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Abstract   

 

Background Empirical studies in psychiatric research and other fields often show substantially high 
refusal and drop-out rates. Non-participation and drop-out may introduce a bias whose magnitude 
depends on how strongly its determinants are related to the respective parameter of interest.  
Methods When most information is missing, the standard approach is to estimate each respondent’s 
probability of participating and assign each respondent a weight that is inversely proportional to this 
probability. This paper contains a review of the major ideas and principles regarding the computation 
of statistical weights and the analysis of weighted data.  
Results A short software review for weighted data is provided and the use of statistical weights is 
illustrated through data from the EDSP (Early Developmental Stages of Psychopathology) Study. The 
results show that disregarding different sampling and response probabilities can have a major impact 
on estimated odds ratios.  
Conclusions The benefit of using statistical weights in reducing sampling bias should be balanced 
against increased variances in the weighted parameter estimates.  
 
Key words: selection bias, non-response, drop-out, missing values, weighting, survey  
 
 
Sampling bias due to systematic non-response or drop-out 

 
Non-participation is a common problem in various scientific fields like social sciences, 
economy and the epidemiology of mental disorders. Unlike missing values of specific 
variables, whole units of observation are missing. Researchers usually assume that refusal is 
almost never a pure random process, that is, a process that is independent of all the 
phenomena under consideration. Instead, participation is assumed to be influenced by these 
phenomena (Greenland 1977; Levy and Lemeshow 1999, p. 393ff.). Kessler et al. (1995) 
cited some papers that had demonstrated elevated refusal rates in the presence of a history of 
mental disorders and treatment. For instance, Allehoff et al. (1983) found that, in a general 
population study on mental disorders among 8-year-old children, non-participation or drop-
out (rate=38.5%) was associated with lower IQ values and scholastic difficulties. The problem 
of non-response has apparently increased during the until 1995 decades (Kessler et al. 1995). 
In longitudinal studies, the magnitude of this problem increases further when participation 
during the whole course of a study is required. For example, in a cohort study from the US, 
Preisser et al. (2000) have found that cigarette smokers were more likely to drop out of the 
study. Consider the case where 70% of the sampled units complete the first investigation and, 
in each of two consecutive waves of assessments, another 15% of the remaining participants 
drop out of the study. This would result in a completion rate for the entire study of only 
50.6%. Even in cross-sectional studies in psychiatric epidemiology, completion rates typically 
do not exceed 80% and are often even much lower. Clearly, selection bias can not only arise 
from systematic non-response and drop-out but also from different sampling probabilities 
induced by the study design. In practice, one may apply the heuristics that the poorer a 
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response rate is, the more likely is a substantial bias due to non-participation. A non-response 
rate of, say, 10% will probably not induce a strong bias unless non-participation is strongly 
associated with the parameters of interest. The optimal strategy to overcome non-participation 
is to maximize the response rate during the data collection process as “you can’t fix by 
analysis what you bungled by design” (Light et al.1990). For an overview on strategies to 
improve completion rates, see Kessler et al. (1995) and Levy and Lemeshow (1999, p. 395ff). 
Usually,more resources are required to increase a participation rate from, say, 70% to 80 % 
than from 60 % to 70% because, at the end of the study phase, those individuals who are 
difficult to contact and unwilling to participate tend to cumulate. Thus, there is typically no 
linear association between the participation rate and the costs of a survey, and restrictions in 
financial and personal resources often result in insufficient completion rates. In this paper, we 
give an outline on the computation of statistical weights to adjust for sampling bias and the 
analysis of weighted data. A short review on software for weighted data is provided and the 
use of statistical weights is exemplified through data from the EDSP Study (Wittchen et al. 
1998a, b; Lieb et al. 2000).  
 
Weighting and other methods to compensate for non-participation 

 
The easiest statistical strategy to deal with unit non-response or drop-out is to omit the non-
respondents or drop-out cases and analyse the data under the assumption that every unit 
entered the sample with equal probability. Clearly, any difference between responders and 
non-responders that is related to the parameter of interest will introduce sampling bias. 
Through decreased participation rates in the past, the attention has been drawn to statistical 
methods meant to reduce the selection bias introduced by non-response or drop-out. If the 
distributions of certain characteristics such as sex or age in the target population are known 
from external data sources and these variables are collected in the study, non-response related 
to those characteristics can be assessed and adjusted for by weighting the responders (see 
below). This method is called post-stratification (Kessler et al. 1995). In Germany and other 
European countries, for instance, the exact distributions of age, gender and geographical 
location in the target population are known through the registry databases. A different 
approach not covered in this paper referred to as doublesampling collects at least some basic 
socio-demographic information among a randomly selected subsample of the non-participants 
(and of all participants) (Levy and Lemeshow 1999,p. 402 ff.). In longitudinal studies, 
information on the characteristics of drop-out cases is available from prior assessment waves. 
There are three major statistical approaches to address non-response or drop-out: (1) the 
imputation of missing values, (2) the consideration of non-participation or drop-out within 
statistical models, and (3) the assignment of statistical weights to the participants. In this 
paper, we focus on the latter method as it is the most appropriate approach for the scenario 
mainly covered in this paper, where entire data sets are missing except for some basic socio-
demographic information. A detailed description of the other methods is beyond the scope of 
this article. Briefly, especially the multiple imputation method for missing values has received 
increasing attraction in recent years. The observed data are used to estimate the missing 
values, and multiple completed data sets are created by drawing different random numbers 
from the posterior predictive distribution of the missing value (e. g. Rubin and Schenker 
1991). Multiple imputation accounts for the variance introduced by drawing random numbers; 
a single imputation would treat the imputed values as true observations and, thus, under-
estimate the variance in the target parameter. This method has the advantage that, after 
imputation, every kind of statistical analysis is possible, which makes it particularly suitable 
for public use. Furthermore, globally applicable formulas exist for pooled point estimates and 
confidence intervals across the different imputed data sets (repeated-imputation inference) (e. 
g. Rubin and Schenker 1991; Rubin 1996). Besides, unlike the weighting method, this 



approach requires no omission of cases provided that at least several values are observed. On 
the other hand, this method is not intended to be used for a fraction of more than 50 % 
missing information (Rubin 2003). For an overview of sophisticated data imputation 
procedures within particular statistical models via the EM algorithm, consult, for instance, the 
textbook by Schafer (1997). Diggle et al. (1994) have provided an outline of statistical models 
that incorporate the drop-out process in longitudinal studies. Here, sensitivity analyses that 
analyse the impact of some potential scenarios of non-response on the results are of particular 
interest (e. g. Scharfstein et al. 1999; Touloumi et al. 2002). For a review on statistical models 
(Bayesian models, sensitivity analyses and simulation techniques) to address multiple bias 
arising not only from non-participation, see Greenland (in press).  
 
Sampling designs 

 
The weights in statistical analyses are designed to compensate differences in participation 
rates introduced by different sampling probabilities or unintended systematic non-response. 
Different sampling probabilities as well as non-response can occur at several selection stages. 
First, the subjects might have been sampled with different probabilities in different strata. In 
the EDSP Study, for instance, the younger individuals were oversampled because they were 
of particular interest and, hence, more statistical precision was required for them (see below). 
Another example refers to screening designs. In the epidemiology of mental disorders, a two-
stage sampling design is sometimes used. Usually, the subjects are drawn with equal 
probabilities at the first sampling stage, and each individual completes a screening instrument 
on mental problems. For the second stage, those who endorsed items on mental problems are 
sampled with a higher probability than those who did not. Consecutively, those who were 
sampled for the second stage complete a more costly and accurate instrument such as a 
structured diagnostic interview (e. g. Wittchen et al. 1999; Jacobi et al. 2002). The rationale 
behind this study design is the increasing efficiency of a sample: those who endorsed 
symptoms on the screener are more likely to have mental disorders, and the expected number 
of cases with rare conditions increases. Finally, the participants using the costly instrument 
are assigned a weight based on the inverse probability of being sampled for the second stage. 
More detailed discussion of sample designs can be found in Levy and Lemeshow (1999) and 
Smith (2001).  
 
The computation of statistical weights 

 
Recently, the use of statistical weights has become increasingly prominent in statistics to 
adjust the distribution of the remaining subjects‘ characteristics to that of the target population 
(e. g. Rotnitzky and Robins 1997; Preisser et al. 2000;Yung and Rao 2000; Miller et al. 2001; 
Smith 2001). In this connection, it is important to note that the lack of sampling bias in the 
estimation of two marginal distributions (e. g. prevalence rates) does not imply a lack of bias 
in the estimation of the association between the corresponding variables (Greenland 1977). To 
demonstrate the key idea, we assume for the moment that sampling takes place only at one 
stage and depends only on a single variable. Usually, this variable is categorical. Imagine, for 
instance, that different age groups were sampled with different probabilities. Then the 
sampling bias is removed by weighting the subjects with a weight proportional to the inverse 
sampling probability. To calculate the weighting variable, the inverse sampling probability of 
each individual in the sample is divided by the mean of the inverse sampling probabilities of 
all individuals. This yields a weighting variable that is scaled such that the mean weight of all 
individuals is 1 and the weighted sample size equals the actual, unweighted sample size. 
When more than one categorical variable is involved, cells for adjustment can be formed. 
Each cell contains a combination of the determinants of participation, and adjustment requires 



that their joint distribution in the target population is known. This strategy, however, is only 
applicable to a – relative to the sample size – small number of determinants. Otherwise, the 
weight would be based on many low cell frequencies in the sample, and the resulting high 
variance in the weighting variable would yield a strong increase in confidence interval width 
(see below). Smoother weights can be obtained with models using the response indicator as 
outcome when some information is available also about the non-responders. The number of 
determinants can be reduced to a single variable, a so-called balancing score. Its aim is to 
estimate a certain individual’s propensity score which is, in this context, the estimated 
probability that the individual completes the study on the basis of the information available 
for responders and non-responders (e. g. Heyting et al. 1992). The concept of propensity 
scores was originally developed to adjust for assignment bias in causal inference in non-
randomized treatment and observational studies. The propensity score here is the probability 
of being assigned to one of two groups (Rosenbaum and Rubin 1983; Rosenbaum 2002). 
Balancing scores are often derived from logistic regression models (Kessler et al. 1995) 
because they tend to yield the smoothest fit to the data (McCullagh and Nelder 1989). A 
model should reduce the number of covariates to those with the highest predictive value in a 
suitable way, that is, the balancing score should have a low predictive standard deviation for 
each individual, and the model should fit the data. The omission of unnecessary covariates 
generally results in more stable predictions when the results are extrapolated to other 
populations (McCullagh and Nelder 1989). The covariate selection and model specification to 
calculate a weight are always a trade-off between bias reduction and increase in variance of 
the weight. Bias reduction is assessed through the difference in point estimates between 
weighted and unweighted analysis, as well as between the use of different weights. Typically, 
the variance of the weighted estimator increases linearly with the variance of the weighting 
variable (Little et al. 1997). Hence, if added variance dominates bias reduction, the weighting 
variable should be modified to have a lower variance. Modifications to reduce variance 
include trimming (transformations that reduce the extreme tails of a distribution), shrinking 
(transformations where the distribution is shrunken toward the mean to reduce skewness), 
categorizing the weight (and assigning the average weight to the individuals within the same 
category) or collapsing given weight strata (Little et al. 1997, and references therein). As 
already mentioned, different sampling probabilities, non-response and drop-out can occur at 
different stages of sampling. To derive a statistical weight that compensates for different 
patterns of non-response at the different stages of selection, it is natural to multiply the 
statistical weights for the different stages because they reflect conditional probabilities of a 
participant’s entering the next stage given that the present stage has been completed (Kessler 
et al. 1995; Little et al. 1997). Statistically, this argument is based on the fact that every joint 
probability density function can be factorized into conditional densities over time (e. g. Cox 
and Wermuth 1996).   
 
The analysis of weighted data 

 
Once a statistical weight is established, it can, in principle, be applied to all analyses to be run 
with the data set. However, whether weighting is really necessary for a specific analysis and, 
if so, how much information is necessary to be considered in the weight depends on the 
specific parameter under consideration. Point estimates are usually modified by multiplying 
the contribution of each individual to a statistic by its statistical weight (e. g. to compute a 
weighted mean, each individual’s value of a variable is multiplied by the weight of that 
individual, then the sum over the individuals is calculated and divided by the sample size). 
The crucial issue in all analyses of weighted data is that the statistical weights do not 
represent true numbers of observations, but only expected numbers that would apply if the 
statistical weights contained all information about the sampling probabilities and the same 



sample arose from simple random sampling (a sample where all sets of subjects of the same 
size are sampled with the same probability). For example, a weight of 2 in an individual does 
not imply a double accuracy in the measurements from this individual as compared to an 
individual with a weight of 1 (assuming, for example, normal distribution; in other cases the 
variance often depends on the mean). Thus, statistical procedures are required that do not rely 
on the correct specification of the variances in a model. Exact formulas for variances are only 
feasible for very simple methods like the computation of means (Smith 2001). For more 
complex methods like regression models, exact formulas tend to become quite complicated, 
wherefore resampling or approximative procedures become attractive. For large samples, the 
Huber-White sandwich estimator of variance yields consistent estimates of variances, for 
instance, from regression models even if the model is misspecified. This method is also 
known as Taylor series or linearization method. Here, the variances are robustly estimated in 
a broader class of models than the specified one. The estimates do not rely on the correctness 
of assumptions about the type of distribution of the outcome, its variances and the adequacy 
of the model equation (White 1982; Binder 1983; Royall 1986). This method, nevertheless, 
has two drawbacks that require consideration. First, it disregards the random component in the 
weighting variable (if the weighting determinants are not solely introduced by design). This, 
however, can be neglected in large samples when the random error in the weighting variable 
is small. Secondly, the use of the sandwich estimator may lead to substantially increased 
variances when a regression model is correct (Kauermann and Carroll 2001). Thus, if the 
unweighted point estimate is very close to the weighted point estimate and the model is 
adequate in other terms, the use of the sandwich estimator may yield further loss of power. 
This argument also applies to weighted estimates of means (Little 1986). On the other hand, 
the use of the sandwich estimate also yields valid estimates of confidence intervals if the 
model under consideration is only a rough approximation of the true functional relation 
between outcome and covariates. Clustering of observations and stratification in the sample 
design can also be considered with appropriate modifications of the sandwich estimator 
(Royall 1986; Heeringa and Liu 1998). Another class of methods for computing variances and 
confidence intervals in weighted data sets is provided by resampling methods. These non-
parametrical procedures can also be applied to small samples because their assumptions are 
not based on asymptotical distribution theory for large samples. The bootstrap creates the 
variation in the parameter of interest by drawing samples with replacement from the original 
sample; each resampled data set has the same size as the original sample. Typically, at least 
1,000 replications are necessary for confidence intervals (Efron and Tibshirani 1993). The 
jackknife creates the variation from repeatedly omitting (usually) one observation and 
calculating the estimate of the parameter with the remaining cases (Efron and Tibshirani 
1993). Both approaches allow one to address random components in the weighting variable 
through the resampling procedure. Beside the enormous additional computing time, some 
pitfalls in their use exist that require attention (Carpenter and Bithell 2000; Pigeot 2001). A 
technique similar to the jackknife, but with a wider application scope is provided by balanced 
repeated replication (BRR). BRR creates replication samples that consist of a randomly 
selected half of the original sample. As in bootstrap methods, each replication must reproduce 
the sampling design (e. g. sample entire clusters for clustered observations) and balanced 

indicates that the number of replications needed is reduced. An estimate of variance is 
obtained by averaging the variance estimate of each replication (Kish and Frankel 1970). 
Unlike the jackknife, BRR can also be used for “smooth” statistics like the median (Rao and 
Shao 1999).  
 
Statistical software for weighted data 

 



Most procedures in standard software packages assume that the data were collected by simple 
random sampling. Heeringa and Liu (1998) have demonstrated that neglecting survey design 
aspects such as weighting can lead to false positive results in regression analyses in data sets 
from major studies in psychiatric epidemiology like the NCS (National Comorbidity Survey, 
Kessler et al. 1994). Analysing a data set on medical practice guidelines and malpractice 
litigation, Troxel et al. (1997) have shown that the disregard of selection bias can also yield 
false negative results. Using data on diabetes and risk factors for diabetes, Brogan (1998) has 
demonstrated that a naive analysis that disregards weighting and clustering can yield invalid 
prevalence estimates as well as dramatical inflation of sample size. In this section, we provide 
a brief overview of weighted data and other sampling features in five commercial programs.  
 
Stata 

 
In Stata (version 8; StataCorp 2003), the sandwich estimator can be applied to many different 
kinds of regression models, including the classes of generalized linear models (procedure 
GLM) and multivariate generalized linear models such as random, fixed and population 
average effects models (procedure XTGEE, using generalized estimating equations). This also 
applies to almost all survival analyses (ST) procedures. There is a set of  “Stata survey 
(SVY)” commands, which additionally allow to account for stratification and clustering in the 
sample design by applying appropriate versions of the sandwich estimator (Royall 1986). 
These commands include procedures for the estimation of means, ratios and proportions 
(SVYMEAN and SVYTAB) as well as 12 commands for regression analyses. The latter 
include also non-standard models like instrumental variables regression (SVYIVREG) or 
generalized negative binomial regression (SVYGNBREG). All these procedures allow for a 
finite population correction (when the source population is large enough, it can be considered 
as infinite). Bootstrapping and jackknife can be combined with almost every other procedure, 
but no weighting statement is allowed for in this case since version 8. This is because the 
resampling procedures as implemented in Stata would treat the weights for the individuals as 
nonrandom, which is only true if the sampling probabilities are exactly known for all 
respondents. Stata, is fully programmable. See http://www.stata.com for more information.  
 
SAS 

 
 The ninth version of SAS (SAS Institute Inc. 2003) provides four procedures that apply the 
sandwich matrix and allow for weighting, clustering and stratification. Two of them 
(SURVEYMEANS and SURVEYFREQ) are for descriptive analysis and two of them for 
linear (SURVEYREG) and logistic regression (SURVEYLOGISTIC), repectively. 
SURVEYLOGISTIC also allows for link functions other than the logit link and for ordinal 
and multinomial logistic regressions (outcomes with more than two ordered or unordered 
categories, respectively). The procedure MIXED fits linear mixed models and allows the 
sandwich estimator to be used to account for weighted data. Some procedures in SAS provide 
bootstrap and jackknife estimates of variance. SAS offers the programming procedure IML to 
write one’s own commands, but this tool requires a separate licence. For more information see 
http://support.sas.com/91doc/docMainpage.jsp.  
 
SUDAAN 

 
 SUDAAN (version 9) (Shah et al. 2004) is a software system especially designed for survey 
data. It does not only allow one to account for weighting, clustering and stratification, but also 
for multistage designs. However, it offers only eight statistical procedures: CROSSTAB, 
RATIO and DESCRIPT serve to calculate means, rates, ratios and association measures; 



regression procedures include REGRESS (linear regression), LOGISTIC (logistic regression), 
MULTILOG (ordinal and multinomial logistic regression) and LOGLINK (log-linear 
models). Finally, there are two procedures for survival analysis – KAPMEIER for Kaplan-
Meier estimates for age-specific cumulative incidence rates and SURVIVAL for Cox 
regression. All procedures offer variance computation with the sandwich matrix, balanced 
repeated replication and different jackknife procedures. SUDAAN is rather difficult to handle 
in the stand-alone version, but there is also a SAS callable version (compatible with SAS, 
version 9). More information can be found at http:// www.rti.org/sudaan/0.  
 
S-Plus 

 
 S-Plus (version 6.2; Insightful Corp. 2003) is a very rich software system. It offers several 
add-on libraries and the download is free once one has a licence for S-Plus. The beta version 
of the library RESAMPLE provides procedures most of which allow for a weight argument as 
well as for the specification of sampling clusters and stratas. The commands in this library 
offer the use of many different bootstrap and jackknife techniques that can be applied to any 
statistic. The library ROBUST allows one to specify a weight for robust linear regression and 
quantile regression models. However, robustness here refers to extreme data points and the 
confidence intervals are not necessarily robust against misspecified variances by introducing a 
weight. The CORRELATED DATA library offers procedures to fit marginal and mixed-
effects models to correlated and nested sampling designs. These have a weight statement. 
Stratified sampling can be addressed in a globally applicable option and multistage sampling 
with a customized function. Finally, S-Plus is fully programmable with the object oriented 
language S. See http://www.insightful.com/products/splus/default.asp for more information.  
 
SPSS 

 
The software package SPSS in the version 13 (SPSS Inc. 2004) allows one to specify a global 
weight variable. The weight, however, is ignored by some procedures, and others only 
provide accurate weighted point estimates. From the twelfth version onwards, SPSS offers the 
COMPLEX SAMPLES add-on module, which, however, requires a separate licence. This 
module applies the sandwich estimator and allows one to take into account weighting, 
clustering, stratification and multistage sampling. However, only four procedures are included 
in this module. CSDESCRIPTIVES offers means, ratios, and their comparisons; 
CSTABULATE provides one- and two-way frequency tables; CSGLM fits linear models; and 
CSLOGISTIC calculates binary and multinomial logistic regressions. The URL of SPSS is 
http://www.spss.com.  
 
Illustrating the use of weights through data from the EDSP Study 

 
As a practical research example, we assessed the effect of using different statistical weights 
through data from the EDSP Study (Wittchen et al. 1998a, b; Lieb et al. 2000). The EDSP is a 
representative, prospective general population study on early phases of the development of 
mental and substance use disorders and their risk and vulnerability factors. The probands 
come from the city of Munich and its suburbs. Fig. 1 illustrates the design of the EDSP. 
Initially, the 14- to 15-year-old individuals at the baseline wave of assessment were sampled 
with twice the probability of the 16- to 21-year-olds, and the 22- to 24-year-olds were 
sampled at half this probability. In the present article, we focus on only 933 probands of the 
young cohort (14–17 years of age at baseline), whose biological mothers were interviewed. 
Among these mothers, parental diagnoses and parenting styles of education were assessed 
(among other variables not analysed in this paper). We examined the associations among a 



variety of covariates and the new onset of panic attacks during the EDSP follow-up (T1/T2). 
Three weighting variables were created: (i) the T0 weight which adjusts the observed 
marginal distributions of age, gender and geographic location among 1,395 individuals (14–
17 years old) at baseline to the distribution in the population of Greater Munich; (ii) the T1 
weight which multiplies the T0 weight with the inverse T1/T0 ratios of the joint frequencies 
of sex, age and region (here Munich city vs. suburbs of Munich only) in 16 cells. For this 
purpose, 1,228 adolescents who had completed the first follow- up (T1) were used; and (iii) 
the T2-MOT weight which multiplies the T0 weight by the inverse T2- MOT/T0 ratios of the 
joint frequencies of sex and age in eight cells among 933 participants who had completed all 
three EDSP waves of assessment (T0, T1, T2) and whose biological mothers had been 
interviewed (MOT). Region was no longer considered because the drop-out rates (drop-out 
from 1,395 individuals at baseline to 933 in the final sample) were almost equal here (35.1% 
Munich city, 32.7% Munich suburbs; OR=0.91, 0.69–1.20, p=0.516, adjusted for eight cells 
of age and sex; weighted with the T0 weight). Diagnoses at baseline were not incorporated 
into the weighting variables because they were not predictive of drop-out from 1,395 
individuals at baseline to 933 in the final sample (adjusted for age, gender and Munich city vs. 
suburbs with the T0 weight) or they had such a low prevalence that no major bias was 
expected by disregarding them (i. e. dysthymia with 57.6% vs. 33.9% drop-out rate, OR=2.72, 
1.36–5.45, and a prevalence of 2.3%; and agoraphobia w/o panic disorder with 59.7 vs. 33.7% 
drop-out rate, OR=2.94, 1.38–6.28, and a prevalence of 2.7 %). The standard deviation of the 
T0 weight is lowest with 0.39 and increases slightly to 0.40 for the T1 and to 0.45 for the T2-
MOT weight. We obtained robust confidence intervals with the Huber- White sandwich 
estimator. All analyses were run with Stata 8 (Stata Corp. 2003). Of the 933 individuals, 30 
were omitted from the analyses as they already had a panic attack at T0 leaving a total of 903 
respondents for analyses. Table 1 contains the weighted and the unweighted results of the 
associations (adjusted for age and gender) of several predictors with incident panic attack at 
T1/T2 from separate logistic regressions. Whereas the point estimates were fairly equal across 
the three weights, there are some noteworthy discrepancies between the weighted and the 
unweighted results. The unweighted odds ratio of reporting a suicide attempt at baseline and 
panic attack later is 2.41 and rises at least to 4.65 in the weighted analyses. Although this odds 
ratio did not reach statistical significance in any of the models, a larger sample might have led 
to a different conclusion. Similar results were found for social phobia and the FAD (family 
assessment device) problem-solving and communication scales. A diagnosis of depression at 
baseline, on the other hand, yielded an unweighted estimate of 2.32, which was considerably 
higher than each of the weighted estimates (at most 1.69). In order to see which component of 
the weighting scheme was mainly responsible for these discrepancies, we analysed the 
interactions of age, gender and location with the predictors and incidence of panic attacks (in 
separate models). With the T2-MOT weight, we found that the odds ratio of the FAD 
communication scales increased with increasing age (OR for communication* age in 
years=1.28, 95% CI=1.04–1.58, main effect communication OR=0.01, 0.0002–0.54). The 
odds ratio for the behaviour control scale, however, varied by gender; the odds ratio of 
women was 1.78 times (1.00–3.14) that of men (OR for main effect of behaviour control= 
0.90, 0.66–1.23). For the categorical prognostic factors, no significant interactions were 
found, and age and sex jointly contributed to the discrepancies. Regarding the results of the 
three weighting variables in Table 1, not only the point estimates, but also the confidence 
intervals, yielded quite similar results across the three weights, so that the kind of weight 
makes no difference in the present example. The latter finding is not surprising as the standard 
deviation was similar across the three weights.  
 
Comment 

 



In this article, we reviewed the major ideas on selection bias and the use of statistical weights 
to correct for different probabilities of sampling or participation. With data from the EDSP 
Study, we found that disregarding the different sampling rates according to age as well as 
non-response at baseline according to age, sex and location can have a considerable impact on 
point estimates of odds ratios. The particularity of the EDSP-Study is that the original sample 
was drawn with different sampling probabilities according to age. Because adolescence is 
assumed to be a crucial period in the development of mental disorders, interactions of risk 
factors with age can be assumed to be common here. In our example, we focussed only on 
data from the young cohort, 14–17 years old at baseline. In the whole sample of 14–24 years 
old at baseline, the bias introduced by the non-representative age distribution might be much 
stronger. Sampling bias, therefore, can have a major impact also on associations and not only 
on marginal distributions such as prevalence rates, although it is likely that more examples for 
the latter can be found. Using other measures of associations like the risk ratio and the risk 
difference can be assumed to increase the problem in the sense that the odds ratio tends to be 
the smoothest measure; that is, its use tends to require less interaction terms because they are 
related to logistic regressions (McCullagh and Nelder 1989). Examples, however, it can only 
suggest that weighting is necessary, not that it is unnecessary. They do not allow us to 
demonstrate that the incorporation of specific variables into the weighting scheme is sufficient 
because other, more important factors, may be unobserved or unknown. The benefits of 
reducing bias (and the robustness against model-misspecification in regression models) 
should be balanced against the increase in variance. When designing a study participation 
probabilities should be maximized and as much information as possible should be collected 
about potential determinants of participation. Then, different weights can be created, and for 
each analysis, the accuracy of a weight should be balanced against the increase in variance. 
The best available weight is the one that is minimally sufficient, that is, another weight 
incorporating more information would hardly change the point estimate, but rather increase 
the variance.  
 
 

 
Fig. 1 Overview of the EDSP study design (adapted from Lieb et al. 2000)  
 



 
Table 1 Associations with incident panic attacks 
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