
Automated Theorem Proving for
General Game Playing

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Diplom-Informatiker Sebastian Haufe

geboren am 01. 05. 1982 in Hoyerswerda

Betreuender Hochschullehrer Prof. Dr. rer. nat. habil. Michael Thielscher
und Erstgutachter School of Computer Science and Engineering

The University of New South Wales, Sydney

Zweitgutachter Prof. Dr. rer. nat. habil. Torsten Schaub
Institut für Informatik
Universität Potsdam

Tag der Einreichung 24. 11. 2011
Tag der Verteidigung 22. 06. 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236367433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

While automated game playing systems like Deep Blue perform excellent within their
domain, handling a different game or even a slight change of rules is impossible without
intervention of the programmer. Considered a great challenge for Artificial Intelligence,
General Game Playing is concerned with the development of techniques that enable
computer programs to play arbitrary, possibly unknown n-player games given nothing
but the game rules in a tailor-made description language. A key to success in this
endeavour is the ability to reliably extract hidden game-specific features from a given
game description automatically. An informed general game player can efficiently play
a game by exploiting structural game properties to choose the currently most appro-
priate algorithm, to construct a suited heuristic, or to apply techniques that reduce
the search space. In addition, an automated method for property extraction can pro-
vide valuable assistance for the discovery of specification bugs during game design by
providing information about the mechanics of the currently specified game description.
The recent extension of the description language to games with incomplete information
and elements of chance further induces the need for the detection of game properties
involving player knowledge in several stages of the game.

In this thesis, we develop a formal proof method for the automatic acquisition of
rich game-specific invariance properties. To this end, we first introduce a simple yet
expressive property description language to address knowledge-free game properties
which may involve arbitrary finite sequences of successive game states. We specify a
semantic based on state transition systems over the Game Description Language, and
develop a provably correct formal theory which allows to show the validity of game
properties with respect to their semantic across all reachable game states. Our proof
theory does not require to visit every single reachable state. Instead, it applies an
induction principle on the game rules based on the generation of answer set programs,
allowing to apply any off-the-shelf answer set solver to practically verify invariance
properties even in complex games whose state space cannot totally be explored. To
account for the recent extension of the description language to games with incomplete
information and elements of chance, we correctly extend our induction method to prop-
erties involving player knowledge. With an extensive evaluation we show its practical
applicability even in complex games.

iii

Acknowledgements

I am deeply grateful to my excellent advisor Michael Thielscher for his many fruitful
ideas and discussions, his constant encouragements and substantial contributions to
writing papers, and his continuous availability for cordially answering questions and
providing advice. I further want to thank our whole group for a welcoming and friendly
atmosphere and especially my colleague Stephan Schiffel, who has always been there
to troubleshoot technical problems, and who provided countless invaluable suggestions
and discussions over the years and after intensively proofreading an earlier version of
this thesis. I am also grateful to Torsten Schaub for accepting to be my second re-
viewer, and to Uwe Petersohn for accepting to be my “Fachreferent”.

Special thanks go to my beloved wife Sophie Haufe who had the strength to bear
with me in difficult times and who enabled to keep me writing by taking care of so
many other issues. I am also thankful to Florian Stenger who agreed to proofread the
thesis and whose determined struggling through the hardly understandable passages of
an earlier version generated a multitude of helpful comments.

v

Contents

Contents vii

1 Introduction 1

1.1 General Game Playing . 1

1.2 Automated Theorem Proving for GGP 3

1.3 Structure of the Thesis . 4

2 Preliminaries 7

2.1 Answer Set Programming . 7

2.1.1 Syntax of Logic Programs . 8

2.1.2 Answer Set Semantics for Logic Programs 10

2.1.3 Extension of Logic Programs by Weight Atoms 11

2.2 General Game Playing . 14

2.2.1 Formalisation of Games . 14

2.2.2 Syntax of the Game Description Language 15

2.2.3 Transition Semantics for the Game Description Language 20

2.2.4 Game Properties . 23

2.2.5 Execution Model . 24

2.3 Summary . 26

3 Sequence Invariants 27

3.1 The Importance of Sequence Invariants in GGP 27

3.2 Formalisation of Sequence Invariants . 28

3.2.1 Syntax . 29

3.2.2 Semantics . 31

3.2.3 Properties of the Semantics . 32

3.3 Prerequisites for the Verification Method 33

3.3.1 Temporal GDL Extension . 33

3.3.2 Encoding Sequence Invariants . 36

3.4 Verification of Sequence Invariants . 39

3.4.1 Base Case . 40

3.4.2 Induction Step . 40

3.4.3 Example . 43

3.5 Properties of the Verification Method . 45

3.5.1 Soundness . 46

3.5.2 Restricted Completeness . 47

vii

viii CONTENTS

3.5.3 Sound and Complete Verification at Fixed Depth 48

3.6 Improvements . 49

3.6.1 Solving Single-Player Games . 49

3.6.2 Proving Multiple Properties At Once 51

3.6.3 A General Scheme for Conjunctive Formula Proofs 53

3.6.4 Non-Playable Sequences . 57

3.7 Discussion . 59

3.7.1 Choosing Answer Set Programming 59

3.7.2 Expressibility Versus Practical Useability 60

3.8 Summary . 61

4 Epistemic Sequence Invariants 63

4.1 The Game Krieg-Tictactoe . 64

4.2 Formalisation of Epistemic Sequence Invariants 67

4.2.1 Syntax . 67

4.2.2 Semantics . 68

4.2.3 Satisfaction of the S5 Properties 70

4.2.4 Complete Knowledge in the Initial State 73

4.3 Linear Time In The Setting Of Knowledge 73

4.3.1 Positive-Knowledge Formulas . 74

4.3.2 View Namings . 75

4.3.3 Sequence Mappings . 77

4.3.4 An Alternative Formula Semantics Over Sequence Mappings . . 80

4.3.5 Equivalence of the Two Formula Semantics 83

4.4 Prerequisites for the Generalised Verification Method 86

4.4.1 Epistemic Temporal GDL Extension 86

4.4.2 Encoding Positive-Knowledge Formulas 90

4.5 Verification of Positive-Knowledge Formulas 92

4.5.1 Base Case . 92

4.5.2 Induction Step . 93

4.6 An Example Proof . 96

4.6.1 Base Case . 96

4.6.2 Induction Step . 97

4.7 Properties of the Generalised Verification Method 101

4.7.1 Soundness . 103

4.7.2 Restricted Completeness . 104

4.7.3 Sound and Complete Verification at Fixed Depth 106

4.8 Improvements . 106

4.8.1 Strengthening the Base Case Proof 106

4.8.2 Adding Previously Proved Positive-Knowledge Formulas 107

4.8.3 Proving Multiple Properties At Once 108

4.9 Discussion . 109

4.10 Summary . 110

CONTENTS ix

5 Implementation 111
5.1 Domain Calculation . 111
5.2 Optimisations . 114

5.2.1 Reducing the Number of Clauses 114
5.2.2 Formula Encoding With Variables 116

5.3 The Answer Set Solving Collection Potassco 118
5.3.1 Clingo . 118
5.3.2 IClingo . 119

5.4 Experimental Results . 119
5.4.1 Sequence Invariants . 120
5.4.2 Epistemic Sequence Invariants 124
5.4.3 Weak Winnability . 128

5.5 Summary . 131

6 Related Work 133
6.1 Solving Single-Player Games . 133

6.1.1 Automated Planning . 133
6.1.2 Via Answer Set Programming . 134

6.2 Verification of Game Properties . 135
6.2.1 ATL Formulas via Model Checking 135
6.2.2 State Invariants via Answer Set Programming 137
6.2.3 Epistemic Properties via Epistemic Logic 139

6.3 Summary . 140

7 Conclusion 141
7.1 Main Contributions . 141
7.2 Future Work . 143

Bibliography 145

Chapter 1

Introduction

Autonomous Computer Systems have become an integral part in everyday life, being
entrusted with a wide range of tasks such as the surveillance of good production in
factories, the automated steering of vehicles, the efficient scheduling of process cycles,
or the trading at stock markets. All these scenarios have a common structure: they
involve one or more participants which manipulate the current state by performing
certain actions with the goal to eventually maximise their outcome. Several participants
may compete against each other, persue common interests, or not be of mutual influence
at all. This general structure can be referred to as a game. Games have been utilised to
model scenarios from a wide range of sciences such as mathematics, economics, biology
and philosophy, allowing to benefit from insights and results in the well-established
field of Game Theory which is concerned with the formal analysis of games.

In recent years, many game-playing systems have grown to show convincing perfor-
mance in practice. Especially in the field of classic board games, super-human perfor-
mance can often be achieved, and some board games are even completely solved [Sch00].
For example, IBM’s Deep Blue system [CHH02] defeated the reigning world champion
Garry Kasparov in chess in 1997, and perfect play in Checkers was shown to lead
to a draw in 2007 [SBB + 07]. A common approach to efficiently playing games au-
tomatically is the incorporation of knowledge concerning the specific domain as well
as human expert moves via huge databases. Consequently, the intelligence of these
programs mainly originates from the programmer rather than the system itself. Fur-
thermore, these systems are hard-wired to one specific game and hence cannot directly
be used to play different or even newly created games. In a world which requires in-
creasing dynamics and flexibility, Artificial Intelligence therefore encounters a challenge
with growing interest: the development of systems which are able to play and reason
about arbitrary games. This is the idea of General Game Playing.

1.1 General Game Playing

The term General Game Playing (GGP) first appeared in connection with a program
that was able, in principle, to play arbitrary chess-like board games [Pit68]. Although
two further approaches followed some decades later [Pel93, KP97], wide interest in this
research area first spread with the launch of an international competition for General
Game Playing in 2005 [GLP05, Thi11b]. Following the style of the first competition

1

2 CHAPTER 1. INTRODUCTION

for single-agent planning in 1998 [McD00], the special-purpose Game Description Lan-
guage (GDL) [LHH + 06] has been developed to provide a unified framework for the
description of complete-information games and hence promoted the development and
exchange of new methods and ideas and their direct evaluation in a competitive envi-
ronment. Its recent extension to incomplete-information games [Thi10] was shown to
be capable of formulating arbitrary games in the sense of Game Theory [Thi11a]. The
GDL provides a compact way to describe the rules of a game based on a structure sim-
ilar to the declarative programming language Prolog, allowing to deduce game-specific
information—such as the initial state, the legal moves, and the goal conditions—by the
straightforward application of existing standard Prolog inference mechanisms.

Using these mechanisms, an agent which exhaustively evaluates the game tree to
find the current best move can easily be implemented. However, the time-restricted
setting of the competition allows exhaustive search in a few very simple games only and
is not possible in more complex games like Chess at all. Successful players hence need to
utilise other evaluation techniques as well. Monte Carlo Tree Search [KS06, Cou07] as
a form of selective blind search has been successfully applied in this endeavour [FB11,
KSS11, KE11, MC11, MSWS11]. As it estimates potentially valuable successor states
by performing random playouts to terminal states, it does not rely on any structural
analysis of the game. Recent developments however indicate that further progress in
this direction is possible only with the incorporation of knowledge about the game at
hand [FB11, KSS11]. A whole body of work confirms this trend, identifying structural
game knowledge to be of major assistance to a general game player for tasks such as
the following.

Game Classification The general structure of the GDL allows to describe a wide
range of diverse problems, not all of which might effectively be tackled with
the same technique. For example, Minimax search with α-β pruning [RN03]
is only applicable to two-player zero-sum games with alternating moves. The
classification of a game, as well as information concerning which of the play-
ers are teammates or opponents, enables a player to choose the most efficient
algorithm [KDS06, Sch11].

Search Space Reduction As the search space grows exponentially with respect to
search depth, exploiting game specific structures can lead to a major increase
of efficiency. Detected symmetries allow to search structurally similar parts of
the game tree only once [Clu07, Sch10]. Identified independent subgames can
be considered separately [CSMG09, ZST09] in order to cut down the branching
factor of the search tree. Player payoffs that monotonically increase during game
play allow to neglect subtrees rooted in states whose payoffs are smaller than the
currently best found.

Heuristic Construction Structural Knowledge can be exploited for the evaluation
of states, the most common identified structures are mentioned in the follow-
ing [Clu07, Kai07, KDS06, MS11, MT09, ST07]. Game boards, i.e. cells which
are connected according to some adjacency relation, provide valuable information
concerning pieces such as rooks, crosses, or counting tokens. These can in turn
be utilised for distance estimates to desired (partial) goal states and estimates on
the value of states by their current quantity or diversity of potential moves. Fur-

1.2. AUTOMATED THEOREM PROVING FOR GGP 3

thermore, knowledge about structural persistence, such as markers that remain
placed until the end of the game, can be exploited to speed up and improve the
state evaluation function [CSMG09, Sch11] during game play.

1.2 Automated Theorem Proving for GGP

As the GDL provides the bare rules of a game only, game-specific knowledge which helps
to achieve better game play has to be extracted by an automated general game player
fully automatically. To this end, successful general game-playing systems perform
random game simulations to test the validity of certain properties, and rely on their
informed guess in case no violation could be detected. Consequently, the players run
the risk of serious drawbacks in case property violations occur in parts of the game
tree that have not been visited. E.g., a wrong game classification may suggest an
unsuited technique that considerably reduces performance or yields wrong results; a
search space reduction may cut off an easy win or an avoidable loss from consideration;
and a heuristic based on erroneous beliefs may result in the expansion of potentially
useless states. A method which formally verifies game properties can hence be of
valuable assistance to a general game-playing system. Even beyond this setting, a
verification system can be utilised by the game designer to reliably obtain insights on
a newly created game.

Structural Validity While the syntactic structure of a game description can easily be
checked, the description may nevertheless deviate from the exact intended game
semantically. This scenario occurred during the 2006 AAAI Competition, and
caused quite some disturbance among both participants and organisers (we have
a further look on this incident in Section 3.1). A verification system can assist
to prove desired structural properties such as the uniqueness of cell content, the
possibility of each player to perform a legal move in each non-terminal state, the
termination of the game with consistent payoff information after finitely many
steps, and the possibility to win for each of the players.

Player-Specific Knowledge The recent extension of the GDL to incomplete-infor-
mation games poses further challenges to the game designer. For example, the
information of players may not be sufficient to know which moves they can apply,
whether the game has terminated in the current game state, or which payoffs
apply in terminal states.

A system which is able to formally verify this kind of knowledge can additionally
be used by the player to exploit information about what an opponent knows in
several game states, for example by choosing actions that reveal as few hints
about the current game state to the opponent as possible.

Problem Analysis Since each game in the general sense of Game Theory is express-
ible in GDL, a wide range of problems from various sciences can be described with
this formalism. Once a newly designed game description for a specific problem
matches all desired structural criteria, a formal verification system can provide
valuable insights on complex hidden specifics of the problem and hence actively
foster its understanding.

4 CHAPTER 1. INTRODUCTION

The first approach that addresses the formal verification of game properties in the
field of General Game Playing has been given in [vdHRW07b]. It allows the spec-
ification of rich properties over the GDL for complete-information games. A recent
follow-up considers player-specific knowledge in properties which involve exactly one
state [RT11a]. Since property verification amounts to a full state space analysis in both
approaches, they are however unsuited for players and designers in the General Game
Playing setting alike, which mainly concentrates on games that are far beyond reach
of reasonably-timed exhaustive search in practice.

A further approach has been able to circumvent this problem by applying the proof
method of induction [ST09], achieving practicable timings for the verification of prop-
erties even in complex games. Properties do not concern player-specific knowledge and
are restricted to consider exactly one state, and successfully verified properties amount
to be state invariants which hold in each reachable state of the game.

In this thesis, we build on the suggested induction method for the verification of
knowledge-free state invariants to establish the first comprehensive framework which
allows to formulate, and efficiently verify in practice, a wide range of properties over
the GDL. Verifiable properties are invariants of reachable game states and may involve

• local temporal reference, e.g. to formulate and verify how specific information in a
current game state influences arbitrary finitely reachable future game states, and

• player-specific knowledge, e.g. to formulate and verify what is known to a player
in certain game states in the setting of incomplete-information games, possibly
interconnected with local temporal reference.

To this end, we proceed as follows.

1.3 Structure of the Thesis

• In Chapter 2, we introduce the foundations that we will need throughout the
thesis. Especially, we introduce Answer Set Programming [GL88, Gel08] as an
alternative semantic to Prolog programs and present some additional language
constructs. We then give a short account on the formalisation of games in Game
Theory, which is followed by the presentation of the syntax of the Game Descrip-
tion Language and a multiagent semantic based on state transition systems.

• In Chapter 3, we develop syntax and semantic of a simple yet expressive property
description language to address knowledge-free properties with local temporal
reference, combining elements from the GDL and Temporal Logic. We then
provide a proof theory which is able to verify these properties with respect to a
given game description using Answer Set Programming. We formally prove the
soundness of our method, and show that completeness can be obtained under
additional requirements. We further show that the method can be adjusted to
completely solve single player games and develop an extension which further
increases proof efficiency by considering multiple properties at once.

• In Chapter 4, we extend our language to address the formulation of player-specific
knowledge. We provide a semantic based on possible worlds which satisfies the

1.3. STRUCTURE OF THE THESIS 5

S5 properties (see, e.g., [FHMV95]), and develop an alternative semantic based
on interconnected state sequences which is provably equivalent with respect to
properties that do not involve formulations about what players do not know. We
then generalise our formal proof method and the respective soundness and com-
pleteness results from Chapter 3 to this extension. Chapters 3 and 4 constitute
the main theoretical contributions of this thesis.

• In Chapter 5, we sketch our implementation of the proof method on top of the
successful general game player Fluxplayer [ST07, Sch11], integrating tools from
the state-of-the-art answer set solving collection Potassco [GKK + 11a]. We then
report on a variety of experiments which show that our method is practically
applicable even in complex games.

• In Chapter 6, we discuss related approaches to proving properties over the GDL,
including all approaches that have been mentioned in Section 1.2.

• In Chapter 7, we summarise our main contributions and provide pointers to future
work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we summarise notions and results which are known from the literature
and will be needed throughout this work. It includes and extends passages of own
published work (we give a detailed overview of included own published material in
Section 7.1). The chapter is divided into two parts. In Section 2.1, we introduce logic
programs, which form the basis for the formulation of games in the setting of General
Game Playing. We provide additional language constructs from the field of Answer Set
Programming that will be needed to establish our formal verification method for game
properties. In Section 2.2, we first give a formal characterisation of games by means of
Game Theory. We then introduce the Game Description Language as a representation
formalism for games, provide a characterisation of several game properties, and sketch
an architecture which allows automated agents to play arbitrary games.

2.1 Answer Set Programming

Logic Programs with negation are a common formalism to represent and reason about
knowledge, and the advantages and drawbacks of several interpretations, including pro-
cedural semantics via SLDNF resolution and declarative semantics based on first-order
logic, have extensively been studied in the literature (see, e.g., [ABW87, Llo87, Apt97]
for a comprehensive introduction). Distinguished from these approaches, the answer
set semantics introduced in [GL88] has received remarkable attention, as its generate-
and-test strategy allows to circumvent some of the drawbacks of previously introduced
semantics. Further work, including extensions to incorporate classical negation and
disjunctive information [GL91], has led this line of research to identify as the new
paradigm of Answer Set Programming [MT99, Nie99, LTT99]. It now provides a vari-
ety of concepts beyond classical logic programs, including weight constraints [NSS99]
and nested logical connectives [LTT99], and has hence become popular as a convenient
modelling formalism. Thorough introductions to this active field of research can be
found in [Gel08] and [FL05a].

In the following we shortly present the syntax of logic programs as in [Llo87]
and [Apt97] (Section 2.1.1) and restate the original answer set semantics introduced
in [GL88] (Section 2.1.2). These concepts will be needed to define syntax and seman-
tics of the Game Description Language. We then introduce a special class of weight
constraints [NSS99] (Section 2.1.3) which is needed to establish our proof method.

7

8 CHAPTER 2. PRELIMINARIES

2.1.1 Syntax of Logic Programs

For the definition of a logic program, we follow the style of [ST10].

Definition 2.1 (Logic Program).

• A term is either a variable, or a function symbol with n terms as arguments. In
case n = 0, a term is also called constant.

• An atom is a predicate symbol with terms as arguments.

• A literal is an atom a, also called positive literal, or its negation not a, also
called negative literal.

• A (simple) clause is of the form h :- l1, . . . , ln. (n ≥ 0), to be understood as
implication of the form “if l1 and . . . and ln, then h ”, where

– h is an atom, called head of the (simple) clause, and

– each li is a literal, l1, . . . , ln is called body and each li is called body
literal of the (simple) clause.

When n = 0, a (simple) clause is written in the form h. and called fact.

• A logic program is a finite set of (simple) clauses.

An expression is a term, a literal, or a (simple) clause. An expression is called ground
if it does not contain variables.

Throughout this work we use the Prolog convention of denoting variables by up-
percase letters while predicate and function symbols start with a lowercase letter. We
sometimes abbreviate atoms p(t1, . . . , tk) by p(~t) and terms f(t1, . . . , tk) by f(~t).

A logic program G uniquely determines a (usually infinite) set of terms Σvar as
follows. By f/k we denote a function symbol f and its arity k, and define a set
F such that f/k ∈ F if and only if term f(t1, . . . , tk) occurs in G for some terms
t1, . . . , tk . The set of terms Σvar over G is defined as the smallest set such that:

• If X is a variable, then X ∈ Σvar .

• If f/0 ∈ F , then f ∈ Σvar .

• If f/k ∈ F and t1, . . . , tk ∈ Σvar (k ≥ 1), then f(t1, . . . , tk) ∈ Σvar .

Finally, the set of ground terms Σ over G comprises all terms from Σvar which do
not contain variables. Similar to the set F of function symbols with arities, we define
a set P of predicate symbols with arities which contains all elements p/k for which
an atom p(t1, . . . , tk) occurs in G. The set of atoms over G is then given as the
smallest set that contains p(t1, . . . , tk) if p/k ∈ P and t1, . . . , tk ∈ Σvar . The set
of all ground atoms over G comprises all elements of the previous set which do not
contain variables.

A substitution is used to replace variables with terms in expressions. More formally,
a substitution θ is a finite set {X1/t1, . . . , Xn/tn} such that X1, . . . , Xn are variables

2.1. ANSWER SET PROGRAMMING 9

and t1, . . . , tn are (possibly non-ground) terms from Σvar . An instance of an expres-
sion E (wrt. θ) is obtained by simultaneously replacing each occurrence of variable
Xi in E by term ti for all 1 ≤ i ≤ n. The (possibly infinite) set of ground instances
of clauses of a logic program G is obtained by applying all substitutions to clauses in
G which replace variables with arbitrary ground terms from Σ. Two expressions E
and E′ unify if there is a substitution θ such that the instances of E and E′ wrt. θ
coincide. We will now introduce two subclasses of logic programs with interesting prop-
erties (mentioned below) that will be of importance later on. Their definition requires
the notion of a set partition, which is defined as a collection of subsets S1, . . . , Sn of
a set S such that the Si are pairwise disjoint and their union yields S . A partition
will also be written as S = S1 ∪̇ . . . ∪̇ Sn in the following.

Definition 2.2 (Stratified and Allowed Logic Program).

• A logic program G is called stratified [ABW87] if there is a partition G =
G1 ∪̇ . . . ∪̇ Gn such that, for each 1 ≤ i ≤ n, the following are true:

– For each positive body literal a which occurs in a clause in Gi, all clauses
of G with head a are contained within

⋃
j≤iGj .

– For each negative body literal not a which occurs in a clause in Gi, all
clauses of G with head a are contained within

⋃
j<iGj .

• A logic program is called allowed [LT86] if, in each of its clauses c, all variables
occurring in c occur also in a positive body literal in c.

The following definition, first given in [ABW87], is helpful for determining whether
a logic program is stratified, and provides a notion for the structural dependency of
program atoms. We follow the style of [ST10].

Definition 2.3 (Dependency Graph). The dependency graph for a logic program G
is a directed, labelled graph whose nodes are the predicate symbols that occur in G and
where there is a positive edge p +→ q if G contains a clause p(~s) :- . . . , q(~t),,
and a negative edge p −→ q if G contains a clause p(~s) :- . . . ,not q(~t), We say
p depends on q in G if there is a path from p to q in the dependency graph of G.

A logic program G is stratified if and only if there are no cycles involving a negative
edge in the dependency graph of G [ABW87]. This classification is useful as strat-
ified programs will play an important role in the definition of the Game Description
Language. We close this section with an example.

Example 2.4 (Stratified and Allowed Logic Program). Consider the logic program G:

a(1).

a(2).

b(2).

p(X) :- a(X), not b(X).

q :- r.

r :- q, not p(1).

G is easily seen to be allowed. Moreover, it is stratified since (among others) there is a
partition G = G1 ∪̇ G2 ∪̇ G3 that matches the requirements of Definition 2.2, namely
such that G1 = { a(1)., a(2)., b(2).}, G2 = { p(X) :- a(X), not b(X).}, and
where G3 contains all remaining clauses.

10 CHAPTER 2. PRELIMINARIES

2.1.2 Answer Set Semantics for Logic Programs

Logic programs can be understood as first-order logic formulas, treating variables uni-
versally quantified in front of each clause and conjunctively connecting the clauses.
Hence they qualify for a declarative model-theoretic semantics. We will not specify
this semantics here, but focus on a subclass of models widely known as Herbrand Mod-
els which will be important for the answer set semantics.

Definition 2.5 (Herbrand Model). Let G be a logic program and let A be a set of
ground atoms over G. Then A is a model for ground atom a iff a ∈ A, and A is
a model for ground negative literal not a iff a /∈ A. Finally, A is a Herbrand Model
for G iff, for all ground instances c of clauses in G, A being a model for all body
literals of c implies that A is a model for the head of c.

Logic programs without negation are well known to provide a unique minimal Her-
brand Model A, meaning that dropping any subset of A results in a set which is not
a Herbrand Model itself. In the case of negation, this is not generally true: a logic
program can have several, a unique, or no minimal Herbrand Model. However, logic
programs that are stratified (cf. Definition 2.2) are known to admit a unique standard
model [ABW87], a specific Herbrand Model that is considered the “most intuitive” in-
terpretation of a logic program. It is minimal (although there could be other minimal
Herbrand Models as well) and supported, meaning that every atom in the standard
model is an instance of the head of a clause of the logic program.

Having defined Herbrand Models, we are now prepared for the answer set semantics
of logic programs as given in [GL88]. It provides a subclass of Herbrand Models with
interesting properties that will be summarised below.

Definition 2.6 (Answer Set Semantics). Given a logic program G and a set of ground
atoms A over G, let GA be the set of negation-free implications h :- a1, . . . , ak.,
obtained by taking all ground instances of clauses in G and

• deleting all clauses with a negative body literal not a such that a ∈ A,

• deleting all negative body literals from the remaining clauses.

Then A is an answer set for G if and only if A is the unique minimal Herbrand
Model for GA.

Each answer set of a logic program is minimal [GL88] and supported [Lif96]. It
is easy to see that for logic programs without negation, there is a unique answer set
which coincides with the unique minimal Herbrand Model. Including negation, a sim-
ilar correspondence can be established for some logic programs: if a logic program is
stratified, then it admits a unique answer set which coincides with the unique standard
model [GL88]. In the following, for a stratified logic program G, we write G ` p to
denote that ground atom p is contained in this unique answer set or, equivalently, that
p is contained in the unique standard model for G.

Example 2.7 (Herbrand Model and Answer Set). Reconsider the program G from
Example 2.4 together with the set of ground atoms A = { a(1), a(2), b(2), p(1)}.
Then GA is

2.1. ANSWER SET PROGRAMMING 11

a(1).

a(2).

b(2).

p(1) :- a(1).

q :- r.

and A is the unique minimal Herbrand Model for GA. Hence, A is an answer set for
G, and it is unique since G is stratified (as shown in Example 2.4).

2.1.3 Extension of Logic Programs by Weight Atoms

For the direct formulation of cardinalities and costs in combinatorial problems, the
concept of weight constraints has been included, among others, to the syntax and
answer set semantics of logic programs [NSS99]. They allow to provide a lower and
an upper bound to the sum of previously assigned weights for literals which occur in
an answer set. We will only make use of the special case of weight atoms1, where the
lower bound equals or is greater than zero, the mentioned literals are positive (and
hence atoms), and their weights are 1. In the following, we formally include weight
atoms to the syntax of logic programs and adapt the semantics from [NSS99] to our
setting.

Definition 2.8 (Answer Set Program).

• A weight atom is of the form l{a1, . . . , ak}u, where k, l ∈ N, u ∈ N ∪ {∞},
0 ≤ l ≤ u, and a1, . . . , ak are ground atoms.

• A clause is of the form h :- l1, . . . , ln., where

– h is either an atom or a weight atom, and

– each li is either a literal or a weight atom.

• An answer set program is a finite set of clauses.

If a weight atom l{a1, . . . , ak}u occurs in the head of a clause, each ai ∈ {a1, . . . , ak} is
considered a clause head. The notions of fact, body, expression and groundness extend
to answer set programs as expected. As a shorthand, we may refer to an answer set
program as a program.

For a weight atom l{a1, . . . , ak}u, both l and u can be omitted, which is tacitly
interpreted as l = 0 and u = ∞, respectively. The semantics of this additional
construct will be given as an extension of Definitions 2.5 and 2.6 in the following.
Intuitively, the clause reduction from Definition 2.6 removes all clauses which contain
some negative body literal which does not agree with the answer set candidate, and
all negative body literals in the remaining clauses are omitted. Concerning weight
atoms, the upper bound u can be considered as negative information, formulating
that there are no u + 1 atoms out of the specified set which hold in the answer set
candidate (the lower bound l, at the contrary, states the positive information that
there are l instances). Seen that way, the following definition is a natural extension

1Weight atoms are called “cardinality constraints” in [NSS99].

12 CHAPTER 2. PRELIMINARIES

of Definition 2.6. It removes all clauses with unagreed negative information (that is,
clauses that contain a weight atom with non-matching upper bound), and removes the
negative part (the upper bound) of weight atoms in the remaining clauses. Weight
atoms in the head of a clause, however, need a special treatment.

Definition 2.9 (Extension of the Answer Set Semantics). Let G be an answer set
program and A be a set of ground atoms. A is a model for weight atom l{a1, . . . , ak}u
iff A contains at least l and at most u different elements of {a1, . . . , ak}. A is a
model for G iff, for all ground instances c of clauses in G, A being a model for all
body literals and body weight atoms of c implies that A is a model for the head atom
or head weight atom of c.

Now let GA be the set of negation-free implications h :- l1, . . . , lk. obtained by per-
forming the reductions from Definition 2.6 on all ground instances of clauses in G
and, additionally,

• deleting all clauses with a weight atom in the body such that answer set candidate
A exceeds its upper bound,

• deleting all upper bounds from body weight atoms in the remaining clauses, and

• replacing each remaining clause of the form l{a1, . . . , ak}u :- l1, . . . , ln., by a
set of clauses ai :- l1, . . . , ln., for each ai ∈ {a1, . . . , ak} ∩ A.

The reduced set of clauses GA admits a unique minimal model [NSS99], and A is
an answer set for G if and only if it coincides with this unique minimal model and,
additionally, is a model for G.

Also in this extended setting, each answer set is known to be supported [Fer05].
However, it is not necessarily minimal. This is easily seen with the answer set program
{0{a}1.}, which has the two answer sets {} and {a}. The additional requirement that
A is a model for G is necessary for the correct treatment of weight atoms in clause
heads. E.g., consider the answer set program G = {0{a}0.} and the set A = {a},
which clearly should not be an answer set for G. However, GA = {a.} and hence
coincides with A, which yields that A is an answer set when omitting the requirement.

To express that literals l1, . . . , ln should not be true together, we will further make
use of the construct

:- l1, . . . , ln.,

which we will call a constraint. Several semantics have been suggested, we decide in
favour of the semantics from [NSS99] which considers constraints as abbreviation for
1{} :- l1, . . . , ln. Note that the answer sets of G ∪ { :- l1, . . . , ln.} are exactly the
answer sets of G except for those that do satisfy all of l1, . . . , ln.

In [LT94], a Splitting Theorem for logic programs (including disjunction in clause
heads) has been introduced. It has been extended to nested formulas in [EL04] and fur-
ther been generalised in [Fer05]. We adapt the last-mentioned version to our restricted
setting of weight atoms, using the fact that weight atoms can equivalently be expressed
as nested formulas [FL05b]. The theorem will play an important role in the proofs of
several properties of our verification method. It basically states that an answer set pro-
gram can be split into a basic part and an additional part whenever the basic part does

2.1. ANSWER SET PROGRAMMING 13

not involve atoms of the additional part, and that the splitting preserves (a reduced
version of) the answer sets of the basic part.

Theorem 2.10 (Splitting Theorem). Let P and Q be two programs such that atoms
in P are not unifiable with heads from clauses in Q. Then AP∪Q is an answer set
for P ∪ Q iff the set AP , obtained from AP∪Q by restricting to instances of atoms
from P , is an answer set for P and AP∪Q is an answer set for (

⋃
a∈AP {a.}) ∪Q. �

Note that, for two programs P1 and P2 which relate to a program Q as P relates
to Q in Theorem 2.10, the following is implied: if AP1∪Q is an answer set for P1 ∪Q
and its restriction AP1 to instances of atoms from P1 is also an answer set for P2,
then AP1∪Q is an answer set for P2 ∪ Q as well. This correspondence will prove
valuable for the consideration of relations between answer set programs P1 and P2 in
the presence of additional contexts Q. For a better understanding of the introduced
notions, we give another example.

Example 2.11 (Answer Set and Splitting Theorem). Consider the following pro-
gram G:

2 {a(1), a(2), a(3)} 2.

b(2).

p(X) :- a(X), not b(X).

q :- 1 {r, q} 1.

r :- q, 0 {p(1), q} 0.

Further consider the set of ground atoms A = { a(1), a(2), b(2), p(1)}. Then GA

is the following program.

a(1).

a(2).

b(2).

p(1) :- a(1).

p(3) :- a(3).

q :- 1 {r, q}.

A is the unique minimal model for GA. Since, additionally, A satisfies G, A is also
an answer set for G. However, it is not unique: the sets A′ = { a(2), a(3), b(2), p(3)}
and A′′ = { a(1), a(3), b(2), p(1), p(3)} are answer sets for G as well.

One possibility to split G according to Theorem 2.10 is the following: Let P be
the clauses from the first two lines of G, and let Q be the remaining clauses. The
head atoms a(1), a(2), a(3), b(2) of P are not unifiable with the head atoms
p(X), q, r from Q. Since the above-mentioned set A = { a(1), a(2), b(2), p(1)}
is an answer set for G = P ∪ Q, direction ⇒ of Theorem 2.10 implies that the set
AP = { a(1), a(2), b(2)} is an answer set for P , and that A is an answer set for

a(1).

a(2).

b(2).

p(X) :- a(X), not b(X).

q :- 1 {r, q} 1.

r :- q, 0 {p(1), q} 0.

14 CHAPTER 2. PRELIMINARIES

AP = { a(1), a(2), b(2)} is also an answer set for the following program P ′.

a(2).

a(1) :- a(2).

b(2) :- a(1), a(2).

Hence, by the remark following Theorem 2.10, A is also an answer set for the program
G′ = P ′ ∪Q.

2.2 General Game Playing

In this section, we introduce to the field of General Game Playing. To this end, we
formally define a game by means of Game Theory. We then introduce a compact
specification language for games, the Game Description Language, and give a transition
semantics based on answer sets for logic programs. We conclude this section with a
list of properties that are mentioned throughout this work and shortly summarise how
communication is organised between a control instance and players during game play.

2.2.1 Formalisation of Games

In the field of Game Theory (see, e.g., [Ras07] and [Osb04] for an introduction), two
equivalent formal notions have been established, the strategic form and the extensive
form of a game. We restate the latter definition, following the style of [Thi11a] which
is based on [Ras07].

Definition 2.12 (Game). An n-player game (n ≥ 1) consists of:

1. a finite tree composed of states, called game tree, where the root is called initial
state and the leaves are called terminal states;

2. a function which maps each non-terminal state to a player or the additional
pseudo player “Nature”, indicating that the state belongs to that player or Nature;

3. a function which maps each terminal state to a real-numbered payoff for each
player excluding Nature;

4. a probability measure for each state S of the game tree which belongs to Nature,
assigning a probability to each successor of S (the probability with which Nature
“chooses” that successor);

5. for each player r (excluding Nature) and each set Hi of all nodes of the game
tree at depth i, a partition called information partition Hi = Hi,1 ∪̇ . . . ∪̇ Hi,n
into information sets such that:

(a) all children of a node which belongs to r are in different information sets
of Hi+1; and

(b) if i > 0, then for all information sets Hi,j ⊆ Hi the predecessors of all
nodes in Hi,j are in the same information set of Hi−1.

2.2. GENERAL GAME PLAYING 15

The (finite) set of actions2 of each player r is implicitly given by the nodes which
belong to r (item 2) in the game tree (item 1) and win, loss, as well as intermediate
results can be specified with the payoff function (item 3). In addition to the n players, a
pseudo player “Nature” is defined which, according to item 4, allows to model elements
of chance like the outcome of rolling dice or tossing coins. Item 5 allows to specify
incomplete information3 of a player, e.g. when he is not informed about his opponents
cards in a card game. This is achieved by an information partition for each player r
and each stage of the game (corresponding to a depth i of the game tree) such that
each information set exactly contains the states which are indistinguishable for r at
that particular stage. Each partition has to be such that r knows his own moves
(item 5a) and such that r can distinguish two states S and S′ whenever he is able
to distinguish their predecessors (item 5b).

According to Definition 2.12, players always have to take turns making their moves.
However, simultaneous moves can be simulated by sequences of single-player moves, not
letting the players know about the outcome of previously taken moves in that sequence
by specifying appropriate information partitions [Ras07]. We conclude this section with
an example that will be needed and further developed throughout the remainder of this
work.

Example 2.13 (The Game Quarto). “Quarto” [Kis03] is played on a 4×4 game board
and involves two players. It uses 16 different pieces, one for each combination of four
characterising binary attributes (e.g. short/tall, black/white, etc.). Initially, the board
is empty and the first player starts by selecting one of the pieces for placement by
the second player. The players take turns repeating this procedure with yet unplaced
pieces until either no more pieces are available (in which case the game ends in a draw)
or one player wins by having completed a horizontal, vertical or diagonal line of four
pieces with at least one shared attribute (e.g., they are all white).

Quarto can be modelled as a 2-player game according to Definition 2.12: The
game tree is indicated in Figure 2.1, where the initial state (the root node) belongs
to the first player, its successors to the second player, their successors again to the
second player, etc. Additional information concerning the last-moving player can easily
be added to each state, enabling the definition of a payoff function which correctly
accounts for win, draw and loss of a player e.g. by assigning payoff 100, 50, and 0,
respectively. Neither chance nor incomplete information are involved in Quarto, hence
the probability measure is negligible, and each information partition of all states Hi
at depth i divides into singleton sets Hi,j = {S} for all states S at depth i.

2.2.2 Syntax of the Game Description Language

Definition 2.12 provides a general and natural characterisation of a game, but most
games have huge state spaces and therefore cannot be directly specified via this model
in practice. This motivated the development of the general Game Description Language

2We will use the terms action and move interchangeably in this work.
3As pointed out in [Thi10], there is a clash of terminology: in Artificial Intelligence, an agent who is

not fully aware of the current state of the environment is said to have incomplete information, whereas
Game Theory uses the term imperfect information. We decide to adopt the terminology from [Thi10].
A more formal classification of when we understand a game to be of incomplete information is deferred
to Section 2.2.4.

16 CHAPTER 2. PRELIMINARIES

selected: △

△

△

selected: N

△ N

...

. . .

△

N

...

. . .

△

selected: �

...

. . .

△

...

. . .

selected: �

...

Figure 2.1: An excerpt of the game tree for the game Quarto (cf. Example 2.13). Dashed circles indicate
nodes belonging to player 1 (hence, player 1 makes the first move), solid-circled nodes belong to player
2. Different attributes for the (schematic) pieces used here are black/white and square/triangle.

(GDL) [GLP05, LHH + 06], which can be used to provide a fully axiomatic, compact
description of any n-player game. On the one hand the language is declarative and
easy to understand and use by humans, and on the other hand it can be processed fully
automatically by a general game-playing system.

In the following, we restate the syntax of the GDL in its recently extended ver-
sion which incorporates incomplete information and elements of chance [Thi10]. As
a language especially designed for game descriptions, the GDL uses pre-defined key-
words. A complete list of the keywords together with their intended meaning is given
in Table 2.1. Most of the keywords are predicate symbols. The only exception is the
constant random, which represents the counter part of the pseudo player “Nature” in
Definition 2.12 and can be used to model elements of chance and hidden information.
A description of a game is defined as a logic program with some restrictions imposed
on the use of these keywords.

2.2. GENERAL GAME PLAYING 17

role (r) r is a player
init (f) f holds in the initial position

distinct (t1, t2) terms t1 and t2 are syntactically unequal

true (f) f holds in the current position
legal (r,m) player r can do move m in the current position
does (r,m) player r does move m
next (f) f holds in the next position

terminal the current position is terminal
goal (r, n) player r gets n points in the current position

sees (r, p) player r perceives p in the next position
random the random player

Table 2.1: The keywords of the GDL. random is a constant, all other keywords are predicate symbols.

Definition 2.14 (GDL Syntax). A GDL specification is a logic program where

• if role appears as head of a clause, then this clause is a fact;

• init only appears as head of clauses and does not depend on any of true, legal,
does, next, sees, terminal, or goal;

• distinct only appears in the body of clauses;

• true only appears in the body of clauses;

• does only appears in the body of clauses, and none of legal, terminal, or
goal depends on does;

• next and sees only appear as head of clauses.

Keyword distinct is handled by tacitly assuming an additional (finite) stratified and
allowed set of clauses encoding that distinct(s, t) holds exactly for each pair s, t ∈ Σ
of syntactically different ground terms.

Sometimes, GDL specifications also contain disjunction in the bodies of clauses.
These however can always be reformulated to match the structure of a logic program
and are hence neglected here. In the following, we use the terms GDL specification,
game description and GDL description interchangeably. As a convention, values n
for goal(r, n) range over {0, 1, . . . , 100}. We recall from [LHH + 06] the additional
restrictions on game descriptions that ensure finiteness of the set of derivable instances
for all relevant queries. Our definition again follows the style of [ST10].

Definition 2.15 (Valid GDL). To constitute a valid GDL specification, a logic pro-
gram G and its dependency graph Γ must satisfy the following.

• G must be stratified and allowed (cf. Section 2.1.1).

• If p and q occur in a cycle in Γ and G contains a clause

p(s1, . . . , sm) :- l1(~t1), . . . , q(v1, . . . , vk), . . . , ln(~tn)

then for every i ∈ {1, . . . , k},

18 CHAPTER 2. PRELIMINARIES

– vi is ground, or

– vi is one of s1, . . . , sm, or

– vi occurs in some ~tj (1 ≤ j ≤ n) such that lj does not occur in a cycle
with p in Γ.

The last condition imposes a restriction on the combination of function symbols and
recursion to ensure finiteness and decidability in all cases.

In the Game Description Language, players are assumed to always perform simul-
taneous moves, and the union of all moves taken at a certain game stage is also called
a joint move. Sequential moves can be represented using pseudo actions without effect
for all the players which are currently not allowed to move. We conclude this section
with a complete GDL specification for the game Quarto as introduced in Example 2.13.

Example 2.16 (GDL Specification for Quarto). A complete GDL specification for
Quarto (cf. Example 2.13) is shown in Figure 2.2. The two players are called r1, r2,
and the 16 pieces are represented by constants p0000, p0001, p0010, . . ., p1111,
where each bit position stands for one of the four attributes. The actions are

• select(p): piece p gets selected for placement,

• place(p, x, y): piece p is placed on the free board cell with coordinates (x, y),
and

• noop: an action without effect, performed by the player who currently has no
control.

The game positions are represented using these state components, henceforth called
fluents:

• cell(x, y, p): board cell (x, y) contains piece p (where p = b for blank cells),

• pool(p): piece p is available for selection,

• sctrl(r): role r currently has control to select a piece,

• pctrl(r): role r currently has control to place a piece, and

• selected(p): the last action has been to select piece p.

Lines 1 and 2 in Figure 2.2 define the names of the two players and the initial
state. A player can select or place a piece when he has control to do so (lines 5 and 6);
otherwise he can only do noop, a move without effect (line 7). Lines 10 to 17 define the
true fluent instances of successor states, including frame axioms for remaining pieces
in the pool (line 10) and persistent marked cells (lines 14 and 15). According to line
20, the two players see each other’s moves, which induces complete information. A
state is terminal if either there is a line of pieces with a common attribute (line 23)
or the board has no empty position (line 24). The player who completes a line wins
the game with maximal payoff 100 (line 27) and leaves his opponent with minimal
payoff 0 (line 29). Both players obtain payoff 50 in case of a completely filled board
with no line (line 28). It is straightforward to verify that this logic program satisfies
all requirements of a valid GDL description.

2.2. GENERAL GAME PLAYING 19

1 role(r1). role(r2). in i t (cell(1,1,b)). ... in i t (cell(4,4,b)).
2 in i t (sctrl(r1)). in i t (pool(p0000)). ... in i t (pool(p1111)).
3

4

5 legal (R,select(P)) :- true(sctrl(R)), true(pool(P)).
6 legal (R,place(P,X,Y)) :- true(pctrl(R)), true(selected(P)), true(cell(X,Y,b)).
7 legal (R,noop) :- role(R), not true(sctrl(R)), not true(pctrl(R)).
8

9

10 next(pool(P)) :- true(pool(P)), not does(r1 ,select(P)),
11 not does(r2 ,select(P)).
12 next(selected(P)) :- does(R,select(P)).
13 next(cell(X,Y,P)) :- does(R,place(P,X,Y)).
14 next(cell(X,Y,S)) :- true(cell(X,Y,S)), does(R,select(P)).
15 next(cell(X,Y,S)) :- true(cell(X,Y,S)), does(R,place(P,X1 ,Y1)), !=(X,Y,X1,Y1).

16 next(sctrl(R)) :- true(pctrl(R)).
17 next(pctrl(R1)) :- true(sctrl(R2)), otherrole(R1 ,R2).

18

19

20 sees(R,move(R2,M)) :- otherrole(R,R2), does(R2 ,M).
21

22

23 terminal :- line.

24 terminal :- not boardopen.

25

26

27 goal(R,100) :- line , placedlast(R).

28 goal(R, 50) :- not line , not boardopen , role(R).
29 goal(R, 0) :- line , otherrole(R,R1), placedlast(R1).

30

31

32 placedlast(R) :- true(sctrl(R)).
33

34 boardopen :- true(cell(X,Y,b)).
35

36 line :- row.

37 line :- column.

38 line :- diagonal.

39

40 row :- true(cell(1,Y,P1)), true(cell(2,Y,P2)),
41 true(cell(3,Y,P3)), true(cell(4,Y,P4)), sameattr(P1,P2 ,P3,P4).

42 column :- true(cell(X,1,P1)), true(cell(X,2,P2)),
43 true(cell(X,3,P3)), true(cell(X,4,P4)), sameattr(P1,P2 ,P3,P4).

44 diagonal :- true(cell(1,1,P1)), true(cell(2,2,P2)),
45 true(cell(3,3,P3)), true(cell(4,4,P4)), sameattr(P1,P2 ,P3,P4).

46 diagonal :- true(cell(1,4,P1)), true(cell(2,3,P2)),
47 true(cell(3,2,P3)), true(cell(4,1,P4)), sameattr(P1,P2 ,P3,P4).

48

49 sameattr(P1,P2 ,P3,P4) :- nthbit(N,P1,Bit), nthbit(N,P2,Bit),

50 nthbit(N,P3,Bit), nthbit(N,P4 ,Bit).

51

52 !=(X1 ,Y1,X2 ,Y2) :- index(X1), index(Y1), index(X2), index(Y2), distinct (X1 ,X2).
53 !=(X1 ,Y1,X2 ,Y2) :- index(X1), index(Y1), index(X2), index(Y2), distinct (Y1 ,Y2).
54

55 nthbit(1,p0000 ,0). index (1). otherrole(r1 ,r2).

56 nthbit(2,p0000 ,0). index (2). otherrole(r2 ,r1).

57 ... index (3).

58 nthbit(4,p1111 ,1). index (4).

Figure 2.2: A GDL specification of the game Quarto.

20 CHAPTER 2. PRELIMINARIES

2.2.3 Transition Semantics for the Game Description Language

While in Section 2.2.1, a state has been introduced as a node in the game tree, the
GDL understands a state as a set of fluents. We will furtheron refer to a state S by
means of the GDL setting. More precisely, we consider a state S to be a subset of the
ground terms Σ over the game description. Interpreting a GDL specification requires
to encode positions and joint moves as logic program facts. To this end, we introduce
two abbreviations: Strue, where S = {f1, . . . , fn} is a finite subset of Σ (a finite
state); and Adoes, where A : {r1, . . . , rk} 7→ Σ is an assignment of moves to players:

Strue := {true (f1). , . . . , true (fn). }
Adoes := {does (r1, A(r1)). , . . . , does (rk, A(rk)). }

(2.1)

With these preliminary considerations, a game description G can informally be inter-
preted as follows [GLP05, LHH + 06, ST10]:

1. Each derivable instance of the form role(r) denotes a player with the name r.
The overall number n of such instances r different from random classifies the
game description to encode an n-player game.

2. Each derivable instance of the form init(f) denotes a fluent f which is true in
the initial state, and all fluents which do not occur in any of these instances are
false in the initial state.

3. The legal moves a of a player depend on the current state S and can be deter-
mined by all instances of head legal(r, a) which are derivable from G extended
by Strue.

4. Similarly, the clauses for terminal and goal(r, n) define terminal states and
payoff n for player r with respect to a given state.

5. A direct successor state S′ can exactly be determined relative to a given finite
state S and the performed joint move A of all players by all the derivable
instances of next(f) from G extended by Strue and Adoes.

6. Similarly, the derivable instances of sees(r, p) with respect to G extended by
Strue and Adoes describe all players’ percepts in successor state S′.

This informal semantics is made precise with the following definition, which was first
given in [ST10] and extended to the generalisation of the language to incomplete in-
formation in [Thi10]. It characterises derivable information via entailment ` over the
unique standard model for a logic program. This is possible since a valid GDL descrip-
tion G is stratified (cf. Definition 2.15), and hence, for each state S and joint action
A, also G ∪ Strue and G ∪ Strue ∪Adoes are stratified.

Definition 2.17 (GDL Semantics). The semantics of a valid GDL specification G
is given by this state transition system (R,Sinit, T, l, u, I, g) :

• the roles or players:

R = {r : G ` role(r)}

2.2. GENERAL GAME PLAYING 21

• the initial state:

Sinit = {f : G ` init(f)}

• the terminal states:

T = {S : G ∪ Strue ` terminal}

• the legality relation:

l = {(r, a, S) : G ∪ Strue ` legal(r, a)}

• the update function:

u(A,S) = {f : G ∪Adoes ∪ Strue ` next(f)}

• the information relation:

I(A,S) = {(r, p) : r 6= random and G ∪Adoes ∪ Strue ` sees(r, p)}

• the goal relation:

g = {(r, v, S) : r 6= random and G ∪ Strue ` goal(r, v)}

for all finite subsets S ⊆ Σ and assignments A : R 7→ Σ, where Σ is the set of ground
terms over G.

Since random is a pseudo player whose sole purpose is the modelling of chance
and incomplete information, it is not included in the information relation and the
goal relation. Hence, sensing information and payoffs for the random player are not
defined. We have omitted the additional probability distribution defined in [Thi10]
which determines the behaviour of random when playing the game, as it will not be of
importance in this work. The syntactic restrictions imposed on valid GDL specifications
justify the restriction to finite sets Strue and Adoes, as the following proposition
from [HST12] shows.

Proposition 2.18 (Finiteness of the GDL). Suppose G is a valid GDL specification,
then

1. {r : G ` role(r)} is finite.

2. {f : G ` init(f)} is finite.

3. {f : G ∪Adoes ∪ Strue ` next(f)} is finite. �

According to this proposition, only states that are finite can be reached from the initial
state in a game described by a valid GDL specification. However, note that the set of
reachable states can still be infinite [ST10] using clauses like

i n i t (f(0)).
next(f(s(X))) :- true(f(X)).

22 CHAPTER 2. PRELIMINARIES

Based on the transition semantics given in Definition 2.17, we introduce some fur-
ther notation concerning successive state transitions from [Thi09, Thi10] which will be
important throughout this work. Single state transitions are based on the formal se-
mantics of the GDL given in Definition 2.17. There is a transition from state S to state
S′ if S is not terminal and can be updated to S′ with respect to a move assignment
A which comprises a legal move for each of the players. Successive state transitions are
then composed of multiple single state transitions. This is formally stated as follows.

Definition 2.19 (State Transitions and State Sequences). For the semantics
(R,Sinit, T, l, u, I, g) of a valid GDL specification and arbitrary finite states S, S′ ⊆ Σ,
we write S A−→ S′, to be read as “state S develops to state S′ under joint action A”,
if the following holds:

• A : R 7→ Σ is such that (r,A(r), S) ∈ l for each r ∈ R,

• S′ = u(A,S), and

• S /∈ T

We call S0
A0−→ S1

A1−→ . . . Am−1−→ Sm (where m ∈ N) a (state) sequence, sometimes ab-
breviated as (S0, S1, . . . , Sm) when reference to A0, A1, . . . , Am−1 is not needed. When
the first state of a sequence σ is the initial state Sinit, we also call σ a development,
and denote the set of all developments by ∆G. Moreover, a state S is called reachable
iff there is a development the last state of which is S.

We denote sequences with σ and developments with δ, possibly with super- or
subscripts. The length of a sequence σ = (S0, . . . , Sm) is m, sometimes denoted
by |σ|, and the last state Sm of σ is also referred to via the notion last(σ). We
say that two developments of the same length differ if the joint actions of at least
one step are different in at least one action performed by one of the players. Two
developments δ1, δ2 with the same length are indistinguishable for player r if r has
the same information in last(δ1) and last(δ2) [FHMV95].4 Again, we conclude the
section by a continuation of our running example Quarto.

Example 2.20 (State Transitions). The clauses for Quarto in Figure 2.2 entail the
initial state Sinit:

{sctrl(r1), pool(p0000), pool(p0001), . . . , pool(p1111), cell(1, 1, b), . . . , cell(4, 4, b)}

Adding Strue
init to the set of clauses allows to derive the legal moves of both players

in Sinit:

{(r1 , select(p0000), Sinit), . . . , (r1 , select(p1111), Sinit), (r2 ,noop, Sinit)} ⊆ l

Consider, say, A = {r1 7→ select(p0000), r2 7→ noop}, then further adding Adoes to
the logic program in Figure 2.2 allows to infer the updated state, u(A,Sinit):

{pctrl(r2), selected(p0000), pool(p0001), . . . , pool(p1111), cell(1, 1, b), . . . , cell(4, 4, b)}

4We will provide a more formal characterisation of indistinguishable sequences in Section 4.2.2.

2.2. GENERAL GAME PLAYING 23

2.2.4 Game Properties

Game Theory defines a game via sequential moves of single players and models si-
multaneous moves via incomplete information concerning the current game state using
information partitions. The Game Description Language follows the opposite approach:
players always perform simultaneous moves and sequential moves are represented using
pseudo actions. This discrepancy causes some subtleties concerning a formal classifi-
cation for turn-taking and complete-information games. However, [Thi11a] has shown
that any game in the sense of Definition 2.12 can be described in GDL. This renders
GDL a universal formalism for the description of games, allowing to base the definitions
of several game specific properties on GDL instead of the game-theoretic definition. We
will nonetheless refer to the properties of a game description and the properties of a
game interchangeably. In the following, we define game properties that we will refer to
throughout the remainder of the thesis. As some definitions may differ from the usual
intuition, we explain our choices immediately afterwards.

Definition 2.21 (Game Properties). Let G be a valid game description. A strategy
for player r is a function which maps each reachable state S to a legal action for
player r in S.

• G is called single-player if the set of all players (including random) is of size
one.

• G is called zero-sum if, in each reachable terminal state that admits payoffs for
all players except random, these payoffs add to 100.

• G is called turn-taking if, in each reachable non-terminal state, there is at most
one non-random player which has two or more legal moves.

• G is called to be of complete information if each player except random can
distinguish each pair of different developments. Otherwise it is called to be of
incomplete information.

• G is called strongly winnable by player r if there is a strategy for r that yields
maximal payoff for r after finitely many moves, disregarding the strategies of all
other players.

• G is called weakly winnable by player r if there is a development which ends in
a terminal state that yields maximal payoff for r.

• G is called playable if, for each player r and each reachable non-terminal state
S, there is at least one legal action for r in S.

• G is called monotonic if, for each player r different from random and each
reachable state S, r has exactly one goal value in S, and goal values never
decrease in the course of the development of the game.

Although the random player is only used to model elements of chance, we decide to
consider a game not to be single-player in case random is present, as this classification
will be more useful in the context of this work. In Game Theory, a game is usually
considered zero-sum if, as the name suggests, the sum of payoffs in all terminal states is

24 CHAPTER 2. PRELIMINARIES

0, whereas an invariant sum unequal to 0 is considered constant-sum. However, due to
the convention of payoffs ranging from 0 to 100 in General Game Playing [LHH + 06],
sum 100 exactly represents the game-theoretic meaning of property zero-sum and
hence justifies the terminology we apply. At a first glance, property turn-taking may
appear counterintuitive as well. However, as the GDL amounts to the formulation
of simultaneous moves, the definition for turn-taking must incorporate pseudo actions
of players which are not supposed to move. Concerning the properties complete and
incomplete information, each game can easily be enriched by a clause

sees (R1,move(R2,M)) :- role (R1), di s t inct (R1 ,random),

role (R2), di s t inct (R1 ,R2),
does(R2 ,M).

This clause assures that each player except for random always perceives the moves
of each other player, including random. This implies that he has complete state
knowledge, as the complete game description is handed to each player prior to game
play and contains a complete description of the initial state [Thi10]. Hence, this clause
can be used whenever a game is intended to be of complete information. The remaining
property definitions follow [LHH + 06]. As a last remark to the game properties, note
that each single-player game is weakly winnable if and only if it is strongly winnable.

2.2.5 Execution Model

We have now introduced all theoretical details of the Game Description Language that
will be needed throughout this work. In this section, we want to make a short side trip
to practice. I.e., we will summarise how general game-playing agents are organised to
play arbitrary games against each other, for example in the setting of a competition.
Although the material presented here will not directly be relevant in the remainder of
this work, it provides the context this work is embedded in and is hence important for
a more accurate picture.

The game management infrastructure has been introduced in [GLP05, LHH + 06]
and adapted to games with incomplete information in [Thi10]. Central part of the
infrastructure is the Game Manager. Players communicate solely with the Game Man-
ager using HTTP messages. The information flow is depicted in Figure 2.3. The
Game Manager distributes the game description at the beginning, collects joint moves
from the players during a match (i.e., a single run of a game), maintains a consis-
tent, up-to-date game state and reports the end of a match. Moreover it has access to
a database with information concerning game descriptions, players and matches and
provides graphical output for spectators of a match. The following messages are used
to communicate with the players:

START This message is sent by the Game Manager to each player once prior to the
beginning of a match. It contains a unique match id, the role which is assigned
to the player that gets this message, a valid game description, an integer called
start clock which announces the time in seconds before the match starts, and
an integer called play clock announcing the time in seconds between each of the
moves.

Players are supposed to respond to this message with READY.

2.2. GENERAL GAME PLAYING 25

Figure 2.3: The General Game Playing Execution Model. The Game Manager controls the information
flow, communicating with the players via HTTP messages.

PLAY This message is repeatedly sent by the Game Manager to each player during
the match. It contains the match id and, in the original setting of complete in-
formation games as introduced in [GLP05, LHH + 06], the previously performed
joint move. In the setting of [Thi10], instead of the joint move, players are
informed about their percepts according to the information relation I from Def-
inition 2.17. The first of these messages is issued when all players are ready, or
the time specified in the start clock has passed after sending the START message.

Players are supposed to respond to this message with a chosen legal move. If the
response time exceeds the limit set in the play clock, the Game Manager assigns
an arbitrary legal move to that player.

STOP This message is issued once to communicate the end of the match. It again
contains the match id and, depending on the setting, the previously taken joint
move or percept information.

Players are supposed to respond to this message with DONE.

In the setting of incomplete-information games, the pseudo player random is not
considered an actual player. Instead, its actions are chosen by the Game Manager
randomly with uniform probability from its set of legal moves in the current state.

The General Game Playing Competition has first been issued in 2005 [GLP05] and
since been taking place annually5. About 10 teams play newly designed and previously
unknown games in a competitive setting with start clocks usually around 300 seconds
and play clocks of about 30 seconds. Prior to sending a game description to the players,

5We refer to games.stanford.edu and www.general-game-playing.de for further information.

26 CHAPTER 2. PRELIMINARIES

the game manager arbitrarily renames all used predicate and term symbols except for
the keywords of the GDL. This ensures that game-playing agents do not rely on implicit
non-structural information the game designer has put in, e.g. the reference on cells of
a game board via the fluent cell(x, y).

2.3 Summary

We introduced logic programs, dependency graphs for logic programs, and the answer
set semantics which defines answer sets as special models for logic programs which are
minimal and supported. Stratified logic programs admit a unique answer set which
corresponds to the standard model. We generalised both syntax and semantics to
answer set programs by the addition of weight atoms and constraints, and restated a
theorem which allows the splitting of some answer set programs under preservation of
desired properties.

In the second part, we stated the formal definition of an n-player game by means of
Game Theory, and showed how the game Quarto, our running example for the following
chapter, can be expressed with this formalism. We defined the GDL as a subclass of
logic programs, and gave a specification for Quarto in this formalism as well. We
then provided a multiagent semantics for the GDL based on state transition systems,
defined some game properties that will be important throughout this work, and shortly
sketched the execution model for General Game Playing.

Chapter 3

Sequence Invariants

In this chapter, we develop a formal method which is able to efficiently and fully auto-
matically prove game-specific properties which hold across all reachable game states.
To this end, we first motivate a property class that incorporates (restricted) time refer-
ence and allows to be verified avoiding a full game tree search. We provide a language
for the description of these properties, which we will call sequence invariants, and de-
fine their semantics with respect to a specific game description. We then develop an
induction method which allows to prove that a specific sequence invariant holds across
all reachable states of the game. Our method suggests encodings of the property and
the given game description to answer set programs, which then allows to use an off-the-
shelf answer set solver to automatically prove the truth of the property for all reachable
states. We formally show the correctness of our method and develop extensions which
allow to prove multiple properties at once and to additionally solve single player games.
The chapter includes and extends passages of own published work (we again refer to
Section 7.1 for a detailed listing of the included material).

3.1 The Importance of Sequence Invariants in GGP

Recall the clauses for Quarto in line 24 and 34, respectively, from the game description
in Figure 2.2:

terminal :- not boardopen.

boardopen :- true(cell(X,Y,b)).

Suppose these two clauses were replaced by

terminal :- not true(cell(X,Y,b)), index(X), index(Y).

At first glance, this seems not to alter the meaning, namely, that the game terminates if
there is no blank cell. In fact, however, there is a crucial difference regarding the implicit
quantification of the variables X and Y. While the original two clauses imply terminal
if there do not exist X and Y such that true(cell(X,Y,b)), the alternative clause
implies terminal if there do exist X and Y such that not true(cell(X,Y,b)). The
first placement of a piece at any cell yields a state which satisfies the body of one ground
instance of the alternative clause (as the marked cell is not blank anymore) and hence
untruly renders this state terminal, whereas the original clauses imply termination only
when all cells are marked. The organisers of the General Game Playing Competition

27

28 CHAPTER 3. SEQUENCE INVARIANTS

in 2006 used a GDL specification for the game of Othello [IK94] with a similar defect,
which caused quite some disturbance, first among the participants and then among the
organisers themselves. A proof system that allows to formally verify game descriptions
would have been of invaluable assistance to the game designers in order to prevent such
mishaps. The bug that we just introduced in the Quarto game description, say, would
be immediately detected when attempting to prove the following intended property:

If there is a blank cell and no completed line, then Quarto is not terminated. (3.1)

In addition to assisting the game design, a proof system can also help a general
game-playing system to discover valuable information about a previously unknown
game. This information can then be used, for example, to choose an appropriate
algorithm to search the game or to construct a suitable, game-dependent heuristic.
As an example, knowing that players take turns making their moves allows to apply a
minimax algorithm with pruning, and knowing the truth of some fluents to be persistent
can be used for a more accurate state evaluation. In the following we will motivate a
class of game properties which allows an efficient verification and is expressive enough
to comprise many interesting properties of a game description, including the previously
mentioned ones.

To begin with, we consider the class of properties which make statements about
single states of a game, which we will call state invariants. They are “local”, which
means that they can be verified for all reachable states by an analysis of the GDL
clauses rather than by a complete search through the whole game tree. This covers
many interesting properties, including (3.1). As another example, the Quarto property

Each cell contains at most one piece. (3.2)

allows a general game player to infer the existence of a board structure, which is valuable
knowledge to construct a good heuristic for playing the game [KDS06, Clu07, ST07].
Also the general properties zero-sum, turn-taking, and playability (cf. Definition 2.21)
belong to this class. However, many interesting properties cannot be expressed by
referring to a single state. Consider, for example,

If no player can place a piece now, then in the next state one player can do so.
(3.3)

This property is not a state invariant due to the inherent reference to subsequent game
states. A similar argument applies to the requirement of never-decreasing goal values
in the general property of monotonicity from Definition 2.21. However, both properties
can be seen as state sequence invariants with degree 1, meaning that their formulation
requires a “lookahead” of exactly one joint move.

3.2 Formalisation of Sequence Invariants

In the following we will first define a formal language over the syntax of GDL that
allows the formulation of state sequence invariants (Section 3.2.1). We then discuss
some intuitions for the interpretation of sequence invariants and provide a semantics
which best matches these intuitions (Section 3.2.2). Finally, we discuss some properties
of the semantics (Section 3.2.3).

3.2. FORMALISATION OF SEQUENCE INVARIANTS 29

3.2.1 Syntax

Our language for the formulation of state sequence invariants is restricted in that no
infinite sequences and no quantification over sequences is allowed, which turns out to
be a beneficial tradeoff between expressibility and efficient verifiability. A simple and
elegant way to obtain such a language is by extending GDL with the unary operator
“©” borrowed from Temporal Logic (see, for example, [KM08]) to refer to successor
game states.

Definition 3.1 (Sequence Invariants). We define P to be the set of ground atoms
p(~t) over a valid GDL specification G such that p /∈ { init, next} and p does not
depend on does in G. Then the set SING of (state) sequence invariants over G is
the smallest set with

• P ⊆ SING;

• Let ϕ[~X] denote a formula obtained from a formula ϕ by replacing arbitrary
ground terms with variables from ~X = (X1, . . . , Xk). Furthermore, let D ~X =
DX1

× . . . × DXk
for finite sets DX1

, . . . , DXk
of ground terms from Σ, called

(variable) domains.

If ϕ,ϕ1, ϕ2 ∈ SING, then also the following are in SING:

– ¬ϕ, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2;

– (∃ ~X :D ~X)ϕ[~X], and (∀ ~X :D ~X)ϕ[~X];

– (∃l..u ~X :D ~X) ϕ[~X], for each l ∈ N and u ∈ N ∪ {∞} s.t. l ≤ u;

– ©ϕ.

Additionally, for variables ~X = (X1, . . . , Xk) and ground terms ~t = (t1, . . . , tk) from
Σ, by ϕ[~X/~t] we denote the formula which is obtained from ϕ by replacing all variables
in ~X with the respective ground terms in ~t.

Since atoms over init and next are excluded, the unary predicate symbol true
provides the only means for referring to fluents and thus to states, which keeps the
language clear and simple. Predicate symbols that depend on does are excluded for
technical reasons, as will become clear at the end of Section 3.3.1. We allow restricted
quantification, by explicit specification of a finite domain for each variable; and we use
counting quantifiers of the form (∃l..u ~X :D ~X) ϕ[~X] to give a lower (l) and upper (u)
bound for the number of ground instances ~t for a vector of variables ~X such that
ϕ[~X/~t] is true. If u = ∞ then there is no upper bound. Modality ©ϕ states that
ϕ holds at the (legal) successor of the current game state. We additionally define the
binary connective ⊃ for implication as the macro ϕ1 ⊃ ϕ2 := ¬ϕ1 ∨ ϕ2, and use the
terms “(state) sequence invariant” and “formula” interchangeably. In the remainder,
ϕ, ψ, and ρ (possibly with subscripts) are always used to refer to state sequence
invariants.

The following definition gives a formal classification for the maximal “nesting” of
the modal operator © in a sequence invariant. It will be important to determine the
necessary length of state sequences for the interpretation of sequence invariants.

30 CHAPTER 3. SEQUENCE INVARIANTS

Definition 3.2 (Degree of a Sequence Invariant). For a valid GDL description G
and sequence invariants ϕ,ϕ1, ϕ2∈ SING, we define the degree of ϕ, denoted deg(ϕ),
recursively as follows:

deg(p) := 0 for p ∈ P
deg(¬ϕ) := deg(ϕ)
deg(ϕ1 ∧ ϕ2) := max{deg(ϕ1), deg(ϕ2)}
deg(ϕ1 ∨ ϕ2) := max{deg(ϕ1), deg(ϕ2)}
deg((∃ ~X :D ~X)ϕ[~X]) := deg(ϕ[~X/~t]) for an arbitrary ~t ∈ D ~X

deg((∀ ~X :D ~X)ϕ[~X]) := deg(ϕ[~X/~t]) for an arbitrary ~t ∈ D ~X

deg((∃l..u ~X :D ~X) ϕ[~X]) := deg(ϕ[~X/~t]) for an arbitrary ~t ∈ D ~X

deg(©ϕ) := deg(ϕ) + 1

Before we conclude this section with some examples, we formally classify the sub-
formulas of a sequence invariant.

Definition 3.3 (Subformulas of a Sequence Invariant). For a valid GDL description
G and sequence invariants ϕ,ϕ1, ϕ2, ψ ∈ SING, ψ is said to be a subformula of ϕ
if, and only if, ψ ∈ sub(ϕ) according to the following definition:

sub(p) := {p} for p ∈ P
sub(¬ϕ) := {¬ϕ} ∪ sub(ϕ)
sub(ϕ1 ∧ ϕ2) := {ϕ1 ∧ ϕ2} ∪ sub(ϕ1) ∪ sub(ϕ2)
sub(ϕ1 ∨ ϕ2) := {ϕ1 ∨ ϕ2} ∪ sub(ϕ1) ∪ sub(ϕ2)

sub((∃ ~X :D ~X)ϕ[~X]) := {(∃ ~X :D ~X)ϕ[~X]} ∪⋃~t∈D ~X
sub(ϕ[~X/~t])

sub((∀ ~X :D ~X)ϕ[~X]) := {(∀ ~X :D ~X)ϕ[~X]} ∪⋃~t∈D ~X
sub(ϕ[~X/~t])

sub((∃l..u ~X :D ~X) ϕ[~X]) := {(∃l..u ~X :D ~X) ϕ[~X]} ∪⋃~t∈D ~X
sub(ϕ[~X/~t])

sub(©ϕ) := {©ϕ} ∪ sub(ϕ)

Example 3.4 (Sequence Invariants). Consider the previously mentioned property (3.1).
Denoting the set of board indices by I = {1, 2, 3, 4}, it can be formulated via the
following formula of degree 0:1

((∃X,Y :I) true(cell(X,Y, b)) ∧ ¬line) ⊃ ¬terminal .

Property (3.2) can be formulated via a formula of degree 0, too, if we denote the set
of pieces by DP = {p0000 , p0001 , . . . , p1111}:

(∀X,Y :I)(∃0..1P : DP) true(cell(X,Y, P)). (3.4)

Property (3.3), however, refers to two consecutive states and hence requires a formula
of degree 1:

¬(∃R :{r1 , r2}) true(pctrl(R)) ⊃ ©(∃R :{r1 , r2}) true(pctrl(R)). (3.5)

Let us refer to this formula with ϕ, and to its subformula (∃R :{r1 , r2}) true(pctrl(R))
with ψ. Resolving the macro ⊃, we have that ϕ = ¬¬ψ∨©ψ. The set of subformulas
of ϕ is sub(ϕ) = {ϕ,¬¬ψ,©ψ,¬ψ,ψ, true(pctrl(r1)), true(pctrl(r2))}.

1In quantifiers, when two variables X and Y have the same domain D , we abbreviate (X,Y) :
D ×D by X,Y :D .

3.2. FORMALISATION OF SEQUENCE INVARIANTS 31

3.2.2 Semantics

Intuitively, a sequence invariant ϕ with degree n is true in a state S0 if and only if
all “relevant” sequences (S0, . . . , Sm) satisfy ϕ. Clearly, all sequences with m = n
are relevant, and sequences where m > n are irrelevant since they provide no more
information (regarding ϕ) than their respective initial subsequences of length n. By
the same argument there is no need to consider sequences of infinite length, opposed to
the semantics for various Temporal Logics (see, for example, [KM08]). Also irrelevant
are sequences with m < n that can be extended by a legal transition, as they are
contained in sequences with greater length. However, two types of sequences with
m < n cannot be extended and thus need to be considered:

• Terminated Sequences (i.e. sequences that end in a terminal state). These are
relevant for entailment, lest arbitrary formulas of the form ψ∧©ρ be considered
true in any terminal state St regardless of the truth of ψ (since ψ ∧ ©ρ is
naturally true with respect to all sequences of length ≥ 1 in St when no such
sequence exists).

• Non-Playable Sequences (i.e. sequences that end in a non-terminal state with no
legal move for at least one player). Although they influence entailment, we neglect
non-playable sequences for the moment and defer the discussion on this issue to
Section 3.6.4.

Terminated sequences could in principle be extended by a pseudo joint action ε that
defines a transition from each terminal state St into St itself, that is, St ε−→ St. Every
terminated sequence could thus be extended to length n, which would allow to give a
semantics for invariants over sequences of length n only. However, this has unintended
side effects. For example, implications of the shape ¬ϕ ⊃ ©ϕ (like, e.g., formula (3.5)
for Quarto from Section 3.2.1) would never be considered true in all reachable states
in case there is a terminal state St that satisfies ¬ϕ, as the successor state of St
(which is St again) cannot satisfy the converse formula ϕ. Similar considerations
with other pseudo continuations of terminal states lead to equally non-verifiable albeit
intuitively valid sequence invariants. The following definition of entailment takes into
account all of our foregoing considerations. I.e., it takes into account all sequences
that match the length of the formula degree, and additionally incorporates shorter
terminated sequences by considering parts of the formula that are “uncovered” by a
respective terminated sequence to be true.

Definition 3.5 (Semantics for Sequence Invariants). Let G be a valid GDL spec-
ification. A sequence (S0, . . . , Sm) is called n-max if it is of length n, or if it is
shorter and ends in a terminal state. Let S0 be a state and ϕ be a formula such that
deg(ϕ) = n. We say that S0 satisfies ϕ (written S0 � ϕ) if for all n-max sequences

S0
A0−→ . . . Am−1−→ Sm (m ≤ n) we have that (S0, . . . , Sm) � ϕ as follows:

(S0, . . . , Sm) � p iff G ∪ Strue
0 ` p (p ∈ P)

(S0, . . . , Sm) � ¬ϕ iff (S0, . . . , Sm) 2 ϕ
(S0, . . . , Sm) � ϕ1 ∧ ϕ2 iff (S0, . . . , Sm) � ϕ1 and (S0, . . . , Sm) � ϕ2

(S0, . . . , Sm) � ϕ1 ∨ ϕ2 iff (S0, . . . , Sm) � ϕ1 or (S0, . . . , Sm) � ϕ2

(S0, . . . , Sm) � (∃ ~X :D ~X)ϕ[~X] iff there is a ~t ∈ D ~X s.t. (S0, . . . , Sm) � ϕ[~X/~t]

32 CHAPTER 3. SEQUENCE INVARIANTS

(S0, . . . , Sm) � (∀ ~X :D ~X)ϕ[~X] iff for all ~t ∈ D ~X : (S0, . . . , Sm) � ϕ[~X/~t]

(S0, . . . , Sm) � (∃l..u ~X :D ~X) ϕ[~X] iff there are ≥ l and ≤ u different ~t ∈ D ~X s.t.

(S0, . . . , Sm) � ϕ[~X/~t]
(S0, . . . , Sm) �©ϕ iff m = 0 or (S1, . . . , Sm) � ϕ

A crucial part here is (S0, . . . , Sm) � ©ϕ for m = 0: in case we reach the end
of a state sequence, every formula of the form ©ϕ must be true. Together with
the definition of an n-max sequence, this correctly grasps the intuition for terminated
sequences of length smaller than n, so that, for example, formula (3.5) is clearly entailed
in each terminal state. In general, ©ϕ is considered true in every terminal state even
if ϕ is inconsistent. In our setting this is perfectly acceptable as we are just interested
in the truth of a formula in reachable states—all states beyond are irrelevant. It is
worth mentioning that ©¬ϕ and ¬© ϕ are only equivalent for non-terminal states,
whereas for every terminal state St we have that (St) �©¬ϕ but (St) 2 ¬© ϕ. In
the following, we say a formula is valid if each reachable state satisfies the formula with
respect to the given semantics.

3.2.3 Properties of the Semantics

The following proposition relates sequences that are longer than the degree n of the
formula to be proved to n-max sequences. This generalises formula entailment to a
context with additional formulas that can have a higher degree. It is conditioned on
the standard restriction to playable GDL games according to Definition 2.21.

Proposition 3.6 (Sequence Extension). Let G be a valid GDL specification, ϕ be
a sequence invariant of degree n, (S0, . . . , Sm) be an n-max sequence, and n̂ ≥ n
arbitrary.

1. Let G be playable and state S0 reachable. Then (S0, . . . , Sm) can be extended
to an n̂-max sequence (S0, . . . , Sm, . . . , Sm̂).

2. For all n̂-max sequences (S0, . . . , Sm, . . . , Sm̂) extended from (S0, . . . , Sm):

(S0, . . . , Sm) � ϕ iff (S0, . . . , Sm, . . . , Sm̂) � ϕ.

Proof:

1. By induction on n̂. The base case n = n̂ is immediate. For the induc-
tion step, assume that (S0, . . . , Sm) can be extended to an n̂-max sequence
(S0, . . . , Sm, . . . , Sm̂). If Sm̂ is terminal, then (S0, . . . , Sm̂) is also n̂ + 1-max.
Otherwise, since Sm̂ is reachable and G playable, there are Am̂ and Sm̂+1 such

that Sm̂
Am̂−→ Sm̂+1. Then (S0, . . . , Sm, . . . , Sm̂, Sm̂+1) is n̂+ 1-max.

2. By induction on the structure of ϕ. For the base case, consider ϕ = p for
some ground atom p ∈ P . Entailment for a ground atom only involves the
first state of a sequence, which implies the claim. For the induction step, con-
sider ϕ = ©ψ and let (S0, . . . , Sm, . . . , Sm̂) be an arbitrary n̂-max sequence
extended from (S0, . . . , Sm). If S0 is terminal, then m = m̂ = 0, hence the two

3.3. PREREQUISITES FOR THE VERIFICATION METHOD 33

sequences are identic. Otherwise, S1 exists and we have (S0, . . . , Sm) �©ψ iff
(S1, . . . , Sm) � ψ iff (by the induction hypothesis) (S1, . . . , Sm, . . . , Sm̂) � ψ iff
(S0, . . . , Sm, . . . , Sm̂) �©ψ. The remaining cases can be argued similarly. �

Since a playable GDL specification provides legal moves for every role only in states
that are both non-terminal and reachable, the first item of Proposition 3.6 requires the
assumption of S0 being reachable. As an example, reconsider the GDL specification of
Quarto depicted in Figure 2.2. Although this game is playable, there are (unreachable)
states S which are non-terminal and non-playable, e.g. if pctrl(r1) ∈ S , sctrl(r1) /∈ S ,
and selected(p) /∈ S for all pieces p. Then player r1 has no legal move in S , and the
0-max sequence (S) cannot be extended to a 1-max sequence. This has the following
consequence: even if an n-max formula ϕ is known to be true with respect to all
n̂-max sequences starting at S for some n̂ ≥ n, ϕ is not necessarily true with respect
to all n-max sequences starting at S , unless S is a reachable state. This explains the
restriction to identical initial subsequences in the equivalence result in the second item
of Proposition 3.6.

The mentioned consequence further yields that, for non-reachable states S , S �
ϕ∧ψ does not necessarily imply S � ϕ even with a playable GDL specification. Since
ψ could be of higher degree than ϕ, ϕ can still be false with respect to a shorter, non-
extendable (and non-reachable) sequence. However, S � ϕ and S � ψ always implies
S � ϕ ∧ ψ, even for non-reachable states S and non-playable GDL specifications.

3.3 Prerequisites for the Verification Method

While in theory state sequence invariants can be verified by a complete search through
the set of reachable states (provided the game is finite, of course), as investigated in
[RvW09], our interest lies in finding a practical proof method that can be applied to
games with far too large a state space to permit complete search. In the following,
we will present such a method in three steps. First, we define the so-called tempo-
ral extension of a set of GDL clauses that allows us to compute a fixed number of
state transitions within a single program (Section 3.3.1). Thereafter we show how
this program can be extended by clauses that encode a given state sequence invariant
(Section 3.3.2). These two steps comprise the content of this section. Finally, in the
subsequent Section 3.4, we demonstrate how the combined program can be used to
verify the encoded invariant against the game description.

3.3.1 Temporal GDL Extension

The Game Description Language (GDL) is based on an elementary time structure that
consists of only two time points, “before” (encoded by true) and “after” (encoded
by next). Without further additions, a game description can thus be used only for
reasoning about a single state transition: given a complete, finite state and a joint move,
standard entailment allows to determine a successor state according to Definition 2.17.
This suffices to verify sequence invariants with degree 0, but invariants of higher degree
require multiple successive state transitions and hence necessitate the introduction of
additional time points in the clauses. This has been done, e.g., by [Thi09], and is
adapted to our setting as follows.

34 CHAPTER 3. SEQUENCE INVARIANTS

Definition 3.7 (Temporal GDL Extension). For a valid GDL specification G, we
call G≤n the temporal extension of G of degree n, where G≤n :=

⋃
0≤i≤nGi and

each Gi is constructed by

• omitting all clauses from G with head init;

• replacing each occurrence of

– next(f) by true(f, i+ 1),

– sees(r, p) by sees(r, p, i+ 1), and

– p(t1, . . . , tn) by p(t1, . . . , tn, i), for each predicate symbol p /∈ {next, sees}.

Furthermore, the timed variants of the sets of unit clauses Strue and Adoes, defined
as (2.1) on page 20, are

Strue(i) := {true (f1, i). , . . . , true (fn, i). }
Adoes(i) := {does (r1, A(r1), i). , . . . , does (rk, A(rk), i). }

for any S = {f1, . . . , fn} ⊆ Σ; A : {r1, . . . , rk} 7→ Σ; and i ≥ 0.

Example 3.8 (Temporal GDL Extension). Let G be the GDL specification of Quarto
depicted in Figure 2.2 and consider the clause in lines 10–11:

next(pool(P)) :- true(pool(P)),
not does(r1,select(P)),
not does(r2,select(P)).

The temporal extension G≤n contains the following clause for each 0 ≤ i ≤ n:

true(pool(P), i+ 1) :- true(pool(P), i),
not does(r1,select(P), i),
not does(r2,select(P), i).

The resulting program can be made more efficient by omitting the time argument in
any atom over a predicate symbol that is neither a GDL keyword nor depends on true
or does in the original game description, further details on this issue can be found in
Section 5.2.1. Note also that, strictly speaking, G≤n may not be stratified even if G is;
as a simple example consider the stratified clause next(f) :- not true(g)., whose
temporal extension is true(f,i + 1) :- not true(g,i). However, the temporally
extended program could be easily rewritten into an equivalent but stratified program:
instead of simply adding a time argument to atoms p, time could be encoded into their
respective predicate symbols, obtaining different predicate symbols pi for each time
step. Definition 3.7 is more readable, and we will nonetheless tacitly assume that G≤n
is always stratified.

The following result shows that a temporally extended GDL specification can be
used to reason over the GDL via state sequences. It generalises a similar result
from [Thi09].

3.3. PREREQUISITES FOR THE VERIFICATION METHOD 35

Theorem 3.9 (Correctness of the Temporal GDL Extension). Let G be a valid

GDL specification and S0
A0−→ S1 . . .

Am−1−→ Sm a sequence. Consider the program
P = Strue

0 (0) ∪ G≤m ∪
⋃m−1
i=0 Adoes

i (i), then for all 0 ≤ i ≤ m and predicate symbols
p /∈ { init, next} that do not depend on does, we have

G ∪ Strue
i ` p(~t) iff P ` p(~t, i)

Proof: Let P0 = Strue
0 (0) and Pm = Gm−1 ∪Adoes

m−1(m− 1)∪Pm−1 for m > 0. We
first prove the intermediate result

Sm = {f : Pm ` true(f,m)} (3.6)

by induction on m. The base case m = 0 is immediate. Induction step: By Definition
2.17 (the GDL Semantics) we have

f ∈ Sm+1 iff f ∈ u(Am, Sm) iff G ∪Adoes
m ∪ Strue

m ` next(f).

Using the induction hypothesis, this is equivalent to

G ∪Adoes
m ∪ {true(f ′) : Pm ` true(f ′,m)} ` next(f).

The clauses from G which solely contribute to the initial state encoding do not influ-
ence entailment of next(f), since their heads do not occur in the remaining clauses.
Together with the construction of the temporal GDL extension from Definition 3.7,
this yields equivalence to

Gm ∪Adoes
m (m) ∪ {true(f ′,m) : Pm ` true(f ′,m)} ` true(f,m+ 1).

Similarly, atoms from Pm other than true(f,m) do not influence entailment of
true(f,m+ 1), hence we get equivalence to

Gm ∪Adoes
m (m) ∪ {p : Pm ` p} ` true(f,m+ 1).

Since Pm does not contain heads of Gm∪Adoes
m (m), we can apply the Splitting Theorem

(Theorem 2.10) to establish equivalence to

Gm ∪Adoes
m (m) ∪ Pm ` true(f,m+ 1).

Since Pm+1 = Gm∪Adoes
m (m)∪Pm, this completes the induction step and hence proves

the intermediate result (3.6). For the remainder, it follows

G ∪ Strue
i ` p(~t) iff G ∪ {true(f ′) : Pi ` true(f ′, i)} ` p(~t),

which, by arguments similar to those for the intermediate result, is in turn equivalent
to

Gi ∪ Pi ` p(~t, i).
Case i = m yields P = Gi ∪Pi. Case i < m: the unique answer sets for Gi ∪Pi and
Gi ∪ Pi ∪ Adoes

i agree on the true instances of p(~t, i), as p(~t, i) does not depend on
does. Since Gi ∪Pi ∪Adoes

i does not contain clause heads from P \ (Gi ∪Pi ∪Adoes
i),

36 CHAPTER 3. SEQUENCE INVARIANTS

entailment of p(~t, i) is again not affected. Hence both cases i = m and i < m yield
equivalence to

P ` p(~t, i).

�
The temporal GDL extension of degree m − 1 already incorporates clauses with

head true(f,m) and is hence sufficient for reasoning about atoms p(~t) of the form
true(f) up to depth m. However, different atoms p(~t) require an extension up to
degree m to include all relevant temporalised GDL clauses with head p(~t,m), which
motivates the occurrence of both m and m− 1 in program P of the theorem. Since
predicate symbol legal never depends on does in a valid GDL specification and
all moves in a sequence are legal, our theorem implies P ` legal(r,Ai(r), i) for all

r ∈ R and 0 ≤ i ≤ m− 1, for any given sequence S0
A0−→ S1 . . .

Am−1−→ Sm. Similarly,
P ` terminal(m) holds if and only if Sm is a terminal state. The last step in
the proof for this theorem requires does-independent predicate symbols p, which
was the rationale behind the corresponding restriction to sequence invariants made in
Definition 3.1.

3.3.2 Encoding Sequence Invariants

Next we show how game-specific knowledge in form of sequence invariants can be
encoded as logic program clauses which, together with the temporal extension G≤n of
a valid GDL specification G, allows their formal verification against arbitrary n-max
sequences. We first define the requirements for a suitable encoding and then provide
an instance which satisfies these requirements.

To encode a formula to an answer set program, we need a previously unused atom
with arity 0. Since encodings for severals formulas will occur in the same answer
set program at a later point, these atoms are required to be unequal for syntactically
different formulas. To express this, we assume a unary injective function η. For
example, syntactically different formulas ϕ and ψ can be encoded such that η(ϕ) =
phi and η(ψ) = psi (assuming that phi and psi do not occur elsewhere). However,
in our example encoding, even syntactically identical formulas at different time levels
will require different names, e.g. the two occurrences of subformula ϕ in formula ϕ ⊃
©ϕ. Hence, with slight abuse of notation, we also use η to denote a binary injective
function with an additional time level argument. For example, subformulas ϕ at
different time levels can be encoded using atoms η(ϕ, 0) = phi0 and η(ϕ, 1) = phi1.
In Chapter 4, we will additionally use η with a third argument. Similarly to η, we use
three versions of an injective function Enc to denote the encoding of a formula ϕ (by
Enc(ϕ)), possibly with respect to a time level i (by Enc(ϕ, i)), and with a further
argument in Chapter 4.

The following definition gives a formal classification of a formula encoding. It is
based on single sequences, and requires that a formula ϕ is true with respect to a
sequence if and only if the temporal GDL extension, together with an encoding of that
sequence and an encoding of ϕ, yields a unique answer set which entails the unique
atom η(ϕ) corresponding to ϕ. Since additional encodings of formulas with possibly
higher degree may occur in the same answer set program, the correspondence needs to
respect a possibly higher degree of the temporalised GDL clauses and sequences.

3.3. PREREQUISITES FOR THE VERIFICATION METHOD 37

Definition 3.10 (Encoding for Sequence Invariants). Let η(ϕ) be a 0-ary atom
which represents a unique name for sequence invariant ϕ with degree n. An encoding
of ϕ, denoted Enc(ϕ), is a finite set of clauses whose heads do not occur elsewhere and

such that, for each n̂ ≥ n and n̂-max sequence S0
A0−→ S1 . . .

Am̂−1−→ Sm̂ (m̂ ≤ n̂) of a
valid GDL specification G, the program P = Strue

0 (0)∪G≤n̂∪
⋃m̂−1
i=0 Adoes

i (i)∪Enc(ϕ)
fulfils the following:

• P has exactly one answer set;

• (S0, . . . , Sm̂) � ϕ iff P ` η(ϕ).

Note that Theorem 3.9 (Correctness of the Temporal GDL Extension) is also ap-
plicable to program P from Definition 3.10, as P only adds the clauses

⋃
m<i≤n̂Gi ∪⋃m̂−1

i=m Adoes
i (i)∪Enc(ϕ), the heads of which do not occur in the logic program used in

the theorem.

A Sample Encoding

Table 3.1 provides a recursive definition of how a sequence invariant can be encoded
as a logic program: First, every atom p(~t) at time point i is translated to a clause
which entails η(p(~t), i) (a unique name atom for p(~t) at time point i) in case p(~t, i)
holds (case 1). Formulas with connectives different from “©” recursively resolve to
their correspondent subformulas (cases 2–7). Finally, Enc(©ψ, i) is constructed so as
to entail η(©ψ, i) in case time point i is terminal or subformula ψ is true at time
point i+ 1 (case 8).

Example 3.11 (Sample Encoding). Recall from page 30 the sequence invariant (3.5)
for Quarto which states that if no player can place a piece now, then in the next state
one player can do so. Rewriting “⊃ ” as a disjunction and removing double negation,
we obtain the following equivalent formula:

(∃R :{r1 , r2}) true(pctrl(R)) ∨©(∃R :{r1 , r2}) true(pctrl(R)).

Applying the recursive definition in Table 3.1 yields the following encoding, where atom
phi0 is the unique name η(ϕ, 0) for the overall formula.

phi0 :- ex0. ex0 :- a0. a0 :- true(pctrl(r1),0).
phi0 :- nxt_ex1. ex0 :- b0. b0 :- true(pctrl(r2),0).

nxt_ex1 :- terminal(0). ex1 :- a1. a1 :- true(pctrl(r1),1).
nxt_ex1 :- ex1. ex1 :- b1. b1 :- true(pctrl(r2),1).

(3.7)

It is easy to verify that the size of the encoding of a given formula is always linear in
the size of the original formula. Together with the underlying temporally extended GDL
specification the given encoding is correct wrt. the definition of formula entailment, as
the following result shows.

Theorem 3.12 (Correctness of the Sample Encoding). Let G be a valid GDL spec-
ification and ϕ be a sequence invariant. Then Enc(ϕ) := Enc(ϕ, 0) with the unique
name atom η(ϕ) := η(ϕ, 0) for ϕ (cf. Table 3.1) is an encoding of ϕ.

38 CHAPTER 3. SEQUENCE INVARIANTS

1. Enc(p(~t), i) = {η(p(~t), i) :- p(~t, i).}

2. Enc(¬ψ, i) = {η(¬ψ, i) :- not η(ψ, i).}
∪ Enc(ψ, i)

3. Enc(ψ1 ∧ ψ2, i) = {η(ψ1 ∧ ψ2, i) :- η(ψ1, i), η(ψ2, i).}
∪ Enc(ψ1, i) ∪ Enc(ψ2, i)

4. Enc(ψ1 ∨ ψ2, i) = {η(ψ1 ∨ ψ2, i) :- η(ψ1, i).,
η(ψ1 ∨ ψ2, i) :- η(ψ2, i).}
∪ Enc(ψ1, i) ∪ Enc(ψ2, i)

5. Enc((∃ ~X :D ~X)ψ[~X], i) =
⋃
~t∈D ~X

{η((∃ ~X :D ~X)ψ[~X], i) :- η(ψ[~X/~t], i).}
∪⋃~t∈D ~X

Enc(ψ[~X/~t], i)

6. Enc((∀ ~X :D ~X)ψ[~X], i) = {η((∀ ~X :D ~X)ψ[~X], i) :-

η(ψ[~X/~t1], i), . . . , η(ψ[~X/~tn], i).}
∪⋃~t∈D ~X

Enc(ψ[~X/~t], i), where D ~X = {~t1, . . . , ~tn}

7. Enc((∃l..u ~X :D ~X) ψ[~X], i) = {η((∃l..u ~X :D ~X) ψ[~X], i) :-

l{η(ψ[~X/~t], i) : ~t ∈ D ~X}u.}
∪⋃~t∈D ~X

Enc(ψ[~X/~t], i)

8. Enc(©ψ, i) = {η(©ψ, i) :- terminal (i).,
η(©ψ, i) :- η(ψ, i+ 1).}
∪ Enc(ψ, i+ 1)

Table 3.1: Encoding an arbitrary formula ϕ as a logic program. By η(ϕ, i) we denote a 0-ary atom
providing a unique name for ϕ with respect to every time point i between 0 and the degree of ϕ.

Proof: Let n̂ ≥ deg(ϕ), S0
A0−→ S1 . . .

Am̂−1−→ Sm̂ an arbitrary n̂-max sequence and
Pϕ = Strue

0 (0)∪G≤n̂ ∪
⋃m̂−1
i=0 Adoes

i (i)∪Enc(ϕ, 0). Pϕ clearly admits a unique answer
set. We prove (S0, . . . , Sm̂) � ϕ iff Pϕ ` η(ϕ, 0) via structural induction on ϕ. First
note that the uniqueness of η(ψ, i) for each formula ψ and each time step i implies
η(ψ, i) to be in the unique answer set A for Pϕ if and only if there is a clause with
head η(ψ, i) in Enc(ϕ, 0) such that its body is satisfied in A.

Base Case ϕ = p(~t): (S0, . . . , Sm̂) � p(~t) iff (by the semantics for sequence invari-

ants in Definition 3.5) G ∪ Strue
0 ` p(~t) iff (by the established correctness of the

temporal GDL extension in Theorem 3.9, cf. the remark following Definition 3.10)
Pϕ ` p(~t, 0) iff Pϕ ` η(p(~t), 0).

Induction Step: The cases different from ϕ = ©ψ follow by an argumentation
similar to the base case, together with the induction hypothesis. Now consider formula
ϕ =©ψ with degree n+ 1.

3.4. VERIFICATION OF SEQUENCE INVARIANTS 39

• If S0 is terminal: (S0) � ©ψ follows by Definition 3.5, Pϕ ` terminal(0)
follows by Theorem 3.9 and yields Pϕ ` η(ϕ, 0).

• If S0 is non-terminal then (S1, . . . , Sm̂, Sm̂+1) exists and is n̂-max, hence

(S0, S1, . . . , Sm̂, Sm̂+1) �©ψ iff (S1, . . . , Sm̂, Sm̂+1) � ψ.

Let ·i→i+1 be a renaming that replaces each time argument i by i+ 1 in timed
GDL atoms and each occurrence of η(ρ, i) by η(ρ, i + 1) for each formula ρ.
Then, for program P i→i+1

ψ = Strue
1 (1)∪ (G≤n̂+1 \G0)∪⋃m̂

i=1A
does
i (i)∪Enc(ψ, 1),

the induction hypothesis implies

(S1, . . . , Sm̂, Sm̂+1) � ψ iff P i→i+1
ψ ` η(ψ, 1).

Since Strue
1 (1) = {true(f, 1) : G0 ∪Adoes

0 (0)∪Strue
0 (0) ` true(f, 1)} (by Defini-

tions 2.17 and 3.7 concerning GDL semantics and temporal GDL extension) and
because clause heads in P i→i+1

ψ do not occur in G0 ∪ Adoes
0 (0) ∪ Strue

0 (0) and

clause heads in G0∪Adoes
0 (0)∪Strue

0 (0) different from atoms in Strue
1 (1) do not

occur in P i→i+1
ψ , we have that

P i→i+1
ψ ` η(ψ, 1) iff Strue

0 (0) ∪G≤n̂+1 ∪
m̂⋃
i=0

Adoes
i (i) ∪ Enc(ψ, 1) ` η(ψ, 1)

This, in turn, is equivalent to Pϕ ` η(ϕ, 0) since Pϕ 0 terminal by Theo-
rem 3.9. �

In order to keep our framework general, in the following we abstract from our specific
encoding and consider any Enc(ϕ) that satisfies the requirements of the Encoding
Definition 3.10.

3.4 Verification of Sequence Invariants

We proceed by showing how a temporally extended GDL description along with an
encoding of a formula can be used to automate an induction proof for the validity of
the formula. To prove that a state sequence invariant ϕ holds in each reachable state
S (i.e., S � ϕ), we will construct two answer set programs dependent on ϕ: a base
case to show that ϕ is entailed in the initial state, and an induction step to show that,
provided a state entails ϕ, each legal successor state will also entail ϕ. Together this
implies that ϕ holds in all reachable states.

As we have seen in Section 2.2.3, fluents (i.e., state features) can grow indefinitely,
hence the set which contains all ground fluents that occur in a reachable state (hence-
forth denoted by FDom) may be infinite. Consequently, also the set of all actions of a
player r (henceforth denoted by ADom(r)) is potentially infinite, e.g. due to a clause
like

l ega l (r,a(X)) :- true(X).

which defines a legal action for every fluent. In order to develop a decidable proof
method for sequence invariants, we have to restrict our attention to GDL specifications

40 CHAPTER 3. SEQUENCE INVARIANTS

that are finite in the sense that the associated set FDom is finite. By the recursion
restriction of a valid GDL description (cf. Definition 2.15) this suffices to guarantee
that ADom(r) is finite as well.2

3.4.1 Base Case

Action Generator

Based on the sets ADom(r) of possible actions for player r, we follow [Thi09] to define
an answer set program which encodes the fundamental requirement that each player
has to perform a legal move in each non-terminal state up to time step n. Let P legal

≤n
consist of the following clauses P legal

i for each time step 0 ≤ i ≤ n and role r ∈ R:3

(c1) terminated (i) :- terminal (i).
(c2) terminated (i) :- terminated (i− 1).
(c3) 1{does (r, a, i) : a ∈ ADom(r)}1 :- not terminated (i).
(c4) :- does (r, A , i), not legal (r, A , i).

(3.8)

Clause (c3) states that each player performs exactly one move in each non-terminal
state, and clause (c4) ensures that each of the performed moves is legal. Since the
GDL possibly yields legal joint moves even in terminal states, and keyword terminal is
not necessarily entailed in pseudo states that are obtained by performing these moves,
terminal states at time step i cannot just be referred to via terminal(i) in (c3).
Instead, additional atoms terminated(i) are defined in clauses (c1) and (c2) to
indicate all time steps up to n which match or exceed the time step of a terminal
state. Subsequently, P legal

≤n will also be called an action generator.

Base Case Program

For a game description G and a formula ϕ over G with degree n, the answer set
program for the base case is defined as follows:

P bcϕ (G) = Strue
init (0) ∪G≤n ∪ P legal

≤n−1 ∪ Enc(ϕ) ∪ { :- η(ϕ).}

Put in words, P bcϕ (G) consists of an encoding for the initial state, Strue
init (0); a temporal

GDL specification up to time step n, G≤n; the necessary requirements concerning

legal moves, P legal
≤n−1; an encoding for the formula ϕ, Enc(ϕ); and the statement that

ϕ should not be entailed in any answer set of P bcϕ (G), { :- η(ϕ).}. In case P bcϕ (G)
has no answer set, the last clause implies that there is no state sequence starting at
Sinit that makes ϕ false. Equivalently, each state sequence starting at Sinit satisfies
ϕ—which means that ϕ is entailed by Sinit.

3.4.2 Induction Step

State Generator

For the induction step answer set program, the state encoding Strue
init (0) needs to be

substituted by a general “state generator” program, whose answer sets produce the

2A detailed discussion on how to reliably compute both FDom and ADom will follow in Section 5.1.
3We tacitly assume that predicate symbol terminated does not occur elsewhere.

3.4. VERIFICATION OF SEQUENCE INVARIANTS 41

reachable states of a GDL game. In general, the computation of the reachable states
requires a full game tree traversal which is not feasible in interesting games (e.g., the
game tree of chess is estimated with about 1045 states). This motivates the use of an
easy approximation that may comprise unreachable states as well. The simplest such
approximation is the program which solely consists of the weight atom

0 { true(f, 0) : f ∈ FDom}.

which generates all combinations of fluents, whether reachable or not. In general, we
define a state generator as a program which for each reachable state admits an answer
set representing that state, and which may yield additional answer sets corresponding
to some non-reachable states.

Definition 3.13 (State Generator). A state generator for a valid GDL specification
G is an answer set program P gen such that

• The only atoms in P gen are of the form true(f, 0), where f ∈ Σ, or auxiliary
atoms that do not occur elsewhere; and

• for every reachable state S of G, P gen has an answer set A such that for all
f ∈ Σ: true(f, 0) ∈ A iff f ∈ S.

The practical necessity for using a superset of the reachable states in the induction
step has interesting consequences, which are best seen with an example. Suppose we
want to prove the Quarto sequence invariant which states that each cell contains at
most one piece, that is, ϕ = (∀X,Y :I)(∃0..1P :DP) true(cell(X,Y, P)) (cf. (3.4)). The
(unreachable!) state

S = {cell(1 , 1 , b), selected(p0000), selected(p0001), pctrl(r1), pctrl(r2)}

satisfies ϕ. In S , players r1 and r2 both have the legal move of placing a selected
piece at cell (1 , 1). Consider, then, the case where they choose to place different pieces.
This results in the successor state

{cell(1 , 1 , p0000), cell(1 , 1 , p0001), sctrl(r1), sctrl(r2)}

which violates ϕ. Hence, there is an undesired counterexample for the induction step
as long as S is considered potentially reachable. However, knowing that sequence
invariant

(∃1..1C :{sctrl(r1), sctrl(r2), pctrl(r1), pctrl(r2)}) true(C)

holds in all reachable states of Quarto allows to reject S and all similar states that
contain more than one “control” fluent. As a consequence, none of the direct successors
of the remaining ϕ-satisfying states violates ϕ—which establishes a successful proof
of the induction step. This shows that the addition of all previously proved sequence
invariants to a state generator can positively influence the outcome of a subsequent
proof attempt. The following construction of the answer set program for the induction
step of a proof accounts for this issue by the inclusion of formulas which are already
known to be valid.

42 CHAPTER 3. SEQUENCE INVARIANTS

Induction Step Program

For a game description G, an arbitrary state generator P gen over G, a set Ψ of valid
sequence invariants that have at most degree nΨ, a formula ϕ with degree nϕ, and
n̂ = max(nΨ, nϕ + 1), the induction step answer set program is

P isϕ,Ψ(G) = P gen ∪G≤n̂ ∪ P legal
≤n̂−1 ∪ Enc(ϕ ⊃ ©ϕ) ∪ { :- η(ϕ ⊃ ©ϕ). } ∪⋃

ψ∈Ψ(Enc(ψ) ∪ { :- not η(ψ). }).

Put in words, P isϕ,Ψ(G) differs from P bcϕ (G) in the following way. First, an arbi-
trary state generator P gen is used instead of the initial-state encoding. Second, the
time horizon has increased from n to n̂. Third, formulas are now encoded thus:⋃
ψ∈Ψ(Enc(ψ) ∪ { :- notη(ψ).}), which ensures that P isϕ,Ψ(G) has only answer sets

that, for all formulas ψ ∈ Ψ, contain η(ψ) and hence represent n̂-max sequences which
satisfy ψ. These sequences still include all reachable n̂-max sequences and are, by the
clauses Enc(ϕ ⊃ ©ϕ) ∪ { :- η(ϕ ⊃ ©ϕ).}, further restricted to those which satisfy
¬(ϕ ⊃ ©ϕ). In case P isϕ,Ψ(G) is inconsistent, there is no reachable n̂-max sequence
which satisfies ¬(ϕ ⊃ ©ϕ). Equivalently, each reachable n̂-max sequence satisfies
(ϕ ⊃ ©ϕ)—which implies that ϕ is satisfied in all direct successors of reachable states
that themselves satisfy ϕ.

Remark on the Linear-Time Encoding of Formulas

The induction step proof for a formula ϕ with degree n requires an encoding of the
induction hypothesis S0 � ϕ. In case the degree n of the formula is greater than 0,
this condition refers to a treelike structure which cannot reliably be represented in the
linear time structure we apply. More precisely, an accurate counter example for the
induction step proof is a state S0 such that

1. all n-max sequences starting at S0 satisfy ϕ, and

2. S0 admits one direct successor state S1 such that one n-max sequence starting
at S1 violates ϕ.

In our case, however, the first condition is altered in that a counter example is a
state S0 such that a single n-max sequence starting at S0 satisfies ϕ. This is also
demonstrated in Figure 3.1. By considering only one instead of all such sequences,
we apply a weaker induction hypothesis that does not neglect some of the states S0

which violate condition 1 (and are hence no counter example). Hence, the linear time
encoding of the induction hypothesis may introduce counter examples for actually valid
formulas ϕ for non-reachable states S0

4, which is emphasised with the following small
example:

i n i t (f).
role (r).

next(f) :- does(r,a).

4Indeed, no introduced counter example can be based on a reachable state S0 , as the validity of ϕ
implies S0 � ϕ, which in turn implies that S0 satisfies condition 1.

3.4. VERIFICATION OF SEQUENCE INVARIANTS 43

•

•

•

• •

•

• •

•

•

� ϕ

• •

2 ϕ

•

• •

Figure 3.1: A graphical representation for a counter example of formula ϕ with degree 1 in a
schematic game tree. The dashed line marks a 1-max sequence which satisfies ϕ (for the induction
hypothesis), the solid line marks a 1-max sequence which violates ϕ. Put together, both sequences
form a 2-max sequence σ such that σ � ϕ ∧ ¬© ϕ, and hence such that σ 2 ϕ ⊃ ©ϕ.

next(g) :- true(g).

l ega l (r,a) :- true(f).
l ega l (r,b) :- true(g).

Since f holds initially and g does not hold initially, only action a is applicable
for player r in the initial state, and yields exactly one possible successor state that
equals the initial state. Consequently, formula ϕ = true(f) ⊃ ©true(f) holds in all
reachable states. However, lacking the information that state {f, g} is non-reachable,
the following is a counter example for the induction step in our setting:

σ = {f, g} {r : a}−→ {f, g} {r : b}−→ {g}

Now subsequence {f, g} {r : a}−→ {f, g} of σ satisfies ϕ, representing our linearly en-
coded induction hypothesis. However, beginning at the first state {f, g} of σ, there

is another sequence which does not satisfy ϕ, namely {f, g} {(r, b)}−→ {g}. Hence, this
counter example could be sorted out when using the stronger induction hypothesis
which comprises all relevant sequences emerging from state {f, g}, and ϕ could be
proved. In our linear setting, this counter example can be removed by previously proved
formulas as motivated in Section 3.4.2, in this case a preceding proof of the valid for-
mula ¬true(g). Note that the linear-time encoding also influences formulas with a
degree greater than 0 from the incorporated set of previously proved formulas Ψ.

3.4.3 Example

In this section we exemplarily demonstrate how a formula can be proved to hold in all
reachable states. To this end, recall the example encoding (3.7) for the Quarto state
invariant

ϕ = ¬(∃R :{r1 , r2}) true(pctrl(R)) ⊃ ©(∃R :{r1 , r2}) true(pctrl(R)).

Base Case. Let G be the clauses in Figure 2.2 at page 19. Since the initial state
contains sctrl(r1), the temporal extension of clause 17 in Figure 2.2 implies

44 CHAPTER 3. SEQUENCE INVARIANTS

that the atom true(pctrl(r2), 1) is contained in each answer set of P bcϕ (G).
Consequently, the example encoding for ϕ implies that also η(ϕ, 0) = phi0 is
contained. This however contradicts the constraint :- phi0. in P bcϕ (G), so

P bcϕ (G) has no answer set and, thus, ϕ holds in the initial state of the game.

Induction Step. The induction step program P isϕ,Ψ(G) contains Enc(ϕ ⊃ ©ϕ, 0) ∪
{ :- η(ϕ ⊃ ©ϕ).}, where Enc(ϕ ⊃ ©ϕ, 0) can be specified such as to contain

• the encoding Enc(ϕ, 0) for ϕ as given in (3.7), where η(ϕ, 0) = phi0;

• an additional set Enc(ϕ, 1) that differs from Enc(ϕ, 0) only in the used
name atoms and time points increased by 1, where we specify η(ϕ, 1) =
phi1; and

• the following additional clauses, where η(ϕ ⊃ ©ϕ) = phi_imp_nxt_phi:

phi_imp_nxt_phi :- neg_phi. neg_phi :- not phi0.

phi_imp_nxt_phi :- nxt_phi.

nxt_phi :- terminal (0).
nxt_phi :- phi1.

The specified encoding together with the constraint :- phi_imp_nxt_phi. im-
plies that each of the answer sets A of P isϕ,Ψ(G) satisfies the following three
conditions:

1. phi0 ∈ A,

2. terminal(0) /∈ A, and

3. phi1 /∈ A.

Now let r range over {r1 , r2}. The body of one clause with head phi0 of
Enc(ϕ, 0) ⊆ Enc(ϕ ⊃ ©ϕ, 0) must be true in A due to the first condition
and cannot be satisfied by terminal(0) due to the second condition. Hence,
for some r either true(pctrl(r), 0) ∈ A or true(pctrl(r), 1) ∈ A. Fur-
thermore, since Enc(ϕ, 1) ⊆ Enc(ϕ ⊃ ©ϕ, 0), the third condition implies that
true(pctrl(r), 1) /∈ A and true(pctrl(r), 2) /∈ A for each r (and that
terminal(1) /∈ A).

Hence, there must be some r such that true(pctrl(r), 0) ∈ A. By the temporal
extension of clauses 16 and 17 in Figure 2.2, this results in existence of an r such
that true(pctrl(r), 2) ∈ A, in contradiction to the previously mentioned impli-
cations of the third condition. Thus, P isϕ,Ψ(G) has no answer set, which implies
that ϕ is satisfied in all direct successors of reachable states that themselves
satisfy ϕ.

Note that for this example argumentation the applied state generator in P isϕ,Ψ(G) is
completely unimportant. This implies that the example formula ϕ can be proved with
any state generator, even if it is completely uninformed and needs to consider any finite
set of fluents a possible state.

3.5. PROPERTIES OF THE VERIFICATION METHOD 45

3.5 Properties of the Verification Method

The following result is a prerequisite for the soundness and completeness proofs of the
verification method introduced in the previous section. It provides a one-to-one relation
between answer set programs encoding a particular state sequence and those including
an action generator.

Theorem 3.14 (Answer Set Correspondence). Let G be a valid GDL specification
and A be a subset of the ground atoms over G together with {terminated(i) : i ∈ N}.
The following two statements are equivalent:

(1) A is an answer set for the program

P = Strue
0 (0) ∪G≤n ∪ P legal

≤n−1.

(2) There is an n-max sequence σ = (S0
A0−→ S1 . . .

Am−1−→ Sm) such that A is the
unique answer set for the program

P σ = Strue
0 (0) ∪G≤n ∪ P c1,c2≤n−1 ∪

m−1⋃
i=0

Adoes
i (i),

where P c1,c2≤n−1 =
⋃n−1
i=0 P

c1,c2
i and P c1,c2i denotes all clauses of the shape (c1) and

(c2) in the part P legal
i of the action generator, defined as (3.8) at page 40.

Proof:

(2) ⇒ (1): First we show that A satisfies P . Since P differs from P σ only by
containing clauses of the shape (c3) and (c4) (defined as part of the action generator
in (3.8) at page 40) instead of

⋃m−1
i=0 Adoes

i (i), this follows if A satisfies all clauses (c3)
and (c4) for 0 ≤ i ≤ n− 1.

• Time steps 0 ≤ i < m: for each player r there is exactly one action a such
that does(r, a, i) ∈ A, namely a = Ai(r); and legal(r, a, i) ∈ A follows by
definition of σ and Theorem 3.9 (Correctness of the Temporal GDL Extension).
This satisfies the clauses (c3) and (c4) for 0 ≤ i < m.

• Time steps m ≤ i ≤ n − 1: If one such i exists, then m < n and hence
Sm is terminal, which implies terminal ∈ A (again by Theorem 3.9) and thus
{terminated(j) : m ≤ j ≤ n− 1} ⊆ A. This satisfies the clauses (c3) and (c4)
for m ≤ i ≤ n− 1.

Now A is also an answer set for the program constructed from P by omitting con-
straints (c4), since its reduct coincides with the reduct of P σ . By the previous argu-
mentation A satisfies all constraints (c4) and hence is also an answer set for P .

(1) ⇒ (2): Let Gdepn be the clauses from Gn whose heads depend on does, and

let Gdepn be all others. By induction on n, we prove that if

Pn = Strue
0 (0) ∪G≤n−1 ∪Gdepn ∪ P legal

≤n−1

46 CHAPTER 3. SEQUENCE INVARIANTS

has answer set An, then there is an n-max sequence σ = (S0
A0−→ S1 . . .

Am−1−→ Sm)
such that An is the unique answer set for

P σn = Strue
0 (0) ∪G≤n−1 ∪Gdepn ∪ P c1,c2≤n−1 ∪

m−1⋃
i=0

Adoes
i (i).

This implies the claim for P = Pn ∪ Gdepn and P σ = P σn ∪ Gdepn by the Splitting
Theorem 2.10, since Pn and P σn do not contain heads of Gdepn . For the Base Case
n = 0 the two programs coincide. Induction Step: Assume that Pn+1 has answer set

An+1. Since Pn+1 = Pn∪Gdepn ∪Gdepn+1∪P legal
n , Pn does not contain heads of Pn+1\Pn,

hence (by Theorem 2.10) Pn has an answer set An such that An ⊆ An+1. By the

induction hypothesis there is an n-max sequence σ = (S0
A0−→ S1 . . .

Am−1−→ Sm) such
that An is the unique answer set for P σn . We consider two cases:

• Sm terminal: σ is also (n+1)-max. We have terminal(m) ∈ An (by Theorem
3.9) and hence {terminated(i) : m ≤ i ≤ n} ⊆ An+1. This implies that An+1

does not contain any instance does(r, a, n), hence An+1 is also an answer set
for P σn+1.

• Sm non-terminal: Then m = n, hence terminal(i) /∈ An for all 0 ≤ i ≤ n
(by Theorem 3.9) and hence terminated(n) /∈ An+1. By (c3) and (c4) there
is a mapping An such that for each r ∈ R there is exactly one a such that
{legal(r, a, n), does(r, a, n)} ⊆ An+1. All legal(r, a, n) must also be in An (as
in Pn+1\Pn these heads do not exist) and hence (again by Theorem 3.9) we have

Sn
An−→ Sn+1 for some Sn+1. In this case σ′ = (S0, . . . , Sn, Sn+1) is (n+1)-max.

By construction, An+1 is the unique answer set for P σ
′

n+1. �

3.5.1 Soundness

The following theorem states the soundness of the verification method.

Theorem 3.15 (Soundness). Let G be a playable and valid GDL specification whose
initial state is Sinit. Let Ψ be a set of sequence invariants over G which are satisfied
in all reachable states, and let ϕ be a sequence invariant. If P bcϕ (G) and P isϕ,Ψ(G) are
inconsistent, then for all finite developments (Sinit, S1, . . . , Sk) we have Sk � ϕ.

Proof: Let deg(ϕ) = n. The proof is via induction on k. For the base case, we
prove that P bcϕ (G) being inconsistent implies Sinit � ϕ. For the induction step, we

prove that if there are Sk , Ak , and Sk+1 such that Sk � ϕ and Sk
Ak−→ Sk+1, then

P isϕ,Ψ(G) being inconsistent implies Sk+1 � ϕ.

Base Case: We prove that if Sinit 2 ϕ, then P bcϕ (G) admits an answer set.

Sinit 2 ϕ implies that there is an n-max development σ = Sinit
A0−→ S1 . . .

Am−1−→
Sm such that (Sinit, S1, . . . , Sm) 2 ϕ. Now let P σ and P be as in the Answer Set
Correspondence Theorem 3.14 (where Sinit = S0). P σ ∪ Enc(ϕ) admits a unique
answer set A. By the Encoding Definition 3.10 we have η(ϕ) /∈ A, hence A is also
the unique answer set for P σ∪Enc(ϕ)∪{ :- η(ϕ).}. P σ and P = P bcϕ (G)\(Enc(ϕ)∪
{ :- η(ϕ).}) do not contain heads of Enc(ϕ) ∪ { :- η(ϕ).}, hence by the Splitting
Theorem 2.10 and Theorem 3.14, A is also an answer set for P bcϕ (G).

3.5. PROPERTIES OF THE VERIFICATION METHOD 47

Induction Step: Let n̂ = max(nΨ, n + 1) for the maximal degree nΨ of formulas

in Ψ. Assume Sk
Ak−→ Sk+1 for some Ak and Sk+1. We prove that if Sk+1 2 ϕ, then

P isϕ,Ψ(G) admits an answer set.

Sk+1 2 ϕ implies that there is an n-max sequence Sk+1
Ak+1−→ Sk+2 . . .

Ak+m−→
Sk+m+1 (where 0 ≤ m ≤ n) such that (Sk+1, . . . , Sk+m+1) 2 ϕ. It follows that

σn+1 = Sk
Ak−→ Sk+1

Ak+1−→ Sk+2 . . .
Ak+m−→ Sk+m+1 is (n+1)-max and that σn+1 2©ϕ.

Furthermore, by the induction hypothesis we have Sk � ϕ and hence also σn+1 � ϕ by
the Sequence Extension Proposition 3.6. These arguments imply that σn+1 2 ϕ ⊃ ©ϕ.

Since Sk is reachable and the GDL specification is playable, σn+1 can be extended
to an n̂-max sequence σn̂ by Proposition 3.6 such that σn̂ 2 ϕ ⊃ ©ϕ, and Sk
satisfying each ψ ∈ Ψ also implies σn̂ � ψ. An argumentation similar to the base
case—considering ϕ ⊃ ©ϕ instead of ϕ, n̂ instead of n, σn̂ instead of σ, and
the additional subprogram

⋃
ψ∈Ψ(Enc(ψ)∪{ :- notη(ψ).})—implies existence of an

answer set A for (P isϕ,Ψ(G)\P gen)∪Strue
k (0). Now P isϕ,Ψ(G) is obtained by exchanging

Strue
k (0) with the state generator P gen, which (by reachability of Sk , Definition 3.13

of a state generator, and the Splitting Theorem 2.10) in turn implies existence of an
answer set. �

Note that the playability assumption of the GDL specification in Theorem 3.15 can
be omitted in case nΨ ≤ deg(ϕ) + 1 for the maximal degree nΨ of formulas in Ψ,
since then the induction step proof does not require an extension of sequence σn+1

according to Proposition 3.6.

3.5.2 Restricted Completeness

Since the set of reachable states is hard to compute in interesting games, our proof
method allows to specify an easily obtainable superset of the reachable states in the
induction step proof. This is realised with the notion of a state-generator program in
Section 3.4.2, which is only assumed to provide a corresponding answer set for each
reachable state, and hence might yield additional answer sets which correspond to non-
reachable states. We have pointed out that this relaxation has the unintended side
effect of introducing counter examples for formulas which are actually valid, rendering
the proof method incomplete. In the following, we show that this is the only source for
unintended counter examples. To this end, let us introduce a class of state generators
which do not yield answer sets corresponding to non-reachable states.

Definition 3.16 (Accurate State Generator). A state generator P gen over a valid
GDL specification is called accurate if, for every answer set A of P gen, there is a
reachable state S such that for all f ∈ Σ: true(f, 0) ∈ A iff f ∈ S.

Assuming an accurate state generator, the proof method can now be proved com-
plete as follows.

Theorem 3.17 (Restricted Completeness). Let G be a valid GDL specification
whose initial state is Sinit. Let Ψ be a set of sequence invariants over G which
are satisfied in all reachable states, and let ϕ be a sequence invariant. Moreover, let
P isϕ,Ψ(G) be constructed over an accurate state generator. If for all finite developments

(Sinit, S1, . . . , Sk) we have Sk � ϕ, then P bcϕ (G) and P isϕ,Ψ(G) are inconsistent.

48 CHAPTER 3. SEQUENCE INVARIANTS

Proof: We prove that if P bcϕ (G) or P isϕ,Ψ(G) admits an answer set, then there is a
reachable state S such that S 2 ϕ. Consider the following cases:

• If P bcϕ (G) admits an answer set A, then A is also an answer set for P bcϕ (G) \
{ :- η(ϕ).}, and A does not contain η(ϕ). Since the heads of Enc(ϕ) do not
occur elsewhere, the Answer Set Correspondence Theorem 3.14 can be applied to
P bcϕ (G) \ { :- η(ϕ).} (using the Splitting Theorem 2.10) to conclude existence
of a deg(ϕ)-max development σ = (Sinit, S1, . . . , Sm) such that A is also an
answer set for the program P σ ∪Enc(ϕ), where P σ is as in Theorem 3.14 (with
S0 := Sinit, n := deg(ϕ), and where σ starts in Sinit). By the definition of an
encoding (Definition 3.10), we have that σ 2 ϕ and hence that Sinit 2 ϕ.

• If P isϕ,Ψ(G) admits an answer set, then the set of all fluents f for which true(f, 0)
is contained in this answer set is a reachable state, as instances true(f, 0) can
only result from the accurate state generator P gen. Hence, replacing P gen with
the program Strue

0 (0) that also represents this state does not influence answer
set existence by the Splitting Theorem 2.10, which implies that (P isϕ,Ψ(G) \
P gen) ∪ Strue

0 admits an answer set A. An argumentation similar to the pre-
vious item—considering ϕ ⊃ ©ϕ instead of ϕ, n̂ = max(nΨ, n + 1) instead
of deg(ϕ), S0 instead of Sinit, and the additional subprogram

⋃
ψ∈Ψ(Enc(ψ) ∪

{ :- notη(ψ).})—implies existence of an n̂-max sequence σ = (S0, S1, . . . , Sm̂)
such that σ 2 ϕ ⊃ ©ϕ. It follows that (S1, . . . , Sm̂) 2 ϕ, and hence that S1 2 ϕ
(by the Sequence Extension Proposition 3.6). �

It is easy to see that the accuracy of the proof method increases when state genera-
tors are restricted successively by removing some of their answer sets which correspond
to non-reachable states, e.g. in case new information has been obtained by further
game analysis or foregoing proofs of state sequence invariants. The completeness re-
sult provides an important implication in this setting: it shows that the verification
method converges to perfect results and that it hence is reliable. In practice however,
the strong assumption of an accurate state generator can hardly be met. We dedicate
Section 5.4.1 to experiments which show that the proof method is nevertheless effective.

3.5.3 Sound and Complete Verification at Fixed Depth

The established soundness and completeness results yield the following interesting im-
plication regarding the base case program P bcϕ (G). It states that the program con-
struction for the base case can be used for the sound and complete verification of a
formula with respect to all states at one given depth of the game tree. Now and in the
following, we will use ©n to abbreviate n consecutive ©-operators.

Proposition 3.18 (Correctness on Single States). Let G be a valid GDL specifica-
tion, ϕ be a sequence invariant over G, and let t ∈ N.

P bc©tϕ(G) is inconsistent iff for all developments δ ∈ ∆G s.t.|δ| = t : last(δ) � ϕ

Proof: ⇒: Suppose that there is a development δ = (Sinit, S1, . . . , St) and a
deg(ϕ)-max sequence σ = (St, . . . , St+m) such that σ 2 ϕ. Clearly, for the composed
development δ′ = (Sinit, S1, . . . , St, . . . , St+m) we have that δ′ 2©tϕ, and hence that

3.6. IMPROVEMENTS 49

Sinit 2©tϕ (since δ′ is deg(©tϕ)-max). Using the argumentation of the base case in
the proof of the Soundness Theorem 3.15, we obtain that P bc©tϕ(G) admits an answer
set.
⇐: Suppose that P bc©tϕ(G) admits an answer set. By the argumentation concern-

ing the base case program in the Completeness Theorem 3.17, there is a deg(©tϕ)-max
development δ′ such that δ′ 2©tϕ. Case |δ′| < t yields a contradiction, as δ′ being
deg(©tϕ)-max then implies that δ′ is terminated and hence that δ′ � ©tϕ. Hence,
|δ′| ≥ t, which yields that δ′ has the form δ′ = (Sinit, S1, . . . , St, . . . , St+m) for some
states S1, . . . , St, . . . , St+m. Subsequence (St, . . . , St+m) is deg(ϕ)-max (since δ′ is
deg(©tϕ)-max) and such that (St, . . . , St+m) 2 ϕ (since δ′ 2©tϕ). �

Hence, the base case construction of our proof method can also be applied as a
sound and complete check of whether a formula ϕ is entailed by all reachable states
of a game in arbitrary depth t of the game tree. In Section 3.6.1 we show how this
result can be applied to solve single-player games. In practice, this proposition is of
course useful for small depths t of the game tree only. In order to solve P bc©tϕ(G),
an answer set solver has to perform a complete search in the partial game tree up to
depth t+ deg(ϕ) in the worst case, as P bc©tϕ(G) does not involve any short cuts such
as the local search in combination with an induction argument that we apply in our
induction method. On the other side, the base case program does not need the strong
assumption of an accurate state generator to be complete.

Note that Proposition 3.18 allows to conclude that a formula is not valid whenever
the base case program for this formula admits an answer set. This conclusion cannot
be drawn from an answer set for the induction step program (unless the state generator
is known to be accurate), as the answer set could correspond to a non-reachable state
and the formula hence nevertheless be valid.

3.6 Improvements

In this section, we discuss several modifications and extensions of our proof method
which allow to solve single-player games (Section 3.6.1), to prove multiple properties
using only two generated answer set programs (Section 3.6.2), to exhaustively prove
properties from a given set (Section 3.6.3), and to handle non-playable games (Sec-
tion 3.6.4).

3.6.1 Solving Single-Player Games

We will now show that our verification approach for state sequence invariants is capable
of solving single-player games. Let G be a valid GDL specification with only one player
r. Then the goal for r is to find a sequence of own legal moves which yields a terminal
state with the maximal outcome of 100 points. More formally, the goal is to find a

sequence Sinit
A0−→ S1 . . .

Am−1−→ Sk such that Sk satisfies the formula

ψ = terminal ∧ goal(r, 100).

Naturally, ψ is not valid unless the initial state Sinit itself satisfies ψ (which happens
only if the game is terminated in the initial state and would hence be trivial to solve),
hence our induction proof method is not readily applicable to solve single-player games.

50 CHAPTER 3. SEQUENCE INVARIANTS

Algorithm 3.1 Prove Weak Winnability for player r

Input: G - a valid GDL specification, r - a player from G
ρ := ¬(terminal ∧ goal(r, 100))
while true do

if P bcρ (G) admits answer set A then
return “the game is weakly winnable”

else
ρ :=©ρ

end if
end while

However, given a maximal time horizon t, we can state a formula ϕ which expresses
that the goal ψ of r will not be achieved within t moves :

ϕ = (©0¬ψ) ∧ (©1¬ψ) ∧ . . . ∧ (©t¬ψ)

Now we construct the base case program P bcϕ (G) for ϕ. If P bcϕ (G) is inconsistent, then
(by Proposition 3.18) Sinit � ϕ, which implies that the game cannot be solved within

t moves. Otherwise, there is a t-max development δ = (Sinit
A0−→ S1 . . .

At′−→ St′) with
t′ ≤ t such that δ 2 ϕ. This implies that δ 2 ©i¬ψ for some i ≤ t. However, this
implication is not true for any i such that t′ < i ≤ t, as δ is too short and terminated
in this case and does hence satisfy arbitrary formulas ©iρ. The implication is also
not true for any i such that i < t′, as the respective state Si in δ is non-terminal
and hence does not satisfy ψ, implying that the sequence (Sinit, S1, . . . , Si) and hence
also δ satisfies ©i¬ψ. Hence i must be equal to t′, we have δ 2 ©t′¬ψ and thus
St′ � terminal ∧goal(r, 100). The single player r can then win the game by performing
action A0(r) in Sinit, and by performing action Ai(r) in each subsequent state Si
for 1 ≤ i < t′. This approach is not restricted to single-player games: in the case of
n ≥ 2 players, we can use it readily to prove weak winnability (cf. Definition 2.21) for
an arbitrary player r.

Instead of attempting one single proof for ϕ, we can also attempt successive proofs
on ©t¬ψ for t = 0, 1, 2, . . . until an answer set for P bc©t¬ψ(G) is found. This procedure
is summarised by Algorithm 3.1. It allows to drop the requirement of a given maximal
time horizon t, and has the following properties:

Sound and Complete The algorithm terminates with answer “the game is weakly
winnable” iff there is a t ∈ N such that P bc©t¬ψ(G) admits an answer set iff (by

Proposition 3.18) there is a development δ = (S0
A0−→ S1 . . .

At−→ St) such that
(St) 2 ¬(terminal∧goal(r, 100)) iff (by the formula semantics from Definition 3.5)
there is a development δ which ends in a terminal state which yields maximal
payoff for player r iff (by the definition of weak winnability in Definition 2.21)
G is weakly winnable for player r.

Constructive and Minimal Assume the algorithm terminates with an answer set
A for P bc©t¬ψ(G). It is easy to see that A uniquely corresponds to a t-max de-
velopment δ and that this development, following Proposition 3.18, is of length
t and such that (last(δ)) 2 ¬ψ. Hence, the algorithm can be used to effectively

3.6. IMPROVEMENTS 51

construct a sequence of joint actions that allows player r to win (if such a se-
quence exists). Moreover, for each 0 ≤ t′ < t, P bc©t′¬ψ(G) is inconsistent, hence

the constructed development δ is of minimal length.

The algorithm only terminates if the game is indeed weakly winnable for player r. It
can hence not be applied to verify that a game is not weakly winnable, which would
require a known upper bound for t that overestimates the maximal depth of the game
tree. In Section 5.4.3 we report on experiments which show that weak winnability can
effectively be shown in a variety of games.

3.6.2 Proving Multiple Properties At Once

Requiring a general game player to invoke an ASP system individually for each formula
in a large set of candidate properties is not feasible for the practice of General Game
Playing with a limited amount of time to analyse the rules of a hitherto unknown game.
In the following we therefore develop a crucial extension of our method that enables a
general game player to invoke the ASP system only once in order to determine precisely
which of a whole set Φ of formulas is valid wrt. a given game description. We will
show that for this purpose it suffices to construct only two answer set programs for Φ,
one to establish all base case proofs and one for all induction steps. For any ϕ ∈ Φ,
then, if all answer sets for the base case program satisfy ϕ, we know that ϕ is entailed
in the initial state. If additionally all answer sets of the induction step program satisfy
ϕ ⊃ ©ϕ, we can conclude that ϕ is entailed in all reachable states. In practice,
this results in a significantly more efficient proof method, especially when grouping
structurally similar formulas which, for example, have the same degree or incorporate
different instances of the same atoms. In Section 5.4.1 we will further motivate this
intuition by an experiment setup that allows to prove various properties efficiently.

For a game description G and a finite set of state sequence invariants Φ with
maximal degree n̂bc, the generalised base case answer set program is defined as follows:

P bcΦ (G) = Strue
init (0) ∪Gn̂bc ∪ P

legal
n̂bc−1 ∪

⋃
ϕ∈Φ

Enc(ϕ)

Compared to P bcϕ (G), the constraint { :- η(ϕ).} is no longer used, which results in
a unique answer set for each of the n̂bc-max sequences starting in Sinit (as opposed to
distinct answer sets for sequences that violate ϕ in P bcϕ (G) only). This is necessary to
keep all relevant answer sets for formulas from Φ different from ϕ which do not satisfy
:- η(ϕ). Moreover, encodings are added for all the formulas in Φ, consequently raising
the overall degree of the generated answer set program to the maximal formula degree
n̂bc.

Now let Ψ again be a finite set of valid sequence invariants, and let n̂is be the
maximal degree of all formulas in Φ ∪ Ψ ∪ {ϕ ⊃ ©ϕ}. Applying similar changes to
P isϕ,Ψ(G), we define the generalised induction step answer set program as follows:

P isΦ,Ψ(G) = P gen ∪Gn̂is ∪ P
legal
n̂is−1 ∪

⋃
ϕ∈Φ Enc(ϕ ⊃ ©ϕ) ∪⋃

ψ∈Ψ(Enc(ψ) ∪ { :- not η(ψ). }).

The generalised method can be proved sound, too.

52 CHAPTER 3. SEQUENCE INVARIANTS

Theorem 3.19 (Soundness on Multiple Properties). Let G be a playable and valid
GDL specification whose initial state is Sinit. Moreover, let Φ and Ψ be sets of
sequence invariants over G such that each ψ ∈ Ψ is satisfied in all reachable states,
and let ϕ ∈ Φ. If every answer set for P bcΦ (G) contains η(ϕ) and every answer set
for P isΦ,Ψ(G) contains η(ϕ ⊃ ©ϕ), then for all finite sequences (Sinit, S1, . . . , Sk) we
have Sk � ϕ.

Proof: The proof is similar to the proof for the Soundness Theorem 3.15, with the
following additional observations:

• Considering the base case, Sinit is reachable, hence by the Sequence Extension
Proposition 3.6 the n-max sequence σ that violates ϕ can be extended to an
n̂bc-max sequence that violates ϕ.

• Considering the induction step, Sk is reachable, hence by Proposition 3.6 the
n̂-max sequence σn̂ that violates ϕ ⊃ ©ϕ can be extended to an n̂is-max
sequence that violates ϕ ⊃ ©ϕ.

• The additional encodings
⋃
ρ∈Φ\{ϕ} Enc(ρ) in P bcΦ (G) (

⋃
ρ∈Φ\{ϕ} Enc(ρ ⊃ ©ρ)

in P isΦ,Ψ(G), respectively) only result in additional unique name atoms in an
obtained answer set, without falsifying any other atoms.

• The absence of constraints :- η(ϕ). in P bcΦ (G) (and of :- η(ϕ ⊃ ©ϕ). in
P isΦ,Ψ(G), respectively) does not influence the existence of an answer set A which
is such that η(ϕ) /∈ A (η(ϕ ⊃ ©ϕ) /∈ A).

Now, Sinit 2 ϕ (Sk 2 ϕ ⊃ ©ϕ, respectively) results in an answer set for P bcΦ (G)
(P isΦ,Ψ(G), respectively) which does not contain η(ϕ) (η(ϕ ⊃ ©ϕ), respectively), which
proves the claim. �

Note that, for each formula ϕ, name atom η(ϕ) is contained in all answer sets for
P bcΦ (G) if and only if it is contained in the intersection of all answer sets for P bcΦ (G)
(similarly for η(ϕ ⊃ ©ϕ) and P isΦ,Ψ(G)). This fact will turn out useful in the practical
implementation of the proof method which is presented in Chapter 5.

The following theorem shows that the generalisation succeeds in proving at least
all the state sequence invariants that can be proved with the original method.

Theorem 3.20 (Provability). Consider the same assumptions and naming conven-
tions as in Theorem 3.19.

(1) If P bcϕ (G) is inconsistent then η(ϕ) is in all answer sets of P bcΦ (G).

(2) If P isϕ,Ψ(G) is inconsistent then η(ϕ ⊃ ©ϕ) is in all answer sets of P isΦ,Ψ(G).

Proof:

(1) Let Pn̂bc be as P in the Answer Set Correspondence Theorem 3.14, replacing
S0 by Sinit and n by n̂bc. Assume that P bcΦ (G) = Pn̂bc ∪

⋃
ρ∈Φ Enc(ρ) admits

an answer set A such that η(ϕ) /∈ A. Then there is an n̂bc-max sequence
σn̂bc starting at Sinit such that σn̂bc 2 ϕ by Theorem 3.14 and the Encoding
Definition 3.10. Then for the initial n-max fragment σn of σn̂bc we have σn 2 ϕ
by the Sequence Extension Proposition 3.6. Thus, again by Theorem 3.14 and

3.6. IMPROVEMENTS 53

Definition 3.10, Pn ∪Enc(ϕ) (with Pn as P in Theorem 3.14, replacing S0 by
Sinit) admits an answer set A′ such that η(ϕ) /∈ A′, which is also an answer set
for P bcϕ (G) = Pn ∪ Enc(ϕ) ∪ { :- η(ϕ).}.

(2) Assume that P isΦ,Ψ(G) admits an answer set A such that η(ϕ ⊃ ©ϕ) /∈ A and
let Strue

0 (0) ⊆ A be the set of all atoms of the shape true(f, 0) in A. Then
(P isΦ,Ψ(G)\P gen)∪Strue

0 (0) admits an answer set A′ such that η(ϕ ⊃ ©ϕ) /∈ A′.
The claim now follows by an argumentation similar to (1), where we use S0

instead of Sinit, n̂is instead of n̂bc, and ϕ ⊃ ©ϕ instead of ϕ. �

It should be stressed, however, that the converse of (2) in Theorem 3.20 does not
hold: An answer set for P isϕ,Ψ(G) represents an established n̂-max sequence σ (cf.
the Answer Set Correspondence Theorem 3.14) that violates ϕ ⊃ ©ϕ. σ however
might not be extendable to an n̂is-max sequence (cf. the remark following Proposi-
tion 3.6) that could serve as counterexample for ϕ ⊃ ©ϕ in P isΦ,Ψ(G). Hence our
efficiency improvement even strengthens the result, depending on the maximal degree
n̂ of the given formula set Φ. For the same reason, adding proved formulas as ev-
idence can strengthen the results of both the original method and its generalisation.
Under the assumption of an accurate state generator, Theorem 3.20 implies complete-
ness of the generalised method, as in this case also the original method is complete (cf.
Theorem 3.17).

3.6.3 A General Scheme for Conjunctive Formula Proofs

In Section 3.4.2, we have argued that a successful proof for some formulas may have
to assume further valid formulas in the induction step. Sometimes, however, proving
some of these valid formulas in turn needs to assume the validity of the formula which
is to be proved in the first place. E.g., in Quarto, both formulas

(∃0..1P :{r1, r2}) true(pctrl(P)) and (∃0..1P :{r1, r2}) true(sctrl(P))

are valid, but can only be proved valid when assuming the other to be valid already. Put
another way, the induction step proof for each of the formulas admits only non-reachable
sequences as counter examples which do not satisfy the respective other formula. In
cases like this, the proof of the conjunction of the formulas will be successful, as the
induction hypothesis then also comprises the conjunction of both formulas and hence
neglects the beforementioned counter examples. These considerations also apply to
more than two formulas. In the following, we propose a general algorithm which takes
a finite set of formulas Φ and a finite set of already proved formulas Ψ as input.
It proves all formulas from Φ which are provable under the given evidence Ψ (with
respect to an arbitrarily given fixed state generator), considering all possibilities of
conjunctive provability as mentioned before.

The algorithm uses a set of conjunctive formulas Conjuncts(Φ,Seqs) from which it
chooses the formula which is to be attempted next. It depends on the set of formulas Φ
which are currently neither proved to be valid nor disproved for some reachable state
(hence, they can be attempted), and a set of sequences Seqs which are counter examples
for previously attempted formulas. With these components, Conjuncts(Φ,Seqs) is
defined to be the set of all formulas ϕ = ϕ1 ∧ . . . ∧ ϕk such that

54 CHAPTER 3. SEQUENCE INVARIANTS

Algorithm 3.2 Algorithm which proves all conjuncts from a given set of properties

Input:
G - playable and valid GDL specification
Φ - finite set of sequence invariants which are to be proved
Ψ - finite set of valid sequence invariants

Initialise:
1 Seqs := ∅
2 Φ := subset of {ϕ ∈ Φ : Sinit � ϕ} which contains all valid formulas from Φ
3 while Conjuncts(Φ,Seqs) 6= ∅ do
4 choose ϕ = ϕ1 ∧ . . . ∧ ϕk ∈ Conjuncts(Φ,Seqs) (for {ϕ1, . . . , ϕk} ⊆ Φ)
5 if P isϕ,Ψ(G) admits an answer set A then
6 A corresponds to a deg(ϕ)-max sequence σ which violates ϕ ⊃ ©ϕ
7 Seqs := Seqs ∪ {σ}
8 else
9 Seqs := Seqs \ {σ ∈ Seqs : ∃ψ ∈ {ϕ1, . . . , ϕk} s.t. σ is n-max for some

n ≥ deg(ψ) and σ 2 ψ}
10 Φ := Φ \ {ϕ1, . . . , ϕk}
11 Ψ := Ψ ∪ {ϕ1, . . . , ϕk}
12 end if
13 end while

1. ϕ1, . . . , ϕk are pairwise distinct and elements of Φ (hence, the conjunctive for-
mula ϕ is built from currently attempted formulas), and

2. ϕ ⊃ ©ϕ is satisfied by all sequences from Seqs which are at least deg(©ϕ)-max
(hence, the conjunctive formula ϕ does not have a counter example yet).

The algorithm is given as Algorithm 3.2. The set Φ of formulas which is to be
proved is first reduced such as to contain only formulas which are true initially, for
example by one base case proof via the approach from Section 3.6.2 (line 2). Some
initially-true formulas might be sorted out when information about their violation in
some reachable state is available. The While-Loop (lines 3 to 13) is performed as long as
some conjunctive formula ϕ can be chosen from Conjuncts(Φ,Seqs) (lines 3 and 4).
An induction step proof is performed. In case it admits an answer set (line 5), the
chosen formula ϕ could not be proved (line 6), and the obtained counter sequence is
remembered (line 7). Otherwise (line 8), the conjunctive formula ϕ has been success-
fully proved valid. As a consequence, all sequences which violate any of the conjuncts
of ϕ must necessarily start in a non-reachable state and can hence be omitted (line 9).
Furthermore, the set of conjuncts that has formed ϕ is shifted from the set of at-
tempted formulas (line 10) to the set of proved formulas (line 11).

Termination

The Algorithm terminates as soon as the finite set Conjuncts(Φ,Seqs) of attemptable
formulas is empty. In the following we motivate that this happens after finitely many
iterations of the While-Loop. For this matter, we first define an ordering <2⊆ N× N

3.6. IMPROVEMENTS 55

such that
(p′, q′) <2 (p, q) holds iff p′ < p, or p′ = p and q′ < q.

Each set Conjuncts(Φ,Seqs) can exactly be associated with an element (p, q) of that
ordering by setting p to be the number of formulas in Φ and q to be the number of
conjunctive formulas in Conjuncts(Φ,Seqs). I.e.,

(p, q) = (|Φ|, |Conjuncts(Φ,Seqs)|).

We now argue that performing one iteration starting with the set Conjuncts(Φ,Seqs)
and its associated element (p, q) will produce a set Conjuncts(Φ′,Seqs′) whose asso-
ciated element (p′, q′) is smaller than (p, q) with respect to <2, which implies finite
termination as there are only finite decreasing chains of elements in <2. To this end,
assume that ϕ = ϕ1 ∧ . . . ∧ ϕk has currently been selected from Conjuncts(Φ,Seqs).
The following cases may arise:

• P isϕ,Ψ(G) admits an answer set (lines 6 and 7). Then Φ′ = Φ and Seqs′ =
Seqs ∪ {σ}. Since Seqs′ contains all sequences from Seqs, no additional formula
can be contained in the updated set Conjuncts(Φ′,Seqs′). However, since the
additional sequence σ does not satisfy ϕ ⊃ ©ϕ, ϕ is not contained in this set
anymore. Hence,

(p′, q′) = (p, q − l)
for some l ≥ 1 (as ϕ is omitted and some other formulas may have been omitted
due to the additional sequence σ as well), which is smaller than (p, q) with
respect to <2.

• P isϕ,Ψ(G) is inconsistent (lines 9 to 11). Then Φ′ = Φ \ {ϕ1, . . . , ϕk} and hence
(since {ϕ1, . . . , ϕk} ⊆ Φ and the ϕi are pairwise distinct)

(p′, q′) = (p− k, q + l)

for some l ≥ 0 (since some other conjunctive formulas might have become avail-
able due to the newly omitted counter sequences), which is smaller than (p, q)
with respect to <2.

Correctness

• At each point of execution, the set Ψ contains only valid formulas, which can be
argued by induction. The base case considers the starting point of the algorithm,
and hence satisfies this condition since the set Ψ is assumed to contain only valid
formulas. For the induction step, assume that Ψ contains only valid formulas
prior to some iteration of the While-Loop. Ψ is only altered in case some formula
ϕ = ϕ1 ∧ . . .∧ϕk has been picked for which the generated induction step answer
set program P isϕ,Ψ(G) does not admit an answer set. In that case, the formulas
ϕ1, . . . , ϕk are added to Ψ. It remains to show that the added formulas are
indeed valid. Since ϕ is true in the initial state of the game (by the initialisation
of the formula set Φ, applying the Sequence Extension Proposition 3.6), the
unsatisfiability of P isϕ,Ψ(G) implies that ϕ is valid (the technical arguments are
similar to those for the soundness result of the proof method). Consequently, also
each of its conjuncts ϕ1, . . . , ϕk is valid (again applying Proposition 3.6).

56 CHAPTER 3. SEQUENCE INVARIANTS

• After termination of the algorithm, the remaining set Φ only contains formulas
which cannot be proved without further information. I.e., after termination, for
each formula subset F ⊆ Φ and the formula ϕ =

∧
ψ∈F ψ, there is a sequence σ

which

1. does not satisfy ϕ ⊃ ©ϕ (and hence is a counter example for ϕ), and

2. satisfies all the proved valid formulas from Ψ.

The first condition is true since Conjuncts(Φ,Seqs) is empty after termination,
which implies that each conjunctive formula ϕ violates item 2 in the definition
of set Conjuncts(Φ,Seqs) and hence has a counter sequence in Seqs. The second
condition is true since running the algorithm only produces counter sequences
which satisfy all known valid formulas (as these formulas are included in the
induction step proof), and since sequences in Seqs which do not satisfy newly
proved formulas are immediately removed.

Discussion

The algorithm provides a general method for exhaustively attempting proofs for a
given formula set (with respect to an arbitrarily given fixed state generator) under the
incorporation of previously obtained information. It is, however, to be understood as
a scheme rather than a concrete method, as the following details are not considered in
this work (we will provide some hints on these issues in the Future Work Section 7.2).

• The method for disproving formulas (line 2) prior to starting the While-Loop is
left open. This step provides the only possibility for reliably sorting out non-
valid formulas, and a more restrictive set can greatly increase performance of the
algorithm.

• No heuristic for the choice of a formula from the set Conjuncts(Φ,Seqs) is speci-
fied. However, also this is a crucial point for overall performance, as it influences
the time consumption of the proof (more complex formulas need more complex
proofs) and the “quality” of the counter examples (those which violate more
attempted formulas provide more information on potentially unsuccessful proof
attempts).

• No method for checking the entailment of formulas with respect to sequences is
specified. As this check has to be performed repeatedly (however at most twice
for each formula in Φ for each newly obtained counter sequence, as motivated
below), it does influence performance.

Let us conclude this section with a remark concerning an implementation of the
algorithm. In order to calculate the elements of the current set Conjuncts(Φ,Seqs),
an entailment check for each of the exponentially many conjunctive formulas over Φ
with respect to all sequences in Seqs is not necessary. Instead, for each newly obtained
sequence σ and each formula ψ ∈ Φ, the two entailment checks σ � ψ and σ � ¬©ψ
suffice, when their results are remembered in all following iterations (for the following
considerations, we assume that σ does not entail a formula ψ in case σ is n-max for
some n < deg(ψ)). Suppose that {ϕ1, . . . , ϕk} is any subset of the formulas from Φ

3.6. IMPROVEMENTS 57

which are satisfied by a sequence σ, and let ψ be a formula which is such that σ � ψ
and σ � ¬© ψ. Then the latter also implies that σ � (¬© ψ) ∨ ¬© (ϕ1 ∧ . . . ∧ ϕk)
(since the first disjunct is already satisfied, the second disjunct is unimportant for the
entailment of the disjunctive formula), which is equivalent to σ � ¬©(ψ∧ϕ1∧. . .∧ϕk).
Since all formulas ψ,ϕ1, . . . , ϕk are true wrt. σ, this further implies

σ � (ψ ∧ ϕ1 ∧ . . . ∧ ϕk) ∧ ¬© (ψ ∧ ϕ1 ∧ . . . ∧ ϕk).

This in turn yields that the conjunctive formula ψ ∧ ϕ1 ∧ . . . ∧ ϕk is not an element
of Conjuncts(Φ,Seqs) and hence cannot be chosen for a proof attempt. As ϕ1, . . . , ϕk
were arbitrarily chosen from the formulas in Φ which are satisfied by the counter se-
quence σ, we can conclude the following: The two before-mentioned entailment checks,
performed for each formula from Φ each time a newly obtained counter sequence σ
has been found, suffice to know that any subset of formulas from Φ which are true
wrt. σ is not available to form a conjunctive formula for a proof attempt in case this
subset contains a formula ψ such that also ¬ © ψ is satisfied by that sequence σ.
Putting this information together for all obtained counter sequences yields all conjunc-
tions which are not applicable, and hence allows to choose a different one for a proof
attempt.

3.6.4 Non-Playable Sequences

Sequence invariant entailment � (cf. Definition 3.5), defined over n-max sequences for
the degree n of the formula to be verified, does not account for sequences that are of
length smaller than n and end in a non-terminal state that does not permit a move for
one of the players (also called non-playable sequences). This has an interesting effect,
as the following simple, non-playable game shows:

role (r).
i n i t (f).
l ega l (r,a) :- true(f).

Consider the sequence invariant that axiomatises playability, that is,

ϕ = ¬terminal ⊃ (∀R :DR)(∃M :DM) legal(R,M)

with the domains DR = {r} and DM = {a} for the example game. Additionally,
consider an arbitrary formula ψ with degree 1 that is known to be satisfied in the
initial state, Sinit = {f }. Then ϕ∧ψ is satisfied in Sinit since the only 1-max sequence

{f } {r : a}−→ {} satisfies ϕ∧ψ. Formula ϕ∧ψ is also satisfied in state {}, as no 1-max
sequence emerges from that state. Since these are the only reachable states, ϕ ∧ ψ is
considered true in each reachable state, contradicting our intuition that the game is
non-playable and hence that ϕ should be false. The only counterexample, however,
would be the sequence ({}) of length 0, which is non-playable with respect to length
1. But as non-playable sequences are not among the 1-max sequences, ({}) will never
be considered in our setting.

On the one hand, playability is a standard requirement for General Game Playing
Competitions and thus can be presupposed by a general game-playing system. A GDL
game designer, on the other hand, might be particularly interested in proving whether a

58 CHAPTER 3. SEQUENCE INVARIANTS

game she has designed is indeed playable, which motivates the following considerations.
To begin with, observe that playability of a game has no influence on the outcome of a
proof attempt for sequence invariant ϕ when tried together with a set Ψ of previously
proved formulas of degree less or equal to 1, since:

Base Case amounts to verifying ϕ with respect to the only 0-max sequence start-
ing in Sinit, namely (Sinit), which incorporates no state transition and hence is
independent of the playability assumption; and

Induction Step amounts to verifying ϕ with respect to every 1-max sequence which
starts in a state satisfying ϕ, which is again independent of the playability as-
sumption since ϕ represents playability itself.

Hence, the proof method can be used to reliably prove the playability formula ϕ,
relying on previously proved formulas of degree ≤ 1 only, in order to assume playability
thereafter. If this proof attempt is not successful, the (indirect) playability assumption
can be dropped by incorporating non-playable sequences into the proof method as
follows:

• Altering the definition of an n-max sequence (cf. Definition 3.5) such that in case
of length smaller than n the last state of the sequence might also be non-terminal
and not permit a legal move for one of the players.

• Adding the following clauses to the game description G (cf. the GDL Syntax
Definition 2.14):

has_no_legal(R) :- not has_legal(R) , role(R).
has_legal(R) :- legal(R,A).

• Adding to Enc(©ψ, i) (cf. Section 3.3.2) for each r ∈ R:

η(©ψ, i) :- has_no_legal (r, i).

• Adding to P legal
n−1 (cf. Section 3.4.1) for all 0 ≤ i ≤ n− 1 and r ∈ R:

terminated (i) :- has_no_legal (r, i).

Besides increasing the complexity of the constructed Answer Set Programs P bcϕ (G)
and P isϕ,Ψ(G), this modification weakens the proof method. As an example, suppose
we extend the (non-playable) game from the beginning of this section by the following
clauses:

next(f) :- true(f), not true(g).
next(g) :- true(g).

Note that the extended game is playable, as opposed to the original one. Now consider
the formula true(f), which holds in each reachable state. A proof attempt, however,
yields the (unreachable) 1-max sequence σ = ({f, g}, {g}) as a counterexample for the
induction step, since σ 2 true(f) ⊃ ©true(f). Assuming playability and the original
setting, σ is rejected as soon as some formula ψ with degree 2 is known to be satisfied

3.7. DISCUSSION 59

in each reachable state and added to P isϕ,Ψ(G), because σ cannot be extended to a
2-max sequence. This indeed allows to prove the induction step for true(f). This is in
contrast to the modified setting, where σ is also considered 2-max and might satisfy
ψ as well. In conclusion, the presented modification reliably copes with games which
are not known to be playable, but whenever this assumption can be made, the more
efficient and stronger original proof method should be used instead.

3.7 Discussion

We will now discuss our choice to establish a proof method using the paradigm of
Answer Set Programming (Section 3.7.1), and give an overview of the attributes of our
property specification language which are essential for efficient property verification in
practice (Section 3.7.2).

3.7.1 Choosing Answer Set Programming

We have decided to establish a proof method using the paradigm of Answer Set Pro-
gramming for the following two main reasons:

• Answer Set Programming allows a straight forward encoding of game descriptions.
Each program of the Game Description Language, possibly enriched with state
and move information, is stratified and hence admits a unique answer set which
corresponds to the well-known standard model of a logic program. Hence, the An-
swer Set Semantics provides a natural way for reasoning over game descriptions.
Furthermore, Answer Set Programming provides helpful additional language con-
structs such as weight atoms and constraints which greatly ease the formulation
of atom quantities. E.g., action generators need to state that each agent performs
exactly one action in each non-terminal state, and game properties frequently in-
clude expressions such as “there are at least m and at most n instances of p(~t) ”.
The specification of conditions like these, say, with propositional logic is consider-
ably more complex. Furthermore, Answer Set Programming can take advantage
of their explicit representation by a special-purpose evaluation [GKKS09]. The
Answer Set Semantics also allows for compact formula encodings, as answer sets
are minimal. For example, a conjunctive formula ϕ1 ∧ ϕ2 can be encoded via
the one clause η(ϕ1 ∧ ϕ2) :- η(ϕ1), η(ϕ2). (together with further encodings for
the respective subformulas), without the need for additional constructs that deal
with unintended models satisfying η(ϕ1 ∧ ϕ2) but not both η(ϕ1) and η(ϕ2).

• Answer Set Programming has become a state-of-the-art reasoning technique. It
has successfully been applied to a variety of problems, including areas such as
product configuration, NASA shuttle controllers, and systems biology (pointers to
a comprehensive list of applications can be found, e.g., in [GKKS11a]). The ASP
system we use for our implementation (we dedicate Section 5.3 to a brief introduc-
tion) has achieved first ranks in several tracks of international competitions such
as ASP (concerning Answer Set Programming), PB (concerning Pseudo-Boolean
functions), and SAT (concerning the satisfiability of propositional formulas). Its
success in these diverse research areas qualifies Answer Set Programming as the
first choice for our verification problems.

60 CHAPTER 3. SEQUENCE INVARIANTS

3.7.2 Expressibility Versus Practical Useability

The design of a verification method which is applicable even in games far beyond reach
of exhaustive search requires several restrictions. The following two items summarise
the two main design choices for our property specification language that we have applied
in order to achieve efficient property verification.

• As the first choice, we allow the reference to direct successor states universally
only. I.e., we utilise the unary operator ©, and our semantics follows the style
of Linear Temporal Logic (LTL, see e.g. [BK08]) to satisfy S � ©ϕ if and only
if ϕ is satisfied in each direct successor of state S . The expression of existential
quantification, on the contrary, is not possible in our framework. This restriction
allows us to compactly represent each counter example of a formula via one
single state sequence. In comparison, a modification of the interpretation of ©
to existential path quantification would require a partial game tree. Allowing
both types of temporal operators in the style of Compution Tree Logic (CTL,
see e.g. [BK08]) would necessitate an even more complex structure for counter
examples which combines elements of sequences and trees. As a consequence,
the temporal GDL extension, required for the verification of temporal properties
using Answer Set Programming, would need a branching time structure, opposed
to the linear time structure via natural numbers 0, 1, 2, . . . that we apply.

In principle, a branching time structure is achievable via the specification of terms
in time arguments similar to the Situation Calculus [McC63], namely such that
each term encodes all joint actions which have been performed so far. As an
example in Quarto,

do([noop, place(p0000,1,1)], do([select(p0000),noop], s0))

can be used to represent the state resulting from a state represented as s0 when
player r2 places the piece p0000 at cell (1, 1) which has previously been selected
by player r1. However, for a branching factor b of the game and a degree n of the
property which is to be verified, this would result in an exponential blowup of the
GDL specification to Σ0≤i≤nb

i different time-extended GDL clause sets instead
of the linear blowup to n clause sets we achieve with a linear time structure. As
current state-of-the-art answer set solvers rely on a complete clause expansion
prior to solving a problem, a branching-time structure cannot practicably be
handled in most games even for properties with a small degree.

• Our second choice is the restriction to bounded time reference. I.e., we do not
allow temporal operators to express “always”, “eventually”, or “until”, which
are common in temporal logics such as LTL and CTL. Our restriction allows
to concentrate on the local scheme of a linearly temporalised GDL specification
which only involves a finitely bounded number of time steps. This is possible since
counter examples can be represented within this structure, and a property can
also be verified with respect to all reachable states by proving the non-existence
of a counter example, instead of proving its entailment in each individual state.
The additional utilisation of an induction hypothesis further allows to efficiently
cut parts of the search space.

3.8. SUMMARY 61

The restrictions which are put via a linear time structure and finite time reference
are not severe. In fact, in this chapter we have seen that many interesting properties
can still be expressed. In Section 5.4.1, we will demonstrate the expressiveness with
further interesting properties. Chapter 5 also provides reports on extensive experiments
showing that our method is indeed practically applicable even in complex games.

As a further comment to practical useability, note that the initial state of the game
is by no means interconnected with the rest of the constructed answer set programs,
and hence can arbitrarily be replaced by any reachable state of the game. This allows
to readily apply our method also during gameplay, which is interesting e.g. to discover
properties which only hold, say, in the final stage of a game. Furthermore, as the
induction step proof for a property does not depend on the specified initial state, it
only has to be performed once per property. In case it is successful, a successful base
case proof with respect to a later state S0 of the game then suffices to establish the
validity with respect to all reachable states that follow S0.

3.8 Summary

In this chapter, we developed a sound theory to prove rich invariance properties for
games formulated over the GDL. To this end, we first introduced a simple yet expressive
property description language to address game properties which may involve arbitrary
finite sequences of game states. Its syntax incorporates basic atoms of the GDL, propo-
sitional constructs, (restricted) quantification including counting quantifiers, and the
unary operator © borrowed from Temporal Logic. Its semantics is based on linear
time via finite state sequences. We then introduced an extension of the GDL by an
additional linear time argument, the temporal GDL extension, and proved that it cor-
rectly generalises reasoning over the GDL from single state transitions to arbitrary long
finite state sequences. We defined an encoding for formulas in our language and proved
that, together with a temporal GDL extension and an encoding of a state sequence, it
yields an answer set program which admits a unique answer set that contains a special
formula-name token if and only if that state sequence satisfies the formula. Based on
this correspondence, we developed a proof theory which establishes the validity of a
formula using the principle of induction: first we constructed an answer set program
whose unsatisfiability implies that the formula holds in the initial state (for the base
case), second we constructed an answer set program whose unsatisfiability implies that
the formula holds in each direct successor of each state that itself satisfies the formula
(for the induction step). We formally proved the soundness of our method, and showed
that completeness can be obtained when the set of reachable states is known. We
further showed that the method can be adjusted to correctly verify properties with
respect to arbitrary single reachable states, which also yields the possibility to solving
single player games and proving weak winnability in multiplayer games. Finally, we
developed an extension of our method to prove multiple formulas simultaneously and
provided a general algorithm for exhaustive formula proofs. We concluded with a mo-
tivation of our choices regarding Answer Set Programming and our language for the
specification of game properties.

62 CHAPTER 3. SEQUENCE INVARIANTS

Chapter 4

Epistemic Sequence Invariants

The proof method developed so far can prove state sequence invariants over the global
world state in both complete-information and incomplete-information games. However,
the underlying formula language is not capable of expressing different perspectives of
players which are caused by their not necessarily complete percepts of the world. For
a game designer, specifying a game raises the question whether it satisfies certain key
features, e.g. the property

When the game has terminated, each player knows that it has terminated. (4.1)

This is no longer obvious when moving to incomplete-information games. As another
example, consider the property

Each player knows his legal and illegal moves. (4.2)

Both properties do not refer to the global world state (in which termination and legal
moves can exactly be determined at all times), but to what players know about the
world state. Even though a player gets to see the entire description of an incomplete-
information game (cf. the general introduction to the execution model in Section 2.2.5)
and hence, e.g., can exactly figure out the initial state as well as the legal moves of
all players or the terminal condition in each state, only one performed joint move
in the initial state can leave him completely uncertain about which of the possible
successor states of the initial state might be the actual one. Hence, again, an automated
verification technique of properties which involve knowledge can come to the game
designers rescue. In addition, it can provide valuable information to a general game-
playing program concerning the perspectives of his opponents in certain stages of the
game. This chapter is dedicated to a generalisation of the presented verification method
which can handle the mentioned properties.

To this end, we proceed as follows. We first introduce an incomplete-information
game that gives an intuition of the subtleties that arise in this setting and will serve as
running example throughout this chapter (Section 4.1). We then extend the syntax and
the semantics of our property language to account for knowledge of individual players,
and show that this extension matches well-known properties that are desired when
reasoning about knowledge as well as the GDL-specific property of complete knowledge
in the initial state (Section 4.2). As a linear time structure provides several advantages
for a practical verification method in the knowledge-free case (cf. the discussion in

63

64 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

Section 3.7.2), we decide to keep this structure also in the generalisation of the proof
method which is about to be presented. In Section 4.3, we motivate that this design
decision requires to exclude properties involving formulations of what players do not
know, which then allows to provide an equivalent alternative semantics for all remaining
properties that solely concentrates on linear time and will form the foundation for the
correctness result of the generalised proof method. We generalise both the temporal
GDL extension and the formula encoding from Chapter 3 to the knowledge setting
(Section 4.4), and use these generalisations to specify two answer set programs which
are then utilised to prove the validity of a knowledge formula via induction (Section 4.5).
After an extensive example for this generalised proof method (Section 4.6), we show
that it remains sound and (restricted) complete (Section 4.7), and provide several
improvements which allow to prove properties more efficiently (Section 4.8).

4.1 The Game Krieg-Tictactoe

The 2-player game Krieg-Tictactoe is a small but interesting incomplete-information
game which will serve as running example throughout this chapter. It has been in-
troduced in [ST11] inspired from Kriegspiel (see, e.g., [Pri94, RW05]), a chess variant
where the players are not informed about the piece positions and moves of their oppo-
nent.

Krieg-Tictactoe is played on a 3×3 game board. Initially, the board is empty, and
the players take turns repeating the following procedure: the active player attempts
to mark an arbitrary cell with his own distinguished marker. If it is already marked,
his move is rejected and causes a subsequent attempt to mark a different cell. This
process repeats until a chosen empty cell gets marked, passing control to the other
player who is not informed about the coordinates of the cell that has been marked. A
partial initial game tree of Krieg-Tictactoe, together with an indication of states that
are indistinguishable for some player, is shown in Figure 4.1. The game ends if the game
board is completely filled (causing a draw) or one player wins by having completed a
horizontal, vertical or diagonal line of three of his own pieces.

To specify a GDL specification for Krieg-Tictactoe, we choose the following actions:

• mark(x, y): attempt to mark cell (x, y) on the game board, and

• noop: an action without effect, performed by the player who currently has no
control.

The game positions will be represented with the following fluents:

• cell(x, y, p): board cell (x, y) contains piece p (where p = b is for blank cells),

• control(r): role r currently has control to mark a cell, and

• tried(m,n): a failed mark attempt at coordinate (m,n) has previously been
carried out by the active player.

Figure 4.2 contains a complete GDL specification for Krieg-Tictactoe. Lines 1
and 2 define the two players and the initial state, and lines 5 to 8 specify the legal
moves dependent on the current state. Lines 11 to 14 define state update in case of a

4.1. THE GAME KRIEG-TICTACTOE 65

x

x : (1, 1)

x

o : (1, 1)

o : (1, 2) . . . (3, 3)

. . .

x o

o : (1, 2)

. . .

. . .
x

o

o : (3, 3)

x : (1, 1) . . . (3, 3)

. . .

. . .

x

x : (3, 3)

o

x

o : (1, 1)

. . .

. . .

o x

o : (3, 2)

x : (1, 1) . . . (3, 3)

. . .

x

o : (3, 3)

o : (1, 1) . . . (3, 2)

. . .

Figure 4.1: A partial game tree for Krieg-Tictactoe. Player x starts placing a marker on the empty
game board. Player o does not witness the placement and hence subsequently considers all states
within the dash-lined oval possible. His attempt to mark an arbitrary cell may fail or succeed. In the
former case, o is allowed to try again, and has come to know the current game state. In the latter case,
o still doesn’t know the current game state (which is not represented here), and x cannot distinguish
the states within each solid-lined oval. Player x proceeds attempting a further arbitrary placement
(in our setting, we also allow him to try his previously marked cell again).

failed mark attempt by adding a new instance tried(m,n) (line 11) and keeping the
present ones (line 12), and by keeping cell fluents (line 13) as well as control fluents
(line 14) unchanged. A successful attempt is expressed with lines 16 to 23, adding a
newly marked cell (lines 16 and 17), keeping all previously marked cells (lines 18 to 21),
switching control (lines 22 and 23), and removing each instance tried(m,n) by not
having clauses with head next(tried(m,n)) that apply in case of a valid move. After
each performed joint action, the only information each player gets to see is a special
constant yourmove in case it is currently his turn to place a piece (lines 28 to 30).
A state is terminal in case of a completed line (lines 33 and 34) or a completely filled
game board (line 35), and respective goal values are determined via lines 45 to 51.

In Krieg-Tictactoe, property (4.1) is not valid in all reachable states: consider, e.g.,
a non-terminal state where player x has already lined two markers, and where the
missing cell as well as another cell are still empty and hence player x might mark
one of these cells. Since player o is not informed about the chosen move, successful
marking yields at least two possible successor states for player o , one of them being
terminal and the other non-terminal. Hence, player o does not know whether the
game is terminal after player x has successfully marked a cell in the mentioned state
of the game. While this short explanation suffices to show that property (4.1) is not
valid, a motivation for or against validity of property (4.2) is not that obvious, and (a
simplified variant of) this property will serve as running example and is shown to be

66 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

1 role(x). in i t (control(x)).
2 role(o). in i t (cell(1,1,b)). ... in i t (cell(3,3,b)).
3

4

5 legal (R,mark(M,N)) :- true(control(R)), true(cell(M,N,Z)),
6 not true(tried(M,N)).
7 legal (x,noop) :- true(control(o)).
8 legal (o,noop) :- true(control(x)).
9

10

11 next(tried(M,N)) :- not validmove , does(R,mark(M,N)).
12 next(tried(M,N)) :- not validmove , true(tried(M,N)).
13 next(cell(M,N,Z)) :- not validmove , true(cell(M,N,Z)).
14 next(control(R)) :- not validmove , true(control(R)).
15

16 next(cell(M,N,x)) :- validmove , does(x,mark(M,N)).
17 next(cell(M,N,o)) :- validmove , does(o,mark(M,N)).
18 next(cell(M,N,Z)) :- validmove , true(cell(M,N,Z)),
19 does(R,mark(I,J)), distinct (M,I).
20 next(cell(M,N,Z)) :- validmove , true(cell(M,N,Z)),
21 does(R,mark(I,J)), distinct (N,J).
22 next(control(o)) :- validmove , true(control(x)).
23 next(control(x)) :- validmove , true(control(o)).
24

25 validmove :- does(R,mark(M,N)), true(cell(M,N,b)).
26

27

28 sees(R,yourmove) :- not validmove , true(control(R)).
29 sees(x,yourmove) :- validmove , true(control(o)).
30 sees(o,yourmove) :- validmove , true(control(x)).
31

32

33 terminal :- line(x).

34 terminal :- line(o).

35 terminal :- not open.

36

37 open :- true(cell(M,N,b)).
38

39 line(C) :- true(cell(M,1,C)), true(cell(M,2,C)), true(cell(M,3,C)).
40 line(C) :- true(cell(1,N,C)), true(cell(2,N,C)), true(cell(3,N,C)).
41 line(C) :- true(cell(1,1,C)), true(cell(2,2,C)), true(cell(3,3,C)).
42 line(C) :- true(cell(1,3,C)), true(cell(2,2,C)), true(cell(3,1,C)).
43

44

45 goal(x ,100) :- line(x).

46 goal(x,50) :- not line(x), not line(o).

47 goal(x,0) :- line(o).

48

49 goal(o ,100) :- line(o).

50 goal(o,50) :- not line(x), not line(o).

51 goal(o,0) :- line(x).

Figure 4.2: A GDL specification of the game Krieg-Tictactoe.

4.2. FORMALISATION OF EPISTEMIC SEQUENCE INVARIANTS 67

provable with our method later in this chapter.

4.2 Formalisation of Epistemic Sequence Invariants

In this section, we will define an extension of our language for state sequence invariants
which enables to express knowledge of individual players (Section 4.2.1). We then
extend its semantics accordingly (Section 4.2.2), prove that it satisfies properties which
are desired in the setting of knowledge (Section 4.2.3), and show that agents always
have complete knowledge about the initial game state (Section 4.2.4).

4.2.1 Syntax

In the following extension of the syntax of state sequence invariants we borrow operators
Kr known from Modal Logic (see, e.g., [BdRV01]) which are also extensively studied
in the standard text book [FHMV95], with the intention of expressing what an agent
r knows about a finite sequence of successive game states.

Definition 4.1 (Epistemic Sequence Invariants). Let G be a valid GDL specification,
R be the set of roles from the semantics of G, and recall the set P of ground atoms
p(~t) over G such that p /∈ { init, next} and p does not depend on does in G. The
set ESING of epistemic (state) sequence invariants over G is the smallest set with

• P ⊆ ESING;

• If ϕ,ϕ1, ϕ2 ∈ ESING, then also the following are in ESING:

– ¬ϕ, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2;

– (∃ ~X :D ~X)ϕ[~X], and (∀ ~X :D ~X)ϕ[~X];

– (∃l..u ~X :D ~X) ϕ[~X], for each l ∈ N and u ∈ N ∪ {∞} s.t. l ≤ u;

– ©ϕ;

– Krϕ, for each r ∈ R \ {random}.

The degree of ϕ ∈ ESING is defined in extension to Definition 3.2 (concerning the
formula degree) by adding the following:

deg(Krϕ) := 0.

The notion of a subformula is extended as expected.

A formula Krϕ states that agent r knows ϕ. Pseudo player random is ex-
cluded in this notion, as it is not considered by the information relation I(A,S) in
the definition of the GDL semantics (cf. Definition 2.17) which will form the basis for
the interpretation of formulas with knowledge operator Kr . Note that, even if ϕ has
degree deg(ϕ) > 0, the degree of Krϕ is defined to be 0. The intention of this defi-
nition will become clear at the end of Section 4.2.2. Furtheron, we will use the notion
“formula” also to refer to epistemic sequence invariants, and will additionally refer to
formulas which do not contain any Kr as knowledge-free formulas.

68 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

Example 4.2 (Epistemic Sequence Invariants). Property (4.1) from page 63 (stating
that when the game has terminated, each player knows that it has terminated) can be
formulated with the set R of players in the respective game as follows.∧

r∈R
(terminal ⊃ Krterminal) (4.3)

Similarly, denoting by ADom(r) the finite set of all actions of a player r, we can
express property (4.2) (stating that each player knows his legal and illegal moves) via∧

r∈R
(∀A :ADom(r))(Krlegal(r,A) ∨Kr¬legal(r,A)) (4.4)

4.2.2 Semantics

Intuitively, a player which has incomplete knowledge about a game state considers
more than one game state possible. Consequently, a player knows a certain property
in a game state if and only if that property is true in all game states he considers
possible. The semantics of our property language will incorporate this intuition. To
formally define it, we need a classification of the previously-mentioned possible game
states which does not solely depend on the current game state. As an example to
the contrary, consider the game state in Krieg-Tictactoe where cell (1, 1) is marked
by x and cell (1, 2) is marked by o . Then the information of o depends on how
that game state has been reached, as o may or may not have attempted to mark cell
(1, 1) prior to marking cell (1, 2). While the resulting state is the same, performing
this unsuccessful attempt implies that o knows the position of the previously placed
marker x and hence only considers the actual state possible, whereas otherwise this
fact is unknown to o and necessitates to consider possible all states with different
positions of marker x (except for (1, 2)) as well. To resolve this ambiguity, the notion
of possible states has to incorporate the complete development which has led to the
current game state.

In the following, we state a binary relation which defines classes of developments
which are indistinguishable for a player and hence allow to determine all considered
possible states with respect to a given game development (by taking the last states of
all developments in the class of the given development). Put together for all players,
the following definition provides an instance of a Kripke frame (see, e.g., [BdRV01]
and [FHMV95]). It has been put in the context of the Game Description Language
in [Thi10] and [RT11a].

Definition 4.3 (Accessibility Relation). Let (R,Sinit, T, l, u, I, g) be the semantics
of a valid GDL description G, let r be a player from G different from random, and
let ∆G be the set of developments over G. For two developments δ1, δ2 ∈ ∆G such

that δ1 = (Sinit
A0−→ S1 . . .

Am−1−→ Sm) and δ2 = (Sinit
A′0−→ S′1 . . .

A′m−1−→ S′m), δ2 is
accessible for player r at δ1, denoted δ1 ∼r δ2, if, and only if, for each 0 ≤ i ≤ m−1:

• {p : (r, p) ∈ I(Ai, Si)} = {p : (r, p) ∈ I(A′i, S
′
i)} (r’s percepts are the same),

• Ai(r) = A′i(r) (r always takes the same action).

4.2. FORMALISATION OF EPISTEMIC SEQUENCE INVARIANTS 69

∼r is called accessibility relation for player r. Furthermore, for the set {r1, . . . , rn}
of players besides random, the accessibility relation of G, denoted ∼, is defined as
the Kripke frame

∼:= (∆G,∼r1 , . . . ,∼rn).

Note that each binary relation ∼r of the accessibility relation of a game is an
equivalence relation, i.e., it is

• reflexive, namely such that for all developments δ ∈ ∆G, we have that δ ∼r δ;

• symmetric, namely such that for all developments δ1, δ2 ∈ ∆G, we have that if
δ1 ∼r δ2, then δ2 ∼r δ1; and

• transitive, namely such that for all developments δ1, δ2, δ3, we have that if δ1 ∼r
δ2 and δ2 ∼r δ3, then δ1 ∼r δ3.

These notions will be needed to prove some well known properties of our semantics in
Proposition 4.6. Note that reflexivity ensures that player r always considers the actual
development of the game possible. This property distinguishes knowledge from possibly
wrong beliefs, where the actual development is not necessarily considered possible.

The notion of accessible developments exactly corresponds to the notion of indis-
tinguishable developments given in Section 2.2.3, which has been shown in [Thi10] and
allows to use the terminology interchangeably in the remainder of this work.

Proposition 4.4 (Indistinguishability). Let G be a valid GDL description and
(∆G,∼r1 , . . . ,∼rn) be the accessibility relation of G. Two developments δ1, δ2 ∈ ∆G

with the same length are indistinguishable for player r if, and only if, δ1 ∼r δ2. �

We are now ready to specify the semantics of epistemic sequence invariants as a
direct extension of the semantics for state sequence invariants in Definition 2.17 (cf.
page 20). Following [RT11a], it takes into account the foregoing development of the
game in order to reliably evaluate formulas of the form Krϕ. Before we start, recall
that we also denote the last state Sm of a sequence σ = (S0, . . . , Sm) by last(σ),
and its length m by |σ|. Furthermore, for two sequences σ1 = (S0, . . . , Sm) and
σ2 = (Sm, . . . , Sm+k) , we also denote their composition (S0, . . . , Sm, . . . , Sm+k) as
(σ1, σ2).

Definition 4.5 (Semantics for Epistemic Sequence Invariants). Let G be a valid
GDL specification, ϕ be a formula such that deg(ϕ) = n, r be an arbitrary role
different from random according to the semantics of G, and δ = (Sinit, S1, . . . , Sk)
be a development. We say that Sk satisfies ϕ wrt. δ (written Sk �δ ϕ) if for all

n-max sequences Sk
Ak−→ . . .

Ak+m−1−→ Sk+m (m ≤ n) we have that (Sk, . . . , Sk+m) �δ ϕ
as follows:

(Sk, . . . , Sk+m) �δ p iff G ∪ Strue
k ` p (p ∈ P)

(Sk, . . . , Sk+m) �δ ¬ψ iff (Sk, . . . , Sk+m) 2δ ψ
(Sk, . . . , Sk+m) �δ ψ1 ∧ ψ2 iff (Sk, . . . , Sk+m) �δ ψ1 and (Sk, . . . , Sk+m) �δ ψ2

(Sk, . . . , Sk+m) �δ ψ1 ∨ ψ2 iff (Sk, . . . , Sk+m) �δ ψ1 or (Sk, . . . , Sk+m) �δ ψ2

70 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

(Sk, . . . , Sk+m) �δ (∃ ~X :D ~X)ψ[~X] iff there is an ~a ∈ D ~X s.t.

(Sk, . . . , Sk+m) �δ ψ[~X/~a]

(Sk, . . . , Sk+m) �δ (∀ ~X :D ~X)ψ[~X] iff for all ~a ∈ D ~X : (Sk, . . . , Sk+m) �δ ψ[~X/~a]

(Sk, . . . , Sk+m) �δ (∃l..u ~X:D ~X)ψ[~X] iff there are ≥ l and ≤ u different ~a ∈ D ~X s.t.

(Sk, . . . , Sk+m) �δ ψ[~X/~a]
(Sk, . . . , Sk+m) �δ ©ψ iff m = 0 or (Sk+1, . . . , Sk+m) �δ′ ψ, where

δ′ = (δ, (Sk, Sk+1))
(Sk, . . . , Sk+m) �δ Krψ iff last(δ′) �δ′ ψ for each δ′ s.t. δ ∼r δ′

All cases different from Krψ exactly correspond to their counterparts in the original
formula semantics from Definition 3.5, with the addition of carrying a development δ
as parameter which is only needed in the additional line addressing Krψ. Hence, for
knowledge-free formulas, both semantics clearly coincide. To evaluate whether player
r knows ψ in sequence (Sk, . . . , Sk+m), we need to consider the development that has
led to Sk in order to find out which states S′k are considered possible by player r
in Sk . Formula ψ is then evaluated with respect to each of these possible states S′k .
Note that sequence (Sk, . . . , Sk+m) itself is not directly important for this evaluation.
Instead, all deg(ψ)-max sequences emerging from S′k have to be taken into account,
which then of course indirectly includes (Sk, . . . , Sk+m) again due to the reflexivity of
∼r . The beforementioned issue motivates that the degree of a formula of the form Krψ
is zero, as specified in Definition 4.1. Since the sole purpose of the deg-notion is the
characterisation of all sequences which are relevant for the verification of a formula, and
the verification of Krψ requires no states beyond the current state (wrt. the currently
considered state sequence), only sequences of length 0 need to be considered.

4.2.3 Satisfaction of the S5 Properties

Although the opinions concerning the interpretation of agent knowledge differ, the so-
called S5 properties have widely been accepted as convenient conditions which should be
satisfied by an appropriate knowledge reasoning formalism [FHMV95]. Propositional
formulas enriched with modal operators Kr are known to satisfy these properties when
interpreted with respect to Kripke structures (Kripke frames with an additional truth
assignment for fluents in particular states) over equivalence relations. In the following,
we show that the respective results (which are to be found, e.g., in [FHMV95]) can be
adapted to our setting with formulas containing ©-operators and their semantics via
finite state sequences, which implies that our semantics is well-defined.

Proposition 4.6 (Satisfaction of the S5 Properties). Let G be a playable and valid
GDL specification and ∆G be the set of developments over G. Then for all formulas
ϕ,ψ ∈ ESING the following properties, also known as the S5 properties, hold.

1. Distribution:

∀δ ∈ ∆G : (last(δ) �δ Krϕ ∧Kr(ϕ ⊃ ψ) implies last(δ) �δ Krψ)

2. Knowledge Generalisation:

(∀δ ∈ ∆G : last(δ) �δ ϕ) implies (∀δ ∈ ∆G : last(δ) �δ Krϕ)

4.2. FORMALISATION OF EPISTEMIC SEQUENCE INVARIANTS 71

3. Knowledge:

∀δ ∈ ∆G : (last(δ) �δ Krϕ implies last(δ) �δ ϕ)

4. Positive Introspection:

∀δ ∈ ∆G : (last(δ) �δ Krϕ implies last(δ) �δ KrKrϕ)

5. Negative Introspection:

∀δ ∈ ∆G : (last(δ) �δ ¬Krϕ implies last(δ) �δ Kr¬Krϕ)

Proof: First note that, since last(δ) is reachable for arbitrary developments δ ∈
∆G and the GDL specification is playable, we can safely draw conclusions such as
last(δ) �δ ϕ∧ψ implying last(δ) �δ ϕ and last(δ) �δ ψ (cf. the discussion below the
Sequence Extension Proposition 3.6 on page 32).

1. For an arbitrary development δ ∈ ∆G, suppose last(δ) �δ Krϕ ∧ Kr(ϕ ⊃ ψ).
Then last(δ) �δ Krϕ and last(δ) �δ Kr(ϕ ⊃ ψ), which implies that, for all
developments δ′ s.t. δ ∼r δ′, last(δ′) �δ′ ϕ ∧ (ϕ ⊃ ψ) (by Proposition 3.6).
This in turn yields last(δ′) �δ′ ψ and hence last(δ) �δ Krψ.

2. Let last(δ) �δ ϕ for all developments δ. Assume that there is a development
δ′ s.t. last(δ′) 2δ′ Krϕ. Then there is a development δ′′ s.t. δ′ ∼r δ′′ and
last(δ′′) 2δ′′ ϕ, in contradiction to last(δ) �δ ϕ for all developments δ.

3. last(δ) �δ Krϕ implies, for all developments δ′ s.t. δ ∼r δ′, last(δ′) �δ′ ϕ, and
hence also last(δ) �δ ϕ (by reflexivity of ∼r).

4. Again suppose last(δ) �δ Krϕ. Assuming last(δ) 2δ KrKrϕ, there exist de-
velopments δ1 and δ2 with δ ∼r δ1 and δ1 ∼r δ2 s.t. last(δ2) 2δ2 ϕ. Tran-
sitivity of ∼r yields δ ∼r δ2 and hence last(δ) �δ ¬Krϕ in contradiction to
last(δ) �δ Krϕ.

5. Suppose last(δ) �δ ¬Krϕ, then there is a development δ′ s.t. δ ∼r δ′ and
last(δ′) 2δ′ ϕ. Now for each development δ′′ s.t. δ ∼r δ′′ we have δ′′ ∼r δ
by symmetry of ∼r , and hence δ′′ ∼r δ′ by transitivity of ∼r , which yields
last(δ′′) �δ′′ ¬Krϕ. This being true for each development δ′′ s.t. δ ∼r δ′′
implies last(δ) �δ Kr¬Krϕ. �

Note that, for epistemic sequence invariants ϕ such that deg(ϕ) = 0,

last(δ) �δ ϕ implies last(δ) �δ ψ

is equivalent to
last(δ) �δ ϕ ⊃ ψ,

since all state sequences σ starting in last(δ) collapse into the single state last(δ),
resulting in the disappearance of quantification issues concerning these sequences which
arise in the general case with arbitrary degree of ϕ. This correspondence allows, e.g.,

72 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

to equivalently view property Distribution from Proposition 4.6 to be a valid formula
as follows:

∀δ ∈ ∆G : (last(δ) �δ (Krϕ ∧Kr(ϕ ⊃ ψ)) ⊃ Krψ)

The same applies to the properties Knowledge, Positive Introspection, and Negative
Introspection, but not to property Knowledge Generalisation.

Proposition 4.6 allows to draw some interesting conclusions regarding our goal to ex-
tend the verification method established in Section 3.4. For example, Property Knowl-
edge allows to conclude that, if we already proved Krϕ to be true in all reachable
states, then also ϕ is true in all reachable states. Together with property Knowledge
Generalisation this implies that, for a knowledge-free formula ϕ and arbitrary players
{ri1 , ri2 , . . . , rik}, formula ϕk = Kri1

Kri2
. . .Krik

ϕ holds in all reachable states if and
only if ϕ holds in all reachable states and hence we can apply the original approach
for knowledge-free formulas also to verify ϕk . However, note that property Knowledge
Generalisation does not generalise to

∀δ ∈ ∆G : (last(δ) �δ ϕ implies last(δ) �δ Krϕ)

Otherwise, for arbitrary reachable states S , player r would know every property which
holds in S , implying that our specified semantics would not correctly grasp the intuition
of knowledge properly. As an example to the contrary, consider the following.

Example 4.7 (Epistemic Sequence Invariant Semantics). Reconsider the formula

ϕ =
∧
r∈R

(terminal ⊃ Krterminal)

(it coincides with formula (4.3) on page 68) for property (4.1). It is not generally true
in the game Krieg-Tictactoe, as argued at the end of Section 4.1. Hence, there must
exist a development δ such that last(δ) 2δ ϕ. Consider, for example, the development

δ = Sinit
A0−→ S1

A1−→ S2
A2−→ S3

A3−→ S4
A4−→ S5 with the following Ai:

A0 = {x : mark(1 , 1), o : noop} A1 = {x : noop, o : mark(3 , 3)}
A2 = {x : mark(1 , 2), o : noop} A3 = {x : noop, o : mark(3 , 2)}
A4 = {x : mark(1 , 3), o : noop}

S5 is terminal, hence we have S5 �δ terminal . Now consider the development δ′ =

Sinit
A0−→ S1

A1−→ S2
A2−→ S3

A3−→ S4
A′4−→ S′5 with the following A′4:

A′4 = {x : mark(2 , 1), o : noop}

It deviates from δ only by the last move of player x (represented by joint-action A′4)
where x marks cell (2, 1) instead of (1, 3), and by the resulting successor state S′5
which is non-terminal and hence such that S′5 2δ′ terminal . We have δ ∼o δ′, as
the actions and percepts of player o and the lengths of both developments coincide.
Hence, S5 2δ Koterminal , which implies that S5 2δ

∧
r∈R(terminal ⊃ Krterminal).

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 73

4.2.4 Complete Knowledge in the Initial State

Since a valid GDL specification contains a complete description of the initial state of
the game, and since each player gets to know the complete specification prior to playing
the game, each player knows all that is implied in the initial state. This is stated more
formally with the following proposition.

Proposition 4.8 (Complete Knowledge in the Initial State). Let ϕ be an epistemic
sequence invariant over a valid GDL specification G, and let kf0(ϕ) be the formula
obtained from ϕ by removing each occurrence of a knowledge operator which is not in
the scope of any ©. Then

Sinit �(Sinit)
ϕ iff Sinit �(Sinit)

kf0(ϕ)

Proof: Induction on the structure of ϕ.
Base Case: Consider an arbitrary epistemic sequence invariant ϕ such that ϕ =

kf0(ϕ), then the claim follows immediately.
Induction Step: First note that any epistemic sequence invariant ϕ is composed of

epistemic sequence invariants ψ which are such that ψ = kf0(ψ) (cf. the base case)
via connectives different from ©. This allows to omit case ϕ =©ψ in the induction
step proof, and all remaining connectives besides Kr yield the claim immediately by
the induction hypothesis.

Now consider case ϕ = Krψ. Sinit �(Sinit)
Krψ iff for all δ′ such that (Sinit) ∼r δ′,

we have last(δ′) �δ′ ψ. Since the only δ′ of that shape is δ′ = (Sinit), the claim follows
by the induction hypothesis. �

Note that applying the reduction kf0(ϕ) to the example formulas (4.3) and (4.4)
(cf. page 68) yields the following two formulas:∧

r∈R
(terminal ⊃ terminal)

∧
r∈R

(∀A :ADom(r))(legal(r,A) ∨ ¬legal(r,A))

Both reduced formulas are true with respect to arbitrary initial game states in arbitrary
games. By Proposition 4.8, this yields that also the original formulas (4.3) and (4.4)
are true with respect to arbitrary initial game states in arbitrary games. This issue
has some consequences on the generalised induction proof method we develop in this
chapter, they will be addressed in Section 4.8.1.

4.3 Linear Time In The Setting Of Knowledge

A linear time structure has proved to be a beneficial tradeoff between expressibility
and practical useability in our verification method for knowledge-free properties (cf.
the discussion in Section 3.7.2). This motivates to keep this structure also in the gen-
eralisation of the proof method to knowledge formulas. In this section, we provide the
necessary ingredients for establishing this proof method. To this end, we first define
a class of formulas which is verifiable using a linear time structure in Section 4.3.1.
Basically, it comprises all formulas which do not include formulations of what players

74 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

do not know. Formulas of this class will hence be called positive-knowledge formulas.
They share the attribute that each counter example can be represented as a collection
of several (finite) state sequences, one of them being a real game development and
one further sequence being associated with each occurrence of a knowledge operator
of the considered formula. In Section 4.3.2, we introduce the notion of a view naming
for a formula which allows to refer to each of these knowledge operators. Based on
this notion, we then define sequence mappings as a formal structure to represent se-
quence collections in Section 4.3.3. Finally, we give an alternative semantics based on
sequence mappings which will be needed to establish the soundness of our generalised
proof method (Section 4.3.4), and prove that this semantics is equivalent to the orig-
inal semantics for epistemic sequence invariants when considering positive-knowledge
formulas (Section 4.3.5).

4.3.1 Positive-Knowledge Formulas

In the verification method for knowledge-free formulas ϕ developed in Chapter 3, we
applied a linear time structure to represent counter examples, which amount to state
sequences violating ϕ. This intuition can be generalised to the setting of knowledge
for a subclass of epistemic sequence invariants. E.g., reconsider the formula ϕ =∧
r∈R[terminal ⊃ Krterminal] from (4.3) together with the argumentation against its

validity from Example 4.7. Here, both given developments δ and δ′ together can be
considered a counter example for ϕ with respect to development δ. More generally,
some formulas containing n occurrences of knowledge operators allow to consider each
counter example as a collection of sequences of size n + 1 which are related via the
accessibility relation. Seen in the context of our verification approach, this allows to
represent counter examples as answer sets using a linear time structure and hence
enables to prove these formulas.

At the contrary, a counter example for the formula ¬Koterminal can not appropri-
ately be characterised by a collection of single sequences: For an arbitrary development
δ, we have last(δ) 2δ ¬Koterminal iff last(δ) �δ Koterminal . This is true iff, for all
developments δ′ such that δ ∼o δ′, δ′ �δ′ terminal holds. Intuitively, in addition
to δ, a single counter example hence amounts to be a partial game tree, which is not
representable with an answer set when using a linear time structure. Hence, in the
following we restrict our attention to formulas that allow to faithfully characterise all
potential counter examples as collection of finitely many state sequences. These will
subsequently be called positive-knowledge formulas and are formally defined as follows.

Definition 4.9 (Positive- and Negative-Knowledge Formula). Let G be a valid GDL
specification and ϕ ∈ ESING. ϕ is called negative-knowledge formula if Krψ occurs
in ϕ within the scope of some ¬, or within the scope of some (∃l..uX :DX) such that
u 6=∞. Otherwise, it is called positive-knowledge formula.

For a positive-knowledge formula ϕ, (∃m..nX :DX) ϕ has to be treated as negative-
knowledge formula for n 6= ∞, since, intuitively, the upper bound n involves a re-
quirement of the form “not more than n instances a of X satisfy ϕ[X/a] ” and hence
incorporates negation as well. Positive-knowledge formulas do not characterise all for-
mulas whose counter examples can be considered as collections of sequences. E.g.,

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 75

whenever ϕ is in that class, ¬¬ϕ should be in that class as well. We nevertheless
decide to use this simpler characterisation for the benefit of a simpler notation.

Example 4.10 (Positive-Knowledge Formula). Consider a structurally simpler variant
of formula (4.4) (cf. page 68), formulating that if it is legal for player x to mark cell
(1, 1), then x knows about this:

ϕ = ¬legal(x ,mark(1 , 1)) ∨Kxlegal(x ,mark(1 , 1)) (4.5)

ϕ is a positive-knowledge formula which is valid in the game of Krieg-Tictactoe. It
will serve as demonstration example for the subsequently developed extension of the
verification method to positive-knowledge formulas.

4.3.2 View Namings

In Section 4.3.1 we have motivated that counter examples for positive-knowledge for-
mulas can be represented by a collection of finite state sequences. In this section we
provide the notion of a view naming which is needed to formally define these collections.
Intuitively, a view naming assigns a different name to each part of a formula which has
to be interpreted with respect to a possibly different development. A possibly different
development (and hence a different name) is needed for each subformula ψ of a for-
mula which is directly preceded by a knowledge operator Kr , as Krψ is violated by
a development δ if and only if ψ is violated by some possibly different development
δ′ which is such that δ ∼r δ′. As the formula Krϕ ∨ Kr¬ϕ shows, even different
occurrences of the same knowledge operator may require different developments (and
hence different names). In order to formally define a view naming, we have to introduce
an auxiliary notion which allows to uniquely refer to subformulas of a formula ϕ in a
way that distinguishes even syntactically equal subformulas occurring more than once.

Definition 4.11 (Position). Let ϕ be an epistemic sequence invariant over a valid
GDL description. For arbitrary subformulas ψ of ϕ, we define the position of ψ in
ϕ recursively as follows.

• the position of ϕ in ϕ is ε;

• if the position of subformula ¬ψ in ϕ is π, then the position of ψ in ϕ is π¬
(similarly for © and Kr);

• if the position of subformula ψ1 ∧ ψ2 in ϕ is π, then the positions of ψ1 and
ψ2 in ϕ are π ∧1 and π ∧2, respectively (similarly for ψ1 ∨ ψ2); and

• if the position of subformula (∃ ~X : D ~X) ψ[~X] in ϕ is π, then the position of
ψ[~X/~ti] is π ∃i, where for D ~X = {~t1, . . . ,~tn} we arbitrarily fix an order such
that ~t1 < . . . < ~tn (similarly for (∀ ~X :D ~X)ψ[~X] and (∃l..u ~X :D ~X) ψ[~X]).

Furthermore, we write Posϕ to denote the set of all positions of subformulas from ϕ.

Each subformula ψ of ϕ is in the scope of n knowledge operators Kr1 , . . . ,Krn of
ϕ for some n ≥ 0. In case n = 0, ψ has to be evaluated with respect to a real game
development δ0. In case n > 0, ψ has to be evaluated with respect to a development
δn which relates to a development δn−1 such that player rn considers δn possible

76 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

in δn−1. In this case, ψ is evaluated with respect to a certain perspective, or view,
which is exactly determined by the sequence of knowledge operators Kr1 , . . . ,Krn .
The following definition of a view naming1 characterises the view structure of ϕ by
assigning unique names v0, v1, . . . to each of its subformulas such that two subformulas
have the same name if and only if they are in the scope of the exact same occurrences
of knowledge operators.

Definition 4.12 (View Naming). Let G be a valid GDL specification and ϕ ∈
ESING be a formula. A view naming for ϕ is a function Vϕ : Posϕ → {v0, v1, . . .}
such that, for all positions π1, π2 ∈ Posϕ and their longest prefixes π′1 and π′2 which
end in some Kr1 and Kr2 (where we assign π′i = ε in case there is no such Kri):

Vϕ(π1) = Vϕ(π2) iff π′1 = π′2

We write Vsϕ to denote the set {Vϕ(π) : π ∈ Posϕ} of all view names occurring in a
view naming Vϕ. Furthermore, we define a function Lϕ : Posϕ → N such that Lϕ(π)
is the number of occurrences of © in π. For any subformula ψ of ϕ with position
π, the natural number Lϕ(π) will also be called the level of position π in ϕ, or the
level of subformula ψ in ϕ.

Knowledge operators are referred to via positions, hence a formula of the form
Krϕ ∨Krψ results in different view names for the respective subformulas ϕ and ψ.
This is necessary since a potential counter example does not necessarily consist of a
unique sequence considered possible in a game development which violates both ϕ and
ψ. In case ψ = ¬ϕ there even is no such unique sequence, although Krϕ ∨Kr¬ϕ is
still not necessarily valid. For similar reasons, subformulas are referred to via posi-
tions, yielding possibly different view names even for syntactically equal subformulas
in case they do not occur in the scope of the same knowledge operators, which is also
emphasised in our running example.

Example 4.13 (View Naming). Reconsider formula

ϕ = ¬legal(x ,mark(1 , 1)) ∨Kxlegal(x ,mark(1 , 1))

(cf. (4.5) from Example 4.10). Subformula legal(x ,mark(1 , 1)) occurs twice, hence it
has two positions π1 = ∨1 ¬ and π2 = ∨2Kx. A view naming Vϕ can be given for ϕ
as follows:

• Vϕ(ε) = Vϕ(∨1) = Vϕ(∨2) = Vϕ(∨1 ¬) = v0

• Vϕ(∨2Kr) = v1

The level Lϕ(π) of all positions π ∈ Posϕ is 0, as there is no occurrence of © in
ϕ.

1Also the notion world naming is conceivable here. However, since a possible world is widely un-
derstood to refer to a state which is considered possible, but we are assigning names to subformulas
instead of particular worlds, we decide to introduce a different notion.

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 77

4.3.3 Sequence Mappings

We now have all prerequisites we need for a formal characterisation of sequence col-
lections for the representation of potential counter examples of positive-knowledge for-
mulas. To motivate their necessity, we will now provide a short preview for the further
development of this chapter. Sequence collections, which will be formalised via sequence
mappings, can be seen as a natural extension of counter examples for knowledge-free
formulas by a further dimension: while the temporal operator © requires the rep-
resentation of counter examples as finite sequences and hence needed the inclusion of
a time dimension in our verification process, the knowledge operator Kr will need a
further dimension by requiring counter examples to consist of one finite state sequence
per view name. Our proof method for knowledge-free formulas will be extended such
that inconsistency of a base case program and an induction step program allows to
conclude that a positive-knowledge formula is valid. This will be achieved as follows.

• The base case and induction step answer set programs from Section 3.4 will be
extended by a further view dimension (in addition to the time dimension we
introduced in Chapter 3). Each of its answer sets will then represent a sequence
mapping for the encoded formula (this is not entirely correct for the induction
step program, but we defer further details to a later section).

• An additional semantics for the interpretation of formulas with respect to se-
quence mappings is defined in Section 4.3.4, and its equivalence to the original
semantics is established for positive-knowledge formulas in Section 4.3.5. This
link then allows to conclude that an answer set for a positive-knowledge formula
(which represents a sequence mapping) indeed represents a counter example for
this formula with respect to the original semantics and hence allows to conclude
that the formula is not valid.

The formal definition of a sequence mapping is given as follows. It assigns an
appropriate development to each view name v ∈ Vsϕ of a formula ϕ, obeying necessary
relations of the assigned developments with respect to the accessibility relation. A
detailed explanation of the definition can be found immediately thereafter.

Definition 4.14 (Sequence Mapping). Let G be a valid GDL specification. For a
development (S0, . . . , Sm), we define the k-prefix of (S0, . . . , Sm) to be (S0, . . . , Sm′),
where m′ = min(k,m).

Let ϕ be an epistemic sequence invariant over G, δ be a development, Vϕ be a
view naming for ϕ, Vsϕ be the set of all view names of ϕ, and ∆G the set of all
developments over G. A sequence mapping for ϕ wrt. δ is a function Mδ,ϕ : Vsϕ →
∆G such that:

1. for ϕ with position ε:

Mδ,ϕ(Vϕ(ε)) = (δ, σ),

where σ is an arbitrary n̂-max sequence for some n̂ ≥ deg(ϕ);

2. for each subformula Krψ of ϕ with position π:

Mδ,ϕ(Vϕ(πKr)) = (δψ, σψ),

78 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

where δψ is an arbitrary development and σψ is an arbitrary sequence starting
at the last state of δψ with the following conditions:

(a) For the (|δ| + Lϕ(π))-prefix δKrψ of development Mδ,ϕ(Vϕ(π)), we have
δKrψ ∼r δψ .

(b) Development (δψ, σψ) is n̂-max for some n̂ ≥ (|δ|+ Lϕ(π) + deg(ψ)).

For a subformula ψ of ϕ at position π, we also write Mδ,ϕ(ψ) instead of Mδ,ϕ(Vϕ(π))
when π is unimportant or clear from the context. Furthermore, for a sequence mapping
Mδ,ϕ : Vsϕ → ∆G and a finite set of view names Vs, we write Mδ,ϕ|Vs to denote
the sequence mapping with domain Vsϕ \ Vs defined such that Mδ,ϕ|Vs(v) =Mδ,ϕ(v)
for v ∈ Vsϕ \ Vs.

Sequence mappings range over view names from ϕ, hence all subformulas of ϕ
within the scope of the same knowledge operators are assigned the same development,
and are assigned separate developments otherwise. The top-level development (speci-
fied in item 1) includes a real game development δ. Each development for a subformula
which is in the context of a knowledge operator (item 2) relates to a respective hier-
archically higher development of the sequence mapping according to the accessibility
relation.

We will shortly provide a more detailed explanation for the correspondence of se-
quence mappings to the semantics for epistemic sequence invariants given in Defini-
tion 4.5. The explanation requires a motivation for the following property of sequence
mappings: For any view name v in the domain of a sequence mapping Mδ,ϕ, de-
velopment Mδ,ϕ(v) is at least of length |δ|. This can be motivated by an inductive
argument.

• For the base case we use item 1, hence the view name v equals Vϕ(ε). In this
case, Mδ,ϕ(v) incorporates δ itself as a prefix and is thus at least of length |δ|.

• For the induction step we use item 2, hence there is a position πKr such that view
name v equals Vϕ(πKr). By the induction hypothesis there is a hierarchically
higher development Mδ,ϕ(Vϕ(π)) of length ≥ |δ|. This implies that also the
mentioned (|δ| + Lϕ(π))-prefix δKrψ of development Mδ,ϕ(Vϕ(π)) is of length
≥ |δ|. Hence, the claimed relation δKrψ ∼r δψ yields that also the prefix δψ of
development Mδ,ϕ(Vϕ(πKr)) is of length ≥ |δ|, and thus that the development
Mδ,ϕ(Vϕ(πKr)) itself is of length ≥ |δ|.

We conclude that, for an arbitrary view name v from ϕ, its corresponding development
Mδ,ϕ(v) in a sequence mapping Mδ,ϕ is of length ≥ |δ| and can hence be written in
the form Mδ,ϕ(v) = (Sinit, S1, . . . , S|δ|, . . . , S|δ|+m). This additionally implies that

(S|δ|, . . . , S|δ|+m) is n̂-max for n̂ ≥ Lϕ(π) + deg(ψ). (4.6)

Note, however, that suffix (S|δ|, . . . , S|δ|+m) of Mδ,ϕ(v) is not necessarily of length
≥ Lϕ(π), as it could be shorter and terminated.

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 79

Correspondence to the Formula Semantics

We can now have a closer look on the correspondence of sequence mappings from Defini-
tion 4.5 and the semantics for epistemic sequence invariants. To this end, the following
considerations use the same namings and correspondent meanings as Definition 4.5.

• Item 1 defines the top-level development Mδ,ϕ(Vϕ(ε)), which extends the given
game development δ by an n̂-max sequence σ for some n̂ ≥ deg(ϕ) (note that
the notation of a sequence composition (δ, σ) requires the last state of δ to be
the first state of σ). Hence, development Mδ,ϕ(Vϕ(ε)) is appropriate for the
verification of ϕ with respect to the game development δ, i.e., for checking that
σ 2δ ϕ.

• Item 2 considers a subformula Krψ of ϕ with position π. We distinguish
two cases for the development Mδ,ϕ(Vϕ(π)) which is of length ≥ |δ| (cf. prop-
erty (4.6)) and can hence be written as follows:

Mδ,ϕ(Vϕ(π)) = (Sinit, S1, . . . , S|δ|, . . . , S|δ|+m)

– m ≥ Lϕ(π): In this case, the length m of the suffix δψ = (S|δ|, . . . , S|δ|+m)
matches or exceeds the level Lϕ(π) of formula Krψ in ϕ. According to
the semantics for epistemic sequence invariants, formula Krψ does not hold
with respect to the last state of prefix

δKrψ = (Sinit, S1, . . . , S|δ|, . . . , S|δ|+Lϕ(π))

of development Mδ,ϕ(Vϕ(π)) if and only if ψ does not hold with respect to
the last state of some development δψ such that δKrψ ∼r δψ . The definition
of a sequence mapping emulates this semantics by relating the developments
Mδ,ϕ(Vϕ(π)) and Mδ,ϕ(Vϕ(πKr)) accordingly. By property (4.6) and since
m ≥ Lϕ(π), the suffix σψ of development Mδ,ϕ(Vϕ(πKr)) starting at the
last state of δψ is n̂-max for some n̂ ≥ deg(ψ) and hence appropriate for
the verification of ψ, i.e., for checking that σψ 2δψ ψ.

– m < Lϕ(π): In this case, the level of formula Krψ in ϕ exceeds the length
of development Mδ,ϕ(Vϕ(π)). Hence, Mδ,ϕ(Vϕ(π)) ends in a terminal state,
as it is n̂-max for some n̂ ≥ Lϕ(π) + deg(Krψ) (by property (4.6)) and
hence n̂-max for some n̂ ≥ Lϕ(π) (since deg(Krψ) = 0). In this case, the
semantics for epistemic sequence invariants does not evaluate subformula
Krψ, as Krψ is a subformula of some formula ©ρ which has been evaluated
to true with respect to some terminated sequences (Sk) of length 0 (since
Lϕ(π) > m). For technical reasons, we nevertheless relate the (|δ|+Lϕ(π))-
prefix δKrψ (which in this case equals the whole development Mδ,ϕ(Vϕ(π)))
to δψ such that δKrψ ∼r δψ , and require that Mδ,ϕ(Vϕ(πKr)) is n̂-max for
n̂ ≥ (|δ| + Lϕ(π) + deg(ψ)). This will be necessary to appropriately relate
each answer set of a generated program in the generalised proof method to
a sequence mapping.

Example 4.15 (Sequence Mapping). Consider a structurally simpler variant of for-
mula (4.3) (cf. page 68), formulating that when the game has terminated, player o
knows about this.

ϕ = ¬terminal ∨Koterminal

80 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

A view naming Vϕ for ϕ can be given similar to the one in Example 4.13 by assigning
Vϕ(ε) = Vϕ(∨1) = Vϕ(∨2) = Vϕ(∨1 ¬) = v0 and assigning Vϕ(∨2Ko) = v1. Now
reconsider the two developments δ and δ′ from Example 4.7 on page 72:

δ = Sinit
A0−→S1

A1−→S2
A2−→S3

A3−→S4
A4−→S5

δ′ = Sinit
A0−→S1

A1−→S2
A2−→S3

A3−→S4
A′4−→S′5

They deviate from each other in that player x marks a cell in joint action A4 that
yields a terminal state S5, and marks another cell in joint action A′4 that yields a
non-terminal state S′5.

Based on these developments and the previously defined view naming, we can now
specify a sequence mapping Mδ,ϕ for ϕ as follows:

Mδ,ϕ(v0) = δ
Mδ,ϕ(v1) = δ′

Since δ ∼o δ′ (as motivated in Example 4.7), Mδ,ϕ can easily be verified to match
the requirements of a sequence mapping from Definition 4.14 and is hence well-defined.
Subformula terminal with position ∨2Ko is false with respect to the last state S′5
of development Mδ,ϕ(v1) = δ′, which yields (since δ ∼o δ′) that formula Koterminal
with position ∨2 is false with respect to the last state S5 of development Mδ,ϕ(v0) =
δ. Since S5 is terminal, this yields that S5 2δ ϕ. Hence, the two developments δ and
δ′ form a counter example for ϕ, and this counter example can formally be represented
by the sequence mapping Mδ,ϕ.

4.3.4 An Alternative Formula Semantics Over Sequence Mappings

The previous example shows at an intuitive level that a sequence mapping Mδ,ϕ can
be used to interpret formula ϕ by interpreting each subformula with respect to the
sequence which is associated with its view name in Mδ,ϕ. In the following, we will
formally grasp this intuition by defining an alternative semantics for epistemic sequence
invariants over sequence mappings. As motivated in Section 4.3.3, this semantics will be
needed to establish the link between an answer set for a program in our generalised proof
method and the original semantics for formulas from Definition 4.5. More precisely,
each answer set will represent a sequence mapping (with some additional subtleties
for the induction step) which violates a positive-knowledge formula with respect to the
alternative semantics, and the equivalence result we establish in Section 4.3.5 will allow
to conclude that the respective formula is then also violated with respect to the original
semantics.

Definition 4.16 (Semantics over Sequence Mappings). Let G be a valid GDL spec-
ification, ϕ be an epistemic sequence invariant such that deg(ϕ) = n, δ be a develop-
ment, r be an arbitrary role according to the semantics of G, P be the set of ground
atoms p(~t) over G such that p /∈ { init, next} and p does not depend on does in
G, and Mδ,ϕ be a sequence mapping for ϕ wrt. δ.

We say that Mδ,ϕ satisfies ϕ, denoted Mδ,ϕ ϕ, if (Mδ,ϕ, |δ|,Vϕ(ε)) ϕ holds
according to the following definition:

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 81

(M, k, v) p iff G ∪ Strue
k ` p, where p ∈ P and

M(v) = (Sinit, S1, . . . , Sk, . . . , Sm)
(M, k, v) ¬ψ iff (M, k, v) 1 ψ
(M, k, v) ψ1 ∧ ψ2 iff (M, k, v) ψ1 and (M, k, v) ψ2

(M, k, v) ψ1 ∨ ψ2 iff (M, k, v) ψ1 or (M, k, v) ψ2

(M, k, v) (∃ ~X :D ~X)ψ[~X] iff there is an ~a ∈ D ~X s.t. (M, k, v) ψ[~X/~a]

(M, k, v) (∀ ~X :D ~X)ψ[~X] iff for all ~a ∈ D ~X : (M, k, v) ψ[~X/~a]

(M, k, v) (∃l..u ~X :D ~X) ψ[~X] iff there are ≥ l and ≤ u different ~a ∈ D ~X s.t.

(M, k, v) ψ[~X/~a]
(M, k, v) ©ψ iff k = m or (M, k + 1, v) ψ, where

M(v) = (Sinit, S1, . . . , Sk, . . . , Sm)
(M, k, v) Krψ iff (M, k,Vϕ(π)) ψ, where π is the position

of ψ in ϕ

All cases different from Krψ exactly correspond to their counterparts in Defini-
tion 4.5: v refers to the view name of the currently considered subformula of ϕ and
hence to the corresponding development Mδ,ϕ(v) = (Sinit, S1, . . . , Sk, . . . , Sk+m), and
time step k determines the respective prefix δ = (Sinit, S1, . . . , Sk).

Case Krψ, however, does not incorporate the accessibility relation anymore. In-
stead, it resolves Krψ with respect to the development Mδ,ϕ(Krψ) 2 by considering
ψ with respect to the appropriately related development Mδ,ϕ(ψ). This reveals that
Mδ,ϕ Krψ for a sequence mapping Mδ,ϕ such that Mδ,ϕ(Krψ) = (δ, σ) does not
generally imply the correspondent σ �δ Krψ in the original semantics: σ �δ Krψ
requires that last(δ′) �δ′ ψ holds for all developments δ′ such that δ ∼r δ′, whereas
Mδ,ϕ Krψ only provides that correspondence for one such development δ′. How-
ever, following the spirit of a sequence mapping as structure for counter examples for a
formula, it is possible to establish a correspondence between the existence of a sequence
mapping Mδ,ϕ such that Mδ,ϕ 1 Krψ and the existence of a sequence σ such that
σ 2δ Krψ, as σ 2δ Krψ requires last(δ′) 2δ′ ψ to hold only for one development δ′

such that δ ∼r δ′.
A general result for the equivalence of both semantics with regard to positive-

knowledge formulas will be established in the following section. It will need two propo-
sitions which provide useful correspondences between sequence mappings. The first
proposition states that a sequence mapping over a formula ϕ can be altered to a
sequence mapping over a subformula ψ of ϕ (by keeping all relevant developments
and removing all remaining ones) and vice versa, such that the interpretation of ψ
with respect to both sequence mappings yields the same result. It uses the notation
Mδ,ϕ|Vsψ from the Sequence Mapping Definition 4.14, referring to a sequence mapping
with reduced domain Vsψ which is as Mδ,ϕ on all view-name arguments from Vsψ .

Proposition 4.17 (Sequence-Mapping View Reduction). Let G be a valid GDL
specification, ϕ be an epistemic sequence invariant, ψ be a subformula of ϕ with the
associated set of view names Vsψ , view name Vϕ(π) = v for the position π of ψ,

2Recall from the Sequence Mapping Definition 4.14 that for a subformula ρ of formula ϕ at
position π , we also abbreviate Mδ,ϕ(Vϕ(π)) by Mδ,ϕ(ρ).

82 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

k ∈ N, δ be a development, and Mδ,ϕ be a sequence mapping for ϕ wrt. δ. Then

(Mδ,ϕ, k, v) ψ iff (Mδ,ϕ|Vsψ , k, v) ψ.

Proof: Immediate, since the evaluation of a subformula ψ with respect to a structure
(Mδ,ϕ, k, v) only involves sequences Mδ,ϕ(v) for view names v that correspond to
subformulas from ψ. �

The second proposition is needed to establish a semantic correspondence between
the interpretation of a formula ©ϕ via a sequence mapping that is seen in connection
with some development δ, and the interpretation of its respective subformula ϕ via the
same sequence mapping when seen in connection with the development which prolongs
δ by one state. It is divided into two parts which state the following.

1. A sequence mapping for ©ϕ whose toplevel development (δ, σ) has length ≥ 1
can also be interpreted as a sequence mapping for ϕ and vice versa.

2. Given a structure which is a sequence mapping for both ©ϕ and ϕ as specified
in item 1, the interpretation (via this sequence mapping) of ©ϕ at time level
|δ| and of ϕ at time level |δ|+ 1 yields the same result.

Proposition 4.18 (Sequence-Mapping Correspondence). Let G be a valid GDL
specification, ©ϕ be an epistemic sequence invariant, δ©ϕ = (Sinit, . . . , Sk) and δϕ =
(Sinit, . . . , Sk, Sk+1) be arbitrary developments, and let σ©ϕ = (Sk, . . . , Sk+m) and
σϕ = (Sk+1, . . . , Sk+m) be arbitrary sequences. Furthermore, let V©ϕ and Vϕ be view
namings such that V©ϕ(ε) = v and, for all π ∈ Posϕ, V©ϕ(©π) = Vϕ(π), and let
Vs denote the set of view names for V©ϕ and for Vϕ (these two sets coincide).

For each function M : Vs → ∆G such that M(v) = (δ©ϕ, σ©ϕ) = (δϕ, σϕ), the
following two statements hold:

1. M is a sequence mapping for ©ϕ wrt. δ©ϕ iff M is a sequence mapping for
ϕ wrt. δϕ.

2. If M is a sequence mapping for both ©ϕ wrt. δ©ϕ and ϕ wrt. δϕ, then
(M, |δ©ϕ|,V©ϕ(ε)) ©ϕ iff (M, |δϕ|,Vϕ(ε)) ϕ.

Proof:

1. We show that the two conditions of the Sequence Mapping Definition 4.14 are
satisfied for M with respect to ©ϕ and δ©ϕ if and only if they are satisfied
with respect to ϕ and δϕ as follows:

• Concerning item 1 of Definition 4.14: The top-level developments coincide,
i.e., M(v) = (δ©ϕ, σ©ϕ) = (δϕ, σϕ)). Furthermore, since deg(©ϕ) =
deg(ϕ) + 1 and |σ©ϕ| = |σϕ| + 1, we have that σ©ϕ is n©ϕ-max for
some n©ϕ ≥ deg(©ϕ) iff σϕ is nϕ-max for some nϕ ≥ deg(ϕ).

• Concerning item 2 of Definition 4.14: Krψ is a subformula of ©ϕ at level
l + 1 iff Krψ is subformula of ϕ at level l.

– Concerning item 2 (a) of Definition 4.14: Since (|δ©ϕ| + (l + 1)) =
((|δ©ϕ| + 1) + l) = (|δϕ| + l), the (|δ©ϕ| + (l + 1))-prefix of M(Krψ)
coincides with the (|δϕ|+ l)-prefix of M(Krψ).

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 83

– Concerning item 2 (b) of Definition 4.14: Similarly to item 2 (a), (|δ©ϕ|+
(l + 1) + deg(ψ)) = (|δϕ|+ l + deg(ψ)).

2. By the alternative formula semantics from Definition 4.16, we have that
(M, |δ©ϕ|,V©ϕ(ε)) ©ϕ iff (since M(V©ϕ(ε)) is n̂-max for some n̂ ≥ |δ| +
deg(©ϕ) and Sk+1 exists) (M, |δ©ϕ| + 1,V©ϕ(ε)) ϕ iff (since V©ϕ(ε) =
V©ϕ(©) = Vϕ(ε) and |δ©ϕ|+ 1 = |δϕ|) (M, |δϕ|,Vϕ(ε)) ϕ. �

4.3.5 Equivalence of the Two Formula Semantics

We are now ready to prove the equivalence of the original semantics given in Defini-
tion 4.5 (cf. page 69) and the alternative semantics on sequence mappings given in
Definition 4.16 (cf. page 80) for positive-knowledge formulas. Informally, it states that
a positive-knowledge formula is violated by the original semantics in the last state
of a particular game development if and only if there is a sequence mapping for this
formula with respect to the same game development that violates the formula in the
alternative semantics. The result shows that the alternative semantics can be used to
reliably interpret positive-knowledge formulas and will hence provide a correspondence
between answer sets for generated answer set programs (which represent sequence map-
pings) and counter examples for formulas (with respect to the original semantics) in
our generalised proof method.

Theorem 4.19 (Semantics Equivalence). Let G be a valid GDL specification, ϕ be a
positive-knowledge formula over G, δ be a development, and σ be an n̂-max sequence
starting at last(δ) and such that n̂ ≥ deg(ϕ). Then the following are equivalent.

• σ 2δ ϕ

• there is a sequence mapping Mδ,ϕ such that Mδ,ϕ(ϕ) = (δ, σ) and Mδ,ϕ 1 ϕ

Proof: Base Case: Consider an arbitrary knowledge-free formula ϕ such that
Vϕ(ε) = v. Note that, for the fixed sequence σ, there is exactly one sequence mapping
Mσ

δ,ϕ for ϕ wrt. δ such that Mσ
δ,ϕ(v) = (δ, σ). Hence, the claim follows by proving

σ 2δ ϕ iff Mσ
δ,ϕ 1 ϕ

via a subsidiary induction on the structure of ϕ.

• Subsidiary Base Case ϕ = p(~t): σ 2δ p(~t) iff (Definition 4.5) G ∪ last(δ) 0 p(~t)
iff (Definition 4.16) (Mσ

δ,ϕ, |δ|, v) 1 p(~t) iff (Definition 4.16) Mσ
δ,ϕ 1 p(~t).

• Subsidiary Induction Step: Consider ϕ =©ψ, and let σ = (S|δ|, . . . , S|δ|+m). In
case S|δ| is terminal, we have σ �δ ϕ and Mσ

δ,ϕ ϕ. Otherwise, S|δ|+1 exists,
and σ 2δ ϕ iff (S|δ|+1, . . . , S|δ|+m) 2(δ,(S|δ|,S|δ|+1)) ψ iff (by the Induction Hypoth-

esis and the Sequence-Mapping Correspondence Proposition 4.18) Mσ
δ,ϕ 1 ψ iff

(again by Proposition 4.18) Mσ
δ,ϕ 1 ϕ. The other cases (including ϕ = ¬ψ and

ϕ = (∃l..u ~X :D ~X) ψ for u 6=∞) are argued similarly.

Induction Step: First note that cases ϕ = ¬ψ and ψ = (∃l..u ~X :D ~X) ψ for u 6=∞
do not occur in the Induction Step due to the restriction of ϕ to a positive-knowledge
formula. The remaining cases can be shown as follows.

84 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

• ϕ = ψ1 ∧ ψ2: σ 2δ ϕ implies σ 2δ ψ1 or σ 2δ ψ2. Assume σ 2δ ψ1 (the other
case is analogous). By the induction hypothesis (IH), there is a sequence mapping
Mδ,ψ1 such that Mδ,ψ1(ψ1) = (δ, σ) and Mδ,ψ1 1 ψ1. Now consider an arbitrary
sequence mapping Mδ,ψ2 for ψ2 such that Mδ,ψ2(ψ2) = Mδ,ψ1(ψ1) (Mδ,ψ2

always exists since ∼r is reflexive). Without loss of generality, for the view
namings Vψ1 and Vψ2 , assume Vψ1(ε) = Vψ2(ε) and (Vsψ1 \ {Vψ1(ε)})∩ (Vsψ2 \
{Vψ2(ε)}) = ∅. We construct a sequence mapping Mδ,ϕ : Vsψ1 ∪ Vsψ2 → ∆G

such that

Mδ,ϕ(v) :=

{
Mδ,ψ1(v) if v ∈ Vsψ1

Mδ,ψ2(v) else

Mδ,ψ1 1 ψ1 resolves to (Mδ,ψ1 , |δ|,Vψ1(ε)) 1 ψ1 which implies (Mδ,ϕ, |δ|,Vϕ(ε))
1 ψ1 (by the Sequence-Mapping View Reduction Proposition 4.17) and hence
Mδ,ϕ 1 ϕ.

For the opposite direction, let Mδ,ϕ be a sequence mapping such that Mδ,ϕ(ϕ) =
(δ, σ) and Mδ,ϕ 1 ϕ. Then (Mδ,ϕ, |δ|,Vϕ(ε)) 1 ψ1 or (Mδ,ϕ, |δ|,Vϕ(ε)) 1 ψ2

and hence (by the IH and Proposition 4.17) σ 2δ ψ1 or σ 2δ ψ2, which yields
σ 2δ ϕ.

• ϕ = ψ1 ∨ ψ2: σ 2δ ψ implies σ 2δ ψ1 and σ 2δ ψ2, hence by the IH there
are sequence mappings Mδ,ψ1 and Mδ,ψ2 such that Mδ,ψ1(ψ1) =Mδ,ψ2(ψ2) =
(δ, σ), Mδ,ψ1 1 ψ1, and Mδ,ψ2 1 ψ2. With these, we construct a sequence
mapping Mδ,ϕ as in the proof for case ϕ = ψ1 ∧ ψ2 which yields Mδ,ϕ 1 ϕ by
similar arguments.

The opposite direction is argued similar to case ϕ = ψ1 ∧ ψ2.

• ϕ = (∃ ~X :D ~X)ψ: Case |DX | = 0 is immediate, and case DX = {~a} follows by

choosing coinciding view namings for ϕ and ψ[~X/~a]. The remainder is similar
to the proof of case ϕ = ψ1 ∨ ψ2.

• ϕ = (∀ ~X :D ~X)ψ: Similar to case ϕ = (∃ ~X :D ~X)ψ (using arguments from case
ϕ = ψ1 ∧ ψ2 instead of case ϕ = ψ1 ∨ ψ2).

• ϕ = (∃l..∞ ~X :D ~X) ψ: σ 2δ ϕ implies that there are less than l different ~a ∈ D ~X

s.t. σ �δ ψ[~X/~a], denote them with ~A. Then for the remaining elements
~b ∈ D ~X \ ~A we have σ 2δ ψ[~X/~b] and hence, by IH, there are sequence map-
pings M

δ,ψ[~X/~b]
such that M

δ,ψ[~X/~b]
(ψ[~X/~b]) = (δ, σ) and M

δ,ψ[~X/~b]
1 ψ[~X/~b].

Merging similar to the proof of case ϕ = ψ1 ∨ ψ2 yields a sequence mapping
Mδ,ϕ such that, for all ~b ∈ D ~X \ ~A, we have Mδ,ϕ 1 ψ[~X/~b]. Hence there are

less than l different ~a ∈ ~A s.t. Mδ,ϕ ψ[~X/~a], which gives the claim.

The opposite direction is argued similarly.

• ϕ =©ψ: Let σ = (S|δ|, S|δ|+1, . . . , S|δ|+m). σ 2δ ©ψ implies that S|δ|+1 exists,
hence for σ′ = (S|δ|+1, . . . , S|δ|+m) and δ′ = (Sinit, . . . , S|δ|, S|δ|+1) we have σ′ 2δ′
ψ, which (by the IH) implies the existence of a sequence mapping Mδ′,ψ such that
Mδ′,ψ(ψ) = (δ′, σ′) and Mδ′,ψ 1 ψ. Without loss of generality, let Vϕ(©π) =
Vψ(π) for all π ∈ Posψ (and note that Vϕ(ε) = Vϕ(©)). Define Mδ,ϕ : Vsϕ →

4.3. LINEAR TIME IN THE SETTING OF KNOWLEDGE 85

∆G by setting Mδ,ϕ(v) := Mδ′,ψ(v) for all v ∈ Vsϕ = Vsψ . By the Sequence-
Mapping Correspondence Proposition 4.18, Mδ,ϕ is also a sequence mapping for
ϕ, and since Mδ′,ψ 1 ψ, we also have Mδ,ϕ 1 ϕ.

For the opposite direction, let Mδ,ϕ be a sequence mapping such that Mδ,ϕ(ϕ) =
(δ, σ) and Mδ,ϕ 1 ϕ. Then |Mδ,ϕ(ϕ)| > |δ| (otherwise Mδ,ϕ would satisfy ϕ
according to Definition 4.16) and hence (δ, σ) = (δ′, σ′) for some δ′ and σ′ such
that |δ′| = |δ|+1 and |σ′| = |σ|−1. Moreover, (Mδ,ϕ, |δ|+1,Vϕ(ε)) 1 ψ (again
by Definition 4.16) which (by the IH and since Mδ,ϕ is also a sequence mapping
for ψ with respect to δ′ by Proposition 4.18) yields σ′ 2δ′ ψ and hence σ 2δ ϕ.

• ϕ = Krψ: σ 2δ Krψ implies that there is a development δ′ = (Sinit, S
′
1, . . . , S

′
|δ|)

such that δ ∼r δ′ and S′|δ| 2δ′ ψ, and hence that there exists a deg(ψ)-max

sequence σ′ starting in S′|δ| which is such that σ′ 2δ′ ψ. By the IH, there is a

sequence mapping Mδ′,ψ such that Mδ′,ψ = (δ′, σ′) and Mδ′,ψ 1 ψ. Without
loss of generality, let Vϕ(Krπ) = Vψ(π) for all π ∈ Posψ (and note that Vϕ(ε) 6=
Vϕ(Kr)). Define Mδ,ϕ : Vsϕ → ∆G by setting Mδ,ϕ(Vϕ(ε)) := (δ, σ) and
Mδ,ϕ(v) :=Mδ′,ψ(v) for all v ∈ (Vsϕ \ {Vϕ(ε)}) = Vsψ . We argue that Mδ,ϕ is
a sequence mapping for ϕ wrt. δ according to Definition 4.14 as follows.

1. The toplevel development Mδ,ϕ(Vϕ(ε)) = (δ, σ) clearly satisfies the require-
ments of item 1 in Definition 4.14.

2. Consider subformula Krψ of ϕ which equals ϕ and hence has position π =
ε. Then Mδ,ϕ(Vϕ(Kr)) = (δ′, σ′), which clearly satisfies the requirements
(a) and (b) of item 2 in Definition 4.14. For the remaining subformulas, item
2 is satisfied as Mδ,ϕ includes the subsequent sequence mapping Mδ′,ψ .

Hence Mδ′,ψ 1 ψ implies Mδ,ϕ 1 ϕ (using the Sequence-Mapping View Reduc-
tion Proposition 4.17).

For the opposite direction, let Mδ,ϕ be a sequence mapping such that Mδ,ϕ(ϕ) =
(δ, σ) and Mδ,ϕ 1 ϕ. Then Mδ,ϕ|Vsψ 1 ψ (by Proposition 4.17). By Defini-
tion 4.14 and property (4.6), for some development δ′ and sequence σ′ such that
δ ∼r δ′ and σ′ is n̂-max for n̂ ≥ deg(ψ), we have Mδ,ϕ|Vsψ(ψ) = (δ′, σ′). The
IH implies σ′ 2δ′ ψ, which in turn gives σ 2δ ϕ. �

Let us emphasise that Theorem 4.19 indeed does not hold for negative-knowledge
formulas. For this purpose, reconsider Example 4.7 (cf. page 72) regarding Krieg-
Tictactoe with the terminal development δ, and the non-terminal development δ′

considered possible by player o which is such that δ ∼o δ′. Player o does not know
whether the game has terminated in δ (as motivated in Example 4.7), i.e. we have

last(δ) �δ ¬Koterminal ,

and ϕ = ¬Koterminal is a negative-knowledge formula.

Now assume for a moment that Theorem 4.19 holds for ϕ. Then for all sequence
mappings Mδ,ϕ such that Mδ,ϕ(ϕ) = δ we must have that Mδ,ϕ ϕ. However, there
is a sequence mapping which violates this condition: consider Mδ,ϕ for ϕ with respect
to δ that maps each view name of ϕ to the development δ. Then Mδ,ϕ Koterminal

86 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

and hence Mδ,ϕ 1 ϕ, which implies that our assumption is wrong. The rationale
behind this issue has been given with the discussion following the definition of the
alternative semantics in Section 4.3.4.

In terms of the proof for Theorem 4.19, the issue arises for ¬ψ in the induction step,
where the direction from the second to the first item cannot be established: assume
an arbitrary sequence mapping Mδ,ϕ such that Mδ,ϕ(¬ψ) = (δ, σ) and Mδ,ϕ 1 ¬ψ.
Then Mδ,ϕ ψ is only known to hold for one particular sequence mapping Mδ,ϕ.
In order to apply the induction hypothesis, however, this property is required for all
sequence mappings Mδ,ϕ such that Mδ,ϕ(ψ) = (δ, σ), which would then yield σ �δ ψ
and hence σ 2δ ¬ψ. For similar reasons, (Mδ,ϕ, i) 1 (∃l..u ~X :D ~X) ψ for u 6= ∞ does

not generally imply (δ, σ) 2δ (∃l..u ~X :D ~X) ψ.

4.4 Prerequisites for the Generalised Verification Method

We will now lift the preliminary notions we have established for our proof method
in Section 3.3 to the knowledge setting. To this end, we first provide an additional
dimension to the temporal GDL extension by introducing a further view argument
(Section 4.4.1), which enables reasoning about the GDL via sequence mappings. There-
after, we also enrich formula encodings by this view argument and provide an extended
sample encoding (Section 4.4.2), which together with the view-extended GDL clauses
then allows to verify formulas with respect to sequence mappings using answer set pro-
grams. These prerequisites will form the basis for the generalised proof method (to
be introduced in Section 4.5) which constructs programs whose answer sets represent
counter examples of formulas in the form of sequence mappings.

4.4.1 Epistemic Temporal GDL Extension

In Section 3.3.1, we introduced the temporal GDL extension G≤n. It allows to consider
n successive state transitions in an answer set encoding of a GDL specification G and
hence enables to automatically search for counter examples (which amount to be state
sequences) of sequence invariants with degree n. In this section, we generalise this
extension to account for epistemic sequence invariants, hence extending the structure
of counter examples from single state sequences to finite collections of state sequences
(represented by sequence mappings). To this end, the temporal GDL clauses will be
extended by a further view argument. While the appropriate time level for the GDL
extension in the knowledge-free setting is given by a natural number n, we will now
need such a number for each of the views of a formula. The following notion provides
this information.

Definition 4.20 (Formula Signature). Let ϕ be an epistemic sequence invariant
over a valid GDL specification. A ϕ-signature is a function Sig : Vsϕ → N such that

• Sig(Vϕ(ε)) ≥ deg(ϕ); and

• for each subformula Krψ of ϕ at position π, Sig(Vϕ(π)) ≥ Lϕ(π) + deg(ψ).

A ϕ-signature Sig is minimal if, for all ϕ-signatures Sig′ and for all v ∈ Vsϕ, we
have Sig(v) ≤ Sig′(v). Moreover, a sequence mapping Mδ,ϕ has ϕ-signature Sig if,
for each v ∈ Vsϕ, Mδ,ϕ(v) is |δ|+ Sig(v)-max.

4.4. PREREQUISITES FOR THE GENERALISED VERIFICATION METHOD 87

Sequence mappings can have more than one ϕ-signature in case one of its develop-
ments is terminal. Moreover, if a ϕ-signature Sig′ is greater than another ϕ-signature
Sig with respect to each component, and a sequence mapping M′δ,ϕ over that greater
signature Sig′ incorporates all developments from a sequence mapping Mδ,ϕ over
Sig, then Mδ,ϕ and M′δ,ϕ coincide with respect to entailment of ϕ. This is stated
more precisely with the following proposition which generalises item 2 in the Sequence
Extension Proposition 3.6 from page 32.

Proposition 4.21 (Sequence-Mapping Length Extension). Let G be a valid GDL
specification, ϕ be an epistemic sequence invariant, δ be a development, and let Sig
and Sig′ be ϕ-signatures such that Sig(v) ≤ Sig′(v) for all v ∈ Vsϕ. Furthermore,
let Mδ,ϕ and M′δ,ϕ be two sequence mappings for ϕ with respect to δ such that Mδ,ϕ

has signature Sig and M′δ,ϕ has signature Sig′ and, for all v ∈ Vsϕ, Mδ,ϕ(v) is
the (|δ|+ Sig(v))-prefix of M′δ,ϕ(v). Then

Mδ,ϕ ϕ iff M′δ,ϕ ϕ.

Proof: The claim follows by induction on the structure of ϕ, where the base
case considers ϕ arbitrarily knowledge-free and uses the Sequence Extension Proposi-
tion 3.6. �

Note that, for each sequence mapping M′δ,ϕ of the form mentioned in Proposi-
tion 4.21, the corresponding reduced mapping Mδ,ϕ always satisfies the conditions of
a sequence mapping from Definition 4.14: the suffixes of developments in M′δ,ϕ which
are removed in Mδ,ϕ always exceed the degree of the respective subformula and are
hence not involved in any dependency with respect to the accessibility relation. Con-
versely, this structural independency implies that each sequence mapping Mδ,ϕ of the
form mentioned in Proposition 4.21 can be extended to a respective sequence map-
ping M′δ,ϕ in case the GDL specification is playable (using the Sequence Extension
Proposition 3.6).

For an arbitrary GDL specification G and n ∈ N, recall the notation G≤n for the
temporal extension of G of degree n (cf. Definition 3.7 on page 34). It will form the
basis for the following epistemic temporal extension of G. The epistemic extension will
provide a set of temporal GDL clauses for each formula view, where the maximal time
level of each set is given via a formula signature. In addition, the following definition
provides an encoding for sequence mappings M over a development δ. The encoding
will only incorporate suffixes of sequences from M starting at depth |δ|, the reason
for this speciality is given below.

Definition 4.22 (Epistemic Temporal GDL Extension). For any set of clauses C
and any view name v, By C[+v] we denote the set of clauses obtained from C by
extending each occurring atom p(~t) to p(~t, v).

Let G be a valid GDL specification, ϕ be a formula, and Sig be a ϕ-signature.
The epistemic temporal extension of G wrt. Sig, denoted GSig , is defined as follows:

GSig :=
⋃

v∈Vsϕ

G≤Sig(v)[+v]

Let δ be a development and Mδ,ϕ be a sequence mapping for ϕ wrt. δ. Based on
the temporal state encodings Strue(i) and the temporal action encodings Adoes(i) for
sequences (cf. Definition 3.7), we define their generalisations to sequence mappings.

88 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

• For an arbitrary view name v, let Sv denote the last state of the |δ|-prefix of
development Mδ,ϕ(v). Then the state encoding for Mδ,ϕ is defined as

Mtrue
δ,ϕ =

⋃
v∈Vsϕ

Strue
v (0)[+v].

• For an arbitrary view name v, let the length of development Mδ,ϕ(v) be |δ|+mv .
Furthermore, for arbitrary i < mv , let Av,i denote the joint action which is
performed in Mδ,ϕ(v) at the last state of the (|δ|+ i)-prefix of Mδ,ϕ(v). Then
the action encoding for Mδ,ϕ is defined as

Mdoes
δ,ϕ =

⋃
v∈Vsϕ

(
⋃

0≤i<mv

Adoes
v,i (i)[+v]).

As for the temporal GDL extension, we choose to simply add a view-name argument
to atoms p instead of encoding the view name into their respective predicate symbols,
and will nevertheless tacitly assume each epistemic temporal GDL extension to be strat-
ified (cf. the remark below Example 3.8 on page 34). Furthermore, for each view name
v ∈ Vsϕ, the encoding Mtrue

δ,ϕ ∪Mdoes
δ,ϕ of a sequence mapping contains the v-extended

encoding of the suffix starting at S|δ| of Mδ,ϕ(v) = (Sinit, S1, . . . , S|δ|, . . . , S|δ|+m),
i.e., all prefixes of length |δ| are omitted. This is always possible, as each sequence
in Mδ,ϕ is at least of length |δ| (cf. the argumentation below the Sequence Mapping
Definition 4.14 on page 77). The necessity for the omitted prefixes will become clear in
the (yet to be established) induction-step part of the proof method in Section 4.5.2. To
provide a short glimpse, the induction step has to abstract from a game development
as it considers arbitrary states whose respective developments cannot be encoded into
a single program. The set of answer sets for the induction step program will hence
correspond to (a superset of) partial sequence mappings which start at some depth |δ|.
Let us now consider an example which shows the principle of the previous definition.

Example 4.23 (Epistemic Temporal GDL Extension). Reconsider formula

ϕ = ¬legal(x ,mark(1 , 1)) ∨Kxlegal(x ,mark(1 , 1))

and the view naming Vϕ such that Vϕ(ε) = v0 and Vϕ(∨2Kr) = v1 (cf. Example 4.13
from page 76). Then Sig : {v0, v1} → N, defined such that Sig(v0) = Sig(v1) = 0,
is a ϕ-signature. Let G be the game description for Krieg-Tictactoe from Figure 4.2
and consider the clause in line 28:

sees(R,yourmove) :- not validmove, true(control(R)).

The epistemic temporal extension GSig contains the following clause for each v ∈
{v0, v1} = Vsϕ:

sees(R,yourmove,1,v) :- not validmove(0,v), true(control(R),0,v).

4.4. PREREQUISITES FOR THE GENERALISED VERIFICATION METHOD 89

We will now provide a theorem which shows that an epistemically and temporally
extended GDL specification can be used to reason over the GDL via sequence mappings.
It is a natural extension of the correctness result for the temporal GDL extension (cf.
Theorem 3.9 at page 35).

Theorem 4.24 (Correctness of the Epistemic Temporal GDL Extension). Let G
be a valid GDL specification, ϕ be an epistemic sequence invariant, δ a development,
Mδ,ϕ a sequence mapping for ϕ wrt. δ, and Sig be a ϕ-signature for Mδ,ϕ. Consider
the program P =Mtrue

δ,ϕ ∪GSig ∪Mdoes
δ,ϕ , the view name v ∈ Vsϕ, and let Mδ,ϕ(v) =

(Sinit, S1, . . . , S|δ|, . . . , S|δ|+m).

1. For all 0 ≤ i ≤ m and predicate symbols p /∈ { init, next} that do not depend
on does:

G ∪ Strue
|δ|+i ` p(~t) iff P ` p(~t, i, v).

2. For all 0 ≤ i ≤ m− 1:

G ∪ Strue
|δ|+i ∪Adoes

|δ|+i ` sees(r, p) iff P ` sees(r, p, i+ 1, v).

Proof:

1. There is a partition P =
⋃̇
v∈VsϕPv of program P such that each Pv contains

only clauses concerning atoms with view argument v. Each Pv is stratified and
hence admits a unique answer set Av . The answer sets are pairwise disjoint and
hence form a partition of an answer set A, i.e. such that A =

⋃̇
v∈VsϕAv (by

the Splitting Theorem 2.10). Let P ′ be as program P from Theorem 3.9. Since
the maximal time horizon of clauses concerning v in GSig is Sig(v), and the
respective sequence Mδ,ϕ(v) is Sig(v)-max (cf. property (4.6) on page 78), we
have that program Pv is equal to P ′[+v]∪(G≤Sig(v)\G≤m)[+v] for each v ∈ Vsϕ.
We can apply Theorem 3.9 to obtain the claim, as heads of (G≤Sig(v) \G≤m)[+v]
do not occur in P ′[+v] (again by the Splitting Theorem).

2. Let 0 ≤ i ≤ m−1. By an argumentation similar to the proof of the intermediate
result Si = {f : Pi ` true(f, i)} for Theorem 3.9, using sees(r, p) instead of
next(f), the following two statements are equivalent:

• G ∪ Strue
|δ|+i ∪Adoes

|δ|+i ` sees(r, p)

• G≤i ∪ Strue
|δ| (0) ∪⋃i

j=0A
does
|δ|+j(j) ` sees(r, p, i+ 1)

The remainder follows by arguments concerning partitions of P and A similar
to the proof of item 1. �

Note that program P from Theorem 4.24 does not incorporate the game develop-
ment δ, as the encoding Mtrue

δ,ϕ ∪Mdoes
δ,ϕ of sequence mapping Mδ,ϕ only considers

suffixes of its sequences which omit the first |δ| states (as pointed out below the
epistemic temporal GDL extension Definition 4.22). However, the restrictions put by
development δ as well as other developments which are related to δ via the accessi-
bility relation, are still met by the unaltered suffixes of Mδ,ϕ. Again, this abstraction
is necessary for our induction step encoding which will have to abstract from a given
game development.

90 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

4.4.2 Encoding Positive-Knowledge Formulas

Corresponding to the generalisation of the temporal GDL extension to incorporate
epistemic sequence invariants, we will now generalise the notion of a formula encod-
ing. The original encoding definition requires that a formula is true with respect to a
sequence if and only if its encoding together with a sequence encoding and a temporal
GDL extension yields a unique answer set which contains a special formula name atom.
Instead of a sequence, the generalised encoding definition requires a sequence mapping
for that formula, and incorporates the alternative semantics over sequence mappings
instead of the original semantics.

Definition 4.25 (Encoding for Epistemic Sequence Invariants). Let G be a valid
GDL specification, ϕ be an epistemic sequence invariant, and η(ϕ) be a 0-ary atom
which represents a unique name for ϕ. An encoding of ϕ, denoted Enc(ϕ), is a finite
set of clauses whose heads do not occur elsewhere and such that, for each sequence
mapping Mδ,ϕ and for each ϕ-signature Sig for Mδ,ϕ, the program P = Mtrue

δ,ϕ ∪
GSig ∪Mdoes

δ,ϕ ∪ Enc(ϕ) fulfils the following:

• P has exactly one answer set;

• Mδ,ϕ ϕ iff P ` η(ϕ).

The example encoding given in Table 3.1 on page 38 can now be extended to
epistemic sequence invariants such that it satisfies the requirements of Definition 4.25,
which is shown with the following theorem.

Theorem 4.26 (Correctness of the Generalised Sample Encoding). Let G be a valid
GDL specification, ϕ ∈ ESING, and let η(ϕ, i, v) be a 0-ary atom, denoting a unique
name for ϕ with respect to every time point i and every view v. We generalise the
example encoding given in Table 3.1 on page 38 as follows.

• We add a view argument v to cases 1–8. E.g., case 1 is adapted as follows (the
other cases are adapted similarly):

1. Enc(p(~t), i, v) = {η(p(~t), i, v) :- p(~t, i, v).}; and

• We add the following case 9, where π is the position of subformula Krψ in ϕ:

9. Enc(Kr ψ, i, v) = {η(Kr ψ, i, v) :- η(ψ, i,Vϕ(πKr)).}
∪ Enc(ψ, i,Vϕ(πKr)).

Then Enc(ϕ) := Enc(ϕ, 0,Vϕ(ε)) with the unique name atom η(ϕ) := η(ϕ, 0,Vϕ(ε))
for ϕ is an encoding of ϕ.

Proof: Let Mδ,ϕ be an arbitrary sequence mapping and Sig be an arbitrary
ϕ-signature for Mδ,ϕ. Program Pϕ =Mtrue

δ,ϕ ∪GSig ∪Mdoes
δ,ϕ ∪Enc(ϕ) clearly admits

a unique answer set. The remainder is by induction on the structure of ϕ.
Base Case: Consider an arbitrary knowledge-free formula ϕ, let v = Vϕ(ε), and

let Mδ,ϕ(v) = (δ, σ). Since Mδ,ϕ is only defined on v, Mδ,ϕ is the only sequence
mapping such that Mδ,ϕ(v) = (δ, σ). This allows to apply the Semantics Equiv-
alence Theorem 4.19 to obtain equivalence to σ �δ ϕ. By the Encoding-Theorem

4.4. PREREQUISITES FOR THE GENERALISED VERIFICATION METHOD 91

for knowledge-free formulas (cf. Theorem 3.12 on page 37) we obtain equivalence to
Pϕ ` η(ϕ, 0, v).

Induction Step: We consider the cases ϕ = Krψ and ϕ =©ψ, all remaining cases
are argued similar to case ϕ = Krψ. Without loss of generality, let Vϕ(Krπ) = Vψ(π)
for all π ∈ Posψ . Furthermore, let the sequence mapping Mδ,ψ be such that Mδ,ψ =
Mδ,ϕ|Vsψ , and let program Pψ be constructed similar to Pϕ based on Mδ,ψ instead
of Mδ,ϕ.

• ϕ = Krψ: Mδ,ϕ ϕ iff (by the semantics over sequence mappings, cf. Defini-
tion 4.16) (Mδ,ϕ, |δ|,Vϕ(ε)) ϕ iff (by Definition 4.16) (Mδ,ϕ, |δ|,Vϕ(Kr)) ψ
iff (by the Sequence-Mapping View Reduction Proposition 4.17)
(Mδ,ψ, |δ|,Vψ(ε)) ψ iff (by Definition 4.16) Mδ,ψ ψ iff (by the Induc-
tion Hypothesis) Pψ ` η(ψ, 0,Vψ(ε)) iff (by the Splitting Theorem 2.10 and the
sample encoding definition case 9) Pϕ ` η(ϕ, 0,Vϕ(ε)).

• ϕ =©ψ: Let Mδ,ϕ(Vϕ(ε)) = (δ, (S|δ|, . . . , S|δ|+m)) and note that its suffix
(S|δ|, . . . , S|δ|+m) is n̂-max for some n̂ ≥ deg(©ψ). We consider two cases:

– S|δ| is terminal: then Mδ,ϕ ϕ follows by Definition 4.16, and Pϕ `
terminal(0,Vϕ(ε)) follows by Theorem 4.24 (Correctness of the Epistemic
Temporal GDL Extension) and yields Pϕ ` η(ϕ, 0,Vϕ(ε)).

– S|δ| is non-terminal: then δ′ = (δ, (S|δ|, S|δ|+1)) exists. By the Sequence-
Mapping Correspondence Proposition 4.18, function Mδ′,ψ : Vsψ → ∆G

such that Mδ′,ψ(v) = Mδ,ϕ(v) for all v ∈ Vsϕ is a sequence mapping for
ψ with respect to δ′, and we have

Mδ,ϕ ϕ iff Mδ′,ψ ψ.

Note that, although Mδ,ϕ and Mδ′,ψ coincide, ψ is interpreted at time
step |δ′|, whereas ϕ is interpreted at time step |δ| = |δ′| − 1. In anal-
ogy to Theorem 3.12 (Correctness of the Sample Encoding), let ·i→i+1 be
a renaming that replaces each time argument i by i + 1 in timed and
view-argumented GDL atoms and replaces each occurrence of η(ρ, v, i) by
η(ρ, v, i + 1) for each formula ρ and each view name v. The induction
hypothesis then implies that

Mδ′,ψ ψ iff P i→i+1
ψ ` η(ψ, 1,Vψ(ε))

This, in turn, is equivalent to Pϕ ` η(ϕ, 0,Vϕ(ε)) by arguments similar to
those following the introduction of ·i→i+1 in Theorem 3.12. �

An example for the encoding given in Theorem 4.26 is deferred to Section 4.6 (cf.
page 96). This section provides a comprehensive demonstration of the generalised proof
method which will be developed in the following. For the sake of generality, however,
all theoretic considerations again abstract from the specific encoding and consider any
Enc(ϕ) that satisfies the requirements of the Encoding Definition 4.25.

92 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

4.5 Verification of Positive-Knowledge Formulas

In Section 3.4 we have shown how the encoding of a game property (i.e., a temporal
formula), together with the temporal extension of a given set of game clauses, can be fed
into an answer set solver in order to establish whether the clauses entail the property.
We will now extend the method in order to prove positive-knowledge formulas ϕ via
induction. As the original method, it is based on the construction of two answer set
programs. One program is needed to establish the base case of the induction proof. It
shows that, for the unique development δ = (Sinit) of length 0, we have that Sinit �δ ϕ;
this program will be specified in Section 4.5.1. The other program is needed to establish
the induction step. It shows that, for arbitrary states S which are reachable via some
development δ and which are such that S �δ ϕ, each of their direct successor states
S′ which is reachable via the development δ′ = (δ, (S, S′)) is such that S′ �δ′ ϕ; this
program will be specified in Section 4.5.2. Base case and induction step put together
then imply that, for all developments δ, we have that last(δ) �δ ϕ.

4.5.1 Base Case

Action-Set Generator

In Section 3.4.1, we have specified an action generator, i.e. a program which encodes
that each player has to perform exactly one legal move in each non-terminal state of the
game. We will now extend this program to account for the epistemic extension of the
GDL clauses by ensuring the mentioned property with respect to each of the considered
views of a formula. We incorporate additional restrictions to connect epistemically and
temporally extended GDL clauses with different views according to the accessibility
relation. For an epistemic sequence invariant ϕ, the constructed program will be
based on a ϕ-signature Sig. It is denoted with P legal

Sig and consists of the following
clauses.

• Recall the finite set ADom(r) of all possible actions for player r from Section 3.4
at page 39. For each view v, the requirement that each player has to perform a
legal move in each non-terminal state of development Mδ,ϕ(v) up to time step

Sig(v) − 1 is encoded by v-extended clauses of the action generator P legal
≤Sig(v)−1

(cf. the clauses (3.8) at page 40). That is, for each v ∈ Vsϕ, 0 ≤ i < Sig(v), and
r ∈ R, we have the following:

(c1) terminated (i, v) :- terminal (i, v).
(c2) terminated (i, v) :- terminated (i− 1, v).
(c3) 1{does (r, a, i, v) : a ∈ ADom(r)}1 :- not terminated (i, v).
(c4) :- does (r, A , i, v),not legal (r, A , i, v).

(4.7)

• The requirement that sequences of different views are related according to the
requirements of the sequence mapping from Definition 4.14 is encoded as follows.
Let Krψ be a subformula of ϕ at position π, where Vϕ(πKr) = v and Vϕ(π) =
v′, and for the level Lϕ(π) of Krψ, let 0 ≤ i < Lϕ(π).

– The sequence for v is at least as long as the Lϕ(π)-prefix of the sequence
for v′:

:- not terminated (i, v′), terminated (i, v). (4.8)

4.5. VERIFICATION OF POSITIVE-KNOWLEDGE FORMULAS 93

– Player r performs the same actions wrt. views v and v′:

:- not terminated (i, v′),does (r, A , i, v),not does (r, A , i, v′).
:- not terminated (i, v′),does (r, A , i, v′),not does (r, A , i, v).

(4.9)

– Player r has the same percepts wrt. views v and v′:

:- not terminated (i, v′), sees (r, S , i+ 1, v),not sees (r, S , i+ 1, v′).
:- not terminated (i, v′), sees (r, S , i+ 1, v′),not sees (r, S , i+ 1, v).

(4.10)

Subsequently, P legal
Sig will also be called an action-set generator for Sig.

Base Case Program

For a GDL description G, a formula ϕ, and the minimal ϕ-signature Sig (cf. the
Formula Signature Definition 4.20), the answer set program for the base case is defined
as follows.

P bcϕ (G) = (
⋃
v∈Vsϕ S

true
init (0)[+v]) ∪GSig ∪ P legal

Sig ∪
Enc(ϕ) ∪ { :- η(ϕ). }

Put in words, P bcϕ (G) consists of an encoding of the initial state for each of the views of
ϕ,
⋃
v∈Vsϕ S

true
init (0)[+v]; an epistemic temporal GDL description corresponding to the

minimal ϕ-signature Sig, GSig ; the necessary requirements concerning legal moves for
each of the respective sequences as well as their relation with respect to the accessibility
relation, P legal

Sig ; and an encoding for ϕ together with the statement that ϕ should not

be entailed in any answer set of P bcϕ (G), Enc(ϕ) ∪ { :- η(ϕ).}. In case P bcϕ (G) has
no answer set, the last clause implies that there is no sequence mapping Mδ,ϕ with
the minimal ϕ-signature Sig that makes ϕ false—which means that each sequence
mapping with signature Sig satisfies ϕ. This in turn implies that Sinit �(Sinit) ϕ (by
the Semantics Equivalence Theorem 4.19).

4.5.2 Induction Step

State-Set Generator

For the induction step answer set program, the base case program (
⋃
v∈Vsϕ S

true
init (0)[+v])

needs to be substituted by a program which, for each sequence mapping Mδ,©ϕ, gen-
erates an encoding Mtrue

δ,©ϕ. It corresponds to all states S|δ| at time step |δ| of the
respective developments Mδ,©ϕ(v) for all views v ∈ Vs©ϕ. These states are related
according to the accessibility relation and hence incorporate their foregoing develop-
ments. Let us first formally characterise state collections with these properties.

Definition 4.27 (Development Mapping). Let G be a valid GDL specification,
ϕ ∈ ESING, and δ ∈ ∆G. A function Dδ,ϕ : Vsϕ → ∆G is called development
mapping for ϕ wrt. δ if

• Dδ,ϕ(Vϕ(ε)) = δ; and

94 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

• for each subformula Krψ of ϕ with position π:

Dδ,ϕ(Vϕ(π)) ∼r Dδ,ϕ(Vϕ(πKr)).

An ideal generator program for the induction step now exactly admits all answer sets
which correspond to one particular development mapping by encoding the last states of
all developments from that mapping. However, recall from the induction step program
for knowledge-free formulas that the reachable states cannot be computed efficiently
in general and hence have to be approximated by a set of states which, in addition
to all reachable states, contains some non-reachable states as well (cf. Section 3.4.2).
This implies that also foregoing developments for reachable states cannot be computed
(otherwise the states themselves would also be known), and for non-reachable states
they do not even exist. Hence, an ideal generator program cannot generally be con-
structed for practical verification, which again calls for a suitable abstraction. Similar
to the knowledge-free case, this is possible by overestimation: the generator is allowed
to provide additional answer sets which do not correspond to development mappings.
E.g., for an arbitrary state generator P gen, the simplest state-set generator provides
an answer set for every combination of the states which are generated by P gen:⋃

v∈Vsϕ

P gen

This instance of a state-set generator completely ignores the restrictions put by de-
velopment-mappings. In the following we define a state-set generator such that, for
each development mapping, it yields an answer set representing the last states of all
developments from that mapping, and may yield additional answer sets which do not
correspond to development mappings.

Definition 4.28 (State-Set Generator). Let G be a valid GDL specification and ϕ
be an epistemic sequence invariant. A state-set generator is an answer set program
P setgen
ϕ such that

• The only atoms in P setgen
ϕ are of the form true(f, 0, v), where f ∈ Σ and

v ∈ Vsϕ, or auxiliary atoms that do not occur elsewhere; and

• for every development mapping Dδ,ϕ for ϕ wrt. development δ, P setgen
ϕ has an

answer set A such that for all f ∈ Σ and for all v ∈ Vsϕ: true(f, 0, v) ∈ A
iff f ∈ last(Dδ,ϕ(v)).

Below Definition 4.22 (Epistemic Temporal GDL Extension) we pointed out that
the encoding of a sequence mapping which is with respect to a game development δ
omits all development prefixes of length |δ|. This is due to the above-mentioned over-
estimation of the reachable states. The state-set generator fills this gap by providing
state-set encodings which hypothetically relate to some unknown development δ, and
may overestimate this relation by providing additional state-set encodings.

In the knowledge-free case, we pointed out that the overestimation of reachable
states in the induction step causes unintended counter examples (cf. Section 3.4.2). This
speciality carries over to the generalised setting. Hence it is generally helpful to add

4.5. VERIFICATION OF POSITIVE-KNOWLEDGE FORMULAS 95

positive-knowledge formulas that have previously been proved to a state-set generator.
For the sake of clarity, we refrain from the formal details and give a discussion on this
matter in Section 4.8.2 instead.

Induction Step Program

For a GDL description G, a formula ϕ, and the minimal ©ϕ-signature Sig, the
answer set program for the induction step is defined as

P isϕ (G) = P setgen
©ϕ ∪GSig ∪ P legal

Sig ∪
Enc(ϕ) ∪ { :- not η(ϕ). } ∪ Enc(©ϕ) ∪ { :- η(©ϕ). },

where the view names of ϕ and ©ϕ coincide, i.e., where Vsϕ = Vs©ϕ and the view
namings Vϕ and V©ϕ are such that, for all π ∈ Posϕ, we have Vϕ(π) = V©ϕ(©π).

Put in words, P isϕ (G) deviates from P bcϕ (G) in the following way. First, an arbi-

trary state-set generator P setgen
©ϕ is used instead of the initial-state encoding. Second,

the clauses are constructed over a minimal ©ϕ-signature instead of a ϕ-signature,
hence the time horizon has increased by 1 (since both signatures are minimal). Third,
the clauses Enc(ϕ) ∪ { :- notη(ϕ).} ensure that each answer set represents a se-
quence mapping Mδ,©ϕ over Sig which satisfies ϕ (note that Mδ,©ϕ is also a
sequence mapping for ϕ with respect to δ, as the view namings Vϕ and V©ϕ co-
incide), and the clauses Enc(©ϕ) ∪ { :- η(©ϕ).} ensure that Mδ,©ϕ additionally
violates ©ϕ. In case P isϕ (G) is inconsistent, there is no sequence mapping Mδ,©ϕ
which satisfies these requirements—which implies that ©ϕ is satisfied with respect to
all sequence mappings with signature Sig that also satisfy ϕ. This in turn implies
that S|δ|+1 �(δ,(S|δ|,S|δ|+1)) ϕ is satisfied in all direct successors S|δ|+1 of reachable

states S|δ| that are such that S|δ| �δ ϕ (by the Sequence-Mapping Correspondence
Proposition 4.18, the Semantics Equivalence Theorem 4.19, and the Sequence-Mapping
Length Extension Proposition 4.21).

Remark on the Linear-Time Encoding of Positive-Knowledge Formulas

In Section 3.4.2 we have mentioned that, in a linear-time setting and for knowledge-
free formulas ϕ such that deg(ϕ) ≥ 1, the induction hypothesis S0 � ϕ is applied
in a weaker linear-time variant, namely with respect to single sequences that start in
S0. I.e., a counter example for ϕ in the induction step is a deg(©ϕ)-max sequence
σ = (S0, . . . , Sm) such that σ � ϕ ∧ ¬© ϕ, but not all deg(ϕ)-max sequences σ′ =
(S0, . . . , S

′
m′) are necessarily such that σ′ � ϕ, although this is implied by the actual

induction hypothesis S0 � ϕ.
To the generalised setting of positive-knowledge formulas, this explanation trans-

lates as follows. The induction hypothesis last(δ) �δ ϕ states that ϕ is true with
respect to all deg(ϕ)-max sequences which start in last(δ). For each subformula Krψ
of ϕ, it states in turn that ψ is true with respect to all “appropriately related” se-
quences. To match the linear time structure, we again implicitly weaken the induction
hypothesis: ϕ is assumed to be true with respect to one deg(ϕ)-max sequence which
starts in last(δ), and for each subformula Krψ of ϕ, ψ is assumed to be true with
respect to one “appropriately related” sequence. This is always possible, as each com-
ponent ∼r of the accessibility relation is reflexive. A counter example for ϕ in the

96 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

induction step then amounts to a collection of sequences, represented by the notion
of a sequence mapping, which satisfies the weaker induction hypothesis for ϕ in the
current time step as described above, and violates ϕ in the next time step.

In the following section, we will demonstrate that the weaker linear-time encoding
of the induction hypothesis still suffices for proving an example formula in the game
of Krieg-Tictactoe. This can be achieved since both the induction hypothesis and the
encoding for the violation in the next time step use the exact same view namings of
the respective formula, hence providing a sufficient compensation for the necessary
relaxations in the induction step program. In Section 5.4.2, we provide experiments
on additional games and properties which further demonstrate the effectiveness of our
method.

4.6 An Example Proof

Before we establish a soundness result for the generalised verification method, we give a
comprehensive example which demonstrates that the validity can reliably be established
for formula

ϕ = ¬legal(x ,mark(1 , 1)) ∨Kxlegal(x ,mark(1 , 1)),

from Example 4.10 (cf. page 75) in the game of Krieg-Tictactoe. Recall the clauses of
Krieg-Tictactoe which have been given with the GDL specification G in Figure 4.2,
and the view naming Vϕ of ϕ from Example 4.13 (cf. page 76) such that

• Vϕ(ε) = Vϕ(∨1) = Vϕ(∨2) = Vϕ(∨1 ¬) = v0; and

• Vϕ(∨2Kr) = v1,

and note that the level Lϕ(π) of all positions π ∈ Posϕ is 0. In the following, we show
that both the base case answer set program P bcϕ (G) and the induction step answer set
program P isϕ (G) for ϕ are inconsistent, which implies that ϕ is valid with respect to
all reachable states.

4.6.1 Base Case

To show that Sinit �Sinit ϕ, we have to show Mδ,ϕ ϕ for all sequence mappings
Mδ,ϕ for ϕ with respect to δ = (Sinit) which are over the minimal ϕ-signature
Sig : {v0, v1} → N of ϕ. Sig is such that Sig(v0) = Sig(v1) = 0, hence the sequences
Mδ,ϕ(v0) and Mδ,ϕ(v1) are 0-max and both reduce to the initial state, which implies
that there is only one such sequence mapping Mδ,ϕ. According to the definition of a
sequence mapping, we have Sinit ∼x Sinit.

Sequence Mappings Correspond To Answer Sets

For a program which reliably encodes Mδ,ϕ, condition Sinit ∼x Sinit does not cause

any restrictions. Consequently, the part P legal
Sig of the base case program P bcϕ (G) which

is used to restrict answer sets to those that model sequence mappings reduces to the
empty set (as Sig(v0) = 0, Sig(v1) = 0, and Lϕ(π) = 0 for all positions π ∈ Posϕ).
Recall the temporal extension G≤0 of the game specification G of degree 0 (cf.

4.6. AN EXAMPLE PROOF 97

Example 4.23). The program which is obtained from P bcϕ (G) by omitting the encoding
for ϕ, ⋃

v∈{v0,v1}

(
Strue
init (0) ∪G≤0

)
[+v],

admits a unique answer set which contains a faithful encoding of Mδ,ϕ, since the
contained instances of true(F,0,V) coincide with Mtrue

δ,ϕ .

Inconsistency

The encoding Enc(ϕ) for ϕ can be obtained by applying the recursive definition given
in Theorem 4.26. It yields the following clauses, where atom phi is the unique name
η(ϕ, 0, v0) for formula ϕ.

phi :- neg_a0.

phi :- knows_a1.

neg_a0 :- not a0. a0 :- legal(x,mark(1,1),0,v0).
knows_a1 :- a1. a1 :- legal(x,mark(1,1),0,v1).

(4.11)

Finally, the base case program is the composition of the two mentioned programs
together with the constraint :- phi. which expresses that ϕ should not be true in
the initial state: ⋃

v∈{v0,v1}

(
Strue
init (0) ∪G≤0

)
[+v] ∪ {(4.11)} ∪ { :- phi.}.

Now assume that P bcϕ (G) admits an answer set A. Then phi /∈ A due to the con-
straint :- phi. By the encoding (4.11) of ϕ we have legal(x,mark(1,1),0,v0) ∈
A and legal(x,mark(1,1),0,v1) /∈ A. This is a contradiction, since the clauses(
Strue
init (0)∪G≤0

)
[+v0] and

(
Strue
init (0)∪G≤0

)
[+v1] coincide except for the name of the

view argument. Hence, P bcϕ (G) is inconsistent, which implies that Sinit �(Sinit)
ϕ (cf.

Section 4.5.1).

4.6.2 Induction Step

The minimal ©ϕ-signature Sig : {v0, v1} → N of ©ϕ is such that Sig(v0) =
Sig(v1) = 1. Consider an arbitrary sequence mapping Mδ,©ϕ for ©ϕ with re-
spect to an arbitrary development δ which is over the minimal ©ϕ-signature Sig.
Then, for some development δ′ such that |δ′| = |δ| and some 1-max sequences σ
and σ′, we have Mδ,ϕ(v0) = (δ, σ) and Mδ,ϕ(v1) = (δ′, σ′). In case δ is terminal
and hence σ = (last(δ)), these sequences are related such that δ ∼x δ′. Otherwise,
there is a direct successor S|δ|+1 of S|δ| = last(δ) such that σ = (S|δ|, S|δ|+1), and
Mδ,ϕ(v0) ∼xMδ,ϕ(v1).

Sequence Mappings Correspond To Answer Sets

For the sake of simplicity, we assume a state-set generator P setgen
©ϕ which does only

provide answer sets based on states which contain exactly one instance of control(r)

98 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

and which contain exactly one instance of cell(x, y, c) for each pair (x, y) such that
x, y ∈ {1, 2, 3}. As we will see in the experiment Section 5.4.1, this information can
easily be obtained automatically by preliminary proofs of the knowledge-free formulas
(∃1..1{x , o} : true) (control(C)) and (∀X,Y :{1 , 2 , 3}) (∃1..1P : DP) true(cell(X,Y, P)).
Furthermore, the encoded states of each answer set are not restricted to be related
according to the accessibility relation.

We first argue that the program obtained from P isϕ (G) by omitting the encoding
for ϕ,

P = P setgen
©ϕ ∪

⋃
v∈{v0,v1}

G≤1[+v] ∪ P legal
Sig ,

provides an answer set A which contains a faithful encoding of the (arbitrarily cho-
sen) sequence mapping Mδ,©ϕ in that the contained instances of true(F,0,V) and
does(R,A,0,V) coincide with Mtrue

δ,©ϕ and Mdoes
δ,©ϕ.

For Mδ,©ϕ, there is a development mapping Dδ,ϕ : {v0, v1} → ∆G such that
Dδ,ϕ(v0) = δ and Dδ,ϕ(v0) ∼x Dδ,ϕ(v1). Hence, Mtrue

δ,©ϕ clearly satisfies the clauses

of the state-set generator P setgen
©ϕ (cf. Definition 4.28). Since Sig(v0) = Sig(v1) = 1

and the level Lϕ(©π) = 1 for all π ∈ Posϕ, the action-set generator P legal
Sig (cf.

clauses (4.7) to (4.10) in Section 4.5.1) consists of the following clauses:

• Each player r ∈ { x, o} performs exactly one legal move in each non-terminal
state of time step 0 with respect to each of the view names v ∈ {v0, v1}.

terminated (0, v) :- terminal (0, v).
terminated (0, v) :- terminated (−1, v).
1{does (r, a, 0, v) : a ∈ ADom(r)}1 :- not terminated (0, v).
:- does (r, A , 0, v),not legal (r, A , 0, v).

(4.12)

Sequence mapping Mδ,ϕ contains the respective developments Mδ,ϕ(v0) = (δ, σ)
and Mδ,ϕ(v1) = (δ′, σ′). Now either last(δ) is terminal, or it incorporates a
legal move for each of the players. The same argumentation applies to δ′. Hence,
the encoding Mtrue

δ,©ϕ ∪Mdoes
δ,©ϕ of sequence mapping Mδ,ϕ (which encodes the

previously mentioned states at time step 0) together with G≤1[+v] is consistent
with the clauses (4.12).

• If the state for view name v0 at time step 0 is non-terminal, then also the state
for view name v1 at time step 0 is non-terminal.

:- not terminated(0,v0), terminated(0,v1). (4.13)

In case last(δ) is terminal, the constraint is satisfied. Otherwise, there is a direct
successor of last(δ) in Mδ,ϕ(v0), and the sequences Mδ,ϕ(v0) and Mδ,ϕ(v1)
are related such that Mδ,ϕ(v0) ∼x Mδ,ϕ(v1). This implies that also last(δ′) is
non-terminal, which again satisfies the constraint.

• If the state for view name v0 at time step 0 is non-terminal, then player x
performs the same actions with respect to both view names v0 and v1.

:- not terminated(0,v0), does(x,A,0,v1), not does(x,A,0,v0).
:- not terminated(0,v0), does(x,A,0,v0), not does(x,A,0,v1).

(4.14)

4.6. AN EXAMPLE PROOF 99

In case last(δ) is terminal, the constraints are satisfied. Otherwise, the suf-
fix sequences σ and σ′ of the respective developments Mδ,ϕ(v0) = (δ, σ) and
Mδ,ϕ(v1) = (δ′, σ′) are of length 1 and hence each contain a single state tran-
sition such that the actions of player x coincide, which again satisfies the con-
straint.

• If the state for view name v0 at time step 0 is non-terminal, then player x has
the same percepts with respect to both view names v0 and v1.

:- not terminated(0,v0), sees(x,S,1,v1), not sees(x,S,1,v0).
:- not terminated(0,v0), sees(x,S,1,v0), not sees(x,S,1,v1).

(4.15)
Similar to the previous case, a terminal state last(δ) satisfies the constraints,
and a non-terminal state last(δ) implies Mδ,ϕ(v0) ∼xMδ,ϕ(v1) and hence the
same percepts in last(σ) and last(σ′).

Note that, while this argumentation shows that each sequence mapping Mδ,ϕ of the
above-mentioned shape corresponds to an answer set of the program P , the converse
is not true: P might yield answer sets which do not correspond to sequence mappings
due to the structure of state-set generators (cf. the explanation in Section 4.5.2).

Inconsistency

The induction step program needs the following additional encoding Enc(©ϕ) for
©ϕ, where atom nxt_phi is the unique name η(©ϕ, 0, v0) for formula ©ϕ. It is
important that the view namings Vϕ and V©ϕ coincide, i.e. that Vϕ(π) = V©ϕ(©π)
(and hence V©ϕ(ε) = V©ϕ(©) for all π ∈ Posϕ. Then, each subformula of ϕ is
encoded in Enc(ϕ) with respect to the exact same view name as in Enc(©ϕ).

nxt_phi :- terminal(0,v0). phi_1 :- neg_a0_1.

nxt_phi :- phi_1. phi_1 :- knows_a1_1.

neg_a0_1 :- not a0_1. a0_1 :- legal(x,mark(1,1),1,v0).
knows_a1_1 :- a1_1. a1_1 :- legal(x,mark(1,1),1,v1).

(4.16)

Finally, the induction step program is given as

P ∪ {(4.11)} ∪ {:- not phi. } ∪ {(4.16)} ∪ {:- nxt_phi. }.

We argued above that P provides an answer set for each sequence mapping Mδ,©ϕ for
©ϕ with respect to δ which is over the minimal ©ϕ-signature Sig. In the following
we show that adding {(4.11)} ∪ {:- not phi.} ∪ {(4.16)} ∪ {:- nxt_phi.} causes
inconsistency, implying that ϕ is satisfied in all direct successors of states reachable
via development δ which itself satisfy ϕ (cf. Section 4.5.2).

Assume that P isϕ (G) admits an answer set A. By encoding (4.16), together with
constraint :- nxt_phi., we have

terminal(0,v0) /∈ A, (4.17)

legal(x,mark(1,1),1,v0) ∈ A, and legal(x,mark(1,1),1,v1) /∈ A. (4.18)

100 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

By (4.15), the instances of sees for player x coincide with respect to both views
v0 and v1 at time step 1. In case we have sees(x,yourmove,1,v) ∈ A for all
v ∈ { v0, v1}, there are two possibilities by (the temporal epistemic extension of)
clauses 28 and 29 in Figure 4.2:

• validmove(0,v) /∈ A and true(control(x),0,v) ∈ A: Then, by clause 14,
we have true(control(x),1,v) ∈ A (and hence true(control(o),1,v) /∈ A,
since we assume a unique control-instance of true).

• validmove(0,v) ∈ A and true(control(o),0,v) ∈ A: Then, by clause 23 in
Figure 4.2, we have that true(control(x),1,v) ∈ A.

The opposite case, sees(x,yourmove,1,v) /∈ A for all v ∈ {v0, v1}, can be argued
similarly and yields that true(control(o),1,v) ∈ A. Hence, also the control-
instances of true for player x coincide at time step 1. This together with (4.18) and
clause 5 in Figure 4.2 implies

{true(control(x),1,v0), true(control(x),1,v1)} ⊆ A, (4.19)

true(tried(1,1),1,v0) /∈ A, and true(tried(1,1),1,v1) ∈ A. (4.20)

Since terminal(0,v0) /∈ A (cf. (4.17)), (4.12) and (4.13) imply terminal(0,v1) /∈
A, hence by (4.12) and (4.14) there is exactly one a such that does(x, a, 0, v) ∈ A
for each v ∈ { v0, v1}. Again by (4.12), this implies legal(x, a, 0, v) ∈ A for the
same a and hence (by clauses 5-8) that the control-instances of true coincide in
both views also at time step 0. Assume true(control(o),0,v1) ∈ A, then clause 23
and (4.19) imply validmove(0,v1) ∈ A in contradiction to the clauses 11-12 and
(4.20). Hence

{true(control(x),0,v0), true(control(x),0,v1)} ⊆ A (4.21)

which, together with clause 14 and (4.19), yields

validmove(0,v0) /∈ A and validmove(0,v1) /∈ A

By the clauses 11-12 and (4.20), this implies does(x,mark(1,1),0,v0) /∈ A,
true(tried(1,1),0,v0) /∈ A, and (since the instances of does coincide in both
views due to (4.14)) true(tried(1,1),0,v1) ∈ A. This together with clause 5 and
(4.21) implies

legal(x,mark(1,1),0,v0) ∈ A and legal(x,mark(1,1),0,v1) /∈ A.

The encoding {(4.11)} ∪ {:- not phi.} of the induction hypothesis however implies
that legal(x,mark(1,1),0,v0) /∈ A, or that legal(x,mark(1,1),0,v1) ∈ A. This
yields a contradiction, hence P isϕ (G) admits no answer set.

The last step of the argumentation needs the encoding (4.11) of the induction
hypothesis, and the contradiction can only be established since the exact same view
namings are used in the encoding (4.16). Indeed, specifying the latter encoding with a
new view name v2 instead of v1 results in an answer set for P isϕ (G) and hence would
not allow to prove ϕ valid with our method, as the modified induction hypothesis
would become to weak to be of use.

4.7. PROPERTIES OF THE GENERALISED VERIFICATION METHOD 101

4.7 Properties of the Generalised Verification Method

In analogy to Theorem 3.14, we will now establish a one-to-one relation between answer
set programs encoding a particular sequence mapping and those including an action-set
generator, which forms a prerequisite for the soundness and completeness proofs of the
generalised verification method.

Theorem 4.29 (Generalised Answer Set Correspondence). Let G be a valid GDL
specification, ϕ ∈ ESING, δ ∈ ∆G, Sig be a ϕ-signature, and A be a subset of
the ground atoms over G together with {terminated(i, v) : i ∈ N and v ∈ Vsϕ}.
Moreover, let D : Vsϕ → ∆G be a development mapping for ϕ wrt. δ. The following
two statements are equivalent:

(1) A is an answer set for

P = Dtrue ∪GSig ∪ P legal
Sig ,

where Dtrue is defined in analogy to the state encoding for a sequence mapping
from Definition 4.22.

(2) There is a sequence mapping M for ϕ wrt. δ over Sig and such that M(v) =
(D(v), σ) for all v ∈ Vsϕ, and A is the unique answer set for

PM =Mtrue ∪GSig ∪ P c1,c2Sig ∪Mdoes,

where P c1,c2Sig denotes all clauses of the shape (c1) and (c2) in the action-set

generator P legal
Sig , defined as (4.7) on page 92.

Proof: Program partitions for each v ∈ Vsϕ as in the proof of item 1 in The-
orem 4.24 (Correctness of the Epistemic Temporal GDL extension) allow to apply
Theorem 3.14 to obtain equivalence of the following two statements:

(1’) A is an answer set for the program obtained from P by omitting all clauses

from the action-set generator P legal
Sig which concern the accessibility relation, i.e.

by omitting all clauses of the shape (4.8), (4.9), and (4.10).

(2’) There is a function M̂ : Vsϕ → ∆G such that for all v ∈ Vsϕ there is a

Sig(v)-max sequence σ such that M̂(v) = (D(v), σ) (note that M̂ is not
necessarily a sequence mapping, since the respective sequences σ need not be
related appropriately), and A is the unique answer set for

P M̂ = M̂true ∪GSig ∪ P c1,c2Sig ∪ M̂does,

where M̂true and M̂does are defined in analogy to the state encoding and action
encoding for a sequence mapping from Definition 4.22.

(2) ⇒ (1): Sequence mapping M satisfies the requirements of function M̂ in (2’).

Since (2’) ⇒ (1’), it remains to show that answer set A for PM satisfies all clauses
of the shape (4.8), (4.9), and (4.10).

To this end, let Krψ be an arbitrary subformula of ϕ at position π with level
l = Lϕ(π) such that Vϕ(πKr) = v and Vϕ(π) = v′, and let development M(v′)
be such that M(v′) = (D(v′), (S′|δ|, S

′
|δ|+1, . . . , S

′
|δ|+m′)). We show that the mentioned

clauses are satisfied for each time step i such that 0 ≤ i < l as follows.

102 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

• Time steps 0 ≤ i < min(l,m′): Let development δKrψ be the (|δ|+ l)-prefix of
M(v′). It has length greater (|δ| + i) (since i < min(l,m′) and thus i < l),
hence there is a development δψ and a sequence σψ such that M(v) = (δψ, σψ)
and δKrψ ∼r δψ (cf. Sequence Mapping Definition 4.14). By Theorem 4.24, this
implies, for each 0 ≤ i < min(l,m′), action term a ∈ ADom(r), and term t ∈ Σ:

– terminal(i, v) /∈ A and hence terminated(i, v) /∈ A, which satisfies (4.8);

– does(r, a, i, v) ∈ A iff does(r, a, i, v′) ∈ A, which satisfies (4.9);

– sees(r, t, i+ 1, v) ∈ A iff sees(r, t, i+ 1, v′) ∈ A, which satisfies (4.10).

• Time steps min(l,m′) ≤ i < l: If one such i exists, then min(l,m′) = m′. Since
development M(v′) is n-max for some n ≥ |δ|+l, it must be too short and termi-
nated in this case. I.e., S|δ|+m′ is terminal, which implies terminal(m′, v′) ∈ A
(again by Theorem 4.24) and thus {terminated(i, v′) : m′ ≤ i < l} ⊆ A. This
satisfies the clauses (4.8), (4.9), and (4.10) for m′ = min(l,m′) ≤ i < l.

(1) ⇒ (2): Let A be an answer set for P . Then A satisfies all clauses of the
shape (4.8), (4.9), and (4.10), and A is an answer set for the program in item (1’).

Since (1’) ⇒ (2’), it remains to show that function M̂ from (2’) is a sequence mapping
for ϕ wrt. δ.

To this end, again consider an arbitrary subformula Krψ of ϕ at position π
with level l = Lϕ(π) such that Vϕ(πKr) = v and Vϕ(π) = v′, and let development

M̂(v′) be such that M̂(v′) = (D(v′), (S′|δ|, S
′
|δ|+1, . . . , S

′
|δ|+m′)). The clauses of the

shape (4.8), (4.9), and (4.10) in P imply the following for answer set A for each
action term a ∈ ADom(r) and term t ∈ Σ:

(a) If terminated(i, v′) /∈ A, then terminated(i, v) /∈ A, for all 0 ≤ i < l (by (4.8));

(b) If terminated(i, v′) /∈ A, then does(r, a, i, v) ∈ A iff does(r, a, i, v′) ∈ A, for all
0 ≤ i < l (by (4.9));

(c) If terminated(i, v′) /∈ A, then sees(r, t, i + 1, v) ∈ A iff sees(r, t, i + 1, v′) ∈ A,
for all 0 ≤ i < l (by (4.10)).

Since M̂(v′) = (D(v′), (S′|δ|, S
′
|δ|+1, . . . , S

′
|δ|+m′)), we have terminal(i, v′) /∈ A for all

0 ≤ i < m′ (by Theorem 4.24, Correctness of the Epistemic Temporal GDL Extension)
and hence terminated(i, v′) /∈ A for all 0 ≤ i < m′. Together with items (a) to (c)
(which range over 0 ≤ i < l), this implies

(a’) terminated(i, v) /∈ A for all 0 ≤ i < min(l,m′);

(b’) does(r, a, i, v) ∈ A iff does(r, a, i, v′) ∈ A for all 0 ≤ i < min(l,m′);

(c’) sees(r, t, i, v) ∈ A iff sees(r, t, i, v′) ∈ A for all 1 ≤ i ≤ min(l,m′).

Now let development M̂(v) be such that M̂(v) = (D(v), (S|δ|, S|δ|+1, . . . , S|δ|+m)).
Item (a’) yields terminal(i, v) /∈ A for all 0 ≤ i < min(l,m′), hence we have m ≥
min(l,m′) (again by Theorem 4.24, and since each player performs exactly one legal

4.7. PROPERTIES OF THE GENERALISED VERIFICATION METHOD 103

move in each non-terminal state due to the clauses (4.7) of the action-set generator).
This implies that the prefix

δψ = (D(v), (S|δ|, S|δ|+1, . . . , S|δ|+min(l,m′)))

of M̂(v) exists. Furthermore, the (|δ|+ l)-prefix δKrψ of M̂(v′) can be written as

δKrψ = (D(v′), (S′|δ|, S
′
|δ|+1, . . . , S

′
|δ|+min(l,m′)))

Items (b’) and (c’) together with the requirements of D concerning ∼r imply that

δKrψ ∼r δψ (again by Theorem 4.24), hence M̂ satisfies item 2 (a) of the Sequence
Mapping Definition 4.14. The remaining items are satisfied due to the structure of D
which provides the prefixes of length |δ| for M̂. Hence, M̂ is a sequence mapping
for ϕ wrt. δ. �

4.7.1 Soundness

The following theorem states the soundness of the proof method for epistemic sequence
invariants.

Theorem 4.30 (Generalised Soundness). Let G be a valid GDL specification whose
initial state is Sinit, and let ϕ be a positive-knowledge formula over G. If P bcϕ (G) and

P isϕ (G) are inconsistent, then for all finite developments δ = Sinit
A0−→ S1 . . .

Ak−1−→ Sk
we have Sk �δ ϕ.

Proof: The proof is via induction on k.
Base Case: Let δ = (Sinit). We prove that if Sinit 2δ ϕ, then P bcϕ (G) admits an

answer set.
Sinit 2δ ϕ implies that there is a deg(ϕ)-max sequence σ such that σ 2δ ϕ and

hence (by the Semantics Equivalence Theorem 4.19) that there is a sequence mapping
M′ for ϕ wrt. δ such that M′(ϕ) = (δ, σ) and M′ 1 ϕ. M′ can be reduced
to a sequence mapping M over the minimal ϕ-signature such that M(ϕ) = (δ, σ)
and M 1 ϕ (by the Sequence-Mapping Length Extension Proposition 4.21 and its
subsequent remark). Now let PM and P be as in the Generalised Answer Set Cor-
respondence Theorem 4.29. PM ∪ Enc(ϕ) admits a unique answer set A. By the
Encoding Definition 4.25 we have η(ϕ) /∈ A (since M 1 ϕ), hence A is also the
unique answer set for PM ∪ Enc(ϕ) ∪ { :- η(ϕ).}. Since the related history of
M is just the initial state, Mtrue and

⋃
v∈Vsϕ S

true
init (0)[+v] denote the same set,

hence P bcϕ (G) = P ∪ Enc(ϕ) ∪ { :- η(ϕ).}. PM and P do not contain heads of
Enc(ϕ)∪ { :- η(ϕ).}, hence by the Splitting Theorem 2.10 and Theorem 4.29 (where
the development mapping Dδ,ϕ is such that Dδ,ϕ(v) = (Sinit) for all v ∈ Vsϕ), A is
also an answer set for P bcϕ (G).

Induction Step: Let δ = (Sinit, . . . , Sk) and deg(ϕ) = n. Assume Sk
Ak−→ Sk+1 for

some Ak and Sk+1 and let δ′ = (δ, (Sk, Sk+1)). We prove that if Sk+1 2δ′ ϕ, then
P isϕ (G) admits an answer set.

Sk+1 2δ′ ϕ implies that there is an n-max sequence σ′ = (Sk+1, . . . , Sk+m+1)
such that σ′ 2δ′ ϕ. It follows that σ = (Sk, Sk+1, . . . , Sk+m+1) is an (n+ 1)-max se-
quence such that σ 2δ ©ϕ. By an argumentation similar to the base case—considering

104 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

©ϕ instead of ϕ and an arbitrary development δ instead of the initial development
(Sinit)—there is a sequence mapping M over the minimal ©ϕ-signature Sig such
that M(©ϕ) = (δ, σ) and M 1©ϕ, and the program

P =Mtrue ∪GSig ∪ P c1,c2Sig ∪Mdoes ∪ Enc(©ϕ) ∪ { :- η(©ϕ).}

(where P c1,c2Sig is as in Theorem 4.29) yields a unique answer set. Now program P isϕ (G)
can be constructed by

1. adding Enc(ϕ) ∪ { :- notη(ϕ).} to P ,

2. replacing P c1,c2Sig ∪Mdoes with P legal
Sig in the program resulting from item 1, and

3. replacing Mtrue with P setgen
©ϕ in the program resulting from item 2.

In the following we argue that these changes retain the satisfiability of the respec-
tively resulting programs, which shows that P isϕ (G) admits an answer set and hence
completes the proof of the induction step.

1. Without loss of generality, assume Vϕ(π) = V©ϕ(©π) for all π ∈ Posϕ (and
hence, V©ϕ(ε) = V©ϕ(©)). Then M is also a sequence mapping for ϕ with
respect to δ (by the Sequence-Mapping Correspondence Proposition 4.18). By
the induction hypothesis we have Sk �δ ϕ. Hence, considering sequence σ =
(Sk, . . . , Sk+m, Sk+m+1) as above, we also have (Sk, . . . , Sk+m) �δ ϕ (by the for-
mula semantics from Definition 4.5) and thus σ �δ ϕ (by the Sequence Extension
Proposition 3.6). Now the Semantics Equivalence Theorem 4.19 implies that each
sequence mapping M′ for ϕ with respect to δ which is such that M′(ϕ) = (δ, σ)
satisfies M′ ϕ. Hence, especially M (which is such that M(ϕ) = (δ, σ)) sat-
isfies M ϕ. This implies that P ∪Enc(ϕ)∪ { :- notη(ϕ).} admits a unique
answer set (by the Encoding Definition 4.25 and the Splitting Theorem 2.10).

2. Answer set existence for the program resulting from the replacement mentioned in
item 2 follows by the application of the Generalised Answer Set Correspondence
Theorem 4.29 and the Splitting Theorem 2.10.

3. First note that the sequence mapping M determines a unique development map-
ping which ranges over Vsϕ and maps each view v from Vsϕ to the |δ|-prefix
of M(v), as this prefix is always of length |δ| according to the motivation below
the Sequence Mapping Definition 4.14. Hence, the state-set generator P setgen

©ϕ
admits an answer set which corresponds to Mtrue according to Definition 4.28,
which implies the existence of an answer set for the program resulting from the
replacement mentioned in item 3 (again by the Splitting Theorem 2.10). �

4.7.2 Restricted Completeness

In Section 3.5.2, we established the completeness for knowledge-free formulas under
the assumption of an accurate state generator (cf. Definition 3.16) which restricted
generated states to be reachable. In the case of epistemic state sequence invariants,
we will need the same assumption for the generated states of each view. Additionally,
their respective developments need to be related according to the accessibility relation.
This is stated with the following definition.

4.7. PROPERTIES OF THE GENERALISED VERIFICATION METHOD 105

Definition 4.31 (Accurate State-Set Generator). Let G be a valid GDL specification,
ϕ ∈ ESING, and let P setgen

ϕ be a state-set generator. P setgen
ϕ is called accurate if,

for every answer set A of P setgen
ϕ , there is a development mapping Dδ,ϕ : Vsϕ → ∆G

for ϕ wrt. δ such that for all f ∈ Σ and for all v ∈ Vsϕ: true(f, 0, v) ∈ A iff
f ∈ last(Dδ,ϕ(v)).

Based on the given definition, the completeness can be established as follows.

Theorem 4.32 (Generalised Restricted Completeness). Let G be a valid GDL spec-
ification whose initial state is Sinit, and let ϕ be a positive-knowledge formula over
G. Moreover, let P isϕ (G) be constructed over an accurate state-set generator. If for all

finite developments δ = Sinit
A0−→ S1 . . .

Ak−1−→ Sk we have Sk �δ ϕ, then P bcϕ (G) and
P isϕ (G) are inconsistent.

Proof: We prove that if P bcϕ (G) or P isϕ (G) admits an answer set, then there is a
development δ such that last(δ) 2δ ϕ. Consider the following cases:

• If P bcϕ (G) admits an answer set A, then A is also an answer set for P bcϕ (G) \
{ :- η(ϕ).}, and A does not contain η(ϕ). Let δ = (Sinit) and let D be the
development mapping for ϕ wrt. δ which is such that D(v) = (Sinit) for all
v ∈ Vsϕ. Since the heads of Enc(ϕ) do not occur elsewhere, the Splitting The-
orem 2.10 and the Generalised Answer Set Correspondence Theorem 4.29 imply
existence of a sequence mapping M for ϕ wrt. δ over the minimal ϕ-signature
such that A is the unique answer set for program PM, where PM is defined
as in Theorem 4.29. Since η(ϕ) /∈ A, we have M 1 ϕ by the Encoding Defini-
tion 4.25, which implies Sinit 2δ ϕ by the Semantics Equivalence Theorem 4.19.

• Since the state-set generator P setgen
©ϕ is accurate, existence of an answer set for

P isϕ (G) implies (by Theorem 2.10) that there is a development mapping D :
Vs©ϕ → ∆G for ©ϕ wrt. some development δ such that

P = (P isϕ (G) \ P setgen
©ϕ) ∪ Dtrue

admits an answer set A, where Dtrue is again defined in analogy to the state
encoding for a sequence mapping from Definition 4.22. Similar to the proof of
the base case, Definition 4.25, Theorem 2.10, and Theorem 4.29 imply existence
of a sequence mapping M for ©ϕ wrt. δ over the minimal ©ϕ-signature such
that M 1 ©ϕ and hence (M, |δ|,V©ϕ(ε)) 1 ©ϕ. This implies that develop-
ment M(V©ϕ(ε)) is of the form (δ, (S|δ|, S|δ|+1, . . . , S|δ|+m)) for some m ≥ 1
and some states S|δ|+1, . . . , S|δ|+m. By the Sequence-Mapping Correspondence
Proposition 4.18 (and since the view names of ϕ and ©ϕ coincide), M is also
a sequence mapping for ϕ wrt. the development δ′ = (δ, (S|δ|, S|δ|+1)), and such
that (M, |δ′|,Vϕ(ε)) 1 ϕ. This yields last(δ′) 2δ′ ϕ by the Semantics Equiva-
lence Theorem 4.19. �

Similar to Section 3.5.2, the main implication of the completeness result is that
the proof method converges to perfect results when state-set generators are improving,
and that the method is hence reliable. With an extensive example in Section 4.6
we have already shown that the method is effective in Krieg-Tictactoe even when

106 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

using a state-set generator which incorporates non-reachable states and does not relate
corresponding developments with respect to the accessibility relation. In Section 5.4.2,
we will provide further experiments which show that the method is effective in other
incomplete-information games as well.

4.7.3 Sound and Complete Verification at Fixed Depth

In Section 3.5.3 we have shown that the program construction for the base case allows
the sound and complete verification of knowledge-free formulas with respect to all states
at one given depth of the game tree. In the following, we will generalise this result to
positive-knowledge formulas.

Proposition 4.33 (Generalised Correctness on Single States). Let G be a valid GDL
specification, ϕ be a positive-knowledge formula over G, and let t ∈ N.

P bc©tϕ(G) is inconsistent iff for all developments δ ∈ ∆G s.t.|δ| = t : last(δ) �δ ϕ

Proof: The proof follows the argumentation of the proof for the corresponding
result on correctness for single states (Proposition 3.18), using Theorem 4.30 instead
of Theorem 3.15 (concerning Soundness) and Theorem 4.32 instead of Theorem 3.17
(concerning Completeness). �

The result does not involve a state-set generator and hence does not need the
strong requirement of an accurate state-set generator to be complete. However, as its
counterpart from Section 3.5.3, it does not apply any abstraction of the search space
and is hence practically applicable to small depths t of the game tree only. We have
already seen how the corresponding result for knowledge-free formulas can be used to
solve single-player games. Its generalisation will prove useful in Section 4.8.1 and in
the implementation of the proof method in Section 5.4.2.

4.8 Improvements

In this section, we discuss some possible extensions to our induction proof method for
positive-knowledge formulas. First, we show how to obtain more significant results
in the base case proof (Section 4.8.1). Then, we demonstrate how previously proved
formulas can be incorporated in our method (Section 4.8.2) and how it can be extended
in order to prove multiple formulas simultaneously (Section 4.8.3).

4.8.1 Strengthening the Base Case Proof

With Proposition 4.8 we have shown that players have complete knowledge of the
initial state. More formally, we have shown that the initial state entails an epistemic
sequence invariant ϕ if and only if it entails the formula kf0(ϕ) obtained from ϕ by
removing all knowledge operators which are not in the scope of ©. This has two major
consequences:

1. The answer set program for the base case can be constructed on kf0(ϕ) instead
of ϕ without changing the result of the base case proof attempt, as this attempt
correctly verifies ϕ with respect to the initial state (cf. Proposition 4.33 for
t = 0).

4.8. IMPROVEMENTS 107

2. In case the reduction kf0(ϕ) of a formula ϕ is true with respect to arbitrary
initial game states, this also translates to ϕ itself. E.g., this is the case for the
example formulas (4.3) and (4.4) from page 68 and for the formula

¬legal(x ,mark(1 , 1)) ∨Kxlegal(x ,mark(1 , 1))

from our running example.

While item 1 can be exploited to obtain a more efficient base-case verification in a
proof attempt due to the reduced structural complexity of the answer set program
which results from kf0(ϕ), item 2 has a negative consequence: The base case proof
for a formula ϕ of the mentioned shape is always successful, even if ϕ is not valid in
all reachable state. Hence, the base case proof does not provide any information for
our induction method. More specifically, ϕ can never be proved to be not valid in
our setting, as only a counter example for the base case allows to draw this conclusion
due to the incompleteness of the method for non-accurate state-set generators in the
induction step.

However, the generalised correctness on single states (Proposition 4.33) can be used
to overcome this drawback: instead of attempting a proof for ϕ (or, equivalently, for
kf0(ϕ)) in the initial state, we can attempt proofs on ©tϕ for arbitrary t ≥ 1. In case
of an answer set for some P bc©tϕ(G), the proposition allows to conclude that ϕ is not
entailed in at least one reachable state, and hence that ϕ is not valid. This process
can be iterated for increasing t as shown for Weak Winnability in Algorithm 3.1 (cf.
Section 3.6.1 on page 49), yielding a method for the refutation of a formula which is
increasingly informative over time. In addition to the formulas mentioned in item 2,
this technique can be applied to strengthen the base case proof of any formula that is
satisfied in the initial state of a game. In Section 5.4.2, we will use this approach to
effectively obtain refutations for positive-knowledge formulas.

4.8.2 Adding Previously Proved Positive-Knowledge Formulas

A set of formulas which have previously been proved can help to eliminate unintended
counter examples in the induction step which may occur whenever the underlying
state-set generator is not accurate (cf. Section 4.5.2 and Section 4.7.2). Similar to
the knowledge-free setting, this can be achieved by incorporating encodings for the
additional formulas in the induction step program. Recall the induction step program
P isϕ (G) for a positive-knowledge formula ϕ from Section 4.5.2. It is constructed over
the minimal ©ϕ-signature Sig and assumes that the view names of ϕ and ©ϕ
coincide.

P isϕ (G) = P setgen
©ϕ ∪GSig ∪ P legal

Sig ∪
Enc(ϕ) ∪ {:- not η(ϕ). } ∪ Enc(©ϕ) ∪ { :- η(©ϕ). }.

Let Ψ be a set of previously proved positive-knowledge formulas, i.e., such that for
all ψ ∈ Ψ and for all developments δ ∈ ∆G we have last(δ) �δ ψ. To incorporate
this information in P isϕ (G), we need to add an encoding Enc(ψ) for each ψ ∈ Ψ
together with the constraint { :- notη(ψ).} which states that ψ is true. Each of
these encodings requires an epistemic temporal GDL extension together with an action-
set generator. These required clauses have to respect the view-name structure of ψ

108 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

which is possibly different to the view-name structures of other formulas in {©ϕ}∪Ψ.
Hence, we have to construct a joint structure which is compatible with each of the
individual ones. This is achieved with the formula ρ = (©ϕ) ∧ ∧ψ∈Ψ ψ, using the
minimal ρ-signature Sig together with a view naming Vρ of ρ. In slight deviation
from the definition of a formula encoding, formulas ψ ∈ ({©ϕ}∪Ψ) are then encoded
over the view naming Vρ. The respective top-level views Vρ(ψ) coincide, hence an
interdependency is created which allows to restrict the search space. All subsequent
view names for ψ, however, are completely disjoint from those for different formulas
ψ′, which is necessary since both view-name structures possibly differ.

P isϕ,Ψ(G) is given as follows. As for P isϕ (G), the view names of ϕ and ©ϕ are
assumed to coincide. Additionally, all applied encodings Enc(ψ) are assumed over the
view naming Vρ.

P isϕ,Ψ(G) = P setgen
ρ ∪GSig ∪ P legal

Sig ∪
Enc(ϕ) ∪ {:- not η(ϕ). } ∪ Enc(©ϕ) ∪ { :- η(©ϕ). } ∪⋃
ψ∈Ψ(Enc(ψ) ∪ {:- not η(ψ). })

Soundness and Completeness

For arbitrary formulas ψ ∈ Ψ and developments δ ∈ ∆G, each sequence mapping Mδ,ρ

for ρ with respect to δ corresponds to a sequence mapping Mδ,ψ :=Mδ,ρ|Vsψ for ψ
with respect to δ, and by the Sequence-Mapping View Reduction Proposition 4.17 we
have

Mδ,ρ ψ iff Mδ,ψ ψ.

By the Sequence-Mapping Length Extension Proposition 4.21 and its subsequent re-
mark, sequence mapping Mδ,ψ in turn corresponds to a sequence mapping Mmin

δ,ψ

over the minimal ψ-signature such that

Mδ,ψ ψ iff Mmin
δ,ψ ψ.

The given arguments are sufficient to generalise the soundness (cf. Theorem 4.30)
and completeness (cf. Theorem 4.32) of the proof method to an additionally considered
set of previously proved formulas Ψ in the induction step. Concerning the soundness
result, the GDL specification additionally needs to be playable in case the maximal
degree nΨ of formulas in Ψ is such that nΨ > deg(ϕ) + 1. This is due to a then
necessary extension of a sequence mapping in the argumentation of the proof similar to
the extension of a sequence in the argumentation of the proof for the Soundness The-
orem 3.15. The completeness result does not need this restriction, since the respective
reduction of a sequence mapping is always possible.

4.8.3 Proving Multiple Properties At Once

In Section 3.6.2 we have established an extension of the proof method for knowledge-
free formulas which allows to verify multiple properties at once, constructing only one
answer set program to establish all base case proofs, and one for all induction steps.
This extension can be lifted to the proof method for positive-knowledge formulas. Let
Φ be a finite set of positive-knowledge formulas which are to be proved. For the base
case, we consider the formula ρbc =

∧
ϕ∈Φ ϕ, the respective minimal ρbc-signature Sig,

4.9. DISCUSSION 109

a view naming V for ρbc, and the respective set Vs of view names from V. Assuming
that all encodings are over V, the base case program for multiple formulas is given as
follows.

P bcΦ (G) = (
⋃
v∈Vs S

true
init (0)[+v]) ∪GSig ∪ P legal

Sig ∪⋃
ϕ∈Φ Enc(ϕ)

As in the knowledge-free case, constraints of the form :- η(ϕ) are omitted in order
to keep all relevant answer sets for formulas from Φ which do not satisfy one of the
constraints.

For the induction step, we additionally consider a finite set Ψ of previously proved
formulas. We consider the formula ρis = (©∧ϕ∈Φ ϕ)∧∧ψ∈Ψ ψ, the respective minimal

ρis-signature Sig, a view naming V for ρis, and the respective set Vs of view names
from V. Assuming that the view names of ϕ and ©ϕ coincide and that the encodings
are over V, the induction case program for multiple formulas is given as follows.

P isΦ,Ψ(G) = P setgen
ρis

∪GSig ∪ P legal
Sig ∪⋃

ϕ∈Φ(Enc(ϕ) ∪ Enc(©ϕ)) ∪⋃
ψ∈Ψ(Enc(ψ) ∪ {:- not η(ψ). }).

We can prove this generalisation sound when requiring the GDL specification to
be playable, using similar arguments to those in the proof of the corresponding The-
orem 3.19 for knowledge-free formulas together with the additional arguments given
in Section 4.8.2. Similarly, we can apply arguments from the proof of Theorem 3.20
to show that this generalisation succeeds in proving at least all the state sequence in-
variants that can be proved with the verification method for single positive-knowledge
formulas, when the latter method is enriched by the same set of previously proved
formulas Ψ as sketched in Section 4.8.2.

4.9 Discussion

In Section 3.7.2, we have argued that the success of our verification method for knowl-
edge-free properties is majorly based on the compact representation of counter exam-
ples. This has been achieved by restrictions of our property specification language
to

1. universal path quantification, in order to be able to represent counter examples
in a linear time structure, and

2. bounded time reference, in order to be able to represent counter examples within
a finite time structure.

Item 1 allows to restrict the blowup of the temporal GDL extension to be linear com-
pared to the original GDL clauses, whereas it would be exponential when employing
a branching-time structure. Since the latter cannot be dealt with efficiently even in
simple games, this restriction is inherent for a successful verification method. The goal
of carrying the efficiency of a linear time structure over to the verification of player-
specific knowledge causes another inherent restriction: Finding a counter example for
some formula ϕ that is not known to a player r requires to find a state where r

110 CHAPTER 4. EPISTEMIC SEQUENCE INVARIANTS

actually knows ϕ. This in turn amounts to a universal path quantification that is
not representable within a linear time structure and hence disqualifies this kind of
knowledge for verification.

Nevertheless, in this chapter we have seen that our language can express important
game properties. Their validity is by no means seen easily, we refer to Section 4.6 which
required a quite complex argumentation for the validity of ¬legal(x ,mark(1 , 1)) ∨
Kxlegal(x ,mark(1 , 1)). Hence, our method can provide valuable verification assis-
tance. Experiments on several properties in different games with our practical imple-
mentation will follow in Section 5.4.2, showing that our method can successfully be
applied even within tight time constraints.

4.10 Summary

In this chapter, we showed how our induction proof method for knowledge-free state
sequence invariants can be extended to prove positive player-specific knowledge. To
this end, we incorporated a unary knowledge operator Kr for each player r of the
game to our formula syntax, and provided a semantics which defines possible worlds
via developments that are indistinguishable for player r. We proved that our semantics
satisfies the S5 properties. We then developed an alternative semantics based on mul-
tiple related state sequences, which we referred to as sequence mappings, and showed
the equivalence of both semantics with respect to formulas which only involve posi-
tive knowledge. We provided a further extension of the temporal GDL extension by
a view argument, called the epistemic temporal GDL extension, to generalise correct
GDL reasoning over state sequences to sequence mappings. Its union with an extension
of the formula encoding that accounts for knowledge operators and an encoding of a
specific sequence mapping yields a unique answer set which contains a special formula-
name token if and only if that sequence mapping satisfies the formula. Based on this
correspondence, we extended the induction proof method established in Chapter 3 to
correctly verify positive-knowledge formulas. We generalised the soundness result of
the original method, and obtained completeness in case each reachable state and its
respective set of indistinguishable developments for each player of the game are known.
We further generalised the result for the correct verification of properties with respect
to arbitrary single reachable states. Finally, we shortly sketched how to obtain stronger
results with additional base case proofs, how to incorporate previously proved formu-
las, and how to prove multiple properties at once. We concluded with a discussion of
the implications that arise using a linear time structure for property verification in the
knowledge setting.

Chapter 5

Implementation

In this chapter, we focus on the implementation of the proof method we have developed
for sequence invariants in Chapter 3 and extended to epistemic sequence invariants in
Chapter 4, which demonstrates that the method is practically applicable even in time-
restricted settings. The general picture of the implementation is as follows. The gen-
eration of all answer set programs which are needed to prove formulas, including some
optimisations on the answer set programs which will be mentioned below, have been
implemented in Prolog on top of the general game player Fluxplayer [ST07, Sch11],
using a variety of helpful pre-implemented structures and algorithms. Generated an-
swer set programs are passed to programs from the state-of-the-art answer set solving
collection Potassco [GKK + 11a] in order to be solved. The obtained results are then
again processed on top of Fluxplayer code. The parts of this chapter which do not
concern experimental results for epistemic properties and single player games include
passages of own published work (once more, we refer to Section 7.1 for a detailed listing
of the included material).

We proceed in four stages. In Section 5.1, we show how the set of all fluents FDom
and the set of all actions ADom(r) for each player r, which are needed to generate
answer set programs, can be calculated efficiently from the implicit information given
with the GDL specification. Section 5.2 then lists several optimisations we applied
to reduce the size of the generated answer set programs and hence to increase the
performance of the answer set solver. In Section 5.3, we shortly present the tools from
the answer set solving collection Potassco that we use to process generated answer set
programs. Finally, in Section 5.4, we report on a variety of experiments we conducted
in order to prove knowledge-free properties, epistemic properties, and weak winnability
in a variety of games from previous General Game Playing Competitions.

5.1 Domain Calculation

For a practical implementation of the developed proof method, we need a reliable way
to compute the set of all potential actions ADom(r) for each player r in the game in
order to construct action generators (cf. Section 3.4.1) and action-set generators (cf.
Section 4.5.1); furthermore, the set FDom of all ground fluents is needed for state
generators (cf. Section 3.4.2) and state-set generators (cf. Section 4.5.2). In principle,
the minimal set ADom(r) is the union of all actions for r which are legal in some

111

112 CHAPTER 5. IMPLEMENTATION

reachable state of the game. Similarly, the minimal set FDom represents the union of
all reachable states. However, these sets are not directly given in the game description,
and their computation needs a full traversal of the game tree in general, which is
not feasible in interesting games. This motivates an approximate computation which
depends on the size of the game description rather than the actual state space of the
game. In order to retain the earlier established soundness and completeness results, the
only requirement to the approximation is to compute supersets of the above-mentioned
minimal sets ADom(r) and FDom, as additional actions are constrained not to be
considered in case they are illegal, and additional ground fluents only cause additional
non-reachable states in state generators and state-set generators.

A general method which meets these requirements has formally been introduced
in [Sch11] and implemented in Fluxplayer by the author of the cited work. The method
will briefly be reflected in the remainder of this section. To begin with, consider as an
example the following subset of the Quarto clauses in Figure 2.2 from page 19:

i n i t (sctrl(r1)).
next(sctrl(R)) :- true(pctrl(R)).
next(pctrl(R1)) :- true(sctrl(R2)), otherrole(R1,R2).

otherrole(r1,r2).

otherrole(r2,r1).

The first clause implies that set FDom must contain sctrl(r1). Moreover, the second
clause suggests that, whenever pctrl(r) is in FDom for some r, then also sctrl(r) must
be in FDom due to the shared variable R. Similarly, the third clause yields that every
occurrence of sctrl(r2) in FDom such that otherrole(r1, r2) is true implies existence
of pctrl(r1) in FDom. This intuitive formulation for the given example clauses can
be formalised to a general structure of domain dependencies for an arbitrary GDL
specification as follows.

Definition 5.1 (Domain Graph). Let G be a valid GDL specification, and let G′

be G together with the following three clauses:

true(F) :- init(F).
true(F) :- next(F).
does(R,M) :- legal(R,M).

A domain graph for G is the smallest directed graph D = (V,E) with vertices V and
edges E ⊆ V × V such that:

• If a term f(t1, . . . , tm) (m ≥ 0) occurs as i-th argument of an n-ary predicate
or function symbol p in the head of a clause in G′, then f/m ∈ V , (p/n, i) ∈ V ,
and f/m→ (p/n, i) ∈ E.

• If a variable occurs as i-th argument of an n-ary predicate or function symbol
p in the head of a clause c ∈ G′ and as j-th argument of an m-ary predicate
or function symbol q in a positive literal in the body of c, then (q/m, j) ∈ V ,
(p/n, i) ∈ V , and (q/m, j)→ (p/n, i) ∈ E.

5.1. DOMAIN CALCULATION 113

Figure 5.1: An example domain graph for calculating argument domains and ground instances of
atoms and functions. Ellipses mark nodes which represent argument domains, while squares mark
nodes representing ground instances.

Intuitively, for predicate or function symbols p with arity n, a node of the form
p/n in the domain graph for G represents the set of all ground instances p(t1, . . . , tn)
that may be of relevance in the game, and each node of the form (p/n, i) represents
the domain of the i-th argument of p. The three additional clauses model the intuition
from the Quarto example: terms which are encoded in the initial state via init carry
over to predicate symbol true, similarly those from true connect to next, and
performed actions via does relate to potential legal moves over legal. An example
domain graph for the subset of the Quarto clauses given at the beginning of this section
is shown in Figure 5.1.

Based on Definition 5.1, the set of all ground instances for arbitrary predicate and
function symbols as well as the domain for each of their arguments can be obtained
from the domain graph as follows.

Definition 5.2 (Argument Domains and Instances). Let D+ = (V,E+) be the
transitive closure of the domain graph for a valid GDL specification G, let 0 ≤ i ≤ n
and let p be an n-ary predicate or function symbol.

• dom(p/n, i) = {c : c/0→ (p/n, i) ∈ E+} ∪⋃q/m→(p/n,i)∈E+ inst(q/m)

• inst(p/n) = {p(x1, . . . , xn) : x1 ∈ dom(p/n, 1), . . . , xn ∈ dom(p/n, n)}

To ensure that each set dom(p/n, i) and inst(p/n) is finite, the extended GDL
specification G′ from Definition 5.1 has to obey the recursion restriction (Definition
2.15, second item). In case only G but not G′ satisfies the recursion restriction, the
set of reachable states of the game and thus also the set of ground fluents might be
infinite (cf. Section 2.2.3).

With Definition 5.2, the sets FDom and ADom(r) (for any player r) can be given
as FDom := dom(true/1, 1) and ADom(r) := dom(does/2, 2). However, instead of
calculating the respective domains and listing all fluents f ∈ FDom in the state gener-
ator, we apply Definition 5.2 to generate a finite set of negation-free clauses such that,
for a new predicate symbol p of arity 1, their unique answer set entails p(f) if and only
if f ∈ dom(true/1, 1). In principle, the set ADom(r) could be represented similarly.
However, this often yields to many actions which are never legal for any player, mo-
tivating to further restrict the represented set ADom(r) by adding state-independent
information concerning the legal moves of player r to the finite set of negation-free

114 CHAPTER 5. IMPLEMENTATION

clauses which encode ADom(r). We skip the details of the clause-generation process
and refer to [Sch11] for a thorough presentation.

5.2 Optimisations

Current answer set solvers perform a grounding step on the input answer set program
prior to computing solutions. Grounding an ASP increases its size exponentially, in
the worst case, and can hence easily dominate the step that actually solves the ASP
both in memory and run-time requirements. Thus, for an efficient implementation, it is
essential to reduce the size of the program as much as possible before grounding it; we
will present the techniques we apply to reduce program size in Section 5.2.1. Since, on
the other hand, a grounding method of an answer set solver is usually highly optimised,
we further generate more compact formula encodings using variables, hence letting the
ground instances be generated by the grounder; the applied encoding is presented in
Section 5.2.2.

Since some clauses are omitted or newly introduced in the presented optimisations,
the answer sets may differ from those for the original programs. However, this does
not influence the soundness and completeness results which have been presented in this
thesis, as all transformations respect the existence of an answer set with the desired
properties, which can be motivated by means of the Splitting Theorem 2.10. Hence,
applying these techniques prior to invoking the answer set solver has no influence on
the outcome of the later presented experiments (besides reduced running times).

5.2.1 Reducing the Number of Clauses

Some of the reduction techniques mentioned in this section have already been utilised
to optimise the implementation described in [ST09] and hence have been devised and
implemented by the authors of the cited work. As they are also important for our
implementation, we restate them using passages from a joint publication [HST12].

No Time Argument For Static Atoms In Section 3.3.1, we introduced the tem-
poral extension of a GDL specification, which has further been extended to account for
epistemic formulas in Section 4.4.1. Essentially, we added a time argument and a view
argument to every atom of the specification. However, some of the predicate symbols
of a game description are static, that is, do not depend on the state of the game or the
moves of the players. Thus, they are equivalent in every time step and with respect
to any view name. For example, in Quarto (Figure 2.2) all of the predicate symbols
role , distinct, sameattr, nthbit, !=, otherrole, and index are static.

Formally, predicate symbol p is static if, and only if, there is no path from p to
true or does in the dependency graph (cf. Definition 2.14) for the GDL description.
We reduce the size of the generated answer set program by not including a time and a
view argument upon generation of extended GDL clauses according to Definition 4.22
if a predicate symbol is static. Thus, clauses for atoms over those predicate symbols are
only added once to the answer set program independent of the number of time steps
and view names.

5.2. OPTIMISATIONS 115

Cutting Encoding Indirections The encoding presented in Table 3.1 at page 38 as
well as its epistemic extension from Theorem 4.26 (page 90) produces a unique 0-ary
name atom for every subformula of a formula. For atomic formulas (1.), negations
(2.), conjunctions (3.), all quantifiers (6.), counting quantifiers (7.), and knowledge
operators (9.), each of these atoms occurs as the head of one clause only. Furthermore,
unless the encoded formula contains the same sub-formula several times in the same
time level and within the scope of the same knowledge operators, all of the generated
atoms additionally occur only once in the body of some clause.

We reduce the number of clauses and the number of 0-ary name atoms in an
encoding P by removing each clause (r = (head :- body)) from P and replacing
head by body in all remaining clauses of P if r is such that

• head does not occur as head of any other clause in P ,

• head is not a name atom η(ϕ) for any formula ϕ in a proof attempt with
multiple formulas according to Sections 3.6.2 and 4.8.3, and

• if body is not a single atom, then head does neither occur negated nor in a
weight atom in any other clause of P .

Separating Body Variables The following is the only of our applied optimisations
which does not reduce but increase the size of the ASP in order to reduce the size
of its ground version. It is based on the observation that grounded program size is
strongly influenced by the number of variables in a clause, which can often be reduced
by introducing new atoms and clauses. Consider, e.g., the clause

p(X,Z) :- q(X,Y), r(Y), s(Z).

where Y does solely occur in the body. If we replace this clause by

p(X,Z) :- qr(X), s(Z).

qr(X) :- q(X,Y), r(Y).

where qr is a new predicate symbol, we obtain two clauses with two variables each
instead of one clause with three variables. This changes the number of ground clauses
from |dom(X)| ∗ |dom(Y)| ∗ |dom(Z)| to |dom(X)| ∗ |dom(Z)|+ |dom(X)| ∗ |dom(Y)|,
which amounts to a considerable reduction if the variable domains comprise more than
two elements.

We apply the following transformation to all clauses in an answer set program P
until a fixed point is reached: Consider a clause (head :- body.) ∈ P containing
a variable V which does not occur in head. Let body+ be all literals from body
that contain V , body− be all remaining literals from body, and {V1, . . . , Vn} be
the set of variables in body+ that also occur in body− or in the head of the clause.
Furthermore, let {V −1 , . . . , V −m } be the variables in body+ that only occur in negative
literals in body+. If body− contains a variable that is not contained in {V1, . . . , Vn},
then head :- body. is replaced by the clauses

head :- p(V1, . . . , Vn), body−.

p(V1, . . . , Vn) :- body+, dom1(V −1), . . . , domm(V −m).

116 CHAPTER 5. IMPLEMENTATION

where p and dom1, . . . , domm are predicate symbols that do not occur anywhere else
in P . For each i ∈ {1, . . . ,m}, domi(V

−
i) is used to define the domain of variable

V −i . This domain is obtained from an arbitrary occurrence of V −i in a positive literal
in body, and for its declaration in the program we add a finite set of stratified clauses
according to Definition 5.2 (Argument Domains and Instances) and the comment to
clause generation below this definition. The additional atoms domi(V

−
i) are necessary

to keep the program allowed, i.e., to ensure that each variable in a clause occurs in at
least one positive literal (cf. Definition 2.2 at page 9).

Removing Unnecessary Clauses Depending on the formula that is to be proved,
some of the clauses in the generated ASP might not be necessary. For example, the
temporal GDL extension (which forms the basis for the epistemic temporal GDL exten-
sion) contains clauses with head true(f, i+ 1) for all time steps i obtained from the
next clauses of the game. However, the remaining clauses of the ASP do not contain
any instance of true(f, n+ 1) for the last time step n. Hence, removing those clauses
does not influence the existence of an answer set for the program. The same applies
to legal(r, a, n): Legality of moves is irrelevant in the last time step (n), unless the
formula to be proved depends on atom legal(r, a). Removing unnecessary clauses from
an ASP reduces the size of the grounded program and thus the cost for both grounding
and solving the answer set program.

To capture the notion of necessary vs. unnecessary clauses, we first extend the
definition of dependency graphs (cf. Definition 2.14) to ground atoms. An extended
dependency graph differs from the standard graph in that it has ground atoms as
nodes instead of predicate symbols, and there is an edge p(~tp) → q(~tq) in the graph
whenever there is a ground instance of a clause with head p(~tp) and q(~tq) in the
body. Now let Names be the set of all 0-ary name atoms η(ϕ) such that ϕ is
either a formula to be proved or to be included in the answer set program as already
proved before. Furthermore, let GeneratorAtoms be the set containing each epistemic
temporal extension of terminal, legal(r,m), and sees(r, p) which is needed in the
constructed action-set generator (cf. Section 4.5.1). Then the set of necessary atoms
for an answer set program P is

Atoms = {q : there is a p ∈ Names ∪GeneratorAtoms such that p→∗ q}

where p→∗ q denotes the existence of a (possibly 0-length) path from p to q in the
extended dependency graph of P . To conclude, we remove all clauses from P whose
head is an atom that does not unify with any atom in Atoms .

5.2.2 Formula Encoding With Variables

According to the formula encoding in Table 3.1 (cf. page 38) and its extension by view
arguments sketched in Theorem 4.26 (cf. page 90), formulas with variables yield an
encoding which consists of multiple sets of structural similar clauses for single instances
of the formula variables. E.g., reconsider the encoding for (∃ ~X :D ~X)ψ[~X]:

Enc((∃ ~X :D ~X)ψ[~X], i, v) =
⋃
~t∈D ~X

{η((∃ ~X :D ~X)ψ[~X], i, v) :- η(ψ[~X/~t], i, v).}
∪⋃~t∈D ~X

Enc(ψ[~X/~t], i, v)

5.2. OPTIMISATIONS 117

For each instance ~t ∈ D ~X , a different clause set is generated, and these sets only
differ with respect to the used name atoms and the considered variable instances
on atom level. A more compact encoding Enc′ can be obtained by carrying along
the set of previously used variables ~Y , extending the head name atom by argu-
ments ranging over ~Y , and furthermore adding the current quantifier variables to
the variables of the body name atom as well as the subsequent encoding. Let ~X =
(X1, . . . , Xk), ~Y = (Y1, . . . , Yl), let doms((~X, ~Y)) be an abbreviation for the list of
atoms dom1(X1), . . . , domk(Xk), dom1(Y1), . . . , domk(Yl), and let Doms(D ~X) be a fi-
nite set of stratified clauses which encodes the domains of ~X = (X1, . . . , Xk) using
the atoms dom1(X1), . . . , domk(Xk) (similar clauses for dom1(Y1), . . . , domk(Yl) are
assumed to be included at a higher level). Then Enc′ can be specified as follows.

Enc′((∃ ~X :D ~X)ψ[~X], i, v, ~Y) =

{η((∃ ~X :D ~X)ψ[~X], i, v)(~Y) :- η(ψ, i, v)((~X, ~Y)), doms((~X, ~Y)).}
∪ Enc′(ψ[~X], i, v, (~X, ~Y)) ∪ Doms(D ~X)

Assuming that the variable names in different quantifier occurrences are pairwise dis-
tinct, the encoding for all formula structures besides Krϕ can be altered similar to the
example above, which yields a compact encoding where each clause with some head
p(~Y) stands for |D~Y | instances. When encountering knowledge formulas, each of these
instances requires a different view, which can be encoded (under slight abuse of view
naming Vϕ in the encoding for Krϕ) as extension of the view arguments by inherited
variable arguments on atom level:

Enc(p(~t), i, v, ~Y) = {η(p(~t), i, v)(~Y) :- p(~t, i, v(~Y)), doms(~Y).}

Correspondingly, the epistemic temporal GDL extension then has to be given over
the variable-extended view names v(~Y) (also enriched with domain atoms doms(~Y))
which occur in the respective formula encoding. Besides its compactness, this altered
formula encoding has the advantage of shifting the process of ground clause genera-
tion to the highly optimised grounder of an answer set solver, which further increases
performance.

Compact Encoding for Multiple Formulas The same considerations can be ap-
plied to obtain more compact encodings when proving multiple formulas at once (cf.
Sections 3.6.2 and 4.8.3). E.g., consider the set of all formulas of the shape

ϕf(~t) = true(f(~t)) ⊃ ©true(f(~t))

where f(~t) is any element of the set inst(true/1) (cf. Definition 5.2 at page 113)
of all ground fluent instances in the currently considered game. This formula set will
reappear in Section 5.4.1 as part of an experiment with multiple formulas. Instead of
creating an encoding for each ϕf(~t), we create the single encoding

Enc′(true(f(X)) ⊃ ©true(f(X)), 0, v,X) ∪ Doms(inst(true/1)),

where Doms(inst(true/1)) is again a finite set of stratified clauses encoding the el-
ements of the set inst(true/1). Hence, we encounter 1-ary name atoms name(f(~t))
instead of the original 0-ary name atoms η(ϕf(~t)) in each answer set which satisfies
ϕf(~t).

118 CHAPTER 5. IMPLEMENTATION

5.3 The Answer Set Solving Collection Potassco

The Potsdam Answer Set Solving Collection [GKK + 11a], abbreviated Potassco, pro-
vides a multitude of state-of-the art tools for solving answer set programs that have
scored top ranks at several international competitions over the past years. This ongo-
ing success motivates to use Potassco for the implementation of our proof method. In
this section, we give a brief overview on the tools of Potassco which are relevant in this
work. We have utilised them in version 3.0.1 with standard parameter settings.

5.3.1 Clingo

Clingo is an answer set solver which operates on non-ground input programs and will
be used for the experiments in Sections 5.4.1 (concerning sequence invariants) and 5.4.2
(concerning epistemic sequence invariants). It is a composition of the grounder Gringo
and the actual solver Clasp, which we both present in the following.

Gringo The grounder Gringo provides a rich input language for the specification of
answer set programs which (among others) includes all constructs that are needed for
the construction of base case and induction step answer set programs in this thesis.
It creates all ground instances from clauses of a given answer set program, which
enables to compute answer sets according to their semantics given in Definition 2.9 in
a subsequent step. The input program is only required to be allowed (cf. Definition 2.2).
This does not suffice to ensure finiteness of the ground program, e.g. for

p(a).

p(f(X)) :- p(X).

but has the advantage to simplify program declaration, allowing to apply the grounder
to our constructed programs without further addition of any domain atoms (as any
valid GDL specification is allowed by Definition 2.15 and all additional program con-
structs are allowed as well). In our case, the grounding will be finite as long as the
extended GDL specification given in Definition 5.1 obeys the recursion restriction (cf.
the discussion below Definition 5.2). The grounding algorithm is based on methods
originating in database evaluation [GKKS11b].

Clasp The solver Clasp takes as input a ground answer set program provided by
Gringo. It is first subject to a variety of simplifying equivalence-preserving transforma-
tions. Thereafter, a solving algorithm based on conflict-driven ASP solving [GKNS07]
is applied: atoms are non-deterministically assigned true or false until either all atoms
are assigned (and hence an answer set has been found) or a conflict is detected. In
case the conflict arises with an atom that has not been chosen non-deterministically
but inferred from the program, the answer set program is unsatisfiable. Otherwise,
a backjumping process is triggered, releasing some assignments and remembering the
conflict by an added constraint.

Clasp provides a mode for “cautious reasoning”, which outputs the intersection of
all answer sets. Due to an efficient incremental technique, the amount of computed
answer sets which is needed to obtain the intersection is restricted by the number of
atoms of the input program. We will use this mode in Section 5.4.1.

5.4. EXPERIMENTAL RESULTS 119

5.3.2 IClingo

IClingo [GKK + 08] is a modified version of Clingo which provides a built-in incremental
approach to solving a problem, allowing to efficiently address problems which rely on
a parameter k that corresponds to solution size. The parameter ranges over natural
numbers and, starting with k = 0, is successively increased until a solution with respect
to the current instance of k and hence of minimal complexity is found (if it exists).
The input of IClingo are three interconnected answer set programs B , I , and Q, where

• B does not refer to k, it contains the part of the problem specification which
does not depend on parameter k;

• I is specified using parameter k, it contains the part of the problem specification
which is to be cumulated with respect to increasing instances of parameter k;
and

• Q is specified using parameter k, it can be understood as a query which has to
be evaluated with respect to the current instance of parameter k.

More formally, given answer set programs B , I , and Q as above, IClingo attempts to
find a minimal integer t ≥ 0 such that

P = B ∪
⋃

0≤i≤t
I[k/i] ∪Q[k/t]

admits an answer set. We will use IClingo to compute Weak Winnability of games in
Section 5.4.3.

5.4 Experimental Results

We will now report on several experiments we conducted with our system using a wide
range of complete-information games from the past AAAI General Game Playing Com-
petitions, all of which are available at the online game repositories at Dresden1 and
Stanford2. We further include some incomplete-information games from recent publi-
cations as well as all games from the first incomplete-information track that has been
realised in a competition (see Section 5.4.2 for further details). We structure our exper-
iments into three parts, each of which provides a figure with a summary of the results.
Section 5.4.1 deals with a wide range of knowledge-free properties in multi-player games
of complete and incomplete information (Figure 5.2). Section 5.4.2 then considers three
common categories of positive-knowledge properties in several incomplete-information
games (Figure 5.3). Section 5.4.3 concludes with experiments concerning the weak
winnability of many single-player and multi-player games (Figure 5.4).

All experiments were run on an Intel Core 2 Duo CPU with 3.16 GHz, and the
summarised proof results for formulas in all of the mentioned figures are denoted ac-
cording to the following scheme:

1ggpserver.general-game-playing.de/public/show games.jsp
2games.stanford.edu/resources/resources.html

120 CHAPTER 5. IMPLEMENTATION

“y” (yes) “n” (no) “?” (unknown) “–” (aborted)

proved to be
valid (true in
each reachable
state)

proved not to be
valid (counter ex-
ample for some
reachable state)

result unknown
(counter exam-
ple for some
not necessarily
reachable state)

proof attempt
aborted after 100
seconds or the
consumption of 3
GB memory

5.4.1 Sequence Invariants

The first series of experiments is concerned with knowledge-free game properties which
are attempted to be proved on a variety of multi-player games. Most of the games in-
volve two non-random players, additionally there are games with three (3pttc and
tttcc4, cf. Figure 5.2 at page 123), five (smallest) and six (chinesecheckers6) non-
random players. We also include Krieg-Tictactoe and several further incomplete-
information games (some of them only involve one player and random), including a
card game, a game of dice, and the famous Monty Hall. We refer to Section 5.4.2 for
further details on these games.

Property Categories

For each game the following sets of formulas were generated:

Functionals In Quarto, each cell contains at most one piece (cf. property (3.2) at
page 28). For example, fluent cell(1 , 1 , p1111) means that cell (1 , 1) houses
piece p1111 . More generally speaking, for every pair of cell coordinates (x, y)
there is always at most one p such that cell(x, y, p) is true. Similar properties
hold in many games, and in order to detect these, we generate all formulas of the
form

(∀ ~X :D ~X)(∃l..1~Y :D~Y) true(f(~Z))

for each fluent symbol f , each l ∈ {0, 1}, and each non-empty subsequence ~Y
of the variables in f(~Z), denoting with ~X the (possibly empty) sequence of all
variables in ~Z that are not in ~Y . In addition, we identify as control fluents those
that have one argument that ranges over the roles (e.g., sctrl(r1) and pctrl(r2)
in Figure 2.2). If the set Fc of all ground instances of these fluents incorporates
two or more distinct fluent symbols, we also attempt to prove that exactly one
of them holds at any time via the formula (∃1..1F :Fc) true(F).

Legals We include the state sequence invariant for Playability (cf. Section 3.6.4),

¬terminal ⊃ (∀R :DR)(∃M :DM) legal(R,M), (5.1)

where DR is the set of roles and DM the (finite) domain of moves. In addition,
we attempt to prove the property Turn-Taking. Recall from Definition 2.21 at
page 23 that we consider a game to be turn-taking if at most one player besides
random has two or more legal moves in each reachable game state. With DR

and DM as above, this can be expressed via

(∃0..1R : (DR \ {random})) (∃2..∞M :DM) legal(R,M). (5.2)

5.4. EXPERIMENTAL RESULTS 121

Note that this formula makes no reference to the actually used name of a noop
action. The name is hence completely independent from the proof result, and
does not even have to be the same in each game state.

Goal A game is to be considered zero-sum if the goal values of all players besides the
random player, in case they exist, add up to 100 in each reachable terminal state
(cf. Definition 2.21). This we formulate via the state sequence invariant

terminal ⊃
∧

g1,...,gn∈GV
g1+...+gn 6=100

(¬goal(r1, g1) ∨ . . . ∨ ¬goal(rn, gn)), (5.3)

where D′R = {r1, . . . , rn} is the set of roles different from random and GV is
the (finite) set of goal values that occur in the game description. Using the same
identifiers, we furthermore include a formula which expresses that the goal values
of all players are unique in each terminal state,

(∀R :D′R)(terminal ⊃ (∃1..1V :GV) goal(R, V)). (5.4)

To formulate that the game is monotonic (cf. Definition 2.21), we include a third
formula

(∀R :D′R)(ϕ1 ∧ ϕ2), where (5.5)

• ϕ1 expresses that the goal value for r is unique in each reachable state:

ϕ1 = (∃1..1V :GV) goal(R, V), and

• ϕ2 formulates that each goal value for r in a state is not higher than any
goal value for r in any of its direct successor states:

ϕ2 = ¬terminal ⊃
∧

v1,v2∈GV
v1>v2

¬(goal(R, v1) ∧©goal(R, v2)).

Persistence In Quarto, once a piece is placed on the board, it remains in this cell for
the rest of the game. Likewise, pieces are always permanently removed from the
pool. Similar properties occur in a variety of games, and in order to detect these,
we generate the set of all formulas of the form

true(f(~t)) ⊃ ©true(f(~t)) and ¬true(f(~t)) ⊃ ©¬true(f(~t)), (5.6)

where f(~t) is any ground fluent instance in the game in question.

Experiment Setup

Proving a multitude of similar properties in one run spares the solver from repeating
the same tasks over and over again, such as grounding, indexing, and several clause
optimisations. This significantly lowers overall time consumption. However, proving
all of the aforementioned formulas together does not yield optimal results, because
different kinds of formulas tend to require different clauses from the game description

122 CHAPTER 5. IMPLEMENTATION

for verification and to allow fewer clause optimisations when attempted jointly. This
motivated the following setup for our experiments.

Functionals are simple-structured and provide valuable state space restrictions,
hence they are the first to be tested and then included in all subsequent proofs. We
perform a second run, which is likely to produce further successfully proved function-
als since these are often interdependent—recall that in order to prove that each cell
contains at most one piece (property (3.2)) in Quarto we first needed to discover that
always exactly one instance of a control fluent holds (the respective argumentation can
be found in Section 3.4.2). Proof attempts for legals were run separately since, unlike in
the case of functionals, their induction step requires clauses with head legal for time
step 1. Due to their complex structure (their encoding refers to all legal moves of the
game) their addition to the established facts tends to slow down subsequent proof at-
tempts, which is why they are not considered in any further proofs. The property class
Goal contains the only properties we considered that refer to predicate symbol goal
and the defining clauses; hence they are attempted in a further distinct run and the
results are also not included subsequently. Persistence formulas have a higher degree
and thus require a copy of the GDL clauses with an additional time step, which is why
they are proved together in yet another separate run.

Recall that, in order to prove multiple properties in one run, we need to find out
whether the respective name atoms are contained in every possible answer set of the
generated two programs for the base case and the induction step (cf. Section 3.6.2).
Equivalently, we may consider whether the respective name atoms are contained in
the intersection of all answer sets. The option “cautious reasoning” which is provided
for Clingo (cf. Section 5.3.1) does exactly that and hence allows us to spare a time-
consuming search through all answer sets.

Results

In Quarto, the prover successfully shows that in all reachable game states there is at
most one selected piece; that exactly one player has control over either selecting or
placing a piece; and that each cell has exactly one value (that is, a piece or empty).
Moreover, it proves that a piece which is placed in a cell remains in this cell; that a
piece which is removed from the pool stays removed; and that a non-empty cell never
becomes empty again.

In Krieg-Tictactoe, we obtain that exactly one player has control to place a piece;
that each cell has exactly one value v ∈ {x , o, b}; that an x or o which is placed in
a cell remains in this cell, and that a cell which is not blank (b) will never be blank
again.

Results for the other formula sets are summarised in Figure 5.2, together with
results for a variety of other games. Times in column “Functionals” indicate two
proof attempts (each attempt including one ASP proof for the base case and one ASP
proof for the induction step), the other times indicate one attempt. The times include
both generation and grounding of the respective answer set programs (the latter is
done by Clingo). Additional time in the range of a few seconds is needed for the
initialisation of Fluxplayer (which includes the calculation of the domain graph) once
for each newly considered game. In general, many instances of the four property classes
can be proved within at most a few seconds, which demonstrates that our proof method

5.4. EXPERIMENTAL RESULTS 123

game Functionals Legals (pl,tt) Goal (z,u,m) Persistence

3pttc 0.6 (4/10/18) 0.7 (y,y) 0.3 (?,y,y) 0.9 (77/354/362)
backgammon 4.6 (7/9/24) 0.8 (y,y) 0.5 (y,y,y) 11.7 (7/1903/1920)
bidding-tictactoe 0.2 (1/10/27) 0.1 (?,n) 0.2 (?,?,?) 0.2 (9/89/108)
breakthrough 1.0 (3/3/16) 1.5 (y,y) 1.6 (y,y,y) 1.1 (32/242/260)
capture the king – (3/8/21) 3.1 (?,y) 3.4 (y,y,n) 66.4 (7/1710/1744)
cardgame 0.1 (7/10/20) 0.0 (y,?) 0.2 (y,?,n) 0.1 (1/82/100)
catcha mouse 0.3 (4/5/18) 0.2 (?,y) 0.2 (?,y,y) 1.2 (359/896/998)
CephalopodMicro 1.7 (5/17/32) 0.6 (y,y) 1.4 (y,y,y) 1.6 (18/209/220)
checkers – (3/8/24) – 9.8 (?,?,?) – (0/1078/1098)
chinesecheckers6 – (4/6/10) 1.2 (y,y) 44.9 (?,?,y) 29.1 (80/634/650)
chinookDisj 0.6 (4/4/16) 39.2 (y,y) 0.4 (y,y,?) 0.8 (32/354/388)
chomp 0.1 (3/4/11) 0.1 (?,y) 0.1 (y,y,y) 0.1 (58/61/120)
connect4 0.2 (2/3/16) 0.2 (?,y) 0.3 (y,y,?) 0.3 (294/492/508)
connectFourSim 0.6 (5/19/36) 0.1 (?,n) 0.4 (y,y,y) 0.4 (192/372/392)
dots and boxes 4.0 (3/26/52) 0.4 (y,y) 0.2 (?,y,?) 0.8 (2608/2782/2844)
endgame – (4/6/18) 3.3 (?,y) 1.2 (y,y,?) 7.1 (2/511/546)
knightfight 0.5 (3/10/19) 2.2 (?,y) 0.7 (?,?,n) 1.5 (100/602/608)
kriegtictactoe 0.1 (4/7/22) 0.1 (?,y) 0.2 (y,y,?) 0.2 (27/56/76)
kriegTTT 5x5 0.2 (4/11/30) 0.1 (y,n) 0.2 (?,?,?) 0.2 (77/183/310)
mastermind 0.9 (17/27/52) 0.2 (y,y) 0.6 (?,?,n) 3.3 (690/1410/1428)
meier 1.0 (7/17/29) 0.1 (?,?) 0.3 (y,?,n) 0.4 (101/313/336)
montyhall 0.1 (2/4/8) 0.0 (?,y) 0.1 (?,?,n) 0.1 (8/18/26)
9BoardTicTacToe 1.5 (6/36/70) 0.1 (y,y) 0.2 (y,y,y) 0.4 (162/254/346)
othello-comp2007 5.0 (3/5/16) 1.5 (y,y) – 3.5 (8/250/260)
pawn whopping 0.2 (3/5/16) 1.5 (y,y) 0.2 (y,y,n) 0.4 (32/234/260)
quarto 11.8 (6/7/23) 8.9 (?,y) – 28.3 (288/582/616)
qyshinsu 1.0 (12/17/33) 0.2 (y,y) 0.4 (?,y,y) 2.2 (5/674/788)
smallest 1.1 (4/4/8) 0.1 (y,n) 15.5 (?,y,y) 0.5 (12/148/160)
tictactoe 0.1 (4/4/16) 0.1 (y,y) 0.2 (y,y,n) 0.1 (27/38/58)
transit 0.7 (8/11/18) 0.1 (y,y) 0.3 (y,y,n) 0.6 (37/312/320)
tttcc4 10.5 (4/8/18) 17.8 (y,y) 1.5 (?,y,y) 15.0 (311/1228/1244)
vis pacman3p 1.0 (4/7/20) 0.6 (?,?) 1.8 (?,?,?) 2.6 (69/907/918)

Figure 5.2: Proof times in seconds for a selection of knowledge-free sequence invariants in a variety of
multi-player games. Information in parentheses: (m/n/l)—m formulas proved true out of n formulas
from the respective set which are true in the initial state, and l is the total number of formulas in the
respective set (hence, l − n formulas have been proved false); (pl ,tt)—pl is the result for playability
(cf. (5.1)) and tt the result for turn-taking (cf. (5.2)); (z , u, m)—z is the result for zero-sum (cf.
(5.3)), u the result for uniqueness of goal values (cf. (5.4)), and m the result for monotonically
increasing goal values (cf. (5.5)).

124 CHAPTER 5. IMPLEMENTATION

is applicable even in the highly time-constrained setting of a General Game Playing
Competition. Proving multiple properties at once is especially effective with persistence
properties, which usually requires to check several hundred instances per game. Also
more complex games like the chess variants “endgame” and “capture the king” yield
practicable results. Checkers, on the other hand, cannot be handled efficiently due to
its inherent vast amount of legal moves comprising simple piece moves, double jumps,
and triple jumps.

5.4.2 Epistemic Sequence Invariants

In Chapter 4 we have developed an extension of the proof method for sequence in-
variants which addresses the formulation and verification of game properties involving
the knowledge of its players. To show its practical applicability, we will now report
on experiments which are closely related to the examples that have been given in the
introduction of Chapter 4. We have already introduced the incomplete-information
game Krieg-Tictactoe together with its GDL specification in Figure 4.2 on page 66.
We also include the following three incomplete-information games:

• The Card Game has been given as a first specification along with the introduction
of the Game Description Language for incomplete-information games [Thi10].
The game starts with the random player dealing one of 8 cards to each of two
participating players. In the following betting round, the players decide whether
to fold or to present their card to the other, which determines their outcome in
dependency of their decision and the value of their cards.

• The game Meier (also known as Mia) involves two players rolling dice in turn
(modelled by the random player), betting on their concealed outcome, which has
to be higher than the previous bet of the opposite player. Before rolling, a player
may decide to end the game by mistrusting the previous bet of the opposite
player. He wins if the opposite player was indeed lying, and loses otherwise.

• The famous Monty Hall problem [Ros09] has been formalised in [Thi11a]. Exactly
one of three doors hides a price, and a candidate initially chooses one of them.
Afterwards, the game master (modelled by the random player) opens one of the
remaining doors that do not contain the price, and then allows the candidate to
make a final choice between keeping his previous selection or switching to the
remaining closed door.

The 1st German Open in General Game Playing3 has been the first to include a track
on incomplete-information games, and we furthermore include all games from this track
in our experiments (further information on these games can be found at the mentioned
web page).

Property Categories

To each of the aforementioned incomplete-information games, we will attempt proofs
for all properties from the following three categories of positive-knowledge formulas.

3www.tzi.de/˜kissmann/ggp/go-ggp

5.4. EXPERIMENTAL RESULTS 125

Knows Terminal With the positive-knowledge formula (4.3) (cf. page 68) we have
formulated that when the game has terminated, each player knows that it has
terminated. We consider this property separately for each of the players and
additionally incorporate the knowledge of a game being not terminated. More
precisely, for an arbitrary player r of the game besides the random player, we
formulate that r knows whether the game has terminated with the positive-
knowledge formula

Krterminal ∨Kr¬terminal .

Knows Legals Similar to the previous category, for each of the players r beside the
random player, we formulate whether r knows which of his moves are currently
legal. Additionally, we include formulas which express whether r knows the legal
moves of other players as well. More precisely, for all players r and r′ besides
the random player, we consider the positive-knowledge formula

(∀A :ADom(r))(Krlegal(r′, A) ∨Kr¬legal(r′, A)).

Knows Goals As a last category, for all players r and r′ beside the random player
and the set GV of goal values that occur in the game description, we formulate
whether r knows the goal values of r′ in all terminal states with the positive-
knowledge formula

terminal ⊃ ((∀G :GV)(Krgoal(r′, G) ∨Kr¬goal(r′, G))).

Proof Procedure

For each newly considered game, we first attempt to obtain a restrictive state-set gener-
ator (cf. Definition 4.28, page 94) by reusing the described procedure on “Functionals”
from Section 5.4.1 as a first initialisation step. The respective results for the incomplete-
information games that we consider here can all be found in Figure 5.2 at page 123,
and the set of proved formulas Ψ from this category will be added to the induction
step proof. We then attempt separate proofs on all formulas from the three introduced
categories Knows Terminal, Knows Legals, and Knows Goals. Each proof attempt is
done according to the following scheme, the proof results can be found in Figure 5.3.
Let ϕ be any formula of the mentioned categories which is to be proved.

Phase 1 Note that ϕ does not contain any ©, hence according to Proposition 4.8
(Complete Knowledge in the Initial State, cf. page 73), omitting all knowledge
operators from ϕ yields a formula kf0(ϕ) which is equivalent to ϕ with respect
to entailment in the initial state of the game. Moreover, kf0(ϕ) is true with
respect to any initial game state in any game, which implies that the Base-Case
Program P bckf0(ϕ)(G) will always be inconsistent (cf. the argumentation below

Proposition 4.8). Hence, we can skip this part and directly attempt the induction-
step proof with program P isϕ (G). If it is successful (i.e., if P isϕ (G) is inconsistent),
then the considered formula is valid, and we skip Phase 2. If, on the other hand,
P isϕ,Ψ(G) admits an answer set, the validity of ϕ is still unknown. In that case,
we move to Phase 2.

126 CHAPTER 5. IMPLEMENTATION

Phase 2 Following the argumentation in Section 4.8.1, we possibly obtain a stronger
result for the Base Case by attempting to find a consistent answer set program
P bc©tϕ(G) for some t ∈ N. This then allows to conclude that there is a devel-
opment δ of length t such that last(δ) 2δ ϕ by Proposition 4.33 (Generalised
Correctness on Single States), and hence that ϕ is violated by the reachable state
last(δ), implying that ϕ is invalid. We attempt successive Base-Case Proofs on
©tϕ for t = 1, 2, . . ., until one of the following cases arises:

• A time limit of 20 seconds is reached. We stop the process, the validity of
the formula is still unknown. For some t ≥ 1, the last proof attempt for the
base case has been on ©tϕ, and we indicate this t in Figure 5.3.

• We obtain an answer set for P bc©tϕ(G) for some t ≥ 1. Then ϕ is invalid,
and t is again indicated in Figure 5.3.

Results

The proof results are presented in Figure 5.3. We will now motivate some of the results
that are obtained for the game Krieg-Tictactoe.

• Formula ϕ =
∧
r∈R(terminal ⊃ Krterminal) is argued to be invalid in Ex-

ample 4.7 (cf. page 72) by providing a development δ of length 5 such that
last(δ) 2δ ϕ. For the same development, we have last(δ) 2 Koterminal ∨
Ko¬terminal . Figure 5.3 reports that the latter formula can first be disproved in
depth t = 5, which implies that δ is a violating development of minimal length.
Intuitively, this is due to the passed turn information via sees(R, yourmove) in
the GDL specification of Krieg-Tictactoe in Figure 4.2, which causes each player
to know the amount of currently placed pieces after each development of the
game. Hence, player o first considers both a non-terminal and a terminal state
possible after at least 5 joint moves. This happens for player x after at least 6
moves.

• Formula (∀A : ADom(r)) (Kolegal(x,A) ∨ Ko¬legal(x,A)) is first disproved in
depth t = 3, which can be motivated as follows: Since player o has complete
information about the initial state (t = 0: o knows that x can attempt placing at
an arbitrary cell), he also knows that the placing-attempt of x will be successful
(t = 1: o knows that x can only do noop). Afterwards, the placement of o can
either fail (t = 2: o knows that x can still only do noop), or succeed (t = 2:
o knows that x can attempt placing at an arbitrary cell again). Now assume
the latter case, then x has two possibilities to a failed placing-attempt, each of
which yields a state which allows x to attempt placing at one of the remaining
eight cells. Player o does not know which cell has been attempted (t = 3: o
does not know which of the cells can not be attempted by x). Hence, there is
a reachable state where o does not know the legal moves of x, rendering the
respective formula invalid.

• Formula terminal ⊃ ((∀G : GV) (Kogoal(x,G) ∨ Ko¬goal(x,G))) can only be
disproved by a terminal state, which can first arise in depth t = 5. This is
also the least depth where player o may consider both a non-terminal and a

5.4. EXPERIMENTAL RESULTS 127

game Knows Terminal Knows Legals Knows Goals

backgammon r 20.2 (?,9) r of r: 86.5 (?,1) r of r: 21.7 (?,6)
r of b: 86.8 (?,1) r of b: 21.8 (?,6)

b 20.3 (?,9) b of r: 86.4 (?,1) b of r: 21.6 (?,6)
b of b: 86.6 (?,1) b of b: 21.0 (?,6)

cardgame j 0.0 (y) j of j: 0.5 (y) j of j: 19.6 (?,25)
j of r: 0.4 (y) j of r: 19.6 (?,25)

r 0.0 (y) r of j: 0.4 (y) r of j: 19.6 (?,25)
r of r: 0.4 (y) r of r: 19.4 (?,25)

kriegtictactoe x 1.5 (n,6) x of x: 0.2 (y) x of x: 2.7 (n,6)
x of o: 1.6 (n,4) x of o: 2.4 (n,6)

o 1.2 (n,5) o of x: 0.9 (n,3) o of x: 1.7 (n,5)
o of o: 0.2 (y) o of o: 1.9 (n,5)

kriegTTT 5x5 x 1.4 (n,4) x of x: 20.3 (?,5) x of x: 2.2 (n,4)
x of o: 1.4 (n,1) x of o: 2.3 (n,4)

o 1.3 (n,4) o of x: 1.6 (n,1) o of x: 1.9 (n,4)
o of o: 20.3 (?,5) o of o: 1.9 (n,4)

mastermind p 19.7 (?,17) p of p: 120.0 (?,1) p of p: 21.3 (?,4)

meier 1 0.1 (y) 1 of 1: 24.4 (?,4) 1 of 1: 2.3 (n,6)
1 of 2: 23.6 (?,4) 1 of 2: 2.3 (n,6)

2 0.1 (y) 2 of 1: 24.2 (?,4) 2 of 1: 1.1 (n,3)
2 of 2: 23.6 (?,4) 2 of 2: 1.0 (n,3)

montyhall c 0.0 (y) c of c: 0.1 (y) c of c: 0.3 (n,3)

transit t 19.5 (?,20) t of t: 20.1 (?,15) t of t: 19.5 (?,18)
t of p: 1.0 (n,2) t of p: 20.3 (?,19)

p 20.1 (?,21) p of t: 1.4 (n,3) p of t: 19.5 (?,16)
p of p: 19.5 (?,14) p of p: 20.1 (?,16)

vis pacman3p p 20.8 (?,8) p of p: 21.6 (?,7) p of p: 9.7 (y)
p of b: 7.2 (n,3) p of b: 32.6 (?,4)
p of i: 7.2 (n,3) p of i: 32.7 (?,4)

b 10.6 (n,5) b of p: 5.2 (n,2) b of p: 9.7 (y)
b of b: 22.3 (?,7) b of b: 31.9 (?,4)
b of i: 13.7 (n,5) b of i: 32.1 (?,4)

i 13.7 (n,6) i of p: 5.2 (n,2) i of p: 9.5 (y)
i of b: 14.9 (n,5) i of b: 32.4 (?,4)
i of i: 24.1 (?,7) i of i: 39.5 (?,4)

Figure 5.3: Proof times in seconds for a selection of positive-knowledge formulas in several incomplete-
information games. The names of players have been shortened to one letter. E.g., “j of r” in cardgame
stands for “Jane knows the legal moves (goal values, resp.) of Rick”. The time for result (y) indicates
one induction-step proof (Phase 1). The time for results (n, t) and (?, t) indicates the overall time
which has been needed for one induction-step proof (Phase 1) and t base-case proofs (Phase 2).

128 CHAPTER 5. IMPLEMENTATION

terminal state possible (cf. the argumentation in the first item). In the terminal
state, player x finished a line, but this line is not finished in the non-terminal
state which is additionally considered true by o. Hence, the goal values for x
are necessarily disjoint in these two states, implying that o does not know the
actual goal value.

In the version of the Monty Hall problem we apply, the candidate is not informed
about the result of his final choice (this has been changed in the competition version).
Consequently, he does not know his goal value in each terminal state, and our proof
method disproves the respective formula from category Knows Goals. It also reveals
that, in the Card Game, each player always knows about terminal states and legal
moves of all players. However, this information can only be obtained when adding an
additional valid formula stating that betting and dealing cannot take place simulta-
neously, which can easily be proved with our method beforehand. In this game, the
formulas from category Knows Goals are valid, but cannot be proved due to missing
information in the state-set generator. Consequently, the stronger base case proof de-
scribed as Phase 2 in our proof procedure does not succeed in disproving the respective
formulas at any depth and hence reaches the time limit.

Note that, according to Section 4.3.2 (View Namings), each formula ϕt in category
Knows Terminal has an associated set of views Vsϕt of size 3, whereas each formula
ϕl in category Knows Legals is such that |Vsϕl | = 2 ∗ |ADom(r)| + 1. This implies
that the size of an answer set program which is generated for ϕl exceeds the size
of the corresponding answer set program for ϕt by factor |ADom(r)|. A similar
correspondence with factor |GV | (for the goal values GV) is obtained for each formula
ϕg in category Knows Goals. Accordingly, in Figure 5.3, times for proof attempts on
formulas ϕl and ϕg are generally higher than those for ϕt. For example, in the game
Backgammon, nine iterations on formulas in category Knows Terminal are possible
within the time limit, whereas only one can be performed for category Knows Legals
(and six for category Knows Goals). The induction step proofs mostly take time in
the range of a few seconds only (in Figure 5.3, their time is given directly in case the
proof attempt was successful, and can be obtained by subtracting the time limit 20
seconds due to Phase 2 from the given time in case the proof attempt could neither
achieve success nor failure), and hence show the efficiency of our method. However,
some invariants cannot be proved due to our rather uninformed state-set generator,
and further methods to its restriction (e.g. by inclusion of previously-proved positive-
knowledge formulas) are required.

5.4.3 Weak Winnability

We will now readdress Section 3.6.1 which presented a method to prove that a player
r can weakly win the game at hand, i.e., that there is a development which ends
in a terminal state where r obtains 100 points (cf. Definition 2.21). Algorithm 3.1
from page 50 provides a procedure which, if the game is weakly winnable, computes a
development with the mentioned properties that is of minimal length. For its imple-
mentation, we use the solver IClingo (cf. Section 5.3.2).

5.4. EXPERIMENTAL RESULTS 129

Using IClingo to Prove Weak Winnability

In the following we present how to instantiate the programs B , I , and Q from IClingo
in order to prove weak winnability. To this end, for a GDL specification G, let G0[k]
be obtained from the temporal extension G0 of G (cf. Definition 3.7) by replacing
each occurrence 0 in the time argument of each atom by the lowercase letter k, and
each occurrence of 1 by k + 1.

• B consists of the initial state encoding Strue
init (0) together with the static (and

hence not time-extended) clauses from G0[k] with respect to the optimisation
for static predicate symbols introduced in Section 5.2.1.

• I consists of all clauses from G0[k] which are time-extended and hence not
contained in B , together with the following variant of the Action Generator (cf.
the clauses (3.8) in Section 3.4.1) for all roles r in the game:

1{does (r, a, k) : a ∈ ADom(r)}1 :- not terminal (k).
:- does (r, A , k), not legal (r, A , k).
:- terminal (k-1).

(5.7)

• Q encodes that formula ϕ = ¬(terminal ∧ goal(r, 100)) should be false at k
(and hence that the current state is terminal and yields 100 points for player r):

:- phi.

phi :- not win.

win :- terminal(k), goal(r,100,k).
(5.8)

Correctness Observe that, for any fixed integer t and ϕ = ¬(terminal∧goal(r, 100)),
program P = B ∪⋃0≤i≤t I[k/i] ∪Q[k/t] from IClingo and program P bc©tϕ(G) are as-
sociated in the following way.

• The clauses which are obtained from (5.7) by replacing k with i for each 0 ≤
i ≤ t only deviate from the action generator (3.8) in that, instead of arbitrarily
many previous states, only the currently considered state at depth t is allowed
to be terminal. In P bc©tϕ(G), the clauses Enc(©tϕ)∪{ :- η(©tϕ).} ensure the
same property.

• The clauses of Enc(©tϕ)∪{ :- η(©tϕ).} which do not relate to the previously
mentioned effect on terminal states exactly correspond to the encoding (5.8).

• The remaining differences are only due to clause optimisations for static predicate
symbols with respect to Section 5.2.1 and hence have no influence on satisfiability.

The given arguments motivate that program P admits an answer set if and only if
program P bc©tϕ(G) admits an answer set, and hence that invoking IClingo with the
programs B , I , and Q as above provides a faithful implementation of the Weak-
Winnability Algorithm 3.1.

130 CHAPTER 5. IMPLEMENTATION

Single-Player Game Solved

8puzzle 25.0 (30)
aipsrovers01 0.9 (10)
asteroidsparallel 0.1 (10)
blocksworldparallel 0.1 (3)
brain teaser extended 0.4 (10)
buttons 0.0 (6)
chinesecheckers1 35.1 (11)
circlesolitaire 0.2 (8)
coins 0.1 (4)
firefighter 0.0 (49)
frogs and toads –
god 25.3 (4)
hanoi –
hitori 14.7 (7)
incredible 2.0 (13)
knightmove –
knightstour 5.4 (30)
lightsout 57.9 (9)
max knights –
maze 0.0 (6)
mimikry –
oisters farm 0.0 (6)
pancakes 0.2 (7)
peg –
queens 4.3 (10)
slidingpieces –
snake 2008 79.7 (22)
sudoku simple –
tpeg –
twisty-passages 2.5 (199)
uf20-01.cnf.SAT 0.2 (20)
wargame01 23.7 (14)

Multi-Player Game Weak Win.

3pttc 0.4 (10)
backgammon –
bidding-tictactoe 0.1 (6)
breakthrough 2.0 (11)
capture the king 8.9 (5)
cardgame 0.1 (2)
catcha mouse 0.2 (12)
CephalopodMicro –
checkers –
chinesecheckers6 –
chinookDisj 0.3 (7)
chomp 0.0 (2)
connect4 0.1 (7)
connectFourSim 0.3 (7)
dots and boxes –
endgame –
knightfight 0.6 (7)
kriegtictactoe 0.1 (5)
kriegTTT 5x5 0.4 (4)
mastermind 0.2 (2)
meier 0.1 (3)
montyhall 0.0 (3)
9BoardTicTacToe 0.1 (5)
othello-comp2007 –
pawn whopping 0.2 (9)
quarto –
qyshinsu 0.6 (5)
smallest 0.2 (10)
tictactoe 0.0 (5)
transit 0.1 (14)
tttcc4 1.7 (7)
vis pacman3p –

Figure 5.4: Times in seconds needed to solve a variety of single-player games (left-hand side) and
to prove weak winnability for one of the players different from random in a variety of multi-player
games (right-hand side). Numbers in parentheses denote the length of a (shortest) found development
representing a solution.

5.5. SUMMARY 131

Experiments

The proof results for weak winnability are shown in Figure 5.4. Since the outcome for
one player is often similar among all players in a multi-player game, we exemplarily
show the proof result only for the respective first role different from random which
has been encountered in the GDL specification at hand. In Krieg-Tictactoe, the prover
yields a development Sinit

A0−→ S1
A1−→ S2

A2−→ S3
A3−→ S4

A4−→ S5 such that S5 is
terminal and yields 100 points for player x, for example the development δ which
has been given in Example 4.7 (cf. page 72). However, the prover does not yield a
result for Quarto, as it is to complex to be solved within 100 seconds.

Figure 5.4 shows that our implementation is able to completely solve single-player
games and to prove weak winnability in a majority of the presented games. As finding a
solution involves a full tree search in the worst case (which is not possible in interesting
games), a positive result can of course not generally be obtained, and hence especially
causes timeouts for more complex games like Checkers.

5.5 Summary

In this chapter, we showed that our proof method can effectively be applied by general
game players and game designers even in a time-restricted setting. We first presented a
method to reliably compute overestimations of the set of all actions of a player and the
set of all fluents which are needed for the construction of answer set programs in our
proof method. Then we reported on several optimisations which can be applied to the
generated answer set programs in order to reduce time consumption in the subsequent
processing step. We shortly introduced the tools of the answer set solving collection
Potassco that we have used to process the generated answer set programs. Finally, we
provided results of rich experiments that we conducted for a variety of games, including
several properties for knowledge-free formulas and positive-knowledge formulas as well
as weak winnability.

Outlook While the implementation of our method makes use of several optimisations
to reduce the size of the generated answer set programs (cf. Section 5.2), additional tools
from the answer set solving collection Potassco offer potential for further running-time
improvements which have not (yet) been utilised. First of all, we have not concentrated
on the optimisation of input parameters which are accessible for adjustment in Clasp.
The tool Claspfolio [GKK + 11b] automatically detects useful parameter settings and
should certainly be tested in our setting. Another promising tool is OClingo [GGKS11].
Based on IClingo (cf. Section 5.3.2), it provides an additional concept for the speci-
fication of new information during the solving process. It is worth investigating how
this approach can be exploited to add freshly proved formulas to a running proof at-
tempt. Finally, it is promising to experiment with parallelisation, utilising the tool
Claspar [EGG + 09].

We believe that further improvement in efficiency could be achieved by a combina-
tion of the grounding process with the solving process of an answer set program, with
the goal of achieving a “lazy” grounding which is only done when necessary. For the
verification of a property, often only the existence of some structure is important rather
than certain instances. These instances however may involve many clauses which are

132 CHAPTER 5. IMPLEMENTATION

unnecessarily grounded beforehand. To our knowledge, no successful Answer Set Solver
currently follows this approach.

Chapter 6

Related Work

General Game Playing provides only one out of several formalisms which enable to rea-
son about properties of environments with multiple agents, prominent further examples
are the well-known formalisms of Knowledge Representation and Reasoning (a compre-
hensive survey of several action formalisms can be found in [MM11]), Game Theory (see,
e.g., [Ras07, Osb04]), Model Checking (e.g., [BK08]), and Multi-Agent Systems (e.g.,
[SLB09]). In the following discussion of related work we solely concentrate on verifica-
tion approaches which have been developed in connection with the Game Description
Language, with the exception of Section 6.1.1 on Automated Planning. The chapter
is divided into two parts: Section 6.1 is concerned with the discussion of related ap-
proaches that are exclusively concentrating on solving single-player games. Section 6.2
then presents related approaches which have been suggested to prove game-specific
properties.

6.1 Solving Single-Player Games

We have shown that our approach is able to prove weak winnability and hence to
completely solve (smaller) single-player games (cf. Section 5.4.3). In this section, we
want to discuss further approaches which solve single-player games. We shortly visit
the field of Automated Planning in Section 6.1.1, as it is strongly connected to solving
single-player games in General Game Playing and contains some of the roots of our
approach. In Section 6.1.2, we summarise approaches which are based on Answer Set
Programming.

6.1.1 Automated Planning

The research area of Automated Planning is concerned with the development of com-
puter systems which are able to automatically solve single-agent problems in arbitrary
domains. The Planning Domain Definition Language (PDDL) [McD98, GL05] has be-
come the standard for formalising problem instances, and by now there are about 50
different systems which compete in the International Planning Competition which has
first been launched in 1998 [McD00].

General Game Playing can be understood as a generalisation of Automated Plan-
ning from single-agent to multi-agent problems. However, the language PDDL is based

133

134 CHAPTER 6. RELATED WORK

on the specification of positive and negative effect of actions, whereas negative effects
are only implicitly given in the GDL by the negation-as-failure principle (assuming
fluents to be false which are not explicitly stated to be true). This poses difficulties
on the translation from one language to the other, limiting the direct mutual benefit
from new ideas in both research areas. Nevertheless, some results from the planning
community could be transferred to General Game Playing. We refer to [Sch11] and
[Thi11b] for comprehensive summaries.

Domain Control Knowledge Our language for the specification of game properties
has been inspired by work on the domain-independent Planner TLplan [BK00] which
has remarkably influenced the planning community. It utilises previously gathered
knowledge about the domain at hand to effectively guide search. Knowledge can be
formulated using Linear-Time Temporal Logic (see, e.g., [BK08]), where the fluents of a
given domain form the basic propositions. Formulas are progressed during search, and a
state is neglected as soon as the progressed formula is false. Domain Control Knowledge
is usually specified by the designer of a domain or the developer of a planner, but a
first approach to automatically learn LTL formulas via training examples has recently
been introduced [dlRM11]. An overview to further recent developments in this growing
field, which now can handle the formulation of rich user preferences among plans, is
provided in [BFM11].

Automated Discovery of State Invariants There is a main difference between
formulas that express domain control knowledge and state sequence invariants in our
setting: the former are used to distinguish “good” from “bad” reachable states and
hence are not true in all reachable states (otherwise no search restriction could be
applied), the latter are utilised to formulate properties that possibly amount to be
valid and hence are true in all reachable states. Nevertheless, valid formulas provide
valuable information in Planning as well, and several approaches for the automated
discovery of state invariants (i.e., knowledge-free properties concerning a single state
which hold across all reachable states) have been developed, including [GS00], [Lin04],
and [Rin08].

Although the unary operators © and Kr are not considered in these approaches, it
would be interesting to see whether some ideas can be incorporated in our setting, and
to what extend our method can be adapted to discover state invariants for Planning.
We mentioned before that the differences of PDDL and GDL do not allow to directly
transport results from one to the other language, hence research in this direction is
suggested for future work.

6.1.2 Via Answer Set Programming

The first approach that suggests to solve single-player games given in GDL via Answer
Set Programming has been given in [Thi09]. Its proposed techniques have provided
some of the ground work for the incorporation of the unary operator © to the ver-
ification method presented in this thesis: an extension of the game description by a
time argument (which motivated the temporal GDL extension from Definition 3.7); a
program which encodes that each player performs a legal move in each non-terminal
state (which motivated the action generator (3.8)); and a result which proves that the

6.2. VERIFICATION OF GAME PROPERTIES 135

extension correctly represents sequences of states (Theorem 3.9 is a generalisation of
this result). Its implementation uses an earlier version of Clingo (cf. Section 5.3.1)
from 2008 and relies on a given maximal time horizon within which a solution is to be
found.

The mentioned approach has also been implemented in the general game player
Centurio [MSWS11] as an alternative to Monte Carlo Tree Search [KS06, Cou07] in
the case of single-player games. Two variants are described, one which uses estimated
upper time bounds with Clingo and a second which uses the incremental solver IClingo
(cf. Section 5.3.2). Single-player games have also been solved with Clingo in [GKKS11a].
Here, an unoptimised version is compared to a version which, prior to computing answer
sets for a given answer set program, uses a clause optimisation technique similar to the
separation of body variables which has been presented in Section 5.2.1.

6.2 Verification of Game Properties

The Game Description Language has soundly been embedded into several formalisms,
including the action language C+ ([GLL + 04]) in [Thi11c] for the subset of complete-
information games, a variant of the Situation Calculus ([McC63]) in [ST11], and Game
Theory (e.g., [Ras07, Osb04]) in [Thi11a]. This allows, in principle, to employ im-
plemented reasoning techniques which have been developed for these formalisms to
prove certain game properties, when additionally providing an implementation for the
automated translation of game descriptions and game properties to the formalism at
hand. As the main focus in this work is the engineering of a sound and practically
applicable proof method for general game playing rather than a pure feasibility study,
we subsequently draw our attention to the discussion of related approaches which

• provide a formal language to formulate a specific class of game properties over
the Game Description Language,

• develop a sound method for the formal verification of these properties, and

• report on an implementation that allows to practically verify these properties
with respect to an arbitrary given game description.

The following discussion comprises three parts: Section 6.2.1 presents an approach
which allows to verify ATL formulas with a model checker. Section 6.2.2 discusses an
approach for the verification of state invariants formulated via propositional formulas
which uses Answer Set Programming. Finally, Section 6.2.3 provides insight to an-
other model-checking approach which concentrates on game properties over standard
epistemic logic.

6.2.1 ATL Formulas via Model Checking

The first approach that addresses the formal property verification over games formu-
lated in the Game Description Language has been given in [vdHRW07b] and extended
in [RvW09] and [Rua09]. It allows the specification of properties over the rich language
of Alternating-Time Temporal Logic (ATL) [AHK02].

136 CHAPTER 6. RELATED WORK

Syntax and Semantics With respect to a GDL specification G, ATL formulas ϕ
can be characterised via the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈B〉〉 © ϕ | 〈〈B〉〉 � ϕ | 〈〈B〉〉 ϕ U ϕ,

where p ∈ P is a ground atom of G according to the Sequence Invariants Definition 3.1
and B is a subset of the players of G, also referred to as coalition. Ground atoms
p are also allowed to be dependent on does in this formalism, which however is not
important for our considerations and hence neglected here. Coalitions B allow the
quantification of paths in the game tree. E.g., 〈〈B〉〉 © ϕ states that coalition B can
cooperate to achieve ϕ in the next state. More formally, formula 〈〈B〉〉 ©ϕ is true in
a state S if, and only if, there exists a strategy strat (cf. Definition 2.21) for each of
the players in coalition B such that performing legal action strat(S) yields a successor
state which satisfies ϕ, no matter which legal actions are performed by the players that
are not in B . Similarly, 〈〈B〉〉 � ϕ states that coalition B can cooperate to achieve ϕ
in the current state and each of its (possibly non-direct) successors, and 〈〈B〉〉 ϕ1 U ϕ2

formulates that coalition B can cooperate to achieve ϕ1 until ϕ2 is true. Note that
choosing B to be the set of all roles models an overall existential path quantification,
and that choosing B = ∅ models an overall universal path quantification. For example,
weak winnability of a game (cf. Definition 2.21) for a player r from the set of all
roles R can be expressed as 〈〈R〉〉 > U (terminal ∧ goal(r, 100)) (where > stands
for an arbitrary formula that is always true), and playability can be expressed as
〈〈∅〉〉 � (¬terminal ⊃ ∧r∈R(

∨
m∈ADom(r) legal(r,m))).

The formal semantics of ATL formulas is given via Action-based Alternating Tran-
sition Systems [vdHRW07a]. A 1-to-1 correspondence between GDL and ATL is es-
tablished both on the syntactic and the semantic level, which provides the link for the
interpretation of ATL formulas over the GDL.

Implementation The method is implemented using the model checker MOCHA
[AHM + 98]. It understands the modular input language Reactive Modules [AH99]
which allows to provide a compact encoding of the game description. The model
checker can then be used, in principle, to automatically verify arbitrary game properties
formulated in ATL with respect to the initial state of the game. The provided game
description is used to create all relevant state sequences which are needed in order
to verify a given formula. E.g., the formula for playability, 〈〈∅〉〉 � (¬terminal ⊃∧
r∈R(

∨
m∈ADom(r) legal(r,m))), is verified by traversing each reachable non-terminal

state of the game in order to check whether each player has a legal move.

Comparison

Expressivity The language of ATL allows to formulate a variety of knowledge-free
game properties. We have already seen that ATL can express the before-mentioned
property of playability. In general, each knowledge-free state sequence invariant
ϕ according to Definition 3.1 can be expressed as 〈〈∅〉〉 � ϕ′, where ϕ′ represents
ϕ without additional syntactic constructs such as (finitely-domained) quantifiers.
Then 〈〈∅〉〉 � ϕ′ holds with respect to the initial state if and only if ϕ is valid
in our formalism. ATL further includes properties which are not expressible via

6.2. VERIFICATION OF GAME PROPERTIES 137

state sequence invariants. E.g., the strong winnability of a player r (cf. Defini-
tion 2.21) can be formulated as 〈〈{r}〉〉 > U (terminal ∧ goal(r, 100)).

Not expressible, however, are properties which involve the different perspectives
of players in incomplete-information games, e.g. the knowledge of a player con-
cerning his legal and illegal moves (cf. formula (4.4)), which is accounted for in
our formalism via the unary knowledge operator Kr .

Completeness Compared to our verification method, the main advantage of the
model-checking approach is its completeness: in case a property is true, evoking
the model checker with it will eventually report its truth. The model-checking ap-
proach does hence not require additional techniques which are necessary with our
approach, such as the repetition of certain proof attempts with newly obtained
information.

Time Consumption The advantage of completeness, however, also induces the main
drawback of the approach: the proof for properties such as strong winnability and
all state sequence invariants requires to check the whole game tree. An approach
which does not abstract from this requirement can hence prove these properties in
completely searchable games only. While sufficient time might be available for a
game designer who wants to check simpler game descriptions, many of the games
from previous general game playing competitions are not completely searchable in
reasonable time, and especially in the time-restricted setting of the competition
this approach is hence not applicable.

This is also reflected in experiments which have been conducted in the game of
Tictactoe in [RvW09] (Tictactoe is completely searchable and hence manageable
with the approach). The results for playability, compared to our approach, only
moderately reflect the computational overhead which arises due to the full game-
tree search. However, the encoding is based on the assumption that properties
from the class “Functionals” for Tictactoe (which we introduced in Section 5.4.1)
are known in advance, allowing to construct a more compact and hence more
efficient encoding of the game description for the model checker. Functionals
are in turn state sequence invariants, and a general game player would have
to perform a full game-tree analysis in order to reliably find functionals first.
Applying the model-checking approach to a broader range of games is hence
likely to cause further inefficiencies.

Interestingly, proving weak winnability is significantly slower than with our ap-
proach, although induction is of no help in that case. This suggests that there is
still space for optimisations which increase overall performance.

6.2.2 State Invariants via Answer Set Programming

The drawbacks of the method presented in Section 6.2.1 motivated an alternative
approach, which has been introduced in [ST09] and enriched with further details
in [Sch11]. Its main idea is the circumvention of a full game-tree analysis with the
proof principle of induction, a concept which has turned out to increase proof efficiency
to a level that matches the tight time restrictions of the General Game Playing Com-
petition. Since this induction approach forms the basis of the induction proof method

138 CHAPTER 6. RELATED WORK

developed in this thesis, it uses some of the methodology which is already familiar to
the reader. In the following, we point out the main differences to our extension.

Syntax and Semantics Properties are restricted to make knowledge-free statements
about single states of a game. More formally, formulas ϕ can be formulated using
propositional logic according to the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ,

where p ∈ P is a ground atom of G according to the Sequence Invariants Defini-
tion 3.1. For simplicity, we omit some additional syntactic constructs which can also
be expressed using the given connectives. The truth of formulas can be evaluated using
the semantics for sequence invariants from Definition 3.5, where sequences are required
to be of length 0 only and hence collapse into single states. Similarly to our approach,
formulas which are successfully verified by induction are proved to be valid and hence
true in each reachable state of the game.

Encoding and Implementation As formulas are solely interpreted over states (in
contrast to state sequences which are required in our extension), no temporal GDL
extension is needed. Instead, the GDL specification together with an (informally given)
encoding of the property can directly be used to construct an answer set program for
both the base case and the induction step of the induction proof. An arbitrary answer
set solver can check whether the constructed answer set programs are unsatisfiable,
which then implies validity of the property. The practical implementation uses an
earlier version of Clingo (cf. Section 5.3.1).

Comparison

Expressivity The difference in expressivity amounts to the missing unary connectives
© and Kr . Hence, the knowledge of players, e.g. concerning their legal and illegal
moves (cf. formula (4.4) at page 68), is not addressable. Furthermore, properties
which involve an arbitrary finite amount of time steps, such as the monotonicity of
the game (cf. Definition 2.21 and formula (5.5) at page 121) and the persistence of
fluents (cf. formulas (5.6)), cannot be formulated. Still expressible are properties
such as zero-sum, turn-taking, and playability.

Completeness As our method relies on the same induction principle that is used
here, also our drawback of incompleteness in case of an inaccurate state(-set)
generator is inherited from this approach. To circumvent this problem, a set
of previously proved formulas can be added to restrict the overestimated set
of reachable states. Furthermore, an algorithm is proposed which successively
attempts proofs on all properties, performing repeated runs on all non-proved
formulas whenever a new formula could be proved and hence added to restrict
the state space. Our scheme from Section 3.6.3 can be seen as a generalisation
of this algorithm which additionally takes care of property sets that can only
be proved jointly and incorporates previously obtained information from counter
examples.

6.2. VERIFICATION OF GAME PROPERTIES 139

Time Consumption Since the presented method and our extension are based on
the same induction principle and both implemented on top of Fluxplayer, the
time consumption on single properties which are expressible in both approaches
is similar. This changes with our extension that proves a multitude of similar
properties in one run: it often obtains runtimes similar to those for the proof of
single properties and hence greatly increases overall performance.

6.2.3 Epistemic Properties via Epistemic Logic

The first approach which is concerned with the development of a method to prove
epistemic properties of GDL specifications has been given in [RT11a] (and as work-
shop version in [RT11b]). Its underlying property language is standard epistemic
logic [FHMV95].

Syntax and Semantics Formulas ϕ in standard epistemic logic are given by the
grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Krϕ | CBϕ,

where p ∈ P is again a ground atom of G according to the Sequence Invariants
Definition 3.1, r is a player, and B is a subset of the players. Corresponding to
our setting, Krϕ is used to express that player r knows ϕ. Additionally, CBϕ can
be used to formulate that ϕ is common knowledge among all players in B , which is
true in case each player r ∈ B knows ϕ, each player r ∈ B knows that each player
r′ ∈ B knows ϕ, each player r ∈ B knows that each player r′ ∈ B knows that each
player r′′ ∈ B knows ϕ, and so on ad infinitum. An example for the conceptional
necessity of common knowledge is given with the famous Muddy Children Puzzle, which
is described, e.g., in [FHMV95].

The work concentrates on two semantics for the interpretation of formulas: a stan-
dard semantics via Kripke structures [FHMV95], and a newly introduced semantics
via an epistemic game model. The latter structure uses indistinguishable game de-
velopments to define accessibility relations for players, which are needed to interpret
formulas containing knowledge operators Kr and CB . The epistemic game model
provides the basis of our semantics for epistemic sequence invariants in Definition 4.5.
The semantics over Kripke structures and the semantics over epistemic game models
are proved to be equivalent, which shows that the GDL for incomplete-information
games is as expressive as the standard formalism of epistemic logic, even though all
players are completely aware of the game rules and hence in particular the initial state.

Implementation The work puts its main focus on the before-mentioned equivalence
result. However, an implementation for automated formula proofs is sketched shortly
as well. To check if a formula is true with respect to all reachable states at a given
depth k, as a first step, an answer set program is constructed such that each answer
set corresponds to a development of length k that contains all information concerning
the percepts of each player. Tools from Potassco (cf. Section 5.3) are used to compute
all answer sets, which are further processed to construct a single Kripke structure. The
model checker DEMO [vE07] then decides the truth of the formula with respect to the
constructed structure and all game developments of length k.

140 CHAPTER 6. RELATED WORK

Comparison

Expressivity Common knowledge involves an infinite mutual nesting of the players
knowledge. and hence cannot be expressed as macro over the unary knowledge
operator Kr . Consequently, the presented formalism provides additional ex-
pressivity via the additional unary operator CB . In addition, the verification
principle does not require the restriction to positive-knowledge formulas that is
needed in our approach. On the other hand, operator © is not incorporated
here, restricting the formulation of properties to single states. Epistemic state
sequence invariants without ©, however, can in principle be checked by a full
game-tree traversal.

Completeness and Time Consumption The presented approach is complete. How-
ever, checking validity of invariants such as whether a player r knows his legal
and illegal moves in each reachable state, cf. formula (4.4) at page 68, again re-
quires a complete traversal of the game tree and is hence practically applicable
in exhaustively searchable games only.

6.3 Summary

We gave an overview of several approaches which deal with the verification of game
properties in the setting of General Game Playing. In the first part, we focussed on
methods which solve single player games. In addition to approaches which utilise An-
swer Set Programming in this endeavour, we gave a short account on the distinguished
field of Automated Planning which is closely related to General Game Playing. In the
second part, we focussed on two verification approaches which apply Model Checkers to
perform a complete state-space analysis. We further discussed an induction approach
for the verification of state invariants which laid the foundations for our approach.

Chapter 7

Conclusion

In this chapter, we first summarise the main contributions of the thesis in Section 7.1,
and then provide directions for possible improvements and further developments which
are left for future work in Section 7.2.

7.1 Main Contributions

The following list summarises our main contributions and points to own publications
that resulted from this work. Furthermore, we point to the parts of the thesis which
use and extend passages from a paper we have submitted to the Artificial Intelligence
Journal.

Proof Method for State Sequence Invariants We developed a sound theory to
prove rich temporal invariance properties for games formulated over the GDL. To this
end, we introduced a simple yet expressive property description language to address
game properties which may involve arbitrary finite sequences of game states, and pro-
vided a linear-time semantics based on finite state sequences. We defined an encoding
of a formula to an answer set program and proved that the addition of a temporal GDL
extension similar to the one given in [Thi09] and an encoding of a specific state sequence
yields an answer set program whose unique answer set correctly indicates whether the
formula is entailed by that state sequence. Based on this correspondence, we devel-
oped an induction proof theory in the spirit of an earlier method for (non-temporal)
state invariants [ST09] which establishes the validity of a formula using Answer Set
Programming. We formally proved the soundness of our method. Our implementation
shows that properties can efficiently be proved even in complex games. The results are
published in [TV10] and summarised in [HMST11].

Proving Multiple Properties At Once General game players typically aim at
proving large sets of properties, and invoking a proof system for each property indi-
vidually may be costly. This motivated an extension of our proof method which is
able to prove multiple properties while invoking the system only once. We proved the
soundness of our extension and showed that it succeeds in proving at least as many
game properties as the original one. The implementation of this extension confirmed a
significant performance gain. The results are published in [HT10].

141

142 CHAPTER 7. CONCLUSION

Combination and Extension of the Material The material summarised in the
previous two items has been consolidated and significantly extended to a paper in the
Artificial Intelligence Journal [HST12]. The extensions include highly detailed versions
of the before-mentioned proofs and a comprehensive section on our implementation
together with reports on a variety of performed experiments. In the following, we list
parts of this thesis which incorporate and extend text passages from this publication.

• Most sections of the Preliminaries Chapter 2 contain passages from the paper in
significantly rearranged and extended form. We added further material on Answer
Set Programming, Game Theory, game properties, and the General Game Playing
execution model.

• The main content of Chapter 3 on our proof method for knowledge-free state
sequence invariants consists of unaltered or slightly extended sections from the
paper. New passages are the remark on the linear-time encoding of formulas in
Section 3.4.2, Section 3.5.2 on the restricted completeness of the proof method,
Section 3.5.3 on the sound and complete verification at fixed depth, Section 3.6.1
on solving single-player games, Section 3.6.3 on conjunctive formula proofs, and
the discussion in Section 3.7.

• Concerning Chapter 5 on our implementation of the proof method, Section 5.1
on the calculation of domains summarises content of the paper which is now part
of a doctoral thesis [Sch11]. Further material from the paper is incorporated
nearly unaltered in several sections of the chapter. The newly added passages
are Section 5.2.2 on formula encodings with variables, Section 5.3 on the answer
set solving collection Potassco, Section 5.4.2 on experiments concerning epistemic
state sequence invariants, Section 5.4.3 on experiments concerning weak winnabil-
ity, and the summary and outlook in Section 5.5.

Proving Positive-Knowledge Formulas In Chapter 4, we developed a sound ex-
tension to our induction proof method which allows to prove state sequence invariants
which involve positive player-specific knowledge. To this end, we incorporated a unary
knowledge operator to our formula syntax, and provided a semantics which provably
satisfies the S5 properties. We suggested an alternative semantics based on multiple
state sequences, and showed equivalence of both semantics with respect to positive-
knowledge formulas. We adapted our proof method to account for positive-knowledge
formulas with respect to our alternative semantics, and were able to generalise our
soundness result for knowledge-free formulas to this adaption. Moreover, we gener-
alised the restricted completeness result and the result for the correct verification of
properties with respect to a fixed depth of the game tree. We showed how to strengthen
the base case proof, and sketched further generalisations to incorporate previously
proved positive-knowledge formulas and simultaneous proofs for multiple properties.
Experiments on games with incomplete information have shown the practicability of
the generalised approach. The results have been published in [HT12] after submission
of this thesis.

7.2. FUTURE WORK 143

7.2 Future Work

Systematically Discovering Increasingly Complex Properties While we pro-
posed several categories of interesting properties and showed how to efficiently verify
which of them are valid, we did not concentrate on ways to find out which properties
are actually worth being attempted for verification in the first place. In work such
as [Clu07, Sch11, ST07], the discovery of interesting properties is extensively studied,
and a key to success are random moves to reachable states with property violations.
While random walks cannot formally prove properties, they can formally reject them,
which is possible in our method only with respect to the initial state. This additional
approach can hence help to significantly reduce the set of property candidates we con-
sider for verification. The addition of a general falsification mechanism which operates
over an intelligently selected set of reachable states hence forms a useful addition to
our method.

The mentioned reduction of property candidates is a first step towards a compre-
hensive method for the discovery of all valid sequence invariants up to some temporal
degree. Starting with very simple formulas such as true(cell(1 , 1 , x)), the method
could try to prove (or reject) increasingly complex formulas. We have given a gen-
eral scheme for such a method in Section 3.6.3. Besides a generalisation to positive-
knowledge formulas, it needs further instantiation with a sophisticated heuristic to
select formulas according to their structural complexity or their dependency on other
formulas. The heuristic will possibly have to incorporate the GDL clauses and infor-
mation concerning previous proof attempts in order to select formulas which result in
a potentially successful following attempt. In Section 6.1.1, we have already pointed
to some approaches which aim for the systematic discovery of sequence invariants in
the field of Automated Planning. Especially interesting is work which concerns the
discovery of all state invariants in some specific planning domains via relaxation of the
state space [Lin04], which could yield further ideas for the sketched approach.

Increasing Proof Efficiency In Section 5.5, we summarised tools which can help
to decrease the processing time which is needed by an answer set solver. We further
presented several methods to reduce the size of the generated answer set programs
in Section 5.2. The mentioned optimisations do not modify the answers of our proof
method. However, one can possibly further push efficiency by dropping this require-
ment, e.g. by introducing further incompleteness issues while retaining the soundness
of the method. To this end, consider the following two examples.

• All generated induction step programs as well as all base case programs for for-
mulas which contain the temporal operator © require the incorporation of all
clauses which concern terminal , as both the action generator and © require this
keyword. These clauses are quite complex in some games and can yield a process-
ing speedup when replaced, say, by clauses which define a state to be (pseudo)
terminal if one of the players has no legal move (which of course helps only when
the replacement is less complex than the original). Since legal actions are often
defined independent from terminal in a game description, the provability of some
properties is not affected. E.g., persistence formulas in Krieg-Tictactoe such as
cell(1 , 1 , x) ⊃ ©cell(1 , 1 , x) can still be proved with this abstraction.

144 CHAPTER 7. CONCLUSION

• Further optimisation is possible by the omittance of useless induction hypothesis
encodings. E.g., the induction step for formulas of the shape ϕ = terminal ⊃ ψ
amounts to find a sequence σ such that σ � ϕ ∧ ¬© ϕ. Here, the first state of
σ has to be non-terminal anyway (due to the negation in front of ©) and hence
does always satisfy the induction hypothesis ϕ. Consequently, the induction
hypothesis does not provide any information and can be omitted from the proof,
which additionally allows to lower the degree of the temporally extended GDL
clauses by one. A similar effect arises with persistence formulas.

In general, an abstraction scheme is imaginable which first tries to quickly prove for-
mulas with a considerably simplified GDL clause set, and then increases complexity
and hence accuracy of the clauses for unprovable formulas on further iterative proof
attempts.

Additional Functionality As mentioned in connection with a related approach to
formula verification in Section 6.2.3, common knowledge is an interesting additional
concept which cannot be handled with our approach but is certainly worthwhile to
be investigated. Also interesting is the incorporation of advisory functionality to our
proof method. E.g., if a newly designed game does not satisfy the properties which
are desired by the game designer, the proof system could provide assistance such as
“if you alter these clauses as follows, then the property will hold”. Similarly, the game
player might be interested in getting advice such as “when you perform this action,
then your desired property will hold from the successor state on”. While the former
scenario appears to require a completely different technique, the latter scenario seems
realisable by the incorporation of move information to our property language.

Bibliography

[ABW87] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In J. Minker, editor, Foundations of
Deductive Databases and Logic Programming, chapter 2, pages 89–148.
Morgan Kaufmann, 1987.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Meth-
ods in System Design, 15:7–48, 1999.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-
time temporal logic. Journal of the ACM, 49(5):672–713, 2002.

[AHM + 98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer,
Sriram K. Rajamani, and Serdar Tasiran. Mocha: Modularity in model
checking. In A. Hu and M. Vardi, editors, Computer Aided Verifica-
tion, volume 1427 of Lecture Notes in Computer Science, pages 521–525.
Springer Berlin / Heidelberg, 1998.

[Apt97] Krzysztof R. Apt. From Logic Programming to Prolog. International
Series in Computer Science. Prentice Hall, 1997.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
Cambridge University Press, 2001.

[BFM11] Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith. Specifying
and computing preferred plans. Artificial Intelligence, 175(7–8):1308–
1345, 2011.

[BK00] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to express
search control knowledge for planning. Artificial Intelligence, 116(1–
2):123–191, 2000.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[CHH02] Murray Campbell, A. Joseph Hoane, and Feng-Hsiung Hsu. Deep Blue.
Artificial Intelligence, 134:57–83, 2002.

[Clu07] Jim Clune. Heuristic evaluation functions for general game playing.
In Proceedings of the AAAI Conference on Artificial Intelligence, pages
1134–1139, Vancouver, July 2007. AAAI Press.

145

146 BIBLIOGRAPHY

[Cou07] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In Proceedings of the 5th International Conference on Com-
puters and Games, pages 72–83, Berlin, Heidelberg, 2007. Springer.

[CSMG09] Evan Cox, Eric Schkufza, Ryan Madsen, and Michael R. Genesereth.
Factoring general games using propositional automata. In Proceedings
of the IJCAI Workshop on General Intelligence in Game-Playing Agents
(GIGA), pages 13–20, Pasadena, 2009.

[dlRM11] Tomas de la Rosa and Sheila A. McIlraith. Learning domain control
knowledge for TLPlan and beyond. In Proceedings of the ICAPS-11
Workshop on Planning and Learning (PAL), 2011.

[EGG + 09] Enrico Ellguth, Martin Gebser, Markus Gusowski, Roland Kaminski,
Benjamin Kaufmann, Stefan Liske, Torsten Schaub, Lars Schneiden-
bach, and Bettina Schnor. A simple distributed conflict-driven answer
set solver. In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings
of the Tenth International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’09), volume 5753 of Lecture Notes in
Artificial Intelligence, pages 490–495. Springer, 2009.

[EL04] Selim T. Erdoğan and Vladimir Lifschitz. Definitions in answer set pro-
gramming. In V. Lifschitz and I. Niemelä, editors, Proeceedings of 7th
International Conference on Logic Programming and Nonmonotonic Rea-
soning, pages 114–126, 2004.

[FB11] Hilmar Finnsson and Yngvi Björnsson. CadiaPlayer: Search-control tech-
niques. Künstliche Intelligenz, 25(1):9–16, 2011.

[Fer05] Paolo Ferraris. Answer sets for propositional theories. In Proceedings
of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pages 119–131. Springer, 2005.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[FL05a] Paolo Ferraris and Vladimir Lifschitz. Mathematical foundations of an-
swer set programming. In We Will Show Them! Essays in Honour of
Dov Gabbay, pages 615–664. King’s College Publications, 2005.

[FL05b] Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested ex-
pressions. In Theory and Practice of Logic Programming, volume 5, pages
45–74, 2005.

[Gel08] Michael Gelfond. Answer sets. In F. van Harmelen, V. Lifschitz, and B.
Porter, editors, Handbook of Knowledge Representation, pages 285–316.
Elsevier, 2008.

BIBLIOGRAPHY 147

[GGKS11] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub.
Reactive answer set programming. In J. Delgrande and W. Faber, edi-
tors, Proceedings of the Eleventh International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’11), volume 6645 of
Lecture Notes in Artificial Intelligence, pages 54–66. Springer, 2011.

[GKK + 08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. Engineering an incremental ASP
solver. In M. G. de la Banda and E. Pontelli, editors, Proceedings
of the Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer, 2008.

[GKK + 11a] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Marius Schneider. Potassco: The Potsdam answer
set solving collection. AI Communications, 24(2):105–124, 2011.

[GKK + 11b] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub,
Marius Schneider, and Stefan Ziller. A portfolio solver for answer set pro-
gramming: Preliminary report. In J. Delgrande and W. Faber, editors,
Proceedings of the Eleventh International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’11), volume 6645 of Lec-
ture Notes in Artificial Intelligence, pages 352–357. Springer, 2011.

[GKKS09] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. On the implementation of weight constraint rules in conflict-
driven ASP solvers. In P. Hill and D. Warren, editors, Proceedings of the
Twenty-fifth International Conference on Logic Programming (ICLP’09),
volume 5649 of Lecture Notes in Computer Science, pages 250–264.
Springer, 2009.

[GKKS11a] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Challenges in answer set solving. In M. Balduccini and T. Son,
editors, Logic Programming, Knowledge Representation, and Nonmono-
tonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565,
pages 74–90. Springer, 2011.

[GKKS11b] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Ad-
vances in gringo series 3. In J. Delgrande and W. Faber, editors, Proceed-
ings of the Eleventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11), volume 6645 of Lecture Notes in
Artificial Intelligence, pages 345–351. Springer, 2011.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten
Schaub. Conflict-driven answer set solving. In M. Veloso, editor, Pro-
ceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386–392. AAAI Press/The MIT Press,
2007.

148 BIBLIOGRAPHY

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In R. Kowalski and K. Bowen, editors, Proceedings
of the International Joint Conference and Symposium on Logic Program-
ming (IJCSLP), pages 1070–1080, Seattle, 1988. MIT Press.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–386,
1991.

[GL05] Alfonso Gerevini and Derek Long. Plan constraints and preferences in
PDDL3 — the language of the fifth international planning competition.
Technical report, University of Brescia, 2005.

[GLL + 04] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain,
and Hudson Turner. Nonmonotonic causal theories. Artificial Intelli-
gence, 153(1–2):49–104, 2004.

[GLP05] Michael Genesereth, Nathaniel Love, and Barney Pell. General game
playing: Overview of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[GS00] Alfonso Gerevini and Lenhart Schubert. Discovering state constraints
in discoplan: Some new results. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI-2000), pages 761–767. MIT
Press, 2000.

[HMST11] Sebastian Haufe, Daniel Michulke, Stephan Schiffel, and Michael
Thielscher. Knowledge-based general game playing. Künstliche Intel-
ligenz, 25(1):25–33, 2011.

[HST12] Sebastian Haufe, Stephan Schiffel, and Michael Thielscher. Automated
verification of state sequence invariants in general game playing. Artificial
Intelligence Journal, 187–188:1–30, 2012.

[HT10] Sebastian Haufe and Michael Thielscher. Pushing the envelope: Gen-
eral game players prove theorems. In J. Li, editor, Proceedings of the
Australasian Joint Conference on Artificial Intelligence, volume 6464 of
LNCS, pages 1–10, Adelaide, December 2010. Springer.

[HT12] Sebastian Haufe and Michael Thielscher. Automated verification of epis-
temic properties for general game playing. In Proceedings of the In-
ternational Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 339–349, Rome, June 2012.

[IK94] Shigeki Iwata and Takumi Kasai. The Othello game on an n*n board is
PSPACE-complete. Theoretical Computer Science, 123(2):329–340, 1994.

[Kai07] David M. Kaiser. Automatic feature extraction for autonomous general
game playing agents. In Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems, number 93 in
AAMAS ’07, pages 1–7. ACM, 2007.

BIBLIOGRAPHY 149

[KDS06] Gregory Kuhlmann, Kurt Dresner, and Peter Stone. Automatic heuristic
construction in a complete general game player. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 1457–1462, Boston,
July 2006. AAAI Press.

[KE11] Peter Kissmann and Stefan Edelkamp. Gamer, a general game playing
agent. Künstliche Intelligenz, 25(1):49–52, 2011.

[Kis03] Zachary Kissel. Associative memory and the board game Quarto. Cross-
roads. The ACM Magazine for Students, 10(2), December 2003.

[KM08] Fred Kröger and Stephan Merz. Temporal Logic and State Systems.
Springer, 2008.

[KP97] Daphne Koller and Avi Pfeffer. Representations and solutions for game-
theoretic problems. Artificial Intelligence, 94(1):167–215, 1997.

[KS06] Levente Kocsis and Csaba Szepesvri. Bandit based monte-carlo planning.
In ECML-06. Number 4212 in LNCS, pages 282–293. Springer, 2006.

[KSS11] Mesut Kirci, Nathan Sturtevant, and Jonathan Schaeffer. A ggp feature
learning algorithm. Künstliche Intelligenz, 25(1):35–42, 2011.

[LHH + 06] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and
Michael Genesereth. General Game Playing: Game Description Lan-
guage Specification. Technical Report LG–2006–01, Stanford Logic
Group, Computer Science Department, Stanford University, 353 Serra
Mall, Stanford, CA 94305, 2006.

[Lif96] Vladimir Lifschitz. Foundations of logic programming. In Principles of
Knowledge Representation, pages 23–37. MIT Press, 1996.

[Lin04] Fangzhen Lin. Discovering state invariants. In Principles of Knowledge
Representation and Reasoning, pages 536–544, 2004.

[Llo87] John W. Lloyd. Foundations of Logic Programming. Series Symbolic
Computation. Springer, second, extended edition, 1987.

[LT86] John W. Lloyd and Rodney W. Topor. A basis for deductive database
systems II. Journal of Logic Programming, 3(1):55–67, 1986.

[LT94] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In
Principles of Knowledge Representation, pages 23–37. MIT Press, 1994.

[LTT99] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested ex-
pressions in logic programs. Annals of Mathematics and Artificial Intel-
ligence, 25:369–389, 1999.

[MC11] Jean Méhat and Tristan Cazenave. A parallel general game player.
Künstliche Intelligenz, 25(1):43–47, 2011.

[McC63] John McCarthy. Situations and Actions and Causal Laws. Stanford
Artificial Intelligence Project, Memo 2, Stanford University, CA, 1963.

150 BIBLIOGRAPHY

[McD98] Drew McDermott. PDDL — the Planning Domain Definition Language.
Technical Report TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control, 1998.

[McD00] Drew McDermott. The 1998 ai planning systems competition. AI Mag-
azine, 21(2):35–55, 2000.

[MM11] Leora Morgenstern and Sheila A. McIlraith. John McCarthy’s legacy.
Artificial Intelligence, 175(1):1–24, January 2011.

[MS11] Daniel Michulke and Stephan Schiffel. Distance features for general game
playing. In Proceedings of the IJCAI Workshop on General Intelligence
in Game-Playing Agents (GIGA), pages 7–14, Barcelona, 2011.

[MSWS11] Maximilian Möller, Marius Schneider, Martin Wegner, and Torsten
Schaub. Centurio, a general game player: Parallel, java- and asp-based.
Künstliche Intelligenz, 25(1):17–24, 2011.

[MT99] Victor W. Marek and Miroslaw Truszczynski. Stable models and an
alternative logic programming paradigm. In The Logic Programming
Paradigm: a 25-Year Perspective, pages 375–398. Springer, 1999.

[MT09] Daniel Michulke and Michael Thielscher. Neural networks for state evalu-
ation in general game playing. In W. Buntine, M. Grobelnik, D. Mladenic,
and J. Shawe-Taylor, editors, Proceedings of the European Conference on
Machine Learning (EMCL), volume 5803 of LNCS, pages 95–110, Bled,
Slovenia, September 2009. Springer.

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25:241–273, 1999.

[NSS99] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model seman-
tics of weight constraint rules. In Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’99), volume 1730 of Lecture, pages 317–331. Springer. LNAI, 1999.

[Osb04] Martin J. Osborne. An Introduction to Game Theory. Oxford University
Press, 2004.

[Pel93] Barney Pell. Strategy Generation and Evaluation for Meta-Game Play-
ing. PhD thesis, Trinity College, University of Cambridge, 1993.

[Pit68] Jacques Pitrat. Realization of a general game playing program. In A.
Morrell, editor, Proceedings of IFIP Congress, pages 1570–1574, Edin-
burgh, August 1968.

[Pri94] David Pritchard. The Encyclopedia of Chess Variants. Godalming, 1994.

[Ras07] Eric Rasmusen. Games and Information: an Introduction to Game The-
ory. Blackwell, 4th edition, 2007.

BIBLIOGRAPHY 151

[Rin08] Jussi Rintanen. Regression for classical and nondeterministic planning.
In Proceeding of the 2008 conference on ECAI 2008: 18th European Con-
ference on Artificial Intelligence, pages 568–572. IOS Press, 2008.

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, second edition, 2003.

[Ros09] Jason Rosenhouse. The Monty Hall Problem. Oxford University Press,
2009.

[RT11a] Ji Ruan and Michael Thielscher. The epistemic logic behind the game de-
scription language. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 840–845, San Francisco, August 2011. AAAI Press.

[RT11b] Ji Ruan and Michael Thielscher. On the comparative expressiveness of
epistemic models and GDL-II. In Proceedings of the IJCAI Workshop
on General Intelligence in Game-Playing Agents (GIGA), pages 53–60,
Barcelona, 2011.

[Rua09] Ji Ruan. Reasoning about Time, Action and Knowledge in Multi-Agent
Systems. PhD thesis, University of Liverpool, 2009.

[RvW09] Ji Ruan, Wiebe van der Hoek, and Michael Wooldridge. Verification of
games in the game description language. Journal of Logic and Compu-
tation, 19(6):1127–1156, 2009.

[RW05] Stuart Russell and Jason Wolfe. Efficient belief-state AND-OR search
with application to kriegspiel. In L. Kaelbling and A. Saffiotti, editors,
Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 278–285, Edinburgh, UK, August 2005.

[SBB + 07] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto,
Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is
solved. Science, 317:1518–1522, 2007.

[Sch00] Jonathan Schaeffer. The games computers (and people) play. Advances
in Computers, 52:190–268, 2000.

[Sch10] Stephan Schiffel. Symmetry detection in general game playing. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pages 980–
985, Atlanta, July 2010. AAAI Press.

[Sch11] Stephan Schiffel. Knowledge-Based General Game Playing. PhD thesis,
Technische Universität Dresden, 2011.

[SLB09] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2009.

[ST07] Stephan Schiffel and Michael Thielscher. Fluxplayer: A successful gen-
eral game player. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 1191–1196, Vancouver, July 2007. AAAI Press.

152 BIBLIOGRAPHY

[ST09] Stephan Schiffel and Michael Thielscher. Automated theorem proving
for general game playing. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 911–916, Pasadena, July
2009.

[ST10] Stephan Schiffel and Michael Thielscher. A multiagent semantics for
the game description language. In J. Filipe, A. Fred, and B. Sharp,
editors, Agents and Artificial Intelligence, volume 67 of Communications
in Computer and Information Science, pages 44–55. Springer, 2010.

[ST11] Stephan Schiffel and Michael Thielscher. Reasoning about general games
described in GDL-II. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 846–851, San Francisco, August 2011. AAAI Press.

[Thi09] Michael Thielscher. Answer set programming for single-player games in
general game playing. In P. Hill and D. Warren, editors, Proceedings
of the International Conference on Logic Programming (ICLP), volume
5649 of LNCS, pages 327–341, Pasadena, July 2009. Springer.

[Thi10] Michael Thielscher. A general game description language for incomplete
information games. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 994–999, Atlanta, July 2010.

[Thi11a] Michael Thielscher. The general game playing description language is
universal. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence, pages 1107–1112, Barcelona, July 2011. AAAI Press.

[Thi11b] Michael Thielscher. General game playing in AI research and education.
In J. Bach and S. Edelkamp, editors, Proceedings of the German Annual
Conference on Artificial Intelligence (KI), volume 7006 of LNAI, pages
26–37, Berlin, Germany, October 2011. Springer.

[Thi11c] Michael Thielscher. Translating general game descriptions into an ac-
tion language. In M. Balduccini and T. Son, editors, Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning: Essays
in Honor of Michael Gelfond, volume 6565 of LNAI, pages 300–314.
Springer, 2011.

[TV10] Michael Thielscher and Sebastian Voigt. A temporal proof system for
general game playing. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pages 1000–1005, Atlanta, July 2010. AAAI Press.

[vdHRW07a] Wiebe van der Hoek, Mark Roberts, and Michael Wooldridge. Social laws
in alternating time: Effectiveness, feasibility, and synthesis. In Synthese,
volume 156, pages 1–19, 2007.

[vdHRW07b] Wiebe van der Hoek, Ji Ruan, and Michael Wooldridge. Strategy logics
and the game description language. In Proceedings of the Workshop on
Logic, Rationality and Interaction, Bejing, August 2007.

BIBLIOGRAPHY 153

[vE07] Jan van Eijck. DEMO — a demo of epistemic modelling. In J. van Ben-
them, D. Gabbay, and B. Löwe, editors, Interactive Logic — Proceedings
of the 7th Augustus de Morgan Workshop, Texts in Logic and Games 1,
pages 305–363, 2007.

[ZST09] Dengji Zhao, Stephan Schiffel, and Michael Thielscher. Decomposition
of multi-player games. In A. Nicholson and X. Li, editors, Proceedings of
the Australasian Joint Conference on Artificial Intelligence, volume 5866
of LNCS, pages 475–484, Melbourne, December 2009. Springer.

	Contents
	1 Introduction
	1.1 General Game Playing
	1.2 Automated Theorem Proving for GGP
	1.3 Structure of the Thesis

	2 Preliminaries
	2.1 Answer Set Programming
	2.1.1 Syntax of Logic Programs
	2.1.2 Answer Set Semantics for Logic Programs
	2.1.3 Extension of Logic Programs by Weight Atoms

	2.2 General Game Playing
	2.2.1 Formalisation of Games
	2.2.2 Syntax of the Game Description Language
	2.2.3 Transition Semantics for the Game Description Language
	2.2.4 Game Properties
	2.2.5 Execution Model

	2.3 Summary

	3 Sequence Invariants
	3.1 The Importance of Sequence Invariants in GGP
	3.2 Formalisation of Sequence Invariants
	3.2.1 Syntax
	3.2.2 Semantics
	3.2.3 Properties of the Semantics

	3.3 Prerequisites for the Verification Method
	3.3.1 Temporal GDL Extension
	3.3.2 Encoding Sequence Invariants

	3.4 Verification of Sequence Invariants
	3.4.1 Base Case
	3.4.2 Induction Step
	3.4.3 Example

	3.5 Properties of the Verification Method
	3.5.1 Soundness
	3.5.2 Restricted Completeness
	3.5.3 Sound and Complete Verification at Fixed Depth

	3.6 Improvements
	3.6.1 Solving Single-Player Games
	3.6.2 Proving Multiple Properties At Once
	3.6.3 A General Scheme for Conjunctive Formula Proofs
	3.6.4 Non-Playable Sequences

	3.7 Discussion
	3.7.1 Choosing Answer Set Programming
	3.7.2 Expressibility Versus Practical Useability

	3.8 Summary

	4 Epistemic Sequence Invariants
	4.1 The Game Krieg-Tictactoe
	4.2 Formalisation of Epistemic Sequence Invariants
	4.2.1 Syntax
	4.2.2 Semantics
	4.2.3 Satisfaction of the S5 Properties
	4.2.4 Complete Knowledge in the Initial State

	4.3 Linear Time In The Setting Of Knowledge
	4.3.1 Positive-Knowledge Formulas
	4.3.2 View Namings
	4.3.3 Sequence Mappings
	4.3.4 An Alternative Formula Semantics Over Sequence Mappings
	4.3.5 Equivalence of the Two Formula Semantics

	4.4 Prerequisites for the Generalised Verification Method
	4.4.1 Epistemic Temporal GDL Extension
	4.4.2 Encoding Positive-Knowledge Formulas

	4.5 Verification of Positive-Knowledge Formulas
	4.5.1 Base Case
	4.5.2 Induction Step

	4.6 An Example Proof
	4.6.1 Base Case
	4.6.2 Induction Step

	4.7 Properties of the Generalised Verification Method
	4.7.1 Soundness
	4.7.2 Restricted Completeness
	4.7.3 Sound and Complete Verification at Fixed Depth

	4.8 Improvements
	4.8.1 Strengthening the Base Case Proof
	4.8.2 Adding Previously Proved Positive-Knowledge Formulas
	4.8.3 Proving Multiple Properties At Once

	4.9 Discussion
	4.10 Summary

	5 Implementation
	5.1 Domain Calculation
	5.2 Optimisations
	5.2.1 Reducing the Number of Clauses
	5.2.2 Formula Encoding With Variables

	5.3 The Answer Set Solving Collection Potassco
	5.3.1 Clingo
	5.3.2 IClingo

	5.4 Experimental Results
	5.4.1 Sequence Invariants
	5.4.2 Epistemic Sequence Invariants
	5.4.3 Weak Winnability

	5.5 Summary

	6 Related Work
	6.1 Solving Single-Player Games
	6.1.1 Automated Planning
	6.1.2 Via Answer Set Programming

	6.2 Verification of Game Properties
	6.2.1 ATL Formulas via Model Checking
	6.2.2 State Invariants via Answer Set Programming
	6.2.3 Epistemic Properties via Epistemic Logic

	6.3 Summary

	7 Conclusion
	7.1 Main Contributions
	7.2 Future Work

	Bibliography

