Therefore, ρ and a1 are called chiral partners. As the Lagrangian (1.1.1) in the limit M → 0 is

invariant w.r.t. the transformations (1.1.2) on the one hand and, on the other hand, the currents (1.1.3)

are mixed by these transformations, the spectra of ρ and a1 meson, in particular their masses, should

be degenerate if the chiral symmetry was realized in nature. The observed mass of the ρ meson is

mρ = 775.5 MeV while the a1 meson mass is ma1 = 1260 MeV [Nak10]. Such a significant mass

splitting is observed for many chiral partner mesons. Therefore, the symmetry must be spontaneously

broken.

In a quantized theory the realization of a symmetry is manifest in the invariance of its ground state,

i.e. the lowest energy state of the theory |Ω〉, under the corresponding symmetry transformation. As

a consequence Q|Ω〉 = 0, where Q is the generator of the transformation. This case is called the

Wigner-Weyl phase or realization. In contrast, the spontaneous breakdown of a symmetry is reflected in

the non-invariance of its ground state, i.e. Q|Ω〉 6= 0. This case is called the Nambu-Goldstone phase or

2This means that the current has parity, charge, isospin and spin of the ρ meson.
3The choice |~ΘL| = 2|~ΘR| = 2π explicitly reveals this mixing. See App. A.1.
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1 Introduction and motivation 1.2 Hadrons in the medium

realization. The latter property is used to prove the so-called Goldstone theorem (see [Bur00, Kug97]

for details of the proof and its consequences). It states that in the case of a spontaneously broken

symmetry massless bosons must exist. These bosons where first found by Nambu [Nam60] within in

the treatment of superconductivity. Goldstone generalized this phenomenon to quantum field theories

[Gol61, Gol62]. The Goldstone bosons of QCD are the pions, which are pseudo-scalar mesons consisting

of the two lightest (i.e. almost massless) quark flavors up and down. Pions belong to the isospin

multiplet. The isospin singlet and the multiplet are degenerate due to the explicit breaking of the UA(1)

symmetry by the axial anomaly (cf. App. A.2). While constituent quark models with quark masses of

≈ 300 . . . 400 MeV for up and down quarks may be employed to explain hadron masses, e.g. for the ρ

meson, on a phenomenological ground, the pions do not fit into such a scheme due to the spontaneous

chiral symmetry breaking.

Because the current quarks are not massless, which is referred to as explicit chiral symmetry breaking

(in contrast to the dynamical or spontaneous chiral symmetry breaking), the pions are neither. Neverthe-

less, their masses are mπ0 = 135.0 MeV and mπ± = 139.6 MeV [Nak10] are small as compared to the

other hadrons.

The addressed property that the ground state of a theory is not invariant under a symmetry transforma-

tion of the Lagrangian may also be used to show that certain ground state expectation values are nonzero.

Regarding the example given above, this is true for the chiral condensate 〈ψ̄ψ〉. The Wigner-Weyl phase,

in contrast, would require 〈ψ̄ψ〉 = 0.

1.2 Hadrons in the medium

As we have already seen, the ground state of QCD has a complicated non-trivial dynamical structure due

to color-confinement and dynamical chiral symmetry breaking, which can not be explained perturbatively.

Indeed, the perturbative ground state |0〉, defined such that it is annihilated by all annihilation operators,

is invariant w.r.t. chiral transformations Q|0〉 = 0. Consequently, it is not possible to describe chiral

symmetry breaking effects on a perturbative basis. However, hadrons may be regarded as excitations

of the QCD ground state, and hadron properties are therefore directly linked to it. The non-degeneracy

of chiral partners and the small mass of the pions indicate that the dynamical breaking of the chiral

symmetry is responsible for the observed hadron mass spectrum. Any theoretical attempt to determine

hadron masses must incorporate this effect. Vice versa, comprehending this effect is a crucial step

towards an understanding of the origin of mass.

Similar to the deconfinement phase transition, the chiral symmetry is expected to be restored at higher

temperatures and/or densities, which is called the chiral transition. Thus, hadronic properties may be

modified if the hadrons are embedded in a strongly interacting medium. Such environments may be

found in the early universe, in compact stars or if the hadron is embedded in a nucleus (zero temperature

and low densities as compared to conditions at the chiral or deconfinement transition). Such scenarios are

experimentally investigated in heavy-ion collisions. Understanding of high-temperature and high-density

5
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Figure 1.2.1: Illustrative picture of a D− meson in vacuum (left) and placed in nuclear matter (right).
Gluons are depicted by curly lines and “clouds” symbolize the non-perturbative ground
state illustrating creation and annihilation of quark–anti-quark pairs.

physics requires the understanding of medium modifications of hadrons.

Modifications of spectral properties are well known from the splitting of atomic or molecular spectral

lines when external magnetic (Zeeman effect [Zee97b, Zee97a, Zee97c]) or electric (Stark effect [Sta14])

fields are present. An example of a spontaneously broken symmetry which is restored at higher tempera-

tures due to a phase transition can be found in material science. For a ferromagnetic, antiferromagnetic

or ferrimagnetic4 material the rotational invariance is spontaneously broken due to the spontaneous

magnetization of the Weiss domains, i.e. the parallel or anti-parallel alignment of neighboring spins.

Above a critical temperature, called the Curie temperature, the spontaneous polarization is lost and the

material becomes paramagnetic. The spins are disordered and the rotational symmetry is restored, cf.

[Kit86]. The strongly interacting medium in hadron physics acts as an external field which modifies the

quark-gluon interaction and, therefore, the ground state of QCD. This is reflected in the modification of

hadronic properties such as masses and/or widths, see Fig. 1.2.1. Hence, restoration or partial restoration

of a spontaneously broken symmetry may be signaled by the change of hadronic spectral functions.

However, considering the analog of a ferro- or ferrimagnetic material one may ask about other properties

apart from the magnetization of the material above the critical temperature.

Correspondingly, if the quarks where massless, the spectra of chiral partners where degenerate in

case of chiral symmetry restoration. In addition, one may ask about other hadronic properties such

as interactions among hadrons or, more simply, the spectral function of a single hadron. Furthermore,
4In a ferrimagnetic material the antiparallel aligned magnetic moments are unequal.
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Figure 1.3.1: Representation of some QCD condensates by Feynman diagrams. From left to right:
quark, gluon and mixed quark-gluon condensate. Crosses symbolize condensation, i.e.
interaction with the ground state.

the explicit symmetry breaking should be accounted for. In this sense, one may ask about the mass of

the pion or any other hadron in the Wigner-Weyl phase. As already discussed above, the pion is the

(almost massless) Goldstone boson and has a nonzero mass only due to the explicit breaking of the chiral

symmetry, whereas its valence quarks acquire large dressed masses of several hundred MeV due to the

DCSB.

1.3 QCD sum rules

As hadrons are composite objects consisting of confined quarks and gluons, hadronic properties should

be related to the quark and gluon structure within the hadron, thus, to the non-perturbative properties

of the theory. Instead of calculating directly hadronic properties from first principles, a tool to relate

low-momentum properties of the hadron to its large momentum structure is provided by the method

of QCD sum rules (QSRs). But, its major draw-back is that it can not be derived rigorously from first

principles. Instead, heuristic arguments are used to set up the method which gains its reliability from the

successful description of hadronic properties. Indeed, QSRs have been applied very successfully to a

variety of mesons and baryons in vacuum and extended to in-medium situations.

The method was first developed in [Shi79d, Shi79b] and successfully applied to charmonium states

(mesons consisting of charm quarks only), as wells as to ρ, ω, φ and K∗ mesons [Shi79a]. The ρ− ω
mixing was also addressed in [Shi79c], and a technical guide has been published in [Nov84a]. Baryons

have first been dealt with in [Iof81], see also [Dos89]. Apart from hadron masses, couplings, magnetic

moments and many other observables have successfully been obtained within this method (cf. [Col00]

for a modern perspective). Over the years, a variety of more or less didactic introductions have been

accumulated, such as [Rei84, Wey85, Raf89]. Many results of vacuum QSRs and references to the

corresponding publications are collected in [Nar89, Nar02]. A detailed and explicit evaluation for ρ

mesons is given in [Pas84].

The method of QSRs is based on dispersion relations, which are used to relate different energy regimes.

It introduces phenomenological parameters, called condensates (see Fig. 1.3.1), in order to parametrize

non-perturbative physics and to understand and to reproduce hadronic properties, e.g. hadron masses.

These parameters enter the theory as ground state expectation values of quantum field operators by virtue

of the operator product expansion (OPE) and, hence, are directly connected to the fundamental properties

of QCD and its ground state. The most famous among these condensates is the chiral condensate

〈Ω|q̄q|Ω〉, where q is the field operator of a massless quark, introduced earlier. Some condensates are
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order parameters of the chiral symmetry, meaning that they are zero if the symmetry is restored and, if

the condensates are nonzero, the symmetry must be broken. As a consequence, the difference of the

spectra of chiral partners should only depend on those condensates which are order parameters of chiral

symmetry.

Loosely speaking, a condensate can be read as a measure for the probability of a particle being

annihilated by a virtual particle from the ground state and, therefore, creating another real particle

somewhere else. A non-vanishing condensate indicates a particle interaction with the ground state.

Hence, the hadron appears much heavier than its QCD constituents, because not only interactions among

quarks transmitted by gluons or among gluons have to be considered but also interactions of these particles

with the ground state. The hadrons acquire an effective mass by the interaction of their constituents with

the ground state of QCD. This can be taken as a very simplified illustration of the mass effects mentioned

at the beginning of this chapter. Such a concept might be known from many-body physics and indeed

many concepts, such as the Lehmann representation or dispersion relations, are also subject to this field.

Furthermore, continuing in this illustrative language, the probability of a virtual light-quark pair creation

from the ground state must be much larger than the probability of a heavy-quark pair creation. Therefore,

the mass increase via the coupling of a quark to a condensate shall be much lower for a heavy quark

than for a light quark. The heavy quark may nevertheless emit gluons which in turn interact with virtual

particles of the ground state. This explains why the mass of the nucleon compared to its constituent

quarks is of a different scale, while the D meson is only somewhat heavier than its constituents. The

charm quark does not contribute to the mass acquirement. Moreover, we see that the appearance of the

heavy quark must require another treatment than the light-quark systems, because it is less affected by

non-perturbative effects. In this respect it also seems reasonable that D and D̄ behave different when

embedded in nuclear matter. The nuclear medium breaks the charge conjugation symmetry. Therefore, a

cq̄ state, where q denotes a light quark, is expected to be differently affected than a qc̄ state.

QSRs play a twofold role. On the one hand, they are used to determine the condensates in order to

get valuable information about the structure of QCD and the strong interaction. On the other hand, they

are used to evaluate hadronic properties, like masses, in terms of the condensates. In the latter case one

does of course not attempt to derive non-perturbative effects, such as confinement and dynamical chiral

symmetry breaking, from first principles, but instead takes them as a matter of fact (nonzero condensates)

and relates them to hadron properties.

QSRs have been extended to finite temperatures [Boc84, Boc86] and densities [Hat92] for mesons and

nucleons [Fur90]. A comprehensive but nevertheless detailed treatise about applying QSRs to nucleons

in the medium can be found in [Fur92, Jin93, Jin94]. At small nonzero temperatures and chemical

potentials the medium dependence of the system under consideration is encoded in the condensates.

This enables one to perform in-medium investigations comparably easy and to systematically relate the

medium dependence of the condensates to the change of hadronic properties. On the other side one may

hope to relate medium modifications of hadrons to changes of QCD condensates, in particular to order

parameters of the chiral symmetry such as the chiral condensate. Therefore it is desired to find systems
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which are sensitive to changes of the chiral condensate.

The Brown-Rho scaling [Bro91] suggested the direct relation of the light vector meson masses in

the medium to the pion decay constant and, thus, via the Gell-Mann–Oakes–Renner relation with the

chiral condensate. Similar, Joffe’s formula for the nucleon [Iof81] relates the nucleon mass to squares of

the chiral condensate. Thus, light-quark systems seem to be appropriate probes either to determine the

medium dependence of the chiral condensate or to predict their masses in the medium using the medium

dependence of the chiral condensate only. Taking both scaling laws rigorously, a strict consequence

would also be the vanishing, or at least decreasing, of the hadron masses near the chiral transition. Vice

versa, decreasing masses are often considered as signals for chiral symmetry restoration. As already

pointed out, QSRs have been applied very successfully to light-quark hadrons such as the ρ and ω mesons.

But as is already known since the early days of QSRs, the chiral condensate is actually numerically

suppressed, by the light quark mass, for these mesons [Rei85]. Instead, a subtle balance of gluon and

so-called four-quark condensates determine the ρ meson spectral density. Assuming vacuum saturation,

the four-quark condensates in turn may be factorized into squares of the chiral condensate, which arranges

for an enhanced impact of the chiral condensate. However, this assumption has already been questioned

in [Shi79a] even in vacuum and, therefore, also in the medium; at the chiral transition point it is of

course even more questionable. Not all four-quark condensates are order parameters of chiral symmetry

breaking and it is not necessarily consistent that these are factorized in terms of an order parameter.

Nevertheless, certain combinations of four-quark condensates may indeed serve as order parameters and

the medium modifications may be investigated w.r.t. changes of them. Such an investigation is part of

this thesis, with first results published in [Hil12b].

For mesons consisting of a heavy quark, such as the charm quark, and a light quark, e.g. the pseudo-

scalar D mesons, the chiral condensate is amplified by the heavy charm-quark mass. In vacuum this

has also been known for a long time [Rei85]. A delicate step thereby is the consistent separation of

large-momentum and low-momentum scales, which, in case of heavy-light quark mesons in contrast

to light-light or heavy-heavy quark mesons, is complicated due to the two different mass scales. The

resulting infrared divergences have to be absorbed. Thereby, the condensates mix under renormalization.5

While the vacuum treatment was finalized in [Jam93], the necessary in-medium relations where first

derived in [Zsc06], generalized in [Hil08] and published in its final form in [Zsc11]. First results for

heavy-light quark mesons have been published in [Rap11] and a concise treatment in [Hil09]. Further

investigations were also published in [Hil10a, Hil10c, Käm10, Hil10b].

A natural way to isolate order parameters is to investigate chiral partners. In the light-quark vector–

axial-vector channel the first chiral partner sum rules have been derived in [Wei67], where first and second

moment of the difference between the spectral densities of ρ and a1 mesons have been related to the

pion decay constant as another order parameter of chiral symmetry. These so-called Weinberg sum rules

have been derived in the scope of current algebra in vacuum. Current algebra represents a general tool to

investigate the structure of a field theory in terms of its symmetries. It was developed prior to the advent

5This mixing is not to be confused with the mixing of condensates due to applications of the renormalization group equation
[Mut87].
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of QCD. Later on, the Weinberg sum rules have been generalized and extended in [Kap94] to nonzero

temperatures and/or densities including a third sum rule. These so-called Weinberg-Kapusta-Shuryak sum

rules have been derived within QSRs utilizing the OPE technique. It is part of this thesis to derive chiral

partner sum rules in the vector–axial-vector and scalar–pseudo-scalar channel for mesons consisting

of a heavy and a light quark at nonzero densities and/or temperatures. Early results of this work have

been published in [Hil10a, Hil10c], and improvements in [Hil11]; an additional investigation has been

initiated in [Hil12a]. Although the main results refer to heavy-light quark systems, the formalism may be

applied to any other hadron and general conclusions have been made.

1.4 Bethe-Salpeter–Dyson-Schwinger approach

Another non-perturbative method to evaluate hadron properties is based on the Poincaré invariant Bethe-

Salpeter equation (BSE). The equation was first proposed in [Sal51] and derived from field theory in

[GM51], cf. [Nak69] for a general survey. It is an exact equation for two-body problems in a relativistic

quantum field theory. As it does not directly involve potentials but rather relies on the propagators and

vertices of the theory, it naturally incorporates recoil effects which would not be possible otherwise.

To the best of our knowledge it has, up to now, not been possible to rigorously prove that the non-

relativistic limit is a Schrödinger equation. Its non-perturbative character is manifested in being an

integral equation and, in case of diquark bound states, maintaining dynamical chiral symmetry breaking

and dynamical quark dressing. Thereby, an infinite number of interactions between the two particles

may take place. In its homogeneous form it describes bound states, where an infinite number of particle

interactions is mandatory. Otherwise, it is a scattering problem which can be addressed by using the

inhomogeneous BSE. As perturbative techniques rely on an expansion in the coupling and thus in the

number of interactions, it is also clear from this point of view that bound states are not treatable in

perturbation theory. The homogeneous BSE is an integral equation for the Bethe-Salpeter amplitude

(BSA). It can not be solved analytically for realistic interaction kernels. Due to its high dimensionality (16

dimensional in coordinate space, 4 dimensional in momentum space in the bound state rest frame) there

is no direct numerical solution at hand nowadays. Approximations have to be applied. Restricting the

exchange of interaction particles to one at a time corresponds to the ladder approximation. But even for

the ladder approximation there is only one model that can be solved analytically, the so-called Cutkosky

model [Cut54], see also [Nak69]. It is often referred to as a toy model, because it entails unphysical

states and gives the wrong limit for the ratio of the masses tending to infinity, i.e. one mass being much

larger than the other. Employing the bare interaction vertex is referred to as rainbow approximation.

In momentum space, the kernel depends parametrically on the bound state momentum and, in the rest

frame of the bound state, the equation has solutions only at discrete values of the bound state mass. The

BSA has no direct physical interpretation. Nevertheless it is a full description of the bound state and

observables, such as form factors and decay constants, may be evaluated by virtue of the BSA. Indeed, in

[Man55] it has been shown that, once the BSA is known, any dynamical variable which describes the
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transition between two bound states is calculable. The equation has been applied successfully to many

different problems such as the hydrogen atom [New55], positronium, excitons and the deuteron [Dor08].

Apart from the propagator of the particle which mediates the interaction between the constituents,

also the propagators of the constituents and the interaction vertex enter. These are two- and three-point

functions which, in a quantum field theory, are determined by their Dyson-Schwinger equation (DSE).

The DSEs where first given in [Dys49] by summing an infinite number of Feynman diagrams and

generalized to arbitrary quantum field theories in [Sch51a, Sch51b]. They represent an infinite coupled

system of non-linear integral equations for the n-point functions of a quantum field theory and represent

the equations of motion (EoM) for the Green’s functions. Therefore, they are often referred to as the

Euler-Lagrange equations of a quantum field theory. Indeed, the BSE can also be derived from the DSE

of a four-point function. Note, however, that the BSA itself is not an n-point function.

First applications of the relativistic BSE to diquark bound states have been made in [Mun92] and

reviews may be found in e.g. [Kug91, Rob00, Rob94, Rob07, Mar03]. While for many applications of

the BSE it is sufficient to employ the free constituent propagators, as for example in case of the deuteron,

the low-momentum properties of the strong interaction demand to employ the exact quark propagator.

Only the exact quark propagators (or appropriate models) are capable of generating the large dressed

quark masses that are required to explain the observed hadron masses, as well as the correct ultraviolet

limit of the quark masses as determined in high-energy scattering. As quarks obey confinement, it is

reasonable that the free quark propagator with bare current quark masses is not appropriate in describing

the low energy interaction among quarks which dominates the formation of bound states. Thus, the

quark DSE has to be solved, and the resulting propagators serve as an input for the bound state BSE.

It turns out, however, that it is not necessary to solve the gluon and ghost DSE or the DSE for the

interaction vertices. Instead, a phenomenological gluon propagator and the bare quark-gluon vertex may

be employed [Mar99]. Using the bare vertex and a phenomenological gluon propagator technically means

to work in quenched approximation, i.e. there are no dynamically generated quark–anti-quark pairs.

However, adjusting the parameters of the phenomenological propagator effectively includes these effects

up to a certain extend and provides therefore an appropriate tool to study hadron properties. Attempts to

include other DSEs and to go beyond rainbow-ladder truncation are published in [Fis08, Fis09b].

In [Alk02] a very simple but nevertheless successful model was proposed which is capable of describing

the masses of a variety of mesons in the vector, axial-vector, scalar and pseudo-scalar channels for equal

quarks up to a bare quark mass of ≈ 1 GeV. It turns out, however, that solving the BSE is inferred by the

analytic structure of the quark propagators in the complex plane. In order to solve the BSE for mesons, the

quark propagators have to be known in the complex plane, because of the not negligible quark dressing.

Indeed, such a complication does not exist for, e.g., the deuteron [Dor08]. Their evaluation in the complex

plane is possible by various methods, but singularities are found in any case. For the ground state of equal

quark bound states, the singularities do not infer the solution of the BSE, but for excited states they do.

This problem has been known for a long time without resolution [Mar92, Sta92]. Unfortunately, neither

the physical nor the mathematical nature of these singularities is known. In particular for heavy-light
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quark bound states, these poles infer the solution of the BSE. As a part of this thesis we will investigate

the analytic structure in detail and test a method to circumvent this issue. Some of the results given in the

course of this thesis have been published in [Dor11, Dor10].

1.5 Experimental and theoretical status and perspectives

Chiral symmetry and its breaking pattern represent important features of strong interaction physics.

As mentioned above, the non-degeneracy of chiral partners of hadrons is considered to be a direct

hint to the spontaneous chiral symmetry breaking in nature which characterizes the QCD vacuum. In

fact, the distinct difference of vector–isospin-vector and axial-vector–isospin-vector spectral functions

deduced from τ decays [Sch05, Ack99] gives one of the empirical and precise evidences for the breaking

of chiral symmetry. The low-energy strengths of the mentioned spectral functions, concentrated in

the resonances ρ(770) and a1(1260), deviate strongly from each other and from perturbative QCD

predictions. (For a dynamical interpretation of the two spectra see [Wag08a, Leu09a].) This clearly

exposes the strong non-perturbative effects governing the low-energy part of the hadron spectrum. The

spontaneous symmetry breaking is quantified by the chiral condensate 〈q̄q〉, which plays an important role

in the Gell-Mann–Oakes–Renner relation connecting hadronic quantities and quark degrees of freedom

(cf. [GM68, Col01]).

Apart from the briefly described non-perturbative methods, other tools to explore the low-energy

regime of hadron physics and QCD are, e.g., lattice QCD, chiral perturbation theory, instanton models

and conformal field theory. In lattice QCD the theory is described on a discretized space-time. Chiral

perturbation theory relies upon the effective description of hadrons utilizing phenomenological parameters.

Of particular importance here is the vector meson dominance model. Instantons are classical, localized

soliton solutions of the EoM.

As pointed out QSRs offer a link from hadronic properties, encoded in spectral functions, to QCD

related quantities, like condensates, in the non-perturbative domain. A particularly valuable aspect of

QSRs is, therefore, the possibility to predict in-medium modifications of hadrons, supposed the density

and temperature dependence of the relevant condensates is known. Taking the attitude that this is the case,

one arrives at testable predictions for changes of hadronic properties in an ambient strongly interacting

medium. There is a vast amount of literature on the in-medium changes of light vector mesons, cf.

[Hat95, Leu98a, Ste06, Leu01, Rup06, Pet98b, Pet98a, Pos01, Mue06, Kli96, Kli97, Tho08b, Tho05,

Rap00, Lut02, Rap09, Tse09, Hay10, Met08, Leu10] and further references therein. Vector mesons are

of special interest as their spectral functions determine, e.g., the dilepton emissivity of hot and compressed

nuclear matter. Via the direct decays V → l+l−, where V stands for a vector meson with q̄q structure and

l+l− for a dilepton, the spectral distribution of V can be probed experimentally. Accordingly, heavy-ion

experiments are often accompanied by special devices for measurements of l+l− = e+e− or µ+µ−.

Addressed questions concern in particular signals for chiral restoration [Rap00]. Clearly, besides the

QSRs, also purely hadronic models have been employed to understand the behavior of vector mesons in
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Figure 1.5.1: Expected spectral changes of D mesons in a cold nuclear medium.

nuclear matter, cf. [Pet98b, Pet98a, Pos01, Mue06, Rap00, Lut02] for example.

Such hadronic models are also used in the strangeness sector [Waa96, Waa97, Kai01, Bor05, Tol06a].

Here, the distinct behavior of kaons and anti-kaons attracted much attention, cf. [Sch06, För07, Cro00]

for experimental aspects. Similar to the K-K̄–pattern one expects a D-D̄–pattern as depicted in

Fig. 1.5.1. The upcoming accelerator complex FAIR at GSI/Darmstadt offers the opportunity to extend

the experimental studies into the charm sector [Fri11]. The CBM collaboration [CBM] intends to

study the near-threshold production of D and J/ψ mesons in heavy-ion-collisions, while the PANDA

collaboration [PAN] will focus on charm spectroscopy, as well as on charmed mesons produced by

anti-proton annihilation at nuclei. In the CBM experiments, charm degrees of freedom will serve

as probes of nuclear matter at the maximum compression achievable in the laboratory, at moderate

temperatures. Despite of this interest in D mesons and their behavior in nuclear matter, the literature on

in-medium D mesons is fairly scarce. While there is a variety of calculations within a hadronic basis, e.g.

[Tol08, Tol06b, Tol05, Tol04, Miz06, Lut06], or within the quark-meson coupling model, e.g. [Sai07],

the use of QSRs is fairly seldom and resides in unpublished form [Hay00, Mor01, Mor99, Zsc06].

In contrast, the treatment of vacuum D (and Ds) ground states is performed in a concise manner

[Hay04, Ali83, Pfa06]. A re-evaluation of the QSR for D and D̄ mesons is thus in order and part of this

thesis.

Weinberg type chiral sum rules for differences of moments between light vector and axial-vector

spectral functions have been developed for vacuum [Wei67, Das67] and for a strongly interacting medium

at finite temperature [Kap94]. As a part of this work the framework of chiral partner sum rules is extended

to the heavy-light quark meson sector in the medium for spin-0 and spin-1 mesons.

Medium modifications of mesons may be observed in, e.g., photo-nuclear reactions, cf. [Met11] for a

recent review. One distinguishes between measurements which are sensitive to the production point and

those which are sensitive to the decay point. Short living mesons such as the ρ meson (with a lifetime of

4.5× 10−24 s) may be investigated by measurements which are sensitive to the decay point. The meson

line shape analysis determines the in-medium mass from the four-momenta of the decay products in the

limit of zero three-momentum. Such an approach requires that the decay products leave the medium

undistorted, i.e. without final state interactions with the nuclear medium. Therefore, as already discussed

above, decays into dileptons are the preferred decay channels. In momentum distribution measurements,

the momentum distribution with effective mass-shift is compared to those without such a mass shift.

When a meson leaves the medium, it must be on its vacuum mass shell. If the in-medium mass is lower

than its vacuum mass, the momentum distribution must be shifted downward due to energy-momentum
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conservation. Hence, the momentum distribution in case of a lowered in-medium mass differs from a

scenario without mass-shift. In contrast, long living mesons, such as the D meson (with a lifetime of

10−12 s) most probably leave the medium if they are produced at high momenta. In this case, methods

which are sensitive to the production point are preferable. Transparency ratio measurements determine

the absorption of mesons by a nucleus by comparing the cross section of the meson production per

nucleon with that of free nucleons. The effective reduction of the meson lifetime corresponds to an

increase of its width. Alternatively, the excitation functions of mesons should be altered in case of

changing effective masses. Consequently, if the effective mass of a meson decreases in the medium, the

production threshold should be lowered as well.

1.6 Structure of the thesis

This thesis is organized as follows. The method of QSRs is introduced in Sec. 2. DSEs and BSEs are

introduced in Sec. 6. The starting point for the introduction to QSRs is the current-current correlator.

Its analytic structure is investigated using a Lehmann representation. Subtracted dispersion relations in

vacuum and in medium are derived, relating large momenta to low momenta. The OPE is introduced as

an asymptotic expansion. DSEs are derived following [Rom69] by introducing external classical, i.e. not

quantized, sources. These allow to probe the response of the system w.r.t. external changes, i.e. variations

of the source fields. The resulting equation for the quark propagator is renormalized. The rainbow

approximation is introduced by approximating the quark-gluon vertex by its lowest order perturbative

contribution. BSEs are discussed by introducing two-particle irreducibility. By restricting the interactions

to one at a time, the ladder approximation is introduced.

The application of QSRs to pseudo-scalar mesons consisting of a heavy and a light quark is presented

in Sec. 3, and is close to [Hil09, Hil10a, Hil10b, Käm10, Hil10c], where the main results have been

published. The extension of Weinberg-Kapusta-Shuryak sum rules to the in-medium heavy-light sector

in the spin-1 and spin-0 channel is demonstrated in Sec. 4 similarly to [Hil11, Hil12a]. The impact of

chirally odd condensates on the ρ meson is investigated in Sec. 5; the main results have been published in

[Hil12b]. In Sec. 7 the coupled Dyson-Schwinger–Bethe-Salpeter approach to heavy-light quark meson

masses and to light quark mesons in the Wigner-Weyl mode is given.

In App. A an introduction to Schwinger’s action principle in conjunction with symmetries and

Noether’s theorem in a classical, i.e. not quantized, setting is given, which serves as the basis for

symmetry considerations throughout this thesis. Poisson brackets are introduced and generalized from

constant time surfaces to arbitrary space-like surfaces. These are used to derive a classical algebra of

currents for infinitesimal internal transformations. Furthermore, the particular case of fermions and chiral

transformations is discussed. Order parameters are introduced in the scope of quantizing the theory.

App. B is an essay about Källén-Lehmann representations, symmetries and non-anomalous Ward

identities of current-current correlators and dispersion relations.

Technical details of QSRs are discussed in App. C. These include the Fock-Schwinger gauge in

14



1 Introduction and motivation 1.6 Structure of the thesis

App. C.1, which is used to introduce the background field method as a tool for calculating an OPE.

Furthermore, Borel transformations, used to improve the convergence of the OPE and to enhance the

weighting of the lowest resonance of the spectral function, are reviewed and applied to in-medium

sum rules in App. C.2. A detailed evaluation of the OPE for heavy-light quark currents and the

associated renormalization of condensates by introducing non-normal ordered condensates can be found

in Apps. C.4 and C.5. Recurrence relations for the Wilson coefficients are derived in App. C.6. The

strategy of analyzing the sum rule is explained in App. C.7. Finally, a perspective on gluon condensates

at temperatures and densities close to the critical temperature is given.

In App. D explicit calculations of the in-medium OPE for chiral partner sum rules are exposed.
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2 Introduction to QCD sum rules

As known from quantum field theory, n-point functions play an important role in evaluating observables.

Many quantities can be calculated directly if an appropriate n-point function is known. The main object

of investigation within a QSR analysis is the current-current correlation function Π(q) defined in vacuum

as the following two-point function

Π(q) = i

∫
d4x eiqx〈Ω|T

[
j(x)j†(0)

]
|Ω〉 , (2.0.1a)

being the Fourier transform of the expectation value of the time-ordered product of two currents. The

quantity defined by Eq. (2.0.1a) is called the causal correlator. An extensive essay about correlators,

their analytic properties, symmetry constraints, non-anomalous Ward identities and subtracted dispersion

relations can be found in App. B. We will merely summarize the main results here.

For contour integrations in the medium, it is more convenient to use the retarded or advanced correlator

instead [Fet71]. Retarded (R) and advanced (A) correlators are defined as

R(q) = i

∫
d4x eiqx〈Ω|Θ(x0)

[
j(x), j†(0)

]
−
|Ω〉 , (2.0.1b)

A(q) = i

∫
d4x eiqx〈Ω|Θ(−x0)

[
j†(0), j(x)

]
−
|Ω〉 , (2.0.1c)

where Θ(x0) is the Heaviside function, which obey the appropriate analytic structure. The spectral

density is defined as

ρ(q) = −
∫

d4x eiqx〈Ω|
[
j(x), j†(0)

]
−
|Ω〉 . (2.0.1d)

It may be regarded as a density of states which allows to express the correlator of an interacting particle

by a sum of (integral over) free correlators. For illustrative purposes a spectral function, chosen similarly

to the experimentally observed ρ spectral density, is given in Fig. 2.0.1. Only the causal correlator can be

evaluated in perturbation theory. On the other hand, the quantities defined in Eqs. (2.0.1b) and (2.0.1c)

are related to the causal correlator via analytic continuation in the complex plane, which can be used in

conjunction with dispersion relations (to be introduced in Sec. 2.1) to determine the OPE. Furthermore,

the ground state expectation value has to be replaced at nonzero temperatures by the Gibbs average:

〈Ω| . . . |Ω〉 → 〈. . .〉 ≡ 1

Z
Tr
[
e−β(H−µN) . . .

]
. (2.0.2)
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ρ(s)

s[GeV2]

Figure 2.0.1: Schematic view of a spectral density. A relativistic Breit-Wigner curve ρ(s) ≈
1/
[
(s−m2)2 +m2Γ2

]
has been used to model the resonance. The high energy tail is

the continuum contribution to the spectral density.

Here, Z is the grand canonical partition function, H stands for the Hamiltonian, β is the inverse tempera-

ture and N denotes some additive quantum number such as the particle number and µ the corresponding

chemical potential. The ground state expectation value of an operator is the zero temperature and density

limit of (2.0.2).

The physical ground state |Ω〉 at zero temperature satisfies

H|Ω〉 = EΩ|Ω〉 , (2.0.3a)

〈Ω|Ω〉 = 1 , (2.0.3b)

a−|Ω〉 6= 0 , (2.0.3c)

with H being the full Hamiltonian of the theory and |Ω〉 the lowest eigenstate. The operator a− denotes

an arbitrary annihilation operator which annihilates the canonical ground state |0〉 of free particles,

a−|0〉 = 0, used in perturbation theory. The latter one is, in contrast to the physical ground state |Ω〉, the

lowest eigenstate of the free Hamiltonian. The state |0〉 is often referred to as the vacuum state, but in

order to prevent confusions we will only refer to it as perturbative ground state. Equation (2.0.3) reflects

the non-perturbative physics of the strong interaction, hence, it is referred to as non-perturbative, physical

ground state or simply ground state. As a simple example of a ground state which is not annihilated by an

annihilation operator recall the shifted harmonic oscillator. The sets of creation and annihilation operators

of shifted and unshifted harmonic oscillator are related to each other and an operator of one set can be

expressed by a linear combination of operators from the other set. The lowest energy state of the shifted

harmonic oscillator, which is the shifted lowest energy state of the unshifted harmonic oscillator, is of

course annihilated by its annihilation operators. It is however not annihilated by annihilation operators of

the unshifted harmonic oscillator. Throughout the literature, |Ω〉 is often simply referred to as vacuum

state, with the meaning of zero temperature and density. In the course of this thesis the zero density, i.e.
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the vacuum ground state, and the finite density ground state are both denoted by |Ω〉. It is understood

that the nonzero density ground state is a many-particle state. Although the vacuum ground state must be

understood as non-perturbative ground state it is defined to satisfy EΩ = 0 and hadrons as excitations of

the ground state thus have an energy equal to their mass in the rest frame. The vacuum ground state is

Lorentz invariant and invariant under time-reversal and parity transformations. Note that weak interaction

processes violate invariance w.r.t. parity transversal [Wu57]. In contrast, the in-medium ground state is

only assumed to be invariant under time reversal and parity in its local rest frame. It is not invariant under

all Lorentz transformations, but expectation values calculated in this state, e.g. the above current-current

correlator Π(q), indeed transform covariantly [Jin93]. As a result of (2.0.3a), the ground state is not

translational invariant but obeys

eiPx|Ω〉 = eipΩx|Ω〉 , (2.0.4)

where P is the momentum operator and pΩ denotes the related momentum of the finite density ground

state. The latter one is a function of the medium four-velocity vµ. A brief discussion of the problem of

defining the medium four-velocity is given in App. B.3. Hence, application of the translation operator

results in a phase factor. However, expectation values w.r.t. |Ω〉 are translationally invariant because

the phase factors cancel each other. Analogously, we also assume translational invariance of the finite

temperature medium and mean

〈O(x)〉 = 〈O(x+ a)〉 (2.0.5)

for the Gibbs average (the zero temperature case is included in this notation).

The analytic structure of causal, retarded and advanced correlators and their relation to the spectral

density is investigated in some detail in App. B.1 utilizing their Källén-Lehmann representation [Käl52,

Leh54]. We generalize the canonical treatment of spin-0 current operators, as in Eq. (2.0.1a), or traces

of correlators with tensorial rank-2 in Minkowski space, i.e. contracted Lorentz indices of two spin-1

currents in Eq. (2.0.1a), to the general case of non-contracted Lorentz indices of spin-1 currents. As a

result, we find that simple dispersion relations which relate the imaginary part of the correlator to its

real part can only be given if the correlator is symmetric w.r.t. its Lorentz indices. As a consequence the

causal correlators can not be expressed by advanced and retarded correlator only. Instead, one has

Πµν(q) =
Rµν(q)

1− e−βq0 +
Aµν(q)

1− eβq0 − tanh−1

(
βq0

2

)
Imρµν(q) , (2.0.6)

at nonzero temperature and density. In App. B.1 we show that the spectral density is real if and only if it

is symmetric w.r.t. Lorentz indices. Contracting the Lorentz indices gives the well-known representation

of the causal correlator at nonzero temperatures in terms of retarded and advanced correlators only. Note

that R and A have overlapping poles along the real energy axis for β 6= 0 (see App. B.1). At zero
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temperature Eq. (2.0.6) becomes

Πµν(q) = Θ(q0)Rµν(q) + Θ(−q0)Aµν(q)− sign(q0)Imρµν(q) , (2.0.7)

clearly exposing non-overlapping pole contributions.

Furthermore, in App. B.2 we give a comprehensive analysis of symmetries and transformation

properties of the correlators assuming different combinations of translational invariance, invariance under

parity and time reversal or charge conjugation. These are used to decompose the tensor structure of the

correlators in Minkowski space. It turns out that retarded and advanced correlators are transformed into

each other if the ground state or the medium is translational invariant or invariant w.r.t. time reversal.

Assuming translational invariance and invariance w.r.t. time inversion and parity reversal, the spectral

density and the retarded, advanced and causal correlators are symmetric w.r.t. their Lorentz indices.

This gives rise to the well-known transversal and longitudinal projections. In case of parity violation,

an antisymmetric part contributes and has to be investigated separately. This important result allows

a decomposition into symmetric tensors of rank 2 in Minkowski space, as demonstrated in App. B.3.

Finally, in App. B.4 we derive non-anomalous Ward identities to express the longitudinal part in terms

of the trace of the correlator (in Minkowski space), and spin-0 correlators of the according parity and

condensates. These interrelations between correlators of different spins are required in order to separate

the spin-0 contribution from the spin-1 correlator when analyzing vector or axial-vector spectra. As a

byproduct we show under what conditions the longitudinal part is zero and demonstrate that current

conservation is not sufficient. In particular, for different quark flavors entering the currents, the Gibbs

average must be symmetric w.r.t. to these flavors. The results obtained in App. B are extensively used in

Sec. 4.

The current j(x) entering Eq. (2.0.1a), which describes a hadron in the low-energy region, is assumed

to be represented by a composite operator consisting of quark field operators in the Heisenberg picture. It

has to reflect the quantum numbers and valence quark content of the particle under consideration. The

correlator Π(q) can be understood as a function describing the propagation of a particle from 0 to x.

In the high-momentum regime, i.e. at small distances, it must reflect the quark structure and valence

quark content of the particle, while at low momentum, i.e. large distances, it is determined by hadronic

properties of the respective particle.

The theorem of Gell-Mann–Low relates matrix elements of interacting Heisenberg field operators

(“sandwiched” between interacting states, e.g. the ground state of the interacting theory |Ω〉) to expectation

values of interaction picture field operators, i.e. free fields, in non-interacting states (e.g. the perturbative

ground state |0〉) [GM51, Pas84]:

Π(q) = i

∫
d4x eiqx

〈0|T
[
j(x)j†(0)ei

∫
d4xL

(0)
int (y)

]
|0〉

〈0|T
[
ei

∫
d4xL

(0)
int (y)

]
|0〉

, (2.0.8)

where L
(0)
int (x) is the interaction Lagrange density and the superscript (0) indicates that all fields have to
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2 Introduction to QCD sum rules 2.1 Subtracted dispersion relations

be taken as free fields. If the coupling strength g in L
(0)
int is small, the exponential may be expanded into

a series which is hoped to converge and may serve as a starting point for a perturbative treatment taking

into account a finite number of terms. Noticeable, the BSE has also been proven in [GM51].

The basic idea of the QSR method is to relate large-momentum properties of the correlation function

to properties in the region of small momenta [Shi79b]. Instead of deriving properties of hadrons which

are results of the non-perturbative character of the interaction from first principles of the theory, one

introduces non-vanishing ground state expectation values of quantum field operators as power corrections

to a perturbative expansion of Eq. (2.0.8) in each order of αs = g2/4π, called condensates, in order

to reproduce the hadronic properties of the current-current correlator. In this sense, by introducing

condensates, a possibility is offered to implement non-perturbative physics. A clear separation of long

and short distances is mandatory. All the non-perturbative physics, i.e. large distance dynamics, must be

contained in the condensates. This separation is achieved within the scope of a rigorous OPE, whereas

the short distance dynamics is accessed via dispersion relations.

Either hadronic phenomenology is used to determine the condensates or known condensates are used to

predict and to understand hadronic properties. The condensates as expectation values of QCD operators

are accessible, e.g., in lattice QCD.

2.1 Subtracted dispersion relations

We will now relate the different energy regimes of the current-current correlator (2.0.1a) (in vacuum) or

(2.0.1b) (in the medium) to each other by using the analytic properties only. Thereby, as distinguished

from the treatment in the original articles of Källén [Käl52] and Lehmann [Leh54], an approach is used

which exhibits the role of subtractions in detail and follows the treatment of [Sug61]. The treatment of

all correlators proceeds along the same line of arguments. In particular, only general analytic properties

which are common to the correlators are used. Therefore we restrict the discussion without loss of

generality to the causal correlator. However, a distinction between vacuum and medium is necessary, as

we carefully calculate explicitly subtracted dispersion relations for the in-medium case. All derivations

can be found in App. B.5.

Vacuum dispersion relation

In vacuum, the correlator is a function of q2 , Π(q)→ Π(q2) , and, thus, has poles which correspond to

the resonances and a cut which stems from the continuum contribution starting from a threshold s+ and

extends to infinity on the positive real axis. Therefore, one may use the contour given in the left panel

of Fig. 2.1.1 in conjunction with Cauchy’s integral formula to relate the correlator at q2 off the positive

real axis to its discontinuities along the positive real axis. Indeed, for any contour Γ and q2 within the

contour, one may write

Π(q2) =
1

2πi

∫
Γ

Π(s)

s− q2
ds . (2.1.1)
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Req2

Imq2

OPE

×q2

Γ

Req0

Imq0

OPE

×q0

Γ

Figure 2.1.1: Integration contours Γ in the complex q2-plane (left panel) and in the complex q0-plane
(right panel). The parallel integration paths tend to the real axis (but do not coincide with
it), while the outer circle or half-circles tend to infinity.

Assuming
∣∣Π(q2)

∣∣ ≤ ∣∣q2
∣∣N for

∣∣q2
∣∣ → ∞, where N ∈ N is a finite and fixed number, and letting the

outer circle tend to infinity, we arrive at the N -fold subtracted dispersion relation in vacuum

Π(q2)−
N−1∑
n=0

Π(n)(0)

n!
(q2)n =

1

π

∫ ∞
s0

(
q2

s

)N
∆Πvac(s)

s− q2
ds . (2.1.2)

We have defined the discontinuities as

∆Πvac(q2) =
1

2i
lim
ε→0

[
Π(q2 + iε)−Π(q2 − iε)

]
. (2.1.3)

The polynomial in Eq. (2.1.2) is called subtraction and is introduced to suppress the contribution of the

outer circle, which is polynomial as well, if the correlator does not vanish fast enough for
∣∣q2
∣∣→∞.

Medium dispersion relation

In the medium the correlator is a function of all possible scalar products of the medium four-velocity vµ
and the momentum qµ, i.e. Π(q) = Π(q, v) → Π(q2, v2, qv). For a fixed medium four-velocity, it is a

function of q0. In contrast to the vacuum case, it has poles along the entire real energy axis and one may

therefore give a dispersion relation in the complex energy plane rather than in the energy-squared plane.

Applying Cauchy’s integral formula to the contour depicted in the right panel of Fig. 2.1.1 gives

Π(q0, ~q ) =
1

2πi

∫
Γ

Π(ω, ~q )

ω − q0
dω . (2.1.4)
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2 Introduction to QCD sum rules 2.2 Operator product expansion

The main difference to the vacuum case is that the correlator may be split into a part which is even (e)

and a part which is odd (o) in the energy q0

Π(q0, ~q ) = Πe(q0, ~q ) + q0Πo(q0, ~q ) . (2.1.5)

Defining the discontinuities along the real axis as

∆Π(ω, ~q ) =
1

2i
lim
ε→0

[Π(ω + iε, ~q )−Π(ω − iε, ~q )] , (2.1.6)

the N -fold subtracted dispersion relation in the medium for the even part read

Πe(q0, ~q )− 1

2

N−1∑
n=0

Π(n)(0, ~q )

n!
(q0)n (1 + (−1)n)

=
1

2π

∫ +∞

−∞
dω∆Π(ω, ~q )

qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)
ω2 − q2

0

(2.1.7a)

and for the odd part

Πo(q0, ~q )− 1

2

N−1∑
n=0

Π(n)(0, ~q )

n!
(q0)n−1 (1− (−1)n)

=
1

2π

∫ +∞

−∞
dω∆Π(ω, ~q )

qN−1
0

ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)
ω2 − q2

0

. (2.1.7b)

As can be seen from both equations, even and odd parts only depend on q2
0 .

Dispersion relations are exact relations between the current-current correlation function at arbitrary

(complex) values of q0 or q2, respectively, off the real axis (positive real axis) and its values at the real

axis (positive real axis). This enables us to relate properties of the current-current correlation function at

real (physical) values of the energy q0 for the in-medium case and positive real values of the momentum

squared q2 for the vacuum case to the hadronic properties of the correlation function encoded in the

discontinuities along the real axis.

2.2 Operator product expansion

Applying the OPE [Wil69] relates the current-current correlator to the quark degrees of freedom encoded

in the respective currents. Intuitively, it is clear that such a relation can only be valid at large external

momenta q2. At low momentum the fundamental degrees of freedom are hadrons. In fact, the OPE has

only been proved in perturbation theory [Zim73]. Therefore, application of the OPE is restricted to the

high-momentum regime.

Consider the product of two local field operators j(x)j†(y). In the limit x→ y this product is not well

defined. Instead, it is singular [Mut87]. This also holds true for the time-ordered product of two local
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field operators, T
[
j(x)j†(y)

]
, as can be seen by applying Wick’s theorem to the time-ordered product6

T
[
j(x)j†(y)

]
=:j(x)j†(y) : +j(x)j†(y) , (2.2.1)

introducing the free-field propagators and setting x = y. The singularities are contained in the free-

field propagators. In general, it can be shown that the square of a local free field operator diverges if

the operator has non-vanishing matrix elements between the vacuum and one particle states [Zim73].

Thereby the divergence is carried by the ground state expectation value. For matrix elements of two

interacting local field operators this can also be seen by investigating the Källén-Lehmann representation

(see Sec. B.1) in coordinate space for x→ y. The same holds true for operator products which are not

time ordered. This is intimately connected with the canonical equal-time commutators (ETCs) of the

theory.

Wilson proposed [Wil69] that an operator product can be written as a sum of c-number functions

CO(x− y), which are singular for x→ y, and non-singular operators O . For the time-ordered product,

this expansion therefore reads

T
[
j(x)j†(y)

]
=
∑
O

CO(x− y)O , (2.2.2)

whereCO(x−y) are the so-called Wilson coefficients or coefficient functions, being singular, and O being

finite in the limit x→ y. Wilson’s proposal was strongly motivated by current algebra considerations

and Schwinger terms (see Sec. A.2). Indeed, the ETC of two local currents A and B is expected to be of

the form

[A(x0, ~x ), B(x0, ~y )]− =
∑
n

Cn(~x− ~y )On(x) , (2.2.3)

where On is a local field and Cn denotes Dirac’s delta distribution and derivatives thereof. Wilson

proposed that a similar expansion must hold for any operator product. In App. A.2 a brief discussion of

the interrelation between divergent operator products, Schwinger terms and OPEs is given. Approximate

scale invariance at small distances [Pok00, Col84] dictates the nature of the singularities, i.e. the behavior

of the functions Cn(~x− ~y ) at small distances [Pas84], and relates it to the mass dimension. Accordingly,

the operators On can be ordered with increasing mass dimension dimm (which can be determined for

free field operators via their canonical commutation relations [Pok00]) and the leading contribution has

the lowest mass dimension. We list here all operators and their mass dimension which are considered

throughout this thesis:

Dµ : dimm = 1 , (2.2.4a)

6: . . . : means normal ordering and indicates a Wick contraction. Note that normal ordering requires a unique splitting
of an operator into positive and negative frequency parts. For free fields, the EoM guarantee that this is possible. In general
this is not true for interacting fields [Rom69]. Normal ordering is therefore defined w.r.t. the perturbative ground state |0〉.
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q : dimm =
3

2
, (2.2.4b)

Gµν : dimm = 2 , (2.2.4c)

and the operator products

q̄q : dimm = 3 , (2.2.5a)

q̄Dµq : dimm = 4 , (2.2.5b)

G2 : dimm = 4 , (2.2.5c)

q̄DµDνq : dimm = 5 , (2.2.5d)

q̄σµνGµνq : dimm = 5 , (2.2.5e)

q̄ΛTΓqq̄Λ′T ′Γ′q : dimm = 6 , (2.2.5f)

where the last term denotes, quite generally, four-quark condensates with flavor matrices Λ, Λ′, color

matrices T , T ′ and Dirac structures Γ, Γ′. Possible Lorentz indices have been suppressed in the last term.

One can show that, if non-perturbative effects dominate the dynamics, a consistent separation of

large distance and short distance physics is necessary [Gen84]. This means that the non-perturbative

effects must be contained in expectation values of the operators O , while the coefficients are completely

determined by perturbative physics.

It is important to note that (2.2.2) can only be understood as an asymptotic expansion, i.e. it diverges.

The series is an approximation to the operator product, if truncated and only a finite number of terms is

taken into account [Shi79b]. A divergent series which is asymptotic to the operator product for x→ y,

i.e. an asymptotic expansion of the divergent operator product, has to fulfill [Itz80]

lim
x→y

T
[
j(x)j†(y)

]
−∑Omax

O CO(x− y)O

COmax(x− y)
= 0 ∀ Omax , (2.2.6)

where the l.h.s. converges weakly. In contrast to a Taylor expansion of a function f(x) at x = x0, where

the quality of the approximation increases with increasing number of terms that have been taken into

account, the asymptotic series of a, possibly divergent, function g(x) at x = x0 has to be truncated at

some finite order N = N(x− x0) to give the best approximation that can be achieved.7 Taking more or

less terms into account, the approximation gets worse. We will use this property of asymptotic expansions

for the analysis of our sum rule.

As the OPE is an expansion at operator level, the coefficient functions are state independent. They

are completely determined by the structure of the operator product. This means that choosing a certain

current to express the quark structure of the considered particle completely determines the coefficient
7A Laurent expansion would only be a possible expansion if the function g(x) has isolated singularities. Moreover, such an
expansion would mean that the series is convergent inside some ring around the singularity. Instead, an asymptotic expansion
can also be used to approximate functions g(x) which are well defined in some region, e.g. x > 0, have a divergence at
x = 0 and are ill defined for x < 0. In such a case it is impossible to find a Laurent series for the function g(x) at x = 0
with maximum radius of convergence being R > 0 [Win06].
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functions. On the other hand, there might be different interpolating currents which describe the same

particle and, hence, lead to different OPEs. The nucleon, for example, may be described by various

interpolating currents such as the two ones given by Ioffe [Iof81]. Many other choices may be useful for

more sophisticated problems, e.g. [Bra93, Fur96, Lei97, Kon06]. The question whether a current with

specified quantum numbers couples to a certain particle or not, can not be answered a priori and has to

checked by explicit calculations.

Calculating matrix elements of (2.2.2) by using the non-perturbative vacuum ground state |Ω〉 or the

in-medium Gibbs average, one obtains

〈T
[
j(x)j†(y)

]
〉 =

∑
O

CO(x− y)〈O〉 . (2.2.7)

The matrix elements of the operators 〈O〉 on the r.h.s. of (2.2.7) are called condensates. Using the

perturbative ground state |0〉, only the unity operator gives a contribution to the sum, because all the

other matrix elements vanish. In regimes where perturbative QCD applies, e.g. for heavy quarks,

the condensates are comparably small and it may be a reasonable approximation to set them to zero.

Whenever non-perturbative effects are not negligible, perturbative techniques fail and, by (2.0.3), the

condensates acquire nonzero values. In this sense, by introducing non-vanishing matrix elements one is

able to deal with non-perturbative physics. From (2.2.7) we also see that the medium dependence must

be completely contained in the condensates, because the Wilson coefficients are state independent.8 In

Fig. 2.2.1, the graphical representation of an OPE for a current-current correlator is shown. Although

the medium dependence shall be contained in the condensates, the matrix elements of the OPE differ

in vacuum and medium. However, this is not a result of vanishing Wilson coefficients. Rather, it is a

result of vanishing matrix elements of certain operators on the r.h.s. of Eq. (2.2.7) in vacuum, which

do not vanish in the medium. Therefore, the complete medium dependence is indeed contained in the

condensates, although the OPEs in form of Eq. (2.2.7) differ. Note that due to the different mass scales

in heavy-light quark mesons standard OPE techniques fail to properly separate long and short distance

dynamics as addressed in the discussion after Eq. (2.2.4). Additional renormalization of the condensates

is required and results in the famous operator mixing, see Sec. C.4.

For our purposes the condensates can be considered at this stage as phenomenological parameters

used to reproduce the properties of the correlation function in the non-perturbative, i.e. hadronic, region.

Knowledge of the current-current correlation function in the low momentum regime, i.e. the hadronic

properties of the particle under investigation, together with the dispersion relations reviewed in App. B

will result in restrictions for the correlator in the large-momentum regime. By virtue of the OPE, this

gives us valuable information about the condensates.9

Moreover, instead of reproducing hadronic properties, e.g. hadron masses, by explicitly deriving

non-perturbative dynamical effects of the theory, such as confinement or DCSB from first principles of

8This is true for low densities or temperatures. A full thermal field theoretic approach leads to a medium dependence of the
Wilson coefficients [Hat92]. This partly contradicts the separation of scales demanded by the OPE.

9Strictly speaking, a QSR gives us information about certain combinations of condensates.
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Figure 2.2.1: Graphical visualization of an OPE for a current-current correlation function including
(from top left to bottom right) the perturbative contribution, the chiral condensate, the
mixed quark-gluon condensate, the digluon condensate and a four-quark contribution
which stems from power corrections to the O(αs) perturbative contribution. In the
latter case, the gluon carries hard momenta, while the gluons carry soft momenta in
case of the digluon and mixed quark-gluon condensate. Apart from the last condensate,
all condensates are power corrections to the lowest order perturbative term. In this
figure, double dashed lines correspond to exact propagators, double lines to perturbative
correlators and single lines denote free propagators. Crosses symbolize condensates.

QCD, the existence of these effects is implicitly taken as granted by introducing condensates and relating

them to measurable quantities. As the condensates are expectation values of quark and gluon operators in

the ground state, they give us valuable information about the dynamical structure of the theory. They

can be read as particles, propagating in the ground state of QCD or the strongly interacting medium,

being annihilated by virtual particles and creating other real particles (the remaining virtual particles

become real) somewhere else. Although Feynman diagram techniques are applicable, throughout this

thesis they are merely used to visualize the formulas which are evaluated or as an intuitive notation in

order to indicate the terms that have to be inserted for further calculations.

However, because the operators O appearing in the sum (2.2.2) are completely determined by the

theory, their matrix elements do not depend on the specific currents of the operator product. Of course, a

certain operator could be absent from the sum, if the corresponding Wilson coefficient vanishes due to

the structure of the currents, but the condensate itself is independent. Hence, the condensates may be

considered as universal parameters in the sense that their knowledge is not restricted to a specific sum

rule. Instead, parameters obtained from a certain sum rule or any other method are universal and valid for

any other sum rule.

In order to calculate the OPE, one may use the circumstance that it is an expansion at operator level.

Applying the Gell-Mann–Low equation (2.0.8) in conjunction with Wick’s theorem [Wic50, Gre92]

gives all orders of the strong coupling in a perturbative expansion but, strictly speaking, eliminates all

condensates due to the non-perturbative vacuum. However, as we are only interested in the Wilson
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2 Introduction to QCD sum rules 2.3 Sum rules

coefficients of the OPE, Eq. (2.0.8) may be applied without making use of the defining property of the

perturbative ground state, i.e. retaining matrix elements of normal ordered operators, and hence delivering

coefficient functions and non-singular operators. Formally, Eq. (2.0.8) serves to obtain the expansion

at operator level. Once at our disposal, the ground state expectation value or Gibbs’ average of this

expansion is evaluated, introducing the condensates as power corrections to the perturbative expansion

ΠOPE(q) =
∑
O

CO(q)〈O〉 . (2.2.8)

The unit operator 1, which is the operator of the lowest mass dimension, thereby corresponds to the

genuine perturbative series. This approach is the basis for the background field method [Nov84b], where

the interaction with the ground state or the medium is modeled by a weak gluonic background field.

Strictly speaking, this interaction is therefore limited to soft gluons, whereas hard gluon contributions

arise due to gluon fields introduced by higher orders of the interaction. Details of this method are reviewed

in App. C.1. Other techniques are, e.g., the plane wave method [Nar02] and a recently developed method

based on canonical commutation relations [Hay12].10

Recapitulatory we recall that the singular behavior of operator products like j(x)j†(y) for x→ y gives

rise to the OPE (2.2.2), while the non-perturbative large distance behavior gives rise to the introduction

of nonzero condensates 〈O〉. The condensates are introduced in order to reproduce or to predict hadronic

properties, which can not be understood from a perturbative point of view. A graphical representation

can be found in Fig. 2.2.1.

2.3 Sum rules

The sum rules are set up by inserting the OPE into the dispersion relation. For the vacuum case the sum

rules read

ΠOPE(q2)−
N−1∑
n=0

Π
(n)
ph (0)

n!
(q2)n

=
1

π

∫ s0

0

(
q2

s

)N
∆Πph(s)

s− q2
ds+

1

π

∫ +∞

s0

(
q2

s

)N
∆ΠOPE(s)

s− q2
ds , (2.3.1)

10Note first that this method actually circumvents an OPE in QSRs. And second, it originates from solid state physics, cf. e.g.
[Nol05].
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2 Introduction to QCD sum rules 2.3 Sum rules

where we introduced the threshold parameter s0.11 Similarly, for the in-medium case the sum rule for the

even part read

Πe
OPE(q2

0, ~q )− 1

2

N−1∑
n=0

Π
(n)
ph (0, ~q )

n!
(q0)n (1 + (−1)n)

=
1

2π

∫ s+0

s−0

dω∆Πph(ω, ~q )
qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)
ω2 − q2

0

+
1

2π

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω∆ΠOPE(ω, ~q )

qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)
ω2 − q2

0

, (2.3.2a)

and for the odd part

Πo
OPE(q2

0, ~q )− 1

2q0

N−1∑
n=0

Π
(n)
ph (0, ~q )

n!
(q0)n (1− (−1)n)

=
1

2πq0

∫ s+0

s−0

dω∆Πph(ω, ~q )
qN0
ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)
ω2 − q2

0

+
1

2πq0

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω∆ΠOPE(ω, ~q )

qN0
ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)
ω2 − q2

0

. (2.3.2b)

The subscript “ph” indicates that a phenomenological model is used in order to relate condensates to

hadronic properties. The threshold parameters s0 (s±0 ) have been introduced to separate the continuum

contribution from the lowest lying excitations of the spectrum. Thereby we assumed semi-local quark-

hadron duality, which means that integrating the spectral strength above the threshold is well approximated

by an integral over ΠOPE. It turns out that the perturbative contribution approximates the continuum

very well, cf. e.g. [Kwo08].

The major drawbacks of the QSR method are that, on the one hand, only integrated spectral densities

are probed and, on the other hand, only combinations of condensates enter. Possibilities of extracting

certain parameters of the spectral density or isolating particular condensates, e.g. a particular order

parameter, are therefore limited. In order to enhance the weight of the lowest excitation of the spectrum a

Borel transformation may be applied. It transforms the spectral integral as given in Eqs. (2.3.1) and (2.3.2)

into the Laplace transform of the spectral density, i.e. the spectral density is integrated with an exponential

weight. As a byproduct the subtractions are eliminated. On one side, the Borel transform improves

the convergence of the OPE, as the result is nothing else but the Borel sum of the OPE. The Borel

summation is a technique to sum an actually divergent series. Details about the Borel transformation and

the resulting expressions are given in App. C.2. In some cases it might be useful to introduce a different

weighting which enhances other energy domains. An example is given by the Gaußian sum rule [Raf97],

cf. [Oht11a, Oht11b] for the nucleon. Throughout this thesis, models for the spectral density, e.g. a

Breit-Wigner curve, have been employed to extract bound state masses and other parameters. During
11The quantity s0 differs from the threshold parameter introduced in App. B.5 to characterize the regions of analyticity.
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2 Introduction to QCD sum rules 2.3 Sum rules

the last years the maximum entropy method has been applied to QSRs [Gub10]. However, although the

method was also successfully applied to nucleons [Oht11a] and charmonium states [Gub11], it fails to

give the correct width for the ρ meson [Gub10] and is not considered in this thesis.
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3 QCD sum rules for heavy-light spin-0
mesons in the medium∗

As argued in Sec. 1.3 a careful re-evaluation of the D and D̄ OPE is mandatory. The aim of the present

chapter is the analysis of these sum rules in cold nuclear matter. Extensions toB and B̄,Ds and D̄s and the

scalarDmesons are included. Even for the OPE up to mass dimension 5, there are conflicting results in the

literature concerning the open charm sector [Hay00, Mor01, Mor99, Zsc06, Ali83, Neu92, Nar89, Nar01].

While in [Hay00] only the even part of the in-medium OPE up to mass dimension 4 has been used, we

present here the even as well as the odd in-medium OPE up to mass dimension 5. Moreover, a term

∝ 〈q̄gσG q〉, i.e. the lowest-order quark-gluon condensate, can be found in the literature with various

factors and signs already for the vacuum. As the subtleD−D̄ mass splitting is of paramount experimental

interest, a safe basis is mandatory.

3.1 Operator product expansion

Employing the current operators jD+ = id̄γ5c, jD− = j†
D+ = ic̄γ5d we obtain the Borel transformed

(see App. C.2) OPE for the correlator given in Eq. (2.0.1a) up to mass dimension 5, in the rest frame of

nuclear matter v = (1,~0 ) (v stands for the medium four-velocity), in the limit md → 0 and sufficiently

large charm-quark pole mass mc,

B
[
Πe

OPE(ω2, ~q = 0 )
] (
M2
)

=
1

π

∫ ∞
m2
c

ds e−s/M
2
ImΠD+

per (s, ~q = 0 )

+ e−m
2
c/M

2

(
−mc〈d̄d〉+

1

2

(
m3
c

2M4
− mc

M2

)
〈d̄gσG d〉+

1

12
〈αs
π
G2〉

+

[(
7

18
+

1

3
ln
µ2m2

c

M4
− 2γE

3

)(
m2
c

M2
− 1

)
− 2

3

m2
c

M2

]
〈αs
π

(
(vG)2

v2
− G2

4

)
〉

+2

(
m2
c

M2
− 1

)
〈d†iD0d〉+ 4

(
m3
c

2M4
− mc

M2

)[
〈d̄D2

0d〉 −
1

8
〈d̄gσG d〉

])
, (3.1.1a)

B
[
Πo

OPE(ω2, ~q = 0 )
] (
M2
)

= e−m
2
c/M

2

(
〈d†d〉 − 4

(
m2
c

2M4
− 1

M2

)
〈d†D2

0d〉 −
1

M2
〈d†gσG d〉

)
, (3.1.1b)

∗The presentation is based on [Hil09, Hil10a, Käm10, Hil10c, Hil10b].
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3 QCD sum rules for heavy-light mesons 3.2 Parameterizing the spectral function

where αs = g2/4π. (Analog relations hold for jD0(x) = iūγ5c with jD̄0(x) = j†
D0(x) = ic̄γ5u.)

The calculational details are documented in App. C.4. Even (e) and odd (o) correlators are defined in

Eq. (B.5.18). The sum rules are set up according to the N -fold subtracted dispersion relations given in

Eqs. (2.3.2) and, for the Borel transformed relations, (C.2.27). While the perturbative spectral function

ImΠD+

per (s) (see [Ali83, Nar89] for an explicit representation in terms of the pole mass) is known for a

long time, discrepancies especially for Wilson coefficients of medium specific condensates exist. An

important intermediate step is the careful consideration of the operator mixing, which occurs due to the

introduction of non-normal ordered condensates and the corresponding cancellation of infrared divergent

terms ∝ m−2
q and logmq (mq is the light-quark mass) at zero and nonzero densities [Hil08]. This is

not to be confused with the operator mixing within renormalization group methods. In vacuum, our

expression differs from [Hay00] in the coefficient of 〈(αs/π)G2〉; [Ali83] reports an opposite sign;

[Mor01, Mor99] finds the same result. For the medium case [Mor01, Mor99] does not give explicit

results, while terms ∝ 〈d̄d〉, ∝ 〈(αs/π)G2〉, ∝ 〈(αs/π)((vG)2/v2 −G2/4)〉 have different coefficients

compared to [Hay00]. Higher order terms are partially considered in [Mor01, Mor99] and are found to

be numerically not important.

We stress the occurrence of the term mc〈d̄d〉. In the pure light quark sector, say for vector mesons, it

would read md〈d̄d〉, i.e., the small down-quark mass strongly suppresses the numerical impact of the

chiral condensate 〈d̄d〉. In fact, only within the doubtful factorization of four-quark condensates into the

squared chiral condensate it would become important [Tho05]. Here, the large charm-quark mass acts as

an amplifier of the genuine chiral condensate entering the QSRs for the D+ meson.

3.2 Parameterizing the spectral function

Especially in vacuum the spectral strength of the vector–isospin-scalar excitation exhibits a well-defined

sharp peak (the ω meson) and a well-separated flat continuum. Assuming the same features for the

ω meson in a medium gives rise to the often exploited “pole + continuum” ansatz. One way to avoid

partially such a strong assumption is to introduce certain moments of the spectral function, thus replacing

the assumed pole mass by a centroid of the distribution [Tho05, Kwo08].

For D mesons the sum rule includes an integral which arises from the dispersion relation over positive

and negative energies, see Eq. (C.2.27). Similar to baryons [Coh95, Tho07], one may try to suppress the

antiparticle contribution corresponding here to D−. This, however, is not completely possible [Tho08b].

Nevertheless, one can identify with the ansatz ∆Π(s) = πF+ δ(s−m+)− πF− δ(s+m−), motivated

by the Lehmann representation of the correlation function (cf. App. B.1), the meaning of the even and

odd sum rules (C.2.27) with (3.1.1):

e ≡
∫ s+0

s−0

dω ω∆Πe−ω
2/M2

= m+F+e−m
2
+/M

2
+m−F−e−m

2
−/M

2
, (3.2.1a)

o ≡
∫ s+0

s−0

dω∆Πe−ω
2/M2

= F+e−m
2
+/M

2 − F−e−m
2
−/M

2
. (3.2.1b)
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3 QCD sum rules for heavy-light mesons 3.2 Parameterizing the spectral function

With the decomposition m± = m±∆m and F± = F ±∆F the leading order terms of an expansion in

∆m for the first and second lines become ∝ Fme−m
2/M2

and ∝ (∆F − 2∆mF m
M2 )e−m

2/M2
meaning

that (3.2.1a) is related to the average D + D̄ properties, while (3.2.1b) refers to the D − D̄ splitting. If

one assumes for the moment being m± and F± to be independent of the Borel mass M , Eq. (3.2.1) can

be rewritten as

∆m =
1

2

oe′ − eo′
e2 + oo′

, (3.2.2a)

m =

√
∆m2 − ee′ + (o′ )2

e2 + oo′
, (3.2.2b)

where a prime denotes the derivative w.r.t. 1/M2. Having fixed ∆m and m, ∆F and F are given as

∆F =
1

2

e(m2+∆m2)/M2

m

[
(e− o∆m)sinh(

2m∆m

M2
) + omcosh(

2m∆m

M2
)

]
, (3.2.3a)

F =
1

2

e(m2+∆m2)/M2

m

[
(e− o∆m)cosh(

2m∆m

M2
) + omsinh(

2m∆m

M2
)

]
. (3.2.3b)

In order to gain further insight into the dependencies of ∆m and m on the different OPE contributions,

we expand (3.2.2) up to first order in the density n employing e(n) ≈ e(0) + n de/dn|n=0 and o(n) ≈
n do/dn|n=0, since o(0) must vanish to reproduce the vacuum sum rules where ∆m(n = 0) = 0 holds.

We remark that these expansions are exact for a linear density dependence of the condensates and if

s2
0 = ((s+

0 )2 + (s−0 )2)/2 as well as ∆s2
0 = ((s+

0 )2 − (s−0 )2)/2 are density independent and the Borel

mass M is kept fixed. This implies ∆s2
0 = 0 for all densities, because otherwise o(0) = 0 cannot be

fulfilled. For small densities we get accordingly

∆m(n) ≈ 1

2

do
dn

∣∣
0
e′(0)− e(0)do′

dn

∣∣
0

e(0)2
n , (3.2.4a)

m(n) ≈
√
−e
′(0)

e(0)
+

1

2

√
− e(0)

e′(0)

de
dn

∣∣
0
e′(0)− e(0)de′

dn

∣∣
0

e(0)2
n , (3.2.4b)

which can be written as

∆m(n) ≈ −1

2

do
dn

∣∣
0
m2(0) + do′

dn

∣∣
0

e(0)
n ≡ α∆mn , (3.2.5a)

m(n) ≈ m(0)− 1

2m(0)

de
dn

∣∣
0
m2(0) + de′

dn

∣∣
0

e(0)
n . (3.2.5b)

Equation (3.2.2) and the approximations in Eq. (3.2.5) offer a transparent interpretation. In vacuum

(n = 0), there is no mass splitting, of course; the mass parameter m(0) is determined merely by the even

part of the OPE. In first order of n, the mass splitting ∆m depends on both the even and odd parts of

the OPE, whereas only the even part of the OPE determines the mass parameter m, having the meaning
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3 QCD sum rules for heavy-light mesons 3.2 Parameterizing the spectral function

of the centroid of the doublet D+, D−. If one is only interested in the mass shift of the doublet as a

whole, for small densities it is sufficient to consider the even OPE part alone, as was done in [Hay00].

However, for the mass splitting the odd part of the OPE is of paramount importance. In particular, it is

the density dependence of the odd part of the OPE alone which drives the mass splitting in first order of

n. Interestingly, the density dependent part of the chiral condensate, which belongs to the even part of

the OPE, enters the mass splitting in order n2. The chiral condensate comes about in the combination

mc〈d̄d〉. The large charm mass amplifies the numerical impact, as stressed above.

We remark that Eqs. (3.2.2) or (3.2.5) are a consequence of using a pole-ansatz for the first excitation.

The OPE and the special form of the continuum contribution to the spectral integral are encoded in e

and o. Likewise, the arguments following Eq. (3.2.2) merely use o(0) = 0. The last requirement must

always be fulfilled in any sum rule and/or dispersion relation because, at zero density, the current-current

correlation function (2.0.1a) only depends on q2 and, hence, the odd part (B.5.18b) vanishes. This can

also be confirmed directly from Eq. (3.2.1b), where s+
0 = −s−0 , due to particle anti-particle symmetry,

and ∆Π(s) → ∆Π(s2), meaning that the spectral density in vacuum merely depends on the squared

energy, on account for o(0) = 0.

To arrive at a more general result, one may seek for a relation of m± to certain normalized moments

of Π(s) (or ratios thereof) independent of a special ansatz, as can be done in the case of vector mesons

[Tho05, Kwo08]. In this spirit one would be tempted to define
∫ s+0

0 dω ω∆Πe−s
2/M2 → m+F+e−m

2
+/M

2

and
∫ s+0

0 dω∆Πe−ω
2/M2 → F+e−m

2
+/M

2
and analogously for m− and F−. However, such a separation

of positive and negative frequency parts leads to multiple but different expressions for m± which can

be fulfilled consistently only for special cases of Π(s), as for the above pole ansatz. (This can be seen

by combining these relations with derivatives according to M−2.) Therefore, one is left with either the

somewhat vague statement that Eq. (3.2.1) refers to D + D̄ and D − D̄ properties or one has to employ

another explicit ansatz for the function Π(s).

Alternatively, one can define moments which correspond to the integrals in Eq. (3.2.1)

Sn(M) ≡
∫ s+0

s−0

dω ωn ∆Π(ω) e−ω
2/M2

. (3.2.6)

The odd and even OPE, o = S0(M) and e = −S1(M), and their derivatives with respect to M−2,

o′ = −S3(M) and e′ = S4(M), can then be related via Eq. (3.2.2) to these moments. Thereby, new

quantities ∆m and m may be defined which encode the combined mass–width properties of the particles

under consideration:

∆m ≡1

2

S1S2 − S0S3

S2
1 − S0S2

, (3.2.7a)

m+m− ≡−
S2

2 − S1S3

S2
1 − S0S2

(3.2.7b)

and m 2 ≡ ∆m
2

+m+m−. For the above pole ansatz, these quantities become ∆m = ∆m and m = m,

34



3 QCD sum rules for heavy-light mesons 3.3 Evaluation for D mesons

i.e., they allow for an interpretation as mass splitting and mass centroid. The relations (3.2.6) and (3.2.7)

avoid the use of a special ansatz of the spectral function, but prevent a direct physical and obvious

interpretation.

3.3 Evaluation for D and D̄ mesons

3.3.1 The pseudo-scalar case

We proceed with the above pole ansatz and evaluate the behavior of m± having in mind that these

parameters characterize the combined D, D̄ spectral functions, but need not necessarily describe the pole

positions in general. According to the above defined current operators, D stands either for D+ or D0 and

D̄ for D− or D̄0.

Because dm±/dM = 0 has been used to derive Eq. (3.2.2) we have to look for the extrema ofm±(M).

Furthermore, in order to solve consistently the system of equations defined by (3.2.1), the values taken for

m± must be fixed at the same Borel mass M . Therefore, we evaluate the sum rules using two threshold

parameters

(s±0 )2 = s2
0 ±∆s2

0 (3.3.1)

and demand that the minima of the respective Borel curves m+(M) and m−(M) must be at a common

Borel mass M . Hence, the thresholds are prescribed and offer the possibility to give a consistent solution

to Eq. (3.2.1). It is important to note that the consistent evaluation of F± within this method is only

possible because F± and m± have extrema at the same Borel mass, as also dF±/dM = 0 has been used.

The consistency is shown in App. C.7.

Analogously to the analysis in [Hay00], we chose the threshold parameter s2
0 = 6.0 GeV2, which

approximately reproduces the vacuum case. At zero density we obtain for m± a value of 1.863 GeV, rep-

resenting a reasonable reproduction of the experimental value of the D mass. The employed condensates

are parametrized in linear density approximation as 〈. . .〉 = 〈. . .〉vac + 〈. . .〉medn with values listed in

Tab. 3.3.1.

The density dependence of the mass splitting parameter ∆m and the D + D̄ doublet mass centroid m

are exhibited in Fig. 3.3.1. We observe an almost linear behavior of the mass splitting with increasing

density. At n = 0.15 fm−3 a mass splitting of 2∆m ≈ −60 MeV is obtained. The mass splitting has

negative values, i.e. m− > m+ ormD̄ > mD in line with previous estimates in [Mor01, Mor99]. For the

mass centroid m our result differs from the one in [Hay00], where a mass shift of the order of −50 MeV

is obtained, while we find about +45 MeV. At n = 0.15 fm−3 the splitting of the threshold parameters

is ∆s2
0 ≈ −0.3 GeV2 for the used set of parameters, and the minima of the Borel curves are located at

M ≈ 0.95 GeV being slightly shifted upwards with increasing density.

While the mass splitting is fairly robust, we find a sensitivity of the centroid mass shift under variation

of the continuum threshold parameter s2
0. The above reported value of the mass centroid changes
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Table 3.3.1: List of employed condensate parameters. The condensates are given in linear density
approximation 〈. . .〉 = 〈. . .〉vac + 〈. . .〉medn. A discussion of these numerical values can
be found in [Coh95]; further remarks on 〈q†gσG q〉 are given in [Mor01, Mor99]. For the
strong coupling we utilize αs = 4π/

[
((11− 2Nf/3) ln(µ2/Λ2

QCD))
]

with µ being the
renormalization scale, taken to be of the order of the largest quark mass in the system, and
Nf being the number of quark flavors with mass smaller than µ; Λ2

QCD = 0.25 GeV2 is
the dimensional QCD parameter. The employed quark pole masses are mc = 1.5 GeV
and mb = 4.7 GeV [Nar01].

condensate vacuum value 〈· · · 〉vac density dependent part 〈· · · 〉med

〈q̄q〉 (−0.245 GeV)3 45/11
〈αsπ G2〉 (0.33 GeV)4 −0.65 GeV
〈q̄gσG q〉 0.8 GeV2 × (−0.245 GeV)3 3 GeV2

〈q†q〉 0 1.5

〈αsπ
(

(vG)2

v2 − G2

4

)
〉 0 −0.05 GeV

〈q†iD0q〉 0 0.18 GeV
〈q̄
[
D2

0 − 1
8gσG

]
q〉 0 −0.3 GeV2

〈q†D2
0q〉 0 −0.0035 GeV2

〈q†gσG q〉 0 0.33 GeV2

towards zero when lowering s2
0. In Fig. 3.3.1 we therefore also use a density dependent prescription

for the threshold s2
0(n) = s2

0(0)± n/n0 GeV2, where n0 = 0.15 fm−3 is the nuclear saturation density;

±1/n0 GeV2 corresponds to the first Taylor coefficient ds2
0/dn(0). This simple choice enables us to

identify the uncertainties which might emerge due to the introduction of a density independent threshold.

As can be seen, the average mass shift may change in sign. In contrast, the result for ∆m shows only a

weak dependence on s2
0.

The density dependence of ∆F and F are exhibited in Fig. 3.3.2. Although the uncertainties due to

variations of the density dependence of the continuum threshold s2
0(n) are rather large for both quantities,

the overall conclusion is the same as for the mass parameters. While F ranges from ≈ −0.030 GeV3 to

≈ 0.050 GeV3, ∆F can be determined to be negative, ranging from≈ −0.004 GeV3 to≈ −0.001 GeV3.

However, the overall dependence on the threshold behavior seems rather large.

At this point a comment concerning the sign of 〈q†gσG q〉 is in order. If one would use 〈q†gσG q〉 =

−0.33 GeV2 n instead (this option is also discussed in [Coh95], 〈q†D2
0q〉 would acquire a value of

−0.0585 GeV2 n accordingly) one would get a much larger mass splitting of about −180 MeV, which

is far beyond the estimates obtained in [Tol08, Tol06b, Tol05, Tol04, Miz06, Lut06]. Hence, we favor

the positive sign of 〈q†gσG q〉 as advocated in [Mor01, Mor99], too. The density dependancies of mass

splitting and mass centroid for this set of parameters are exhibited in Fig. 3.3.3. Clearly, further correlators

should be studied to investigate the role of the condensate 〈q†gσG q〉. In view of the strong influence of

this poorly known condensate, the D − D̄ mass splitting may be considered as an indicator for its actual

value.

We emphasize the special evaluation strategy employed so far. Another possibility is, e.g., variation of

36



3 QCD sum rules for heavy-light mesons 3.3 Evaluation for D mesons

0.00 0.05 0.10 0.15
-0.04

-0.03

-0.02

-0.01

0.00

m
 [G

eV
]

n [fm-3]
0.00 0.05 0.10 0.15

1.84

1.86

1.88

1.90

1.92

1.94

m
 [G

eV
]

n [fm-3]

Figure 3.3.1: Mass splitting parameter ∆m (left) and mass centroid m (right) for D, D̄ mesons for
density independent threshold (solid line) and a density dependent threshold s2

0(n) =
s2

0(0)± n/n0 GeV2, where the dotted (dashed) curve is for the positive (negative) sign.
Note that the D − D̄ mass splitting is 2∆m.
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Figure 3.3.2: ∆F (left) and F (right) as evaluated from the QSR analysis. Line codes as in Fig. 3.3.1.

0.00 0.05 0.10 0.15

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

m
 [G

eV
]

n [fm-3]
0.00 0.05 0.10 0.15

1.86

1.88

1.90

1.92

m
 [G

eV
]

n [fm- 3]

Figure 3.3.3: Evaluation of the QSR for the mass splitting ∆m (left) and the centroid m (right) of
pseudo-scalar D and D̄ mesons for 〈q†gσGq〉 = −0.33 GeV2 n. Line codes as in
Fig. 3.3.1.
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Figure 3.3.4: Borel curves m±(M) for the D meson for two densities n = 0 (left), n = 0.15 fm−3

(right) and two values of the chiral condensate. Solid curves: chiral condensate from
Tab. 3.3.1, dotted curves: (left) doubling the chiral condensate or (right) doubling the
density dependent part of the chiral condensate; lower (upper) curves in the right panel
are for m+ (m−), while m+ = m− for the vacuum case in the left panel.

s2
0 and ∆s2 so that m±(M) develop a section of maximum flatness. Interestingly, this method leads to a

rather low threshold s2
0 ≈ 4 GeV2 and a low vacuum mass of about m ≈ 1.6 GeV. In contrast, averaging

over the Borel curves in the interval [0.9M0, 1.2M0], around the minimum M0, we find the values for

the mass splitting ∆m ≈ −40 MeV and the average mass shift to be of the same order as quoted above,

whereas the absolute value of the vacuum mass becomes m = 1.877 GeV.

Let us now further consider the impact of various condensates. The result for the mass splitting ∆m

strongly depends on the quark density 〈q†q〉, whose density dependence is uniquely fixed. The odd

mixed quark-gluon condensate 〈q†gσGq〉 and the chiral condensate 〈q̄q〉 are the next influential ones for

the mass splitting. The density dependent part of the chiral condensate enters in order O(n2) gaining

its influence from the heavy quark mass amplification factor. The influence of the chiral condensate is

illustrated in Fig. 3.3.4. In a strictly linearized sum rule evaluation, the density dependent part of mc〈q̄q〉
would be omitted for the mass splitting. However, numerically the influence of the chiral condensate is of

the same order as (but still smaller than) the above discussed condensate 〈q†gσG q〉, which enters the odd

part of the OPE. As expected, the density dependence of the mass centroid is basically determined by the

even part of the OPE. The density dependent parts of the other even condensates are of minor importance

for the mass splitting. The shift of the centroid’s mass is anyhow fragile.

Digression: Ds mesons

Within the given formulation and with the first evaluation strategy, one may also consider Ds and D̄s

mesons with the replacements

mq −→ ms = 150 MeV ,

〈q̄q〉 −→ 〈s̄s〉 = 0.8〈q̄q〉vac + y〈q̄q〉med ,
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Figure 3.3.5: ∆m (left) and m (right) for Ds and D̄s at s2
0 = 8.0 GeV2 and for y = 0.5 (solid),

y = 0.25 (dotted), y = 0 (dashed).

〈q̄gσG q〉 −→ 〈s̄gσG s〉 = 0.8 GeV2 〈s̄s〉 ,
〈q†q〉 −→ 〈s†s〉 = 0 ,

〈q†gσG q〉 −→ 〈s†gσG s〉 = y〈q†gσG q〉 ,
〈q†iD0q〉 −→ 〈s†iD0s〉 = 0.018 GeVn ,

〈q̄
[
D2

0 −
1

8
gσG

]
q〉 −→ 〈s̄

[
D2

0 −
1

8
gσG

]
s〉 = y〈q̄

[
D2

0 −
1

8
gσG

]
q〉 ,

〈q†D2
0q〉 −→ 〈s†D2

0s〉 = y〈q†D2
0q〉 .

The anomalous strangeness content of the nucleon is varied as 0 ≤ y ≤ 0.5 [Nav05]; lattice calculations,

for example, point to y = 0.36 [Don96]. The results are exhibited in Fig. 3.3.5. At n = 0.15 fm−3 and

for y = 0.5 we observe a mass splitting of 2∆m ≈ +25 MeV and a shift of the mass centroid of about

+30 MeV. The splitting of the thresholds becomes ∆s2
0 ≈ 0.83 GeV2, and the minima of the Borel curves

are located at M ≈ 0.89 GeV and are slightly shifted upwards with increasing density. The main reason

for the positive sign of the mass splitting is the vanishing strange quark net density 〈s†s〉. The mass

splitting acquires positive values for 〈s†s〉 . 0.4n (at y = 0.5). Mass splitting and the average mass

shift tend to zero for y → 0. In this case only the pure gluonic condensates, which enter the even OPE

and are numerically suppressed compared to other condensates, have a density dependence. Note that

these evaluations are, at best, for a rough orientation, as mass terms ∝ ms have been neglected. The too

low vacuum mass of 1.91 GeV compared to the experimental value mDs = 1.968 GeV is an indication

for some importance of strange quark mass terms. Such mass terms ∝ ms have been accounted for in

[Hay04] for the vacuum case. The complete in-medium OPE and sum rule evaluation deserves separate

investigations, as ms introduces a second mass scale.
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Digression: Finite width analysis

Before proceeding with the QSR analysis for scalar D mesons we will comment on the finite width

analysis for pseudo-scalar D mesons. Investigating finite width effects within QSRs always meets the

problem of additional parameters which have to be fixed by the same set of equations. Hence, one

only is able to give the mass of the particle (which may be defined as, e.g., the center of gravity or the

peak position of the spectral function) as a function of its width (cf. Sec. 5 for an analog study w.r.t.

the ρ meson). In the case of D mesons, the widths of particle (+) and anti-particle (−) enter, and the

mass–width correlation of the particle is locked with the width of the antiparticle as well. Employing the

following Breit-Wigner ansatz for the spectral function

∆Π(s) =
F+

π

sΓ+

(s2 −m2
+)2 + s2Γ2

+

Θ(s) +
F−
π

sΓ−
(s2 −m2

−)2 + s2Γ2
−

Θ(−s) (3.3.2)

and determining m±, Γ± such that they fulfill Eq. (3.2.7) reveals this effect. A detailed analysis, as was

done for the VOC scenario of the ρ meson in Sec. 5, requires the coupled solution of Eq. (3.2.1) for m±
for a given pair Γ± over the whole range of Borel masses, finding the minima of the thus obtained curves

m±(M) and varying the splitting of thresholds in order to align the minima. Variation of the pair Γ±

finally delivers the desired mass–width curves. As only the demonstration of the mass–width coupling

between particle and anti-particle is intended, we refrain from performing the full mass–width analysis.

Instead, we choose ∆m and m as determined from the zero-width analysis and solve Eq. (3.2.1) for m±
for all pairs of Γ± at the Borel mass which corresponds to the minima of the Borel curves for m± in

the zero-width analysis. For ∆m = −30 MeV and m = 1.915 GeV one obtains the results depicted in

Fig. 3.3.6.
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Figure 3.3.6: Mass–width correlations form+ (left) andm− (right) for different assumptions of widths
of the respective other particle. ∆m = −30 MeV, m = 1.915 GeV and F+ = F− are
assumed. For simplicity, the integration limits in Eq. (3.2.1) have been extended to ±∞
without including the continuum contribution, to avoid the influence of possible threshold
effects.
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3.3.2 The scalar case

The OPE needed here can be obtained by combining the OPE for pseudo-scalar D mesons and the OPE

for difference sum rules in Sec. 4:

BQ2→M2

[
Πe

OPE(Q2, ~q = 0 )
] (
M2
)

=
1

π

∫ ∞
m2
c

ds e−s/M
2
ImΠD∗

per(s, ~q = 0 ) + e−m
2
c/M

2

(
mc〈d̄d〉 −

1

2

(
m3
c

2M4
− mc

M2

)
〈d̄gσGd〉

+
1

12
〈αs
π
G2〉+

[(
7

18
+

1

3
ln
µ2m2

c

M4
− 2γE

3

)(
m2
c

M2
− 1

)
− 2

3

m2
c

M2

]
〈αs
π

(
(vG)2

v2
− G2

4

)
〉

+2

(
m2
c

M2
− 1

)
〈d†iD0d〉 − 4

(
m3
c

2M4
− mc

M2

)[
〈d̄D2

0d〉 −
1

8
〈d̄gσGd〉

])
, (3.3.3a)

BQ2→M2

[
Πo

OPE(Q2, ~q = 0 )
] (
M2
)

= e−m
2
c/M

2

(
〈d†d〉 − 4

(
m2
c

2M4
− 1

M2

)
〈d†D2

0d〉 −
1

M2
〈d†gσGd〉

)
≡ e−m2

c/M
2〈K(M)〉n, (3.3.3b)

where ImΠD∗
per is given in [Nar02] and mc = 1.3 GeV is the charm quark mass. Note that we use a

different charm quark mass here. We remark again that our main goal is to predict medium modifications.

Therefore, parameters are chosen such that they reproduce the vacuum case.

Low-density expansion:

The primary goal of the present sum rule analysis is to find the dependence of ∆m and m on changes

of the condensates entering Eq. (3.3.3). However, also the continuum thresholds s±0 can depend on the

density, as discussed above for the pseudo-scalar case. The employed evaluation strategy, cf. App. C.7,

naturally provides a density dependent splitting of the threshold parameters, but the average of both

thresholds is still density independent. We will now include its medium dependence.

To study this influence, we consider Eq. (3.2.5) in detail using an asymmetric splitting of the continuum

thresholds ∆s2
0 = ((s+

0 )2 − (s−0 )2)/2 and parameterize its density dependence by ∆s2
0(n) = α∆sn +

O(n2). Up to order n, only s2
0(n = 0) and d∆s20

dn

∣∣∣
0

enter ∆m (i.e. neither ds20
dn

∣∣∣
0

nor dM
dn

∣∣
0
), whereas

s2
0(n = 0), ds20

dn

∣∣∣
0

and dM
dn

∣∣
0

enter m (not d∆s20
dn

∣∣∣
0
) as can be seen from the derivatives needed to calculate

m and ∆m from Eq. (3.2.4):

do

dn

∣∣∣∣
0

=

(
e−s

2
0/M

2

πs0
ImΠper(s

2
0)

d∆s2
0

dn

)
n=0

+ e−m
2
c/M

2〈K(M)〉 , (3.3.4a)

do′

dn

∣∣∣∣
0

=

(
−e
−s20/M2

π
s0ImΠper(s

2
0)

d∆s2
0

dn

)
n=0

+ e−m
2
c/M

2〈K ′(M)−m2
cK(M)〉 , (3.3.4b)
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de

dn

∣∣∣∣
0

=

(
e−s

2
0/M

2

π
ImΠper(s

2
0)

ds2
0

dn
− 1

π

∫ s20

m2
c

ds ImΠper(s)se
−s/M2 dM−2

dn

)
n=0

(3.3.4c)

+
d

dn
BQ2→M2

[
Πe

OPE(Q2, ~q = 0 )
] (
M2
)∣∣∣∣
n=0

. (3.3.4d)

While Eq. (3.2.5) suggests that one can independently adjust m(0) to the respective vacuum value,

Eq. (3.3.4) evidences that further vacuum parameters (such as M , dM
dn

∣∣
0
, s2

0, ∆s2
0, ds20

dn

∣∣∣
0

and d∆s20
dn

∣∣∣
0
)

enter the density dependence and have to be chosen consistently to the vacuum mass. That means, one

has to evaluate the complete sum rule, including consistently the vacuum limit.

Note that the Borel mass, at which the sum rule is analyzed, changes with the density, i.e.

d

dn
B [Πo

OPE]
(
M2
)

=

(
∂

∂n
+

dM−2

dn

∂

∂M−2

)
B [Πo

OPE]
(
M2
)
. (3.3.5)

However, the derivative w.r.t. M−2 of the perturbative term is still an integral with range of integration

being the threshold splitting ∆s2
0. Likewise, the derivative of the non-perturbative terms w.r.t. M−2

is still proportional to the density. Hence, both contributions vanish at zero density, and the density

dependence of the Borel mass drops out.

In linear density approximation of the condensates, α∆m is thus given as

α∆m = − 1

2e(0)

(
e−m

2
c/M

2 ([
m2(0)−m2

c

]
〈K(M)〉+ 〈K ′(M)〉

)
+
e−s

2
0/M

2

πs0
ImΠper(s

2
0)
[
m2(0)− s2

0

]
α∆s

)
, (3.3.6)

which is dominated by the non-perturbative terms. We choose the Borel mass range and the thresholds

according to [Nar05].

As an estimate for the order of α∆s we rely on the splitting of the thresholds for the pseudo-scalar

channel and obtain α∆s ≈ 0.25 · 103 GeV−1. It is an overestimation of the pseudo-scalarO(n) threshold

splitting as it would correspond to a linear interpolation of ∆s2
0 from the vacuum to nuclear saturation

density and, hence, includes higher order terms in the density. We choose α∆s ≈ 102 . . . 103 GeV−1.

The results are depicted in Fig. 3.3.7 for α∆s = ±102 GeV−1 (left panel) and for α∆s = ±103 GeV−1

(right panel). In Fig. 3.3.8, α∆m as a function of α∆s is displayed for M = 1.37 GeV, the minimum of

the vacuum Borel curve for the scalar D meson.

Considering the results for the mass splitting of heavy-light pseudo-scalar mesons, e.g. D and B,

one could raise the question if the splitting is mainly caused by a splitting of the thresholds and, hence,

might be an artifact of the method which determines ∆s2
0. From the above study we find that α∆s

indeed influences the mass splitting. A direct correlation in the sense of a correlation in sign can not be

confirmed. Furthermore, the results for Ds mesons allow for a positive mass splitting if the net strange

quark density falls below a critical value. As the strange quark density enters through the vector quark

condensate, this already points to a suppressed influence of the threshold splitting on the mass splitting.
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Figure 3.3.7: Low density approximation of the mass splitting α∆m as a function of the Borel mass.
Left: for α∆s from−102 GeV−1 (lower bundle of curves) to +102 GeV−1 (upper bundle
of curves). Right: for α∆s from −103 GeV−1 (lower bundle of curves) to +103 GeV−1

(upper bundle of curves). The threshold values are s2
0 = 6.0 GeV2 (solid black), 7.5 GeV2

(dashed red) and 9.0 GeV2 (dotted blue).
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Figure 3.3.8: α∆m as a function of α∆s for M = 1.37 GeV. For line code see Fig. 3.3.7.

Beyond low-density approximation

In the sum rule analysis of this chapter, the threshold splitting is not considered as a free parameter but

determined by the requirement that the minima of the Borel curves for particle and antiparticle are at the

same Borel mass.

Employing the condensates listed in Tab. 3.3.1, one obtains the results exhibited in Fig. 3.3.9. As

in Sec. 3.3, this analysis goes beyond the strict linear density expansion of m and ∆m and uses the

full solution (3.2.2) of the sum rule. The medium dependent part of the chiral condensate (the density

dependence of which is only in linear density approximation, as the other condensates too) enters the

mass splitting next to leading order of the density. The determination of the mass center m depends

strongly on the chosen center of continuum thresholds s2
0 = ((s+

0 )2 + (s−0 )2)/2 as indicated by the broad

range in the right panel of Fig. 3.3.9 when varying their medium dependence. In contrast, the splitting is
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Figure 3.3.9: Mass splitting parameter ∆m (left) and mean mass m (right) of scalar D∗ − D̄∗ mesons
with the pole + continuum ansatz as a function of density at zero temperature. For a charm
quark mass parameter of mc = 1.3 GeV and mean threshold value s2

0(0) = 7.5 GeV2.
The curves are for s2

0(n) = s2
0(0) + ξn/n0 with ξ = 0 (solid), ξ = 1 GeV2 (dotted) and

ξ = −1 GeV2 (dashed).

again fairly robust as evidenced by Fig. 3.3.7, where the difference between curves of different thresholds

is negligible.

A linear interpolation of the threshold splitting from vacuum to a density of n = 0.01 fm−3 gives

an estimate for the O(n) term α∆s ≈ 7 · 102 GeV−1, which justifies the range chosen in the previous

section.

3.4 Evaluation for B and B̄ mesons

We turn now to B and B̄ mesons. The corresponding current operators are jB+ = ib̄γ5u or jB0 = ib̄γ5d.

The antiparticles correspond to jB− = j†
B+ = iūγ5b or jB̄0 = j†

B0 = id̄γ5b. The above equations and,

in particular, the OPE are applied with the replacements mc → mb and mB± → m∓ in order to take

into account the distinct heavy-light structure compared to the D meson case. The Borel curves m±(M)

display, analogously to the case of open charm, pronounced minima at a Borel mass of about 1.7 GeV. We

utilize again the first evaluation strategy outlined in App. C.7. Numerical results are exhibited in Fig. 3.4.1.

We employ s2
0 = 40 GeV2 and obtainm ≈ 5.33 GeV for the vacuum mass. One observes a mass splitting

of 2∆m ≈ −130 MeV at n = 0.15 fm−3. The centroid is shifted upwards by about 60 MeV. The splitting

of the threshold parameters becomes ∆s2
0 ≈ −3.4 GeV2 and the minima of the Borel curves m±(M) are

shifted from M ≈ 1.67 GeV in vacuum to M ≈ 1.71 GeV at n = 0.15 fm−3. In case of B̄, B mesons,

the combination mb〈d̄d〉 is expected to have numerically an even stronger impact than the term mc〈d̄d〉
in the charm sector. Indeed, the influence of the chiral condensate becomes even larger than that of

the odd mixed quark-gluon condensate 〈q†gσG q〉 at higher densities. The overall pattern resembles the

results exhibited in Fig. 3.3.4, but with shifted mass scale for m. The other evaluation strategies yield

the same results. Setting 〈q†gσG q〉 = −0.33 GeV2 n, and, hence, 〈q†D2
0q〉 = −0.0585 GeV2 n, a mass
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Figure 3.4.1: ∆m (left) and m (right) for B̄ and B at s2
0 = 40 GeV2 and mb = 4.7 GeV. For line

codes see Fig. 3.3.1. For density dependent thresholds, s2
0 = s2

0(0)± 7n/n0 GeV2 has
been used.

splitting of 2∆m ≈ −220 MeV and an average mass shift ≈ 45 MeV would be obtained.

3.5 Interim summary

To summarize the results of this chapter, we have evaluated the Borel transformed QSRs for pseudo-scalar

mesons composed of a combination of a light and heavy quark. The heavy quark mass introduces a

new scale compared to QSRs in the light quark sector. The evaluation of the sum rules, complete up to

mass dimension 5, has been performed for D, D̄ and B̄, B mesons with a glimpse on Ds, D̄s and the

scalar D∗, D̄∗ mesons as well. Our analysis relies on the often employed pole + continuum ansatz for the

hadronic spectral function. Complications concerning a finite-width ansatz have been briefly discussed.

This is a severe restriction of the generality of the practical use of sum rules. In this respect, the extracted

parameters refer to this special ansatz and should be considered as indicators for changes of the true

spectral functions of hadrons embedded in cold nuclear matter. Particles and antiparticles are coupled –

a problem which is faced also for hadrons with conserved quantum numbers in the light quark sector

[Tho08b, Coh95, Tho07].

We presented a transparent approximation to highlight the role of the even and odd parts of the

OPE. Numerically, we find fairly robust mass splittings (for the employed set of condensates), while an

assignment of a possible mass shift of the centroids is not yet on firm ground. The impact of various

condensates is discussed, and 〈q†q〉, 〈q†gσG q〉 and 〈q̄q〉 are identified to drive essentially the mass

splitting. While 〈q̄q〉 is amplified by the heavy quark mass, it enters nevertheless the sum rules beyond

the linear density dependence. A concern is the sign of the condensate 〈q†gσG q〉, vanishing in vacuum

but with poorly known medium dependence, which determines the size of the D − D̄ mass splitting.

These findings, in particular for D, D̄, Ds, D̄s, are of relevance for the planned experiments at FAIR.
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4 Chiral partner QCD sum rules∗

It is the aim of the present chapter to present in-medium sum rules for the scalar and pseudo-scalar as

well as vector and axial-vector mesons composed essentially of a heavy quark and a light quark, e.g.

uc̄ and dc̄ realized in vacuum as D±(1867), JP = 0−, D0(1865), JP = 0−, D∗0(2400)0, JP = 0+,

D∗(2007)0, JP = 1−, D∗(2010)±, JP = 1−, D1(2420)0, JP = 1+ (there is no confirmed charged

scalar or axial-vector state in the open charm sector) [Nak10]. As mentioned in Sec. 1.5, such open

charm degrees of freedom will be addressed in near future by the CBM [CBM] and PANDA [PAN]

collaborations at FAIR in proton-nucleus and anti-proton–nucleus reactions [Fri11]. Accordingly we are

going to analyze the chiral sum rules in nuclear matter.

Chiral symmetry is explicitly broken by nonzero quark masses (cf. Sec. 1.1 and App. A), but QCD

is still approximately invariant under transformations which are restricted to the light quark sector.

Although currents, related to mesons which are represented in the quark model as composed of a light

quark and a heavy quark, are neither conserved nor associated with a symmetry transformation, vector

and axial-vector currents still mix under a transformation which is restricted to the light quark sector.

Consider for example the infinitesimal rotation in flavor space ψ → e−it
aΘaΓψ ≈ (1− itaΘaΓ)ψ,

where ta ∈ SU(Nf), Γ = 1 for the vector transformations and Γ = γ5 for the axial transformations, and

Θa denote a set of infinitesimal rotation parameters (rotation angles). The vector current transforms as

jV,τ
µ = ψ̄γµτψ → jV,τ

µ ± iψ̄ΓγµΘa [ta, τ ]− ψ , (4.0.1)

where + (−) refers to the vector (axial) transformations and τ denotes a matrix in flavor space. In the 3-

flavor sectorψ = (ψ1, ψ2, ψ3), where the first two quarks are light, the choice ~Θ = (Θ1,Θ2,Θ3, 0, . . . , 0)

and 2ta = λa, the well-known Gell-Mann matrices, clearly leaves the QCD Lagrangian invariant even

if the third quark is heavy. To be specific, let us consider τ = (λ4 + iλ5)/2, where the corresponding

current transforms as

jV,τ
µ = ψ̄1γµψ3 → jV,τ ′

µ = jV,τ
µ − i

2

(
ψ̄1Γγµψ3Θ3 + (Θ1 + iΘ2) ψ̄2Γγµψ3

)
. (4.0.2)

Obviously, the heavy-light vector current mixes with heavy-light axial-vector currents if an axial trans-

formation, with Γ = γ5, is applied. Analog expressions hold for spin-0 mesons, and the result is

the same as in the spin-1 case, but with the replacements γµ → 1 for the vector transformation and

iγµ [ta, τ ]− → [ta, τ ]+ for the axial transformation. Hence, a symmetry and its spontaneous breakdown

∗The presentation is based on [Hil11, Hil12a].
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4 Chiral partner QCD sum rules 4.1 Differences of current-current correlators and their OPE

in the light quark sector must also be reflected in the spectrum of mesons composed of a heavy and a

light quark. In particular, the splitting of the spectral densities between heavy-light parity partners must

be driven by order parameters of spontaneous chiral symmetry breaking.

Probing the chiral symmetry restoration via the change of order parameters requires a reliable extraction

of their medium dependence. As is known for the vacuum case, the chiral condensate is numerically

suppressed in QSRs in the light quark sector due to the tiny light quark mass, but occurs amplified by the

large heavy quark mass in QSRs involving a light and a heavy quark [Rei85]. Despite of the amplification

in terms of mc〈ūu〉, emphasized in Sec. 3, with mc and 〈ūu〉 to be evolved to the appropriate scale, in

case of the D mesons, the dependence of the in-medium D meson spectrum on the chiral condensate is

not as direct as anticipated. This is clear in so far as there are always particle and antiparticle contributions

to the spectrum of pseudo-scalar states and one has to deal with both species. This accounts for inherent

suppressions and amplifications of different types of condensates due to the generic structure of the

sum rule in that case. Indeed, a precise analytic and numerical investigation points to competitive

numerical impacts of various condensates for the mass splitting of particle and antiparticle, whereas, the

determination of the mass center rather depends on the modeling of the continuum threshold (cf. Sec. 3).

In the difference of chiral partner spectra (Weinberg type sum rules) the dependence on chirally

symmetric condensates drops out. At the same time, the amplification of the chiral condensate by the

heavy quark mass is still present. This makes Weinberg type sum rules of mesons composed of heavy

and light quarks an interesting object of investigation.

4.1 Differences of current-current correlators and their operator
product expansion

We consider the currents

jS(x) ≡ q̄1(x) q2(x) (scalar), (4.1.1a)

jP(x) ≡ q̄1(x) iγ5 q2(x) (pseudo-scalar), (4.1.1b)

jV
µ (x) ≡ q̄1(x) γµ q2(x) (vector), (4.1.1c)

jA
µ (x) ≡ q̄1(x) γ5γµ q2(x) (axial-vector) (4.1.1d)

which are self adjoint in the case of equal quark flavors, and the corresponding causal correlators (cf.

App. B)

Π(S,P)(q) = i

∫
d4x eiqx〈T

[
j(S,P)(x)j(S,P)†(0)

]
〉 , (4.1.2a)

Π(V,A)
µν (q) = i

∫
d4x eiqx〈T

[
j(V,A)
µ (x)j(V,A)†

ν (0)
]
〉 . (4.1.2b)

In the rest frame of the nuclear medium, i.e. v = (1,~0), and for mesons at rest, i.e. q = (1,~0), the
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4 Chiral partner QCD sum rules 4.1 Differences of current-current correlators and their OPE

(axial-) vector correlator can be decomposed as (cf. App. B.3)

Π(V,A)
µν (q) =

(
qµqν
q2
− gµν

)
Π

(V,A)
T (q) +

qµqν
q2

Π
(V,A)
L (q) (4.1.3)

with Π
(V,A)
T (q) = 1

3

(
qµqν

q2 − gµν
)

Π
(V,A)
µν (q) and Π

(V,A)
L (q) = 1

q2 q
µqνΠ

(V,A)
µν (q) written explicitly

covariant. ΠT contains the information about (axial-) vector degrees of freedom. ΠL refers to (pseudo-)

scalar states and can be related to the (pseudo-) scalar correlator (cf. App. B.4 for details).

We now proceed with the OPEs for ΠX ∈
{

Π(S,P),Π(V,A) ≡ gµνΠ
(V,A)
µν

}
. We do not include the

αs corrections which would arise from inserting the next-to-leading order interaction term in the time-

ordered product of the current-current correlator. Such terms account, e.g., for four-quark condensates.

They are of mass dimension 6 and beyond the scope of this investigation. According to standard OPE

techniques (cf. e.g. [Nov84b, Shi79a, Nar02] and App. C), the time-ordered product can be expanded

into normal ordered products multiplied by Wick-contracted quark-field operators. Dirac indices can

be projected onto elements of the Clifford algebra, Γ ∈ {1, γµ, σµν , iγ5γµ, γ5}, which provides an

orthonormal basis in the space of 4 × 4 matrices with the scalar product (A,B) ≡ 1
4TrD[AB]. Color

indices can be projected onto an analogously appropriate basis. Thereby, color and Dirac traces of the

quark propagator occur. Using the background field method in fixed-point gauge (cf. [Nov84b, Shi79a]

and App. C.1) one arrives, after a Fourier transformation, at

ΠX(q) = −i3
∫

d4p

(2π)4
〈: TrC,D

[
S1(p)ΓXS2(q + p)ΓX

]
:〉

+ i2
∑

Γ

1

4

∞∑
n=0

(−i)n
n!

∂~αnq 〈: (−1)nq̄1ΓTrD

[
ΓΓXS2(q)ΓX

]
D~αnq1

+ q̄2ΓTrD

[
ΓΓXS1(−q)ΓX

]
D~αnq2 :〉

= ΠX(0)(q) + ΠX(2)(q) , (4.1.4)

where D~αn = Dα1 . . . Dαn (with an analog notation for the partial derivative) and quark fields and

their derivatives are taken at x = 0. For X denoting vector and axial-vector states,
(
ΓX
)
ij

(
ΓX
)
kl
≡(

ΓXµ
)
ij

(
ΓX,µ

)
kl

is understood. Π(0)(q) denotes the fully contracted (depicted in Fig. 4.1.1 (a)) and

Π(2)(q) the 2-quark term (see Fig. 4.1.1 (b) for 〈ψ̄ . . . ψ〉), TrC,D means trace w.r.t. color and Dirac

indices. To have the same structures in both quantities Π(0) and Π(2), we also project the matrix product

ΓXSΓX onto this basis (see App. D.1) which allows to consider the propagator properties in the space of

Dirac matrices for each quark separately:

Π(P,S)(0)(q) = (−1)(P,S)i

∫
d4p

(2π)4
〈: 1

4
TrC [TrD[S2(p+ q)]TrD[S1(p)]

+ (−1)(P,S)TrD[S2(p+ q)γµ]TrD[S1(p)γµ] +
1

2
TrD[S2(p+ q)σµν ]TrD[S1(p)σµν ]
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m1

m2

(a) m1

m2

(b) (c)

m2

m1

Figure 4.1.1: Feynman diagrams of (a) Π(0) and (b) Π(2). (c) is for Π(0) with two gluon lines attached
to the free propagator of quark 1. Double lines stand for the complete perturbative series
of the quark propagator (C.1.25), curly lines are for gluons, and circles denote non-local
quark condensates, while crosses symbolize local quark or gluon condensates.

+ (−1)(P,S)TrD[S2(p+ q)γ5γµ]TrD[S1(p)γ5γ
µ] +TrD[S2(p+ q)γ5]TrD[S1(p)γ5]] :〉 ,

(4.1.5a)

Π(V,A)(0)(q) = −(−1)(V,A)i

∫
d4p

(2π)4
〈:TrC [TrD[S2(p+ q)]TrD[S1(p)]

+(−1)(V,A) 1

2
TrD[S2(p+q)γµ]TrD[S1(p)γµ]−(−1)(V,A) 1

2
TrD[S2(p+q)γ5γµ]TrD[S1(p)γ5γ

µ]

−TrD[S2(p+ q)γ5]TrD[S1(p)γ5]] :〉 , (4.1.5b)

where (−1)(P,V) = −1 for pseudo-scalar and vector mesons and (−1)(S,A) = 1 for scalar and axial-

vector mesons. Note that only the Dirac structure has been projected. Still the product of the propagators

in color space must be accounted for, which is indicated by the overall trace in color space. Apart from

the prefactors of each term, the result has the structure of a scalar product in the linear space spanned by

the Clifford base. ΠX(2)(q) in Eq. (4.1.4) may be simplified using Tab. D.1.2 in App. D.1. Also note that

Π(V,A)(0) and Π(V,A)(2) have no σµν part as can be seen from Tab. D.1.2. Later on, this expansion allows

to identify and to separate certain parts in order to investigate their distinct properties, e.g. for md → 0.

To obtain the OPEs for the difference of chiral partners ΠP−S ≡ ΠP −ΠS and ΠV−A ≡ ΠV −ΠA,

one can use (4.1.5) or directly project the occurring anticommutators. The result reads

ΠP−S(0)(q) = −i
∫

d4p

(2π)4
〈: 1

2
TrC {TrD[S2(p+ q)]TrD[S1(p)]

+
1

2
TrD[S2(p+ q)σµν ]TrD[S1(p)σµν ] +TrD[S2(p+ q)γ5]TrD[S1(p)γ5]} :〉 , (4.1.6a)

ΠP−S(2)(q) =
∑
n

(−i)n
n!

1

2

{1,σα<β ,γ5}∑
Γ

〈:q1

←−
D ~αnΓ∂~αn (TrD[ΓS2(q)]) q1

+ q2Γ∂~αn (TrD[ΓS1(−q)])−→D ~αnq2 :〉 , (4.1.6b)
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4 Chiral partner QCD sum rules 4.1 Differences of current-current correlators and their OPE

ΠV−A(0)(q) = i

∫
d4p

(2π)4
〈:2TrC {TrD[S2(p+ q)]TrD[S1(p)]

−TrD[S2(p+ q)γ5]TrD[S1(p)γ5]} :〉 , (4.1.6c)

ΠV−A(2)(q) = −
∑
n

(−i)n
n!

2

{1,iγ5}∑
Γ

〈:q1

←−
D ~αnΓ∂~αn (TrD[ΓS2(q)]) q1

+ q2Γ∂~αn (TrD[ΓS1(−q)])−→D ~αnq2 :〉 , (4.1.6d)

where the Clifford basis is modified now by the imaginary unit in front of γ5 for the vector–axial-vector

difference. The advantage is that we are left with three different types of Dirac traces for the quark

propagators in the P−S case and only two in the V−A case.

The perturbative series for a momentum-space quark propagator in a gluonic background field in

fixed-point gauge is presented in App. C.1. Its derivative is given by the Ward identity ∂µS(q) =

−S(q)Γµ(q, q; 0)S(q), where Γµ(q, q; 0) denotes the exact quark-gluon vertex function at vanishing

momentum transfer. Γµ(q, q; 0) = γµ holds for a classical background field meaning that the Ward

identity for the complete perturbation series has the same form as for free quarks [Lan86].

For the limit of a massless quark flavor attributed to q1, m1 → 0, one can show (see App. D.2) that

TrD[ΓS1(q)] = 0 for Γ ∈ {1, σµν , γ5} and q2 6= 0. In this limit only the diagram in Fig. 4.1.1 (b)

gives a contribution to Π(2). The corresponding diagram for 1 ←→ 2 vanishes, because the sum over

Dirac matrices in (4.1.6) covers such elements where the corresponding traces vanish. Hence, for

chiral partner sum rules the often used approximation of a static quark, which results in vanishing

heavy-quark condensates, is not necessary since their Wilson coefficients vanish in the limit of the other

quark being massless. This means that, if one is seeking the occurrence of quark condensates in lowest

(zeroth) order of the strong coupling αs, at least one quark must have a nonzero mass. (Higher order

interaction term insertions cause the occurrence of further quark condensates proportional to powers of αs,

cf. [Kap94, Leu07, Leu06b] for examples.) Hence, the structure of the OPE side of the famous Weinberg

sum rules for light quarks w.r.t. quark condensates is shown in all orders of the quark propagators and

quark fields.

For the completely contracted term Π(0) the situation is somewhat more involved. A superficial view

on Eq. (4.1.6) together with the trace theorem of App. D.2 may tempt to the conclusion that Π(0) is zero

for chiral partner OPEs of heavy-light quark meson currents. On the other hand it is clear that only

matrix elements of chirally odd operators may enter the OPE, whereas gluon condensates are chirally

even. In this sense, the cancellation of Π(0) is in line with naive expectations. But with the introduction

of non-normal ordered condensates, also gluon condensates together with infrared divergences would

be introduced. Taking this as a heuristic argument for a nonzero Π(0) raises the question of the precise

cancellation of these terms and terms added by introducing non-normal ordered condensates. Indeed,

from the in-medium OPE of D mesons (see App. C.4) it is known that the medium specific divergences
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are canceled because of the renormalization of 〈: d̄γµDνd :〉. But this term is chirally even (formally,

it is the matrix element of an isospin-singlet vector current, cf. Eqs. (A.1.69) and (A.1.70c)) and does

not enter Eq. (4.1.6). Moreover, it is known that introducing non-normal ordered condensates in order

to cancel infrared divergent Wilson coefficients of gluon condensates leads to additional finite gluon

contributions. Clearly, these have to cancel out in case of chiral partner sum rules. Again, this can be

taken as a heuristic argument that only those mass divergences can remain in Π(0) which are cancelled by

chirally odd condensates. Two questions have to be answered. Do all infrared divergences cancel out?

And does the renormalization procedure introduce chirally even condensates? Thus, a careful analysis is

mandatory to prove that the obtained results are infrared stable and that the renormalization procedure is

consistent.

In case of two light quarks, i.e. m1,2 → 0, the limiting procedure and the momentum integration

commute and, hence, Π(0) = 0 is obvious, because all non-vanishing terms drop out in the chiral

difference. If one of the quarks has a nonzero mass, the limiting procedure and the momentum integration

do not commute due to the occurrence of infrared divergences [Che82b, Tka83b, Gro95, Jam93, Hil08,

Zsc11], e.g. for the term depicted in Fig. 4.1.1 (c) which is proportional to the gluon condensate. As the

integration domains in Eqs. (4.1.5) and (4.1.6a), (4.1.6c) involve momenta p = 0, Tr[ΓS(p,m)] does not

converge uniformly for m→ 0. Hence, the integration and the limit m→ 0 cannot be interchanged. A

careful treatment is in order. In fact, a direct calculation of the perturbative contribution to chiral partner

OPEs, which is presented in App. D.3, shows that the infrared divergences are the only remaining terms.

All finite terms cancel out in the chiral difference. Hence, what remains in the chiral difference

are infrared divergent terms stemming from the free propagation of the heavy quark and the light

quark propagator with two gluon lines attached (see Fig. 4.1.1 (c)). These divergences have to be

absorbed by introducing condensates which are not normal ordered. In App. D.3 their cancellation

is demonstrated in detail. The separation done in Eq. (4.1.5) now allows for an unambiguous identi-

fication of the singular terms. Up to mass dimension 5, the only product of traces which contributes

in the limit md → 0 to Π(0) is TrD[S1]TrD[S2]. Indeed, up to order α1
s one can show that the contri-

bution −
∫

d4pTrD[S
(0)
2 (p+ q)]〈:TrD[S

(2)
1 (p)] :〉, which is the remaining term of Eq. (4.1.5) after the

limit m1 → 0 has been taken, is canceled by
∫

d4pTrD[S
(0)
2 (q)]〈TrD[S

(2)
1 (p)]〉. The latter quantity is

introduced by the definition of non-normal ordered condensates (cf. App. C.5)

〈q̄Ô [Dµ] q〉 = 〈: q̄Ô [Dµ] q :〉 − i
∫

d4p

(2π)4
〈TrC,D

[
Ô
[
−ipµ − iÃµ

]
Sq(p)

]
〉 , (4.1.7)

resulting in a factor
∫
〈TrD[S

(2)
1 (p)]〉 to the Wilson coefficient TrD[S

(0)
2 (q)] of the chiral condensate in

Eq. (4.1.4). Hence, in case of heavy-light mesons, first the integration has to be performed, then one has

to introduce non-normal ordered condensates according to Eq. (4.1.7), and afterwards the limit m1 → 0

can be taken. In case of equal quark masses, m1 = m2, the divergences cancel each other by virtue of∫
d4p

(
TrD[S

(2)
1 (p+ q)]TrD[S

(0)
2 (p)] + TrD[S

(0)
1 (p+ q)]TrD[S

(2)
2 (p)]

)
= 0 . (4.1.8)
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4 Chiral partner QCD sum rules 4.2 Chiral partners of open charm mesons

If two heavy (static) quarks are considered, only Π(0) gives a contribution to the chiral OPE, whereas

for two massless quarks, both Π(0) and Π(2) vanish.

Putting everything together this means that for light quarks (m1,2 � ΛQCD) in the chiral-difference

OPE the corresponding traces and, therefore, the corresponding Wilson coefficients vanish, while for

heavy quarks (m1,2 � ΛQCD) the condensates vanish. To obtain quark condensates in order α0
s the

two flavors must be of different mass scales, i.e. q1 ∈ {u, d(, s)} is a light quark and q2 ∈ {c, b, t} is

a heavy quark. Hence, to seek for condensates which are connected to chiral symmetry breaking as

possible order parameters in order α0
s , a natural choice is to consider chiral partner mesons composed

of a light and a heavy quark. Given the above mentioned experimentally envisaged research programs

at FAIR [CBM, PAN, Fri11] we focus on open charm mesons. The presented formulas may be directly

transferred to open bottom mesons by mc → mb.

4.2 Chiral partners of open charm mesons

We now consider a light (q1 ≡ q) and a heavy (q2 ≡ qc) quark entering the currents in Eq. (4.1.1), but the

presented formalism can be applied to arbitrary flavor content. Thereby, traces w.r.t. flavor indices are

introduced.

4.2.1 The case of P–S

For the P−S case we consider the pseudo-scalar D(0−) (D±, D0 and D̄0) and its scalar partners D∗0(0+).

Of course, all the results also account for other heavy–light (pseudo-) scalar mesons. (For open charm

mesons Ds which contain a strange quark, however, the limit ms → 0 may not be a good approximation

and terms ∝ ms should be taken into account as well.)

Up to and including mass dimension 5, after absorbing the divergences in non-normal ordered

condensates, the OPE gets the following compact form

ΠP−S(q) ≡ ΠP(q)−ΠS(q) = ΠP(2)(q)−ΠS(2)(q)

=
∑
n

(−i)n
n!

{1,σα<β}∑
Γ

〈q̄←−D ~αnΓ∂~αnTrD[ΓSc(q)]q〉 , (4.2.1)

where the sum over the elements of the Clifford algebra does not contain γ5 up to this mass dimension

anymore. To evaluate the condensates in Eq. (4.2.1) in terms of expectation values of scalar operators,

Lorentz indices have to be projected onto gµν and εµνκλ in vacuum, whereas the medium four-velocity vµ
provides an additional structure at finite densities and/or temperatures [Jin93]. Hence, new condensates

must be introduced which vanish in the vacuum. Thereby, temperature and density dependencies stem

from Gibbs averages of medium specific operators. The evaluation in the nuclear matter rest frame

vµ = (1,~0 ) for mesons at rest yields
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ΠP−S(q0) = 2〈q̄q〉 mc

q2
0 −m2

c

− 〈q̄gσG q〉 mcq
2
0

(q2
0 −m2

c)
3

+
[
〈q̄gσG q〉 − 8〈q̄D2

0q〉
] mcq

2
0

(q2
0 −m2

c)
3
, (4.2.2)

where we separated a medium-specific term (last line, 〈q̄gσG q〉 − 8〈q̄D2
0q〉 ≡ 〈∆〉) vanishing in

vacuum and q denotes either d or u quark field operators. Equation (4.2.2) reduces to the vacuum result

[Nar05, Hay04, Rei85] at zero density and temperature. The condensates 〈q̄q〉, 〈q̄gσG q〉 and 〈q̄D2
0q〉

may have different medium dependencies.

An odd part of the OPE of chiral partner sum rules does not appear up to this mass dimension. Although

there is no γµ projection of the condensates for difference OPEs of chiral partner, it may arise from an

odd number of derivatives in Eq. (4.2.1).

The sum rule is set up according to Eq. (C.2.27) and after a Borel transformation (cf. App. C.2) the

result is

1

π

∫ +∞

−∞
dω e−ω

2/M2
ω∆ΠP−S(ω) = e−m

2
c/M

2

[
−2mc〈qq〉

+

(
m3
c

2M4
− mc

M2

)
〈qgσG q〉 − 〈∆〉

(
m3
c

2M4
− mc

M2

)]
. (4.2.3)

It is instructive to cast Eq. (4.2.3) in the form of Weinberg type sum rules [Wei67, Kap94]. This can

be accomplished by expanding the exponential on both sides and comparing the coefficients of inverse

powers of the Borel mass. In such a way we can relate moments of the spectral P−S differences to

condensates via

1

π

∫ +∞

−∞
dω ω∆ΠP−S(ω) =− 2mc〈q̄q〉 , (4.2.4a)

1

π

∫ +∞

−∞
dω ω3∆ΠP−S(ω) =− 2m3

c〈qq〉+mc〈q̄gσG q〉 −mc 〈∆〉 (4.2.4b)

1

π

∫ +∞

−∞
dω ω5∆ΠP−S(ω) =− 2m5

c〈qq〉+ 3m3
c〈qgσG q〉 − 3m3

c 〈∆〉+ . . . , (4.2.4c)

where “. . .” denote a neglected contribution of mass dimension 7. Combining the recurrence relations

derived in App. C.6 with the prescription to determine the required orders of the expansions within

the background field technique for given mass dimension shows that such a contribution must exist in

Eq. (4.2.4c). This generalizes the OPE side of Weinberg type sum rules to scalar and pseudo-scalar

mesons in the heavy-light quark sector for the first time.

If one attributes chiral symmetry to the degeneracy of chiral partners (i.e. the l.h.s. of Eq. (4.2.4)

vanishes) the vanishing of 〈q̄q〉 and 〈q̄D2
0q〉 = 1

8 (〈q̄gσG q〉 − 〈∆〉) on the r.h.s. is required. In this

spirit, these condensates may be considered as possible order parameters of chiral symmetry. Note

that Eq. (4.2.4) also allows to consider the omitted mass dimension 7 condensate as an order parameter.
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Remarkably, the chiral condensate 〈q̄q〉 of light quarks figures here in conjunction with the heavy quark

mass as parameter for chiral symmetry breaking in each of the moments (for vacuum, cf. [Nar05]). Of

next importance is 〈q̄D2
0q〉, again in combination with the heavy quark mass. The r.h.s. quantities must

be taken at a proper renormalization scale. Formally, in the chiral (i.e. strictly massless) limit for all

quarks the r.h.s. of Eq. (4.2.4) would vanish.

4.2.2 The case of V–A

In the same manner we proceed in the V−A case. From Eqs. (4.1.6c) and (4.1.6d) we obtain up to and

including mass dimension 5

ΠV−A(q) ≡ ΠV(q)−ΠA(q) = ΠV(2)(q)−ΠA(2)(q)

= −
∑
n

(−i)n
n!

2

{1,iγ5}∑
Γ

〈q1

←−
D ~αnΓ∂~αnTrD[ΓS2(q)]q1〉 , (4.2.5)

where only the 1-projection survives. The in-medium evaluation results in

ΠV−A(q) =− 8〈q̄q〉 mc

q2
0 −m2

c

+ 4〈qgσG q〉 m3
c

(q2
0 −m2

c)
3
− 4〈∆〉 mcq

2
0

(q2
0 −m2

c)
3

(4.2.6)

and together with Eqs. (B.4.20) and (4.2.2) we obtain for the correlator containing the information about

the vector and axial-vector degrees of freedom

ΠV−A
T (q) = ΠP−S +

mc

(q2
0 −m2

c)
2
〈q̄gσG q〉+

1

3

mc

(q2
0 −m2

c)
2
〈∆〉 . (4.2.7)

For vacuum, the result of [Hay04, Rei85] is recovered. The Borel transformed sum rule is given by

1

π

∫ +∞

−∞
dω e−ω

2/M2
ω∆ΠV−A

T (ω) = e−m
2
c/M

2

[
−2mc〈qq〉

+
m3
c

2M4
〈qgσG q〉 − 〈∆〉

(
m3
c

2M4
− 4

3

mc

M2

)]
. (4.2.8)

The corresponding moments therefore are

1

π

∫ +∞

−∞
dω ω∆ΠV−A

T (ω) =− 2mc〈q̄q〉 , (4.2.9a)

1

π

∫ +∞

−∞
dω ω3∆ΠV−A

T (ω) =− 2m3
c〈qq〉 −

4

3
mc〈∆〉 , (4.2.9b)

1

π

∫ +∞

−∞
dω ω5∆ΠV−A

T (ω) =− 2m5
c〈q̄q〉+m3

c〈qgσG q〉 − 11

3
m3
c〈∆〉+ . . . (4.2.9c)
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with the same meaning of “. . .” as above. This second set of Weinberg type sum rules contains the same

condensates as the first set in Eq. (4.2.4) but in different combinations. Again, addressing chiral symmetry

to the l.h.s. one may consider the chiral condensate 〈q̄q〉 and 〈∆〉 as possible order parameters. As the

P−S case allowed us to identify 〈q̄D2
0q〉 as order parameter, 〈q̄gσG q〉 also qualifies as order parameter.

In addition,

1

π

∫ +∞

−∞
dωω∆Π̃V−A

T (ω) = 0 (4.2.10)

follows from Eq. (B.3.6) but for the decomposition Πµν = (qµqν−q2gµν)Π̃T+qµqνΠ̃L. This corresponds

to Weinberg’s first sum rule [Wei67]. Note that, in contrast to Weinberg’s original sum rule [Wei67], no

Goldstone boson properties appear on the right hand side of Eq. (4.2.10) because the heavy-light currents

involved in our case are generally not conserved. The Borel transformed sum rule for Π̃T = ΠT/q
2 reads

1

π

∫ +∞

−∞
dωe−ω

2/M2
ω∆Π̃V−A

T (ω)

= 〈q̄q〉 2

mc

[
1− e−m2

c/M
2
]
− 〈qgσG q〉 1

m3
c

[
1− e−m2

c/M
2

(
1 +

m2
c

M2
+

m4
c

2M4

)]
+ 〈∆〉 1

m3
c

[
7

3

[
1− e−m2

c/M
2

(
1 +

m2
c

M2

)]
− e−m2

c/M
2 m4

c

2M4

]
(4.2.11)

and reproduces Eq. (4.2.9). Note that using ΠT, instead of Π̃T, is more appropriate for the heavy-quark

limit which is considered in the following.

4.2.3 Heavy-quark symmetry

In the heavy-quark limit, m2
2 �

∣∣q2
∣∣, the leading contributions in Eq. (4.2.7) are

ΠV−A
T (q)

∣∣∣
m2

2�|q2|
≈ ΠP−S(q)

∣∣∣
m2

2�|q2|
≈ − 2

m2
〈q̄q〉 , (4.2.12)

where 1
q2−m2

2
= − 1

m2
2

∑∞
n=0

(
q2

m2
2

)n
has been exploited. This result is in agreement with the expected

degeneracy of vector and pseudo-scalar mesons and of axial-vector and scalar mesons in the heavy-quark

limit [Isg89]. Actually the 〈q̄q〉 parts of ΠP−S and ΠV−A
T agree as one can check by comparing Eq. (4.2.3)

with Eq. (4.2.8).

4.2.4 Numerical examples

Using the condensates from Tab. 3.3.1 the r.h.s of Eqs. (4.2.2), (4.2.8) and (4.2.11), i.e. the OPE sides,

are exhibited in Fig. 4.2.1 as a function of the Borel mass for vacuum and cold nuclear matter. The

Borel curves are significantly modified by changes of the entering condensates due to their density

dependencies, i.e. their magnitudes are lowered by approximately 30% of their vacuum values. It should
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Figure 4.2.1: The OPE sides of Eqs. (4.2.2) (upper left panel, P−S), (4.2.8) (upper right panel, V−A)
and (4.2.11) (lower panel V−A) as a function of the Borel mass in vacuum (solid
red line) and at nuclear saturation density n = 0.15 fm−3 (dashed blue line) with
〈∆〉 = 8× 0.3nGeV2.
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4 Chiral partner QCD sum rules 4.3 Interim summary

be emphasized, however, that the density dependence is estimated in linear approximation. For the chiral

condensate 〈q̄q〉 it is known [Lut00, Kai08] that the actual density dependence at zero temperature is not

so strong. One may expect accordingly a somewhat weaker impact of the medium effects.

For further evaluations, the hadronic spectral functions or moments thereof must be specified, e.g. by

using suitable moments as in [Zsc02, Tho05].

4.3 Interim summary

To summarize the results of this chapter, we present difference QSRs for chiral partners of mesons with a

simple quark structure. Focussing on the OPE of the current-current correlator in lowest (zeroth) order

of an interaction term insertion, only the combination of a light and a heavy (massive) quark yields a

non-trivial result: Differences of spectral moments between pseudo-scalar and scalar as well as vector

and axial-vector mesons for condensates up to mass dimension ≤ 5 are determined by the combinations

mc〈q̄q〉, mc〈q̄gσG q〉, and mc(〈q̄gσG q〉 − 8〈q̄D2
0q〉) (to be taken at an appropriate scale) which may be

considered as elements of “order parameters” of chiral symmetry breaking (see [Doi04] for a lattice

evaluation of the mixed quark-gluon condensate at finite temperature). Vanishing of these condensates at

high baryon density and/or temperature would mean chiral restoration, i.e. the degeneracy of spectral

moments of the considered chiral partners. Chiral partners of mesons with light–light or heavy–heavy

quark currents are non-degenerate in higher orders of αs, as exemplified by the Kapusta-Shuryak sum

rule. The famous Weinberg sum rules generalized to a hot medium in [Kap94] refer to lower mass

dimension moments where the OPE side vanishes in the chiral limit.

Our results show a significant change of the OPE side when changing from vacuum to normal nuclear

matter density. This implies that also the hadronic spectral functions may experience a significant

reshaping in the medium.
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5 The impact of chirally odd condensates on
the ρ meson∗

The impact of chiral symmetry restoration on the properties of hadrons, in particular of light vector

mesons, is a much debated issue. As discussed in Sec. 1.3, in-medium modifications of hadrons made

out of light quarks and especially their possible “dropping masses” are taken often synonymously for

chiral restoration. However, experimentally the main observation of in-medium changes of light vector

mesons via dilepton spectra is a significant broadening of the spectral shape [Arn06, Ada08]. Such

a broadening can be obtained in hadronic many-body approaches, e.g., [Fri97, Rap97, Pet98c, Pos04,

Hee06, Her93, Cha93], which at first sight are not related directly to chiral restoration in the above spirit.

Pion dynamics and resonance formation, both fixed to vacuum data, provide the important input for such

many-body calculations. Clearly the pion dynamics is closely linked to the vacuum phenomenon of chiral

symmetry breaking, but the connection to chiral restoration is not so clear. For the physics of resonances

the connection is even more loose. There are recent approaches which explain some hadronic resonances

as dynamically generated from chiral dynamics [Kai95, Kol04, Sar05, Lut04, Roc05, Wag08a, Wag08b],

but again this primarily points towards an intimate connection between hadron physics and chiral

symmetry breaking whereas effects of the chiral restoration transition on hadron physics remain open.

As suggested, e.g., in [Rap99, Leu09b] the link to chiral restoration might be indirect: The in-medium

broadening could be understood as a step towards deconfinement. In the deconfined quark-gluon plasma

also chiral symmetry is presumed to be restored. All these considerations suggest that the link between

chiral restoration and in-medium changes of hadrons is more involved as one might have hoped.

Additional input could come from approaches which are closer to QCD than standard hadronic models.

One such approach is the QSR method (cf. Sec. 2). A somewhat superficial view on QSRs for vector

mesons seems to support the original picture of an intimate connection between chiral restoration and

in-medium changes. Here the previously popular chain of arguments goes as follows:

1. Four-quark condensates play an important role for the vacuum mass of the light vector mesons

[Shi79b, Shi79a].

2. The four-quark condensates factorize into squares of the two-quark condensate [Nov84a].

3. The two-quark condensate decreases in the medium due to chiral restoration [Ger89, Dru91].

4. Thus the four-quark condensates decrease in the medium accordingly.
∗The presentation is based on [Hil12b].
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5 VOC scenario for the ρ meson

5. Therefore the masses of light vector mesons change (decrease) in the medium due to chiral

restoration.

Before we critically assess this line of reasoning an additional remark concerning four-quark conden-

sates is in order: In [Shi79b, Shi79a] it is shown that the vector meson mass emerges from a subtle balance

between the gluon and four-quark condensates. In that sense four-quark condensates are important. There

are, however, approaches (employing, e.g. finite energy sum rules) which deduce ρ meson properties

without using the four-quark condensates, see, e.g., [Kwo08]. In this case, one needs additional input to

determine the ρ meson properties (cf. the discussion in [Hat95]). In [Kwo08] this input is provided by

the assumption that the continuum threshold is related to the scale of chiral symmetry breaking. In the

following we use the original sum rule approach of [Shi79b, Shi79a]. Note that the different approaches

of [Shi79b, Shi79a] and [Kwo08] are not mutually exclusive.

In the previous line of reasoning (items 1-5) one seems to have a connection between chiral restoration

– descent of two- and four-quark condensates – and in-medium changes, no matter whether it is a mass

shift or a broadening [Kli97, Leu98b] or a more complicated in-medium modification [Pos04, Ste06].

However, at least item 2 and, as its consequence item 4, are questionable: Whether the four-quark

condensates factorize is discussed since the invention of QSRs, see, e.g., [Shi79b, Shi79a, Nar83, Lau84,

Ber88, Dom88, Gim91, Lei97, Bor06] in vacuum and for in-medium situations [Ele93, Hat93, Bir96,

Zsc03, Leu05a, Tho05]. With such doubts the seemingly clear connection between chiral restoration and

in-medium changes gets lost.

Indeed, a closer look on the QSR for light vector mesons reveals that most of the condensates, whose

in-medium change is translated into an in-medium modification for the respective hadron, are actually

chirally symmetric (see below). Physically, it is of course possible that the same microscopic mechanism

which causes the restoration of chiral symmetry is also responsible for changes of chirally symmetric

condensates. For example, in the scenario [Par05] about half of the (chirally symmetric) gluon condensate

vanishes together with the two-quark condensate. These considerations show that the connection between

the mass of a light vector meson and chiral symmetry breaking is not as direct as often expected.

We take these considerations as a motivation to study in the present section a clear-cut scenario where

we ask and answer the question: How large would the mass and/or the width of the ρ meson be in a

world where the chiral symmetry breaking objects/condensates are zero? In the following we will call

this scenario VOC (vanishing of chirally odd condensates). Note that we leave all chirally symmetric

condensates untouched, i.e. they retain their respective vacuum values. We stress again that such a

scenario may not reflect all the physics which is contained in QCD. There might be intricate interrelations

between chirally symmetric and symmetry breaking objects. In that sense the VOC scenario shows for

the first time the minimal impact that the restoration of chiral symmetry has on the properties of the ρ

meson.
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5 VOC scenario for the ρ meson 5.1 Chiral transformations and QCD condensates

5.1 Chiral transformations and QCD condensates

For the ρ0 meson we investigate the correlator

Πµν(q) = i

∫
d4x eiqx〈T

[
j3
µ(x)j3

ν(0)
]
〉 , (5.1.1)

where the current j3
µ stands for jV,τ

µ (cf. Eq. (A.1.42a)) with τ = σ3/2, σ the isospin Pauli matrices and

j3†
µ = j3

µ has been used. We use the sum rule as given in [Leu98b]

1

π

∫ ∞
0

ds s−1 ∆Π(s) e−s/M
2

= Π̃(M2), (5.1.2)

where we denoted the Borel transformed correlator for brevity as Π̃(M2). We consider a ρ meson at

rest, therefore, and due to current conservation and flavor symmetry (cf. Apps. B.3 and B.4), the tensor

structure of (5.1.1) reduces to a scalar Π = 1
3Πµ

µ. The Borel transformed OPE reads [Zsc04]

Π̃(M2) = c0M
2 +

∞∑
i=1

ci

(i− 1)!M2(i−1)
(5.1.3)

with coefficients up to mass dimension 6

c0 =
1

8π2

(
1 +

αs
π

)
, (5.1.4a)

c1 = − 3

8π2
(m2

u +m2
d) , (5.1.4b)

c2 =
1

2
(1 +

αs
4π
CF )(mu〈ūu〉+md〈d̄d〉) +

1

24

〈αs
π
G2
〉

+N2 , (5.1.4c)

c3 = −112

81
παs〈OV

4 〉 − 4N4 (5.1.4d)

with CF = (N2
c − 1)/(2Nc) = 4/3 for Nc = 3 colors. A mass dimension 2 condensate seems to be

excluded in vacuum [Dom09]. In Eq. (5.1.4) we have introduced the vector channel (V) combination of

four-quark condensates in compact notation

〈OV
4 〉 =

81

224
〈(ψ̄γµγ5λ

aσ3ψ)(ψ̄γµγ5λ
aσ3ψ)〉+

9

112
〈ψ̄γµλaψ

∑
f=u,d,s

f̄γµλaf〉 (5.1.5)

with color matrices λa. (For a classification of four-quark condensates, cf. [Tho07].) It is also useful to

introduce the averaged two-quark condensate mq〈q̄q〉 = 1
2 〈muūu+mdd̄d〉 and mq = (mu +md)/2.

These terms constitute the contributions which already exist in vacuum (and might change in a medium)

up to higher-order condensates encoded in ci for i > 3 which are suppressed by higher powers in

the expansion parameter M−2. Additional non-scalar condensates come into play, in particular for in-

medium situations. In Eqs. (5.1.4c) and (5.1.4d), only the twist-two non-scalar condensates [Hat93] are

displayed, Ni = −2
3 i 〈ST ψ̄γµ1Dµ2 . . . Dµiψ〉 gµ10 . . . gµi0, where the operation ST is introduced to
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make the operators symmetric and traceless w.r.t. its Lorentz indices. Twist-four non-scalar condensates

have been found to be numerically less important [Hat93, Hat95, Leu98a].

Using Eqs. (1.1.2a) and (1.1.2b) one can show that the only objects in the OPE (5.1.3) with coefficients

(5.1.4) and (5.1.5) which are not chirally invariant12 are

(i) the (numerically small) two-quark condensate

and

(ii) a part of the (numerically important) four-quark condensate 〈OV4 〉 specified in Eq. (5.1.5).

The last term in Eq. (5.1.5) is a flavor singlet and, thus, invariant w.r.t. chiral transformations. Since

the first term in Eq. (5.1.5) is the product of two axial-vector currents, the most intuitive way to split

this four-quark condensate into a chirally symmetric and a chirally odd part is to add and to subtract the

product of two vector currents. Owing to the definition of vector and axial-vector currents in terms of

left- and right-handed currents (cf. App. A.1) one has

(ψ̄γµγ5λ
aσ3ψ)(ψ̄γµγ5λ

aσ3ψ)− (ψ̄γµλ
aσ3ψ)(ψ̄γµλaσ3ψ)

= (ψ̄γµγ5λ
aσ3ψ − ψ̄γµλaσ3ψ)(ψ̄γµγ5λ

aσ3ψ + ψ̄γµλaσ3ψ)

= −4(ψ̄Rγµλ
aσ3ψR)(ψ̄Lγ

µλaσ3ψL) , (5.1.6)

where we used the canonical ETC (cf. App. A.2). Therefore, we define the chirally odd condensate

〈Oodd
4 〉 ≡ − 81

112

〈
(ψ̄Rγµλ

aσ3ψR) (ψ̄Lγ
µλaσ3ψL)

〉
(5.1.7)

and the chirally even condensate

〈Oeven
4 〉 ≡ 81

448
〈(ψ̄γµγ5λ

aσ3ψ)2 + (ψ̄γµλ
aσ3ψ)2〉+

9

112
〈ψ̄γµλaψ

∑
f=u,d,s

f̄γµλaf〉 (5.1.8)

with 〈OV4 〉 = 〈Oeven
4 〉+ 〈Oodd

4 〉. The chirally odd part, which is the product of a left handed and a right

handed chirality current, 〈Obr
4 〉 ∝ gµνjR,σ3

µ jL,σ3

ν (omitting color indices), can indeed be transformed

into its negative by a proper chiral transformation and is therefore dubbed “chirally odd” condensate.

In general it is clear that any transformation which transforms the vector current into the axial-vector

current must generate a sign change for jR
µ but not for jL

µ (cf. Eq. (A.1.55)). Therefore, any finite chiral

transformation which relates these particular parity partners and their spectral functions, results in a sign

change of 〈Oodd
4 〉 but not of 〈Oeven

4 〉. Indeed, the quantity 〈Oeven
4 〉 − 〈Oodd

4 〉 is the specific combination

of four-quark condensates which enters the OPE for the a1 meson – the chiral partner of the ρ.13 It
12Note that c1 breaks the chiral symmetry explicitly. Its contribution is numerically completely negligible.
13In App. A.1 we have shown, that any component of the chiral vector–isospin-vector current ~j Cµ , with C ∈ {R,L}, can be

transformed into its negative by an appropriate chiral transformation, cf. discussion after Eq. (A.1.62). Thus, a transformation
may be applied which transforms the left-handed current into its negative but not the right handed, which results in a sign for
〈Obr

4 〉. Consequently, if chiral symmetry would be realized in the Wigner-Weyl phase, (5.1.7) must be zero.
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Figure 5.2.1: The mass parameter m̃(M, s+) as a function of the Borel mass M for various values of

the continuum threshold s+. The Borel windows are marked by vertical bars. The curves
are for c4 = 0, while the bands cover the range c4 = ±〈αs

π G
2〉2. Left panel: s+ = 1.4,

1.3 and 1.2 GeV2 from top to bottom with condensates from Tab. 3.3.1 and the four-quark
condensate as described in the text. Right panel: The VOC scenario 〈Oodd

4 〉 → 0 and
〈q̄q〉 → 0 for continuum thresholds s+ = 1.1, 1.0 and 0.9 GeV2 from top to bottom.

has been shown in [Tho08a] that 〈Oodd
4 〉 is an order parameter of the chiral symmetry (cf. App. A.2,

Eq. (A.2.31)), but can also be concluded from chiral partner sum rules in the light meson sector. Indeed,

the condensate (5.1.7) enters the Weinberg-Kapusta-Shuryak sum rules [Kap94], i.e. the OPE for the

chiral difference of vector and axial-vector mesons with two light valence quarks, in order αs (cf. Sec. 4).

The last term in Eq. (5.1.8) is an isospin-singlet. In an isospin invariant system (cf. App. A.2), the first

two terms in Eq. (5.1.8) may be written as

〈(ψ̄γµγ5σ
3λaψ)2 + (ψ̄γµσ

3λaψ)2〉

=
1

3
〈(ψ̄Rγµ~τλaψR − ψ̄Lγµ~τλaψL)2 + (ψ̄Rγµ~τλ

aψR + ψ̄Lγµ~τλ
aψL)2〉

=
2

3
〈(ψ̄Rγµ~τλaψR)2 + (ψ̄Lγµ~τλ

aψL)2〉 . (5.1.9)

The latter two terms are separately invariant w.r.t. left-handed and right-handed isospin transformations

as shown in App. A.1 (cf. Eq. (A.1.69)), i.e. they are chirally invariant.

It appears to be very natural that a four-quark condensate which breaks chiral symmetry can be related

to the square of the two-quark condensate which also breaks chiral symmetry. Indeed, it has been shown

in [Bor06] that the factorization of the four-quark condensate 〈Oodd
4 〉 given in Eq. (5.1.7) is completely

compatible with the ALEPH data on the vector and axial-vector spectral distributions [Sch05]. Contrarily,

it is not so obvious that a chirally symmetric four-quark condensate like 〈Oeven
4 〉 in Eq. (5.1.8) is related

directly to the chirally odd two-quark condensate 〈q̄q〉.
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Figure 5.2.2: The mass parameter m̃(M, s+) for the optimized continuum threshold s+ as a function
of the Borel mass M for vacuum values of the condensates (upper curves) and the
VOC scenario with 〈Oodd

4 〉 → 0 and 〈q̄q〉 → 0 (lower curves). The Borel windows are
marked by vertical bars. The curves are for c4 = 0, while the bands cover the range
c4 = ±〈αs

π G
2〉2.

5.2 VOC scenario for the ρ meson

Let us first describe briefly how we fix the numerical values for the QCD condensates. We note that the

non-scalar condensates, which appear in Eqs. (5.1.4c) and (5.1.4d), are chirally symmetric and vanish

in the vacuum, i.e. we can disregard them also for the VOC scenario. The chirally symmetric gluon

condensate is determined from the QSR for the charmonium [Shi79b, Shi79a] as
〈
αs
π G

2
〉

= (330 MeV)4.

The running coupling has to be evaluated at the typical energy scale of 1 GeV. Following [Leu04] we use

αs = 0.38. The chirally odd two-quark condensate is fixed by the Gell-Mann–Oakes–Renner relation

[GM68] (cf. App. A.2) mq〈q̄q〉 = −1
2 f

2
πm

2
π with the pion-decay constant fπ ≈ 92 MeV and the pion

mass mπ = 139.6 MeV [Ams08]. Using in addition mq ≡ (mu +md)/2 = 5.5 MeV [Nar99] one gets

the vacuum value 〈q̄q〉 = −(245 MeV)3. For vacuum, the chirally odd condensate 〈Oodd
4 〉 has been

extracted from the experimental difference between vector and axial-vector spectral information [Sch05].

We use the result of [Bor06]: 〈Oodd
4 〉vac ≈ 9

7 〈q̄q〉2vac. To fix the vacuum value for the chirally symmetric

〈Oeven
4 〉 defined in Eq. (5.1.8) one may resort to the vacuum ρ meson properties [Ams08].

For that purpose we rearrange Eq. (5.1.2) by splitting the integral
∫∞

0 =
∫ s+

0 +
∫∞
s+

and putting the

so-called continuum part to the OPE terms thus isolating the interesting hadronic resonance part below

the continuum threshold s+. This allows to define a normalized moment [Zsc02] of the hadronic spectral

function

m̃2(M, s+) ≡
∫ s+

0 ds∆Π(s) e−s/M
2∫ s+

0 ds∆Π(s) s−1e−s/M2 (5.2.1a)

=
c0M

2[1− (1 + s+
M2 )e−s+/M

2
]− c2

M2 − c3
M4 − c4

2M6

c0[1− e−s+/M2 ] + c1
M2 + c2

M4 + c3
2M6 + c4

6M8

, (5.2.1b)
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where the semi-local duality hypothesis 1
π

∫∞
s+

ds s−1∆Π(s)e−s/M
2

= c0

∫∞
s+

ds e−s/M
2
, replacing the

continuum integral by the integral over the perturbative term, is exploited in Eq. (5.2.1b). The second line

emerges essentially from the OPE and “measures” how m̃ is determined by condensates. The meaning

of the spectral moment (5.2.1a) becomes obvious for the pole ansatz [Shi79a]; generically, it is the s

coordinate of the center of gravity of the distribution ∆Π(s)s−1e−s/M
2

between 0 and s+.

To determine 〈Oeven
4 〉 for the vacuum case we identify the average of m̃ with the ρ vacuum mass.

The averaged mass parameter is determined by m(s+) = (Mmax −Mmin)−1
∫Mmax

Mmin
m̃(M, s+) dM .

According to [Zsc04] the Borel minimum Mmin follows from the requirement that the mass dimension 6

contribution to the OPE is smaller than 10%:

56
81M4

min
παs〈OV4 〉

1
8π2

(
1 + αs

π

)
M2

min +
mq
M2

min
〈q̄q〉+ 1

24M2
min
〈αsπ G2〉 − 56

81M4
min
παs〈OV4 〉

≤ 0.1 . (5.2.2a)

For the Borel maximum Mmax we demand that the continuum contribution to the spectral integral is

smaller than 50%:

1
8π2

(
1 + αs

π

)
M2

maxe
−s+/M2

max

1
π

∫ s+
0 ds∆Π(s) s−1e−s/M2 + 1

8π2

(
1 + αs

π

)
M2

maxe
−s+/M2

max
≤ 0.5 . (5.2.2b)

Both quantities do not depend on a certain parametrization of the spectral density, because the denominator

of Eq. (5.2.2b) is given by Eq. (5.1.2) in terms of the OPE. Note that in Eq. (5.2.2a) the continuum

contribution is not present. The threshold s+ follows from the requirement of maximum flatness

of m̃(M, s+) as a function of M within the Borel window. Employing this system of equations,

〈Oeven
4 〉 = (267 MeV)6 is found from the requirement m = 775.5 MeV, i.e. we identify m with the

vacuum ρ mass. The Borel curves are exhibited in Figs. 5.2.1 (for different continuum thresholds) and

5.2.2 for the curves which are optimized for maximal flatness (upper solid curve embedded in the narrow

band). The corresponding averaged mass parameters in Fig. 5.2.1 are m = 781.1, 761.0 and 740.8 MeV

from top to bottom for c4 = 0.

Digression: Other moments

Formally, in order to obtain the OPE for spectral integrals of higher powers of s, i.e. ∆Π(s)→ sn∆Π(s),

the n-th derivative of Eq. (5.1.2) w.r.t. −1/M2 can be taken and moments similar to (5.2.1a) weighting

higher energy regimes of ∆Π(s) may be defined:

∫ s+
0 ds sn∆Πe−s/M

2∫ s+
0 ds sn−1∆Πe−s/M2

=
(n+ 1)!

n!

c0M
2
[
1− e−s+/M2 ∑n+1

k=0
(s+/M2)k

k!

]
+ (−1)n+1

(n+1)!

∑∞
k=0

ck+n+2

k!(M2)k+n+1

c0

[
1− e−s+/M2 ∑n

k=0
(s+/M2)k

k!

]
+ (−1)n

n!

∑∞
k=0

ck+n+1

k!(M2)k+n+1

. (5.2.3)
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The maximum number of terms of the asymptotic expansion of the spectral integral is limited in general by

accuracy requirements [Win06, Hin95] and in practical calculations by the knowledge about condensates

of higher mass dimension. Each derivative reduces the number of known condensates in the OPE

beginning with the lowest mass dimensions, whereas each spectral integral basically has a different

asymptotic expansion with different approximative properties. On the other hand the perturbative

contribution, and thus the contribution of the continuum, remains in the sum and is enhanced compared

to the non-perturbative corrections which is mirrored in the amplified weighting of the continuum in the

moments. Therefore, using other moments of the spectral integral is expected to significantly reduce

the numerical accuracy. Indeed, m = 453 MeV and s+ = 0.92 MeV2 is obtained for n = 1 and

〈Oeven
4 〉 = (267 MeV)6.

VOC analysis

Let us consider now the VOC scenario, where one sets the explicitly chiral symmetry breaking terms

to zero. Thus, here one only needs the above quoted vacuum values for the chirally invariant terms.

〈Oodd
4 〉 → 0 and 〈q̄q〉 → 0 but keeping the chirally symmetric condensate values causes a reduction

of m to 659.8 MeV and the continuum threshold becomes s+ = 1.03 GeV2 (in vacuum it was s+ =

1.37 GeV2), see lower curves in Fig. 5.2.2. We emphasize the large impact on the averaged spectral

moment m if 〈Oodd
4 〉 is set to zero.

We have convinced ourselves on the robustness of the quoted numbers, in particular the drop of

m, e.g. against variations of the criteria (5.2.2) for the Borel window. For instance, requiring for the

r.h.s. of Eq. (5.2.2a) a value of 0.05 (0.20) instead of 0.1, one would get m = 753.8 (801.3) MeV for

the same condensates as before and a drop of m to 641.2 (685.0) MeV in the VOC scenario. (If the

condensates are not frozen to the previous case but fixed to reproduce m = 775.5 MeV, which gives

〈Oeven
4 〉 = (276 MeV)6 ((256 MeV)6), the mass would drop to m = 678.6 (635.4) MeV in the VOC

scenario.) Analogously, requiring 0.4 (0.6) instead of 0.5 in the r.h.s. of Eq. (5.2.2b) one would get

m = 788.1 (764.8) MeV and a drop of m to 672.0 (649.7) MeV in the VOC scenario. (A drop to

m = 649.0 (670.0) MeV and 〈Oeven
4 〉 = (261 MeV)6 ((272 MeV)6) if the condensates are fixed to

reproduce m = 775.5 MeV.)

To get an estimate of the possible importance of the poorly known next-order term c4 of mass

dimension 8 (cf. [Rei85]) we use, analogously to [Tho05], as an estimate the “natural scale” 〈αsπ G2〉2
motivated by dimensional reasoning. The Borel curves for |c4| = 〈αsπ G2〉2 border the bands in Fig. 5.2.2.

Of course, this estimate is quite rough as c4 may contain also chirally odd condensates, whose change is

not accounted for in the VOC scenario. Nevertheless, it supports the robustness of the VOC scenario

which is characterized by a lowering of the spectral moment m by about 120 MeV.

Equation (5.2.1a) shows that the moment analysis is independent of the specific type of parametrization

if the condensates are known. In contrast, setting the moment equal to the experimental mass is equivalent

to a pole ansatz and, hence, fitting 〈Oeven
4 〉 to a specific parametrization. However, if the experimental

mass is a good approximation to the moment (5.2.1a), then 〈Oeven
4 〉 is in good agreement to results that
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would have been obtained from experimental data. In this case the VOC scenario for the moment is a

model independent result. Only the translation of the moment to the parameters of a certain spectral

function is model dependent.

5.3 Mass shift vs. broadening

While for a narrow resonance in vacuum the often employed pole + continuum ansatz is reasonable,

the spectral distribution may get a more complex structure in a medium [Zsc02, Ste06, Kwo08, Fri97,

Rap97, Pet98c, Pos04, Hee06, Kli97, Lut02]. In particular, one cannot decide, within the employed

framework of QSRs, whether the above observed reduction of m̃, and consequently m, means a mass

shift or a broadening or both. To make this fact explicit, we use a Breit-Wigner ansatz for the spectral

function

∆Π(s) =
F0

π

(√
s

m0

)a √
sΓ(s)

(s−m2
0)2 + sΓ2(s)

Θ(s+ − s) + πsc0Θ(s− s+) , (5.3.1a)

where the vacuum parametrization of the width is motivated by [Leu98b]

Γ(s) = Θ(s− (kmπ)2)Γ0

(√
s

m0

)b(
1− (kmπ)2

s

)c(
1− (kmπ)2

m2
0

)−c
. (5.3.1b)

The parameter k determines the threshold of the ρ decaying into k pions. In vacuum it is k = 2. F0

determines the height of the spectral function. At the same time it is the coupling of the vector current

to the ρ meson. As such it is also subject to in-medium changes and is given by inserting (5.3.1a) into

(5.1.2) (with (5.1.3) for the r.h.s)

F0 =
c0[1− e−s+/M2

]M2 + c1
M0 + c2

M2 + c3
2M4 + c4

6M6

1
π

∫ s+
0 ds 1

π

(√
s

m0

)a √
sΓ(s)

(s−m2
0)2+sΓ2(s)

s−1e−s/M2
. (5.3.2)

Note that in a strict vector meson dominance scenario (cf. [Sak73]) the quantity F0 would not be

subject of medium-induced changes in contrast to what we find here. This signals an incompatibility

between the sum rule approach and strict vector meson dominance as pointed out in [Leu06a] for the

ω meson and generalized to the ω and ρ meson in [Ste06]. In an extended scenario of vector meson

dominance, however, the coupling of the vector current to the ρ meson, encoded in F0, can depend

on the density - and in addition also on the invariant mass squared s, as demonstrated, e.g. in [Fri97].

In-medium modifications of vector meson dominance have also been found in the framework of hidden

local symmetry [Har03].

The Borel analysis is performed as described above, but with (5.3.1a) and (5.3.1b) in the r.h.s. of

Eq. (5.2.1a) and w.r.t. m0. Each trial value of 〈Oeven
4 〉 delivers now a Borel window average m0 as a

function of the width Γ0.14 A certain requirement for m0(Γ0) fixes 〈Oeven
4 〉. Note that, in general, the

14More precisely, the moment defined in Eq. (5.2.1) with the distribution (5.3.1) has to be solved for m0 = m0(M, s+) for
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Table 5.3.1: Results of the finite width VOC scenario.

〈Oeven
4 〉 1

6 [MeV] 267 172 242 244 261
va

cu
um

m0 [MeV] 775.5 775.5 775.5 780.5 774.3
Γ0 [MeV] 0 149.4 149.4 149.4 157.3

mpeak [MeV] 775.5 771.9 770.5 775.5 767.0
ΓFWHM [MeV] 0 149.0 147.9 147.9 153.1

F0 [GeV4] 0.0362 0.0330 0.03985 0.0408 0.04626
s+ [GeV2] 1.37 1.21 1.33 1.35 1.45

co
ns

ta
nt

m
as

s m0 [MeV] 784.8 - 780.3 795.4 795.9
Γ0 [MeV] 130.0 - 250.0 250.0 280.0

mpeak [MeV] 782.1 - 770.3 785.6 773.3
ΓFWHM [MeV] 130.7 - 248.3 248.3 277.1

F0 [GeV4] 0.03528 - 0.03179 0.0343 0.03931
s+ [GeV2] 1.27 - 1.11 1.15 1.23

co
ns

ta
nt

w
id

th m0 [MeV] 659.8 174.4 669.0 682.0 715.0
Γ0 [MeV] 0 149.4 149.4 149.4 157.3

mpeak [MeV] 659.8 158.4 664.8 677.9 710.6
ΓFWHM [MeV] 0 139.8 148.8 148.8 156.6

F0 [GeV4] 0.01976 0.00005 0.01893 0.02036 0.02766
s+ [GeV2] 1.03 0.36 0.93 0.96 1.11

1 2 3 4 5

peak position mpeak and the full width at half maximum ΓFWHM of the spectral function do not coincide

with the corresponding parameters m0 (or m0) and Γ0 of the ansatz (5.3.1a). For Γ(s) = Γ0 = const.,

e.g., m0 is determined by m2
0 =

√
4m4

peak + Γ2
0m

2
peak −m2

peak. While for small Γ0 the peak position

mpeak and m0 differ only by a few MeV (e.g. for the experimental values Γ0 = 149.4 MeV and

m0 = 775.5 MeV one has ΓFWHM = 147.9 MeV and mpeak = 770.5 MeV), they differ significantly

for larger values of Γ0. Especially, keeping the parameter m0 constant in the VOC scenario can cause a

strong shift of the peak position. Note that Eq. (5.3.1a) represents a distribution with peak position at

m2
0 and a full width at half maximum of Γ0, if (5.3.1b) is of the form Γ(s) ∝ Γ0/

√
s and a = 0. Fitting

〈Oeven
4 〉 may therefore be subject to a boundary condition for mpeak = mpeak(m0,Γ0) instead of m0.

The strength F 0 is determined by averaging F0 in (5.3.2) within the Borel window.

Three parametrizations, which are typically used throughout the literature, are given by

(i) a = b = c = k = 0,

which corresponds to the special form Γ = Γ0 = const.,

(ii) a = b = 0, c = 3/2 and k = 2,

each Borel mass M and threshold s+. Optimization w.r.t. s+ for maximal flatness within the Borel window delivers the
threshold and, thus, the Borel window average m0.
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Figure 5.3.1: Averaged mass parameter m0 (upper left), strength F0 (upper right) and threshold s+

(bottom left) as functions of the width parameter Γ0. Solid: VOC scenario, dotted: vac-
uum. The spectral density ∆Π (bottom right) is plotted for the mass kept constant (solid),
the width kept constant (dashed) and the vacuum case (dotted). 〈Oeven

4 〉 = (267 MeV)6

as obtained from the moment analysis, the VOC scenario is for parametrization (i) and
constant Breit-Wigner parameters. The horizontal dashed-dotted line in the mass–width
panel marks the vacuum ρ mass. See column 1 of Tab. 5.3.1.
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Figure 5.3.2: The same as in Fig. 5.3.1 but for 〈Oeven
4 〉 = (172 MeV)6 being fitted to Γ0 = 149.4 MeV,

m0 = 775.5 MeV using parametrization (i). In the VOC scenario parametrization (i) has
been used and the Breit-Wigner parameters have been kept constant. It is not possible to
keep m0 or mpeak constant. See column 2 of Tab. 5.3.1.

which is a p-wave with two-pion threshold, and by

(iii) a = b = 0, c = 1/2 and k = 1,

which is an s-wave with a one-pion threshold. For all cases, a sum rule analysis can be performed with

different assignments of the experimentally determined parameters of the ρ meson to the parameters

of Eq. (5.3.1a) or the shape parameters mpeak and ΓFWHM. The results are summarized in Tab. 5.3.1,

columns 1-4, and displayed in Figs. 5.3.1-5.3.4. Note that the quoted values of the parameters, to be kept

constant in the VOC scenario, are larger than their respective vacuum values. In this respect the results

represent maximal broadening and lowering of the mass.

In Fig. 5.3.1, with numbers given in column 1 of Tab. 5.3.1, we use 〈Oeven
4 〉 = (267 MeV)6, obtained

from the moment analysis of the previous section. The VOC scenario has been calculated using

parametrization (i). Clearly, the anticipated lowering of the mass or the increasing of the width is found.

However, applying a certain parametrization of the spectral density raises the question if the extraction of

〈Oeven
4 〉 depends on the functional behavior of the assumed spectral density. In Fig. 5.3.2, with numbers

given in column 2 of Tab. 5.3.1, 〈Oeven
4 〉 has been adjusted such that the Breit-Wigner parameters m0
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Figure 5.3.3: The same as in Fig. 5.3.1 but for 〈Oeven
4 〉 = (242 MeV)6 being fitted to Γ0 = 149.4 MeV,

m0 = 775.5 MeV for parametrization (ii). In the VOC scenario parametrization (i) has
been used and the Breit-Wigner parameters have been kept constant. See column 3 of
Tab. 5.3.1.

and Γ0 of parametrization (i) equal the experimental values mρ = 775.5 MeV and Γρ = 149.4 MeV,

respectively. The result for 〈Oeven
4 〉 differs by a factor 14. As a consequence, it is impossible to obtain a

VOC scenario, employing the same parametrization, with constant mass, neither for m0 nor for mpeak.

For constant Γ0 the ρ peak almost disappears and exploring the mass–width relation up to Γ0 = 0, the

sum rule cannot be fulfilled at all. The reason is the special parametrization. Lower values of 〈Oeven
4 〉

correspond to more strength at lower energies and vice versa. The chosen parametrization with constant

width is nonzero up to zero energy, which results in the very small value of 〈Oeven
4 〉. In the VOC scenario,

where 〈Oodd
4 〉 is set to zero, even more strength is required at lower energies. In this respect recall that the

factorization of four-quark condensates into squares of the chiral condensate corresponds to 〈Oeven
4 〉 = 0

in the VOC scenario and, hence, to an even stronger enhancement of the spectral density at low energies.

Because the ρ meson spectral function must have a threshold dictated by its decay channels into pions,

in [Leu98b] parametrization (ii) has been introduced. The spectral function has a two-pion threshold

and an energy dependent width. The choice 〈Oeven
4 〉 = (242 MeV)6 reproduces Γ0 = 149.4 MeV and

m0 = 775.5 MeV. The results are shown Fig. 5.3.3 with numbers given in column 3 of Tab. 5.3.1. For

the VOC scenario, the parametrization (i) has been chosen. In Fig. 5.3.4 and column 4 of Tab. 5.3.1 the

71



5 VOC scenario for the ρ meson 5.3 Mass shift vs. broadening

0.00 0.05 0.10 0.15 0.20 0.25

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 

 
m

0 [G
eV

]

0
 [GeV]

0.00 0.05 0.10 0.15 0.20 0.25

0.01

0.02

0.03

0.04

0.05

 

 

F 0 [G
eV

4 ]

0
 [GeV]

0.00 0.05 0.10 0.15 0.20 0.25
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
 

 

s + [G
eV

2 ]

0
 [GeV]

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

 

 

(s
) [

G
eV

2 ]

s [GeV2]

Figure 5.3.4: The same as in Fig. 5.3.1 but for 〈Oeven
4 〉 = (244 MeV)6 being fitted to Γ0 = 149.4 MeV,

mpeak = 775.5 MeV for parametrization (ii). In the VOC scenario parametrization (i) has
been used, whereas mpeak and Γ0 have been kept constant. See column 4 of Tab. 5.3.1.

same parametrization has been used but instead of fitting 〈Oeven
4 〉 such that the Breit-Wigner parameters

m0 and Γ0 are set to the experimental ρ values, we require that the peak position mpeak equals its

experimental value.15 The obtained value 〈Oeven
4 〉 = (244 MeV)6 differs only slightly from the previous

case. For the VOC scenario we used parametrization (i). Requiring that peak position and Γ0 are kept

constant in the VOC scenario gives slightly smaller mass shifts and broadenings as compared to fitting

the Breit-Wigner parameters. All cases have in common that they require an enhancement of the spectral

strength at lower energies which can be accomplished by a shift of the peak position or a broadening or a

combination of both.

Extracting 〈Oeven
4 〉 from experimental data

As can be seen from the previous investigation, the extraction of 〈Oeven
4 〉 from the ρ meson sum rule

depends on details of the parametrization. In particular the low energy behavior of the parametrization

is of importance. Therefore a comparison to experimental data is necessary. In Fig. 5.3.5 the sum rule
15Of course, consistency demands also the fitting of the full width at half maximum ΓFWHM to its experimental value, but

the numerical effort to do so is excessive. On the other hand the width is not too large so that the difference between both
quantities is expected to be rather small, cf. column 4 of Tab. 5.3.1, and the accuracy is sufficient for our purposes.
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Figure 5.3.5: Comparison of experimental data for the ρ meson spectral function obtained from τ →
ν + nπ decays with the spectral functions obtained from a finite width QSR analysis
and best fits for parametrizations (i) and (ii). Triangles: data from [Sch05]. Dashed blue:
fit of parametrization (i); the obtained values are m0 = 780.7 MeV, Γ0 = 160.2 MeV
and F0 = 0.04834 GeV4. Dashed red: fit of parametrization (ii); the obtained values
are m0 = 780.9 MeV, Γ0 = 162.4 MeV and F0 = 0.04884 GeV4. Dashed black:
QSR results for 〈Oeven

4 〉 = (172 MeV)6 for parametrization (i) (see Fig. 5.3.2). Dotted
black: QSR results for 〈Oeven

4 〉 = (242 MeV)6 for parametrization (ii) and fitted m0 and
Γ0 (see Fig. 5.3.3). Dashed-dotted black: QSR results for 〈Oeven

4 〉 = (244 MeV)6 for
parametrization (ii) and fitted mpeak and Γ0 (see Fig. 5.3.4).

results for the vacuum cases are compared to the ρ spectral function obtained from the cross section

τ → ν + nπ for even n measured by the ALEPH detector [Sch05] and two fits which correspond to the

above mentioned parametrizations (i) and (ii). These data do not suffer ρ− ω mixing effects because

of charge conservation. The coincidence of the sum rule results with the experimental data is not very

good. As can be seen, although the low energy tail is reproduced fairly well, the high energy tail is not.

Furthermore, all three finite width vacuum scenarios have a too low F0 in common. Indeed, also earlier

sum rule analyses of the ρ meson, e.g. [Leu98b], give a too low value for F0 when the spectral density

is compared to these data. In [Leu98b] an experimental value of F0 = 0.01πGeV4 ≈ 0.0314 GeV4 is

quoted. The vacuum sum rule results in [Leu98b] suggest F0 ≤ 0.008π GeV. A Breit-Wigner curve

fitted to the experimental data for these cases does not coincide with the sum rule results and gives

better agreement with the data. Nevertheless, the low and high energy tails still significantly differ from

the data. In all fits a value of F0 ≈ 0.048 GeV4 is extracted, which is larger than the quoted value in

[Leu98b]. Two conclusions may be drawn. First, the sum rule analysis using (i) or (ii) systematically

give too low values for F0. This is independent of whether standard values for the chirally symmetric

four-quark condensate are used or if it is adjusted to reproduce the experimental mass and width of the ρ

meson. Second, standard parametrizations of the spectral function, i.e. (i) or (ii), do not fit satisfactorily

the low and high energy tails. Unfortunately, because of the exponential weighting of the integrand in

Eq. (5.2.1a), Borel transformed sum rules are in particular sensitive to the low energy tail, which makes

it necessary to model this part very carefully, especially when condensates are to be determined.

We adjust 〈Oeven
4 〉 now in a two-step procedure. First, the experimental data for τ → ν + nπ for even
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n [Sch05] given in Fig. 5.3.5 is fitted with Eq. (5.3.1) by a = 0.84483, b = −0.33013, c = 6.72793 and

k = 2 (two-pion threshold). Consistency demands to use the charged pion mass mπ = 139.6 MeV. The

thus obtained parameters arem0 = 774.6 MeV, Γ0 = 157.3 MeV and F0 = (467 MeV)4 ≈ 0.048 GeV4.

Note that with these parameter values the parametrization (5.3.1b) has no deeper physical motivation

(in contrast to, e.g., an s-wave or p-wave parametrization). The purpose is solely to obtain an adequate

description of the data. The quality of this description can be seen in Fig. 5.3.6. In a second step, the

Borel analysis is performed as described above. The requirement m0(Γ0 = 157.3 MeV) = m0, with

a, b and c as obtained from the fit, fixes 〈Oeven
4 〉. That is, the experimental spectral distribution is here

used explicitly, while the above momentum analysis refers only to the spectral moment m, i.e., the

mean of the l.h.s. of Eq. (5.2.1a) is identified with the ρ peak mass. Any other parametrization, which

fits the experimental data, may be used, e.g. a spline. We obtain 〈Oeven
4 〉 = (261 MeV)6, which is

somewhat smaller than the value obtained in the moment analysis but much closer to it than the above

obtained values for the finite width scenarios. This points to the model dependence of extracting QCD

condensates from hadron properties in such a manner. However, from the preceding investigations

we conclude that equating the moment (5.2.1a) to the ρ vacuum mass gives the best approximation to

〈Oeven
4 〉 compared to results obtained from using parametrizations which do not fit the experimental

data. We obtain F 0 = (464 MeV)4 = 0.046 GeV6, which fits the experimental value. Note that this

is a nontrivial consensus. The thus obtained spectral function, exhibited in Fig. 5.3.6, is in agreement

with the experimental data and refers to a specific set of condensates and further parameters entering

Eqs. (5.1.4) and (5.1.5) of the OPE from which Eq. (5.2.1b) is built up. This vacuum analysis evidences

that one needs a prescribed parametrization of the spectral shape when attempting to quantify medium

modifications. (The maximum entropy method, cf. [Asa01, Gub10], might overcome this restriction.)

We have chosen the option (iii) i.e. a = b = 0, c = 0.5 (s-wave) and k = 1 (one-pion threshold16) for

studying implications of the VOC scenario. Setting 〈Oodd
4 〉 = 〈q̄q〉 = 0 and repeating the Borel analysis

w.r.t. m0 for given values of Γ0 one gets the correlation m0(Γ0). Instead of m0(Γ0) we show however

the relation mpeak(ΓFWHM) with the reasoning given below Eq. (5.3.2).

For the VOC scenario, the curve mpeak(ΓFWHM) in Fig. 5.3.7 is significantly shifted away from

the vacuum physical point (mpeak,ΓFWHM) = (767.1 MeV, 153.0 MeV). If one assumed that chiral

restoration in the present spirit does not cause an additional broadening, one would recover the previously

often anticipated “mass drop”.

Figure 5.3.7 evidences, however, that an opposite interpretation is conceivable as well, namely pure

broadening with keeping the vacuum value ofmpeak. The NA60 [Arn06, Ada08] and CLAS [Dja08] data

seem indeed to favor such a broadening effect. In fact, assuming that mpeak does not change by chiral

restoration in the VOC scenario, the width is increased to Γ0 = 280 MeV (ΓFWHM = 277 MeV), see

Fig. 5.3.7. In this respect the broadening of a spectral function can be an indication for chiral restoration.

Figure 5.3.8 exhibits the spectral function ∆Π(s) as a function of s for the two extreme options above.

The solid curve depicts the broadening when keeping the peak at the vacuum position. The dashed curve

16This is the threshold for a pion and a nucleon going to a dilepton and nucleon [Leu98b].
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Figure 5.3.6: ρ meson spectral function from τ → ν + nπ decays with even n (squares, data from
[Sch05]) and a fit with Eqs. (5.3.1a) and (5.3.1b) (dotted). The parameters are a =
0.84483, b = −0.33013, c = 6.72793, m0 = 774.6 MeV, Γ0 = 157.3 MeV and
F0 = (467 MeV)4. The vacuum sum rule analysis results in the solid curve.
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Figure 5.3.7: Peak position mpeak (left) as a function of the width parameter ΓFWHM and the strength
F0 (right) as a function of the Breit-Wigner parameter Γ0 for 〈Oeven

4 〉 = (261 MeV)6.
The vacuum case is evaluated using the parametrization obtained from the fit, the VOC
scenario is evaluated for parametrization (iii). Dotted lines mark the experimental values
mpeak and ΓFWHM, determining the physical vacuum point (heavy dot). Line code as in
Fig. 5.3.1.
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Figure 5.3.8: Continuum threshold s+(Γ0) (left) and the spectral density ImΠ(s) (right) in the vacuum
case (dotted curve) and in the VOC scenario for ΓFWHM = const (dashed curve) or
mpeak = const (solid curve). Line codes as in Fig. 5.3.1.

is for the option of keeping the full width at half maximum at its vacuum value. From the perspective

of the employed QSR, both options are equivalent, as any other point on the curve mpeak(ΓFWHM) in

Fig. 5.3.7. The overall outcome seems to be that the Borel transformed QSR requires more strength of

the spectral function at lower energies.

Relation to experimental data

As pointed out above, our investigation strictly separates between in-medium effects caused by the

change of chirally odd condensates on the one hand and of chirally symmetric condensates on the other

hand. Only the former are considered in our considerations, the VOC scenario. Of course, physically it is

plausible that there are also in-medium effects which have no direct connection to chiral restoration. In

turn this means that a comparison of our VOC scenario with experimental data can only be qualitative.

In addition, experimental information about the current-current correlator emerges from the dilepton

production in heavy-ion collisions. Here, in general we do not have a fully equilibrated, static and

infinitely extended system but rather the time evolution of a cooling and expanding fireball of finite

size leading to a time dependent radiation of dileptons from the bulk and from the surface. To simplify

the anyway qualitative comparison we adopt the following strategy: In principle we would like to

compare to the high-precision data of the NA60 collaboration [Dja08, Arn09]. In view of the mentioned

complications we compare to a model based on equilibrium many-body theory which describes the NA60

data very well. For that purpose we use the results of van Hees and Rapp [Hee06, Hee08].

Since our VOC scenario describes the point of chiral restoration (all chirally odd condensates put

to zero) we compare to the model for the assumed transition temperature to the quark-gluon plasma,

namely 175 MeV. We compare the width obtained in the VOC scenario to the width obtained in the

approach of [Hee06, Hee08]. The ρ meson propagator is related to the spectral function in the vector
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meson dominance model [Rap00] by

−ImDρ =
g2(

m
(0)
ρ

)2 ImΠ , (5.3.3)

with the bare ρmassm(0)
ρ = 853 MeV and the ρ→ ππ coupling gρππ = 5.9. It is compared to the results

obtained in the VOC scenario. As evidenced in Fig. 5.3.7 the sum rule does not allow to fix separately

both the peak position and the width of the spectral information of the current-current correlator. It

only correlates the two quantities. If we adjust the peak position to the one from [Hee06, Hee08],

mpeak = 830 MeV, we find ΓFWHM = 380 MeV in our VOC scenario which is smaller as compared

to the width of the many-body model from [Hee06, Hee08] Γ ≈ 500 MeV [Rap09]. We interpret this

as additional chirally symmetric in-medium effects on top of the effects which we can pin down, i.e.

the ones related to the chirally odd condensates and their in-medium change towards chiral restoration.

As already pointed out we deem it quite natural to have these additional chirally symmetric in-medium

effects. We note in passing that our simple one-peak parametrization (5.3.1a) cannot cover the subtle

resonance-hole in-medium effects [Fri97, Hel95, Rap97, Pet98c, Pos04, Lut02] which are seen in the

many-body approach of [Hee06, Hee08] as additional shoulders at low invariant masses. Some attempts

to connect sum rule considerations with the dynamics of resonance-hole excitations can be found in

[Leu05b, Ste06].

5.4 Notes on ω and axial-vector mesons

The current ūγµu+ d̄γµd has the quantum numbers of the ω meson and is a chiral singlet w.r.t. SUR(2)×
SUL(2) chiral transformations. Consequently, the ω meson does not have a chiral partner in a world with

two light flavors. Concerning three light flavors the current given above is a superposition of a member

of the flavor octet and the singlet. The octet members do have chiral partners and one may assign a

proper linear combination of the two f1 [Ams08] mesons as the chiral partner of the respective linear

combination of ω and φ.

All considerations made in the following concern two light flavors. The OPE side of the ω meson

including terms up to mass dimension 6 contains only chirally symmetric terms [Shi79b, Shi79a, Hat93]

– except for the two-quark condensate term ∝ mq〈q̄q〉. This term, however, breaks chiral symmetry

explicitly by the quark mass and dynamically by the quark condensate. Considerations about symmetry

transformations, on the other hand, concern the case where chiral symmetry is exact, i.e. without explicit

breaking. Therefore the appearance of the term ∝ mq〈q̄q〉 is not in contradiction to the statement that the

ω is a chiral singlet. Without explicit calculations it is clear that, in the VOC scenario, the ω meson does

not change much of its mass since only the numerically very small term ∝ mq〈q̄q〉 is dropped while the

chirally symmetric four-quark condensates do not change.

The current (1.1.3b) with the quantum numbers of the a1 meson yields the same chirally symmetric

OPE parts as the ρ meson. The chirally odd parts are of course different, they are the negative of the
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ones which appear in the OPE for the ρ meson [Shi79b, Shi79a, Hat93]. In addition, the hadronic side of

the sum rule contains not only the a1, but also the pion. The latter contribution is ∝ f2
π . Both effects,

different chirally odd condensates and the appearance of the pion, lead to the fact that the sum rule

method yields a mass for the a1 which is significantly different from the ρ meson mass [Shi79b, Shi79a]

– as it should be. In the VOC scenario the chirally odd condensates are put to zero. In addition, the

pion-decay constant which is an order parameter of chiral symmetry breaking [Mei02] also vanishes.

Then the sum rules for ρ and a1 are the same. As expected the chiral partners become degenerate in the

VOC scenario.

5.5 Interim summary

To summarize this chapter, we have successfully extracted the symmetric part of the four-quark condensate

which enters the ρ meson QSR. In order to do so, we have directly used a spectral function measured in

the high precision experiment ALEPH [Sch05] instead of relying on certain parametrizations and the

corresponding parameters. In particular we found that equating the model independent moment m̃ to

the ρ vacuum mass gives results which are in agreement to those obtained from a measured spectral

function. In contrast, the results obtained by employing common Breit-Wigner parametrizations disagree

to the result obtained from a measured spectral function. This is because these parametrizations fail

to describe the low-energy domain, which is exponentially weighted within Borel transformed QSR.

Along these lines we found that quite generally decreasing four-quark condensates correspond to an

enhancement of the spectral density at low energies and vice versa. Moreover, within a QSR analysis

common Breit-Wigner parametrizations fail to reproduce the strength as given by the measured spectral

density. The non-trivial reproduction of the strength by the employed method in conjunction with the

extracted value for the symmetric four-quark condensate may be considered as confirmation of both.

Two extreme and antagonistic statements concerning hadron masses and hadronic medium modifica-

tions could be raised:

(a) Basically all hadron masses are caused by chiral symmetry breaking. Consequently in a dense

and/or hot strongly interacting medium the masses of hadrons vanish at the point of chiral restora-

tion – apart from some small remainder which is due to the explicit breaking of chiral symmetry

by the finite quark masses.

(b) The observed in-medium changes can be explained by standard hadronic many-body approaches

and have no direct relation to chiral restoration.

Our findings do not support either of these extreme statements. If one sets the explicit chiral symmetry

breaking condensates to zero in the QSR for the ρmeson one sees a significant change of the spectral mass

moment. It neither vanishes (as statement (a) would suggest) nor does it stay unchanged (statement (b)).

In the VOC scenario we have kept the chirally invariant condensates at their vacuum values. Though,

an adequate restoration mechanism might also change these condensates, the VOC scenario allows a
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discussion of chiral symmetry restoration which is not interfered by additional medium effects. This

is clearly unrealistic for a true in-medium situation. In particular, the contributions coming from the

non-scalar twist-two operators are found to be sizable, e.g., for cold nuclear matter [Hat92]. Nonetheless,

our study indicates that the connection between the vacuum spectral properties and chiral symmetry

breaking or between in-medium altered spectral properties and chiral restoration is not direct. In principle,

one could imagine conspiracies between chiral symmetry breaking and non-breaking condensates such

that one of the extreme statements raised above becomes true. Such a conspiracy would be driven by

the underlying microscopic mechanisms which cause spontaneous chiral symmetry breaking and/or its

restoration. Clearly one needs a deeper understanding of these microscopic mechanisms.

We note that we talk about chiral restoration here as discarding chirally odd condensates from the

QSR and not about any other in-medium effect. This is the strength of the VOC scenario. Of course,

the statement that the broadening of a spectral function is an in-medium effect is a trivial statement. In

contrast, a possible connection between broadening and chiral restoration is non-trivial. The present

work demonstrates that such a connection exists.
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6 Introduction to Dyson-Schwinger and
Bethe-Salpeter equations

We now turn our attention to the DSEs and BSEs, which provide another non-perturbative tool to

investigate quark-antiquark bound states.

6.1 Dyson-Schwinger equations

Despite of the fundamental nature of DSEs in quantum field theory, there are not many textbooks which

deal with them. The derivation, which is outlined in the following, is based on the very extensive

and didactic treatise of [Rom69], in which the DSE is derived for the pion-nucleon system. A tighter

derivation which is closer to presentations found in applications of DSEs to the quark-gluon system can

be found in [Itz80]. The major difference is that [Itz80] employs the path-integral formalism, whereas

the derivation of [Rom69] directly relies on ground state expectation values of field operators in the

Heisenberg picture and avails methods and techniques developed in the scope of canonical quantization.

Both approaches are, however, equivalent and based on the same ideas. For the sake of a consistent

presentation of the concepts and derivation of relations in the course of this thesis, the path integral

formulation will not be used.

6.1.1 Derivation

We consider time-ordered ground state expectation values of unrenormalized bare field operators in the

Heisenberg picture

S(x, y) ≡ −i〈T
[
ψ(x)ψ̄(y)

]
〉 , (6.1.1a)

DAB
µν (x, y) ≡ −i〈T

[
AAµ (x)ABν (y)

]
〉 , (6.1.1b)

which represent quark and gluon propagators. The derivation of DSEs is based on Eq. (2.0.8) (relating

ground state expectation values of field operators in the Heisenberg picture to matrix elements in the

interaction picture) and

O ′(x)S = i

∫
d4yT

[
O ′(x)L ′

int(y)S

]
, (6.1.2)
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where O ′ is an arbitrary interaction picture field operator, Lint is the interaction Lagrangian and

S = P exp

{
i

∫
L ′

int(x) d4x

}
(6.1.3)

is the S matrix operator in the interaction picture. Dyson’s chronological P ordering is defined the same

way as the T ordering but without a sign for fermion operators. In what follows a primed operator denotes

an operator in the interaction picture.

Dyson’s trick is to introduce external classical source terms which are to be set to zero at the end and

which may interact with the corresponding fields. For that purpose we define the interaction Lagrangian

as

L̃int = Lint − JµAAAµ , (6.1.4)

where J denotes the non-quantized external gluon source. With the Lagrangian (6.1.4) the S-matrix

(6.1.3) fulfills

δS

δJµA(z)
= −iT

[
A′Aµ (z)S

]
. (6.1.5)

These are the main ingredients which are needed to derive the coupled DSEs for quark and gluon

propagators and the quark gluon vertex. Indeed, Eq. (6.1.5) in conjunction with the fundamental relation

(6.1.2), can be used to show that the functional derivative of an n-point function w.r.t. to an external

source in the limit of vanishing source is given by an (n+ 1)-point function. Consequently, quark and

gluon propagators, as given in Eq. (6.1.1), may be obtained by the functional derivative of a one-point

function w.r.t. an external quark or gluon source, respectively:

S(x, y) = i
δΨ(x)

δη(y)

∣∣∣∣
η→0

, (6.1.6a)

DAB
µν (x, y) = i

δΦA
µ (x)

δJνB(y)

∣∣∣∣∣
J→0

. (6.1.6b)

The external quark field is denoted by η, and

Ψ(x) ≡ 1

〈0|S |0〉
δ〈0|S |0〉
δη(x)

= −i〈ψ(x)〉 , (6.1.7a)

ΦA
µ (x) ≡ 1

〈0|S |0〉
δ〈0|S |0〉
δJµA(x)

= −i〈AAµ (x)〉 (6.1.7b)

are the respective one-point functions defined as ground state expectation values of Heisenberg field

operators. Conversely, Eq. (6.1.6) may be considered as the definition of quark and gluon propagators. In

the absence of external sources and if the field carries some symmetry property of the ground state the

one-point function is zero. For nonzero external sources, in- and out-states are in general different and
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= + ΓB
νigtAγµ

Figure 6.1.1: The quark DSE. Double lines denote exact propagators, single lines free propagators.
The curly line is the gluon propagator and the gray triangle stands for the quark-gluon
vertex function. The object within the dashed box is the quark self-energy.

one-point functions are not necessarily zero. Furthermore, they may be nonzero for broken symmetries.

Applying Wick’s theorem to the quark propagator (6.1.1a) (in order to do so, one has to apply

Eq. (2.0.8) and, hence, to migrate to the interaction picture) and using the EoM for the free quark Green’s

function leads to a differential–functional-differential equation for the exact quark propagator:[
−i∂̂ + ig

δ

δJµ(x)
+ igΦµ(x) +m0

]
S(x, y) = δ(4)(x− y) . (6.1.8)

Processing ΦA
µ (x) in a similar manner gives a differential equation which is coupled to the quark propa-

gator and from which an integro-differential equation for the gluon propagator is obtained immediately

by a functional derivative w.r.t. to the gluon source. The vertex function is defined as the three point

function

ΓAµ (x, y, z) ≡ −1

g

δS−1(x, y)

δΦµ
A(z)

, (6.1.9)

which allows to derive a non-linear integral equation for the quark propagator

S(x, y) = S(0)(x− y) +

∫
d4x′ S(0)(x− x′)Σ(x′, x′′)S(x′′, y) d4x′′ , (6.1.10a)

depicted in Fig. 6.1.1 and with the quark self-energy defined as

Σ(x′, x′′) = −ig2tAγµ
∫

d4z d4x′ S(x, x′)ΓB,ν(x′, x′′, z)DAB
µν (z, x) . (6.1.10b)

The thus obtained equation is a non-linear Fredholm integral equation of the first kind. Moreover, due to

the infinite integration domain Eq. (6.1.10) is a singular integral equation. Unfortunately, the literature

about the theory of non-linear integral equations is fairly scarce and the situation is even worse in case

of singular equations. Essays about the solvability of non-singular non-linear integral equations can be

found in e.g. [Pog66]. However, even for these cases only sufficient requirements for the solvability are

given.
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= +

Figure 6.1.2: The quark DSE in rainbow approximation.

6.1.2 Renormalization

Introducing the Fourier transforms of S(0)(x− y), S(x, y) and Σ(x, y), Eq. (6.1.10) can be cast into

S(p) = S(0)(p) + S(0)(p)Σ(p)S(p) (6.1.11)

with the solution

S−1(p) = m0 − p̂− Σ(p) . (6.1.12)

Therefore, Σ is also called the mass shift operator and identifying m0 − Σ(p̂αβ = mδαβ) = m serves

as a natural definition of the physical mass. Defining the mass shift of the renormalized Lagrangian as

δm ≡ m0 −m and expanding the quark self-energy about the mass-shell, cancels δm and gives the

dressed quark propagator in terms of the physical mass m as

S(p) = Z2 [m− p̂− Z2Σr]
−1 , (6.1.13)

where Z2 ≡ [1 + ∂Σ/∂p̂|p̂=m]−1 and Σr ≡ Σ− Σ(p̂ = m)− ∂Σ/∂p̂|p̂=m (p̂−m) have been defined.

Within multiplicative renormalization the renormalized propagator is defined as S(p) ≡ Z2SR(p), which

can be shown to be finite and well defined in any order of perturbation theory. Consequently, the

renormalized quark wave function is defined as ψ ≡ Z1/2
2 ψR.

Analog relations hold for the gluon propagator and quark-gluon vertex. Furthermore, also ghost terms

have to be considered for the quantized Lagrangian of QCD. The gluon DSE couples also to the ghost

propagator, which fulfills its own DSE (see App. A.3). However, neither ghost nor gluon propagator

DSEs, nor the DSEs for the vertex functions will be considered within this thesis.

6.1.3 Rainbow approximation

Because S(x, y) is defined as integral kernel, the kernel S−1(x, y) is implicitly defined such that it is

the inverse operator w.r.t. to integration (and matrix multiplication). Thus, an explicit equation for the

operator S−1(x, y) in the presence of an external source can be found by deriving Eq. (6.1.10) following

the same steps but without the limit of a vanishing source and using the defining property of the inverse

integral kernel for S(x, y). From Eq. (6.1.9) it follows that the vertex function is directly related to the
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= + +

+ +

Figure 6.1.3: The first iteration of the quark DSE in rainbow approximation.

Figure 6.1.4: A selection of diagrams for radiative corrections of the quark propagator which contribute
to the solution of the DSE in rainbow approximation.

quark self energy

ΓAµ (x, y, z) = γµt
Aδ(4)(x− y)δ(4)(x− z) +

1

g

δΣ(x, u)

δΦµ
A(z)

. (6.1.14)

The well-known rainbow approximation of Eq. (6.1.10) is to neglect the second term in Eq. (6.1.14),

retaining only the lowest order contribution to the quark gluon vertex. The resulting equation is depicted

in Fig. 6.1.2. Performing an iteration gives Fig. 6.1.3 and illustrates the origin of the notion. A range of

diagrams which contribute to the quark propagator in rainbow approximation are shown in Fig. 6.1.4.

6.2 Bethe-Salpeter equations

Apart from the treatment of the previous section, DSEs may also be derived by virtue of arguments

which rely on the Feynman diagram technique and the notion of reducible and irreducible diagrams. To

exemplify this, the two-particle BSE is now derived in this way.

K = + G

Figure 6.2.1: The exact four-point function is split into a part without interaction and a part which
contains interaction between the two particles. All lines represent exact propagators.
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6.2.1 Derivation

The BSE is a 16 dimensional integral equation for the BSA. Derivations can be found in many textbooks

about quantum field theory, e.g. [Lur68, Rom69, Gre92, Sch61]. Let us start with an analysis of the

two-particle propagator defined as the four-point function

Kαβµν(x1, x2; y1, y2) ≡ −〈Ω|T
[
ψAα (x1)ψBβ (x2)ψ̄Aµ (y1)ψ̄Bν (y2)

]
|Ω〉 , (6.2.1)

where the sign is just convention. Different particles are denoted by A and B respectively and Greek

letters denote the spinor indices. Close to the QSR part of this thesis we are working with Heisenberg

field operators. Following [GM51] a perturbative expansion for the two-particle propagator is given by

Eq. (2.0.8). The diagrammatic representation is shown in Fig. 6.2.1. The diagram, which is labeled by

G contains all diagrams where an interaction between the particles takes place. Some examples of this

infinite sum are depicted in Fig. 6.2.2. We also note one diagram which describes a rather complicated

process and includes self-interactions. The corresponding equation reads

Kαβµν(x1, x2; y1, y2) = iSAαµ(x1, y1)iSBβν(x2, y2)

+

∫
d4y3 d4y4 d4y5 d4y6 iS

A
αα′(x1, y3)iSBββ′(x2, y4)

× Gα′β′µ′ν′(y3, y4; y5, y6)iSAµ′ν′(y5, y6)iSBµν(y1, y2) . (6.2.2)

The important observation now is that the diagrams occurring at the r.h.s. of the equation given in

Fig. 6.2.2, i.e. in G, can be categorized according to whether they are reducible or not. A reducible

diagram is defined as a graph which can be separated into two diagrams by cutting two internal fermion

lines, where each diagram has got two incoming and two outgoing fermion lines (see Fig. 6.2.3). Hence,

each reducible diagram can be expressed by a combination of appropriate irreducible ones. If we define

the sum of all irreducible diagrams as G, we are able to express the exact four-point function K by

the infinite sum of all irreducible diagrams only. One obtains the diagrammatical equation depicted in

Fig. 6.2.4. The integral equation which corresponds to Fig. 6.2.4 is the DSE for K reading

Kαβµν(x1, x2; y1, y2) = −SAαµ(x1, y1)SBβν(x2, y2)

−
∫

d4y3 d4y4 d4y5 d4y6 S
A
αα′(x1, y3)SBββ′(x2, y4)

× Gα′β′µ′ν′(y3, y4; y5, y6)Kµ′ν′µν(y5, y6; y1, y2) . (6.2.3)

In coordinate space, it is an inhomogeneous 16 dimensional integral equation. In order to verify that

this equation indeed reproduces the equation depicted in Figs. 6.2.1 and 6.2.2 one has to investigate

the iterated solution of Eq. (6.2.3) or Fig. 6.2.4, respectively, which is depicted in Fig. 6.2.5. Clearly,

every irreducible interaction is included in G, while every reducible interaction is reproduced by an

appropriate combination of irreducible diagrams appearing somewhere in the second line of Fig. 6.2.5.
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K = + + . . .

+ + . . . + + . . .

Figure 6.2.2: Perturbative expansion of the two-particle propagator (6.2.1). All the lines stand for free
propagators.

Figure 6.2.3: Two-particle irreducibility. Left panel: reducible diagram. Right panel: irreducible
diagram.

The integration kernel G is also subject to the respective DSEs and apart from this rather artificially

looking diagrammatic construction, the integral equation (6.2.3) can also be rigorously derived within

the framework reviewed in Sec. 6.1.

The BSA and the adjoint BSA are defined as

χK,αβ(x1, x2) ≡ 〈Ω|T
[
ψAα (x1)ψBβ (x2)

]
|K〉 (6.2.4a)

χ̄K,µν(y1, y2) ≡ 〈K|T
[
ψ̄Aµ (y1)ψ̄Bν (y2)

]
|Ω〉 , (6.2.4b)

where |K〉 is an arbitrary physical eigenstate of the momentum operator carrying the momentum K.

It can be a scattering stateas well as a bound state.Both quantities have 16 components in Dirac space.

Often, they are defined as matrices by transposing the second spinor, but as long as indices are used there

is no need to care about this. Unfortunately, the connection between them is non-trivial and not as simple

as one might think at the first sight. Indeed, by adjoining the BSA one gets the anti time-ordered product

of the adjoint spinors. Accordingly, the connection is not simply given by adjoining and multiplying

Eq. (6.2.4) by γ0 from both sides. Instead, an analytic relation between both quantities is given in

[Man55].

With these definitions a complete set of physical eigenstates of the momentum operator can be inserted

into Eq. (6.2.1) and the homogeneous BSE for the BSA and the adjoint BSA can be derived from

Eq. (6.2.3) as

χK,αβ(x1, x2) = −
∫

d4y3 d4y4 d4y5 d4y6 S
A
αα′(x1, y1)SBββ′(x2, y2)

× Gα′β′µ′ν′(y1, y2; y3, y4)χK,µ′ν′(y3, y4) . (6.2.5)
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K = + GK

Figure 6.2.4: The DSE for the exact four-point function K in terms of irreducible interactions encoded
in the infinite sum G. All lines stand for the exact propagators.

K = + G

+ GG + . . .

Figure 6.2.5: Iterated solution of Eq. (6.2.3) and Fig. 6.2.4.

Since the inhomogeneity in Eq. (6.2.3) corresponds to cases where the two particles stop interacting at

some time and the particles become free, i.e. to scattering states. To restrict ourselves to bound states

only, we have to neglect the first term in Eq. (6.2.3). This restriction to the propagator function represents

the claim that two particles which are bound never stop interacting. By this we also see that a finite

number of diagrams in Fig. 6.2.2 and, hence, in Eq. (6.2.2) is not sufficient to describe bound states.

Although the expansion of the four-point function (6.2.1) by means of perturbation theory and the integral

equation (6.2.3) are equivalent, the latter one is more powerful, providing a broader range of physical

applications.17

6.2.2 Ladder approximation

In many applications of the BSE it is sufficient to include only a certain kind of interaction between

the two particles. The so-called ladder approximation only includes single particle exchanges within

the interaction kernel G. The resulting iterated diagrammatical solution has the characteristic shape of

a ladder, see Fig. 6.2.6. Strictly speaking, if the homogeneous BSE is considered, i.e. bound states, in

each of these diagrams an infinite number of interactions takes place and the “ladder” is endless. In

Fig. 6.2.7 an example for a diagram that is not included by the ladder approximation is shown. It has,

however, to be taken into account, e.g., for positronium bound states [Gre92]. For the deuteron the

lowest-order perturbative contribution to the fermion propagators SA,B , i.e. free propagators, are inserted

17In fact, comparing the power expansion of the four-point function (6.2.1) and its integral equation (6.2.3), the differences
according to divergence or convergence of the one or the other are even more fundamental [GM51].
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Figure 6.2.6: Typical contributions to the homogeneous BSE in ladder approximation.

Figure 6.2.7: A diagram contributing to the BSE beyond the ladder approximation.

and give satisfactory results. However, due to the momentum dependence of the dressed quark mass, this

approximation is not applicable in QCD. Indeed, in [Sou05, Sou10b] the constituent quark model for

heavy quarks has been investigated in detail. Though undressed heavy quark masses yield very good

results for the masses of the bound states, the decay constants strongly disagree with experimental data.

The free fermion propagators are given in (C.1.15). For a yet unspecified interaction, the lowest-order

contribution to the irreducible interaction kernel in momentum space may be written as

G
(0)

(p, p′,K)αβα′β′ = (2π)4ΓAαα′Γ
B
ββ′∆

(0)(p− p′) , (6.2.6)

where Γ
(A,B)
αβ are the vertex functions and ∆(0) is the lowest order interaction particle propagator. The

vertex functions as matrices in Dirac space may be decomposed over {1, γµ, σµ<ν , iγ5γµ, γ5} and

represent the coupling of the interaction particle to the fermions. In Fig. 6.2.8, we give the diagrammatic

representation of the integral equation for the four-point function in ladder approximation.

The homogeneous BSE for the BSA in ladder approximation and momentum space thus reads

[
SA (η+K + p)

]−1

αα′

[
SB (η−K − p)

]−1

ββ′
χK,α′β′(p)

= −
∫

d4p′

(2π)4
∆(0)(p − p′)ΓAαα′ΓBββ′χK,α′β′(p′) . (6.2.7)

The momentum partitioning parameter is denoted by η ≡ η+ = 1− η−, the bound state momentum is

K, and p is the relative momentum of the two constituents. If the mass dressing is negligible, e.g. for

the deuteron, a natural choice is given by the reduced mass η = µ/mA, with µ = mAmB/(mA +mB),

which represents the bound states rest frame. For obvious reasons, in case of diquark bound states, the

mass dressing renders this choice useless. However, due to the Poincaré invariance of the BSE any value

η ∈ (0, 1) may be chosen.

Equation (6.2.7) is a four dimensional integral equation for the 16 components of the BSA. Whether a

solution exists or not depends, beside other requirements, on the four-momentum K of the bound state.

Considered as an eigenvalue problem, Eq. (6.2.7) has solutions only for discrete values of the bound

state four-momentum. Unfortunately, the BSA does not have a direct physical meaning and calculating

observables from it requires knowledge of the adjoint BSA. Hence, in general, if no further restrictions to
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K = K

Γ

Γ

Figure 6.2.8: Diagrammatic representation for the BSE (6.2.3) and Fig. 6.2.4 in ladder approximation.

the time ordering are made and a simple algebraic relation between the BSA and its adjoint counterpart

is provided, one also has to solve the BSE for the adjoint BSA.

In any case, as Eq. (6.2.7) is solvable only for discrete values of K, solving the BSE for the BSA is

a problem of finding eigenvalues K and eigenstates χK to the operator defined in Eq. (6.2.7). Thus, a

solution at least provides the determination of the bound state mass K0, if one is working in the bound

states rest frame. Because the BSE is Lorentz invariant and the BSA transforms covariantly, one is free

to choose any frame that is convenient to simplify calculations. Choosing the center of mass system does

not mean any loss of generality, but enables a direct determination of the bound state mass by solving the

eigenvalue problem defined in Eq. (6.2.7). Any other frame complicates the solution but may be useful

in the one or the other context [Mar06]. If it is desired to calculate observables, e.g. the electromagnetic

form factor, both functions are essential, the BSA in the rest frame of the bound state and in other frames.

The latter one can be obtained as the Lorentz transform of the first one.

6.2.3 Solving the Bethe-Salpeter equation in ladder approximation

In order to simplify notations, in what follows, we will use the matrix notation and introduce a redefined

BSA as

ΨK(p) ≡ −χK(p)C , (6.2.8)

with C = iγ0γ2 being the charge conjugation matrix. Furthermore, we introduce the Bethe-Salpeter

vertex function (BSV) Γ(K, p) as

ΨK(p) = SA (η+K + p) Γ(K, p)S̃B (η−K − p) , (6.2.9)

where we have implicitly introduced

S̃(p) = CSTC , (6.2.10)

which means for the free propagator [S̃(0)]−1 = p̂+m. For the BSA these definitions translate to

χK(p) = SA (η+K + p) Γ̃(K, p)
[
SB (η−K − p)

]T
(6.2.11)
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and

Γ(K, p) ≡ Γ̃(K, p)C . (6.2.12)

Transforming into the bound states rest frame, the BSE for the vertex-function of a bound state in ladder

approximation reads

Γ(K, p) = i

∫
d4p′

(2π)4
∆(p− p′)ΓASA

(
η+K + p′

)
Γ(K, p′)S̃B

(
η−K − p′

)
Γ̃B . (6.2.13)

Within a numerical approach, linear integral equations, such as Eq. (6.2.13), are matrix equations and the

solution of a homogeneous linear integral equation may be obtained by solving the eigenvalue problem.

In the following, the matrix which corresponds to Eq. (6.2.13) is called Bethe-Salpeter matrix (BSM).

Similarly, the solution of an inhomogeneous linear integral equation may be obtained by matrix inversion.

Once the matrices are known, using modern computers and programs both tasks can be accomplished

fast and reliable in most cases without big efforts. However, the high dimensionality of Eq. (6.2.13)

(16 components of the vertex function and 4 momentum integrations), cause a large amount of work.

In order to solve the BSE, the Dirac structure of the vertex function Γ is projected onto a set which

respects the quantum numbers and symmetries of the respective bound state. The resulting coefficient

functions are then expanded over hyperspherical harmonics. In case of the deuteron, one is left with a set

of coupled one-dimensional integral equations if the appropriate bases are employed for the expansions

[Dor08, Hil08]. The other integrations can be done analytically, which results in analytical expressions

for the entries of the BSM. However, the quark dressing of QCD again prevents such a simplification.

Thus, for hadrons one is left with a set of coupled integral equations where the entries must be obtained

numerically.
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7 Dyson-Schwinger and Bethe-Salpeter
approach

In this chapter we apply the DSEs and BSEs introduced in Secs. 6.1 and 6.2 to quark-antiquark bound

states. Possibilities of an application to heavy-light mesons are investigated. For this purpose, the analytic

structure of the quark propagator in the complex plane is analyzed numerically and Poincaré invariance

of the BSE is used to avoid poles in the integration domain. As an extension of the investigation in Sec. 5,

the BSE is solved for the Wigner-Weyl solutions of the DSE at nonzero quark masses.

7.1 Dyson-Schwinger equation for the quark propagator

The renormalized Euclidean DSE in momentum space for the quark propagator in vacuum reads [Fis05]

(cf. Sec. 6.1, Eq. (6.1.10))

S−1(p) = Z2 (iγ · p+ Zmm0)− Z1

∫ Λ d4q

(2π)4
Γ0,a
µ (p, q)S(q)Γbν(q, p)Gabµν(p− q) , (7.1.1)

where Z1, Z2 and Zm are gluon, quark and mass renormalization functions, respectively. Γbν(p, q) is the

quark-gluon vertex function, Gabµν(p− q) the gluon propagator. Bare quantities have the superscript 0.

The regularization mass scale is denoted by Λ and the renormalized quark mass in the QCD Lagrangian

is m0.

The gluon propagator may be decomposed by virtue of Eq. (B.3.3) and Tab. B.3.1 as [Rob94]

Gabµν(k) = δab
[(
gµν −

qµqν
q2

)
G(q2) + α

qµqν
q2

GL(q2)

]
≡ δabGµν(k) . (7.1.2)

The choice α = 0 is called Landau gauge, the choice α = 1 refers to the Feynman gauge. As has been

argued in [Fra96], the rainbow-ladder truncation, which will be employed in the following, is numerically

reliable in Landau gauge. In particular, the rainbow truncation, i.e. the replacement of the quark-gluon

vertex by its tree-level counterpart Γbν → igtbγν , is not reliable for α 6= 0. In [Cha07, Zho08], where the

DSE approach has been used to study quark and gluon condensates, however, the Feynman gauge has

been used.

Recall that all n-point functions, e.g. quark and gluon propagators and quark-gluon vertex, satisfy their

own DSEs. They form an infinite set of coupled integral equations, relating n-point functions to (n+ 1)-

point functions. A suitable truncation scheme must respect global symmetries of QCD, in particular
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chiral symmetry and its dynamical breaking. One such scheme is the rainbow-ladder truncation which

amounts to the replacement of gluon propagator and quark-gluon vertex by their tree-level counterparts.

The exact quark propagator in vacuum and Euclidean space may be decomposed by virtue of two

quark dressing functions as

S(p) = [iγ · pA(p) +B(p)]−1 =
−iγ · pA(p) +B(p)

p2A2(p) +B2(p)
= −iγ · pσv(p) + σs(p) , (7.1.3)

where M(p) = B(p)/A(p) is the quark mass function and 1/A is called the quark wave function. The

two sets {σs, σv} and {A,B} are related via

A =
σv

p2σ2
v + σ2

s

, B =
σs

p2σ2
v + σ2

s

. (7.1.4)

Any phenomenological ansatz for the gluon propagator must be capable of dynamically generating

sufficiently large dressed quark masses in order to reproduce the observed hadronic mass spectra. A

simple, but surprisingly successful ansatz, is a two-parameter function which models the infrared part of

the interaction, which is the most important part for diquark bound states [Alk02]

g2G0(q) = 4π2D
q2

ω2
e−

q2

ω2 . (7.1.5)

Gluon propagator Gabµν and the function G0 are related via Eq. (7.1.2). The momentum dependence of

the coupling strength g is thereby effectively encoded in the gluon-propagator. In the chosen model, the

strength of the interaction is described by D, while ω is a measure of the range of the interaction. Since

the effective interaction (7.1.5) is exponentially damped in the ultraviolet, the momentum integration in

Eq. (7.1.1) is well-defined and the renormalization constants may be set to one [Fis05]. Equation (7.1.5)

is a simplified version of the Maris-Tandy model [Mar99] (see also [Mar97])

g2G0(q) = 4π2D
q2

ω2
e−

q2

ω2 +
8π2γmF (k2)

ln

[
τ +

(
1 + k2

Λ2
QCD

)] , (7.1.6)

where the second term ensures the correct ultraviolet asymptotics, which is dictated by perturbation

theory [Mar97]. We will not continue to investigate this model, since the effective quark-gluon interaction

is qualitatively well described by (7.1.5). With these conventions, the DSE for the quark propagator in

Euclidean space, Landau gauge and rainbow-ladder approximation for the effective interaction (7.1.5)

(or (7.1.6)) reads

S−1(p) = iγ · p+m0 +
4

3

∫
d4l

(2π)4

[
g2G0

µν(p− l)
]
γµS(l)γν . (7.1.7)

Since the employed interaction is rotational invariant w.r.t. spatial coordinates, Eq. (7.1.7) reduces to a

two-dimensional integral equation.
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For q = p− l one obtains(
gµν −

qµqν
q2

)
γµS(l)γν =

iγ · lA(l) + 3B(l)

l2A2(l) +B2(l)
+
γ · q
q2

2iq · lA(l)

l2A2(l) +B2(l)
. (7.1.8)

Inserting (7.1.8) into (7.1.7) results in

S−1(p) = iγ · p+m0

+
4

3

∫
d4l

(2π)4
g2G0(p− l)

[
iγ · lA(l) + 3B(l)

l2A2(l) +B2(l)
+
γ · q
q2

2iq · lA(l)

l2A2(l) +B2(l)

]
. (7.1.9)

Noting that pµ is the only four-vector which the integral depends on, which allows to project γ · l =

(γ · p)(l · p)/p2 and, hence, to use

i(q · l)(γ · q) = i(γ · p)
(
p · l − l2

) p · l
p2

, (7.1.10)

one can read off and collect the components which belong to different elements of the Clifford base.

Equation (7.1.7) thus defines a coupled system of non-linear, two-dimensional integral equations for the

propagator functions:

A(p) = 1 +
1

3

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2g2G0(p− l)

× A(l)

l2A2(l) +B2(l)

l

p

(
t+ 2

(p− lt)(pt− l)
p2 + l2 − 2plt

)
, (7.1.11a)

B(p) = m0 +

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2g2G0(p− l) B(l)

l2A2(l) +B2(l)
, (7.1.11b)

where p · l = plt. From Eqs. (7.1.3) and (7.1.4), an analog system of coupled integral equations can be

read off for {σv, σs} instead of {A,B}. The integrand is then linear in the functions to be solved for, i.e.

σv and σs, but the system itself is still non-linear. For gauges which differ from the Landau gauge it is

easy to obtain the additional structures in Eq. (7.1.11) by noting

γµS(l)γµ =
2iγ · lA(l) + 4B(l)

l2A2(l) +B2(l)
. (7.1.12)

However, it has to be checked whether the employed gauge and truncation scheme respect the global

symmetries of the interaction and features DCSB. In fact, as has been argued, e.g., in [Fis09a, Rob94,

Rob07, Rob00] and references therein, the ladder-rainbow truncation is such a scheme.
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7.1.1 Analytical angle integration of the infrared part of the potential

As has been noted in [Alk02] the main technical benefit of the choice (7.1.5) is that the angle integration in

(7.1.11) can be done analytically if the arguments of (7.1.5) are real. To see this, note that the Chebyshev

polynomials of the second kind C1
n form a complete orthogonal set in the space of functions over the

interval [−1, 1] [Abr72, Boy00]. Hence, the angle dependence of the potential gG0(p− l) = gG0(p, l, t)

may be expanded by virtue of

gG0(p, l, t) ≡
∑
n

Dn(p, l)C1
n(t) . (7.1.13)

The Chebyshev polynomials of the second kind are a special case of the Gegenbauer polynomials Cαn for

α = 1, which emerge when investigating four-dimensional spherical harmonics, sometimes related to as

hyperspherical harmonics, and which are a solution to the Gegenbauer differential equation [Erd55a].

The coefficient functions can then be evaluated by virtue of the appropriate inner product which has to be

chosen according to the polynomials. In view of the generic structure of the angle integration in (7.1.11),

it is convenient to chose the Chebyshev polynomials of the second kind rather than the first kind owing to

their orthogonality relation∫ +1

−1
dt
√

1− t2C1
n(t)C1

m(t) =
π

2
δnm . (7.1.14)

For the replacement
√

1− t2 →
(√

1− t2
)−1

the Chebyshev polynomials of the first kind C0
n, which

satisfy the according orthogonality relation, are the most convenient choice. Equation (7.1.14) defines

the coefficient functions as

Dn(p, l) ≡ 2

π

∫ +1

−1
dt
√

1− t2C1
n(t)gG0(p, l, t) . (7.1.15)

Similarly, it is useful to define the expansion coefficients for gG0(q)/q2 as

Zn(p, l) ≡ 2

π

∫ +1

−1
dt
√

1− t2C1
n(t)

gG0(p, l, t)

(p− l)2
. (7.1.16)

In the following the coefficient functions will be called diagonal (Dn) and non-diagonal (Zn) partial

potentials, respectively. For the special choice of the potential (7.1.5) it follows that

Zn(p, l) = 8π
D

ω2
e−xHn(z) , (7.1.17)

where we have defined

Hn(z) ≡
∫ +1

−1
dt
√

1− t2C1
n(t)ezt (7.1.18)
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with x ≡ (p2 + l2)/ω2 and z ≡ 2pl/ω2. By mathematical induction one can show that

Hn(z) = (n+ 1)π
In+1(z)

z
, (7.1.19)

where In(z) are the modified Bessel functions of the first kind.

Equation (7.1.19) can be confirmed for n = 0 and n = 1. From Eq. (7.1.18) and the recurrence

relation of the Chebyshev polynomials C1
n+1(t) = 2tC1

n(t)−C1
n−1(t), the following recurrence relation

can be given for Hn:

Hn+1(z) = 2
∂

∂z
Hn(z)−Hn−1(z) . (7.1.20)

Using ∂
∂z In+1(z) = 1

2In(z) + 1
2In+2(z) the derivative of Hn(z) by assumption (7.1.19) reads

∂

∂z
Hn(z) =(n+ 1)π

(
1

z

∂

∂z
In+1(z)− In+1(z)

z2

)
=(n+ 1)π

1

2z

(
In(z) + In+2(z)− 2

z
In+1(z)

)
. (7.1.21)

Inserting Eqs. (7.1.21) and (7.1.19) into (7.1.20) one obtains

Hn+1(z) =
π

z

(
In(z)− 2(n+ 1)

z
In+1(z) + (n+ 1)In+2(z)

)
. (7.1.22)

Finally, using the recurrence relation In+2(z) = In(z) − 2(n + 1)In+1(z)/z proves Eq. (7.1.19) by

mathematical induction. Hence, the integration in Eq. (7.1.16) can be performed analytically yielding the

final result for the non-diagonal partial potentials

Zn(p, l) = (n+ 1)8π2 D

ω2
e−x

In+1(z)

z
. (7.1.23)

The diagonal partial potentials can now be easily evaluated by noting

Dn(p, l) = 8πDe−x
(
xHn(z)− z ∂

∂z
Hn(z)

)
. (7.1.24)

Using Eq. (7.1.20) and the recurrence relation for the modified Bessel functions of the first kind, the

diagonal partial potentials are given by

Dn(p, l) = (n+ 1)8π2De−x
[
x+ n+ 2

z
In+1(z)− In(z)

]
. (7.1.25)

Having the analytical expressions for the partial potentials at our disposal, we note that the modified

Bessel functions of the first kind are strongly growing functions. Therefore, caution should be exercised

when the numerical implementation is addressed. It is clear that, if the implementation is limited to
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double-float numbers, the numerical difference of two very large numbers might differ significantly from

the true result. Despite of the exponential damping a careless treatment would lead to severe numerical

discrepancies. Furthermore, for complex arguments the strongly growing modified Bessel functions of

the first kind become rapidly oscillating Bessel functions of the first kind. This leads to difficulties in

solving the DSE in the complex plane.

Due to the success of Eq. (7.1.5) in evaluating many hadronic bound state masses, cf. e.g. [Alk02],

one might argue that most of the infrared part of the interaction is indeed contained there or must at least

follow a similar functional behavior. Thus, any refinement might be considered as a small disturbance to

the ansatz (7.1.5) featuring similar properties, e.g. rapid oscillations for large complex momenta.

As a result of Eqs. (7.1.23) and (7.1.24) the angle integration in Eq. (7.1.11) in case of the potential

(7.1.5) can be performed analytical, yielding [Alk02] coupled, non-linear, one-dimensional integral

equations:

A(p) = 1 +
1

3

∫ ∞
0

dl l4

4π2

A(l)

l2A2(l) +B2(l)

×
[

1

p
D1(p, l) + 2p

(
1 +

l2

p2

)
Z1(p, l)− l (5Z0(p, l) + Z2(p, l))

]
, (7.1.26a)

B(p) = m0 + 4

∫ ∞
0

dl l3

8π2

B(l)

l2A2(l) +B2(l)
D0(p, l) , (7.1.26b)

In principle, any potential (7.1.2) may be split into a part which is of the functional type of Eq. (7.1.5)

and may be treated by virtue of Eq. (7.1.26) and a part which has to be treated numerically according to

Eq. (7.1.11).

7.1.2 Solution along the real axis

Equation (7.1.26), or Eq. (7.1.11) for more sophisticated potentials, can easily be solved along the real

axis by fixed-point iteration, see Fig. 7.1.1. The convergence of the iteration depends on the quark mass

and the initial function. If the initial function is constant, then the iteration converges faster for heavy

quarks.

For p→∞ the quark mass function approaches its perturbative limit limp→∞M(p) = m0. Further-

more, the solutions exhibit the anticipated dynamical mass generation for small momenta which cannot

be obtained within a perturbative treatment. As the most dominant energy domain for diquark bound

states is below 1 GeV, we find constituent quark masses of ≈ 400 MeV for current quark masses of

5 MeV. However, as can be seen from Fig. 7.1.2 at least for the assumed potential (7.1.5), the systematic

of dynamically generated mass is non-trivial, because the lightest quark does not exhibit the largest

dynamically generated mass. For the chosen potential and parameters, we find a maximal dynamical

generated mass increase of the quark mass function M(p) at zero momentum for m0 ≈ 350 MeV. On

the other hand, the right panel of Fig. 7.1.2 shows that the quark mass function M(p) decreases faster for
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Figure 7.1.1: Solutions of the DSE (7.1.11) with the phenomenological potential given in Eq. (7.1.5)
for propagator functions A(p) (left panel) and M(p) (right panel) along the real axis for
ω = 0.5 GeV and D = 16.0 GeV. Solid: m0 = 5 MeV, dashed: m0 = 120 MeV, dotted:
m0 = 1.2 GeV, dashed-dotted: m0 = 4.5 GeV.

light quarks than for heavy quarks. Although for meson masses the low energy domain is more important

than the high energy domain, Fig. 7.1.2 shows that in view of a simple constituent quark model with

constant quark masses, the constituent masses will be generated by a subtle balance between maximal

mass gain at low momenta and the decreasing of the mass function at large momenta.

Considering the functions A and B as functions of p2, Schwartz’s reflection principle tells us that the

analytic continuation of A(p2) and B(p2) in the complex plane is subject to the condition A∗(p2) =

A((p2)∗) (and analogously for B), i.e. their imaginary parts are antisymmetric w.r.t. to p2 → (p2)∗.

Apart from the case m0 = 0 the result does not depend on the trial function in case of a fixed point

iteration.18 Form0 = 0 the initial choiceB0 = 0 reproduces itself and converges to a different solutionA

and B of Eq. (7.1.11) than for any other choice. In Fig. 7.1.3 both solutions are depicted. As M(p) = 0

(and, as will become clear later on, 〈q̄q〉 = 0) this represents a chirally symmetric solution to Eq. (7.1.11).

From Fig. 7.1.3 we conclude, that DCSB affects the quark wave function only below 1.5 GeV.

7.1.3 Solution in the complex plane

As will be shown in Sec. 7.2 the quark propagator must be evaluated along and inside a parabola in the

complex plane in order to solve the BSE. Various approaches can be found in the literature and three of

them have been used by us to study the quark propagator in the complex plane.

Complex gluon momenta and solution along the real axis

The first method, cf. e.g. [Alk02], is to solve Eq. (7.1.11) along the real axis to very high precision by

fixed-point iteration. Having obtained a solution along the real axis, the propagator functions in the

complex plane can be evaluated by virtue of Eq. (7.1.11) for complex gluon momenta, see Figs. 7.1.4 and

18Note, however, that there are, in general, multiple solutions to the DSE [LE07].
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Figure 7.1.2: Comparison of dynamically generated masses obtained from (7.1.11) with phenomeno-
logical potential given in Eq. (7.1.5) for ω = 0.5 GeV and D = 16.0 GeV. Left panel:
limp→0M(p) −m0 as a function of m0. Riht panel: M(p) −m0 as a function of p.
Line code as in Fig. 7.1.1.
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Figure 7.1.3: Solutions of the DSE (7.1.11) for propagator functions A(p) (left panel) and M(p) (right
panel) along the real axis obtained for different initial functions B0(p) in the chiral limit
m0 = 0 for ω = 0.5 GeV and D = 16.0 GeV. Solid: B0(p) = 0, dashed: B0(p) 6= 0.
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Figure 7.1.4: ReA(p2) (left) and ImA(p2) (right) for m0 = 5 MeV, ω = 0.5 GeV and D = 16.0 GeV
in the complex p2 plane.
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Figure 7.1.5: ReB(p2) (left) and ImB(p2) (right) in the complex p2 plane for parameters as in
Fig. 7.1.4.

7.1.5. This method is reliable if the imaginary part of the gluon momentum is not too large. According

to the discussion given previous to Eq. (7.1.26) the integrand is a rapidly oscillating function in l for

arguments with large imaginary part. Hence, numerical stability of the integration routine has to be

controlled carefully. Finally note that the assumption of the same functional form of the gluon propagator

for complex arguments as for real arguments is an ad hoc ansatz [Alk02]. However, the results are in

agreement to the other two approaches.

Complex gluon momenta and solution in the complex plane

The second method, cf. [Sta92], relies on analyticity of the integrand in Eq. (7.1.11), which allows to

perform a Wick rotation by an angle Θ:

p→ p0e
iΘ . (7.1.27)
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Figure 7.1.6: Solutions of the DSE (7.1.29) for real (left panel) and imaginary (right panel) part of the
quark mass function M(p) in the complex plane at angles Θ = 0 (dotted), Θ = 0.25
(dashed) and Θ = 0.5 (solid). The parameters are m0 = 5 MeV, ω = 0.5 GeV and
D = 16.0 GeV.

Obviously, the integrand has to tend to zero rapidly enough for |p| → ∞. The angle defines the area

of analyticity of the integrand. Denoting the integrands of the DSE by KA,B = KA,B(p, l, t;A,B),

Eq. (7.1.11) reads19

A(p) =1 +

∫ ∞
0

∫ +1

−1
dl dtKA(p, l, t;A,B) , (7.1.28a)

B(p) =m0 +

∫ ∞
0

∫ +1

−1
dl dtKB(p, l, t;A,B) , (7.1.28b)

which, by virtue of the Wick rotation (7.1.27), becomes

A(p = p0e
iΘ) =1 +

∫ ∞
0

∫ +1

−1
dl0 e

iΘ dtKA(p0e
iΘ, l0e

iΘ, t;A,B) , (7.1.29a)

B(p = p0e
iΘ) =m0 +

∫ ∞
0

∫ +1

−1
dl0 e

iΘ dtKB(p0e
iΘ, l0e

iΘ, t;A,B) . (7.1.29b)

Similarly, to the solution along the real axis, Eq. (7.1.29) can be solved by fixed-point iteration for

given trial functions A and B. Note that, in contrast to Eq. (7.1.11), the DSE is solved directly in the

complex plane and the solutions for A and B along the real axis are not needed. The results are shown in

Figs. 7.1.6 and 7.1.7. Performing the Wick rotation (7.1.27) requires analyticity in the enclosed domain.

As argued in [Sta92] one should therefore gradually increase the rotation angle in order to detect an

emerging singular behavior before the singularity enters the contour. However, no indications for an

irregular behavior of the functions A and B could be found within our investigation. Though, this does

not mean that the integration kernel KA,B is regular.

19Indeed, the integrands can even be written as KA,B = K̃A,B(p, l, t)FA,B(l, A(l), B(l)) and Eq. (7.1.11) is thus a Hammer-
stein equation [Ham30, Tri85].
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Figure 7.1.7: Solutions of the DSE (7.1.29) for real (left panel) and imaginary (right panel) part of the
quark wave function A(p) in the complex plane. Line code as in Fig. 7.1.6.

Despite of the advantage that Eq. (7.1.29) allows to solve the DSE directly in the complex plane,

the gluon momenta are still imaginary. Hence, the integrand of the momentum integration is again an

oscillating function for large complex momenta which leads to severe numerical complications. Because

of this, the method cannot be applied to arbitrary large angles.

Real gluon momenta and solution in the complex plane

In [Fis05] an approach has been proposed that allows to solve the DSE directly in the complex plane,

whereas only real gluon momenta are involved. Shifting the integration variable in Eq. (7.1.9) by

l→ p− l, using (7.1.10) and expanding over the Clifford base one obtains

A(p) = 1 +
4

3

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2g2G0(l)

× A(p− l)
(p− l)2A2(p− l) +B2(p− l)

(
1− 3

l

p
t+ 2t2

)
, (7.1.30a)

B(p) = m0 + 4

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2g2G0(l)
B(p− l)

(p− l)2A2(p− l) +B2(p− l) . (7.1.30b)

The integration now runs over the gluon momentum instead of the quark momentum. Note that the Wick

rotation (7.1.27) can also be applied to Eq. (7.1.30), but would lead to imaginary gluon momenta again.

Consider a contour given by

z(λ) =
λ2

4η2M2
− η2M2 + iλ , (7.1.31)

which is plotted in Fig. 7.1.8. Its relevance for diquark bound states is revealed in Sec. 7.2. The crucial

point which allows the solution of the DSE by virtue of Eq. (7.1.30) is the insight that the arguments of

the quark propagator functions A(p− l) and B(p− l) which enter the integrand lie within the contour
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Figure 7.1.8: The contour (7.1.31) in the complex p2-plane with vertex at −η2M2.

(7.1.31) for p2 = z(λ).

In order for a fixed momentum q2 to lie within or on the parabola (7.1.31) the following condition has

to be satisfied:

|Imq2| ≤ |Imz(λq)| with Rez(λq) = Req2 , (7.1.32)

where equality implies q2 on the parabola. With

λq = 2ηM
√

Req2 + η2M2 (7.1.33)

Eq. (7.1.32) translates to(
Imq2

)2
4η2M2

− η2M2 ≤ Req2 . (7.1.34)

Solving along the contour requires the propagator functions at arguments q2 = (p− l)2 = z+ l2−2
√
zlt.

Hence,

Im (p− l)2 = λ− 2ltηM , (7.1.35a)

Re (p− l)2 =
λ2

4η2M2
− η2M2 + l2 − lt λ

ηM
, (7.1.35b)

which fulfills Eq. (7.1.34) for all t ∈ [−1,+1] and, therefore, proves the statement. Applying a Wick

rotation (7.1.27) to Eq. (7.1.30) for the contour given in Eq. (7.1.31) results in a rotated parabola.

The fixed-point iteration along the parabola (7.1.31) can now be done in the following way. Given the

functions An and Bn along the contour C, where n refers to the iteration step, the functions inside of the

contour can be evaluated by virtue of Cauchy’s integral formula for an analytic function f

f(z0) =
1

2πi

∮
C

dz
f(z)

z − z0
(7.1.36)

provided A and B are analytic inside of the contour C. Thereby, the contour is closed at some p2
C > p2

UV.
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An improvement of the numerical implementation of Cauchy’s integral formula has been proposed

in [Ioa91] and first applied in the context of DSEs and BSEs in [Kra08]. The idea is to suppress the

numerical error, which occurs when z0 approaches the contour C, by introducing the Cauchy formula

representation of 1 = 1
2πi

∮
C dz 1

z−z0 in the r.h.s. of Eq. (7.1.36). For arguments with Rep2 > Rep2
UV the

functions may be fitted to their asymptotic form [Fra96, Fis05]

A(p2)
Rep2→∞

= 1 +

N∑
n=1

an
p2n

, (7.1.37a)

B(p2)
Rep2→∞

= m0 +

N∑
n=1

bn
p2n

. (7.1.37b)

Having evaluated the functions inside of the parabola, integration in Eq. (7.1.30) can be performed,

giving An+1 and Bn+1 along the parabola.

The procedure works for all quark masses m0 up to a specific value of the parameter

χ ≡ ηM , (7.1.38)

which completely determines the parabola (7.1.31). The maximum χmax depends on the quark mass.

The reason for the failure of this procedure can be traced back to poles of the integrands in Eq. (7.1.30),

namely for σv and σs in the complex plane. Note that so far no poles have been found for A and B,

which we therefore consider as regular.

Analytic structure of the quark propagator

One way to determine the position of these poles is to search for the roots of the denominator of σv,s.

The denominator can be written as

p2A2(p) +B2(p) = (pA(p) + iB(p)) (pA(p)− iB(p)) ≡ g∗(p∗)g(p) , (7.1.39)

where we use the reflection property of the propagator functions (see Sec. 7.1.2), which therefore allows

us to restrict our studies to g. From Eq. (7.1.39) we see that a root of g(p) corresponds to a pair of

complex conjugated poles of the quark propagator. Furthermore, due to g(−p∗) = −g∗(p), the roots of

g(p) are symmetric w.r.t. to reflection at the imaginary axis. Hence, the analysis may be restricted to the

first quadrant of the momentum plane p. This is not the case in the squared momentum plane p2.

To locate the roots of g we partly follow the method used in [Mar92]. We enclose the domain where

poles are expected by a rectangular contour and apply Rouchés theorem, which states that if a function f

is meromorphic (has only isolated poles) along and inside of the contour C, then

N − P =
1

2πi

∮
C

f ′(z)

f(z)
dz , (7.1.40)
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where N is the number of roots and P is the number of poles within C. Thereby it is assumed that g

does not have poles within the considered contour, which can be seen from Figs. 7.1.4 and 7.1.5. The

derivative of g w.r.t. p can easily be evaluated by means of Eq. (7.1.11) and is given by

∂

∂p
[pA(p)] = 1 +

1

3

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2 lA(l)

l2A2(l) +B2(l)

× ∂

∂p
g2G0(p − l)

(
t+ 2

(p− lt)(pt− l)
p2 + l2 − 2plt

)
, (7.1.41a)

∂

∂p
[B(p)] =

∫ ∞
0

∫ +1

−1

dl l3

π3
dt
√

1− t2 B(l)

l2A2(l) +B2(l)

∂

∂p
g2G0(p− l) . (7.1.41b)

The first equation can be transformed by virtue of

∂

∂p
g2G0(p− l)

(
t+ 2

(p− lt)(pt− l)
p2 + l2 − 2plt

)
= 2(p− lt)

(
∂

∂q2
D(q2)

)
q=p−l

(
t+ 2

(p− lt)(pt− l)
p2 + l2 − 2plt

)
+D(p− l)2

(
pt− l

p2 + l2 − 2plt
+

(p− lt)t
p2 + l2 − 2plt

− 2
(p− lt)2(pt− l)
p2 + l2 − 2plt

)
, (7.1.42)

For the potential given in Eq. (7.1.5) one has

∂

∂q2
D(q2) =

(
1

q2
− 1

ω2

)
D(q2) . (7.1.43)

Having found one or more roots inside of the contour, the rectangle is divided into four smaller rectangles

and Eq. (7.1.40) is applied to each of them. The results are shown in Fig. 7.1.9 and Tab. 7.1.1 for up,

strange and charm quark masses. We conclude from the left panel, that the imaginary part of the lowest

pole is larger than m0 + 500 MeV. Furthermore, as the Wick rotation (7.1.27) is performed within the

p-plane rather than the p2-plane, the lowest poles enter the corresponding contour, which makes an

account of the poles necessary. If the rotation would be performed in the complex p2-plane according

to p2 → exp{iΘ} the poles would not enter the contour, because Rep2
0 < 0 for any pole. Apart from

the numerical information contained in Fig. 7.1.9 nothing is known about the analytic structure. It is

worth noting that a line in the p-plane with constant imaginary part corresponds to a parabola in the

p2-plane with direction as in Fig. 7.1.8, vertex at −(Imp)2 and curvature (2(Imp)2)−1. Contrarily, a line

with constant real part corresponds to a parabola with vertex at (Rep)2 and curvature −(2(Rep)2)−1, i.e.

opposite direction as compared to Fig. 7.1.8.

By Eq. (7.1.31) the upper limit for χ, such that a pole at momentum p0 does not enter the parabola, is
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Table 7.1.1: Position of the poles and maximum values of χ for various values of m0 corresponding to
up, strange and charm quarks.

m0[ GeV] 0.005 0.12 1.2

p0[ GeV] 0.18124 + i0.53961 0.34927 + i0.75251 0.74982 + i1.9403
p2

0[ GeV2] −0.25833 + i0.1956 −0.44428 + i0.52566 −3.20252 + i2.90973
χmax[ GeV] 0.53961 0.75251 1.9403

given by

χ2 = −Rep2
0

2
+

√(
Rep2

0

2

)2

+

(
Imp2

0

2

)2

, (7.1.44)

which holds true for positive χ2. Using p2 = (Rep)2 − (Imp)2 + 2iRep Imp one can show that

χ = Imp0 . (7.1.45)

Therefore, it is preferable to study the analytic properties within the p-plane rather than the p2-plane,

although the parabola is given in the latter one. Having found the pole with the lowest imaginary part in

the p-plane determines the maximum value χ. Consequently, having found one pole it is sufficient to

look for poles with lower imaginary part if the maximum χ has to be determined. If the position of a pole

is given in the p2-plane such a simple relation does not exist. Furthermore, in the p2-plane both, real and

imaginary parts, have to be known to decide whether a pole enters the parabola and, thus, is problematic

or not. Contrarily, knowledge of the imaginary part of the pole is sufficient in the momentum plane.

The minimum value of χ for all poles determines the largest parabola where all poles are outside of the

parabola. Note that, for all χ < χ0, all parabolas are in the interior of the parabola which corresponds to

χ0. For our choice of quark masses, these parabolas are shown in the right panel of Fig. 7.1.9. Note that

these parabolas only exclude the poles which we found focusing on a limited domain. In particular, the

charm quark is expected to have additional poles entering the integration domain of the depicted parabola.

In our analysis these poles correspond to larger Rep. As will become clear in Sec. 7.2, the parameter χ

determines the maximum bound state mass which can be evaluated without introducing additional pole

handling.

The outcome of this study therefore is the following. Although the propagator functions A and B are

analytic in the complex plane and the Cauchy formula may be used to evaluate A and B inside of the

parabola provided they are known along the parabola, the integrands of the DSE with real gluon momenta

(7.1.30) possess singularities within the integration domain by virtue of σv and σs, see Fig. 7.1.10, which

leads to a failure of the iteration along the parabola. As will be demonstrated in Sec. 7.2 these singularities

also infer the solution of the bound state BSE. Therefore, an extensive study is in order. Apart from a

direct localization, the position of the poles may also be obtained by fitting the quark propagator along

the real axis to a complex conjugate mass pole parametrization in the complex plane, as was done in
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Figure 7.1.9: The roots of g(p2) in the complex plane for ω = 0.5 GeV andD = 16 GeV.m0 = 5 MeV
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parabolas which meet the lowest poles of the respective quark flavor.
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Figure 7.1.10: The quantities |σv| (left) and |σs| (right) in the complex p2 plane. Parameters are m0 =
MeV, ω = 0.5 GeV and D = 16 GeV.

[Sou10a]. This could be advantageous as the propagators can be determined along the real axis to very

high precision.

7.2 Bethe-Salpeter equation for mesons

Within a Poincaré invariant quantum field theory, two-particle interactions may be described by virtue of

the BSE. As discussed in Sec. 6.2, the BSE is a linear inhomogeneous Fredholm integral equation of the

second kind for the BSV Γ(P, p). As distinguished from potential approaches to two-particle interactions,

recoil effects are naturally taken into account. For pure bound states the BSE becomes a homogeneous

one and may be considered as an eigenvalue problem for the integration kernel, having solutions only

for discrete values of the total momentum of the two-particle bound state. For two-quark bound states,

the quark and gluon propagators and the quark-gluon vertex function constitute the integration kernel.
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Employing the rainbow-ladder truncation, the Euclidean BSE for a two-quark bound state in momentum

space reads

Γ(P, p) = −4

3

∫
d4k

(2π)4
γµS1(k+)Γ(P, k)S̃2(k−)γν

[
g2G0

µν(p− l)
]
, (7.2.1)

where k± = η±P ± k, with k being the relative and P the total momentum of the two quarks; S(p) is

the quark propagator and
[
g2D(p− l)

]
µν

denotes the gluon propagator (and QCD coupling strength).

Using the charge conjugation matrix C = iγ0γ2 we have defined

S̃(k) = CST(p)C =
1

A2(k)

−iγ · k −M2(k)

k2 +M2(k)
(7.2.2)

and implicitly used

γ̃µ = CγT
µC = C2γµC

2 = γµ . (7.2.3)

The momentum partitioning parameter η, with η ≡ η+ = 1− η−, is a free parameter which serves to

chose the frame we are working in. Note that, for constant constituent masses, the momentum partitioning

parameter η1/2 = m1/2/(m1 +m2) is uniquely fixed by the constituent masses. Due to the momentum

dependence of the quark mass functions, η would depend on the momenta k± of both particles. One

therefore abandons the definition by virtue of the particles momenta and/or masses and defines it w.r.t. to

the relative momentum of the quarks and the bound state momentum. It therefore allows to choose the

frame in which the BSE is solved. As the equation is Poincaré invariant, the results must not depend on η.

But as approximations and truncations are employed which may break the invariance, the independence

of the results has to be checked. In Eq. (7.2.1), the exact gluon propagator has been replaced by a

phenomenological one, which describes a one gluon interaction, and the exact quark-gluon vertex has

been replaced by the free one ∝ γµ.

The BSV is a 4× 4 matrix in Dirac space which can be expanded in a base which is complete in the

space of physical states for the system under consideration. In particular, the expansion has to reflect

the transformation properties of the bound state. The general structure of BSVs for bound states of

spinor particles has been investigated in, e.g., [Kub72]. Specifying parity and angular momentum, for a

pseudoscalar 1S0 state such a base is given by [Dor08]

T1(~p ) = γ5

2 = T †1 (~p ) = −1
4γµT

†
1 (~p )γµ ,

T2(~p ) = γ0γ5

2 = −T †2 (~p ) = −1
2γµT

†
2 (~p )γµ ,

T3(~p ) = ~p~γ
2|~p |γ0γ5 = T †3 (~p ) ,

T4(~p ) = ~p~γ
2|~p |γ5 = T †4 (~p ) = 1

2γµT
†
4 (~p )γµ

(7.2.4)
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Table 7.2.1: Commutators and anticommutators of the elements of the base defined in (7.2.4) with q̂.

T †1 (~p ) T †2 (~p ) T †3 (~p ) T †4 (~p )

[·, q̂]+ 0 −2|~q |T †3 (~q ) −2q0T
†
4 (~p )− 2 ~p ~q|~p |T

†
2 (~p ) [q̂, ~p~γ] 1

|~p |T
†
1 (~p )

[·, q̂]− 2q0T
†
2 (~p ) + 2|~q |T †4 (~q ) 2q0T

†
1 (~q ) [~p~γ, ~q ~γ] 1

|~p |T
†
2 (~p ) 2 ~p ~q|~p |T

†
1 (~p )

and fulfills the orthogonality relation∫
dΩ~p

4π
TrD

[
TiT

†
j

]
= δij (7.2.5)

with the infinitesimal solid angle dΩ~p = sin θ dθ dφ. Their commutators and anticommutators with q̂

are given in Tab. 7.2.1. This base originates from BSE studies of deuterons, where it allows to reduce

analytically the four-dimensional integral equation (7.2.1) to a one-dimensional. Due to the momentum

dependence of the quark mass this is not possible in the case of mesons. However, it differs from the

standard basis used in Bethe-Salpeter studies of mesons, cf. e.g. [Rob07], where the basis is given by

T̃ ∈
{
γ5,−iγ5P̂,−iγ5p̂,−γ5

[
P̂, p̂

]
−

}
. (7.2.6)

The two sets are related via

T̃1 =
1

2
T1 , (7.2.7a)

T̃2 =2iP0T2 , (7.2.7b)

T̃3 =2i (p0T2 − |~p |T4) , (7.2.7c)

T̃4 =4|~p |P0T4 . (7.2.7d)

In the scalar channel, the BSV may be decomposed over the basis given by

T S
1 (~p ) = 1

2 = T S†
1 (~p ) = T1γ5 = γ5T1 = T †1γ5 ,

T S
2 (~p ) = γ0

2 = T S†
2 (~p ) = T2γ5 = −γ5T2 = −T †2γ5 ,

T S
3 (~p ) = ~p~γ

2|~p |γ0 = T S†
3 (~p ) = T3γ5 = γ5T3 = T †3γ5 ,

T S
4 (~p ) = ~p~γ

2|~p | = −T S†
4 (~p ) = T4γ5 = −γ5T4 = T †4γ5

(7.2.8)

which fulfills the same orthogonality relation (7.2.5).

By virtue of Eq. (7.2.5) the BSE in Euclidean space can be decomposed into a set of four coupled

linear integral equations

gi(P ; p4, |~p |) = −4

3

∫
dΩ~p

4π

∫
d4k

(2π)4

g2G0(p− k)
∑

jMijgj(P ; k4, |~k |)
A1(k1)C1(k1)A2(k2)C2(k2)

(7.2.9)
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with the traces

Mij(p, k) = TrD

[
γµT

†
i (~p )γµF1(k+)Tj(~k )F̃2(k−)− 1

q2
q̂ T †i (~p ) q̂F1(k+)Tj(~k )F̃2(k−)

]
.

(7.2.10)

With the sets given in Eqs. (7.2.4) and (7.2.8), the traces for the scalar and pseudo-scalar BSE (7.2.9) are

related via the following prescription

MS
ij(M1(p),M2(k)) = (−1)j+1−δi2MP

ij(−M1(p),M2(k)) , (7.2.11)

which can be shown by virtue of Tab. 7.2.1. The elaborate and lengthy explicit evaluation of these

traces has been done using the algebra package HIP for Maple [Hsi92, Yeh92]. For the sake of brevity,

nominator and denominator of the quark propagator have been denoted by

C(k) = k2 +M2(k2) , F (k) = −iγ · k +M(k) , F̃ (k) = −iγ · k −M(k) . (7.2.12)

Expanding the potential over hyperspherical harmonics

g2G0(p− k) =
∑
n

2π2

n+ 1
Dn(p, k)

∑
lm

Znlm(χp,Ωp)Znlm(χk,Ωk) (7.2.13)

and

g2G0(p− k)

q2
=

1

2

∑
n

2π2

n+ 1
Zn(p, k)

∑
lm

Znlm(χp,Ωp)Znlm(χk,Ωk) , (7.2.14)

where cosχp = p4/p defines the four-dimensional polar angle and

C1
n(t) =

2π2

n+ 1

∑
lm

Znlm(χp, θp, φp)Znlm(χk, θk, φk) , (7.2.15)

with t = cosχp−k, has been used, allows to expand the gi’s into partial amplitudes

gi(P ; p, χp) =
∞∑
m=0

gim(P ; p)Xmm′(χp) . (7.2.16)

The equation to be solved, thus, reads

gim(P, p) = −4

3

∫ ∞
0

k3 dk

(2π)4

∑
j

∑
n

Aij,mn(P, p, k)gjn(P, k) (7.2.17)

with
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Figure 7.2.1: Parabolas and poles for asymmetric momentum partitioning (red and blue) in case of
different quark masses. The dotted line is for η = 0.5 and includes the pair of poles of
the light quark in the integration domain of DSE and BSE.

Table 7.2.2: Maximal bound state masses and corresponding momentum partitioning parameter given
as tuple (Mmax, η(Mmax)) for different current quark masses. The momenta indicate the
integration contour for the respective quark. All masses are in GeV.

k± (1− η)P − k
m0 0.005 0.115 1.05

η
P

+
k 0.005 (1.07922, 0.5) (1.28479, 0.42) (2.33122, 0.23147)

0.115 (1.28479, 0.58) (1.49036, 0.5) (2.53679, 0.29375)
1.05 (2.33122, 0.76853) (2.53679, 0.70625) (3.58322, 0.5)

Aij,mn(P, p, k) =

∫ √
1− t2p dtp

√
1− t2k dtk

dΩ~p

4π
dΩ~k

× g2G0(p− k)Mij(P, p, χp, k, χk)Xmm′(χp)Xnn′(χk)

A1(k+)C1(k+)A2(k−)C2(k−)
. (7.2.18)

Equation (7.2.17) can be solved as an eigenvalue problem for the Bethe-Salpeter integral operator,

which has solutions only for discrete values of the bound state momentum P . Numerically, the integral

operator in Eq. (7.2.17) becomes a matrix, which we call BSM. Once the BSM is obtained, eigenvalues,

eigenstates and determinants are easily calculated using modern standard libraries and are less time

consuming than the evaluation of the BSM itself. The propagator functions have to be known in

the complex plane within the region defined by k2
± = k2 − η2

±M
2 ± 2iη±Mkt for k ∈ [0,∞) and

t ∈ [−1,+1], which is the contour analyzed in Sec. 7.1.3 for λ = 2ηMk. The analytic structure of

the propagator functions σv and σs therefore restricts the analysis of the BSE if no additional schemes

of handling the poles are introduced. Considering light quarks, e.g. m0 = 5 MeV or m0 = 120 MeV,

bound states of equal quarks can thus be evaluated up to an energy of P0 ≈ 1.05 GeV or P0 ≈ 1.5 GeV,

respectively. The gap between the lightest bound state and the pole of the corresponding quark ensures

that the BSE can be solved.

As the position of the poles and, hence, the parameter χ depends on the quark mass, the maximum

bound state mass to be evaluated depends on both quark masses, i.e. χ1 and χ2, and the frame, i.e.
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Figure 7.2.2: Maximal χ as a function of the bare quark mass.

the momentum partitioning parameter η. The quark mass determines the maximal parabolic domain

for the argument of the quark propagator in the complex q2-plane as obtained from the DSE. The

momentum partitioning parameter determines the required parabolic domains for the arguments of

the quark propagators within the BSE. Because the BSE is Poincaré invariant, we may choose η such

that Eq. (7.2.17) may be solved for the largest possible bound state mass without the pole entering the

integration domain of neither of the two quarks. For equal quark masses it is clear that η = 0.5 provides

the frame in which the largest bound state mass can be evaluated. However, from Tab. 7.1.1 we see that,

for heavy-light quark mesons, η may be changed in order to increase the maximal bound state mass, see

Fig. 7.2.1. In fact, demanding χ1/η+
!

= χ2/η− gives

η = η+ =
χ1

χ1 + χ2
= 1− η− , (7.2.19)

and the maximum bound state mass of two quarks for which the BSE can be solved reads

Mmax = χ1 + χ2 . (7.2.20)

For given valence quark mass the location of the poles directly translates by virtue of Eq. (7.1.45) to the

maximum accessible parameter by determining χmax(m0), see Fig. 7.2.2. For various combinations of

bare quark masses, chosen in view of the investigation presented at the end of this chapter, the largest

accessible bound state mass and the corresponding momentum partition are given in Tab. 7.2.2. However,

as in practical calculations the BSE is only approximately Poincaré invariant due to the truncation of the

expansion into Chebyshev polynomials, cf. Eq. (7.2.16), the results are not independent of the momentum

partitioning. The thus obtained results can therefore only be considered as a proof of concept and may be

improved by virtue of extra numerical effort. Indeed, increasing the number of Chebyshev polynomials

improves the stability w.r.t. variations of η [Alk02]. The dependence on η also depends on the considered

channel [Alk02]. Moreover, shifting the momentum partitioning results in increasing bound state masses

obtained as solutions of the BSE. This numerical η-dependence is particularly strong for large differences
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in the bare quark masses of the valence quarks. Therefore, the bound state mass, which would have been

obtained as a solution of the numerical BSM, might be larger than the bound state mass which would

have been obtained from the complete BSE and might even exceed the maximal bound state mass which

is calculable by shifting the momentum partition. However, the situation can in principle be improved by

according numerical efforts.

The bound state masses of scalar and pseudo-scalar mesons are evaluated for the potential (7.1.5) with

ω = 0.5 GeV and D = 16 GeV as follows. First, we evaluate the pseudo-scalar bound state mass curve

Mxx for equal quarks up to quark masses of mx = 1.125 GeV. The curve is used to determine the bare up

quark mass such that the pion mass mπ = 135 MeV is reproduced. We obtain mu = 5 MeV. This mass

is then used to fit the strange quark mass at the Kaon mass mK = 498 MeV and the charm quark mass

at the D meson mass mD = 1.865 GeV by evaluating the bound state mass curve Mux for one quark

being fixed to the up quark. We obtain ms = 115 MeV and mc = 1.05 GeV. The thus obtained quark

masses may now be used to evaluate the bound state mass curves Msx, with one quark being fixed to the

strange quark, and Mcx, with one quark being fixed to the charm quark. In this way the masses of ss̄

(hypothetical), sc̄ (Ds) and cc̄ (ηc) states are predicted. The quark masses obtained in the pseudo-scalar

channel serve as input for the scalar channel.

In Fig. 7.2.3 the results for pseudo-scalar and scalar bound states are given together with the maximal

accessible bound state mass of the respective quark combination. The hypothetical pseudo-scalar ss̄ state

is found at a mass of 693 MeV. The Ds mass is mDs = 1.934 GeV, which fits the experimental value

1.968 GeV [Nak10]. The ηc mass is mηc = 2.825 GeV. Experimentally, a mass of mηc = 2.980 GeV

[Nak10] is found. As can be seen, the method is in principle capable of determining the pseudo-scalar

bound state masses including states with charm quarks. This allows to predict three meson masses in the

pseudo-scalar channel for Ds, J/ψ and a hypothetical pseudo-scalar ss̄ state. Note that the pseudo-scalar

meson mass becomes zero if both quark masses approach zero. Hence, the character of the pion as

the (massless) Goldstone boson of the strong interaction which only acquires a nonzero mass due to

the explicit symmetry breaking is fulfilled in the employed model. Concerning the parameters of the

interaction, ω and D, this can be used as a constraint such that only one free parameter is left; i.e.

ω = ω(D). Indeed, for the chosen values ω = 0.5 GeV, D = 16 GeV we have M = 0.1 MeV for both

bare quark masses being zero. Once the bound state mass has been evaluated, the BSV is known and

further observables are calculable. Hence, also the leptonic decay constant or other quantities can be used

to specify parameters of the model such as quark masses, range and strength of the phenomenological

interaction or any other more sophisticated model. Unfortunately, the mesons of the scalar channel are

too heavy to reach the charm quark sector for unequal quarks. Bound states with a strange or an up quark

can only be handled up to mx ≈ 250 MeV. Furthermore, numerical instabilities trouble the solution

when the (expected) bound state mass is close to the maximal bound state mass. This can be traced back

to the numerical dependence of the bound state mass on the momentum partitioning parameter due to the

truncation of the Chebyshev expansion (7.2.16). The thus expected increased masses exceed the maximal

accessible bound state mass. Of course, the precise position of the poles depends on the interaction and
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Figure 7.2.3: Bound state masses in the pseudo-scalar (left) and scalar (right) channel for equal (black
solid) and unequal bare quark masses: up (red solid, mu = 5 MeV), strange (blue solid,
ms = 115 MeV) and charm quark (green solid, mc = 1.05 GeV). The dashed curves
depict the upper limits of bound state masses for the respective quark combination. The
horizontal dotted lines are the experimental meson masses [Nak10]: mπ = 135 MeV,
mK = 498 MeV,mD = 1.865 GeV andmη = 2.980 GeV. Dots mark the meson masses
which are used to fit the quark masses, circles mark internal consistency checks and
crosses mark predicted meson masses.

is altered for more sophisticated gluon propagators [Sou10a].

7.3 Wigner-Weyl solution

Experimentally, the pion dynamics and the pion mass in the Wigner-Weyl phase is not known. However,

calculations within the Nambu-Jona-Lasinio model at nonzero temperature and baryon density [Rat04,

Ber87] point to an (monotonically) increasing pion mass. Inspired by the investigation of Sec. 5 one may

employ the coupled Dyson-Schwinger–Bethe-Salpeter approach to ask for meson properties within a

chirally symmetric solution without incorporating medium effects and, hence, probing the effect of chiral

symmetry restoration on hadronic properties as such and disentangled from many-body effects. Similar

investigations have been done in [Bic06] and references therein for simplified confining models.

As pointed out in Sec. 7.1.2, the system (7.1.11) has multiple solutions. In particular, it obeys a chirally

symmetric solution if m0 = 0, which can easily be obtained by choosing B(p) = 0 as initial function for

the fixed-point iteration. It is called the Wigner-Weyl solution. It features M(p) = 0 with A(p) 6= 0. It is

indeed a chirally symmetric solution, i.e. Eq. (7.2.9) gives the same BSM for scalar and pseudo-scalar

mesons and both mesons are degenerate in their mass, as can be shown in the case of zero bare quark

masses in a two-fold way. First, the chiral condensate, which is given within the employed model (7.1.5)

for the gluon propagator by [Zon03b, Lan03]

〈: q̄q :〉 = − 3

2π2

∫
dl l3σs(l) , (7.3.1)
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is zero, because B(p) = 0. In the Nambu-Goldstone phase we obtain 〈: q̄q :〉 = (−251 MeV)3 for the

employed set of parameters, which is in agreement with the Gell-Mann–Oakes–Renner relation (A.2.27).

As it is an order parameter of DCSB, vanishing of the chiral condensate points to the restoration of the

symmetry. However, strictly speaking the vanishing of an order parameter, which is qualified as such

by means of Eq. (A.2.19), is merely a necessary but not sufficient requirement for the realization of a

symmetry. The realization of other symmetries may lead to a vanishing condensate as well. Second,

it can be seen as degeneracy of the solutions to the BSE for chiral partners. With the relation between

scalar and pseudo-scalar BSE given by Eq. (7.2.11), the only difference of the BSMs is due to sign

changes of certain traces and an additional sign according to M1(p) → −M1(p) in all traces. As

M1(p) = M2(p) = 0 the latter prescription is without effect for the BSM in the Wigner-Weyl phase, and

one is left with the following changes

MP
ij = −MS

ij : (i ∈ {1, 3, 4} ∧ j ∈ {2, 4}) ∨ (i = 2 ∧ j ∈ {1, 3}) . (7.3.2)

Apart from the cases (i, j) = (4, 2) and (i, j) = (4, 4) all of the affected terms are proportional to Mi(p)

and are, thus, zero. For the other two cases it turns out, that the difference MP
ij −MS

ij is proportional to

Mi(p) and therefore must be zero for Mi(p) = 0, too, which proves the stated degeneracy. Since the

BSEs for scalar and pseudo-scalar mesons are identical in the Wigner-Weyl phase, the BSVs and, hence,

observables are too.

Having the propagator functions in the Wigner-Weyl phase for zero bare quark mass at our disposal,

see Fig. 7.1.3, one can solve the BSE in the Wigner-Weyl phase and obtain an explicit value of the bound

state mass. As in [Bic06], the lowest bound state mass where the BSE (7.2.9) can be solved is found at

negative squared masses M2 = −0.1172 GeV2 = −(342.1 MeV)2 and are therefore called tachyonic

solutions. As argued in [Jai07] the Wigner-Weyl solution corresponds to a maximum of the effective

action. Therefore, the squared mass must be negative and signals the instability of the chiral symmetric

ground state. An arbitrary small disturbance drives the system from the Wigner-Weyl realization to the

Nambu-Goldstone realization.

In the upper panels of Fig. 7.3.1 the two largest partial amplitudes of the Wigner-Weyl solution

are compared to the corresponding functions of the solution in the chirally broken phase. Note that

the largest contribution g10 remains almost unchanged, whereas g12 completely changes. The partial

amplitudes for g2 are shown in the lower panels of Fig. 7.3.1 and g3 and g4 are depicted in Fig. 7.3.2.

Note that, in the Wigner-Weyl phase, g2 and g4 are identically zero to any order in the expansion over

Chebyshev polynomials, whereas g3 turns out to be numerically zero. Nevertheless, it is very illustrative

to compare the partial amplitudes of scalar and pseudo-scalar mesons in the Nambu-Goldstone phase as

the pseudo-scalar amplitude is by magnitudes larger than its scalar counterparts for g2. The contrary is

the case for g3 and g4.

In [Wil07b, Wil07d, Wil07c, Wil07a] the Wigner-Weyl solution and so-called noded solutions20 to the

20Solutions of the DSE in the Nambu-Goldstone phase do not have roots along the positive real axis. Solutions in the Wigner-
Weyl phase have one root (node). Other solutions have more than one node and are, therefore, dubbed noded solutions. In
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Figure 7.3.1: The scalar and pseudo-scalar partial amplitudes g10 (upper left panel), g12 (upper right
panel), g20 (lower left panel) and g22 (lower right panel) in the chirally broken phase
(blue dashed: scalar, red dashed: pseudo-scalar) and the Wigner-Weyl phase (black). For
g2j (lower panels), the scalar partial amplitudes in the Nambu-Goldstone phase have
been scaled (multiplied) by 1015.
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Figure 7.3.2: The scalar and pseudo-scalar partial amplitudes g31 (upper left panel), g33 (upper right
panel), g41 (lower left panel) and g43 (lower right panel). Line codes as in Fig. 7.3.1. For
g33 (upper right panel), the pseudo-scalar partial amplitude for the Nambu-Goldstone
phase in the right panel has been scaled (multiplied) by 10. For g4j (lower panels),
the pseudo-scalar partial amplitudes in the Nambu-Goldstone phase have been scaled
(multiplied) by 1016.
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Figure 7.3.3: The propagator functions in the Wigner-Weyl phase. Solid black line: m0 = 0 MeV,
dashed red line: m0 = 5 MeV, dotted green line: m0 = 15 MeV, dashed-dotted blue
line: m0 = 30 MeV.

DSE have been used to discuss the chiral condensate beyond the chiral limit. Thereby, linear combinations

of the quark propagators have been introduced, which all generate identical condensates in the chiral

limit. However, due to the non-linearity of the DSE, a linear combination of solutions cannot fulfill the

corresponding DSE and, therefore, is questionable in its physical relevance. It has been pointed out, that

Wigner-Weyl solutions exist up to a critical quark mass, but cannot be obtained by a fixed-point iteration

method as they correspond to maxima in the effective action. Instead, Newton methods or improvements

thereof need to be employed. This allows to study a scenario without DCSB, but with explicit symmetry

breaking by small quark masses. Employing a Newton-Krylov iteration method to find Wigner-Weyl

solutions, a critical bare quark mass of mcr
0 = 30 MeV has been found. Its value is model dependent

and may be interpreted as the maximum quark mass for which chiral symmetry may be restored. The

obtained propagator functions are shown in Fig. 7.3.3.

Having the Wigner-Weyl solutions for the quark DSE at our disposal, we are now able to study a

scenario only with explicit symmetry breaking in the scope of a coupled Dyson-Schwinger–Bethe-

Salpeter approach. Note that the thus obtained bound state mass may only be considered as a formal

solution, in the sense that it is the mass parameter at which the BSE has a solution rather than a state

which is realized in nature. Such a scenario may be useful to investigate the amount of mass splitting in

the parity doublet caused by finite quark masses. For the scalar and pseudo-scalar channel the masses are

shown in Fig. 7.3.4. They are complex over the whole mass region. Moreover, the pseudo-scalar bound

state mass M2 is even decreasing. Finally, evaluating the formal splitting of scalar and pseudo-scalar

mesons at a quark mass of m0 = 5 MeV yields |∆M | = 1.6 MeV, which is tiny as compared to the

splitting due to DCSB (|∆M | ≈ 350 MeV). However, it is of the order of the mass splitting in the isospin

multiplet.

In view of the investigation of Sec. 5 the extension of the above presented analysis to the spin-1 channel

is in order. Furthermore, based on a phenomenological interaction which successfully describes the

analogy to vibrating strings, they are sometimes referred to as excited solutions [LE07].
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Figure 7.3.4: The bound state mass in the Wigner-Weyl phase for equal quarks in the pseudo-scalar
(black) and scalar (dashed) channel up to the critical mass mcr

0 = 30 MeV.

hadronic spectrum, the solutions of the DSE in the Wigner-Weyl phase may be used to determine the

condensates, in particular the symmetric four-quark condensate 〈Oodd
4 〉 , in the chiral symmetric ground

state. This provides us with a reliable relation between changes of chirally symmetric and chirally odd

condensates.

120



8 Summary and outlook

This thesis is devoted to the determination of medium induced modifications of hadron properties. In

particular, we concentrate on changes of the mass and the spectral function of heavy-light mesons, such

as the pseudo-scalar D meson, and the ρ meson. The motivation is a quantitative prediction of possible

mass shifts and splittings which may be observed in upcoming experiments on the one hand and on the

other hand on determining the relation of medium modifications of hadrons to the anticipated restoration

of the chiral symmetry of quantum chromodynamics and its order parameters. Medium modifications of

mesons might be signals for the restoration or partial restoration of the chiral symmetry. Summarizing

the main findings we mention the successful quantification of the in-medium mass splittings of heavy-

light pseudo-scalar and scalar D mesons. Furthermore, chiral partner sum rules for heavy-light spin-1

and spin-0 mesons in the medium have been derived. It has been demonstrated that chiral symmetry

restoration indeed affects the ρ meson spectral function and that the observed in-medium effects may be

caused by a partial restoration of the chiral symmetry. However, it has also been found that in general

the relation of medium modifications of heavy-light mesons as well as the ρ meson is not as direct as

often anticipated. In particular the correlation of parameters which characterize the spectral function of a

meson to condensates which serve as order parameters of the chiral symmetry is rather intricate.

The in-medium sum rule analysis up to and including mass dimension 5, has been performed for the

heavy-light pseudo-scalar D, D̄ and B̄, B and the scalar D∗, D̄∗ mesons. In all cases a fairly robust

mass splitting (for the employed set of condensates) has been found, while the mass shift of the centroids

depends on the in-medium modeling of the continuum threshold. The chiral condensate 〈q̄q〉 enters

the mass splitting in next-to-leading order of the density. Nevertheless, at nuclear saturation density its

impact is comparable to 〈q†gσG q〉 due to the heavy charm quark mass. The leading contribution to the

mass splitting in case of up or down valence quarks in nuclear matter at saturation density, however, is

〈q†q〉, which measures the net quark density. For Ds mesons it measures the net quark density of strange

quarks, which is zero in nuclear matter at saturation density, and results in mass splittings of opposite

sign as compared to D mesons. As the sign of the condensate 〈q†gσG q〉 is not known, the size of the

D − D̄ mass splitting may serve as an indicator for it.

We extended Weinberg-Kapusta-Shuryak sum rules in the medium for light quark spin-1 mesons to

heavy-light spin-1 and spin-0 mesons in the medium. While the only non-trivial contributions to the

former stems from power corrections to theO(αs) perturbative expansion and is of mass dimension 6, i.e.

a four-quark condensate, the chiral condensate enters the latter one as the lowest-order power correction

to the O(α0
s) perturbative term, i.e. it is of mass dimension 4, and is amplified by the heavy charm

quark mass. Indeed, the chiral condensate only enters chiral partner sum rules in O(α0
s) for heavy-light
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mesons. Addressing chiral symmetry restoration, mc〈q̄q〉, mc〈q̄gσG q〉, and mc(〈q̄gσG q〉 − 8〈q̄D2
0q〉)

may be considered as “order parameters”. Conversely, vanishing of these condensates in the medium

would mean the degeneracy of chiral partners. Evaluation of the sum rules at zero temperature and

nuclear saturation density exemplifies a significant change of the operator product expansion side, which,

consequently requires an according modification of the integrated spectral difference of chiral partners in

the heavy-light meson sector.

We have extracted the symmetric part of the four-quark condensate which enters the ρ meson QCD

sum rule in multiple ways. It turns out that equating the first moment of the spectral function to the ρ

mass, often abbreviated as pole-ansatz, gives values which are closer to the values obtained by directly

invoking experimental data than a common Breit-Wigner ansatz. The weakness of the latter one is the

modeling of the low-energy region, which is a crucial domain due to the exponential weighting of the

spectral function within Borel transformed sum rules. The vanishing of chirally odd condensates scenario

for the ρ meson exemplifies the impact of chirally odd condensates on the spectral function. We have

shown, that setting all chirally odd condensates to zero, requires an enhancement of the spectral function

at lower energies. However, there has been neither evidence for a vanishing of the meson masses at the

point of chiral restoration, nor that the observed in-medium changes are not linked to chiral restoration.

We applied the coupled Dyson-Schwinger–Bethe-Salpeter approach to diquark bound states for equal

and unequal quarks. In order to do so, an exhaustive investigation concerning the analytic structure of the

quark propagator in the complex plane, i.e. the position of its poles, was necessary. It has been shown that

in the complex energy plane the imaginary part of the lowest pole determines the maximal parabola in the

complex plane along which the Dyson-Schwinger equation can be solved. As this parabola is chosen such

that it corresponds to the integration domain of the respective quark within the Bethe-Salpeter equation,

the same quantity also limits the maximal accessible bound state mass. Concerning the lowest bound

state masses for equal quarks, the analytic structure is such that the singularities are always outside of the

integration domain. For unequal quarks, such as the D meson, it has been shown that the momentum

partitioning parameter provides a restricted possibility to increase the largest accessible bound state mass,

which in turn depends on the imaginary parts of the lowest poles of both quarks. This allows to evaluate

pseudo-scalar mesons for heavy-light quarks up to the D and Ds meson. However, it also turned out that

the applied truncation of the expansion over Chebyshev polynomials and the associated breakdown of

Lorentz covariance of the Bethe-Salpeter equation, leads to limitations in the scalar channel, where the

meson masses are naturally close to the maximal bound state mass.

We used the possibility to solve the Dyson-Schwinger equation in the Wigner-Weyl mode for nonzero

quark masses up to a critical mass to study a scenario of explicit but without dynamical chiral symmetry

breaking within the BS approach. The determined bound state masses are complex and may therefore

only be regarded as formal solutions to the Bethe-Salpeter equation. For equal quarks the results gave an

impression of the tiny mass splitting of scalar and pseudo-scalar mesons due to finite quark masses.
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Outlook

On the basis of the operator product expansion techniques developed within this thesis, the evaluation

of the mass dimension 6 power corrections to heavy-light meson sum rules beyond the factorization of

four-quark condensates is seizable. An interesting aspect will be the cancellation of infrared divergences

introduced by gluon condensates in this mass dimension. Also the QCD sum rule analysis in the spin-1

channel for heavy-light mesons can be performed within the presented formalism.

The coupled Dyson-Schwinger–Bethe-Salpeter approach may be extended to spin-1 mesons. However,

these studies are yet restricted to vacuum properties of mesons as bound states of quarks and antiquarks.

Once the singularity structure of the approach is under control, the formalism can be extended to

finite temperature and density by introducing Matsubara frequency summations [Kap06]. Furthermore,

observables beyond the bound state mass, such as decay constants and form factors, should be considered.

Additionally, the gluon and ghost Dyson-Schwinger equations and the corresponding vertex equations

may be included. Asymmetric momentum routings for the quark Dyson-Schwinger equation and a

complex conjugate mass pole parametrization of the quark propagator may be applied to analyze and

understand its analytic structure in the complex plane. The Bethe-Salpeter equation may also be solved

in the Wigner-Weyl phase of heavy-light mesons and provides the possibility to investigate consequences

of the chiral symmetry restoration for these mesons.

As the Dyson-Schwinger equation approach allows to evaluate condensates, a possibility to check the

consistency of both methods and to systematically determine condensates and their medium dependence

is at our disposal. The Wigner-Weyl solution of the Bethe-Salpeter equation and the vanishing of chirally

odd condensates scenario for the ρ meson may be compared in the spin-1 channel. An interesting

combination of both approaches would be to determine four-quark condensates, in particular the chirally

symmetric condensate 〈Oeven
4 〉, in the Wigner-Weyl phase. This allows to check if the mechanism which

causes the restoration of chiral symmetry also affects these condensates.
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A Chiral symmetry, currents and order
parameters

As symmetries play a significant role in this thesis we will review basic ingredients of Lagrangian field

theory, which is a common framework to study symmetries within quantum field theory. Exhaustive

introductions to the topic can be found in e.g. [Wei95, Koc95, Koc97, Tre85, Sak73, Mos99, Adl68,

Che82a, Pok00, Gre96, Rom69, Gol50, Ryd85]. The subsequent outline not only distillates aspects

which are of importance for what is dealt with in this thesis but also gives a self contained derivation

of the fundamental relations and thereby follows a path which, to the best of our knowledge, has not

been presented in the literature so far. In particular we will emphasize the classical field theory part to

shed some light on algebraical equalities which both theories, classical and quantum field theory, have

in common. This will allow to identify more clearly such features of quantum field theory which do

not exist in a classical field theory. In particular, it allows to derive a classical algebra of currents. The

existence of such an algebra is not surprising. On the way we will generalize the constant time concept of

Poisson brackets to arbitrary space-like surfaces. It is clear, however, that only the constant time brackets

determine the canonical commutators or anticommutators in canonical quantization. Nevertheless, the

generalization clearly exposes the nature behind the specific role played by the time coordinate in the

context of Legendre transformations. Having a classical algebra of currents at hand, one may ask for the

difference between the classical and the quantum algebra of currents. The difference appears in form of

Schwinger terms and is intimately connected to the subject of anomalies, divergent operator products and

OPEs. As this is a fairly wide subject, we will merely review the main ideas and collect the rather scarce

literature on this complicated but nevertheless fundamental topic.

Later on, emphases is put on internal chiral transformations, their intimate connection to currents and

symmetries of the theory. Thereby we point out in detail the role chiral transformations and dynamical

chiral symmetry breaking play in the sector of heavy-light quark mesons. Furthermore, transformation

properties of and commutation relations between meson currents are derived for arbitrary flavor content.

In contrast to the well-known transformation properties and current-current commutation relations of

light-quark meson currents, relations for arbitrary flavor content are needed to investigate, in particular,

mesons consisting of a heavy and a light quark.

Apart from these developments, this appendix is not designed to give a comprehensive overview about

chiral symmetry breaking or even a complete treatise thereof, but rather tends to collect the main ideas

and relations which are necessary to guide the reader from a common base of knowledge to the theoretical

background of this work. This also includes an introduction to order parameters and QCD.
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A.1 The formalism for classical fields

Many algebraic properties of currents and charges already exist on the level of classical field theory.

This is clear, as the canonical quantization relies on the replacement of Poisson brackets of classical

fields by commutators of quantum field operators. In particular, symmetries are often considered by

virtue of the operator algebra whereas the classical Lagrangian is used. Quantization of classical gauge

field Lagrangians, such as the classical Lagrangian of chromodynamics, necessitates the introduction of

gauge-fixing and ghost terms. Although throughout this work emphasis is put on infinitesimal internal

transformations of the quark fields, which do not act on gauge fields, it is didactically advantageous

to see how the fundamental relations arise from a classical field theory by virtue of classical algebraic

relations rather than by virtue of quantum field theory commutators. Moreover, as we will see later on in

the context of anomalies and Schwinger terms, the operator algebra cannot be complete.

Equations of motion and infinitesimal transformations

Let the action be given as S =
∫
Rd4xL (φ, ∂µφ), with R a four-volume and L = L (φ, ∂µφ) a

Lagrangian density of the c-number fields φ and their first derivatives ∂µφ (possible additional indices,

e.g. flavor or color or Dirac indices, are suppressed).21 A set of infinitesimal transformations may be

specified by [Rom69]

δφ(x) = φ′(x′)− φ(x) , (A.1.1a)

δxµ = x′µ − xµ , (A.1.1b)

δΛφ(x) = φ′(x)− φ(x) , (A.1.1c)

where (A.1.1a) are the local and (A.1.1c) the total field variations. Clearly, two types of transformations

have to be distinguished. Pure space-time transformations (δφ = 0), such as e.g. shifts or rotations,

and pure internal transformations (δxµ = 0) which only act on the field degrees of freedom leaving the

space-time coordinates invariant, such as e.g. phase transformations or rotations in flavor space. Then, the

integral measure transforms by virtue of the Jacobian as δd4x = d4x′ − d4x = (∂µδx
µ) d4x, whereas

partial derivative and total field variation commute ∂µ
(
δΛφ(x)

)
= δΛ∂µφ(x). It is also useful to relate

local and total field variation: i.e. δφ(x) ≈ δΛφ(x) + (∂µφ(x)) δxµ for infinitesimal transformations.

The induced variation of the Lagrangian density is

δL =

(
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)

)
δΛφ+ ∂µ

(
∂L

∂ (∂µφ)
δΛφ

)
+ (∂µL ) δxµ (A.1.2)

21The discussion is restricted to the case of second order EoM for the fields. Otherwise the Lagrangian could additionally
depend on higher derivatives of the fields and a more extended investigation would be in order.
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and the action varies as

δS =

∫
R

d4x

[(
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)

)
δΛφ+ ∂µj

µ

]
=

∫
d4x

(
∂L

∂φ
− ∂µ

∂L

∂ (∂µφ)

)
δΛφ+

∫
σ
dσµ j

µ , (A.1.3)

where we have defined the associated Noether current jµ, the energy-momentum tensor Tµν and the

canonical conjugate momentum πµ as

jµ = −Tµνδxν + πµδφ , (A.1.4a)

Tµν = πµ (∂νφ)− gµνL , (A.1.4b)

πµ =
∂L

∂ (∂µφ)
. (A.1.4c)

Schwinger’s action principle then requires that the variation of the action is merely a functional of the

surface

δS = F [σ1]− F [σ2] . (A.1.5)

As the four-volume R and the local variation δΛφ are arbitrary this requirement leads to the well-known

EoM, called Euler-Lagrange equations

∂µπ
µ =

∂L

∂φ
. (A.1.6)

Note that no boundary conditions for the variations have been introduced. The quantity F is the generator

of the infinitesimal transformation defined as

F [σ] =

∫
σ
dσµ jµ , (A.1.7)

and we assumed in Eq. (A.1.5) for simplicity that the four-volume R may be bounded by two space-like

surfaces σ1,2. For a constant-time surface the generator will be referred to as

Q(t) =

∫
t
d3x j0(x) . (A.1.8)

A non-space-like surface, i.e. time-like or light-like, leads to causality constraints of the boundary

conditions and one would have to take care for choosing them non-contradictory. On a space-like

surface, i.e. space-like separation of all points on the surface, instead each point lies in the exterior of

the light-cone of all the other points on the surface and causality guarantees a free choice of boundary
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conditions. The variation of a functional as given in Eq. (A.1.7) with respect to the surface σ is [Rom69]

δF [σ]

δσ(x)
= ∂µj

µ . (A.1.9)

An infinitesimal transformation (A.1.1) is called a symmetry transformation if it leaves the action

invariant, i.e. δS = 0. According to Eqs. (A.1.5), (A.1.7) and (A.1.9) this means that the generator F

does not depend on the surface σ. Hence, its variation w.r.t. the surface is zero, which is equivalent to the

conservation of the associated Noether current ∂µjµ = 0. The generator F is then a constant of motion,

e.g. in case of a constant time surface it is time independent, ∂tF = 0. In [Rom69] the most common

symmetry transformations such as shifts, rotations and phase transformations and the corresponding

conservation laws (energy-momentum, angular momentum and charge conservation) can be found.

Poisson brackets

In the following Poisson brackets are introduced. They will allow to obtain a classical current algebra.

Consider the transformation given by constant shifts of the coordinates, i.e. δxµ = εµ = const. It follows

that δΛφ(x) = −εµ∂µφ(x) and δφ(x) = 0. Poisson brackets are then defined such that they reproduce

the EoM. The generator becomes

F [σ] = −ενPν (A.1.10)

with the energy-momentum four-vector

Pν [σ] =

∫
σ
dσµ T

µ
ν . (A.1.11)

Furthermore, consider the functional

G(t) =

∫
d3xG 0(φ, π0, φ,i) , (A.1.12)

i.e. a functional of a constant-time surface with density G 0. Note that G 0 depends on the canonical

conjugate momentum which, in terms of Legendre transformations, is the slope of the density w.r.t. to the

time-derivative of the field. The time derivative of such a functional is

∂tG(t) =

∫
d3x

[(
∂G 0

∂φ
− ∂i

∂G 0

∂φ,i

)
∂tφ+

(
∂G 0

∂π0
− ∂i

∂G 0

∂π0,i

)
∂tπ0

]
(A.1.13)

which can be expressed in terms of the functional derivative

δ

δη(x)
G(t) =

∂G 0

∂η
− ∂i

∂G 0

∂η,i
(A.1.14)
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with η being a field or a canonical conjugate momentum. On the other hand,

P0(t) =

∫
d3xT00 =

∫
d3x (π0∂tφ−L ) (A.1.15)

is the Legendre transform of the Lagrangian density w.r.t. the time derivative of φ and fulfills

δ

δφ
P0 = −∂tπ0 , (A.1.16a)

δ

δπ0
P0 = ∂tφ . (A.1.16b)

Insertion into Eq. (A.1.13) gives the time derivative of the functional G(t)

∂tG(t) =

∫
d3x

[
δG

δφ

δP0

δπ0
− δG

δπ0

δP0

δφ

]
. (A.1.17)

Finally, the change of the functional G under infinitesimal shifts of the coordinates (A.1.10) is δG =

−ε0∂tG. Thus, Eq. (A.1.17) may serve as a definition of the constant-time surface Poisson bracket. The

quantity δG may, therefore, be written as

δG(t) = {G(t), F (t)}t . (A.1.18)

So far the presented treatment can be found in many textbooks, such as e.g. [Rom69, Rom65, Gol50].

We will now generalize it to arbitrary flat space-like surfaces σ. Consider the functional

G[σ] =

∫
σ
dσα G α(φ, n · π,Oκλφ,λ) (A.1.19)

with the orthogonal projector

Oκλ = gκλ − nκnλ , (A.1.20)

satisfying OµαOαν = O ν
µ and nκ being the surface orthogonal unit vector dσα(x) ≡ nα(x)dσ, n2 = 1,

defining the surface, e.g. for a flat surface nαxα − τ = 0. The surface element may be defined by

dσα ≡ dV/dxα = d4x/dxα. The notation in Eq. (A.1.19) means that G α depends on the component of

πα perpendicular to the surface element dσα, i.e. parallel to nα. The remaining components of φ,α lie in

the surface element dσα. Orthogonality implies (nO)ν = 0 and any four-vector Vµ may be decomposed

via Vµ = nµ (n · V ) +O ν
µ Vν . Hence, one obtains

∂µG[σ] = nµ (n · ∂)

∫
σ
dσ (n · G ) +Oµν∂

ν

∫
σ
dσ (n · G ) . (A.1.21)

Because of the orthogonal projection in the last term, the derivative only acts on coordinates which lie

in the surface σ and have been integrated out. Thus, the integral does not depend on these coordinates
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anymore. This also exemplifies the special role of the time-derivative for constant-time surfaces. In

particular, no information is lost when applying the projected derivative to the functional G[σ]

(n · ∂)G[σ] =

∫
σ
dσ (n · ∂) (n · G ) (A.1.22)

which is merely the formal notation of the trivial statement that the functional only depends on coordinates

perpendicular to the surface. Of course, one is free to derive the functional w.r.t. any coordinate, but only

the projection perpendicular to the surface gives a nonzero result. Furthermore, the functional derivative

of G is

δG[σ]

δη
=
∂(n · G )

∂η
−Oκλ∂κ

∂(n · G )

∂η,λ
. (A.1.23)

In particular, using Oκλ∂(n · π)/∂φ,λ = 0, because the components of the canonical momentum

perpendicular to the surface do not depend on field derivatives within the surface, the functional derivative

of the energy-momentum four-vector Pν reads

δPν [σ]

δφ
= −∂ν(n · π) , (A.1.24a)

nα
δPν [σ]

δπα
= ∂νφ . (A.1.24b)

The change of the functional G under infinitesimal transformations (A.1.10) is δG = − (ε∂)G, which,

by virtue of Eq. (A.1.21) and the subsequent discussion, can be written as δG = − (n · ε) (n · ∂)G and

evaluates to

(n · ∂)G[σ]

=

∫
σ
dσ

(
(n · G )

∂φ
(n · ∂)φ+

(n · G )

∂φ,ν
O λ
ν (n · ∂)φ,λ + nα

(n · G )

∂πα
(n · ∂) (n · π)

)
=

∫
σ
dσ

[(
∂(n · G )

∂φ
−Oκλ∂κ

∂(n · G )

∂φ,λ

)
(n · ∂)φ+ nα

(n · G )

∂πα
(n · ∂) (n · π)

]
=

∫
σ
dσ

[
δG[σ]

δφ
nα
δ (n · P )

δπα
− δG[σ]

δπα
nα
δ (n · P )

δφ

]
≡ {G[σ], n[σ] · P}σ . (A.1.25)

In the second line an integration by parts has been performed. In the third line, Eqs. (A.1.23) and

(A.1.24b) have been used. The derivation clearly exposes the necessity for both functionals being

evaluated at the same surface σ, e.g. equal times for a constant-time surface. Equation (A.1.25) also

defines the Poisson brackets for two functionals A[σ] =
∫
σdσµ A µ and B[σ] =

∫
σdσµ Bµ

{A,B}σ =

∫
σ
dσµ

[
δA

δφ

B

δπµ
− B

δφ

δA

δπµ

]
. (A.1.26)
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It is clear that one has to take care of the correct order and matrix structure of the functional derivatives if

there are internal degrees of freedom such as color or flavor. For an arbitrary transformation the generator

fulfills

nµ
δF [σ]

δπµ
= δΛφ (A.1.27)

and the variation of the fields can be written as

{φ(x), F [σ]}σ = δΛφ(x) . (A.1.28)

Field and canonical conjugate momentum may be considered as functionals of themselves with parametric

dependence on space and time and the thus defined Poisson brackets fulfill per construction

{φ(y), n · π(x)}σ = δ(3) (Oµν(x− y)ν) , (A.1.29a)

{n · π(x), n · π(y)}σ = {φ(x), φ(y)}σ = 0 , (A.1.29b)

where evaluation at the same surface means n · y = n · x, and the three-dimensional Dirac-distribution is

meant to act on the coordinates within the surface. This expression also directly follows from Eq. (A.1.28)

using {AB,C} = A {B,C}+ {A,C}B, a fundamental algebraic property of the Poisson brackets. In

analogy to Eqs. (A.1.25) and (A.1.28) a transformation given by its generator F [σ] is called canonical

transformation if

{G,F}σ = δG . (A.1.30)

Note the sign, as for a constant shift of the coordinates the generator is given by Eq. (A.1.10).

Infinitesimal internal transformations

An infinitesimal internal transformation is given by Eq. (A.1.1) with δxµ = 0 and δφ = δΛφ. If the

transformation describes a symmetry of the system, using the Euler-Lagrange equations, a conserved

current ∂µjΛ
µ = 0 is given by

jΛ
µ = πµδ

Λφ , (A.1.31)

where Λ labels the transformation.

However, if the Lagrangian density is not invariant w.r.t. the considered infinitesimal internal transfor-

mation one may, of course, nevertheless define a current as in Eq. (A.1.31). Consequently, such a current

is not conserved and, using the Euler-Lagrange equations, its divergence is given by Eq. (A.1.2)

∂µjΛ
µ = δΛL . (A.1.32)
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Note, as discussed above, Eq. (A.1.32) does neither assume nor imply that Λ is a symmetry transformation.

As no boundary constraints for the variation of the fields on the surface have been introduced, the point

that the variation of the Lagrangian can be written as a total divergence does not imply invariance of

the action. Indeed, from Eq. (A.1.2) and the Euler-Lagrange equations it can be seen that for internal

transformations the variation of the Lagrangian can always be cast into a total divergence. However, as

has already pointed out before the current’s divergence must be zero in order to generate a symmetry

transformation. Also note that (A.1.2) can only be cast into (A.1.32) for internal transformations.

Finally, the classical algebra of currents and charges can be derived. Consider an infinitesimal

transformation of the type

δΛψ = Tεφ , (A.1.33)

where Tε is an infinitesimal matrix acting on internal degrees of freedom, e.g. flavor or color. For a system

with, e.g., Nf flavors, such a matrix may be given by Tε = εata, where ta ∈ U(Nf) = U(1)× SU(Nf).

Then the Poisson bracket of two currents jΛ
µ and jΛ′

ν reads{
n · jΛ(x), n · jΛ′(y)

}
σ

= δ(3)(Oµν(x− y)ν)n · π
[
Tε, T

′
ε

]
− φ

≡ δ(3)(Oµν(x− y)ν)n · j[Λ,Λ′]−(x) . (A.1.34)

As the currents are linear in the infinitesimal parameters εa, Eq. (A.1.34) also holds for currents con-

structed of non-infinitesimal matrices T . Integrating Eq. (A.1.34) w.r.t. Oµνyν gives the change of the

current jΛ
µ , induced by the transformation Λ, under the transformation Λ′{
n · jΛ(x), FΛ′(n · x)

}
σ

= n · j[Λ,Λ′](x) = nαδΛ′jΛ
α (x) . (A.1.35)

Though completely derived within a classical framework, these relations are algebraically identical to the

relations of current algebra [Tre85, Sak73, Adl68]. Of course, this is not surprising as the main idea of

current algebra is to derive an algebra of currents which are constructed of the fields and their canonical

momenta, which in turn fulfill the canonical commutation relations dictated by classical Poisson brackets.

In this respect, current algebra may be considered as the quantized version of an algebra already given

at classical level. Quantum effects, in the sense of different algebraic relations, show up as anomalies.

To finish our considerations, recall the fact that current algebra and results which can be derived from it

merely rely on general symmetry considerations and not on the special form of the Lagrangian.

Fermions and chiral transformations

The preceding results will now be applied to the specific case of free fermions, which is the relevant

example for the topic dealt with in this thesis. Introducing additional fields and interactions does not alter

the derived relations as long as the considered transformation leaves all additional terms invariant. This

is the case for, e.g., the coupling to photon or gluon fields. Therefore, all results remain valid for QCD.
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Let L be the free fermion Lagrangian of Nf quark flavors

L = ψ̄
(
i∂̂ −M

)
ψ (A.1.36)

where ∂̂ = γµ∂
µ, ψ = (q1, . . . , qNf

) and M = diag(m1, . . . ,mNf
) a general mass matrix. Canonical

conjugate momenta are

πµ = iψ̄γµ =
1

4
πνγ

νγµ . (A.1.37)

For a constant-time surface, Eqs. (A.1.29) and (A.1.37) give rise to the following Poisson bracket{
ψi(x), πµj (y)

}
x0=y0

= δ(3)(~x− ~y) (γ0γ
µ)ij , (A.1.38)

where the i, j are Dirac indices. It is clear that a relation like Eq. (A.1.38) can also be given for any

other space-like surface. Having the Poisson brackets at hand one can give the complete algebra of

currents without any specific knowledge about the transformation or about symmetry properties w.r.t.

this transformation. By virtue of Eqs. (A.1.38) and (A.1.37) the currents associated with infinitesimal

internal transformations of the type (A.1.33) fulfill the algebra{
jΛ
µ (x), jΛ′

ν (y)
}
t

= δ(3)(~x− ~y)π0

[
γ0γµT, γ0γνT

′]
− ψ . (A.1.39)

Integration w.r.t. ~x or ~y gives the variation of one of the currents under the transformation induced by the

generator of the other current. Now, consider the infinitesimal vector and axial transformations in flavor

space

ΛV : ψ → ψ′ = e−iΘ
ataψ ≈ (1− iΘata)ψ , (A.1.40a)

ΛA : ψ → ψ′ = e−iΘ
ataγ5ψ ≈ (1− iΘataγ5)ψ , (A.1.40b)

where ta are the generators of U(Nf) = U(1) × SU(Nf) acting on the flavor indices of ψ and Θa are

arbitrary infinitesimal rotation angles. For brevity and because algebraically there is no difference, the

U(1) transformation is explicitly included. Later on, these transformations will show up as special cases

of a set of more general transformations, which are called chiral transformations. The variation of the

Lagrangian density reads

ΛV : δL = −iΘaψ̄ [ta,M ]− ψ , (A.1.41a)

ΛA : δL = +iΘaψ̄γ5 [ta,M ]+ ψ . (A.1.41b)
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Note that adding terms∝ ψ̄γµψ, e.g. gauge field coupling terms, does not change Eq. (A.1.41). According

to Eq. (A.1.31) the following currents can be associated with (A.1.40)

jV,τ
µ = ψ̄γµτψ , (A.1.42a)

jA,τ
µ = ψ̄γ5γµτψ . (A.1.42b)

Note the difference in sign for Eq. (A.1.42b) compared to the definition Eq. (A.1.31), which can be

seen from Eqs. (A.1.37) and (A.1.40b). It is merely convention. The charge obtained from jA,τ
0 is the

generator of the transformation which is adjoint to ΛA; it gives a field variation which is the negative

of (A.1.40b). Colloquial phrased, the fields are transformed in the other direction. According to their

behavior under Lorentz transformations, (A.1.42a) and (A.1.42b) are currents with internal angular

momentum 1. Additionally, one can define the scalar and pseudo-scalar currents with internal angular

momentum 0 as

jS,τ = ψ̄τψ , (A.1.42c)

jP,τ = iψ̄γ5τψ . (A.1.42d)

Generically, the currents (A.1.42) are denoted as

jX,τ = ψ̄ΓXτψ , (A.1.43)

with ΓX ∈ {1, iγ5, γ5γµ, γµ} and where we omit the Lorentz index if X also stands for spin-0 currents.

The imaginary unit in the definition of the pseudo-scalar current is convention. Due to the special choice

of ΓX the current fulfills
(
jX,τµ

)†
= jX,τ

†
µ , thereby relating particles and antiparticles. According to

Eq. (A.1.32) the divergences are given by

i∂µj(V,A),τ
µ = ψ̄ (γ5) [τ,M ]∓ ψ = (−i)(S,P)j(S,P),[τ,M ]∓ , (A.1.44)

where the upper (lower) sign corresponds to the vector (axial-vector) current. For the moment being, τ

denotes an arbitrary infinitesimal matrix in flavor space τ = Θata. As the transformations (A.1.40) are

infinitesimal, all variations, i.e. (A.1.41) and δΛψ in Eq. (A.1.40), are proportional to the transformation

parameters Θa. The same holds true for the corresponding currents, as well as their divergences.

Consequently, one can define currents jµ ≡ Θajaµ, for which the infinitesimal transformation parameters

cancel each other in Eq. (A.1.32), and Eq. (A.1.44) holds for an arbitrary rotation matrix τ in Eq. (A.1.42).

Recall that Eq. (A.1.44) remains unaltered by the introduction of terms which describe the coupling of

fermions to gauge fields. Equivalently, Eq. (A.1.44) could be derived using the explicit form of the EoM.

However, the EoM of course depend on gauge coupling terms.

136



A Chiral symmetry, currents and order parameters A.1 The formalism for classical fields

Table A.1.1: Transformation pattern for the currents (A.1.42) under infinitesimal transformations
(A.1.40).

jV,τ
µ jA,τ

µ jS,τ jP,τ

δV,τ ′jX,τ ij
V,[τ ′,τ ]−
µ ij

A,[τ ′,τ ]−
µ ijS,[τ ′,τ ]− ijP,[τ ′,τ ]−

δA,τ ′jX,τ −ijA,[τ ′,τ ]−
µ −ijV,[τ ′,τ ]−

µ −jP,[τ ′,τ ]+ jS,[τ ′,τ ]+

The currents (A.1.43) transform under (A.1.40) (infinitesimal transformation) as (see Eq. (A.1.35))

Λτ
′
X′ : jX,τ → jX,τ ± i

2
ψ̄

([
ΓX
′
,ΓX

]
+

[
τ ′, τ

]
∓ +

[
ΓX
′
,ΓX

]
−

[
τ ′, τ

]
±

)
ψ , (A.1.45)

where the upper (lower) sign refers to ΓX
′

= 1 (ΓX
′

= γ5), which specifies the transformation. The

complete transformation pattern for (A.1.42) is listed in Tab. A.1.1. Hence, ΛA mixes parity partner.

Moreover, if no flavor changing currents are considered, i.e. τ ∝ 1, ΛV leaves all currents invariant and

ΛA only transforms spin-0 currents into each other.

The (anti) commutator in Eqs. (A.1.41) and (A.1.44) is given by (no Einstein convention for dotted

indices)

(
[τ,M ]∓

)
rs

= ∓
(
m

˙
r ∓m

˙
s

)
τrs (A.1.46)

for arbitrary but diagonal mass matrix. Current conservation for the vector (axial-vector) current, therefore,

holds if the masses mr, ms are equal (zero) if τrs is nonzero. The diagonal elements of the commutator

are always zero. Accordingly, the Lagrangian (A.1.36) is invariant w.r.t. axial transformations if M = 0

and w.r.t. the vector transformation if mr = ms for τrs 6= 0. Up and down quarks with their tiny

masses of a few MeV may be considered as approximately massless and, hence, represent a two-flavor

system which would be invariant w.r.t. axial transformations which are restricted to these two flavors.

Consequently, the current (A.1.42b) is conserved and the Lagrangian (A.1.36) is invariant. On the other

hand, vector and axial-vector currents are mixed. Hence, if the ground state of the strong interaction

would possess the same symmetry, vector and axial-vector states would be degenerate. This means that

the spectral densities (cf. App. B.1) are identical, because an axial transformation may be applied which

transforms one spectral function into the other. Obviously, this is not the case, e.g. the mass of the ρ

meson (vector state with τ = σ3/2 and σi as Pauli matrices) is mρ = 775.5 MeV, whereas the mass

of the chiral partner, the axial-vector a1, is ma1 = 1260 MeV. This phenomenon is a manifestation of

the spontaneous breaking of the axial symmetry (symmetry w.r.t. axial transformations (A.1.40b)). The

explicit breaking of the axial symmetry due to the finite quark masses should lead to mass differences

which are small compared to the meson masses. In the example above the mass difference is of the same

order as the meson masses. Thus, the explicit symmetry breaking due to a finite quark mass cannot be

responsible for the mass splitting among chiral partners.

Let us consider now a 3-flavor system with a mass matrix of 2 light (i.e. light enough to be considered
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as approximately massless) and one massive flavor. Then, restrict the transformations to the two light

flavors, so that in flavor space the 8 rotation angles (ta = λa/2, λa the Gell-Mann matrices) are
~Θ = (Θ1,Θ2,Θ3, 0, . . . , 0):

Θata =
~Θ~λ

2
=

1

2

(∑3
i=1 Θiσi 0

0 0

)
. (A.1.47)

These transformations clearly leave the Lagrangian with m1,2 ≈ 0 approximately invariant. Specifying

now flavor changing currents with

τ =
1

2

(
λ4 + iλ5

)
, (A.1.48)

i.e. a current with one light (the first quark in this case) and one heavy quark jX,τµ = q̄1γµq3, the

transformations (A.1.45) are given by

[t, τ ]− = [t, τ ]+ =
1

2

0 0 Θ3

0 0 Θ1 + iΘ2

0 0 0

 (A.1.49)

and the currents transform as

jV,τ
µ = q̄1γµq3 → jV,τ

µ − i

2
(q̄1Γγµq3Θ3 + (Θ1 + iΘ2) q̄2Γγµq3) , (A.1.50a)

jS,τ = q̄1q3 → jS,τ − i

2
(q̄1Γq3Θ3 + (Θ1 + iΘ2) q̄2Γq3) , (A.1.50b)

where Γ = 1 (Γ = γ5) for the vector (axial-vector) transformation. Although, the heavy quark mass

explicitly breaks the invariance of the Lagrangian under general flavor rotations, invariance w.r.t. (A.1.47)

(for ΛV and ΛA) is preserved. Furthermore, the thus defined currents (A.1.48) are neither conserved nor

associated with a symmetry transformation, but they still mix under the transformation (A.1.47). The

situation is identically to the massless 2-flavor case and the missing of degenerate parity partner in the

heavy-light sector of the meson spectrum is a manifestation of the spontaneous breaking of the axial

symmetry in the light quark sector.

Left and right handed currents

To establish the connection to left and right handed chirality, define the left and right handed projectors

as

PL,R ≡
1

2
(1∓ γ5) , (A.1.51)
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where the convention of [Ynd06] has been used. Then, the free Fermion Lagrangian (A.1.36) in terms of

left and right handed spinors ψL,R ≡ PL,Rψ can be written as

L = ψ̄Li∂̂ψL − ψ̄LMψR + L↔ R . (A.1.52)

Consider the separate U(Nf) = U(1) × SU(Nf) transformations of left and right handed fields, also

known as the chiral transformations

U(Nf)L,R = U(1)L,R × SU(Nf)L,R : ψL,R → ψ′L,R = e−iΘ
a
L,Rt

a

ψL,R , (A.1.53)

where the generators of SU(Nf ), ta for a = 1, . . . , N2
f − 1, and of U(1), t0 = 1/2, again act on the flavor

indices.

The kinetic terms in Eq. (A.1.52) are invariant w.r.t. (A.1.53). Whereas the mass terms are in general

not, because of the independence of the transformation parameters ΘL and ΘR.

For infinitesimal transformations the change of the Lagrangian is

δL = −iψ̄L (Θa
Lt
aM −MΘa

Rt
a)ψR + L↔ R . (A.1.54)

According to Eqs. (A.1.31), (A.1.32) and (A.1.8) the well known currents of left and right handed

chirality

j(L,R),τ
µ = ψ̄(L,R)γµτψ(L,R) (A.1.55)

may be defined; their divergences are

i∂µj(L,R),τ
µ = ψ̄(L,R)τMψ(R,L) − ψ̄(R,L)Mτψ(L,R) . (A.1.56)

As left and right handed currents are eigenvalues of the chirality operator, γ5ψL,R = ∓ψL,R, the actual

independent left and right handed transformations can be combined to the vector (axial) transformation

for Θa
L = Θa

R = Θa
V (−Θa

L = Θa
R = Θa

A):

ψ = ψL + ψR → ψ′ = e∓iΘ
a
V,At

a

ψL + e−iΘ
a
V,At

a

ψR =

e−iΘ
a
Vt
a
ψ

e−iΘ
a
At
aγ5ψ

. (A.1.57)

Thus, vector and axial transformations are special cases of left- and right-handed transformations. From

Eq. (A.1.51) the currents (A.1.42a) and (A.1.42b) are given as jV,τ
µ = jL,τ

µ +jR,τ
µ and jA,τ

µ = jL,τ
µ −jR,τ

µ .

Consider for a moment the two-flavor case, Nf = 2. Then Eq. (A.1.53) by virtue of the SU(2)

generators ta = σa/2, with σa again the Pauli isospin matrices, becomes

ψC → ψ′C =

(
cos

ΘC

2
− i

~ΘC~σ

ΘC
sin

ΘC

2

)
ψC (A.1.58a)
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ψ̄C → ψ̄′C = ψ̄C

(
cos

ΘC

2
+ i

~ΘC~σ

ΘC
sin

ΘC

2

)
, (A.1.58b)

with ΘC ≡ |~ΘC | and C ∈ {L,R}. The left and right handed currents (A.1.55) transform as

~j Cµ → cos ΘC
~j Cµ +

sin ΘC

ΘC

(
~ΘC ×~j Cµ

)
+ 2 sin2 ΘC

2

~ΘC ◦ ~ΘC

Θ2
C

~j Cµ , (A.1.59)

where ~j Cµ ≡ ~j C,~σµ is the left or right handed vector–isospin-vector current with components j C,σ
a

µ and ◦
denotes the dyadic product. Thus a vector current transforms as

~j V
µ = ~j L

µ +~j R
µ

→ cos ΘL

(
~j L
µ −

~ΘL ◦ ~ΘL

Θ2
L

~j L
µ

)
+
~ΘL ◦ ~ΘL

Θ2
L

~j L
µ +

sin ΘL

ΘL

~ΘL ×~j L
µ + L→ R , (A.1.60)

A particular choice is

~ΘL = 2~ΘR ≡ 2~Θ , Θ = π . (A.1.61)

For the vector current this transformation gives

~j V
µ → ~jA

µ + 2
~Θ ◦ ~Θ

Θ2
~j R
µ . (A.1.62)

This reveals the mixing of vector and axial-vector currents under the chiral transformation (A.1.53).

Definition (A.1.61) does not uniquely fix the components of ~ΘC , and for each component of the vector–

isospin-vector or axial-vector–isospin-vector current ~j (V,A)
µ there is a chiral transformation (A.1.53)

which transforms it into its chiral counterpart. Namely, any choice with (A.1.62) and Θa = 0 transforms

j V,σa
µ → jA,σa

µ . Thus, the chiral transformations relate parity partners. To be specific and in order to

supplement the discussion of Sec. 5.1:

SU(2)L × SU(2)L =
(
eiπσ

2
)

L
×
(
ei
π
2
σ2
)

R
=

(
−1 0

0 −1

)
L

×
(

0 −1

1 0

)
R

(A.1.63)

accounts for j
V,σ

3

2
µ → j

A,σ
3

2
µ .

Analogously, any chiral current (A.1.55) may be transformed by virtue of (A.1.59) into its negative

by an appropriate chiral transformation. Thus, if the chiral transformations (A.1.53) are symmetries

of the theory, the exchange of chiral partners is a symmetry transformation as well and should not

alter observables. Besides the choice (A.1.61) there are other choices possible to transform vector into

axial-vector currents. Note that the particular transformation (A.1.61) cannot be a vector transformation

(A.1.40a), as the latter does not mix chiral partners.
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The choice ~Θ ≡ ~ΘL = −~ΘR is an axial transformation (A.1.40b) and yields

~j V
µ → cos Θ

[
~j V
µ −

~Θ ◦ ~Θ
Θ2

~j V
µ

]
+
~Θ ◦ ~Θ

Θ2
~j V
µ +

sin Θ

Θ
~Θ×~j A

µ . (A.1.64)

This is the transformation law for vector–isospin-vector currents under finite axial transformations.22 An

analog relation holds true for axial-vector–isospin-vector currents.

Setting cos Θ = 0, i.e. Θ = π
2 (2n+ 1), n ∈ N, gives

~j V
µ →

~Θ ◦ ~Θ
Θ2

~j V
µ +

sin Θ

Θ
~Θ×~j A

µ . (A.1.65)

Again we conclude that each component of the vector–isospin-vector current may be transformed into

the component of an axial-vector–isospin-vector current by an appropriate chiral transformation, i.e.

j V,σa

µ → jA,σa

µ (A.1.66)

is possible for all σa. The explicit transformation law for finite vector transformations is obtained from
~Θ ≡ ~ΘL = ~ΘR:

~j V
µ → cos Θ

[
~j V
µ −

~Θ ◦ ~Θ
Θ2

~j V
µ

]
+
~Θ ◦ ~Θ

Θ2
~j V
µ +

sin Θ

Θ
~Θ×~j V

µ . (A.1.67)

Again choosing Θ = π
2 (2n+ 1), n ∈ N, yields

~j V
µ →

~Θ ◦ ~Θ
Θ2

~j V
µ +

sin Θ

Θ
~Θ×~j V

µ . (A.1.68)

An analog relation holds true for the axial-vector–isospin-vector current. Equation (A.1.68) tells us

that any component of an isospin-vector current can be transformed into any other component by an

appropriate choice of ~Θ.

A particular construct of two equal chirality currents is~j Cµ ~j
C,µ. According to Eq. (A.1.59) it transforms

under arbitrary chiral transformations (A.1.53) as

~j Cµ ~j
C,µ → cos2 ΘC

~j Cµ ~j
C,µ +

sin2 ΘC

Θ2
C

(
~ΘC ×~j Cµ

)(
~ΘC ×~j C,µ

)
+ 4

sin4 ΘC
2

Θ2
C

(
~ΘC ·~j Cµ

)(
~ΘC ·~j C,µ

)
+ 2 cos ΘC

sin ΘC

ΘC

~j Cµ ·
(
~ΘC ×~j C,µ

)
+ 4 cos ΘC

sin2 ΘC
2

Θ2
C

(
~ΘC ·~j Cµ

)(
~ΘC ·~j C,µ

)
22Obviously, the thus obtained transformation is, according to the definition (A.1.40b), an axial transformation with angle
−ΘA.

141



A Chiral symmetry, currents and order parameters A.2 The formalism for quantized fields

+ 4
sin ΘC

ΘC

sin2 ΘC
2

Θ2
C

(
~ΘC ×~j Cµ

)
· ~ΘC

(
~ΘC ·~j C,µ

)
. (A.1.69)

The forth and sixth terms are zero due to the vector product. Using εabcεcde = δadδbe − δaeδbd and

sin2 x = (1− cos 2x)/2 a straightforward calculation reveals that ~j Cµ ~j
C,µ → ~j Cµ ~j

C,µ is invariant under

arbitrary chiral transformations (A.1.53). In particular it is invariant w.r.t. arbitrary vector and axial

transformations (A.1.40).

For completeness we also rewrite the currents (A.1.43) in terms of left and right handed fields:

jS,τ = ψ̄LτψR + R↔ L , (A.1.70a)

jP,τ = iψ̄Lγ5τψR + R↔ L , (A.1.70b)

jV,τ
µ = ψ̄LγµτψL + R↔ L , (A.1.70c)

jA,τ
ν = ψ̄Lγ5γµτψL + R↔ L . (A.1.70d)

A.2 The formalism for quantized fields

Introductions to quantum field theory can be found in many textbooks, e.g. [Rom69, Rom65, Wei95,

Wei96, Gre96, Pok00, Ynd06, Pes95, Kug97, Mut87, Itz80, Kak93, Bjo65, Hat98, Bro92]. In the

following the focus is on quantizing the equal-time Poisson brackets in order to obtain the equal-time

current commutation relations (ETCCRs) and to introduce anomalies and order parameters.

Quantization of the Lagrangian theory within Schwinger’s action principle is done by the transition

from classical equal-time Poisson brackets to quantum mechanical commutators such that the Poisson

bracket (A.1.30) is the coefficient of the lowest order term in an expansion of the commutator in terms of

i~ (~ = 1 throughout the thesis), i.e.

[O, Q]− = i {O, Q} = iδO (A.2.1)

is demanded for all local operators O .23 The quantity δO is the change of O under the transformation

associated with the charge Q (see Eq. (A.1.8)). Explicit evaluation of (A.2.1) for field operators ψ or the

operator of the canonical conjugate momentum π0 in terms of the definition of the generator Q (A.1.8)

reveals its equivalence to demanding the canonical commutation relations (or anti-commutation relations,

both satisfy Schwinger’s action principle) of a field operator and the operator of its canonical conjugate

momentum (A.1.4c)

i [π0(x0, ~x), ψ(x0, ~y)]± = δ(3)(~x− ~y) . (A.2.2)

23To consider contributions of higher powers of ~ to the commutators is also known as deformation quantization.
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In particular,

i [Pν ,O(x)]− = ∂νO(x) , (A.2.3)

for arbitrary operators O(x) and the momentum operator Pν given in Eq. (A.1.11) (see Eq. (A.1.18)),

which is equivalent to the EoM in the Heisenberg picture

O(x+ a) = eiPaO(x)e−iPa . (A.2.4)

Moreover,

i
[
QX,τ (x0), ψ(x0, ~x)

]
− = δX,τψ(x) , (A.2.5)

where X indicates the type of transformation, e.g. X ∈ {V,A} for (A.1.40), and τ = Θata specifies the

group parameter. Thus, regardless of the symmetry properties of the Lagrangian L and the conservation

properties of (A.1.31), the currents and the corresponding charges fulfill

[
jX,τ0 , jX

′,τ ′

0

]
x0=y0

= − i
2
δ(3)(~x− ~y)π0

([
ΓX ,ΓX

′
]

+

[
τ, τ ′

]
−

)
ψ , (A.2.6)

with Γ ∈ {1, γ5}, according to the transformation specified by X , and

[
Γτ,Γ′τ ′

]
± =

1

2

([
Γ,Γ′

]
+

[
τ, τ ′

]
± +

[
Γ,Γ′

]
−
[
τ, τ ′

]
∓

)
(A.2.7)

has been used. The second term in Eq. (A.2.7) is always zero if Γ ∈ {1, γ5}. All relations given in

section A.1 remain valid. Hence, the algebra given by the Poisson brackets remains valid when quantizing

the theory using canonical quantization. It consistently follows that the commutators only differ by their

parity structure, i.e.

Γ = Γ′ :
[
jX,τ0 , jX,τ

′

0

]
x0=y0

= δ(3)(~x− ~y)j
V,[τ,τ ′]−
0 , (A.2.8a)

Γ 6= Γ′ :
[
jX,τ0 , jX

′,τ ′

0

]
x0=y0

= δ(3)(~x− ~y)j
A,[τ,τ ′]−
0 (A.2.8b)

follows.

The ETCCRs (A.2.6) are the starting point for the so called current algebras [Adl68, Tre85, Sak73].

Their development preceded the invention of QCD and provided crucial insights and inspirations for

the theory of strong interaction [Cao10]. The algebra (A.2.8) can be extended by including spatial

components of the currents – either by definition, general arguments (e.g. Lorentz covariance) or on

ground of the canonical quantization within a concrete model, i.e. for a specified Lagrangian L .
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Digression: Schwinger terms

In any case, the thus defined algebra cannot be complete. Moreover, there is a striking difference

between the algebra of Poisson brackets and commutators of quantum field operators. The latter one is a

mapping which is directly related to the multiplication properties of the field operators, the first one not.

Therefore, one might suspect that multiplication of field operators may lead to divergences. Investigating

the Källén-Lehmann or spectral representation (cf. App. B.1) of the ETC of a temporal and a spatial

component, one finds that terms proportional to derivatives of Dirac distributions have to be introduced

in order to preserve positivity of the energy spectrum [Adl68, Tre85, Sak73, Rom69]. These terms are

called Schwinger terms and were first found to exist in [Got55]. Unfortunately, it is not possible to

make general (model independent) arguments about the nature of Schwinger terms, e.g. whether they are

c-numbers or not. To understand their existence note that, due to the canonical commutation relations

(A.2.2), the product of two field operators at the same space-time point is actually ill-defined, i.e. it is

irregular. If, instead of Eq. (A.1.42), the currents would have been defined as the limit of the product of

two infinitesimally spatially separated field operators [Sak73]

jX,τµ (x) = lim
ε→0

ψ̄(x0, ~x+ ~ε)ΓXµ τψ(x0, ~x− ~ε) , (A.2.9)

then derivatives of Dirac delta distributions naturally arise in the commutation relations. This is the

so called point-splitting technique [Sch59]. Other definitions of point-splitting based currents, e.g. an

asymmetric splitting, may lead to different prefactors for Schwinger terms [Cha70]. Furthermore, the

definition (A.2.9) is not gauge invariant. Define [Tre85, Ynd06]

jX,τµ (x) = lim
ε→0

ψ̄(x0, ~x+ ~ε)ΓXµ τe
ia

∫ ~x+~ε
~x−~ε gA

α(y)dyα ψ(x0, ~x− ~ε) , (A.2.10)

which is gauge invariant for a = 1. Note, that in case of non-Abelian gauge field theories the gauge-

invariance ensuring insertion
[
exp

{
ia
∫
gA α

}]
has to be path-ordered w.r.t. to the integration [Pes95].

This ensures, that the extra terms which emerge due to the non-commutativity of the gauge fields are

properly canceled when switching to other gauges. With this definition also higher derivatives of Dirac

distributions can contribute to the commutation relations. Other details and approaches have been worked

out in [Hel67, Bou70, Bar69, Fuj87, Bra68].

From Eq. (A.2.10) the divergence of the currents can be reevaluated. In particular, the divergence of

the axial-vector UA(1) current, which refers to the UA(1) symmetry, gains an anomalous contribution,

the well known axial anomaly. Employing the OPE technique (see Sec. 2.2) in conjunction with the

background field method in Fock-Schwinger gauge (see App. C.1), the divergence of the axial-current in

point-splitting technique (A.2.10) for zero quark masses can be evaluated [Nov84b] and reads

∂µjA,1
µ =

αs
4π
GAµνG̃

µν,A , (A.2.11)

with the dual field-strength tensor G̃Aµν ≡ ε αβ
µν GAαβ . This anomaly breaks the symmetry explicitly.
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Thus, the axial U(1) symmetry, classically realized for zero quark masses, is not a symmetry of the

quantized theory. Moreover, it can be shown that if Schwinger terms exist in the commutator of two

currents, their time-ordered product is not Lorentz covariant anymore [Sak73]. Lorentz covariance is

restored by adding a so-called “seagull term” to the naive time-ordered product. This also accounts for a

formal redefinition of causal current-current correlation functions (see App. B) by means of the Lorentz

covariant time-ordered product. The seagull term is completely determined by and can be evaluated from

the Schwinger term. Also the non-anomalous Ward identity (cf. App. B.4) may not give the correct result

and an anomalous Ward identity can be derived. In order for the non-anomalous Ward identity to be true,

the Schwinger terms and divergences of seagull terms must cancel each other. The so-called Feynman

conjecture states this cancellation, but there are processes where it fails. An example for such a process

is π0 → 2γ [Tre85, Ynd06, Wei96, Itz80], see also [Iof06] for a review on the axial anomaly, where

Schwinger terms result in the so-called triangle anomaly.

Another anomaly is generated by the breakdown of scale-invariance due to quantum corrections

[Pas84]. Scale invariance of the classical massless theory defines the conserved dilatation current

jdil
µ = Tµνx

ν , (A.2.12)

with Tµν being the energy-momentum tensor.24 Finite quark masses break the symmetry in the classical

theory, but for small masses it may be considered as an approximate symmetry – similar to the axial

transformation. Hence, the divergence of the dilatation current in the classical theory is ∂µjdil
µ = T µ

µ =

ψ̄Mψ. Quantum corrections, however, yield [Coh92]

T µ
µ = −1

8

(
11

3
Nc −

2

3
Nf

)
αs
π
GAµνG̃

µν,A + ψ̄Mψ , (A.2.13)

neglecting higher-order corrections in αs.

The apparent relation between Schwinger terms and the singular behavior of operator products

immediately suggests a link to the OPE (cf. Sec. 2). Indeed, it turns out that the most convenient way

to evaluate Schwinger terms is by usage of the Bjorken-Johnson-Low (BJL) limit [Bjo66, Joh66] (see

also [Tre85]) in combination with the OPE [Shi99, Tre85]. If Π(q) is the causal correlator of two field

operators A and B (cf. App. B) then the BJL definition of the ETC is [Tre85]

lim
q0→∞

q0Π(q) ≡ i
∫

d3x e−i~q~x〈[A(0, ~x), B(0)]〉 . (A.2.14)

In this manner, the most singular term in the OPE gives the Schwinger term. As can be seen from the

discussion presented so far, there exists an intimate connection between canonical quantization of a field

theory, Schwinger terms, anomalies and the OPE technique.

However, the discussion of Schwinger terms and anomalies (see e.g. [Tre85, Wei96, Adl68]), which

24Actually, it is the Belifante energy-momentum tensor, which is obtained from the canonical energy-momentum and angular-
momentum tensor by requiring symmetry w.r.t. Lorentz indices of the energy-momentum tensor [Pas84].
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gives enlightening insights and a deeper understanding of quantum field theories, is beyond the scope of

this essay.

Equal-time current commutation relations

The ETC of a current and a divergence, which is not treatable within the methods of current algebra, will

be needed. Ignoring Schwinger terms the ETCs for the currents (A.1.43) evaluate to[
jX,τµ (x0, ~x),

(
jX
′,τ ′

ν (x0, ~y)
)†]
−

= δ(3)(~x− ~y)
(
ΓXµ τ

)
ij

(
ΓX
′

ν τ ′
)
kl

(
ψ̄i(x) (γ01f )jk ψl(y)

−ψ̄k(y) (γ01f )il ψj(x)
)
x0=y0

= δ(3)(~x− ~y)ψ†(x)
(
γ0ΓXµ τγ0ΓX

′
ν τ ′ − γ0ΓX

′
ν τ ′γ0ΓXµ τ

)
ψ(x)

= δ(3)(~x− ~y )ψ†(x)
[
γ0ΓX

′
ν τ ′†, γ0ΓXµ τ

]
−
ψ(x)

=
1

2
δ(3)(~x− ~y )ψ†(x)

([
γ0ΓXµ , γ0ΓX

′
ν

]
+

[
τ, τ ′†

]
−

+
[
γ0ΓXµ , γ0ΓX

′
ν

]
−

[
τ, τ ′†

]
+

)
ψ(x) , (A.2.15)

where [A,BC]− = [A,B]−C + B [A,C]− = [A,B]+C − B [A,C]+, and Eqs. (A.2.2) as well as

(A.2.7) have been used. Technically, Schwinger terms dropped out when going from the first equality to

the second [BD71]. Taking the limit x→ y in the above spirit is only allowed if the operator product

ψ̄(x+ ε)ψ(x) is a smooth function in ε at ε = 0. As local operator products are highly singular objects,

this is clearly not the case. It is clear, however, that the ETCs (A.2.15) must reproduce the transformation

properties of the currents given in (A.1.45).

In order to show the consistency, only those commutators need to be considered where at least one

operator is the time-component of an axial- or vector current, specified by ΓX
′
. This current induces the

transformation X ′. For µ = 0, Eq. (A.2.15) becomes

[
jX
′,τ ′

0 (x0, ~x), jX,τν (x0, ~y)
]

=
1

2
δ(3)(~x− ~y)ψ†(x)

([
γ0ΓX

′
0 , γ0ΓXν

]
+

[
τ ′, τ

]
− +

[
γ0ΓX

′
0 , γ0ΓXν

]
−

[
τ ′, τ

]
+

)
ψ(x)

=
1

2
δ(3)(~x− ~y)ψ†(x)


[
1, γ0ΓXν

]
+

: X ′ = V

−
[
γ5, γ0ΓXν

]
+

: X ′ = A

[τ ′, τ]−
+


[
1, γ0ΓXν

]
− : X ′ = V

−
[
γ5, γ0ΓXν

]
− : X ′ = A

[τ ′, τ]+
ψ(x)
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=
1

2
δ(3)(~x− ~y)ψ†(x)

γ0

[
1,ΓXν

]
+

: X ′ = V

−
(
− [γ5, γ0]+ ΓXν − γ0

[
γ5,Γ

X
ν

]
−

)
: X ′ = A

[τ ′, τ]−
+

γ0

[
1,ΓXν

]
− : X ′ = V

−
(
− [γ5, γ0]+ ΓXν − γ0

[
γ5,Γ

X
ν

]
+

)
: X ′ = A

[τ ′, τ]+
ψ(x)

=
1

2
δ(3)(~x− ~y)ψ†(x)

γ0

[
ΓX′ ,Γ

X
ν

]
+

: X ′ = V,ΓX′ = 1

γ0

[
ΓX′ ,Γ

X
ν

]
− : X ′ = A,ΓX′ = γ5

[τ ′, τ]−
+

γ0

[
ΓX′ ,Γ

X
ν

]
− : X ′ = V,ΓX′ = 1

γ0

[
ΓX′ ,Γ

X
ν

]
+

: X ′ = A,ΓX′ = γ5

[τ ′, τ]+
ψ(x) , (A.2.16)

where [A,BC]+ = [A,B]−C + B [A,C]+ = [A,B]+C − B [A,C]− and [A,BC]− = [A,B]+C −
B [A,C]+ have been used. In case of the axial transformation a global sign has to be added, because the

charge of the axial current defined in (A.1.42b) is the negative generator of ΛA (A.1.40b).25 Collecting

commutators and anticommutators in Dirac space, multiplying with i and integrating w.r.t. ~x gives

i
[
QX

′,τ ′(x0), jX,τν (x0, ~y )
]
−

= δX
′,τ ′jX,τν (x0, ~y )

= ± i
2
ψ̄

([
ΓX
′
,ΓX

]
+

[
τ ′, τ

]
∓ +

[
ΓX
′
,ΓX

]
−

[
τ ′, τ

]
±

)
ψ , (A.2.17)

where upper (lower) signs refer to the vector (axial) transformation, proving the consistency.

Commutators involving currents of different parity transform as pseudo tensors. The opposite is the

case for commutators involving currents of the same parity:[
j(V,A),τ
µ (x),

(
j

(V,A),τ ′

0 (y)
)†]

x0=y0

= δ(3)(~x− ~y)j
V,[τ,τ ′†]−
µ (x) , (A.2.18a)[

j
(V,A),τ
0 (x), i∂ν

(
j(V,A),τ ′
ν (y)

)†]
x0=y0

= ∓δ(3)(~x− ~y)j
S,
[
τ,[M,τ ′†]∓

]
∓(x) . (A.2.18b)

Only commutators involving currents with the same parity are considered throughout the thesis. Conse-

quently the r.h.s. of Eq. (A.2.18) must be of vectorial or scalar character, respectively.

Order parameters

In quantum field theory, a symmetry is spontaneously broken, if the ground state |Ω〉 is not invariant

under the corresponding transformation, i.e. Q|Ω〉 6= 0 or, equivalent, eiQΘ|Ω〉 6= |Ω〉. This is also called

the Nambu-Goldstone realization of the symmetry, in contrast to the Wigner-Weyl realization where one

has Q|Ω〉 = 0. Using Eq. (A.2.1) the ground state expectation value 〈Ω|δO|Ω〉 is an order parameter of

25Cf. discussion after Eq. (A.1.43).
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symmetry breaking or restoration:

〈Ω|i [Q,O]− |Ω〉 = 〈Ω|δO|Ω〉 . (A.2.19)

If |Ω〉 is symmetric, i.e. in the Wigner-Weyl phase, one has 〈Ω|i [Q,O] |Ω〉 = 0, and 〈Ω|δO|Ω〉 vanishes.

Conversely, 〈Ω|δO|Ω〉 6= 0 means that the symmetry must be spontaneously broken. Note that the

vanishing of Eq. (A.2.19) does not necessarily require the Wigner-Weyl realization, i.e. symmetry

restoration. In fact, the r.h.s. of Eq. (A.2.19) might be zero due to other symmetries such as parity

invariance or flavor symmetries (cf. [Tho08a]). The ground state is assumed to be Lorentz invariant and

invariant w.r.t. parity transformations and time reversal. Owing to

〈Ω|O|Ω〉 = 〈Ω|U†OU|Ω〉 , (A.2.20)

with U being time reversal, parity or Lorentz transformation, order parameters must also be Lorentz

invariant and invariant w.r.t. parity transformations and time reversal.26 Concerning the charge operator

Q, defined in Eq. (A.1.8) for the classical theory, it must be noted that the integral is ill-defined in the

Nambu-Goldstone phase: it diverges. However, due to the canonical commutation relations (A.2.2)

any commutator of a current with a local Heisenberg field operator is local, i.e. nonzero only in a

finite domain, and the space-integral is thus well-defined. Therefore, in the Nambu-Goldstone phase

Eq. (A.2.19) is understood to be the space-integral of the ETC of the current, which generates the charge,

and the operator O [Kug97].

The most prominent example of an order parameter can be deduced from Eq. (A.1.45) in a two-flavor

system for the axial transformation of the pseudo-scalar current which can be taken from Tab. A.1.1.

Then Eq. (A.2.1) tells us that

〈Ω|
[
QA,τ (x0), jP,τ ′(x)

]
−
|Ω〉 = −i〈Ω|jS,[τ,τ ′]+(x)|Ω〉 (A.2.21)

is an order parameter of spontaneous chiral symmetry breaking. Choosing τ → σa/2 and τ ′ → σb/2 in

Eq. (A.2.21), σ being again the Pauli matrices, gives the famous chiral condensate:

〈Ω|
[
QA,σ

a

2 (x0), jP,σ
b

2 (x)

]
−
|Ω〉 = −iδ

ab

2
〈Ω|ψ̄(x)ψ(x)|Ω〉 . (A.2.22)

The formalism presented so far in this section already allows to derive the Gell-Mann–Oakes–Renner

relation [GM68]. Extracting the coordinate dependence of the matrix element 〈Ω|jA,σb
µ (x)|πc(q)〉, with

|πc(q)〉 being a one-pion state with momentum q, by virtue of Eq. (A.2.4)27 and projecting the Lorentz

26Note that the time inversion operator is anti-unitary, see Eq. (B.2.3). Therefore, Eq. (A.2.20) must be modified for the time
inversion operator: 〈Ω|O|Ω〉 = 〈Ω|U−1OU|Ω〉†. Hence, for U−1OU = O the corresponding condensate must be real.

27The ground state is assumed to be translational invariant.
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structure, one obtains

〈Ω|jA,σ
b

2
µ (x)|πc(q)〉 = e−iqxiδbcqµfπ(q2) , (A.2.23)

where the pion decay constant is defined as (no Einstein convention for dotted indices)

ifπ(q2) ≡ 1

3m2
π

〈Ω|qµjA,σ
a

2
µ (0)|πa(q)〉 =

1

m2
π

〈Ω|qµjA,σ ˙
a

2
µ (0)|π ˙

a(q)〉 . (A.2.24)

This definition may be justified by applying i∂µ to Eq. (A.2.23) and using Eq. (A.1.44). Thereby the

pseudo-scalar current is introduced, which has the quantum numbers of the pion [Ynd06]

〈Ω|i∂µjA,σ
b

2
µ (x)|πc(q)〉 = −i〈Ω|jP,

[
σb

2
,M

]
+(x)|πc(q)〉 = e−iqxiδbcm2

πfπ(q2) . (A.2.25)

For a two-flavor system one has
[
σb,M

]
+

= (mu +md)σ
b + (mu −md)δ

b31, and thus Eq. (A.2.21)

becomes

〈Ω|
[
QA,σ

a

2 (x0), j
P,

[
σb

2
,M

]
+(x)

]
−

|Ω〉 = −iδabmu +md

2
〈ψ̄ψ〉− iδb3mu −md

2
〈ψ̄σaψ〉 . (A.2.26)

Inserting a complete set of covariantly normalized one-pion states 1 =
∑

c

∫ d3p
2(2π)3Ep

|πc(p)〉〈πc(p)|
into Eq. (A.2.26), using Eqs. (A.2.23) and (A.2.25) and performing the trace w.r.t. flavor indices, reveals

the Gell-Mann–Oakes–Renner relation

f2
πm

2
π = −mu +md

2
〈ψ̄ψ〉 − mu −md

2
〈ψ̄σ3ψ〉 = −〈muūu+mdd̄d〉 . (A.2.27)

Employing the standard values fπ = 92.4 MeV, mπ = 139.6 MeV, mu = 4 MeV and md = 7 MeV

[Nak10] gives a chiral condensate of 〈q̄q〉 = −(247 MeV)3, where we defined the averaged chiral

condensate as 〈q̄q〉 = 〈ψ̄Mψ〉/TrM .

Another example can be obtained for a two-flavor system by considering the operator [Tho08a]

Jτ,τ
′

µν ≡ jA,τ
µ jV,τ ′

ν . (A.2.28)

It transforms under axial transformations as (cf. Tab. A.1.1)

i
[
Q,τ̄ , Jτ,τ

′
µν

]
= −i

(
jV,[τ̄,τ ]−
µ jV,τ ′

ν + jA,τ
µ jA,[τ̄,τ ′]−

ν

)
. (A.2.29)

Inserting the Pauli matrices τ = σa/2, τ ′ = σb/2, τ̄ = σc/2, results in

i
[
Q,σ

c/2, Jσ
a/2,σb/2

µν

]
= − i

2

(
εcaxjV,σx

µ jV,σb

ν + εcbxjA,σa

µ jA,σx

ν

)
(A.2.30)
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and contracting with εabc yields

iεabc
[
Q,σ

c/2, Jσ
a/2,σb/2

µν

]
= −i

(
~j V
µ
~j V
ν −~j A

µ
~j A
ν

)
, (A.2.31)

where the notation of vector–isospin-vector and axial-vector–isospin-vector currents of App. A.1 is

used. Equation (A.2.31) clearly identifies
(
~j V
µ
~j V
ν −~j A

µ
~j A
ν

)
as an order parameter of chiral symmetry

breaking.

As has been discussed below Eq. (A.1.68) in App. A.1, the components of an isospin-vector current

may be transformed into each other by a finite vector transformation. If the ground state is symmetric

w.r.t. the quark flavors it follows that expectation values are invariant w.r.t. isospin transformations,

because the components of an isospin-vector current can be transformed into each other by an appropriate

finite vector transformation (cf. App. A.1). Consequently, each component j V,σ ˙
a

µ j V,σ ˙
a

ν − j A,σ ˙
a

µ j A,σ ˙
a

ν is

an order parameter.

Let us summarize the symmetry properties of the Lagrangian (A.1.36) under chiral transformations.

The classical chiral UL(Nf)×UR(Nf) symmetry is broken explicitly by nonzero quark masses down to a

UV(Nf) symmetry in case of equal quark masses and to a UV(1) in case of unequal quark masses. If the

current quark masses and their differences are small, the UL(Nf)×UR(Nf) is an approximate symmetry.

While the exact UV(1) symmetry is always satisfied (it reflects the invariance w.r.t. phase transformations

and corresponds to the baryon number conservation) the approximate UA(1) symmetry of the quantized

theory is broken explicitly by the axial anomaly. Therefore, jV,1
µ is conserved in the classical as well

as in the quantized theory, whereas jA,1
µ is only partially (i.e. approximately) conserved in the classical

theory and not conserved in the quantized theory. The approximate SUA(Nf) symmetry is spontaneously

or dynamically broken. Contrary to the UA(1) current, the SUA(Nf) currents are partially conserved if

the quark masses are approximately equal. This is referred to as partial conservation of the axial-vector

current. The SUA(Nf) transformations relate parity partners to each other. The spontaneous breakdown

of this symmetry results in the non-degeneracy of parity partner. For obvious reasons, the approximate

SUV(Nf) symmetry is called flavor symmetry. It implicates conservation of the vector–isospin-vector

current. Contrarily to the SUA(Nf) symmetry, the flavor symmetry is not broken spontaneously, which is

signaled by the approximate degeneracy within the isospin triplet of, e.g., the ρ mesons. The tiny mass

differences of a few MeV can be traced back to the explicit breaking of the flavor symmetry by unequal

quark masses. One might argue that the mass splitting of chiral partners caused by the explicit chiral

symmetry breaking by finite quark masses must be of the same order.

A.3 Brief survey on Quantum Chromodynamics

The chapter is finished by a short basic introduction to QCD. The focus is on the essential equations and

relations which are needed in this thesis. For a detailed essay on QCD, we recommend [Pas84, Mut87].

The Lagrange density of classical chromodynamics follows from the requirement of invariance w.r.t.
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local color gauge transformations and reads

L = ψ̄
(
iD̂ −M

)
ψ − 1

4
GAµνG

µν
A , (A.3.1)

where we have introduced the following notation

Dab
µ (x) = ∂µ1

ab − igA ab
µ (x) : covariant derivative, (A.3.2a)

A µ
ab = AAµtAab : gluon fields, (A.3.2b)

Gµν = GAµνt
A =

i

g
[Dµ, Dν ] : gluon field strength tensor, (A.3.2c)

ψai : quark field operators, (A.3.2d)

tAab =
1

2
λA : generators of SU(Nc), (A.3.2e)

λA : Gell-Mann matrices in case of Nc = 3. (A.3.2f)

Dirac indices are denoted by Latin letters i, j, k, · · · , Lorentz indices by Greek letters µ, ν, κ, · · · and

color indices by Latin letters a, b, c, · · · . The generators tA satisfy

[
tA, tB

]
= ifABCtC , tr

(
tA
)

= 0 , tr
(
tAtB

)
=
δAB

2
, (A.3.3)

where fABC are the structure constants of the SU(Nc) algebra. From (A.3.2c) one can show that

GAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν , (A.3.4)

and

GAµν = −GAνµ . (A.3.5)

The last term in Eq. (A.3.4) accounts for the gluon self-interaction, i.e. gluon-gluon, triple-gluon and

quartic-gluon interactions. Nc denotes the number of colors (Nc = 3 for QCD), and the index A refers to

the generators of SU(Nc). The quark field spinor ψ denotes the flavor multiplet, ψ = (u, d, s, c, b, t)T . In

case of Nf = 2 it is called isodoublet. The mass matrix M is diagonal with the following entries [Nak10]

mu = 1.5 to 4.0 MeV , (A.3.6)

md = 3 to 7 MeV , (A.3.7)

ms = 95± 25 MeV , (A.3.8)

mc = 1.25± 0.09 GeV , (A.3.9)

mb = 4.20± 0.07 GeV (MS mass) , (A.3.10)

or 4.70± 0.07 GeV (1S mass) , (A.3.11)
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mt = 174.2± 3.3 GeV (direct observation of top events) , (A.3.12)

or 172.3+
−

10.2
7.6 GeV (Standard Model electroweak fit) . (A.3.13)

Because quarks are confined within hadrons and can not be observed as isolated free particles, the

determination of their masses depends on the theoretical framework used. Therefore, different values for

the bottom and top quark masses are quoted. The difference is of no importance for our calculations as

the top quark is not considered here; for the bottom quarks the difference is of minor impact.

The coupling strength of strong interaction, denoted by g, is defined as

g =
√

4παs , (A.3.14)

αs(q
2) =

4π

(33− 2Nf) ln

(
−q2

Λ2
QCD

) , (A.3.15)

with Nf being the number of active quark flavors and Λ2
QCD the renormalization scale parameter of QCD,

usually determined to reproduce αs(MZ) ≈ 0.19 with MZ = 91.1876± 0.0021 GeV being the Z boson

mass. The running coupling in Eq. (A.3.15) is the one-loop result.

The Lagrange density (A.3.1) emerges from the requirement of invariance under the local gauge color

transformation

ψai (x)→ ψ′ai (x) =
[
e−igt

AΘA(x)
]ab

ψbi (x) . (A.3.16)

By this one obtains the following transformation laws for color transformations

Dµψi(x)→ D′µψ
′
i(x) = e−igt

AΘA(x)Dµψi(x) , (A.3.17)

Dµ → D′µ = e−igt
AΘA(x)Dµe

igtAΘA(x) , (A.3.18)

Aµ → A ′µ = e−igt
AΘAAµe

igtAΘA(x) +
[
∂µe
−igtAΘA(x)

]
eigt

AΘA(x) , (A.3.19)

Gµν(x)→ G ′µν = e−igt
AΘAGµν(x)eigt

AΘA(x) . (A.3.20)

The explicit EoM for the quark and gluon fields follow from (A.3.1) as

D̂q = −imqq , (A.3.21)

q̄
←−̂
D = imq q̄ , (A.3.22)

[Dµ,Gµν ] (x) = −gtA
∑

n=u,d,s,c

n̄(x)tAγνn(x) , (A.3.23)

where summation over A is understood and we have defined

γµDµ = D̂ , (A.3.24)
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σµνGµν = σG (A.3.25)

with spin matrices

σµν =
i

2
[γµ, γν ] = i (γµγν − gµν) . (A.3.26)

Exploiting these relations, one can show that the gluon field strength tensor fulfills the following useful

relations

D2 = D̂D̂ +
1

2
gσG , (A.3.27a)

D2q =

(
1

2
gσG −m2

)
q , (A.3.27b)

where we have defined

D2 = gµνDµDν . (A.3.28)

Splitting up the Lagrange density into a free part L0 and a part containing the interaction, we define the

interaction Lagrange density as

Lint = L −L0 . (A.3.29)

The free, i.e. non-interacting, Lagrange density reads

L0 = ψ̄
(
i∂̂ −M

)
ψ − 1

4

(
∂µA

A
ν − ∂νABµ

) (
∂µAA,ν − ∂νAB,µ

)
. (A.3.30)

However, canonical quantization of the Lagrangian (A.3.1) requires the introduction of gauge fixing

terms in order to restore Lorentz covariance. Because the canonical conjugate momentum to the time-

component of the gauge field is zero, the canonical commutation relations cannot be fulfilled and Lorentz

covariance is lost. Therefore a gauge fixing term is introduced which eliminates the unphysical degrees

of freedom of the massless gauge fields. But as the resulting Fock space of states has negative norm and

unitarity is violated, Faddeev-Popov ghosts need to be introduced as well in order to preserve unitarity in

the Fock space of physical states, i.e. the probabilistic interpretation. The resulting quantized Lagrangian

is not gauge invariant anymore. In [Bec74, Bec75] the Becchi-Rouet-Stora transformation has been

derived, which leaves the Lagrangian invariant and may therefore serve as replacement of the local gauge

invariance requirement. The introduction of the Faddeev-Popov ghosts causes an additional complication

of the coupled set of DSEs of the theory. Apart from quark-gluon, gluon-gluon, triple- and quartic-gluon

interactions, also ghost-gluon interactions have to be considered (see Sec. 6.1.2). The QCD Lagrangian

reads [Pas84, Mut87]
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L = ψ̄
(
iD̂ −M

)
ψ − 1

4
GAµνG

µν
A

− 1

2a

(
∂µAAµ

)
(∂νA

ν
A)−

(
∂µφ̄A

) (
∂µφ

A
)

+ gfABC
(
∂µφ̄A

)
φBACµ , (A.3.31)

where φ denotes the ghost field.
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B Correlation functions

The central objects within a QSR analysis, performed in the chapters 3, 4 and 5, are current-current

correlation functions. A detailed knowledge about analytic properties, relations among different current-

current correlation functions and symmetries is mandatory. In the following, these points will be

investigated and a comprehensive collection of the relations needed throughout this work is given.

Special emphasis is put on nonzero densities and temperatures. In-medium current-current correlation

functions are of particular relevance in solid-state physics, and a lot of the material collected here can be

found in standard many-body textbooks such as e.g. [Neg88, Fet71, Nol05]. We generalize this treatment

to the case of non-contracted Lorentz indices of spin-1 currents.

Different correlation functions of two current operators (A.1.43) with different analytic properties may

be defined, such as the causal correlator

ΠX,τ
µν (q) = i

∫
d4x eiqx〈T

[
jX,τµ (x)jX,τ

†
ν (0)

]
〉 , (B.0.1a)

the retarded and advanced correlators

RX,τµν (q) = i

∫
d4x eiqxΘ(x0)〈

[
jX,τµ (x), jX,τ

†
ν (0)

]
〉 , (B.0.1b)

AX,τµν (q) = i

∫
d4x eiqxΘ(−x0)〈

[
jX,τ

†
ν (0), jX,τµ (x)

]
〉 , (B.0.1c)

and the spectral density

ρX,τµν (q) = −
∫

d4x eiqx〈
[
jX,τµ (x), jX,τ

†
ν (0)

]
〉 . (B.0.1d)

T denotes time-ordering. In vacuum 〈O〉 denotes the ground state expectation value of the operator O. In

the medium, i.e. at finite density and/or temperature, it denotes the Gibbs average, which is defined as

〈O〉 =
1

Z

∑
n

〈n|e−β(H−µN)O|n〉 , (B.0.2)

where H is the Hamiltonian, N is some additive quantum number, e.g. the particle number, and µ the

corresponding chemical potential. The set {|n〉} stands for a complete set of eigenstates of P̄0 = H−µN ,

i.e. P̄0|n〉 = (En − µNn) |n〉. The partition function is denoted by Z = Tr exp{−β(H − µN)}. The

inverse temperature β = 1/kBT is the Legendre transform conjugate to the total energy of the system

[Zia09]. Strictly speaking it is the slope of the Lagrangian as a function of energy and thus its derivative
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w.r.t. energy. Likewise, −βµ is the conjugate to the total particle number. See also [Gol50] for details

and background of the Legendre transform. The space-time dependence of the currents is given by

Eq. (A.2.4)

jX,τµ (x) = eiP̄ xjX,τµ (0)e−iP̄ x , (B.0.3)

with P̄µ =
(
H − µN, ~P

)
the generator of translations. All considerations are for vector or axial-vector

currents with uncontracted indices. The cases of contracted indices or of scalar and pseudo-scalar currents

are special cases thereof.

B.1 Källén-Lehmann representation and analytic properties

With these conventions the Källén-Lehmann representations [Käl52, Leh54] of causal, retarded and

advanced correlators for the bosonic currents defined in Eq. (A.1.43) are obtained by expanding each

expectation value of the Gibbs averages in (B.0.1) over the complete set of states {|n〉}, often referred to

as inserting a representation of the unit operator, and using the integral representation of the Heaviside

function [Neg88]:


ΠX,τ
µν (q)

RX,τµν (q)

AX,τµν (q)

 = −(2π)3

Z
lim
ε→0+

∑
n,m

δ(3) (~q − ~pn + ~pm ) 〈m|jX,τµ |n〉〈n|jX,τ†ν |m〉

×


e−β(Em−µNm)

q0 − (En − Em − µ)


+

+

−

 iε
−

e−β(En−µNn)

q0 − (En − Em − µ)


−
+

−

 iε

 . (B.1.1)

Hence, the retarded correlator has poles below the real axis and the advanced correlator has poles above

the real axis. The causal correlator (2.0.1) is analytic neither in the upper nor in the lower energy plane.

We assumed µ(N) = µ(N + 1) ≡ µ, i.e. the chemical potential is independent of the particle number,

which is justified in a grand canonical ensemble. Here and in the following we insist on explicitly

indicating the limiting procedure in order to prevent an erroneously interchanging of limits. The spectral

density becomes

ρX,τµν (q)

= −(2π)4

Z

∑
n,m

δ(4) (q − p̄n + p̄m) 〈m|jX,τµ |n〉〈n|jX,τ†ν |m〉
(
e−β(Em−µNm) − e−β(En−µNn)

)
= −(2π)4

Z

∑
n,m

δ(4) (q − p̄n + p̄m) 〈m|jX,τµ |n〉〈n|jX,τ†ν |m〉e−β(Em−µNm)
(

1− e−βq0
)
,

(B.1.2)
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where we have used that only states with particle number Nn = Nm + 1 contribute and hence p̄n,0 −
p̄m,0 = En −Em − µ. Note that in general ImρX,τµν (q) 6= 0 due to the uncontracted Lorentz indices of

the currents. In terms of the spectral density the correlators can be written as{
RX,τµν (q)

AX,τµν (q)

}
= lim

ε→0+

∫ +∞

−∞

dω

2π

ρX,τµν (ω, ~q )

q0 − ω ± iε

= ∓ i
2
ρX,τµν (q) + p.v.

∫ +∞

−∞

dω

2π

ρX,τµν (ω, ~q )

q0 − ω
, (B.1.3)

where we have used the Sokhatsky-Weierstrass theorem and “p.v.” denotes the Cauchy principle value

of the integral. From Eq. (B.1.3), RX,τµν (q)∗ = AX,τµν (q) follows for q0 ∈ R. Using 1 − e−x =

(1 + e−x) tanh (x/2), real and imaginary parts of the correlators thus read

Re


ΠX,τ
µν (q)

RX,τµν (q)

AX,τµν (q)

 =
1

2


−tanh−1

(
βq0
2

)
+

−

 ImρX,τµν (q) + p.v.

∫ +∞

−∞

dω

2π

ReρX,τµν (ω, ~q )

q0 − ω
(B.1.4)

and

Im


ΠX,τ
µν (q)

RX,τµν (q)

AX,τµν (q)

 =
1

2


−tanh−1

(
βq0
2

)
−
+

ReρX,τµν (q) + p.v.

∫ +∞

−∞

dω

2π

ImρX,τµν (ω, ~q )

q0 − ω
. (B.1.5)

Finally, we remark that without further assumptions it is not possible to give a dispersion relation

expressing the real parts of the two-point functions by their imaginary parts only, i.e. time and parity

reversal invariance and translational invariance, due to the nonzero imaginary part of the spectral density.

Eliminating the real part of the spectral density gives

Re


ΠX,τ
µν (q)

RX,τµν (q)

AX,τµν (q)

 =
1

2


−tanh−1

(
βq0
2

)
+

−

 ImρX,τµν (q) + p.v.

∫ +∞

−∞

dω

π

1

q0 − ω


−tanh

(
βω
2

)
−
+


×

Im


ΠX,τ
µν (ω, ~q )

RX,τµν (ω, ~q )

AX,τµν (ω, ~q )

− p.v.

∫ +∞

−∞

dω′

2π

ImρX,τµν (ω′, ~q )

ω − ω′

 (B.1.6)

whereas eliminating the imaginary part we end up with

Im


ΠX,τ
µν (q)

RX,τµν (q)

AX,τµν (q)

 =
1

2


−tanh−1

(
βq0
2

)
+

−

ReρX,τµν (q) + p.v.

∫ +∞

−∞

dω

π

1

q0 − ω


−tanh

(
βω
2

)
−
+


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×

Re


ΠX,τ
µν (ω, ~q )

RX,τµν (ω, ~q )

AX,τµν (ω, ~q )

− p.v.

∫ +∞

−∞

dω′

2π

ReρX,τµν (ω′, ~q )

ω − ω′

 . (B.1.7)

If the spectral function is real, Eqs. (B.1.6) and (B.1.7) reduce to the well-known dispersion relations

which relate real and imaginary parts of correlators.

Considering the imaginary part of the spectral density we find

ImρX,τµν (q) =
1

2i

(
ρX,τµν (q)− ρX,τµν (q)∗

)
∝ 1

i

(
〈m|jX,τµ |n〉〈n|jX,τ†ν |m〉 − 〈m|jX,τν |n〉〈n|jX,τ†µ |m〉

)
, (B.1.8)

which is antisymmetric in its Lorentz indices. Similarly, the real part is symmetric in (µ, ν). From the

spectral representations we read off that the propagator and the correlators are symmetric if and only if the

spectral density is real, i.e. 〈m|jX,τµ |n〉〈n|jX,τ†ν |m〉 ∈ R. Assuming time and parity reversal invariance

and translational invariance, the spectral density is symmetric w.r.t. its Lorentz indices and, therefore,

real. Thus, all correlators are symmetric w.r.t. their Lorentz indices. This will be shown in App. B.2.28

Relating real and imaginary parts of the causal correlator to real and imaginary parts of advanced and

retarded correlator we obtain{
Re

Im

}
ΠX,τ
µν (q) =

1

2

{
Re

Im

}
(R+A)X,τµν (q)

+
1

2

{
−
+

}
tanh−1

(
βq0

2

){
Re

Im

}
(R−A)X,τµν (q) . (B.1.9)

Hence, the causal correlator in terms of retarded and advanced correlators is given by

ΠX,τ
µν (q) =

1

2
(R+A)X,τµν (q)− 1

2
tanh−1

(
βq0

2

)
(R∗ −A∗)X,τµν (q)

28Assuming translational invariance of the Gibbs average, relating real and imaginary parts of the spectral density to its
symmetric and antisymmetric contributions can directly be done from the definition:(

ρX,τµν (q)
)∗

= −
∫

d4x e−iqx〈
[
jX,τν (0), jX,τ

†
µ (x)

]
〉 = ρX,τ

†
µν (−q)

= −
∫

d4x e−iqx〈
[
jX,τν (−x), jX,τ

†
µ (0)

]
〉

= −
∫

d4x eiqx〈
[
jX,τν (x), jX,τ

†
µ (0)

]
〉

= ρX,τνµ (q) .

Hence, the real (imaginary) part equals the symmetric (antisymmetric) part:{
Re
Im

}
ρX,τµν (q) =

1

2

(
ρX,τµν (q) +

{
+
−

}
ρX,τνµ (q)

)
as stated above.
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=
RX,τµν (q)

1− eβq0 +
AX,τµν (q)

1− e−βq0 − i tanh−1

(
βq0

2

)
ReρX,τµν (q)

=
RX,τµν (q)

1− e−βq0 +
AX,τµν (q)

1− eβq0 − tanh−1

(
βq0

2

)
ImρX,τµν (q) , (B.1.10)

which distinguishes from the well-known expression by the imaginary part of the spectral density. It

features overlapping poles from the contributions of the retarded and advanced correlator above and

below the real axis, which complicate applications of contour integrals in the complex plane.

The zero temperature limit, β →∞, yields

ΠX,τ
µν (q) = Θ(q0)RX,τµν (q) + Θ(−q0)AX,τµν (q)− sign(q0)ImρX,τµν (q) , (B.1.11)

recovering non-overlapping pole contributions. Only for real, i.e. symmetric spectral densities, the

uncontracted causal correlator is given by retarded and advanced correlators only.

B.2 Symmetry constraints

Throughout this thesis, invariance w.r.t. time reversal and parity transformations and translational invari-

ance of the ground state or the medium are assumed. In this appendix subsection the inferences thereof

for the correlators and the spectral density are derived. Concerning these transformations, retarded and

advanced correlators transform identically, thus only the retarded correlator is discussed in detail. The

same relations hold for the advanced correlator. All results are summarized in Tab. B.2.1.

Within a nuclear medium, charge conjugation is not a symmetry operation. However, for the sake of

completeness it is included. For spinor fields, the charge conjugation C reads as CψαC−1 = −CψαC =

Cαβψ̄β , where C = iγ0γ2 is the spinor representation of the unitary charge conjugation operator C in

the canonical representation of the Dirac matrices [Pes95]. For the currents defined in Eq. (A.1.43), the

charge conjugation thus results in

CjX,τµ (x)C = (Cψ)i,a
(
ΓXµ
)
ij
τab
(
ψ̄C
)
j,b

= (−1)X ψ̄ΓXµ τ
Tψ

= (−1)XjX,τ
T

µ (x) , (B.2.1)

meaning that CjX,τµ (x)C = (−1)X
(
jX,τµ (x)

)†
if τ = τ∗ is real. If the ground state or the medium is

symmetric w.r.t. charge conjugation C|Ω〉 = |Ω〉, the correlators defined in Eq. (B.0.1) transform as

GX,τµν (q) = i

∫
d4xeiqxf(x0)〈jX,τµ (x)jX,τ

†
ν (0)〉

= i

∫
d4xeiqxf(x0)〈jX,τT

µ (x)jX,τ
∗

ν (0)〉

= GX,τ
T

µν (q) , (B.2.2)
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where f is an arbitrary function, e.g. the Heaviside function. As any of the correlators defined in

Eq. (B.0.1) can be built up from suitable functions GX,τµν (q), all correlators transform in the same way.

The effect of charge conjugation is to transpose the flavor matrix τ .

Before proceeding with the investigation of the symmetry properties of the correlator functions, recall

that the time reversal operator T is an antiunitary operator [Kug97], i.e.

(T ψ, T φ) = (ψ, φ)∗ = (φ, ψ) , (B.2.3)

where an appropriate notation for the scalar product has been used in order to underline the difference

to a unitary operator. Requiring invariance of a state |φ〉 = T |φ〉, the expectation value of two current

operators becomes

〈φ|jX,τµ (x)jX,τ
†

ν (0)|φ〉 = 〈T φ|jX,τµ (x)jX,τ
†

ν (0)T |φ〉
= 〈T φ|T T −1jX,τµ (x)T T −1jX,τ

†
ν (0)T |φ〉

= 〈φ|T −1jX,τµ (x)T T −1jX,τ
†

ν (0)T |φ〉∗

= (−1) ˙
µ(−1)˙

ν〈φ|jX,τµ (−x0, ~x )jX,τ
†

ν (0)|φ〉∗

= (−1) ˙
µ(−1)˙

ν〈φ|jX,τν (0)jX,τ
†

µ (−x0, ~x )|φ〉 . (B.2.4)

A dotted index is not summed and

(−1)µ =

+1 : µ = 0

−1 : µ = 1, 2, 3
. (B.2.5)

The implications of the ground state or Gibbs average symmetries for each correlation function are now

derived and summarized in Tab. B.2.1.

Spectral density

• parity reversal P:

ρX,τµν (q) = −
∫

d4xeiqx〈
[
jX,τµ (x), jX,τ

†
ν (0)

]
〉

= −(−1) ˙
µ(−1)˙

ν

∫
d4xeiqx〈

[
jX,τµ (x0,−~x ), jX,τ

†
ν (0)

]
〉

= −(−1) ˙
µ(−1)˙

ν

∫
d4xei(q0x0+~q~x )〈

[
jX,τµ (x0, ~x ), jX,τ

†
ν (0)

]
〉

= (−1) ˙
µ(−1)˙

νρX,τµν (q0,−~q ) . (B.2.6)

• time reversal T :

ρX,τµν (q) = −
∫

d4xeiqx〈
[
jX,τµ (x), jX,τ

†
ν (0)

]
〉
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= −(−1) ˙
µ(−1)˙

ν

∫
d4xeiqx〈

[
jX,τν (0), jX,τ

†
µ (−x0, ~x )

]
〉

= (−1) ˙
µ(−1)˙

ν

∫
d4xei(−q0x0−~q~x )〈

[
jX,τ

†
µ (x0, ~x ), jX,τν (0)

]
〉

= −(−1) ˙
µ(−1)˙

νρX,τ
†

µν (−q0, ~q ) . (B.2.7)

• translational invariance S:

ρX,τµν (q) = −
∫

d4xeiqx〈
[
jX,τµ (x), jX,τ

†
ν (0)

]
〉

=

∫
d4xeiqx〈

[
jX,τ

†
ν (−x), jX,τµ (0)

]
〉

= −ρX,τ†νµ (−q) . (B.2.8)

Retarded correlator

• parity reversal P:

RX,τµν (q) = (−1) ˙
µ(−1)˙

νi

∫
d4xeiqxΘ(x0)〈

[
jX,τµ (x0,−~x ), jX,τ

†
ν (0)

]
〉

= (−1) ˙
µ(−1)˙

νi

∫
d4xei(q0x0+~q~x )Θ(x0)〈

[
jX,τµ (x0, ~x ), jX,τ

†
ν (0)

]
〉

= (−1) ˙
µ(−1)˙

νRX,τµν (q0,−~q ) . (B.2.9)

• time reversal T :

RX,τµν (q) = (−1) ˙
µ(−1)˙

νi

∫
d4xeiqxΘ(x0)〈

[
jX,τν (0), jX,τ

†
µ (−x0, ~q )

]
〉

= (−1) ˙
µ(−1)˙

νi

∫
d4xei(−q0x0−~q~x )Θ(−x0)〈

[
jX,τν (0), jX,τ

†
µ (x)

]
〉

= (−1) ˙
µ(−1)˙

νAX,τµν (−q0, ~q ) . (B.2.10)

• translational invariance S:

RX,τµν (q) =

∫
d4xeiqxΘ(x0)〈

[
jX,τµ (0), jX,τ

†
ν (−x)

]
〉

=

∫
d4xe−iqxΘ(−x0)〈

[
jX,τµ (0), jX,τ

†
ν (x)

]
〉

= AX,τ
†

νµ (−q) . (B.2.11)

Note the interrelation between retarded and advanced correlator in case of time reversal and translational

invariance.
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Causal correlator

• translational invariance S:

ΠX,τ
µν (q) = i

∫
d4xeiqx〈T

[
jX,τµ (x)jX,τ

†
ν (0)

]
〉

= i

∫
d4xeiqx〈T

[
jX,τµ (0)jX,τ

†
ν (−x)

]
〉

= i

∫
d4xe−iqx〈Θ(−x0)jX,τµ (0)j†ν(x) + Θ(x0)jX,τ

†
ν (x)jµ(0)〉

= i

∫
d4xe−iqx〈T

[
jX,τ

†
ν (x)jX,τµ (0)

]
〉

= ΠX,τ†
νµ (−q) . (B.2.12)

• parity reversal P:

ΠX,τ
µν (q) = (−1) ˙

µ(−1)˙
νi

∫
d4xeiqx〈T

[
jX,τµ (x0,−~x )jX,τ

†
ν (0)

]
〉

= (−1) ˙
µ(−1)˙

νi

∫
d4xei(q0x0+~q~x )〈T

[
jX,τµ (x)jX,τ

†
ν (0)

]
〉

= (−1) ˙
µ(−1)˙

νΠX,τ
µν (q0,−~q ) . (B.2.13)

• time reversal T :

ΠX,τ
µν (q) = (−1) ˙

µ(−1)˙
νi

∫
d4xeiqx〈Θ(x0)jX,τν (0)jX,τ

†
µ (−x0, ~x )

+ Θ(−x0)jX,τ
†

µ (−x0, ~x )jX,τν (0)〉

= (−1) ˙
µ(−1)˙

νi

∫
d4xei(−q0x0−~q~x )〈Θ(−x0)jX,τν (0)jX,τ

†
µ (x)

+ Θ(x0)jX,τ
†

µ (x)jX,τν (0)〉

= (−1) ˙
µ(−1)˙

νi

∫
d4xei(−q0x0−~q~x )〈T

[
jX,τ

†
µ (x)jX,τν (0)

]
〉

= (−1) ˙
µ(−1)˙

νΠX,τ†
µν (−q0, ~q ) . (B.2.14)

If τ = τ∗ is real, i.e. τ † = τT, and provided the state in (B.2.12) is symmetric w.r.t. charge conjugation

C|Ω〉 = |Ω〉, then

Πµν(q) = Πνµ(−q) . (B.2.15)

162



B Correlation functions B.3 Decomposition

Table B.2.1: Symmetry properties of the correlation functions for assumed symmetries of the ground
state in vacuum or of the set {|n〉} in the medium.

.

ρX,τµν (q) RX,τµν (q) ΠX,τ
µν (q)

S −ρX,τ†νµ (−q) AX,τ
†

νµ (−q) ΠX,τ†
νµ (−q)

P (−1) ˙
µ(−1)˙

νρX,τµν (q0,−~q ) (−1) ˙
µ(−1)˙

νRX,τµν (q0,−~q ) (−1) ˙
µ(−1)˙

νΠX,τ
µν (q0,−~q )

T −(−1) ˙
µ(−1)˙

νρX,τ
†

µν (−q0, ~q ) AX,τ
†

µν (−q0, ~q ) (−1) ˙
µ(−1)˙

νΠX,τ†
µν (−q0, ~q )

C ρX,τ
T

µν (q) RX,τ
T

µν (q) ΠX,τT

µν (q)

PT −ρX,τ†µν (−q) AX,τ
†

µν (−q) ΠX,τ†
µν (−q)

SP −(−1) ˙
µ(−1)˙

νρX,τ
†

νµ (−q0, ~q ) AX,τ
†

νµ (−q0, ~q ) (−1) ˙
µ(−1)˙

νΠX,τ†
νµ (−q0, ~q )

ST (−1) ˙
µ(−1)˙

νρX,τνµ (q0,−~q ) (−1) ˙
µ(−1)˙

νRX,τνµ (q0,−~q ) (−1) ˙
µ(−1)˙

νΠX,τ
µν (q0,−~q )

PT S ρX,τνµ (q) RX,τνµ (q) ΠX,τ
νµ (q)

B.3 Decomposition

Instead of treating directly tensorial quantities it is more convenient to deal with Lorentz invariants.

Thereby, independent contributions to the current-current correlators are disentangled. In general, a

rank-2 tensor in four-dimensional Minkowski space can be decomposed into 6 independent algebraic

invariants. Four of them belong to the symmetric part, Ã, . . . , D̃, and two to the antisymmetric part,

E and F . The current-current correlation functions depend on the external momentum q and on the

medium’s four-velocity, which is encoded in the Gibbs average.

A system at nonzero temperature and/or (baryon) density is characterized by a heat-bath vector vµ
which can be normalized by v2 = 1. The heat bath is at rest in a reference frame with ~v = 0. Defining

the medium velocity vµ in relativistic field theory is constrained by the tight relation between mass and

energy. To employ the heat flux among different fluid elements, as is usually done in non-relativistic

problems, suffers from this ambiguity, cf. [Ran09]. For a system with a conserved current jBµ , e.g., the

baryon current, one can use vµ ∝ jBµ (Eckart choice) which locks the velocity to the charge flow [Ran09].

For a thermal system without conserved currents one must lock the flow with energy-momentum flow

(Landau choice, cf. [Ran09]).

In a strongly interacting medium, the coefficients Ã, . . . , D̃, E, F are functions of q2, v2 and q · v. The

most general decomposition reads

Πµν(q) = gµνÃ+ qµqνB̃ +
vµvν
v2

C̃

+ (qµvν + vµqν) D̃ + (qµvν − vµqν)E + εµναβqαvβ F . (B.3.1)

However, it is more appropriate to introduce a decomposition, with coefficients A, . . . ,D, which dis-

tinguishes transversal and longitudinal states relative to the four-momentum q. Additionally, the 4-

transversal part can be decomposed into a part which is transversal and one that is longitudinal to the

163



B Correlation functions B.3 Decomposition

Table B.3.1: Contraction table of the projectors defined in Eq. (B.3.3).

PLµν PTµν Lµν Tµν

PL
µν 1 0 0 0

PT
µν 0 3 1 2

Lµν 0 1 1 0
Tµν 0 2 0 2

three-momentum ~q, cf. e.g. [Kap06]. In the frame where the medium is at rest, the three-momentum can

be expressed as

v̄µ ≡ vµ −
v · q
q2

qµ . (B.3.2)

Introducing the four-longitudinal, the four-transversal, the three-longitudinal and three-transversal projec-

tors as

PL
µν ≡

qµqν
q2

, (B.3.3a)

PT
µν ≡ gµν −

qµqν
q2

= gµν − PL
µν , (B.3.3b)

Lµν ≡
vµvν
v2

, (B.3.3c)

Tµν ≡ gµν −
qµqν
q2
− vµvν

v2
= PT

µν − Lµν , (B.3.3d)

the properties given in Tab. B.3.1 can be confirmed. The decomposition thus reads

Πµν(q) = PT
µνΠT + PL

µνΠL + LµνΠ̃
(3)
L + (qµv̄ν + v̄µqν)D

+ (qµv̄ν − v̄µqν)E + εµναβqαv̄β F . (B.3.4)

The coefficients ΠT and Π̃
(3)
L carry the information about the four-transversal degrees of freedom referring

to vector or axial-vector components which can be decomposed into three-momentum transversal and

three-momentum longitudinal states [Gal91]. The coefficient ΠL is related to the four-longitudinal states

referring to a scalar or pseudo-scalar component. The coefficient D encodes the mixing between three-

momentum longitudinal (axial-) vector states and (pseudo-) scalar states occurring due to broken rotational

invariance for an excitation (hadron) moving with nonzero velocity in the medium [Wol98, Chi77]. Thus,

the spin is no longer a conserved quantum number.

Introducing three-transversal part Π
(3)
T ≡ 1

2T
µνΠµν and three-longitudinal part Π

(3)
L ≡ LµνΠµν the

invariants are given by

ΠT = Π
(3)
T , (B.3.5a)

ΠL = PL
µνΠµν , (B.3.5b)
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Π
(3)
L = ΠT + Π̃

(3)
L , (B.3.5c)

D =
1

2q2v̄2
(qµv̄ν + v̄µqν) Πµν(q) , (B.3.5d)

E =
1

2

qαv̄β − qβ v̄α
q2v̄2

Πµν(q) , (B.3.5e)

F = −1

2

εµναβqαv̄β
q2v̄2

Πµν(q) . (B.3.5f)

Equations (B.3.5a) and (B.3.5c) reflect the fact that the three-longitudinal part has to be subtracted from

the four-transversal part in order to obtain the three-transversal part, see (B.3.3d). If the correlator

is symmetric w.r.t. its Lorentz indices, one has E = F = 0. In cases of parity violation, F gives a

non-vanishing contribution [Gre92].

Antisymmetric contributions to the correlator exist for parity violating processes as, for example,

in weak interaction processes. These are not considered here. In the following, let the correlator be

symmetric. In the rest frame of the medium v = (1,~0 ) and for the mesons at rest q = (q0, ~q = 0), one

has v̄µ = 0 and the correlator is decomposed solely into four-longitudinal and four-transversal parts. The

decomposition is therefore given by

Πµν(q) = PT
µνΠT(q) + PL

µνΠL(q) , (B.3.6)

with ΠT(q) = 1
3P

T
µνΠµν(q) and ΠL(q) = PL

µνΠµν(q), both written explicitly covariant.

B.4 Non-anomalous Ward identities

The currents jS and jP are supposed to carry the quantum numbers of scalar and pseudo-scalar mesons,

respectively, meaning that j(S,P)|Ω〉 is a state with the respective quantum numbers. The issue is more

complicated for jV
µ and jA

µ . In vacuum, current conservation leads to the transversality of the causal

correlator. Thus, according to Eq. (B.3.3), the OPE has to be performed merely for the trace of the

correlator. Furthermore, in this case only spin-1 contributions enter. In a medium and for non-conserved

currents the situation is more involved. In this section, the non-anomalous Ward identity relating spin-1

and spin-0 correlators are derived and conditions for the transversality of spin-1 correlators are given.

Consider the causal correlator of two mesonic (bosonic) Heisenberg field operators Aµ and Bν (to be

identified with j(V,A),τ
µ and j(V,A),τ†

ν )

Πµν(q) = i

∫
d4x eiqx〈T [Aµ(x)Bν(0)]〉 , (B.4.1)

with the same conventions as in Eqs. (B.0.1). In a symmetric medium (symmetric w.r.t. the participating

flavors) ΠL vanishes for Aµ or Bν being conserved as will be seen later on.

To relate the four-longitudinal part of the (axial-) vector current to the (pseudo-) scalar current consider
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the correlator

Πµν(q, p) = i2
∫

d4x d4y eiqxe−ipy〈T [Aµ(x)Bν(y)]〉 . (B.4.2)

Extracting the coordinate dependence of the second operator, using the translational invariance of the

medium or the ground state and substituting x→ x+ y one arrives at

Πµν(q, p) = i2
∫

d4x d4y eiqxe−i(p−q)y〈T [Aµ(x)Bν(0)]〉

= i2
∫

d4x eiqx(2π)4δ(4)(p− q)〈T [Aµ(x)Bν(0)]〉

= i(2π)4δ(4)(p− q)Πµν(q) (B.4.3)

and hence

qµpνΠµν(q, p) = i(2π)4δ(4)(p− q)qµqνΠµν(q) , (B.4.4)

where we set pν = qν due to Dirac’s delta distribution on the right hand side. The partial derivatives of

the time-ordered product read{
i∂µx

i∂νy

}
T [Aµ(x)Bν(y)] =

{
T [i∂µxAµ(x)Bν(y)]

T
[
Aµ(x)i∂νyBν(y)

]}+

{
+

−

}
iδ(x0 − y0)

{
[A0(x), Bν(y)]

[Aµ(x), B0(y)]

}
(B.4.5)

and

i∂µx i∂
ν
yT [Aµ(x)Bν(y)] = T

[
i∂µxAµ(x)i∂νyBν(y)

]
− i2

(
∂0
xδ(x0 − y0)

)
[A0(x), B0(y)]

− iδ(x0 − y0)
(
[i∂µxAµ(x), B0(y)]−

[
A0(x), i∂νyBν(y)

])
. (B.4.6)

The transversality therefore reads

qµΠµν(q) = i

∫
d4x

(
−i∂µeiqx

)
〈T [Aµ(x)Bν(0)]〉

= i2
∫

d4x eiqx〈∂µT [Aµ(x)Bν(0)]〉

= i

∫
d4x eiqx〈T [i∂µAµ(x)Bν(0)] + iδ(x0) [A0(x), Bν(0)]〉 (B.4.7)

and, using translational invariance of the Gibbs average,

qνΠµν(q) = i

∫
d4x

(
−i∂νxeiqx

)
〈T [Aµ(0)Bν(−x)]〉
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= i2
∫

d4x eiqx〈∂νxT [Aµ(0)Bν(−x)]〉

= i

∫
d4x eiqx〈T [Aµ(0)i∂νxBν(−x)] + iδ(x0) [Aµ(0), B0(−x)]〉

= i

∫
d4x eiqx〈T

[
Aµ(0)

(
−i∂ν−xBν(−x)

)]
+ iδ(x0) [Aµ(0), B0(−x)]〉

= i

∫
d4x eiqx〈−T [Aµ(x)i∂νBν(0)] + iδ(x0) [Aµ(x), B0(0)]〉 (B.4.8)

where an additional sign in the first term occurs. We also find

qµpνΠµν(q, p)

= i2
∫

d4x d4y
(
−i∂µxeiqx

) (
i∂νy e

−ipy) 〈T [Aµ(x)Bν(y)]〉

= −i2
∫

d4x d4y eiqxe−ipyi∂µx i∂
ν
y 〈T [Aµ(x)Bν(y)]〉

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
− i2

(
∂0
xδ(x0 − y0)

)
[A0(x), B0(y)]

− iδ(x0 − y0)
(
[i∂µxAµ(x), B0(y)]−

[
A0(x), i∂νyBν(y)

])
〉

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+ i2δ(x0 − y0)e−iqx∂0

xe
iqx [A0(x), B0(y)]

− iδ(x0 − y0)
(
[i∂µxAµ(x), B0(y)]−

[
A0(x), i∂νyBν(y)

])
〉

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+ i2δ(x0 − y0)

(
iq0 + ∂0

x

)
[A0(x), B0(y)]

− iδ(x0 − y0)
(
[i∂µxAµ(x), B0(y)]−

[
A0(x), i∂νyBν(y)

])
〉 . (B.4.9)

In the second line we assumed vanishing currents (or expectation values thereof) at the surface of the

integration domain x = ±∞. Using ∂0
xA0(x) = ∂µxAµ(x)− ∂ixAi(x) gives

qµpνΠµν(q, p)

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+ iδ(x0 − y0)

(
−q0 [A0(x), B0(y)] + [i∂µxAµ(x), B0(y)]− i∂ix [Ai(x), B0(y)]

)
− iδ(x0 − y0)

(
[i∂µxAµ(x), B0(y)]−

[
A0(x), i∂νyBν(y)

])
〉

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+ iδ(x0 − y0)

(
−q0 [A0(x), B0(y)] +

[
A0(x), i∂νyBν(y)

]
− i∂ix [Ai(x), B0(y)]

)
〉
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= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+iδ(x0−y0)

(
−q0 [A0(x), B0(y)] +

[
A0(x), i∂νyBν(y)

]
+ i
(
−iqi

)
[Ai(x), B0(y)]

)
〉

= −i2
∫

d4x d4y eiqxe−ipy〈T
[
i∂µxAµ(x)i∂νyBν(y)

]
+ iδ(x0 − y0)

(
−qµ [Aµ(x), B0(y)]x0=y0

+
[
A0(x), i∂νyBν(y)

]
x0=y0

)
〉 . (B.4.10)

The first and third terms on the right hand side of this equation vanish if ∂νBν = 0 holds.

Identifying Aµ and Bν with the currents (A.1.41a) and (A.1.41b), inserting the divergences (A.1.44),

the current-current commutators (A.2.18) and ignoring Schwinger terms gives

qµpνΠ(V,A)
µν

(
q, p

∣∣τ, τ ′ )
= −i2

∫
d4x d4y eiqxe−ipy〈−T

[
j(S,P),[τ,M ]∓(x)j(S,P),[τ ′,M ]†∓(y)

]
+ iδ(4)(x − y)

(
−qµjV,[τ,τ ′†]

µ (x)∓ jS,
[
τ,[M,τ ′†]∓

]
∓(x)

)
〉

= Π(S,P)
(
q, p

∣∣∣[τ,M ]∓ ,
[
τ ′,M

]
∓

)
+i(2π)4δ(4)(q−p)〈−qµjV,[τ,τ ′†]

µ ∓jS,
[
τ,[M,τ ′†]∓

]
∓〉.
(B.4.11)

In the last step we used translational invariance of the ground state or the medium. Comparing Eqs. (B.4.4)

and (B.4.11) leads to the non-anomalous Ward identity which relates the causal correlator of spin-0

currents to the longitudinal parts of the spin-1 current-current correlator:

qµqνΠ(V,A)
µν

(
q
∣∣τ, τ ′ )

= Π(S,P)
(
q
∣∣∣[τ,M ]∓ ,

[
τ ′,M

]
∓

)
− 〈qµjV,[τ,τ ′†]

µ 〉 ∓ 〈jS,
[
τ,[M,τ ′†]∓

]
∓〉 . (B.4.12)

Accordingly, following the same steps as in the previous case and assuming current conservation,

Eq. (B.4.8) results in

qµΠ(V,A)
µν

(
q
∣∣τ, τ ′ ) = −〈jV

ν

(
0
∣∣∣[τ, τ ′†])〉 . (B.4.13)

Consequently, the causal correlator is transversal if the current is conserved and the expectation value of

the vector-current is zero. Current conservation alone is not a sufficient condition for transversality.

Following the same steps, the non-anomalous Ward identities for advanced and retarded correlator can

be derived. A careful evaluation for the retarded correlator yields

qµqνR(V,A)
µν (q

∣∣τ, τ ′ )
= qνi

∫
d4x

[
(−i∂µ)eiqx

]
Θ(x0)〈

[
j(V,A),τ
µ (x), j(V,A),τ ′†

ν (0)
]
〉
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= qνi

∫
d4x eiqxi∂µΘ(x0)〈

[
j(V,A),τ
µ (x), j(V,A),τ ′†

ν (0)
]
〉

= qνi

∫
d4x eiqx

{
iδ(−x0)〈

[
j

(V,A),τ
0 (x), j(V,A),τ ′†

ν (0)
]
〉

+Θ(x0)〈
[
i∂µj(V,A),τ

µ (x), j(V,A),τ ′†
ν (0)

]
〉
}

= qνi

∫
d4x eiqx

{
iδ(x0)〈

[
j

(V,A),τ
0 (x), j(V,A),τ ′†

ν (0)
]
〉
}

+ i

∫
d4x eiqxi∂νΘ(x0)〈

[
j(V,A),τ
µ (x), j(V,A),τ ′†

ν (0)
]
〉

= i

∫
d4x eiqxqν

{
iδ(x0)〈−δ(3)(~x )j

V,[τ ′†,τ ]−
ν (x)〉

}
+ i

∫
d4x eiqx

{
iδ(x0)〈

[
i∂µj(V,A),τ

µ (x), j
(V,A),τ ′†

0 (0)
]
〉

+Θ(x0)〈
[
i∂µj(V,A),τ

µ (x), i∂νj(V,A),τ ′†
ν (0)

]
〉
}

= i2qν〈j
V,[τ,τ ′†]−
ν (0)〉+ i

∫
d4x eiqx

{
iδ(x0)〈∓δ(3)(~x )j

S,[τ ′†,[M,τ ]∓]∓
ν (x)〉

+Θ(x0)〈
[
i∂µj(V,A),τ

µ (x), i∂νj(V,A),τ ′†
µ (0)

]
〉
}

= −qν〈j
V,[τ,τ ′†]−
ν 〉±〈j

S,[τ ′†,[M,τ ]∓]∓
ν 〉+R(S,P)

(
q
∣∣∣[τ,M ]∓ ,

[
τ ′,M

]
∓

)
(B.4.14)

and analogously for the advanced correlator

qµqνA(V,A)
µν (q|τ, τ ′)

= i

∫
d4x

[
(−i∂µ)(−i∂ν)eiqx

]
Θ(−x0)〈

[
j(V,A),τ ′†
ν (0), j(V,A),τ

µ (x)
]
〉

= −qν〈j
V,[τ,τ ′†]−
ν 〉 ∓ 〈j

S,[τ ′†,[M,τ ]∓]∓
ν 〉+A(S,P)

(
q
∣∣∣[τ,M ]∓ ,

[
τ ′,M

]
∓

)
. (B.4.15)

We turn now to an Nf = 2 flavor system. Let heavy-light meson currents be given by τ = τ ′ =

(σ1+iσ2)/2, where σi = 2ti are the Pauli matrices, which gives (4.1.1). The diagonal mass matrix can be

written as M = (CVσ3 +CA1)/2 and the commutators fulfill [τ,M ]∓ = ∓C(V,A)τ ,
[
τ, τ †

]
∓ = τ (V,A),[

τ,
[
M, τ †

]
∓

]
∓

= ∓C(V,A)τ
(V,A), where we have defined CV = m1 − m2, CA = m1 + m2 and

τV = σ3, τA = 1. Note that q1 is attributed to a light-quark field (e.g. up or down quarks) and q2 to a

heavy-quark field (e.g. charm or bottom quarks). With these relations the longitudinal part of (B.3.6) is

given by

q2Π
(V,A)
L (q) = qµqνΠ(V,A)

µν (q) = C2
(V,A)Π

(S,P)(q)− 〈ψ̄q̂σ3ψ〉+ C(V,A)〈ψ̄τ (V,A)ψ〉 (B.4.16)

with q̂ = γµq
µ. (Equation (B.4.16) also holds in a three-flavor system with two light quarks and one

massive quark.)
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The statement of Eq. (B.4.13) can now be specified. ΠL is zero if the current jX,τν (y) is conserved, i.e.

m1 = m2 for vector currents or m1 +m2 = 0 for axial-vector currents (first and third term on the right

hand side of Eq. (B.4.16) vanish), and the difference of light and heavy net quark currents being zero, i.e.

〈ψ̄q̂σ3ψ〉 = 0, which is only true in a medium which is symmetric w.r.t. the quark flavors of the meson

current. If ΠL is zero, the transversal projection Π
(V,A)
T (q) is proportional to the trace of the correlator

Π
(V,A)
T (q) = −gµνΠ

(V,A)
µν (q)/3. Otherwise the trace Π(V,A) ≡ gµνΠ

(V,A)
µν (q) contains pieces of (axial-)

vectors and (pseudo-) scalars. The pure (axial-) vector information is encoded in Π
(V,A)
T (q) for which

one obtains

3Π
(V,A)
T =

C2
(V,A)

q2
Π(S,P) +

1

q2
〈ψ̄q̂σ3ψ〉+

C(V,A)

q2
〈ψ̄τ (V,A)ψ〉 − gµνΠ(V,A)

µν (B.4.17)

which relates Π
(V,A)
T to the trace of the correlator and Π(S,P). For m1 and m2 being arbitrary quark

masses, the chiral difference ΠP−S(q) and the sum ΠS+P(q) enter the chiral difference qµqνΠV−A
µν (q)

and, hence, ΠV−A
T . The expectation value of the quark current cancels out in any case:

ΠV−A
T = −1

3

(
m2

1 +m2
2

q2
ΠP−S + 2

m1m2

q2
ΠP+S

+
2

q2
(m1〈q̄2q2〉+m2〈q̄1q1〉) +

ΠV−A

q2

)
. (B.4.18)

If one quark mass is zero, m1 → 0, one obtains the relation

qµqνΠV−A
µν (q) = −m2

2ΠP−S(q)− 2m2〈q̄1q1〉 (B.4.19)

and therefore

ΠV−A
T (q) = −m

2
2

3q2
ΠP−S(q)− 1

3
ΠV−A(q)− 2

3

m2

q2
〈q̄1q1〉 . (B.4.20)

The last term contains the interesting combination of light-quark condensate and heavy-quark mass.

B.5 Subtracted dispersion relations

In this section, the proofs of Eqs. (2.1.2) and (2.1.7) are given. As pointed out in Sec. 2.1, the derivation

is done for the causal correlator. Due to Lorentz covariance of the current-current correlator and due to

the Theorem of Hall and Wightman (cf. for example [Rom69]), Π(q) is merely a function of all possible

scalar products of the Lorentz vectors it depends on, i.e. q for the vacuum case and q and v, for the

in-medium case, where v stands for the medium four-velocity. If we consider vacuum sum rules, Π(q)

therefore only depends on q2, Π(q) = Π(q2).

However, considering in-medium sum rules, the ground state also depends on the medium four-velocity

vµ. Hence one has Π(q) = Π(q, v) = Π(q2, v2, qv). For fixed medium velocity the current-current
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correlation function remains a function of q0 and ~q, and we can not make further restrictions to the pole

structure. Thus, Π(q) is analytic in the complex energy plane apart from the real q0-axis.

In the following subsections we relate the values of the current-current correlation function for complex

values of q0 (or q2) to its values on the real axis (positive real axis), i.e. to its pole structure and hence,

due to (B.1.1), to the excitation energies of the considered particle. This enables us to relate hadronic

observables to properties in the domain of large Euclidean momenta, determined by the quark structure.

Due to the additional dependence of the current-current correlation function on the medium velocity

these relations differ in vacuum and medium.

B.5.1 Vacuum dispersion relations

By the analytic structure of the correlation function, Cauchy’s theorem enables us to give an integral

representation for it, called dispersion relation [Fur92, Sug61]. Therefore, we use the analyticity of Π(q2)

for the vacuum case in the area surrounded by the contour exhibited in the left diagram of Fig. 2.1.1.

For q2 off the positive real axis, q2 /∈ R+ ∪ {0}, one gets the identity

Π(q2) =
1

2πi

∫
Γ

Π(s)

s− q2
ds (B.5.1)

=
1

2πi

∫ +∞

0

Π(s+ iε)

s− q2
ds+

1

2πi

∫ 0

+∞

Π(s− iε)
s− q2

ds

+
1

2πi

∮
ε

Π(s)

s− q2
ds+

1

2πi

∮
∞

Π(s)

s− q2
ds , (B.5.2)

where the last integral is for the integration over the outer circle for the radius tending to infinity, and the

third one is for integration on the semicircle at the origin. The limit η → 0 is to be understood. Thus, the

integral over the semicircle becomes zero.

One can now show that the contribution of the integral over the infinitely large circle is a finite

polynomial in q2 if and only if
∣∣Π(q2)

∣∣ ≤ ∣∣q2
∣∣N for

∣∣q2
∣∣ → ∞, where N ∈ N is a finite and fixed

number [Sug61]. Because
∣∣q2
∣∣ < |s|, if s goes along the outer circle, one can write

1

s− q2
=

∞∑
n=0

1

s

(
q2

s

)n
. (B.5.3)

By making use of the boundary condition for Π(q2) the integral over the outer circle reads

1

2πi

∮
∞

Π(s)

s− q2
ds =

∞∑
n=0

(q2)n

2πi

∮
∞

Π(s)

sn+1
ds =

∞∑
n=0

(q2)n

2π

∮ 2π

0

Π(s)

sn
dφ

=
N∑
n=0

(q2)n

2π

∮ 2π

0

Π(s)

sn
dφ =

N∑
n=0

an(q2)n (B.5.4)

which is a finite polynomial in q2. This polynomial is not equal to the so-called subtractions, which we
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will introduce later on. The exact dispersion relation in vacuum then reads

Π(q2) =
1

π

∫ ∞
0

∆Πvac(s)

s− q2
ds+

N∑
n=0

anq
n
0 (B.5.5)

with ∆Πvac defined in Eq. (2.1.3). If Π(q2) does not vanish fast enough when
∣∣q2
∣∣ approaches infinity,

the boundary condition is essential and adequate to an elimination of the contribution of the infinite

circle by subtracting a finite polynomial in q2. It is important to note that the coefficients an are not

proportional to the derivatives of Π(q2) for q2 = 0 even if Π(q2) is analytic in an open circle around

the origin (unless the circle is the infinite circle itself, which would require infinite excitation energies

in (B.1.1)) [Sug61]. Because of the pole structure along the real axis, the current-current correlation

function is not analytic inside the infinite circle and Cauchy’s theorem is therefore not applicable to

the integral over the infinite circle. Instead, in [Sug61], the authors show that the contribution from the

infinite circle can be expressed by the boundary values of Π(q2) along the real axis.

However, there are several methods to get rid of the polynomial contributions. One possibility is to

take the (N + 1)-st derivative of (B.5.5). The polynomial is canceled and one gets(
d

dq2

)N+1

Π(q2) =
(N + 1)!

π

∫ ∞
0

∆Πvac(s)

(s− q2)N+2
ds . (B.5.6)

Of course, we also could have done this right at the beginning in (B.5.1) and by the boundary condition

the integral over the outer circle would be zero. This method is called the method of power moments

Mn(q2); the n-th moment is given by

Mn(q2) =
1

n!

(
d

dq2

)n
Π(q2) . (B.5.7)

We mention this method just for completeness. It will not be considered anymore throughout this thesis.

However, if Π(q2) is also analytic in an open (finite) circle around the origin we can give a dispersion

relation which has no polynomial contribution of the infinite circle. In this case, the lower limit for the

integration along the positive real axis effectively starts from a lower boundary threshold s0,29 because

the integrations above and below the positive real axis cancel each other up to the threshold due to

analyticity. Now, the dispersion relation can be obtained from (B.5.1) by subtracting a polynomial of

degree N − 1, with coefficients ∝ Π(n)(0). Here, the derivatives are solely calculated from (B.5.1),

which means that we use the contour given in the left panel of Fig. 2.1.1.

In order to clarify the difference between the subtractions and the polynomial coefficients an in (B.5.5),

we emphasize that the derivatives Π(n)(0) used as coefficients for the subtractions are not calculated

29The quantity s0 corresponds to the lowest-lying excitation energy.
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from an integral over the infinite circle, in contrast to the polynomial coefficients an, i.e.

Π(q2)−
N−1∑
n=0

Π(n)(0)

n!
(q2)n =

1

2πi

∫
Γ

Π(s)

s− q2
ds−

N−1∑
n=0

(q2)n

2πi

∫
Γ

Π(s)

sn+1
ds . (B.5.8)

Again by using the standard expression for geometric series

1

s− q2
−
N−1∑
n=0

(q2)n

sn+1
=

∞∑
n=N

1

s

(
q2

s

)n
=

1

s

(
q2

s

)N ∞∑
n=0

(
q2

s

)n
=

(
q2

s

)N
1

s− q2
, (B.5.9)

one ends up with

Π(q2)−
N−1∑
n=0

Π(n)(0)

n!
(q2)n =

1

2πi

∫
Γ

(
q2

s

)N
Π(s)

s− q2
ds . (B.5.10)

The integral over the infinite circle vanishes due to the boundary condition of the current-current

correlation function:

1

2πi

∮
∞

(
q2

s

)N
Π(s)

s− q2
ds =

∞∑
n=0

(q2)n+N

2πi

∮
∞

Π(s)

sN+n+1
ds = 0 . (B.5.11)

The N times subtracted dispersion relation in vacuum finally reads

Π(q2)−
N−1∑
n=0

Π(n)(0)

n!
(q2)n =

1

π

∫ ∞
0

(
q2

s

)N
∆Πvac(s)

s− q2
ds

=
1

π

∫ ∞
s0

(
q2

s

)N
∆Πvac(s)

s− q2
ds , (B.5.12)

where the coefficients of the polynomial are well known functions. The N -th derivative of (B.5.12)

eliminates the polynomial.

B.5.2 In-medium dispersion relations

The in-medium case proceeds in a similar way, but with the difference that the dispersion relation may

only be given in the complex q0 plane and the real axis is explicitly excluded. Using the integration

contour given in the right panel of Fig. 2.1.1 and the analyticity of Π(q0, ~q ) in the area surrounded by the
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integration contour we get

Π(q0, ~q ) =
1

2πi

∫
Γ

Π(ω, ~q )

ω − q0
dω

=
1

2πi

∫ +∞

−∞

Π(ω + iε, ~q )

ω − q0
dω +

1

2πi

∫ −∞
+∞

Π(ω − iε, ~q )

ω − q0
dω

+
1

2πi

∮
∞

Π(ω, ~q )

ω − q0
dω , (B.5.13)

for fixed ~q. Following the same arguments as for the vacuum case, the dispersion relation for the

in-medium case is

Π(q0, ~q ) =
1

π

∫ +∞

−∞

∆Π(ω, ~q )

ω − q0
dω +

N∑
n=0

anq
n
0 , (B.5.14)

where the polynomial again corresponds to the contribution of the infinite circle and ∆Π(s, ~q ) is defined

in (2.1.6). If Π(q0, ~q ) is analytic in an open (finite) area at the origin, the integration along the cuts at

the real axis effectively starts from thresholds s+
0 , s

−
0 .30 Again, a subtracted dispersion relation may be

derived which does not contain polynomial contributions arising from the integral over the infinite circle:

Π(q0, ~q )−
N−1∑
n=0

Π(n)(q0 = 0, ~q )

n!
qn0 =

1

2πi

∫
Γ

Π(ω, ~q )

( ∞∑
n=0

−
N−1∑
n=0

)(q0

ω

)n 1

ω
dω

=
1

2πi

∫
Γ

(q0

ω

)N Π(ω, ~q )

ω − q0
dω . (B.5.15)

The integral over the infinite circle is zero again due to the boundary condition, giving the N -fold

subtracted dispersion relation in q0:

Π(q0, ~q )−
N−1∑
n=0

Π(n)(0, ~q )

n!
(q0)n

=
1

π

∫ +∞

−∞

(q0

ω

)N ∆Π(ω, ~q )

ω − q0
dω

=
1

π

∫ +∞

s+0

(q0

ω

)N ∆Π(ω, ~q )

ω − q0
dω +

1

π

∫ s−0

−∞

(q0

ω

)N ∆Π(ω, ~q )

ω − q0
dω . (B.5.16)

For purposes which will become evident later on, it is more convenient to work with a dispersion

relation in q2
0 rather than a dispersion relation in q0. Therefore, the current-current correlation function

Π(q0, ~q ) is split up into its symmetric and anti-symmetric part w.r.t. q0

Π(q0, ~q ) =
1

2
(Π(q0, ~q ) + Π(−q0, ~q )) +

1

2
(Π(q0, ~q )−Π(−q0, ~q )) . (B.5.17)

30This corresponds to an energy gap between the lowest-lying particle state and the lowest-lying antiparticle excitation.
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Even (e) and odd (o) contributions may be defined as

Πe(q0, ~q ) =
1

2
(Π(q0, ~q ) + Π(−q0, ~q )) = Πe(−q0, ~q ) , (B.5.18a)

Πo(q0, ~q ) =
1

2q0
(Π(q0, ~q )−Π(−q0, ~q )) = Πo(−q0, ~q ) , (B.5.18b)

where the energy factor in front of Πo(q0, ~q ) is convention. Summation and subtraction of the dispersion

relation (B.5.16) for Π(q0, ~q ) and Π(−q0, ~q ) result in the following separate dispersion relations for the

even part Πe(q0, ~q ) of the current-current correlation function

Πe(q0, ~q )− 1

2

N−1∑
n=0

Π(n)(0, ~q )

n!
(q0)n (1 + (−1)n)

=
1

2π

∫ +∞

−∞
dω∆Π(ω, ~q )

qN0
ωN−1

(
1 + (−1)N

)
+ q0

ω

(
1− (−1)N

)
ω2 − q2

0

(B.5.19)

and for the odd part of the correlation function

Πo(q0, ~q )− 1

2

N−1∑
n=0

Π(n)(0, ~q )

n!
(q0)n−1 (1− (−1)n)

=
1

2π

∫ +∞

−∞
dω∆Π(ω, ~q )

qN−1
0

ωN−1

(
1− (−1)N

)
+ q0

ω

(
1 + (−1)N

)
ω2 − q2

0

. (B.5.20)

Both functions, Πe(q0, ~q ) and Πo(q0, ~q ), only depend on q2
0 , in line with their definition (B.5.18). Hence,

one may write

Π(q0, ~q ) = Πe(q2
0, ~q ) + q0Πo(q2

0, ~q ) . (B.5.21)

The not subtracted dispersion relations can be obtained from these expressions by setting N = 0. At

this point we remark the similarity of the vacuum dispersion relation and the even in-medium dispersion

relation, which can be seen by substituting ω2 = t in (B.5.19). This is not the case for the odd in-medium

dispersion relation (B.5.20).
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C In-medium operator product expansion for
pseudo-scalar heavy-light mesons

This appendix starts with the preparation of basic ingredients for the evaluation of an OPE in the heavy-

light meson sector. The Fock-Schwinger gauge and its application to the background field method are

presented. Furthermore, several essential relations for the quark propagator are derived. The Borel

transformation is introduced and applied to the subtracted dispersion relation obtained in App. B.5. The

projection of ground state expectation values or Gibbs averages of quantum field operators onto invariants

is performed for all quantities which are met within the evaluation of an OPE for heavy-light mesons up

to and including mass dimension 5. For heavy-light pseudo-scalar mesons the in-medium OPE evaluation

in terms of normal ordered condensates is given in detail. The relation between normal and non-normal

ordered condensates is derived in general and evaluated explicitly for the condensates which are required

for the in-medium OPE of heavy-light pseudo-scalar mesons. The cancellation of infrared divergences is

demonstrated and recurrence relations for the Wilson coefficients are derived. We explain our strategy of

analyzing the QSR and show the discrepancy. Finally, the trace anomaly of QCD (A.2.13) is applied to

the evaluation of condensates at high densities and temperatures. The results of App. C.5 are extensively

used in Secs. 3, 4 and D.

C.1 Fock-Schwinger gauge and background field method

In this section, we discuss the Fock-Schwinger gauge, which enables us to give simple expressions for

gluon fields and quark propagators. These are used to develop techniques for the calculation of the OPE.

This section follows closely [Nov84b].

The Fock-Schwinger gauge reads

(xµ − xµ0 ) Aµ(x) = 0 . (C.1.1)

Usually one chooses xµ0 = 0. Obviously, this gauge is not translation invariant. The invariance is broken

due to the special role of x0. Therefore, a shift in space-time would destroy the gauge condition. But,

as we will see, this condition is crucial to the techniques used in the calculations performed afterwards.

Hence, we must restrict ourselves to one selected frame. By Eq. (C.1.1) we can write

0 = ∂µ
(
yνAAν (y)

)
= AAµ (y) + yν∂µA

A
ν (y) . (C.1.2)
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C In-medium OPE for heavy-light mesons C.1 Fock-Schwinger gauge and background field method

Furthermore, using Eq. (A.3.4) one obtains

yν∂µA
A
ν = yνGAµν + yν∂νA

A
µ , (C.1.3)

where the non-Abelian term in Eq. (A.3.4) vanishes due to the gauge condition (C.1.1). Together with

Eq. (C.1.2) one ends up with

AAµ (y) + yν∂νA
A
µ = yνGAνµ . (C.1.4)

Substituting yν = αxν and inserting (C.1.4) again leads to

d

dα
(αAµ(αx)) = αxνGAνµ(αx) . (C.1.5)

Integration over α from 0 to 1 finally yields

AAµ (x) =

∫ 1

0
dααxνGAνµ(αx) . (C.1.6)

We observe that the Fock-Schwinger gauge (C.1.1) enables us to express the gluon fields in terms of the

gluon field strength tensor. Expanding the gluon field Aµ in Eq. (C.1.1) in x yields

xµ

( ∞∑
n=0

1

n!
xα1 . . . xαn∂α1 . . . ∂αnAµ(0)

)
= 0 (C.1.7)

for all x. Therefore

xµxα1 . . . xαn∂α1 . . . ∂αnAµ(0) = 0 . (C.1.8)

As a direct consequence of the last equation one can show that

xα1 . . . xαn (∂α1 . . . ∂αnGµν)x=0 = xα1 . . . xαn (Dα1 . . . DαnGµν)x=0 . (C.1.9)

Thus, the gluon field strength tensor in Eq. (C.1.6) may be expanded for small x

Aµ(x) =

∫ 1

0
dααxνGνµ(αx)

=

∫ 1

0
dααxν

∞∑
n=0

αn

n!
xα1 . . . xαn (∂α1 . . . ∂αnGνµ)x=0

=

∫ 1

0
dααxν

∞∑
n=0

αn

n!
xα1 . . . xαn (Dα1 . . . DαnGνµ)x=0 . (C.1.10)

Integration over α yields the covariant expansion for the gluon fields in terms of the gluon field strength
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C In-medium OPE for heavy-light mesons C.1 Fock-Schwinger gauge and background field method

tensor only:

Aµ(x) =
∞∑
n=0

xν

n!(n+ 2)
xα1 . . . xαn (Dα1 . . . DαnGνµ)x=0 . (C.1.11)

The Fock-Schwinger gauge also provides a covariant expansion for the quark fields:

Ψ(x) =
∞∑
n=0

1

n!
xα1 . . . xαn

(−→
Dα1 . . .

−→
DαnΨ

)
x=0

, (C.1.12a)

Ψ̄(x) =

∞∑
k=0

1

k!
xα1 . . . xαk

(
Ψ̄
←−
Dαk . . .

←−
Dα1

)
x=0

. (C.1.12b)

The method used to simulate the non-perturbative vacuum and medium effects of the physical ground

state is the background field method. A propagating quark interacts with the virtual particles emerging

from the ground state. These particles can be modeled effectively by a quantized vector field which is

shifted by a classical weak gluonic background field. The interaction is described by a propagation within

this field. As it is a weak field, it is possible to give a perturbative expansion of the quark propagator in

terms of the coupling strength:

iS(x, y) = iS(0)(x− y)

+
∞∑
n=1

∫
iS(0)(x− z1)igÂ(z1)iS(0)(z1 − z2) . . . igÂ(zn)iS(0)(zn − y) dz1 . . . dzn , (C.1.13)

where S(0)(x− y) denotes the free propagator satisfying

(i∂̂x −m)S(0)(x− y) = δ(4)(x− y) . (C.1.14)

The expansion is depicted in Fig. C.1.1. If we think of the gluons as emerging from the ground state, the

fields can be understood as operators acting on the Fock space and creating an additional gluon. Thus we

use a classical expansion for the quark propagator.

The Fourier transformed free propagator reads

S(0)(p) =

∫
d4x eipxS(0)(x) =

p̂+m

p2 −m2
. (C.1.15)

Using Eq. (C.1.14) one can show that (C.1.13) satisfies

(i∂̂x + gÂ(x)−m)S(x, y) = δ(4)(x− y) , (C.1.16)

confirming that S(x) is indeed the propagator of a quark in a weak gluonic background field. In order to

ensure the gauge condition (C.1.1), one has to permit shifts in space-time. Hence, one is not allowed to

perform the transformation x→ x′ = x− y. This means that, as a result of the gauge, the propagator
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C In-medium OPE for heavy-light mesons C.1 Fock-Schwinger gauge and background field method

iS(x, y)
=

iS(0)(x− y)
+

iS(0)(z − y)iS(0)(x− z)

gÂ(z)

+ iS(0)(z2 − y)
iS(0)(z1 − z2)

iS(0)(x− z1)

gÂ(z1) gÂ(z2)

+ . . .

Figure C.1.1: Perturbative quark propagator in a weak glounic background field. The gluons are
supposed to emerge from the ground state.

does not depend solely on the differences of the coordinates, i.e. x− y. Thus, S(x, y) and S(x− y, 0)

are different quantities. Let us introduce the Fourier transformed expressions

S(p) =

∫
d4x eipxS(x, 0) , (C.1.17)

S̃(p) =

∫
d4x e−ipxS(0, x) , (C.1.18)

Aµ(p) =

∫
d4x eipxAµ(x) , (C.1.19)

where we also introduce the quantity S̃(p) in order to ensure the gauge condition. We first calculate the

Fourier transform of Aµ(x) giving

Aµ(p) =

∞∑
n=0

(−i)n+1 (2π)4

n!(n+ 2)

(−→
Dα1 . . .

−→
DαnGρµ(0)

)(
∂ρ∂α1 . . . ∂αnδ(4)(p)

)
, (C.1.20)

where ∂ denotes a derivative with respect to the momentum. The transformed expression of Eq. (C.1.13)

thus reads

S(p) = S(0)(p) +
∞∑
n=1

(−g)nS(0)(p)

×
∫

d4k1

(2π)4
. . .

d4kn
(2π)4

Â(p− k1)S(0)(k1)Â(k1 − k2) . . . S(0)(kn) . (C.1.21)

By integration by parts we observe for an arbitrary function f(k)∫
d4k

(2π)4
gÂ(p− k)f(k) = (γÃ)f(p) , (C.1.22)
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where we have defined

Ãµ =

∞∑
n=0

Ã(n)
µ (C.1.23)

with

Ã(0)
µ =i

g

2
Gµν∂

ν ,

Ã(n)
µ =− (−i)n+1g

n!(n+ 2)
(Dα1 . . . DαnGµν(0)) ∂ν∂α1 . . . ∂αn (C.1.24)

which is here a derivative operator. This enables us to give a more comfortable expression for the

perturbative quark propagator. Successive integration by parts of the momentum integrals in Eq. (C.1.21)

and using Eq. (C.1.22) yield

S(p) =

∞∑
n=0

S(n)(p) (C.1.25)

with

S(n)(p) = (−1)S(n−1)(p)
(
γÃ
)
S(0)(p)

= (−1)S(0)(p)
(
γÃ
)
S(n−1)(p)

= (−1)nS(0)(p)
(
γÃ
)
S(0)(p)× . . . × S(0)(p)

(
γÃ
)

︸ ︷︷ ︸
n

S(0)(p) . (C.1.26)

Here the derivatives contained in (γÃ) act on all functions to the right of them. Moreover, performing

the same steps for S̃(p), one can show that S(p) = S̃(p). Although (C.1.13) is not translational invariant,

the Fourier transform of S(x, 0) and S(0, x) are identical. Equation (C.1.26) reveals that the n-th order

propagator term S(n) can be obtained by applying the operator−S(0)
(
γÃ
)

to the (n−1)-st term S(n−1).

Therefore, Eq. (C.1.26) is a formal solution of the Dyson-Schwinger like equation

S = S(0) − S(0)γÃS (C.1.27)

which may formally be written as

S−1 =
[
S(0)−1

+ γÃ
]−1

. (C.1.28)

The corresponding expression for S̃(p) in terms of Ãµ reads

S̃(p) = S(0)(p) +
∞∑
n=1

(−1)nS(0)(p)

(
γ
←−̃
A

)
S(0)(p)× . . . × S(0)(p)

(
γ
←−̃
A

)
︸ ︷︷ ︸

n

S(0)(p) (C.1.29)
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which is equal to (C.1.25) because the partial derivatives commute. Employing a very useful formula for

further calculations

∂

∂pρ
S(0)(p) = −S(0)(p)γρS(0)(p) , (C.1.30)

which can be confirmed by a direct calculation, we write out the first terms of (C.1.26) in lowest order of

the gluon field Ãµ

S(0)(p) =
p̂+m

p2 −m2
, (C.1.31)

S(1)(p) =i
g

2
Gµν(0)S(0)(p)γµS(0)(p)γνS(0)(p) , (C.1.32)

S(2)(p) =
(
i
g

2

)2
Gµν(0)Gκλ(0)Tµνκλ(p) , (C.1.33)

where we have defined

Tµνκλ(p) ≡ S(0)(p)γµS(0)(p)γνS(0)(p)γκS(0)(p)γλS(0)(p)

+ S(0)(p)γµS(0)(p)γκS(0)(p)γνS(0)(p)γλS(0)(p)

+ S(0)(p)γµS(0)(p)γκS(0)(p)γλS(0)(p)γνS(0)(p) . (C.1.34)

The OPE of the current-current correlator may now be obtained by applying Wick’s theorem to the time

ordered operator product T
[
j(x)j†(0)

]
in terms of quark fields. While pure quark condensates directly

enter by virtue of Wick’s theorem, gluonic operators and gluonic condensates enter via quark-gluon

interactions of the current-quarks with the background field. On the one hand, the perturbative expansion

of the quark propagator contributes and, on the other hand, the covariant expansion of the quark fields

(C.1.12) together with the field equations (A.3.23) of chromodynamics contribute.

Having established the above formalism, it is easy to relate the mass dimension of a power correction

to the expansion of the quark propagator. Note that the mass dimension of a condensate is composed

of the operators of the condensate and of prefactors which originate from the EoM for the quark fields,

i.e. mass factors. Therefore, one has to separate operators which act on the Wilson coefficient and

contributions to the condensate in the above treatment. The differential operator Ã has mass dimension

1 (in all orders, of course). However, the partial derivatives entering each term of Eq. (C.1.23) act on

the propagators of contracted, i.e. not condensed, quark fields and, hence, only contribute to the Wilson

coefficients. Thus, each term Ã(n) of the expansion of the gluon field contributes with n+ 2 to the mass

dimension. Analogously, the covariant derivatives of the quark-field expansion (C.1.12) contributes to

the condensate, whereas the coordinate factors act as partial derivatives in the Wilson coefficient after the

Fourier transformation has been performed. The following prescription can be established:

dimm =
3

2
n+

n∑
i=1

mi +

P∑
p=1

kp(2 + lp) , (C.1.35)
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where n is the number of not contracted quark field operators, mi is the order of the quark field i w.r.t.

the expansion (C.1.12), kp is the order of quark propagator p w.r.t. the expansion (C.1.25), i.e. it is the

number of gluon insertions (or interactions) of the respective quark, and lp is the order of the gluon field

w.r.t. the expansion (C.1.23). P is the total number of quark propagators. Given a mass dimension, the

required orders of expansions can be determined from Eq. (C.1.35).

If we restrict ourselves to small distances in Eq. (2.0.1a), a restriction to large momenta is required.

Nevertheless, unlike the expectation that perturbative methods are adequate in this energy regime, in

particular for the example of D mesons, non-perturbative effects will prohibit us from a pure perturbative

treatment even in the high energy regime. Details about this effect and about calculating the OPE by

applying the background field method can be found in App. C.4 for the example of the D meson.

C.2 Borel transformed sum rules

In Sec. 2.3 we mentioned the possibility to cast the integrals in Eqs. (2.1.2) and (2.1.7) into the Laplace

transform of the dispersion integral and, hence, enhancing the contribution of the lowest resonance by

an exponential weight. The according transformation is the Borel transformation [Wid46], which is an

algebraic form of the inverse Laplace transform. Considering the OPE, which is an asymptotic expansion,

i.e. a divergent series, the Borel transformation transforms the series into its Borel sum by suppressing

the coefficients factorially [Wei96]. Therefore, it improves the convergence of the expansion and is thus

a suitable tool for summing the actually divergent series.

The Borel transform of a function f(Q2) is defined as [Fur92]

B [f ]
(
M2
)
≡ lim

n→∞
Q2=nM2

(Q2)n+1

n!

(
− d

dQ2

)n
f(Q2) , (C.2.1)

with Q2 ≥ 0. Sometimes [Nar02] a slightly different definition is used

B′ [f ]
(
M2
)
≡ lim

n→∞
Q2=nM2

(Q2)n+1

n!

(
− d

dQ2

)n+1

f(Q2) , (C.2.2)

and the connection between both is given by

B [f ]
(
M2
)

= M2B′ [f ]
(
M2
)
. (C.2.3)

In order to spell out the Borel transformed sum rules, we have to give the transformed expressions

for typical functions which appear in the OPE. For simple functions f , e.g. f(Q2) = (Q2)n lnQ2 or

f(Q2) = 1/(Q2 + m2)n, the transformed expressions can be calculated directly from Eq. (C.2.1) by
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using general rules for the n-th derivative, e.g. the Leibniz rule(
d

dx

)n
(uv) =

n∑
m=0

(
n

m

)(
dm

dxm
u

)(
dn−m

dxn−m
v

)
. (C.2.4)

As can be seen from (C.2.1) all functions which are merely finite polynomials in Q2 vanish under Borel

transformation. For more complex functions, direct calculations are rather difficult. Instead, one can use

the connection between the Borel transformation and the Laplace transformation [Wid46]. The Laplace

transform of a function g(t) is defined as [Bro01]

L [g] (s) ≡
∫ ∞

0
e−stg(t) dt . (C.2.5)

Here g(t) is assumed to be piecewise smooth for t ≥ 0 and to be bounded by eαt for t→∞; g(t) ≤ eαt
for some α > 0. The integral converges for Res > α and is an analytic function in s in that area.

The beneficial point is that an inverse operation to the Laplace transformation is given by Post’s

inversion formula (see chapter VII.6 in [Wid46])31

g(t) = lim
n→∞

1

n!

(n
t

)n+1 [
−L [g]

(n
t

)](n)
, (C.2.6)

where [. . .](n) denotes the n-th derivative. Setting t = 1/M2 and n/t = nM2 = Q2 one obtains

g

(
1

M2

)
= lim

n→∞
Q2=nM2

(
Q2
)n+1

n!

(
− d

dQ2

)n
L [g]

(
Q2
)
. (C.2.7)

Comparison with (C.2.1) shows that the Borel transform obeys

B [f ]
(
M2
)

= g(1/M2) , (C.2.8)

if the function f is the Laplace transform of g [Raf81]. This gives explicit expressions of Borel transforms

for a broad range of functions once they are given as the Laplace transforms of other known functions.

Moreover, we can now safely use well known properties of the Laplace transformation to simplify many

calculations. For example, the momentum shift

f(s− a)
L−1

→ eatg(t) (C.2.9)

31Another representation of the inversion of the Laplace transform is given by the Bromwich integral

g(t) =
1

2πi

∫ c+i∞

c−i∞
eptL [g] (p) dp

for t > 0 and c greater than the real part of all singularities of L [g] (p).
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gives for the Borel transformation

B
[
f(Q2 +m2)

] (
M2
)

= e−m
2/M2

B
[
f(Q2)

] (
M2
)
. (C.2.10)

It is this property of the Borel transform which introduces the exponential damping and transforms the

dispersion integral into a Laplace transform.

Although, by the above criteria, the Borel transformation can be performed for a broad range of

functions, we merely need the transform of one type of functions during this work, namely

f(s) =
1

sα+1

1

(ln s)β+1
. (C.2.11)

If Reα > −1 and Res > 1, then f(s) is the Laplace transform of the transcendental function µ(t, β, α)

[Erd55b]∫ ∞
0
e−stµ(t, β, α) dt =

1

sα+1

1

(ln s)β+1
, (C.2.12)

where µ(t, β, α) is defined by the following integral representation

µ(x, β, α) =

∫ ∞
0

xα+1tβ dt

Γ(β + 1)Γ(α+ t+ 1)
. (C.2.13)

By repeated integration by parts one can cast this into a form that is more convenient for further

calculations:

µ(x,−n, α) = (−1)n−1

(
d

du

)n−1 xα+u

Γ(α+ u+ 1)

∣∣∣∣
u=0

(C.2.14)

with n = 1, 2, · · · . In particular, one obtains

µ(x,−1, α) =
xα

Γ(α+ 1)
, (C.2.15)

µ(x,−2, α) =
xα

Γ(α+ 1)

[
− lnx+

Γ′(α+ 1)

Γ(α+ 1)

]
(C.2.16)

with

Γ′(n) = −(n− 1)!

[
1

n
+ γE −

n∑
k=1

1

k

]
(C.2.17)

and γE being the Euler constant defined as

γE = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
. (C.2.18)
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From Eq. (C.2.12) we are now able to represent the Borel transform of (C.2.11) without performing too

many elaborate calculations by means of the initial definition of the Borel transformation (C.2.1)

B

[
1

(Q2)α+1

1

(lnQ2)β+1

] (
M2
)

= µ

(
1

M2
, β, α

)
. (C.2.19)

In particular, for β = −1 and α = n− 1 the result reads

B

[
1

(Q2)n

] (
M2
)

= µ

(
1

M2
,−1, n− 1

)
=

1

(n− 1)!

1

(M2)n−1
, (C.2.20)

and for β = −2 and α = n− 1 we get

B

[
1

(Q2)n
lnQ2

] (
M2
)

= µ

(
1

M2
,−2, n− 1

)
=

1

(n− 1)!

1

(M2)n−1

[
lnM2 − 1

n
− γE +

n∑
k=1

1

k

]
. (C.2.21)

Note, due to the factorial prefactor in Eq. (C.2.20), the Borel transform of an expansion in x = Q−2 is

indeed the corresponding Borel sum.

The Borel transformation may now be applied to the subtracted dispersion relations (B.5.12), as well

as to (B.5.19) and (B.5.20). As the OPE is only valid for large space like momenta, i.e. q2 � 0, one may

substitute q2 = −Q2. Furthermore, the limiting procedure in the definition of the Borel transformation is

not in conflict with the OPE. Indeed, the limit in Eq. (C.2.1) can be interpreted as approaching infinite

momenta Q2(n) by virtue of different slopes M2. For the dispersion relation in vacuum we get

ΠOPE(Q2)−
N−1∑
n=0

Π
(n)
ph (0)

n!
(−Q2)n

=
1

π

∫ s0

0

(
−Q

2

s

)N
∆Πph(s)

s+Q2
ds+

1

π

∫ +∞

s0

(
−Q

2

s

)N
∆ΠOPE(s)

s+Q2
ds . (C.2.22)

For the in-medium dispersion relations we introduce q2
0 = −Q2. This is equivalent to considering

imaginary values of the energy q0. For the even part one obtains

Πe
OPE(Q2, ~q )− 1

2

N−1∑
n=0

Π
(n)
ph (0, ~q )

n!
(Q2)n/2 (1 + (−1)n)

=

[
1

π

∫ s+0

s−0

dω
∆Πph(ω, ~q )

ω2 +Q2
+

1

π

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω

∆ΠOPE(ω, ~q )

ω2 +Q2

]

× 1

2

(
(−Q2)N/2

ωN−1

(
1 + (−1)N

)
+

(−Q2)(N+1)/2

ωN
(
1− (−1)N

))
, (C.2.23a)
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while the odd part reads

Πo
OPE(Q2, ~q )− 1

2

N−1∑
n=0

Π
(n)
ph (0, ~q )

n!
(Q2)(n−1)/2 (1− (−1)n)

=

[
1

π

∫ s+0

s−0

dω
∆Πph(ω, ~q )

ω2 +Q2
+

1

π

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω

∆ΠOPE(ω, ~q )

ω2 +Q2

]

× 1

2

(
(−Q2)(N−1)/2

ωN−1

(
1− (−1)N

)
+

(−Q2)N/2

ωN
(
1 + (−1)N

))
. (C.2.23b)

Application of the Borel transformation (C.2.1) to the vacuum dispersion relation (C.2.22) yields

B

[(
−Q

2

s

)N
1

s+Q2

] (
M2
)

=
e−s/M

2

(−s)N B

[
(Q2 − s)N

Q2

] (
M2
)

=
e−s/M

2

(−s)N B

[
(−s)N
Q2

] (
M2
)

= e−s/M
2
, (C.2.24)

where we have used that only the term ∝ 1/Q2 survives the Borel transformation. Hence, one finally

ends up with

B
[
ΠOPE(Q2)

] (
M2
)

=
1

π

∫ s0

0
e−s/M

2
∆Πph(s) ds+

1

π

∫ +∞

s0

e−s/M
2
∆ΠOPE(s) ds . (C.2.25)

In the same way, we obtain for the in-medium dispersion relation (C.2.23a) by applying the Borel

transformation (C.2.1) with respect to Q2

B

[
(−Q2)N/2

ωN−1

1

ω2 +Q2

] (
M2
)

= (−1)N/2
e−ω

2/M2

ωN−1
B

[
(Q2 − ω2)N/2

Q2

] (
M2
)

= (−1)N/2
e−ω

2/M2

ωN−1
B

[
(−ω2)N/2

Q2

] (
M2
)

= (−1)Nωe−ω
2/M2

, (C.2.26)

where we have used that, due to the factor
(
1 + (−1)N

)
in the first term of the last line in (C.2.23a), N/2

can only have integer values. The same holds true for (N + 1)/2 in the second term. Thus, we arrive at

B
[
Πe

OPE(Q2, ~q )
] (
M2
)

=

[
1

π

∫ s+0

s−0

dω∆Πph(ω, ~q ) +
1

π

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω∆ΠOPE(ω, ~q )

]
ωe−ω

2/M2
. (C.2.27a)

187



C In-medium OPE for heavy-light mesons C.3 Projection of color, Dirac and Lorentz indices

For the odd part we use (C.2.24) and obtain

B
[
Πo

OPE(Q2, ~q )
] (
M2
)

=

[
1

π

∫ s+0

s−0

dω∆Πph(ω, ~q ) +
1

π

(∫ s−0

−∞
+

∫ +∞

s+0

)
dω∆ΠOPE(ω, ~q )

]
e−ω

2/M2
. (C.2.27b)

As a byproduct we find that the subtraction terms in Eqs. (2.1.2) and (2.1.7) as well as the contribution

from the infinite outer circle in Eqs. (B.5.4) and (B.5.14) for the non-subtracted dispersion relations are

eliminated under Borel transformation since they are polynomials in Q2.

As discussed in Sec. 2, we are interested in the low-lying strength encoded in
∫ s+0
s−0

dω∆Πωe−ω
2/M2

and
∫ s+0
s−0

dω∆Πe−ω
2/M2

,while the continuum parts encoded in
(∫ s−0
−∞+

∫ +∞
s+0

)
dω∆Πωe−ω

2/M2
and(∫ s−0

−∞+
∫ +∞
s+0

)
dω∆Πe−ω

2/M2
will be merged into the perturbative OPE part Πper(ω) (see Eq. (3.1.1))

according to the semi-local duality hypothesis;32 s±0 are the corresponding continuum thresholds.

In Sec. 2.1 and App. B.5 we review the method of subtracted dispersion relations. They enable us to

suppress polynomial contributions to the dispersion relations from the integral over the infinite circle

and ensure the convergence of the dispersion integral. From the definition of the Borel transformation,

we see that all functions vanish which are merely polynomials in Q2. Hence, by applying (C.2.1) to the

dispersion relations (B.5.14) or (B.5.5) one gets rid of the polynomial contribution from the outer circle

integral. Thus, we do not need to consider subtracted dispersion relations and could have started from the

non-subtracted dispersion relation.

C.3 Projection of color, Dirac and Lorentz indices

Condensates are expectation values or Gibbs averages of quantum field operators. They reflect basic

properties of the QCD ground state or the strongly interacting medium and are assumed to be color

singlets, Lorentz invariants and invariants under parity transformations and time reversal. Expectation

values or Gibbs averages which are not invariant under parity transformations and time reversal are

supposed to be zero. In the following description we adopt the method described in [Jin93] and list the

projections that are needed throughout the thesis.

Up to mass dimension 5 we meet the following structures

〈: q̄ ai qbj :〉 , 〈: (q̄iDµ)a qbj :〉 , 〈: (q̄iDµDν)a qbj :〉 ,
〈:GAµνGBκλ :〉 , 〈: q̄ ai G ab

µνq
b
j :〉 . (C.3.1)

The meaning of various indices is explained in App. A.3. The last structure is invariant under color

rotations. The generators of U(Nc) form a complete set of matrices in color space. Dirac indices are

32The semi-local duality hypothesis states that the integral of the continuum is well approximated by an integral of the
perturbative part.
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projected onto elements of the Clifford algebra. The projection of Lorentz indices accounts for different

condensates in vacuum and medium.

In the following, a list of the in-medium projections up to mass dimension 5 is given. Terms that violate

time reversal or parity invariance are omitted. The EoM (A.3.27) have been used whenever possible.

(i) Condensates of mass dimension 3:

〈: q̄q :〉 = 〈: q̄q :〉 , (C.3.2)

〈: q̄γµq :〉 = 〈: q̄v̂q :〉vµ
v2

. (C.3.3)

A condensate of the type 〈: q̄σµνq :〉 occurs neither in vacuum nor in a medium since there is no

possibility to create an antisymmetric structure in the Lorentz indices µ, ν. Condensates of the type

〈: q̄γ5γµq :〉, 〈: q̄γ5q :〉 can not be projected onto structures that are invariant under parity transformations.

(ii) Condensates of mass dimension 4:

〈: q̄Dµq :〉 = −〈: q̄v̂q :〉imqvµ
v2

, (C.3.4)

〈: q̄γµDνq :〉 = −〈: q̄q :〉imq

4
gµν

−
[
i
mq

4
〈: q̄q :〉+ 〈: q̄v̂ (vD)

v2
q :〉
]

1

3

(
gµν − 4

vµvν
v2

)
, (C.3.5)

〈:GAµνGBκλ :〉 =
δAB

96
(gµκgνλ − gµλgνκ) 〈:G2 :〉 − δAB

24
〈:
(

(vG)2

v2
− G2

4

)
:〉Sµνκλ .

(C.3.6)

Again, terms of the form 〈: q̄γ5γµDµq :〉, 〈: q̄γ5Dµq :〉 do not have a projection due to the requirement

of parity invariance. The same holds true for 〈: q̄σµνDκq :〉, which can only be contracted with εµνκλvλ

giving an odd term with respect to parity.

(iii) Condensates of mass dimension 5:

〈: q̄DµDνq :〉 = −〈: q̄q :〉
m2
q

4
gµν + 〈: q̄gσG q :〉1

8
gµν

−
[
m2
q

4
〈: q̄q :〉 − 1

8
〈: q̄gσG q :〉+ 〈: q̄ (vD)2

v2
q :〉
]

1

3

(
gµν − 4

vµvν
v2

)
, (C.3.7)

〈: q̄γµDνDαq :〉

=
1

v4
〈: q̄v̂(vD)2q :〉

(
2vµvνvα
v2

− 1

3
(vµgνα + vνgµα + vαgµν)

)
− 1

6v2
〈: q̄v̂gσG q :〉

(vµvνvα
v2

− vµgνα
)

+
m2
q

3v2
〈: q̄v̂q :〉

(vµvνvα
v2

− vµgνα
)

+
imq

3v2
〈: q̄(vD)q :〉

(
2vµvνvα
v2

− vνgµα − vαgµν
)
, (C.3.8)
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〈: q̄γ5γµDνDαq :〉

= − 1

6v2
εµναβv

β

[
i

2
〈: q̄v̂gσGq :〉+ im2

q〈: q̄v̂q :〉+ im2
q〈: q̄(vD)q :〉

]
, (C.3.9)

〈: q̄σµνDαDβq :〉 = − i

24
(gµαgνβ − gµβgνα) 〈: q̄gσG q :〉

− 1

3

[
i

8
〈: q̄gσG q :〉 −mq〈: q̄v̂

(vD)

v2
q :〉 − i〈: q̄ (vD)2

v2
q :〉
]

Sµναβ , (C.3.10)

〈: q̄γ5γαGµνq :〉 = − 1

6v2
〈: q̄v̂gσG q :〉εαµνσvσ , (C.3.11)

〈: q̄gσαβGµνq :〉 = 〈: q̄gσG q :〉 1

12
(gαµgβν − gανgβµ)

+

[
1

12
〈: q̄gσG q :〉 − i2mq

3
〈: q̄v̂ (vD)

v2
q :〉 − 2

3
〈: q̄ (vD)2

v2
q :〉
]

Sαβµν , (C.3.12)

where we have defined

Sαβµν =
(
gαµgβν − gανgβµ − 2

(
gαµ

vβvν
v2
− gαν

vβvµ
v2

+ gβν
vαvµ
v2
− gβµ

vαvν
v2

))
. (C.3.13)

We have explicitly separated the medium specific contributions from the vacuum projections. Medium

specific contributions are either condensates that contain the medium four-velocity v or combinations of

condensates that appear in vacuum and medium. The latter ones are always written with angled brackets.

Applying vacuum projections to the medium specific terms makes them zero in the vacuum limit.

Note that Eq. (C.3.11) is actually not a projection and is valid for any four-vector. It is proven in the

following. Due to Lorentz covariance we write

〈: q̄γ5γαGµνq :〉 = Aεαµνσv
σ . (C.3.14)

Our aim is to determine the Lorentz scalar A. Using Eq. (A.3.26), we can write for any four-vector vµ

v̂σµνGµν = ivαγ
αγµγνGµν . (C.3.15)

Expanding the product of Dirac matrices in terms of the Clifford algebra, one obtains

γαγµγν = gµνγα + gναγµ + gαµγν + iεσαµνγ5γσ . (C.3.16)

Due to the EoM (A.3.23) and by the definition of the gluon field strength tensor, one can show that

〈: d̄vµγνGµνd :〉 = 0 . (C.3.17)

Altogether, this gives the relation

〈: d̄v̂σµνGµνd :〉 = −〈: d̄γ5γσGµνd :〉εσαµνvα . (C.3.18)

190



C In-medium OPE for heavy-light mesons C.4 OPE for the D meson

Contracting Eq. (C.3.14) with εαµνσ and using εαµνσε τ
αµν = 6gστ , proves Eq. (C.3.11).

C.4 Operator product expansion for the D meson

In the following the OPE for heavy-light pseudo-scalar mesons is performed up to and including mass

dimension 5 power corrections to the lowest-order term of the perturbative expansion. First, one applies

Wick’s theorem to the current-current correlation function Π(q), with the current operators for the D+

meson, jD+(x) = id̄(x)γ5c(x) ≡ j(x), and the D− meson, jD−(x) = ic̄(x)γ5d(x) = j†
D+(x), in

lowest order of the perturbative expansion

Π(q) =i

∫
d4x eiqx〈T

[
j(x)j†(0)

]
〉 (C.4.1a)

=Π(0)(q) + Π(2)(q) + Π(4)(q) . (C.4.1b)

Due to Eq. (A.2.4) theD+ current-current correlator (C.4.1a) is related to theD− correlator by ΠD+
(q) =

ΠD−(−q). The OPE is performed for the D+ meson. The label will be dropped in the following. The

labels (0) and (2) denote the number of non-contracted quark fields, i.e., the number of quarks which

participate in the formation of a condensate. The Π(4) term does not contribute because it contains only

the soft contribution of all operators. There is no flow of hard momenta. Expanding the quark field

operators according to Eq. (C.1.12) and performing n integrations by parts for the n-th order term gives

the n-th derivative of Dirac’s delta distribution. Therefore, at large |q2|, i.e. in the OPE domain, there

is no contribution from Π(4). Also, this term would lead to four-quark condensates which are of mass

dimension 6. In general, for mesons four-quark condensates only contribute in first (or higher) order of

αs. Otherwise the diagrams would be disconnected and no momentum could flow through it as for the

Π(4) term.

The first term in (C.4.1b), Π(0)(q), reads

Π(0)(q) =− i
∫

d4x eiqx〈:TrC,D [γ5Sd(0, x)γ5Sc(x, 0)] :〉 (C.4.2a)

=Πper(q) + ΠG2(q) . (C.4.2b)

It consists of the purely perturbative term Πper(q) and of ΠG2(q), which is the result of inserting the

next-to-leading order propagator with the lowest order term of (C.1.23), and accounts for pure gluon

condensates. Inserting higher orders in the quark propagator and/or the gluon field in (C.4.2a) leads

to higher dimensional gluon condensates, such as 〈G3〉, or, by usage of the EoM, quark and mixed

quark-gluon condensates. These are either of higher mass dimensions or higher orders in αs.

The second term in (C.4.1b), Π(2)(q), is simplified by the assumption of vanishing charm-quark

condensates 〈: c̄ . . . c :〉 = 0. This is motivated by the large charm-quark mass and the assumption that

a heavy quark only interacts with the vacuum by emitting or absorbing gluons and not by annihilating

with other heavy quarks. Hence, heavy quarks are considered as static or quenched quarks and only light-

191



C In-medium OPE for heavy-light mesons C.4 OPE for the D meson
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gs gs
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Figure C.4.1: Feynman diagrams for the perturbative contribution Πper(q). The fourth contribution
can be obtained from the third by the replacement d↔ c. Dashed: the D meson, solid:
free quark propagator, curly: free gluon propagator.

quark condensates remain. This becomes evident in the scope of the renormalization of condensates and

absorption of infrared singularities. Indeed, introducing non-normal ordered condensates, heavy-quark

condensates cancel out by virtue of the heavy quark mass expansion.

The perturbative contribution Πper(q), consists of the lowest order quark propagator insertion in

(C.1.25), i.e. the one-loop diagram (see Fig. C.4.1). Additionally, the order α1
s contribution, i.e. two-loop

diagrams, may be taken into account. It can be determined in terms of a two-fold subtracted dispersion

relation [Ali83, Rei80, Bro81] (see App. B.5), where the imaginary part of Πper(q) is obtained by means

of the Cutkosky cutting rules [Cut60, Das97]. In the MS-scheme (cf. e.g. [Itz80]) it is infrared convergent

and reads in Feynman gauge for the gluon propagator and md → 0

ImΠpert(s) =
3

8π

(
s−m2

c

)2
s

+
αs
2π2

(
s−m2

c

)2
s

[
9

4
+ 2 Li2

(
m2
c

s

)
+ ln

(
s

m2
c

)
ln

(
s

s−m2
c

)

+
3

2
ln

(
m2
c

s−m2
c

)
+ ln

(
s

s−m2
c

)
+
m2
c

s
ln

(
s−m2

c

m2
c

)
+

m2
c

s−m2
c

ln

(
s

m2
c

)]
. (C.4.3)

Here, the Spence function is denoted as Li2(x) = −
∫ x

0 dt t−1 ln(1− t).

For the gluonic contribution there are three terms, each stemming from a different number of back-

ground field insertions to the quark propagators (see Fig. C.4.2). We work in lowest order of the expansion

(C.1.23). The three terms which have to be calculated at the one-loop level to obtain all contributions

which are relevant for the vacuum gluon condensate 〈: αsπ G2 :〉 entering ΠG2(q) read:

ΠG2(q) =
∑
i+j=2

[
−i
∫

d4p

(2π)4
〈:TrC,D

[
γ5S

(i)
c (p)γ5S

(j)
d (p− q)

]
:〉
]
, (C.4.4)

where the leading order gluon field is inserted. The following four integrals are needed to evaluate the

loop integrals [Itz80]∫
d4p

(2π)4

1[
(p− q)2 +m2

d

]n
[p2 +m2

c ]
k

=
1

(4π)2

Γ(n+ k − 2)

Γ(n) Γ(k)
In−1,k−1
n+k−2 (q2,m2

d,m
2
c) ,

(C.4.5a)
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∫
d4p

(2π)4

pµ[
(p− q)2 +m2

d

]n
[p2 +m2

c ]
k

=
qµ

(4π)2

Γ(n+ k − 2)

Γ(n) Γ(k)
In,k−1
n+k−2(q2,m2

d,m
2
c) ,

(C.4.5b)∫
d4p

(2π)4

pµ pν[
(p− q)2 +m2

d

]n
[p2 +m2

c ]
k

=
gµν

(4π)2

1

2

Γ(n+ k − 3)

Γ(n) Γ(k)
In−1,k−1
n+k−3 (q2,m2

d,m
2
c)

+
qµ qν
(4π)2

Γ(n+ k − 2)

Γ(n) Γ(k)
In+1,k−1
n+k−2 (q2,m2

d,m
2
c) , (C.4.5c)∫

d4p

(2π)4

pµ pν pκ[
(p− q)2 +m2

d

]n
[p2 +m2

c ]
k

=
gµν qκ + gµκ qν + gνκ qµ

(4π)2

1

2

Γ(n+ k − 3)

Γ(n) Γ(k)
In,k−1
n+k−3(q2,m2
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+
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d,m
2
c) . (C.4.5d)

Equation (C.4.5d) can be obtained from Eq. (C.4.5c) by applying a partial derivative w.r.t. qκ. The master

integral is given by

Ii,jk (q2,m2
d,m

2
c) =

1∫
0

dα
αi (1− α)j[

α (1− α) q2 + αm2
d + (1− α) m2

c

]k . (C.4.6)

It is not possible to set md = 0 from the very beginning, because the results are infrared divergent. On

the other hand, the expressions are rather cumbersome for both masses being nonzero. In order to obtain

meaningful expressions, one may use

arctan z =
1

2i
ln

1 + iz

1− iz (C.4.7)

to obtain

arctan

(
i
q2 −m2

d

q2 +m2
d

)
=

1

2i
ln
m2
d

q2
, (C.4.8)

which is a source of mass logarithms. Another source of terms ∝ lnmd arises from a slightly different

expression, namely

arctan

i q2 +m2
c −m2

d√
2q2m2

d + q4 + 2q2m2
c +m4

c − 2m2
cm

2
d +m4

d

 md=0→ arctan(i) , (C.4.9)

which is not well defined. Expanding the fraction in md and keeping only the lowest power, which is the
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Figure C.4.2: Feynman diagrams for the gluon condensate contribution ΠG2

(q). Line codes and
meaning of crosses as in Fig. C.4.1.

dominant contribution for md → 0, leads to

arctan

i q2 +m2
c −m2

d√
2q2m2

d + q4 + 2q2m2
c +m4

c − 2m2
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2
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(q2 +m2
c)

2
. (C.4.10)

The last expression corresponds to the infrared term for the medium specific contribution, i.e. it is absent

from the OPE in vacuum. Upon projecting color, Dirac and Lorentz indices, the following result can be

verified

ΠG2(q) = 〈: αs
π
G2 :〉
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24
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(q2 −m2
c)

2

− 1

9q2

(
m2
c

(q2 −m2
c)

2
+

1

q2 −m2
c

)
ln

(
m2
d

m2
c

)
− 2

9q2

(
m2
c

(q2 −m2
c)

2
+

1

q2 −m2
c

)
ln

(
− m2

c

q2 −m2
c

)]
. (C.4.11)

The first line is the vacuum contribution, while the term ∝ 〈: αsπ
(

(vG)2

v2 − G2

4

)
:〉 is a medium specific

condensate. It vanishes in vacuum and is the symmetric and traceless part of the operator GµνGαβ .

One immediately observes terms ∝ m−1
d and ∝ lnm2

d. These are terms which diverge for md → 0.

They origin from the infrared part of the loop diagram with two gluon lines attached to the light-

quark propagator, which results in three light-quark propagators with the same momentum because the

background field is soft and does not transfer momenta (right panel of Fig. C.4.2), and are therefore

called infrared divergences. Moreover, terms of the form ln(Q2/µ2) and ln(m2
d/µ

2), which cannot be

made small at the same time for Q2 � m2
d, occur when calculating Π(0). As pointed out in [Tka83b],

they are remnants of the large distance behavior, i.e. they origin from the small momentum contribution

to the loop integrals. Their occurrence breaks the clean separation of scales, which is a necessary feature

of every OPE, and must therefore be absorbed into the condensates.

In [Tka83b], the author argues that these logarithms do not occur when the Wilson coefficients are

calculated within a minimal subtraction scheme. Moreover, they can be absorbed into the condensates if

one re-expresses normal ordered condensates, which naturally emerge if one applies Wick’s theorem when
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Figure C.4.3: Feynman diagrams for the quark and mixed quark-gluon condensate contribution Π(2)(q).
Line codes as in Fig. C.4.1. Crosses symbolize creation or annihilation of quarks or
gluons by virtual particles, i.e. condensates.

calculating Wilson coefficients perturbatively, by so-called non-normal ordered ones. This procedure

has been known for a long time, cf. [Spi88, Che95, Jam93, Nar89] and references therein. An explicit

formula could not be found in these references. Therefore, we elaborate the in-medium case.

After expanding the light quark fields and performing the Fourier transformation one obtains the

general expression

Π(2)(q) =

∞∑
k=0

(−i)k
k!
〈:
(
d̄i
←−
Dα1 . . .

←−
Dαk

)a
(γ5∂

α1 . . . ∂αkSc(q)γ5)ijab d
b
j :〉 . (C.4.12)

As in Eq. (C.4.2) one can now insert higher orders in the quark fields, the heavy-quark propagator and/or

higher orders of the gluon background field. In order to consider all mass dimension 5 contributions to the

OPE in (C.4.12), k + l(2 +m) ≤ 2 must be fulfilled, according to Eq. (C.1.35). The order of the quark

field expansion is k, l is the number of gluon field insertions and m the order of (C.1.23). Hence, there

are four terms in (C.4.12), namely (k, l,m) ∈ {(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0)} and three terms in

(C.4.2), which contribute to the OPE up to mass dimension 5. The diagrams for these terms are shown

in Fig. C.4.3. Note that due to the additional medium structures there is no one-to-one correspondence

between Eq. (C.4.12) and Feynman diagrams unless one introduces further building blocks.

Before going into details, we present the contribution of (C.4.12) to the OPE up to mass dimension 5.

Separating the contribution of the free quark propagator from the sum in (C.4.12) one arrives at

Π(2)(q) =
∞∑
k=0

(−i)k
k!

[
〈:
(
d̄
←−
Dα1 . . .

←−
Dαk

)
d :〉∂α1 . . . ∂αk

mc

q2 −m2
c

−〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dαk

)
d :〉∂α1 . . . ∂αk

qµ

q2 −m2
c

]
+

∞∑
k=0

∞∑
l=1

(−i)k
k!
〈:
(
d̄i
←−
Dα1 . . .

←−
Dαk

)a (
γ5∂

α1 . . . ∂αkS(l)
c (q)γ5

)ij
ab
dbj :〉 , (C.4.13)

where we use that the free propagator S(0)(q) = q̂+m
q2−m2 ⊗ 1c is the unit operator in color space and

does not contain Lorentz indices. In the first sum, we project color and Dirac indices, whereby the only

non-vanishing traces over Dirac indices correspond to the projection of the free heavy-quark propagator

onto {1, γµ}. Like in [Coh95] we recognize that the coefficients for terms which emerge from the
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insertion of the free propagator fulfill certain recursive relations. We will deepen this fact and give

recursive relations for the Borel transformed Wilson coefficients in vacuum and medium. Obviously, this

is also true for terms which emerge due to the insertion of higher order propagators.

For the above quoted tuples (k, l,m) which account for mass dimension 5 terms we obtain the

following result at tree level

Π(2)(q) =〈: d̄d :〉
(

mc

q2 −m2
c

− 1

2

md

q2 −m2
c

+
1

2

mdm
2
c

(q2 −m2
c)

2
+

m2
dm

3
c

(q2 −m2
c)

3

)
− 〈: d̄gσG d :〉1

2

(
m3
c

(q2 −m2
c)

3
+

mc

(q2 −m2
c)

2

)
+

[
md

12
〈: d̄d :〉 − 1

3
〈: d̄v̂ (ivD)

v2
d :〉
]

2

(
q2 − 4

(vq)2

v2

)
1

(q2 −m2
c)

2

+

[
m2
d

12
〈: d̄d :〉+

1

3
〈: d̄(vD)2

v2
d :〉 − 1

24
〈: d̄gσG d :〉

]
4

(
q2 − 4

(vq)2

v2

)
mc

(q2 −m2
c)

3

− 〈: d̄v̂d :〉(vq)
v2

(
1

q2 −m2
c

+ 2
mdmc

(q2 −m2
c)

2 −
m2
d

(q2 −m2
c)

2

+
4

3

(
q2 − (vq)2

v2

)
m2
d

(q2 −m2
c)

2

)
− 〈: d̄v̂(vD)2d :〉4

(
q2 − 2

(vq)2

v2

)
(vq)

v4

1

(q2 −m2
c)

3

+ 〈: d̄v̂gσG d :〉(vq)
v2

(
2

3

(
q2 − (vq)2

v2

)
1

(q2 −m2
c)

3 −
1

(q2 −m2
c)

2

)
+ 〈: d̄(ivD)d :〉(vq)

v2

(
2

md

(q2 −m2
c)

2 −
8

3

(
q2 − (vq)2

v2

)
md

(q2 −m2
c)

3

)
. (C.4.14)

Again, we explicitly separated the medium specific terms from terms which are also present in vacuum.

The latter ones are merely the chiral condensate 〈: d̄d :〉 and the mixed quark-gluon condensate 〈: d̄gσG d :〉.
All the other condensates or medium specific condensate combinations, which are written in squared

brackets, vanish in vacuum. At this point of the evaluation we have to keep terms ∝ md, which appear

when applying the EoM, because they will be necessary to cancel the infrared divergences or give a finite

contribution in the limit md → 0 after absorption of the divergences. The limit md → 0 will be taken in

the next section after the absorption of these divergences.

C.5 Absorption of divergences

In order to ensure a consistent separation of scales, the infrared divergent terms have to be absorbed into

the condensates, such that the Wilson coefficients are determined only by the perturbative dynamics,

whereas the non-perturbative dynamics is parametrized by the condensates. In [Che82b, Tka83a, Gor83,

LS88] it has been shown that the Wilson coefficients are polynomial in the mass only if they are evaluated

within a minimal subtraction scheme. Normal ordering is not such a scheme. As already noted above, all
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the mass logarithms can be merged into the condensates by re-expressing normal ordered condensates

by non-normal ordered ones. We use the following relation between normal ordered and non-normal

ordered condensates

〈q̄O [Dµ] q〉 = 〈: q̄O [Dµ] q :〉 − i
∫

d4p

(2π)4
〈TrC,D

[
O
[
−ipµ − iÃµ

]
S(p)

]
〉 , (C.5.1)

which we will evaluate up to one-loop level. The operator O [Dµ] is a function of the covariant derivative,

the gluon fields and possible Dirac structures. The index µ stands as label for all possible Lorentz indices.

The proofs partly follows [Gro95]. One applies Wick’s theorem to the time-ordered product

T [q̄(0)O [Dµ] q(y)] =: q̄(0)O [Dµ] q(y) : −i :TrC,D (O [Dµ]S(y, 0)) : , (C.5.2)

inserts the Fourier transform of the operator function O and sets y = 0. As O in Eq. (C.5.1) is now

a derivative operator acting to the right, the order of Lorentz indices is important. This equation

reproduces the vacuum expressions but also gives the correct ones for the in-medium case, i.e. all the

mass singularities are absorbed into the condensates. Equation (C.5.1) may be defined as the relation

between normal ordered and physical condensates. A renormalization scale dependence naturally occurs

upon introducing non-normal ordered condensates and delineates the region between perturbative and

non-perturbative physics.

Up to the considered order in αs the following set of equations is obtained in the MS scheme

〈q̄q〉 =〈: q̄q :〉+
3

4π2
m3
q

(
ln
µ2

m2
q

+ 1

)
− 1

12mq
〈αs
π
G2〉 , (C.5.3a)

〈q̄gσG q〉 =〈: q̄gσG q :〉 − 1

2
mq ln

µ2

m2
q

〈αs
π
G2〉 , (C.5.3b)

〈q̄γµiDνq〉 =〈: q̄γµiDνq :〉+
3

16π2
m4
qgµν

(
ln
µ2

m2
q

+ 1

)
− gµν

48
〈αs
π
G2〉

+
1

18

(
gµν − 4

vµvν
v2

)(
ln
µ2

m2
q

− 1

3

)
〈αs
π

(
(vG)2

v2
− G2

4

)
〉 , (C.5.3c)

〈q̄iDµiDνq〉 =〈: q̄iDµiDνq :〉+
3m5

q

16π2
gµν

(
ln
µ2

m2
q

+ 1

)
+
mq

16
gµν

(
ln
µ2

m2
q

− 1

3

)
〈αs
π
G2〉

− mq

36

(
gµν − 4

vµvν
v2

)(
ln
µ2

m2
q

+
2

3

)
〈αs
π

(
(vG)2

v2
− G2

4

)
〉 . (C.5.3d)

Note that S(p) is merely the product of S(0)(p) and (γÃ), where each (γÃ) accounts for two additional

Dirac matrices, cf. (C.1.30).

When working in lowest order of the expansion (C.1.23), 〈: q̄γµq :〉, 〈: q̄i−→Dµq :〉, and 〈: q̄γ5γαGµνq :〉
are not renormalized due to the following reason. In order to get a non-vanishing integral, the in-
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Table C.5.1: Comparison of vacuum Wilson coefficients entering Eq. (3.1.1a) with the literature. In
[Hay00] only operators up to mass dimension 4 were considered.

〈d̄d〉 〈αsπ G2〉 〈d̄gsσG d〉

Eq. (3.1.1a) −mc
1
12 −1

2
1
M2

(
1− 1

2
m2
c

M2

)
mc

Ref. [Hay00] −mc
1
12 − 1

24
m2
c

M2

Ref. [Mor01] −mc
1
12 −1

2
1
M2

(
1− 1

2
m2
c

M2

)
mc

Ref. [Hay04] −mc
1
12

(
3
2 −

m2
c

M2

)
−1

2
1
M2

(
1− 1

2
m2
c

M2

)
mc

tegrand must be even in p, requiring an even number of Dirac matrices. Therefore, it is clear that∫
d4p pµTrC,D [S(p)] = 0 and similar terms are also zero. Each Ãµ accounts for one additional Dirac

matrix, and by this
∫

d4pTrC,D

[
ÃµS(p)

]
is zero. Hence, only if the number of Lorentz indices (i.e. the

sum of Dirac matrices and covariant derivatives in the condensates) is even, physical and normal ordered

condensates differ.

The last two equations differ in vacuum and medium and account for the proper cancellation of

mass logarithms in the medium. One immediately recognizes the operator mixing, which affects the

pure gluonic vacuum and medium condensates. Moreover, for vanishing normal ordered condensates,

Eq. (C.5.1) leads to the well-known heavy-quark mass expansion, first suggested in [Shi79b] (further

terms are calculated in [Gen84]). This is why there are no heavy quark condensates. Introducing non-

normal ordered heavy quark condensates to perform the renormalization of the normal ordered ones and

inserting the heavy-quark mass expansion, cancels all heavy-quark condensates and effectively means

setting the normal ordered condensates to zero.

Inserting the non-normal ordered condensates into (C.4.14) one obtains the desired infrared stable

Wilson coefficients and the limit md → 0 can safely be taken. From a physical point of view, the

OPE is only meaningful if the md → 0 limit is well defined. Any infrared divergence represents a

sensitivity of the OPE to small momenta. These, however, are cut off by confinement at the typical QCD

scale ΛQCD � md. Therefore, any OPE must be finite and infrared stable. The final OPE up to mass

dimension 5, in the rest frame of nuclear matter v = (1,~0) and for the meson at rest q = (q0,~0) reads

Πe(q0) =c0(q2
0) + 〈d̄d〉 mc

q2
0 −m2

c

− 〈d̄gσG d〉1
2

(
m3
c

(q2
0 −m2

c)
3

+
mc

(q2
0 −m2

c)
2

)
− 〈αs

π
G2〉 1

12

1

q2
0 −m2

c

+ 〈d†iD0d〉2
(

m2
c

(q2
0 −m2

c)
2

+
1

q2
0 −m2

c

)
+ 〈αs

π

(
(vG)2

v2
− G2

4

)
〉
(

7

18
+

1

3
ln
µ2

m2
c

+
2

3
ln

(
− m2

c

q2
0 −m2

c

))
×
(

m2
c

(q2
0 −m2

c)
2

+
1

q2
0 −m2

c

)
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Table C.5.2: Comparison of medium specific Wilson coefficients entering Eq. (3.1.1b) with the litera-
ture.

〈d† i−→D0 d〉 〈αsπ
(

(vG)2

v2 − G2

4

)
〉

Eq. (3.1.1a) 2
(
m2
c

M2 − 1
) (

7
18 + 1

3 ln µ2 m2
c

M4 − 2
3 γE

)(
m2
c

M2 − 1
)
− 2

3
m2
c

M2

Ref. [Hay00] 2
(
m2
c

M2 − 1
) 1

3

[
4
3 − 1

6
m2
c

M2 + 1
2
m6
c

M6 +
(

1− m2
c

M2

)
ln
(

m2
c

4π µ2

)
+

em
2
c/M

2

(
−2 γE − ln m2

c
M2 +

m2
c/M

2∫
0

dt 1−e−t

t

)]

−
[

1

3
〈d̄D2

0d〉 −
1

24
〈d̄gσG d〉

]
12

(
m3
c

(q2
0 −m2

c)
3

+
mc

(q2
0 −m2

c)
2

)
(C.5.4a)

and

Πo(q2
0) =− 〈d†d〉 1

q2
0 −m2

c

+ 〈d†D2
0d〉4

(
m2
c

(q2
0 −m2

c)
3

+
1

(q2
0 −m2

c)
2

)
− 〈d†gσG d〉 1

(q2
0 −m2

c)
2
. (C.5.4b)

We separate the even and odd parts of the OPE according to Π(q0, ~q ) = Πe(q2
0, ~q ) + q0Πo(q2

0, ~q ),

and c0(q2
0) denotes the perturbative contribution to the current-current correlator with subtracted mass-

singularities. In Tabs. C.5.1 and C.5.2 the Borel transform of Eq. (C.5.4a), given in Eq. (3.1.1a), is

compared to results reported in the literature. There is no odd OPE given in the literature.

C.6 Recurrence relations

As stated in section C.4 the Wilson coefficients of condensates which differ only by the degree of the

non-local quark field expansion, i.e. they emerge from the same order propagator and gluon field insertion,

fulfill certain recursive relations. We illustrate this for the example of the first sum in (C.4.13), which

corresponds to all diagrams with a free heavy-quark propagator and the light-quark line being cut in order

to form a light quark condensate, i.e. to all orders of the expansion (C.1.12).

Let us start with the vacuum case, because there is no odd part. The first sum in (C.4.13) reduces to

Π(2)(q) =

∞∑
l=0

[
(−i)2l

(2l)!
〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l

)
d :〉∂α1 . . . ∂α2l

mc

q2 −m2
c

− (−i)2l+1

(2l + 1)!
〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉∂α1 . . . ∂α2l+1

qµ

q2 −m2
c

]
. (C.6.1)
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The projection of the Lorentz indices of the non-local condensates has the following well known form

〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l

)
d :〉 = a1gα1α2 ...gα2l−1α2l

+ permutations of {α1, . . . , α2l} , (C.6.2)

where the coefficients ai can be found by solving the system of linear equations which emerges from

contracting (C.6.2) with each product of metric tensors that appears on the r.h.s. The key observation

now is that inserting (C.6.2) into (C.6.1) gives the same result for all permutations in (C.6.2). One ends

up with

Π(2)(q) =
∞∑
l=0

[
(−i)2l

(2l)!
A2l (∂µ∂

µ)l
mc

q2 −m2
c

− (−i)2l+1

(2l + 1)!
B2l+1 (∂µ∂

µ)l
(

2

q2 −m2
c

− 2m2
c

(q2 −m2
c)

2

)]
, (C.6.3)

where we explicitly performed one partial derivative in the second term and A (B) denote the sum of the

coefficients ai (bi). Furthermore, we employ the following identity

∂µ∂
µf(q2) =

∂

∂qµ

∂

∂qµ
f(q2) =

[
8
∂

∂q2
+ 4q2

(
∂

∂q2

)2
]
f(q2) ≡ ∂̄f(q2) (C.6.4)

which can be proven for functions f = f(q2) by the chain rule. If we define the following sequence of

functions

Cl(q
2) ≡ ∂̄l mc

q2 −m2
c

≡ ∂̄lC0(q2) = ∂̄Cl−1(q2) (C.6.5)

and use

∂̄Cn0 (q2) =
4n(n− 1)

mc
Cn+1

0 (q2) + 4n(n+ 1)Cn+2
0 (q2) (C.6.6)

we recognize that each function Cl(q2) must be a polynomial in C0(q2):

Cl(q
2) =

2l+1∑
n=l+1

α(l)
n C

n
0 (q2) . (C.6.7)

Application of ∂̄ then gives the following recurrence relations for the coefficients α(l)
n

α(l)
n = 4(n− 1)(n− 2)

(
1

mc
α

(l−1)
n−1 + α

(l−2)
n−1

)
(C.6.8)

with the boundary conditions α(n)
n = 0, α(2n+2)

n = 0 and the initial values α(0)
1 = 1, α(0)

l = 0 ∀l 6= 1.

Actually, if there is only one nonzero initial value satisfying the boundary conditions, the boundary
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conditions are automatically fulfilled for all α(l)
n .

In the same way we define

C̃l(q
2) ≡ ∂̄lC2

0 (q2) =

2l+2∑
n=l+2

α̃(l)
n C

n
0 (q2) (C.6.9)

and employ the initial values α̃(0)
2 = 1, α̃(0)

l = 0 ∀l 6= 2, whereas the recurrence relations remain the

same (of course, the boundary conditions change with changing initial values but remain similar to the

first case and will be satisfied automatically).

Inserting these expressions into (C.6.3) we end up with

Π(2)(q) =
∞∑
l=0

[
(−i)2l

(2l)!
A2l

2l+1∑
n=l+1

α(l)
n C

n
0 (q2)

− (−i)2l+1

(2l + 1)!
B2l+1

(
2

mc

2l+1∑
n=l+1

α(l)
n C

n
0 (q2)− 2

2l+2∑
n=l+2

α̃(l)
n C

n
0 (q2)

)]
. (C.6.10)

This expression can easily be transformed into Euclidean space using Cn0 (q2)→ (−1)nmn
c /(q

2
E +m2

c)
n.

Finally, application of B
[
Cn0 (q2)

]
(M2) = e−m

2
c/M

2
mn
c /[(n − 1)!(M2)n−1], where the translation

property of the Laplace transformation is employed, the Borel transformed result reads

Π(2)(q) = e−m
2
c/M

2
∞∑
l=0

[
(−i)2l

(2l)!
A2l

2l+1∑
n=l+1

(−1)nα(l)
n

mn
c

(n− 1)!(M2)n−1

− (−i)2l+1

(2l + 1)!
B2l+1

(
2

mc

2l+1∑
n=l+1

(−1)nα(l)
n

mn
c

(n− 1)!(M2)n−1

−2

2l+2∑
n=l+2

(−1)nα̃(l)
n

mn
c

(n− 1)!(M2)n−1

)]
. (C.6.11)

This can be written as

Π(2)(q) ≡ e−m2
c/M

2
∞∑
l=0

[
(−i)2l

(2l)!
A2lcl(M

2)

− (−i)2l+1

(2l + 1)!
B2l+1

(
2

mc
cl
(
M2
)
− 2c̃l

(
M2
))]

≡ e−m2
c/M

2
∞∑
l=0

[
(−i)2l

(2l)!
A2lcl(M

2) +
(−i)2l+1

(2l + 1)!
B2l+1dl

(
M2
)]

. (C.6.12)

Here, we defined dl
(
M2
)
≡ −2

(
cl(M2)
mc

− c̃l
(
M2
))

. Using the recurrence relations for the coeffi-

cients α(l)
n (α̃(l)

n ) and the respective boundary conditions, the following recurrence relations can be given
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for the coefficient functions defined above

cl+1

(
M2
)

=4

[
∂

∂M2
+
m2
c

M4

]
cl
(
M2
)

=
4

M4

[
m2
c −

∂

∂1/M2

]
cl
(
M2
)

=

(
4

M4

[
m2
c −

∂

∂1/M2

])l+1

c0

(
M2
)

(C.6.13)

for cl
(
M2
)

as well as c̃l
(
M2
)

and dl
(
M2
)
. The boundary conditions now read c0

(
M2
)

= −mc,

c̃l
(
M2
)

= m2
c

M2 and d0

(
M2
)

= 2
(

1 + m2
c

M2

)
.

In a similar way we proceed with the in-medium case. The first step is to separate the even (e) and odd

(o) parts of the OPE:

Π(2)e(q) =
∞∑
l=0

[
(−i)2l

(2l)!
〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l

)
d :〉∂α1 . . . ∂α2l

mc

q2 −m2
c

− (−i)2l+1

(2l + 1)!
〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉∂α1 . . . ∂α2l+1

qµ

q2 −m2
c

]
, (C.6.14a)

Π(2)o(q) =
∞∑
l=0

[
(−i)2l+1

(2l + 1)!
〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉∂α1 . . . ∂α2l+1

mc

q2 −m2
c

−(−i)2l

(2l)!
〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dα2l

)
d :〉∂α1 . . . ∂α2l

qµ

q2 −m2
c

]
. (C.6.14b)

Concerning the projection of Lorentz indices of the condensates the main difference to the vacuum case

is the appearance of another Lorentz structure which has to be included referring to the medium velocity

vµ. Hence, the general form of the in-medium Lorentz projection reads

〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉 =

2l+1∑
m=1

∑
κ∈Km(α)

aκvκ1 . . . vκmgσ1σ2 . . . gσ2l−m−1σ2l−m , (C.6.15)

where the first sum runs over the numbers of occurring factors vµ starting from at least one factor in

the case above and from m = 0 in case of an even number of indices on the l.h.s., the second sum runs

over all permutations of the indices α ≡ {α1, . . . , α2l+1}, where m indices have been assigned to v,

σ ≡ α/{κ1, . . . , κm} and aκ is the corresponding coefficient. Of course, only coefficients which belong

to an odd number of factors v can be nonzero in the above case.

Analog to the vacuum considerations, contraction of (C.6.15) with ∂α1 . . . ∂α2l+1 gives identical

expressions for terms with the same number of factors vµ:

〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉∂α1 . . . ∂α2l+1 =

l∑
n=0

Aon(v∂)(v∂)2n (∂µ∂
µ)l−n , (C.6.16a)

〈:
(
d̄
←−
Dα1 . . .

←−
Dα2l

)
d :〉∂α1 . . . ∂α2l =

l∑
n=0

Aon(v∂)2n (∂µ∂
µ)l−n , (C.6.16b)
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where we defined the sum of coefficients which belong to the same number (2n + 1) of factors vµ as∑
κ∈Km(α) aκ ≡ Aon. For the second expression it is clear, that it must contain an even number of factors

(v∂).

Considering condensates which are projected onto γµ, i.e. 〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dαk

)
d :〉, and contracted

with ∂α1 . . . ∂αk , two different structures appear within each sum over κ. Depending on whether k is

even or odd these are (v∂)m
(
∂2
) 2l−m

2 ∂µ
qµ

q2−m2
c
, for k = 2l + 1, and (v∂)m−1 (∂2

) 2l−m+2
2 vq

q2−m2
c
, for

k = 2l. Fortunately, we have (v∂) ∂µ
qµ

q2−m2
c

= ∂2 vq
q2−m2

c
and the contracted partial derivatives applied

to qµ

q2−m2
c

can again be factored out from the sum over all permutations κ with m = 2n factors33 of the

medium velocity:

〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dα2l+1

)
d :〉∂α1 . . . ∂α2l+1

qµ

q2 −m2
c

=

l+1∑
n=0

Be
n (v∂)2n (∂2

)l−n
∂µ

qµ

q2 −m2
c

, (C.6.17a)

〈:
(
d̄γµ
←−
Dα1 . . .

←−
Dα2l

)
d :〉∂α1 . . . ∂α2l

qµ

q2 −m2
c

=

l∑
n=0

Bo
n (v∂)2n+1 (∂2

)l−n−2
∂µ

qµ

q2 −m2
c

. (C.6.17b)

Again, we defined
∑

κ∈Km(α) b
(e,o)
κ ≡ B(e,o)

m . Unfortunately, we had to use the special form of the Dirac

trace of the heavy quark propagator multiplied with γµ which occurs in this propagator order, whereas

the considerations which led to (C.6.3) do not rely on this.

Putting all together, we arrive at

Π(2)e(q) =

∞∑
l=0

[
(−i)2l

(2l)!

l∑
n=0

Aen (v∂)2n (∂µ∂
µ)l−nC0

(
q2
)

− (−i)2l+1

(2l + 1)!

l+1∑
n=0

Be
n (v∂)2n (∂µ∂

µ)l−n−2 2

(
C0

(
q2
)

mc
− C2

0

(
q2
))]

, (C.6.18a)

q0Π(2)o(q) =
∞∑
l=0

[
(−i)2l+1

(2l + 1)!

l∑
n=0

Aon (v∂)2n+1 (∂µ∂
µ)l−nC0

(
q2
)

−(−i)2l

(2l)!

l∑
n=0

Bo
n (v∂)2n+1 (∂µ∂

µ)l−n−2 2

(
C0

(
q2
)

mc
− C2

0

(
q2
))]

. (C.6.18b)

One now easily recovers the functions Cl(q2) and C̃l(q2), which are already known in the vacuum

case. In order to proceed we make explicitly use of the rest frame of nuclear matter, v = (1,~0) and the

33m = 2n+ 1 for an odd number of Lorentz indices, respectively
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considered meson at rest, q = (q0,~0), to obtain

∂2
0C

j
0(q2

0) =
2j(2j + 1)

mc
Cj+1

0 (q2
0) + 4j(j + 1)Cj+2

0 (q2
0) , (C.6.19)

leading to

∂2i
0 C

j
0(q2

0) ≡ Ki,j(q2
0) =

j+2i∑
k=j+1

f ijk C
k
0 (q2

0) (C.6.20)

with

f ijk =
(2k − 1)(2k − 2)

mc
f i−1,j
k−1 + 4(k − 1)(k − 2)f i−1,j

k−2 (C.6.21)

and initial and boundary conditions given by

f0,j
j = 1 , f i,jk = 0 :

 k ≤ i+ j − 1 ,

2i+ j + 1 ≤ k .
(C.6.22)

Inserting (C.6.5) and (C.6.20) into (C.6.18) we obtain

Π(2)e(q2
0) =

∞∑
l=0

(−i)2l

(2l)!

l∑
n=0

Aen

2(l−n)+1∑
i=l−n+1

α
(l−n)
i

i+2n∑
k=i+n

fn,ik Ck0 (q2
0)

− (−i)2l+1

(2l + 1)!

l+1∑
n=0

2Be
n

2(l−n)−3∑
i=l−n−1

α
(l−n−2)
i

mc

i+2n∑
k=i+n

fn,ik Ck0 (q2
0)

−
2(l−n)−2∑
i=l−n

α̃
(l−n−2)
i

mc

i+2n∑
k=i+n

fn,ik Ck0 (q2
0)

 , (C.6.23a)

Π(2)o(q) = −
∞∑
l=0

 (−i)2l+1

(2l + 1)!

l∑
n=0

Aon

2(l−n)+1∑
i=l−n+1

α
(l−n)
i

i+2n∑
k=i+n

fn,ik

2k

mc
Ck+1

0 (q2
0)

− (−i)2l

(2l)!

l∑
n=0

2Bo
n

2(l−n)−3∑
i=l−n−1

α
(l−n−2)
i

mc

i+2n∑
k=i+n

fn,ik

2k

mc
Ck+1

0 (q2
0)

−
2(l−n)−2∑
i=l−n

α̃
(l−n−2)
i

mc

i+2n∑
k=i+n

fn,ik

2k

mc
Ck+1

0 (q2
0)

 , (C.6.23b)

where we eliminated a factor q0 in (C.6.23b). After a rather elaborate calculation, which proceeds

analogously to the vacuum case, one can give the following expressions
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Π(2)e(q2
0) =

∞∑
l=0

[
(−i)2l

(2l)!

l∑
n=0

Aenc
e
l,n(M2)

− (−i)2l+1

(2l + 1)!

l+1∑
n=0

2Be
n

(
cel−2,n(M2) −c̃el−2,n(M2)

)]
, (C.6.24a)

Π(2)o(q) = −
∞∑
l=0

[
(−i)2l+1

(2l + 1)!

l∑
n=0

Aonc
o
l,n(M2)

− (−i)2l

(2l)!

l∑
n=0

2Bo
n

(
col−2,n(M2) −c̃ol−2,n(M2)

)]
, (C.6.24b)

where the coefficient functions satisfy the recurrence relations

cel,n(M2) =
4

M2

(
3

2
+
m2
c

M2
+

1

M2

∂

∂1/M2

)
cel−1,n−1(M2) , (C.6.25a)

col,n(M2) =
4

M2

(
1

2
+
m2
c

M2
+

1

M2

∂

∂1/M2

)
col−1,n−1(M2) (C.6.25b)

with the initial conditions cel,0(M2) = cel (M
2) and col,0(M2) =

∑2l+1
i=l+1 α

(l)
i

mic
(i−1)!(M2)i

, c̃ol,0(M2) =∑2l+1
i=l+1 α̃

(l)
i

mic
(i−1)!(M2)i

, for both types of functions c(e,o)
l,n (M2) and c̃(e,o)

l,n (M2). The expressions for the

initial conditions of the odd coefficient functions are the same as for the even coefficient functions. But

because there are no odd condensates in vacuum the corresponding coefficient can be discarded.

C.7 Sum rule analysis for heavy-light mesons

Equation (3.2.1) is nonlinear in the masses m±. In order to express m± in terms of the functions e

and o one must assume that m± and F± are Borel mass independent, which allows to eliminate F±.

In vacuum, where m = m+ = m−, explicit equations for m and F can be derived immediately. In

the medium, however, the nonlinear coupling of the equations necessitates more advanced solutions

of Eq. (3.2.1). As discussed in Sec. 3.2 right below Eq. (3.2.1), approximate solutions for m± and

F± may be obtained by assuming that mass-splitting and splitting of F± are small, as was done in

[Hay00, Mor01, Mor99, Zsc06]. It turns out that such an approximation is not necessary and in the

following a nonlinear coupled system of equations for m± is derived, which can in principle be solved

numerically. Furthermore, we find an analytic solution of the nonlinear coupled system of equations

giving explicit equations for m± and F±. These equations will in turn be used to show the consistency of

the strategy which is applied to analyze the sum rule.

To begin with, Eq. (3.2.1) can be written as

(m+ +m−)F+e
−m2

+/M
2

= e(M) +m−o(M) , (C.7.1a)

(m+ +m−)F−e
−m2
−/M

2
= e(M)−m+o(M) . (C.7.1b)
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Assuming dm±/dM = dF±/dM = 0 and taking a derivative of (C.7.1) w.r.t. 1/M2 and dividing

each resulting equation by the corresponding equation of (C.7.1) eliminates F± and yields the following

system of coupled, nonlinear equations for the masses m± in medium

−m2
+ =

d
d1/M2 e(M) +m−

d
d1/M2 o(M)

e(M) +m−o(M)
, (C.7.2a)

−m2
− =

d
d1/M2 e(M)−m+

d
d1/M2 o(M)

e(M)−m+o(M)
. (C.7.2b)

As already stated, Eq. (C.7.2) uniquely determines m± and can in principle be solved numerically.

However, the relation will be used to show the consistency of the employed evaluation strategy.

In the limit of vanishing density, the vacuum sum rules are deduced from Eq. (C.7.2). In this case, one

has o = 0 and e reduces to its vacuum expression. From Eq. (3.2.1b) and the Borel mass independence

of m± and F±, m+ = m− and F+ = F− follows. The r.h.s. of Eq. (C.7.2) reduces to de/dM−2, which

is the known vacuum sum rule [Raf84].

Rewriting these equations as polynomials in the masses m+ and m−

0 = −m2
+e(M)−m2

+m−o(M)− d

d1/M2
e(M)−m−

d

d1/M2
o(M) , (C.7.3a)

0 = −m2
−e(M) +m2

−m+o(M)− d

d1/M2
e(M) +m+

d

d1/M2
o(M) , (C.7.3b)

subtracting (C.7.3b) from (C.7.3a) on the one hand and summing the products of (C.7.3a) with m− and

(C.7.3b) with m+ on the other hand, one derives the following system of linear equations for ∆m and

m+m−

0 = −2∆me(M)−m+m−o(M)− d

d1/M2
o(M) , (C.7.4a)

0 = −m+m−e(M) + 2∆m
d

d1/M2
o(M)− d

d1/M2
e(M) . (C.7.4b)

Here, the following quantities have been introduced

∆m =
1

2
(m+ −m−) , m =

1

2
(m+ +m−) . (C.7.5)

Therefore, one has

m± = m±∆m , m2 = ∆m2 +m+m− (C.7.6)

and Eq. (C.7.4) can be solved w.r.t. ∆m and m+m−:

∆m =
1

2

o(M) d
d1/M2 e(M)− e(M) d

d1/M2 o(M)

e2(M) + o(M) d
d1/M2 o(M)

, (C.7.7)
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m+m− = −
e(M) d

d1/M2 e(M) +
(

d
d1/M2 o(M)

)2

e2(M) + o(M) d
d1/M2 o(M)

. (C.7.8)

Given m±, the strengths F± may be evaluated by virtue of Eq. (C.7.1)

F± = em
2
±/M

2 e±m∓o
m+ +m−

(C.7.9a)

= e(m±∆m)2/M2 e± (m∓∆m)o

2m
, (C.7.9b)

which can be transformed into Eq. (3.2.3).

In deriving (3.2.2) we made use of dm±/dM = 0. Therefore, it is convenient to adjust the continuum

thresholds such that m± and F± are Borel mass independent. Unfortunately, varying the threshold

parameters in order to require maximal flatness of the Borel curves leads to too small vacuum masses of

≈ 1.6 GeV. Thresholds s2
0 = (s±0 )2 ≈ 6 GeV2 are commonly chosen in vacuum [Nar01] and reproduce

the vacuum D meson mass of ≈ 1.9 GeV. Furthermore, a careful consideration of current and pole mass

of the charm quark is necessary, cf. e.g. [Nar05, Nar04]. As the focus of this work is put on medium

modifications, the center of the thresholds s2
0, defined in Eq. (3.3.1), and the charm quark mass is chosen

such that the vacuum mass is reproduced. To satisfy the requirement of Borel mass independence, the

common evaluation strategy is modified. At finite densities, (s±0 )2 stays fixed to the vacuum value, while

we demand that the minima of the respective Borel curves m+(M) and m−(M) shall be at a common

Borel mass M0 by varying the splitting of the thresholds ∆s2
0. These minima are taken as the physical

parameters m±. As a byproduct, ∆s2
0 becomes density dependent.

It must now be clarified whether the strengths F± have their minima at the same Borel mass M0, as

demanded by the initial assumption. Indeed

d

d1/M2
F±(M)

∣∣∣∣
M=M0

= em
2
±/M

2 e′ ± o′
m+ +m−

[
m2
±(M0) (e±m∓o) + e′(M0)±m∓o′

]∣∣∣∣
M0

, (C.7.10)

where a “prime” denotes a derivative w.r.t. M−2 and m′±
∣∣
M0

= 0 has been used. Inserting Eq. (C.7.2) it

follows that F± is extremal if m± is extremal.

C.8 Condensates near the deconfinement transition

As discussed in Secs. 1 and 2 the method of QSRs may, in principle, be applied to high densities and

temperatures provided the medium dependence of the condensates is known. At finite temperatures and

zero densities the in-medium condensates may be obtained from, e.g., lattice QCD. Also the Dyson-

Schwinger approach is in principle capable of determining condensates at nonzero temperature and

densities [Lan03, Zha05, Zon03a, Cha07]. However, there are many more possibilities, cf. e.g. [Jin93],

and one of the most interesting one is given in [Coh92], which is used in the following to determine

gluon condensates at large chemical potentials and temperatures next to the deconfinement transition.
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Figure C.8.1: Temperature dependence of the gluon condensates (C.8.1a) (upper curves) and (C.8.1b)
(lower curves) at µq = 0 (left panel) and µq = 270 MeV (right panel, same line and
color code as in left panel).

According to the consideration in [Mor08] one may relate the gluon condensate at finite temperature

to the QCD trace-anomaly (see Sec. A.2.13) for Nf = 3 flavors and the equation of state via

〈αs
π
G2〉T = 〈αs

π
G2〉0 −

8

9
(e− 3p) , (C.8.1a)

〈αs
π

(
(vG)2

v2
− G2

4

)
〉T = −3

4

αs
π

(e+ p) , (C.8.1b)

whereas contributions from light quarks to (C.8.1a) have been omitted in a first step, as we focus on the

continuation to finite densities. The energy density e and the pressure p are accessible by QCD lattice

evaluations [Baz09] at large temperatures but zero chemical potential. In [Mor08] these relations where

used to analyze the charmonium QSR above the critical temperature. This is possible because hadrons

consisting of heavy quarks only, such as charmonium, only depend on gluon condensates, as heavy-quark

condensates are supposed to be zero or at least small enough to be negligible or can be evaluated by virtue

of the heavy-quark-mass expansion in terms of gluon condensates. Such quarks are called static quarks.

However, energy density and pressure may be extrapolated to finite baryon densities by employing

the Rossendorf quasiparticle model [Sch08, Sch09b, Sch09a] which is here adjusted to [Baz09]. Both

condensates (C.8.1) are depicted in Fig. C.8.1 in the region near Tc at quark chemical potential µq = 0

(left panel) and µq = 270 MeV (right panel); energy density and pressure have been employed from the

quasiparticle model which allows for a thermodynamically consistent extrapolation to finite densities.

The curves for the condensate (C.8.1a) are flattened with increasing lattice temporal extend Nτ ; [Mor08]

is reproduced by the p4 action [Baz09] for Nτ = 6. On the other hand, the condensate (C.8.1b) seems

not to be affected by such a choice. At nonzero densities, the gluon condensate for 〈αsπ G2〉T drops

significantly due to the non-vanishing chemical potential. The symmetric and traceless gluon condensate

〈αsπ
(

(vG)2

v2 − G2

4

)
〉T is much less influenced by density effects. These effects have to be studied in detail

for the J/ψ, which depends essentially on the considered gluon condensates [Mor08].
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As mentioned above (see also Eq. (A.2.13)), finite current quark masses modify the trace of the energy

momentum tensor to [Coh92] (Nf = 3)

T µ
µ = −9αs

8π
GAµνG

µν
A +muūu+mdd̄d+mss̄s+ . . . , (C.8.2)

where higher order αs terms have been neglected. (The contributions of heavy quarks can be absorbed

into the first term by using the heavy-quark mass expansion.) A precise analysis would hence also have

to include the density and temperature dependence of the quark condensates. However, as the chiral

condensate is supposed to vanish above Tc due to the restoration of chiral symmetry, it is justified to

neglect their influence on the gluon condensates in Eq. (C.8.1). Furthermore, if light quark contributions

can be neglected in specific QSR evaluations due to their numerical suppression by light-quark mass

terms, it is consistent with neglecting such terms in Eq. (C.8.1), too. This offers the avenue towards the

evaluation of QSRs near/above the deconfinement transition at nonzero baryon densities.
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D Chiral partner QCD sum rules addendum

D.1 Dirac projection

Consider the trace over Dirac indices TrD[S2γ5{S1, γ5}], which naturally arises in ΠP−S,(0). To write

this as a product of two simpler traces, one can project the commutator {S, γ5} =
∑

Ô AÔÔ with

coefficients AÔ = 1
4TrD[{S, γ5}Ô], Ô being an element of the Clifford algebra. A similar expression

applies for TrD[S2γ5{γµS1γ
µ, γ5}], which is the corresponding expression in ΠV−A,(0). with coeffi-

cients listed in Tab. D.1.1. Alternatively, the coefficients for projecting ΓCSΓC =
∑

Ô AÔÔ, where

ΓC ∈ {1, γ5, γµ, γ5γµ}, are given in Tab. D.1.2. Note the occurrence of γ5 in the Aµ<ν coefficient.

Equation (4.1.5) can be derived by using

γ5σ
µν =

i

2
εµναβσ

αβ , (D.1.1)

which leads to

TrD[S1γ5σµν ]TrD [S2γ5σ
µν ] =

(
i

2

)2

ε αβ
µν εµνκλTrD [S1σαβ] TrD [S2σκλ]

=

(
i

2

)2 (
−2
(
gακgβλ − gαλgβκ

))
TrD

[
S1σ

αβ
]

TrD

[
S2σ

κλ
]

= TrD [S1σµν ] TrD [S2σ
µν ] . (D.1.2)

Equation (D.1.1) is obtained by expanding γ5σ
µν over the Clifford basis. Obviously, the only non-

vanishing trace is that for σαβ:

1

4
TrD

[
γ5σ

µνσαβ
]

=
1

4

(
i

2

)2

TrD

[
γ5[γµ, γν ][γα, γβ]

]
Table D.1.1: Coefficients of the projection of {S, γ5}.

AÔ {S, γ5} {γµSγµ, γ5}
A1

1
2TrD[Sγ5] −2TrD[Sγ5]

Aν− 0 0
Aµ<ν 1

2TrD[Sγ5σ
µ<ν ] 0

Aν+ 0 0
A5

1
2TrD[S] 2TrD[S]
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Table D.1.2: Coefficients of the projection of ΓCSΓC .

ΓC 1 γ5 γµ γ5γµ

A1
1
4TrD[S] 1

4TrD[S] TrD[S] −TrD[S]
Aν−

1
4TrD[Sγν ] −1

4TrD[Sγν ] −1
2TrD[Sγν ] −1

2TrD[Sγν ]
Aµ<ν 1

4TrD[Sσµ<ν ] 1
4TrD[Sσµ<ν ] 0 0

Aν+
1
4TrD[Sγ5γµ] −1

4TrD[Sγ5γµ] 1
2TrD[Sγ5γµ] 1

2TrD[Sγ5γµ]
A5

1
4TrD[Sγ5] 1

4TrD[Sγ5] −TrD[Sγ5] TrD[Sγ5]

=
1

4

(
i

2

)2

(−4i)ε[µ,ν][α,β]

=
i

4
22εµναβ

= iεµναβ , (D.1.3)

where the antisymmetry of the Levi-Cevita symbol has been used.

D.2 The perturbative quark propagator

According to Eq. (C.1.26), the perturbative quark propagator in momentum space in a weak (classi-

cal) gluonic background field can be written as S(p) =
∑∞

n=0 S
(n)(p) with S(n)(p) = −S(0)(p) ×(

γÃ
)
S(n−1)(p) and conventions given in Sec. C.1. By expanding the operator −ΓS(0)γµ over the

Clifford basis the following recursion relation is obtained for the traces of each propagator term

TrD

[
ΓS(n)(p)

]
= −1

4

∑
Γ′

TrD

[
Γ′ΓS(0)(p)γµ

]∑
k

(
D̃ ~αkGµν(0)

)
∂ν∂ ~αkTrD

[
Γ′S(n−1)(p)

]
.

(D.2.1)

For the sake of a concise notation we have defined D̃ ~αkGµν ≡ −g
(−i)k+1

k!(k+2)

(
Dα1 . . . DαkGµν

∣∣∣
x=0

)
and

∂ ~αk ≡ ∂α1 . . . ∂αk . Successive application of (D.2.1) reveals that the trace of each term S(n)(p) can be

written as

TrD[ΓS(n)(p)]

= (−1)n
(

1

4

)n ∑
k1,...,kn

(
D̃ ~αkn

Gµnνn

)
. . .
(
D̃ ~αk1

Gµ1ν1

) ∑
Γ1,...,Γn

TrD[ΓnΓS(0)(p)γµn ]

×
((

∂νn∂ ~αknTrD[Γn−1ΓnS
(0)(p)γµn−1 ] . . . . . .

(
∂ν1∂ ~αk1 TrD[Γ1S

(0)(p)]
)))

. (D.2.2)

The sum runs over elements of the Clifford basis. With these reduction formulas only traces of the

free propagator S(0) = (p̂ + m)/(p2 −m2) need to be considered. Moreover, the single traces form

a chain making the sum over Γi dependent on traces surviving from the sum over Γi−1. In the limit
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m → 0 and p2 6= 0 we have TrD[Γ1S
(0)(p,m = 0)] = 0 ∀Γ 6= γµ. Hence, from the last trace in

Eq. (D.2.2) only γµ is passed to the next trace. For the latter one we therefore have TrD[Γ1Γ2S
(0)(p,m =

0)γµ] = 0 ∀Γ2 /∈ {γα, γ5γα}. As TrD[γ5γαΓnS
(0)(p,m = 0)γµ] = 0 ∀Γn /∈ {γα, γ5γα} also holds,

each sum merely contains γµ and γ5γµ. Finally, we obtain for the first trace in the second line of

Eq. (D.2.2) TrD[ΓnΓS(0)(p,m = 0)γµ] = 0 ∀Γ /∈ {γα, γ5γα}, which means that TrD[ΓS(n)(p,m =

0)] = 0 ∀Γ /∈ {γµ, γ5γµ}. As this is true for all orders of the perturbative sum, we can conclude that

TrD[ΓS(p,m = 0)] = 0 ∀Γ /∈ {γµ, γ5γµ}.
The same property follows from a different representation of the propagator traces (D.2.2). Upon

projection of each S(0) in S(n) onto elements of the Clifford base the trace reads

TrD

[
ΓS(n)(p)

]
=

1,γ∑
Γ1,...,Γn

TrD

[
ΓS(0)γµ1Γ1 . . .Γn−1γ

µnΓn

] ∑
k1,...,kn

[
D̃ ~αk1

Gµ1ν1

]
. . .
[
D̃ ~αkn

Gµnνn

]

×
(
−1

4

)n(
∂ν1∂ ~αk1

TrD

[
Γ1 (p̂+m)

]
p2 −m2

. . .

(
∂νn∂ ~αkn

TrD [Γn (p̂+m)]

p2 −m2

))
. (D.2.3)

Form = 0 and p2 6= 0, only γµ remains in the sum over the Clifford base. Thus, only for Γ ∈ {γµ, γ5γµ}
there is an even number of Dirac matrices in the trace of the first line of (D.2.3). For Γ /∈ {γµ, γ5γµ} the

trace is zero.

D.3 Cancellation of IR divergences

This section documents the cancellation of infrared divergences for chiral partner OPEs in Eq. (4.1.6). For

the contributions to (4.1.6a) up to and including mass dimension 5, which restricts the quark propagator

to next-to-next-to-leading order and the gluon field to lowest order (cf. App. C.1 Eq. (C.1.35)), the

following traces are evaluated

TrD

[
S(0)(p)

]
=

4m

p2 −m2
, (D.3.1a)

TrD

[
S(0)(p)γ5σµν

]
= 0 , (D.3.1b)

TrD

[
S(0)(p)γ5

]
= 0 , (D.3.1c)

TrD

[
S(1)(p)

]
= 0 , (D.3.1d)

TrD

[
S(1)(p)γ5σµν

]
= −ig 2m

(p2 −m2)2
εµνκλG

κλ , (D.3.1e)

TrD

[
S(1)(p)γ5

]
= 0 , (D.3.1f)
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TrD

[
S(2)(p)

]
= 8g2 mpµpα

(p2 −m2)4
G µνG α

ν . (D.3.1g)

It is not necessary to consider traces of the second order quark propagator with γ5 and σµν : Up to mass

dimension 5 they can only be multiplied with their lowest order counterparts (D.3.1c) and (D.3.1b),

which are zero. A combination of second and first order propagator leads to mass dimension 6 terms.

Using (D.1.2) the following contributions have to be considered

ΠP−S(0)(q)

= −i
∫

d4p

(2π)4
〈: 1

2
TrC

{
TrD[S(0)

c (p+ q)]TrD[S
(0)
d (p)] + TrD[S(2)

c (p+ q)]TrD[S
(0)
d (p)]

+TrD[S(0)
c (p+ q)]TrD[S

(2)
d (p)] +

1

2
TrD[S(1)

c (p+ q)σµν ]TrD[S
(1)
d (p)σµν ]

}
:〉 . (D.3.2)

Due to TrD[S(0)γ5] = TrD[S(1)γ5] = 0 for arbitrary quark masses there is no γ5 contribution up to this

mass dimension. Likewise TrD[S(0)γ5σµν ] = TrD[S(1)] = 0. Lorentz invariance requires that terms

which contain only one gluon field are zero. Therefore, a first order quark propagator must be combined

with a propagator of at least the same order. Keeping both masses finite these four terms give rise to the

following integral

ΠP−S(0)(q) = −i
∫

d4p

(2π)4
〈: 1

2

4mc

(p+ q)2 −m2
c

4md

p2 −m2
d

TrC [1C]

+
g2

2

8mc

[(p+ q)2 −m2
c ]

4

4md

p2 −m2
d

pµpαGAµνG
B ν
α TrC

[
tAtB

]
+
g2

2

4mc

(p+ q)2 −m2
c

8md

[p2 −m2
d]

4
pµpαGAµνG

B ν
α TrC

[
tAtB

]
+
g2

4

4mc

[(p+ q)2 −m2
c ]

2

4md

[p2 −m2
d]

2
GAµνG

BµνTrC

[
tAtB

]
:〉 . (D.3.3)

Analyzing the integral in Euclidean space reveals the following results in terms of the integral (C.4.6).

The first term is ∝ mdmcI
0,0
0 (q2,m2

d,m
2
c). The second gives rise to two terms which are ∝ mdmc ×

I0,3
2 (q2,m2

d,m
2
c) and ∝ mdmcI

2,3
3 (q2,m2

d,m
2
c), respectively. The last term is ∝ mdmcI

1,1
2 (q2,m2

d,m
2
c).

These terms are all zero in the limit md → 0. On the other hand, the third term does not vanish for

md → 0. It gives rise to a term ∝ mdmcI
3,0
2 (q2,m2

d,m
2
c), which diverges with m−1

d . Using (C.3.6) the

required projection of the gluon fields reads

〈:δABGAµνGB ν
α :〉 =

gµα

4
〈:G2 :〉 − 1

3

(
gµα − 4

vµvα

v2

)
〈:
(

(vG)2

v2
− G2

4

)
:〉 . (D.3.4)

Note that the diagonal elements of (D.3.4) are vacuum specific, whereas the medium specific contribution

is traceless. The integral of the third term of Eq. (D.3.2) can be evaluated in Euclidean space:
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∫
d4p

(2π)4

mdmc

[(p− q)2 −m2
d]

4

(p− q)µ(p− q)ν
p2 −m2

c

W.R.−→ 2

3

mcmd

(4π)2

(gµα
2

I3,0,2(q2,m2
d,m

2
c) + 2qµqαI3,2,3(q2,m2

d,m
2
c)
)
. (D.3.5)

Here, the relation I5,0,3− 2I4,0,3 + I3,0,3 = I3,2,3 has been used and “W.R.” indicates that a Wick rotation

has been performed. By virtue of Iijk(q
2,m2

d,m
2
c)→ Ijik(q

2,m2
d,m

2
c) the corresponding integral of the

second term in Eq. (D.3.3) can be derived. The limit md → 0 for both terms in Eq. (D.3.5) is

lim
md→0

mdI3,0,2(q2,m2
d,m

2
c) =

1

md

1

q2 +m2
c

, (D.3.6a)

lim
md→0

mdI3,2,3(q2,m2
d,m

2
c) = 0 , (D.3.6b)

where Eq. (D.3.6a) reveals the famous infrared singularity from vacuum D meson sum rules (cf.

Eq. (C.4.11)). As the medium specific contribution to (D.3.4) is traceless with respect to Lorentz

indices and, due to the vanishing of the second term in Eq. (D.3.5), there is no medium specific infrared

divergent term. Hence, the only terms that have to be absorbed into the condensates by virtue of the

introduction of non-normal ordered condensates are vacuum specific. This is in line with the cancellation

of 〈: d̄γµDνd :〉 in Eq. (4.1.6) which would have to absorb the medium specific divergences. Moreover,

infrared divergent terms which enter through the medium specific gluon condensate, therefore, must be

part of the γµ or γ5γµ parts of the quark propagator.

Owing to Eqs. (D.3.4), (D.3.5) and (D.3.6) the limit md → 0 of (D.3.2) in Euclidean space is

ΠP−S(0)(q) = − i
2

∫
d4p

(2π)4
〈:TrD[S(0)

c (p+ q)]TrC,D[S
(2)
d (p)] :〉 (D.3.7)

W.R.−→ − i
6
i〈: αs

π
G2 :〉I3,0,2(q2,m2

d,m
2
c)mcmd (D.3.8)

= − i
6
i〈: αs

π
G2 :〉mc

md

1

q2 +m2
c

. (D.3.9)

To arrive at the first equality we use the fact that the lowest order quark propagator is a unit in color space

and the additional imaginary unit stems from the Wick rotation.

The normal ordered chiral condensate in lowest order of the light quark mass enters via the following

expression

Π
(2)

〈d̄d〉(q) =
1

2
〈: d̄d :〉TrD [Sc(q)] . (D.3.10)

Here, TrD [Sc(q)] is the Wilson coefficient of the chiral condensate. Expressing the normal ordered

condensate by the non-normal ordered condensate (cf. Eq. (C.5.1))

〈: d̄d :〉 = 〈d̄d〉+ i

∫
d4p

(2π)4
〈:TrC,D [Sd(p)] :〉 (D.3.11)
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leads to

Π
(2)

〈d̄d〉(q) =
1

2
〈d̄d〉TrD [Sc(q)] +

1

2
TrD [Sc(q)] i

∫
d4p

(2π)4
〈:TrC,D [Sd(p)] :〉 . (D.3.12)

Despite the striking similarity, revealed by the projection onto elements of the Clifford basis in Eqs. (4.1.5)

and (4.1.6), of the third term in Eq. (D.3.2) which has to be canceled and the additional term in

Eq. (D.3.12), a general proof cannot be given and the necessity for a precise evaluation is obvious.

Upon insertion of (C.5.1) and in the limit md → 0 the anticipated cancellation of infrared divergences in

terms of light quark masses is revealed

Π
(2)

〈d̄d〉(q)
W.R.−→ 1

2
〈d̄d〉TrD [Sc(q)]−

1

6

mc

md

1

q2 +m2
c

〈: αs
π
G2 :〉 . (D.3.13)

Adding (D.3.6) and (D.3.13) the infrared divergent term cancels out. Furthermore, Eq. (4.1.6) and the

explicit evaluation [Hil08] of the renormalization of normal ordered condensates shows that, in chiral

partner sum rules up to and including mass dimension 5 in the limit md → 0, only the chiral condensate

mixes with other condensates by virtue of introducing non-normal ordered condensates. Thus, apart from

the term which cancels the infrared divergence no additional chirally even terms enter and the final OPE

is chirally odd.

So far, the investigation was carried out for the spin-0 case. Fortunately, as the only formal difference

between the spin-0 and spin-1 cases is the cancellation of the projections of quark propagators onto the

tensor σµν in the spin-1 case, see Eqs. (4.1.5) and (4.1.6), from the previous evaluation it is clear that the

terms of interest are the same in both cases up to mass dimension 5.
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Acronyms

BJL Bjorken-Johnson-Low

BSA Bethe-Salpeter amplitude

BSE Bethe-Salpeter equation

BSM Bethe-Salpeter matrix

BSV Bethe-Salpeter vertex function

DCSB dynamical/spontaneous chiral symmetry breaking

DSE Dyson-Schwinger equation

EoM equations of motion

ETC equal-time commutator

ETCCR equal-time current commutation relation

OPE operator product expansion

QCD quantum chromodynamics

QSR QCD sum rule

VOC vanishing of chirally odd condensates
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