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Chapter 1 

Introduction 

Since 1986, the scientific community is puzzled with the microscopic mechanism giving 

rise to high-temperature superconductivity in doped cuprates [1]. Despite the burst of 

excitement right after this seminal discovery, the discussion is still far from being settled [2]. 
The activity in the field of doped cuprates drew attention to their parent compounds— 

stoichiometric low-dimensional cuprates that are magnetic insulators with localized spin 

S = 1/2 [3]. Subsequent studies revealed a fascinating variety of magnetic ground states 

(GSs) realized in these seemingly simple systems, leaving no doubt that undoped cuprates 

are interesting per se. In particular, their insulating orbitally-ordered GS together with 

the unique diversity of structural motives, and consequently, magnetic lattice topologies, 

makes cuprates an excellent playground to investigate real material implementations for 

spin-only quantum models, such as a spin chain or a square lattice, which for years existed 

as a Ding an sich, out of the reach for experimental methods. 

The macroscopic magnetism originates from short-range (typically well below 1 nm) 

exchange couplings that constitute the microscopic magnetic model. The topology of 

any microscopic magnetic model is apparently related to the geometrical features of the 

underlying crystal structure—the mutual arrangement of atoms in solids. Already at the 

early stages of real material studies, it became gradually evident that the assignment of a 

microscopic magnetic model (spin model) to a particular system is a highly nontrivial task. 

Several instructive examples illustrate this complexity. The first system is the S = 1/2 vanadate 

compound (VO)2P2O7.1 The magnetic susceptibility of (VO)2P2O7 can be well described by 

an alternating chain model, although the crystal structure bears a ladder-like arrangement of 

magnetic V4+ atoms [4]. At the same time, a certain parameterization of the ladder model 

also conforms to the experimental data [5]. Later on, the analysis of INS data in Ref. 6 

disclosed the irrelevance of the ladder model for (VO)2P2O7. Besides, the experimental 

spectra exhibited a pronounced high-energy mode, which was interpreted as a signature of 

1Vanadates have a 3d1 electronic configuration of V4+. The S = 1/2 nature of magnetic atoms as well as 
the absence of charge and orbital degrees of freedom, make them close relatives to cuprates, at least for the 
magnetic properties. 
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a two-magnon bound state [6]. Subsequent studies based on alternative techniques refuted 

this conjecture and revealed that the high-energy mode and the accompanying double-gap 

feature arise from two nonequivalent alternating chains present in this system [7]. Another 

example, the frustrated HEISENBERG chain LiCu2O2, had been proposed to imply two relevant 

AFM exchange integrals J1 and J2, based on thermodynamical measurements and neutron 

diffraction data [8–10], while a combined NMR and DFT study [11] as well as the INS 

investigation [12] revealed the FM nature of J1. The nature of relevant couplings—whether 

they are AFM or FM—was controversially debated for many other systems, e.g. azurite 

Cu3(CO3)2(OH)2 [13–15], dioptase Cu6Si6O18 ·6H2O [16, 17], LiVCuO4 [18, 19] etc. 

The source of these mistaken and controversial magnetic models is concealed deep in 

the methodological issues. There is no doubt that experiments typically provide robust and 

unbiased results for the basic characteristics of the magnetic GS and the excitation spectrum, 

such as for instance, the presence or the absence of the singlet-triplet gap (spin gap). 

However, a quantitative description of the magnetic properties requires the knowledge of 

the underlying magnetic model, i.e. the microscopic Hamiltonian, which key parameters are 

the magnetic exchange couplings. Although experimental information can be indeed used to 

challenge and refine such models, it is generally very tricky to derive the magnetic model 

itself (some instructive examples were discussed above). Therefore, a magnetic model should 

be chosen prior to the analysis of experimental data. To a large extent, the assignment of a 

particular model is done based on structural considerations by applying simplified empirical 

rules, such as the GOODENOUGH–KANAMORI rules [20, 21], trying essentially to guess the 

magnetic model. However, recent theoretical, numerical as well as experimental studies on 

a number of materials evidence that such approach is at best not universally applicable, and 

can be quite misleading. 

In the present study, an alternative, multi-step microscopic approach is developed. This 

approach is capable of evaluating reliable quantitative magnetic models for rather complex 

systems, in particular, a family of cuprates with a kagome-lattice-like arrangement of 

magnetic atoms. The starting point of this procedure is a consideration of the experimental 

structural data, used as an input for DFT calculations. Unfortunately, this step is sometimes 

carelessly skipped in DFT studies. Several instructive examples, demonstrating the crucial 

importance of the structural input, will be discussed. Next, a minimal DFT-based microscopic 

magnetic model is evaluated. This part of the study comprises band structure calculations, 

the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a 

microscopic magnetic model. It will be shown that a combination of full-potential calculation 

with a rigorous analysis of the relevant orbitals and couplings, together with an accurate 

treatment of correlations within parameter-dependent procedures, yield reliable quantitative 

magnetic models. 

The GS and the magnetic excitation spectrum of the evaluated model are analyzed by 

using various simulation techniques, such as quantum Monte Carlo, exact diagonalization 
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and density-matrix renormalization groups, while the choice of a particular technique is 

governed by the dimensionality of the model, and the presence or absence of magnetic frus­

tration. Unfortunately, extensive literature on the methodology of the simulation techniques 

contrasts with a lack of information concerning the comparison of the simulated results with 

the experimental data. One of the aims of the present study is to fill this gap. 

The approach used and developed in the present study is universal, and can be applied 

even in the absence of any experimental information beyond the crystal structure. In this 

case, the guiding goal of a study is a search for unusual spin models, based on the analysis 

of the crystal structure or by considering the available experimental data for related systems. 

In particular, such studies can be motivated by peculiar structural features of a certain 

compound that govern its magnetic coupling regime, and thus tailor the respective spin 

lattice. Moreover, it is possible to predict the magnetic properties of the compound and 

estimate its potential to exhibit interesting physics. 

Furthermore, this approach is useful for studying the subtle interplay between the crystal 

structure and the magnetic properties. For instance, a substitution of a group of atoms in 

a particular compound is an appealing way to tune the magnetism. Based on empirical 

considerations or chemical intuition, it is in general tricky to predict how the magnetic 

properties change upon a structural substitution, i.e. to perform a directed substitution. In 

this case, DFT calculations combined with simulations of the microscopic magnetic model 

are capable to guide such studies and largely reduce the efforts needed to synthesize new 

materials and investigate their magnetic properties experimentally. 

The thesis is organized as follows. Chapter 2 contains essential information on the 

magnetism of cuprates: typical structural features, the basics of their electronic structure, 

the relevant coupling mechanisms and the magnetic GSs. It can be regarded as an extended 

introduction, focused on the problems characteristic to cuprates as magnetic materials. 

The next three chapters generally follow the main lines of the developed procedure, which 

may be subdivided into four steps. The first step is a careful examination and evaluation of 

the available experimental data, particularly the structural input. This apparently requires 

profound knowledge of the relevant experimental techniques. Thus, Chapter 3 of this thesis 

comprises a description of the most popular techniques for determination and refinement of a 

crystal structure and measurement of magnetic properties, focusing on particular capabilities 

and limitations of a certain method, while all methodological and technical details are 

intentionally omitted. 

Band structure calculations are the second step of the procedure. Their major role in 

the developed approach requires an extensive discussion. A brief summary on the basics of 

DFT is followed by a more extended discussion on the most popular approximations used 

for the exchange-and-correlation potential, as well as the most common schemes to account 

for strong correlations. Then, the software used for band structure calculations, is described. 

Finally, the step-by-step evaluation of a magnetic model is presented. 
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The third part of the approach—model simulations, enable direct comparisons between 

the resulting magnetic model and the experimental data. In the beginning of Chapter 5, the 

criteria for the choice of a certain simulation technique are discussed. Besides, the essentials 

of the most popular techniques—QMC, exact diagonalization and DMRG, widely used in the 

present study, are described. A detailed discussion is devoted to the methodological aspects 

of bridging together the experimental data and the simulated quantities. 

The final step, comparison or prediction for the experimental data, largely depends on 

the properties of the system under investigation. Considering the complexity of the described 

approach, it is reasonable (if not necessary) to test it for various crystal structure geometries 

and motives that give rise to rather simple or well-understood magnetic models. Such 

test-cases are discussed in Chapter 6, making it a sort of a “cookbook” for DFT-based studies 

of low-dimensional cuprates. The results presented in Chapter 6 justify the calculational 

approach and can be used as a benchmark for more complex situations. 

In Chapter 7, the developed approach is applied to materials claimed to imply the physics 

of the S = 1/2 HEISENBERG kagome model, and thus candidates for a spin liquid magnetic 

GS. Based on the DFT calculations, microscopic magnetic models are evaluated. As will be 

shown, several features relevant for the magnetic properties have been disclosed this way. 

Finally, the Chapter 8 summarizes the results of the present study. Besides, the per­

formance as well as limitations of the developed approach are discussed, and its possible 

extensions and modifications are outlined. 
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Chapter 2 

Magnetism of cuprates 

The title of this Chapter requires an immediate addition concerning the word “cuprates”: 

throughout the thesis, this term is used for stoichiometric crystalline compounds that 

contain both divalent copper Cu2+ and oxygen. In the scientific literature, these compounds 

are sometimes referred as “undoped cuprates”, to sharpen the contrast with their doped 

counterparts. Since the complex physics of doped cuprates is not discussed in this thesis, in 

the following, the word “undoped” is omitted but implied throughout this work. 

Another remark concerns the obligatory presence of oxygen in cuprates. As revealed by 

numerous studies, the magnetism of cuprates bears strong similarities to other stoichiometric 

Cu2+ systems, such as chlorides, bromides, nitrides. Therefore, these systems will be used 

for comparisons, although they are not subject of the present study. 

Sec. 2.1 is devoted to general aspects of the electronic structure of cuprates. In particular, 

it is explained how the localized magnetism of cuprates emerges from the joint effect of 

crystal field (CF), covalency and correlations. In Sec. 2.2, the types of magnetic interactions 

relevant for cuprates, are discussed. These are, in the first place, superexchange and HUND’s 

rule exchange. The variety of magnetic GSs found in cuprates, is reviewed in a systematic 

way in Sec. 2.3. 

2.1 Electronic structure of cuprates 

2.1.1 Crystal field splitting 

The local environment of copper determines the CF splitting and therefore plays a key 

role for the magnetic properties. In cuprates, the idealized coordination of Cu2+ is a 

regular octahedron CuO6. This geometrical configuration splits the five 3d orbitals into two 

manifolds: the twofold-degenerate eg and the threefold-degenerate t2g . Repulsion between 

the 3d electrons of Cu and the electrons of ligands gives rise to the difference in energy 

between the two manifolds: the eg orbitals “point” to the ligand O atoms, leading to sizable 

repulsion between the electrons, while the t2g orbitals are located between the ligands, 
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which is energetically favorable. 

In the regular octahedral coordination, both eg orbitals (3dx2− y2 and 3d3z2−r2) are de­

generate. Since the electronic configuration of a Cu2+ atom is 3d9, i.e. there is only one 

hole in the 3d level, the degenerate configuration is electronically unstable. This instability 

typically leads to a sizable distortion of the CuO6 octahedra, lifting the degeneracy. This 

distortion is generally acknowledged as a JAHN–TELLER distortion, although there is at best 

no evidence that the mechanism put forward by JAHN and TELLER [22] plays the leading role 

in cuprates [3]: this mechanism accounts for instability and the resulting distortion, but 

does not account for a particular way the degeneracy is lifted. Although many hypothetical 

distortions can be conceived, the overwhelming majority of cuprates exhibits a particular 

type of distortion, which involves shortening of the four intraplane Cu–O bonds and a 

concomitant elongation of the two apical bonds. This leads to formation of a CuO4 plaquette 

—a square of four O atoms bonded to the central Cu atom(Fig. 2.1), with the typical Cu–O 

bond length 1.90–2.05 Å. In many low-symmetry compounds, the plaquette can be distorted, 

which leads to nonequivalent bond lengths and a nonzero volume of the CuO4 polyhedron. 

Figure 2.1: Left panel: forma­
tion of a CuO4 plaquette. Right: 
A WANNIER function (FOURIER­
transform of the respective 
BLOCH state, see Sec. 4.2.3 
for details) for the Cu 3dx2− y2 

state. Distortion of the initially 
octahedral coordination leads 
to sizable hybridization of Cu 
3dx2− y2 and O 2pσ orbitals, as 
indicated by the large weights 
of the Wannier function on the 
ligand atoms. 

Cu 3dx2−y2 + O 2pσ
antibonding combination

⇒

CuO6

The formation of plaquettes is usually referred as the “4+2” distortion (four short and 

two long Cu–O bonds). The opposite type of distortion, “2+4”, also misleadingly called 

“anti-JAHN–TELLER”, describes the situation where the two apical bonds shorten, while the 

four intraplane bonds elongate. Such distortion is uncommon for cuprates, with notable 

exceptions of CuSb2O6, volborthite Cu3[V2O7](OH)2 ·2H2O, and presumably, vesigneite 

BaCu3V2O8(OH)2. 

Cu2+ can bear a local coordination which essentially differs from the octahedral. In the 

simplest case, apical O atoms are absent, and the elementary units are CuO4 plaquettes, as in 

Bi2CuO4. Another type of the local coordination is the triangular bipyramid CuO5 (“2+3”), 

which occurs in the systems with sufficiently high symmetry, e.g. in Cu2OSeO3. 

The local environment of Cu can contain, in addition to O atoms, also halogen atoms 
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like Cl or Br. In this case, for the correct understanding of CF effects, the difference in 

radii of ligand atoms should be taken into account. As a result, mixed oxygen-halogen 

plaquettes, e.g. CuO3Cl or CuO2Cl2, can appear. The instructive example of CaCu2(SeO3)2Cl2 

is discussed in Sec. 6.1.3. 

2.1.2 Covalency 

Distortion of the local coordination is an ubiquitous phenomenon in metallate systems. The 

special feature of cuprates is the strong hybridization of a particular Cu 3d orbital and the 

respective O 2pσ orbitals (Fig. 2.1). This effect is known as covalency, and it gives rise to the 

splitting between the bonding and the antibonding (dp)σ bands. This splitting is typically 

much stronger than the CF splitting and amounts to 5–8 eV (Fig. 2.2). 
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Figure 2.2: The principal effects (top) giving rise to the electronic structure of cuprates and a typical 
electronic structure of a cuprate compound (melanothallite Cu2OCl2), as yielded by a full-potential 
DFT code (bottom). Bottom panel, upper part: a weakly correlated functional (LDA, GGA) leads to 
correct treatment of crystal field (CF) and covalency effects, but underestimates correlations, which 
results in a metallic solution (states at cF). Bottom panel, lower part: static mean-field treatment of 
correlations (DFT+U) leads to the correct insulating GS, but worsen the description of covalency 
effects (note the different ratio of Cu 3dx2− y2 and O states in the vicinity of cF). 

The orbital character of the relevant 3d orbital is defined by short Cu–O bonds and thus 

is ruled by the local coordination. For the most common case of the “4+2” distortion, the 
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covalency affects the 3dx2− y2 orbital. The less common “2+4” and “2+3” environments 

are characterized by short distances between the central Cu and apical O atoms, thus the 

3d3z2−r2 orbital is active. 

The effect of covalency drastically alters the electronic structure: the bonding (dp)σ 

states of Cu and O become the lowest-lying states of the valence band. The non-bonding Cu 

and O states lie higher in energy and form the bulk of the valence band. All these states are 

fully filled. The half-filled antibonding (dp)σ bands are located at the FERMI energy cF. 

2.1.3 Correlations 

The discussion of the CF and covalency effects so far was based on a molecule-like model for 

a single CuO6 octahedron. However, cuprates are crystalline materials, and the molecular 

description is not fully appropriate. In particular, discrete energy levels transform into bands. 

Therefore, band structure calculations are a natural way to resort to the bulk picture. The 

resulting effect of CF and covalency splitting can be visualized by considering the electronic 

DOS (Fig. 2.2, upper part of the bottom panel) of a typical cuprate material, as yielded 

by standard approximations for the exchange and correlation potential, such LDA or GGA. 

Although the CF effects are substantially smeared, the covalency splitting of Cu 3dx2− y2 

states is clearly visible. 

Unfortunately, this simplified picture is wrong even qualitatively: it predicts a metallic 

GS in contrast to the insulating GS, experimentally well-justified for undoped cuprates [3]. 
The reason for this discrepancy is the small extension of Cu 3dx2− y2 orbitals which gives rise 

to large COULOMB repulsion (correlation) of two electrons occupying this orbital. As a result, 

the antibonding (dp)σ states bifurcate, and the material becomes insulating (Fig. 2.2, lower 

part of the bottom panel). 

Depending on the character of the lowest-lying unoccupied states, two types of correlated 

insulators are distinguished. In MOTT insulators, the lowest lying excited states are empty 

d-states of transition metal. Typical examples are vanadates (V4+) or titanates (Ti5+). In 

contrast, cuprates have a 3d9 electronic configuration, with no empty d states. Thus, the 

process of electron transfer between Cu d states and O p states has the lowest energy. Such 

materials are classified as charge-transfer insulators. 

To summarize, the qualitative understanding of the electronic structure of cuprates 

requires a proper accounting for three major effects: CF splitting, covalency and correlations. 

2.2 Magnetic properties of cuprates
 

The magnetism of cuprates originates from interaction between unpaired electrons, localized
 

at the Cu sites. This interaction has a purely quantum nature and will be discussed below.
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An important remark concerning the exchange integrals Ji: throughout the thesis, 

positive and negative values denote AFM and FM exchange, respectively. The units are K 

(this simplifies comparison to experiments). Strictly speaking, these quantities should be 

denoted as Ji/kB. For ease of notation, the BOLTZMANN constant kB is generally omitted 

throughout the thesis (except for the numerated equations). 

2.2.1 Superexchange 

The concept of superexchange was introduced by P. W. ANDERSON [23, 24] to describe the 

AFM coupling between two magnetic atoms, which involves at least one intermediate non­

magnetic atom. The simplest physical interpretation of this phenomenon is the reduction 

of energy by delocalization. Overlaps between the d orbitals and the ligand orbitals are 

gateways that allow for such a delocalization, provided that the electron spins are antiparallel. 

This gives rise to an AFM interaction. For cuprates, the theory of superexchange can be 

regarded as the microscopic theory for the WEISS molecular field concept [25]. 

The antibonding σ-combination of Cu 3dx2− y2 and O 2p orbitals, realized in the majority 

of cuprates gives rise to a strong superexchange, making it the leading AFM coupling 

mechanism. However, superexchange can be realized not only via Cu–O–Cu connections, 

but also more complex paths such as Cu–O–O–Cu (the surplus term “super-superexchange” 

is sometimes used for such paths) or Cu–O–M–O–Cu, where M is a non-magnetic atom. 

The energy scale of superexchange in cuprates strongly depends on the respective 

superexchange path. Thus, the strength of the resulting exchange coupling can vary in a 

broad range from zero to about 2000 K in Sr2CuO3 [26]. However, such high values are rare. 

The leading exchange typically does not exceed several hundreds of K, whereas in many 

cases it is even below 100 K. 

The strength of the coupling generally decreases upon increase of the distance between 

the respective Cu atoms. However, this rule is not universal, since the strength also de­

pends on the mutual orientation of the magnetic orbitals as well as the ligand orbitals. 

In many cases, e.g. CaCu2(SeO3)2Cl2 (Sec. 6.1.3) and Cu2A2O7 (Sec. 6.2.1), long-range 

superexchange can give rise to a sizable coupling, which strongly exceeds the NN exchange. 

2.2.2 Ferromagnetic exchange 

Recent extensive studies on cuprates with structural chains of edge-sharing CuO4 plaquettes 

leave no doubt that in nearly all these systems the NN coupling is FM. Therefore, the relevant 

FM coupling mechanism in these systems dominates over the superexchange. In principle, 

the direct coupling between the d electrons of the neighboring Cu atoms could give rise to 

an FM coupling. However, typical Cu–Cu distances exceed 2.8 Å, which is far too large for 

any appreciable direct coupling. Instead, the leading mechanism of FM coupling in cuprates 

is the HUND’s rule coupling JH. 
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The mechanism of the HUND’s rule coupling can be illustrated by considering a dimer 

of two CuO4 plaquettes, and varying the Cu–O–Cu angle.1 The staring point is the corner-

sharing geometry with the Cu–O–Cu angle equal to 180◦ (Fig. 2.3, left). This configuration 

is optimal for superexchange, which is realized through the O 2p orbital which “connects” 

the Cu atoms, and the respective AFM coupling is large. The decrease of the Cu–O–Cu angle 

leads to a gradual diminishing of the σ-overlap of Cu 3d and O 2p orbitals and consequently, 

reduces the AFM coupling. At the same time, another O 2p orbital becomes involved in the 

superexchange process. As a result, electrons occupying the two different O 2p orbitals can 

reduce their energy by parallel alignment of their spins (HUND’s rule), giving rise to an FM 

contribution. 

At some critical value of the Cu–O–Cu angle close to 97◦, the AFM and FM contributions 

balance each other and cancel the effective magnetic coupling. For smaller values of 

the Cu–O–Cu angle that are be realized in cuprates (≤∼85◦), the FM coupling becomes 

dominant. 

Figure 2.3: Competition between superex­
change and HUND’s rule coupling is a 
dimer of CuO4 plaquettes. Left: superex­
change is maximal, HUND’s rule coupling 
is absent. Right: HUND’s rule coupling is 
maximal, superexchange is absent. t≫ 0, JH = 0 t = 0, JH≫ 0

↑ ↓ ↑ ↑

The mechanism discussed can give rise to a sizable FM exchange of about −225±25 K 

(e.g., Ref. 28). Although it is one order of magnitude smaller than the maximal values 

of superexchange, FM contributions can play a substantial role especially for short-range 

couplings. 

2.2.3 Frustration 

The set of all relevant exchange couplings forms a microscopic magnetic model, or a spin 

lattice of magnetic atoms (nodes) connected by AFM or FM couplings (bonds). The whole 

variety of possible lattice topologies can be subdivided into two major classes, non-frustrated 

and frustrated topologies. 

On a microscopic level, magnetic frustration implies the absence of a magnetic structure 

that would match all microscopic exchange couplings. Here, the word “match” definitely 

needs an additional explanation. It can be given in terms of a classical HEISENBERG model, 

in which spins are described by classical vectors kSi and kSj of length 1/2, coupled by positive 

(AFM) or negative (FM) exchange interactions Ji j. Frustration can be illustrated by consid­

ering the products −4[kSi · Sk j](Ji j/|Ji j|). For each pair of spins (i, j), this product is a real 

1The magnetic behavior of this model is discussed in Ref. 27. 
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number from the interval [−1, 1]. If this product is equal to unity, the spin arrangement 

matches the respective coupling (parallel arrangement for an FM coupling, antiparallel 

arrangement for an AFM coupling), i.e. the coupling is satisfied. If −4[kSi · kSj](Ji j/|Ji j|) < 1, 

the coupling is not satisfied. If this is the case for at least one pair of spins, the respective 

magnetic model is frustrated. 

For a quantum model, the microscopic magnetic model should be investigated for the 

presence of competing interactions. Depending on the type of couplings that compete 

with each other, magnetic frustration can be of two kinds. If the competing couplings are 

symmetrically related, i.e. they have the same sign and exactly the same magnitude, the 

corresponding situation is called geometrical frustration. The opposite case, referred as 

frustration due to competing interactions, implies that the respective exchange couplings 

can differ in sign and magnitude. 

The classical example of geometrical frustration is a triangle of antiferromagnetically 

coupled spins (Fig. 2.4, left). The prerequisite for a realization of this configuration is the 

presence of the threefold symmetry, i.e. the space group should be either trigonal or cubic. 

Most studied examples of geometrically frustrated spin lattices are the triangular and the 

kagome lattice (2D), as well as the pyrochlore lattice (3D). 

geometrical
frustration

frustration
due to competing

interactions

Figure 2.4: Two kinds of magnetic frustra­
tion. Spins are depicted by open circles. 
Red and blue arrows denote AFM and FM 
exchange couplings, respectively. 

Frustration due to competing interactions is a more frequent phenomenon than the 

geometrical frustration. First, even an infinitesimal deviation from the threefold symmetry 

destroys geometrical frustration. Second, any anisotropic version of a geometrically frus­

trated situation (e.g. anisotropic triangular lattice), falls into this class. Here, in contrast 

with the geometrical frustration, a competition between AFM and FM couplings is possible. 

2.2.4 DZYALOSHINSKII-MORIYA couplings 

At present, there is no doubt that the magnetic properties of cuprates are generally well 

accounted for by isotropic exchange couplings. However, isotropic couplings can not explain 

weak ferromagnetism, observed for several systems. This problem was brought to light 

by experiments on α-Fe2O3 [29]. DZYALOSHINSKII argued [30] that the observed effect 

is related to the spin-orbit coupling. Following his phenomenological explanation of this 

phenomenon, MORIYA derived the corresponding expression for the coupling by including the 
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spin-orbit coupling into the theory of superexchange [31]. The energy correction appeared 

to proportional to the dot product of a certain vector Dk i j and the cross product of the 

respective spin operators Si × S j. In addition, MORIYA formulated several rules that relate 

the components of Dk i j with local symmetry [31]. 

2.3 Magnetic ground states 

The variety of magnetic GSs found in cuprates is probably the main reason why they are in 

the focus of solid state physics during the last 25 years. The vast number of studies on the 

subject allows for only a brief summary to be given here. Besides, the results presented in 

Chapters 6 and 7 should be also regarded as a contribution to this field. 

2.3.1 Magnetically ordered ground states 

Continuous symmetries, such as SU(2) symmetry of the HEISENBERG model, can not be 

spontaneously broken at finite temperature neither in 1D nor in 2D [32]. Thus, a 3D 

coupling regime is a prerequisite for a long-range magnetically ordered GS. 

The two basic characteristics of an ordered GS are the propagation vector kq and the 

ordered moment. The latter is traditionally decomposed into a vector norm m (also referred 

as order parameter) and direction of the moment. The components of the propagation vector 

describe the mutual arrangement of spins connected by the respective lattice translation 

vector (Fig. 2.5). There are two standard notations of the individual components. According 

to the first scheme, the components are given in the units the angle between the spins: 0 for 

a parallel arrangement, π for an antiparallel arrangement. This notation is typically used in 

theoretical works. In the other notation, the components are normalized to 2π, leading to 
1/2 for an antiparallel arrangement. This notation prevails in experimental works. 

a

b

~q =
(
1
2, 0

)
≡ (π, 0)

small m

~q = (0, 0)
large m

~q =
(
1
4,

1
2

)
≡

(
π
2 , π

)

large m

Figure 2.5: Basic characteristics of a magnetically ordered GS: the propagation vector kq and the 
ordered magnetic moment m. Two different notations for the kq vectors are presented. Gray filled 
squares and red dashed lines denote the crystallographic and the magnetic unit cells, respectively. 

The value of the magnetic moment is usually defined in µB. The S = 1/2 Cu2+ atom has 
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a magnetic moment very close to 1 µB. However, quantum fluctuations can substantially 

reduce the ordered moment at T →0. Therefore, the value of the ordered moment is a direct 

measure of quantum effects. 

Antiferromagnetic GS 

The most common magnetic GS in cuprates is antiferromagnetic (AFM). This is not surprising, 

provided that the leading magnetic coupling mechanism in cuprates is the superexchange. 

Examples are ubiquitous, e.g. the archetype systems La2CuO4 (square lattice) and Sr2CuO3 

(NN chains). The propagation vectors can be very different even in closely related or 

isostructural compounds (e.g. Sec. 6.2.1). Applying an external magnetic field, AFM ordered 

systems may exhibit highly nontrivial behavior, including magnetization jumps or plateaus, 

e.g. in CdCu2(BO3)2 (Sec. 6.2.2) or azurite Cu3(CO3)2(OH)2. 

The observed values of the ordered magnetic moment in AFM cuprates span a broad 

range from 0.06 µB in Sr2CuO3 [33] to 0.96 µB in Li2CuO2 [34], evidencing the variety of 

different microscopic mechanisms responsible for the formation of antiferromagnetically 

ordered states. 

Quite often, the anisotropic DZYALOSHINSKII-MORIYA couplings give rise to a small macro­

scopic moment along a particular direction, e.g. in La2CuO4 [35]. This effect, typically 

referred as “weak ferromagnetism”, should not be confused with the FM GS state. The 

alternative term “canted antiferromagnetism” is more appropriate from this point of view. 

Ferromagnetic GS 

For the FM GS, the FM couplings should dominate over the AFM ones along all three 

dimensions. Since the leading magnetic coupling mechanism in cuprates is superexchange, 

ferromagnetism is a very rare phenomenon. Still, the examples of La4Ba2Cu2O10 [36, 37], 
as well as CaCu3Ge4O12 and CaCu3Sn4O12 [38], evidence that for a particular orthogonal 

arrangement of CuO4 plaquettes, which practically prohibits any appreciable superexchange, 

the FM GS can be stabilized. The microscopic mechanism responsible for the presence of 

long-range FM couplings is investigated in Ref. 39. As a consequence of the low energy scale, 

the ordering temperature TC in these systems is usually below 10 K. 

Ferrimagnetic GS 

A ferrimagnetic GS is also uncommon for cuprates. It can be stable for systems that bear 

different multiplicities of structurally independent Cu atoms. For instance, Cu2OSeO3 has 

two nonequivalent Cu sites, Cu(1) and Cu(2) [40]. Within the unit cell, four Cu(1) and 

twelve Cu(2) are located. The Cu(1) atoms are coupled FM to each other, forming a 

sublattice of parallel spins. The Cu(2) are also coupled FM, forming another sublattice. The 

two sublattices are coupled to each other by a sizable AFM exchange, which gives rise to 
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their mutually antiparallel arrangement. Thus, in the GS, four down spins of Cu(1) and 

twelve up spins Cu(2) result in a nonzero magnetization, which amounts to the half of the 

saturation magnetization. 

Spiral GS 

In spiral GSs, the neighboring spins are aligned neither parallel, nor antiparallel. As a result, 

spiral-like magnetic structures are formed. If all three components of the propagation vector 

are commensurate with the reciprocal lattice constants, the GS is called commensurate. In 

the opposite case, the magnetic structure is said to be incommensurate in 1D, 2D or 3D. 

Typical examples are frustrated chain systems, where the competition of the NN FM 

coupling J1 with the second-neighbor AFM coupling J2 gives rise to a spiral GS for J2/|J1| > 

0.25: LiCu2O2 [41], LiCuVO4 [18], and linarite PbCu(SO)4(OH)2 [42]. 

2.3.2 Ground states lacking long-range magnetic order 

Singlet GS 

The spin singlet GS, characterized by a nonzero gap in the magnetic excitation spectrum, is a 

widespread magnetic GS in cuprates. It is typically realized if the leading exchange couples 

the spins pairwise, forming a dimer, while the interdimer couplings are substantially smaller. 

Interestingly, the magnetic dimers do not necessarily coincide with the structural ones, as 

revealed by the instructive examples of CuTe2O5 [43] and Cu2(PO3)2CH2 [44]. 
Two main characteristics of the singlet GS are the value of spin gap and its kq-position 

(Fig. 2.6). The value of the spin gap is the energy difference between the singlet and the 

lowest-lying triplet (Sz = 1) excitation. In general, the triplets are mobile, and their energy 

is a function of their wave vector kq (for an exception, see the central panel of Fig. 2.6). The 

value of kq at which the singlet-triplet gap is minimal, is referred as the kq position of the gap. 

If several low-lying triplet branches exist, the system can exhibit multiple spin gaps, e.g. a 

double spin gap in the right panel of Fig. 2.6. 

The phase diagrams of several archetypical models contain the regions of gapless (AFM 

ordered) and gapped phases. At zero temperature, the two regimes collide at a quantum 

critical point. A straightforward way to reach this critical point is to apply a magnetic 

field Hc1, which closes the spin gap and gives rise to long-range magnetic ordering. In this 

ordered phase, the system may exhibit the BOSE–EINSTEIN condensation of magnons, as was 

initially shown for TlCuCl3 [45]. This discovery has spurred intense research on the gapped 

systems from both experimental and theoretical side. The essentials of this phenomenon are 

discussed in Sec. 6.2.1. 

The case of SrCu2(BO3)2 [46] deserves a separate discussion. The microscopic magnetic 

model for this system is the 2D SHASTRY–SUTHERLAND lattice, composed of dimer and 

interdimer couplings J and J ', respectively. The J '/J ratio in SrCu2(BO3)2 stabilizes the 
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Figure 2.6: Basic characteristics of a singlet GS: the spin gap Δ and its kqΔ position. The singlet 
states are at zero energy, the lowest-lying triplet excitations are shown with a bold black line. Left 
panel: kqΔ at commensurate position. Central panel: localized excitation, kqΔ can not be defined. 
Right panel: the case of “two spin gaps” (Δ1 and Δ2). 

dimerized phase, close to the quantum critical point [47, 48]. Magnetization studies revealed 

a fascinating variety of field-induced phases, which were extensively studied in the last 

decade [49]. 

Alternatively, the spin gap can be closed upon directed chemical substitution or by 

applying external pressure, as evidenced by the examples of BiCu2−x Znx PO6 [50, 51] and 

TlCuCl3 [52], respectively. 

Spin liquid GS 

At present, the research on the low-dimensional cuprates is largely focused on the search for 

materials that imply a spin-liquid GS. The prerequisites for this state are the absence of LRMO 

and sizable spin correlations beyond NNs (thus, dimerized systems are not spin liquids). The 

research on this GS is impeded, from both the theoretical as well as experimental side, by 

the complexity of the magnetic properties and the scarceness of real material realizations, 

respectively. In addition, obtaining the experimental evidence for the spin liquid GS is very 

challenging, since no clear experimental fingerprints (“smoking gun”) for this type of GS 

have been proposed so far [53]. More information on spin liquids is given in the introduction 

of Chapter 7. 

A recent discovery of herbertsmithite Cu3Zn(OH)6Cl2 [54] gave hope that this compound 

as well as related kagome-lattice systems, such as kapellasite Cu3Zn(OH)6Cl2, or haydeeite 

Cu3Mg(OH)6Cl2, could exhibit the spin liquid physics. The magnetism of these systems is 

discussed in Chapter 7. 
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2.3.3 Coupling to orbital and lattice degrees of freedom 

In general, cuprates are good spin-only model materials. However, in several cases, the 

coupling between the magnetic and other degrees of freedom becomes substantial. A classical 

example is the orbital ordering, also referred as a cooperative JAHN–TELLER distortion, in 

KCuF3 [55], which gives rise to a pronounced 1D magnetic behavior of this material. Initially, 

the orbital ordering was believed to be of purely electronic origin [55–57]. Later, DFT+DMFT 

studies revealed that the electronic mechanism alone is not strong enough to provide the 

experimentally observed energy scale, and therefore an additional coupling to the lattice 

degrees of freedom should be taken into account [58, 59]. 
Spin-phonon interaction manifests itself in another archetype system CuGeO3, leading to 

the spin-PEIERLS GS [60]. This exotic GS is a result of a structural transition which opens 

a finite spin gap in the system. The necessary condition for the spin-PEIERLS state is its 

magnetic origin, i.e. the spin-lattice coupling is the driving force of the transition. Further 

realizations of the spin-PEIERLS transition are actively sought. 
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Chapter 3 

Experimental methods: crystal structure 

and magnetic properties 

At present, numerous experimental methods and techniques are used to deliver information 

about the magnetic properties of solids. Even a birds-eye view on this vast topic would 

require the volume of a textbook, and thus this Chapter is by no means a review in its 

traditional sense. Therefore, the selection of methods discussed in this Chapter was done 

looking from a practical angle, by considering primarily the experimental techniques relevant 

for the discussions in Chapters 6 and 7. Such restriction as well as the limited volume of this 

Chapter leave no space to discuss several relevant techniques (such as RAMAN spectroscopy, 

heat transport measurements, and especially, INS). Instead, a particular emphasis is made 

on understanding how to interpret different kinds of experiments. 

The numerical approach developed in this study is intimately related to the experimental 

information. First, many of the DFT-based studies are motivated by experimental findings. 

Second, DFT calculations require a structural input, which is typically known from experi­

ments. Third, DFT calculations can be used to check the consistency of the experimental 

input, while the precision of theoretical results can even overcome the experimental error 

bars. In such cases, the information on the relative accuracy of the experimental technique 

and the theoretical approach is crucial. Finally, a deep knowledge of the performance and 

limitations of different experimental techniques is important to suggest key experiments that 

can challenge or refine the existing model, both theoretical and experimental. Therefore, an 

appropriate understanding of experimental results is an absolute prerequisite for a sound 

study of any real material. 
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3.1 Diffraction methods 

3.1.1 X-ray diffraction 

At present, despite dozens of alternative and supplementary methods have been or are being 

developed, the majority of structural studies is based on X-ray diffraction. The availability of 

the relevant equipment and a comprehensive strategy analyzing diffraction patterns, make 

this method a standard probe for a crystal structure. 

Crystalline substances are formed by a regular arrangement of constituent atoms, with 

typical interatomic distances of several Å. The diffraction condition for the 1D case1 is given 

by the BRAGG’s equation 

d(sin θs − sin θi) = mλ, (3.1) 

where d is the distance between the grating elements, m is an integer, λ is the wavelength 

and θi and θs is the incident beam angle and the angle at which diffraction is observed. As 

follows from Eq. 3.1, for d amounting to several Å, λ should be of the same order as d. 

Hence, in the case of electromagnetic radiation (photons), diffraction on crystals can be 

observed only for X-rays. Most important, since the grating elements in crystals are atomic 

planes,2 the resulting diffraction pattern reflects the arrangement of atoms in the crystal, 

thus giving a key to explore the inner structure of a crystal. 

The diffraction condition can be illustrated by plotting the wave vectors of the incident 

and the scattered wave on top of a reciprocal lattice. The resulting plot (called EWALD 

construction) is shown in Fig. 3.1. Diffraction occurs only if the difference Δkk between wave 

vectors of the incident wave and the scattered waves is commensurate with the basis vectors 
kb∗ ∗:of the reciprocal lattice ka ∗ , and kc 

Δkk = Qk Qk ,kk ∈  3; h, k, l ∈  ; Qk = hka ∗ + kkb∗ + lkc ∗ (3.2) 

Figure 3.1: The EWALD construction. Gray dots 
represent the reciprocal lattice, kki and kks are 
the wave vectors of the incident and scattered 
waves, respectively. Diffraction occurs if kki −kks 
is commensurate with the translation vectors 
of the reciprocal lattice. 

~ki

~ks ∆~k =
~Q

Therefore, the observed diffracted pattern contains the information on the vectors of the 

reciprocal lattice. In the kinematic theory of scattering, the intensity of the scattered wave is 

proportional to the square of the structure factor F , which is defined by 
1This principle holds for a 3D grating as well. 
2This model is at best oversimplified, yet it is the simplest and probably the most instructive way to discuss 

diffraction in crystals. 
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kF(Qk ) = ρ(kr) exp 2πi Q · kr dkr. (3.3) 
ka·(kb×kc) 

The main objective of the structural analysis is the crystal structure, which is a discrete 

set of vectors kRi describing the equilibrium positions of constituent atoms. Therefore, it is 

reasonable to replace the integral in Eq. 3.3 with the following sum: 

N
N 

    

kF(Qk ) = fi(Qk ) exp 2πi Q · Rki , (3.4) 
i = 1 

where fi(Qk ) is the atomic form factor, describing the scattering power of an isolated 

atom. The X-rays are scattered primarily by electrons, hence fi(Qk ) is roughly proportional 

to the atomic number Z . In addition, fi(Qk ) diminishes with increasing |Qk |, thus peaks with 

small |Qk | have larger intensity. 

The single-crystal structural analysis comprises two parts: (i) space group determination 

and indexing of the observed intensities and (ii) determination of internal atomic coordinates 

and displacement parameters. In most cases, the first part is straightforward and can be 

carried out in an automatic mode by diffractometer software. The second part of the analysis 

is less trivial. The main problem of the structural analysis is the gauge freedom (the phase 

problem) which impedes evaluation of the unique set of kRi based on the experimentally 

measured set of intensities I(Qk ). Two standard procedures to solve this problem in a single 

crystal study are the PATTERSON function [61] or the direct methods [62, 63]. The powder 

diffraction allows to refine the structural model using the RIETVELD method [64] or even to 

define the crystal structure, essentially by guessing its principal features. 

The kRi coordinate contains no information on the amplitude of oscillating motion for 

a particular atom i. To remedy this drawback, displacement parameters are introduced. 

In the simplest picture, atomic displacements are considered isotropic and thus described 

by only one parameter Uiso.3 As a rule of thumb, Uiso for heavy atoms should be smaller 

than for light atoms. The violation of this rule is a likely evidence for insufficient accuracy 

of the structural model.4 The isotropic approximation is typically too crude to account for 

atomic displacements. Much more appropriate is the harmonic oscillation model, in which 

Uiso is replaced by a second rank tensor Ui j, which components are typically referred as 

anisotropic displacement parameters (ADPs). A good test for the refined components of Ui j 

is to check whether they form an ellipsoid or another second quadratic surface. The latter 

case corresponds to an unphysical situation, thus an additional analysis is necessary. 

3Uiso enters the summands in Eq. 3.4 as an additional factor: exp −(1/3[Qk · Qk ]U2 
iso). 

4A remarkable example of such mistaken structural model is (CuCl)LaNb2O7. The usually high isotropic 
displacement parameter Uiso = 0.13 Å2 of the Cl atom reported in the original paper (Ref. 65) motivated the 
authors of Ref. 66 to challenge the structural input by DFT calculations. Based on the theoretical calculations, 
they suggested a structural distortion, which was later verified by high-precision X-ray and electron diffraction 
experiments [67]. 
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Absorption edge In an in-house X-ray diffraction experiment, the wavelength of the 

incident beam is equal to the characteristic wavelength of a 3d element, typically Cu or Mo. 

If the material under investigation contains 3d elements, the K-absorption edges of these 

elements should be examined. In particular, the radiation energy should not exceed the 

absorption edge energy. For instance, the K-edges of Fe and Co have slightly lower energies 

than the characteristic Cu Kα wavelength, and thus a considerable fraction of X-rays is 

absorbed. Therefore, for Fe- or Co-containing materials, Cu Kα is not an appropriate choice. 

This shortcoming can be lifted by using hard X-rays available at synchrotron facilities. 

Light atoms Since X-rays are scattered by electrons, the scattering intensity is a function 

of the electronic density. Therefore, heavy atoms with a large number of localized electrons 

have a substantially higher atomic form factor than light atoms. Since the intensity scales 

with the square of the atomic form factor, the difference in the observed intensity is even 

more pronounced. As a result, atomic coordinates of heavy atoms are defined with higher 

precision than those of light atoms. This difference is essential for structural optimizations: 

in many cases, the relaxation of light atoms yields reasonable results. However, if all internal 

atomic coordinates are relaxed, the discrepancy between the experimental and the optimized 

internal atomic coordinates for the heavy atoms should be considerably smaller than for the 

light atoms. 

Hydrogen atoms Hydrogen is the extreme case of a light atom having only one electron 

(in the fully ionic picture, the number of core electrons is zero, leading to zero scattering). 

In many oxide compounds, it is bonded to an oxygen atom and forms an OH− group. Since 

electronegativity of O is substantially larger than that of H, the electronic density is shifted 

toward the O atom. Although this density is very small, modern equipment and software are 

capable to identify it. Unfortunately, many X-ray structural studies are based on the wrong 

assumption that this small electronic density is centered around the H atom, resulting in 

far too short O–H bonds of about 0.7–0.8 Å. For comparison, neutron diffraction studies 

yield typical O–H bond lengths of 0.95–1.05 Å. Therefore, the atomic positions of hydrogen 

atoms evaluated from X-ray diffraction data should be carefully checked. In general, X-

ray structural studies of H-containing compounds should be accompanied by alternative 

techniques, such as neutron diffraction, or supplied with a accurate DFT-based analysis. 

Amorphous and non-detectable crystalline impurities A relevant outcome of X-ray 

powder analysis is the content of impurities. Amorphous impurities typically exhibit a 

wide halo for |kq| = 2–3 Å which corresponds to a typical interatomic distance in solids. If 

the amorphous phase has the same chemical composition as the crystalline substance, the 

integrated intensity of the halo can be compared to the integrated intensity of the crystalline 

phases, in order to estimate the fraction of the amorphous phase (e.g., Ref. 68). 
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Correlation between ADPs and site occupations An integral part of a structural de­

termination is “placing” the atoms in accord with the evaluated electronic density. For 

the uniform-shaped density peaks, this procedure is straightforward. However, a peculiar 

non-uniform shape (e.g. cigar-like) can be accounted for by at least two models. First, 

such a shape can result from a strongly anisotropic displacement of the respective atom 

(Fig. 3.2, top). An alternative scenario, referred as the split position, comprises two (or 

more) randomly occupied atomic positions, with their total occupation equal to one (Fig. 3.2, 

bottom). Based exclusively on X-ray diffraction data, the choice between the two scenarios 

is rather subjective. Crystal structures with split positions or highly anisotropic ADPs should 

be carefully analyzed. Structural studies at different temperatures typically allow to distin­

guish between almost temperature-independent ADPs, characteristic for split positions, and 

considerable variations of ADPs that point to single position occupied by an atom exhibiting 

sizable displacement (Ref. 69 contains an instructive example). 

Figure 3.2: Two possible 

anisotropic displacement

split position
time and space

average

models describing sizable 
anisotropy of the elec­
tronic density: strongly 
anisotropic displacement 
(top) and split position 
(bottom). 

3.1.2 Neutron diffraction 

Neutron diffraction is widely used as a method for structure determination, alternative to 

X-ray diffraction. Besides, it is a standard technique for investigation of magnetically ordered 

structures. 

Neutrons are charge-neutral S = 1/2 particles with the rest mass ∼1840 times larger 

than of that of an electron. Consequently, the magnetic moment of a neutron amounts 

to ∼ −10−3 µB (aligns antiparallel to the direction of magnetic field). Unlike X-rays, the 

interactions of neutrons with matter are of two kinds: (i) strong force interaction with 

nuclei and (ii) magnetic interaction with the magnetic moments of unpaired electrons. The 

relatively large amount of sample needed for sufficient statistics (as a rule, several grams) 

is caused by low fluxes of neutron sources and the small probability of a diffraction event, 

characteristic of the both types of interactions. 

Unlike X-rays, scattered by electrons, neutrons are scattered primarily by magnetic 

moments and by nuclei. Thus, neutron cross-sections do not scale with the atomic number, 

and the neighboring elements in the periodic table may show substantially different cross-

sections. This phenomenon is widely used in structural studies to distinguish between 

the atoms having similar atomic numbers, such as, e.g. Cu and Zn. Besides the nontrivial 

dependence on the atomic number, neutron cross-section are isotope-specific: they can differ 
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by several orders of magnitude for different isotopes of the same element. Additionally, the 

scattering power strongly depends on the spin state of a nucleus, which can be different for 

the same isotope. 

Nuclear scattering is a sum of two contributions: coherent and incoherent. Incoherent 

scattering originates from random distribution of different isotopes or from different orienta­

tions of nuclear spins. A quantitative theory of neutron scattering lengths is still lacking, thus 

the values of coherent and incoherent scattering cross sections are determined experimen­

tally. A special property of the cross sections for nuclear scattering is their Qk -independence. 

The nuclear structure factor is expressed as: 

N
N 

bcohF(Qk ) = i exp (i [Qk · Rki]). (3.5) 
i = 1 

In addition to the nuclear scattering, magnetization density gives rise to magnetic 

scattering. The amplitude of magnetic scattering is proportional to the product of the 

magnetic form factor f (Qk ) and the transverse component of the magnetic moment [70]: 
µk⊥ = Qk × µk × Qk . Since the magnetization is associated with electrons, f (Qk ) decay upon 

increase in Qk , and hence magnetic peaks are typically observed only in the low-Qk range. 

Weak and strong scatterers The nuclear cross-sections for different elements or different 

isotopes of the same element can differ by several orders of magnitude. In particular, the 

strongest neutron absorbers are 10B (20 % of natural abundance), 113Cd (12.22 %), 149Sm 

(13.9 %), and 155,157Gd (30.5 %). An appreciable amount of these isotopes present in a 

sample precludes a diffraction experiment. Besides, several isotopes have negligible coherent 

scattering cross sections: 6,7Li (100 % of natural abundance), 51V (99.75 %), thus the internal 

coordinates of the respective atoms can be neither defined nor refined. 

H atoms Almost “invisible” with X-rays, hydrogen atoms exhibit appreciable neutron cross 

sections. However, the H nucleus, a proton, is extremely light compared to other nuclei, and 

its magnetic moment is consequently large, which gives rise to sizable incoherent scattering. 

In this case, the analysis of experimental data is at best challenging. A standard way to 

remedy the problem is deuterization of a sample, i.e. partial replacement of 1H with 2H (D). 

Ambiguity of the fitting The number of magnetic peaks is typically of the same order as 

the number of the refined parameters (components of µk). The insufficient statistics leads 

to a considerable ambiguity of the resulting experimental magnetic model. In particular, 

a good fit to the experimental diffraction pattern does not exclude a possibility to obtain 

an equally good fit using another magnetic model. Thus, decisive experiments should be 

carried out using alternative methods. 
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Insensitivity to small moments Since the intensity of the magnetic scattering is propor­

tional to µk⊥, neutron diffraction is not sensitive to small ordered moments. Therefore, the 

absence of observed magnetic reflections should not be considered as an evidence for the 

lack of magnetic order: especially for low-dimensional systems, the value of the ordered 

moment can be considerably reduced. For instance, the first neutron diffraction study 

on the HEISENBERG chain system Sr2CuO3 yielded no evidence for LRMO [71]. However, 

the authors of Ref. 71 judiciously stated that LRMO with a small value of the ordered 

moments (<0.1 µB/Cu) can not be excluded. Two years later, the subsequent µSR and 

ND study [33] reported TN = 5 K and estimated the magnitude of the ordered magnetic 

moments as 0.06 µB/Cu. 

3.2 Thermodynamical measurements 

The term “thermodynamical measurement” implies the measurement which results in a set of 
 

observables {〈A〉} : 〈A〉(T ) = Z−1 Ai exp (−Ei k
−1 T−1) for a physical quantity A at various i B 

temperatures T . Here, Z is the partition function, Ai and Ei denote the values of A and 

energy for the i-th state, respectively, and the summation is done over all states i. This way, 

a thermodynamical measurement provides an indirect measure of the excitation spectrum, 

its thermal average. In addition, thermodynamical measurements yield spatially-averaged 

information, i.e. they are bulk measurements. As a result, the experimentally measured 

signal always contains in addition to the intrinsic signal, also extrinsic contributions (noise, 

impurities, defects), that are sometimes difficult to disentangle. Commonly arising problems 

concerning interpretation of experimental results, and their possible solutions will be in the 

focus of this section. 

Thermodynamic measurements are an integral part of experimental characterization of 

magnetic properties for any real material. Typical probes are measurements of magnetic 

susceptibility χ (the actually measured quantity is magnetization M) and specific heat Cp 

(heat capacity at constant pressure is measured). Both measurements require small amounts 

of material (up to ∼20 mg), and pose almost no limitations to the form of the material. 

In particular, for crystalline materials, both single-crystalline or powder samples can be 

measured. 

3.2.1 Magnetic susceptibility 

Temperature dependence of magnetic susceptibility χ is the most common magnetic mea­

surement. Due to its relative simplicity and accessibility, and versatile information on the 

magnetism of a particular system, χ(T) data are commonly the first probe for magnetic 

properties. 

For the overwhelming majority of magnetic insulators with localized spins, the tempera­
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ture dependence of magnetic susceptibility splits into three distinct regimes (Fig. 3.3): the 

high-temperature part with only short-range correlations between the spins (the CURIE-WEISS 

regime), intermediate temperatures where long-range spin correlations become increasingly 

important, and the low-temperature region with various anomalies and typically large 

extrinsic contributions. 

Figure 3.3: Three regimes of χ(T): 
the high-temperature part (pink) 
well-described by the CURIE-WEISS 

law (red line), intermediate temper­
atures (orange) with sizable long-
range spin correlations, the low-
temperature region (blue) where the 
magnetically ordered state is stable. 
TN marks the magnetic ordering tran­
sition. For the experimental data, 
χ(T) for dioptase Cu6Si6O18 ·6H2O 
is shown (Sec. 6.3). 

High-temperature magnetic susceptibility: the CURIE-WEISS fit 

For magnetic insulators with localized moments, the high-temperature behavior of magnetic 

susceptibility obeys the modified CURIE-WEISS law: 

C Cimp
χ(T ) = + + χ0, (3.6)

T + θ T 

where C is the CURIE constant of an ideal material (intrinsic), Cimp is the average 

CURIE constant of impurities and/or defects, θ is the WEISS temperature, and χ0 is the 

temperature-independent term. The latter is a sum of two contributions. First, closed 

atomic shells give rise to a diamagnetic (negative) susceptibility, which can be estimated 

in good approximation using the available reference data [72]. However, this approach 

does not account for diamagnetic impurities in the sample. Second, paramagnetic (positive) 

contribution originates from a small admixture of states with nonzero angular momentum in 

accord with the mechanism put forward by VAN VLECK [73]. Since there is no simple rule to 

estimate this paramagnetic contribution, neither the concentration of diamagnetic impurities 

is known, the term χ0 is typically evaluated as a free parameter. 

The nature of the Cimp/T term is rather complex and comprises at least two physical 

effects. First, any paramagnetic impurity in the sample gives rise to a nonzero Cimp. Second, 

defects of the underlying spin lattice often create isolated spins which behavior follows the 

same 1/T law. Cimp/T is typically small in the range of validity of the CURIE-WEISS law, 

i.e. at high temperatures; and is in general visible only at rather low temperatures by a 

characteristic bending or upturn of the χ(T ) dependence. The other way round, the absence 

of such a bending or an upturn can point to the small Cimp. In this case, the fitting should be 
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possible without accounting for impurity and/or defect contribution, hence the term Cimp/T 

in Eq. 3.6 should be omitted. 

The term C/(T + θ ) is the intrinsic CURIE-WEISS contribution. Both C and θ are refined 

parameters. The value of C yields the effective magnetic moment 

 

−2 N−1 µeff = 3 C kB µB A (3.7) 

and, consequently, the g-factor 

g = µeff [S(S + 1)]−1/2. (3.8) 

Together with θ , these quantities characterize the magnetism of a particular system. 

For S = 1/2 systems, the value of µeff should be compared to the spin-only contribution of 

∼1.73 µB. The deviation |µeff − 1.73|/1.73 is an important measure for the strength of the 

spin-orbit coupling. The g value can be compared to independent experimental estimates, 

for instance, ESR results. On the other hand, the sign of θ provides important information 

for the magnetic coupling regime: θ > 0 evidences that AFM couplings are predominant, 

while θ < 0 points to the preponderance of FM couplings. More specifically, the sum of the 

magnetic couplings can be estimated using Eq. 5.3. 

It is important to note that initially the CURIE-WEISS law was written in a different 

way: with a (T − θ ) term in the denominator. This leads to a positive θ for the dominant 

FM couplings. However, the vibrant research on localized magnets (which followed the 

discovery of high-temperature superconductivity) gave evidence that AFM couplings in real 

materials largely outnumber the FM ones. Thus, the community gradually went over to the 

CURIE-WEISS law with (T + θ ) in the denominator, aiming at a positive θ for the dominant 

AFM couplings. At present, the both versions of the CURIE-WEISS law are still used in the 

literature. This unfortunate duality may lead to confusion, especially if the value of θ is 

provided without specifying the sign convention. 

A CURIE-WEISS fit is a procedure to evaluate the optimal values of C , θ , Cimp and χ0 by 

fitting Eq. 3.6 to the experimental χ(T) data. The nontrivial part of the fitting procedure 

is the choice of the minimal fitting temperature Tmin. A natural strategy is to take rather 

low Tmin and then subsequently increase its value, until the resulting values of the refined 

parameters get stabilized, i.e. become independent of Tmin. However, this approach suffers 

from several shortcomings. 

First, for systems with large magnetic couplings, the experimentally accessible temper­

ature range can be poorly described by the CURIE-WEISS law. A remarkable example, the 

S = 1/2 HEISENBERG chain system CuNCN, shows almost temperature-independent χ(T) in 

the temperature range 200−320 K [74], seemingly pointing to a very small C . However, DFT 

calculations disclosed that the leading magnetic coupling in CuNCN amounts ∼2000 K [75], 
thus the measured temperature range is extremely far from the CURIE-WEISS regime, which 
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for this particular system largely exceeds the decomposition temperature and thus is not 

reachable due to decomposition of the compound. 

The second remark concerns the dependence of Tmin on the topology of the underlying 

magnetic model. To illustrate this effect, the χ(T ) behavior is simulated for several archetyp­

ical S = 1/2 HEISENBERG models in the temperature range 1 ≤ T kB J
−1 ≤ 10 using exact 

diagonalization of the respective Hamiltonian, and subsequently a series of CURIE-WEISS fits 

is performed, adopting Tmin from the range 1 ≤ Tmin kB J
−1 ≤ 5. Then, the fitted values θfit 

are compared with the estimates θest from Eq. 5.3 in Sec. 5.1.5 The results are shown in 

Fig. 3.4. Quite remarkably, even the largest values of Tmin kB J
−1 yield θfit/θest significantly 

deviating from unity. Keeping in mind the low expansion order used to obtain Eq. 5.3, this 

discrepancy is not surprising. More important are sizable deviations of the four curves in the 

range 1 ≤ Tmin kB J
−1 ≤ 2. Since for systems with large couplings (hundreds of K) this fitting 

is often possible only within this range, the respective estimates of θ , and especially, the 

subsequent conjectures on the strength of exchange couplings, should be carefully checked 

for consistency by independent methods. 

Figure 3.4: The choice of Tmin for the 
CURIE-WEISS fit: S = 1/2 HEISENBERG model 
on various lattice topologies. Tmin kB J

−1 

is the minimal fitting temperature in the 
units of the exchange coupling J . θfit is 
the fitted value of the WEISS temperature 
for the given Tmin. θest is the value esti­
mated using Eq. 5.3. See text for details. 
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As can be seen in Fig. 3.4, the CURIE-WEISS law definitely breaks down in the temperature 

range 1 ≤ Tmin kB J
−1 ≤ 2. At lower temperatures, the χ(T) behavior is governed by long-

range spin correlations that are model-specific, i.e. depend on the underlying microscopic 

magnetic model. Low-dimensional systems are characterized by a distinct difference in the 

strength of exchange couplings along different directions of the magnetic lattice. Thus, for 

temperatures of the order of the leading coupling Ji, correlations between the spins can be 

strong along a certain direction, but substantially smaller in the perpendicular direction. In 

a response to enhanced correlations, χ(T ) starts to decrease, but the 3D magnetic ordering 

5For the nearest-neighbor chain, the square lattice, the triangular lattice and the kagome lattice models, 
θest amount to 1/2, 1, 3/2 and 1, respectively, in the units of J/kB. 
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is inhibited by the weakness of J⊥. As a result, χ(T ) exhibits a broad maximum around Tmax, 

which is a typical indicator of low-dimensional magnetic behavior. 

Provided the microscopic magnetic model is qualitatively known, the leading couplings 

can be estimated directly from Tmax. For instance, the S = 1/2 HEISENBERG NN chain and 

square lattice models exhibit broad maxima in χ(T ) at 0.64 J/kB [76] and 0.935 J/kB [77], 
respectively. 

Although such broad maxima are ubiquitous for low-dimensional systems, in certain 

cases they might be absent. In particular, the maximum can be concealed by a large 

impurity and/or defect contribution. This situation is very typical for powder samples of 

HEISENBERG NN chain systems, as can be seen, e.g. for KCuF3 [78], K2CuP2O7 [79] and 

(NO)Cu(NO3)3 (Sec. 6.1.2). In addition, for several highly frustrated magnetic models, 

Tmax can be substantially low, as in the frustrated HEISENBERG chain system Li2ZrCuO4 [80], 
additionally impeding its experimental identification. In exotic cases, additional maxima 

appear, as in the distorted diamond chain system azurite Cu3(CO3)2(OH)2 [13]. 

There are two strategies to evaluate χ(T) data in the intermediate temperature range. 

First, for certain models, HTSE can be used (Sec. 5.1). Alternatively, for rather complicated 

models, the χ ∗ (t∗ ) behavior can be simulated by different techniques, such as ED (Sec. 5.2) 

or QMC (Sec. 5.3), and fitted to the experimental χ(T) curve. This way, the numerical 

values of exchange couplings can be evaluated, using the procedure described in Sec. 5.5. 

Low temperatures: anomalies and upturns 

Many low-dimensional systems exhibit a gradual transition from the intermediate to the 

low-temperature regime. In certain cases, such as a clear fingerprint of a magnetic transition, 

a distinct low-temperature range can be singled out. Very often, the behavior of χ(T) at 

low temperatures is affected by various impurities, imperfections and anisotropies that are 

typically neglected in the microscopic magnetic model. Still, they can play a crucial role for 

the magnetic GS of the system. Therefore, the low-temperature part of the curve should be 

carefully examined. 

Fingerprints of magnetic ordering are often (but not always) visible in a χ(T ) curve: the 

transition between the paramagnetic and magnetically ordered regime is typically accompa­

nied by a kink in the χ(T ) dependence. If the magnetic GS has a nonzero magnetization (e.g. 

ferro- or ferrimagnetic state), the ordering temperature is accompanied by a drastic increase 

of χ(T). It is important to note that for single crystal measurements, χ(T) along a certain 

direction can exhibit an abrupt increase seemingly indicative of the onset of ferromagnetism. 

However, the true magnetic GS in this case can be canted AFM, e.g. in La2CuO4 [35]. Such 

situations can be distinguished from the ferro- and ferrimagnetic ordering by a very small 

value of the resulting magnetization (∼10−3 of the saturation magnetization). 

The magnetic GS for most of low-dimensional insulators lacks macroscopic magnetization. 

In this case, fingerprints for a transition to the magnetically ordered state are kinks that are 

38 



 

CHAPTER 3. EXPERIMENTAL METHODS
 

often visible to the naked eye, at least in single crystal measurements. In contrast, powder 

materials yield weak or even imperceptible kinks. Moreover, kinks can be concealed by 

Cimp/T contribution, which often dominates at low temperatures. To visualize the ordering 

transitions, ∂ χ/∂ T plots are a reasonable solution. Still, the presence of a magnetic 

ordering transition can be proven and its type reliably established only by using alternative 

experimental techniques, such as ND, µSR, or magnetostriction measurements. 

Measurement of χ(T) in different magnetic fields provides additional information for 

the magnetically ordered phase. For easy-axis AFM materials, magnetic anisotropy gives rise 

to a spin-flop transition [81] which occurs at the critical magnetic field Hc. This transition 

results in a different slope of χ(T ) of the magnetically ordered phase for the data measured 

at H < Hc and H > Hc. In many low dimensional magnets, Hc is of the order of several tesla, 

and thus is reachable using standard lab equipment. The field dependence of χ(T ) can hint 

at the amount of paramagnetic impurities, as they get suppressed by applied field. 

Especially interesting are materials lacking long-range magnetic ordering, such as spin 

dimer systems and frustrated magnets. For the former, the gapped magnetic excitation 

spectrum gives rise to the exponential behavior of χ(T) at low temperatures. Therefore, 

for impurity- and defect-free samples, the exponential decay of χ(T) gives evidence for a 

gapped spectrum. On the contrary, the extrapolated finite value of χ(T ) at zero temperature 

is a fingerprint of gapless magnetic excitations. 

3.2.2 Specific heat 

Measurements of the temperature dependence of specific heat are technically more demand­

ing than χ(T), primarily due to the particular sample preparation procedure. The main 

advantage of this method is its sensitivity to magnetic and structural phase transitions, that 

are typically accompanied by sharp anomalies in specific heat. Its main drawback is the dual 

nature6 of the measured quantity: it is the sum of the magnetic specific heat Cmagn and the 

phonon contribution Cphon. The disentanglement of the two contributions is hampered by a 

strong dominance of Cphon for temperatures higher than ∼10 K. 

The subtraction of the phonon contribution is a nontrivial task. The optimal solution to 

distinguish between Cmagn and Cphon is to measure a nonmagnetic isostructural reference 

system, which phonon spectrum is similar to that of the magnetic system. This way, the 

magnetic specific heat can be evaluated as the difference between the measured Cp for 

a magnetic and the respective nonmagnetic system. Unfortunately, in most cases it is 

challenging to find a suitable nonmagnetic reference system. Alternatively, for the systems 

with small magnetic couplings, the phonon contribution Cphon is estimated from simplified 

models. Thus, at low temperatures, the phonon contribution can be approximated by 

Cphon(T) = An T
−(2n+1), where n are several first natural numbers. Alternatively, an n 

6This statement is restricted to magnetic insulators. Specific heat of conducting materials contains also an 
electronic contribution. 
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estimate for Cphon(T ) can be evaluated in a more sophisticated way using the DEBYE model 

(see Ref. 82 for an instructive example). 

Despite the absence of a universal method to extract Cmagn from the measured specific 

heat, the quality of this procedure can be checked by a universal measure—the magnetic 

entropy. Quantum mechanics permits 2S + 1 orientations for the spin value S. In the absence 

of magnetic field, all orientations have the same energy. Therefore, the magnetic entropy of 

N spins is expressed as 

Smagn = N kB ln (2S + 1). (3.9) 

Thus, for one mole of S = 1/2 spins, Smagn = R ln 2 � 5.76 J/K. On the other hand, Smagn 

can be estimated from Cmagn: 

+∞ Cmagn
Smagn = dT (3.10) 

0 T 

The deviation between the value of Smagn evaluated using Eq. 3.10 and the ideal value 

given by Eq. 3.9 is a measure for quality of the decomposition for the measured Cp. 

The magnetic specific heat Cmagn provides valuable information on the magnetic excitation 

spectrum. The basic difference between gapped and gapless excitation spectra, discussed in 

Sec. 3.2.1, indeed holds for the Cp(T) data. The peculiarity of magnetic specific heat is its 

sensitivity to singlet excitations. Therefore, specific heat studies are especially reasonable 

for systems with large density of low-lying singlet excitations, such as S = 1/2 HEISENBERG 

kagome lattice systems [83]. 

Sharp anomalies in Cmagn are fingerprints of magnetic ordering transitions. However, 

their sharpness is not a prerequisite, since at low temperatures the residual entropy is 

typically small (most of excitations are frozen out), and the resulting anomalies can be less 

pronounced, and in extreme cases even wiped out completely [84]. 

For the magnetically ordered state, Cp(T ) the behavior characterizes the type of magnetic 

ordering: for instance, antiferromagnets exhibit the T 3-behavior, while for FM materials the 

T 3/2 dependence is characteristic [85]. 

An additional problem for interpretation of the experimental data arises from a small 

splitting of energy levels, yielding asymmetric peaks in specific heat. This effect, especially 

pronounced at low temperatures, was first discussed by SCHOTTKY [86] and later named 

after him. Distinguishing between the SCHOTTKY-type peaks and anomalies arising from 

magnetic ordering is a tricky problem, which in general requires independent experimental 

information. 

In principle, the HTSE method, which allows to estimate the exchange couplings from 

χ(T), can be applied to magnetic specific heat data as well. It is especially valuable for 

systems featuring both AFM and FM couplings, since the high-temperature part of Cmagn(T ) 
behaves like A/T 2, where A is proportional to the sum of squares of magnetic exchange 
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couplings: A ∝ i Ji 
2 [87]. Therefore, combining the values of θ and A from χ(T) and 

Cp(T ) measurements, respectively, relevant Ji ’s can be estimated. 

For certain magnetic models, higher-order HTSE of Cmagn(T) are available (Sec. 5.1). 

Unfortunately, high uncertainties for the values of Cmagn(T ) at high temperatures, i.e. in the 

temperature range where the phonon contribution is dominant, impede the applicability of 

this method, and make it feasible only for systems with weak magnetic couplings |Ji| < 10 K. 

In rare cases, for particularly simple models, low-temperature specific heat data can provide 

independent estimates for exchange integrals (see Ref. 88 for an instructive example). 

3.3 Magnetization 

Complementary to a χ(T) measurement, magnetization can be measured at constant, 

typically low temperature, as a function of magnetic field, yielding the M(H) dependence. 

The behavior of magnetic spin-only insulators in magnetic field is described by the respective 

zero-field microscopic Hamiltonian with an additional field-dependent ZEEMAN term: 

N 
Ĥ = Ĥ0 − gµBh ez · Ŝi, (3.11) 

i 

Ĥ0 is a zero-field Hamiltonian, and ez is the direction of the magnetic field h. Therefore, 

at T = 0, the GS magnetization is measured. In magnetic fields exceeding the saturation 

field Hsat, required to align all the spins parallel, the GS is FM. 

A severe limitation of the method is a rather narrow range of experimentally available 

magnetic fields: at present, up to 20 T in laboratories, and up to 45 T (steady field) and 100 T 

(pulsed fields) at high-field facilities. In exceptional cases, sample- and cryostat-destructive 

measurements can give access to the fields amounting to hundreds of tesla [89]. 

To compare the energy scale of J with the range of experimentally accessible magnetic 

fields, the two-site S = 1/2 HEISENBERG model, i.e. a dimer of two antiferromagnetically 

coupled spins, is considered. The solution of the Hamiltonian 3.11 yields the value of Hsat = 
−1 −1J kB g µB . Thus, for J/kB = 1 K, Hsat 0.74 T. For more complicated lattice topologies, the 

ratio Hsat/ max {Ji/kB} is typically between 1 and 3 T/K. 

In low-dimensional magnetic S = 1/2 insulators, the energy scale of exchange couplings 

can range from several K to several thousands K (Chapter 2). Therefore, the full mag­

netization curve (up to saturation) can be measured only for systems with particularly 

small couplings, such as frustrated square lattice systems AA'(VO)2(PO4)2 [82, 90, 91] or 

if AFM and FM couplings are balanced, like in frustrated HEISENBERG chain compounds 

Li2ZrCuO4 [80], LiCuVO4 [92], LiCu2O2 [8] etc. However, for majority of cuprates, even 

highest accessible magnetic fields do not provide access to the full magnetization curve. 

There are two general methods to measure magnetization: in constant field or in pulsed 

fields. Ceteris paribus, the former is preferable, since it measures in equilibrium and 
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yields the absolute value of the magnetic moment. The main limitation of a constant-field 

measurement is a rather low value of accessible magnetic fields (up to 45 T). The pulsed-field 

technique provides access to substantially higher magnetic fields (up to 100 T). The duration 

of a pulse typically amounts to 102−104 milliseconds, thus the resulting curves are affected 

by magnetocaloric effects.7 Moreover, the particular amount of the exposed sample can 

not be reliably estimated. To estimate the absolute values of the magnetic moment, the 

pulsed-field measurements can be combined with a reference (constant field data). In 

addition, for systems that saturate below the highest accessible field, the scaling can be done 

using the saturation magnetization as a reference. 

The low-field part of the curve provides substantial information on the GS and the 

lowest-lying excitations of the zero-field Hamiltonian. For instance, ∂ M/∂ H = 0 at T = 0 

evidence the gapped magnetic excitation spectrum. In this case, the maximum of the second 

derivative ∂ 2 M/∂ H2 provides a more precise estimate for the value of the spin gap than 

χ(T ) data. However, a nonzero ∂ M/∂ H at T = 0 does not necessarily evidence the gapless 

excitation spectrum. In particular, anisotropic DZYALOSHINSKII-MORIYA couplings (Sec. 2.2.4), 

can give rise to a small admixture of triplets in the singlet GS [93]. This effect leads to a 

linear increase of M(H) even in the gapped state. 

Most of low-dimensional magnets exhibit no features between the Hc, at which the spin 

gap closes (for gapped systems), or from H = 0 (for gapless ones), up to the saturation field 

Hsat. However, frustrated magnets may exhibit magnetization plateaus or kinks, leading to a 

discontinuity in ∂ M/∂ H. 

Magnetization plateaus are characterized by ∂ M/∂ H = 0 in the field range between the 

two critical fields Hc1 and Hc2 [94]. This emergent phase can be considered as a WIGNER 

crystal of magnons. Although M(H) measurements provide the value of the critical fields 

and the fraction of polarized spins in the plateau phase, a detailed structure of this phase 

has to be accounted for by alternative techniques, such as NMR. 

Magnetization plateaus can be accompanied by magnetization jumps at Hc2 [94]. They 

originate from specific excitation bands that are almost kk-independent (dispersionless). 

Since these excitations are well-localized, they are susceptible to visualization in real space. 

3.4 Resonance spectroscopy 

Similar to magnetic susceptibility measurements, resonance spectroscopy recently became a 

standard probe for magnetism. Unlike bulk measurements, resonance spectroscopy probes 

local magnetic fields, thus the intrinsic properties can be measured. Additional advantage of 

resonance spectroscopy is its extreme sensitivity to magnetic order. In this Chapter, only the 

basics of these techniques (focusing on the information which an experiment of a particular 

type can yield) will be summarized. 

7Insulating materials are more robust to this effect due to the absence of eddy currents. 
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All the resonance methods are generally based on the ZEEMAN splitting of levels in 

magnetic field, which yields the resonance condition: 

ħhω = g β Beff. (3.12) 

Here, β is the magnetic dipole moment of the respective particle (ESR, µSR) or nucleus 

(NMR), and Beff is the effective magnetic field, which is a difference of the external field 

B0 and the local magnetic field σB0. As follows from Eq. 3.12, change in Beff gives rise to 

the respective change in ω, and consequently, to a shift of the resonance line. Provided the 

external magnetic field is constant, this shift is proportional to the magnetic susceptibility. 

Measurement of this shift as a function of temperature yields the intrinsic contribution to 

magnetic susceptibility (such shift observed in an NMR experiment is called the KNIGHT shift) 

and therefore is an excellent complement to bulk χ(T ) measurements. 

Abstracting from apparent differences in the measurement techniques, the principal 

difference between NMR, ESR, and µSR is the value of magnetic field, and consequently, the 

time scale of the excitations probed. 

ESR This is the method of choice to measure the g-factor. In addition, ESR is a sensitive 

probe for the spin-orbit coupling. The frequency of a standard X-band experiment amount 

to ∼109 Hz (microwaves), which corresponds to magnetic field of ∼0.3 T (Eq. 3.12). 

NMR The frequency range of NMR is 10−2 to 105 Hz, which is much slower than lattice 

vibrations. Therefore, NMR measures average magnetic field at the nuclear site. An 

important advantage of NMR is the possibility to probe internal magnetic fields at various 

sites, because the resonance lines of different nuclei typically do not overlap. A natural 

drawback of this method is its restriction to particular nuclei (the nuclei with zero spin are 

not sensitive to NMR). For excitations that are faster than the resonance field frequency, 

a single resonance line is observed. Comparable time scales give rise to line broadening. 

Finally, if excitations become slower than the resonance field frequency, the peaks split. 

The sequence “single line—broadening—multiple lines” is a typical indication of magnetic 

ordering. 

µSR In contrast to the two previous methods, µSR spectroscopy is not a lab method, since 

it requires a muon source.8 This method is very sensitive to low moments and reliably yields 

the fraction of the ordered phase. The drawback of this method is uncertainty of the µ + 

location in the sample. In particular, several independent O sites may give rise to a complex 

picture, which is difficult to interpret even qualitatively. 

8At present, only four µSR facilities with user programs are available around the world. 
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Chapter 4 

Density-functional-theory-based 

microscopic modeling 

4.1 Band structure calculations 

At present, band structure calculations are an integral part of solid state physics. Although 

the postulates of the density functional theory were formulated more than half a century 

ago, practical application of such techniques for a wide range of materials became feasible 

only after the rapid development of computational facilities since the late 1980’s. Just two 

decades later, the variety of band structure codes available and a huge mass of DFT studies 

published every year, leave no doubt for the relevance of this computational method. 

In the following, special emphasis will be made on the computational procedure used for 

the studies presented in Chapters 6 and 7. Therefore, the basics of DFT will be discussed as 

a minimal, albeit necessary basis for understanding this procedure. All theoretical schemes 

are evaluated within the BORN–OPPENHEIMER approximation [95]. For the sake of simplicity, 

atomic units are used in this Chapter. 

4.1.1 Density functional theory 

The GS electron density n(kr) for a system of N electrons is defined as the expectation value 

of the density operator n̂(kr): 

N
N 

n(kr) ≡ 〈Ψ| n̂(kr) |Ψ〉, kr ∈ 3, n̂(kr) ≡ δ(|kr − kri|). (4.1) 
i = 1 

DFT postulates that the GS energy E of a system of interacting electrons in some external 

potential is a functional of the electron density n(kr) (the HOHENBERG–KOHN theorem [96]): 

E = E [n(kr)] , E ≡ 〈Ψ| Ĥ |Ψ〉. (4.2) 

Thus, the variational principle of HOHENBERG and KOHN can be written as: 
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n(kr)v
ext(kr) d3kr n(kr) d3kr = N ,
E = T[n] + W[n] + V [n] = min T[n] + W[n] + 
n 

 

 

 

 

 


(4.3) 

where T[n] and W[n] are expectation values of the kinetic energy operator and the 

potential (electron-electron interaction) energy operator, respectively, vext is the external 

potential of the nuclei, and N is the number of particles (constant). Although formulation of 

the postulate and its proof is a salient achievement, a key to practical applications of DFT 

was given by development of the KOHN–SHAM equations [97]. The underlying idea is to use 

a non-interacting electron gas as a reference system. This way, E[n] can be decomposed 

into a sum of (i) the kinetic energy of non-interacting electron gas T0[n], (ii) the classical 

electrostatic interaction energy EH[n] (HARTREE term) for the density n(kr), and (iii) the 

exchange and correlation energy Exc: 

E[n] = T0[n] + EH[n] + Exc[n], 

where all the information about kinematic (exchange) and dynamic (correlation) electron-

electron interactions is contained in Exc. The wave functions of a non-interacting electron 

gas are SLATER determinants, based on one-electron wave functions φi. KOHN and SHAM 

showed [97] that the density of interacting electrons moving in external potential vext can 

be calculated as a density of a non-interacting electron gas moving in the effective potential 

veff, which is defined as 

n(kr ' ) 
d3k ' veff(kr) = r + vxc(kr) + vext(kr). (4.4)

|kr − kr '| 

The first term in Eq. 4.4 is the HARTREE term, while vxc is defined as the first variation of 

the exchange and correlation energy Exc[n(kr)]: 

δ 
vxc(kr) ≡ Exc[n(kr)]. (4.5)

δn(kr) 

Then, the problem is reduced to the following equations (KOHN–SHAM equations):

 


φi

 

 

 

 

 

veff(kr) − 

 

 

 

 

 


 

∇2 
kr 

N 

2

〈φi|φ j〉 = δi j, 
N

φi = εi, (4.6)
 

(4.7)
 

n(kr) = 〈φi|φi〉. (4.8) 
i = 1 

These nonlinear equations can be solved self-consistently. DFT codes typically deal with 
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a FOURIER transform of this problem, i.e. KOHN–SHAM equations are solved on a finite mesh 

of kk. The only remaining problem is Exc, which is not known exactly, and calls for additional 

approximations. 

4.1.2 Approximations to the exchange and correlation potential 

The exchange and correlation energy can be formally decomposed into exchange and 

correlation contributions, Ex and Ec, respectively. The exchange term subtracts the unphysical 

interaction of an electron with itself, which is included in EH. This term can be expressed in 

a two-center integral form [98]: 

1 N φ ∗ j (kr) φi 
∗ (kr ' ) φ j(kr ' ) φi(kr)

Ex = − d3kr ' d3kr. (4.9)
2 |r − r '|

i j 

In contrast, the correlation term Ec can not be expressed analytically in terms of φi. 

Instead, different approximations for this term are used. The most popular is the local 

density approximation (LDA), which is based on the homogeneous interacting electron gas 

model. Within this model, the exchange energy is defined as 

� �1/33 3 
ELDA 4/3 d3k[n(kr)] = − n(kr) r. (4.10)x 4 π 

The correlation energy Ex [n(kr)] is typically defined as a parameterized solution, attained 

by using quantum Monte Carlo (QMC) algorithms. At present, the parameterization of 

PERDEW and WANG [99] is typically used for practical calculations. 

As follows from the mapping onto the homogeneous electron gas problem, LDA is a 

good approximation for slowly varying densities. In the case of sizable density variations, 

it is reasonable to introduce a gradient correction, leading to the generalized gradient 

approximation (GGA): 

EGGA k[n(kr)] = f n (kr) , ∇n (kr) d3kr, (4.11)xc 

where the function f can be defined in different ways. The most widely used is the 

definition of PERDEW, BURKE and ERNZERHOF [100]. Extensive comparisons showed that GGA 

yields an improvement for light atoms, while heavy atoms are better described in LDA. In 

general, LDA overestimates bonding, thus underestimating the interatomic distances [101, 

102]. Comparative studies for cuprate materials, including the results of this work, do not 

reveal any systematic improvement in the description of the electronic structure by GGA in 

comparison to LDA. 

To distinguish between non-magnetic and spin-polarized states, the theory was general­

ized already at early stages by VON BARTH and HEDIN [103]. In particular, they replaced the 

density n(kr) by the spin density matrix nσσ ' (kr), leading to independent spin up and spin 
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down densities. The resulting (spin) magnetic moment µ will be
 

  

µk = −µB Tr S · nσσ ' (kr) d3kr, (4.12) 

where S is the total spin operator. This spin-dependent theory is called local spin density 

approximation (LSDA). 

4.1.3 Correlated systems. DFT+U 

For a wide class of materials, such as MOTT and charge transfer insulators, local function­

als like LDA or GGA yield qualitatively wrong solutions, predicting these systems to be 

metallic. Although spin-polarized calculations typically yield a nonzero band gap, its value 

is substantially (e.g. one order of magnitude) smaller, than the experimentally measured. 

The underlying reason for this discrepancy is the insufficient treatment of electron-electron 

repulsion (correlation), which can be especially large if two electrons occupy a compact 

orbital having a rather small spread. For the 3d systems, such as cuprates, this effect is 

especially pronounced. 

Adequate treatment of strongly correlated systems within DFT is a challenging task, and 

no universal solution to this problem has been proposed so far. The essential problem is 

to incorporate many-body effects such as correlations into the one-electron approach. The 

simplest and at present one of the most popular schemes is LDA+U , proposed by ANISIMOV, 

ZAANEN and ANDERSEN [104]. The general idea of LDA+U is to account for the missing 

part of COULOMB interaction by introducing a certain energy penalty for two electrons 

occupying the same orbital (HUBBARD model). It is important to note that the reasoning of 

Ref. 104 is based on the neglect of fluctuations for average orbital occupancies (mean-field 

approach). This way, the additional energy term can be expressed in terms of COULOMB 

matrix elements Wσσ ' and spin-dependent (exchange) mm ' , comprising spin-independent Umm ' 

Jmm ' δσσ ' contributions [105]. 

In DFT codes, the parameters Ud = Umm ' and Jd = Jmm ' 
1 are typically expressed in terms 

of SLATER integrals F2n. The most relevant parameter is Ud = F0, which in the case of Cu2+ 

typically falls into the range 5–9 eV, while its particular value is often adjusted to provide the 

best agreement to the available experiments. In addition, non-universality of Ud should be 

emphasized: the difference in basis set definitions gives rise to difference in the values of Ud 

that yield the same value for a reference quantity (e.g. exchange coupling J). Therefore, 

the optimal2 values of Ud for one DFT code are in general not directly transferable to the 

other code. Moreover, the optimal value of Ud depends also on the type of the reference 

quantity. As was shown in Ref. 106, the optimal Ud values that reproduce the experimentally 

measured components of the electric field gradient tensor are ∼2 eV smaller than those 

1Since the object of this study are 3d systems (cuprates), the notation Ud and Jd is used in the following. 
2The value providing the best agreement with the respective experiment. 
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yielding the best agreement for the Ji values derived from fits to magnetic susceptibility. 

Although Ref. 106 suggests that the difference is likely influenced by different time scales that 

specific are to a particular experiment, this issue definitely deserves a deeper investigation. 

In contrast, extensive spectroscopic studies evidence that Jd is very close to 1 eV for all 

3d elements. Therefore, in DFT+U calculations, this parameter is typically kept constant. 

The relevant terms F2 and F4 can be evaluated by combining the expression Jd = (F2 + 

F4)/14 [107] with the empirical value for F4/F2 which amounts to 0.62–0.63 for all 3d 

elements [108]. This way, for Jd = 1 eV, F2 = 8.6 eV and F4 = 5.4 eV. For the d orbitals, 

further F2n terms (n > 2) are zero. 

The original functional of Ref. 104 refers to the spin-independent average occupations, 

yielded by LDA. An alternative way to introduce the additional term is to use the spin-

dependent occupations, yielded by LSDA [109]. Therefore, LDA+U and LSDA+U are 

different calculational schemes, although they are often confused in the literature, as 

discussed in [105]. In addition, the occupations can be taken from the GGA, leading to the 

GGA+U functional. A common abbreviation for the whole family of these “+U” functionals 

is DFT+U . 

Besides obvious shortcomings, such as the absence of dynamical effects, the main 

problem of the DFT+U approach is the double counting of correlation energy already 

present in L(S)DA or GGA. To remedy this effect, the double-counting correction (DCC) 

is introduced. There is no unique way to introduce the DCC. Instead, two limiting cases 

were proposed. The first possibility is to subtract the averaged energy corresponding to the 

uniform occupancy of the orbitals. This scheme is typically referred as around-the-mean-field 

(AMF) [109]. Another option is to use the fully localized limit (FLL), with integer (0 or 1) 

orbital occupations as a reference. Although a combination of the two schemes can be used 

as well [110], pure AMF or FLL schemes are typically used for calculations. 

The choice of the DCC scheme affects the resulting energies. Despite thorough theoretical 

works [105, 110] and comparative AMF/FLL studies (e.g., Refs. 111 and 112), the influence 

of the DCC is studied insufficiently. Many DFT+U-based studies of microscopic magnetic 

models ignore this problem, while the choice between the two DCC scheme is often done 

implicitly. 

Recently, vibrant development of alternative methods for an appropriate description 

of strongly correlated systems lead to considerable progress in this field. Although these 

methods are not used in the present study, the vast improvement of computational facilities 

make these alternative techniques more and more appealing, and they are worth mentioning. 

Since all feasible DFT-based computational schemes an approximation for the exchange 

and correlation potential, a natural alternative is to apply quantum chemical methods in 

order to provide a more realistic description of correlations. The variety of techniques 

exploiting this idea is referred as post-HARTREE–FOCK methods.3 Although the applicability of 

3The starting point of such calculational schemes is a HARTREE–FOCK calculation, where the correlations 
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these methods is presently restricted to rather small clusters, there is an empirical evidence 

that such small clusters can provide a reasonable description of bulk properties [113]. The 

most difficult part is to find an appropriate cluster and to introduce a reasonable embedding 

potential. Despite these difficulties, recent post-HARTREE–FOCK studies on quasi-1D [114, 

115] and quasi-2D [116, 117] cuprates evidence good potential of such an approach. 

Another way of improving the DFT description is to combine it with the exact HARTREE– 

FOCK exchange [118]. Here, the tricky part is to choose the correct mixing ratio. Recent 

hybrid functional studies on several quasi-2D cuprates report considerable improved descrip­

tion of the electronic structure (e.g. the correct electronic ground state and the value of the 

band gap) compared to LDA and GGA [119]. 

A rational albeit computationally demanding idea is to improve the HARTREE–FOCK 

method by resorting to the screened COULOMB interaction W . The respective calculational 

method is known as the GW approximation [120–122], where G stands for a single-particle 

GREEN’s function. A very promising development is the family of DFT+DMFT methods 

(LDA+DMFT [123], GGA+DMFT [124], GW +DMFT [125]), which can be regarded as a 

dynamical version of LDA+U . Here, a certain site or a small cluster are treated as impurities. 

The electron-electron interactions at the impurity sites is taken into account explicitly, while 

the interactions with the surrounding is treated as a dynamical mean-field. The development 

of more and more efficient impurity solvers contributes to popularity of this method. 

4.1.4 FPLO 

The DFT code FPLO (“full-potential local orbital”) is an all-electron numerically efficient 

code which yields accurate GS density and energy, as well as the energies of the lowest-lying 

excitations [126]. The DFT calculations described in the present work were done using 

FPLO versions 6 to 9, where a constant basis set is used, in contrast to the older versions. 

The scope of the available options comprises different parameterizations of the exchange 

and correlation potential (different versions of LDA [99, 127] as well as GGA [100]), 
DFT+U , full-relativistic calculations, calculation of forces, structure optimizations, WANNIER 

functions [128], electric field gradients [106], and electron localization functions. Both 

crystalline systems and molecules can be treated. 

FPLO uses the basis of atomic-like wave functions, subdivided into the core states (fully 

occupied, no overlap of wave functions of different sites), semi-core states (small, but non-

negligible overlap), valence states (partially occupied) and extended states (lowest-lying 

unoccupied states). The spin-independent basis states, composed of analytical angular 

(spherical harmonics) and numerical radial parts (solutions to the DIRAC equation with an 

additional confining potential [126]). The basis set is extended, i.e. it contains a stock of 

polarization states, which ensures an appropriate description for the lowest-lying excited 

effects arising from COULOMB repulsion of electrons are neglected completely. In the next step, these effects are 
taken into account (hence the name “post-HARTREE–FOCK”). 
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states. Implementation of the extended basis set in FPLO contrasts with a more popular 

idea to describe valence and conduction electrons by plane waves, as implemented, e.g. in 

vasp [129], WIEN2K [130] or fleur [131]. 

4.1.5 Relevant information 

This short section summarizes the information, which should necessarily accompany any 

DFT-based study, in order to make the results reproducible. 

DFT code Apparently, different DFT codes use different calculational schemes and can 

substantially differ in their performance, and more important, in accuracy. The same applies 

to different versions of the same code. Therefore, the name and the version of the code used 

should be specified. 

Basis set Most DFT codes feature a flexible basis set, which can be varied to reach the 

optimal balance between accuracy and performance. For the plane wave codes, this flexibility 

is ruled by the plane wave cutoff parameter, which should be specified in a publication. In 

local orbital codes, different sets of local orbitals (or their combinations) can be used as a 

basis. Consequently, this basis set should be explicitly specified. 

Parameterization of Exc Different parameterizations of Exc yield in general different total 

energies, thus the parameterization used, should be specified. 

Relativistic treatment DFT calculations can be performed by neglecting the relativistic 

effects completely (non-relativistic), or partly, by neglecting only the spin-orbital coupling 

(scalar relativistic [132]). However, systems with sizable spin-orbit coupling require compu­

tationally demanding full relativistic treatment. 

Crystal structure Crystal structure (lattice constants and atomic coordinates) is a sub­

stantial part of the input for a DFT calculation. If an experimentally defined crystal structure 

is used, the reference to the structural information should be mentioned explicitly. For an 

optimized structure, the optimized structural parameters should be provided. 

Unit cell and supercells In principle, the translational symmetry of crystalline materials 

can be characterized by an infinite number of vector sets Tk1, Tk2, Tk3. The majority of DFT 

studies use a primitive cell, i.e. the set of the basis vectors which yields the minimal 

volume V = (Tk1 × Tk2) · T3 . In the case another cell is used (e.g. for LSDA+U supercellsk

calculations), the basis vectors should be specified. 
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kk-meshes Since the KOHN–SHAM equations are solved on a discrete finite mesh of kk vectors, 

convergence with respect to the kk-mesh should be addressed. Metals are notorious for strong 
kk-dependence of the calculated energies, while insulators yield converged results even for 

very small meshes (Fig. 4.1). Thus, especially for metallic systems, the k-meshes used for 

the calculation, should be specified. 

10
1

10
2

10
3

10
4

10
5

number of irreducible k-points

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

E
 -

 E
0
 (

e
V

)

Al

Si

NaCl

Figure 4.1: Convergence of the total energy with respect to the kk-mesh for several systems. The 
insulator NaCl exhibits good convergence even for small meshes. In contrast, the total energies of 
conducting systems (Al and Si) are strongly dependent on the kk-mesh (slow convergence). Note 
the logarithmic scales in both axes. The details of the calculations are given in App. A3. 

DFT+U parameters In addition to the parameters Ud and Jd , the DCC scheme should be 

specified. 

4.2 Model approach 

Among all kinds of excitations in solid state, the magnetic excitations have the lowest energy. 

As a consequence, the states relevant for magnetism are typically bound to a close vicinity of 

the FERMI level. For these energies, modern DFT codes yield in general accurate dispersion 

relations. The atomic as well as the orbital character of the states relevant for magnetism 

can be identified by projecting the constituent bands onto a basis set of atomic-like orbitals. 

As discussed in Sec. 4.1, DFT fails4 to reproduce the correct GS for correlated insulators. 

Therefore, for the case of strong correlations (sizable COULOMB repulsion U), further analysis 

of the relevant bands largely depends on their dispersion. In the case of strongly dispersive 

bands (Δε � U), electron transfer processes dominate over correlations and magnetism 

has an itinerant nature. In contrast, small band dispersions (Δε � U) point to localized 

magnetism, which originates from polarization of spins bound to inner shells of an atom. 

4Standard parameterizations of Exc, such as LDA and GGA. 
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Since all undoped cuprates belong to the latter class, only localized magnetism is considered 

in the following discussion. 

In general, a system of N interacting electrons can be described in a non-relativistic 

approach by the following Hamiltonian: 

⎡ ⎤ 
N h2 

N

N ħ 1 
H = ⎣− ∇2 

rki 
+ U(rki) + V (kri − rkj)⎦ . (4.13)

2me 2
i=1 Hj=i 

The first and the second terms are the kinetic and the potential energy operators for a 

one-electron problem, and the last term describes the interaction between the electrons. 

To underscore the essential difference between the last term and the first two terms, the 

Hamiltonian 4.13 can be rewritten in terms of second quantization: 

N N1† † †Ĥ = − ti j ĉi ĉ j + Vi jkl ĉi ĉk ĉ j ĉl , (4.14)
2

i j i jkl 

ħh2 

where ti j = φi 
∗ (kr) −

2me 
∇k

2 
r + U(kr) φ j(kr) d

3kr (4.15) 

and Vi jkl = φi 
∗ (kr1)φ j(kr1) V (kr1 − kr2) φk

∗ (kr2)φl (kr2) d
3kr2 d

3kr1. (4.16) 

The first term in Eq. 4.14 describes the electron transfer (hopping) process, while the 

second term is related to the electron-electron interaction. The parameters of this Hamilto­

nian are the transfer integrals ti j and the two-center integrals Vi jkl . A full set of ti j and Vi jkl 

apparently provides a complete non-relativistic description of an N -electron system. How­

ever, restriction to several relevant terms is often a very good approximation. Since standard 

approximations to the exchange and correlation potential drastically underestimate the effect 

of strong correlations, it is convenient to start with the picture of non-interacting electrons 

(the interactions between the electrons are neglected by setting Vi jkl = 0 in Eq. 4.14). 

The resulting simplified Hamiltonian is known as a tight-binding (TB) model (Sec. 4.2.1). 

Next, by varying the model parameters ti j, the optimal description of the DFT band structure 

is obtained. To restore the insulating GS, the Hamiltonian 4.14 is supplemented by the 

interaction term with a realistic value for the onsite COULOMB repulsion Vi jkl = U , which leads 

to a HUBBARD model. As it will be shown (Sec. 4.2.5), low-energy (magnetic) excitations of 

this model are described by a HEISENBERG model (Sec. 4.2.6). 

This effective one-orbital procedure provides a reliable estimate only for the AFM part 

of exchange. However in real systems, there are several sources for the FM exchange, 

apparently not accounted for in this approach. Relevant approaches to the evaluation of the 

FM part of exchange couplings will be described in Sec. 4.2.7. 
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4.2.1 Tight-binding model 

As discussed in Sec. 4.1.3, standard parameterizations of the exchange and correlation 

potential, such as LDA or GGA, strongly underestimate the effect of COULOMB repulsion 

between the electrons of inner atomic shells. It is therefore reasonable, in first approximation, 

to neglect completely this small part of the COULOMB energy, contained in LDA or GGA. 

Such assumption leads to the TB approximation, in which electron-electron interactions are 

neglected (Vi jkl = 0 in Eq. 4.14). The resulting TB Hamiltonian is expressed as 

N N 
† † †ĤTB = − ti j(ĉ ĉ jσ + ĉ ĉiσ) − εi ĉ ĉiσ (4.17)iσ jσ iσ

i> j,σ i,σ 

where ti j are transfer integrals, and εi are constant energy shifts with respect to the 

FERMI level. The creation and annihilation operators can be FOURIER-transformed into 

N 
ĉ† = K−1/2 ĉ† exp (−i[kk · kRi]),iσ kkσ 

kk
N (4.18) 

ĉiσ = K−1/2 ĉkkσ exp (i[kk · kRi]), 
kk 

where K is the number of discrete reciprocal-space vectors kk in the first BRILLOUIN zone, 

and kRi is the real-space position vector of the i-th site. Combining Eq. 4.18 with Eq. 4.17, 

NN
� � 

ˆ = −K−1 † †HTB ti j ĉ ĉkkσ exp (i[kk · {kRj − kRi}])ĉ ĉkkσ + exp (−i[kk · {kRj − kRi}]) +kkσ kkσ
 
kk,σ
 i> j 

NN N N 
† †− K−1 εi ĉ ĉkkσ = −K−1 δi jεi + (1 − δi j)2ti j cos (kk · [kRj − kRi]) ĉ ĉkkσ.kkσ kkσ 

kk,σ kk,σi i≥ j 

(4.19) 

For periodic 3D systems, only a finite number N of vectors kRi within a unit cell are 

independent. All other radius-vectors are related by kR' i = Rki + Tk = Rki + cxkt x + cykt y + czktz, 

where kt x , kt x and kt x are translations along the edges of the unit cell, and cx , cy and cz are 

arbitrary integers. Therefore, the Hamiltonian (Eq. 4.19) can be rewritten: 

⎧ ⎫ 

N⎨N ⎬ 
†ĤTB = −K−1 

⎩ 
δi jδ�Tk �0εi + (1 − δi jδ�Tk �0)2ti, j+Tk cos (kk · [kRj + Tk − kRi])

⎭ ̂
c ĉkkσ,kkσ 

kk,σ i≥ j,Tk

(4.20) 

where 1 ≤ j ≤ i ≤ N , and Ri and Rj belong to the same unit cell. Similar to Eq. 4.17, 
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this sum contains an infinite number of terms. However, in practice, the increase of the 

intersite distance kRj + Tk − kRi leads to a rapid decay of the respective transfer integrals ti, j+Tk . 

Therefore, the sum in Eq. 4.20 can be reduced only to relevant terms (with small Tk ) in good 

approximation. 

For practical computations, operators should be presented in the matrix form. Thus, the 

Hamiltonian (Eq. 4.20) can be written as a kk-dependent N×N matrix with the following 

matrix elements: 

N 
HTB(kk) = 〈φ j| ĤTB |φi〉 = −δi jεi − ti, j+Tk exp i kk · (kRj + Tk − kRi) , (4.21) 

Tk

As soon as the values of all relevant ti, j+Tk are known, the TB Hamiltonian matrix can 

be readily constructed. Its eigendecomposition yields the dispersions (the eigenvalues are 
kk-dependent). For particularly simple cases, the solution of this model is straightforward. An 

archetypical example is the chain of equidistant (separated by Tk ) sites with a NN hopping 

t1. Here, the unit cell contains just one atom, and the Hamiltonian matrix is reduced to a 
i(kk·k i[kk·(−Tk )]scalar, which amounts to −ε0 − t1 exp T ) −t1 exp = −ε0 − 2t cos (kk · Tk ) (Eq. 4.21), 

leading to a simple analytical expression for the energy E(kk) = −ε0 − 2t1 cos (kk · Tk ). 
Although there are many spin chain materials known (see, e.g. Sec. 6.1), the majority of 

quantum magnets feature a more complicated topology of magnetic couplings. In 1D, the 

simplest extension of the NN chain model is taking the NNN coupling t2 into account (Fig. 4.2, 

bottom). In this case, the resulting dispersion, given by E(kk) = −ε0 − 2t1 cos (kk · Tk ) − 

2t2 cos (kk · 2Tk ), strongly depends on the ratio of the leading couplings t1 and t2. Thus, a 

small t2 has only a minor impact on the cosine-like shape of the dispersion (Fig. 4.2, left). 

For t1 = 2t2 and t1 = 2t2 (Fig. 4.2, middle and right, respectively), the resulting dispersion 

clearly contrasts with the NN chain (t2 = 0) case. Thus, a careful inspection of dispersion 

along a certain direction of the kk-space provides valuable information on the coupling 

regime, in particular, whether restriction to the NN coupling is appropriate. 

In this way, the dispersions E(kk) can be calculated for any set of transfer integrals. The 

nontrivial part of the problem is to obtain estimates for ti, j+Tk . At present, two approaches, 

both based on the evaluation of a DFT band structure, are used for this purpose. The TB 

fit is a clear and typically stable procedure yielding numerically precise results, although 

in many cases it suffers from ambiguous solutions. The other approach, based on WANNIER 

functions, is computationally more demanding, but provides a physically sound picture. 

4.2.2 Tight-binding fit 

The TB fit is an iterative procedure, in which the initially given set of transfer integrals 

{t0 } is varied in order to get the best fit to the set of bands adopted from the DFT band
i, j+Tk
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Figure 4.2: Band dispersions (bold red lines) of the TB model for a chain with NN t1 and NNN t2 
couplings (bottom). Individual contributions of the t1 and t2 terms are shown by thin red lines. 
Left panel: t1 t2. The cosine-like shape of the resulting dispersion is preserved. Central panel: 
t1 = 2t2. Right panel: t1 = t2. 

structure. For N magnetic orbitals (or magnetic sites in a one-orbital model) in the unit 

cell, the corresponding N -band complex having a sizable weight of the particular orbital 

character, should be selected. The choice of these bands can be carried out by analyzing 

the orbital-projected density of states or by plotting the band weights, both visualizing the 

orbital character. A typical feature of the electronic structure of many cuprate materials is a 

clearly separated band complex at the FERMI level, with the strongly dominant Cu 3dx2− y2 

and O 2pσ orbital character. In this case, selecting the relevant part of the band structure is 

straightforward. However, for several systems, the lower edge of the (dp)σ band complex is 

mixed or hybridized with other 3d bands, making the choice of N relevant bands ambiguous. 

As a rule of thumb, bands with a larger weight of the 3dx2− y2 states should be chosen. 

Typical for a local optimization technique, the initial values of the leading terms ti, j+kT 

play a crucial role in the TB fitting. Choosing a reasonable set of starting {t0 } is a 
i, j+Tk

nontrivial task. There are several ways to guess the leading terms. In particular, the crystal 

structure can be analyzed by applying empirical rules for the strongest couplings, such as 

GOODENOUGH–KANAMORI rules [21, 23]. An additional, alternative insight can be gained 

from the available experimental data. This way, the energy scale of the leading couplings can 

be roughly determined. In the case such data are not available, the results for isostructural 

or closely related systems can be used. It should be explicitly noted that such techniques are 

not universal and unless their outcome is carefully analyzed, may yield an inappropriate 

guess for {t0 }.
i, j+Tk
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The TB procedure comprises (i) the construction of the TB Hamiltonian, (ii) its diagonal­

ization and (iii) minimization of the difference between the resulting energy spectrum and 

the spectrum obtained from DFT. The TB fit algorithm implemented in flyswatter [133], 
comprises the following steps: 

1. Define the starting values {t0 } and the criterion for convergence ε.
i, j+Tk

2.	 Read {kRi} (total number of kRi per cell is N), Tk , the kk-mesh K , and the band structure 

EDFT(kk) from the DFT output.i 

3. Set n = 0 (initial cycle). 

4. Construct and diagonalize the TB matrix Hn 
TB(kk). 

2

TB(kk)|φi〉 − EDFT5.	 Construct F n : F n({tn }) = 
N 〈φi|Hn (kk) , where |φi〉 is the

i, j+Tk kk i=1 i
 

i-th eigenvector of Hn
 
TB. 

6.	 Perform a steepest descent step to minimize F n. Keep the resulting set of new {tSD }.
i, j+Tk

7.	 If F n ≤ ε, then stop, otherwise increase n by one, set {tn } = {tSD } and go to
i, j+Tk i, j+Tk

step 4. 

An important advantage of the TB fit technique is its flexibility. In particular, better 

agreement with the DFT bands can be achieved by extending the set of transfer integrals 

{t0 }. To check the stability of the leading terms, the fitting can be repeated for a reduced
i, j+Tk

set of the leading transfer integrals, only. 

The TB fit usually works well for the systems with one or few leading couplings. If there 

is no clear separation between the leading and minor couplings, the procedure becomes less 

stable, and can converge to a local minimum.5 For certain systems with low symmetry, there 

are several symmetrically-nonequivalent couplings corresponding to the same interatomic 

separation |kRj + Tk −kRi|. Such situations may cause troubles for the TB fit method. Therefore, 

in these cases, an additional careful analysis (based on essentially empirical considerations) 

of the respective coupling paths is necessary. 

Even more tricky is the problem of hybridization between different orbitals: it impedes 

the choice of the Ei 
DFT values and prejudices the effective one-orbital approach. In this case, 

a reasonable solution would be to switch to a multi-orbital model. However, this would lead 

to a sizable increase in the number of relevant {t0 } terms, since there will be at least
i, j+Tk

two sets of intra-orbital hoppings as well as inter-orbital ones. In practice, evaluation of 

multi-orbital models is carried out using the WANNIER functions technique, described in the 

next section. 

5Unfortunately, this problem is inherent in the local optimization techniques. 
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4.2.3 WANNIER functions 

Two essential drawbacks of the TB fit method are (i) its dependence on the initial guess of 

ti j and (ii) its purely mathematical way of fitting to the DFT bands. It is intuitively clear that 

the information yielded by solving KOHN-SHAM equations can be used more efficiently than 

in the TB fitting procedure. In particular, any DFT code deals with the following problem: 

N 
ĤDFT = |ψn,kk〉Hn,n ' (kk)〈ψn ' ,kk|, (4.22) 

n,n ' ,kk 

where |ψn,kk〉 are eigenfunctions (BLOCH states) of the respective HILBERT space. Among 

the huge number of these eigenfunctions, the relevant subset can be selected (the set of 

states forming the bands at the FERMI level). The FOURIER transformation of this basis leads 

to the Hamiltonian 

N 
ĤWF = |wn 

0〉Hn,n ' 〈wn
Tk
' |. (4.23) 

n,n ' ,Tk

In the old basis, the BLOCH states were real space functions that depend on kk and the 

band index n. WANNIER functions that form the new basis, are not dependent on kk, but 

centered, or localized, at a certain position kRi in the real space. WANNIER functions can be 

expressed as 

N 
〉 = K−1/2|wRki exp (−i[kk · Rki])|ψn,kk〉, (4.24)n 

kk 

where K is the number of kk-points. 

Although the expression in Eq. 4.24 is seemingly simple, the evaluation of WANNIER 

functions is a tricky task due to the intrinsic arbitrariness in their definition: in the case 

of a single band, the BLOCH function |ψkk〉 can be multiplied by a phase factor exp (iφ[kk]), 
where φ is a real function of kk. The FOURIER transformation of the new BLOCH state leads to 

a new WANNIER function. Generalizing for a multiband model, this gauge freedom can be 

expressed by a unitary matrix Ukk , which mixes different BLOCH states at a given kk: mn

N 
Ukk|ψn,kk〉 = |ψm,kk〉. (4.25)m,n

m 

Thus, Eq. 4.24 can be rewritten as 

NN 
〉 = K−1/2 Ukk|wRki exp (−i[kk · Rki])|ψm,kk〉. (4.26)n m,n 

mkk 

Depending on Um
kk 

,n, the resulting WANNIER functions can have different degree of lo­

calization. Following the analysis performed in Ref. 134, by varying Um
kk 

,n, a unique set of 

maximally localized WANNIER functions can be evaluated. 
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The calculation of maximally localized WANNIER functions is a computationally challeng­

ing task. Therefore, there are alternative procedures to evaluate well-localized WANNIER 

functions at smaller computational cost. Here, the basic ideas of the procedure [128] 
implemented in FPLO, which is extensively used in the present study, are discussed. 

Since FPLO uses a chemically-optimized local orbital basis [126], it is appealing to use 

local orbitals (with their symmetry restrictions) as a starting point to define the WANNIER 

functions. Thus, the initial guess for the unitary transformations can be evaluated by 

projecting the BLOCH states |ψn,kk〉 onto local orbital functions |Si〉. This way, only the 

states with a large weight of given local orbitals have a significant contribution to the 

expression in Eq. 4.26. An additional confinement to a certain energy range is done via 

energy windows functions, making a separate treatment of bonding and antibonding bands 

possible. Finally, the orthogonalization of the resulting BLOCH sums is performed. This 

way, the resulting WANNIER functions largely inherit the shape of the respective atomic-like 

orbitals |Si〉. There is an empirical evidence that such approach provides a rather high degree 

of localization [39, 128]. 

Well-localized WANNIER functions provide a direct access to the transfer integrals ti, jkT 

that are evaluated as non-diagonal hopping matrix elements: 

Rkj +Tk k= 〈w | Ĥ |wRi 〉. (4.27)ti, j+Tk n n 

In comparison to the TB fit, the WF approach is computationally more tricky and can be 

applied, provided that BLOCH sums can be exported from a DFT code.6 However, the great 

advantage of this method is that the resulting model is physically sound. In other words, the 

ambiguity (multiple solutions) inherent to the TB fit procedure, is lifted. Next, the method 

can be efficiently applied to multiband models. Finally, WANNIER functions provide a visual 

insight into the relevant orbitals and superexchange paths, as will be shown for several 

compounds within this study (Chapters 6 and 7). 

4.2.4 HUBBARD model 

The relevant ti, jk terms, known from either a TB fit (Sec. 4.2.2) or WANNIER functionsT 

(Sec. 4.2.3), parameterize the respective TB model. Although this model correctly accounts 

for the kinetic (electron transfer) terms, it is apparently inappropriate for strongly corre­

lated materials, since the essence of correlations—interaction between the electrons—is 

completely neglected. To account for the correlation effects, the second term in Eq. 4.14 

should be defined. A bare look at Eqs. 4.14 and 4.16 suffices to understand the substantial 

increase of the complexity. Therefore, the interaction term should be as simple as possible, 

in order to keep the problem solvable. HUBBARD suggested that among the huge number 

6Typically, it is the other way round: the procedure calculating WFs is implemented directly into a DFT 
code. 
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of Vi jkl terms, most relevant is the on-site COULOMB repulsion term, corresponding to the 

interactions of two electrons occupying the same orbital [135]: 

N 
ĤHUBBARD = ĤTB + U ĉi

† 
↑ ĉi↑ ĉi

† 
↓ ĉi↓, (4.28) 

i 

The model in Eq. 4.28 is known as a HUBBARD model. Here, the sum c† ĉi↑ ĉ
† ĉi↓ standsi î↑ i↓

for the number of doubly-occupied orbitals, and the COULOMB repulsion U between the 

electrons occupying the same orbital given by 

2e
U = |φ(kr1)|2 |φ(kr2)|2 d3kr2 d

3kr1. (4.29)
|kr1 − kr2|

Although this model is apparently the simplest correlated model, it can be solved exactly 

only for particularly simple cases, e.g. a chain of spins with the NN coupling [136]. However, 

for realistic models, more involved geometry is typical, and consequently, the number of 

different terms ti j can be larger, practically excluding any possibility to solve such models 

exactly. Therefore, the only computationally feasible way to account for the magnetic 

properties of a HUBBARD model is the so-called low-energy modeling [24], described in the 

next section. 

4.2.5 Effective low-energy model 

Although an exact solution of a HUBBARD model is generally not possible to attain, the 

magnetism of certain classes of real materials, in particular cuprates, can be accounted for 

by a simplified model. First, for the free 3d transition metal ions, the value of U typically 

amounts to 15−20 eV. In particular, U = 16.3 eV was reported for Cu2+ ions [137]. In a 

crystalline system, the screening effects reduce its value, and lead to the effective repulsion 

Ueff which is several times smaller than the value for a free ion [138]. Although the 

experimental estimates of Ueff are rather scarce, it is presently accepted that Ueff = 4−5 eV 

are the optimal values for cuprates. 

In cuprates, the COULOMB repulsion energy largely exceeds the kinetic terms ti j that 

are typically smaller than 0.5 eV. This substantial difference between the energy scales of 

U and ti j gives rise to the insulating GS, common for undoped cuprates. Such situations, 

characterized by a clear dominance of the repulsion effects over the electron hopping are 

called the strongly correlated limit (U ti j). Second, for undoped cuprates, each Cu2+ atom 

has exactly one hole in the 3d shell, hence the respective HUBBARD model has one orbital 

per site and is necessarily half-filled. 

To gain more insight into the physics of a HUBBARD model at half-filling, the simplest 

two-site problem (N = 2) is very instructive. For this case, the HUBBARD model can be solved 

exactly (see, e.g. Sec. IV/A/3 in Ref. 139). First, the HILBERT space of the model should 

be determined. Since the HUBBARD model contains no spin-flip terms, the total spin S is 
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a conserved quantity and thus commutes with the Hamiltonian. Construction of the basis 

states for each spin sector is straightforward (Table 4.1). Next, the orthogonality of the 

basis is addressed by checking 〈φi | HHUBBARD | φ j〉 = δi j. This analysis readily yields that 

〈4 | HHUBBARD | 5〉 = 〈5 | HHUBBARD | 4〉 = −2t, where 4 and 5 are indices from the first column 

of Table 4.1. These two states form a reduced Hamiltonian matrix with the eigenvalues 
1 (U ± U2 + 16t2). The eigenvalue 1 (U − U2 + 16t2) is negative for any infinitesimal t,
2 2 

and thus it is the GS energy. 

index state S E Table 4.1: Total spin (S) and energy (E) for 

1 

2 

3 

4 

5 

6 

|↑ ↑〉 
|↓ ↓〉 

1J
2 
( |↑ ↓〉 + |↓ ↑〉 ) 

1J
2 
( |↑ ↓〉 − |↓ ↑〉 ) 

1J
2 
( | ◦ ↑↓〉 + |↑↓ ◦〉 ) 

1J
2 
( | ◦ ↑↓〉 − |↑↓ ◦〉 ) 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

U 

U 

the states of a two-site HUBBARD model at 
half-filling. Open circles represent empty 
sites. The states 4 and 5 are not orthogonal 
and thus do not represent eigenstates of the 
HUBBARD Hamiltonian. 

For the strongly correlated limit U t, a more elegant expression for the GS energy can 

be obtained. Thus, t/U is treated as a parameter for a perturbation theory. In this way, the 

HUBBARD model can be rewritten as follows: 

N Nt † † †ĤHUBBARD = U(Ĥ0 + Ĥ1), where Ĥ0 = ĉ ĉi↑ ĉ ĉi↓, and Ĥ1 = ĉ ĉ jσ. (4.30)i↑ i↓ iσU 
i 〈i j〉σ 

For t/U = 0, the GS has energy 0 and is four-fold degenerate (states 1, 2, 3 and 4 from 

Table 4.1). First order of a degenerate perturbation theory yields no correction to the GS 

energy, while second order delivers [24]: 

4t2 

ΔE(2) = − . (4.31)
U 

The physical picture is rather simple: the starting point is the singlet state where each 

site is singly occupied. The first hopping process creates an intermediate state with a doubly 

occupied site and an empty site. The energy of this state is higher than that of the GS, and 

this difference amounts to U . In the second hopping process, one of the electrons of the 

doubly occupied site can hop to the empty site. As a result, the gain in the kinetic energy 

associated with the hopping process lowers the GS energy by 4t2/U . However, if the triplet 

state is assumed to be the initial state, the PAULI exclusion principle impedes the electron 

hopping, thus the triplet state energy is unaffected in second order. 

Since U t, the eigenvalues of the HUBBARD Hamiltonian split into two sectors: the 

low-energy sector comprises the GS and a triplet, while the two charge-transfer states 

for a high-energy sector. The two sectors are separated in energy which amounts to ∼U . 
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Therefore, for the low-energy (E U) excitations, the contribution of the high-energy 

sector is negligible, and the essential physics is accounted for by the low-energy part. As a 

consequence, the magnetic properties are well described by a reduced, low-energy model. 

The low-energy model has a S = 0 GS and a three-fold degenerate S = 1 states, with the 

singlet-triplet separation equal to 4t2/U . ANDERSON noticed that this spectrum has exactly the 

same structure as the spectrum of a two-site HEISENBERG model for J = 4t2/U [24]. There­

fore, the low-energy excitations of a half-filled HUBBARD model in the strongly-correlated 

limit at half-filling can be described by a HEISENBERG model. The result is not specific to the 

two-site model, and can be transferred to essentially any lattice geometry [140]. 

4.2.6 HEISENBERG model 

HEISENBERG model is one of the basic models describing the behavior of insulating magnets, 

in which only spin degrees of freedom are preserved. The model parameters are exchange 

integrals Ji j,
7 which correspond to the energy difference between antiparallel and parallel 

arrangements of spins at the sites i and j. 

Unfortunately, neither an unified sign convention nor a unique definition for a HEISENBERG 

Hamiltonian exist. Therefore, prior to the discussion of the model itself, such definitions 

should be given. In this thesis, the following sign convention is adapted: if the antiparallel 

arrangement has lower energy, the exchange coupling is positive (Ji j > 0); in the opposite 

case, the exchange coupling is negative (Ji j < 0). The summation is done over pairs of 

spins, i.e. each pair of spins is counted once. In the following, only the S = 1/2 case, relevant 

for the present study, is discussed. 

A generalized HEISENBERG model is given by the following Hamiltonian: 

N 
ĤHEISENBERG = Ji j(Si · S j), where Si = 1/2σk̂ i = 1/2(σ̂x , σ̂y , σ̂z). (4.32) 

〈i j〉 

Although the HILBERT space of a HEISENBERG model is strongly reduced compared to a 

HUBBARD model, exactly solvable HEISENBERG models are also extremely scarce. In most cases, 

only approximate solutions, or solutions for largely simplified models, are computationally 

feasible. The particular method to solve a certain HEISENBERG model depends in the first 

place on the dimensionality of the model and the presence or absence of magnetic frustration. 

An overview of widely used present-day techniques is given in Chapter 5. 

To complete this part, the widely used classical version of a HEISENBERG model should 

be mentioned. This approach utilizes the intimate relation between the SU(2) groups that 

describe spin operators, and the SO(3) groups describing rotations in 3D. In the latter case, 

the spin operators are replaced by real-space vectors kS : {Sk ∈ 3, |Sk| = 1}. This way, the 

7The notation “Ji j” is used to denote the exchange between the sites i and j. In the cases the sites are of no 
interest, a more general sign “Ji” is used. 
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energy of any spin configuration can be expressed in terms of angles between the respective 

spins: 

Êclass. 
N N 

k-k= 1/2 Ji j(kSi · Sk j) = 1/2 Ji j cos (Si, S)j . (4.33)HEISENBERG 

i> j i> j 

Apparently, for the S = 1/2 case, strong quantum fluctuations are intrinsic. Thus, the 

classical approach provides too crude approximation for the quantum model. Still, numerous 

studies on the subject evidence that in many cases (for instance, in high magnetic fields), a 

classical model captures the essential physics correctly. Therefore, for any new HEISENBERG 

model, a classical solution should be the first step to explore its phase space. 

4.2.7 Ferromagnetic coupling 

So far, the effective one-orbital approach (model approach) was discussed. By construction, 

this technique accounts only for the AFM exchange, since two electrons with the same spin 

can not occupy the same orbital, according to the PAULI principle. At present, there is an 

empirical evidence that the effective one-orbital approach correctly captures the leading 

mechanism of the AFM exchange coupling. However, in real magnetic insulators, the 

hopping process is more complicated and typically involves several ligand orbitals. In certain 

cases, different mechanisms give rise to sizable FM coupling, which can compensate or even 

overcome the AFM contribution (for the case of cuprates, this mechanism has been discussed 

in Sec. 2.2.2). 

Extensive investigations of a huge family of magnetic insulators delivered a number of 

real materials with an FM leading exchange coupling. Moreover, even if all leading couplings 

are AFM, their values can be substantially smaller than estimates from the effective one-

orbital approach, hinting at sizable FM contribution Ji 
FM to the total exchange Ji.

8 

At present, there is no universal way to evaluate the FM contribution Ji 
FM. However, 

microscopic magnetic modeling for strongly correlated insulators is typically done using 

spin-polarized DFT+U calculations. In the present work, only these methods are used. For 

the sake of completeness, alternative procedures are mentioned in Sec. 4.2.7. 

DFT+U The underlying idea of the DFT+U methods is to calculate total energies for a 

series of magnetic supercells. These cells have the same symmetry, the same arrangement of 

atoms, and differ only by alignment of moments localized on magnetic atoms. Additional 

restriction arises from the limited performance of computational facilities, making calcu­

lations for large meshes not feasible. The empirical fact that for magnetic insulators even 

rather sparse kk-meshes still yield reasonable estimates for the leading couplings, largely 

remedies the situation.9 The only prerequisite is that calculations should be performed 

= JAFM + JFM8Ji is the sum of the AFM and FM contributions Ji .i i 
9In contrast to metals, there is no kk-mesh-dependent change in occupation numbers. 
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for the same kk-mesh. Then, the difference in total energy originates solely from magnetic 

degrees of freedom, in particular, different collinear spin arrangements: the FM structure as 

well as ferrimagnetic and AFM ones. The resulting values of total energy can be mapped 

onto a classical HEISENBERG model. This way, Ji are evaluated as parameters of this classical 

model, and Ji 
FM can be estimated by subtracting Ji 

AFM, evaluated in the model approach, 

from Ji. For dozens of materials, independent experimental studies confirm the reliability of 

this approach, and the discrepancy for the values of Ji is typically lower than 10−15 % for 

leading couplings. 

The fundamental drawback of this method is its restriction to a given set of exchange 

couplings Ji. Moreover, this set is typically rather small: for N supercells, at best N − 1 

couplings can be evaluated. Therefore, it is crucial to know in advance which exchange 

couplings are relevant. A natural way is to use results of the model approach. In addition, 

short-range (< 3 Å) couplings should be still taken into account in the DFT+U approach, 

even if the respective ti, j terms are small, since the resulting Ji 
FM can be substantial. This 

way, a suitable set of supercells can be constructed. 

If the original crystal structure does not provide a possibility to calculate all relevant 

terms, standard solutions are symmetry reduction and doubling of the unit cell. To check 

the results for consistency, it is reasonable to perform independent sets of calculations for 

supercells having different metrics and/or symmetry, and subsequently compare the resulting 

values of Ji. 

It is important to discuss further limitations and drawbacks of the DFT+U method. As 

pointed out in Sec. 4.1.3, the exact value of Ud is not known. Therefore, the results of 

DFT+U calculations should be checked for consistency with respect to the Ud value. Second, 

in many cases the results of DFT+U calculations are strongly dependent on the DCC scheme. 

For complicated systems with multiple leading couplings, especially when both AFM and 

FM couplings are present, it is crucial to check the consistency of the results by applying 

different DCC schemes. Basically, the choice of a more appropriate DCC scheme and the 

value of Ud for any particular system should be carefully adjusted, since the optimal values 

depend not only on the nature of magnetic ions and ligands, but also geometry and topology 

the magnetic blocks. In Chapter 6, such adjustments are done for a series of cuprates with 

rather simple underlying magnetic models. Additional justification of the choice could be 

gained by comparing with available experimental data for the material under investigation, 

or structurally related materials. 

DFT+U calculations for certain classes of real materials can be a more arduous task. 

Thus, if the magnetically active orbital has a character different from 3dx2− y2 , or in the 

case of several different magnetically active orbitals (orbital order), the orbital occupations 

numbers yielded by DFT+U calculations, should be carefully inspected. Another recent 

example, a DFT+U study of non-collinear magnets revealed strongly nontrivial dependence 

of the canting angles on both Ud and Jd [141]. 
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Alternative approaches As an alternative to the DFT+U methods, exchange integrals 

can be estimated as energy variation with respect to small rotations of magnetic moments 

from initially collinear configuration. The procedure is based on the ANDERSEN’s local force 

theorem (LFT), stating that the total energy variation coincides with the sum of one-particle 

energy changes for the occupied states at the fixed GS potential [142]. This theorem can be 

extended for the spin-polarized case [143]. Then, considering a small rotation of spins i 

and j from their initially parallel mutual orientation, the GREEN function technique delivers 

an analytical expression for Ji j (Eq. 19 in Ref. 143): 

εF 

Ji j = 
1 

Im(ΔiGi
↓ 
, jΔ jG

↑ 
j,i) dε, (4.34)

4π −∞ 

where
 

ci,σcj,σ 
Δi = Hi 

↑ − Hi 
↓ and Gi

σ 
, j(ε) = 

ε − Eσ 

dkk. (4.35) 
kk 

Despite its obvious success in understanding the magnetic properties of La2CuO4 [144], 
LiCu2O2 [145] and SrCu2(BO3)2 [146], this calculational scheme is rarely used for magnetic 

insulators with localized magnets. Two apparent reasons are applicability of the well-justified 

DFT+U scheme and scarce implementations of the procedure from Ref. 143. In addition, 

comparisons for cuprate materials reveal only minor discrepancy between the results of the 

LFT-based procedure and DFT+U [147]. 
One of the major drawbacks of the DFT+U methods is the inappropriate description 

of covalency in transition metal compounds: the HUBBARD-terms are applied only to metal 

d-electrons, although the latter strongly hybridizes with ligand orbitals.10 Therefore, a 

natural modification of the method is to reformulate the HUBBARD model in terms of 

WANNIER functions. This approach was developed in Ref. [145] and extended for the case 

of anisotropic exchange in Ref. [146]. The starting point of this approach is a planar 

configuration (all atoms lie in one plane) of magnetic plaquettes. In this case, the WANNIER 

functions can be constructed as a linear combination of the magnetic d orbital and the 

σ-bonded p-orbitals of the ligands. β , the contribution of the ligand orbital in the respective 

WANNIER function, plays a decisive role for the HUND’s rule coupling. This parameter is 

directly related to magnetization on the ligand atoms. The intra-atomic exchange interaction 

of the ligand atom Jp 
Hund can be estimated using DFT+U calculations. Then, the resulting 

JFM ∼ β4JHund . This method has been successfully applied to the archetype cupratesi p 

LiCu2O2 [145] and SrCu2(BO3)2 [146]. Its main drawback, strongly limiting the range of its 

application, is the restriction to planar structural configurations. 

10In the limit Ud →∞, the hybridization is reduced to zero. 
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Chapter 5 

Simulations of a magnetic model 

5.1 High-temperature series expansion 

Temperature dependencies of magnetization (i.e. magnetic susceptibility χ) and heat capac­

ity (i.e. specific heat Cp) are typically first experimental probes for the magnetic properties 

of a new magnetic compound. The correct interpretation of their results largely defines the 

strategy of further experimental investigation. It is therefore crucial to gain the maximal 

insight into the magnetism of a particular system by analyzing these thermodynamical 

dependencies. 

As discussed in Sec. 3.2, χ(T) and Cp(T) effectively probe the sample quality, disclose 

phase transitions and help to distinguish between gapped and gapless excitation spectra. In 

addition, for magnetic insulators with localized spins, the high-temperature region of the 

magnetic susceptibility obeys the CURIE-WEISS law, and the respective fitting of experimental 

data yields the overall energy scale of magnetic interactions and even indicates which 

couplings—AFM or FM—are dominant. However, resorting from such an averaged coupling 

to the values of individual exchange couplings is not straightforward. In contrast, the HTSE 

method gives access to accurate numerical estimates for the leading exchange couplings, 

provided that the relevant microscopic magnetic model is known. In this case, experimental 

thermodynamical measurements can be used to challenge and consequently refine the 

magnetic model. 

In the following, HTSE for magnetic susceptibility are discussed. Although specific heat 

data can be in principle analyzed using exactly the same approach, reliable evaluation of 

magnetic contribution from experimental specific heat data is feasible only for systems with 

small (below 5–10 K) exchange couplings. None of the systems discussed in this work satisfy 

this criterion. 

In the following, the S = 1/2 HEISENBERG model on an arbitrary lattice is considered. 

Assuming that all spins have equivalent environment, i.e. the set of relevant couplings Ji j is 

exactly the same for every spin in the lattice (this criterion is fulfilled for most of archetypical 
−2 −2topologies), the reduced magnetic susceptibility χ ∗ ≡ max {|Ji j|} N−1 g µ χ can be ex-B 
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pressed in powers of the reciprocal reduced temperature β ≡ 1/t∗ = max {|Ji j|} k−1 T−1 [87]:B 

N
N1 

β n−1 = dn , (5.1)
4χ∗ n=0 

where N is the order of the expansion. For a finite N , HTSE accounts for the experimental 

χ(T) data above Tmin, which meaning is discussed below. The first two dn terms are 

universal [87]: 

N1 
d0 = 1 d1 = Ji j. (5.2)

4 max {|Ji j|} i> j 

It can be shown [87] that the CURIE-WEISS temperature θ is given by the universal 

expression 

θ = 
1 

4 

N 

i> j 

Ji j/kB. (5.3) 

Therefore, the CURIE-WEISS fit is nothing but an HTSE in first order. Low-order expan­

sions, such as the CURIE-WEISS fit, diverge at rather high temperatures T > max {|Ji j|}/kB. 

Switching to higher-order expansion improves the convergence, and for particular mod­

els yields an excellent description of χ(T) down to surprisingly low temperatures T 

max {|Ji j|}/kB [148]. 

Expansions in higher order are specific for a given model,1 thus the particular spin 

lattice topology should be considered. At present, this work has been accomplished for 

archetype S = 1/2 HEISENBERG lattices. In particular, the following 1D lattices were consid­

ered: a HEISENBERG chain with alternating NN couplings (AFM and FM [149] as well as 

both AFM [87]), J1−J2 (zigzag) chain with AFM couplings [148], a distorted diamond 

chain [150], as well as two- and three-leg spin ladders [151]. Within the class of 2D spin 

lattices, series expansions are available for the frustrated square lattice [152], the kagome 

lattice [153], and the SHASTRY-SUTHERLAND lattice [154]. For most of these topologies, HTSE 

for specific heat have been computed as well [87, 148, 151, 152, 155]. 

The only nontrivial part of the fitting procedure is the estimation of Tmin, which sets 

the lower boundary of the high-temperature window (T ≥ Tmin) used for the fit. The 

general strategy reads: Tmin should be as low as possible provided that the HTSE is still 

converged. In most cases, estimates for the optimal Tmin are given together with the 

respective HTSE coefficients. If such estimates are not available, the convergence can be 

checked by examination of the relative weight of the highest-order contribution to the HTSE 

at Tmin. 

HTSEs are especially powerful if the applicability of alternative techniques is strongly 

limited, i.e. for 2D or 3D frustrated models. For instance, HTSE results were an integral part 

11In addition to the terms given by Eq. 5.2, d3 = j J3 for the class of non-frustrated models [87].
24max {|Ji j |}

3 i j 
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of recent advances in understanding the magnetism of the S = 1/2 frustrated square lattice 

systems AA'VO(PO4)2 [91]. 

Besides its apparent limitation to a particular magnetic model, the HTSE method has 

several peculiarities which may impede an accurate estimation of exchange couplings or 

even lead to incorrect results. First, as already mentioned, the minimal fitting temperature 

should be carefully estimated with respect to convergence of the series. Second, HTSE 

is insecure against multiple solutions of a given model. Such ambiguity follows from the 

internal symmetry of the model itself. For instance, HTSE for the frustrated square lattice 

model always yields two solutions that belong to different regions of the phase diagram (see 

Ref. 156 for an instructive example). Another example, the frustrated spin chain model, 

yields very similar χ(T ) for essentially different values of J2/J1. To distinguish between these 

solutions, HTSE should be combined with alternative numerical or experimental methods. 

5.2 Exact diagonalization 

Due to the rapid development of efficient computational facilities, exact diagonalization 

of a Hamiltonian matrix is a popular technique to solve spin Hamiltonians since about 

two decades. Its main features are universality and accuracy: this method yields exact 

results and at the same time imposes no limitations on the dimensionality (D) of a model. 

Quite remarkably, exact diagonalization is one of the few methods that can treat frustrated 

magnetic models. The unbeatable accuracy of the results yielded by exact diagonalization 

make them an excellent benchmark for other simulation techniques. 

The only fundamental limitation of the method is its restriction to finite models with N 

constituent spins. However, limited performance of computational resources sets additional 

restrictions. Practically, only systems with low N and S, and consequently, only D ≤ 2 cases 

are numerically feasible. Problems arising from extrapolation to the thermodynamic limit 

N −→ ∞, the underlying reason for high computational costs of the method together with 

typical present-day bounds for N will be discussed below. 

For many problems related to the GS of a model and its lowest lying excitations, calcu­

lation of the full spectrum is not necessary. Instead, it is enough to restrict a calculation 

to a particular sector of the Hamiltonian and evaluate only its extreme eigenvalues using 

efficient diagonalization algorithms. For spin models, the LANCZOS algorithm, described in 

Sec. 5.2, is a standard solution. This way, models with larger N can be considered, which is 

particularly important for the D = 2 case. 

Sizable finite-size effects are a major problem of exact diagonalization as a method to 

solve spin models. They are an inevitable consequence of sizable computational costs of 

the diagonalization procedure, leading to a rather low number of spins in computationally 

feasible models. Despite the ongoing development of faster computing facilities, the expo­

nential growth of the matrix size (in response to a linear increase in N) will likely inhibit 
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calculations for larger systems, at least in the near future. A real breakthrough toward much 

larger N could be expected only after bringing quantum computers into service. 

Exact diagonalization represents the most straightforward and fully unbiased way to 

solve a HEISENBERG model: namely, to construct a Hamiltonian matrix and evaluate all its 

eigenvectors and eigenvalues exactly (eigendecomposition). This approach apparently works 

only if the respective matrix is finite, hence the number of spins (N) in the model should be 

also finite (D = 0). However, the magnetism of bulk materials is generally accounted for by 

models having larger dimensionality (D > 0), and consequently, an infinite number of spins 

N = ∞ (Fig. 5.1, left). 

The mapping between infinite (Fig. 5.1, left) and finite systems is realized via boundary 

conditions. Open boundary conditions imply that a cluster of N coupled spins is simply a 

cut-out part of the respective infinite lattice, and only the couplings between the N spins 

are preserved (Fig. 5.1, middle). The main drawback of this approach is the resulting 

difference in the coordination numbers, i.e. the number of exchange couplings per site, 

for the boundary and inner spins. To remedy this effect, periodic boundary conditions are 

applied. More specifically, the boundary spins are coupled to each other in order to keep 

their coordination number and topology same as in the infinite model. This way, a cluster 

is transformed into a finite lattice (Fig. 5.1, right), which is generally a more appropriate 

model of an infinite lattice. It is worth to note that if the type of boundary conditions is not 

explicitly specified, periodic boundary conditions are presumed for D > 0 spin models. 

infinite lattice cluster finite lattice

Figure 5.1: Square lattice: difference between an infinite lattice, an N = 16 cluster (open boundary 
conditions) and an N = 16 finite lattice (periodic boundary conditions). Spins and exchange 
couplings are denoted by circles and lines, respectively. 

The price to pay for retaining the correct coordination number is the reduction of the 

effective cluster size. In particular, the maximal separation between two spins on a finite 

lattice is strongly reduced compared to the cluster comprising the same number of spins 

N . This can be illustrated by the example of a HEISENBERG chain (Fig. 5.2): for open 

boundary conditions, the maximal separation corresponds to the distance between the two 

boundary spins and amounts to N − 1. In the case of periodic boundary conditions, the 

former boundary spins become coupled, and the maximal separation is thus reduced down 
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to N/2 and (N − 1)/2 for even and odd N , respectively.
 

Figure 5.2: Difference in the maximal sep­
aration between the spins of a HEISENBERG 

chain for the cases of open (top) and peri­
odic (bottom) boundary conditions. Spins 
and exchange couplings are denoted by 
circles and lines, respectively. 

periodic

open

For certain problems, the discrete k-grid provided by the periodic boundary conditions 

is inappropriate. In particular, the large gap between |kk| = 0 and the lowest nonzero |kk|
may conceal important physical information. To vary the shift of the kk-grid with respect to 

|kk| = 0, twisted boundary conditions can be applied. In this approach, the boundary spins 

are rotated with respect to the quantization axis. In the resulting Hamiltonian, the SU(2) 

invariance is lost for all nonzero momenta, but the commutation with total Sz is preserved. 

So far, the mapping between an infinite model and its finite counterparts, clusters and 

finite lattices, is clarified. The next question is whether a particular finite lattice provides 

an adequate description for the physics of an infinite model. It is intuitively clear that if 

the correlations between the constituent spins are short-range, the results for a finite lattice 

are closer to the infinite model. And vice versa: long-range spin correlations give rise to 

discrepancies of the finite lattice results. To put these considerations on a quantitative footing, 

the correlation length ξ of the infinite model and the transversal size of the finite lattice d, 

can be introduced. If the spin correlation length ξ for any direction of the finite lattice is 

smaller than the half-length d/2 of the finite lattice (Fig. 5.3, right), exact diagonalization 

provides an excellent description for the thermodynamic limit N→∞. On the contrary, 

ξ > d/2 gives rise to discrepancies between the exact diagonalization for a finite lattice 

(cluster) and an infinite system (Fig. 5.3, right). 

A direct connection between the correlation length ξ and the discrepancy between the 

finite lattice and the respective infinite model, allows to infer two important remarks. First, 

exact diagonalization is expected to work well for models with a short correlation length, 

e.g. particular geometrically frustrated systems. Second, since spin correlations decay at 

elevated temperatures, exact diagonalization provides particularly accurate results in the 

high-temperature limit. 

Extending the exact diagonalization results to the thermodynamic limit is at best tricky. 

The issue of a finite spin gap in the S = 1/2 HEISENBERG kagome model—whether it survives 

in the thermodynamic limit N → ∞—is a remarkable example evidencing the complexity 

of such extrapolations. Still, in many cases the extrapolation to infinite models is robust as 

confirmed by using alternative techniques. One of the standard extrapolation techniques is 

the 1/N expansion [157]. However, the straightforward application of the 1/N rules often 

leads to insufficiently precise results, since small sizes of finite lattices typically used in exact 

diagonalization impede the asymptotic behavior. Thus, additional higher-order terms should 
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ξ<d/2
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ξ>d/2
Figure 5.3: The correlation length ξ for finite lattices d×d. For ξ < d/2, the physics of the finite 

lattice is in accord with the physics of the infinite system. On the contrary, in the case of ξ > d/2 
the results for the finite lattice deviate from the respective infinite model. 

be introduced [94]. Another example is the criterion for long-range magnetic ordering of 

an infinite model, based on the observation of the so-called Pisa tower of quasi-degenerate 

joint states (for finite lattices). Here, the normalized energy E/N is calculated for different 

Sz sectors. If the GS for each sector Sz is well-separated from the excited states, while E/N 

for the GS exhibits a linear dependence on Sz(Sz + 1), such situation is a fingerprint of 

long-range magnetic ordering of the respective infinite model [94]. 

Exact diagonalization of a Hamiltonian matrix yields all its eigenvalues and eigenvectors 

and therefore provides a complete description for the finite system under consideration. If 

this method were applicable for all models, there would have been no need for alterna­

tive approaches. However, for models with larger spins and/or larger number of spins, 

eigendecomposition of the respective Hamiltonian becomes computationally expensive: 

a HEISENBERG model for N spins S = 1/2 leads to a Hamiltonian matrix H ∈ C2N ×2N 
. The 

exponential growth of the matrix dimensionality constitutes the basic drawback of the exact 

diagonalization as a method to solve quantum spin models. In particular, the “exponential 

wall” limits the feasible number of spins N in a model to approximately two dozens. There 

is one particularly spectacular example showing the power of the exponential wall. The 

first application of exact diagonalization to spin models was the solution of the HEISENBERG 

chain by BONNER and FISHER in 1964. The maximal finite lattice amounted to N = 12 spins 

S = 1/2 [158]. At present, almost a half-century later, the feasible size of the model is only 

doubled (N = 24).2 

2The famous MOORE’s law states that the number of transistors per integrated circuit doubles every two 
years [159]. Assuming the same scaling for the calculational time, the improvement of computational facilities 
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With the development of alternative methods, such as quantum Monte Carlo (Sec. 5.3), 

it became eventually evident that for many models, except 1D, full diagonalization in 

general does not account for thermodynamics at even moderate temperatures T ∼ J . The 

computational limitation to small N is apparently too tight for the majority of realistic 

models, and calls for optimization of the procedure. Since many problems are focused on 

the low-temperature limit, the knowledge of the full spectrum is not a prerequisite. Instead, 

it is enough to address its low-energy sector or, ultimately, only the GS (T = 0). Therefore, it 

is enough to calculate few lowest eigenvalues of the reduced Hamiltonian matrix. This can 

be done, for instance, within the numerically efficient LANCZOS algorithm, yielding enormous 

reduction of the CPU time with respect to full diagonalization. 

To illustrate the gain in performance, the present-day limits for full and LANCZOS diago­

nalization of S = 1/2 models can be compared. While modern full diagonalization codes and 

computational facilities are limited to N = 24 spins S = 1/2 [160], LANCZOS algorithm makes 

diagonalization of finite lattices up to N = 42 sites feasible [161]. Additional performance 

can be gained from further restrictions: for instance, in the high magnetic field limit (the 

sector of large Sz), a square lattice of N = 64 spins can be treated [162]. 

LANCZOS diagonalization 

In 1950, LANCZOS presented an iterative procedure to obtain the extreme eigenvalues for 

Hermitian matrices [163]. The basic idea of this procedure is to construct a special basis 

space, in which the matrix A is transformed into a tridiagonal form (T -matrix). Each 

new state uj of this basis is constructed by repeatedly applying the A-matrix to an initial 

arbitrary state u1 : u1 = 1 and subsequently orthogonalized with respect to other states 

ui : i ∈ [1, j − 1]. A step-by-step description of the algorithm is given in Sec. A1. 

The LANCZOS procedure is especially efficient for sparse matrices, hence it is inten­

sively used for solving model Hamiltonians (see, e.g. the review for S = 1/2 gapped systems 

in Ref. 164). At present, finite lattices containing about N 40 spins S = 1/2 can be treated. 

The values of N differ for particular spin models, since the symmetry of the finite lattice 

used for diagonalization should be compatible with the symmetry of the respective infinite 

lattice. Therefore, the maximal size of a finite lattice used for diagonalization typically varies 

between N = 36 for the kagome lattice (see Ref. 165 and references therein) and N = 42 for 

the star lattice [161]. 

A specific drawback of the LANCZOS algorithm is the emergence of so-called “spurious 

states”, caused by finite precision of numerical operations. These states can be detected by 

using additional heuristic algorithms [166]. 

A repeated application of the LANCZOS algorithm to evaluate the low-energy eigenvalues, 

required to advance from N = 12 to N = 24 should take approximately 2 log2[(2
24)3/(212)3] = 72 years, 

which is in good agreement with the facts. Thus, for a N = 50 sites problem, one has to take some 
2 log2[(2

50)3/(224)3] = 156 years in consideration. 
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yields a rather accurate approximation for the low-temperature properties of the system. 

This method, commonly regarded as the “finite-temperature LANCZOS method”, has been 

successfully applied for certain spin models, e.g. the frustrated square lattice [167]. Un­

fortunately, the related loss of performance compared to the standard LANCZOS procedure 

strongly reduces its advantage over the full diagonalization. 

5.3 Quantum Monte Carlo 

As discussed in the previous section, exact diagonalization can be applied only to a rather 

small finite systems. The general idea of QMC is to rewrite the partition function Z in a form 

that would allow to treat it by powerful stochastic algorithms. At present, most popular 

algorithms are the path-integral formulation and the stochastic series expansion. 

In order to map a quantum model onto onto a classical statistical problem, a weight 

function W is used. Quantities simulated by stochastic methods contain the sums of W as 

well as the sum of the products of W and estimators of the measured quantity. This scheme 

can be applied only if W is positive definite. In the opposite case, the absolute value of 

W should be used. As a result, the average sign enters the expression for the simulated 

quantity. Typically, increase of the system size and/or decrease of temperature lead to a 

drastic decrease of the average sign and consequently, large statistical errors. This is known 

as the “sign problem” [168]. 

For HEISENBERG models, the sign problem arises only if the respective spin lattice is not 

bipartite. This can be understood as follows. Flipping two AFM coupled spins gives rise to a 

minus sign in the path integral. Thus, if the total number of spin flips is odd, the overall sign 

will be negative [168]. In fact, this scenario corresponds to a magnetically frustrated model. 

This is easy to illustrate, since such spin models feature closed loops formed an odd number 

of AFM couplings and an arbitrary number (including zero) of FM couplings. 

QMC simulations provide excellent performance even for rather large systems and 

practically eliminate the influence of finite size effects. However, they are not applicable for 

the strict GS, since the computational time steeply increases for T → 0. QMC simulations are 

extensively used for comparisons between the microscopic magnetic models and experiments 

discussed in Chapter 6. 

5.4 Density-matrix renormalization group 

Although DMRG is a relatively recent development [169], it is one of the most popular 

simulation techniques. Its obvious advantages are excellent performance and accuracy. 

Unlike QMC, DMRG can be applied to frustrated systems. Moreover, different algorithms 

allow to treat finite as well as infinite systems [170]. However, this method has a serious 
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limitation: its application is restricted to 1D systems.3 Since non-frustrated 1D models can 

be efficiently treated by modern QMC codes (excluding the precise T = 0 case), the primary 

playground of DMRG are frustrated 1D systems. Since none of systems discussed in the 

present work can be referred to this group, DMRG is not used here. Nevertheless, the basics 

of DMRG are briefly discussed for the sake of completeness. 

DMRG inherits the basic ideas of the RG approach [173]. In particular, the system 

is subdivided into finite blocks. For the two neighboring blocks, the problem is solved 

exactly by diagonalization. Then, according to some criterion, the basis is truncated and the 

block is doubled, to complete a step of the iterative procedure. For the truncation criterion, 

RG utilizes energy of a certain state: this way, only the low-energy states are kept. Such 

approach works fine if the interactions between the blocks decays, as for instance, the KONDO 

model [173]. However, this is not the case for spin Hamiltonians [170]. 

DMRG employs a different strategy for the truncation [169]. First, the problem is solved 

not for a single block, but for a set of several adjacent blocks—a superblock. Second, the 

density matrix of the superblock is computed. The largest eigenstates of this density matrix 

are the states kept. This way, the method yields excellent performance for 1D problems at 

T = 0. 

Extensions of the DMRG method, in particular, transfer-matrix DMRG (TMRG) [174– 

176], can be used to address finite temperature properties. At present, it is the method of 

choice for frustrated 1D systems, such as, e.g. the frustrated chain model [177, 178]. 

5.5 Bridge to experiments 

Simulations yield quantities that are typically referred as “reduced”: reduced magnetic 

susceptibility, reduced magnetization etc. A comparison between the simulated quantities 

and the experimental data is possible only after a proper scaling. The simplest case is 

the multiplication of the simulated quantity by some constant, e.g. the leading exchange 

coupling Ji. In general, the procedure is more complicated, and often requires the fitting of 

the simulated dependence to the respective experimental data by varying several parameters. 

In this section, the general strategies of such fitting are discussed for magnetic susceptibility 

and magnetization data. 

Besides, the simulations of finite systems inevitably suffer from finite-size effects. For 

certain quantities, they largely influence the results. It is the case, e.g. for the evaluation of 

the magnetic ordering temperature and the order parameter (Sec 5.5.3). 

3Very recent developments give hope for successful application of DMRG algorithms to 2D models, such as 
the kagome lattice [171] of the frustrated square lattice [172] model. 
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5.5.1 Magnetic susceptibility 

Fitting the experimental magnetic susceptibility data with a simulated dependence is the 

essential part of the computational approach used in this work. For any system which mag­

netic properties are being investigated, magnetic susceptibility is the first probe. Therefore, 

χ(T) data for a system under investigation are typically common, and in many cases, the 

only experimental information on the magnetism. Disagreements between a theoretical 

model and the experimental χ(T) data should be carefully investigated. If no clear reason 

for the discrepancy can be found,4 the theoretical model is likely not sound, and should be 

either modified or discarded. 

Simulations yield the reduced magnetic susceptibility χ ∗ as a function of reduced tem­

perature T ∗ that are related to the experimental χ and T : 

  

kB max {|Ji|} T 
χ ∗ = χ 2 T ∗ = . (5.4)

N g2 µ kB max {|Ji|}B

If the values of Ji and g are known, for instance, from DFT calculations and ESR, 

respectively, the scaling of the simulated curve is straightforward. Seemingly simple, such 

scaling typically yields a rather poor agreement between experiment and theory. First, error 

bars for the Ji values from DFT are typically on the order of 10 %. Such differences are 

clearly visible in the χ(T) plots. Second, ESR data are not always available, and a simple 

guess of the g value (for instance, based on the measurements for related systems) may 

result in a similar inaccuracy (10–15 %). Finally, material samples contain a certain amount 

of defects and impurities, not accounted for by simulations of simple magnetic models. 

Therefore, an alternative approach should be used. 

It is not surprising that fitting the theoretical curve to the experimental one provides a 

much better agreement between the two than the simple scaling discussed before. Numerous 

examples of a successful application of the fitting procedure described below, provide an 

empirical evidence for the reliability of this approach. 

The first problem concerns the transformations of χ ∗ into χ and T ∗ into T that both are 

governed by the overall energy scale max {|Ji|} / kB, but in different ways, as follows from 

Eq. 5.4. If χ ∗ had been an analytical function of T ∗, this would have caused no complications. 

However, both χ ∗ (T ∗ ) and χ(T) are discrete and finite sets. The proposed solution to this 

problem is fitting the χ ∗ (T ∗ ) by a rational function using PADÉ approximants ai and bj: 

I 
0(T
∗ )i ai 

χ ∗ (T ∗ ) = i = 
J (5.5)

1 + j = 1(T
∗) j bi 

4For instance, the discrepancy between the magnetic susceptibility curve for CuSe2O5 in Fig. 3 of Ref. 179 
and the theoretical 1D chain model is related to the sample quality (the magnetic properties of CuSe2O5 are 
extensively discussed in Sec. 6.1.1). However, discrepancies can have completely different origin. Thus, CuNCN 
also features a quasi-1D magnetic model [75], while the peculiar experimental dependence of its magnetic 
susceptibility (Fig. 4 in Ref. 74), which seemingly contrasts with the proposed magnetic model, originates from 
the unusually large energy scale set by the leading magnetic exchange coupling J1 2500 K [75]. 
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The number of PADÉ approximants (I and J) should be minimal provided that discrep­

ancies between the two curves are negligibly small. This way, a continuous function that 

approximates χ ∗ (T ∗ ) is evaluated. 

The next problem in the fitting are extrinsic contributions to the experimental χ(T ): χ0 

and Cimp/T (their nature has been discussed in Sec. 3.2.1). To account for these effects, the 

respective terms should be included into the fit. Finally, the following expression is fitted: 

NA g
2 µ 2 T CimpB χ ∗ χ(T ) = + + χ0, (5.6) 

max {|Ji j|} kB kB max {|Ji j|} T 

If additional experimental information is available, this expression can be modified. For 

instance, the g-factor value can be adopted from ESR measurements and kept constant 

during the fitting. For high-quality samples, especially single crystals, the impurity term 

Cimp/T can be omitted. Special attention should be paid to magnetic transitions: while some 

simulation methods, e.g. QMC, can account for 3D magnetic ordering (provided that the 

respective magnetic model is 3D), ED results typically lack any transitions, mostly because of 

the reduced dimensionality of the model (D < 3). Moreover, the region of the magnetically 

ordered phase can be largely influenced by anisotropic effects, neglected in HEISENBERG 

models.5 Therefore, a typical fitting temperature range should lie above the transition 

temperature. 

5.5.2 Magnetization 

The reduced magnetic field h can be converted to the experimentally measured field H: 

kB max {|Ji j|}
H = h. (5.7) 

g µB 

Therefore, a fit of M ∗ (h) yields an optimal value of max {|Ji|}/g that can be compared sat

to the estimates based on other techniques (e.g. χ(T ) data). 

Simulations yield magnetization in the units that are related to the saturation magnetiza­

tion M ∗ . Measurements in static field yield magnetization in absolute units, while the value sat

Msat for one mole of S = 1/2 amounts to NA µB 5.585 emu. Pulsed field measurements yield 

typically unscaled data (Sec. 3.3). In the case the saturation field is small and can be reached 

experimentally, the scaling is straightforward. However, for most systems, saturation fields 

largely exceed the experimentally accessible range. An alternative possibility is to scale the 

pulsed field data using a lab measurement for the same material as a reference. However, 

this procedure is often impeded by the narrowness of the field range used for the scaling 

(thus insufficient statistics). In this case, the only option is to scale M ∗ to get a best fit to 

alternative experimental data. Apparently, this scaling factor is an arbitrary number which 

5This problem is not related to the computational method, but rather results from a substantial change on 
the model level. 
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depends neither on max {|Ji|}, nor on g. 

5.5.3 LRMO temperature and order parameter 

As follows from the MERMIN-WAGNER theorem [32], a 3D magnetic coupling is a prerequisite 

for an LRMO transition. Therefore, for a 3D model, magnetic ordering transition can be 

simply traced, e.g. by a kink in the temperature dependence of magnetic susceptibility. 

Among the simulation methods discussed, only QMC (Sec. 5.3) is capable of han­

dling such models.6 Still, magnetic ordering for 2D models can be studied by calculating 

〈m4〉 − 〈m2〉2 , called the BINDER ratio of staggered magnetization ms, for different finite s s 
  

lattice sizes N . The intersection of the 〈m4〉 − 〈m2〉2 (T ) curves calculated for different N 

can be taken as an accurate estimate for the magnetic transition temperature [180]. In an 

alternative approach, the spin stiffness ρs defined as the second derivative of the GS energy 

with respect to infinitesimal spin tilt, is calculated for different finite lattice sizes N . Here, 

the ordered temperature is estimated as the intersection of the ρsN(T ) curves for different 

N . Instructive examples can be found in Refs. 181 and 182. 

The main effect of quantum fluctuations in the magnetically ordered GS is the reduction 

of the order parameter compared to its classical value. In the literature, several definitions 

of the order parameter can be found. According to Ref. 94, a universal definition can be 

used: 

� �1/2N
N1 

m = |〈 Si · S j〉| . (5.8)
N 

i, j 

Alternatively, the order parameter can be defined in terms of the structure factor S(kq): 

N3S(kq) 1 N

m(kq) = ; S(kq) = exp {i kq · (kRi − kRj)}〈 Si · S j〉 . (5.9)
N N 

i, j 

The finite size scaling of m(kq, N) is discussed in [183]. The essential result of this study 

is that the 1/N expansion for the structure factor7 is not accurate enough, and its extended 

version should be used instead: 

 

3·S(kq) m1 m2 m3 m(kq) = − J − − J . (5.10)
N N N N 3 

In Sec. 6.3, this scaling scheme is applied to estimate the order parameter of dioptase 

Cu6Si6O18 ·6H2O. 

6As discussed in Sec. 5.2, no fundamental limitations preclude from applying ED to 3D models. It is the low 
performance ED that sets the practical limitation to D ≤ 2. 

7kq in S(kq) is the propagation vector of the magnetically ordered structure. 
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Model spin systems: challenging the 

computational approach 

6.1 Uniform chains 

The uniform S = 1/2 HEISENBERG chain Hamiltonian is the simplest isotropic model which 

describes an infinite number of S = 1/2 spins, coupled to the two NNs each. Since all the 

couplings in this model are equivalent, the only model parameter is the NN coupling J1. 

The magnetic GS has been evaluated by BETHE [184].1 The magnetic excitation spectrum is 

continuous, and the spin correlations 〈S0 · Si〉 in the GS exhibit a power-law decay upon a 

linear increase in i [185, 186]. The elementary excitations are S = 1/2 spinons that can be 

created in pairs only [187]. 

Purely 1D systems2 exhibit neither FM nor AFM order at finite temperature (T > 0), 

as proven by MERMIN and WAGNER [32]. Moreover, in 1D, strong quantum fluctuations 

impede LRMO even at T = 0 [188]. However, there is an empirical evidence that despite 

strong quantum fluctuations leading to TN J1, most of the real material realizations of this 

model exhibit AF LRMO. This seeming discrepancy is readily resolved recalling that LRMO is 

driven by interchain couplings, intrinsic for real materials that form a 3D crystal structure. 

However, the ordered local magnetic moment (order parameter) in such quasi-1D systems is 

strongly reduced with respect to the classical value for S = 1/2 (1 µB), which complicates its 

experimental observation. 

Finite-temperature properties of S = 1/2 HEISENBERG chains, such as χ(T) [76, 87] and 

Cmagn(T)[87], as well as the magnetization process [189] are extensively studied theoreti­

cally. Therefore, the model assignment can be challenged by rather simple experiments that 

in many cases provide an accurate estimate for the exchange coupling J1, e.g. from Tmax at 

which the magnetic susceptibility exhibits a broad maximum, or the saturation field (the 

1The GS of a NN chain is a scarce example of an exactly solvable HEISENBERG model. 
2“1D”, “2D”, and “3D” refer to the spatial dimensionality of the spin lattice, and should not be confused 

with the number of independent spin components (three in the Heisenberg model). 
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estimates are given below). In addition, the χ(Tmax)Tmax product can be used to address the 

validity of the 1D NN chain model for a certain system, i.e. verify the model assignment [87]. 

The lowest possible number of free parameters (one) and thorough theoretical un­

derstanding of the model make HEISENBERG chain compounds excellent reference model 

systems that provide multiple possibilities for a direct comparison between the experimen­

tally observed quantity and its theoretical prediction. At present, a number of real material 

realizations of the S = 1/2 HEISENBERG chain model are known, the most studied are KCuF3, 

BaCu2Si2O7, Sr2CuO3, and Cu benzoate. The key results for these systems are summarized 

below. 

KCuF3 has a perovskite-type crystal structure [190]. The magnetic GS is AFM, with 

TN = 39 K and the ordered moment of 0.5 µB per Cu atom [191]. The coupling J1 amounts 

to ∼400 K, largely exceeding the leading interchain coupling of about −20 K [192]. Below 

∼800 K the system is orbitally ordered [193, 194]. The nature of the orbital order is 

still controversially debated, in particular, whether the electronic (KUGEL–KHOMSKII) or the 

structural (JAHN–TELLER) mechanism plays a leading role [55, 56, 58, 59, 195, 196]. The 

orbital order drastically affects the magnetic properties and stabilizes a 1D magnetic coupling 

regime, as confirmed experimentally [78]. 

Extensive INS studies [192, 192, 197–201],3 revealed pronounced 1D features in the 

magnetic excitation spectrum, such as unbound spinons [198] and a peculiar longitudinal 

mode [201]. However, further experimental investigation of this system disclosed several 

unusual features that could not be accounted for by the HEISENBERG chain model. For 

instance, the ESR data [202] could be interpreted only by considering the anisotropy of the 

exchange couplings, and in addition, a recent study disclosed their dynamical nature [203]. 
Furthermore, there are experimental signatures for a sizable coupling between spin and 

orbital degrees of freedom [193, 194]. Such complexity of KCuF3 renders it as a very 

interesting system, but at the same time discredits it as a good realization of the S = 1/2 

HEISENBERG chain model. 

Another candidate model system, the pyrosilicate BaCu2Si2O7, contains corner-sharing 

chains of CuO4 plaquettes. The intrachain exchange J1 amounts to 280 K, while the interchain 

coupling is about 5 K [204, 205]. The system exhibits a long-range AFM ordering at 9 K with 

the strongly reduced magnetic moment of 0.12 µB per Cu atom [204, 206]. The excitation 

spectrum has been extensively studied by INS [204, 206–209], and the results in general 

conform to the S = 1/2 HEISENBERG chain model. However, in magnetic field, BaCu2Si2O7 

exhibits a fascinating variety of phases and multiple spin-flop transitions, evidencing a 

substantial role of anisotropic effects [210–213]. 

The other two candidate materials, Sr2CuO3 and Cu benzoate, exhibit a variety of 

unusual features. In particular, charge-transfer excitations [214], ultrafast nonlinear optical 

3Noteworthy, the investigation of KCuF3 was accompanied by an active development of INS as an experi­
mental technique to study magnetism on a microscopic level. One can probably say that the studies of KCuF3 
largely contributed to the rise of INS as a method. 
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response [215] and anomalies in the inelastic X-ray scattering [216] disclose a quite involved 

electronic structure for Sr2CuO3, while a field-induced gap [217] originating from the 

DZYALOSHINSKII-MORIYA interactions [218] reveals a more complex magnetic coupling in Cu 

benzoate. 

For the majority of candidate materials, a comprehensive analysis based on modern 

experimental as well as theoretical techniques, unravels a more complicated nature of 

their magnetic properties. Therefore, it is crucial to develop of a reliable method capable 

of disclosing this complexity. To be more precise, such method should account for the 

individuality of a certain real material system. 

A special feature of quasi-1D systems is the presence of only one leading coupling J1, 

which value can be precisely evaluated from the experiments. In particular, the Tmax position 

of the broad maximum in the magnetic susceptibility readily yields the value of J1: 

J1 1.56 Tmax. (6.1) 

For the systems with small J1, the χ(T) maximum is often concealed by the impurity 

and/or defect contribution (Sec. 3.2.1). However, the small energy scale of the exchange 

couplings is advantageous for magnetization studies, since the saturation field Hsat is within 

the reach of pulsed-field measurements, or even in steady fields using a standard lab 

equipment. In this case, J1 can be estimated via the saturation field Hsat: 

J1 0.336 g Hsat. (6.2) 

Since J1 can be precisely estimated from the experiments, there is typically no need to 

evaluate J1 from DFT calculations. Instead, quasi-1D systems can be used for a fine tuning 

of the Ud parameter in the DFT+U methods, i.e. picking an optimal value of Ud , which 

yields the same J1 as in the experiments. After such tuning is performed, DFT calculations 

become a powerful tool to evaluate the leading interchain couplings. Since these couplings 

are much smaller than J1, their experimental evaluation is very challenging. However, they 

are relevant for the LRMO temperature and the structure of the magnetically ordered state. 

Therefore, DFT calculations for quasi-1D systems, followed by simulations of the respective 

microscopic magnetic model, are an excellent method to explore the magnetic GS and 

magnetic ordering. 

In this section, three real material realizations of the S = 1/2 HEISENBERG chain model, 

CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2, are systematically examined. As will 

be shown, the developed computational approach yields reliable parameterizations of 

magnetic models for these three compounds, in excellent agreement with the experiments. 

In particular, the ordering temperature is addressed in a comparative study. It is shown that 

frustration of the interchain couplings plays the key role for the magnetic ordering transition 

temperature. 
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6.1.1 CuSe2O5 

CuSe2O5 is a S = 1/2 HEISENBERG system with isolated CuO4 plaquettes. The studies on a 

powder sample [179] hinted at possible low-dimensional character of its magnetic properties, 

but the low-temperature data were strongly affected by defects or impurities (Fig. 3 in 

Ref. 179), impeding any conclusive or quantitative analysis. 

Selenites are typically susceptible to chemical transport, thus the main advantage of 

CuSe2O5 as a model system is the potential to grow large single crystals of high quality. 

For instance, the chemical transport method used in the present study allowed to grow 

needle-like crystals with up to 5 mm length. 

This section is focused on the evaluation of a quantitative microscopic model for CuSe2O5. 

The numerical results are challenged by comparison to the experimentally measured single-

crystal χ(T ) and Cp(T ) data. An excellent agreement between theory and experiment asserts 

the validity of the computational approach. Another valuable outcome of this study is its 

contribution to the insufficiently studied issue of LRMO in real material quasi-1D systems. 

Crystal structure 

The monoclinic crystal structure of CuSe2O5 features chains of isolated CuO4 plaquettes 

along c (see Fig. 6.1). The neighboring in-chain plaquettes are bridged by Se2O5 polyanions, 

consisting of two SeO3 pyramids that share an oxygen atom (see Fig. 6.1). The formation of 

SeO3 pyramids is typical for the lone-pair cation Se4+, giving rise to an effective separation of 

the spin chains. This structural peculiarity is reflected in the morphology of the synthesized 

crystals (see Appendix, Sec. A2): the needle-like shape with an elongation along [001] is 
a macroscopic feature arising from the structural chains along c (Fig. 6.1) formed by an 

alternation of CuO4 plaquettes and Se2O5 polyanion groups. 

Figure 6.1: Crystal structure of 
CuSe2O5. The chains of isolated 
CuO4 plaquettes run along c. Two 
neighboring SeO3 pyramids share a 
corner and form Se2O5 polyanions 
that mediate the plaquettes. The 
neighboring in-chain plaquettes are 
tilted with respect to each other. 

The experimental crystal structure [219] has been solved using X-ray diffraction on a 

single crystal. The low values of convergence factors (R = 0.028, wR = 0.07) and the reliable 

statistics ensured by a large number of observed reflections (655 reflections with I > 2σ[I]) 
compared to the number of refined parameters (40), are convincing arguments to credit the 

80 



� �

�

CHAPTER 6. MODEL SPIN SYSTEMS
 

structural data and use them as an input for DFT calculations. 

Experimental information 

Single crystalline CuSe2O5 samples were grown by M. SCHMIDT, the X-ray diffraction analysis 

and EDXS measurements were carried out by YU. PROTS and P. SCHEPPAN, respectively, the 

χ(T ) and Cp(T ) dependencies were measured by W. SCHNELLE. For a detailed description of 

the experimental procedures, see Appendix, section A2. All experiments were carried out at 

MPI CPfS. 

The magnetic susceptibility curves (Fig. 6.2, left panel) for both field orientations, paral­

lel (H ) and perpendicular (H⊥) to [001], have a broad maximum at Tmax 101 K and a 

finite value of χ at the lowest temperature measured (1.8 K), indicating the low-dimensional 

behavior and the absence of a spin gap. The high-temperature parts of the curves obey the 

CURIE–WEISS law (Fig. 6.2, right panel; T > 220 K, H : θ = 165 K, C = 0.51 emu K mol−1, 

g = 2.32; H⊥: θ = 170 K, C = 0.43 emu K mol−1, g = 2.15).4 The positive value of θ evi­

dences that the dominating couplings in CuSe2O5 are AFM (see Eq. 5.3 in Sec. 5.1). The 

shape of the experimental curve conforms to the S = 1/2 HEISENBERG chain model, as revealed 

by fitting the experimental data with the parameterized solution from Ref. 87 (Fig. 6.2, left 

panel). 
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Figure 6.2: Left panel: magnetic susceptibility of CuSe2O5 as a function of temperature. The 
magnetizing field is 1 T. For the graphic presentation, only one of each five measured points is 
shown. The BETHE ansatz fits are shown with dashed (J1 = 157.1 K, g = 2.14) and solid (J1 = 157.6 K, 
g = 2.00) lines. Inset: the region around the magnetic ordering temperature is shown enlarged. 
Right panel: inverse magnetic susceptibility as a function of temperature. The CURIE—WEISS fits (for 
T > 230 K) are shown with lines. The temperature-independent contribution χ0 in the CURIE—WEISS 

fits was set to zero. 

To account for the deviation of the fitted curves from the experimental data, both curves 

were fitted independently, varying the temperature range used for the fitting. As a result, the 

4The slight disagreement of the θ values for different orientations of the magnetizing field is typical for 
single-crystal studies, see, e.g. Ref. 220. 
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magnetic susceptibility measured perpendicular to needle-like crystallites can be perfectly 

fitted by a consistent set of parameters (J1 = 157.6 K, g = 2.00) in the whole temperature 

range down to the LRMO temperature, while the fit to the susceptibility measured parallel to 

the chains (J1 = 157.1 K, g = 2.14) shows deviations at low temperatures (below Tmax). This 

difference likely originates from a slight misalignment of microscopic plates in the needle-like 

crystallites, but its intrinsic nature (e.g. the presence of a substantial DZYALOSHINSKII-MORIYA 

coupling) can not be excluded. 

A magnetic phase transition is observed at 17 K for both orientations of the magnetizing 

field. The nature of this transition can be understood by examination of the low-temperature 

part of the curve, below the transition. Due to the high quality of samples, the temperature 

range between the kink at 17 K down to 10 K is practically unaffected by defects (no 

appreciable CURIE tail). In this range, χ⊥[001] exhibits a slight decrease only, while χ drops 

distinctly on cooling. For an ordered collinear antiferromagnet, linear spin wave theory 

predicts a T 2 decay and zero value at zero temperature for the magnetic susceptibility 

measured parallel to the direction of the local ordered magnetic moments [221, 222]. 
Although the extrapolated value of χ⊥[001](0) in CuSe2O5 is nonzero, the decay of χ⊥[001] 

below 17 K generally conforms to the anticipated behavior. Thus, the observed behavior 

suggest that the ordered magnetic moments in CuSe2O5 are aligned almost perpendicular to 

the spin chain direction. 

In contrast, the χ [001](T) behavior resembles the spin-wave result obtained by KUBO 

using higher-order corrections [221]. In particular, he concluded that the magnetic suscep­

tibility measured perpendicular to the direction of the ordered moments should exhibit a 

slight increase upon cooling.5 Exactly this behavior is observed in χ [001](T) for CuSe2O5. 

Whether such behavior arises from the anticipated higher-order corrections or results from 

small misalignment of crystallites, or even related to defects and paramagnetic impurities, 

should be subject to future experimental studies. 

To additionally verify the AFM ordering transition, Cp(T ) has been measured. The clear 

anomaly at 17 K (Fig. A1) and the linear behavior of Cp T
−2(T) below this temperature 

are typical for antiferromagnets [224]. Thus, the Cp(T) data confirm the transition to an 

AFM ordered state (TN = 17 K). Remarkably, the anomaly does not shift nor diminishes 

in magnetic fields up to H = 9 T. Unfortunately, for CuSe2O5 the phonon and magnetic 

contributions to specific heat can not be disentangled due to the large energy scale of 

magnetic couplings. Besides, ZnSe2O5 features a different crystal structure [225], and thus 

a different phonon spectrum, which renders it as an inappropriate non-magnetic reference 

system. 

To summarize the experimental information, CuSe2O5 exhibits a HEISENBERG chain-like 

magnetism with J1 157 K. Since purely 1D systems can not order antiferromagnetically, 

5Such behavior of χ⊥ (perpendicular to the direction of the ordered moment) is in agreement with the 
experiments on MnF2 [223]. In contrast, linear spin wave theory yields the temperature-independent χ⊥ [221]. 
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the origin of the observed AFM ordering is further addressed by DFT calculations. 

DFT calculations 

LDA yields a valence band of about 9 eV width formed mainly by Cu 3d, O 2p and Se 4p 

states (Fig. 6.3, right panel). The well-separated double-peak at the FERMI level contains 

two narrow, half-filled bands (Fig. 6.3, left panel). As expected, the LDA yields a metallic 

GS due to a strong underestimation of the electronic correlations. The orbital-resolved 

DOS shows that the two bands in the vicinity of cF originate from the antibonding (dp)σ 

orbital of a CuO4 plaquette. For CuSe2O5, the antibonding (dp)σ orbital is well separated 

(ΔE ∼ 0.5 eV) from the lower lying Cu 3d and O 2p states, justifying the mapping onto an 

effective one-orbital model. 

Figure 6.3: LDA band 
structure (left panel) 
and DOS (right 
panel) of CuSe2O5. 
Notation of kk-points: 
Γ=(000), X=(π 00),

a
πS=(π 0), Y=(0π 0),

a b b 
Z=(00π ), R=(π 0π ),

c a c
π πA=(π ),

a b c
πM=(0π ).
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For a quantitative analysis, an effective one-orbital TB Hamiltonian is constructed. The 

set of transfer integrals ti was evaluated in order to get the best least-squares fit to the two 

LDA bands crossing cF. Since the TB fit procedure is sometimes insecure with respect to 

multiple solutions (Sec. 4.2.1), the WF technique was used as an alternative approach. The 

difference between the transfer integrals obtained by the WF method and by the TB fit is 

tiny and does not exceed 2 meV for individual ti values (the average difference amounts to 

0.2 meV). This deviation can be considered as an error margin for the mapping procedure. 

Thus, CuSe2O5 is a good example showing that for isolated bands the WF method should 

not be regarded more accurate than a direct TB fit, but rather as an independent alternative 

procedure [226–228]. The agreement of the results using the two independent mapping 

methods reflects the applicability of an effective one-band approach. 

The resulting set of the transfer integrals (Table 6.1, first column) yields perfect agree­

ment with the LDA bands (Fig. 6.4). To check the results for consistency, all ti smaller than 

10 meV were neglected and the fitting was repeated. The difference of the leading terms 

in both approaches did not exceed 10%. The hopping paths corresponding to the leading 

terms are shown in Fig. 6.4 (right panel). 

Besides the leading NN intrachain coupling t1 = 165 meV, only one of the short interchain 
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Figure 6.4: Left panel: the TB fit (red dashed line) to the LDA band structure [antibonding 
(dp)σ band, circles]. Right panel: the superexchange paths for the leading transfer integrals. The 
projection of the structure is the same as in Fig. 6.1. 

Table 6.1: Leading transfer ti (in meV) and exchange 
JAFM JFMpath ti	 Jii i	 integrals Ji (in K) for CuSe2O5. The AFM exchange 

JAFM is calculated via mapping the transfer integrals X1 166 285 −120 165 i 
onto a HUBBARD model (Ueff = 4.5 eV) and subsequently 

Xab 51 27 −7 20 onto a HEISENBERG model. The FM exchange JFM is 
X2c	

i 
11 1.5 0 1.5 evaluated as the difference between Ji and JAFM.b i
 

Xc
 10 1 0 1ab
 

Xc
 10 1 0 <1b
 

X2c
 7 0.5 0 <1ab 

couplings is sizable tab 45 meV (Table 6.1). The corresponding WFs for t1 and tab are 

pictured in Fig. 6.5. 

c

a

ab
c

Figure 6.5: WFs for the Cu 3dx2− y2 orbital. Colors represent the sign of a WF. Left panel: the 
Cu 3dx2− y2 WF plotted on top of a CuO4 plaquette, visualizing the σ-antibonding combination of 
Cu 3dx2− y2 and O 2p states, relevant for the magnetism. Central panel: the overlap of two WFs 
centered on the neighboring Cu atoms (corresponds to the NN intrachain coupling t1). Right panel: 
the overlap of the WFs corresponding to the leading interchain coupling tab. 

The mapping of the TB model onto a HUBBARD model using Ueff = 4.5 eV (the same 

value has been used for the related system Sr2Cu(PO4)2 [229]), yields JAFM = 285 K for 1 

the NN intrachain exchange and JAFM = 27 K for the largest interchain exchange. Other ab 

couplings yield values of AFM exchange less than 1.5 K (Table 6.1, second column) and will 

be neglected in further discussion. 

The calculated leading magnetic exchange J1
AFM = 285 K is considerably larger than the 

BETHE ansatz fit estimate ( 155 K) based on the experimental χ(T ) data. This discrepancy 
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originates from FM contributions to the total magnetic exchange, which are neglected in the 

mapping procedure. To get a numerical estimate for the FM contribution, LSDA+U total 

energy calculations are performed for the wide range of Ud = 6–9 eV and Jd = 1 eV within 

AMF. The best agreement between the calculated value of the leading exchange coupling J1 

and its experimental estimate is obtained for Ud = 6.5 eV (Fig. 6.6). The resulting values for 

other exchange couplings are provided in Table 6.1. 

Figure 6.6: CuSe2O5: the NN cou­
pling J1 as a function of the parame­
ter Ud (LSDA+U calculations). The 
AMF DCC has been used. The ex­
perimental estimate is based on the 
BETHE ansatz fit to the magnetic sus­
ceptibility data (Fig. 6.2). 
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Since the value of Ud = 6.5 eV is optimized with respect to J1, it is worth to check other 

exchange integrals for consistency by performing additional calculations for different values 

of Ud . Besides the expected change of exchange integrals (0.5 eV increase of the Ud results 

in about 20 % decrease of Ji and vice versa), the ratio α ≡ Jab/Jc of the leading exchange 

integrals (α = 0.121 for Ud = 6.0 eV, α = 0.129 for Ud = 6.5 eV, and α = 0.136 for Ud = 7.0 eV) 

is rather stable with respect to the Ud value. 

Considering the absence of edge-sharing connections of CuO4 plaquettes, the J1
FM = −120 K 

seems to be unusually large. A plausible explanation for the sizable FM contribution is the 

tilting of the plaquettes. As can be seen in Fig. 6.5, the tilting of the neighboring plaquettes 

gives rise to a sizable π-overlap of the WFs, and hence O 2p wave functions of the neighbor­

ing plaquettes, allowing for a considerable HUND’s coupling. The large FM contribution may 

originate also from a destructive interference of coupling paths [230] or a strong coupling 

to ligands [231]. Which of these mechanisms plays a leading role in CuSe2O5 remains an 

open question. 

Model simulations 

Profiting from the non-frustrated nature of the spin model, QMC are applied to simulate 

the magnetic susceptibility with a subsequent comparison to the experimentally measured 

curves. The results of the simulations are given in Fig. 6.7 in comparison with the BETHE 

ansatz fits (where the interchain coupling is neglected). Obviously, the inclusion of the 

interchain coupling yields only a tiny improvement with respect to the BETHE ansatz fits. This 

fact demonstrates a posteriori the importance of a microscopic model for quasi-1D systems 

like CuSe2O5: apart from the microscopic modeling, there is no reliable way to account for 

the small interchain coupling directly from measurements of the magnetic susceptibility. 
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Figure 6.7: Comparison of BETHE ansatz and QMC fits to the experimental magnetic susceptibility. 
The temperature-independent contribution χ0 in both fits was set to zero. 

Discussion 

The DFT calculations disclosed several advantages of CuSe2O5 as a model system. First, 

there is an unequivocal evidence from both theory and experiment that the magnetism is 

chain-like. Secondly, the microscopic analysis revealed that the second-neighbor intrachain 

coupling is practically absent, leading to a valuable simplification for a theoretical analysis. 

Finally, there is only one relevant interchain coupling, which couples the spin chains in a 

simple and non-frustrated way. 

Since the uniform HEISENBERG chain model is well understood theoretically, several 

relevant quantities, such as the value of the leading exchange coupling, can be estimated 

directly from the experiment. In particular, the position of the wide maximum in the magnetic 

susceptibility corresponds to ∼0.64 J1 [87], thus providing a possibility to adjust the Ud value 

used for LSDA+U calculations, and use this optimized value for other, more complex systems. 

However, the study of CuSe2O5 also demonstrates that not all experimental estimates can 

be used for as a reliable reference. For instance, using the value of θ 165 K to estimate 

the sum of the leading exchange couplings leads to unrealistically large J1 > 300 K. Such 

behavior stems from the large value of the leading exchange coupling, whereas the magnetic 

susceptibility does not reach the CURIE–WEISS regime even for the highest temperature 

measured (compare Fig. 6.2 with Fig. 3.4). 

There are several important issues which can not be accounted for based on the experi­

mental data, only. The central issue is the AFM ordering temperature, which amounts to 

17 K, seemingly high for a quasi-1D system. The extensive comparative analysis presented 

in Sec. 6.1.4 discloses the crucial role of magnetic frustration for the LRMO. For the non-

frustrated system CuSe2O5, theoretical estimates for TN provide excellent agreement with 

the experimentally observed value. 
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So far, the microscopic magnetic model fully accounts for the magnetic susceptibility data 

and the LRMO temperature (Sec. 6.1.4). However, the full understanding of the magnetic 

properties of even such a seemingly simple system as CuSe2O5 is still missing. For instance, 

the origin of the large J1
FM can not be identified unambiguously. In addition, the nature 

of the kink in Cp / T
2 (T) (Fig. A1, inset) is also not clear. The kink is stable at least up to 

H = 9 T and thus not related to defects. Intriguingly, a similar feature has been observed for 

the related system Bi2CuO4 (Fig. 3 in Ref. 232) favoring the intrinsic nature of the kink. To 

elucidate this unusual feature, further experimental studies on CuSe2O5 and similar systems 

as well as a careful theoretical analysis should be carried out. 

6.1.2 [NO]Cu(NO3)3 

Low-dimensional magnetism is characteristic to real materials with strong spatial anisotropy 

of exchange couplings.6 On the structural level, such anisotropy is typically ruled by 

magnetically inactive atomic groups. The electronic structure of such groups disfavors any 

appreciable magnetic exchange, essentially confining the magnetic exchange to a 1D or 2D 

regime. Efficiency of the dimensional reduction strongly depends on the chemical nature of 

the non-magnetic groups. In CuSe2O5, the confinement of the magnetic properties to 1D is 

realized by Se2O5 groups, featuring lone pairs of the Se atoms. Another quasi-1D system, 

the compound [NO]Cu(NO3)3, also bears a special chemical feature, the nitrosonium [NO]+ 

cation which forms a mixed salt with the magnetic S = 1/2 Cu2+. As will be shown below, 

the nitrosonium cations effectively isolate the spin chains from each other, by a substantial 

reduction of the interchain exchange. 

Recently, the magnetism of [NO]Cu(NO3)3 has been investigated in a combined experi­

mental and theoretical study [233]. The experimental magnetic susceptibility can be well 

described by the HEISENBERG uniform chain model with the leading magnetic exchange 

coupling J1 exceeding 150 K. For the microscopic magnetic model, the authors of Ref. 233 

put forward a 2D NERSESYAN–TSVELIK model [234], which is also known as an anisotropic 

frustrated square lattice [235]. Based on the almost temperature-independent values of the 

g-factor, observed in ESR, and the lack of sharp anomalies in the specific heat, the absence 

of LRMO has been conjectured. To reconcile this with the large coupling J1, the authors of 

Ref. 233 suggested that the interchain couplings J ' and J2 (Fig. 6.11) in the [NO]Cu(NO3)3 

structure show an exactly 2:1 ratio, thus leading to strong frustration that inhibits LRMO. 

The conjecture on the exact J2 : J ' = 1 : 2 ratio in [NO]Cu(NO3)3 is based on two tentative 

assumptions: i) the J2 and J ' couplings are running exclusively via [NO] groups; ii) the 

energies of these couplings are proportional to the number of bridging [NO] units (two for 

J ' and one for J2) [233]. Regarding the complexity of exchange interactions in general, 

such assumptions should be supported by a microscopic verification. In the following, the 

6This kind of anisotropy is related to the crystallographic directions and should not be confused with 
anisotropic J terms that describe the coupling of certain spin components, as in an ISING or an x y model. 
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proposed phenomenological model is challenged by DFT calculations. 

Crystal structure 

The monoclinic crystal structure of [NO]Cu(NO3)3 (Fig. 6.8) is formed by chains of isolated 

CuO4 plaquettes running along the b direction. One type of the triangular (NO)− 
3 nitro-

groups links the plaquettes within a chain, thus connecting to the two neighboring plaquettes. 

The nitro-groups of the second type are connected to one plaquette only. The chains stack 

along the a and c directions, whereas the [NO]+ cations are located between the chains. 

a

c

b

a

J1

J
′

J
′ J

′

Figure 6.8: Crystal structure of [NO]Cu(NO3)3. The neighboring CuO4 plaquettes are connected 
via NO3 triangles and form chains along b (left panel). The chains are well separated by [NO]+ 

cations. In the left panel, the nearly overlapping NO3 triangles lie in different planes and remain 
disconnected (see also the right panel). 

DFT calculations 

Following the developed computational procedure, the LDA picture serves as a starting point. 

A sharp peak of [NO] states appearing at 1 eV above cF is a peculiar feature of [NO]Cu(NO3)3 

related to the antibonding π ∗-states of the [NO]+ cation (two nearly degenerate orbitals 

for each [NO] group). Another peculiarity of [NO]Cu(NO3)3 is the enhanced width of 

the valence band, due to the low-lying bonding N–O states, separated from the rest of 

the valence band. However, similar to other cuprates, the valence band of [NO]Cu(NO3)3 

exhibits dominant contribution of Cu 3d and O 2p states (Fig. 6.9). The well-separated DOS 

for the antibonding Cu–O bands at cF has two distinct maxima (VAN HOVE singularities), 

characteristic of a 1D behavior. Assuming the HEISENBERG chain scenario, the width W of 

the antibonding band readily yields the leading hopping term t1 = W/4 180 meV. 

The strong hybridization of the σ-overlapping Cu 3dx2− y2 and O 2px ,y orbitals (Fig. 6.9, 

bottom right) and their separation from the rest of the valence band allow to treat them as a 

whole within an effective one-orbital model. At first glance, the band structure (Fig. 6.9, 
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Figure 6.9: Top: the valence 
band of [NO]Cu(NO3)3. Bot­
tom left: the band structure of 
the two-band (dp)σ complex at 
cF and the fit using the WF tech­
nique. Bottom right: the orbital-
resolved DOS for the antibond­
ing band. 
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bottom left) exhibits the predominant dispersion along X–S and Y–Γ. This corresponds to 

the crystallographic b direction and supports the proposed 1D scenario. To evaluate the 

hopping terms, the WF technique is used. This way, a perfect fit to the LDA band structure is 

obtained (Fig. 6.9, bottom left). The resulting WFs highlight the Cu–O–O–Cu superexchange 

path (Fig. 6.10). 

The WFs yield t1 = 150 meV for the leading NN intrachain hopping and a small non-

frustrated interchain hopping t ' = 17 meV, while other hoppings are smaller than 10 meV. 

In particular, the previously proposed t2 (Fig. 6.11) appeared to be as small as 2 meV, 

disfavoring the model with the frustrated interchain couplings. The couplings J1 and J ' form 

layers (Fig. 6.11), whereas the leading hopping in the perpendicular direction is t⊥ = 6 meV. 

Figure 6.10: The WF for the Cu 3dx2− y2 

orbital in [NO]Cu(NO3)3. The underlying 
polyhedra constitute a fragment of the 
HEISENBERG chain. 

JAFM are estimated by mapping the leading hoppings onto a HUBBARD model with the 

effective on-site Coulomb repulsion Ueff. Adopting Ueff = 4.5 eV yields J1
AFM = 230 K and 

J 'AFM = 3 K. The frustrating coupling J2
AFM 0.04 K is negligible. The interlayer coupling is 

JAFM 
⊥ = 0.4 K. 

LSDA+U total energy calculations were carried out for Ud = 6.5 ± 1 eV and Jd = 1 eV 

i 
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within AMF and Ud = 8.5 ± 1 eV and Jd = 1 eV within FLL. The experimental J1 = 150 K, 

evaluated from the χ(T) data, can be reproduced within AMF by setting Ud to 7.5 eV, 

exceeding the value Ud = 6.5 eV optimized for CuSe2O5 (Sec. 6.1.1). The larger value 

of Ud in [NO]Cu(NO3)3 may be related to the complex chemical nature of this system, 

which manifests itself in particular features of the LDA valence band, or to structural 

transformations at low temperatures that were not studied experimentally. In additional, J1 

exhibits a rather strong dependence on in both AMF (J1 200 ± 50 K for Ud = 6.5 = 1 eV) 

and FLL (J1 240 ± 40 K for Ud = 8.5 = 1 eV). Although AMF seems to be a more appropriate 

choice, the absence of low-temperature structural data poses certain difficulties for using 

[NO]Cu(NO3)3 as a reference system to pick up the optimal value of Ud . Thus, further 

experimental structural studies are highly desirable. 

The LSDA+U results for J ' are below 1 K, disregarding the calculational parameters, such 

as DCC and Ud . Therefore, the model and the LSDA+U approaches consistently describe 

[NO]Cu(NO3)3 as a quasi-1D system with the leading exchange coupling of about 200 K and 

a small non-frustrated interchain coupling. 

J1

J
′

J2 J2

b

a
Figure 6.11: Microscopic magnetic model 

for [NO]Cu(NO3)3. The projection is the 
same as in the left panel of Fig. 6.8. 

The interchain coupling J ' runs via the [NO] groups, as evidenced by small tails of π ∗ 

[NO] molecular orbitals in the Cu-based WFs (Fig. 6.10). Nevertheless, the hoppings depend 

on the mutual orientation of the WFs, hence a simple counting of the bridging [NO] units 

neglects a basic ingredient of the superexchange mechanism. In contrast, the DFT calcula­

tions suggest J2 J ' and do not support the earlier conjecture on the exact J ' : J2 = 2 : 1 

ratio [233]. In conflict with Ref. 233, [NO]Cu(NO3)3 is an essentially non-frustrated 1D 

spin system, while the absence of LRMO is an effect of strong quantum fluctuations. It is 

rather similar to other 1D Cu2+ compounds with CuO4 plaquettes separated by non-magnetic 

groups. The J1 value of 150–250 K is typical for the Cu–O–O–Cu superexchange, e.g. in the 

uniform-spin-chain compounds M2Cu(PO4)2 (M = Sr, Ba) [229]. 

Model simulations and discussion 

In the following, the experimental data for [NO]Cu(NO3)3 are reconsidered in light of the 

non-frustrated 1D spin model suggested by the DFT calculations. First, the specific heat data 

were reported in a narrow temperature range, only (1.8–10 K) [233]. The experimental curve 

exhibits a minimum around 5 K with an increase towards lower temperatures interpreted 
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as a SCHOTTKY anomaly (although the characteristic maximum was not observed) and a 

typical increase towards higher temperatures due to the phonon contribution ∝ T 3. Since 

J1 150 K, the magnetic specific heat exhibits a maximum around 70 K [87], hence the 

experimental data in this temperature range (along with the proper non-magnetic reference 

to estimate the phonon contribution) could be helpful. Regarding the SCHOTTKY anomaly, its 

intrinsic origin has not been proven. 

Next, the bulk magnetic susceptibility data are considered. In the χ(T), the char­

acteristic maximum at ∼100 K is almost wiped out by the large impurity and/or defect 

contribution. The attempts to describe the magnetic susceptibility within the uniform chain 

model [87], supplied with the temperature-independent term χ0 and the impurity con­

tribution Cimp/T , yields a remarkably good fit down to 2 K with χ0 = 7.7·10−5 emu mol−1, 

Cimp = 0.015 emu K mol−1 (4 % of S = 1/2 impurities), J1 = 150 K, and g = 2.12. Since the 

same model poorly fits the intrinsic susceptibility from ESR below 80 K, it is likely that the 

ESR bears a systematic error that causes the underestimate of χ at low temperatures (proba­

bly, due to the separation of the intrinsic and the impurity signal in the spectra). To resolve 

this puzzling issue, additional experimental studies, such as susceptibility measurements on 

single crystals or NMR, are highly desirable. 

Finally, it is worth to reconsider the possibility of LRMO in [NO]Cu(NO3)3, which was 

rejected in Ref. 233. The upturn in the specific heat, interpreted as a SCHOTTKY anomaly in 

Ref. 233, may conceal a weak transition anomaly below 5 K. The weakness of the anomaly is 

a natural consequence of TN J1, which results in a significantly small amount of entropy 

released at TN (see Sec. 3.2.2). Further on, the ESR intensities diverge below 10 K and might 

also indicate the onset of LRMO. 

To summarize, [NO]Cu(NO3)3 is a good realization of a HEISENBERG chain model with 

the intrachain exchange J1 150 K. The chains are coupled in a non-frustrated way, and 

the interchain coupling topology is the same is in CuSe2O5 (anisotropic square lattice). 

Deviations of the ESR line width and the low-temperature specific heat from the expected 

behavior are likely extrinsic and should be addressed by further studies on higher quality 

samples. 

6.1.3 CaCu2(SeO3)2Cl2 

So far, DFT calculations yield reliable numerical values for the microscopic magnetic cou­

plings. However, a statement that in both CuSe2O5 and [NO]Cu(NO3)3, the uniform 

HEISENBERG chain scenario could be guessed by a bare look at the crystal structure, is not 

far off the mark. The next compound, CaCu2(SeO3)2Cl2, shows an instructive example of 

a structurally involved system, where the leading superexchange path is highly nontrivial. 

Moreover, the interchain coupling is realized by two independent exchange couplings, which 

make the system magnetically frustrated. The complex magnetic model of CaCu2(SeO3)2Cl2 

could be a valuable contribution for further theoretical developments in the field of quasi-1D 
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quantum magnets. 

Crystal structure 

In contrast to the previously discussed compounds, the crystal structure of CaCu2(SeO3)2Cl2 

(Fig. 6.12) comprises two nonequivalent Cu positions: Cu(1) and Cu(2). The Cu(1) atoms 

show a slightly distorted square-planar Cu(1)O4 environment, typical for Cu2+ oxides. In 

contrast, Cu(2) is six-fold coordinated, with four O and two Cl forming an octahedron, 

squeezed along Cu(2)–O1 (Table A2). Although such octahedral coordination is rather 

unusual, it still conforms to a square-planar-like CF splitting of 3d levels and the conventional 

non-degenerate 3d9 orbital GS with the half-filled 3dx2− y2 orbital, confined to the plane 

of a Cu(2)O2Cl2 plaquette (Fig. 6.12).7 This plaquette is formed by two Cu(2)–Cl bonds 

and two Cu(2)–O1 bonds. The formation of the plaquette can be qualitatively understood 

in terms of different ionic radii for O and Cl: the larger size of the Cl atoms makes their 

effect on the Cu 3d orbitals comparable to the effect of O1 with shorter distances to Cu. The 

resulting CF splitting resembles that of a CuO4 plaquette and drives one of the atomic d 

orbitals half-filled. This scenario is a posteriori confirmed by the DFT calculations. 

Figure 6.12: Left: crystal structure of 
CaCu2(SeO3)2Cl2. The structural chains 
run along [101̄] (not shown), whereas 
the magnetic chains range along ∼[201], 
as shown by red lines. Red unlabeled 
spheres denote O atoms. Right: local en­
vironment of Cu(1) and Cu(2). The mag­
netically active Cu(1)O4 and Cu(2)O2Cl2 
plaquettes are highlighted. 

The formation of CuO2Cl2 plaquettes is a casual phenomenon for Cu oxychlorides [236, 

237]. A special feature of CaCu2(SeO3)2Cl2 is the presence of two longer Cu(2)–O3 bonds 

which are similar to the Cu(2)–Cl bonds in terms of interatomic distances but are essentially 

inactive with respect to the magnetism. 

The Cu(1)O4 plaquettes and the Cu(2)O4Cl2 octahedra share corners and form chains 

along [101̄]. However, the bridging O3 atoms do not belong to the Cu(2)O2Cl2 plaquettes, 

hence a simple Cu(1)–O3–Cu(2) superexchange is unlikely. Instead, the leading exchange 

couplings should run via SeO3 trigonal pyramids which join the plaquettes into a framework. 

7In this local coordinate system, x corresponds to the axis, along which the CuO6 octahedra are squeezed. 
Consequently, the z axis runs toward O3 atoms. 
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Experimental information 

The powder sample of CaCu2(SeO3)2Cl2 was prepared in the group of P. S. BERDONOSOV 

at the Moscow State University. The χ(T) dependencies for various magnetic fields were 

measured by A. TSIRLIN at MPI CPfS. The high-field magnetization has been measured in 

HZDR HLD by Y. SKOURSKI. 

The χ(T) dependence (Fig. 6.13) shows a broad maximum at 83 K and a pronounced 

increase below 30 K. The susceptibility maximum evidences the low-dimensional behavior, 

while the low-temperature upturn is caused by the paramagnetic contribution of defects 

and/or impurities. Above 230 K, the data can be fitted with the modified CURIE–WEISS law 

(Eq. 3.6). The fit yields the temperature-independent contribution χ0 = 6(1)·10−5 emu (mol 

Cu)−1, the CURIE constant C = 0.42(1) emu K mol−1, and θ = 93(5) K. The positive θ indicates 

predominant AFM interactions in the system. The expressions Eqs. 3.7 and 3.8 yield the 

resulting effective magnetic moment µeff = 1.83(1) µB and the g-factor g = 2.11(1), typical 

for S = 1/2 Cu2+ . 

The whole χ(T ) dependence can be described by the expression for the uniform S = 1/2 

chain [87]. The temperature range 2–380 K fits to the validity condition of this parame­

terization 0 ≤ T ≤ 5J1. To account for temperature-independent and the low-temperature 

impurity contribution to χ(T), the intrinsic chain susceptibility χHC is supplemented with 

the temperature-independent and CURIE contribution: 

NA g
2 µ2 TCimp

χ(T ) = χ0 + + B χHC . (6.3)
T J1 J1 

The fit yields J1 = 133(1) K, g = 2.11(1), and χ0 = 3(1)·10−5 emu (mol Cu)−1. This 

χ0 value is almost twice smaller than the value obtained from the CURIE–WEISS fit. The 

reason for this discrepancy is the additional term Cimp/T in Eq. 6.3. Since this term is 

of the same order as χ0 in the high-temperature region, and both χ0 and Cimp/T are 

positive, χ0 from the CURIE–WEISS fit is substantially larger than χ0 from Eq. 6.3. The 

fitted Cimp = 0.005(1) emu K (mol Cu)−1 corresponds to about 1% of S = 1/2 impurities. 

To check the applicability of the HEISENBERG chain model to the system, the quantity 

χHC(Tmax) Tmax g
−2 was calculated. According to Eq. 31 from Ref. 87, it should amount to 

0.0353229(3) emu K (mol Cu)−1 for a HEISENBERG chain system, independent of J1. For 

CaCu2(SeO3)2Cl2, χHC(Tmax) Tmax g
−2 = 0.0345(8) emu K (mol Cu)−1 deviates only by few 

percent from the ideal value, justifying the model assignment. 

The observed linear M(H) dependence shown in the inset of Fig. 6.13 (the magnetization 

is measured in arbitrary units, as explained in Sec. 3.3) is also consistent with the proposed 

uniform-chain behavior, since the accessible field range is well below the saturation field of 

Hs = 188 T for J1 = 133 K and g = 2.11. 

The extrinsic nature of the low-temperature CURIE tail in χ(T) is supported by its 

suppression in magnetic field (Fig. A2). The temperature derivative of magnetic susceptibility 
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Figure 6.13: Magnetic 
susceptibility (black cir­
cles) and the fit with 
Eq. 6.3 (dashed red 
line). HEISENBERG chain 
(solid green line) and 
impurity (gray line) con­
tributions to the fitted 
curve are shown. In­
set: high-field magneti­
zation curve (squares) 
with a linear fit (red 
line). 

exhibits a kink at 6 K, which is likely a signature of an AFM ordering. This issue will be later 

discussed in context of the microscopic spin model. 

DFT calculations 

The LDA valence band (Fig. 6.14, top) is clearly split into two parts: the region between −8 

and −5.5 eV is dominated by Se 4p and O 2p states, while the rest of the valence band is 

formed by Cu, O, and Cl states. 
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Figure 6.14: Top: total 
and atom-resolved DOS 
for CaCu2(SeO3)2Cl2. 
Bottom center: LDA 
band structure (circles) 
and the WF fit (red 
line). Bottom left and 
right: orbital-resolved 
DOS for Cu(1) and 
Cu(2). Shaded regions 
show the 3dx2− y2 

contribution. 

Typical for cuprates, the σ-overlapped Cu 3dx2− y2 and O 2p states are confined to the 

vicinity of the FERMI level. However, CaCu2(SeO3)2Cl2 lacks a separated band complex 

around cF reflecting the octahedral coordination for Cu(2), and thus necessitates a detailed 

analysis of the magnetically active orbitals. 
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Table 6.2: Interatomic Cu–Cu dis-
JAFM JFMpath atoms d ti i i Jitances d (in Å), transfer integrals ti 

(in meV), as well as JAFM and JFM 
Jnn Cu(1), Cu(2) 3.84 19 4 − 4 

contributions to the total exchange 
Jic1 Cu(1), Cu(1) 4.13 47 25 −15 10integrals Ji (in K) for the leading 

couplings in CaCu2(SeO3)2Cl2. For J1 Cu(1), Cu(2) 6.19 139 200 −55 145 
notation of the paths, see Fig. 6.15. Jic2 Cu(2), Cu(2) 7.33 30 10 − 10 
Jnn stands for the NN coupling, 
along the structural chains (not 
shown in Fig. 6.15). 

To evaluate the relevant states, the DOS is projected onto a set of local orbitals. The 

3dx2− y2 contribution dominates the Cu(1) DOS at cF (Fig. 6.14, left bottom). For the Cu(2) 

atom, the situation is less trivial, since the local environment of this atom implies two short 

Cu(2)–O bonds as well as four long [two Cu(2)–O and two Cu(2)–Cl] almost equidistant 

bonds, making the choice of the local coordinate system ambiguous. However, the analysis 

of local DOS for different situations readily yields the correct choice of the local axes and 

evidences that the two short Cu(2)–O and two Cu(2)–Cl bonds form a plaquette with the 

Cu 3dx2− y2 magnetically active orbital. The local DOS of this orbital clearly dominates the 

states at cF (Fig. 6.14, right bottom) and conforms to the standard cuprate scenario. 

The effective one-orbital TB model for CaCu2(SeO3)2Cl2 is described by a 4×4 matrix, 

due to the four magnetic magnetic Cu atoms in a unit cell: two Cu(1) and two Cu(2). 

The model is parameterized using the WF technique, which yields a dispersion in excellent 

agreement with the LDA bands (Fig. 6.14, bottom). The effective one-orbital TB model 

yields three relevant couplings (Table 6.2): t1 running along Cu(1)-Cu(2) chains almost 

parallel to the [201] direction (Fig. 6.15), the short-range interchain coupling tic1 which 

connects Cu(1) atoms, as well as the long-range interchain coupling tic2 connecting Cu(2) 

atoms along [101̄]. The clearly dominant t1 amounts to 139 meV, while tic1 and tic2 are 

found to be 47 and 30 meV, respectively. Due to the particular orientation of the magnetically 

active orbitals, the hopping tnn along the “structural chains” is apparently small, and likely 

has a minor influence on the magnetic GS, as will be shown later. 

Next, the TB model is mapped onto a HUBBARD model with an effective on-site Coulomb 

repulsion Ueff, to obtain the estimates for Ji 
AFM. Adopting a typical value Ueff = 4.5 eV yields 

JAFM = 200 K, JAFM = 25 K and JAFM = 10 K. 1 ic1 ic2 

Based on structural considerations only, an appreciable FM contribution might be ex­

pected for the short-range coupling Jic1 and the NN coupling Jnn, whereas J1 and Jic2 are 

rather long-range, and their FM contributions should be small. To challenge this conjecture, 

supercell LSDA+U calculations are preformed. Combining the LSDA+U results with Ji 
AFM 

estimates from the HUBBARD model, the FM contributions Ji 
FM are evaluated. 

Adopting the AMF DCC with Ud = 6.5 eV and Jd = 1 eV, J1 = 145 K is obtained, in excellent 

agreement with the experimental J1 133 K from the fit to the χ(T ). In accordance with the 

expectations, the long-range interchain coupling Jic2 has a tiny FM contribution only, while 
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for the short-range coupling Jic1 the FM contribution reaches JFM = −15 K (see Table 6.2).ic1 

At first glance, the rather large J1
FM ∼−55 K may look surprising. However, in CuSe2O5, the 

leading intrachain coupling J1 runs also via two corner-sharing SeO3 pyramids and the FM 

contribution J1
FM to this coupling amounts to even −100 K (Sec. 6.1.1). Therefore, such high 

FM contributions are likely intrinsic to the superexchange realized via SeO3 pyramids. In 

contrast to CuSe2O5, this superexchange results from the overlap of oxygen orbitals, while 

the Se states have only a minor contribution to the WF, as can be seen in Figs. 6.5 and A4. 

The last remark concerns the short-range coupling between the NN Cu(1) and Cu(2) 

atoms that form the structural chains. The WFs analysis yields a negligible tnn associated 

with this coupling path. Still, the respective interatomic distance (3.84 Å) is relatively small, 

which could give rise to an FM coupling. Therefore, it is important to obtain the value of Jnn 

using the LSDA+U calculations. The resulting exchange of 4 K is in excellent agreement with 

the TB estimate (4 K), evidencing a negligible FM contribution and justifying the restriction 

to the three couplings J1, Jic1, and Jic2 for a minimal model. 

Model simulations and discussion 

The DFT-based microscopic magnetic model of CaCu2(SeO3)2Cl2 is depicted in Fig. 6.15. 

Its key element are the Cu(1)–Cu(2) chains running almost parallel to the [201] direction, 

which differs from the structural chains. The chains are coupled by two nonequivalent 

exchange interactions: Jic1 is short-range and links the Cu(1) atoms of the two neighboring 

chains, while the long-range Jic2 bridges the Cu(2) atoms of the fourth-neighbor chains. 

Another difference between Jic1 and Jic2 is that the former is responsible for a 3D coupling 

[connects Cu(1) atoms belonging to different layers, see Fig. 6.15], whereas the latter is 

confined to the ac plane. Either of interchain couplings alone, Jic1 or Jic2, leads to a 3D 

or 2D non-frustrated model, respectively. However, the combination of the two interchain 

couplings gives rise to magnetic frustration, evidenced by an odd number of AFM bonds 

(seven) along the closed, hourglass-shaped loop shown in Fig. 6.15. 

The complex interchain coupling regime impedes an accurate estimation of the LRMO 

transition temperature. In general, the 3D coupling regime should rise TN. On the other 

hand, the interchain coupling is frustrated, which certainly suppresses the magnetic ordering. 

The interplay of the 3D coupling regime and the frustration should result in a moderate TN of 

CaCu2(SeO3)2Cl2, comparable to that of CuSe2O5. Indeed, the kink of magnetic susceptibility 

at 6 K in Fig. A2 fits well to the energy scale of the anticipated LRMO in CaCu2(SeO3)2Cl2 

(compare to TN = 17 K in CuSe2O5 with non-frustrated interchain couplings). The compara­

tive analysis of TN for CuSe2O5, [NO]Cu(NO3)3 and CaCu2(SeO3)2Cl2 is presented later in 

this section. 

Magnetic frustration is one of the leading mechanisms that give rise to complex magnetic 

structures. It is therefore interesting to address the structure of the anticipated magnetically 

ordered GS of CaCu2(SeO3)2Cl2. First, the low-energy sector of a classical HEISENBERG model 
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Cu(1)

Cu(2)
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Figure 6.15: Microscopic magnetic model for CaCu2(SeO3)2Cl2. Filled and empty circles show the 
Cu(1) and Cu(2) positions. Bold lines and circles denote the exchange couplings and the spins 
(the same notation applies to Table 6.2) in the front plane, whereas gray circles and shaded lines 
correspond to the atoms lying in the back plane. The planes are connected by Jic1 couplings, only. A 
closed loop (dark-yellow line) having an odd number of AFM couplings evidences the frustrated 
character of the spin model. The crystallographic unit cell is depicted by the gray rectangle. 

is studied on finite lattices of 16 coupled chains. For each chain, a condition of the ideal 

AFM arrangement of the neighboring spins is imposed. This condition makes the chains 

effectively infinite, since the number of possible states for each chain amounts to two: a 

certain spin can be up or down, which governs the arrangement of all other spins in the 

chain, independent of the chain length. 

To keep the problem computationally feasible, only collinear spin arrangements are 

addressed. The magnetic GS is evaluated as a state with minimal energy. Adopting the 

ratios of the leading exchange couplings from our LSDA+U calculations (Table 6.2, last 

column), yields an AFM GS, with the magnetic unit cell doubled along a and quadrupled 

along c with respect to the crystallographic unit cell, i.e. the propagation vector is (1/2, 0, 1/4). 
To understand the particular way the frustration is lifted, the products −4[kSi · kSj](Ji j/|Ji j|) 
for all (i, j) spin pairs in a unit cell are computed. This way, the satisfied couplings can 

be distinguished from the unsatisfied ones: for collinear configurations, such a product 

amounts either to 1 (a satisfied coupling) or to −1 (an unsatisfied coupling). For a certain 

type of exchange coupling, the sum of such products can be divided by the total number 

of couplings of this type in the unit cell (which is larger than unity). Then, the fraction 

of satisfied couplings can be estimated. Such analysis yields that 100 % of J1 (as imposed 

by the constraint) and Jic2, but only 75 % of Jic1 couplings are satisfied in the proposed 

(1/2, 0, 1/4) GS. 

Taking into account the restriction to collinear states, it is worth to address the stability of 

this GS using alternative techniques. Thus, classical Monte Carlo simulations yield diagonal 

spin correlations 〈Si
zSz

j 〉, where i and j are spins coupled by a particular magnetic exchange. 

The resulting correlations amount to −0.24452(1), −0.16716(1) and −0.23056(3) for the 

J1, Jic1 and Jic2 couplings, respectively. These numbers should be compared to 〈Si
zSz

j 〉 = −0.25 
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for a perfect AFM arrangement. Despite the small deviations from this ideal number, the 

spins coupled by J1 and Jic2 can be regarded as antiferromagnetically arranged, corroborating 

the classical energy minimization result. On the contrary, the value for Jic1 is substantially 

smaller, yielding the average angle of arccos (0.16716 S−2) 48◦ between the respective 

spins. The resulting angle is very close to π/4, hence the spins in the fourth-neighbor chains 

are almost antiparallel to each other (the angle amounts to π). This is in accord with the 

almost antiparallel arrangement of spins coupled by Jic2 couplings (coupling between the 

fourth-neighbor chains). 

In the classical model, the exotic regime of frustrated interchain couplings leads to a 

rather complex magnetic ordering in CaCu2(SeO3)2Cl2: the classical energy minimization 

yields the collinear (1/2, 0, 1/4) state, while the classical Monte Carlo simulations are in 

favor of a non-collinear magnetic GS. However, these two GSs differ only by the mutual 

arrangement of spins coupled by Jic1. 

Since for quasi-1D systems quantum fluctuations are crucial, the respective quantum 

model should be addressed. However, the study of a magnetic ordering for a 3D frustrated 

quantum model is a challenging task, since standard methods are either not applicable 

(DMRG due to the high dimensionality, QMC due to frustration) or do not account for the 

thermodynamic limit (ED). Moreover, CaCu2(SeO3)2Cl2 features a non-negligible magnetic 

impurity contribution, as evidenced by the low-temperature upturn in χ(T) (Fig. 6.13). 

At low temperatures, these impurities can give rise to strong internal fields and possibly 

alter the GS.8 Therefore, the magnetic ordering in CaCu2(SeO3)2Cl2 deserves additional 

investigation using alternative techniques, both from experimental as well as theoretical 

side. 

Despite the unexpected complexity of the magnetic model, the nontrivial structural 

organization of CaCu2(SeO3)2Cl2 has an important advantage. In particular, the Cl and Br 

atoms are known to be easily substitutable owing to their similar chemical nature. Such 

substitution can be used to create bond randomness and to access the exotic behavior of 

partially disordered spin systems [239, 240]. In the case the Cl states participate in the su­

perexchange, the chemical substitution inevitably affects the geometry of the superexchange 

pathways, and gives rise to drastic changes in the magnetic properties. On the contrary, in 

CaCu2(SeO3)2Cl2, the Cl atoms lie away from the leading superexchange pathway. Thus, 

partial Cl/Br substitution will alter the relevant microscopic parameters (such as the CF 

splitting) without changing the superexchange geometry. 

A peculiar arrangement of magnetic plaquettes makes CaCu2(SeO3)2Cl2 a good realiza­

tion of the S = 1/2 HEISENBERG chain model with an intrachain exchange coupling of ∼133 K 

and frustrated interchain couplings realized via two nonequivalent superexchange paths. 

Simulations of the microscopic model suggest two states—the collinear (1/2, 0, 1/4) state and 

8Similar effect was recently discussed for the anisotropic triangular lattice model in the one-dimensional 
limit, see Ref. 238. 
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a closely related non-collinear state as the candidates for the magnetically ordered GS. A 

kink in the magnetic susceptibility at 6 K hints at an LRMO transition, which is subject to 

future experimental verification. 

6.1.4 Magnetic frustration as a key to the LRMO temperature 

1D systems exhibit sizable quantum fluctuations, inhibiting LRMO [188]. In addition, the 

absence of LRMO at any nonzero temperature is assured by the MERMIN–WAGNER theorem. 

In contrast, real quasi-1D magnetic systems feature small interchain couplings that typically 

drive the system into a magnetically ordered state. The temperature of the magnetic ordering 

transition depends on several quantities (the value of intrachain and interchain couplings, 

topology of the interchain couplings) and can vary in a wide range. 

The issue of magnetic ordering in quasi-1D systems has been extensively studied the­

oretically [241–247]. To keep the problem feasible, all these theories proceed from the 

mean-field approach. Moreover, typically only simple interchain coupling topologies are con­

sidered, such as an anisotropic square lattice, anisotropic cubic lattice or recently, anisotropic 

triangular lattice. Such restrictions limit the applicability of these theories to real material 

systems, where the interchain coupling can be of a rather complex nature, as for instance in 

CaCu2(SeO3)2Cl2. 

A comparison between the experimental TN and its estimate using theoretical expres­

sions and exchange integrals from a DFT-based model is further impeded by additional 

peculiarities of quasi-1D systems. The most relevant is the spatial anisotropy of exchange 

couplings present in a system. For instance, the leading interchain coupling in both CuSe2O5 

and [NO]Cu(NO3)3 couples a certain chain with only two neighboring chains. Thus, the 

couplings to the other neighboring chains are considerably smaller, resulting in the spatial 

exchange anisotropy. Moreover, the number of neighboring chains can be larger than four. 

Unfortunately, there is no unique solution to this problem. To allow for a comparative study, 

a generalized approach should be used. The simplest scheme is to restrict the analysis to 

the relevant interchain couplings, only. In this way, the coordination number z [Fig. 6.16, 

(a)–(d)] is defined as the number of the neighboring chains coupled by relevant interchain 

couplings Jic. Thus, the z Jic product serves as the effective interchain coupling. Although 

such approach violates the MERMIN–WAGNER theorem [32],9 it is justified empirically, as will 

be shown below. 

The second problem is the anisotropy in the spin space. In the computational approach, 

the isotropic HEISENBERG model is presumed, thus the anisotropic effects are neglected. 

Although the microscopic model generally conforms to the macroscopic behavior, the spin 

anisotropy is inevitably present, as evidenced, e.g. for CuSe2O5 by the strong dependence of 

the g-factor on the orientation of magnetizing field (Fig 6.2). In a common sense approach, 

9Such approach yields a finite LRMO temperature even for a purely 2D model (z = 2). 
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Figure 6.16: Top panel: the coordination number z for different interchain coupling regimes 
(a)–(d). Spin chains denoted by filled circles run in the direction perpendicular to the projection 
plane. Relevant interchain Jic couplings are shown by solid red lines. Compounds featuring a 
certain interchain coupling topology are listed above the sketches. The question mark for Ca2CuO3 
is explained on page 102. Bottom panel: non-frustrated (e) and frustrated (f) interchain coupling 
topologies. Broad pale lines denote spin chains, the thin bright lines are interchain couplings. The 
individual spins are shown with empty circles. Note the triangular tiling in the right panel. 
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Table 6.3: Exchange integrals (in K, columns 2 and 3), coordination number z (column 4) as well 
as experimental (column 6) and theoretically calculated (columns 7–9) ordering temperatures TN 
(in K) for quasi-one-dimensional cuprates. The ordering temperatures TN were calculated using 
Eqs. 6.4–6.6 and the exchange integrals from columns 2 (NN intrachain coupling J1) and 3 (the 
interchain coupling Jic), as well as the z value from column 4. Column 10 shows (TN calc. / TN exp.) 
ratios. Here, for the theoretical estimate, the value from column 9 (the expression from Ref. 245) is 
adopted. Note that the interchain couplings are not frustrated in the first three systems [Sr2CuO3, 
CuSe2O5 and [NO]Cu(NO3)3 ], partly frustrated in the next three compounds [Ca2CuO3, AgCuVO4, 
and CaCu2(SeO3)2Cl2 ], while Sr2Cu(PO4)2 features fully frustrated interchain couplings. 

compound J1 Jic z Ref. 
TN exp. 
[Ref.] 

TN calc. 
Eqs. 6.4 6.5 6.6 

TN calc. 
TN exp. 

Sr2CuO3 

CuSe2O5 

[NO]Cu(NO3)3 

2200 
165 
150 

9 
20 

3 

2 
2 
2 

[26] 5 [33] 
17 

<4 (?) [233] 

15.0 
24.5 

4.4 

11.7 
19.6 

3.5 

11.2 
18.0 

3.3 

2.2 
1.1 
∼1 (?) 

Ca2CuO3 

AgCuVO4 

CaCu2(SeO3)2Cl2 

1850 
280 
140 

42 
3 

10 

2 
6 
6 

[26] 
[88] 

9 [33] 
2.5 [88] 

6 

61.1 
12.7 
34.3 

48.2 
10.1 
27.7 

45.6 
9.5 

25.0 

5.1 
3.8 
4.2 

Sr2Cu(PO4)2 187 3 2 [229] 0.085 [248] 4.5 3.5 3.4 400 

the spatial exchange anisotropy is expected to lower TN, while the spin anisotropy raises it. 

However, it is tricky to estimate how these two effects are balanced in real systems. 

The following analysis is an empirical attempt to estimate the influence of frustration 

onto the magnetic ordering. For this purpose, the LRMO temperatures for several quasi-1D 

magnetic compounds are compared in a systematic way. To calculate TN, three different 

expressions (Eqs. 6.4–6.6) were used. The calculated TN are given in the three last columns 

of Table 6.3. 

Eq. 13 from Ref. 242: TN = 0.32 |Jic| z ln (5.8 J1 T
−1). (6.4)N 

Eq. 21 from Ref. 243: TN = 0.23 |Jic| z ln (5.8 J1 T
−1) + 1/2 ln ln (5.8 J1 T

−1). (6.5)N N 

Eq. 8 from Ref. 245: TN = 0.233 |Jic| z ln (2.6 J1 T
−1) + 1/2 ln ln (2.6 J1 T

−1).(6.6) N N 

First, the two well studied quasi-1D cuprates Sr2CuO3 and Ca2CuO3 are commonly 

referred as model systems in most theoretical studies regarding the TN problem. These two 

systems are essentially different from the other cuprates considered, due to the presence 

of corner-sharing connections of CuO4 plaquettes with Cu–O–Cu angle of 180◦, giving rise 

to a large NN coupling of the order of 2000 K. In addition, there is an evidence for an 

appreciable second-neighbor coupling [26]. Nevertheless, they are referred here for the 

sake of completeness. For Sr2CuO3, the calculated TN overestimate the experimental values 

by about a factor of two. Considering the large energy scale of the magnetic couplings and 

appreciable scattering of their numerical estimates (see Table I in Ref. [26]), the agreement 

for Sr2CuO3 is rather good. For Ca2CuO3, the experimental TN is considerably lower than all 
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theoretical estimates. This origin of this discrepancy will be discussed later. 

Similar to Sr2CuO3 and Ca2CuO3, the structure of AgCuVO4 comprises the corner-sharing 

chains of CuO4 plaquettes [249]. However, a sizable bucking of these chains reduces the 

Cu–O–Cu angle down to 113◦, which in turn diminishes the respective AFM superexchange 

by almost an order of magnitude [88]. There are at least four appreciable interchain 

couplings [88] that form a rather complex spin lattice: in the bc plane, two relevant 

interchain couplings form a non-frustrated network, while the two couplings Jab and Jab 
ic1 ic2 

in the ab plane form Jab 
ic2 frustrated triangles. It is difficult to estimate the absolute ic1–J1–Jab 

values of these couplings precisely, but the averaged coupling of about 3 K is claimed to be a 

reasonable guess [88]. Theory overestimates TN for AgCuVO4 by a factor of four (Table 6.3). 

The structural implementation of spin chains in Sr2Cu(PO4)2 is essentially different. 

Here, CuO4 plaquettes are isolated, and the superexchange is mediated by a double bridge 

of PO4 tetrahedra. Special features of such chains can be illustrated by a comparison to 

the chains of edge-sharing plaquettes. In this way, the spin chains in Sr2Cu(PO4)2 can be 

mapped onto edge-sharing chains, where every second plaquette is cut out [229]. As a 

result, the new NN coupling (in an edge-sharing chain, it corresponds to the second-neighbor 

coupling) is still appreciable, while the second-neighbor coupling is negligibly small (the 

fourth-neighbor coupling in an edge-sharing chain). The interchain coupling regime in 

Sr2Cu(PO4)2 is strongly frustrated due to the presence of triangular units formed by J1 and 

two Jic couplings [Fig. 6.16, (f)], which contrasts to the non-frustrated square units in the 

other compounds. Quite remarkably, the discrepancy between the theoretical estimates and 

the experimental value of TN for Sr2Cu(PO4)2 is especially large: theory yields TN that is 

more than two orders of magnitude larger than the experimentally observed (Table 6.3). 

The microscopic magnetic models for CaCu2(SeO3)2Cl2, CuSe2O5, and [NO]Cu(NO3)3 are 

discussed above. For CaCu2(SeO3)2Cl2, a compound with a complex and partially frustrated 

interchain coupling regime, theory overestimates the ordering temperature by a factor of four 

(Table 6.3). In contrast, CuSe2O5 lacking any appreciable frustration of interchain couplings, 

shows an excellent agreement between theory and experiment (Table 6.3). Unfortunately, 

the issue of magnetic ordering in [NO]Cu(NO3)3 is still under debate [233, 250] and lacks 

experimental verification. 

All the compounds discussed so far can be split into three distinct groups. The first group 

comprises Sr2CuO3, Ca2CuO3, CuSe2O5, and [NO]Cu(NO3)3, featuring a non-frustrated 

magnetic model. The compounds with partially frustrated interchain couplings, AgCuVO4 

and CaCu2(SeO3)2Cl2, form the second group. Finally, the fully frustrated Sr2Cu(PO4)2 

should be singled out. 

The compounds of the first group, except for Ca2CuO3, show good agreement be­

tween the experimental TN and its theoretical estimate. To analyze the origin of the large 

(TN calc./TN exp.) for Ca2CuO3, auxiliary DFT calculations were carried out. A preliminary 

analysis using WFs shows that in addition to the leading interchain coupling tic (t⊥ in the 
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notation of Ref. 26), there is another relevant interchain coupling tic2. Since |tic2| 0.5|tic|, 
this coupling can play a substantial role in the magnetic properties. Most important, tic2 

together with the intrachain coupling t1, form a spin lattice topologically equivalent to the 

lattice in Fig. 6.16 (f). Therefore, the actual spin model of Ca2CuO3 should be described by 

Fig. 6.16 (a) rather than (c), while the compound should be placed to the second group (par­

tially frustrated interchain couplings). In contrast, similar analysis performed for Sr2CuO3 

yields |tic2| 0.25|tic|, leading to a factor of 16 difference for Ji 
AFM. Thus, the spin model of 

Sr2CuO3 can be treated as non-frustrated in good approximation. 

As follows from the last column in Table 6.3, the compounds from the second group (with 

partially frustrated interchain couplings) exhibit sizable deviations between the experimental 

TN and the theoretical estimates. However, the most remarkable failure of the theoretical 

approaches manifests itself for the case of Sr2Cu(PO4)2. Taking into account the variety 

of spin chain types and interchain coupling topologies considered, it is unlikely that the 

disagreement between theoretical and experimentally observed TN values for Sr2Cu(PO4)2 

originates from the neglect of spin anisotropy effects. 

Finally, only the magnetic frustration is left to be the dominant reason for a huge 

discrepancy between theory and experiment. The present analysis reveals that frustrated 

interchain couplings play a crucial role for the magnetic ordering. This fact explains why 

theoretical schemes fail to predict TN for frustrated systems. In addition, this observation is 

fully consistent with the fact, that for systems with partially frustrated interchain couplings 

[CaCu2(SeO3)2Cl2, AgCuVO4, and likely, Ca2CuO3], theory works still much better than for 

the fully frustrated case of Sr2Cu(PO4)2. 

In the existing theoretical approaches, a parameter controlling the frustration caused 

by interchain couplings is missing. Therefore, new theories which would treat magnetic 

frustration as one of the key issues for the magnetic ordering, are especially needed. On the 

other hand, there is a lack of information from the experimental side, resulting in a very 

limited number of systems that challenge the theoretical predictions. Thus, experimental 

verification of LRMO in [NO]Cu(NO3)3 and the measurement of TN could be very helpful to 

challenge the conjecture on the key role of frustration. Besides, synthesis and investigation 

of new systems with structural features favoring quasi-1D magnetism, are highly desirable. 

6.2 2D models with dimer-like couplings 

As demonstrated in the previous section, spin chain compounds have good potential to 

provide accurate experimental estimates for the leading exchange coupling J1. This property 

can be used to challenge DFT-based methods in general, since it provides a reliable scaling 

for free parameters, such as Ud in the DFT+U methods. However, good reference systems 

do not necessarily feature a quasi-1D magnetic model. The true prerequisite is distinct 

separation of the energy scales between the leading magnetic coupling J = max (Ji) and 
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the other couplings Ji. Thus, the computational approach is further tested for the quasi-2D 

systems α-Cu2P2O7 and CdCu2(BO3)2, featuring a single dominant coupling. 

Compared to spin chain systems, quasi-2D magnets have certain advantages. From the 

experimental side, the suppression of quantum fluctuations (compared to the 1D case) leads 

to a less pronounced reduction of the ordered magnetic moment, facilitating its experimental 

observation. In addition, the intrinsic contribution typically dominates the experimental 

χ(T) behavior of quasi-2D magnets, since such systems are more robust to impurities 

and defects (compared to the 1D case where every single defect breaks the spin chain). 

Suppression of quantum fluctuations is advantageous for numerical studies, since purely 2D 

models can order at T = 0, in contrast with the 1D case [94]. 

This section focuses on the quasi-2D systems with a dominant dimer-like coupling J . 

The latter term implies the situation where each spin is coupled by J to at most one other 

spin. In the limit of infinitesimal interdimer couplings, the system resides in the singlet 

(dimerized) GS. However, seemingly small couplings between the dimers can substantially 

alter the magnetic GS and the excitation spectrum, e.g. stabilizing an LRMO. 

Recent vibrant research on dimerized models and systems is largely inspired by their po­

tential to exhibit a peculiar many-body effect—the BOSE–EINSTEIN condensation of magnons. 

This effect has been observed for several S = 1/2 HEISENBERG magnets, among which the 

most studied are TlCuCl3 [45], Cs2CuCl4 [251] and BaCuSi2O6 [252, 253]. 

Following the reasoning of Ref. 254, the BOSE–EINSTEIN condensation of magnons can be 

interpreted as follows. The dimerized magnetic GS is characterized by a gap in the magnetic 

excitation spectrum: the GS is a singlet, and the lowest lying excitation is a triplet. In 

magnetic field, the triplet splits into three branches due to the ZEEMAN effect. The energy 

of the lowest branch decreases linearly upon increase of the field strength. At some critical 

field Hc, this branch crosses the energy of the singlet state (unaffected by magnetic field), 

and becomes the new GS. If the dimers are isolated, the magnetization exhibits a jump 

from zero (singlet) to the saturation value. However, the interdimer couplings, intrinsic 

for real materials, give rise to a finite dispersion of the triplet branch. Consequently, the 

transition to the saturated state occurs continuously between the two critical fields Hc1 and 

Hc2 that correspond to the situations when the bottom and the top of the magnon branch, 

respectively, cross the GS energy. 

The interesting BEC physics is enclosed into the field range between Hc1 and Hc2. At Hc1, 

the system already attains a LRMO. Microscopically, this results in the long-range ordering 

of Sx ,y components of the constituent spins. In this ordered state, the elementary excitations 

are S = 1 triplons. The amount of triplons is controlled by the magnetic field, which then 

plays the role of the chemical potential. Due to their bosonic nature, triplons can occupy the 

same state, allowing for a formation of BEC. 

The experimental verification of BEC is far from being straightforward. One of possible 

ways is to measure the critical fields as a function of temperature, and this way obtain 
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the critical exponents (e.g. Ref. 252). However, this method requires a large number of 

measurements and strongly suffers from the absence of sharp transitions. Another solution 

is to search for characteristic features in the magnetic excitation spectrum, using INS (e.g. 

Refs. 251 and 255). In most cases, neither of the two experiments can be carried out in a 

standard lab. Therefore, for a BEC candidate system, it is crucial to learn as much as possible 

prior to performing M(H, T ) or INS measurements. 

Dimer formation is a casual structural feature found in numerous magnetic materials. 

However, by far not every compound from this class exhibits a dimer-like magnetism. 

Moreover, structural dimers do not necessarily coincide with magnetic dimers. The latter 

situation is often difficult to identify, since macroscopic measurements do not provide 

the relevant information on the microscopic model. Even local probes may suffer from 

ambiguous interpretation, as revealed by extensive studies of the dimer system CuTe2O5 [43, 

256]. In contrast, the DFT-based approach is truly microscopic, and thus free from this 

shortcoming. Moreover, simulations of the resulting microscopic model are capable to 

distinguish between gapped and gapless spectra. Finally, the potential to exhibit the BEC 

behavior can be estimated within this purely computational approach [257]. 
For challenging the DFT-based approach, an additional advantage of the quasi-2D mag­

netic systems with dimer-like features is the their proximity to the quantum phase transition 

between the singlet and LRMO phases. This transition is ruled by the Ji/J ratios of the 

interdimer couplings and the intradimer coupling. The two resulting GS can be safely 

distinguished experimentally. Thus, the resulting magnetic GS of the simulated model can 

be used as an additional criterion to test the computational approach. 

6.2.1 Cu2A2O7 (A= P, As, V) 

The dimer-like structures characteristic to the family of Cu2A2O7 (A= P, As, V) oxosalts, 

are an excellent playground for studying the interplay between subtle structural details 

and magnetism. In particular, different AO4 anionic groups drastically alter the magnetic 

behavior: coupled dimers in α-Cu2P2O7 and alternating chains in α-Cu2As2O7 contrast to 

a honeycomb lattice in β-Cu2V2O7. As will be shown, DFT calculations not only provide 

quantitative microscopic magnetic models for the three systems, but also disclose the origin 

of the qualitative difference in their coupling regime. 

The experimental information on the magnetism of Cu2A2O7 (A= P, As, V) systems is 

utterly uneven. The magnetism of β-Cu2V2O7 is extensively characterized experimentally. 

Previous studies generically put forward the essentially 1D magnetism [258–260]. However, 

the starting point of these studies—the model of spin chains formed by distorted CuO6 

octahedra—is in sharp contrast with the orientation of the magnetically active orbitals. 

DFT calculations readily refute this model, and propose an unexpected 2D honeycomb 

lattice model, which allows for a consistent interpretation of all available experimental data. 

The experimental information on α-Cu2P2O7 is scarce: an AFM ordering observed at 27 K 
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was discussed within a tentative model of the magnetic structure established from neutron 

diffraction [261] and NMR [262], but without any microscopic insight. The magnetism 

of α-Cu2As2O7 was addressed by χ(T), Cp(T), ESR, NMR measurements in a very recent 

study [263]. 

Crystal structure 

Cu2A2O7 compounds have several polymorph modifications. In the following, the α modifi­

cations of Cu2P2O7 and Cu2As2O7, isostructural to the β modification of Cu2V2O7, will be 

considered. 

The building blocks of the structure are Cu2O6 dimers, formed by two edge-sharing 

CuO4 plaquettes, as well as the A2O7 pyro-groups comprising two corner-sharing AO4 tetra­

hedra. With respect to the magnetic properties, the structure is essentially 2D, since the 

magnetic layers (Fig. 6.17, top left) are coupled only by the pyro-groups (Fig. 6.17, top 

right), and the respective magnetic superexchange is rather small, as confirmed a posteriori 

by the DFT calculations. The structural organization of the magnetic layers in Cu2A2O7 

systems bears strong similarities to S = 1/2 vanadates, such as (VO)2P2O7, VO(HPO4)·0.5H2O, 

KZn(H2O)(VO)2(PO4)2(H2PO4) and CsV2O5 [264]. 

Figure 6.17: Top: magnetic lay­
ers (left) in the crystal structure 
(right) of Cu2A2O7. Bottom: 
five leading exchange couplings 
in Cu2A2O7: intrachain cou­
plings within (J1) and between 
' (J1) the structural dimers. The 

couplings Jic1, Jic2, and Jic3 con­
nect the chains to each other, 
forming a 2D magnetic layer. 

DFT calculations 

To evaluate the leading exchange couplings, DFT band structure calculations are performed. 

For α-Cu2P2O7 and α-Cu2As2O7, LDA yields a valence band with a width of 10 eV (Fig. 6.18), 
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larger than typical values for cuprates. In contrast, the valence band complex in β -Cu2V2O7 

is much narrower. A naked-eye comparison of the valence bands hints at similarity of the 

electronic structures of α-Cu2P2O7 and α-Cu2As2O7 and unlikeness of both to β-Cu2V2O7. 
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Figure 6.18: LDA DOS for Cu2A2O7 (A= P, As, V). Note the pronounced difference in the structure 
of the valence band of α-Cu2P2O7 and α-Cu2As2O7 on one hand, and β-Cu2V2O7 on the other 
hand. 

For all three systems, nonzero DOS at cF evidences a metallic GS, in contrast with their 

insulating nature, but in agreement with the studies discussed in Sec. 6.1, since the LDA 

systematically underestimates the correlation effects. The structure of the DOS in the vicinity 

of cF is again notably different for α-Cu2P2O7/α-Cu2As2O7 on one hand, and β -Cu2V2O7 on 

the other hand. 

Typical for cuprates, the states at cF have the 3dx2− y2 character. The relevant couplings 

were identified using WFs for the Cu 3dx2−y2 states. The resulting fits are in excellent 

agreement with the LDA bands (Fig. 6.19) and yield five relevant in-plane couplings. Two of 

them—the couplings within the structural dimer t1 and between the structural dimers t1 
' 

(Fig. 6.17, middle)—form alternating chains along the b axis. The chains are connected by 

two types of interchain couplings: tic1 and tic3 run through a single AO4 tetrahedron, whereas 

tic2 connects two Cu atoms with a double bridge of AO4 tetrahedra (Fig. 6.17, bottom). 

Together with t1 and t1
' , these interchain couplings form the magnetic layers, parallel to 

(101), as shown in Fig. 6.17. The interlayer coupling is realized via A2O7 pyro-groups and 

amounts to 30 meV in α-Cu2P2O7, 35 meV in β -Cu2V2O7, and 40 meV in α-Cu2As2O7. Since 

these couplings are substantially smaller than the leading intraplane terms, they can be 

neglected in the minimal model. 

Numerical values of ti ’s are summarized in Table 6.4. A mere comparison of the transfer 

integrals ti for the three Cu2A2O7 systems suffices to disclose the substantial difference in the 

coupling regimes. First, the coupling t1 within the structural dimer is essentially the same in 

α-Cu2P2O7 and β-Cu2V2O7, while in α-Cu2As2O7 it is substantially larger. In contrast, the 

interdimer coupling t1 
' is almost equal in α-Cu2P2O7 and α-Cu2As2O7, and much smaller in 

β-Cu2V2O7. Yet, the difference in the interchain coupling regime is even more pronounced: 

α-Cu2P2O7 and β-Cu2V2O7 have sizable tic1 and tic3 with negligibly small tic2, while for 

β -Cu2V2O7 the situation is exactly the opposite. This is in line with the clearly different band 

dispersions in α-Cu2P2O7/α-Cu2As2O7 and β-Cu2V2O7 (Fig. 6.19). 

107 



6.2. 2D models with dimer-like couplings
 

Γ X S Y Μ A Z Γ

k-vector

-0.5

0

0.5

e
n

e
rg

y
 (

e
V

)

Cu
2
V

2
O

7

Γ X S Y Μ A Z Γ

k-vector

Cu
2
As

2
O

7

Γ X S Y Μ A Z Γ

k-vector

-0.5

0

0.5

e
n

e
rg

y
 (

e
V

)

Cu
2
P

2
O

7

Figure 6.19: WF fits (dashed lines) to the LDA band structure (solid lines) for Cu2A2O7. The 
different dispersion of α-Cu2P2O7 and α-Cu2As2O7 compared to β-Cu2V2O7 hints at different 

πmagnetic coupling regimes in these systems. Notation of kk-points: Γ=(000),X=(π 00), S=(π 0),
a a b

π π πY=(0π 0),M=(0π ), A=(π ), Z=(00π ).
b b c a b c c 

Table 6.4: Transfer (ti , in meV) and exchange (Ji , in K) integrals for α-Cu2P2O7, α-Cu2As2O7 and 
β -Cu2V2O7. Ji are calculated using LSDA+U , AMF, Ud = 6.5 eV and Jd = 1 eV. See Fig. 6.17 for path 
notation. 

path α-Cu2P2O7 α-Cu2As2O7 β-Cu2V2O7 

ti JAFM 
i Ji ti JAFM 

i Ji ti JAFM 
i Ji 

X1 156 251 34 170 298 168 148 226 5 
X ' 1 103 109 102 104 112 126 −84 73 61 
X ic1 

83 71 46 76 60 49 18 3 – 
X ic2 

−12 1 – 34 12 – 97 97 87 
X ic3 

79 64 41 77 61 48 −15 2 – 

The AFM exchange integrals (Table 6.4), evaluated via mapping onto a HUBBARD, and 

subsequently, onto a HEISENBERG model, apparently sharpen the trends outlined for ti ’s. Still, 

the magnetic model is incomplete, since the Cu–O–Cu angles within the structural dimers 

are close to 90◦, and a sizable FM contribution could be expected at least for J1. Therefore, 

LSDA+U calculations are performed using the relevant range of Ud parameters.10 As in the 

case of 1D cuprates, discussed in the previous section, Ud = 6.5 eV and Jd = 1 eV within AMF 

seems to be an optimal choice. The resulting Ji ’s calculated are provided in Table 6.4. 

The LSDA+U results are in accord with the estimates based on the model approach. In 
' 'AFMα-Cu2As2O7, the rather large value of J1, which exceeds the respective J1 value, likely 

originates from subtle differences in the way the CuO4 plaquettes are distorted. However, 

the 14 K difference between the two values is considerably smaller than the exchange energy 

scale in this system. Moreover, a slight increase of Ud readily remedies the problem.11 

LSDA+U calculations yield substantial FM contributions for the intradimer couplings 

J1 in all three systems. However, their impact on the magnetic model is different. For 

α-Cu2P2O7 and β-Cu2V2O7, a sizable FM contribution of J1
FM ∼−220 K drastically reduces 

10The relevant range is evaluated based on the studies of quasi-1D systems (Sec. 6.1). 
11The value of Ud is sensitive to geometrical characteristics of the magnetic plaquettes, such as the Cu–O 

distances and O–Cu–O angles. 
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the coupling within the structural dimers, while in α-Cu2As2O7, a somewhat smaller FM 

exchange contribution does not suffice to render J1 inactive, and it even remains the leading 

coupling. 

As expected, the interdimer couplings J1 
' have negligible FM contributions. In addition, 

they are only moderately dependent on the nature of the AO4 groups: α-Cu2As2O7 exhibits 

the largest coupling J1 
' = 126 K, while it is slightly smaller (102 K) in α-Cu2P2O7, and twice 

smaller (61 K) in β-Cu2V2O7. 

The interchain coupling regime is essentially different in α-Cu2P2O7/α-Cu2As2O7 and 

β -Cu2V2O7: for the former systems, Jic1 and Jic3 are the leading terms, while Jic2 is negligibly 

small. For β-Cu2V2O7, it is the other way round. WFs for the magnetically active orbitals 

elucidate the origin of this difference (Fig. 6.20): for α-Cu2P2O7/α-Cu2As2O7, essentially no 

P or As contributions are visible, while the Cu–O–O–Cu paths (Fig. 6.20, left and middle), 

favor tic1 and tic3 couplings, and consequently, the respective AFM exchange integrals. 

In contrast, the WF of β-Cu2V2O7 shows sizable weight on V atoms, exhibiting a shape 

reminiscent of the 3d3z2−r2 orbital. These V states hybridize with the nearby O orbitals, thus 

forming the effective superexchange path Cu–O–V–O–Cu. The V–O hybridization drastically 

alters the interchain coupling regime, now favoring the Jic2 exchange via a double bridge of 

VO4 tetrahedra (Fig. 6.20, right). 

α-Cu2P2O7 α-Cu2As2O7 β-Cu2V2O7

Figure 6.20: Top: WANNIER functions for Cu 3dx2− y2 states with the relevant interchain couplings 
(lines). Bottom: the spin models for Cu2A2O7 compounds. The thickness of a line reflects the 
magnitude of the respective coupling. Filled and empty circles represent up and down spins in the 
antiferromagnetically ordered state. 

The resulting microscopic magnetic models of Cu2A2O7 compounds are remarkably 

different (Fig. 6.20, bottom). The magnetism of α-Cu2P2O7 is dominated by J1, seemingly 

favoring a dimer-like behavior, with magnetic dimers formed in between the structural 

ones. However, as will be shown in the next paragraphs, the interdimer couplings are 
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strong enough to impede the formation of a singlet GS. In α-Cu2As2O7, the strong intrachain 

couplings J1 and J1 
' suggest a quasi-1D magnetic behavior. In α-Cu2P2O7, interchain and 

interlayer couplings again give rise to an LRMO state, although the ordering temperature is 

considerably lower (11 K versus 27 K in α-Cu2P2O7). β -Cu2V2O7 exhibits the most nontrivial 

magnetism. In first approximation, the numerical estimates for the two nonequivalent 

couplings J1 
' and Jic2 are similar enough to be considered equal. Such assumption leads to a 

2D honeycomb topology of the underlying spin lattice. Since the simulations (next section) 

suggest that the small anisotropy arising from the two nonequivalent couplings has only a 

minor impact on the GS, β -Cu2V2O7 can be regarded as a good realization of the honeycomb 

lattice HEISENBERG model. 

Simulations 

β-Cu2V2O7 The spin models of Cu2A2O7 are 2D and non-frustrated, hence efficient QMC 

algorithms can be used. A. TSIRLIN showed that the isotropic honeycomb lattice yields a 

perfect description to the experimental magnetic susceptibility [265]. Moreover, taking 

the interlayer coupling into account yields a reasonable estimate for TN [265]. However, 

the DFT-model yields two nonequivalent couplings J1 
' and Jic2 that form an anisotropic 

honeycomb lattice. To evaluate the influence of spatial exchange anisotropy, the ordered 

magnetic moment as well as the diagonal spin correlations were estimated. 
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Figure 6.21: Finite size scaling of 
the ordered magnetic moment m 
for anisotropic honeycomb lattice, J 
L = N , kq is the propagation vector 
of the magnetically ordered state. 

As discussed in Sec. 5.5.3, the 1/N expansion for the order parameter (ordered magnetic 

moment) bears sizable inaccuracies. However, a higher-order expansion (the expression 

is given in Fig. 6.21) yields very accurate results [183]. The results of such scaling for 

the anisotropic honeycomb lattice model are presented in Fig. 6.21. Although the spatial 

exchange anisotropy reduces the ordered moment,12 for the range of ratios 0.7 ≤ J1
' /J1 ≤ 1.2, 

12Such behavior conforms to the enhancement of 1D properties in the anisotropic model. 
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relevant for β-Cu2V2O7, only a minor influence is expected. 

Another important characteristic of the GS are spin correlations. To address the correla­

tions in the anisotropic honeycomb lattice model, 〈S0
zSi

z〉 were computed for various J1
' /J1 

ratios. Again, the spin correlations for 0.7 ≤ J1
' /J1 ≤ 1.2 are hardly distinguishable from 

those of the ideal honeycomb lattice (Fig. 6.22). Therefore, the magnetism of β -Cu2V2O7 can 

be effectively described by a HEISENBERG honeycomb lattice model, making this compound a 

promising model system. 
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Figure 6.22: Diagonal spin correlations for an anisotropic honeycomb lattice with two nonequivalent 
' ' NN couplings J1 and J1 that correspond to J1 and Jic2 in β -Cu2V2O7 (Fig. 6.17), respectively. Bold 

lines are the results for an ideal (regular) honeycomb lattice. R denotes the coordination sphere. 
The sketch in the middle panel shows the respective arrangement of S0 and SR spins, coupled by J1 
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α-Cu2P2O7 Considering the lack of experimental information on the magnetism of 

α-Cu2P2O7, the DFT-based theoretical study was accompanied by experimental investi­

gation. Powder samples of α-Cu2P2O7 were synthesized and characterized [including 

χ(T) measurements] by A. TSIRLIN at MPI CPfS. ESR measurements were performed by 

J. SICHELSCHMIDT (MPI CPfS). High-field magnetization has been measured by F. WEICKERT 

and YU. SKOURSKI in HZDR HLD. 

Magnetic susceptibility has been simulated using QMC for the DFT-based model com­

prising four relevant terms J1 
' : J1 : Jic1 : Jic3 = 1 : 0.33 : 0.45 : 0.40. The best agreement 

with the experimental curve is obtained for J1 
' = 79 K and g = 2.21 (Fig. 6.23, top panel), 

which is in reasonable agreement with J1 
' = 109 K from LSDA+U (AMF, Ud = 6.5 eV) and the 

powder-averaged g = (2g⊥ + g )/3 = 2.18. 

The simulated magnetization curve (Fig. 6.23, bottom panel) is scaled adopting J1 
' = 79 K 

and g = 2.21 from the fit to the magnetic susceptibility. The overall agreement with the 

experiment is rather good, while the residual discrepancy can be ascribed to the imperfect 

scaling of the experimental high-field curve (Fig. 6.23, inset, bottom panel). 
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α-Cu2As2O7 Various experimental probes, such as χ(T ), M(H), ESR and NMR unambigu­

ously resolve LRMO in α-Cu2As2O7 [263]. However, the DFT-based model is dominated 

by J1 and J1
' , and their difference is seemingly large enough to prevent LRMO and drive 

the system into the singlet GS. To prove the existence of LRMO in the magnetic model of 

α-Cu2As2O7, the spin stiffness ρS is evaluated using QMC. At the quantum critical point, the 

product quantity ρSN is independent of N [182]. In this way, the transition between the 

singlet and the magnetically ordered state can be traced. 

The ratio of the leading couplings J1 : J1 
' = 0.6 was adopted from the DFT calculations. 

In addition, Jic1 = Jic3 was assumed. The resulting plots of ρSN versus Jic1/J1 evidence a 

quantum phase transition at Jic1/J1 0.18, separating the gapful and gapless GSs. Since 

this value is slightly smaller than the DFT estimate (0.28), the expected GS is long-range 

ordered, but TN should be strongly reduced. This conclusion is in excellent agreement with 

the experiments. 
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' Cu2As2O7 (J1 = 0.6 J1, Jic3 = Jic1) at 
T = 0.0125 J1. The fingerprint of a 
quantum phase transition is marked 
by the red circle. The lines are guides 
to the eye. 

112 



�

CHAPTER 6. MODEL SPIN SYSTEMS
 

Discussion 

Although the Cu2A2O7 systems are isostructural, their magnetic properties are very different. 

It is reasonable to start the discussion with the structure and properties of the magnetic GS. 

Although all three systems order antiferromagnetically, the difference in the microscopic 

magnetic models gives rise to different propagation vectors: α-Cu2P2O7 and α-Cu2As2O7 

retain the C-centering of the unit cell, while the magnetic structure of β-Cu2V2O7 breaks 

it (see black and white circles for spin up and down in Fig. 6.20). The magnetic models of 

α-Cu2P2O7 and α-Cu2As2O7 comprise the same set of exchange couplings, and yet they are 

different: α-Cu2P2O7 should be regarded as a system of strongly coupled dimers, while the 

alternating chain description is more appropriate for α-Cu2As2O7. The spin correlations in 

β-Cu2V2O7 —an anisotropic version of a honeycomb lattice, hint at a minor influence of 

the spatial exchange anisotropy, thus the ideal honeycomb lattice HEISENBERG model should 

properly account for the magnetic excitation spectrum. 

So far, α-Cu2P2O7 and α-Cu2As2O7 reveal strong similarity to each other. However, the 

LRMO temperature in α-Cu2P2O7 (27 K) is very close to that of β-Cu2V2O7 (26 K), but in 

α-Cu2As2O7 it is substantially smaller (11 K). The small value of the transition temperature 

can be explained by a proximity to a quantum critical point. In particular, the alternating 

HEISENBERG chain exhibits a gapped magnetic spectrum. Interchain couplings reduce the 

value of the spin gap, and at some critical value drive the system into a magnetically ordered 

state. The estimated value for the critical interchain coupling (Jic1/J1 0.18) is only slightly 

larger than the respective DFT-based estimate for α-Cu2As2O7 (0.28). 

To summarize, the computational approach disclosed the fascinating variety of magnetic 

models realized in Cu2A2O7 compounds. α-Cu2P2O7 is a system of strongly coupled dimers, 

which surprisingly exhibits an LRMO. β-Cu2V2O7 is a rare example of a system with the 

honeycomb lattice magnetism. The proximity to a quantum critical point makes α-Cu2As2O7 

an interesting model system, which magnetism can be possibly tuned by pressure or chemical 

partial substitution. For all three systems, the LSDA+U calculations for Ud = 6.5 eV and 

Jd = 1 eV within AMF yield rather accurate numerical estimates (±20%) for the leading 

exchange couplings. 

6.2.2 CdCu2(BO3)2 

A natural way to attack a complex problem is to account for its simplified variant first. Not 

surprisingly, this approach is widely used for interpretation of the experimental results: to 

start with a simple model, which would describe major features, and subsequently refine it 

by considering more subtle peculiarities. Provided that the initial, crude model is essentially 

correct, its further refinement can be done by applying more precise experimental techniques. 

However, a wrong initial guess can largely impede the interpretation and lead to incorrect 

conclusions. 
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Concerning the latter case, the magnetism of CdCu2(BO3)2, controversially discussed 

during the last six years, is very instructive. With respect to its chemical composition, this 

compound is strongly related to the well-studied SHASTRY–SUTHERLAND (Fig. 6.25, left panel) 

system SrCu2(BO3)2 [46]. However, the smaller ionic radius of Cd2+ compared to Sr2+ 

(0.95 Å versus 1.26 Å [266]) leads to a symmetry reduction and alters the crystal structure, 

giving rise to two independent Cu sites. 

Figure 6.25: Left panel: the original SHASTRY–SUTHERLAND model with the dimer-like coupling J 
' (thick lines) and the coupling J (thin lines) along the edges of the square lattice. Right panel: the 

decorated anisotropic SHASTRY–SUTHERLAND model in CdCu2(BO3)2. The horizontal and vertical 
' couplings (J in the original model) are not equivalent, leading to Jt1 (double line) and Jt2 (single 

line). In addition, the coupling Jit (dashed line) tiles the lattice into four-spin units (tetramers). 
Filled circles denote the “decoration” spins. 

The initial guess of the magnetic model was based on χ(T ), Cp(T ) and M(H) measure­

ments. In particular, the authors of Ref. 267 conjectured that pairs of Cu(1) atoms form 

magnetic dimers, while Cu(2) sites build spin chains, and these two subsystems (chains 

and dimers) are decoupled. This model seemingly accounts for the magnetization plateau 

observed at one-half of the saturation magnetization (the spin chains fully polarized, the 

dimers retain the singlet state). However, the QMC simulations of this tentative model did 

not properly account for the experimental data. Sizable deviations of the experimental 

and the simulated curves made the model assignment questionable [268]. Finally, the ND 

studies revealed that both Cu(1) and Cu(2) atoms bear a nonzero magnetic moment in the 

magnetically ordered state, strongly disfavoring the “dimers + chains” picture [269]. 
A closer look to the crystal structure of CdCu2(BO3)2 helps to recognize the drawbacks 

of the proposed magnetic model. In particular, the mutual arrangement of the magnetic 

Cu(1)O4 and Cu(2)O4 plaquettes hints at a more complex scenario of magnetic couplings. 

As will be shown below, DFT calculations disclose the complexity of the underlying magnetic 

model, which includes three AFM and one FM exchange coupling. Interestingly, the actual 

magnetic model strongly resembles that of SrCu2(BO3)2, yet it is more intricate and less 

frustrated. Subsequent simulations of the microscopic magnetic model yield excellent 

agreement with the experiments. 
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Crystal structure 

CdCu2(BO3)2 is monoclinic, space group P21/c, with two independent Cu and B sites, in 

contrast with SrCu2(BO3)2 [46]. The crystal structure of CdCu2(BO3)2 was first studied by 

XRD [270], and later refined at 1.5 and 15 K using ND [269]. No structural transitions were 

observed in the temperature range between 1.5 and 298 K. 

The crystal structure of CdCu2(BO3)2 is shown in Fig. 6.26. The local coordination of 

Cu(1) and Cu(2) is plaquette-like, the Cu(2)O4 plaquettes are tetrahedrally-distorted. The 

neighboring Cu(1) plaquettes share common edges and form Cu(1)2O6 structural dimers. 

These dimers share common corners with Cu(2)O4 plaquettes (“monomers”). BO3 triangles 

are pairwise connected by sharing an oxygen atom. Cu(1)2O6 dimers, Cu(2)O4 monomers, 

and BO3 triangles form magnetic layers, almost parallel to (1̄02). Large cavities within the 

layers accommodate the Cd atoms. 

Figure 6.26: Crystal 
structure of CdCu2(BO3)2. 
Main panel: the magnetic 
layers. The two types of 
Cu atoms, “dimer” and 
“monomer”, are denoted 
by “1” and “2”, respec­
tively. BO3 triangles and 
Cd atoms are shown green 
and blue, respectively. 
Right bottom: position 
of the magnetic layers 
(shown shaded) in the 
crystal structure. 

Although the experimental structural data [269, 270] defined at several temperatures 

correspond to the same structural type, the individual bond lengths and angles are different. 

As repeatedly discussed in this thesis, magnetic properties are especially sensitive to subtle 

changes in Cu–O–Cu angles that alter the superexchange along these paths. Thus, in 

CdCu2(BO3)2 the Cu(1)–O–Cu(1) angles within the structural dimers as well the Cu(1)–O– 

Cu(2) angle between a “dimer” and a “monomer” atom, should be carefully analyzed. The 

experimentally defined values for the two angles are given in Table 6.5. To evaluate the 

relation between structural details and magnetism, DFT calculations were performed for all 

three structural data sets (1.5 K, 15 K and 295 K). 
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T, K method -Cu(1)–O–Cu(1), ◦ -Cu(1)–O–Cu(2), ◦ Ref. 
Table 6.5: 

Cu–O–Cu 
Experimental 
angles in 

1.5 ND 98.2 117.5 269 the crystal structure 

15 ND 98.5 117.4 269 
of CdCu2(BO3)2 as a 
function of temperature. 

295 XRD 99.3 118.4 270 

DFT calculations 

LDA yields a valence band with a dominant contribution of Cu and O states (Fig. 6.27, top). 

The well-separated DOS in the vicinity of cF comprises eight bands, as expected for four 

Cu(1) and four Cu(2) atoms in the unit cell. However, only four of the eight bands cross cF, 

while the other four bands are either empty or filled (Fig. 6.27, bottom left). This situation 

is a fingerprint of a strong dimer-like coupling.13 The atomic resolved DOS reveals that the 

filled and empty bands are dominated by Cu(1) states, hinting at a strong coupling within 

the structural dimers. 
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Figure 6.27: Top: LDA 
DOS for CdCu2(BO3)2. 
Bottom left: (dp)σ bands 
in the LDA band struc­
ture. Bottom right: atom-
resolved DOS for the states 
relevant for magnetism. 

The effective one-orbital model has been parameterized using WFs for 3dx2− y2 states 

of both Cu(1) and Cu(2). The resulting WFs are presented in Fig. 6.28. Besides the 

apparently present intradimer coupling, sizable weight of the WFs on the O atoms suggests an 

appreciable coupling via the Cu–O–O–Cu paths. Numerical evaluation of the leading transfer 

integrals yields the intradimer coupling td = 221 meV (thick red-black line in Fig. 6.28), two 

nonequivalent couplings tt1 = 78 meV (red-white-red lines in Fig. 6.28) and tt2 = 87 meV 

(red lines in Fig. 6.28), connecting two Cu(1) and two Cu(2) atoms that form a tetramer, 

and a coupling between the tetramers tit = −51 meV realized via Cu(1)–O–Cu(1) paths (blue 

13Roughly, the splitting between the bands is governed by the leading energy scale (the intradimer coupling), 
while the band dispersions are ruled by interdimer couplings that are considerably smaller. 
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Table 6.6: LSDA+U ex­
change integrals (in K) for DCC AMF FLL 

CdCu2(BO3)2 as a function of Ud 5.5 eV 6.5 eV 7.5 eV 7.5 eV 8.5 eV 9.5 eV 
DCC and Ud . Jd 297 146 70 356 271 202 

Jt1 42 30 19 44 36 29 

Jt2 84 61 48 74 68 57 

Jit −61 −45 −34 −181 −160 −135 

lines in Fig. 6.28). The second largest intertetramer coupling tit2 (not shown in Fig. 6.28) 

amounts to 40 meV. 

Figure 6.28: Four WFs 
for 3dx2− y2 states 
(two “dimer” and two 
“monomer” Cu atoms) 
of CdCu2(BO3)2. Note 
the Cu–O–O–Cu superex­
change via a double 
bridge of BO3 triangles. 

Mapping of the effective TB model onto a HUBBARD and a HEISENBERG model yields 

the substantially large Jd
AFM 500 K. The edge-sharing geometry typically gives rise to a 

sizable FM contribution, therefore the actual spin model should be evaluated from the 

supercell approach. Moreover, since CdCu2(BO3)2 features both edge- and corner-sharing 

connections of the magnetic plaquettes, the applied DCC scheme is expected to have a 

substantial influence on the results (see Refs. 15 and 265 for instructive examples). To 

evaluate the influence of the DCC scheme as well as Ud , the LSDA+U calculations have been 

performed for a range of Ud between 5.5 and 7.5 eV for AMF and between 7.5 and 9.5 eV 

for FLL. 

In accord with the expected reduction of the magnetic exchange for the edge-sharing 

geometry, LSDA+U calculations yield considerably reduced values of Jd in comparison 

with Jd
AFM estimates, disregarding the DCC scheme used. As expected for the Ji 

AFM ∝ ti 
2 

dependence, a rather small value of |tt1 − tt2| = 11 meV develops into a more substantial 

difference between Jt1 and Jt2. A less trivial result is the FM nature of Jit. Even more 
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surprising is the low value of Jit2. This coupling runs between the tetramers, connecting 

Cu(1) and Cu(2) via Cd atoms. The situation largely resembles the FM system CdVO3, 

where the Cd states are responsible for the FM coupling between the spin chains [271]. The 

sizable JFM in CdCu2(BO3)2 is likely caused by a small admixture of Cd 5s states. This FM it2 

contribution compensates JAFM, and practically renders the respective exchange inactive. it2 

Therefore, the minimal magnetic model can be confined to four relevant couplings: Jd, Jt1, 

Jt2 and an FM Jit. 

The main difference between the AMF and FLL results is the strongly increased absolute 

value of Jit for the latter DCC scheme. This leads to the picture of linear tetramers, where 

the ultimate Cu(2) atoms are ferromagnetically coupled to one of Cu(2) atoms that form 

a dimer. This scenario is unlikely, because ED of the respective model Hamiltonian with 

Jt1 + Jt2 yields a gapped magnetic excitation spectrum (next section), in contrast Jd + |Jit|
with the experiments [269]. On the contrary, the AMF results are in accord with an AFM 

LRMO, observed experimentally. Therefore, the AMF scenario looks more plausible. 

The microscopic magnetic model is plotted in Fig. 6.29. The elementary units are square-

like tetramers, formed by two Cu(1) and two Cu(2) spins. Within the tetramer, the Cu(1) 

are strongly coupled by Jd , while the coupling between Cu(1) and Cu(2) is realized by 

two inequivalent Jt1 and Jt2 running via Cu(1)–O–O–Cu(2) superexchange paths. Since all 

three couplings are AFM, their competition gives rise to frustration. However, the sizable 

difference between the numerical values of Jt1 and Jt2 largely lifts this frustration. The 

intertetramer exchange Jit is FM, and it couples the tetramers into a magnetic layer. 

Jd

J t1

J t2

J it

Figure 6.29: Microscopic 
magnetic model for 
CdCu2(BO3)2. Red and 
blue lines denote AFM and 
FM couplings, respectively. 
Line thickness corre­
sponds to the strength of 
a particular coupling. 

Simulations 

The microscopic magnetic model is 2D and frustrated, thus ED is a method of choice for 

simulations. As mentioned in the previous section, the model based on the FLL results 

exhibits a sizable spin gap, which is too large to be a finite-size effect. Since the gapped 
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spectrum contrasts with the experiments, in the following the AMF-based model is analyzed. 

The spin correlations for the magnetic GS are depicted in Fig. 6.30. As expected for the 

strong coupling Jd, spin correlations within the structural dimers are substantial. The 

absence of a rapid decay of spin correlations, for large R, hints at LRMO. 
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Figure 6.30: Spin correlations in the GS of CdCu2(BO3)2 (right panel). The leading exchange 
couplings are adopted from the LSDA+U calculations, AMF DCC, Ud = 6.5 eV and Jd = 1 eV. The 
paths are given in the left panel. 

A peculiar feature of the magnetic GS of CdCu2(BO3)2 is the experimentally observed 

difference in the values of the ordered magnetic moments localized on Cu(1) and Cu(2) 

atoms [269]. A crude estimate for the ordered magnetic moment can be obtained from the 

spin correlations of the maximally separated spins on a finite lattice. Although finite size 

(N = 32 sites) effects impede direct comparison to the experimentally measured magnetic mo­

ments, the 〈S0 ·S8〉 correlations (Fig. 6.30) of Cu(1) and Cu(2) can be compared to each other. 

ED yields 〈S0 · S8〉[Cu(1)] = 0.060 and 〈S0 · S8〉[Cu(2)] = 0.174, for Cu(1) and Cu(2), respec­

tively. In the simplest picture, the ratio 〈S0 · S8〉[Cu(1)] : 〈S0 · S8〉[Cu(2)] = 0.59 should 

be close to the ratio of the magnetic moments. Although the results may be considerably af­

fected by finite-size effects, a comparison to the experimental [269] mCu(1) : mCu(2) = 0.45 : 0.83 = 0.54 

reveals surprisingly good agreement between theory and experiment. 

Magnetic susceptibility has been simulated on N = 16 sites finite lattice for different 

Jd : Jt1 : Jt2 : Jit ratios, and subsequently fitted to the experimental curve (Fig. 6.31). The best 

fit is obtained for 1 : 0.2 : 0.45 : −0.2, which is quite close to 1 : 0.2 : 0.4 : −0.3 yielded by 

LSDA+U calculations for AMF DDC with Ud = 6.5 eV and Jd = 1 eV. The fit yields g = 2.19 

and Jd = 152 K, in excellent agreement with Jd = 146 K obtained from LSDA+U . 

For the 1 : 0.2 : 0.45 : −0.3 ratio, the GS magnetization has been simulated for N = 32 

sites finite lattices and scaled using the values of Jd and g from the fit to χ(T ). The resulting 

curve together with the experimentally measured dependence are shown in Fig. 6.32. Taking 

into account different temperatures of the simulation (0 K) and the experiment (1.5 K), the 

agreement between the scaled M ∗ (h) and the experimental M(H) curve is very good. 
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Discussion 

The DFT calculations readily refute the initially proposed the “dimers + chains” model, and 

disclose a more complex 2D frustrated magnetism with four relevant microscopic magnetic 

couplings. Although the dimer-like coupling Jd is strongly dominant, the competing inter-

dimer couplings Jt1 and Jt2 as well as the FM coupling Jit promote LRMO. The experimental 

magnetic susceptibility can be well reproduced by the Jd : Jt1 : Jt2 : Jit ratios derived from the 

LSDA+U calculations (AMF, Ud = 6.5 eV, Jd = 1 eV). Remarkably, the overall energy scale 

(Jd) which can be reliably defined from the experimental magnetic susceptibility, reveals an 

excellent agreement between experiment and theory. 

Although the ED simulations inevitably suffer from finite size effects, the presence of a 

magnetization plateau at one-half of the saturation magnetization can be safely established. 

Moreover, the pronounced difference in the strength of Cu(1)–Cu(1) and Cu(2)–Cu(2) spin 

correlations at the maximal separation on the finite lattices, conforms to the different ordered 

magnetic moments on Cu(1) and Cu(2), as observed experimentally. The good agreement 

of Jd = 152 K, obtained from the fit to the magnetic susceptibility, and the LSDA+U-derived 

(AMF DCC, Ud = 6.5 eV, Jd = 1 eV) Jd = 146 K evidence excellent accuracy of the numerical 

approach. 

The main features of the spin model are the strong coupling Jd within the structural 

dimers, competing intratetramer couplings Jt1 and Jt2, and the FM intertetramer coupling 

Jit. Using the conventional terminology, the microscopic magnetic model of CdCu2(BO3)2 

can be described as an anisotropic decorated SHASTRY–SUTHERLAND lattice (Fig. 6.25, right 
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panel). Although the non-equivalence of Jt1 and Jt2 largely reduces magnetic frustration, a 

potential advantage of CdCu2(BO3)2 is the possibility to explore the phase diagram of this 

model by tuning the Jt2 / Jt1 ratio, e.g. in high-pressure experiments. 

6.3 3D model with 1D features in dioptase Cu6Si6O18 ·6H2O 

Despite the pronounced differences in the chemical composition and structural organization, 

all systems discussed so far are low-dimensional magnets. Such low-dimensional behavior 

manifests itself by distinct experimental features, like for instance, a characteristic broad 

maximum in the magnetic susceptibility. Interestingly, similar behavior can observed in 

the systems featuring even a 3D microscopic magnetic model. Obviously, strong quantum 

fluctuations are a prerequisite in this case. The question is then, what can be the source of 

quantum fluctuations in a 3D model. The following study of the mineral dioptase provides 

an unambiguous evidence that a small coordination number of the underlying spin lattice 

invokes low-dimensional behavior despite the 3D character of the spin lattice itself. It is 

an instructive example showing that the low-dimensional magnetism is not confined to the 

low-dimensional magnetic models, but rather to a broader class of models that are either 

low-dimensional or bear small coordination numbers, or both. 

Dioptase Cu6Si6O18 ·6H2O is a well-known mineral, which typically occurs as dark green 

crystals. Its similarity to emerald led to considerable confusion and gave rise to a popular 

belief in its special mystical powers that grant an owner of this gemstone the ability to 

understand the language of birds or to talk to trees. 

Even the magnetic properties of dioptase were cloaked in mystery for a long time. In 

particular, several experimental studies yielded quantitatively controversial results [272– 

276]. Besides the discrepancies that are likely related to dioptase samples originating 

from different locations, the experimental studies essentially converge in the description of 

dioptase as an antiferromagnet with a rather low NÉEL temperature (TN 15 K) compared 

to the CURIE–WEISS temperature of about 45 K [276]. The ordered magnetic moment 

(m = 0.55 µB [276]) is considerably reduced with respect to the classical value of 1 µB. In 

order to account for the experimental behavior of dioptase, the authors of Ref. 16 suggested 

a microscopic model with two relevant AFM exchange couplings: the coupling Jc along the 

spiral chains and the coupling Jd within the structural Cu2O6 dimers. This study places the 

compound in proximity to a quantum critical point due to a competition between chain-like 

ordering favored by Jc and magnetic dimer formation caused by Jd. Although this model 

conforms to the rather low values of TN and the ordered moment, it yields only a rather 

poor fit to the experimental magnetic susceptibility, as revealed by the QMC simulations for 

a wide range of Jd/Jc ratios (Fig. 4 in Ref. 16). 

In the following, a new microscopic magnetic model for dioptase is established. The 

resulting minimal model contains the AFM coupling Jc and the FM coupling Jd, as was 
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suggested before based on the ND results for the related compound — anhydrous black 

dioptase [274]. Subsequent QMC simulations of this model evidence that the FM nature 

of Jd resolves all mentioned controversies and yields an excellent agreement with the 

experiments. 

6.3.1 Crystal structure 

The crystal structure is trigonal, space group 3̄. The general structural organization of 

dioptase is depicted in Fig. 6.33 (left). In the mineralogical textbooks, dioptase is typically 

considered as a ring silicate, with isolated [Si6O18]12− rings as the key element of the 

crystal structure. However, for the magnetic properties of dioptase, these rings play only 

a minor role, and the magnetic couplings regime is governed by the mutual connection 

of magnetic units. Typical for cuprates, these units are slightly distorted CuO4 plaquettes. 

Water molecules reside in the vertices of elongated CuO4(H2O)2 octahedra. 

Figure 6.33: Crystal structure of dioptase Cu6Si6O18·6H2O. Left: projection perpendicular to the 
c axis. The structure is formed by Cu2O6 dimers (yellow), SiO4 tetrahedra (green) and water 
molecules (O atoms with two blue O–H bonds). The fading corresponds to different distances 
between the respective polyhedra and the projection plane (darker means closer). Right: the spiral 
chains along c formed by corner-sharing connections of the structural dimers. 

Each plaquette shares a common edge with one of the neighboring plaquettes forming 

a Cu2O6 structural dimer, and has two corner-sharing connections with the plaquettes 

belonging to the neighboring dimers (Fig. 6.33, right). Despite only two types of connections, 

the resulting 3D openwork motive is rather complex and does not represent any archetype 

topology. The Cu–O–Cu angles amount to 97.3◦ and 107.6◦ for the edge- and corner-sharing 

connections, respectively. 
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6.3.2 DFT calculations 

The LDA atom-resolved DOS depicted in the top panel of Fig. 6.34 reveals a rather unusual 

structure of the valence band. In addition to the typically dominant Cu and O states, the 

sizable H2O contribution originates from the apical position of the crystal water in the 

distorted CuO4(H2O)2 octahedra, and thus rather short Cu–OH2O distances of 2.51 and 

2.66 Å. The width of the valence band is about 9 eV, slightly larger than in other cuprates. 

The well-separated density at cF is formed by Cu–O (dp)σ states. 

Figure 6.34: Top: LDA 
total and atom-resolved 
DOS. “H2O” is the sum of 
the water-molecule H and 
OH2O states. Consequently, 
to avoid the double count­
ing, the “O” states do not 
contain the contribution of 
the OH2O atom. Bottom: 
band structure and the 
WF fit within the effective 
one-band model. Nota­
tion of kk-points: Γ=(000), 

πF=(π 0 − π ), T(π − π ),
a c a b c

π πL=(0π 0), T1=(π ).
b a b c 
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The well-separated DOS at cF is formed mainly by Cu and O states. A projection onto a set 

of local orbitals readily yields the dominant 3dx2− y2 character of the Cu states. However, the 

peculiar non-coplanar orientation of the neighboring plaquettes impedes a straightforward 

evaluation of the orbital character of the relevant O states. In particular, the orbital-resolved 

DOS for the O states shows a mixture of 2px ,y and 2pz states. This can be illustrated by 

addressing the orbital-resolved DOS for individual atoms. The states corresponding to the O 

atoms bridging two Cu atoms in a dimer show a clearly planar character. For the O atoms 

linking two neighboring dimers, the O 2px and O 2pz contributions are comparable, because 

the O 2pz states correspond to the O 2px states of the neighboring dimer, while the O 2py 

contribution is negligible. Thus, although the O 2pz contributions are unusually high and 

seemingly hint at sizable O 2pπ contributions, the states at cF are clearly dominated by 

Cu–O (dp)σ states. Since the number of bands forming the band complex coincides with 

the number of plaquettes in the unit cell, the magnetic properties of the compound can be 

described by an effective one-orbital TB model. 

The WF fit yields two relevant transfer integrals: tc = 126 meV, running along the spirals 
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of dimers (in the c direction), and td = 104 meV, the intradimer coupling. Other hoppings 

are smaller than 25 meV and thus can be neglected in the minimal model. The mapping onto 

a HUBBARD and a HEISENBERG model delivers Jc
AFM = 164 K and Jd

AFM = 112 K. Since exchange 

integrals JAFM ∝ t2 , all further exchanges are smaller than 6 K (less than 4 % of the leading i j i j

exchange). 

The examples of Cu2A2O7 (Sec. 6.2.1) and CdCu2(BO3)2 (Sec. 6.2.2) evidence that the 

edge-sharing-plaquettes geometry can give rise to sizable Ji 
FM for the coupling within the 

structural Cu2O6 dimers. For dioptase, Jd
FM even outgrows the respective AFM contribution 

and renders this coupling FM. In particular, the calculation adopting Ud = 6.5 eV within the 

AMF DCC scheme yields Jc = 110 K and Jd = −66 K. Thus, the FM contributions amount to 

J F M 
c = 54 K and Jd 

F M = −178 K, respectively. 

To challenge the FM nature of Jd, LSDA+U calculations have been performed for a wide 

range of Ud , using both AMF and FLL DCC. The results for the individual couplings Jc and 

Jd, as well as for their ratio Jd/Jc are presented in Fig. 6.35. Although the individual values 

of the exchange couplings depend on the value of Ud , the Jd coupling is FM disregarding the 

parameters used. 
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Figure 6.35: LSDA+U results for Jc, Jd and Jd/Jc ratio in dioptase Cu6Si6O18 ·6H2O. Note that for 
(UFLLJd/Jc AMF and FLL yield qualitatively similar results, with a constant shift UAMF − 2 eV).d d 

Supporting the conclusions of Refs. 16 and 274, the microscopic analysis yields only two 

relevant magnetic couplings in Cu6Si6O18 ·6H2O. These two couplings build a complex 3D 

network formed by Jc chains that are coupled to each other by FM Jd (Fig. 6.36). In contrast 

with Ref. 16, the LSDA+U calculations evidence the FM nature of Jd, with consequently 

different physics. The sizable dependence of the Jd/Jc ratio on the value of Ud (Fig. 6.35) 

makes an extensive analysis of the resulting Jc–Jd model necessary. 

6.3.3 Simulations 

The non-frustrated nature of the magnetic model allows to use QMC algorithms. QMC 

simulations performed for the relevant parameter range −1 ≤ Jd/Jc ≤ − 0.2 of the Jc–Jd 

model, evidence that the Jd/Jc ratio can be varied in a rather wide range between −0.8 and 

−0.4, yielding a very good fit to the experimental χ(T) above TN. Therefore, the fitting of 

χ(T ) alone does not suffice to provide an accurate estimate for Jd/Jc. 
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Figure 6.36: Microscopic magnetic model for 
dioptase Cu6Si6O18 ·6H2O. AFM Jc couplings 
(red thick lines) form spiral chains coupled 
together by FM Jd couplings (blue thinner 
lines). The projection perpendicular to the 
c axis is shown (same as in the left panel 
of Fig. 6.33). The fading corresponds to 
different distances between the respective 
couplings and the projection plane (sharper 
means closer). 

To improve the refinement of Jd/Jc, the magnetic ordering temperature TN is traced by a 

distinct kink in the simulated curves. The reference to TN yields Jd/Jc close to −0.5. The 

respective fit is shown in the top panel of Fig. 6.37. The resulting Jc = 78 K agrees well with 

the DFT estimates: 110 K for Ud = 6.5 eV and Jd = 1 eV within AMF (Jd/Jc = −0.6) and even 

better with 85 K at Ud = 8.5 eV in the FLL scheme (Jd/Jc = −0.55). Moreover, the resulting 

g = 2.26 and χ0 = −6.9 · 10−5 emu (mol Cu)−1 are consistent with the estimates from the 

CURIE–WEISS fit [2.30 and −7.2 · 10−5 emu (mol Cu)−1, respectively]. 

Figure 6.37: QMC simulations for 
the Jc–Jd magnetic model of diop­
tase Cu6Si6O18·6H2O. Upper panel: 
fit to the magnetic susceptibility. 
Lower panel: comparison of the sim­
ulated and the experimental value 
for the ordered magnetic moment. 
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For a further test of the microscopic model, the magnetic GS properties are considered. 

First, the propagation vector kq of the AFM ordered GS coincides with the experimentally 

observed kq = (0,0, 2π/3) [276] in the whole range −1 ≤ Jd/Jc ≤−0.2. In this GS, the neigh­

boring spins along the spiral chains (Jc) align antiferromagnetically, while the ordering 

within the edge-shared dimers (Jd) is FM. This justifies the validity of the microscopic model, 
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but does not allow for a more accurate refinement of the Jd/Jc ratio. 

For a further comparison, the ordered magnetic moment m = 0.55(1) µB [276] is consid­

ered. The simulated value of m is estimated from the finite-size scaling of the static structure 

factor (Eq. 5.10 on page 76), taken for the propagation vector of the ordered structure. The 

results of the simulations for various Jd/Jc ratios are shown in the bottom panel of Fig 6.37. 

Remarkably, the theoretical m for Jd/Jc = −0.5 is in good agreement with the experimental 

value. 

6.3.4 Discussion 

The DFT-based analysis reveals a peculiar microscopic magnetic model in dioptase: the spin 

lattice is 3D and non-frustrated, hence any references to the frustrated spin chain model 

should be precluded. As in the case of Cu2A2O7 systems (Sec. 6.2.1), the AMF DCC with 

Ud = 6.5 eV and Jd = 1 eV yield numerically accurate results for the leading couplings. It is 

important to note that the magnetic model in dioptase is very different from the star lattice. 

Such confusion can arise from a specific projection of the spin lattice, where the segments of 

the spiral chains look like flat frustrated triangles (Fig. 6.36). 

Instead, the spin lattice in dioptase can be described in terms of AFM spin chains running 

along the c direction that are arranged on the honeycomb lattice, i.e. each chain is coupled 

to the three neighboring chains, and the system is geometrically 3D (Fig. 6.33). 

The experimental data for dioptase give evidence for strong quantum fluctuations: the 

broad susceptibility maximum at Tmax/Jc 0.64, the low NÉEL temperature (TN/Jc 0.2), 

and the reduced magnetic moment 0.55 µB. The magnetic moment is even lower than 

0.6 µB found for the HEISENBERG model on the 2D square lattice geometry, thus quantum 

fluctuations in the dioptase spin lattice are even stronger than in the square lattice. Quantum 

fluctuations in a 3D spin system can arise from magnetic frustration (e.g., Ref. 82), but the 

dioptase spin lattice is neither low-dimensional, nor frustrated, hence its quantum behavior 

has a different origin. Thus, it is the low coordination number of the lattice that reduces the 

exchange energy (which stabilizes the ordered GS), and thus is solely responsible for the 

observed low-dimensional behavior. 

Dioptase is often called “green dioptase”, to distinguish it from the “black dioptase” 

Cu6Si6O18,14 which exhibits similar magnetic properties [274, 277]. The substitution of Si 

with Ge leads to the new compound Cu6Ge6O18 ·6H2O, isostructural to green dioptase [278]. 
Dehydration or chemical substitution of side groups is a promising route to tune the mag­

netism of dioptase toward more interesting phases. Besides the quantum critical point, 

discussed for the case of two AFM couplings [16], a strong Jd may lead to an exotic hyperk­

agome lattice of effective S = 1 spins [279]. This issue deserves further investigation. 

14Strictly speaking, “black dioptase” is not a mineral and therefore should not be called dioptase at all. 
However, this term is already deeply implanted in scientific literature (e.g. Refs. 274 and 277), which makes it 
at least worth mentioning. 
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Interestingly, while neither the dioptase crystal structure, nor its spin model look low-

dimensional, the essential physics is governed by strong quantum fluctuations, typical for 

low-dimensional magnets. The above considerations should stimulate further studies of 

dioptase-structure-like materials and the respective spin model. 

6.4 Summary 

The developed computational approach has been successfully applied to several cuprate 

materials exhibiting low-dimensional magnetic behavior. For all the systems, simulations of 

the DFT-based magnetic models accurately reproduce the available experimental data. 

Although standard parameterizations of the exchange and correlation potential (LDA 

and GGA) yield a wrong electronic ground state due to underestimation of the correlation 

effects, they provide an accurate description of kinetic processes (virtual electron hoppings). 

Adding the missing part of electronic on-site correlations (HUBBARD model) leads to a reliable 

quantitative magnetic model describing the leading AFM couplings. 

The FM part of the magnetic exchange can be evaluated using the DFT+U approach. 

For the compounds with decoupled magnetic CuO4 plaquettes, extensive comparisons 

between the simulated and the measured quantities suggest that the DFT+U method as 

implemented in FPLO (version 6 and later) yields generally accurate estimates for the leading 

exchange integrals using AMF DCC with Ud = 6.5 eV. However, in the case the edge- and/or 

corner-sharing connections of CuO4 plaquettes are present, DFT+U calculations can show a 

nontrivial dependence of the resulting Ji ’s on Ud and especially, the DCC scheme. 

Since experimental evaluation of small interchain or interplane couplings is at best 

nontrivial and challenging, DFT calculations seem to be a natural alternative to attack 

this problem. Originally designed to account for the leading exchange couplings, the 

computational method reveals surprisingly good numerical accuracy even for the couplings 

one or two orders of magnitude smaller than the leading energy scale. The studies of 

quasi-1D systems evidence that DFT can safely distinguish between small, but relevant, and 

practically absent couplings, providing a unique possibility to explore small interchain and 

interplane magnetic couplings. 
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Chapter 7 

Kagome lattice compounds 

7.1 Introduction 

ONSAGER’s exact solution of the ISING model on a square lattice published in 1944 [280] has 

spurred scientific activity in the field of model magnetism. Subsequent studies extended this 

approach to other spin lattice topologies. Not surprisingly, the highly symmetrical lattices 

with possibly simple topology were addressed first. The class of Archimedean lattices, that 

are comprised of regular polygons, perfectly matches these criteria (the square lattice itself 

is indeed an Archimedean lattice). 

Particularly simple lattices are formed by equivalent polygons of just one type: these 

are, besides the square lattice, the triangular and the honeycomb lattice. On the next level 

of complication, lattices comprising two types of polygons can be considered, such as the 

star lattice, composed of dodecagons and triangles; two lattices composed of triangles and 

squares as well as two lattices comprising regular triangles and hexagons. By virtue of 

a particularly simple topology, one of the latter two soon became a subject of theoretical 

investigation. Only after decades, it became gradually evident that this specific lattice 

exhibits the most exotic magnetic properties among the whole class of Archimedean lattices. 

The name “kagome” was introduced in 1951 by ITIRO SYÔZI1, who first addressed the 

issue of magnetic ordering of ISING spins in this geometry [282]. In his analysis, SYÔZI 

considered the FM as well as AFM coupling. For the latter case, he concluded that magnetic 

ordering should be suppressed. Two years later, a different method applied to the problem 

confirmed this conjecture [283]. 

The activity on the kagome model had been gradually dying out, until the first candi­

date materials were found in early 1970’s. These were minerals from the jarosite group 

(“jarosites”) with the formula RFe3(OH)6(SO4)2 [R = (NH4), Na or K] [284], exhibiting a 

non-collinear AFM GS state (e.g., Ref. 285). Later, it has been found that the substitution of 

S = 5/2 Fe3+ by S = 3/2 Cr3+ led to a different magnetic behavior caused by more pronounced 

1Ref. 281 reserves the idea to christen the lattice for KODI HUSIMI, the leader of the group in which ITIRO 

SYÔZI worked. 
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quantum fluctuations in the latter case [286]. 

The first system proposed to be a good realization of a S = 3/2 kagome HEISENBERG antifer­

romagnet was SrCr8Ga4O19 [287]. Followed by the experimental studies (e.g. magnetization 

[288, 289], µSR [290] and NMR [291, 292] measurements), the discovery of the material 

has revived interest to the kagome model itself. 

The central problems actively debated in the literature were the structure of the magnetic 

GS and the issue of magnetic ordering. Mean-field theory predicts the absence of long-range 

magnetic ordering [293]. On the classical level, the GS of the kagome HEISENBERG model 

is infinitely degenerate [294, 295]. This degeneracy can be lifted, at least partially, by 

thermal [296] or quantum [297] fluctuations. In particular, thermal fluctuations tend to 

select coplanar GSs, following the mechanism known as “order-by-disorder” [298]. 

On the kagome lattice geometry, two coplanar GSs with different propagation vectors 

can be realized: the kq = (0,0) (or shortly, q = 0) state for which the magnetic cell coincides 
J J J J 

with the unit cell, and the kq = (2 3π, 2 3π) (typically regarded as “ 3 × 3”) state with 

the magnetic cell three times larger than the unit cell [299]. Linear spin-wave theory 
J J 

and series expansions reveal a subtle interplay between q = 0 and 3× 3 phases in the 

presence of the second- and third-neighbor couplings [300]. In a recent study, L. MESSIO 

et al. systematically examined the classical HEISENBERG model on a kagome lattice, by taking 

second- and third-neighbor interactions into account [301]. Their variational approach 
J J 

delivers, in addition to the q = 0 and 3 × 3 phase, also three non-coplanar states: two 

cuboctahedral states and an octahedral state. These states are regular, i.e. they depend on 

the symmetries of the model and do not scale with the model parameters Ji. 

While the classical GS on the kagome lattice is an explored territory, the structure of 

the respective quantum GS is still far from being understood. At present, there is no doubt 

that the GS lacks LRMO, but its properties are actively debated. In particular, the series 

expansion studies [302, 303] as well as the recent multiscale entanglement renormalization 

ansatz (MERA) analysis [304] favor the valence bond crystal (VBC) magnetic GS, suggested 

also for the spin-1/2 frustrated square lattice [305] and the pyrochlore lattice [306]. The 

VBC GS is formed by long-range ordering of spin singlets and is characterized by broken 

translational symmetry and a finite gap in the excitation spectrum. 

Other studies propose the emergence of a spin liquid GS on the kagome lattice. However, 

there is still no consensus, whether this spin liquid is topological and has a gapped excitation 

spectrum [307] or it is gapless and critical (algebraic) [308].2 At present, state-of-the-art 

DMRG calculations are in favor of the former scenario [311]. A crucial present-day task is 

to ascertain, which of the two GSs (if any) is realized in real S = 1/2 kagome materials. 

ED of finite kagome lattices with up to N = 36 sites reveals a peculiar excitation spectrum 

with a large number of singlets filling the spin gap (in particular, 153 singlets for a N = 27 

2Topological spin liquids got their name from the specific type of ordering (topological), which emerges 
in systems featuring both a degenerate GS and a spin gap [309]. Critical spin liquids, also called algebraic, 
exhibit a power-law decay of the spin correlations, while the respective exponent is universal [310]. 
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sites lattice [83] and 210 singlets for a N = 36 sites lattice [312]) and no separated Pisa 

tower of quasi-degenerate joint states.3 Interestingly, static impurities induce sizable dimer-

dimer correlations and lower the number of low-lying singlets considerably [313]. Further 

peculiarities of the excitation spectrum are extensively discussed in Refs. 83, 314, and 165. 

Similar to the nature of the GS, the spin gap issue is still under active debate. Thus, the ex­

trapolation of ED results to the thermodynamic limit yields a very small, albeit nonzero spin 

gap, which amounts to ∼5% of the exchange coupling constant J1 [83], and zero order pa­

rameter. A mean-field decoupling of the effective Hamiltonian corroborates this result [315]. 
Alternative techniques, such as numerical contractor renormalization (CORE) [316], series 

expansions [302, 303] or MERA [304] do not provide a fully conclusive answer to the ques­

tion whether the spin gap survives in the thermodynamic limit. Recently, the comparison 

with ED-computed spectra for other lattices showing gapless behavior, and a careful analysis 

of the energy scales inside each Sz sector rendered the spin gap in the kagome model as an 

extrinsic property [165]. Experimental verification of this conjecture is still missing. 

The magnetization process of the kagome model has been addressed in several works [94, 

317–319]. Typical features are a plateau at 1/3 of the saturation magnetization and a steep 

slope of M(H) close to the saturation field Hsat = 3J1 kB g
−1µ−1. The structure of the plateau B 

state is discussed in Ref. 320. 

The thermodynamical behavior of the kagome model was investigated using ED on finite 

lattices up to N = 24 sites [321, 322], HTSE for χ(T ) [153] and Cmagn(T ) [153, 155] as well 

as the GREEN’s functions technique [323]. Since an experimental measurement of Cp(T ) and 

especially χ(T ) is a routine task, the applicability of the theoretical model can be challenged 

by a direct comparison between theory and experiment. 

The discovery of the first spin-1/2 kagome system herbertsmithite Cu3Zn(OH)6Cl2 [54] 
inspired unprecedented activity from both experimental (discussed in Sec. 7.2) and the­

oretical side. Since the basics of the kagome physics were already known, new studies 

aimed to find a consistent description for the experimentally observed features, such as the 

influence of anisotropic DM interactions [324, 325], non-magnetic impurities [325] as well 

as additional couplings beyond NNs [314]. Thus, at a sufficiently large DM coupling (>10 % 

of J1), the kagome model undergoes a quantum phase transition from the moment-free 

GS to the NÉEL phase [324], even in the presence of static impurities [325]. Besides, the 
J J 

second-neighbor coupling J2, tends to stabilize a 3× 3-type GS [314]. 

Herbertsmithite is the most familiar, albeit not unique candidate for the realization of 

the S = 1/2 kagome HEISENBERG model. Even prior to the discovery of herbertsmithite, an­

other mineral, volborthite Cu3[V2O7](OH)2 ·2H2O, has been suggested to imply the kagome 

physics, despite the monoclinic distortion of the magnetic layers [326]. An oxygen-free 

system, Rb2Cu3SnF12 contains non-ideal kagome-like magnetic layers of corner-sharing 

3This terms implies a quasilinear dependence between Sz and the GS energy in the respective Sz sector. 
See, e.g., Figs. 2.6(a), 2.9, and 2.11 in Ref. 94. 
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CuF4 squares [327, 328]. Two isostructural minerals—kapellasite Cu3Zn(OH)6Cl2 [329] 
and haydeeite Cu3Mg(OH)6Cl2 [330]—with the crystal structure closely resembling that 

of herbertsmithite, contain perfect kagome layers of S = 1/2. Another promising candi­

dates are the metal-organic system Cu(1,3-bdc) [331] and the Mg-counterpart of herbert­

smithite [332, 333]. Since the field of kagome physics is vibrant, new materials are expected 

to be synthesized within the next few years. 

Experimental investigation of the candidate S = 1/2 materials is very appealing, since it 

could resolve the remaining controversies regarding the magnetic properties of this geomet­

rically frustrated model. However, prior to comparisons between theory and experiments, 

the applicability of the kagome model should be addressed. In this Chapter, the microscopic 

approach is applied to explore the magnetic models of herbertsmithite Cu3Zn(OH)6Cl2 

(Sec. 7.2), kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2 (Sec. 7.3), as well as 

volborthite Cu3[V2O7](OH)2 ·2H2O (Sec. 7.4) on the microscopic level. These DFT-based 

studies disclose several relevant features beyond the simple kagome model, such as addi­

tional couplings that have not been considered so far. Subsequent models studies reveal 

the importance of these features with respect to the magnetic GS and the lowest-lying 

excitations. 

7.2 Herbertsmithite Cu3Zn(OH)6Cl2 

Herbertsmithite Cu3Zn(OH)6Cl2 was described as a new mineral species in 2004 [334]. 
Only one year later, the material was proposed to imply the spin liquid physics, since the 

temperature dependence of its magnetic susceptibility showed no sign of a magnetic ordering 

transition down to 2 K, despite the large θ = 314 K [335]. The measurements were carried 

out using the newly synthesized powder samples. 

The first report on the magnetism of herbertsmithite [335] was immediately followed 

by a number of studies, predominantly from the experimental side. In particular, the NN 

coupling J1 = 190 K [54] was estimated based on HTSE for the magnetic susceptibility [153]. 
One of the most difficult tasks was to distinguish between the extrinsic contribution of 

defects and impurities, and the intrinsic contribution of S = 1/2 kagome planes. Detailed 

magnetization [336], µSR [337], and NMR [338, 339] studies revealed the absence of 

LRMO at least down to 50 mK. Surprisingly, the temperature dependence of the magnetic 

susceptibility did not conform to the theoretical estimates for an ideal S = 1/2 kagome 

HEISENBERG antiferromagnet [322, 340]. To understand the origin of this discrepancy, 

additional experimental and theoretical studies were carried out. 

The ND study in Ref. 341 reported sizable Cu–Zn intersite disorder: about 6% of Cu 

positions within the kagome planes were claimed to be occupied by Zn, and consequently, 

about 18% of Zn positions between the kagome planes to be occupied by Cu. At the 

same time, the ESR study in Ref. 342 disclosed the presence of anisotropic DM couplings, 
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amounting to ∼0.08 of the NN coupling J1. From the theoretical side, the problems of the 

antisite Cu/Zn disorder and the DM anisotropy were in the focus of several ED studies. 

In particular, the |D|/J1 ratio in herbertsmithite was claimed to be close to the quantum 

critical point (|D|/J1 ∼ 0.1), separating a moment-free spin liquid and a NÉEL phase [324]. 
Intraplane non-magnetic (Zn) impurities were studied in Ref. 313. The main effect is 

dimerization, which develops at the magnetic sites in the vicinity of the non-magnetic 

impurity. The presence of DM couplings suppresses this tendency, but moderate values of 

|D|/J1 exhibit only a minor effect [325]. 

Synthesis of single crystal samples [343] and subsequent experiments considerably 

improved understanding of the involved magnetic properties of herbertsmithite. First, 

anomalous X-ray dispersion studies refuted the earlier conjecture of intersite disorder. 

Instead, it was found [344] that there are almost no Zn impurities within the kagome layers, 

but about 15 % of Zn atoms are replaced by Cu. Thus, the correct chemical formula for 

herbertsmithite is Cu3(Zn0.85Cu0.15)(OH)6Cl2. Subsequent µSR studies disclosed, in addition 

to sizable DM anisotropy, also the relevance of the anisotropic exchange: J x ,y H 1 [345].= Jz 
1 

Although it is very difficult to account for the exchange anisotropy, experimentally 

indicated confinement of defects to the interlayer position opens up new avenues for DFT-

based studies. In particular, it becomes computationally feasible to estimate the effect of 

a magnetic interlayer impurity on the local environment. This DFT-based study comprises 

two parts. First, a microscopic magnetic model is evaluated for the idealized structure of 

herbertsmithite, neglecting the Cu–Zn disorder completely. In the second part, the influence 

of a single interlayer impurity on the microscopic magnetic couplings is studied. Finally, 

the experimentally observed decoupling of the kagome planes and the interlayer magnetic 

impurities, is explained by the frustrated nature of the interlayer couplings. 

7.2.1 Crystal structure 

The crystal structure is trigonal rhombohedral (space group R3̄m) and features magnetic 

layers of corner-sharing CuO4 plaquettes (Fig. 7.1, left) and ZnO6 octahedra residing in the 

interlayer space (Fig. 7.1, right bottom). Magnetic Cu2+ atoms form regular kagome layers 

parallel to (111). The O atoms that bridge the neighboring CuO4 plaquettes, are bonded to 

H atoms, with the O–H bonds directed toward the Cl atoms (located in the interlayer space). 

The neighboring layers are rotated by 120◦ and shifted with respect to each other forming 

an ...–I–II–III–I–II–III–...-type stacking (Fig. 7.1, right top). 

CuO4 plaquettes in herbertsmithite are planar with the Cu–O bond length of 1.97 Å. 

The Cu–O–Cu angle between the neighboring plaquettes is 120◦, hinting at a sizable AFM 

exchange. 

132 



CHAPTER 7. KAGOME LATTICE COMPOUNDS
 

Figure 7.1: The trigonal rhombohedral crystal structure of herbertsmithite Cu3Zn(OH)6Cl2 com­
prises magnetic layers formed by Cu(OH)4 plaquettes and Cl atoms, as well as Zn(Mg)O6 octahedra 
located in the interlayer space. Left: a kagome layer. Right top: stacking of the three neighboring 
kagome layers (I, II, and III). Right bottom: buckling and connection of the neighboring layers. 

7.2.2 DFT calculations 

Modeling of the Cu-Zn structural disorder in herbertsmithite on the DFT level is a challenge, 

since there is no universal way to take this issue into account. However, keeping in mind 

that the effect of structural disorder should be minor and short-ranged (as evidenced by 

recent NMR studies on single crystals [346]), the idealized (fully ordered) structure of 

herbertsmithite seems to be an appropriate starting point. 

For the lattice constants and atomic coordinates, the data from Refs. 347 and 335, 

respectively, were used (see also Table A5). To cross-check the results, the structural model 

from Ref. 335 as well as two alternative sets of lattice constants were adopted from Refs. 343 

and 347. All four experimental data sets yield almost indistinguishable band dispersions. 

The internal atomic coordinates were defined using X-ray diffraction, thus the positions of 

light atoms are subject to careful verification. Therefore, the internal atomic coordinates of 

the H atoms were optimized by relaxation in LDA (the resulting coordinates are given in 

Table A5). Optimization in the GGA yields a marginally different structure (the difference in 

the O–H bond length is ∼0.01 Å). In the following, unless otherwise mentioned, the DFT 

calculations will be carried out using the LDA-optimized crystal structure. 

On the LDA level, the electronic structure of herbertsmithite does not feature any 

peculiarities beyond the standard cuprate scenario: the low-lying states of the valence band 

are dominated by Zn and O states, while the higher lying states are mainly of Cu, O and Cl 

character (Fig. 7.2, top). Typical for cuprates, the well-separated density at cF is formed by 

Cu and O states. This energy range comprises three bands (Fig. 7.2, bottom), in accord with 

three Cu atoms in a unit cell. 
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Prior to evaluation of relevant couplings, the accuracy of the band dispersions should be 

estimated. One of the key parameters affecting the band dispersions is the parameterization 

of the exchange and correlation potential. To evaluate this influence, non-magnetic calcula­

tions have been performed in LDA as well as in GGA. The resulting electronic structures are 

practically indistinguishable. In particular, the change in the width of the band complex at cF 

is about 0.01 eV (Fig. 7.2, top inset), corresponding to a relative difference below 1 %. The 

difference between LDA and GGA is negligibly small compared to other sources of numerical 

inaccuracies. 

Much more pronounced is the difference between the experimental and the LDA-

optimized crystal structure (Fig. 7.3). Since the experimental atomic coordinates lead 

to unusually short O–H bonds of 0.82 Å, more credit should be given to the optimized 

structure, with plausible O–H distances of 1.01 Å. 
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Figure 7.3: LDA band 
structures of herbert­
smithite Cu3Zn(OH)6Cl2 
calculated using the 
experimental (exp. str.) 
and the LDA-optimized 
crystal structure (opt. str.). 
Atomic coordinates for 
the both structures are 
presented in Table A5. 

Similar to the DFT-based studies described in Chapter 6, the WFs for Cu 3dx2− y2 or­
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bitals provide an excellent description to the three isolated bands at cF. Three relevant 

transfer integrals are found: the dominant NN coupling t1 = 163 meV, the interlayer cou­

pling t⊥ = 37 meV as well as the long-range coupling t = 23 meV within the kagome plane. 

Further couplings are smaller than 10 meV and can be neglected for the minimal model. 

Figure 7.4: Microscopic magnetic model for 
the idealized (no Cu-Zn disorder) structure 
of herbertsmithite Cu3Zn(OH)6Cl2. Three 
relevant couplings, the nearest-neighbor cou­
pling J1, the third-neighbor coupling J 
and the interlayer coupling J⊥ are shown. 
The CuO4 plaquettes are depicted as yellow 
squares. 

The relevance of t1 fully conforms to the experimental findings. Adopting a standard 

value of Ueff yields J1
AFM = 274 K, largely overestimating the experimental J1 = 190 K. This 

deviation points to a sizable FM contribution to the respective magnetic exchange J1. The 

relevance of the two additional couplings t and t⊥ is less trivial. Similar to t1, the t 

coupling is confined to the kagome planes, and can be regarded as a second-neighbor 

coupling with respect to t1 (Fig. 7.4). However, in terms of Cu–Cu distances within the 

kagome planes, this coupling is third-neighbor. In addition, there is another, nonequivalent 

third-neighbor coupling running through hexagonal voids of the kagome lattice, which 

corresponds to the same Cu–Cu distance. In herbertsmithite, this coupling is substantially 

smaller than t (in contrast, the related materials kapellasite Cu3Zn(OH)6Cl2 and haydeeite 

Cu3Mg(OH)6Cl2 feature a sizable coupling running through hexagonal voids, see Sec. 7.3). 

The interlayer coupling t⊥ leads to J⊥ 
AFM = 14 K. Although this coupling is substantially 

smaller than J1, it exceeds the upper estimate for a possible magnetic ordering temperature 

(∼ 50 mK) by several orders of magnitude. 

Numerical values for the leading exchange couplings are evaluated using the LSDA+U 

method. Here, the experimental J1 = 190 K gives an opportunity to adjust the DCC scheme 

and the Ud value, in order to get precise estimates for J and J⊥. In this way, the experimental 

J1 is reproduced for Ud = 7.0 eV in AMF [for the J1(Ud) dependence, see Fig. A5] and 

Ud = 9.0 eV in FLL. The values of Ud agree with the previous estimates (Chapter 6). 

The estimates for J and J⊥ are evaluated using the optimized values for Ud . As expected, 

the difference in t⊥ and t gets even more pronounced when resorting to the exchange 

integrals: DFT+U yields J⊥ = 6–7 K and a very small J of about 0.5–1 K. The applicability 
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of the NN kagome HEISENBERG model apparently depends on J⊥/J1 and J /J1. The DFT+U 

analysis for the fully ordered structure suggests that these ratios are as small as J⊥/J1 = 0.035 

and J /J1 = 0.005, and compared to the large DM coupling of about 0.08J1 [342], their 

effect on the magnetic GS should be of minor importance. 

After evaluation of the magnetic model for the fully ordered structure, the effect of 

interplane magnetic impurities should be considered. The major difficulty is to model 

a random distribution of impurities. In the strict sense, a random distribution of atoms 

violates periodic boundary conditions, thus standard DFT tools are not applicable. However, 

the experiments suggest that the magnetic impurities in herbertsmithite alter the local 

environment, only [346], and do not give rise to any long-range effects. Profiting from the 

well-established localized nature of the impurity effects, a randomly distributed impurity can 

be modeled using fully ordered structures. Such approach is exploited in the present study. 

In the simplest interplane magnetic impurity model, all Zn atoms can be replaced by 

Cu, leading to the hypothetical Zn-free herbertsmithite Cu3Cu(OH)6Cl2.4 This configuration 

conforms to the initial trigonal symmetry, thus the minimal magnetic supercell can be 

used. For the first step, the impact on the additional Cu atom should be studied on the 

LDA level. It would be natural to compare the band dispersions for the fully ordered and 

the Zn-free herbertsmithite. However, the different number of relevant bands (three and 

five,5 respectively), and an additional renormalization of the FERMI level impede a direct 

comparison. Therefore, it is more instructive to compare the transfer integrals, evaluated 

using the WF procedure. In this way, the t1 coupling is found to be almost unaffected by 

the additional Cu atom. The t and t⊥ couplings are 15% and 35% reduced in comparison 

to the fully ordered Cu3Zn(OH)6Cl2. Due to the presence of two relevant orbitals for an 

impurity Cu atom, there are two different hopping terms (one for each orbital). Thus, the 

timp coupling between intraplane and impurity electrons amounts to 97 meV and 56 meV for 

the 3d3z2−r2 and 3dx2− y2 orbitals of the impurity atom, respectively. For the intraplane spins, 

only the 3dx2− y2 electrons enter the minimal low-energy model. Apart from the additional 

timp term, no further couplings exceed 15 meV. Therefore, the analysis can be restricted to 

only four leading terms: t1, t , t⊥ and timp. 

From the analysis of the idealized structure, the couplings J1, J , and J⊥ were estimated. 

In the next step, the exchange coupling Jimp is evaluated within the LSDA+U approximation 

by stabilizing magnetic configurations with parallel and antiparallel mutual alignment 

intraplane (kagome) and interplane (impurity) spins, and comparing their total energies. In 

this way, Jimp = −16 K and −56 K are found in AMF and FLL, respectively. 

Besides promoting the additional coupling Jimp, the presence of an interplane magnetic 

impurity can alter the leading intraplane coupling J1. In order to estimate this effect, the 

4Although the chemical composition of the Zn-free herbertsmithite is the same as in the mineral botallackite 
Cu2(OH)3Cl [348], their crystal structures are different. 

5Five bands originate from the 3dx2− y2 orbitals of the three intraplane Cu atoms, as well as the 3dx2− y2 and 
3d3z2−r2 orbitals of the impurity Cu atoms. 
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initial trigonal symmetry is lowered to the triclinic, while keeping the metrics of the unit cell 

intact. The LSDA+U calculations for such supercells suggest that the magnetic interplane 

impurity gives rise to an appreciable enhancement of J1: this exchange coupling amounts 

to 254 K in AMF and 231 K in FLL. In addition to this effect, the AMF calculations done for 

the triclinic supercell yield Jimp = −27 K, which contrasts with Jimp = −16 K, obtained for 

the rhombohedral cell.6 The origin of this discrepancy can be revealed by comparing the 

occupation matrices. Thus, the trigonal symmetry imposes the degeneracy of 3dx2− y2 and 

3d3z2−r2 orbitals, leading to equal occupation numbers. In contrast, the triclinic symmetry 

lifts this degeneracy, hence the occupation numbers can be different. Indeed, the occupation 

for the 3dx2− y2 orbital is about factor of two larger than that of the 3d3z2−r2 orbital. 

The different occupations of the 3d3z2−r2 and 3dx2− y2 orbitals even in the geometrically 

regular octahedral coordination hint at possible relevance of the CF effects. Interestingly, 

this issue has not been discussed in the literature so far, and therefore deserves an additional 

commentary. In Sec. 2.1.1, the CF effect was presented as one of the leading driving forces 

for the magnetism in cuprates. In fact, among the large number of cuprate crystal structures, 

there are still no examples of a regular octahedral coordination for the magnetic Cu2+ ions. 

Non-occurrence of regular CuO6 octahedra in real materials naturally puts forward the idea 

that the replacement of Zn by Cu in herbertsmithite should be accompanied by a distortion 

of the local environment, in order to lift the orbital degeneracy. 

The orbital degeneracy can be lifted by stabilizing one of the two orbital GSs, 3dx2− y2 or 

3d3z2−r2 . The calculational approach provides a unique possibility to model both scenarios 

by setting an initial orbital occupation matrix and relaxing the internal atomic coordinates 

within DFT+U . Not surprisingly, if an electron hole is initially localized in the 3dx2− y2 orbital, 

the “4+2” structural distortion (four short bonds and two long Cu–O bonds) is stabilized. 

In contrast, using the 3d3z2−r2 solution as a starting point stabilizes the opposite “2+4” 

distortion (two short bonds and four long Cu–O bonds). Both scenarios are schematically 

depicted in Fig. 7.5 (top panel). 

The resulting LSDA+U total energies are presented in Table 7.1. For the “|↓↑↑〉 + 

|imp: 3d3z2−r2 〉” configurations (the first ket denotes the intraplane spin arrangement, the 

second ket stands for the magnetically active orbital of the impurity atom), the convergence 

could not be reached due to the reversal of orbital occupations: the impurity spin changes 

its orbital character from the initially set 3d3z2−r2 to 3dx2− y2 . For all other configurations, 

the forces were minimized down to 0.01 eV/Å. In agreement with the expectations, the 

orientation of the impurity spin has a minor influence on the GS energy. The influence of 

the intraplane spin configuration, ferromagnetic |↑↑↑〉 or ferrimagnetic |↓↑↑〉, is substantially 

larger. 

The energy difference between the |imp: 3dx2− y2 〉 and |imp: 3d3z2−r2 〉 configurations 

(∼350 K) is on the same scale as the difference between |↓↑↑〉 and |↑↑↑〉 (∼400 K). The 

6The FLL values bear a small (2 K) difference, which does not exceed the error bars. 
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Figure 7.5: Two possible types of a structural distortion in the hypothetical Zn-free herbertsmithite 
Cu3Cu(OH)6Cl2. Left panel: formation of a CuO4 plaquette (the “4+2” scenario). Right panel: 
formation of two short Cu–O bonds (the “2+4” scenario). Bottom panel: the structural distortions 

' ' ' lead to nonequivalent exchange couplings: J1 and J1, Jimp and Jimp, J⊥ and J⊥. 
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Table 7.1: Total energy (in K) of fictitious 
Zn-free herbertsmithite Cu3Cu(OH)6Cl2 as 
a function of the orbital of the impurity 
spins (|imp: 3d3z2−r2 〉 or |imp: 3d3z2−r2 〉), 
the spin of the interplane Cu atom (up 
|↑imp〉 or down |↓imp〉), and the arrange­
ment of the intraplane Cu spins (ferromag­

|↑↑↑〉: 
|↑imp〉 
|↓imp〉 

|imp: 3dx2− y2 〉 

416.9 

449.8 

|imp: 3d3z2−r2 〉 

744.7 

801.1 

netic |↑↑↑〉 or ferrimagnetic |↓↑↑〉). The GS 
is at zero energy. For the non-converged en­
ergies (“–”), see text. The LSDA+U calcula­
tions were performed for a low-symmetry 
supercell, using Ud = 7.0 eV within the 

|↓↑↑〉: 
|↑imp〉 
|↓imp〉 

19.6 

0 

– 

– 

AMF DCC. 

present LSDA+U results (Table 7.1) suggest the | imp: 3dx2− y2 〉 configuration is energetically 

favorable, thus the impurity leads to a “4+2” distortion of the CuimpO6 octahedra. However, 

the 400 K difference between the two types of distortion is far too small for a robust 

conclusion. It should be kept in mind that this difference can be further altered by (i) the 

parameterization of the exchange and correlation potential, (ii) the type of DCC, and (iii) 

the value of Ud . Therefore, the “2+4” distortion can not be excluded. In the following, both 

types of distortions are considered. 

Moreover, the similar energy scales of orbital and spin degrees of freedom7 render the 

possibility of their decoupling questionable. Instead, the scenario of sizable spin-orbital 

coupling looks more plausible, while the physics might be accounted for by the KUGEL– 

KHOMSKII Hamiltonian [55], rather than the HEISENBERG approach. Therefore, the scenarios 

discussed below might be substantially altered by considering the orbital excitations. This 

issue deserves an additional analysis, beyond the scope of this study. 

Quite remarkably, even an infinitesimal structural distortion of either type, “4+2” or 

“2+4”, has far-reaching effects on the magnetic properties, leading to a way more involved 

model with several non-equivalent J1 and Jimp. First, the shift of the O atomic position affects 

the Cu–O–Cu angles and leads to the two non-equivalent NN couplings J1 and J1 
' (Fig. 7.5, 

bottom panel). Second, localization of the impurity spin in a particular orbital gives rise 

to non-equivalence of the impurity couplings, Jimp and J ' Finally, also the interplane imp. 

couplings J⊥ and J⊥
' become non-equivalent (Fig. 7.5). 

Parameterization of such a complicated magnetic model requires evaluation of large 

magnetic supercells. On the other hand, the energy scale of the relevant couplings (except 

for J1) is close to the limits of resolution attainable by the present-day DFT codes. To keep 
' 'the problem solvable, the leading couplings J1, J1, Jimp, and Jimp are evaluated, while J⊥ and 

J⊥
' are assumed to be equal. Such an assumption allows to evaluate the four couplings J1, 

J1
' , J⊥, and J⊥

' using a computationally feasible supercell. 

7The similarity of the two energy scales in herbertsmithite is quite unusual. For instance, in the spin-liquid 
candidate volborthite Cu3[V2O7](OH)2 ·2H2O, the orbital excitation energies largely exceed the energy scale of 
magnetic excitations (Sec. 7.4). 
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The results of extensive LSDA+U calculations are summarized in Table. 7.2. Surpris­

ingly, for both types of structural distortion (“4+2” or “2+4”), the averaged NN coupling 

Jimp ≡ 2/3J1 + 1/3J1 
' is very close to 190 K. However, there is a substantial difference between 

the NN couplings J1 and J1
' , which amounts to surprisingly large 20–40% of the averaged 

coupling J1. Therefore, magnetic impurities, albeit confined to interplane sites, considerably 

alter the local exchange couplings in the kagome planes. 

Table 7.2: Leading exchange integrals (in K) in the Zn-free herbertsmithite Cu3Cu(OH)6Cl2. The 
' ' average couplings are evaluated as J1 = 2/3J1 + 1/3J1 and Jimp = 2/3Jimp + 1/3Jimp. Interplane (imp) 

spins are characterized by their orbital state (3dx2− y2 or 3d3z2−r2). The LSDA+U calculations were 
carried out for Ud = 7.0 eV using AMF DCC. 

' 'J1 J1 J1 Jimp Jimp Jimp 

|imp: 3dx2− y2 〉 150 275 192 −23 17 −10 
|imp: 3d3z2−r2 〉 213 135 187 −12 −33 −19 

The magnetic coupling between the intraplane and impurity spins strongly depends on 

the type of structural distortion. Thus, for |imp: 3dx2− y2 〉, Jimp and J ' are similar, but have imp 

opposite signs. Quite unusual, the edge-sharing connections of CuO4 and CuimpO4 plaquettes 

give rise to an AFM exchange. This unexpected result can be explained by a rather large 

value of the respective Cu–O–Cu angle (∼ 99.4◦), which suffices to compensate the large 

HUND’s coupling (FM) on the O sites by AFM superexchange. In contrast, |imp: 3d3z2−r2 〉 
leads to exclusively FM couplings between the kagome and impurity spins. 

Different local-probe experiments generally agree that the kagome layers and inter-

plane magnetic impurities in herbertsmithite are largely decoupled. This experimental fact 

seemingly contrasts with the large values of Jimp (orders of magnitude larger than possible 

long-range magnetic ordering temperature), evaluated using the LSDA+U calculations. In 

the next section, the origin of this discrepancy is addressed by evaluation of spin correlations 

in the magnetic GS. 

7.2.3 Simulations 

For the idealized structure of herbertsmithite Cu3Zn(OH)6Cl2, DFT calculations yield a 

relatively simple model with only two relevant exchange couplings J1 and J⊥, with J1 J⊥. 

However, the replacement of nonmagnetic Zn by magnetic Cu atoms leads to rather compli­
' ' 'cated microscopic model comprising J1, J1, Jimp, Jimp, J⊥, and J . The model is frustrated, ⊥

thus numerically efficient QMC techniques can not be used. In addition, the 3D nature of this 

model impedes using DMRG as well. Therefore, among the standard simulation methods, 

only ED can be used. 

ED can not account for the thermodynamical limit due to small sizes of feasible finite 

lattices (Sec. 5.2). Especially for a 3D magnetic model, this limitation drastically reduces the 

140 



CHAPTER 7. KAGOME LATTICE COMPOUNDS
 

Jimp = 0 |imp: 3dx2−y2〉 |imp: 3d3z2−r2〉
Figure 7.6: NN spin correlations in the GS of Zn-free herbertsmithite Cu3Cu(OH)6Cl2 (ED on 

N = 26 sites finite lattices). The width of the line corresponds to the size of the respective spin 
correlation, the red and blue color correspond to a negative and a positive correlation, respectively. 
Marginal correlations |〈Si · S j〉| < 0.02 are not shown. In each panel, only one kagome plane is 
shown. The impurity (interlayer) spins are shown with the filled (above the reference plane) and 
the dashed-lined (below the reference plane) circles. Insets: spin correlations between the kagome 
(small empty circles) and impurity (filled circles) spins, as well as interlayer correlations (the spins 
of the neighboring kagome layer are denoted by large empty circles). 

applicability of the method. A possible way to sidestep the problem is to use small clusters 

instead of finite lattices. For instance, the seven-spin clusters depicted in the bottom panel 

of Fig. 7.5, are seemingly suits for simulations of a local impurity effect. However, isolated 

triangles are a rather poor approximation for the kagome lattice. Therefore, it is more 

appropriate to consider a small finite lattice of N = 26 spins: two kagome layers featuring 12 

spins each, and two interlayer impurity spins. In this configuration, 1/4 of all spin triangles 

are coupled to an interlayer spins. 

First, the finite lattice is challenged by simulation of the pure kagome model with 

J1, only (Fig. 7.6, left panel). In this way, the NN diagonal spin correlations 〈S0
zS1

z〉 are 

evaluated. The two-double layer N = 26 finite lattice (featuring two kagome layers of N = 12 

sites) yields 〈S0
zS1

z〉 = −0.07562, very close to the state-of-the-art N = 36 sites result for 

the kagome lattice 〈SzSz〉 = −0.07306 [349]. However, for the correlations between the 0 1

second neighbors are poorly described: the N = 26 double-layer lattice yields sizable FM 

correlation 〈S0
zS2

z〉 = 0.02958, while the N = 36 sites kagome lattice yields negligibly small 

FM correlation of 0.00386 [349]. Thus, the N = 26 finite lattice provides a reasonable 

description for the NN correlations, only. 

After establishing the applicability range of the N = 26 finite lattice, the models from 

Table 7.2 are simulated. The NN correlations for the |imp: 3dx2− y2 〉 and |imp: 3d3z2−r2 〉 cases 

are shown in Fig. 7.6, middle and right panel, respectively. Both solutions exhibit rather 

involved correlations, with no clear physical picture, such as, for instance, dimerization 

around the impurity sites. 

To account for the origin of such involved physical picture, the simulations were repeated 

for a simpler model without the J⊥ coupling. As expected, the interplane correlations are 
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substantially altered, since for J⊥ = 0, the interplane coupling is not frustrated. However, 

the impact of J⊥ on the intraplane spin correlations is marginal (below 2%), hence they can 

not give rise to the complicated patterns in the middle and right panel of Fig. 7.6. 

7.2.4 Discussion 

The cumulative experimental evidence for the kagome physics in herbertsmithite is fully 

supported by the band structure calculations: the NN exchange J1 is clearly dominant, 

and the next strongest intraplane coupling is about two orders of magnitude smaller. The 

coupling between the layers is approximately J⊥ 7 K, which exceeds the possible LRMO 

temperature by several orders of magnitude. Thus, the absence of LRMO in herbertsmithite 

is the pure effect of frustration. 

To account for the magnetic impurity effect, a microscopic magnetic modeling has been 

carried out for a hypothetical Zn-free herbertsmithite Cu3Cu(OH)6Cl2. In this hypothetical 

structure, the CuimpO6 polyhedra are regular. The substitution of Zn by Cu does not affect 

the geometry, thus leaving the regularity intact. However, regular CuimpO6 octahedra would 

feature orbital degeneracy, and at the same time, have only one hole in the 3d shell, hence 

they are expected to be unstable against distortion of the local environment. In fact, such 

distortion takes place in all known cuprate materials. This argument definitely favors the 

distorted scenario, and consequently, gives rise to a complicated microscopic magnetic model 

with several non-equivalent intra- and interplane couplings, as well as the couplings between 

the kagome and impurity spins. However, the simulations of such microscopic models (for 

both types of distortion, “4+2” or “2+4”) suggest the emergence of rather complicated 

spin correlations, with a barely perceptible tendency for dimerization. In general, the DFT 

calculations and simulations suggests a sizable impact of the magnetic impurities onto the 

intraplane magnetism. 

In contrast, such tendencies are not observed in the experiments, rendering the distorted 

scenario to a certain extent implausible. In the alternative scenario, the inheritance of the 

orbital degeneracy leads to a sizable FM coupling between the kagome and impurity spins 

Jimp −35±20 K. The simulations evidence that for the relevant range 0.1J1 ≤ |Jimp| ≤ 0.3J1, 

the correlations between the intraplane and impurity spins are still marginal. This conforms 

to the experimentally observed decoupling of the magnetic subsystems. In addition, recent 

unpublished ESR experiments suggest a pronounced reduction of the g-factor for the 

impurity atoms. This indirectly supports the orbital degeneracy, which would give rise to an 

unquenched orbital moment. 

In summary, there is no experimental evidence for a sizable alteration of the kagome 

lattice model. Still, future experiments should focus on the presence of the impurity-induced 

structural distortion, and in the case such distortion takes place, its type (“4+2” or “2+4”) 

should be determined. Moreover, more precise structural data, especially the H position, are 

highly desirable. 
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7.3	 Kapellasite Cu3Zn(OH)6Cl2 and haydeeite 

Cu3Mg(OH)6Cl2 

Kapellasite (a metastable polymorph of herbertsmithite), as well as its isostructural Mg­

counterpart haydeeite, comprise ideal (non-distorted) kagome lattices of magnetic Cu2+ 

atoms, thus they are regarded as spin liquid candidate materials. 

Interestingly, both materials were first discovered as minerals [329, 330]. However, 

small size and insufficient quality of natural crystals impede experimental studies of these 

interesting systems. Therefore, the results of this DFT-based study are mostly a theoretical 

prediction which is subject to a future experimental confirmation. Several months after the 

present DFT study has been published [350], the first successful synthesis of powder samples 

of kapellasite was reported [351]. Unfortunately, the measured bulk magnetic susceptibility 

contains too large impurity and/or defect contributions for the conclusive comparison with 

the DFT-based predictions. Very recently, powder samples of haydeeite were obtained, and 

the crystal structures of the both materials were refined using ND [352]. 

Well-characterized samples open up new vistas for investigation of kapellasite and 

haydeeite. In particular, NMR [353] and ND studies for kapellasite are already underway. 

Therefore, a deeper experimental insight into the magnetism of these systems can be 

expected in the nearest future. 

7.3.1	 Crystal structure 

The trigonal (space group P3̄m1) crystal structure of kapellasite [329] and haydeeite [330] 
features magnetic layers formed by CuO4 plaquettes and Zn(Mg)O6 octahedra (Fig. 7.7, left), 

and the interlayer space is filled with Cl and H atoms. The neighboring CuO4 plaquettes 

share corners and form a regular kagome layer of magnetic ions. Magnetic layers are 

considerably buckled (Fig. 7.7, right top), leading to the Cu–O–Cu angle of 105.9◦ (105.0◦) 

for kapellasite (haydeeite). 

Owing to the identical chemical composition and the presence of similar structural units, 

it is instructive to compare the crystal structures of kapellasite and herbertsmithite. Thus, the 

rhombohedral unit cell of herbertsmithite (space group R3̄m) contrasts with the primitive 

trigonal cell of kapellasite/haydeeite (space group P3̄m). As a consequence, the stacking of 

the kagome layers is realized in a different way: the neighboring layers in herbertsmithite are 

shifted and rotated with respect to each other (Fig. 7.1, top right panel), while the stacking 

of the kagome layers in kapellasite is not accompanied by a parallel shift or rotation. Second, 

despite the corner-sharing of CuO4 plaquettes in both compounds, the magnetic layers in 

kapellasite are less buckled than in herbertsmithite (Fig. 7.8), which results in a strongly 

reduced value of the Cu–O–Cu angle (∼106◦ in kapellasite versus ∼120◦ in herbertsmithite), 

hinting at a smaller AFM coupling. 
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Figure 7.7: Crystal
 
structure of kapellasite 
Cu3Zn(OH)6Cl2 [329] 
and haydeeite 
Cu3Mg(OH)6Cl2 [330]. 
CuO4 plaquettes and 
non-magnetic Zn(Mg)O6 
octahedra are shown 
yellow and blue, respec­
tively. Cl atoms are green 
spheres, O–H bonds are 
depicted by blue sticks. 
Left: a kagome layer. 
Right top: buckling of 
a kagome layer. Right 
bottom: superexchange 
paths for the leading 
couplings. 

As a result of stronger buckling in kapellasite, the octahedral voids become small enough 

to accommodate Zn atoms with a concomitant formation of six Zn–O bonds (in herbert­

smithite, the respective Zn–O distances would be too large to form a chemical bond). 

Consequently, there is no space left for the Cl atoms within the magnetic layers. Therefore, 

Cl atoms are squeezed to the interlayer space. Thus, on the simplest level, the transition 

between herbertsmithite and kapellasite can be described as the rotation and the shift of the 

neighboring magnetic layers, accompanied by the exchange of Zn and Cl atoms. 

2.18 Å2.09 Å

3.53 Å
2.59 Å

herbertsmithite kapellasite

Figure 7.8: Thickness of the magnetic kagome layers (a measure of buckling) and the interlayer sep­
aration in the crystal structures of herbertsmithite Cu3Zn(OH)6Cl2 (left) kapellasite Cu3Zn(OH)6Cl2 
(right). Interlayer space is filled by Zn atoms (large blue spheres) in herbertsmithite and by Cl 
atoms (small green spheres) in kapellasite. 

The next remark concerns the interlayer separation, which is considerably larger for 

kapellasite (Fig. 7.8). The DFT studies (Sec. 7.2) reveal a sizable interlayer coupling for 

herbertsmithite, since largely covalent O–Zn–O junctions strongly favor the superexchange. 

In contrast, essentially ionic H–Cl bonds impede the superexchange along these paths 
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in kapellasite and haydeeite. These empirical considerations are confirmed by the DFT 

calculations, described below. 

Similar to herbertsmithite, the atomic coordinates for H atoms should be carefully 

analyzed. Since the precise structural data for the two materials were published only very 

recently [352], the DFT study was based on the previous structural studies, where the 

experimental H position was either missing (haydeeite, Ref. 330), or led to the short O–H 

bond lengths of 0.78 Å [329]. Compared to a typical O–H bond length (1 ± 0.05 Å), this 

value looks largely underestimated. Keeping in mind experimental problems with the precise 

determination of the H position (Sec. 3.1.1), it has been relaxed within the LDA.8 The 

optimized (equilibrium) positions yield the O–H distance very close to 1 Å for both systems. 

In addition, the O–H distances were found to play a crucial role for the magnetism, while 

the Cu–O–H angle appeared to be less important (Sec. 7.3.2). 

At present, the optimized H positions can be compared to the experimental ones, precisely 

defined using ND on deuterated samples [352]. The resulting O–D distances amount to 

1 Å and 0.98 Å for kapellasite and haydeeite, respectively; in excellent agreement with the 

DFT-based estimates. 

7.3.2 DFT calculations 

For both compounds, LDA yields similar valence bands with a total width of 6–7 eV, domi­

nated by Cu and O states (Fig. 7.9). The only pronounced difference is the presence of Zn 

states (for kapellasite) at the lower bound of the valence band, while no appreciable density 

of Mg states is found in haydeeite. This difference originates from a more covalent character 

of Zn–O bonds compared to essentially ionic Mg–O bonds. 
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Figure 7.9: DOS for kapellasite Cu3Zn(OH)6Cl2 (left) and haydeeite Cu3Mg(OH)6Cl2 (right). The 
Fermi level cF is at zero energy. Insets: the (dp)σ band complexes at cF. 

The states relevant for magnetism are confined to a close vicinity of cF. To evaluate 

8The experimental H position reported for kapellasite served as a staring point for the relaxation of both 
kapellasite and haydeeite. 
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the orbital characters of these states, the local coordinate system of a CuO4 plaquette is 

considered. Projecting the DOS onto a set of local orbitals yields a dominant contribution 

of Cu 3dx2− y2 orbitals (Fig. 7.10, upper panel), as for most cuprates. The analysis of the 

relevant ligand states is more tricky. Thus, in addition to the expected O 2pσ states, 2pπ and 

2pz show sizable contribution to O states around cF (Fig. 7.10, lower panel). This effect is 

caused by the peculiar buckling of magnetic layers and the corner-sharing connections of the 

neighboring CuO4 plaquettes (Fig. 7.9). As a result, O 2pσ states in the coordinate system of 

a certain plaquette turn into a combination of different O 2p states in the local system of 

the neighboring plaquette, i.e. the local coordinate systems of the neighboring plaquettes 

are non-orthogonal. Therefore, the seemingly large O 2pπ contribution (Fig. 7.10) does not 

invalidate the effective one-orbital approach (similar to dioptase, Sec. 6.3), typically used 

for cuprate systems. 
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Figure 7.10: Orbital-projected DOS 
of Cu 3d and O 2p orbitals in kapella­
site Cu3Zn(OH)6Cl2. Left panel: the 
valence band. Right band: (dp)σ 

states are dominant in the vicinity of 
cF. The sizable contribution of O 2pz 
states is explained in the text. 

Next, the LDA band structure is considered. Here, the well separated DOS at cF is formed 

by a three-band complex (Fig. 7.11). Since the number of bands is the same as the number 

of Cu atoms in a unit cell, there is no necessity to consider other Cu orbitals. 

The two band structures bear strong resemblance to each other, hinting at similar 

coupling regimes. Yet, the bandwidth of the three-band complex is slightly larger for 

kapellasite (0.86 eV versus 0.73 eV in haydeeite). Since the bandwidth is directly related to 

the magnitude of transfer integrals ti, the leading couplings in kapellasite are expected to 

be slightly enhanced compared to haydeeite. 

To evaluate the relevant couplings, an effective one-orbital TB model is parameterized 

in order to get the best fit to the LDA bands. A steepest descent procedure for the transfer 

integrals, corresponding to the ten smallest Cu–Cu distances, yields consistent solutions that 

are in excellent agreement with the LDA bands (Fig. 7.11). Since only four of ten couplings 

exceed 10 meV (∼10−15 % of the leading coupling), the stability of the leading terms was 

checked by a subsequent reduction of the number of parameters in the model. These results 

suggest that the leading ti terms bear less than 10% uncertainty. 
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Figure 7.11: Band 
structure of kapella­
site Cu3Zn(OH)6Cl2 
(top) and haydeeite 
Cu3Mg(OH)6Cl2 (bottom). 
LDA bands as well as 
tight-binding (TB) fits are 
shown. 
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The four relevant terms are the NN coupling t1, the two nonequivalent second-neighbor 

couplings t2 and td2, as well as the third-neighbor coupling td running along the diagonals 

of voids on a kagome lattice (Fig. 7.7, right bottom; Table 7.3, third column). In order to 

include the missing part of electronic correlations, the TB model is mapped onto a HUBBARD 

model and subsequently onto a HEISENBERG model (Sec. 4.2), yielding the AFM part of 

the exchange (Table 7.3, fourth column). The values of the total exchange (Table 7.3, last 

column) are derived from the LSDA+U calculations. Since for the both systems, J2 and J2d 

are significantly smaller than the leading terms J1 and Jd, the following analysis is confined 

to the latter two exchange couplings. 

Table 7.3: Leading couplings in kapel­
lasite Cu3Zn(OH)6Cl2 and haydeeite 
Cu3Mg(OH)6Cl2: Cu–Cu distances (in Å), path 

kapellasite Cu3Zn(OH)6Cl2 

Cu–Cu ti JAFM 
i JFM 

i Ji 

transfer integrals ti (in meV), the AFM JAFM 
i 

and the FM JFM 
i contributions to the total X1 3.151 87 78 −48 30 

exchange Ji (in K). X2 5.458 −10 1 − <1 

X2d 6.302 20 4 −3 <1 

Xd 6.302 49 25 −15 10 

haydeeite Cu3Mg(OH)6Cl2 

path Cu–Cu ti JAFM 
i JFM 

i Ji 

X1 3.137 73 55 −46 9 

X2 5.433 −9 1 −1 <1 

X2d 6.273 22 5 −4 <1 

Xd 6.273 42 18 −9 9 
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The NN exchange coupling J1 in kapellasite and, especially, haydeeite is substantially 

smaller than the constituent AFM and FM contributions, JAFM and |JFM|, respectively, dis­1 1 

closing a competition between the superexchange and the HUND’s rule exchange. Thus, 

even a small alteration of the Cu–O–Cu can affect the resulting J1. At the same time, only a 

marginal effect could be expected for Jd due to the long-range nature of this coupling. The 

physically relevant quantity α is crucially dependent on fine details of the crystal structure, 

such as Cu–O–Cu bond angles and O–H distances. Thus, to define the exact location of 

kapellasite and haydeeite in the phase diagram of the J1–Jd model, precise structural data 

are necessary. 

In contrast, the J1–Jd model (Fig. 7.12) itself is a robust result. On the structural level, 

the relevance of Jd is can be ascribed to the parallel arrangement of the respective plaquettes, 

which favors the superexchange. On the other hand, the largely non-coplanar arrangement 

of the second-neighbor plaquettes explains the absence of any appreciable J2. 

Figure 7.12: Magnetic J1–Jd model on a 
kagome lattice. J1 and Jd couplings are shown 
with bold solid and thin dashed lines, respec­
tively. The first eight coordination spheres are 
depicted by concentric circles. 

7.3.3 Spin model and simulations 

The resulting microscopic magnetic model is depicted in Fig. 7.12. To evaluate the impact 

of the additional diagonal coupling Jd onto the magnetic GS and the excitation spectrum, 

the classical GS of the J1–Jd model is addressed. Since the essential physics of the model 

is governed by the ratio of the two leading couplings, the ratio α ≡ Jd/J1 is introduced to 

simplify the following discussion. The numerical simulations were performed by J. RICHTER 

at the University of Magdeburg. 

The classical GS for α = 0 (the pure kagome model) case is known to be highly degener­

ate [295, 296, 354]. The additional diagonal coupling Jd drastically reduces this degeneracy 
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and selects non-coplanar GSs with 12 magnetic sublattices. These GSs are characterized by 

a perfect antiparallel spin alignment along the chains formed by diagonal couplings Jd and 

by a 120◦ spin arrangement on each triangle formed by the NN J1 couplings (Fig. 7.13). As 

a result, every two spin-sublattices are antiparallel to each other and these two sublattices 

are perpendicular to one other group of two antiparallel sublattices. Noteworthy, such 

GSs are selected by an infinitesimal α. In a very recent study, such states were derived in 

a systematic way by considering classical GSs of a modified kagome model (extended by 

taking the second- and third-neighbor couplings into account) [301]. 

Figure 7.13: The classical 12-sublattice state of the AFM J1–Jd model in the kagome geometry. 
Arrows denote the orientation of the spins vectors. The neighboring spins form 120◦ angles, the 
spins coupled by Jd are antiparallel. Yellow circles correspond to six in-plane spins (longer arrows), 
blue and green circles are out-of-plane spins (shorter arrows). The color notation is explained in 
the right panel. 

The low spin value of S = 1/2 and the 2D nature of the spin model hint at the relevance 

of quantum fluctuations and call for an investigation of the quantum model. For this 

purpose, the GS spin correlations and the lowest-lying excitations were computed using 

LANCZOS diagonalization (Sec. 5.2) on a finite lattice of N = 36 sites with periodic boundary 

conditions. This finite lattice fits to the magnetic structure of the classical GS. 

The results for the calculated spin correlations 〈S0 · SR〉 are presented in the right panel 

of Fig. 7.14. For comparison, the spin correlations for the pure kagome model (α = 0) 

are shown. Obviously, the spin correlations in the quantum GS are drastically altered by 

Jd. While for α = 0 the decay of the spin correlation function is extremely rapid, a well 

pronounced short-range order is found for α = 0.36 and α = 1.0, corresponding to the spin 

models of kapellasite and haydeeite, respectively. The short-range order corresponds to the 

classical magnetic structure. This leads to the conclusion that even in the quantum model 

the GS has a non-coplanar magnetic structure giving rise to enhanced chiral correlations. 

Another important difference from the pure kagome system concerns the low-temperature 

thermodynamics. For α = 0, the spin gap is filled by 210 singlets [83, 312] leading to 

different low-temperature behavior of the Cp (power-law in T) and χ (exponential decay). 

By contrast, for α = 1 (α = 0.36) there are no (only a few) singlets within the spin gap. 
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Figure 7.14: Left panel: the spin model for kapellasite Cu3Zn(OH)6Cl2 and haydeeite 
Cu3Mg(OH)6Cl2 with the leading J1 (bold solid lines) and Jd (dashed lines) couplings. Con­
centric circles denote coordination spheres. Right panel: spin correlations on a N = 36 sites finite 
lattice using periodic boundary conditions. Note that for R = 3 and R = 6, two nonequivalent spin 
separations exist. The lines are guides for the eyes and correspond to the path depicted in the left 
panel. The strong correlations for one of the sets at R = 6 originate from finite-size effects. 

Therefore, no essential difference between the low-temperature behavior of Cp and χ is 

expected. 

7.3.4 Discussion 

Geometrical considerations A common feature of all cuprates bearing an ideal kagome 

arrangement of Cu2+ ions and corner-sharing of the magnetic CuO4 plaquettes is a strong 

buckling of the magnetic layers. This issue is related to both geometry and crystal chemistry, 

and deserves a detailed explanation. Thus, a typical polyhedron of Cu2+ is a flat CuO4 

plaquette with the 3dx2− y2 half-filled (magnetically active) orbital. Corner-sharing CuO4 

plaquettes can be indeed arranged in planar fashion, with Cu2+ atoms forming a kagome 

lattice. This arrangement can be described as an Archimedean lattice of O atoms, composed 

of regular squares (with a Cu atom in the center), triangles (empty) and hexagons (empty). 

In a real crystal structure, hexagons have to be filled by cations M to keep the charge balance. 

However, there are no cations known that would bear a planar 6-fold coordination. On 

the other hand, the octahedral coordination, topologically identical to a planar hexagon, is 

typical for many cations, for instance Zn2+ and Mg2+. Moreover, the M–O distances on the 

planar Archimedean lattice have to match the O–O distances in a CuO4 plaquette (∼2.8 Å), 

whereas Zn–O and Mg–O bonds are considerably shorter (about 2.1 Å). Therefore, buckling 

of the kagome layer is a unique solution in order (i) to restore the octahedral coordination 

of Zn/Mg cations and (ii) shorten Zn/Mg–O distances to allow for a formation of a chemical 

bond. Noteworthy, this buckling does not break the three-fold rotational symmetry, essential 
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for an ideal kagome layer. 

How to control the buckling or even keep the planar Archimedean lattice intact and 

consequently, retain a perfect planar kagome layer? As discussed above, filling the planar 

O hexagons with cations is a prerequisite. Although there are no cations with such planar 

coordination, real structures are always 3D. Therefore, any coordination with six ligand 

atoms lying in a plane would match the requirements. Obviously, this is possible only if 

the total coordination number is large enough (for instance, twelve). In fact, such large 

coordination numbers are common for large cations forming essentially ionic bonds with 

oxygen. The next problem to solve is the large negative charge which such a structure would 

have. The compensation can be achieved within a layered structure, where the magnetic 

kagome planes would alternate with positively charged layers. Although synthesis of a 

material featuring such structure is at best challenging, the magnetism of the resulting 

compounds could be extremely interesting, since large Cu–O–Cu angles (compared to the 

buckled geometry) are expected to enhance the NN superexchange. This could be helpful to 

prove (or disprove) the theoretical prediction of a small (∼5% of J1) spin gap in the S = 1/2 

kagome HEISENBERG model. 

Magnetism DFT calculations evidence that the magnetic properties of kapellasite and 

haydeeite can be effectively described within a J1–Jd model on a kagome lattice. Since this 

model has been neither reported for any known systems, nor studied as a purely geometrical 

model, it is worth to discuss its properties in more detail. Presuming the AFM nature of the 

both couplings, the limiting cases of the J1–Jd model are the pure kagome model (α = 0) and 

the model of decoupled chains (α = ∞). Although the GSs for these two limits are completely 

different, both of them lack LRMO. In contrast, for finite values of α corresponding to the 

cases of kapellasite (α = 0.36) and haydeeite (α = 1), sizable spin correlations evidence a 

magnetic order which is at least short-range. To investigate the onset of this order, spin 

correlations are calculated for various values of α. The results shown in Fig. 7.15 indicate a 

drastic enhancement of correlations in the range α = 0.1–0.3. 

Although the largest finite lattice size (N = 36) is too small and its shape is considerably 

anisotropic for an accurate study of the decoupled chains limit (large α), even moderate 

values of α show chain-like features of the GS. Thus, as follows from Fig. 7.14 and especially 

Fig. 7.15, the magnetic correlations along the chains built by Jd couplings (in Fig. 7.14 

that is for R = 3 and 8, and additionally R = “+” in Fig. 7.15) are strongest, indicating 

that the low-energy excitations might be S = 1/2 spinons causing an effectively 1D low-

temperature physics. Interestingly, such effect has been discussed for other 2D models: the 

crossed-chain model [355], the anisotropic triangular lattice [356] as well as the anisotropic 

SHASTRY–SUTHERLAND lattice [357]. 
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7.4 Volborthite Cu3[V2O7](OH)2 ·2H2O 

The mineral volborthite Cu3[V2O7](OH)2 ·2H2O was found in the Ural mountains (Russia) in 

1838 and named after the Russian-German paleontologist ALEXANDER VON VOLBORTH [358]. 
Initially, it was described as a vanadic acid containing copper oxide, subsequent studies 

revealed the presence of hydroxyl groups and crystal water. 

The crystal structure of volborthite was repeatedly investigated in the last 40 years, 

thus several controversial structural models are presently available. The inaccuracies of the 

experimental crystal structure may have crucial impact on the DFT-based magnetic models, 

hence a substantial part of the computational study aimed to obtain a reliable structural 

input. 

Although the material is known for more than 150 years, the magnetism of volborthite 

remained unexplored till 2001. Then, the authors of Ref. 326 carried out an extensive exper­

imental study of the magnetic properties of volborthite, in particular, magnetic susceptibility 

(up to 400 K), specific heat (up to 70 K), low-field magnetization (up to 5 T), and 51V NMR 

experiments, including the KNIGHT shift and 1/T1 measurements. Based on (i) a good fit of 

χ(T) using HTSE for the pure kagome model [153], (ii) the lack of long-range magnetic 

ordering down to 1.8 K despite the large value of the WEISS temperature θ = 115 K, and (iii) 

seemingly small monoclinic distortion of the kagome layers, they concluded that volborthite 

might be a realization of an S = 1/2 HEISENBERG kagome antiferromagnet. 

For about 8 years, the magnetic properties of volborthite were studied mainly by res­

onance techniques. In particular, X-band and high-field (up to 16 T) ESR measurements 

revealed a strong decay of the ESR signal at ∼5 K, which is likely a fingerprint of a short-

range order at lower temperatures [359]. µSR studies, carried out on the pure and Zn­
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substituted (diluted) samples of volborthite, showed slow spin fluctuations persistent down 

to 50 mK [360]. Later on, 51V NMR experiments revealed the existence of a frozen magnetic 

state with the frozen moment on Cu atoms amounting to 0.4 µB [361]. The authors of 
J J 

Ref. 361 suggested the short-range order similar to be similar to the 3× 3 state of the 

pure kagome model [354]. 

The development of a new synthesis procedure helped to improve the quality of volbor­

thite samples, that were subsequently used for the new 51V NMR measurements focusing 

on the field-induced transitions [362]. The NMR experiments revealed a rather involved 

phase diagram with an anomalous low-field phase exhibiting slow dynamics and showing 

two distinct energy scales, as well as the high-field phase, with the transition between the 

two phases at ∼5 T [362]. 

The high-field behavior has been further investigated by magnetization in pulsed fields 

up to 55 T [363]. The improved sample quality allowed to resolve peculiar transitions at 4, 

25 and 46 T, called magnetization steps [363]. The presence of these successive transitions 

indicates an even more complicated phase diagram. Very recent high-field measurements up 

to 70 T reveal the diminishing slope of the magnetization between 60 and 70 T pointing to 

the onset of a magnetization plateau [364]. 

Polarized and inelastic neutron scattering experiments revealed a flat band of excita­

tions [365]. In addition, fingerprints of the short-range magnetic ordering are visible even 

at high temperatures of ∼15 K. In a very recent Cp(T ) measurement, a clear kink has been 

observed at 1 K, indicative of the ordering transition [366]. Based on these measurements, 

the GS has been characterized as gapless and less ordered than the high-field phase (>5 T). 

To sum up the experimental findings, the magnetic properties of volborthite turned 

out to be very complicated. Not surprisingly, these controversies attracted attention of 

theoretical physicists, resulting in several attempts to find a consistent description for the 

magnetism of volborthite from the theoretical side. Since the kagome layers in volborthite 

are slightly distorted and the experimentally observed features are definitely not accounted 

for by the pure kagome model, the theoretical studies focused on the GS [367–370] and 

thermodynamic properties [160] of the anisotropic kagome model, which comprises two 

nonequivalent nearest-neighbor interactions. These studies contributed significantly to the 

understanding of the model itself, but attempts to reach consistency with the experimental 

data by varying the degree of anisotropy were not successful so far. Perhaps, the most 

striking disagreement is the deviation of the magnetic susceptibility from the theoretically 

predicted behavior even at rather high temperatures of ∼100 K [160]. 

In this DFT-based study, the microscopic magnetic model for volborthite is evaluated 

and the origin of the puzzling disagreement between the experiments and the previously 

suggested theoretical models is resolved. In particular, it is shown that the seemingly 

small distortion of the kagome lattice is an incorrect starting point for modeling. Instead, 

subtle structural features lead to a completely different frustrated magnetic model with 
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three exchange couplings Jic, J1, and J2, whereby J1 is FM. Subsequent simulations of this 

microscopic model evidence an improved agreement with the experimental data. 

7.4.1 Crystal structure 

The monoclinic (space group C2/m) crystal structure of volborthite has been investigated 

by several XRD studies [371–373] as well as a combined XRD and ND study [374]. 

Table 7.4 summarizes these studies and reports the structural parameters relevant for 

the magnetism. Large scattering of these parameters can be explained by a poor quality of 

the single crystals used for the experimental studies. In addition, the chemical composition 

of volborthite hampers structural studies due to the considerable content of H and V atoms, 

which are poor scatterers of X-rays and neutrons, respectively (for details, see Sec. 3.1.1 

and 3.1.2). However, despite sizable deviations of individual bond lengths and angles, the 

layered structural motive (Fig. 7.16) is the same in all the experimental studies. 

The structure of volborthite comprises magnetic layers formed by two (three in the model 

of Ref. 373) independent Cu atoms with essentially different local environment: Cu(1) has 

two short and four long Cu(1)–O bonds, while Cu(2) bears a typical Cu2+ coordination 

with four short and two long Cu(2)–O bonds (see Table 7.4). In Fig. 7.16, the crystal 

structure is depicted in terms of short-bonded polyhedra, i.e. the dumbbells for Cu(1) and 

the plaquettes for Cu(2). These polyhedra form edge-sharing chains of Cu(2)O4 plaquettes, 

coupled by Cu(1)O2 dumbbells (Fig. 7.16, right). Already on this purely descriptive level, 

these magnetic polyhedra are hardly reminiscent of a kagome layer. 

Figure 7.16: Monoclinic 
crystal structure of volbor­
thite Cu3[V2O7](OH)2 ·2H2O 
(left). The structure con­
tains magnetic layers 
(right) formed by chains of 
edge-sharing Cu(2)O4H2 
plaquettes, connected by 
Cu(1)(OH)2 dumbbells. The 
interlayer space is filled with 
pyrovanadate V2O7 groups 
and water molecules (left). 

A reliable structural input is a prerequisite for microscopic modeling based on DFT 

calculations. Since even a small change of Cu–O–Cu angle can lead to drastic changes in 

the magnetic properties. After a careful consideration of the available structural data sets, 

the structural model based on the joint XRD and ND from Ref. 374 has been chosen, since 

such combination improves the reliability of the resulting data. However, the number of 

observed reflections (340 in the X-ray and 102 in the ND study [374]) is not sufficient for 
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fully conclusive results. Therefore, a structural optimization relaxing the atomic coordinates 

and minimizing the forces (for details, see Sec. 7.4.2), has been carried out. To evaluate 

the influence of the different structural models, the calculations are performed for the 

experimental as well as for the optimized structure. 

Table 7.4: Selected 
bond lengths and 
angles from differ­
ent structural data 
sets for volborthite. 
In Ref. 371, H positions 
have not been reported. 
Ref. 374 provides two 
data sets, based on 

[371] [372] 
structural model (Ref.) 

[374] 
XRD ND 

[373] this study, 

optimized 

2.046 1.945 

Cu(1)–O distances, Å 

1.926 1.905 1.914 1.912 

2.084 2.172 2.165 2.158 2.000/2.369 2.143 

XRD and ND studies. 
Ref. 373 implies a 
different structural 
model, which results in 
a symmetry reduction 
and thus increased 

2.032 

2.048 

2.295 

1.922 

2.031 

2.413 

Cu(2)–O distances, Å 

1.913 1.900 1.927/1.942 

2.052 2.048 2.044/2.058 

2.438 2.379 2.454/2.322 

1.907 

1.991 

2.423 

number of nonequiv­
alent bonds. The last 
column corresponds to 
the optimized structure 
(see Sec. 7.4.2). 

91.49 

92.38 

Cu(2)–O–Cu(2) angles (intrachain), ◦ 

92.43 91.37 91.40 93.59/92.25 

99.47 100.30 101.00 101.22/97.90 

Cu(1)–O–Cu(2) angle(s) (interchain), ◦ 

95.06 

100.72 

95.54 103.24 104.30 105.57 102.17/100.53 105.06 

O–H distance(s), Å 

− 1.008 0.886 0.921 0.871/1.179 1.029 

7.4.2 DFT calculations 

The valence band of volborthite is formed predominantly by Cu and O states, with a minor 

admixture of V states (Fig. 7.17, top). Unlike kapellasite and haydeeite (Fig. 7.9), the DOS of 

volborthite lacks a separated density peak at cF. The kk-resolved picture of the energy region 

corresponding to the magnetic excitations yields an empty, a half-filled and a filled band, 

in agreement with three Cu atoms per cell (Fig. 7.17, bottom). However, three additional 

bands in the vicinity of cF hint at possible orbital mixing and call for a careful evaluation of 

the orbital states. 

To evaluate the relevant orbitals, the DOS is projected onto local orbitals of the two 

structurally independent Cu atoms, Cu(1) and Cu(2). The resulting orbital-resolved DOS is 

shown in Fig. 7.18. The 3dx2− y2 and 3d3z2−r2 orbitals exhibit sizable energy overlap, while 

other 3d states lie at lower energies for the both Cu atoms. The LDA yields an essentially 

different filling of the orbitals: for Cu(1) the 3d3z2−r2 is close to half-filling and the 3dx2− y2 
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Figure 7.17: Top: to­
tal and atom-resolved 
DOS for volborthite 
Cu3[V2O7](OH)2·2H2O. 
Bottom: LDA band structure 
and the Wannier functions fit 
for an effective two-orbital 
model. 

orbital is almost filled (Fig. 7.18, left), while for Cu(2) it is the other way round (Fig. 7.18, 

right). 

The closer proximity to half-filling is still insufficient to judge whether the respective 

orbital is magnetically active or not. Thus, in the LDA picture for CuSb2O6, the 3dx2− y2 

orbital is closer to half-filling. However, if the 3dx2− y2 orbitals were magnetically active, the 

magnetism of CuSb2O6 would be essentially 2D, in sharp contrast to the experimentally 

observed 1D behavior [375]. The reason for this failure of the LDA is the underestimation of 

strong correlations intrinsic for the 3d9 electronic configuration (Sec. 2.1). A typical solution 

to the problem is switching to the LSDA+U approximation that remedies this drawback. 

In particular, for CuSb2O6, LSDA+U yields the correct 1D magnetism with the 3d3z2−r2 

magnetically active orbital [376]. 

To evaluate the GS orbitals for volborthite, the approach previously used for CuSb2O6 [376], 
is applied. Thus, the solutions comprising different orbital occupations are compared with 

respect to their total energies, in order to evaluate the GS configuration. Since only 3dx2− y2 

and 3d3z2−r2 orbitals contribute to the states in the vicinity of cF (Fig. 7.18), the analysis is 

restricted to these two orbitals. Two independent Cu atoms give rise to four states in the 

resulting model (Fig. 7.19). The LSDA+U calculations using the AMF DCC with Ud = 6 eV 

and the FM spin arrangement yield an orbitally-ordered GS comprising Cu(1) 3d3z2−r2 and 

Cu(2) 3dx2− y2 orbitals, which follows the LDA result. 

Next, the stability of this solution is addressed. The energy separation (orbital gap) 

between the orbital GS and the first excited orbital state exceeds 0.6 eV (Fig. 7.19) or 

∼7000 K, which is roughly two orders of magnitude larger than the leading couplings. 
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Figure 7.18: Orbital-resolved DOS in the LDA for Cu(1) and Cu(2) atoms in volborthite 
Cu3[V2O7](OH)2 ·2H2O. Insets: distortion of the local environment of Cu(1) (left) and Cu(2) 
(right). 

Figure 7.19: Energy separation be­
tween the orbital GS and excited 
states, as yielded by LSDA+U calcula­
tions (AMF, Ud = 5 eV, FM spin align­
ment). The orbitals were plotted using 
Orbital Viewer [377]. 
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Such a large energy separation, in sharp contrast with herbertsmithite (Sec. 7.2), evidences 

that orbital and spin degrees of freedom are decoupled and can be analyzed separately. 

To cross-check the results, additional calculations are performed for the FLL DCC using 

Ud = 8 eV for the FM as well as for the AFM spin arrangements. The difference between 

the AMF and the FLL results amounts to 5%. As expected for the different energy scales, 

the orbital gap is not affected by spin arrangements (< 1% difference between the FM and 

AFM configurations). Therefore, the orbital order of Cu(1) 3d3z2−r2 and Cu(2) 3dx2− y2 is 

well established for the whole relevant temperature range. 

The relevant couplings are evaluated within a minimal three-orbital model (one orbital 

per Cu site) comprising Cu(1) 3d3z2−r2 and Cu(2) 3dx2− y2 states, only. Unfortunately, the 

overlapping orbital contributions impede an accurate fit to the LDA bands, hence it is 

reasonable to extend the model by including the lower-lying Cu(1) 3dx2− y2 and Cu(2) 

3d3z2−r2 states explicitly. Such an extension leads to a six-orbital TB model, which was 

solved using the WANNIER functions technique (Sec. 4.2.3). The perfect fit to the LDA bands 

(Fig. 7.17, bottom) justifies this solution. 

The TB model contains hoppings between six [two for Cu(1) and four for Cu(2)] different 

orbitals for the three Cu atoms in the unit cell. However, only three of the six orbitals are 

magnetically active. Therefore, the following analysis is confined to the three-orbital sector 

describing to the hoppings between the GS orbitals Cu(1) 3d3z2−r2 and Cu(2) 3dx2−y2 . Here, 

the leading terms are the NN couplings t1 connecting Cu(2) atoms and tic running between 

Cu(1) and Cu(2) (Fig. 7.20). These NN terms correspond to the t and t ' couplings in the 

anisotropic kagome model [367–370]. Quite unexpectedly, one of the second-neighbor 

couplings t2 (Fig. 7.20) is also sizable. Further couplings are smaller than 30 meV (20 % of 

the leading coupling tic) and can be neglected in the minimal model. 

As discussed in Sec. 7.4.1, insufficient sample quality and the specific chemical com­

position of volborthite may give rise to sizable uncertainties for the atomic coordinates 

(especially, for H atoms). The rather high values of forces, calculated in the LDA, corroborate 

this concern. To minimize the forces, an optimization of the crystal structure is performed 

within LDA. The optimized structure inherits all major structural peculiarities of volborthite 

and, in the first place, preserves the essentially different local arrangement of Cu(1) and 

Cu(2) atoms (Table 7.4, last column). Still, the changes in the Cu–O–Cu angles and the O–H 

distance alter the magnetism. Since the optimized structure yields 0.8 eV lower total energy 

(per cell) than the experimental one, more credit should be given to the optimized structure. 

In order to evaluate the influence of the structural model, the couplings are calculated 

for the both structures using LDA as well as GGA. The results are summarized in Table 7.5. 

The main trend clearly visible in the data is the increased value of t1 for the optimized 

structure, while the values of tic and t2 are almost unaffected by the structural model. In 

addition, the LDA and GGA results practically coincide (Table 7.5). It is important to note 

that this coincidence is specific to volborthite and should not be generalized even for closely 
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Jic

J1

J2

a

b

Figure 7.20: The microscopic magnetic model for volborthite Cu3[V2O7](OH)2 ·2H2O. Left: the 
magnetically active orbitals and the leading couplings. Cu atoms are depicted as orange circles. The 
orbitals were plotted using Orbital Viewer [377]. Right: the structural unit (see also Fig. 7.16) 
for which the magnetic model in the left panel is drawn. 

Table 7.5: Transfer 
experimental [374] optimized (Table A7)integrals ti (in meV) path
 

and AFM exchange LDA GGA LDA GGA
 
(Fig. 7.20)

integrals JAFM (in K) JAFM JAFM JAFM JAFM
i ti ti ti tii i i i

for the leading cou­
plings in volborthite X ic 156 251 156 251 155 248 157 254 
Cu3[V2O7](OH)2 ·2H2O X1 91 85 93 89 117 141 119 146 
for the experimental 

X2 59 36 57 33 64 42 62 42and the optimized
 
crystal structure.
 

related systems (β-Cu2V2O7 is an instructive counterexample [265]). 

To account for the correlation effects, the transfer integrals tic, t1 and t2 are mapped 

onto a HUBBARD model with the effective COULOMB repulsion Ueff = 4.5 eV. This way, the 

AFM contributions for the leading exchange interactions can be estimated (Table 7.20). 

The energy scale set by the leading exchange coupling Jic
AFM 250 K largely exceeds the 

experimental θ 115 K. This discrepancy originates from the minimal character of the 

effective six-orbital model, which does not account for the HUND’s coupling on ligand O 

atoms, being the major source of FM exchange in cuprates (Sec 4.2.7). For volborthite, 

sizable FM contributions to the NN couplings Jic, and especially J1 (due to the edge-sharing 

of the neighboring plaquettes) can be expected. 

The values of the total exchange, containing the AFM and FM contributions, are eval­

uated based on LSDA+U calculations for various spin arrangements within the orbital 
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GS, which comprises the Cu(1) 3d3z2−r2 and the Cu(2) 3dx2− y2 magnetic orbitals. Due to 

the aforementioned uncertainties for the atomic coordinates in the experimental crystal 

structure as well as the orbitally-ordered GS, the evaluation of the leading couplings in 

volborthite is a nontrivial task. First, the resulting values of exchange integrals depend 

on the structural model, which can been traced even on the LDA level by comparing the 

respective values of Ji 
AFM (Table. 7.5). Second, the total exchange integrals depend on the Ud 

value used in the LSDA+U scheme. Last but not the least, the LSDA+U calculations evidence 

strong dependence of the total exchange integrals on the DCC scheme. Depending on all 

these parameters, J1 = −80 ± 10 K, J2 = 35 ± 15 K and Jic = 100 ± 60 K are evaluated for the 

experimental structure. The calculations of the optimized structure yield J1 = −65 ± 15 K, 

J2 = 45 ± 15 K and Jic = 100 ± 60 K. The ratios of the leading couplings Jic/|J1| and J2/|J1|
are graphically summarized in Fig. 7.21. 

Figure 7.21: LSDA+U exchange integrals for 
volborthite Cu3[V2O7](OH)2 ·2H2O as a func­
tion of the structural model (opt or exp), the 
LSDA+U DCC scheme (AMF or FLL) and Ud 
(min Ud , max Ud ) on the phase diagram of the 
J1–J2–Jic model. The white and gray fields cor­
respond to the singlet and the ferrimagnetic 
phases, respectively. The red- and blue-shaded 
areas depict possible values of exchange cou­
plings for the both structural models. The ED 
results yield the best agreement for Jic/|J1| = 2, 
J2/|J1| = 1.1, depicted by a encircled cross. 

The substantially FM nature of J1, in accord with the small values of the respective Cu–O– 

Cu angles (Table 7.4), and the relatively small uncertainties of its strength disregarding the 

parameters used give strong evidence that the pure kagome model is totally inappropriate 

for volborthite. The anisotropic kagome model hardly remedies the situation, since the NN 

couplings—an FM J1 and an AFM Jic —do not compete with each other, thus the model is 

not frustrated. Indeed, the GS of a system with an FM J1 and an AFM Jic is ferrimagnetic, 

with an FM arrangement of spins in the J1–J2 chains and antiparallel arrangement of spins 

between the chains (dangling spins). Since the number of intrachain spins is two times 

larger than the number of dangling spins, the total magnetic moment of the GS amounts 

to one-third of the saturation magnetization. Such GS is in striking contrast with the 

experiments, unequivocally evidencing a moment-free GS [326]. Therefore, the anisotropic 

kagome model also does not account for the magnetism of volborthite. 

The microscopic insight evidences that the appropriate model to describe the magnetic 

properties of volborthite is the J1–J2–Jic model with a FM J1. In this model, frustration is 

governed by the second-neighbor exchange J2, which competes with both J1 and Jic. The 

properties of this model will be discussed in the next section (Sec. 7.4.3). 

Localization of volborthite in the phase diagram of the J1–J2–Jic model is rather chal­
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lenging. As can be seen from the large color-shaded fields in Fig. 7.21, the results of the 

LSDA+U calculations do not provide a fully conclusive answer. Therefore, additional and 

complementary methods have to be used (Sec. 7.4.3). Still, the results of LSDA+U calcula­

tions allow to strongly delimit the relevant region in the phase space of the J1–J2–Jic model 

(red- and blue-shaded area in Fig. 7.21). First, J1 is FM disregarding the parameters used 

for both structural models. Next, the LSDA+U results render Jic as the leading coupling 

in volborthite. However, the ratios Jic/J1 and J2/J1, crucial for the magnetism, can not be 

determined precisely enough. Instead, two general trends can be established. First, the 

optimized structure has an enhanced J2/|J1| ratio compared to the experimental structure. 

Second, FLL yields considerably smaller Jic and somewhat larger values for J2 than AMF. 

Still, for a fully conclusive quantitative analysis, precise experimental structural input is 

highly desirable. 

7.4.3 Ground state and thermodynamics of the J1 –J2 –Jic model 

For this discussion, the signs for the leading couplings adopted from the DFT calculations 

(Sec. 7.4.2), in particular, the AFM Jic and J2 as well as the FM J1. First, the limiting cases of 

this model are discussed. Thus, for J2 = 0 the model is non-frustrated and the classical GS is 

ferrimagnetic, with the moment equal to 1/3 of the saturation value. In the case of Jic = 0, 

the model is reduced to a frustrated HEISENBERG chain in an effective magnetic field induced 

by the dangling spins. Interestingly, a similar model (but with AFM J1) has been discussed 

with regard to volborthite [378]. To discuss the intermediate situations, it is convenient to 

introduce the ratios Jic/|J1| and J2/|J1|. 

Phase diagram DFT calculations yield 0.5 ≤ Jic/|J1| ≤ 3.5 and 0.25 ≤ J2/|J1| ≤ 1.25, 

corresponding to the color-shaded regions in Fig. 7.21. Following the strategy employed 

for kapellasite and haydeeite (Sec. 7.3.3), the classical model is analyzed and afterwards 

quantum fluctuations are introduced by calculating the spectra of finite lattices. Since the 

exact solution for a 2D classical J1–J2–Jic model is at best nontrivial, the model is simplified 

by considering the zig-zag chains running along b in volborthite. In these zig-zag chains, 

Jic plays the role of NN coupling, J1 is the second-neighbor coupling and J2 is the fourth-

neighbor coupling. Presuming that the GS of this 1D model is the same as for an isolated 

chain, two states are readily obtained: a ferrimagnetic (collinear) GS and a spiral state, with 

the phase transition between the two states given by J class, 1D = 0.25 |J1| + 0.125 Jic.2 

The LSDA+U estimates for J2 are higher than this critical value, disregarding the 

parameters used. Therefore, all LSDA+U solutions correspond to the classical spiral GS. 

Such GS has no net magnetic moment, in accord with the experiments [379]. On the next 

level of complication, a more realistic 2D classical model on a finite lattice of N = 36 spins is 

considered using periodic boundary conditions [379]. The simulations were performed by 

J. RICHTER at the University of Magdeburg. The boundary effects and the interpenetration of 
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the zig-zag chains modify the expression for the phase transition and extend the stability 

range for the ferrimagnetic phase [379]: 

J class |J1| Jic 
2 = + . (7.1)

2.9 6.0

Finally, the quantum model on the same lattice is investigated. Quantum fluctuations 

further stabilize the ferrimagnetic collinear state, yielding [379]: 

Jquant |J1| Jic 
2 = + . (7.2)

3.3 5.0

The stability ranges of the ferrimagnetic as well as the spiral phases set by Eq. 7.2 are 

depicted in Fig. 7.21 with gray and white regions, respectively. The LSDA+U solutions 

for the experimental structure (the blue-shaded region in Fig. 7.21) largely fall into the 

region of the ferrimagnetic phase. In contrast, the solutions for the optimized structure (the 

red-shaded region in Fig. 7.21) lie either in a close vicinity to the phase boundary or in the 

region corresponding to the spiral phase. Since the ferrimagnetic solutions contrast with the 

experiments [326], in the following only the spiral phase above the phase boundary given 

by Eq. 7.2, is analyzed. 

Magnetic ground state The structure of the GS is generally probed by spin correlations. 

The correlation functions for volborthite are presented in Fig. 7.22. Discussing the results 

is more convenient in terms of the J1–J2 chains, corresponding to the edge-sharing chains 

of Cu(2)O4 plaquettes (Fig. 7.16), and the dangling spins of Cu(1). Thus, the correlations 

between the J1–J2 chains (Fig. 7.22, top left) exhibit a rapid decay reminiscent of the pure 

kagome HEISENBERG antiferromagnet. In contrast, the correlations along the J1–J2 chains 

(Fig. 7.22, bottom right) are much stronger, and exhibit no clear signature of decay. In 

fact, these intrachain correlations fit to a spiral state with a pitch angle very close to the 

classical model. Hence, the simulations reveal well-pronounced intrachain spiral correlations 

together with weaker interchain correlations. It is important to note that these statements 

are restricted to short-range correlations. 

Since correlations along the chains are strongest, one could argue that the model exhibits 

an effectively 1D low-temperature physics as has been discussed previously for the 2D models 

such the J1–Jd model for kapellasite and haydeeite as well as other models mentioned in 

Sec. 7.3.3. Further studies of the model should focus on this issue. 

Excitation spectrum The experimental investigation of the magnetic GS of volborthite is 

still far from being settled. Instead, thermal behavior of the magnetic susceptibility and the 

response in a magnetic field are rather well studied, and therefore can be a crucial test for 

the applicability of the J1–J2–Jic model to volborthite. Thus, the respective properties are 

simulated and compared to the experimental M(H) [363, 364] and χ(T ) [364] data. 
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Figure 7.22: GS spin cor­
relations for volborthite 
Cu3[V2O7](OH)2 ·2H2O. 
For the exchange integrals, 
the solution = 2,Jic/|J1|
J2/|J1| = 1.1 depicted by 
the cross in Fig. 7.21, is 
used. The spin correlations 
between the J1–J2 chains 
decay rapidly (top), while 
the correlations along the 
chains are strong and consid­
erably deviate from the pure 
kagome model. 
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First, adding the magnetic field term to the HEISENBERG Hamiltonian yields the M ∗ (h) 
dependence. For the boundary of the ferrimagnetic and the spiral GSs (Eq. 7.2), a wide 
1/3-magnetization plateau is found, which starts at zero field H1/3 = 0. However, enhancement 

of J2 and lowering |J1| and Jic, according to the limits set by the DFT calculations, leads 

to a significant increase of H1/3 and to a drastic diminishing of the plateau width. Close to 

the DFT-boundary (Jic/|J1| = 2, J2/|J1| = 1.1, Jic = 100 K), H1/3 = 22 T (Fig. 7.23, left), still 

underestimating the tentative experimental H1/3 60 T. 

This deviation originates from the minimalistic character of the model and sizable finite 

size effects. Nevertheless, a slightly modified ratio J2/|J1| = 1.6 yields H1/3 = 55 T (Fig. 7.23, 

left) in excellent agreement with the experiment [364]. It should be mentioned that the 

nature of spin correlations in the 1/3-magnetization plateau phase is substantially different 

compared to the pure kagome model [320]. Unfortunately, small magnetization jumps 

seen experimentally [363] can not be resolved with present lattice sizes and might be even 

related to anisotropic exchange, beyond the HEISENBERG model. 

Finally, the finite-temperature properties are addressed by calculating the temperature 

dependence of magnetic susceptibility χ ∗ (T ∗ ) using two different lattices9 of N = 24 spins. 

The simulations were carried out by P. SINDZINGRE at the PIERRE and MARIE CURIE university 

(Paris). It is possible to obtain a good fit down to 50 K (Fig. 7.23, right), while the resulting 

g = 2.16 and Jic = 100.5 K are in excellent agreement with ESR experiments [359] and the 

estimates from DFT. 

9The lattices are shown in Appendix, Fig. A7. 
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7.4. Volborthite Cu3[V2O7](OH)2 ·2H2O 
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Figure 7.23: Top: fits to the experimental χ(T ) [364] for volborthite Cu3[V2O7](OH)2 ·2H2O. 
The finite lattices, used for the calculation, are shown in Appendix (Fig. A7). The solution of the 
J1–J2–Jic model yields a significantly improved description down to 50 K from the pure kagome 
model (J1 = Jic) (bold line). Bottom: magnetization curves (N = 36 sites) for different solutions of 
the J1–J2–Jic model in comparison to the pure kagome model. 
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Chapter 8 

Summary and outlook 

The principal goal of this study was to establish a reliable and universal procedure, capable 

of evaluating a quantitative microscopic magnetic model for S = 1/2 HEISENBERG systems. 

The presented results evidence that the combination of full potential density-functional 

theory (DFT) band structure calculations and model simulations demonstrates excellent 

performance and accuracy for the basic characteristics of the magnetic ground state and the 

low-energy spectrum of spin systems. 

The real material studies presented in Chapters 6 and 7 render the computational 

approach as an appealing alternative, complementary to an experimental characterization. 

In the following, its advantages are discussed in a systematic way. First, such approach 

allows to distinguish between different microscopic models that yield similar macroscopic 

behavior for several physical properties. Strictly speaking, this advantage is not unique to 

the computational approach, hence such a distinction can be done experimentally, e.g. by 

precise measurements of magnon dispersions in an inelastic neutron scattering experiment. 

However, such measurements require high-quality samples and can be performed only using 

large-scale facilities. In contrast, the computational procedure is less time consuming and 

can be carried out using conventional computer equipment. 

Recent DFT-based studies refuted a surprisingly large number of empirical magnetic 

models. One of the most remarkable example is volborthite Cu3[V2O7](OH)2 ·2H2O, initially 

described as an anisotropic kagome lattice. In contrast, extensive DFT studies (Sec. 7.4) 

reveal that this compound features strongly coupled frustrated spin chains, thus a completely 

different type of magnetic frustration is realized. Very recent inelastic neutron scattering 

experiments corroborate this theoretical model [365]. 

The second advantage is the capability to provide accurate estimates for the leading 

magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. 

This is especially important for models featuring several relevant exchange couplings. In 

such a case, the magnetic phase diagram typically comprises several phases that are mi­

croscopically different, but often indistinguishable in the bulk experiments (e.g. in the 

temperature dependence of magnetic susceptibility). This widespread effect is caused by 
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internal symmetries of the underlying model. Unfortunately, in many cases this ambiguity is 

carelessly overlooked, and the incorrect scenario is chosen. Consequently, the strength and 

even the sign of the leading exchange couplings can be erroneous. Dioptase Cu6Si6O18 ·6H2O 

(Sec. 6.3) is an instructive example showing that the microscopic theoretical approach 

eliminates this ambiguity and reliably yields the correct parameterization. 

The recent development of new computational techniques and facilities boosted the 

performance of the DFT-based approach. Still, many present-day studies put forward or 

rely on tentative magnetic models. This lingering type of modeling is based on a set 

of empirical rules that link the magnetic exchange couplings to the relevant structural 

parameters, such as bond angles. As a natural consequence of its unbeatable simplicity, such 

analysis is sometimes blindly applied, without even considering the key ingredients of the 

superexchange, such as the orientation of the magnetically active orbitals. In this way, a 

quasi-1D magnetic model was suggested for β-Cu2V2O7 [259]. Moreover, even formally 

correct application of empirical GOODENOUGH–KANAMORI rules may yield incorrect results, as 

shown for CdCu2(BO3)2 (Sec. 6.2.2). In contrast, the computational approach provides a 

microscopic insight, correctly disclosing the quasi-2D magnetism for the honeycomb lattice 

system β -Cu2V2O7 (Sec. 6.2.1) as well as for the anisotropic decorated SHASTRY–SUTHERLAND 

model in CdCu2(BO3)2 (Sec. 6.2.2). 

In addition, many tentative magnetic models are based on a common belief that the 

magnetism is solely ruled by the mutual orientation of magnetic structural units. Again, 

this approach is oversimplified and can be largely misleading. For instance, the Cu2A2O7 

(A= P, As, V) are isostructural, thus the replacement of the non-magnetic groups should 

play a minor role for the magnetic properties. In contrast with this conjecture, the family 

of Cu2A2O7 compounds shows a surprising variety of magnetic behaviors: coupled dimers 

in α-Cu2P2O7, the honeycomb lattice model in β-Cu2V2O7, and the quasi-1D model of 

alternating spin chains in α-Cu2As2O7. Such striking dissimilarity of the magnetic properties 

is governed by non-magnetic AO4 groups. The DFT-based analysis not only discloses this 

dissimilarity, but also accounts for the microscopic mechanism responsible for the different 

magnetic properties of these seemingly similar systems. 

Among the variety of low-dimensional magnets, frustrated systems exhibit particularly 

interesting magnetic properties. The commonly used experimental indication for magnetic 

frustration is the small value of TN/θ , where TN is the long-range magnetic ordering temper­

ature and θ is the WEISS temperature. Yet, it is difficult to distinguish between frustrated and 

low-dimensional systems, since both frustration and low-dimensionality generally reduce 

TN/θ . Thus, the low TN/θ in [NO]Cu(NO3)3 motivated the authors of Ref. 233 to put 

forward the anisotropic frustrated square lattice model for this compound. However, the 

DFT-based analysis (Sec. 6.1.2) discloses inconsistency of this model, and demonstrates that 

the low TN/θ results from the quasi-1D nature of the microscopic model, while frustration 

effects are marginal. Since the effects of low-dimensionality and frustration are typically 
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entwined, and their disentanglement in the experiment is at best challenging, the computa­

tional DFT-based approach should be regarded as a relevant alternative, complementary to 

the experimental studies. 

The next issue to discuss is the accuracy of the computational approach. Based on the 

results of the present study and numerous DFT-based studies published in the literature, the 

error bars for the leading couplings can be estimated on the order of 10–15%. However, 

the ratios of the leading couplings are typically evaluated with higher precision. The 

studies of quasi-1D spin chain compounds (Sec. 6.1) evidence excellent performance of the 

computational approach. In particular, relevant interchain couplings can be distinguished 

from essentially inactive superexchange pathways. Thus, CuSe2O5 and CaCu2(SeO3)2Cl2, 

despite the similar energy scale of the leading intrachain coupling, feature very different 

interchain coupling regime: the spin chains in CuSe2O5 are coupled in a simple square­

lattice-like manner (Sec. 6.1.1), while two relevant interchain couplings in CaCu2(SeO3)2Cl2 

(Sec. 6.1.3) lead to an involved spin model with magnetic frustration. 

Even numerical estimates for the relevant interchain couplings are rather precise, al­

though they are one or two orders of magnitude smaller in strength than the leading 

intrachain exchange. Hence, band structure calculations provide a unique possibility to 

address the interchain or interplane coupling regime, essential for the magnetic ground 

state, but hardly directly perceptible in the experiment, due to the different energy scales. 

The excellent accuracy renders DFT calculations as the method of choice for studying the 

interchain (interplane) coupling regime in quasi-1D (quasi-2D) magnets. 

Besides the apparent advantages of the computational approach, considering it as a 

panacea would be an apparent exaggeration. Especially for practical applications of the 

method, its limitations should be extensively discussed. The first limitation is the strong 

influence of the structural input. Since even subtle structural details can considerably alter 

the magnetic properties, the consistency of the experimental crystal structure should be 

carefully studied. The influence of the structural parameters is especially large for the 

compounds featuring small Cu–Cu distances, where the magnetic CuO4 units share common 

edges or corners. This is the case for kagome-lattice systems (Chapter 7). The strong 

competition of antiferromagnetic superexchange and ferromagnetic HUND’s coupling on the 

O sites in kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2 makes them especially 

sensitive to the fine details of their crystal structures. Although the microscopic J1–Jd model 

is qualitatively robust, the ratio of the two leading couplings can be considerably affected by 

the structural model (Sec. 7.3). 

The second limitation is related to the model assignment. The developed approach 

is based on the HEISENBERG scenario (isotropic coupling), and presuming this picture is 

applicable, yields accurate numerical estimates for the individual magnetic couplings. How­

ever, real materials are never free from anisotropies. For cuprates, the ESR experiments 

typically yield about 10% anisotropy of the g-factor, hinting at the non-equivalence of the 
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couplings between the different spin components. This anisotropy is likely too small to 

alter the magnetic ground state, but it definitely affects the long-range magnetic ordering 

temperature in quasi-1D and quasi-2D magnets. 

Besides the anisotropy effects, real materials inevitably bear a certain amount of struc­

tural defects. Modeling the structural disorder within DFT is a challenging task, thus 

structural defects are typically neglected. Such approximation is well justified for the ma­

jority of materials, yet structural disorder can substantially influence the magnetism of 

certain compounds, thus the impurity effects can not be completely neglected. However, 

even a simplified treatment of impurity effects leads to several non-equivalent magnetic 

couplings and rather involved magnetic models. The increased complexity largely impedes 

simulations, hampering comparisons with the experiments. To illustrate this effect, the study 

of herbertsmithite (Sec. 7.2) is very instructive. Here, even a rather simple treatment of a 

magnetic impurity leads to a model with eight relevant couplings, while only two couplings 

suffice to describe the magnetism of the idealized compound (featuring a fully ordered 

crystal structure). 

At this point, it is natural to proceed to extensions of the computational approach. 

The DFT-based study of herbertsmithite provides valuable information on the influence of 

magnetic interplane impurities onto the magnetic coupling regime. Still, the approximations 

used to model the impurity effects are likely too crude for a quantitative modeling. In 

particular, an adequate description for the structural defects within DFT would largely 

remedy the problem. Therefore, the extension of the DFT-based approach for the case of 

structurally disordered strongly correlated systems is highly desirable. 

Recent theoretical studies evidence a substantial influence of anisotropic DZYALOSHINSKII­

MORIYA interactions onto the magnetic properties (e.g., Ref. 324). For a very limited range 

of compounds, the DZYALOSHINSKII-MORIYA couplings were evaluated directly from band 

structure calculations [146]. Although the pioneering studies evidence excellent potential 

of such approach, an universal computational scheme is still missing. The extension of the 

developed approach to the case of anisotropic coupling is a relevant, albeit arduous task. 

Another substantial development could be the extension of the method to take finite 

temperature into account. Combining quantum magnetism and molecular dynamics can 

lead to a better understanding of the complex interplay of magnetic and lattice degrees of 

freedom in frustrated systems. 

In this thesis, only cuprate materials were considered, yet the computational approach 

can be readily applied to other S = 1/2 systems, such as V4+, Cr5+ or Ti3+ compounds. 

Moreover, with minor modifications, it can be extended to other metallates with higher 

value of spin. However, it should be kept in mind that within the class of 3d metallates, 

the electronic correlations can vary in a rather broad range, thus the simplified treatment 

of electronic correlations within the DFT+U methods can become critical. At this point, 

replacement of the DFT+U approach by more sophisticated DFT+DMFT schemes seems to 
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be a natural extension. In this way, even metal-insulator transitions could be investigated on 

a microscopic level. 

Further extensions can be envisaged, yet the computational approach in its present 

version is a powerful tool that can be directly applied to any particular compound from the 

vast family of S = 1/2 HEISENBERG magnets. The real-material studies described in Chapters 6 

and 7 evidence not only the excellent performance of the computational approach, but also 

its relevance: for all the systems under consideration, the DFT-based studies not barely 

reproduced the experimental data, but instead delivered new valuable information on the 

magnetic properties for each particular compound. 

Beyond any doubt, further computational studies will yield new interesting and surprising 

results, such as the ferromagnetic nature of the couplings that were previously considered an­

tiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic 

and ferromagnetic contributions that can “switch off” the respective magnetic exchange. 

In this way, dozens of potentially interesting systems can acquire quantitative microscopic 

magnetic models. 

The results of this work evidence that elaborate experimental methods and the DFT-

based modeling are of comparable reliability and complement each other. In this way, the 

advantageous combination of theory and experiment can advance the research in the field 

of low-dimensional quantum magnetism. For practical applications, the excellent predictive 

power of the computational approach can largely alleviate designing materials with specific 

properties. 

In future, a closer collaboration of theory and experiment is expected, yet for a concise 

outlook, which is given below, it is reasonable to differentiate between them. From the 

experimental side, a more precise determination of the crystal structure is desired, especially 

for the light atoms. High-field measurements should become more and more relevant 

by reaching higher magnetic fields. A very promising way of altering the structure and 

consequently the magnetic properties is application of external pressure. Although at present, 

the applicability of standard probes for magnetism in a high-pressure experiment is limited, 

a constant improvement of the equipment gives hope for a future boom of such studies. 

The continuous improvement of synthesis methods will ensure better sample quality, and 

consequently, further progress in the accuracy of the experimental data. Besides improving 

the accuracy, it is important to extend the experimentalist’s toolbox, i.e. to increase the 

diversity of the experimental methods. Without a doubt, the magnetic resonance techniques 

presently experience a golden age. Taking into account that ESR, NMR and especially µSR 

are relatively new developments, emergence of new spectroscopic methods can not be 

excluded. Reaching even lower temperatures could also be advantageous for development 

of new experimental techniques. Recent progress of in the field of cold atoms evidences 

excellent potential of this sector. 

The vibrant development of new computational methods aiming to provide an even 
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more realistic description for strongly correlated systems, should enable a more accurate 

determination of crucial parameters such as the HUBBARD Ud or the HUND’S exchange on the 

ligand site. The ongoing extension of the computational techniques, in order to account 

for anisotropic magnetic exchange couplings, should resolve a number of long-standing 

puzzles, especially for frustrated systems. Finally, many real compounds are characterized 

by appreciable coupling of their magnetism to the lattice or orbital degrees of freedom. 

Providing an adequate DFT-based description for such complicated cases is one of the most 

crucial and challenging present-day tasks. Due to its relevance for various technological 

applications, considerable progress in this field can be expected in near future. 

A reliable microscopic model is vital to provide a correct interpretation of an experi­

mental measurement. Even more important, a microscopic model provides a link between 

different experimental results and transforms them into what is typically called as a physical 

picture. Flashed by such an enlightening picture, the mind can realize with a contentment: 

“I do understand”. 
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Appendix 

A1 Exact diagonalization 

Simplest example: a S = 1/2 HEISENBERG dimer 

The HEISENBERG dimer is a system of two coupled spins i and j, described by the HEISENBERG 

Hamiltonian: 

Ĥ = Si · S j. (A1) 

Since each spin S = 1/2 has only two possible states, |↑〉 and |↓〉, the construction of a 

basis set for this system is trivial and readily yields four states spanning the HILBERT space: 

|↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉. Next, the Hamiltonian matrix can be constructed by means of 

DIRAC’s spin exchange operator P̂: 

Si · S j = 2P̂ − 1. (A2) 

Thus, 

Ĥ |↑↑〉 = 2 |↑↑〉− |↑↑〉 = |↑↑〉

Ĥ |↑↓〉 = 2 |↓↑〉− |↑↓〉 
(A3)

Ĥ |↓↑〉 = 2 |↑↓〉− |↓↑〉 

Ĥ |↓↓〉 = 2 |↓↓〉− |↓↓〉 = |↓↓〉,
 

leading to a 4×4 Hamiltonian matrix with six nonzero matrix elements:
 

⎛

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉 

1 
⎞
 

⎜

⎜

⎜

⎜

⎜

⎝
 

⎟

⎟

⎟

⎟

⎟

⎠
 

|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉 

.
H =
 
1
 

4
 
−1 2
 

2 −1
 

1
 

JEigendecomposition of this matrix yields the singlet ground state |↑↓〉−|↓↑〉 with energy 
2 
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−0.75 and three degenerate excited states (triplet) |↑↓〉J+|↓↑〉 , |↑↑〉 and |↓↓〉 with energy 
2 

0.25. This is the complete spectrum of the model. The thermodynamic average 〈A〉 of any 

observable A can be evaluated using the partition function Z: 

4 4
NN1 

〈A〉 = 
i=1 

Ai exp −
 
Ei 

kB T 
, where Z =
 

i=1 

exp −
 
Ei 

kB T 
,
 (A4)


Z
 

where Ei and Ai denote the energy and the value of A in the state i, respectively. This 

way, a theoretical model can be challenged by comparing to the experimentally observed 

values of A. 

LANCZOS algorithm 

The LANCZOS algorithm is typically used to evaluate the extreme eigenvalues of sparse 

matrices. After the initialization (Eq. A5), a tridiagonal T -matrix (Eq. A6) is constructed 

within the iterative j-step procedure (Eq. A7). The extreme eigenvalues of this j× j matrix 

rapidly converge to the extreme eigenvalues of the A-matrix. Typically, j 100 is enough to 

reach the accuracy of 10−14 for the ground state energy [166]. 

A ∈ Cn×n , A = A†; j = 1; α j, β j ∈ 1; uj, wj ∈ Cn×1; u0 = 0; u1 : u1 = 1; β1 = 0 (A5) 

⎞⎛ 

j× jT ∈ T =
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⎜
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⎜
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α1 β1 

β1 α2 β2 
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⎟
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⎟

⎟

⎠
 

(A6)
. . .. . .. . .
 
. .
. .. . β j−1 

β j−1 α j 

w j = A · uj − β ju j−1
 

α j = u† · wj
j
 

w j = wj − α ju j
 
(A7) 

β j+1 = wj 

uj+1 = wj(β j+1)
−1 

j = j + 1 
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A2 Details of the experimental studies (Chapter 6) 

CuSe2O5 

The experiments were carried out at MPI CPfS by M. SCHMIDT (synthesis of single crystals), 

Y. PROTS (X-ray diffraction), P. SCHEPPAN (EDXS measurements), and W. SCHNELLE (thermody­

namical measurements). Single crystals of CuSe2O5 were grown by chemical vapor transport 

using TeCl4 as a transport agent. Using a microcrystalline powder of CuSe2O5 (obtained 

from a mixture of CuO and SeO2 at 723 K) as a source, the transport experiments were 

carried out in an endothermic reaction of T2 (source) 653 K to T1 (sink) 553 K. 

The obtained crystals had a green color and form strongly elongated (along [001]) plates, 

which macroscopically look like needles. The typical length of a needle is 5–10 mm and 

the width does not exceed 1 mm, while for most of crystallites it is considerably smaller. 

The slight disorientation of plates forming a needle intricates a precise X-ray diffraction 

measurement on single crystals. Thus, the samples were characterized by X-ray powder 

diffraction and EDXS experiments. The lattice parameters of the synthesized crystals are 

similar to those reported for CuSe2O5 (Table A1). The results of the EDXS analysis (Cu 

32.78 ± 0.31 %, Se 67.14 ± 0.23 %) for 13 points (2 crystals) yield Cu:Se 0.488 ± 0.006, 

very close to the ideal ratio of 0.5. Thus, the obtained single crystals represent an almost 

pure CuSe2O5 phase. 

Table A1: Comparison of the measured lattice pa­
rameters a, b, c, the monoclinic angle β and the parameter Ref. 219 Ref. 380 this work 

unit cell volume V of CuSe2O5 with the published 
data. 

a (Å) 

b (Å) 

12.3869 

4.8699 

12.254 

4.858 

12.272 

4.856 

c Å) 7.9917 7.960 7.975 

β (◦) 109.53 110.70 110.91 

V (Å3) 447.13 443.27 443.95 

Magnetization was measured in a SQUID MPMS magnetometer (1.8–350 K) in magnetic 

fields up to 1 T. Heat capacity (1.8–100 K) was determined by a relaxation method up to 

H = 9 T. 

CaCu2(SeO3)2Cl2 

The samples of CaCu2(SeO3)2Cl2 were grown by P. S. BERDONOSOV at the Moscow State 

University. Calcium selenite CaSeO3 was prepared via solution synthesis. The solutions of 

calcium nitrate Ca(NO3)2 (chemically pure) (6.214 g) and selenous acid H2SeO3 (98 %) 

(4.886 g) in a minimal amount of hot distilled water were mixed. The ammonia 1:5 

water solution was added to fix pH of the solution in the range 7−8. The fine white 

powder was obtained as a precipitate. The precipitate was then dried at 150 ◦C. According 
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Figure A1: Cp/T 2 of CuSe2O5 as a func­

tion of temperature and magnetic field. 
The Néel temperature is marked with a 
dashed line. Inset (ordered phase region): 
the Cp∝T 3 behavior predicted by theory 
is complicated by a clear kink at 7 K. 

to X-ray powder diffraction (XRPD), the obtained powder was identified as a hydrate 

CaSeO3 ·H2O. The hydrate was further calcined on a gas burner in a ceramic plate for 

30 min. The resulting product was identified as a single phase CaSeO3 [space group P21/n, 

a = 6.399(5) Å, b = 6.782(4) Å, c = 6.682(8) Å, β = 102.84(6) ◦]. 

SeO2 was obtained from H2SeO3 by its decomposition under vacuum at 60 ◦C and the 

sublimation of the resulting substance in a flow of anhydrous air and NO2. CuO (ultra pure) 

and CuCl2 (Merck, >98 %) were used. The dark-greenish powder sample of CaCu2(SeO3)2Cl2 

was obtained from a stoichiometric mixture of CaSeO3, CuCl2, CuO, and SeO2. The mixture 

(about 0.5 g total) was prepared in Ar-filled camera, sealed in a quartz tube, and placed into 

the electronically controlled furnace. The sample was heated from room temperature to 

300 ◦C for 12 hours, exposed at 300 ◦C for 24 hours, heated up to 500 ◦C for 12 hours, and 

exposed at 500 ◦C for 96 hours. 

The resulting samples were single-phase, as confirmed by powder x-ray diffraction (STOE 

STADI-P diffractometer, CuKα1 radiation, transmission geometry). The powder pattern was 

fully indexed in the monoclinic space group C2/c with lattice parameters a = 12.752(3) Å, 

b = 9.036(2) Å, c = 6.970(1) Å, β = 91.02(1) ◦ . CaCu2(SeO3)2Cl2 is rather stable in air, 

although a prolonged exposure of about 3 months led to a partial decomposition towards 

crystalline CuSeO3 ·2H2O and possible amorphous products. 

Magnetic susceptibility was measured by A. A. TSIRLIN at MPI CPfS with an MPMS SQUID 

magnetometer in the temperature range 2–380 K in magnetic fields of 0.5, 2, and 5 T. The 

high-field magnetization of CaCu2(SeO3)2Cl2 was measured by Y. SKOURSKI (HZDR HLD) in 

pulsed magnetic fields up to 60 T at a constant temperature of 1.5 K. 
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Table A2: Selected interatomic 
distances d (bond lengths) in bond d (Å) bond d (Å) 

the CaCu2(SeO3)2Cl2 structure. Ca – O1 2.362(2) Cu(1) – O2 1.920(2) 
O2 2.458(3) O3 2.012(2) 
Cl 2.827(1) 
Cl 2.948(1) Cu(2) – O1 1.891(2) 

Se – O1 1.705(2) O3 2.455(2) 
O2 1.707(2) Cl 2.404(1) 
O3 1.684(3) 

Figure A2: (after A. A. TSIRLIN) Magnetic 
susceptibility of CaCu2(SeO3)2Cl2 mea­
sured in magnetic fields of 0.5 T, 2 T, and 
5 T. The increase in the field leads to sup­
pression of the low-temperature paramag­
netic upturn. The inset shows the deriva­
tive of the magnetic susceptibility and a 
kink around 6 K, likely evidencing long-
range magnetic ordering. 
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The synthesis and sample characterization were carried out by by A. TSIRLIN at MPI CPfS, 

ESR spectra were measured by J. SICHELSCHMIDT (MPI CPfS), high-field magnetization 

measurements were done by Y. SKOURSKI at the HZDR HLD. 

A single-phase powder sample of α-Cu2P2O7 was prepared by a solid-state reaction of 

CuO and NH4H2PO4. A stoichiometric mixture of the reagents was fired at 250 ◦C for 6 

hours in air to remove ammonia and water. The sample was further placed into a sealed 

quartz tube and heated at 800 ◦C for 12 hours. The resulting light-gray powder was analyzed 

by X-ray diffraction (Huber G670 GUINIER camera, CuKα1 radiation, image plate detector, 

3–100◦ angle range). A RIETVELD refinement confirmed the formation of α-Cu2P2O7 and did 

not show any traces of impurity phases (in particular, the admixture of β-Cu2P2O7 can be 

ruled out). In contrast, a high-temperature annealing in air always produced a Cu3(PO4)2 

impurity. 

Magnetic susceptibility was measured with an MPMS SQUID magnetometer in the tem­

perature range 2–380 K in applied fields up to 5 T. High-field magnetization measurements 

(at T = 1.4 K) were performed in pulsed fields up to 60 T. 

The ESR spectra of a powder sample of α-Cu2P2O7 were recorded at X-band frequencies 

(9.4 GHz) for temperatures 5–300 K. The spectra were fitted with a powder average of 

two Lorentzian lines corresponding to two (effective) components of the g-tensor in axial 

symmetry: g⊥ and g . 
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A3	 Details of the DFT band structure calculations 

(Chapters 6 and 7) 

Al, Si and NaCl 

Calculations have been performed using fplo9.00-37 [126]. For scalar relativistic calcula­

tions, the exchange-correlation potential of PERDEW and 28 WANG [99] has been used. The 

lattice constants were adopted from Refs. 381, 382, and 383 for Al, Si, and NaCl, respectively. 

E0 in Fig. 4.1 are the total energies computed for the largest kk-meshes: 22776, 5216, and 

145 for Al, Si, and NaCl, respectively (the numbers refer to the irreducible wedge). 

CuSe2O5 

Band structure calculations were carried out using fplo7.00-27 [126] for the experimental 

structural parameters [219]. The standard basis set and the PERDEW–WANG parameterization 

of the exchange-correlation potential were used [99]. For the LDA calculations, a kk-mesh of 

12×12×9 kk-points (355 points in the irreducible wedge) was used, for LSDA+U calculations, 

8×8×7 (“1” in Fig. A3, space group P1̄, equivalent to the primitive cell of the conventional 

C-centered cell), 3×8×4 (“2” in Fig. A3, space group P1̄, metrically equivalent to the 

conventional C-centered cell) and 4×4×2 (“3” in Fig. A3, space group P1, equivalent to the 

primitive cell doubled along c) supercells were chosen. The convergence with respect to 
kk-meshes has been carefully checked. 

1 2 3

a

c

b

Figure A3: Supercells (red lines) used for LSDA+U calculations of CuSe2O5. For the numbering, 
see text. In each panel, two neighboring conventional C-centered cells are depicted (black lines). 
The crystallographic axes correspond to the conventional cell. Empty spheres denote magnetic (Cu) 
atoms. 

[NO]Cu(NO3)3 

For DFT band structure calculations, the experimental crystal structure from Ref. 384 was 

used. Since the structural data are not easily available [the journal does not provide an 
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online access to the publication, while the structure is absent in the Inorganic Crystal 

Structure Database (ICSD)], the structural information is given in Table A3. 

Table A3: Experimental crystal struc­
atom x/a y/b z/ctures of [NO]Cu(NO3)3 from Ref. 384 

Cu3Zn(OH)6Cl2. Space group P21/m, Cu 1/2 1/2 1/2 
a = 4.6580(10) Å, b = 11.102(3) Å, 

N 0.3694(5) 1/4 0.4333(3)c = 7.009(2) Å, β = 100.83(2)◦ . 
N 0.0126(3) 0.56051(14) 0.2136(2) 

N 0.2433(9) 3/4 −0.0837(5) 

O 0.4393(3) 0.34617(12) 0.3536(2) 

O 0.2445(5) 1/4 0.5699(3) 

O 0.2825(3) 0.58883(12) 0.2807(2) 

O −0.1067(3) 0.48171(14) 0.2952(2) 

O −0.1100(3) 0.61442(13) 0.0673(2) 

O 0.4148(6) 3/4 0.0218(4) 

The scalar-relativistic DFT calculations were performed using fplo9.00-33 [126]. For 

the LDA, the PERDEW–WANG parameterization [99] of the exchange-correlation potential was 

chosen. LDA calculations were done on a converged mesh of 16×10×12 kk-points (588 in 

the irreducible wedge). The band dispersions were cross-checked by GGA calculations, using 

the parameterization of PERDEW, BURKE and ERNZERHOF [100]. The resulting differences 

between LDA and GGA for the relevant bands are negligible ( 1 %). 

For LSDA+U calculations, a 6×3×4-points supercell (100 kk-points in the irreducible 

wedge, space group P1̄, metrically equivalent to the conventional unit cell) and a 2×2×3­

points supercell (space group P1, doubled along a) have been used. The LSDA+U results for 

AMF DCC Ud = 6.5 eV were cross-checked using GGA+U . The latter yielded ∼25 % smaller 

value for the leading exchange J1. 

CaCu2(SeO3)2Cl2 

Band structure calculations have been performed using fplo9.00-31 [126]. For the 

exchange and correlation potential, the parameterization of PERDEW and WANG [99] has 

been chosen. The LDA calculations were performed on a kk-mesh of 10×10×12 points 

was used. For spin-polarized supercell LSDA+U calculations, the kk-meshes of 4×4×4 

(space group P1, equivalent to the primitive cell, which volume amounts to one half of 

the conventional C-centered cell) and 4×4×2 points (space group P1, equivalent to the 

primitive cell doubled along c) were used. 
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Figure A4: Wannier functions mark­
ing the J1 superexchange path. 
Cu(1)O4 (left) and Cu(2)O2Cl2 
(right) plaquettes are filled. The 
SeO3 pyramid is visualized by Se–O 
bonds (lines). The projection is the 
same as in Fig. 6.12 (left). 

Cu2A2O7 (A= P, As, V) 

For α-Cu2P2O7, the DFT calculations were performed using fplo8.00-31 [126]. The 

experimental structure from Ref. 385 was adopted. For the exchange-correlation potential, 

an LDA [99] as well as a GGA [100] parameterizations were used. Nonmagnetic calculations 

were performed on a 14×14×8 kk-mesh (429 kk-points in the irreducible wedge). For 

LSDA+U calculations, three types of supercells were used: (i) a primitive cell with the 

volume amounting to one-half of the conventional C-centered cell (space group P1, 4×4×2 
kk-mesh), (ii) a primitive cell doubled along b (space group P1, 3×2×2 kk-mesh), and (iii) a 

primitive cell doubled along c (space group P1, 3×3×2 kk-mesh). 

For α-Cu2As2O7, the structural data from Ref. 386, the code fplo8.50-32 [126], and 

the LDA parameterization of PERDEW and WANG [99] were used. LDA calculations were done 

on a 12×12×8 mesh (320 kk-points in the irreducible wedge). LSDA+U calculations were 

carried out for supercells of the same metrics and kk-meshes, as for α-Cu2P2O7 (previous 

paragraph). 

Most of DFT calculations for β-Cu2V2O7, including DFT+U supercell calculations, were 

carried out by A. TSIRLIN, while all the relevant details can be found in Ref. 265. WFs for 

the Cu 3dx2− y2 states were calculated on a 8×8×8 kk-mesh (150 points in the irreducible 

wedge). 

CdCu2(BO3)2 

Band structure calculations were performed with the code fplo8.00-31 [126], using 

the PERDEW–WANG parameterization [99] of the exchange-correlation potential. For LDA 

calculations, a 20×4×8 kk-mesh (246 kk-points in the irreducible wedge) was used. For the 

supercell DFT+U calculations, two types of supercells were used: a supercell, metrically 

equivalent to the unit cell (space group P1, 4×2×2 kk-mesh) and supercell doubled along 

c (space group P1, 4×1×1 kk-mesh). The DFT+U results for different DCC/Ud values are 

summarized in Table A4. 
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Dioptase Cu6Si6O18 ·6H2O 

For the lattice constants and atomic coordinates, neutron diffraction data were used [276]. 
Band structure calculations were carried out using fplo9.00-33 [126] and the LDA param­

eterization of PERDEW and WANG [99]. LDA calculations were done on a 12×12×12 mesh 

(294 kk-points in the irreducible wedge). For the LSDA+U calculations, P1 supercells of the 

same metrics (4×4×4 kk-points) were used. The Ud -dependence was studied in the relevant 

ranges: Ud = 6.5±1 eV within AMF and Ud = 8.5±1 eV within FLL, keeping Jd = 1 eV fixed. 

Herbertsmithite Cu3Zn(OH)6Cl2 

The experimental structural (Table A5) data are based on an XRD study at 100 K [347]. The 

internal atomic coordiates are taken from Ref. 335. The lattice constants in the rhombohedral 

setup: a = 6.12763 Å, α = 67.7763◦. The internal coordinates of the H atom were optimized 

within LDA (Table A5). 

Table A5: 
experimental	 LDA-optimized H Experimental andatom 

x/a y/a z/a x/a y/a z/a	 LDA-optimized (the 
H position, only)

Zn 0 0 0 crystal structures 
Cu 1/2 0 0 of herbertsmithite 

Cu3Zn(OH)6Cl2. TheO 0.2315 = x/a 0.8520 
coordinates are given

H 0.276 = x/a 0.700 0.27464 = y/a 0.66639 in the rhombohedral 
Cl 0.3052 = x/a = x/a setup. 

6 7 8
U

d
 (eV)

0

100

200

300

J
1
 (

K
)

optimized

experimental

J
1
 =190 K

Figure A5: LSDA+U 
results for the ideal (no 
Cu–Zn disorder) struc­
ture of herbertsmithite 
Cu3Zn(OH)6Cl2. The 
results for the AMF DCC 
are presented. The value 
J1 = 190 K is taken from 
Ref. 54. 

Kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2 

Band structure calculations for kapellasite and haydeeite have been performed using the code 

fplo6.00-24 [126]. For scalar relativistic calculations, the exchange-correlation potential 
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of PERDEW and WANG [99] has been used. LDA calculations have been performed on a 
kk-mesh of 10×10×11 points (124 in the irreducible wedge). For the spin-polarized LSDA+U 

calculations, two different supercells were used. The first cell is metrically equivalent to the 

crystallographic cell, but contains no symmetry operations except lattice translations (space 

group P1), a 10×10×11 kk-mesh with 1100 points in the irreducible wedge was used. The 

second cell also lacks rotational symmetry (space group P1) and is doubled along a, the 
kk-mesh for this cell was 3×5×5 with 75 points in the irreducible wedge. 

For the structural input, the atomic coordinates from Refs. 329 and 330 were used for 

kapellasite and haydeeite, respectively. The experimental H position for kapellasite has been 

relaxed in LDA. By comparing the resulting total energies, the equilibrium position has been 

evaluated. Since the H position has not been reported for haydeeite, the respective position 

was adopted from the kapellasite structure, and relaxed in a similar way within LDA. The 

resulting optimized positions are given in Table A6. The dependence of the total energy on 

the O–H bond length is depicted in Fig. A6. 

Table A6: LDA-optimized 
H positions for kapellasite 
Cu3Zn(OH)6Cl2 and haydeeite 

compound 
x/a 

H 

y/b z/c 

O–H distance 

opt. (Å) exp. (Å) 
Cu3Mg(OH)6Cl2. 

kapellasite 0.177 −x/a 0.172 1.00 0.78 

haydeeite 0.203 −x/a 0.322 1.00 

Figure A6: LDA total energy as a 
function of the O–H distance in 
kapellasite and haydeeite. The ex­
perimental (Ref. 329) H position for 
kapellasite is marked with a dotted 
vertical line. The equilibrium posi­
tion is highlighted by a solid vertical 
solid line. 
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Volborthite Cu3[V2O7](OH)2 ·2H2O 

DFT calculations for volborthite have been performed using the code fplo8.65-32 [126]. 
For scalar relativistic calculations, the exchange-correlation potentials of PERDEW and 

WANG [99] and PERDEW, BURKE and Ernzerhof [100] have been used. LDA calculations have 

been performed on a kk-mesh of 12×12×12 points (476 in the irreducible wedge). For the 

spin-polarized LSDA+U calculations, three different supercells were adopted. The first cell 

is equivalent to the primitive crystallographic cell, without rotational symmetry elements 

(space group P1). The calculations were performed on a 4×4×4 kk-mesh with 64 points in 
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the irreducible wedge. The second cell is SC1 doubled along its b axis (space group P1) 

with the respective 3 × 2 × 3 kk-mesh (18 points in the irreducible wedge). The third cell 

(SCC) is metrically equivalent to the C-centered crystallographic cell, but belongs to the 

space group P1. A kk-mesh of 24 (2×4×3) points has been used for calculations. 

For the initial crystal structure, the model from a combined x-ray and neutron diffraction 

study [374] was used. The preliminary DFT calculations evidenced sizable forces for this 

model (up to 0.1 eV/Å). Therefore, a structural optimization was performed, by relaxing 

atomic positions one by one, and finding a position with minimal forces. The resulting 

relaxed structure had much smaller forces (up to 0.005 eV/Å), and considerably lower total 

energy compared to the experimental structure (36 meV/atom in LDA, 26 eV/atom in GGA). 

The atomic coordinates of the optimized crystal structure are given in Table A7. 

Table A7: Optimized crystal structure of volborthite 
atom x/a y/b z/c Cu3[V2O7](OH)2 ·2H2O, used in the DFT calculations. Lat­

tice constants are the same as in Ref. 374.Cu 0 0 0
 

Cu 1/4 1/4 0
 

V 0.9949 1/2 0.2516
 

O 0 1/2 1/2
 

O 0.3428 1/2 0.1115
 

O 0.0706 0.2635 0.1864
 

O 0.1622 1/2 0.8541
 

O 0.3223 1/2 0.4804
 

H 0.3501 1/2 0.2546
 

H 0.3536 0.3714 0.5619
 

A4 Details of the simulations (Chapters 6 and 7) 

CuSe2O5 

QMC simulations have been preformed on N = 1200 sites finite lattice of S = 1/2 spins 

(30 coupled chains of 40 sites each, periodic boundary conditions) using the loop [387] 
algorithm from the alps-1.3 package [388]. 15 000 and 200 000 sweeps were used for 

and after thermalization, respectively. 

[NO]Cu(NO3)3 

The QMC susceptibility curves were computed using the loop [387] and worm algorithms, 

implemented in the alps simulation package [388]. The simulations were performed for 

finite lattices with periodic boundary conditions. The typical lattice size was N = 60–100 for 
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1D models and N = 1500–2000 for the model of coupled spin chains. Calculations for lattices 

of different size showed negligible finite-size effects for the temperature range considered. 

For the magnetic susceptibility of an anisotropic spin chain, the expression 

N N N 
Ĥ = J (Si

xSj
x + Si

ySj
y + (1 + ˜ i S

z
j ) − hu Si

x − hs i (A8)Δ)Sz (−1)iSz 

<i j> i i 

from Ref. 389 was used. Here, the first term is the bilinear exchange with the symmetric 

anisotropy Δ̃. The effective uniform (hu) and staggered (hs) fields depend on the applied 

external field (H) and on the staggered anisotropy. 

CaCu2(SeO3)2Cl2 

Classical energy minimization procedure for collinear spin configurations was carried out 

using a self-written code. Classical Monte Carlo simulations were performed using the alps 
package [388] for a finite lattice of 48×48×24 spins with periodic boundary conditions. 

20 000 sweeps for thermalization and 200 000 sweeps after thermalization were used. 

Cu2A2O7 

α-Cu2P2O7: QMC simulations were performed on N = 24×24 sites finite lattices with periodic 

boundary conditions using the looper [387] and dirloop algorithms from the alps 
package [388]. 

β-Cu2V2O7: Spin correlations were computed on N = 16×16 = 256 sites finite lattices 

using the QMC code looper [387] implemented in the alps simulation package [388]. 
For the simulations of the ordered moment, finite lattices up to N = 2312 sites were used. 

For both kinds of simulations, 30 000 sweeps for thermalization and 300 000 sweeps after 

thermalization were used. 

α-Cu2As2O7: QMC simulations were performed finite lattices of N = 2048 sites (32 

coupled chains of 64 spins each) with periodic boundary conditions. A stochastic series 

expansion algorithm implemented in the code looper [387] from the software package 

alps [388] was applied, using 50 000 sweeps for thermalization and 500 000 steps after 

thermalization. 

CdCu2(BO3)2 

Magnetic susceptibility was simulated on N = 16 sites finite lattices using the full diagonal­

ization code from the package alps [388]. Spin correlations and magnetization curve were 

simulated for N = 32 sites lattices, the code spinpack [390] was used. 
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Herbertsmithite Cu3Zn(OH)6Cl2 

LANCZOS diagonalizations on N = 26 sites finite lattices were performed using the sparse 

diagonalization code from the package alps [388]. 

Kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2 

LANCZOS diagonalizations on N = 36 sites finite lattices were performed by J. RICHTER at the 

University of Magdeburg using spinpack [390]. 

Volborthite Cu3[V2O7](OH)2 ·2H2O 

LANCZOS diagonalizations on N = 36 sites finite lattices were performed by J. RICHTER at 

the University of Magdeburg using spinpack [390]. The full spectrum was computed 

by P. SINDZINGRE using an in-house ED code, the respective N = 24 sites finite lattices are 

depicted in Fig. A7. 

lattice 1 lattice 2

J1–J2 chains

Jic bonds

N=24 N=18 N=18 N=24

Figure A7: Finite lattices used for the ED stud­
ies of volborthite Cu3[V2O7](OH)2 ·2H2O. Top: 
N = 24 sites lattices used for calculations of 
χ ∗ (T ∗ ). Unit cells are shown as squares and 
rectangles. Bottom: unit cells used in calcula­
tions. Individual spins and J1 − J2 chains are 
depicted as empty circles and bold orange lines, 
respectively. 
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