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1 Introduction

One hundred years after its discovery by Heike Kamerlingh Onnes in April 1911 in Leiden
[1], superconductivity is still a fascinating and mysterious topic. Nearly half a century had
to pass by until its mechanism in the conventional superconductors with rather low tran-
sition temperatures (Tc) could be explained consistently within the theory by Bardeen,
Cooper and Schrieffer (BCS), published in 1957 [2]. Nowadays, most of the unconven-
tional superconductors such as heavy fermions, discovered in 1979 [3], and the famous
high temperature cuprate superconductors, discovered in 1986 [4], are far from being
understood completely.

In February 2008, Kamihara et al. reported the discovery of superconductivity in
LaO1−xFxFeAs with a transition temperature up to Tc = 26K [5] and thus opened the
stage for a new family of superconducting materials: the iron-based superconductors
(also called pnictides). Immediately afterwards, the superconducting research community
world-wide started an extensive quest for similar compounds and for the understanding
of the mechanism of superconductivity in these materials. By replacing La with some
other rare earth (RE) elements and either fluorine doping or the introduction of oxygen
deficiencies, superconducting transition temperatures up to 55K were found in these so-
called “1111” systems [6–10]. Aside from the cuprates, these are the highest transition
temperatures among all known superconductors. Other subfamilies such as the “122”
systems (e.g. BaFe2As2 [11–13]), the “111” (e.g. LiFeAs [14–16]) and the “11” (e.g.
FeSe [17]) with similar but somewhat lower superconducting transition temperatures were
discovered within a relatively short period of time, leading to a second heyday of high
temperature superconductivity research, similar to the days after the discovery of the
cuprates in 1986 [4].

Nuclear Magnetic Resonance (NMR) has been a fundamental player in the studies of
superconducting materials for many decades. This local probe technique takes advantage
of the hyperfine coupling mechanism of the nuclear spins to the electrons (quasiparticles)
in the normal (superconducting) state. This reveals information about the pairing state
of the Cooper pairs, the symmetry of the superconducting order parameter as well as
information about normal state properties. To name but a few, the observation of the
Hebel-Slichter peak in the spin-lattice relaxation rate of superconducting aluminum was
a very important confirmation of the BCS theory [18–20] and NMR measurements on
Sr2RuO4 and the heavy fermion superconductor UPt3 provided experimental evidence
for unconventional spin-triplet superconductivity [21, 22]. Electronic correlations in the
normal state can also be well investigated by means of NMR. In the high-temperature
cuprate superconductors, for instance, NMR evidenced the presence of antiferromagnetic
correlations as well as the opening of a pseudogap in the underdoped regime [23]. In the
field of the recently discovered iron-based superconductors, NMR has been widely applied
since the very beginning of the pnictide research. This thesis comprises some of these
very first results of NMR measurements on pnictides.



2 1 Introduction

In the course of this work, NMR and NQR (nuclear quadrupole resonance) measure-
ments on two different families will be presented: LaO1−xFxFeAs, a member of the 1111-
family, and LiFeAs. LaO1−xFxFeAs was the first pnictide material for which supercon-
ductivity was reported [5]. It was the first available compound and thus studied in detail.
LiFeAs, on the other hand, is very special since it is a stoichiometric superconductor.

This thesis is organized as follows: After an introduction to the experimental method
of NMR in Chapter 2, a short review of NMR measurements in the superconducting
state and what can be learned from them will be given in Chapter 3. Both investi-
gated compounds and their relation compared to other pnictides, as well as a comparison
between cuprates and pnictides in general, will be described in Chapter 4. The detailed
experimental setup is given in Chapter 5, including some problems faced during the exper-
iments and their solutions/improvements. The presentation and discussion of the NMR
measurements on LaO1−xFxFeAs is divided into two parts. Chapter 6 reports NMR mea-
surements in the normal state of LaO1−xFxFeAs and discusses the data regarding the
single spin fluid character of the multi-band electronic structure, the value of the ordered
moment in the magnetically ordered state, the role of spin flucuations for the occurrence of
superconductivity, and the Fermi-liquid/non-Fermi-liquid regions in the phase diagram.
Chapter 7 concentrates on the low-energy spin dynamics in the superconducting state
of LaO1−xFxFeAs and of a sample with an artificially enhanced impurity concentration:
LaO0.9F0.1FeAs1−δ. The temperature dependence of the spin-lattice relaxation rate will
be discussed within possible superconducting gap symmetries, by taking into account the
results of other experimental methods as well as the effect of impurities. NMR and NQR
measurements on three different single crystals and a polycrystalline sample of LiFeAs
will be overviewed in Chapter 8. A strong variation of the results in the normal state as
well as in the superconducting state indicates the proximity of LiFeAs to an instability,
where subtle changes in the stoichiometry may lead to completely different ground states.
Chapter 9 recapitulates the outcome of the performed measurements and gives an outlook
for possible further investigations.



2 Basic Principles of NMR

Nuclear magnetic resonance (NMR) is the oldest nuclear method in solid state physics. It
is based on the principle, that transitions between nuclear magnetic energy levels corre-
sponding to differently oriented nuclear spins in a static magnetic field should be observ-
able when applying a second, time-dependent magnetic field perpendicular to the static
one. The second magnetic field should oscillate at the Larmor frequency of the nuclei.
The first NMR measurements were performed contemporaneously by Purcell, Torrey and
Pound in Cambridge and by Bloch, Hansen and Packard in Stanford. Purcell and his
colleagues observed the radio frequency absorption of protons in solid paraffin at room
temperature using a resonant cavity, a sweepable magnet and radio frequency power of
about 10−11 W [24]. At the same time Bloch, Hansen and Packard reported in a very short
paper (∼ 260 words) the observation of radio frequency absorption by protons in water
at room temperature using conventional radio frequency techniques [25]. Bloch, who was
not limited to a fixed cavity frequency, could already measure at different frequencies and
fields and confirmed that the ratio H/ν was always the same: the gyromagnetic ratio
γ of the protons. In his paper, which was published on Christmas Eve of 1945, Purcell
already proposed various applications of the newly established effect, for instance precise
measurements of gyromagnetic ratios, investigations of the spin-lattice coupling as well as
standardizations of magnetic fields. All these applications (and many more) were realized
sooner or later. This was the twofold birth of NMR, which already included the basic prin-
ciple of NMR based on the isotope-specific gyromagnetic ratios as well as first indications
of the broad applicability of NMR in condensed matter and beyond. For completeness
and to honor the nowadays unfortunately unpopular practice to publish also negative
results, it should be noted that an earlier attempt to detect nuclear magnetic resonance
four years before the discoveries of Bloch and Purcell was unsuccessful [26]. Over the
years, NMR became a powerful method in condensed matter as well as in in chemistry,
biology and medicine, where it is widely used for structural analysis and non-destructive
diagnostic imaging.

The most distinctive characteristic of NMR and its special advantage compared to
many other methods in solid state physics is its local probe character. Different magnetic
and electronic environments of the nuclei will lead to different NMR responses on both the
static and/or dynamic side. In contrast to macroscopic susceptibility or magnetization
measurements, with which one can only probe the whole magnetic response of a system
(the bulk susceptibility including impurity contributions), NMR can distinguish intrinsic
contributions to the susceptibility from different magnetic ions in the material as well as
impurity contributions. An advantage of NMR over µSR (muon spin rotation), which is
also a local probe technique, is the fact, that by doing NMR one knows exactly at which
nuclear site one is probing the system, while in µSR one always has to calculate (or to
guess) at which (possibly interstitial) site the muon is sitting. By doing NMR on differ-
ent elements, one can deduce their different couplings to the electronic environment. A
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partial contribution to the intrinsic susceptibility might be small, but due to its high sen-
sitivity to small magnetic moments down to µ = 10−2µB and its extremely high relative
frequency resolution better than 10−7 (in high resolution NMR of liquids [27]), NMR can
still detect this contribution and separate it from other contributions. A famous example
is the measurement of the diminutive nuclear paramagnetism in ferromagnetic iron [28].
Another example, taken from our studies at the IFW Dresden, is high temperature super-
conducting NdBa2Cu3O6+y, where one can distinguish between the Cu-sites in the chains
and the Cu-sites in the CuO2 planes and study their properties selectively by means of
NMR and nuclear quadrupole resonance (NQR) [29]. An example of the local probing
of the charge environment are underdoped LaO1−xFxFeAs and SmO1−xFxFeAs, where by
means of NQR two different types of charge environments of the 75As nuclei, coexisting
at the nanoscale and thus pointing to a local electronic order in these systems, have been
found [30]. As a fourth and last example NMR measurements on the high-temperature
superconductor YBa2Cu3O6.63 will be given [31]. Local susceptibilities of different nuclei
have been measured in this compound and it has been found that all components show
the same temperature behavior and can even be scaled with the temperature dependence
of the macroscopic susceptibility. These results showed that all nuclei probe the same
single spin component of the system, despite the existence of Cu 3d and O 2p states in
this material. On the other hand, the spin-lattice relaxation rates of 63Cu and 17O in the
same system differ from one another, because depending on their form factors, different
nuclei probe different regions in q-space: 63Cu can probe antiferromagnetic correlations,
while 17O is “blind” for spin fluctuations at Q = (π, π). So by choosing the right nucleus,
one can not only probe different spatial regions in the crystal structure, but also different
regions in reciprocal space.

These four examples reveal the rich variety of possible applications of the NMR gold
mine in solid state physics. Most of these applications (probing local susceptibilities,
probing electronic environments, probing different q-spaces) will play a role in the course
of this thesis.

The following description of the basic principles of NMR and NQR is based on the
textbooks by C.P. Slichter [28], A. Abragam [32], E. Fukushima and S.B.W. Roeder [33],
and G. Schatz and A. Weidinger [27], as well as on selected Ph.D. theses [34–38] and
original publications.

2.1 Isolated Nuclear Spins in a Magnetic Field

2.1.1 A Single Nuclear Spin

Most of the elements of the periodic table (namely all besides the ones with an even
number of protons and an even number of neutrons in their nucleus) possess an isotope-

specific nuclear spin ~I. The nuclear spin causes a nuclear magnetic moment ~µ proportional
to this spin:

~µ =
gµN

~

~I = γ~I . (2.1)

Here, g denotes an effective g-factor [27], µN = 5.05 · 10−27A.m2 is the nuclear magneton,
and ~ is the Planck constant. The gyromagnetic ratio γ combines all the prefactors of
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Eq. (2.1) to an isotope-specific constant, ranging from γ/2π = 42.5749MHz/T for 1H to
γ/2π = 0.7291MHz/T for 197Au.1

The nuclear magnetic moment couples to an external magnetic field2 ~H0 via the Zeeman
interaction, given by the following Hamiltonian:

HZ = −~µ · ~H0 . (2.2)

In quantum mechanics, ~I has to replaced by the operator Î with the eigenvalues ~m.
Assuming that the external field is aligned along the z-direction: ~H0 = H0~ez, one arrives
at:

HZ = −γH0Îz , (2.3)

and finally gets the corresponding (2I + 1) equidistantly split energy levels:

Em = −γH0〈I,m|Îz|I,m〉 = −γ~mH0 (2.4)

with
m = −I,−I + 1, ..., I − 1, I . (2.5)

Since the matrix elements between states |Îz, m〉 and |Îz, m′〉 of the operator Îz vanish
unless m′ = m ± 1, transitions between these levels are allowed only for ∆m = ±1. To
undergo such a transition, the system has to absorb the energy ∆E = ~ωL, where

ωL = γH0 (2.6)

is the so-called Larmor frequency, with which the nuclear spin is precessing around the
static magnetic field H0.

2.1.2 Many Nuclear Spins

The previous derivation holds basically for a single nuclear spin. However, the observation
of a radio frequency absorption by a single nuclear spin is unrealistic. To do NMR, we
need around 1016 nuclear spins for reasonable signal-to-noise ratios3. In thermodynamic
equilibrium, the nuclear magnetic energy levels Em given by Eq. (2.4) are occupied obeying
the Boltzmann distribution

P (m) = exp

(−Em

kBT

)

. (2.7)

1 In practice, γ is mostly expressed in terms of γ/2π, since this value is used to calculate the radio
frequency νL = ωL/2π = γH0/2π with which the system has to be irradiated such that it absorbs
the energy E = ~ωL = hνL. For theoretical considerations however, one mainly uses the angular
frequency ωL = γH0 with which the spins precess around the direction of the external field. For 1H
γ amounts to 26.7522128×107 rad/(s.T) [39].

2 The magnetic field strength H has the units A/m. A correct description would use the magnetic flux
density B = µ0H in units of T for the description of the magnetic field. However, in order to keep
consistency with textbooks [28, 32, 33] and most of the literature, H will be used for the magnetic
field in this thesis. See also discussion “B vs H” in [33].

3 Nowadays, specially assembled high resolution NMR can reach much lower limits of detection. For
instance, magnetic resonance force microscopy (MRFM) is able to detect down to 106 nuclear spins
[40]. This number is already at a stage were statistical spin fluctutations rather than the Boltzmann
distribution are dominant.



6 2 Basic Principles of NMR

The resulting unequal occupation of the energy levels leads to a nuclear spin polarization
〈Îz〉 and hence to a nuclear magnetization Mz:

Mz = Nγ〈Îz〉 = Nγ

m=+I
∑

m=−I

~m exp (−Em/kBT )

m=+I
∑

m=−I

exp (−Em/kBT )

≈ Nγ2~2I(I + 1)

3kBT
H0 = χnH0 , (2.8)

where N denotes the density of nuclear spins and χn the static nuclear susceptibility.
The penultimate part of Eq. (3.21) was obtained by linearly expanding the Boltzmann
exponential, since Em/kBT is always small. The nuclear spin polarization 〈Îz〉 is rather
weak4. However, this small difference in the occupation of the nuclear magnetic energy
levels is sufficient to enable NMR measurements. NMR cannot observe single nuclear
spins, but measures the nuclear magnetization Mz, which is a collective property of the
nuclear spin system. In the future we will therefore not use the picture of a single spin
precessing with the Larmor frequency ωL around the direction of the static magnetic field,
but the picture of a precessing nuclear magnetization Mz. According to Eq. (3.21), Mz

increases with an increasing number of nuclear spins, N , with increasing the external
magnetic field H0 and by lowering the temperature. These dependences already contain
very important information for the performance of the measurements. Since γ contains
the nuclear magneton, which is already much smaller than the Bohr magneton µB (µN ∼
0.0005µB), and enters squared in Eq. (3.21), the static nuclear susceptibility is much
smaller than any electronic one (about a factor of 10−6 to 10−8). The big difference
between the nuclear and the electronic susceptibility is fundamental for the application of
NMR in condensed matter. As we will see in the next Section, nuclear spins and electronic
spins interact with each other via hyperfine couplings. It is therefore possible to study
the properties of the electronic spin system by observing the response of the nuclear spin
system, whose influence on the electronic spin system is negligibly small.

2.2 Making Life Interesting: Interactions

Everything told in the previous Section would be rather bland without interactions, since
the resonance frequency ω of an isotope in a given static magnetic field H0 would corre-
spond to the Larmor frequency ωL in this field deduced from the well-known gyromagnetic
ratios γ and Eq. (2.6). Interactions among the nuclear spins and with their electronic en-
vironment will however shift and broaden the nuclear magnetic energy levels Em and lead
to relaxation effects5. The Hamiltonian expands to:

H = Hz +Hn−n +Hn−e +Hq , (2.9)

where Hz denotes the already introduced Zeeman interaction between a nuclear moment
and a static magnetic field, Hn−n is the interaction between nuclear spins themselves,

4 At T = 300K, for I = 1 and µ0H0 = 1T 〈Îz〉 amounts only to 10−6.
5 The following deductions assume a single, homogeneous environment of all nuclei. A distribution of

different environments would also result in line shifts, line broadening and relaxation effects.
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Hn−e is the interaction between the nuclear spins and the spins and orbital momenta of
the electrons and Hq is the electric quadrupole interaction. They will all be discussed in
detail in the following.

2.2.1 Interactions Between Nuclear Spins - Line Shape I

The internuclear coupling Hn−n between two nuclear spins ~Ii and ~Ij can be divided into
two parts, a direct dipolar coupling between nuclear spins and an indirect coupling:

Hn−n =
∑

i,j

~Iia(~rij)~Ij = Hdir
n−n +Hindir

n−n . (2.10)

The general direct dipolar Hamiltonian for N nuclear spins can be written as

Hdir
n−n =

N
∑

i<j

~
2γ2

r3ij

[

~Ii · ~Ij − 3
(~Ii · ~rij)(~Ij · ~rij)

r2ij

]

, (2.11)

where ~rij is a vector from ~Ii to ~Ij. This coupling between nuclear spins gives rise to a
homogeneous broadening of the resonance line. In a rigid lattice, the dipolar linewidth is
of the order of the local field produced at the site of a nuclear spin ~Ii by its neighbouring
nuclear spins ~Ij. The dipolar linewidth is usually of the order of a few Gauss [32] and
independent of the applied magnetic field [41].

The indirect coupling between nuclear spins Hindir
n−n can be written as

Hindir
n−n = ~Iiaij

~Ij , (2.12)

where the exact form of the coupling tensor aij depends on the detailed coupling mech-
anism. The indirect coupling between nuclei is mediated via electrons in the following
way: a nuclear spin interacts with a surrounding electron via hyperfine interactions (see
Section 2.2.2). Hyperfine interactions between this electron and a second nuclear spin
leads to an indirect coupling between the two nuclear spins. Depending on the specific
situation, this indirect coupling can lead to a narrowing or a broadening of the resonance
line (see [28] for details). In liquids the bonding electrons of the molecules act as centers
of communication between the nuclear spins, leading to the so-called J-coupling in high
resolution NMR on liquids [42, 43]. In metallic solids the indirect coupling between nu-
clear spins is mediated via the coupling of the nuclear spins to the conduction electrons
(so-called RKKY6 interaction) [44, 45]. In this case the prefactor aij of the scalar part of
Hamiltonian (2.12) becomes [46, 47]:

aαα(~rij) =
1

(~γe)2

∑

~q

χ′
α(~q)|Aαα(~q)|2 exp(−i~q ~rij) , (2.13)

with α = x, y, z. It is proportional to the real part of the static, q-dependent susceptibility
χ′
α(~q) of the electronic system, which mediates the coupling between the nuclear spins via

the hyperfine coupling Aαα(~q).

6 RKKY = Ruderman, Kittel, Kasuya and Yosida
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The analysis of the spin-spin relaxation rate (1/T2G)
2 ∝ |a(~rij)|2 [46–49] in conductors is

therefore a measure of the static, q-dependent susceptibility χ′(~q) and thus complementary
to measurements of the spin-lattice relaxation rate T−1

1 , which itself yields information
about the imaginary part of the dynamic, q-dependent susceptibility χ′′(~q, ω) (see Section
2.3.2.1).

This relation can be mainly used in the field of cuprate research, where the following
conditions are met [46, 48]: First, due to the highly anisotropic hyperfine couplings in
cuprate superconductors, one can omit the x and y components in Eq. (2.13) and obtains
(1/T2G)

2 ∝ |azz(~rij)|2 ∝ (χ′
z(~q))

2 (for H0 ‖ z) [46–48]. Furthermore, the direct dipolar
nuclear spin-spin interaction, which also contributes to 1/T2G, but does not involve inter-
actions with the electronic spin system (see Section 2.3.3), decreases rapidly with 1/r3ij,
[see Eq. (2.11)]. In cuprates, this is negligibly small compared to the indirect nuclear
spin-spin coupling, which couples all nuclear spins within the antiferromagnetic correla-
tion length ξ together [46, 48]. This assumption is based on the model of Millis, Monien
and Pines (MMP model) [50], who described the CuO2 planes in cuprates as an antifer-
romagnetic Fermi liquid, where spin fluctuations are strongly peaked at (π, π). About 30
nuclear spins are then coupled together within the antiferromagnetic correlation length ξ
[48]. Thus 1/T2G is dominated by the indirect nuclear spin-spin coupling and therefore a
direct measure of χ′

z(~q) and ξ. The good agreement between the theoretical description
of 1/T2G within the MMP model and the experimental observations have been a strong
evidence for the MMP model and the single spin fluid description in cuprates [48], similar
to the Knight shift scaling [31].

2.2.2 Magnetic Hyperfine Interactions

The interaction Hn−e includes the interaction of the nuclear spin with the spins and the
orbital moments of the electrons via hyperfine coupling mechanisms. Together with the
first term of Eq. (2.9), the Zeeman term, one obtains:

HZ +Hn−e = −γ~~I(1 +K) ~H0 , (2.14)

with K being the Knight shift tensor. For a measurement along H0 ‖ z, the resonance
frequency is shifted from the expected Larmor frequency ωL of a free nucleus to the
observed resonance frequency ωobs = (1 +Kz)ωL by the Knight shift Kz.

Historically, the Knight shift K describes hyperfine interactions between the nuclear
spins and the conduction electrons. It was described in 1949 by W. D. Knight. He observed
that the NMR resonance lines in metals experienced a much larger shift in the same
magnetic field than their non-magnetic salts [51]. This is due to the fact that a nucleus
in a metal couples to the overall paramagnetic Pauli susceptibility of the conduction
electrons in a magnetic field, which is given by:

χP =
M

H0

=
3Nµ2

B

2kBTf
, (2.15)

where M is the electronic magnetization which arises from the difference of electronic
spins being aligned parallel or antiparallel to the applied magnetic fieldH0, Tf is the Fermi
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temperature and N the electron density. The Pauli susceptibility is thus temperature-
independent, as long as the electronic density of states is temperature-independent.

Nowadays, the Knight shift K (then more precisely called NMR shift) is used with
a broader meaning, covering all possible couplings between nuclear spins and electronic
spins, including electrons from inner closed shells and from unfilled shells, whether itin-
erant (conduction electrons) or localized. The different contributions are divided into the
diamagnetic NMR shift Kdia, the orbital shift Korb and the spin shift Ks:

K = Kdia +Korb +Ks . (2.16)

They are described in detail in the following.

The Hyperfine Hamiltonian

The hyperfine Hamiltonian Hhf describes the interaction between a nuclear spin ~I and

the spin ~S and the momentum ~L of an electron being at a distance ~r from the nucleus:

Hhf = γnγe~
2~I ·

[(

3
(~S · ~r) · ~r

r5
−

~S

r3

)

+
8π

3
~Sδ(~r) +

~L

r3

]

. (2.17)

It comprises the couplings causing the orbital shift Korb and Ks.

The Orbital Shift

The last term of Eq. (2.17) represents the orbital interaction between the nuclear

spin ~I and the angular momentum ~L of the electron. In contrast to the diamagnetic
shift, which results from current loops in inner orbitals, where the angular momentum is
quenched, the orbital shift Korb is due to current loops from electrons which possess a
static angular momentum ~L. For transition metal ions in crystal fields the orbital moment
of the conduction electrons is also quenched. An externally applied magnetic field can
however partially reconstruct an orbital moment by mixing the ground state with low
lying excited states [36]. This is the so-called Van Vleck paramagnetism which leads to
an orbital shift of the form [49]:

Korb = 2〈r−3〉χV V , (2.18)

where χV V is the (Van Vleck) paramagnetic susceptibility. This susceptibility is usually
temperature-independent. Korb is thus temperature-independent, as well.

The Spin Shift

The first term (inside the parentheses) describes the dipolar interaction between the
nuclear spin and the electronic spin leading to a dipolar shift Kdip. A (point)-dipolar
approximation can however only be made if the distance between the nuclear spin and
the electronic spin is large enough. This is the case for p-, d- and f -orbitals, but not for
s-electrons, which exhibit a finite spin density at the nuclear site. The direct coupling be-
tween the nuclear spin and the spin of unpaired s-electrons is described by the remaining
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term in Eq. (2.17). It is called the Fermi contact contribution. The shift resulting
from this interaction, Kcontact, is proportional to the probability of finding the s-electron
at the nuclear site, expressed by the squared modulus of the electronic wave function at
~r = 0: |ψ(~r = 0)|2. Spins from unfilled outer electronic shells will polarize even closed
s-shells, leading to the so-called core polarization term Kcore, which acts in the same
way as the Fermi contact contribution does, but with opposite sign. Kcore is negative,
while Kcontact is positive. Both terms are isotropic, while the dipolar interaction and the
resulting Kdip depend on the relative orientation of the crystal to the applied magnetic
field and are therefore anisotropic. Kcontact and Kcore are subsumed under the isotropic
part of the NMR shift, Kiso, since they are usually not distinguishable one from another.
All three contributions Kdip, Kcontact, and Kcore are only caused by the interactions be-

tween the spin of the nucleus ~I and the spin of the electron ~S. No angular momentum ~L
is involved in these three shifts. They are therefore combined to form the spin part of the
NMR shift:

Ks = Kdip +Kcontact +Kcore . (2.19)

The spin parts of the Hamiltonian (2.17), combining interactions between a nuclear

spin at site i, ~I i, and an electron spin at site j, ~Sj (and thus referring to Ks), can be
expressed as:

Hspin = −~I iAij ~Sj , (2.20)

where Aij is the hyperfine coupling tensor. To be more general, ~S can be replaced by
its expectation value 〈~S〉 = χsH0. It follows, that the spin part of the NMR shift Ks is
proportional to the static spin susceptibility χs:

Ks =
Aij

geµBγ~
χs , (2.21)

where ge = γe~/µB is the Landé factor of the electron. More precisely, the spin shift
measures the static spin susceptibility at ~q = 0: Ks ∝ Ahf(~q = 0)χ(~q = 0). The static
spin susceptibility χs includes the Pauli spin susceptibility of the conduction electrons
χP [see Eq. (2.15)] as well as the paramagnetic susceptibility χpara of localized electronic
moments, which reads:

χpara =
N ′µ2

Bp
2

3kBT
=
C

T
, (2.22)

where p =
√

g2S(S + 1) is the effective number of Bohr magnetons and C the intro-
duced Curie constant. In contrast to the temperature-independent Pauli susceptibility
χpara is inversely proportional to the temperature. It can be easily larger than the Pauli
susceptibility χP , since usually Tf/T ≈ 102.

Equation (2.21) reveals one of the great conveniences of NMR: by measuring the shift
of the NMR resonance line, one can obtain information about the local, intrinsic static
spin susceptibility, which is not affected by extrinsic impurity contributions. Further-
more, this information can be extracted without perturbing the electronic system while
performing the measurements, since the Larmor frequency is basically zero compared to
the frequencies of the electronic spin system [38]. The hyperfine coupling Aij depends on
the different possible coupling paths from the nucleus to on-site orbitals and orbitals on
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surrounding atoms via transferred hyperfine interactions. If the macroscopic susceptibil-
ity χmacro is not covered by extrinsic impurity effects, a scaling of K versus χmacro can
reveal information about the hyperfine coupling at ~q = 0 (see Section 6.1).

The Diamagnetic Shift

The diamagnetic shift Kdia stems from the diamagnetism of the closed inner electronic
shells (ion cores) and the Landau diamagnetism of the conduction electrons. It is
temperature-independent. Diamagnetic shifts are rather small (of the order of ∆ω/ω ≈
10−5). They are only observable in high resolution NMR of liquids, where resonance lines
are narrow and the resolution is up to ∆ω/ω ≈ 10−7 [27]. In solid state NMR of magnetic
and conducting materials other contributions to the NMR shift are usually much larger
and thus the diamagnetic shift can be neglected.

2.2.3 Electric Quadrupole Interactions

The last term of Eq. (2.9), HQ describes the electric quadrupole interaction between the
quadrupole moment of the nucleus, Q, and the electric field gradient (EFG) Vαβ:

HQ =
1

6

∑

αβ

V i
αβQ

i
αβ . (2.23)

The EFG, Vαβ is caused by the surrounding charge distribution of the nucleus. It is

given by Vαβ = ∂2V
∂xα∂xβ

∣

∣

∣

r=0
, where V is the electrostatic potential and xα, xβ = x, y, z. In

its principal axes system (X, Y, Z) the tensor Vαβ can be described by its diagonal elements
VXX ,VY Y and VZZ. Since the potential V has to fulfill Laplace’s equation: ∇2V = 0, the
EFG is traceless:

VXX + VY Y + VZZ = 0 . (2.24)

It can therefore be described by using only two parameters. It is common to use the
convention |VZZ| > |VY Y | > |VXX | and then take VZZ ≡ eq and the asymmetry parameter:

η =
VXX − VY Y

VZZ

0 ≤ η ≤ 1 , (2.25)

for the adequate description of the EFG. Eq. (2.23) then becomes:

HQ =
1

6

∑

α

VααQαα . (2.26)

In a cubic symmetry as well as for a spherically-symmetrical charge distribution (s-
electrons for instance), VXX = VY Y = VZZ. From Eq. (2.24) it follows that in this case
VXX = VY Y = VZZ = 0. The quadrupole interaction vanishes in these cases.

The quadrupole moment of the nucleus, Qαα, describes deviations of the nuclear
charge distribution from a spherically symmetric distribution. Classically it is defined as:

Qαα =

∫

ρ(~r)(3x2α − r2)d3r , (2.27)
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where ρ(~r) is the charge density at a distance ~r away from the origin of the nucleus. In
a quantum mechanical description7, it can be shown that Q vanishes for all nuclei with
I = 0 and I = 1

2
. Hence the quadrupole interaction has to be considered only for nuclei

with I > 1 in a non-cubic environment.

The Hamiltonian of the quadrupole interaction, HQ, can be written as:

HQ =
hνq
2

(

I2Z −
I(I + 1)

3
+
η

6
(I2+ + I2−)

)

, (2.28)

where Z refers to the Z-axis in the principle axis system of the EFG (which might differ
from the z-axis in a reference system, where the magnetic field H0 and thus the nuclear
spin polarization are aligned along z). I+ and I− are raising and lowering operators and
νq is the quadrupole frequency defined as:

νq =
3eQVZZ

2I(2I − 1)h
=

3e2qQ

2I(2I − 1)h
. (2.29)

In a strong magnetic field H0, where νq � νL = ωL/2π, the quadrupole Hamiltonian HQ

can be treated as a pertubation of the Zeeman term HZ.
In first order the change of energy of the mth energy level is given by:

E(1)
m =

eQVzz
4I(2I − 1)

[3m2 − I(I + 1)] , (2.30)

where Vzz is the component of the EFG parallel to the direction of the applied magnetic
field. Expressing Vzz in the principal axis system of the EFG by using the Euler angles θ
and φ which describe the orientation of the principle axis system of the EFG with respect
to the laboratory axis system of the external magnetic field8:

Vzz = VXX sin2 θ cosφ+ VY Y sin2 θ sinφ ,+VZZ cos2 θ (2.31)

and inserting the definitions of the asymmetry parameter η and the quadrupole frequency
νq given in Equations (2.25) and (2.29), one arrives at [32]:

E(1)
m (θ, φ, η) =

1

4
hνq

(

3 cos2 θ − 1 + η sin2 θ cos 2φ
)

[

m2 − 1

3
I(I + 1)

]

. (2.32)

These energy changes result in a splitting of the NMR resonance line into 2I resonance
lines, where adjacent lines are separated by a frequency proportional to νq, whose absolute
value depends on the orientation of the principle axes of the EFG relative to the direction
of the applied magnetic field. This first-order quadrupole shift is given by the difference
Em−1/h− Em/h and reads [32]:

∆(1)νm(θ, φ, η) = −
νq
2

(

3 cos2 θ − 1 + η sin2 θ cos 2φ
)

(m− 1/2) . (2.33)

7 One arrives at the quantum mechanical description by simply replacing ρ with its quantum mechanical
operator ρ̂(~r) =

∑

k qkρ(~r−~rk) where the sum runs over the nuclear particles 1,2,...k, ...N with charge
qk and position ~rk .

8 θ is the angle between the principal axis of the EFG, Z, and the direction z of the applied magnetic
field, and φ denotes a rotation around z in the xy-plane.
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Note that the resonance frequency of the central transition (m = − 1
2
) ←→ (m = +1

2
)

remains unaffected in first order, since according to Eq. (2.32) both levels (m = ± 1
2
) are

shifted by the same amount of energy (see also Fig. 2.2). The intensity of each of the 2I
resonance lines depends on m.

The change of energy of the mth energy level in second order, E
(2)
m , can be found for

instance in [32]. For η = 0, E
(2)
m is odd in m, which means that the distance between the

satellites does not change when considering second-order effects. It is still the same as
in first order [32, 49]. Only the resonance frequency of the central transition shifts.9 Its
second-order quadrupole shift is [32, 54–56]:

∆(2)νm(θ, φ, η) = −
ν2q
νL

1

6

[

I(I + 1)− 3

4

]

[

A(φ, η) cos4 θ +B(φ, η) cos2 θ + C(φ, η)
]

.

(2.34)

The prefactors A,B and C depend on the angle φ and the asymmetry parameter η of the
EFG [54–56] (see Appendix A.1).

Higher orders are usually not taken into account. In general, the central line is only
affected by even-value order terms of the perturbation theory, while the quadrupole shifts
of the satellites only depend on odd orders of the pertubation [57]. Thus, the next relevant
order for the satellites would be the third one, leading to a shift proportional to ν3q [57]:

∆(3)νm =
ν3q
3ν2L

(2m− 1)P3(m) , (2.35)

where the prefactor P3(m) contains the dependency on the components of the EFG and
therewith the dependency on the orientation [57]. The next interesting order for the
central line would be the fourth one, leading to a shift of the order of O(ν4Q/ν3L), which is
so small compared to the second-order shift [58, 59], that it is commonly neglected and
no explicit expression for it could be found in literature.

Please note that all preceding statements referred to the case of NMR on single crystals,
where a certain orientation of the crystal axes and thus of the EFG versus the magnetic
field can be chosen. For the more complicated case of NMR on polycrystalline powder
samples please refer to Appendix A.1.

Nuclear Quadrupole Resonance

Even in the absence of an external magnetic field, the quadrupole interaction HQ leads to
a splitting of the nuclear magnetic energy levels, where energy levels with the same |m|
are shifted equally. Resonant transitions between these twofold degenerate energy levels
can be induced by applying an alternating magnetic field H1 (a radio frequency pulse
with the corresponding frequency) in the direction perpendicular to the principal axis of
the EFG. This is widely used in the field of Nuclear Quadrupole Resonance (NQR), which

9 This holds only true for NMR spectra on single crystals. In the case of powder spectra the situation
is more complicated. (Asymmetric) second-order quadrupole effects (η 6= 0) have to be considered
also for the satellites of the powder spectrum [52]. Furthermore, additional satellites due to θ 6= 90◦

contributions might appear [53].
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Figure 2.1: Level splitting and the corresponding NQR spectrum due to quadrupole effects
without an external magnetic field for I = 3/2 and η = 0. The fourfold degenerate energy levels
(left side) split in the presence of a non-vanishing EFG into twofold degenerate energy levels,
separated by the quadrupole frequency νq (center), resulting in one single NQR resonance line
observable at νq (right side).

was first performed in 1955 [60] and allows to study the charge environment of a nucleus
without having to consider additional magnetic interactions.10 For half-integer nuclear
spins I > 3/2 and η = 0, I − 1/2 resonance lines with frequencies proportional to νq, 2νq,
3νq ... will be observed.

For example, the NQR frequency of a nuclear spin I = 3/2 in zero magnetic field is
given by:

νNQR = νq

√

1 +
η2

3
=

3eQVZZ

2I(2I − 1)h

√

1 +
η2

3
. (2.36)

In a uniaxial symmetry (η = 0) it equals the quadrupole frequency νq (see Fig. 2.1).

Example of I = 3/2

The example of a nuclear spin I = 3/2 in an uniaxial symmetry (η = 0) and in a large
applied magnetic field will be considered as a special case in the following, because it will
play a role in the discussion of the data presented in this thesis (see Fig. 2.2).

The shift of the nuclear magnetic energy levels Em due to first-order quadrupole effects
in a uniaxial symmetry can be calculated to:

E(1)
m (θ, φ, η) =

1

4
hνq(3 cos

2 θ − 1)

[

m2 − 1

3
I(I + 1)

]

. (2.37)

This leads to a first-order quadrupole shift (distance between the unshifted central line
and the satellites) of the form of:

∆(1)νm(θ) = −
νq
2
(3 cos2 θ − 1)(m− 1/2) . (2.38)

10 This is only true for static measurements. The NQR spin-lattice relaxation can still be of magnetic
origin.
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(b) Level splitting and corresponding NMR spectrum for θ = 90◦.

Figure 2.2: Level splitting due to first-order quadrupole effects in a strong magnetic field for
I = 3/2, η = 0 and two different orientations of the EFG in the field. The left side shows the
equally-split nuclear magnetic energy levels due to the Zeeman interaction, separated by the
Larmor frequency. The right side shows the additional shifting due to first-order quadrupole
effects. Magnetic hyperfine interactions and second-order quadrupole effects are neglected.
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For I = 3/2 and θ = 0◦, the levels m = ±3/2 are shifted by E
(1)
±3/2(θ = 0◦) =

+1/2νq, while the levels m = ±1/2 are shifted by E
(1)
±1/2(θ = 0◦) = −1/2νq, resulting in

a splitting of the resonance into three lines, where the satellites are separated from each
other by the amount 2∆(1)(θ = 0◦) = 2νq [see Fig. 2.2(a)]. For I = 3/2 and θ = 90◦, the

m = ±3/2 levels are shifted by E
(1)
±3/2(θ = 90◦) = −1/4νq, while the m = ±1/2 levels

are shifted by E
(1)
±1/2(θ = 90◦) = +1/4νq, resulting in the spacing 2∆(1)(θ = 90◦) = νq

between both satellites [see Fig. 2.2(b)]. Note that it is better to determine the first-order
quadrupole shift ∆(1)(θ) by measuring the distance 2∆(1)(θ) between two satellites instead
of measuring the spacing between a satellite and the central line, since the central line
might be shifted by the second-order quadrupole shift.

Concerning the second-order quadrupole shift, the prefactors A, B and C in Eq. (2.34)
become simple constants in the case of uniaxial symmetry: A(φ, η) = −27/8, B(φ, η) =
30/8 and C(φ, η) = −3/8 [56]. The second-order quadrupole shift of a nucleus with a
nuclear spin of I = 3/2 is then given by [32, 56]:

∆(2)νm(θ) =
3ν2q
16νL

(1− cos2 θ)(1− 9 cos2 θ) . (2.39)

In case of a large quadrupole frequency νq, the second-order quadrupole shift of the central
resonance line can be significant and must be subtracted from the measured frequency
before evaluating the Knight shift.

2.2.4 Summary

Fig. 2.3 summarizes all possible interactions, the resulting shifts of the energy levels and
the corresponding NMR spectra for a nuclear spin of I = 3/2 in a uniaxial symmetry
(η = 0), a parallel orientation of the principal axis of the EFG with respect to the applied
magnetic field (θ = 0◦, Z = z) and within an electronic environment with Vzz 6= 0. The
degeneracy of the nuclear magnetic energy levels is lifted by applying a magnetic field H0

due to the Zeeman interaction HZ . A delta peak at the Larmor frequency νL appears
in the spectrum corresponding to a transition between two adjacent energy levels. The
interaction between different nuclear spins Hn−n broadens the energy levels, causing a
Gaussian line shape of the resonance line centered at νL. Magnetic hyperfine interactions
between the nuclear spin and the spins and the angular momenta of the electrons lead
to a shift of the resonance line away from the Larmor frequency, the Knight shift K.
Electric quadrupole interactions between the quadrupole moment of the nucleus and the
surrounding EFG shift the energy levels additionally in such a way that the degeneracy of
the transitions is lifted. This results in a splitting of the NMR spectrum into three lines,
where in first order the central transition remains unaffected. For θ = 0◦, as considered
in Fig. 2.3, the distance between the two satellites amounts to 2νq. In second order and
for θ 6= 0◦, the central line shifts additionally by a factor ∆(2)ν(θ) defined in Eq. (2.39).
For θ = 0◦ however, as sketched in Fig. 2.3, there is no second-order quadrupole effect.
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Figure 2.3: Summary of all possible interactions, their influence on the nuclear magnetic energy
levels and the resulting NMR spectra for I = 3/2, η = 0, θ = 0◦ and Vzz 6= 0 under the condition
that HQ � HZ . Note that the choice of a positive Knight shift K is arbitrary. K can also have
negative values.

2.3 Dynamic Processes: Relaxation

Every magnetic moment ~µ = γ~I exposed to a magnetic field ~H0 experiences a torque ~T
acting on it:

~T =
d~I

dt
= ~µ× ~H0 . (2.40)

For the nuclear magnetization ~M , defined by Eq. (3.21), the equation of motion results
in:

d ~M(t)

dt
= γ( ~M(t)× ~H0) . (2.41)

Its solution is a precession of the magnetization ~M around the magnetic field ~H0 with
the precession frequency ωL = γH0. At thermodynamic equilibrium, described by the
Boltzmann statistics, and presuming that ~H0 points along the z-axis of the laboratory
system, the components of the nuclear magnetization are: Mz = M0 and My = Mx =
0. The thermodynamic equilibrium can be destroyed by applying a second, circularly
polarized field ~H1 with the rotation frequency ω perpendicular to ~H0. The total magnetic
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field ~H = ~H0+ ~H1 acting on the magnetization during the application of the perpendicular
field ~H1 then becomes:

Hx = H1 cosωt

Hy = H1 sinωt

Hz = H0 . (2.42)

For further considerations it is convenient to go from the fixed laboratory reference
frame S to a reference frame S ′ which rotates with the frequency ω of the high frequency
field ~H1 around the direction z = z′ of the applied magnetic field ~H0. The time dependence
of ~H1(t) disappears in S ′, since both are rotating with the same frequency ω. The direction

of ~H1 can be chosen with arbitrary phase in S ′, perpendicular to H0. In the following it
will be considered that ~H1 is fixed along ~ex′ . During the pulse duration tp of the radio
frequency field the effective magnetic field in S ′ is then given by:

~Heff = (H0 + ω/γ)~ez′ +H1~ex′ . (2.43)

The magnetization will precess around this effective field (see Fig. 2.4). In the case of

resonance, where ω = −ωL = −γH0, the effective field is ~Heff = ~H1 and the magnetization

precesses around ~H1 (see Fig. 2.5). This precession is much slower than the one around
~H0 in the laboratory frame, since its precession frequency is ω ′ = −γH1 and H1 � H0.

11

The angle of tilt of the magnetization is given by:

α = ω′tp = −γH1tp . (2.44)

By carefully choosing the pulse duration time tp and the field strengthH1, it is in particular
possible to flip the magnetization into the y′- or −z-direction. These are called 90◦ and
180◦-pulse, respectively, and play an important role in the determination of the relaxation
times T1 and T2, defined below.

Each angle of tilt (besides a 180◦ pulse which only inverts Mz) results in a reduction of
Mz and some non-vanishing components Mx and My. After the disturbance by the radio
frequency pulse, the system will relax back to its thermodynamic equilibrium Mz = M0

andMx =My = 0. The decay of the transverse components Mx andMy and the recovery
of the longitudinal component Mz back to its equilibrium value M0 can be described by
two relaxation times: the transverse relaxation time T2, and the longitudinal relaxation
time T1. The relaxation equations in the laboratory system S are:

dMx(t)

dt
= −Mx(t)

T2
dMy(t)

dt
= −My(t)

T2
dMz(t)

dt
=
M0 −Mz(t)

T1
. (2.45)

11 Experimentally, the circularly polarized field ~H1 is realized by applying high frequency pulses gener-
ating an alternating magnetic field ~Hrf (t) perpendicular to H0. This field can be decomposed into
two contra-rotating components with the frequencies ω and −ω. The component rotating with −ω
can be neglected, since it is far away from the effective resonance. It is thus sufficient to deal with
one magnetic field ~H1(t) rotating with ω.
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Figure 2.4: Sketch of the effective field in the rotating reference frame S ′ (left panel) and the
precession of the magnetization around the effective field in S ′ (right panel) in a non-resonant
case.
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Figure 2.5: Sketch of the effective field in the rotating reference frame S ′ in case of resonance
ω = −ωL = −γH0 (left panel). The effective field equalsH1 and lies along x′. The magnetization
precesses with the angle of rotation α around the effective field (right panel). For α = 90◦ (180◦)
it will be aligned along y′ (−z′) z’ z′.

T1 is also called spin-lattice relaxation time, since for the recovery of Mz to M0 a
redistribution of the nuclear magnetic energy levels is needed, which can only occur if the
nuclear spin system exchanges energy with the lattice (more precisely with excitations of
the lattice such as phonons, spinons and so on). In contrast, for the relaxation of Mx and
My back to zero due to the dephasing of the nuclear spins no energy transfer is needed.
This dephasing is caused by inhomogeneities of the external magnetic field and by local
fields from electronic spins as well as by local fields stemming from interactions between
the nuclear spins. On account of this T2 is also called spin-spin relaxation time. Putting
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Figure 2.6: Relaxation of the nuclear magnetization ~M back to its equilibrium value Mz = M0

after being disturbed by a 90◦ pulse, flipping it into the x′y′ (xy)-plane in the rotating frame
S ′ (left panel) and the laboratory system S (central panel, adopted from [36]). The relaxation
(here the effect of T1 is exaggerated versus the effect of T2) is accompanied by a precession

of ~M(t) around the z-axis in the laboratory system. The right panel shows the free induction
decay (FID) signal, induced by the precession of non-zero Mx and My components of the nuclear
magnetization.

the relaxation equations (2.45) together with Eq. (2.41) describing the precession of ~M

around ~H, one arrives at the Bloch equations (in the laboratory frame S) [61]:

dMx(t)

dt
= γ( ~M(t)× ~H)x −

Mx(t)

T2
dMy(t)

dt
= γ( ~M(t)× ~H)y −

My(t)

T2
dMz(t)

dt
= γ( ~M(t)× ~H)z +

M0 −Mz(t)

T1
. (2.46)

These equations describe how the magnetization relaxes back to its equilibrium and
simultaneously precesses freely around z. An example is given in Fig. (2.6) for a magneti-
zation which has been flipped into the xy-plane. For the solution of Eq. (2.46), for which
it is convenient to return to the rotating frame system, the reader is referred to [28].

2.3.1 How to Measure Nuclear Magnetism?

The rotation of the in-plane magnetization Mx and My results in a time-dependent mag-
netic flux through the locally-fixed receiver solenoid12. This flux induces a small alter-
nating voltage in the coil which can be detected13. The detected voltage will oscillate to
zero, reflecting the decay of the transverse magnetization due to spin-spin relaxation (see
Section 2.3.3 for a detailed discussion of possible spin-spin relaxation mechanisms). This
is called Free Induction Decay (FID). It is sketched in the right panel of Fig. 2.6.
The FID is modulated in accordance with the slightly different Larmor frequencies of the

12 The receiving and emitting coils are usually one and the same solenoid. The separation between in-
and out-coming signals is realized by the use of a λ/4-cable, explained in more detail in Chapter 5.

13 Typical values of the induced voltage are of the order of a few microvolts. An amplifier is needed to
detect these small voltages (see Chapter 5).
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nuclear spins, stemming from local inhomogeneities of the magnetic field. Performing a
Fourier transformation of the FID signal reveals a fraction of the NMR spectrum centered
around the irradiation frequency νirr. If the resonance lines are narrow and only slightly
shifted with respect to each other, one can even observe a whole NMR spectrum by mea-
suring with one irradiation frequency (see Section 8.4 for an example). This simultaneous
observation of different NMR lines is an advantage of pulsed NMR compared to contin-
uous wave NMR (CW NMR). However, the interval [νirr −∆ν; νirr +∆ν] of measurable
frequencies, which one can observe by applying a pulse with the irradiation frequency νirr
is limited by the chosen pulse length tp. It is roughly given by the FWHM of its Fourier
transformation. The Fourier transformation of a rectangular pulse with pulse width tp
reads [35]:

F (ν) = F0
sin[π(ν − νirr)tp]
π(ν − νirr)tp

. (2.47)

It is sketched in Fig. 2.7 and gives

∆ν ≈ 1/tp . (2.48)

If the frequency range to be measured is broader, a series of measurements with different
pulse frequencies ν (frequency sweep) or alternatively a sweep of the applied magnetic
field value is necessary to obtain the whole NMR spectrum. Accordingly, measurements
of T1 and T2 may have to be done at different positions in the spectrum. Alternatively
the pulse width can be changed by adjusting the magnitude of the oscillating field H1,
using an adjustable attenuator. One has to be careful to keep the angle of tilt α at the
desired value (mainly 90◦ or 180◦, according to Eq. (2.44)).

Another advantage of pulsed NMR in comparison to CW NMR is the fact that the use
of pulses allows the design of different pulse sequences for specific measurements, such
as T1 and T2 measurements. For instance the NMR spectrum itself is not just obtained
by Fourier transforming the FID, but by applying a special pulse sequence, the so-called

Figure 2.7: Fourier transformation of a rectangular pulse with a pulse width (pulse duration
time) tp according to Eq. (2.47). Its FWHM of 1/tp defines the observable frequency range [see
Eq. (2.48)].
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Figure 2.8: Sketch of the Hahn spin echo pulse sequence on a time scale (upper panel) and the
corresponding movement of the nuclear magnetization in the rotating frame system S ′ (lower
panel). The dead time of the detection electronics and the fall time of the pulses are sketched
together in light red.

Hahn spin echo. It is depicted in Fig. 2.8. A first 90◦-pulse applied along the x′-axis
flips the magnetization from its equilibrium position into the x′y′-plane. Due to spin-spin
interactions and local field inhomogeneities the individual moments rotate with different
speeds within the x′y′ plane and thus begin to dephase. This induces the FID signal in
the coil. Subsequently the transverse magnetization Mxy decreases. After a time τ a 180◦

pulse is applied to the system, again along x′. It flips the different components of the
transverse magnetization within the x′y′-plane, such that they will refocus at the time 2τ
and give rise to the spin echo, whose intensity is related to the magnitude of Mxy(2τ).
There are two big advantages of the Hahn spin echo versus the direct observation of the
FID. Firstly, the influences of local field inhomogeneities, which are static on the time scale
of the measurement, cancel out due to the refocussing. Only intrinsic effects of spin-spin
interactions remain as a source for the reduction of Mxy(2τ). The FID decays with the
time T ∗

2 , containing both intrinsic spin-spin interactions and the effect of inhomogeneities
of the static magnetic field (see Section 2.3.3). On the contrary, the intensity of the Hahn
spin echo can be used to measure the spin-spin relaxation time T2. Secondly, since the
spin echo appears at a time distance τ away from the last pulse, it is not superimposed
by possible tails of the pulses during their fall time and its observation is not hindered by
the dead time of the detection electronics.

2.3.2 Spin-Lattice Relaxation

2.3.2.1 Sources of Spin-Lattice Relaxation

As described in detail in Appendix A.2, both fluctuating magnetic fields ~h(t) and fluctuat-
ing components of the EFG Vk(t) may induce spin-lattice relaxation processes, comprised
in the time-dependent Hamiltonian H1(t) defined in Eq. (A.20). The fluctuating com-
ponents of the EFG may be produced by phononic excitations or charge fluctuations,
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e.g. the motion of holes in the spin ladder system Sr14Cu24O41 [49]. Fluctuating magnetic
fields may arise from nuclear spin-spin interactions, interactions with conduction electrons
or spin excitations of localized electronic spins.

The time dependence of the fluctuating magnetic field ~h(t) is described by its autocor-
relation function at the times t and t+ τ [62, 63]:

Gαα(τ) = 〈hα(t)hα(t+ τ)〉t = 〈h2α〉 exp (−|τ |/τc) , (2.49)

with α = x, y, z. The last relation assumes that the three field components fluctuate inde-
pendently from each other and that their autocorrelation functions decrease exponentially
with the same characteristic correlation time τc. According to Eqs. (A.21) and (A.24)
the spin-lattice relaxation rate is proportional to the spectral density of the fluctuating
field components:

Jαα(ω) =
γ2

2

∫ ∞

−∞
〈hα(t)hα(t+ τ)〉t exp(−iωτ)dτ . (2.50)

Jαα(ω) has usually a Lorentzian shape. Applying the density matrix formalism [28], which
connects the time-dependent populations of the eigenstates of the static Hamiltonian H0

to the time-dependent perturbing Hamiltonian H1(t) and assuming an orientation of the
applied magnetic field H0 parallel to the z-axis, one obtains [28]:

1

T1
= γ2(〈h2x〉+ 〈h2y〉)

τc
1 + ω2

Lτ
2
c

. (2.51)

It is obvious from Eq. (2.51) that only fluctuations perpendicular to the externally
applied magnetic field lead to spin-lattice relaxation processes. T−1

1 has a maximum for
ωLτc = 1, where the characteristic frequency of the fluctuations, τ−1

c , matches the Larmor
frequency ωL. For ωLτc � 1 and ωLτc � 1 the spin-lattice relaxation rate decreases again
(see Fig. 2.10). The autocorrelation function (2.49) can basically describe any fluctuating
local magnetic field. In the original paper introducing this so-called BPP14-model, the
local fluctuating field was assumed to stem from the Brownian motion of molecules in
liquids and gases and τc was related to the viscosity of the liquids and the molecular
dimensions [62, 63]. Equation (2.49) can also describe spin fluctuations in magnetic
materials. In both cases, the effective correlation time (of diffusing atoms or fluctuating
electronic spins) shows an activated temperature dependence of the form [27, 64–66]:

τc = τ0 exp(Ea/kBT ) , (2.52)

where Ea is the activation energy of the ionic motion (or of the electronic spin fluctuations,
respectively) and τ0 is the correlation time at high temperatures.

Based on the spectral density for fluctuating magnetic fields [Eq. (2.50)] and expressing
the internal magnetic field at the nucleus produced by an electron corresponding to the
Fermi contact part of Eq. (2.17) (which is the most relevant part for s-electron metals),
one arrives at the following relation for the spin-lattice relaxation in correlated metals
[67]:

1

T1
=

2γ2kBT

g2µ2
B

∑

~q

|A⊥(~q)|2
χ′′
⊥(~q, ωL)

ωL
. (2.53)

14 BPP= Bloembergen, Purcell and Pound.
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Here, g is the Landé factor, A⊥(~q) are the transverse components of the magnetic hyper-
fine coupling and χ′′

⊥(~q, ωL) is the transverse imaginary part of the dynamic susceptibility
χ(~q, ωL) = χ′(~q, ωL)+iχ

′′(~q, ωL) at the wave vector ~q and the Larmor frequency ωL. Hence,
the problem of calculating T−1

1 in metals (and correspondingly in magnetic materials) de-
pends on the knowledge of the hyperfine coupling A⊥(~q) and the dynamic susceptibility
χ′′
⊥(~q). The ~q-dependence of the hyperfine coupling reflects that not every electronic spin

fluctuation with an arbitrary wavevector may induce a flip of a nuclear spin. Depending
on the nuclear site under consideration, A⊥(~q) can have different ~q dependencies which act
as a filter for certain regions of the Brillouin zone and may conceal important fluctuations
such as antiferromagnetic fluctuations at (π, π) or ferromagnetic fluctuations at (0, 0).

2.3.2.2 Inversion Recovery Method to Measure T−1
1

There are several possible pulse sequences to measure the spin-lattice relaxation rate T −1
1 .

In the course of this thesis, only the inversion recovery method was used, which will be
described in the following. It consists of a π pulse followed by a normal Hahn spin echo
pulse sequence after a variable delay time τ1. The pulse sequence and the corresponding
movement of the magnetization in the rotating frame are depicted in Fig. 2.9 for short
and long delay times τ1. The first 180

◦ pulse flips the magnetization into the −z′-direction
(it inverses the populations of the nuclear magnetic energy levels). Due to spin-lattice
interactions, the magnetization begins to relax back to its equilibrium value during the
time τ1. The following Hahn spin echo sequence measures the longitudinal magnetization
Mz(τ1) as a function of the delay time τ1 (see Fig. 2.8 and Section 2.3.1 for the explanation
of the Hahn spin echo pulse sequence).

If τ1 is short [Fig. 2.9(a)], the magnetization cannot relax much and the following Hahn
spin echo will measure a negative magnetization. If τ1 is long [Fig. 2.9(b)], the longitudi-
nal magnetization can relax a lot and will already point along +z ′ before the Hahn spin
echo pulse sequence is applied. A complete inversion recovery measurement consists of a
series of such pulse sequences, where τ1 is gradually increased and the magnetization is
measured as a function of τ1. The resulting function Mz(τ1) [Fig. 2.9(c)] allows to extract
T1 by fitting Mz(τ1) with a (multi-) exponential relaxation function.

2.3.2.3 Spin-Lattice Relaxation Functions

The relaxation function describing the recovery of the longitudinal nuclear magnetization
Mz(t) depends on several details which are:

• the value of the nuclear spin I

• the transition (m)↔ (n) on which the recovery is measured

• the measurement method (inversion recovery, saturation recovery, ...)

• the ratio between the Zeeman term HZ and the quadrupole contribution HQ of the
static Hamiltonian
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(a) Short delay times τ1 prevent a strong relaxation of the magnetization. Hence the Hahn
spin echo sequence π/2− τ − π − τ measures a negative magnetization Mz(τ1).
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(b) Long delay times τ1 allow a nearly complete relaxation. The Hahn spin echo π/2−τ−π−τ
measures a positive Mz(τ1).

(c) Example of an inversion recovery measurement on LaO0.9F0.1FeAs1−δ at T = 250K.
Mz(τ1) changes from negative to positive values as τ1 increases and saturates for τ1 & T1.
Black squares are data points, the solid line is a fit of Eq. (2.54) to extract T1. Red arrows
denote the situation plotted in (a) and (b), respectively.

Figure 2.9: Sketch of the pulse sequence and the corresponding movement of Mz in the rotating
frame system for the inversion recovery method to measure T1 for (a) a short delay time τ1 and
(b) a long delay time τ1. (c) shows an example of the development of Mz(τ1).
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• the relaxation mechanism (magnetic, quadrupolar, or mixed)

• the definition of the spin-lattice relaxation rate T−1
1 relative to the transition probabil-

ities Wmn

A detailed derivation of the spin-lattice relaxation function Mz(t) referring to all these
points is recapitulated in Appendix A.2. In this Chapter, only the the most important case
for this work, the purely magnetic relaxation of a nuclear spin I = 3/2, will be
considered. It is assumed that the Zeeman term of the static Hamiltonian is the leading
interaction, which is only slightly perturbed by the quadrupole coupling: HQ � HZ .
Measured at the central resonance line (m = + 1

2
)↔ (m = −1

2
), the relaxation is described

by [68–72]:
Mz(τ1) =M0{1− f [0.9e−6τ1/T1 + 0.1e−τ1/T1 ]} . (2.54)

Measured at the satellites (m = + 3
2
) ↔ (m = +1

2
) and (m = −1

2
) ↔ (m = −3

2
), the

magnetic relaxation has to be fitted with [68–72]:

Mz(τ1) =M0{1− f [0.4e−6τ1/T1 + 0.5e−3τ1/T1 + 0.1e−τ1/T1 ]} . (2.55)

If the quadrupole splitting is very small and all three NMR lines (central line and satellites)
are excited simultaneously by the applied radio frequency pulse, the relaxation function
becomes [70, 72]:

Mz(τ1) =M0{1− fe−τ1/T1} , (2.56)

while in NQR experiments the relaxation obeys15 ,16 [74]:

Mz(τ1) =M0{1− fe−3τ1/T1} . (2.57)

The prefactor f in Eqs. (2.54) to (2.57) is the inversion fraction. It describes the complete-
ness of the inversion. For a complete inversion ofMz in an inversion recovery measurement
f equals 2. A complete inversion is usually hard to achieve and f will usually lie between
1.7 and 1.9. Sometimes a distribution of spin-lattice relaxation times around a charac-
teristic T1 has to be considered. In this case the exponents of Eqs. (2.54) to (2.57) have
to be raised to the power of a stretching exponent λ, with 0 < λ 6 1. For a detailed
discussion of the use of the stretching exponent λ the reader is referred to Appendix A.3.

2.3.2.4 Korringa Relation

In metals with non-interacting electrons (Fermi gas) and the Fermi contact interaction as
the main source for hyperfine interactions between the electron and the nuclear spin (as
it is the case in mono-valent metals) one can show that [75]:

K2
sT1T =

~

4πkB

(

γe
γn

)2

= S0 = const. (2.58)

15 The relaxation function (2.57) holds for cases of axially-symmetric field gradients (η = 0). The more
complicated situation of η 6= 0 has been considered by Chepin and Ross [73].

16 Note that the spin-lattice relaxation time T1 can be arbitrarily defined with relation to the transition
probability W1 (see App. A.2 for details). In the previous formulas, T1 was chosen according to
Eq. (A.29) as T−1

1 = 2W1. In the case of Eq. (2.57), T1 is defined as T−1
1 = (2/3)W1 [72].
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This is the so-called Korringa relation, where the Korringa constant S0 depends only on
the probed isotope (through γn). Experimentally however, only very few materials ful-
fill Eq. (2.58). For most materials correlations between electrons have to be taken into
account [67, 75–77]. These include electron-electron exchange interactions (Stoner en-
hancement) as well as other possible magnetic correlations between conduction electrons.
It is therefore common to use the modified Korringa ratio [36, 77–81]:

K2
sT1T = αS0 . (2.59)

α = 1 reflects the behavior of a normal metal without any correlations (Fermi gas). The
deviations from α = 1 are a measure of the strength of possible correlations (Fermi liquid).
α > 1 presents the tendency of the observed system towards ferromagnetic correlations at
~q = 0 (e.g. Stoner enhancement of the uniform susceptibility) [36, 67, 76, 77], and α < 1
depicts its tendency towards antiferromagnetic correlations at ~q 6= 0 [36, 77].

In the case of high temperature superconductors it is common to ascribe the behavior
K2

sT1T = αS0 = const. in the normal state to a Fermi liquid character of the supercon-
ductor [23, 34, 78].

However, one has to be careful when doing a quantitative interpretation based on the
value of α. First, it was shown that also disorder may enhance the Korringa ratio α [77].
Second, hyperfine form factor effects can also radically change the value of α, by filtering
out important regions in ~q-space (see e.g. [82]).

Even the interpretation of a constant or not-constant Korringa ratio has to be exam-
ined carefully. Since both the Knight shift Ks and the spin-lattice relaxation rate T−1

1

depend on the density of states of electrons at the Fermi level, a temperature- (or field-)
dependent density of states, for instance due to electron electron interactions, may also
lead to a temperature- (or field-) dependent Korringa ratio [75]. This does not exclude
that the system can be described within a Fermi liquid picture. The observation of a
constant Korringa relation is thus a proof of a Fermi liquid, but its absence is not a strict
counter evidence against it. Furthermore, the absolute value of α should be interpreted
with great care.

2.3.3 Spin-Spin Relaxation

Spin-spin relaxation is caused by both direct dipolar and indirect couplings between nu-
clear spins as described in Section 2.2.1 as well as by inhomogeneities of the static magnetic
field. Locally fluctuating magnetic fields, which induce transitions between different en-
ergy levels and therefore spin-lattice relaxation, also cause spin-spin relaxation. This is
the so-called Redfield contribution [83]. All mentioned effects cause the loss of coherence
between the spins and thus a decay of the transverse components Mx and My of the
nuclear magnetization. They are described by the relaxation rate 1/T ∗

2 [36]:

1

T ∗
2

=
1

T2
+

1

T inhomog
2

=
1

T dip
2

+
1

T indirect
2

+
1

TRedfield
2

+
1

T inhomog
2

. (2.60)
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The spin-spin relaxation rate 1/T2 is defined as the sum of the first three contribu-
tions. The last contribution is not included in 1/T2 since it does not stem from “real”
relaxation processes but from local inhomogeneities of the static magnetic field, which
lead to a dephasing due to slightly different Larmor frequencies ωL. The FID depicted
in Figs. 2.6 and 2.8 decays with the relaxation time T ∗

2 < T2. For a measurement of the
spin-spin relaxation time T2 one takes advantage of the Hahn spin echo pulse sequence
(Fig. 2.8), where the contributions of static local field inhomogeneities cancel out due to
the refocussing of the different components of the transverse magnetization after the 180◦

pulse.17 In order to measure the spin-spin relaxation time T2 one observes the decay of
the Hahn spin echo as a function of the time τ between the two pulses (see Fig. 2.8). An
exponential fit to the decay of Mxy(2τ) yields the spin-spin relaxation rate 1/T2:

Mxy(2τ) =M0 exp(−2τ/T2) . (2.61)

A more elaborate fit discriminates between the already discussed decay rate due to
spin-lattice processes, 1/TRedfield

2 , and the decay rate due to nuclear spin-spin interactions,
1/T2G [49]:

Mxy(2τ) =M0 exp
[

−2τ/TRedfield
2 − (2τ)2/(2T 2

2G)
]

. (2.62)

1/TRedfield
2 can be determined from 1/T1 [84, 85]. The remaining fit parameter 1/T2G

comprises both the direct dipolar contribution 1/T dip
2 and the indirect coupling between

nuclear spins 1/T indirect
2 . The latter contains information about the static, ~q-dependent

susceptibility χ′(~q) complementary to 1/T1 [46, 48, 49] (see discussion in Section 2.2.1).
Following the approach discussed in Section 2.3.2.1, the spin-spin relaxation rate due

to fluctuating magnetic fields (Redfield contribution) can be calculated to [28, 35]:

1

TRedfield
2

= γ2
[

〈h2z〉τc +
1

2
(〈h2x〉+ 〈h2y〉)

τc
1 + ω2

Lτ
2
c

]

=
1

T ′
2

+
1

2T1
. (2.63)

This expression contains two contributions. The first one, 1/T ′
2, represents the dephasing

of the spins due to the spread in fluctuating fields parallel to the applied magnetic field H0

(secular broadening). The second contribution, 1/2T1, reflects a spread in the transverse
components of the fluctuating field stemming from the lifetime broadening of the nuclear
energy levels. It is related to 1/T1. Fig. 2.10 summarizes the dependences of 1/2T1 and
1/T ′

2 on the correlation time τc. Whereas the longitudinal contribution 1/2T1 goes through
a maximum at τc = 1/ωL, the transverse part 1/T ′

2 increases with τc up to τc = 1/γhz.
For larger values of τc the Redfield theory cannot be applied any more [28].

In this work the spin-spin relaxation will not be discussed explicitly. It is however
important to have a rough estimate of T2 for the choice of appropriate pulse sequence
parameters.

17 Local field inhomogeneities may arise due to inhomogeneities of the external field as well as due
to internal dipole fields or inhomogeneities of local fields produced by electronic spins. All these
contributions will be eliminated by the Hahn spin echo pulse sequence, as long as they are static over
the time scale of the measurement [27], which means as long as τc � T2.
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Figure 2.10: Relaxation rates 1/T ′
2 and 1/2T1 as a function of the correlation time τc according

to Equations (2.51) and (2.63) on a double logarithmic scale [28] (graph adopted from [35]). The
dashed line corresponds to the region τc > 1/γhz for which 1/T ′

2 cannot be described any more
by the Redfield theory (see text).

2.4 Line Shape II

In addition to the effects discussed in Section 2.2.1, many other reasons which are unre-
lated to nuclear spin-spin interactions can influence the line shape, in most cases leading to
an inhomogeneous broadening. One factor, which should and can be avoided, is certainly
the inhomogeneity of the applied static magnetic field. This effect can be diminished
by using high resolution NMR magnets and small samples, which cover less space in the
magnetic field and thus experience smaller gradients.

Spin-lattice relaxation processes lead to an additional broadening of all resonance lines
with a factor of ~/T1 (lifetime broadening due to the Heisenberg uncertainty principle,
see also discussion of Eq. (2.63)).

Inhomogeneities of the internal magnetic field due to impurities, vacancies, spin density
oscillations, static local fields and so on lead to a distribution of Knight shifts K and thus
also to a broadening of the resonance line. The distribution of Knight shifts might thereby
stem from a distribution of hyperfine couplings or from inhomogeneities of the local spin
susceptibility itself [see Eq. (2.21)]. The corresponding line broadening affects both the
central line and the satellites in the same way in first order [86].

In crystals with a non-vanishing EFG, imperfections such as dislocations, vacancies,
interstitial sites, strains, foreign atoms as well as intrinsic charge inhomogeneities (charge
density wave, e.g.), will cause a variation of the intensity and orientation of the EFG
from site to site. In first order of perturbation of the Hamiltonian, this local variation
of the EFG leads to a broadening (and in some cases even to a complete blurring) of
the NMR satellite lines, while the NMR central resonance line is only affected in second



30 2 Basic Principles of NMR

order. Correspondingly, the influence of quadrupole effects can be directly measured by
observing the NQR resonance line(s).

In general, in the paramagnetic state, effects of disorder are much stronger on the
quadrupole broadening than on the magnetic broadening. Any small deviation from a
homogeneous charge distribution or any lattice anomaly or defect will lead to a distribu-
tion of electric field gradients and thus contribute to the quadrupole linewidth. For the
discussion of the quality of a crystal it is therefore convenient to check the quadrupole
linewidth (either in NQR directly or by comparing the linewidth of the NMR satellites
with that of the central NMR resonance line). This will be important for the discussion
of the properties of the samples presented in this thesis, above all for the characterization
of LiFeAs in Section 5.3.2.

NMR spectra of powder samples will be inhomogeneously broadened due to anisotropies
in the quadrupole and magnetic interactions (anisotropic Knight shift) resulting from
crystallites oriented differently with respect to the applied magnetic field.

Fluctuating local moments from surrounding magnetic ions will also cause inhomoge-
neous broadening. In the paramagnetic phase, they are fluctuating with the frequency
1/τc, where τc is the correlation time of the fluctuations. If the magnetic ions are fluctu-
ating with a much higher frequency than the NMR linewidth, each nucleus will only sense
the time-averaged local field and the NMR line is narrow (motional narrowing). When
the magnetic correlations gain in strength and fluctuations slow down, the nuclei will
begin to perceive a distribution of local fields. This will lead to a broadening of the NMR
(and NQR) resonance lines (see Eq. (2.63) and Fig. 2.10 for the mathematical expression
of the relation between τc and the linewidth ∆ω ∝ 1/T2).
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This Chapter lays the foundations for the interpretation of the NMR measurements in
the superconducting state which will be presented in Chapter 7. The behavior of the
spin shift for spin-singlet and spin-triplet superconductors will be discussed in Section
3.1. Possible other shift contributions will also be pointed out. Section 3.2 starts with
a detailed deduction of the spin-lattice relaxation rate of a BCS superconductor in the
superconducting state. After deducing the spin-lattice relaxation rate of a single-band
BCS superconductor and comparing it to the ultrasonic attenuation, some additional
remarks about other possible gap symmetries will be shortly made. As will be pointed
out, the comparison between NMR and ultrasonic attenuation was a significant proof
of the BCS theory. At the end of Section 3.2 it will be shown what one should expect
for the spin-lattice relaxation rate in a two-band model for s++ and s± symmetries of
the superconducting order parameter, since these symmetries will be important for the
discussion of the spin-lattice relaxation rate measurements on pnictides later on.

The normal-state behavior of a superconductor will not be discussed theoretically in a
separate chapter, but directly when discussing the experiments in Chapter 6.

3.1 Knight Shift

3.1.1 Spin Shift

Measuring the spin susceptibility in the superconducting state is an important tool to
determine the pairing state of the Cooper pairs. An antiparallel alignment of the spins of
the two electrons forming a Cooper pair (singlet pairing) leads to a total spin of S = 0.
The spin susceptibility thus decreases in the superconducting state. A parallel orientation
of the two spins yields a total spin of S = 1 (triplet pairing) which does not result in
a change in the total spin susceptibility, at least not along the direction of the aligned
Cooper spins. Since bulk magnetization measurements are dominated by the diamagnetic
response of the superconductor, the spin part of the Knight shift is a good method to
measure the spin susceptibility locally.

The spin shift is proportional to the static spin susceptibility, mediated via the hyperfine
coupling, and can be expressed as [87]:

Ks,sc ∝ χs,sc = −4µ2
B

∫ ∞

0

Nsc(E)
∂f(E)

∂E
dE , (3.1)

where Nsc is the density of states in the superconducting state and f(E) is the Fermi
distribution function. By comparing the spin susceptibility in the superconducting state
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with the Pauli spin susceptibility in the normal state, one obtains the ratio between the
spin shift in the superconducting and in the normal state as:

Ks,sc

Ks,n
=
χs,sc

χs,n
= −2

∫ ∞

0

Nsc(E)

Nn(Ef )

(

∂f(E)

∂E

)

dE . (3.2)

In the case of a BCS superconductor with a single isotropic superconducting
energy gap ∆, the density of states in the superconducting state Nsc = NBCS is given by
[2]:

NBCS(E)

Nn(Ef )
=

{

E√
E2−∆2

(E > ∆)

0 (E < ∆)
. (3.3)

The behavior of the spin shift in the superconducting state of a BCS superconductor
can be described by the Yosida function derived from Equations (3.2) and (3.3) [88]. It
describes the decrease of the spin shift with decreasing temperature below Tc. At low
temperatures the decrease is exponential. For T → 0 the spin shift vanishes: Ks → 0
[88], expressing the gapping out of quasiparticle states.

In the case of spin-triplet superconductors, the spin susceptibility remains finite
for certain directions. The order parameter in this case is characterized by the ~d-vector.
It contains information about the orientation of the S = 1 Cooper pairs and about the
magnitude of the superconducting energy gap. The direction of ~d defines a normal to a
plane to which the spins of the Cooper pairs are confined. Usually, spin-orbit coupling pins
the ~d-vector to a crystalline axis. Depending on the relative orientation of the external
magnetic field H0 versus ~d, the spin shift either vanishes or remains finite [78]. Even
though it is in practice a more complicated system, Sr2RuO4 is a famous example. Its
~d-vector is believed to be: ~d(~k) = ∆0(kx + iky)ẑ, confining the spins of the Cooper pairs
into the xy-plane. In this case χs and therewith Ks remain constant across Tc for H0 ‖ x
and H0 ‖ y [21]. For H0 ‖ z, a full Yosida function behavior is expected for Ks [78, 89].
However, NMR measurements at very low fields (due to the very low upper critical field

Hc2 along z) showed also a constant Knight shift along z [90]. A re-orientation of the ~d-
vector (and thus of the spin direction) in small magnetic fields was discussed as a possible
explanation for this unexpected behavior [90].

3.1.2 Orbital Shift and Spin-Orbit Scattering

Experimentally it is often observed that the measured Knight shift of singlet supercon-
ductors does not vanish for T → 0, as expected theoretically, but decreases to some
constant offset [91]. This effect stems from the orbital contribution to the Knight shift,
Korb, which is proportional to the orbital van Vleck susceptibility. It does not depend on
the spin state of the electrons and is temperature-independent. While Ks decreases ex-
ponentially to zero in the superconducting state for a singlet superconductor, the orbital
shift Korb stays constant and gives rise to a finite NMR shift K as T → 0. In the case of
strong orbital magnetism, Korb can become larger than the spin shift Ks and lead to an
unchanged Knight shift across Tc even for singlet superconductors [92, 93]. Another effect
to take into account is spin-orbit scattering, which mixes spin-up and spin-down states.
In the presence of disorder, strong spin-orbit coupling might also cause a finite Knight
shift in singlet superconductors [94].
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Careful examination of the orbital contribution is thus needed before associating the
observation of a constant Knight shift in the superconducting state straightforwardly to
a triplet pairing symmetry.

3.1.3 Diamagnetic Shielding

In the superconducting state, the total shift Ktotal is extended by a third contribution,
stemming from the diamagnetic shielding currents induced by the external magnetic field
H0 [95, 96]:

Ktotal = Ks(T ) +Korb −
∆H(T )

H0
. (3.4)

The demagnetization field ∆H is a measure of the reduction of the internal magnetic field
due to screening currents. The decrease of the resonance frequency due to the reduction
of the internal magnetic field is expressed in the negative sign in front of the diamagnetic
shielding contribution. This contribution is temperature- and field-dependent. It always
leads to an additional decrease of the shift. If for instance the hyperfine field Ahf of a
certain nuclei would be negative, Ks of a singlet superconductor would increase below Tc

[see Eq. (2.21)]. A diamagnetic shift of the same magnitude could then lead to the obser-
vation of a constant total shift and thus hide the actual decrease of the spin susceptibility.
Experimentally, the quantitative contribution of diamagnetic shifts to the total shift is dif-
ficult to estimate. It can be quite large, which might handicap the correct interpretation
of the Knight shift data in the superconducting state. An estimation of the importance
of the demagnetization effect can be deduced from the calculation of the demagnetization
factors [97]. Experimentally the observation of a line broadening due to the inhomoge-
neous field distribution in the mixed state evidences a large diamagnetic shielding effect.
To eliminate the diamagnetic shielding effect and determine the real spin shift Ks, one
has to measure the Knight shift at at least two different nuclei and subtract the different
Knight shifts from each other. This is however only possible if both chosen nuclei measure
the same spin degree of freedom [96].

3.2 Spin-Lattice Relaxation Rate

3.2.1 BCS Coherence Factors

The following deduction of the spin-lattice relaxation rate in the superconducting state
of BCS superconductors is mainly based on a textbook by M. Tinkham [98], as well as
on lecture notes by H. Eschrig [99] and J. Wosnitza [100].

In a BCS superconductor, the BCS ground state wave function is given as:

|ΨBCS〉 =
∏

~k

(u~k + v~kc
+
~k↑c

+

−~k↓)|Φ0〉 , (3.5)

where |Φ0〉 denotes the vacuum state without particles, c+~k↑ and c+−~k↓ are the creation

operators of the electron states (~k ↑) and (−~k ↓) and |v~k|2 and |u~k|2 = 1 − |v~k|2 are the
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probabilities of finding an occupied and unoccupied Cooper pair (~k ↑,−~k ↓), respectively.
A general perturbation Hamiltonian can be written as:

H1 =
∑

~kσ,~k′σ′

B~k′σ′,~kσc
+
~k′σ′
c~kσ . (3.6)

In the normal state, each pair of creation and annihilation operators c+~k′σ′
c~kσ is independent

from the others and transition probabilities between the one-electron states (~k′σ′) and (~kσ)
are proportional to the square of the matrix elements B~k′σ′,~kσ. On the other hand, in the
superconducting state one has to deal with a phase-coherent superposition of one-electron
states, which leads to interference terms in the perturbing Hamiltonian of the form of:

B~k′σ′,~kσ

(

c+~k′σ′
c~kσ ± c+~−k−σ,

c−~k′−σ′

)

. (3.7)

Whether the two terms will be summed up or subtracted depends on the nature of the
particular perturbation HamiltonianH1, which determines whether the two corresponding
matrix elements have the same sign or not: B~k′σ′,~kσ = ±B ~−k−σ, ~−k′−σ′ . Expressing the
operators of Eq. (3.7) in terms of the fermionic quasiparticle operators above the BCS
condensate (Bogoliubons), which are defined by the Bogoliubov-Valatin transformation1

[99, 101, 102]:

b̂~kσ = u~kĉ~kσ − σv~kĉ+~−k−σ

b̂+~kσ = u~kĉ
+
~kσ
− σv~kĉ ~−k−σ , (3.8)

and correspondingly [99]:

ĉ~kσ = u~kb̂~kσ + σv~kb̂
+
~−k−σ

ĉ+~kσ = u~kb̂
+
~kσ

+ σv~kb̂ ~−k−σ , (3.9)

one ends up in coherence factors of the form of:

(uu′ ∓ vv′)2 = 1

2

(

1∓ ∆2

EE ′

)

(3.10)

(vu′ ± uv′)2 = 1

2

(

1± ∆2

EE ′

)

. (3.11)

Eq. (3.10) refers to a scattering of quasiparticles, while Eq. (3.11) refers to the annihilation
or creation of two quasiparticles. For the expression of these coherence factors in terms
of E and ∆, the mathematical trick:

uk = sin θk

vk = cos θk

sin 2θk =
∆k

Ek
(3.12)

1 This transformation contains the constraint, that if one wants to describe only one excited quasiparticle
(~kσ) out of a superconducting Cooper pair (~kσ,−~k − σ), one has to annihilate simultaneously its

partner (−~k − σ), since the excitation of one quasiparticle always entails the excitation of its Cooper
pair partner.
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was used, which is conveniently introduced to minimize the BCS Hamiltonian under
the constraint |u~k|2+|v~k|2 = 1 [98]. Ek =

√

(∆2
k + ξ2k) is the excitation energy of a

quasiparticle, ∆k = ∆ is the isotropic energy gap and ξk = εk − µ is the single particle
energy relative to the Fermi energy.

Since in the case of quasiparticle annihilation/creation one quasiparticle obtains a
negative energy relative to the chemical potential µ, it is a common sign convention to
reverse the sign in Eq. (3.11), such that the coherence factor for scattering as well as the
one for quasiparticle annihilation and creation are given by:

C∓ =
1

2

(

1∓ ∆2

EE ′

)

. (3.13)

The sign depends on the nature of the interaction. If it is even in time reversal symmetry
as in the case of electron-phonon interaction leading to ultrasonic absorption (expressed by
a simple scalar potential), C− has to be used. C+ is the right choice for interactions with
odd time reversal symmetry, including vector potentials or spin-flip processes [98, 103].

3.2.2 BCS Spin-Lattice Relaxation Rate

The energies of spin flip scattering processes leading to spin-lattice relaxation are small
compared to the superconducting energy gap, ~ωL � ∆. Therefore, the spin-lattice relax-
ation is determined by quasiparticle scattering and not by quasiparticle creation/annihi-
lation. The corresponding perturbing interaction involving spin-flip processes is odd under
time reversal symmetry such that the spin-lattice relaxation rate is given by:

αs ∝ |B|2
∫ ∞

−∞
C+(E,E

′)NBCS(E)f(E)NBCS(E
′)(1− f(E ′))dE (3.14)

Here, f(E) is the Fermi distribution function, NBCS(E) the BCS density of states in the
superconducting state [see Eq. (3.3)] and C+(E,E

′) is the formerly deduced coherence
factor [see Eq. (3.13)]. |B|2 is the transition matrix element containing the coupling of
the nuclear spins to the electronic system (hyperfine coupling).

Experimentally, one can only measure the net transition rate between the energy levels
E ′ = E + ~ω and E, which is given by the difference of the transition rate from E to E ′,
αs,E→E′ and the one back from E ′ to E, αs,E′→E:

αs,E↔E′ = αs,E→E′ − αs,E′→E

∝ NBCS(E)f(E)NBCS(E
′)[1− f(E ′)]

−NBCS(E
′)f(E ′)NBCS(E)[1− f(E)]

= NBCS(E)NBCS(E
′)[f(E)− f(E ′)] . (3.15)

Furthermore, only processes with an energy difference E ′ − E = ~ω are interesting.
Inserting the definition of the coherence factor C+ from Eq. (3.13) into Eq. (3.14) and
considering Eq. (3.15), the spin-lattice relaxation rate reads:

αs ∝ |B|2
∫ ∞

−∞

E(E + ~ω) + ∆2

E(E + ~ω)
NBCS(E)NBCS(E + ~ω)[f(E)− f(E + ~ω)]dE . (3.16)
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In the normal state, the spin-lattice relaxation rate is given by:

αn ∝ |B|2N2
n(Ef)~ω . (3.17)

For the interpretation of the spin-lattice relaxation rate in the superconducting state,
it is sufficient to observe the changes which occur when the system enters the supercon-
ducting state. It is thus enough to determine the ratio αs/αn. Considering the ratio of
the density of states given in Eq. (3.3), one arrives at:

αs

αn

=
2

~ω

∫ ∞

∆

E(E + ~ω) + ∆2

√
E2 −∆2

√

[(E + ~ω)2 −∆2]
[f(E)− f(E + ~ω)]dE . (3.18)

The factor 2 accounts for the integration from −∞ to −∆ which contributes the same
amount to the integral as the integration from ∆ to ∞. Since NMR frequencies lie in
the range of MHz and thus in the low energy range, one can approximate ~ω � ∆ and
~ω � kBT . Therewith E + ~ω ≈ E and Eq. (3.18) simplifies to:

αs

αn
= lim

~ω→0

2

~ω

∫ ∞

∆

E(E + ~ω) + ∆2

√
E2 −∆2

√

[(E + ~ω)2 −∆2]
[f(E)− f(E + ~ω)]dE

αs

αn
= 2

∫ ∞

∆

E2 +∆2

E2 −∆2

(

− ∂f
∂E

)

dE . (3.19)

Calculating this integral by considering the temperature dependence of f(E) results in
the temperature dependence of the spin-lattice relaxation rate. Even without solving the
integral completely, some qualitative temperature dependences can directly be deduced.
Eq. (3.19) shows a logarithmic divergence from the integration at ∆. This results in
an increase of the spin-lattice relaxation rate just below Tc, the so-called Hebel-Slichter
peak [18, 19]. At low temperatures, the spin-lattice relaxation rate follows an exponential
temperature dependence αs ∝ exp(−∆/kBT ), resulting mainly from the exponential tails
of the function −∂f/∂E [19].

The logarithmic divergence expressed in Eq. (3.19), which was calculated for ω →
0 overestimates the height of the Hebel-Slichter peak. If one considers a finite ω the
divergence is smoothed by a factor of the order of ln(∆/~ω) ≈ 10, which is still too
much compared to the experimentally observed rise in T−1

1 of the order of 2. This can
be explained by focussing on the dependence on the density of states. As seen already in
Eq. (3.18), the spin-lattice relaxation rate is proportional to the square of the density of
states:

α ∝
∫

N(E)N(E + ~ω)dE ≈
∫

N2(E)dE . (3.20)

The superconducting density of states NBCS(E) shows a divergence at ∆ [see Eq. (3.3)].
The overestimation of the sharpness of this divergence by using the simple BCS expression
(3.3) leads to an overestimation of the singularity in αs/αn. To account for a real system,
anisotropies in the energy gap due to imperfections in the crystal structure as well as
finite lifetimes of the quasiparticles (uncertainty principle) have to be considered, both
causing a broadening of the singularity peaks in the density of states and thus a reduction
of their height, which in the end reduces the height of the theoretical singularity in αs/αn

to the experimentally observed Hebel-Slichter peak. Practically, this can be done by con-
voluting the density of states with a breadth function σ(E). The easiest breadth function
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is a rectangular one of width 2δE and height 1/2δE and was already proposed by Hebel
and Slichter in 1959 [19].

Alternatively, one can rewrite Eq. (3.19) in the form:

αs

αn

=
2

kBT

∫ ∞

∆

N2
BCS(E) +M2

BCS(E)

N2
n(Ef )

(

− ∂f
∂E

)

dE , (3.21)

where NBCS(E) is the superconducting density of states as described above andMBCS(E)
is the so-called anomalous density of quasiparticle states resulting out of the coherence
factor [95, 104]. Instead of convoluting these densities of states with a rectangular breadth
function, a broadening of the energy levels can also be introduced into the imaginary part
of the density of states which then will be described as follows [105]:

NBCS(E) = Re

{

(E − iΓ)
[(E − iΓ)2 −∆2]1/2

}

(3.22)

MBCS(E) = Re

{

∆

[(E − iΓ)2 −∆2]1/2

}

. (3.23)

The anisotropy of the gap due to anisotropies in the phonon spectrum and/or the band
structure can be expressed as [87]:

∆(Ω) = ∆0[1 + a(Ω)] , (3.24)

where the anisotropy function a(Ω) with 〈a(Ω)〉 = 0 describes the variation of the gap at
a certain direction Ω of the Fermi surface.

3.2.2.1 Comparison to Ultrasonic Attenuation

The counterpart of the spin-lattice relaxation rate concerning the involvement of the
coherence factor are measurements of ultrasonic attenuation. In this case, the coherence
factor C− has to be used. Following the same deduction as in the case of the spin-lattice
relaxation rate, but inserting C− instead of C+, the ratio between the attenuation in the
superconducting and in the normal state reads:

αs

αn
= lim

~ω→0

1

~ω

∫ ∞

∆

[f(E)− f(E + ~ω)]dE

= −
∫ ∞

∆

∂f(E)

∂E
dE

=
2

1 + exp(∆/kBT )
. (3.25)

Together with the temperature dependence of the superconducting energy gap ∆(T ), this
results in a drop of αs/αn with infinite slope just below Tc and in an exponential decrease
for T � Tc. This was first observed and related to the BCS theory by Morse and Bohm
in 1957 [106].

The Hebel-Slichter coherence peak in the spin-lattice relaxation rate together with the
totally different behavior of the ultrasonic attenuation in the superconducting state played
a significant role in establishing the BCS theory as the first microscopic description of
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conventional (weakly coupled) superconductors. The results, which are not describable
simultaneously by any one-electron theory, are a proof of essential features of the BCS
theory such as the existence of Cooper pairs and the superconducting gap, as well as of
the actual BCS parameters u~k and v~k which are the basic ingredients of the coherence
factors on the microscopic level.

3.2.3 Absence of the Hebel-Slichter Peak

For a d-wave symmetry superconductor, no coherence factors have to be taken into
account. Correspondingly MBCS(E) vanishes [95]. Furthermore, the density of states
in the superconducting state differs from the one of a BCS superconductor. Eq. (3.21)
changes to:

αs

αn
=

2

kBT

∫ ∞

∆

N2
d−sc(E)

N2
n(Ef )

(

− ∂f
∂E

)

dE , (3.26)

where Nd−sc(E) is the density of states in the superconducting state of a d-wave supercon-

ductor. In a d-wave symmetry, the superconducting energy gap is ~k-dependent and there
are nodes on the Fermi surface, where it vanishes completely. This reduces the singularity
in the density of states at E = ∆ compared to NBCS(E) and additionally leads to a linear
E-dependence of Nd−sc(E) at low energies with Nd−sc(E)→ 0 for E → 0. Altogether, this
results in the absence of the Hebel-Slichter coherence peak and in a non-exponential de-
crease of the spin-lattice relaxation rate at low temperature [95, 107]. In a typical d-wave
superconductor T−1

1 decreases proportionally to T 3 for T sufficiently below Tc. Deviations
from the T 3-dependence may arise for T � Tc due to pair breaking effects by impurities
which produce a residual density of states at the lowest energies. Typically, this results
in a linear temperature dependence of the spin-lattice relaxation rate at low temperature.
Also crystal imperfections, vacancies, lattice distortions and similar defects may lead to
a linear temperature dependence of T−1

1 at low temperature.
However one has to be very careful not to associate straightforwardly the absence

of the coherence peak with a d-wave symmetry. The peak might also be suppressed
in a conventional s-wave superconductor. The occurrence of the Hebel-Slichter peak
refers to single-band BCS superconductors in a weak coupling regime. In the strong
coupling limit2, where the electron-phonon coupling is enhanced, the Hebel-Slichter peak
can be suppressed. An example of the effect of the coupling regime are the Chevrel-
phase superconductors TlMo6Se7.5 (Tc = 12.2K) and Sn1.1Mo6Se7.5 (Tc = 4.2K) [108].
While the latter one shows the Hebel-Slichter peak and an exponential decay of T −1

1

with 2∆ = 3.6kBTc, pointing towards an s-wave symmetry in the weak coupling limit3,
TlMo6Se7.5 does not exhibit any Hebel-Slichter peak, but its spin-lattice relaxation rate
also decays exponentially with 2∆ = 4.5kBTc at low temperature. The value of 4.5 points
towards a strong coupling regime, where the Hebel-Slichter coherence peak is suppressed
by the lifetime effect of the quasiparticles through electron-phonon interactions, while the
isotropic opening of the gap (s-wave symmetry) induces the exponential decay of T −1

1 .

2 The general treatment of the effect of coupling strength is done by applying the Eliashberg theory,
which is the generalization of the BCS theory to arbitrary coupling strengths.

3 A classical BCS gap fulfills the relation 2∆ = 3.52kBTc.



3.2 Spin-Lattice Relaxation Rate 39

Another famous example is superconducting A3C60 (A = alkali metal). For this class of
superconductors the Hebel-Slichter peak is suppressed by the application of high magnetic
fields, suggesting an intermediate coupling regime within the BCS theory [96]. Other
possible effects which could lead to a suppression of the Hebel-Slichter peak are a spread
in superconducting transition temperatures within a sample or slight gap anisotropies
[96].

While the existence of a Hebel-Slichter peak points strongly towards a conventional
BCS s-wave pairing mechanism, the absence of it is not sufficient to interpret spin-lattice
relaxation rates correctly in terms of other gap symmetries. Additional information is
gained from the temperature dependence of the spin-lattice relaxation rate below Tc.

3.2.4 What to Expect for Pnictides?

A consideration of the s±- and s++-symmetry cases can be done in a two-band model,
which is the most simple model which one can use to describe the pnictides. The coherence
factors in this case are more complicated due to the two-band situation [103]:

C(i) ∝ 1

2

{

(· · · )(· · · )− ∆ν∆ν′

Eν′,~kEν,~k+~q

}

(3.27)

C(ii) ∝ 1

2

{

(· · · )(· · · ) + ∆ν∆ν′

Eν′,~kEν,~k+~q

}

. (3.28)

Here, the focus is on the contribution of the superconducting gaps ∆ν and ∆ν′ of the two
bands ν and ν ′ (see [103] for the full expression of the coherence factors). Again, the
sign depends on what one wants to look at (density response function or spin response
function) according to the time reversal symmetry of the external field as a decisive
parameter. The sign chosen in Equations (3.27) and (3.28) refers to the spin response
function, which is the important one for NMR and neutron scattering. For the density
response function, the sign has to be inverted in both equations. Furthermore, the sign
depends on which regime one wants to focus on [103]: (i) T � Tc and ω ≈ |∆(0)

ν |+ |∆(0)
ν′ |,

where quasiparticle creation and annihilation are the leading terms [Eq. (3.27)]; and

(ii) 0 6 T 6 Tc and ω � |∆(0)
ν | + |∆(0)

ν′ |, where mainly the scattering of thermally
excited quasiparticles is important [Eq. (3.28)] (see [103] for details). The interesting
region for NMR measurements is always (ii), since the Larmor energy lies in the range of
~ω ≈ µeV, while superconducting gap energies always are in the range of meV4 and thus
ω � |∆(0)

ν |+ |∆(0)
ν′ | is always true.

Most importantly, the sign in Equations (3.27) and (3.28) depends on the symmetry
of the superconducting gap. This allows a differentiation between the s±- and the s++-
symmetry by examining the product ∆ν∆ν′ . In the case of s±-symmetry, ∆ν∆ν′ is negative
for ~q = ~Q, where ~Q is the nesting vector between the hole and the electron Fermi surface.

4 Some examples of superconducting energy gaps:
bulk aluminum: ∆ = 0.16meV [109],
Bi2Sr2CaCu2O8: ∆ = 24meV [110],
LiFeAs: ∆1 = 1.5− 2.5meV and ∆2 = 2− 3.5meV [111],
Ba1−xKxFe2As2: ∆1 = 9.1meV and ∆2 = 1.5meV [112].
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This leads to an effective sign reversion in front of the term ∆ν∆ν′/Eν′,~kEν,~k+~q at ~q =
~Q,

which is responsible for the resonance peak in inelastic neutron scattering experiments
[113–116], which focusses on the ω-dependence of the spin response function around ω ≈
|∆(0)

ν | + |∆(0)
ν′ | and thus refers to Eq. (3.27). In the case of s++-symmetry, ∆ν∆ν′ > 0

and no resonance peak would appear in inelastic neutron scattering experiments, at least
considering only the coherence effects. However, Onari and coworkers showed later that
a resonance-peak-like feature in inelastic neutron scattering experiments at ω ≈ |∆(0)

min|+
|∆(0)

max| can also be reproduced within an s++ symmetry, when quasiparticle damping
effects are included [117].

In NMR experiments, for which Eq. (3.28) has to be applied, the absence of the Hebel-
Slichter coherence peak in the spin-lattice relaxation rate cannot be explained within the
s++ scenario, since the coherence factor C (ii) contains a positive sign as in the simple
single-band BCS case. This sign will not be inverted in the s++ symmetry case, since
∆ν∆ν′ > 0 in this case. Furthermore, the density of states in the s++ case is very
robust against impurities [103], in contrast to the s± scenario. Therefore, even by taking
into account a smearing out of the singularity in the density of states due to impurities,
the absence of the Hebel-Slichter coherence peak cannot be explained within the s++

symmetry .
In the s± symmetry, in contrast, the absence of the Hebel-Slichter coherence peak

follows directly out of the sign inversion in C (ii) due to ∆ν∆ν′ < 0.
Again it should be noted that the absence of the Hebel-Slichter coherence peak solely is

not enough to prove a certain gap symmetry. An analysis of the temperature dependence
of the spin-lattice relaxation rate is also needed, as well as the interpretation of NMR data
in the context of other symmetry sensitive measurements, such as angle resolved photo
emission spectroscopy (ARPES), neutron scattering, scanning tunnelling spectroscopy or
specific heat.



4 Iron-based Superconductors

This Chapter gives a short overview of the recently discovered family of iron-based su-
perconductors and a comparison to the cuprates, the first and most profoundly studied
family of high-temperature superconductors. Additionally, a short overview of theoreti-
cal calculations of the electronic band structure, expected magnetic instabilities and the
Fermi surface topology will be given. A knowledge of the latter is necessary for the
understanding of possible gap symmetries and the impact of intraband and interband
impurity scattering processes, mainly when discussing the temperature dependence of the
spin-lattice relaxation rate in the superconducting state of LaO0.9F0.1FeAs1−δ in Section
7.2.

Some basic properties of the studied materials LaO1−xFxFeAs and LiFeAs measured
by techniques other than NMR will be mentioned, as to give a proper context to the
NMR measurements that will be presented later on. Particular properties of the specific
samples which were measured in the course of this thesis will be presented in Chapter 5
or in direct comparison to the NMR results in Chapters 6 and 7.

4.1 General Overview

4.1.1 Crystal Structure and Electronic Structure

Iron-based superconductors can be divided into several structural families. The four most
representative ones are depicted in Fig. 4.1. They are frequently named according to the
stoichiometries of their parent compounds as “1111”, “122”, “111” and “11” systems.
The common structural feature of all of these families is the two-dimensional (2D) iron-
pnictogen layer (or in the case of the “11” a 2D iron-chalcogen layer). These layers, which
are where superconductivity will take place, can be intercalated by some rare earth-oxygen
layer (“1111”), by some alkali ions (“111”) or alkaline earth ions (“122”).

The two-dimensionality of these materials is at first glance very similar to the one of
the cuprates, which are also layered systems. Physical properties are therefore expected
to have a highly two-dimensional character, too. There is however also a difference in
structure between cuprates and iron-based superconductors. The CuO2 layers in cuprates
are nearly flat (apart from some buckling). The iron-pnictogen layers in Fe-based super-
conductors are much more three-dimensional (see Fig. 4.1). Pnictogen ions are arranged
above and below the iron-plane in a tetrahedral symmetry. This special arrangement
allows the iron atoms to be located closer to each other, in contrast to the copper atoms
in the cuprates.

Also the electronic structure differs between cuprates and pnictides. In pnictides (for-
mally: Fe2+: 3d6), all five Fe 3d orbitals cross the Fermi level and add charge carriers
[113, 118–124] [see Fig. 4.2(a)], while in cuprates (Cu2+: 3d9) mainly one Cu 3d orbital
(dx2−y2) is important [125–127]. Pnictides feature a high density of states at the Fermi
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Figure 4.1: Crystal structure of the four main structural families of iron-based superconductors.
Atom names correspond to representatives of the respective family. The iron-pnictogen layer
(red-orange) is intercalated (a) by an RE-oxygen layer (blue-green) in the case of the “1111”
family (e.g. LaOFeAs), (b) by an alkaline earth element (violet) in the case of the “122” (e.g.
BaFe2As2), (c) by an alkali element (light green) in the “111” family (e.g. LiFeAs) or (d) by
nothing in the case of the so-called “11” (e.g. FeSe). In this case, the pnictogen atoms are
replaced by chalcogens to preserve the charge balance (graphic adapted from [10]).

energy, mainly dominated by Fe 3d bands [see Fig. 4.2(b)] whereas cuprates exhibit a
rather moderate density of states at the Fermi energy [113, 118–124]. Furthermore, the
hybridization of the pnictogen p orbitals with the Fe 3d orbitals in pnictides results in a
complicated electronic band structure and a multi-sheet Fermi surface composed of sev-
eral small electron and hole Fermi surfaces which are disconnected from each other [see
Fig. 4.2(c) for the Fermi surface topology in the folded1 Brillouin zone], while in cuprates
one observes only one large Fermi surface (at least at optimal doping) [113, 118, 119, 121–
124]. Last but not least, the localized character of the Cu 3d9 holes and a very strong on-
site repulsive Coulomb energy U between different holes make the non-super-conducting
parent compounds of cuprate superconductors become charge transfer insulators, while,
thanks to their high density of states at the Fermi level, the non-superconducting parent
compounds of pnictides are itinerant (semi)metals [123] and less correlated.

4.1.2 Ground States and Phase Diagrams

Most of the undoped parent compounds of iron-based superconductors (mainly the ones
of the “1111” and “122” families) undergo a magnetic phase transition to an antiferro-
magnetically-ordered spin density wave (SDW) state at around 140 − 200K, which is
accompanied or preceded by a structural phase transition from a tetragonal symmetry
to an orthorhombic one. Upon hole- or electron-doping or upon applying pressure, these
transitions get suppressed and superconductivity emerges. A notable exception is the
“111” compound LiFeAs, which is a stoichiometric superconductor [14, 128, 129].

1 The folded Brillouin zone corresponds to the crystallographic unit cell containing two Fe ions (and
two As ions), to account for the fact that As ions are located above and below the FeAs-plane (see
Fig. 4.1). The wave vector (π, π) in the folded Brillouin zone corresponds to (π, 0) in the unfolded
Brillouin zone with one Fe atom per unit cell [113].
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(a) LDA (local density approxima-
tion) band-structure calculations for
LaOFeAs. Arrows denote the points
where the bands cross the Fermi level.
(Calculations from [119], figure repro-
duced from [113].)

(b) LDA calculations of total (black) and par-
tial (colored) electronic density of states (DOS) of
LaOFeAs. The DOS at the Fermi level is domi-
nated by Fe 3d contributions. (Figure reproduced
from [119].)

+
-

(c) Calculated Fermi-surface topology of LaOFeAs based on an effective
four-bandmodel. The Fermi surface consists of two hole pockets around
Γ = (0, 0) and two electron pockets around M = (π, π) in the folded
Brillouin zone. Blue (green) arrows denote main scattering vectors with
~Qafm = (π, π) (interband) and with the incommensurate intraband

scattering ~QSDW. The dashed light orange line and the signs depict
the nodes and the corresponding sign of the superconducting s± order
parameter (see Section 4.1.3 for the introduction of the symmetry of
the superconducting order parameter). (Figure adapted from [113].)

Figure 4.2: Selected calculations of the electronic structure of pnictides for the example of
LaOFeAs, highlighting the multiband character (a), the high density of states at the Fermi level
dominated by Fe 3d bands (b) and the multi-sheet Fermi-surface topology (c). Similar figures
can be found in the references listed in the text.
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Electron-doping in the “1111” family is for instance achieved by substituting oxygen
(O2−) by fluorine (F1−), leading to (RE)O1−xFxFeAs [5], by introducing oxygen deficien-
cies: (RE)O1−δFeAs [130] or by substituting cobalt for iron: (RE)OFe1−xCoxAs [131]. In
the “122” family, electron-doping is also achieved by substituting Fe partially with Co
leading to A(Fe1−xCox)2As2 with A = Ba, Ca, Sr [132]. Hole-doping in the “122” families
is done by partially substituting the divalent alkaline earth element (A = Ba, Sr, Ca) with
a monovalent alkali element (B = K, Cs, Na), leading to A1−xBxFe2As2 with the famous
example of Ba1−xKxFe2As2 [12].

The parent compounds of cuprate superconductors also exhibit a transition to an an-
tiferromagnetic ground state (at somewhat higher temperatures), but in contrast to the
SDW state in pnictides, the magnetically-ordered state in cuprates is a localized charge
transfer insulator. Very similar to pnictides, superconductivity emerges upon doping
cuprates with positive or negative charge carriers.

Concerning the doping-dependence of the magnetic and the superconducting phase
transitions, it is possible to describe all cuprate superconductors by one universal phase
diagram, where the transition temperatures are plotted versus the concentration of elec-
tron (left side of the phase diagram) and hole dopants (right side of the phase diagram)
[see Fig. 4.3(a)] [126, 133, 134]. In the case of iron-based superconductors, no unified
phase diagram could be established up to now. The properties of each material vary with
the choice of the interlayer. This is mostly pronounced within the “1111” family, where,
depending on the rare earth (RE) ion, different phase diagrams have been reported [see
Fig. 4.3(b) and 4.3(c)]. The question of coexistence or separation of the magnetic and su-
perconducting phase in the crossover region between these two phases is still under debate
[135–139]. Also the coexistence of the superconducting phase with the static magnetism
of some rare earth ions at low temperature and the interplay between the RE and the Fe
magnetism are highly studied topics [140–143].

4.1.3 Symmetry of the Superconducting Order Parameter

The Cooper-pairing mechanism in high-temperature superconductors in general is one of
the most challenging problems in contemporary solid state physics. The search for the
symmetry of the superconducting order parameter in pnictides is an additional challenge.

Historically, NMR studies that revealed the Hebel-Slichter peak, caused by the coher-
ence factor and the symmetry of a single nodeless superconducting gap, played a significant
role in establishing the BCS theory as the first microscopic description of conventional
(weakly-coupled) superconductors [19] (see Chapter 3). Nowadays, within a simplified
approach (ignoring damping, strong coupling, anisotropy, impurity, and inhomogeneity
effects [144, 145]) its presence or absence together with the temperature dependence of
the spin-lattice relaxation rate below Tc are frequently used to discriminate tentatively
conventional from unconventional pairing. For a single Fermi surface sheet and super-
conductivity in the clean limit T 3- and T 5-dependencies would be regarded as evidence
for line- and point-node superconducting order parameters, respectively [146], which for
singlet pairing correspond to the d- and a special s+ g-wave state.
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(a) Unified phase diagram of the cuprate superconductors with electron
doping on the left side and hole doping on the right side, showing the super-
conducting (SC) and antiferromagnetic (AF) phase as well as the pseudogap
phase. (Figure reproduced from [134].)

(b) Phase diagram of SmO1−xFxFeAs, com-
prising the structural (Ts), magnetic (Tmag)
and superconducting (Tc) phase transition
as well as the ordering temperature of the
Sm moments (TSm). (Figure reproduced
from [137].)

(c) Phase diagram of LaO1−xFxFeAs, with
structural (Ts), magnetic (TN ) and supercon-
ducting (Tc) transition temperatures. (Figure
reproduced from [135].)

Figure 4.3: Comparison of the unified phase diagram for cuprate superconductors (a) with
two representative phase diagrams of electron-doped “1111” materials, namely SmO1−xFxFeAs
(b) and LaO1−xFxFeAs (c), which cannot be generalized to a common phase diagram of the
“1111” family. While in SmO1−xFxFeAs a clear region of coexistence of magnetism and super-
conductivity is observed, magnetism and superconductivity are strictly separated in the case of
LaO1−xFxFeAs.
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Figure 4.4: Frequently observed

T 3-dependence of T−1
1 in the

superconducting state of differ-
ent samples of LaO1−xFxFeAs,
LaO0.7FeAs, and FeSe. (Fig.
adapted from [162].)

Figure 4.5: Momentum dependence of the su-
perconducting gaps on the different Fermi surfaces in
Ba1−xKxFe2As2 with underlying Fermi surface intensity
map as measured by ARPES. The height denotes the mag-
nitude of the gaps. (Fig. reproduced from [163].)

Therefore, early NMR studies on Fe-based superconductors related the generally ob-
served T 3 dependence of the spin-lattice relaxation rate in the superconducting state and
the absence of a Hebel-Slichter peak (see Fig. 4.4) to an unconventional line-node pairing
symmetry [79, 147–150].

These findings stood in contrast to the results of various other experiments that
have been carried out to extract the symmetry of the superconducting order parameter
in Fe-based superconductors. In particular, angle-resolved photo-emission spectroscopy
(ARPES), Andreev reflection and microwave data [151–159] are consistent with a super-
conducting gap being nodeless on each Fermi surface pocket. These results taken together
with the observation of a peak at the antiferromagnetic wave vector ~Q and ω = ωres found
below Tc in various compounds [116, 160, 161] by means of inelastic neutron scattering
(INS) experiments provide support in favor of s±-wave symmetry.2

The s± wave-symmetry, proposed byMazin et al. [121], is a consequence of the multiple
Fermi surface sheets in the electronic structure of the Fe-based superconductors, as plotted
in Fig. 4.2(c). Within this model, the superconducting gaps which open at each Fermi
surface upon entering the superconducting state are isotropic and similar in magnitude,
but differ in their sign (+∆ and −∆ on the hole and the electron pocket, respectively)
[121]. The pairing interaction is thus repulsive (but still leads to pairing due to the sign
change).

Concerning NMR, soon it was realized that the situation in these multiband com-
pounds, especially in the presence of impurities, is far from being that simple. In par-
ticular, there is no universal behavior for the growing number of related compounds.
Power-law dependencies T−1

1 ∝ T n with n in between 1.5 and 6 have been observed in
different pnictides in the course of time [79, 147–150, 162, 164–173]. The only exception
found up to now is LaO0.9F0.1NiAs, where T

−1
1 shows indeed a Hebel-Slichter coherence

2 As discussed in Section 3.2.4 a sharp resonance peak is a result of different signs of the superconducting
gap for ~k and ~k + ~Q points generic for the s±-wave symmetry.
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peak followed by an exponential decrease [174]. However, this compound differs from the
other ones in other important aspects. It shows a rather low Tc of maximal 4K and the
absence of antiferromagnetic fluctuations [174].

The power-law dependencies of T−1
1 clearly indicate unconventional superconductivity.

Besides the possibility of a simple line-node gap, the results have also been discussed
within other models, such as the s± wave-symmetry [121, 175–177] and the frequent in-
clusion of two superconducting gaps with different amplitudes [147, 165, 170, 171]. The s±
wave symmetry model is able to describe the NMR data when considering additional im-
purity scattering effects (see dotted line in Fig. 4.4) [121, 175–177] and thus can reconcile
NMR and ARPES results. A detailed discussion of the T−1

1 data in the superconducting
state of LaO1−xFxFeAs and the theoretically proposed s± symmetry of the superconduct-
ing gap function will be given in Section 7.1.

Fig. 4.5 shows the momentum dependence of the superconducting gaps in
Ba1−xKxFe2As2 as measured by ARPES [163]. Besides a slight anisotropy of the gap
on the inner Γ barrel the gaps are isotropic. The gaps on the inner Γ barrel and on the
pockets and the blades around M amount to ≈ 9meV. The gap on the outer Γ barrel is
less than 4meV, supporting the two-gap scenario.

Concerning the resonance peak in INS, it has been argued recently [117] that a some-
what broader peak-like feature can be attributed to a self-energy renormalization of quasi-
particles in s++-wave (sign preserved) superconductors. A similar feature in Raman spec-
tra has not been observed [178]. Hence, the assignment of the observed INS features and
the interpretation of NMR spin-lattice relaxation rate data in the superconducting state
with regard to a certain pairing symmetry of the superconducting order parameter are
still controversial.

4.2 Basic properties of LaO1−xFxFeAs

LaO1−xFxFeAs is the archetype of the “1111” family and the iron-based superconductors
in general, since it was the first pnictide where superconductivity has been found [5]. The
question of interaction between the rare earth ion magnetism and the magnetism of the
FeAs layer is not important in this compound, since the lanthanum ions do not have any 4f
moments and are therefore non-magnetic. The detailed phase diagram was first reported
by Luetkens et al. [135] and is reproduced in Fig. 4.6. The parent compound LaOFeAs
shows a structural phase transition from a tetragonal symmetry to an orthorhombic one
at Ts = 156K, followed by a magnetic phase transition to an antiferromagnetic SDW state
at TN = 138K. These phase transitions are observable by various experimental techniques
such as measurements of susceptibility, resistivity or specific heat, X-ray diffraction, ther-
mal expansion, µSR, and 57Fe Mössbauer spectroscopy [135, 179–183]. The magnetic
moment in the SDW state deduced from early 57Fe Mössbauer spectroscopy and neutron
scattering experiments lies in between 0.25 and 0.35µB [183–186], which is far below
the theoretically calculated value of 0.9−2.6µB using DFT (density functional theory) in
both, local moment or itinerant approaches [119, 187–191]. More recent neutron scattering
measurements reported a magnetic moment of 0.63µB [192], which is still lower than the
theoretically expected value, but agrees very well with the value reported by NMR mea-
surements [193], which will be presented in Section 6.1.1. The experimentally-observed
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Figure 4.6: Phase diagram of LaO1−xFxFeAs (reproduced from [135]).

reduced value of the magnetic moment is a common feature of the pnictides. In CeOFeAs,
PrOFeAs and NdOFeAs, it is reported to range from 0.25 to 0.9µB [136, 141, 194–198]
while in BaFe2As2, CaFe2As2 and SrFe2As2 it lies in between 0.8 and 1µB [198–203].

Upon doping LaOFeAs by substituting oxygen with fluorine (electron-doping), both
Ts and TN first decrease, before they vanish abruptly between 4% and 5% F-doping and
superconductivity emerges for x ≥ 5% [135]. The highest superconducting transition
temperature is found for LaO0.9F0.1FeAs (Tc = 26K).

In bulk susceptibility measurements, the phase transitions are visible in pronounced
anomalies at the corresponding transition temperatures Ts and TN (see Fig. 4.7) [181].
In the normal state, the susceptibility decreases linearly with decreasing temperature
with an intrinsic, doping-independent slope over the whole accessible doping-range, re-
gardless of the nature of the underlying ground state [181]. A decreasing susceptibility
with decreasing temperature seems to be a generic property of iron-pnictides in general.
Several theoretical approaches including details of the Fermi surface, a temperature de-
pendence of the density of states, pseudogap effects and others were discussed to explain
such a decrease. A comparison between the bulk susceptibility and NMR shift data on
LaO0.95F0.05FeAs and LaO0.9F0.1FeAs as well as a discussion of the possible origins of the
observed decrease will be given in Section 6.1.

The calculated Fermi surface consists of four small, two-dimensional and disconnected
Fermi surface sheets: two hole cylinders centered around the Γ point (0,0) and two electron
cylinders centered around M = (π, π) [in the folded Brillouin zone, see Section 4.1.1 and
Fig. 4.2(c)] [113, 118, 119, 121–123, 190]. Another additional 3D hole pocket derived from
a hybridization between the Fe 3d orbitals and the As p and La orbitals, crosses the 2D
hole pockets at Γ [118, 123]. This pocket gets filled up quickly upon electron-doping and
disappears just in the crossover region between the SDW state and the superconducting
ground state in between x = 0.04−0.05 [121, 123]. Only the 2D hole and electron pockets
are left, whose two-dimensionality puts constraints on the possible superconducting pair-
ing symmetry. Strong variations of the order parameter along kz are very unlikely. Strong
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Figure 4.7: Temperature-dependent static susceptibility of undoped LaOFeAs, measured in a
magnetic field of 5 T. The structural and magnetic phase transition at Ts and TN lead to visible
anomalies in the susceptibility itself and in its magnetic specific heat ∂(χT )/∂T (inset). (Figure
reproduced from [181].)

variations of the order parameter on one Fermi surface sheet within the xy-plane are also
unlikely, because they would require a strong ~q-dependence of any possible pairing inter-
action, which is not easily compatible with the small size of each Fermi surface sheet [121].
In the undoped parent compound LaOFeAs the 2D electron- and hole-like Fermi surfaces
match well if one of them is translated by the antiferromagnetic wavevector ~Q = (π, π)
[see Fig. 4.2(c)]. Additionally, their orbital characters are similar. This good nesting
would drive the system to the experimentally observed SDW instability [121–123, 190].
Upon fluorine doping, the nesting gets worse, leading to a suppression of the magnetic
phase transition and apparently opening the field for superconductivity.

Angle-resolved photoemission spectroscopy (ARPES) studies on LaOFeAs report the
theoretically expected high density of states at the Fermi level, the multiple band character
and the existence of several hole and electron like Fermi surfaces [124, 204, 205]. However,
there are some disagreements between the ARPES data and the existing band structure
calculations. Due to charge redistribution effects in the “1111” family, several surface
states contaminate the electronic structure measured by ARPES. Fig. 4.8 shows some of
the ARPES results on LaOFeAs and the corresponding distinction between bulk electronic
and surface electronic states [204].

The superconducting pairing mechanism is still unsettled. Conventional electron-
phonon coupling was found to be too weak to account for the rather high superconducting
transition temperature [120].

Slightly different gap values have been reported by different experimental methods un-
til now, depending on the underlying symmetry assumptions and if one or two gaps have
been used to fit the data. Table 4.1 summarizes the gap values reported by photoemission
studies (PES) [206], Point-contact Andreev reflection measurements (Andreev) [157] and
fits to the temperature-dependent 75As NMR and NQR T−1

1 [165, 168]. All these data
have been collected by measuring polycrystalline samples. If a two-gap model was used
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Figure 4.8: ARPES intensity plot along the direction Γ-M (c) vs the summary of the bulk
(a) and the surface (b) band structures. Dashed curves in (c) are guides to the eyes obtained
by tracking the local minimum of the second derivative of the raw data with respect to energy.
Figure adopted from [204].

to extract the gap sizes, the second value in parentheses refers to the second gap. The
last column of Table 4.1 gives the value 2∆/kBTc. It is always close to the value 3.53 for
a weakly-coupled BCS superconductor (at least for one gap).

sample method gap value(s) (meV) 2∆/kBTc

LaO0.93F0.07FeAs PES [206]
3.6 (s-wave) 3.5

4.1 (d-wave) 3.96

LaO0.9F0.1FeAs Andreev [157]
4.6 3.44

4.4 (10-12) 3.23 (8.5)

LaO0.92F0.08FeAs NQR T−1
1 [165]

3.75 (1.5) (s±-wave)

4.2 (1.5) (d-wave)

LaO0.89F0.11FeAs NMR T−1
1 [168] 4

Table 4.1: Values for the superconducting gap in LaO1−xFxFeAs as reported by photoemission

spectroscopy (PES), point-contact Andreev reflection (Andreev) and 75As NQR and NMR T−1
1 .

If two gaps were used to fit the data, the value of the second gap is put in parentheses. The
underlying gap symmetry assumption is also put in parentheses.

4.3 Basic properties of LiFeAs

The physical properties of LiFeAs differ quite a bit from the ones of the “1111” and “122”
families. The crystal structure is the same as for the “1111” family, namely P4/nmm. But
in contrast to other pnictides, LiFeAs is a stoichiometric superconductor. No evidence for
any structural or magnetic phase transition has been found. Superconductivity in single
crystals of LiFeAs is reported to set in at Tc = 18K [14, 128, 129]. The superconducting
ground state is of multiband character and exhibits two nearly completely isotropic gaps
with ∆1 ≈ 1.5meV for the hole-like Fermi surfaces and ∆2 ≈ 2.5meV for the electron-
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like Fermi surface sheets [111, 207]. Compared to Tc, the largest gap is close to the BCS
weak-coupling limit, 2∆2/kBTc = 3.22.

The absence of a magnetic phase transition and the direct onset of superconductivity
in stoichiometric LiFeAs is surprising since DFT calculations find the electronic structure
of LiFeAs to be very akin to those of other pnictides. They report a high density of states
at the Fermi level which is dominated by the Fe 3d bands and a similar shape of the
Fermi surface with hole and electron cylinders at the Brillouin zone center and corners,
respectively [208–210]. The theoretically calculated ground state of stoichiometric LiFeAs
is an antiferromagnetic SDW state very similar to that of the “1111” and “122” fami-
lies [208–210]. Additionally, LiFeAs should be even further away from a ferromagnetic
instability than LaOFeAs due to its slightly lower density of states at the Fermi energy
[208]. Theoretical calculations of the phonon dispersion modes and the electron-phonon
coupling strength found an electron-phonon coupling strength of λ = 0.29 [210]. Applying
McMillan’s formula [211, 212], which relates λ to the superconducting transition temper-
ature Tc revealed that λ = 0.29 is too small to account for the experimentally observed
Tc of 18K [210]. As in the case of other pnictide families, electron-phonon coupling alone
is thus not enough to explain the relatively high Tc.

The discrepancy between the experimental absence of a magnetic ground state and
the DFT predictions was discussed in terms of interlayer spin coupling [209] or possible
deviations from perfect stoichiometry in the investigated samples [210].

ARPES measurements on LiFeAs are easier to perform than on LaOFeAs, since the
cleavage plane lies in between two layers of Li atoms, so that the surfaces are not polarized.
The observed Fermi surface map is very similar to the Fermi surface topology of other
pnictides, consisting of five sheets, three hole-like ones around the Γ point (a large one and
two small ones) and two electron-like ones at the Brillouin zone corners (see Fig. 4.9) [111].
However, in contrast to other pnictide parent compounds, nesting between these different
Fermi surfaces is completely absent. Furthermore, a strong renormalization (factor 3)
is needed to scale the experimental data with the calculated band structure [111]. The
two small hole-like Fermi surfaces around Γ are formed by the Fe 3dxz and 3dyz bands.
These are very flat bands showing nearly no dispersion near the Fermi energy, which leads
to an enhanced density of states at the Fermi level (van Hove singularity) (see Fig. 4.9)
[111]. The existence of a van Hove singularity at the center of the Brillouin zone (Γ-point)
has been proven by quasiparticle interference in scanning tunneling microscopy (STM)
experiments [213].

The absence of any nesting and the strong renormalization might explain the experi-
mentally-observed absence of magnetic order, since they were not included in the DFT
calculations. Recent band structure calculations including the absence of nesting and the
shallow character of the two small hole pockets do not find an antiferromagnetic ground
state, but dominant “almost ferromagnetic” incommensurate fluctuations near (0,0) and
thus a proximity to a ferromagnetic instability which might be activated by electron
doping [214].

The proximity to a ferromagnetic instability is strengthened in the case of Ni-doping
in LiFeAs. Upon Ni-doping, superconductivity is suppressed and a transition to a fer-
romagnetic ground state is observed (at TC = 156K for 2.5% of Ni). Detailed stud-
ies of the stoichiometry revealed that Ni-doping in LiFeAs goes along with the pres-
ence of Li-deficiencies. These deficiencies might actually be the most important ingre-
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Figure 4.9: (a) Fermi surface map of LiFeAs as measured by ARPES, revealing three hole-
like Fermi surface sheets around Γ and two electron-like around M. The sketch of these Fermi
contours (Γ-centered contours as solid lines, M-centered contours as dashed lines) at the bottom
shows the absence of nesting. (b) Momentum-energy cut along the direction b marked in (a).
c) Momentum-energy cut along the direction c marked in (a). The tops of both small bands
practically touch the Fermi level. The upper band shows nearly no dispersion, leading to an
enhanced density of states at the Fermi level. Figure reproduced from [111].

dient for ferromagnetism, as revealed by the observation of a ferromagnetic transition
at TC ≈ 160K in Li1−xFe1+xAs with a nominal Li-deficit of 2%.3 With increasing Ni
content (Li-deficiencies), the ferromagnetic transition temperature decreases until the
disappearance of ferromagnetism at 10% nominal Ni-doping. The magnetic moment in
the ferromagnetic state deduced from susceptibility measurements amounts to 0.1µB only,
suggesting itinerant ferromagnetism.

Cobalt-doping in LiFeAs on the other hand seems to act as normal charge doping.
It suppresses superconductivity (both Tc and the superconducting volume fraction) in
LiFeAs. Above a Co concentration of 5%, superconductivity disappears. No Li-deficiencies
were found in the Co-doped samples [216].

Since the influence of Ni-doping and the effect of Li-deficiencies are still under exam-
ination, no phase diagram can be drawn for LiFeAs at the moment. The observations
described in the two preceding paragraphs are based on unpublished, ongoing work at the
IFW Dresden.

3 The Fe excess might also play a role. Note however the high Curie temperature of single crystalline
Fe: TC = 1043K [215].



5 Experimental Setup

This Chapter will describe the main elements generally needed for solid state NMR/NQR
experiments such as magnets, cryogenics, probes, and electronics and will specify which
setup was used particularly for the measurements done in this work. An overview of the
samples used for the measurements will be given. Various experimental problems had to
be faced during the experiments. Some of them and their solutions will be presented in
Section 5.4.

5.1 Magnets and Cryogenics

During the course of this thesis, all three available NMR magnets have been used. When
starting in June 2008, only two warm bore magnets existed. One magnet (Bruker) has a
permanent static field of H = 7.0494T and a homogeneity better than ∆H/H = 10−6.
The other one (Magnex Scientific) can be fixed to any desired magnetic field value between
0 and 9.2T by adjusting the current through its big superconducting coil. With another
small superconducting coil, the field can then be continuously swept in a range of ∆H =
±0.2T. The homogeneity of this second magnet is 7 ppm over a 10mm axial plot and
the main field drift at 9.2T is 0.545 ppm/h. Both warm bore magnets are equipped
with continuous flow cryostats from Janis which enable measurements at temperatures
ranging from 1.5K to 325K. For the high temperature measurements, a high temperature
continuous flow cryostat from Oxford Instruments was used, which allowed measurements
up to 500K.

In August 2009 a new cold bore 16T field sweep magnet was put into operation (Oxford
Instruments). Its homogeneity over 10mm diameter of a spherical volume is 11.8 ppm.
In persistent mode, the current in the superconducting coil decays with 7 ppm/h.1 Via a
needle valve the variable temperature insert (VTI) of this magnet is directly connected
to the helium bath which cools the superconducting coil. The temperature of the sample
space is controlled by regulating the opening of the needle valve and - if needed - by
pumping. Temperatures between 1.5 and 400K can be reached with this system. The
heater, the Cernox temperature sensor and the needle valve of the VTI are controlled
with an Oxford ITC 502 temperature controller.

1 The first superconducting coil which was delivered for this magnet had an homogeneity of 18 ppm
and a current decay in persistent mode of 18 ppm/h. This coil was exchanged with the better one
described in the text some months later.
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5.2 Electronic Measurement Equipment

5.2.1 Probes

A resonant circuit for NMR/NQR measurements has to fulfill two conditions: it must
be tunable to the desired frequency in the MHz-range and it must have an impedance of
50Ω such that it couples optimally to the rest of the electronic measurement equipment.
This ensures that the power is optimally coupled into and out of the resonant circuit,
which leads to optimal sensitivity and avoids reflecting power back to the amplifier. Var-
ious sample probes were used for the NMR and NQR measurements, according to the
desired frequency and temperature ranges. Each of these probes was equipped with one
out of two different types of resonant circuits (see Fig. 5.1): one containing two variable
glass capacitors for tuning and impedance matching [Fig. 5.1(a)]; and one containing a
variable cylindrical capacitor for the tuning and a coil with a brass core for the matching
[Fig. 5.1(b)]. The tuning to the measurement frequency is done by changing the capacity
of the tuning-capacitor, while the impedance of 50Ω is reached by changing the capacity
(inductance) of the serial matching capacitor (parallel matching coil). A resonant circuit
composed of glass capacitors is advantageous because it covers a very broad frequency
range, due to their wide capacity range (2 to 120 pF in the case of our probes). The
resonant circuit sketched in Fig. 5.1(b) is better suited for high power. But since the nec-
essary power is rather small (see Section 5.4.3) mostly sample probes with glass capacitor
resonant circuits were used. For instance, the measurements on the air-sensitive LiFeAs
ranged from around 21Mhz (NQR) up to 62MHz (NMR). To minimize the contact with
air, the whole frequency range had to be covered with one sample coil and one resonant
circuit. This was only possible with a glass capacitor resonant circuit.

Cmatch

Ctune

L

R

(a) glass capacitor resonant circuit

Ctune

Lmatch

L

R

(b) resonant circuit with matching coil
and cylindrical tuning capacitor

Figure 5.1: Both types of used resonant circuits. The sample (grey rectangular) is located
inside the sample coil with inductance L and residual serial resistance R.
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5.2.2 Main Elements of the Electronics

Figure 5.2 combines the main electronic elements of a typical experimental NMR setup.
Since high frequency (HF) pulses have to be generated and at the same time very weak
echo signals from the sample have to be detected, the setup of the electronic measurement
equipment is challenging. The spectrometer (Tecmag Apollo), which is connected to the
computer via an USB-port and controlled by the program NTNMR, generates pulses of
desired frequencies and shapes, executes pulse sequences and simultaneously detects and
digitizes the signal from the sample. Its interior assembling is therefore rather sophisti-
cated and will not be described in detail here. The pulses generated by the spectrometer
are amplified to several hundred volts by the HF amplifier. A directional coupler separates
a small part of the power coming from the HF amplifier (approximately 1%) and conducts
this part to the oscilloscope, where the shape of the pulses and their reflections are moni-
tored. Most of the pulse power is directed from the directional coupler to the transcoupler.
The transcoupler separates the incoming high frequency pulses produced by the HF am-
plifier from the echo signal coming back from the sample, which amounts only to some
µV. This separation is realized by a serial connection of two sets of crossed semiconductor
diodes and a λ/4-cable in between them. The strongly nonlinear voltage-current behavior
of the diodes let them act as switches between high and low voltage ranges, while the
λ/4-cable produces an impedance transformation. Consequently, during the duration of
the HF pulses, the transcoupler connects the HF amplifier to the sample probe, while
directly after the HF-pulse application the transcoupler connects the sample probe to the
preamplifier. The preamplifier and internal amplifiers of the spectrometer amplify the
echo signal from the probe, before it is digitized and detected. In the case of the sweep-
able 16T and partially sweepable 9.2T magnets, their power supplies were connected to
the computer via a serial port and controlled via a script of the NTNMR program. In
some cases also the temperature controller (LakeShore) was connected to the computer
to monitor the temperature and the heater output. Network analyzers (not shown in
Fig. 5.2) were used before each measurement to tune and match the resonant circuit to
the designated frequency.

The constituent hardware components are specified in the following.

Figure 5.2: Schematic diagram of a typical experimental NMR setup (warm bore magnet).
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In the case of the three NMR setups, Tecmag Apollo spectrometers were used in com-
bination with the NTNMR program. In the beginning of this thesis, NQR measurements
were done with one of these spectrometers, as time and demands permitted. At the end of
the course of this work, the NQR setup got its own spectrometer, a LapNMR spectrometer
from Tecmag, controlled by the program NTNMR.

Oscilloscopes from Agilent Technologies, Tektronix and Hameg were used for the pulse
monitoring. Later on, an oscilloscope card was installed at the NQR measurement com-
puter and the pulses were monitored by the program GageScope.

Network analyzers from Agilent Technologies and Hameg were used to tune the reso-
nance circuits to the desired frequency. New hardware and the program Advanced Stepper
Control, assembled and written by Yannick Utz, could be used for an automatic adjust-
ment of the tuning and matching of the NQR sample probe. With another program (AAS -
Automatic Adjustment System), also written by Yannic Utz, automated frequency sweeps
could be realized at the NQR setup.

The temperature and the heaters were monitored and controlled with either LakeShore
331, LakeShore 340 or Oxford ITC 502 temperature controllers. The superconducting
magnet power supplies were Oxford IPS 120-10 at the 16T magnet and Cryomagnetics
Cs-4 at the 9.2T for the big coil (static field) and LakeShore 625 at the 9.2T magnet for
the small coil (±0.2T sweeps).

5.3 Samples

5.3.1 LaO1−xFxFeAs

The polycrystalline samples of LaO1−xFxFeAs measured in the course of this thesis were
grown at the IFW Dresden following and improving the two-step solid state reaction
approach of Zhu et al. [179, 217]. The characterization by means of structural, thermo-
dynamic and transport measurements was also done in house [179–181]. 57Fe Mössbauer
spectroscopy and muon spin relaxation done by the group of Hans-Henning Klauss at the
TU Dresden complemented the characterization [135, 183, 218]. Table 5.1 collects the
structural, magnetic and superconducting transition temperatures Ts, TN and Tc of the
samples which were considered in this work [135, 179–181, 183, 218, 219].

x Ts TN Tc

0 156K 138K -

0.05 - - 20K

0.075 - - 22K

0.1 - - 26K

0.1 As-Def - - 28.5K

Table 5.1: Transition temperatures Ts, TN and Tc of LaO1−xFxFeAs for all considered doping
levels [135, 179–181, 183, 218, 219]. The last row (As-Def) corresponds to a special arsenic-
deficient sample LaO0.9F0.1FeAs1−δ , whose enhanced superconducting properties will be dis-
cussed in Section 7.2.
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Figure 5.3: 75As field sweep spectra at room temperature for an aligned (lower part) and a
misaligned (upper part) powder sample of LaO0.9F0.1FeAs.

For the NMR measurements, the pellets were ground to a powder with a rough grain
size of 1 - 100µm to maximize the surface area and therewith the signal-to-noise ratio
in NMR-experiments2 and to allow for orientation. Each powder was put in a quartz
glass tube of 3mm diameter, which was sealed with Teflon thread tape and wax or two-
component adhesive to protect the samples against possible degradation by water and
air. The mass of the samples varied between 50 and 120mg. Some samples were also
oriented in magnetic field to allow for directional measurements. For this purpose, the
ground powders were mixed with Stycast epoxy 1266 in a mass ratio of 24:70. Directly
after the mixing procedure this mixture was put into an external field of 9.2T. Since the
magnetic susceptibility of LaO1−xFxFeAs is anisotropic, the randomly oriented grains of
the powder align with their crystallographic axis having the highest susceptibility (which
in this case is ab) along the direction of the external magnetic field. Letting the sample-
epoxy mixture cure in the external field, well ab-oriented samples have been achieved.
This procedure is very sensitive to the viscosity of the epoxy. An enhanced viscosity
prevents the crystallites from aligning, while a reduced viscosity leads to a collection of
the grains at the bottom, which also leads to misorientation. Some samples did not cure.
In these cases the alignment was not satisfactory. An attempt to produce c-axis-aligned
powder samples using the field-rotation alignment method described by Chang et al. [220]
failed for LaO0.9F0.1FeAs. It worked for samples of PrO1−xFxFeAs later on. The NMR
measurements reported in the following chapters will therefore concentrate on powder

2 The radiofrequency applied in NMR experiments is shielded by conducting samples. Grounding
powders increases the surface area and such the total amount of accessible nuclear spins.
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samples or ab-oriented samples of LaO1−xFxFeAs. Note that the ab-aligned crystallites
within the oriented powder samples do not have a common c-axis. NMR measurements
can therefore only be done along the orientation direction.

A good measure of the degree of orientation are central line spectra. Fig. 5.3 shows
examples of well aligned and misaligned sample. The upper part of Fig. 5.3 shows the
room temperature 75As field sweep spectra of an intended c-axis alignment for bothH ‖ ab
and H ‖ c. Both spectra (taken for H ‖ ab and H ‖ c, respectively) cover the same broad
field range and resemble more or less normal powder spectra as reported in [79]. Only
the relative enhancement of the H ‖ c feature at around 9.14T (see Appendix A.1 for
a detailed discussion of powder spectra) for the H ‖ c measurement (dotted line) gives
a small indication of a partial c-axis-alignment, which is however not sufficient at all.
The lower part of Fig. 5.3 shows the room temperature 75As field sweep spectrum of a
well ab-aligned sample for H ‖ ab. It consists of one resonance line at the field value
which corresponds to the H ‖ ab peak of a powder spectrum. Only the slight intensity
enhancement between 9.12T and 9.24T indicates that some minor parts of the sample
have not been aligned. This sample can be used e.g. for Knight shift measurements,
which concentrate on the well-defined maximum of the H ‖ ab peak.

5.3.2 LiFeAs

Single crystals of LiFeAs were grown using the self-flux technique [129]. The stoichiometry
has been checked with inductively coupled plasma mass spectroscopy and energy disper-
sive X-ray spectroscopy and found to be Li:Fe:As=0.99:1.00:1.00 [129]. Angle resolved
photoemission spectroscopy agreed with an almost exact stoichiometry [111]. The high
quality of the single crystals is reflected in all thermodynamic properties. The suscepti-
bility shows a sharp superconducting transition at Tc = 18K. A complete diamagnetic
shielding of the zero-field-cooled (ZFC) susceptibility reveals a 100% superconducting
volume fraction, thus bulk superconductivity [129]. Also the resistivity shows a very
sharp superconducting phase transition of ∆Tc = 1.2K. Even in high magnetic fields
the transition width remains remarkably sharp. The residual resistivity is very low3,
ρ0 = 15.2µΩ.cm, and the residual resistivity ratio (RRR) is larger than in all other
pnictides [223]. The specific heat also shows a sharp superconducting transition and a
negligibly small electronic contribution at low temperature [207].

Furthermore, the 75As NQR linewidth (FWHM) at room temperature is exceptional
narrow. Fig. 5.4 shows the 75As NQR resonance line of a LiFeAs single crystal at room
temperature. A Gaussian fit to the line yields a full width at half maximum (FWHM) of
only ∆ν = 44 kHz. This remarkably small linewidth4 excludes the possibility of vacancies
or interstitial sites and corroborates both the electronic and structural homogeneity of our
samples. A polycrystalline sample of LiFeAs prepared in our institute shows an increased
75As NQR linewidth of about ∆ν ≈ 113 kHz at room temperature (∆ν ≈ 130 kHz at

3 For comparison: The residual resistivity of polycrystalline samples of LiFeAs lies in the range of some
mΩcm [128]. For single crystals of Ni- or Co-doped BaFe2As2 the residual resistivity is ρ0 ≥ 50µΩ.cm
[221], and for Ni-doped SrFe2As2 single crystals it is ρ0 ≥ 100 µΩ.cm [222].

4 For comparison: ∆ν ≈ 220 kHz for stoichiometric LaOFeAs [30, 193] and ∆ν ≈ 480 kHz for stoichio-
metric CaFe2As2 [224].
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Figure 5.4: 75As NQR resonance line of a LiFeAs single crystal at room temperature (open
squares). The solid line is a Gaussian fit to the data yielding a linewidth of ∆ν = 44 kHz.

T = 20K) [129], while other groups reported even larger values of the 75As NQR linewidth
of polycrystalline samples (e.g. ∆ν ≈ 170 kHz at T = 20K [81]).

The high quality of the pure LiFeAs single crystals is further confirmed by the 7Li-
spectra (see Fig. 5.5). It is possible to resolve all three resonances of the 7Li spectra,
although the quadrupole frequency deduced from these spectra is only νq = 32 kHz and
according to Fig. 2.2 the separation between the two satellites for H ‖ ab (H ‖ c) is only
νq (2νq) (the principal axis of the EFG in LiFeAs is parallel to the c-axis: VZZ ‖ c). The
linewidth is as small as 9 kHz (11 kHz) for H ‖ ab (H ‖ c) and it is the same for the central
transition and the satellites, excluding possible quadrupole effects on the lineshape due
to disorder. A linewidth of 90 kHz at room temperature was reported on polycrystalline
samples [80], where a resolution of the three-split 7Li-spectrum was not possible. An echo-
decay measurement on these polycrystals yielded a quadrupole frequency of νq = 34 kHz,
which compares nicely to our results. Another group reported 7Li NMR measurements
on LiFeAs single crystals [225]. They could also resolve the three peaks of the 7Li NMR
spectrum and deduced a quadrupole frequency of about νq ∼ 60 kHz. However, they do
not comment on their 7Li NMR linewidth and they observe a second, broad 7Li NMR
resonance line at lower frequencies, possibly stemming from interstitial Li sites in their
crystals. Such a second 7Li NMR resonance line has not been found in our crystals,
underlining again the high crystal quality of our samples.

All LiFeAs crystals are highly air-sensitive and susceptible to exfoliation. They were
kept inside a glovebox under argon atmosphere until the beginning of the measurements.
The NMR sample coil was prepared in advance without the sample. It was made conform
to the sample dimensions to ensure a high filling factor. The sample was put into the
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Figure 5.5: 7Li NMR spectra at 200K measured in H = 4.4994 T for H ‖ ab (upper part)
and H ‖ c (lower part). The solid lines are fits to three Lorentzian lines with the constraint that
both satellites have the same linewidth, intensity and quadrupole shift νq.

coil inside the glovebox. Both were then placed into a quartz glass tube and covered
with Teflon thread tape. Once out of the glovebox the glass tube was immediately sealed
with epoxy and the sample was mounted to the NMR sample probe. The probe was
directly put into the cryostat, which always was under He atmosphere. Not all of the
NMR measurements reported in this thesis were done at one and the same sample. Some
samples degraded when the sample probe had to be taken out for a while (which was
necessary to change capacitors for instance). The sample quality was therefore checked
by 75As NQR measurements after each extraction of the sample probe. The crystal which
was used for most of the NMR measurements had the dimensions 5.04× 2.24× 0.52mm.
Other crystals had similar dimensions.

5.4 Problems and Improvements

5.4.1 Temperature Control

A well-defined control and monitoring of the sample temperature is one of the main
requirements for correct NMR measurements. Because of the distance between the sample
on one side and the heater and the temperature sensor at the bottom of the cryostat (VTI)
on the other side, monitoring and regulating the temperature via the cryostat (VTI) was
not exact enough.

This was particularly pronounced in the 16T field sweep magnet, where the distance
between the Cernox temperature sensor of the VTI and the center of the magnetic field,
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Figure 5.6: 75(T1T )
−1 of LaOFeAs measured in H = 7T, cooled with nitrogen (filled squares)

and helium (open dots). The dashed vertical lines indicate the structural and magnetic transition
temperature of LaOFeAs, Ts and TN , respectively.

where the sample is located, amounts to more than 4.7 cm. To account for this discrep-
ancy, a second Cernox temperature sensor was installed directly in the sample probe close
to the sample. Furthermore, the probe was equipped with a second heater in form of a
wound resistance wire (with a resistance load of 23Ω/m) around the whole cap of the
sample probe [see Fig. 5.7(b)]. The resistance wire was doubled before winding, such
that no additional magnetic fields due to loop currents were generated at the sample site.
The total resistance of the new cap-heater was 86Ω. The rough temperature control of
the VTI was henceforward done with the Oxford ITC 502, while the fine tuning of the
temperature at the sample site was done with the LakeShore 331 reading the sensor near
the sample and regulating the cap-heater of the sample probe. Since then, very stable
temperature conditions were obtained. Another advantage of this additional temperature
control and heating regulation is the reduced helium consumption, since the cap heating
is rather localized. Not the whole VTI has to be heated, but only the region within the
cap. Furthermore, heating the cap of the sample probe leads to very stable temperature
conditions inside the cap, without large temperature gradients.

In the two warm bore magnets the temperature control was not such a big problem,
since the distance between heater and sensor at the bottom of the continuous flow cryo-
stat and the center of the magnetic field is smaller. The right temperatures were achieved
successfully by cooling the sample space with helium5. Problems arose when nitrogen was
used as a cooling medium Fig. 5.6 shows 75As NMR measurements on LaOFeAs. (T1T )

−1

5 This was checked e.g. by comparing superconducting or magnetic transition temperatures measured
in the NMR magnets and measured in other setups.
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exhibited a maximum at the structural transition temperature Ts = 156K instead of a
divergence at the magnetic ordering temperature TN = 138K. Furthermore, a strange
hysteresis between cooling and heating was observed. A check with helium as cooling
medium displayed the expected divergence of (T1T )

−1 towards TN and no hysteresis be-
tween cooling and heating (see Fig. 5.6). The reason for this strange observation could
not be figured out. It is possible that the nitrogen flow was not optimally regulated.
The temperature at the sensor of the bottom of the continuous flow cryostat was stable,
though. A wrong regulation of the heating power can therefore be excluded as a source
for the observed differences.

To overcome similar problems and ensure always the right sample temperature, irre-
spective of the use of helium or nitrogen as cryogenics, also the sample probes of the
warm bore magnets were endowed with additional Cernox sensors close to the sample and
resistance wire heaters around their caps in the course of time, resulting in very stable
and easily controllable temperature conditions at the sample site.

5.4.2 Sample Probe for the 16T Field Sweep Magnet

For the newly arrived 16T field sweep magnet from Oxford Instruments, a new sample
probe was designed in house. In the beginning of the measurements with this new sample
probe, a lot of problems had to be faced. Besides the difficulties with the temperature
control described in the former Section, most notably the shielding and the grounding
of the probe were poor. To account for this, the sample probe was rebuilt extensively.
Fig. 5.7 shows the sample probe before [Fig. 5.7(a)] and after [Fig. 5.7(b)] improvements.

Before the rebuilding, the cap (yellow-green) only covered the measurement coil. The
two glass capacitors and a large fraction of the connecting wires (black lines) were not
shielded by the cap. Note that at the very beginning teflon capacitors were used, which
were much larger than the glass capacitors. Quickly it was observed that these capacitors
were blocked at low temperature, although they were designed to work at low tempera-
tures. The replacing glass capacitors were smaller. This is the reason why the distance
between the two plastic discs appears rather large and a big fraction of connecting wires
was needed, which were not well shielded. The Cernox temperature sensor (purple) was
also not shielded. Its connecting wires were only fixed inside an insulation sheath (thick
olive stripe). A small copper plate (red disc) just below the first plastic disc connected
the tuning capacitor to the ground. The core of the coaxial cable was not well shielded.
All in all this layout led to a very poor shielding and grounding, resulting in a very poor
signal-to-noise ratio.

During the improvements, the brass cap was extended until the first plastic disc. Now
it covers not only the sample coil, but also the capacitors and the connecting wires and
protects them. The core of the coaxial cable was pulled through the first plastic disc
(together with the inner dielectric insulator of the coaxial cable), such that it is now also
shielded by the new cap. Furthermore, the small copper plate (red) was enlarged. Only
a circle around the matching capacitor was omitted in the new copper disc, to ensure
insulation of this capacitor. All other elements, including all fixing brass tubes, are now
connected to the ground via this new copper disc. The shield of the coaxial cable was
directly soldered to the copper disc. The new elongated cap touches the new copper plate
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(a) Sample probe before the improvement: The cap (yellow-green) only covers the measurement
coil. The Cernox temperature sensor (purple) and its connecting wires are not shielded.

matching

tuning

coax

(b) Sample probe after the improvement: The cap is elongated, the temperature sensor and its
wires are shielded from the rest of the probe. A copper plate (red) provides a good grounding of all
elements and a cap heater (orange lines) was added.

Figure 5.7: Sketch of the 16T sample probe before (upper panel) and after (lower panel)
its improvement (for simplicity some fixing brass tubes which are not important for the im-
provements are omitted in these sketches): Fixing tubes of the sample probe are drawn as long,
horizontally aligned, yellow-green squares. The grey, vertically aligned squares are plastic discs
on which everything is fixed. The green thick square denotes the coaxial cable, the grey part
of it is its shield, the black wire coming out of it denotes its core. Soldering lugs are sketched
as small yellow-green squares. Soldered and connecting wires are thick black lines. The mea-
surement coil is winded around the sample (grey rhomboid). The purple square is the Cernox
temperature sensor.

which is a bit overlaying, such that the cap is well grounded, too. The insulation sheath
containing the wires of the temperature sensor and the (newly installed) cap heater has
been pulled through one of the hollow fixing tubes along the whole length of the sample
probe. Another hollow tube (dark brown lines) has been put as a prolongation of this
fixing tube, shielding the temperature sensor (purple square) and the insulation sheath
(olive stripe) containing its connecting wires (thin blue stripes) from the environment.
The wires of the heater exit the fixing tube before the beginning of the cap. A cap heater
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in form of a doubled resistance wire has been wound around the whole length of the cap
(orange lines, only sketched at the beginning and the end) The cap heater is connected
with the wires coming out of the fixing tube via two pairs of connectors.

The reported rebuilding of the lower part of the sample probe now guarantees good
grounding and shielding as well as an optimized temperature control.

5.4.3 Sample Heating

High frequency pulses of a defined pulse length and power are used in the NMR pulse
sequences. The applied power can be calculated as [38]:

P =
2ωVH2

1

µ0Q
, (5.1)

where ω = γH0 is the NMR frequency, V is the volume of the sample coil, H1 is the
magnetic field perpendicular to H0, generated within the coil by the application of the
pulses (see Fig. 2.4), Q is the quality factor of the resonance circuit and µ0 = 4π ×
10−7Vs/Am is the vacuum permeability. According to Eq. (2.44) the magnetic field
generated in the coil by the application of a π/2 pulse of the length tp is:

H1 =
π/2

γtp
. (5.2)

For the 75As NMR measurements (γ/2π = 7.2917MHz/T) on LiFeAs in H0 = 7T, typical
pulse lengths of 2µs were used. With these values, H1 amounts to 0.017T. The coil di-
mensions correspond to the sample dimensions, which were 5.04mm×2.24mm×0.52mm.
Assuming a typical quality factor of about 50, the applied power amounts to 17.3W. For
7Li NMR measurements (γ/2π = 16.5461MHz/T) in H0 = 4.5T, typical pulses were 1µs
long, which gives H1 = 0.015T and an applied power of 19.6W. Powers of such orders of
magnitude are normally easy to compensate by the cooling power of usual 4He cryostats.

Conditions for the applied power change upon entering the superconducting state.
Hence, attention has to be paid to select the right settings for pulse-length and power.
The quality factor of a a parallel circuit of a coil of inductance L, a capacitor of capacity
C and a resistor with resistance R is given by:

Q = R

√

C

L
. (5.3)

The inductance of a long coil with length l, cross section area A and number of windings
N is:

L =
µ0µrAN

2

l
, (5.4)

with µr being the relative permeability of the material inside the coil. Due to the perfect
diamagnetism of superconductors, µr → 0 in the superconducting state and correspond-
ingly Q increases. Hence, according to Eq. (5.1) less power is needed to flip the nuclear
spins in the superconducting state. Furthermore, due to their diamagnetism, superconduc-
tors shield radio frequencies. NMR signals from the superconducting state are therefore
normally much weaker then the ones from the normal state. If one performs a pulse-length
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Figure 5.8: Effect of sample heating on the 75As NQR frequency of LiFeAs. The filled
squares denote the measured NQR frequency with bad tuning conditions and sample heating
for T < 11K. The open dots show the corrected NQR frequency, measured with good tuning
conditions. It seems however, that the 4.2 K point is still affected by sample heating.

measurement in the superconducting state just slightly below Tc, wrong pulses with too
much power might be chosen because heat-excited normal-state signals will superimpose
the much weaker signals from the superconducting state. The wrongly chosen high power
either leads to unintentional flipping angles larger than 90◦ / 180◦ or to a heating of the
sample.

Sample heating may also arise if the tuning conditions of the resonant circuit are poor
and much power is reflected from the coil. To prevent any long air-contact for the very
moisture- and air-sensitive LiFeAs sample, all measurements on the LiFeAs sample were
done simultaneously in the same VTI with the same measurement coil. This implied
that the same resonant circuit had to be used for a broad frequency range, ranging from
21.5MHz for NQR-measurements6 up to 62MHz for 75As -NMR in 7.0494T. With this
set-up only very poor tuning conditions were obtained for low temperature NQR mea-
surements, because the tuning changes drastically in the superconducting state. A lot of
power was reflected by the electronic circuit. Because of the enhanced power reflectance
of the circuit much more power had to be applied than what one would calculate from
Eq. (5.1). The use of long pulses with high power resulted in a heating of the sample
at low temperature and therewith to misleading results (see Fig. 5.8). It was therefore
inevitable to take out the sample probe and install a supplementary capacitor of 100 pF

6 The NQR measurements could be performed inside the magnet, since it was possible to drive the
magnetic field down to zero in an oscillating mode. The good agreement between linewidths and
frequencies of the measurements inside the 16T cryostat with H0 = 0T and other measurements in
the NQR setup confirmed the absence of residual magnetic fields in the former case.
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parallel to the tuning capacitor.7 After that, very good tuning conditions were obtained
also for NQR measurements at low temperature. A comparison between the measured
NQR frequencies with bad and good tuning conditions at low temperature showed that
the former sample heating significantly affected the NQR frequency (see Fig. 5.8). Since
the NQR frequency was essential for the determination of the Knight shift (see Chapter
8), precise measurements of the NQR frequency were needed. The data obtained with
the good tuning conditions seem to be quite reasonable for T ≥ 8K. The data at 4.2K
may however still be influenced by some sample heating effects.

7 To minimize possible defects at the sample, it was kept under a helium gas flow atmosphere during the
installation of the additional capacitor and everything was done as quickly as possible. A check of the
NQR linewidth and frequency at room temperature after the installation of the additional capacitor
proved that the sample was still undamaged.



6 NMR on LaO1−xFxFeAs in the

Normal State

In the following two chapters, NMR measurements on LaO1−xFxFeAs with x = 0.00, 0.05,
0.075, and 0.10 will be presented. The presentation and discussion of the data will be
separated into the normal state properties (this Chapter) and the nature of the super-
conducting state (following Chapter 7). A comparison to the data of other groups on the
same compound and similar ones will be included.

As presented in the following, the normal state properties at high temperatures are
dominated by a pseudogap-like decrease of static and dynamic NMR characteristics. At
intermediate temperatures the dynamic properties depend on the doping level and thus
on the proximity to the SDW instability. While antiferromagnetic spin fluctuations seem
to boost the spin-lattice relaxation rate at low doping levels, no evidence for such fluc-
tuations is found at optimal doping (x = 0.1). For this most thoroughly studied sample
LaO0.9F0.1FeAs, a scaling of different NMR shifts and a scaling of different spin-lattice
relaxation rates will be presented, suggesting a single spin fluid character and the lack of
any ~q-structure in the dynamic susceptibility, at least for this specific doping level.

6.1 Knight Shift - Static Susceptibility

Knight Shift measurements were only performed on samples with fluorine doping levels
of x = 0.05 and x = 0.10.

6.1.1 Optimally-Doped LaO0.9F0.1FeAs

In the case of LaO0.9F0.1FeAs, an ab-oriented sample (see Chapter 5) was used for the
Knight shift measurements. Only data for H ‖ ab were taken. The alignment of the
sample and 75As-NMR measurements in a field of H0 = 7.0494T up to 300K have already
been performed by H.-J. Grafe and D. Paar and are published in [79]. In the course
of this thesis, the 75As-NMR measurements were reproduced for some already existing
temperature points and extended up to 480K in H = 7.0494T. Additionally, the 139La-
NMR shift was measured in the temperature region from 100K to 300K in the same field
of H = 7.0494T. More data points of the 139La-NMR shift were obtained by D. Paar, and
G. M. Lang.

The alignment process described in [79] worked well, yielding 75As-NMR resonance
lines, that are well described by a Gaussian line shape (see Fig. 6.1). The resonance
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Figure 6.1: 75As-NMR resonance line of ab-aligned LaO0.9F0.1FeAs in H0 = 7.0494 T for
H0 ‖ ab and T = 480K. The solid line is a Gaussian fit to the resonance line.

frequency νab,(Gauss) could be extracted from a Gaussian fit in the whole temperature
range. Additionally, the center of gravity of each resonance line was calculated:

νab,(CoG) =

∑

i νiIi(νi)
∑

i Ii(νi)
, (6.1)

where Ii(νi) is the intensity at a certain frequency point νi of the resonance line. Both
75νab,(CoG) and

75νab,(Gauss) coincided within the small error bars. A similar procedure was
applied to extract the 139La resonance frequencies 139νab.

With the obtained resonance frequencies 75νab and 139νab, the
75As and 139La Knight

shifts were extracted using Eq. (2.14), including also second order quadrupolar shift effects
according to Eq. (2.39):

νab = γH0(1 +Kab) +
3ν2q

16γH0
. (6.2)

For 75As, a temperature-independent quadrupole frequency of ν75q = 11MHz and a van-
ishing quadrupole asymmetry parameter η = 0 were adopted. These values were deduced
from a simulation of the powder spectrum of the sample before its alignment [79]. νq was
simultaneously measured in 75As-NQR measurements on LaO0.9F0.1FeAs [193] and agreed
well with the value derived from the powder spectrum simulation. Eq. (6.2) assumes that
the angle between the principal axis of the EFG with the largest eigenvalue, VZZ, and
the direction of the magnetic field (H ‖ ab) is θ = 90◦, which implies that VZZ ‖ c. This
has been confirmed during the alignment process [79]. In the case of 139La the already
determined νq = 1.15Mhz [193] was used to correct for the second order quadrupole shift.

Fig. 6.2 shows the temperature dependence of the 75As and 139La Knight shifts together
with the 57Fe Knight shift and the macroscopic susceptibility. The 57Fe Knight shift
was determined by G. Lang and H.-J. Grafe on an 57Fe enriched powder sample [193]
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Figure 6.2: Comparison of the temperature-dependent Knight shifts of 75As (black squares),
139La (blue points) and 57Fe (green triangles) with the macroscopic susceptibility (solid red line)
for LaO0.9F0.1FeAs (published in [193]).

and the macroscopic susceptibility was measured by N. Leps using a conventional SQUID
magnetometer in a field of H = 5T on a LaO0.9F0.1FeAs powder sample [193]. Note that
the scale for 57Kab is reversed, reflecting the negative hyperfine coupling constant for 57Fe.

At first glance it is already visible, that the macroscopic susceptibility scales with the
microscopic Knight shifts down to Tc. This proves that the bulk susceptibility is not
dominated by any Curie contribution due to paramagnetic impurities, and thus confirms
the very high quality of the investigated samples.
The Knight shifts of all three nuclei decrease with decreasing temperature. This sup-

pression of low energy spin excitations is a common feature observed in many pnictides
[162, 166, 167, 226–230]. It has been compared to the pseudogap behavior found in
cuprates (see for instance [31, 231, 232]). However, the expected broad maximum of the
Knight shift at a crossover temperature T0 in the high temperature regime, as reported
e.g. for YBa2Cu4O8 [231], has not been observed so far. The search for this broad max-
imum in the Knight shift was the reason to extend the measurements up to 480K. No
clear signature of such a “pseudogap peak” appears in the data plotted in Fig. 6.2. Only
a slight flattening at around 500K is visible. With the available setup, measurements at
higher temperature were not possible. SQUID measurements suggest a degradation of
the sample for temperatures higher than 480K, which would possibly hinder reproducible
measurements of the Knight shift at higher temperatures.

Following the analysis of [227, 229], the decrease of the Knight shift was fit with a
pseudogap behavior of the form

K = A +B exp(−∆PG/kBT ) , (6.3)



70 6 NMR on LaO1−xFxFeAs in the Normal State

Figure 6.3: Temperature dependence of 75Kab of LaO0.9F0.1FeAs measured at a field of H0 =
7.0494 T. Lines are attempts of a pseudogap fit according to Eq. (6.3) for Tc < T ≤ 290K (dashed
line) and Tc < T ≤ 480K (dotted line). The dashed vertical line denotes Tc(H0) ≈ 22K.

with the constants A and B and the pseudogap ∆PG. Two fits for different temperature
regions are shown in Fig. 6.3. The fit for Tc < T ≤ 290K (dashed line) gives a reasonable
value for the pseudogap, but a very large error. Furthermore, it does not follow the data
for T > 300K. A fit over the whole paramagnetic temperature range (dotted line) can well
describe the data, but results in ∆PG = (872±93)K. This value is unrealistically high for
an optimally-doped iron pnictide, considering the fact that pnictides are less correlated
than cuprates. Possible reasons for the pseudogap-like behavior will be discussed in Sec-
tion 6.1.3, after showing the data for LaO0.95F0.05FeAs in Section 6.1.2. Additionally, also
the spin-lattice relaxation rate measurements in Section 6.2 will be discussed in terms of
a possible pseudogap behavior.

Another striking result of Fig. 6.2 is the fact, that all three Knight shifts do not only
scale with the macroscopic susceptibility, but also with one another. This suggests that
all three nuclei are probing the same component of the spin susceptibility, despite the
multi-band character of the electronic structure (see Chapter 4). In cuprates, where a
single-band model of the electronic structure is appropriate due to the localized character
of the spin susceptibility (Cu 3d), a single spin component has been proven by 63Cu and
17O NMR [31]. However, due to the multiband character of LaOFeAs one might expect
that each band contributes differently to the spin susceptibility, with different selective
hyperfine couplings to different bands, as it is the case in Sr2RuO4 for instance [233]. The
scaling of all three Knight shifts with one another and with the macroscopic susceptibility
suggests that if there are different hyperfine couplings to multiple orbitals in pnictides,
their spin responses are nearly identical. This gives strong evidence for a single spin liquid
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Figure 6.4: Knight shifts of 139La (left panel), 75As (center), and 57Fe (right panel) versus the
macroscopic powder susceptibility with temperature as implicit parameter. The solid lines are
linear fits. The range of possible orbital shifts is plotted next to each left vertical axis. These
data are published in [79] and [193].

character of the electronic system, which may reflect the itinerant character of the Fe 3d
electrons.

Note that the scaling of the macroscopic susceptibility with the measured Knight shifts
is legitimate since both quantities contain a temperature-dependent contribution stem-
ming from the macroscopic/local spin susceptibility and other temperature-independent
parts stemming from van Vleck magnetism and diamagnetic responses. A shifting of the
specific scales with respect to each other corresponds to a consideration of the temperature-
independent parts Korb andKdia, and χV V and χdia, respectively as well as on the different
hyperfine couplings Ahf(~q = 0).

If the macroscopic susceptibility is not covered by impurity contributions, as it is
the case for LaO0.9F0.1FeAs, it is possible to extract the hyperfine coupling constants
Ahf (~q = 0) by plotting the Knight shift versus the macroscopic susceptibility and fitting
a linear dependence between these two, according to Eq. (2.21). The slope of the linear
temperature dependence in this so-called Clogston-Jaccarino plot [234, 235] gives the
hyperfine coupling constant at ~q = 0: Ahf(~q = 0). This is plotted in Fig. 6.4 for all three
considered nuclei. Note that the powder susceptibility was used in this plot, neglecting
the modest anisotropy between the c and ab direction.

The extracted hyperfine couplings amount to: 139Ahf = 4.3(8) kOe/µB,
75Ahf =

25(3) kOe/µB and 57Ahf = −5.7(14) kOe/µB [79, 193]. A rough estimation of the or-
bital shifts Korb along the ab direction can also be extracted from this plot. It is given
by the non-spin part of the susceptibility: χns = χV V + χdia, which can only be de-
termined with large error bars. The lowest possible value of the non-spin part of the
susceptibility is 0, while the upper bound is 2 × 10−4 emu/mole. For higher values, the
spin susceptibility would become negative below a certain temperature. This results in
139Korb = 0.12(1)%, 75Korb = −0.03(4)% and 57Korb = 1.36(1)% [79, 193]. Table 6.1
summarizes the extracted hyperfine couplings Aab

hf and orbital shifts Kab
orb. The extracted

values agree nicely with similar values reported by other groups. Terasaki et al. reported
57Ahf(~q = 0)/75Ahf(~q = 0) ' −0.38 for LaFeAsO0.7 [167]. This is of the same order
of magnitude (and the same sign) as the value of 57Ahf(~q = 0)/75Ahf(~q = 0) ' −0.23
which results out of our values. The same reference gives 57Korb = 1.425(1)% [167], in



72 6 NMR on LaO1−xFxFeAs in the Normal State

139La 75As 57Fe

Aab
hf (kOe/µB) 4.3(8) 25(3) -5.7(14)

Kab
orb (%) 0.12(1) -0.03(4) 1.36(1)

Table 6.1: Hyperfine couplings and orbital shifts in LaO0.9F0.1FeAs for 139La, 75As, and 57Fe
[79, 193].

very good accord with our 57Korb = 1.36(1)%. For single crystals of undoped BaFe2As2
and undoped CaFe2As2, hyperfine coupling constants of 75Ahf = 26.4(7) kOe/µB and
75Ahf = 23 kOe/µB were reported [224, 228]. The comparison with 75Ahf = 25(3) kOe/µB

for LaO0.9F0.1FeAs indicates the relative robustness of the absolute value of the hyperfine
coupling constant upon doping and structural changes and even among different pnictide
families.

At first glance it is astonishing that the 57Fe hyperfine coupling constant does not
possess the largest absolute value, as one would expect from the nature of the electronic
structure which is predominantly governed by the presence of all Fe 3d bands at the Fermi
level [119, 124, 189, 190, 236]. In contrast, the low value of 57Ahf shows that

57Fe is a rather
poor probe of the spin susceptibility at ~q = 0. The negative sign indicates a dominant
core polarization mechanism for 57Fe. One explanation of the low absolute value would
be, that besides this core polarization mechanism, which is always large and negative;
also a large, but positive contribution from the 4s electrons would be present, rendering
the total hyperfine coupling 57Ahf = 57Acore +

57Acontact (according to Equations (2.19)
and (2.21)) rather weak. In principal, also hyperfine filtering effects could filter out the
sensitivity of 57Fe at ~q = 0. However, the spin-lattice relaxation rate measurements on
LaO0.9F0.1FeAs which will be discussed in Section 6.2.1 do not show any evidence for
hyperfine filtering effects.

In contrast to 57Fe, 75As is a good probe for the spin susceptibility at ~q = 0, since
its hyperfine coupling constant 57Ahf = 25 kOe/µB is rather large. This may be due to
the fact that the 75As ions are lying in the same FeAs layer as the iron ions that are
responsible for the electronic properties. Each 75As ion is surrounded by four 57Fe ions
and a strong hybridization between the As p and the Fe d bands is expected.

The low value of the hyperfine coupling constant of 139La compared to the one of 75As
is not surprising, since 139La is located outside the FeAs layer and thus more weakly
coupled to the dominant Fe 3d moments. One can use the extracted 139Ahf to estimate
the value of the iron moment in the SDW phase of undoped LaOFeAs, by using the value
of the internal field in LaOFeAs at the 139La site Hint,x=0(La) = 2.5 kOe deduced from the
splitting of the 139La-NMR spectrum in LaOFeAs [149] and by further assuming that the
hyperfine coupling does not change significantly upon doping. This assumption is justified,
since there exist no major structural changes between LaOFeAs and LaO0.9F0.1FeAs. It is
furthermore confirmed by the absolute values of 75Ahf for LaO0.9F0.1FeAs (25(3) kOe/µB,
see Table 6.1) and BaFe2As2 (26.4(7) kOe/µB, [228]), which are the same within error bars.
If the 75As hyperfine coupling constant is that robust, no major changes are expected for
the 139La hyperfine coupling constant, either.
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The internal field at the 139La nucleus is caused by the iron moments µ(Fe) via the
hyperfine coupling 139Ahf :

Hint(La) =
139Ahf × µ(Fe) . (6.4)

With this relation one arrives at an iron moment of 0.58µB per Fe atom [193]. The same
procedure can be done for 75As. An internal field of Hint(As) = 1.6T = 16 kOe was found
at the 75As site in undoped LaOFeAs by zero-field 75As-NMR at T = 2.2K [237]. With

Hint(As) =
75Ahf × µ(Fe) (6.5)

one obtains an ordered iron moment of 0.64µB per Fe atom. Both values agree nicely with
each other, further corroborating the single spin liquid character of the electronic system,
which was discussed previously. Both nuclei, 139La and 75As are coupled to the same itiner-
ant iron moments. The resulting average value of µ(Fe) = 0.61(3)µB/Fe is somewhat big-
ger than what was determined by early measurements of neutron scattering and Mössbauer
spectroscopy on LaOFeAs, which reported a magnetic moment of 0.25-0.35µB/Fe [183–
186, 238]. However, it perfectly agrees within error bars with more recent neutron scat-
tering measurements which report a magnetic moment of µ(Fe) = 0.63(1)µB/Fe [192].
Furthermore, it is consistent with DFT calculations, predicting that the size of the or-
dered moment is independent of the rare earth ion and with the observed ordered iron
moment of µ(Fe) ≈ 0.5µB/Fe of PrOFeAs, which has been determined by two inde-
pendent neutron powder diffraction measurements [194, 197]. For the other members of
the “1111” family, the absolute value of the ordered iron moment is still under debate.
Neutron powder diffraction and µSR measurements reported moments of 0.3µB/Fe up
to 0.8(1)µB/Fe in CeOFeAs [136, 141]. Moments of 0.25(7)µB/Fe and 0.9(1)µB/Fe have
been found by analyzing neutron data on NdOFeAs [195, 196]. The influence of the rare
earth ion magnetism at low temperatures in these compounds and the lack of high quality
single crystals for neutron studies further complicate the extraction of the correct ordered
iron moment in these (RE)OFeAs systems [141]. On the other hand the moment deduced
from Mösssbauer measurements [183, 184] depends on necessary assumptions regarding
the average hyperfine field. These may falsify the determination of the absolute value
of the moment, while there is a general agreement of Mössbauer measurements with the
DFT prediction, that the moments should not strongly vary within the (RE)OFeAs series
[141, 192].

All experimentally reported values so far are strongly reduced relative to theoretical
expectations. This might reflect the largely itinerant nature of the SDW state. Several
theoretical attempts were started to reconcile early DFT calculations predicting large
magnetic moments with the experimentally observed small magnetic moments. Starting
from a local moment picture (strong coupling, Mott physics) it is possible to describe the
reduction of the magnetic iron moment by considering frustration effects between nearest
neighbour and next-nearest neighbour exchange interactions [188, 239]. Another theoret-
ical approach reduced the important electronic structure to one itinerant band and one
more Mott-like localized band by including spin orbit interactions, strong hybridization
between Fe d and As p bands and a compression of the lattice along z [240]. The resulting
spin component for relevant values of hybridizations is then reported to lie in between 0.2
and 0.6µB/Fe, which is very similar to the experimentally observed values. A third the-
oretical model suggests the existence of a large number of antiphase boundaries, stacking
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faults along z direction and fluctuations of the SDW wavevector between (π, 0) and (0, π)
and suggests that the combination of these effects will lead to a more dynamic SDW state
with experimentally accessible small moments [191].

6.1.2 LaO0.95F0.05FeAs

The 75As Knight shift of LaO0.95F0.05FeAs was measured from a powder sample in a mag-
netic field of H = 7.0494T, by determining the resonance frequency of the high frequency
peak of the NMR powder spectrum, which corresponds to H ‖ ab [79]. The correction
of the resonance frequency for second order quadrupole effects according to Eq. (6.2) was
complicated due to the line shape of the 75As-NQR spectrum of LaO0.95F0.05FeAs, show-
ing two resonance lines with the corresponding quadrupole frequencies νq,low = 9.71Mhz
and νq,high = 10.58MHz at room temperature [30]. The 75As Knight shifts was deter-
mined in three different ways, correcting for νq,low, for νq,high as well as for their average
νq,mean. Additionally, the temperature dependence of νq,low and νq,high was taken into
account, by fitting a linear decrease to the measured values of νq,low(T ) and νq,high(T ).
This temperature dependence was also taken into account when calculating νq,mean(T ).

Fig. 6.5 shows the temperature dependence of the thus obtained 75As Knight shifts for
LaO0.95F0.05FeAs:

75Kab,low,
75Kab,high and

75Kab,mean. The error bars include uncertainties
from the determination of the 75As-NMR resonance frequency and the 75As quadrupole
frequency, as well as uncertainties from the linear fit to obtain νq(T ). The absolute values

Figure 6.5: Temperature dependence of 75Kab for LaO0.95F0.05FeAs determined in a field of
H = 7.0494 T for temperatures up to 460K. Three different values, determined by correcting the
NMR resonance frequency for second order quadrupole corrections with νq,high(T ) (red points),
νq,low(T ) (blue points) and νq,mean(T ) (black squares), are shown.



6.1 Knight Shift - Static Susceptibility 75

(a) Temperature dependence of 75Kab,mean (black dots)
and the macroscopic susceptibility (solid line) (see also
[181]).

(b) 75Kab,mean versus macroscopic sus-
ceptibility with temperature as implicit
parameter. The solid line is a linear fit
from T = 100K to T = 360K. The av-
eraged orbital shift is plotted next to the
left vertical axis.

Figure 6.6: Scaling of the averaged knight shift 75Kab,mean and the macroscopic powder
susceptibility χpowder(T ) for LaO0.95F0.05FeAs.

of the Knight shifts determined in such a way differ strongly from one another, ranging
from 75Kab,low(295K) = 0.22% to 75Kab,high(295K) = 0.09% and being incompatible
with each other inside their corresponding error bars. However, their overall temperature
dependence is the same. They all decrease with decreasing temperature with the same
slope.

The overall temperature dependence of the 75As Knight shift can be nicely scaled
with the macroscopic susceptibility measured in a field of H = 1T [see Fig. 6.6(a)]. As
in the case of LaO0.9F0.1FeAs this reflects the high quality of the investigated samples
since it proves that the macroscopic powder susceptibility is not governed by impurity
contributions. A plot of 75Kab,mean versus the macroscopic susceptibility gives a linear
dependence. This is plotted in Fig. 6.6(b). Different linear fits for different temperature
regions, ranging from 60K - 360K to 200K - 360K were performed, They all yielded
reasonable results. Fig. 6.6(b) shows a fit in the temperature interval from 100K to 360K.
The averaged hyperfine coupling constant of all the fits amounts to 75Ahf = 33(2) kOe/µB

and the mean orbital shift to 75Korb = 0.03(6)%. These values nicely agree with the ones
extracted for LaO0.9F0.1FeAs (see Table 6.1) if one considers the difficulty in extracting
the Knight shift of LaO0.95F0.05FeAs due to the complicated 75As-NQR spectrum.

6.1.3 Discussion

Several theoretical approaches have been made to discuss the decrease of the spin suscepti-
bility with decreasing temperature in the context of antiferromagnetic fluctuations. They
include the consideration of antiferromagnetic fluctuations of local magnetic moments
within a localized description [241] as well as within an itinerant approach considering
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the nesting between hole and electron pockets, which boosts magnetic correlations at
~Q = (π, π) [242, 243].

Another theoretical approach discusses the preformation of Cooper pairs driven by
attractive excitonic interactions which may arise due to the large polarizability of the
anions and the peculiar lattice structure as a reason for the decrease of the susceptibility
with decreasing temperature [244, 245].

Effects of the electronic band structure such as an unusual temperature dependence of
the density of states might also lead to a decreasing spin susceptibility. The interpretation
of the linear temperature dependence of the susceptibility in terms of a pseudogap behavior
similar to the one established for the case of cuprates has been discussed mostly in early
NMR papers [79, 149, 226]. However, the doping-independent slope of the macroscopic
susceptibility over the whole doping range [181] would require the pseudogap to exist over
the whole doping range, contrarily to what is observed for cuprates [246]. Furhermore, as
will be shown in Section 6.2.1, it is not possible to fit the decrease of (T1T )

−1 consistently
with a pseudogap function over the whole paramagnetic temperature range.

6.1.4 Summary

75As NMR Knight shift data have been presented for underdoped LaO0.95F0.05FeAs and
optimally-doped LaO0.9F0.1FeAs. A robust feature of both data sets is the decrease of the
Knight shift with decreasing temperature in the whole paramagnetic temperature range.
Although a pseudogap behavior was suggested by several authors, it seems not to be
very likely since the expected broad pseudogap peak was not observed in the measured
temperature range which ranges up to 480K. Different theoretical approaches were shortly
mentioned in Section 6.1.3.

For the optimally-doped sample, the 75As NMR Knight shift was compared to 57Fe
and 139La Knight shifts. A scaling of all three shifts together with the macroscopic
susceptibility suggests that despite the existence of multiple bands at the Fermi energy,
all nuclear spins are probing the same spin degree of freedom and the magnetic properties
can therefore be well described within a single spin fluid model. Hyperfine coupling
constants could be extracted and understood for all considered nuclei. The magnitude of
the ordered magnetic moment in the SDW ordered state of LaOFeAs could be extracted.
It amounts to 0.61(3)µB per Fe atom which agrees nicely with recent neutron scattering
experiments [192].

6.2 Spin-Lattice Relaxation Rate - Dynamics

Measurements of 75As-NMR spin-lattice relaxation rate were performed on samples with
different fluorine doping levels and in slightly different temperature regimes: x = 0 (T =
136 − 300K), x = 0.05 (T = 1.7 − 460K), x = 0.075 (T = 10 − 300K) and x = 0.1
(T = 2− 10K and T = 295− 480K). Additional measurements of 75As-NMR spin-lattice
relaxation in a powder sample with x=0.1 were done in the temperature range from 4.2
to 295K by D. Paar. In this optimally-doped sample LaO0.9F0.1FeAs, also the 139La-
NMR spin-lattice relaxation rate was measured in between 100 and 300K. Some more



6.2 Spin-Lattice Relaxation Rate - Dynamics 77

data points at lower temperatures were taken by D. Paar. The 57Fe-NMR spin-lattice
relaxation in LaO0.9F0.1FeAs was obtained by G. Lang and H.-J. Grafe.

The discussion of the data will again start with the optimally-doped sample
LaO0.9F0.1FeAs. Relaxation rates of different nuclei in this sample will be compared
with each other. Subsequently the doping evolution of the temperature dependence of
the 75As-NMR spin-lattice relaxation rate will be analysed, especially in terms of the
role of spin fluctuations in superconducting samples. This discussion will be split into a
qualitative (Section 6.2.3.1) and a quantitative (Section 6.2.3.2) part.

For a discussion of the data it is important to remind that according to Eq. (2.53),
the spin-lattice relaxation rate in correlated materials is proportional to the ~q-dependent
dynamic susceptibility:

1

T1T
∝ γ2

∑

~q

|A⊥(~q)|2
χ′′
⊥(~q, ωL)

ωL
. (6.6)

6.2.1 Optimally-Doped LaO0.9F0.1FeAs

Measurements of 75As-NMR spin-lattice relaxation rate were done in an ab-oriented sam-
ple of LaO0.9F0.1FeAs for H0 ‖ ab at low temperature (T < 10K, see Section 7.1) and
high temperature (T > 295K) in a field of H0 = 7.0494T. They were added to already
existing T1 data in the “normal temperature” region (4.2K - 295K), measured in the same
magnetic field of 7.0494T on the H ‖ ab peak of the powder spectrum of a polycrystalline
sample of LaO0.9F0.1FeAs by D. Paar [79].

Fig. 6.7 shows the temperature dependence of the 75As-NMR (T1T )
−1 of both investi-

gated samples in H0 = 7.0494T. A generally good agreement is observed, reflecting the
reproducibility of the data and thus the high quality of the samples. From the highest
measured temperature, 480K, down to the onset of superconductivity at Tc(H0) ≈ 22K,
(T1T )

−1 decreases with decreasing temperature. This behavior has been widely observed
in optimally and overdoped pnictides [148, 149, 167, 168, 248]. It stands in contrast to a
simple Fermi liquid behavior (in this case, a constant (T1T )

−1 would be expected in the
normal state), but is reminiscent of a pseudogap-like behavior similar as the Knight shift
data.

However, no pseudogap peak appears up to 480K. In the cuprates, a broad maxi-
mum, named pseudogap peak, around the suspected pseudogap temperature T ∗ has been
observed in 63Cu-NMR [23, 31] and has been associated with the opening of a pseudo
spin gap. The absence of this peak up to relative high temperatures in the measured
75As (T1T )

−1 questions the pseudogap scenario, although hyperfine filtering effects could
hide the pseudogap peak, as in the case of 17O (T1T )

−1 in cuprates [23, 31, 249]. How-
ever, as shown in Fig. 6.10(a) and discussed later in this Section, the 75As-NMR (T1T )

−1

of LaOFeAs, LaO0.95F0.05FeAs and LaO0.925F0.075FeAs show a pronounced increase with
decreasing temperature, indicative of antiferromagnetic fluctuations. This proves, that
75Ahf(~q) is sensitive to antiferromagnetic fluctuations. Furthermore, although the hyper-
fine coupling constant of iron 57Ahf(~q) is supposed to be largest at ~q = (π, π) [167], the
57Fe (T1T )

−1 in LaO0.9F0.1FeAs decreases in the same way as the one of 75As, without
any hint for a pseudogap peak (see Fig. 6.9). To completely rule out the pseudogap sce-
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nario proposed by several references, we followed their approach and fitted (T1T )
−1 with

a pseudogap function of the form [149, 166, 168, 230]:

1

T1T
= A+B exp(−∆PG/T ) . (6.7)

Two of the best fits are plotted in Fig. 6.7. A fit from Tc < T ≤ 290K results in a
pseudogap value of ∆PG = (163 ± 23)K (dashed line). This value is similar to ∆PG =
(172±17)K obtained for LaO0.89F0.11FeAs in the same temperature region [149]. However,
this fit can not describe the new data at higher temperatures. Another fit for the whole
measured paramagnetic temperature range Tc < T ≤ 480K yields ∆PG = (473 ± 46)K
(dotted line). Yet this fit does not follow the data at low temperatures. In conclusion,
no satisfying pseudogap fit could be found for the entire temperature range. Together
with the unrealistically high value of ∆PG = (872 ± 93)K deduced from a pseudogap
fit on the Knight shift data of LaO0.9F0.1FeAs (see Fig. 6.3), this makes any pseudogap
interpretation of the decreasing low energy spin excitations very unlikely and suggests
that the physics behind the decrease of K and (T1T )

−1 are of a different nature than in
the cuprates.

Interestingly, the 75As (T1T )
−1 in the whole accessed paramagnetic regime can be

perfectly described by a linear temperature dependence of the form:

1

T1T
= a + bT . (6.8)

Figure 6.7: Temperature dependence of the 75As-NMR (T1T )
−1 for H ‖ ab measured at a

field of H = 7.0494 T on a powder sample (open squares, published in [79]) and an ab oriented
sample (filled squares) of LaO0.9F0.1FeAs. Solid lines are attempts of a pseudogap fit according
to Eq. (6.7) for Tc < T ≤ 290K (dashed line) and Tc < T ≤ 480K (dotted line) (published
similarly in [247]).
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Figure 6.8: Temperature dependence of 57Fe, 75As, 139La, and 19F (T1T )
−1 divided by the

square of the corresponding nuclear gyromagnetic ratio γ. Data for 19F are reproduced from
[226]. For 57Fe, 75As, and 139La, T−1

1 along ab is plotted, while for 19F it is 1/T iso
1 .

The corresponding fit with a = (0.052±0.002) s−1K−1 and b = (3.2±0.1)×10−4 s−1K−2 is
plotted in Fig. 6.15. The microscopic origin of this linear decrease is unclear. Similarly to
the Knight shift, it might be related to temperature-dependent changes in the electronic
density of states.

Fig. 6.8 shows the temperature dependence of (T1T )
−1 of all measured nuclei, as well

as 19F-NMR data from another group [226]. The data were scaled by the square of the
corresponding nuclear gyromagnetic ratio γ, such that a quantitative comparison can be
made between the spin-lattice relaxation rates of the four different nuclei. The absolute
values of (T1Tγ

2)−1, spreading over three orders of magnitude, reflect the distance of the
corresponding nuclei to the iron plane. (T1Tγ

2)−1 is largest for the 57Fe nuclei, while
for 139La, and 19F, which lie outside the FeAs planes, the relaxation is much slower.
This observation is not inconsistent with the Knight shift data which showed that due
to the relative low hyperfine coupling constant 57Ahf(~q = 0), 57Fe is a poor probe of
the uniform susceptibility at ~q = 0. According to Eq. (6.6) T−1

1 probes the dynamic
susceptibility in the whole ~q-space and not only at ~q = 0 and so one finds the expected
situation: the 57Fe nuclei experience the fastest relaxation, which means that they are
strongest coupled to the electronic spins and then the strength of the relaxation correlates
with the distance to the iron plane. Correspondingly, one finds the interesting ratios:
75(T1Tγ

2)/57(T1Tγ
2) ≈ 20 − 30, while (57Ahf)

2(~q = 0)/(75Ahf)
2(~q = 0) ≈ 0.05. This

seeming discrepancy can be explained within two scenarios. Either there exists a strong
~q-dependence of the dynamic susceptibility χ′′(~q, ωL) and due to hyperfine filtering effects
the iron probes fluctuations at ~q 6= 0 better than the arsenic does and vice versa at ~q = 0;
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Figure 6.9: Same data as in Fig. 6.8, now scaled to each other and without the normalization

by γ2. Again, data for 19F have been taken from [226] and T−1
1 along ab is plotted 57Fe, 75As,

and 139La, while 1/T iso
1 is plotted for 19F [193].

or the most relevant scattering process is simple quasi particle scattering and the different
ratios stem from different hyperfine coupling channels of the 57Fe nuclear moments to the
single spin fluid.

The first possibility of a strong ~q-dependence is very unlikely, since the overall temper-
ature dependence of the (in absolute values very different) spin-lattice relaxation rates is
the same for all four nuclei. This scaling is depicted in Fig. 6.9. It shows that spin excita-
tions are suppressed simultaneously across the whole ~q-space as temperature is decreased.
Any ~q-dependence of the dynamic susceptibility χ′′(~q, ωL) should show up in the compar-
ison of spin-lattice relaxation rates of different nuclei, since the complicated multiband
electronic structure should lead to different ~q-dependences of each hyperfine coupling,
which will then filter out different ~q-regions of the dynamic susceptibility χ′′(~q, ωL). This
seems not to be the case in LaO0.9F0.1FeAs, as all four different spin-lattice relaxation
rates scale nicely with each other in the whole paramagnetic regime.

The easiest interpretation is then that simple quasi particle scattering is the main cause
for spin-lattice relaxation, which renders the existence of antiferromagnetic correlations
in LaO0.9F0.1FeAs unlikely. The rather weak hyperfine coupling at ~q = 0 which was found
for 57Fe in static NMR measurements was interpreted as the sum of a large, negative core
polarization term and a second large, but positive Fermi contact term: 57Ahf(~q = 0) =57

Acore(~q = 0) +57 Acontact(~q = 0). In the case of simple quasi particle scattering, these
terms enter Eq. (6.6) as the sum of their squares, (57Acore)

2+(57Acontact)
2, rather than the

square of their direct sum [250], leading to the observed fast spin-lattice relaxation of the
57Fe nuclei without contrasting the weak hyperfine coupling at ~q = 0. Note however that
some fluctuations in certain ~q-regions cannot be ruled out within this simple analysis.
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(a) 75As-NMR (T1T )
−1 for LaO0.95F0.05FeAs

(open rhombi) and LaO0.9F0.1FeAs (filled squares).
(b) 75Kab of LaO0.95F0.05FeAs (up-
per panel) and LaO0.9F0.1FeAs (lower
panel) together with their correspond-
ing macroscopic susceptibilities (solid
lines).

Figure 6.10: Comparison of dynamic (left panel) and static (right panel) NMR properties of
LaO0.95F0.05FeAs and LaO0.9F0.1FeAs in a field of H0 = 7.0494 T. The right panel is published
similarly in [181]. For 75Kab of LaO0.95F0.05FeAs the mean value has been plotted (see discussion
in Section 6.1.2).

6.2.2 Underdoped LaO0.95F0.05FeAs

Before analysing the overall doping dependence of the spin-lattice relaxation rate from
x = 0.0 to x = 0.1, this Section will start with a short discussion of the 75As (T1T )

−1 of
LaO0.95F0.05FeAs in comparison to (T1T )

−1 of LaO0.9F0.1FeAs and will compare these dy-
namic NMR properties with the corresponding static ones. Fig. 6.10(a) compares the tem-
perature dependence of the 75As-NMR (T1T )

−1 of LaO0.95F0.05FeAs (open rhombi) with
the one of LaO0.9F0.1FeAs (filled squares). From high temperature down to room tem-
perature, (T1T )

−1 of LaO0.95F0.05FeAs decreases similarly to (T1T )
−1 of LaO0.9F0.1FeAs.

Below room temperature, however, the spin-lattice relaxation rate of LaO0.95F0.05FeAs
exhibits a Curie-Weiss-like increase with decreasing temperature down to 25K, in sharp
contrast to the temperature dependence of (T1T )

−1 in LaO0.9F0.1FeAs. This is a sig-
nature of a slowing down of antiferromagnetic fluctuations, which seem to precede the
superconducting ground state. Recall that LaO0.95F0.05FeAs does not show a magnetic
phase transition, but becomes superconducting at Tc = 20K (Tc(H0) = 17K). Indeed, it is
the first superconducting sample of the LaO1−xFxFeAs series and thus right on the border
between a magnetic and a superconducting ground state (see Fig. 4.6). Such an enhance-
ment of (T1T )

−1 is only found in underdoped superconducting samples of LaO1−xFxFeAs
and at low temperature (see also discussion of Fig. 6.11(a) and Section 6.2.3.2). It indi-
cates the occurrence of antiferromagnetic spin fluctuations in the underdoped regime and
demonstrates the important interplay between magnetism and superconductivity in the
La1111 family.
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Fig. 6.10(b) shows the behavior of the Knight shift, which, in contrast to the very
different behavior of (T1T )

−1, decreases with decreasing temperature in the underdoped
LaO0.95F0.05FeAs as well as in the optimally-doped LaO0.9F0.1FeAs. The Knight shift,
which is a measure of the static susceptibility at ~q = 0, decreases in both samples. The
spin-lattice relaxation rate (T1T )

−1 is also sensitive for ~q > 0 contributions and is therefore
more sensible for antiferromagnetic fluctuations, which give rise to an enhanced dynamic
susceptibility at ~q = π. The enhancement of (T1T )

−1 in LaO0.95F0.05FeAs shows that these
low energy antiferromagnetic spin fluctuations are enhanced in the underdoped region,
while they are suppressed in the optimally-doped LaO0.9F0.1FeAs.

6.2.3 Overall Doping Dependence - Role of Spin Fluctuations

6.2.3.1 Qualitative Discussion

The question arises whether these spin fluctuations favour or hinder superconductivity.
To answer this question, Fig. 6.11(a) shows the temperature dependence of the 75As-
NMR (T1T )

−1 of all measured samples, with a fluorine doping level ranging from x = 0.0
to x = 0.1. The undoped sample (dark red triangles) is the only investigated sample
which undergoes a magnetic phase transition at TN = 138K. Its spin-lattice relaxation
rate divided by temperature, (T1T )

−1, increases from room temperature on with decreas-
ing temperature and diverges towards its magnetic ordering temperature [see inset of

(a) 75As (T1T )
−1 of LaO1−xFxFeAs for vari-

ous fluorine concentrations x, measured for ab ‖
H0 = 7.0494T. The inset shows the complete
divergence of (T1T )

−1 of LaOFeAs near its mag-
netic ordering temperature TN = 138K (vertical
dark red line).

(b) 75As (T1T )
−1 of Ba(Fe1−xCox)2As2 for var-

ious cobalt concentrations x, measured in H0 ≈
7.74T. Upward arrows denote TN , downward
arrows denote Tc (reproduced from [230]).

Figure 6.11: Comparison of the spin dynamics of LaO1−xFxFeAs (a) and Ba(Fe1−xCox)2As2
(b) in form of their temperature-dependent 75As (T1T )

−1 for various doping levels x, including
magnetic samples [x = 0 (a) and x = 0, 4, 5% (b)], superconducting samples [x = 0.05, 0.075, 0.1
(a) and x = 8, 9, 10, 12, 14% (b)] and a non-superconducting sample (x = 26%) in the case of
Ba(Fe1−xCox)2As2. Same scales are chosen for a better comparison.



6.2 Spin-Lattice Relaxation Rate - Dynamics 83

Fig. 6.11(a)]. The temperature dependence of this increase and a similar absolute value
of (T1T )

−1 in the ordered state slightly below TN suggest a second-order-like phase tran-
sition to the magnetically-ordered state, in contrast to BaFe2As2, where only a slight
increase of (T1T )

−1 above TN and a discontinuous decrease of (T1T )
−1 across TN is ob-

served [251]. The behavior of the 5% F-doped sample (blue rhombi) was discussed in the
former paragraph. The sample with a fluorine concentration of x = 0.075 (green circles)
shows a very similar temperature dependence: after a slight decrease between 300K and
220K, it increases with decreasing temperature. This Curie-Weiss-like behavior in both
underdoped samples, x = 0.05 and x = 0.075, indicates the existence of antiferromag-
netic fluctuations which precede the superconducting state. The decrease of the absolute
values of (T1T )

−1 with increasing doping reflects a reduction of the antiferromagnetic
correlation strength with doping. The observation of the persistence of antiferromagnetic
fluctuations in underdoped superconducting samples with 0.05 ≤ x ≤ 0.075 is consistent
with the observation of an inflection point at around 150K and a low-temperature upturn
in resistivity measurements on these compounds. These anomalous features were related
to a carrier localization due to remnant spin fluctuations [180].

The temperature dependence of (T1T )
−1 in the optimally-doped sample (x = 0.1, black

squares) does not show any hint for antiferromagnetic fluctuations any more. As already
discussed in Section 6.2.1 it decreases linearly with decreasing temperature in the whole
paramagnetic regime. The entirety of these data suggest that antiferromagnetic corre-
lations remnant of the antiferromagnetically ordered SDW state remain present in the
underdoped superconducting regime, but the highest superconducting transition temper-
ature Tc is only reached as soon as these fluctuations are completely suppressed (at least
on the time scale of NMR measurements). Thus, spin fluctuations seem to compete with
superconductivity.

This observation stands in contrast to measurements of 75As-NMR (T1T )
−1 of various

samples of Ba(Fe1−xCox)2As2 [230], plotted in Fig. 6.11(b). The optimally-doped sample
of this family (x = 0.08, dark blue circles), shows a strong enhancement of antiferro-
magnetic spin fluctuations, indicated by the strong upturn of (T1T )

−1. This increase is
also observable in slightly overdoped samples up to x ≤ 0.12. Antiferromagnetic spin
fluctuations are only suppressed completely in heavily overdoped samples with low or
vanishing Tc [see also phase diagram of Ba(Fe1−xCox)2As2 in Fig. 6.12(b)]. The authors
of [230] conclude that a modest enhancement of antiferromagnetic spin fluctuations, just
strong enough to not cause a SDW ordered state, is needed to obtain the maximal Tc

in Ba(Fe1−xCox)2As2 and that a further suppression of spin fluctuations goes along with
a reduction of Tc. It is known from cuprate superconductors, that antiferromagnetic
spin fluctuations can provide attractive interactions similar to lattice vibrations in BCS
superconductors and thus mediate the creation of Cooper pairs. Similarly enhanced an-
tiferromagnetic spin fluctuations near Tc have also been found in other members of the
“122” family, such as isovalently doped BaFe2(As1−xPx)2 [252] and representatives of the
“11” family. An example of the latter is the stoichiometric superconductor FeSe, whose
Tc and in the same time the observed increase of (T1T )

−1 are enhanced under pressure
[253].

However, recently published 77Se NMRmeasurements on KxFe2−ySe2 reported the same
temperature dependence of (T1T )

−1 as observed in LaO0.9F0.1FeAs: (T1T )
−1 decreases

from room temperature down to Tc ≈ 33K without any hint for antiferromagnetic spin
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fluctuations [254]. This behavior was explained with the absence of hole bands in the
Fermi surface of KxFe2−ySe2 and the resulting lack of nesting in this compound.

The very different relationship between spin fluctuations and Tc in the aforementioned
materials leaves the question open upon their role in the interplay between magnetism
and superconductivity in the pnictides in general. The different behavior observed for
LaO1−xFxFeAs on one side and Ba(Fe1−xCox)2As2 and BaFe2(As1−xPx)2 on the other
side might be related to the different phase diagrams of both pnictide families. These
are plotted in Fig. 6.12. The phase diagram of LaO1−xFxFeAs in Fig. 6.12(a) shows a
sharp distinction between the magnetically-ordered phase and the homogeneous super-
conducting regime with a first order boundary, while there exists a coexistence region of
SDW magnetism and superconductivity in the phase diagrams of Ba(Fe1−xCox)2As2 and
BaFe2(As1−xPx)2 [230, 252, 255–258]. As an example Fig. 6.12(b) reproduces the phase
diagram of Ba(Fe1−xCox)2As2 from [230]. The authors of [252] suggest the existence of an
antiferromagnetic quantum critical point (QCP) in the phase diagram of BaFe2(As1−xPx)2
near the phase boundary of the antiferromagnetic phase close to the doping concentration
where Tc is maximal.

One can further check the importance of antiferromagnetic spin fluctuations by plot-
ting the normalized spin-lattice relaxation rate (T1T )

−1/(T1T )
−1
0 versus the normalized

temperature T/Tc. This has been done for several unconventional superconductors such
as the heavy fermion system CeCoIn5, the cuprate YBa2Cu3O7, and PuCoGa5 by Curro
et al. [95]. The corresponding plot has been reproduced from [95] in Fig. 6.13(a). It also
contains the normalized (T1T )

−1/(T1T )
−1
0 of the s-wave superconductors Aluminum (only

for T ≤ TC) and MgB2. MgB2 exhibits a constant (T1T )
−1 in the normal state (Fermi

liquid behavior), as expected for a conventional BCS superconductor [249]. Conversely,
(T1T )

−1 of the unconventional superconductors increases Curie-Weiss-likely with decreas-

(a) Phase diagram of LaO1−xFxFeAs [135] as dis-
cussed already in Section 4.2.

(b) Phase diagram of Ba(Fe1−xCox)2As2 as
plotted in [230] (open symbols denote TN ,
closed symbols denote Tc). Similar phase di-
agrams have been reported in [255–258].

Figure 6.12: Comparison of the phase diagrams of LaO1−xFxFeAs and Ba(Fe1−xCox)2As2.
Note that the magnetic and structural phase transitions occur at approximately the same tem-
perature TN ≈ Ts in Ba(Fe1−xCox)2As2.
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ing temperature. A scaling of the enhancement of (T1T )
−1 in the normal state is found,

which suggests that antiferromagnetic spin fluctuations act as an important glue for super-
conductivity. Fig. 6.13(b) shows that the same scaling works nicely for Ba(Fe1−xCox)2As2
samples with x ≤ 0.12, FeSe and underdoped LaO0.95F0.05FeAs. In contrast, the normal-
ized (T1T )

−1 of LaO0.9F0.1FeAs neither falls on this common scaling curve nor shows a con-
stant Fermi-liquid behavior. The superconducting pairing interaction in LaO1−xFxFeAs
is thus unlikely to be mediated by antiferromagnetic spin fluctuations. Note that one
has to be cautious when performing such a comparison, since Fig. 6.13(a) only shows
unconventional d-wave superconductors with nodes in the superconducting gap function
(besides MgB2). As will be shown in Chapter 7, the gap symmetry in the pnictides is
rather found to be of unconventional s± or s++-wave symmetry. Anyhow, already the
overall temperature dependence of (T1T )

−1 in LaO0.9F0.1FeAs alone (see Fig. 6.9) ques-
tions the importance of antiferromagnetic spin fluctuations for superconductivity in this
compound.

Concering the relation between optimal superconductivity with the highest Tc and the
absence of antiferromagnetic spin fluctuations (on the time scale of NMR) please note
the following: LaO0.9F0.1FeAs is frequently denominated as the optimally-doped sample,
because it displays the highest Tc within the fluorine doping series of LaO1−xFxFeAs.
However, as will be shown in Section 7.2, a sample with an artificially enhanced impurity
concentration in the form of arsenic vacancies, LaO0.9F0.1FeAs1−δ , shows an enhanced
Tc = 28.5K and in the same time a slightly enhanced (T1T )

−1 in the normal state (see
Fig. 7.7). The relevance of spin fluctuations for the occurrence of superconductivity in
LaO1−xFxFeAs can thus not be ruled out completely by the absence of such fluctuations
in “optimally-doped” LaO0.9F0.1FeAs.

6.2.3.2 Quantitative Discussion

To further discuss the strength of antiferromagnetic spin fluctuations in undoped and
underdoped LaO1−xFxFeAs, the spin-lattice relaxation rates will now be discussed in a
more quantitative fashion. Since a similar set of doping levels of LaO1−xFxFeAs have been
published and analyzed in [168], the first attempt to describe our data theoretically follows
their suggestions. Fig. 6.14(a) shows T−1

1 of undoped LaOFeAs. From room temperature
down to the temperature of the structural phase transition, Ts = 156K, T−1

1 only slightly
increases, while it diverges very fast from Ts down to the magnetic phase transition at
TN = 138K. The onset of the divergence of T−1

1 just below Ts points towards a close
connection between the structural and the magnetic phase transition. Following the same
analysis as given in [168], the data were fit with Moriya’s self consistent renormalization
theory (SCR) for weak itinerant antiferromagnets [259, 260]:

1

T1
=

{

c1T + c2T/
√
T − TN T > TN

c3T/M(T ) T < TN ,
(6.9)

where c1, c2 and c3 are constants and M(T ) is the antiferromagnetic order parameter.
Since only one data point was collected in the magnetically ordered state T < TN , only
the T > TN region was fitted. The resulting fit is shown in Fig. 6.14(a) as a solid line.
While it nicely reproduces the magnetic ordering temperature TN = (137± 1)K and the
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(a) Normalized (T1T )
−1 for the unconventional d-

wave superconductors PuCoGa5 (yellow squares),
YBa2Cu3O7 (black rhombi), CeCoIn5 (blue dots),
and the s-wave superconductors Al (green trian-
gles) and MgB2 (red triangles). Figure repro-
duced from [95].

(b) Normalized (T1T )
−1 for LaO0.95F0.05FeAs

(blue rhombi) and LaO0.9F0.1FeAs (black
squares) as well as Ba(Fe1−xCox)2As2 with
x = 0.08 (open blue circles), x = 0.09 (open
red rhombi), x = 0.12 (open orange trian-
gles) and FeSe (green triangles). Data for
Ba(Fe1−xCox)2As2 and FeSe are reproduced from
[230] and [253], respectively.

Figure 6.13: Normalized (T1T )
−1 versus normalized temperature T/Tc for (a) different known

superconductors [95] in comparison to (b) the pnictides. The normalization constant (T1T )
−1
0

is given by the value of (T1T )
−1 at T = 1.25Tc.

general trend, it does not capture the differences in slopes above and sligthly below Ts.
These tiny deviations suggest that the structural distortion indeed has some influence on
the magnetic fluctuations preceding the ordered state and should be taken into account
for a complete theoretical description of the data. Also multiband effects could play a
role.

As already discussed, the underdoped samples with x = 0.05 and x = 0.075 show a
Curie-Weiss-like increase of (T1T )

−1 with decreasing temperature. The very first naive
approach consists therefore in fitting the data with a simple Curie-Weiss law [168]:

1

T1T
=

C

T + θ
, (6.10)

where C is a constant and θ the Curie-Weiss temperature. The resulting fits are shown
in Fig. 6.14(b). Table 6.2 summarizes the obtained fit parameters for the two samples
presented in Fig. 6.14(b) as well as for LaO0.96F0.04FeAs which was presented and an-
alyzed in [168]. Very similar values of C were obtained for x = 0.05 and x = 0.075.
They compare well to C = 44s−1 for x = 0.04 [168]. The Curie-Weiss temperature θ
seems to increase with increasing doping, as observed also in BaFe2(As1−xPx)2 [252] and
Ba(Fe1−xCox)2As2 [230]. However, in contrast to these “122” systems, where a crossover
from θ < 0 to θ > 0 has been found (for superconducting samples) and θ = 0 has been
discussed within the framework of an antiferromagnetic QCP near the phase boundary of
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(a) T−1
1 of LaOFeAs (triangles) and the cor-

responding SCR fit for weak itinerant antifer-
romagnets according to Eq. (6.9) (solid line).
The dotted and dashed vertical lines denote Ts

and TN , respectively.

(b) (T1T )
−1 of LaO1−xFxFeAs with x = 0.05

(blue squares) and x = 0.075 (green dots) and
the corresponding Curie-Weiss fits (solid lines)
according to Eq. (6.10). Arrows denote Tc.

Figure 6.14: SCR fits for undoped LaOFeAs (a) and Curie-Weiss fits for underdoped
LaO1−xFxFeAs with x = 0.05 and x = 0.075 (b).

the antiferromagnetically ordered SDW state, the Curie-Weiss temperature of supercon-
ducting LaO1−xFxFeAs is always positive. This might be due to the difference in phase
diagrams as already discussed in Section 6.2.3.1 (see Fig. 6.12). Note that an increase
of θ with increasing Sr concentration and a nearly vanishing θ near the magnetic phase
boundary has also been observed in the cuprate La2−xSrxCuO4 [261].

While the simple Curie-Weiss fit presented in Fig. 6.14(b) reflects well the overall trend
of an increasing (T1T )

−1 with decreasing temperature, it fails in two major points. First
of all, it is unable to describe the data at high temperature. Second, it misses a very
peculiar feature of (T1T )

−1 just above Tc. By closely examining the data, one observes
that (T1T )

−1 actually shows a maximum clearly above Tc and starts to decrease already
above the actual onset of superconductivity at Tc. Such a peak was also observed in
LaO0.96F0.04FeAs and interpreted as a weak magnetic ordering [168]. Also NMR measure-
ments on superconducting FeSe, at ambient conditions as well as under pressure, reported
the occurrence of such a peak in (T1T )

−1 above the onset of superconductivity [253]. They
related it to enhanced spin fluctuations which might cause a glassy spin freezing before

x fitting range C (s−1) θ (K)

0.04 [168] 30K - 250K 44 10.2

0.05 25K - 150K 43± 3 53± 6

0.075 60K - 180K 37± 3 58± 11

Table 6.2: Curie-Weiss fitting parameters for underdoped LaO1−xFxFeAs. The first row (x =

0.04) refers to a fit on (T1T )
−1 of LaO0.96F0.04FeAs reported in [168].
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the onset of bulk superconductivity. Such a peak in (T1T )
−1 cannot be described within

a simple Curie-Weiss law.
To better describe the peak slightly above Tc and the linear decrease at high tempera-

ture, the following fitting function was used:

1

T1T
= a+ bT +

(

1

T

)

cτc
1 + τ 2c ω

2
L

. (6.11)

a and b are constants. The last part of this equation is the BPP model introduced in
Eq. (2.51). It describes the behavior of T−1

1 upon the influence of fluctuating magnetic
fields h⊥. The prefactor c = γ2h2⊥ contains the fluctuating magnetic field h⊥ perpendicular
to the externally applied magnetic field direction. At the temperature where T−1

1 is
maximal, the effective correlation time τc of the spin fluctuations is just the inverse Larmor
frequency of the nuclear spins: τc = ω−1

L . The correlation time of the spin fluctuations is
temperature-dependent. For a glassy spin freezing, this dependence can be described by
an activated behavior [65, 66, 224] (see also Eq. (2.52)):

τc = τ0 exp(Ea/kBT ) . (6.12)

In this equation τ0 is the correlation time at high temperature and Ea is the activation
energy of the spin fluctuations. A fit to the data considering only the BPP model [last part
of Eq. (6.11)] did not yield satisfying results. A simple addition of a constant value a as
done by other groups for example in their Curie-Weiss fits [252], also did not describe the
data well. To account for the high temperature behavior of (T1T )

−1, a linear temperature
dependence had to be added, resulting in the final fit equation (6.11). The inset of Fig. 6.15
shows (T1T )

−1 of the samples with x = 0.05 and x = 0.075 and the corresponding fits
according to Eq. (6.11) with free fit parameters. The fit and the data agree within error
bars in the whole paramagnetic temperature range.

As discussed in the qualitative description of the spin-lattice relaxation rate data,
spin fluctuations seem to be totally suppressed in the optimally-doped sample. (T1T )

−1

of the optimally-doped LaO0.9F0.1FeAs follows a linear temperature dependence in the
whole paramagnetic temperature range. A linear fit of the form (T1T )

−1 = a + bT with
a = (0.052 ± 0.002) s−1K−1 and b = (3.2 ± 0.1) × 10−4 s−1K−2 is shown in Fig. 6.15 for
LaO0.9F0.1FeAs. It describes the temperature dependence of (T1T )

−1 in the paramagnetic
state perfectly. Let’s assume, that the linear temperature dependence of (T1T )

−1 at high
temperature in the underdoped samples is of the same origin as the linear temperature
dependence of (T1T )

−1 of the optimally-doped sample and is not related to the antifer-
romagnetic fluctuations which lead to an increase of (T1T )

−1 in the underdoped samples
at “intermediate” temperatures. The linear part of Eq. (6.11) should then be indepen-
dent of doping and follow the same behavior as the optimally-doped LaO0.9F0.1FeAs. The
(T1T )

−1 data of the underdoped samples were therefore fitted with Eq. (6.11), but with
a and b fixed to the values obtained by the linear fit to (T1T )

−1 of LaO0.9F0.1FeAs. The
results shown in Fig. 6.15 are astonishingly good. As in the case of free parameters, the
data and the fit agree nicely with each other in the whole considered temperature range
and for both doping levels. Table 6.3 summarizes the obtained fitting parameters. Similar
values have been obtained by fitting the data with free fitting parameters.

The last row of Table 6.3 contains the value of the fluctuating field, obtained from
the fitting parameter c = γ2h2⊥. Since such an analysis have not been performed on
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Figure 6.15: (T1T )
−1 of LaO0.95F0.05FeAs (blue squares), LaO0.925F0.075FeAs (green dots)

and LaO0.9F0.1FeAs (black and grey squares). The dashed line is a linear fit a+ bT to (T1T )
−1

for LaO0.9F0.1FeAs. Solid lines are fits according to Eq. (6.11), adopting a and b from the
linear fit to LaO0.9F0.1FeAs. Arrows denote the corresponding Tc(H0) (≈ 16K, 18K and 22K
for x = 0.05, x = 0.075 and x = 0.1). The inset shows the data for LaO0.95F0.05FeAs and
LaO0.925F0.075FeAs and their corresponding BPP fits with totally free parameters.

other pnictides before, the values can not be compared to similar systems. A peak in
the spin-lattice relaxation rate has also been observed in the lightly doped cuprates
La2−xSrxCuO4, La1.8−xEu0.2SrxCuO4 and La2Cu1−xLixO4 in the striped ordered phase,
suggesting a glassy, quasi-static spin freezing [65, 66, 262, 263]. This slowing down of
spin fluctuations has also been evaluated within the BPP model. The resulting activa-
tion energies Ea lie in between 60K and 120K and the characteristic correlation time of
the spin fluctuations lie in between 10−13 and 10−14 seconds. While Ea deduced for the
underdoped pnictides is of the same order of magnitude as Ea in these cuprate systems,
the characteristic correlation time of LaO1−xFxFeAs is 3-4 orders of magnitude larger,
which means that the fluctuations are much slower LaO1−xFxFeAs then in the mentioned

x Ea (K) τ0 (10−10 s) h⊥ (Oe)

0.05 40± 2 18± 1 150

0.075 78± 2 8.5± 0.5 135

Table 6.3: BPP fitting parameters for underdoped LaO1−xFxFeAs.
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cuprate materials. The reason of this discrepancy is unclear. A correlation time in the
range of 10−10 s is really slow in solid state physics.

Electron spin resonance (ESR) measurements on GdO1−xFxFeAs found signatures for
short-range magnetic correlations in underdoped samples of GdO1−xFxFeAs with nominal
fluorine contents of x = 0.07 and x = 0.14 [143]. These magnetic correlations are quasi-
static on the time scale of high frequency ESR, which corresponds to pico seconds. This
is still two orders of magnitude shorter than the characteristic correlation time which was
needed to describe the NMR data within the BPP model. But it is consistent with the
NMR results in the sense that NMR is a “slower” probe than ESR. Spin fluctuations
which from the point of view of NMR are freezing, should correspondingly appear also
quasi-static when seen through the “glasses” of ESR.

Muon spin relaxation (µSR) and Mössbauer measurements on underdoped and opti-
mally-doped LaO1−xFxFeAs could rule out any static SDW magnetism with consider-
able magnetic moments in these compounds [135, 218]. However, a slight increase of
the µSR λ−2

ab for the underdoped samples at low temperature, where λab is the in-plane
magnetic penetration depth, and a gradual increase of the linewidth of the Mössbauer
spectra for LaO0.95F0.05FeAs below 10K indicate the presence of dilute magnetic correla-
tions [135, 218]. In µSR an additional relaxation due to tiny static internal magnetic fields
of electronic origin is observed at low temperature for both underdoped samples [135].
The corresponding internal magnetic fields measured by the muon relaxation rate and
the muon precession frequency are found to be 20 times smaller in LaO0.95F0.05FeAs than
in the magnetically-ordered state of LaO0.96F0.04FeAs [135]. Together with the reported
value of the internal field at the muon site in the ordered state of LaO0.96F0.04FeAs, which
amounts to Hint,muon = 160mT [135], this results in local internal fields of the order of
80Oe in LaO0.95F0.05FeAs, which is of the same order of magnitude as the values deduced
from the BPP fit to (T1T )

−1 of LaO0.95F0.05FeAs. Note that the additional relaxation
is only observed in a minor volume fraction of the sample, indicating dilute magnetic
clusters and the absence of coherent magnetism [135].

Some important issues should be mentioned at this point:

1. The standard use of the BPP model is to describe a peak in the spin-lattice relaxation
rate T−1

1 itself. Within the analysis presented here, it was used to describe the peak in the
spin-lattice relaxation rate divided by temperature, (T1T )

−1. On that account, the pref-
actor 1/T has been added in Eq. (6.11). If one would plot the bare spin-lattice relaxation
rate, T−1

1 versus temperature, no pronounced characteristic BPP peak would be visible,
just a weak anomaly. The temperature dependence, especially at high temperatures, is
therefore a crucial point. Only after subtracting the linear temperature dependence of
(T1T )

−1 (which corresponds to T−1
1 ∝ T 2) at high temperatures, a peak in T−1

1 gets vis-
ible. The data are therefore determined by two different effects: a non-Fermi-liquid-like
linear temperature dependence of (T1T )

−1 at high temperatures, and the slowing down of
antiferromagnetic spin fluctuations at low temperatures. The superposition of these two
effects complicate detailed quantitative analyses. The values given above should therefore
be taken with care.
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2. A similar approach to describe (T1T )
−1 of the underdoped samples with a high tem-

perature linear behavior and a low temperature Curie-Weiss increase was also tried. It
did not give any satisfactory results. This was also the case for a Curie-Weiss behavior
extended by an additive constant offset: 1/T1T = const. + C/(T + θ), which was used
by other authors [252]. Similarly, the SCR theory applied to the data of LaOFeAs did
not yield better results when considering an additional constant or an additional linear
temperature behavior.

3. For the LaO0.96F0.04FeAs sample presented in [168], a simple Curie-Weiss fit gave sat-
isfactory results at intermediate temperature. Note however that in this case only data
up to 250K were shown. A deviation from the Curie-Weiss fit is expected to occur also
in this sample at higher temperatures. Furthermore, (T1T )

−1 already decreases above Tc

also for this doping concentration, showing a similar maximum as has been observed in
LaO0.95F0.05FeAs and LaO0.925F0.075FeAs, which cannot be described by a simple Curie-
Weiss law.

6.2.4 Summary

Spin dynamics of LaO1−xFxFeAs have been investigated by 75As (T1T )
−1 for a whole set

of doping levels ranging from undoped LaOFeAs up to optimally-doped LaO0.9F0.1FeAs.
For the latter, (T1T )

−1 was also measured at the 139La site and compared to 57Fe and 19F
(T1T )

−1 data.
The undoped compound shows a strong increase of 75(T1T )

−1 towards the magnetic
ordering temperature TN , which can be fairly well described by Moriya’s SCR theory for
weak itinerant antiferromagnets. A relation between the structural phase transition and
the magnetic phase transition is assumed, since the divergence of (T1T )

−1 starts around
Ts.

The underdoped samples with x = 0.05 and x = 0.075, where the SDW state is
suppressed and superconductivity is observed at low temperature, still show a substantial
increase of (T1T )

−1 with decreasing temperature at intermediate temperatures and a linear
temperature dependence of 75(T1T )

−1 at higher temperatures. While the first feature
reflects remnant AFM fluctuations, the linear temperature dependence resembles the non
Fermi-liquid behavior of the optimally-doped sample. The data for x = 0.05 and x = 0.075
could be nicely fit with a combination of a linear term and a BPP model of fluctuating
magnetic fields over the whole paramagnetic temperature range.

75(T1T )
−1 of optimally-doped LaO0.9F0.1FeAs does not show any hint for magnetic

correlations any more. It decreases linearly with temperature from 480K down to the
onset of superconductivity. This behavior is clearly non Fermi-liquid-like. Pseudogap
fits as suggested and carried by other groups did not give satisfactory results. A scaling
of (T1T )

−1 data of different nuclei measured in optimally-doped LaO0.9F0.1FeAs showed,
that spin fluctuations are suppressed simultaneously across the whole ~q-space and the
spin-lattice relaxation rate is mostly dominated by simple quasi particle scattering.

The overall doping evolution of the temperature-dependent spin-lattice relaxation rate
suggests that antiferromagnetic spin fluctuations are still present in underdoped supercon-
ducting samples. Tc however only reaches its maximum value as soon as these fluctuations
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are suppressed (at least at the time scale of NMR). These results stand in contrast to
NMR measurements on representatives of the “122” family such as Ba(Fe1−xCox)2As2
and BaFe2(As1−xPx)2, where antiferromagnetic fluctuations are still well pronounced in
samples with the highest Tc. These differences were discussed based on the different phase
diagrams of both pnictide families.

6.3 Korringa Relation

Now that both the static and dynamic NMR properties of LaO1−xFxFeAs have been dis-
cussed separately in the former sections, they can be analysed with regard to their relation
to each other. According to Section 2.3.2.4, one can describe a system within a Fermi liq-
uid picture, if the ratio K2

sT1T , the so-called Korringa ratio, is constant. Such a constant
behavior has been observed for the 75As nuclei in LaO0.9F0.1FeAs in the paramagnetic
temperature region up to T = 300K [79]. It suggests that either 75As is insensitive to an-
tiferromagnetic spin fluctuations or antiferromagnetic spin fluctuations have disappeared
at this doping level. The first assumption can be ruled out by (T1T )

−1 measurements
on the 75As nuclei in underdoped samples, which showed a strong upturn upon lower-
ing temperature and thus prove the sensitivity of 75As for antiferromagnetic fluctuations.
The observation of the Korringa ratio in LaO0.9F0.1FeAs therefore indicates, that at this

Figure 6.16: (T1T )
−1 vs temperature measured at H ‖ ab for a powder (open squares) and an

ab-oriented sample (filled squares) of LaO0.9F0.1FeAs. Dashed and dotted lines indicate (T1T )
−1

∝ K2
s and (T1T )

−1 ∝ Ks, respectively. The powder data and the Korringa ratio (T1T )
−1 ∝ K2

s
up to T = 300K are reproduced from [79].
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(optimal) doping level, antiferromagnetic spin fluctuations have disappeared completely.
The data of [79] (open squares) are reproduced in Fig. 6.16. The corresponding Korringa
ratio (T1T )

−1 = K2
s/αS0 with α = 1.8 [according to Eq. (2.59)] is sketched as a dashed

line. The new data up to T = 480K (filled squares) have been added to Fig. 6.16. Based
on these new high temperature data for (T1T )

−1 as well as on the new data for Ks, the
Korringa ratio (T1T )

−1 = K2
s/1.8S0 has been extended up to T = 480K (dashed line). A

strong deviation from this Korringa ratio is visible for temperatures T > 300K. In this
high temperature regime, the (T1T )

−1 data rather follow a linear dependence on the spin
shift Ks (dotted line), which in turn does not well describe the data for T < 300K.

In the case of underdoped LaO0.95F0.05FeAs, no constant Korringa ratioK2
sT1T could be

found at any temperature range. But surprisingly, for T ≥ 250K the same linear relation-
ship between (T1T )

−1 andKs was found as in LaO0.9F0.1FeAs for T ≥ 300K (see Fig. 6.17).
It differs only in the absolute value of the y-intercept (0.02 versus 0.075). This might be
related to the difficulty in determining Kab and therewith Korb in LaO0.95F0.05FeAs due
to the complicated 75As-NQR spectrum (see Section 6.1.2).

For undoped LaOFeAs and LaO0.925F0.075FeAs no comment can be made on the relation
between T1T and Ks, since Ks has not been measured in these compounds.

In agreement with the observation of a constant Korringa ratio for LaO0.9F0.1FeAs
and its absence in LaO0.95F0.05FeAs, no universal relation between Ks and (T1T )

−1 was
found for the pnictides in general. A linear scaling behavior has also been observed in
LaO0.89F0.11FeAs for Tc < T ≤ 300K via 19F-NMR [226]. In Ba(Fe1−xCox)2As2, the

Figure 6.17: (T1T )
−1 vs temperature measured at H ‖ ab for a powder sample of

LaO0.95F0.05FeAs (black rhombi). The solid line indicates (T1T )
−1 ∝ Ks with the same

proportionality constant β as in Fig. 6.16 for LaO0.9F0.1FeAs. Ks(T ) was determined as
Kab,mean(T )−Korb with Korb = 0.01 (see Section 6.1.2).
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Korringa ratio K2
sT1T = const. was found only below T ∗ = 100K in a nearly optimally-

doped sample (x = 0.1) [166] and in the whole temperature range of 4.2K ≤ T ≤ 295K
for a heavily overdoped, non-superconducting sample with x = 0.26 [230]. While in the
case of Ba(Fe0.9Co0.1)2As2 the observation of K2

sT1T = const. stands in contrast to the
non-Fermi-liquid behavior of the resistivity, which follows a linear temperature dependence
[166, 264], the resistivity of the heavily overdoped sample (x = 0.26) scales as ρ ∝ T 2

and thus confirms the Fermi-liquid picture [230]. The authors of [230] suggest that a
Fermi-liquid description of the spin excitations in Ba(Fe1−xCox)2As2 is only possible at
high doping levels, when the hole Fermi surface at the center of the Brillouin zone is
completely filled by electron doping and thus disappears, leaving behind only electron
pockets and therewith only intraband electron excitations [230].

The temperature-dependent resistivity ρ(T ) of LaO1−xFxFeAs agrees nicely with the
observed Fermi-liquid Korringa ratio for Tc ≤ T ≤ 300K in LaO0.9F0.1FeAs and the lack
of such a behavior in LaO0.95F0.05FeAs. Only for high doping levels 0.1 ≤ x ≤ 0.2, it shows
a quadratic temperature dependence, ρ(T ) ∝ T 2, in a broad temperature range from Tc

up to T ≈ 200K, indicating a Fermi-liquid state [179, 180, 265]. At higher temperatures,
it depends only linearly on temperature, ρ(T ) ∝ T [179, 180]. According to the phase
diagram based on the temperature dependence of ρ(T ) proposed in [180], a Fermi-liquid
state seems to exist only in optimally or overdoped samples at low temperatures.

Correspondingly, NMR measurements on overdoped samples with x > 0.1 would be
interesting. They should also show a constant Korringa ratio, reflecting the Fermi-liquid
nature suggested by resistivity measurements [179, 180]. The proposed linear relationship
between (T1T )

−1 and Ks in LaO0.89F0.11FeAs [226] stands in contrast to a Fermi liquid
behavior for doping levels x ≥ 0.1, which was suggested by resistivity measurements.
However, a careful revision of the data of [226] illustrates that a quadratic dependence
of (T1T )

−1 on Ks, indicative of a Fermi-liquid state, cannot be excluded (see Fig. 6.18).
Note that the choice between a linear or quadratic dependence of (T1T )

−1 on Ks depends
delicately on the temperature-independent orbital shift Korb [23, 266].

What can be learned about the correlations in the Fermi-liquid phase in
LaO0.9F0.1FeAs from the Korringa ratio? It suggests that antiferromagnetic fluctuations
of the iron 3d moments at ~Qaf = (π, π), which play a significant role at lower doping
levels (leading to the upturn in (T1T )

−1 in LaO0.95F0.05FeAs and LaO0.925F0.075FeAs), do
not contribute to the spin-lattice relaxation rate of LaO0.9F0.1FeAs. The absolute value of
α = 1.8 ≈ α0 = 1 suggests the absence of any strong magnetic correlations in the system
(see Section 2.3.2.4).

Concerning the high temperature region where a robust linear relationship between
(T1T )

−1 and Ks has been found for both LaO0.95F0.05FeAs and
LaO0.9F0.1FeAs, no detailed analysis of this non-Fermi-liquid behavior can be given. It is
in agreement with resistivity measurements, which also show a non-Fermi-liquid ρ(T ) ∝ T
dependence.

It is tempting to ascribe this linear temperature dependence of ρ(T ) to conventional
phonon scattering, as it is expected in a normal metal at high temperatures (T > ΘD).
However, the Debye temperature of iron amounts to ΘD = 420K [215], which is much
higher than the onset of the ρ ∝ T behavior. Other unknown scattering centers, whose
density of states also depends linearly on temperature might thus be responsible for
ρ(T ) ∝ T . This might indicate another electronic phase at high temperature. Some
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references have assigned the linear temperature dependence of the resistivity as a signature
of spin fluctuations reminiscent of the SDW ordered state [267, 268]. This explanation is
questionable since NMR measurements do not show any hint for remnant spin fluctuations
in the temperature and doping regimes, where a linearly temperature-dependent resistivity
is observed.

From the point of view of NMR, two different cases are known which also showed a
T1TKs = const. behavior. The first one are metallic compounds such as YCO2 [269] and
TiBe2 [270], where the observed linearity between (T1T )

−1 and Ks is in good accord with
Moriya’s SCR theory for nearly or weakly ferromagnetic metals. This possibility can be
excluded for the pnictides presented here due to their proximity to an anitferromagnetic
instability. The second class of materials where T1TKs = const. was observed are cuprates,
especially for 17O NMR in YBa2Cu4O8 and YBa2Cu3O6+x [31, 266, 271–274]. While the
real underlying physical origin is still unclear [274], the authors of [31, 266, 271–274]
suggested the following interpretation: According to Eq. (6.6), (T1T )

−1 is proportional to
the dynamic susceptibility divided by the Larmor frequency, summed up over the whole
~q-space:

1

T1T
∝ γ2

∑

~q

|A⊥(~q)|2
χ′′
⊥(~q, ωL)

ωL

. (6.13)

They now assume, that χ′′
⊥(~q, ωL)/ωL has a Lorentzian frequency dependence with width

Γq in the paramagnetic state and substitute:

χ′′
⊥(~q, ωL)

ωL

=
πχ(~q)

Γq

, (6.14)

where χ(~q) is the ~q-dependent static susceptibility. Now they apply the MMP model [50],
which phenomenologically devides the contributions to the static ~q-dependent susceptibil-
ity into two parts, mainly a Fermi-liquid-like ~q-independent part from the whole ~q-space,

Figure 6.18: (T1T )
−1 vs K for LaO0.89F0.11FeAs. The left panel, which shows (T1T )

−1 ∝ K
has been taken from [226]. For the right panel, the data have been digitized and analyzed with
(T1T )

−0.5 ∝ K, reflecting the Korringa relation, which can also describe the data. Note that in
both plots Korb = Kchem has not been subtracted from K(T ) = Ks(T ) +Korb. It amounts to
Korb = 30 ppm in the case of a linear scaling (left panel) and Korb = −27 ppm in the case of a
Korringa behavior (right panel).
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χ(0) and another part χafm(~q), which expresses the strong antiferromagnetic fluctuations
at (or near) (π, π):

χ′′
⊥(~q, ωL)

ωL
=
πχ(~q)

Γq
=
πχ(0)

Γ0
+
πχafm(~q)

Γafm,q
. (6.15)

Since the hyperfine form factor of 17O nuclei in the cuprates is almost zero at the antifer-
romagnetic wave vector, 17O NMR is only sensitive to probe the first part of the MMP
model:

1

T1T
∝ πχ(0)

Γ0

. (6.16)

The experimental observation of

17

(

1

T1T

)

∝ Ks ∝ χs (6.17)

in YBa2Cu4O8 and YBa2Cu3O6+x then suggests that the energy width of the spin excita-
tions Γ0 is temperature-independent, although the spin susceptibility itself shows a strong
temperature dependence [31, 266, 271–274].

It is questionable whether a similar scenario might be applicable to the case of pnic-
tides. However, the multiband character of the electronic band structure might allow
to play around with different contributions to the dynamic susceptibility from different
bands.

6.3.1 Summary

This Section discussed the Korringa ratio in LaO0.9F0.1FeAs and LaO0.95F0.05FeAs based
on 75As NMR measurements. A real Korringa ratio T1TK

2
s = const. was only observed in

optimally-doped LaO0.9F0.1FeAs for Tc < T < 300K. This is in good agreement with resis-
tivity measurements, which reported a Fermi-liquid-like ρ ∝ T 2 for Tc < T ≤ 300K [180].
A linear relation, T1TKs = const., was found for T > 300K in the case of LaO0.9F0.1FeAs
and for T ≥ 250K in the case of LaO0.95F0.05FeAs. In both cases the slope was the same,
suggesting an intrinsic high temperature electronic phase which differs from the one at
low temperature and persists at a broad doping range, independent of the very differ-
ent spin dynamics in LaO0.95F0.05FeAs and LaO0.9F0.1FeAs at low temperatures. The
observation of such a linear relation between (T1T )

−1 and Ks goes along with a linear
temperature dependence of the resistivity [180]. The physical origin of this behavior is
still unclear. A rough explanation was tried using the MMP model which was successfully
applied to the cuprates. Since cuprates and iron-based superconductors differ strongly in
their basic properties (charge transfer insulators vs itinerant metals, single band vs multi-
band, ...) this might however not be appropriate. Measurements on the overdoped side of
LaO1−xFxFeAs are still missing. They would be interesting since resistivity measurements
on overdoped LaO1−xFxFeAs [180] and NMR measurements on heavily overdoped, non-
superconducting Ba(Fe0.74Co0.26)2As2 [230] suggest a Fermi-liquid-like behavior at high
doping levels.
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the Superconducting State

In the following, NMR and NQR measurements in the superconducting state of under-
doped and optimally-doped LaO1−xFxFeAs with x = 0.05, x = 0.075 and x = 0.1 will
be shown and discussed within possible gap symmetries. The presentation of the data is
focussed on dynamic properties. Spin-lattice relaxation rate data for x = 0.05, x = 0.075
and x = 0.1 will be shown and analysed in Section 7.1. Section 7.2 reports the special
case of LaO0.9F0.1FeAs1−δ, an optimally-doped sample with additional impurities (arsenic
vacancies), exhibiting slightly enhanced superconducting properties and an even sharper
decrease of T−1

1 than optimally-doped LaO0.9F0.1FeAs.
NMR Knight shift measurements in the superconducting state of LaO0.9F0.1FeAs,

LaO0.89F0.11FeAs, oxygen-deficient LaO0.7FeAs and PrO0.89F0.11FeAs reported a decreas-
ing Knight shift in the superconducting state, indicating the robustness of spin-singlet
superconductivity in the “1111” family [79, 147, 162, 164, 167, 275, 276]. The same be-
havior holds true for the “122” family [166, 170, 171, 229, 230, 277, 278]. The spin-lattice
relaxation rate data presented in the following will therefore be discussed considering
the theoretically possible symmetries of the superconducting order parameter for singlet
superconductors, namely s- and d-wave symmetries.

7.1 Spin-Lattice Relaxation Rate for x ≥ 0.05

75As NMR T−1
1 measurements were performed for LaO1−xFxFeAs samples with x = 0.05,

x = 0.075 (whole displayed temperature range) and x = 0.1 (low temperatures, T < 10K).
They are assembled in Fig. 7.1 together with already published data for LaO0.9F0.1FeAs
[79]. Additionally, data for superconducting LaO0.96F0.04FeAs are reproduced from Ref.
[168] in Fig. 7.11. For all doping levels, T−1

1 decreases rapidly without any signature of a
Hebel-Slichter coherence peak below Tc, following a T 3 dependence down to T ≈ 0.3Tc.
This temperature dependence can be interpreted as an indication for the existence of line
nodes in the superconducting gap function (see Chapter 3). Similar T 3 dependencies and
interpretations were reported in several other early NMR publications [147–150, 277].

The new data points for LaO0.9F0.1FeAs at low temperature (black squares) show a
clear deviation from the T 3 behavior for T < 4.2K. Such a low temperature feature with
a nearly linear slope below T ≈ 0.2Tc was also observed in LaO0.95F0.05FeAs (see Fig. 7.1),
LaO0.9F0.1FeAs1−δ (see Section 7.2, [279]) and BaFe2(As0.67P0.33)2 [277]. Also the data for

1 Note that within the sample series grown in the IFW Dresden, the sample with a nominal fluorine
doping of x = 0.04 is not superconducting, but displays a structural and a magnetic phase transition
at Ts = 151K and TN = 120K, respectively [135]. The LaO0.96F0.04FeAs sample displayed in Fig. 7.1
was grown in Hosono’s group [168].
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Figure 7.1: Temperature dependence of 75As T−1
1 for LaO0.96F0.04FeAs (light grey triangles,

reproduced from [168]), LaO0.95F0.05FeAs (blue rhombi), LaO0.925F0.075FeAs (green dots) and
LaO0.9F0.1FeAs (dark grey squares, reproduced from [79] and black squares, new data). Arrows
denote Tc(H0) which are approximately 14K, 16K, 18K and 22K for x = 0.04, 0.05, 0.075 and
0.1, respectively. Solid lines indicate T−1

1 ∝ T 3. The data are measured for H ‖ ab. Besides the
data for LaO0.96F0.04FeAs (H0 = 9.9T), all data have been measured in H0 = 7.0494 T.

LaO0.96F0.04FeAs [168] reproduced in Fig. 7.1 show a slight deviation from the reported
T 3 behavior at low temperatures. For BaFe2(As0.67P0.33)2, the linear temperature behav-
ior of T−1

1 at low temperatures was explained with the existence of a residual density of
states (RDOS) in a line-node model of the superconducting gap function [277]. This is
the case of so-called “dirty d-wave” superconductors, where impurities lead to an addi-
tional pair breaking, smear out the line nodes and cause additional relaxation channels for
the nuclear spins with a linear temperature dependence. Further evidence for line nodes
in the superconducting gap function of BaFe2(As0.67P0.33)2 came from measurements of
the magnetic penetration depth [280]. However, such a high RDOS can be excluded
by penetration depth data derived from µSR for the LaO1−xFxFeAs samples [135] as
well as for other “1111” and Ba1−xKxFe2As2 pnictide systems by several experimental
measurements of the magnetic penetration depth in these systems [151–155]. Evidence
for nodal superconductivity was also found in LaOFeP (Tc ≈ 6K), heavily overdoped
KFe2As2 (Tc ≈ 3.5K) [169, 281, 282] and in the overdoped regime of Ba(Fe1−xNix)2As2
with x ≥ 0.072 (Tc ≤ 7.5K) [283]. The difference in the experimental results on different
pnictides were theoretically considered to stem from a switching from nodal to nodeless
superconductivity upon changing the pnictogen heigth [284]. For instance, phosphorus
substitution for arsenic in BaFe2(As1−xPx)2 reduces the pnictogen height, in contrast to
potassium substitution for barium in Ba1−xKxFe2As2 [268]. However, only low supercon-
ducting transition temperatures are expected in the case of nodal gap functions [284].
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Figure 7.2: Temperature dependence of the 75As NQR spin-lattice relaxation rate for
LaO1−xFxFeAs with x = 0.05 (blue rhombi), x = 0.075 (green dots) and x = 0.1 (black squares).
Open and closed symbols correspond to measurements on the low and high frequency resonance
peak of the double-peaked NQR spectra [30]. Temperature is scaled by Tc and T−1

1 is scaled

by T−1
1 (Tc) to ease comparison. The dashed line denotes the linear temperature dependence of

T−1
1 in the paramagnetic state, while the solid line marks T −1

1 ∝ T 3. The dotted line denotes
Tc. These data are published in [30].

The relatively high Tc found in BaFe2(As0.67P0.33)2 is therefore still puzzling. Another
striking difference between LaOFeP and BaFe2(As0.67P0.33)2 on one side and LaOFeAs
and Ba1−xKxFe2As2 on the other side is the dimensionality of their hole pockets. While
LaOFeAs and BaFe2As2 possess two-dimensional Fermi surfaces, LaOFeP and BaFe2P2

feature a pronounced three dimensional hole Fermi pocket [268, 285]. The electron pockets
remain nearly unchanged upon phosphorus substitution. The reduction of the pnictogen
height upon phosphorus substitution boosts the three dimensionality of the hole Fermi
surface. This weakens nesting conditions along (π, π) [268]. This directly leads to another
theoretical approach, which discusses the competition between orbital and spin fluctua-
tions as a major player to explain the rich variety of the observed gap structures [286].
The strong sensitivity of the dimensionality of the hole Fermi surfaces on the doping-
dependent pnictogen height might therefore play a crucial role for the existence of nodal
and nodeless superconductivity in pnictides.

Measurements of the 75As NQR spin-lattice relaxation rate for LaO1−xFxFeAs with
x = 0.05, x = 0.075, and x = 0.1, are shown in Fig. 7.2. These measurements have
been performed by G. Lang and are published in [30]. Also in this case, the spin-lattice
relaxation rate decreases rapidly below Tc with roughly T−1

1 ∝ T 3 and does not exhibit a
Hebel-Slichter coherence peak. A suppression of the Hebel-Slichter peak by magnetic field,
as was observed in the case of A3C60 [96], can thus be ruled out by the NQR measurements.
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The 75As NQR spectrum of the underdoped samples with x = 0.05 and x = 0.075 consists
of two broad peaks, evidencing the existence of two charge environments in the underdoped
regime [30]. The 75As NQR spin-lattice relaxation rates for these underdoped samples were
measured on both peaks of the double-peaked 75As NQR spectrum. The very moderate
difference in absolute T−1

1 values of the high and low frequency peak indicates that the
two charge environments probed by the 75As NQR spectrum coexist at the nanoscale.

The absence of the Hebel-Slichter peak and the robust power law temperature de-
pendence of T−1

1 in the superconducting state stand in stark contrast to results of other
experimental techniques, such as ARPES, thermal conductivity, Andreev reflection or
microwave penetration depth studies, which are consistent with nodeless, fully-gapped
Fermi surfaces in the superconducting state [151–159].

A reconciliation between the T 3 dependence of T−1
1 in the superconducting state with

measurements reporting fully gapped, nodeless Fermi surfaces is possible by considering
the so-called s±-wave symmetry (also called extended s-wave symmetry) for the super-
conducting order parameter of Fe-based superconductors, proposed by Mazin et al. [121].
This model accounts for the multiple Fermi surface sheets in the electronic structure of
the Fe-based superconductors. The inset of Fig. 7.3 shows a sketch of a simplified Fermi
surface geometry, consisting of one hole pocket at (0, 0) and an electron pocket at (π, π)

separated by the antiferromagnetic wave vector ~Q = (π, π) in the folded Brillouin zone.
As reported in Chapter 4, the real Fermi surface map consists of two electron pockets
and, depending on the doping range, two to three hole pockets. In the undoped material,
hole and electron pockets (blue and dashed blue circles) are of equal size and the good
nesting conditions between them favour a magnetically ordered SDW ground state. Upon
doping, the electron pocket enlarges and the hole pocket shrinks (black circles), nesting
is destroyed, and superconductivity emerges. Within the proposed s± symmetry, the su-
perconducting gaps which open at each Fermi surface upon entering the superconducting
state are isotropic and similar in magnitude, but differ in their sign (+∆ and −∆ on the
hole and the electron pocket, respectively) [121]. The pairing interaction is thus repulsive
(but still leads to pairing due to the sign change). The presented spin-lattice relaxation
rate data can be explained within this symmetry considerations. Based on effective two-
band models like the one plotted in the inset of Fig. 7.3, early theoretical works focussed
mainly on two aspects [175–177]:

1. As described in detail in Section 3.2.4, the sign change between the two Fermi
surfaces leads to a sign reversal in the coherence factors in comparison to conventional
BCS coherence factors given in Equations 3.27 and 3.28 and thus to a reduction or even
disappearance of the Hebel-Slichter coherence peak already in the clean limit [103, 121,
175, 176].

2. To describe the observed power law dependencies of T−1
1 below Tc, additionally

the effect of impurities had to be taken into account. For a conventional BCS s-wave
superconductor, non-magnetic impurities are not pair-breaking and thus do not affect the
superconducting properties (Anderson’s theorem, [287]). In the case of an s± symmetry
this holds only true for non-magnetic impurity scattering with small scattering vectors ~q
within a band (intraband impurity scattering) [121, 175, 176]. Due to the sign change of
the order parameter, interband impurity scattering of non-magnetic impurities between
electron and hole pockets with large ~q-vectors acts like normal magnetic impurity scatter-
ing in conventional BCS s-wave superconductors [288]. It is pair-breaking and creates a
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Figure 7.3: Temperature dependence of 75As T−1
1 for optimally-doped LaO0.9F0.1FeAs, mea-

sured along ab in H0 = 7.0494 T. Grey squares are reproduced from [79]. The arrow denotes
Tc(H0) ≈ 22K. The solid black line indicates T−1

1 ∝ T 3. The red solid line describes the tem-

perature dependence of T−1
1 in the superconducting state as theoretically expected within an

s± symmetry of the superconducting gap for an intermediate scattering limit (σ = 0.4) and
an interband impurity scattering of γinterband = 0.8∆0 [176]. The inset shows the simplified
Fermi surface geometry based on the two-band model which was used for the calculations of
T−1
1 (reproduced from [175]).

finite density of states below the gap [121, 175–177]. Considering different ranges of impu-
rity potentials and impurity concentrations, different power law dependencies T−1

1 ∝ T n

with n = 2 − 3 can be found in the superconducting state for T < Tc, with a further
change of slope in the very low temperature region T � Tc [175–177].

Fig. 7.3 reproduces the 75As NMR spin-lattice relaxation rate of optimally-doped
LaO0.9F0.1FeAs measured forH ‖ ab in a static magnetic field ofH0 = 7.0494T, which was
already depicted in Fig. 7.1. The red line is the theoretically calculated temperature de-
pendence of T−1

1 in the superconducting state within the previously introduced two-band
s±-wave scenario [176], considering an intermediate impurity strength2 of σ = 0.4 and a
rather strong interband impurity scattering rate3 of γinterband = 0.8∆0, where ∆0 is the
superconducting energy gap at low temperature without impurity scattering [176]. The
data and the theoretical curve agree well in a broad temperature range below Tc. Even
the tendency to deviate from the T 3 dependence at low temperature can be reproduced
by theory, although absolute experimental values are higher than the theoretical curve at

2 The impurity strength is given by σ = (πN(0)v)2

1+(πN(0)v)2 where N(0) is the density of states at the Fermi

energy and v is the impurity potential [176].
3 The impurity scattering rate is given by γ = 2cσ

πN(0) , where c is the impurity concentration and σ is

the impurity strength [176].
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lower temperature. The value of γinterband = 0.8∆0 suggests a rather dirty superconductor.
Note that γ depends on the impurity concentration c as well as on the impurity strength
σ. Low impurity concentrations with high scattering strengths might therefore effect the
scattering similarly as high impurity concentrations with low scattering strengths. In
the calculations shown in Fig. 7.3, an intermediate impurity scattering of σ = 0.4 was
chosen. A distribution of σ’s, which refers to the existence of different impurities with
different scattering strengths, leads to an effective enhancement of γ [176]. The high
value of γ = 0.8∆0 should therefore not be taken straightforwardly as an indication of
high impurity concentrations.

Similar calculations which based on the five-band model proposed by Kuroki et al.
[122] and included anisotropic s± gap functions, arrived at T−1

1 ∝ T 3 already in the clean
limit, without the necessity of strong impurity effects [289].

In conclusion, the observed peculiar behavior of the spin-lattice relaxation rate in
the superconducting state can be well explained within the unconventional s±-wave gap
symmetry by considering impurity scattering effects [175–177] or by including anisotropies
in the s± gap function [122]. These theoretical considerations were able to reconcile the
NMR measurements with the observations of other experimental techniques.

7.2 The Effect of ’Smart’ Deficiencies: LaO0.9F0.1FeAs1−δ

The NMR data reported in this Section are published in [279]. As already pointed out
in the previous Section, the influence of disorder on the superconducting properties of a
compound can reveal a lot about the symmetry of the superconducting state itself. By
introducing disorder in a controlled way one can get an insight into relevant scattering
processes. For the optimally-doped LaO0.9F0.1FeAs, such defects were produced artificially
by removing some arsenic, producing As-deficiencies as a special kind of impurities. The
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Figure 7.4: Resistivity of LaO0.9F0.1FeAs1−δ (red circles) and LaO0.9F0.1FeAs (blue circles)
for temperatures up to 300 K (left panel). The right panel shows the resistivity of both samples
in the vicinity of Tc (reproduced from [290]).
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Figure 7.5: 75As NMR powder spectrum of LaO0.9F0.1FeAs1−δ for the central line at room
temperature. The open symbols represent the measured data, the solid line is a simulation of
the powder pattern including second order electric quadrupole shifts and anisotropic magnetic
hyperfine corrections. The values obtained for νq and Kab are consistent with what have been
measured on LaO0.9F0.1FeAs. The slight discrepancy in intensities between the two peaks at
high and low field values might stem from a partial ab-alignment of the crystallites.

As-deficiency was obtained by wrapping the sample in a Ta foil during the annealing
procedure. At high temperature Ta acts as an As getter. It forms a solid solution of
about 9.5 at% As in Ta with a small layer of Ta2As and TaAs on top of the Ta foil.
According to energy dispersive x-ray (EDX) analysis, this leads to an As-deficiency in
the wrapped sample of about δ=0.05-0.1. An analysis of the NQR spectrum found the
amount of arsenic vacancies to be δ = 0.06± 0.02, in agreement with EDX studies [291].
The resulting sample was further characterized by x-ray diffraction, susceptibility and
resistivity measurements [219, 290].

The increased disorder in LaO0.9F0.1FeAs1−δ is reflected in an enhanced resistivity in the
normal state compared to a clean sample of LaO0.9F0.1FeAs [179] (see Fig. 7.4). Despite
the increased disorder, Tc and the slope of Bc2(T ) near Tc increase unexpectedly from
27.7K and -2.5 T/K in the clean compound to 28.5K and -5.4T/K in the As-deficient
compound. The growth procedure, where vacancies start to be formed at the surface
of the sample, could suggest an inhomogeneous distribution of arsenic vacancies in the
sample. However, the sharp superconducting transition (see inset of Fig. 7.4), the shape
of the NQR spectrum [291] and the surprisingly strong decrease of T−1

1 with T 5 in the
superconducting state, which will be reported below, indicate a homogeneous distribution
of arsenic vacancies in the compound. This might be related to the strongly anisotropic
structure of LaOFeAs, which prevents the clustering of vacancies [291].
µSR measurements proved an enhanced paramagnetism, which is the origin of the

observed Pauli-limiting behavior of Bc2(T ) at lower temperatures [290]. The supercon-
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Figure 7.6: Recovery curves for T = 100 K (dots), T = 22 K (diamonds) and T = 7 K (squares)
in H0 = 7.01 T. Normalization corresponds to a division by the prefactor f(=1.7-2) of Eq. (7.1).
The lines are examples for the different fitting functions containing a single T1 component (solid
line), a distribution around one T1 component with a stretching parameter λ (dashed line) and
two components T1sc and T1s (dotted line).

ducting volume fraction is about 90% while in the pure sample it amounts to 100% [135].
The enhanced paramagnetism was confirmed by observations of a significantly enhanced
spin susceptibility in the As-deficient sample in comparison to clean LaO0.9F0.1FeAs [291].

75As NMR measurements were performed on a powder sample of LaO0.9F0.1FeAs1−δ.
The 75As NMR spectrum, displayed in Fig. 7.5, shows a typical powder pattern as reported
previously [79] (see App. A.1 for a detailed discussion of NMR powder pattern). The 75As
spin-lattice relaxation rate T−1

1 was measured at the peak corresponding to H‖ab in a
magnetic field of H0 = 7.01 T using inversion recovery. The recovery of the longitudinal
magnetizationMz(t) was fit to the standard expression for magnetic relaxation of a nuclear
spin of I = 3/2 which reads:4

Mz(t) =M0[1− f(0.9e−(6t/T1)λ + 0.1e−(t/T1)λ)] . (7.1)

Typical recovery curves for T = 100 K, T = 22 K and T = 7 K are shown in Fig.
7.6. Above Tc(H0) ≈ 26.5 K the recovery could be nicely fit with a single T1 component
(λ = 1). For T < Tc a stretching parameter λ < 1 was needed to account for a distribution
of spin-lattice relaxation times around a characteristic relaxation time. For T ≤ 14 K,
where the intrinsic spin-lattice relaxation time T1sc in the SC state amounts to a few

4 Please refer to Appendix A.3 for a discussion of the use of the stretching exponent λ.
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Figure 7.7: 75As spin-lattice relaxation rate for LaO0.9F0.1FeAs1−δ in 7.01 T (red squares)
and 15.77 T (blue circles) compared to LaO0.9F0.1FeAs in 7.05 T (grey crossed squares [79],
new data points for T ≤ 4.2 K). All data were measured for H ‖ ab. The dotted line il-
lustrates the T 3 behavior of T−1

1 for LaO0.9F0.1FeAs, the solid line indicates the T 5 behavior
observed for LaO0.9F0.1FeAs1−δ . The arrows denote Tc(H0) which are approximately 22K for
LaO0.9F0.1FeAs, and 26.5 K (7.01 T) and 25K (15.77 T) for LaO0.9F0.1FeAs1−δ .

seconds, one could distinguish a second, short contribution T1s. For this temperature-
range a fitting function containing two weighted T1 components was used:

Mz(t) = M0[w(1− fsc(0.9e−(6t/T1sc)λsc + 0.1e−(t/T1sc)λsc )) +

(1− w)(1− fs(0.9e−(6t/T1s)λs + 0.1e−(t/T1s)λs ))] . (7.2)

During the fitting procedures, λs was always kept constant at λs = 1, since the short
component T1s stems from non-superconducting regions, where a distribution of spin-
lattice relaxation rates is not expected. λsc varied between 1 and 0.6. The exact deter-
mination of T1s was imprecise. More importantly, the long time component T1sc, which
displays the intrinsic relaxation in the superconducting state, did not depend on the fit-
ting procedure.5 T1s lies in the range of several hundred ms, indicating non-SC regions
in the sample. Its weight ws = (1 − w) ≈ (20 ± 10)% suggests, in addition to vortex
cores, a minor non-superconducting volume fraction in the sample, in agreement with
µSR-measurements [290].

5 Since Eq. (7.2) contains 8 parameters, the robustness of the fit was checked by fixing different param-
eters to reasonable values during different fitting sessions. For instance at a first run w was fixed to
0.81 and at a second run T1s was fixed to 220ms. T1sc resulted to be the same within error bars for
all different checks. During the first run, T1s lay in between 100 and 450 ms and during the second
check w varied between 0.65 and 0.81, which are realistic values.
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Fig. 7.7 shows the T -dependence of the 75As spin-lattice relaxation rate T−1
1 in H0 =

7.01T for the As-deficient sample LaO0.9F0.1FeAs1−δ [279] and that of a sample with
the same fluorine content, but without As-vacancies [79] (same data as in Fig. 7.1 and
Fig. 7.3). Very surprisingly, the spin-lattice relaxation rate of LaO0.9F0.1FeAs1−δ decays
with T 5 for T < Tc, in stark contrast to the T 3 dependence of LaO0.9F0.1FeAs. Using a
field of 15.77T this unexpected behavior was preserved within error bars, as also shown
in Fig. 7.7.

For T ≤ 8 K, T−1
1 of LaO0.9F0.1FeAs1−δ deviates from this T 5 behavior and changes

to a linear temperature dependence. As already discussed in the previous Section, such a
nearly linear slope below T ≈ 0.3Tc was also observed in BaFe2(As0.67P0.33)2 and explained
with the existence of a residual density of states (RDOS) in a line-node model [277], which
can be excluded by penetration depth data derived from µSR for the La1111 samples
[135]. Among other possible mechanisms, the classical spin diffusion [292] is unlikely due
to the lack of field dependence of T−1

1 (see also Appendix A.4). Another possibility are
thermal fluctuations of vortices, which induce alternating magnetic fields contributing to
the relaxation [293]. The effect of thermal fluctuations on the spin-lattice relaxation is
field-independent as long as H � Hc2.

The different T -dependencies for T > 0.3Tc will now be discussed within the previously
mentioned s± pairing scenario.

Up to now, with the exception of LaO0.9F0.1NiAs, which exhibits an exponential de-
crease (see Chapter 4), no exponential but power-law dependencies T−1

1 ∝ T n have been
observed for all Fe-based superconductors, with n in between 1.5 and 6, indicating uncon-
ventional superconductivity [30, 79, 147–150, 162, 164–173, 277, 279, 294]. These power
law dependencies have been discussed within different models, such as s±- and d-wave
symmetries (see also previous Section), including the possibility of multiple supercon-
ducting gaps [147, 165, 170, 171]. Within the 122 family heavily overdoped compounds
such as KFe2As2 exhibit the lowest value observed so far whereas optimally or slightly
underdoped compounds show the largest values. Recently, it has been suggested [162, 173]
that the most frequently observed T 3 dependence of T−1

1 should not be considered as an
intrinsic effect but instead be attributed to some unspecified inhomogeneities in view of
the missing correlation between the value of Tc and the exponent, while higher exponents
n would occur for cleaner samples. However, in the case of LaO0.9F0.1FeAs1−δ just the
opposite behavior is observed. Fig. 7.8 shows the normalized T−1

1 (T )/T−1
1 (Tc) curves for

the As-deficient sample and the samples from Ref. [173]. Their nominal clean sample as
well as the Co-doped one exhibit nearly the same T−1

1 (T )-dependence as the As-deficient
sample, whereas our clean sample exhibits the T 3 dependence (see Fig 7.7). This points
towards sizeable disorder in the samples of Ref. [173]. This is further supported by the
lowest resistivity of the clean sample from the IFW compared to all others [173, 290].

In principle, the observation of an unusual transition from T 3 to T 5 with increasing dis-
order is not necessarily inconsistent with a s±-wave superconducting gap function though
alternative scenarios should be invoked, too. Starting from the clean limit it has been
shown [115, 284, 295] that within the generalized s±-wave scenario both nodeless and
nodal superconducting gaps might occur depending on the proximity of the doped sample
to the antiferromagnetic instability. In this regard, naively the results can be interpreted
in favour of a transition from a nodal to a nodeless superconducting gap upon adding
As defects which for some reason might drive the system closer to antiferromagnetism,
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Figure 7.8: Comparison of the 75As spin-lattice relaxation rate for our LaO0.9F0.1FeAs1−δ

(crossed squares) with pure and Co-doped LaFeAsO0.89F0.11 from Ref. [173] (open and filled
circles).

in accord with the slightly enhanced normal state spin-lattice relaxation rate and the
slightly changed lattice constants [290] of the As deficient sample. However, such a sim-
plistic point of view cannot be easily applied to pnictides as it is also known that the
s±-wave ground state is sensitive to non-magnetic impurities (see discussion in the pre-
vious Section). Most importantly, the intraband impurity scattering does not affect the
superconductivity, since the superconducting gap does not change its sign within each of
the bands. At the same time the scattering with large momenta which connects electron
and hole pockets (interband scattering) is pair-weakening and thus yields a decrease of Tc

and simultaneously introduces power laws in the thermodynamics and T−1
1 at interme-

diate temperatures. Therefore, if for some reason As vacancies act as ’smart’ impurities
which change the ratio between the intra- and interband scattering, our observations could
be also explained. These changes have to be reflected similarly also in the other ther-
modynamical or transport properties such as penetration depth or thermal conductivity.
Unfortunately, there is no direct way to estimate the ratio of the intraband to interband
scattering rates from experiments since usual characteristics like the residual resistance
ratio or the mean free path are quantities which mostly indicate the overall impurity
effects but not their ratio.

Thus, the above-mentioned scenario is based on the assumption that s±-wave order is
stable and adding As vacancies either changes the proximity to the competing antifer-
romagnetism or/and the ratio of intra- to interband non-magnetic impurity scattering in
pnictides. There is, however, another intriguing possibility. Let us assume that there is
a substantial electron-boson interaction which provides an attractive intraband potential
for Cooper-pairing. In this case a (weak) repulsive interband Coulomb scattering will
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still lead to the s±-wave SC order in the clean limit though the attractive electron-boson
interaction dominates. However, once the As vacancies change the ratio between intra-
and interband impurity scattering, a transition from s±-wave to conventional s++-wave
superconducting order may be induced. This scenario, however, still needs further ex-
perimental clarification. For example, despite the transition from T 3 to T 5 behavior no
sign of the Hebel-Slichter peak is found in the latter case close to Tc. Moreover, current
experimental data on the importance of the electron-phonon coupling are not very con-
clusive. Therefore, the intriguing possibility of high-energy charge fluctuations as well
as weak electron-phonon interactions with orbital fluctuations [286, 296] deserve more
detailed studies.

All previously discussed scenarios based on the assumption, that arsenic vacancies
act as non-magnetic impurities in the sample, being pair-breaking for interband scat-
tering processes with large momenta ~q. However, recently it has been shown that the
enhanced spin susceptibility of LaO0.9F0.1FeAs1−δ can be attributed to the formation of
non-compensated magnetic moments around each arsenic vacancies of about 3.2µB per
vacancy (0.8µB/Fe) [291]. The higher spin-lattice relaxation rate of LaO0.9F0.1FeAs1−δ in
the normal state compared to LaO0.9F0.1FeAs (see Fig. 7.7) is consistent with this local
moment picture. It might by enhanced by a contribution related to these local moments
which form around each arsenic vacancy. On the other hand, magnetic impurities are
harmless for a superconducting state exhibiting an s± symmetry, but pair-breaking for a
more conventional s++ superconducting symmetry. In this regard, the faster decrease of
T−1
1 in the superconducting state of LaO0.9F0.1FeAs1−δ might be taken as a strong evi-

dence for a stable s± symmetry. In this case, the absence of the Hebel-Slichter peak is a
natural consequence of the gap symmetry itself (as discussed in the previous Section).

7.3 Summary

75As NMR and NQR measurements in the superconducting state of underdoped and
optimally-doped LaO1−xFxFeAs with x = 0.05, x = 0.075 and x = 0.1 showed a rapid
decrease of the spin-lattice relaxation rate proportional to T 3 without any hint for a
Hebel-Slichter coherence peak. At low temperatures a deviation to a more linear tem-
perature dependence was observed. The data are consistent with NMR measurements by
other groups on the same and similar compounds. At the beginning of the “pnictide -
era”, the robust power law dependence of T−1

1 was taken as an indication of the existence
of line nodes in the superconducting gap function. This stood in contrast to the observa-
tion of fully gapped, nearly isotropic gap functions by the means of ARPES, microwave
penetration depth studies and Andreev reflection.

A revision of theoretical approaches was given. These are able to reconcile the results of
different experimental methods within the s± wave symmetry of the superconducting gap
function, where the (mostly) isotropic gap changes its sign when going from an electron
to a hole pocket and vice versa. Due to the sign changing order parameter, the Hebel-
Slichter peak is reduced or even totally suppressed. Power law dependencies of T −1

1 can
be achieved theoretically by considering the pair-breaking effect of interband impurity
scattering effects of non-magnetic impurities with large ~q-vectors within a simplified two-
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band model [175–177] or by the consideration of anisotropic gap functions within a five-
band model approach in the clean limit [289].

The effect of impurities was studied on an optimally-doped sample with additional
arsenic vacancies, LaO0.9F0.1FeAs1−δ. Surprisingly, despite the enhanced disorder, this
compound possesses enhanced superconducting properties (higher Tc, higher Hc2, ...)
[219, 290]. Its spin-lattice relaxation rate decreases proportional to T 5 and thus much
faster than the one of the clean optimally-doped LaO0.9F0.1FeAs sample. This enhanced
decrease was discussed within three scenarios, which all based on the assumption, that
the arsenic vacancies act as non-magnetic impurities: an impurity-induced crossover from
nodal to nodeless superconductivity within the s±-wave symmetry state, a stabilization
of the s± symmetry due to an impurity-induced change of the ratio between intra- and
interband scattering, and an impurity-induced crossover from an s± to an s++ symmetry.
However, as has been shown in a recent publication [291], local moments form around
each arsenic vacancy. A reinterpretation of the T−1

1 data, considering arsenic vacancies
as effective magnetic impurities gives evidence for an unconventional s± symmetry of the
superconducting order parameter.





8 NMR and NQR on LiFeAs

This Chapter will present 75As NQR, 75As NMR and 7Li NMR measurements on three
different single crystals and a polycrystalline sample of LiFeAs. As will be shown, no
common behavior could be found. Static and dynamic NMR properties vary among the
samples, which are distinguishable by their slightly different quadrupole frequencies. Sam-
ples with a lower quadrupole frequency νq exhibit a decrease of the Knight shift and the
spin-lattice relaxation rate in the superconducting state, indicating usual spin-singlet su-
perconductivity. For the sample with the highest νq, a constant Knight shift and a strange
upturn of the 75As NQR spin-lattice relaxation rate in the superconducting state provide
evidence for spin-triplet superconductivity. Surprisingly, all samples seem to be very ho-
mogeneous, according to their very narrow 75As NQR and 7Li NMR spectra and other
physical properties (please refer to Section 5.3.2 for a detailed discussion of the sample
quality). These results provide evidence for the proximity of LiFeAs to a ferromagnetic
instability, where tiny changes in the stoichiometry, seen only by NQR, can lead to differ-
ent Cooper pairing states. As will be discussed, these data are in agreement with recent
band structure calculations. By including special characteristics of LiFeAs measured by
ARPES, such as the absence of Fermi surface nesting and the shallow hole pockets around
the Γ point (see Fig. 4.9), these calculations found dominant “almost ferromagnetic” in-
commensurate fluctuations in LiFeAs and thus a proximity to a ferromagnetic instability
[214].

The discussion of the data starts with the 75As NQR spectra and spin-lattice relaxation
rates. Afterwards, 75As NMR linewidths, Knight shift and spin-lattice relaxation rate data
will be shown and interpreted. Several possible origins of the observed constant Knight
shift for sample S1 will be carefully discussed, including the possibility of spin-triplet
superconductivity. The peculiar behavior of the spin-lattice relaxation rate in S1 and in
the polycrystalline sample will be compared to Ca-doped LaOFeP. This compound showed
a similar behavior, which is possibly related to spin-triplet superconductivity [297]. The
Chapter ends with 7Li NMR results.

The single crystalline samples are denominated as S1, S2 and S3. The data of S3 have
been measured by the author, while S1 and S2 have been measured by Seung-Ho Baek and
Hans-Joachim Grafe, respectively. The 75As NQR measurements on the polycrystalline
sample were done by Madeleine Fuchs, while the 75As NMR measurements on the same
powder sample were done by the author. Most of the data presented in this Chapter are
published in [298].

8.1 75As-NQR

Fig. 8.1 shows the 75As NQR spectra of all three investigated single crystals at room tem-
perature. Very narrow lines with full widths at half maximum (FWHM) of 44 kHz (S3),
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60 kHz (S2) and 80 kHz (S1) are observed. These are significantly narrower than the 75As
NQR linewidths of the polycrystalline sample (113 kHz) and of a polycrystalline sample
measured by another group (170 kHz) [81]. Other undoped pnictides feature linewidths
in the range of some hundred kHz, such as 220 kHz for stoichiometric LaOFeAs [30, 193]
and 480 kHz for CaFe2As2 [224]. The extremely narrow NQR lines observed for our
LiFeAs single crystals are even more surprising regarding the high quadrupole frequency
of about 21.5MHz compared to LaOFeAs (νq(160K) ≈ 9.5MHz) [30, 193] and CaFe2As2
(νq(250K) ≈ 12MHz) [224, 251], because a distribution of νq values induced by disorder
should lead to an even larger linewidth. Since the effect of disorder strongly influences the
quadrupole broadening (see Section 2.4), the very narrow 75As NQR linewidths reflect the
high purity of all three investigated single crystals. The temperature dependence of the
75As NQR linewidth will be discussed in Section 8.2.1 in direct comparison to the 75As
NMR linewidth (see Fig. 8.4).

Fig. 8.2 shows the temperature dependence of 75As NQR quadrupole frequency νq of S1,
S2, S3 and of the polycrystalline sample. While the overall temperature dependence of νq
in the paramagnetic phase is the same, displaying a decrease of νq with decreasing temper-
ature, the absolute values of νq and thus the EFG varies with the sample investigated. The
samples can be clearly distinguished by their different νq at a given temperature, point-
ing towards slightly different, but homogeneous charge environments for each sample.
This resembles the doping dependence of νq in other pnictides [30, 148, 299]. Although
all the LiFeAs samples are from the same batch and should have the same composi-

Figure 8.1: Normalized 75As NQR spectra of LiFeAs single crystals (S1 - grey line, S2 - red
line, S3 - blue line) and the polycrystalline sample (green line) at room temperature.
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Figure 8.2: Temperature dependence of the 75As NQR quadrupole frequency for S1 (grey
rhombi), S2 (red squares), S3 (blue dots) and the polycrystalline sample (green triangles). The
inset is an enlargement of the low temperature part. The dashed line in the inset denotes
Tc = 18K.

tion according to ARPES and inductively coupled plasma mass spectroscopy (ICPMS)
measurements, they might slightly differ in their stoichiometries, leading to the observed
different quadrupole frequencies. Interestingly, the samples with the higher νq (S1 and
the polycrystalline sample) exhibit strange NMR properties in the superconducting state
(see next Section). The quadrupole frequencies of S2 and S3 are similar and lower than
the one of S1.

A strong temperature dependence of νq, far beyond the slight enhancement of νq which
would be expected from phononic contributions, (and mostly in the opposite direction), is
a common feature in iron-based superconductors. νq either decreases (e.g. for BaFe2As2
[228] and LaO0.9F0.1FeAs [300]) or increases (e.g. CaFe2As2 [251] and SrFe2As2 [301])
strongly with temperature. This stark temperature dependence is attributed to electronic
effects due to the complicated multi-band character and may reflect the extreme sensitivity
of the electronic structure to the out-of-plane atoms.

The inset of Fig. 8.2 shows the low temperature behavior of νq. After a levelling off
between 50K and Tc for all samples, νq increases in the case of S1 and the polycrystalline
sample, while it decreases in S3. As will be shown in Section 8.2 a precise knowledge of the
quadrupole frequency is needed to accurately correct the 75As NMR resonance frequency
of the central transition for second order quadrupole effects, before extracting the Knight
shift. In S2 the diamagnetic shielding of the superconducting state was so good that it
was not possible to perform 75As NQR measurements in the superconducting state in this
specific sample.
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75As NQR Spin-Lattice Relaxation Rate

The 75As NQR spin-lattice relaxation rate divided by temperature, (T1T )
−1, is displayed

in Fig. 8.3 for samples S1, S3 and the polycrystalline sample. In the paramagnetic state,
their absolute values are similar and they all exhibit the same temperature dependence.
(T1T )

−1 slightly decreases with decreasing temperature in the high temperature regime
and then levels off at a constant value below T ≈ 150K. In the superconducting state,
however, very different temperature dependences are observed. While (T1T )

−1 of sample
S3 drops below Tc, indicating the opening of the superconducting gap and the associ-
ated reduction of the electron density of states at the Fermi level, (T1T )

−1 of sample S1
and of the polycrystal increases below Tc. At first glance one might suspect, that these
two samples are not superconducting. However, superconductivity has been confirmed
in all samples by observing the change in the resonance frequency of the NMR circuit,
which is proportional to the ac susceptibility. The fact that the upturn of (T1T )

−1 in
sample S1 and in the polycrystalline sample (which are the two samples with the higher
νq) starts just below Tc, indicates that this upturn might be connected to the supercon-
ducting state. In Section 8.2 this enhancement of the 75As NQR (T1T )

−1 in sample S1
and the polycrystal will be compared to the equally unusual 75As NMR (T1T )

−1 of the
same samples (see Fig. 8.8) and to a similar behavior observed in Ca-doped LaOFeP [297].

Figure 8.3: Temperature dependence of 75As NQR (T1T )
−1 for sample S1 (grey rhombi),

sample S3 (blue dots) and the polycrystalline sample (green triangles). The solid line is a guide
to the eyes. The inset shows an enlargement of the low temperature part. The dashed line in
the inset denotes Tc = 18K.
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8.2 75As-NMR

8.2.1 Static NMR Properties - Linewidth and Knight Shift

75As NMR measurements of the central transition (m = − 1
2
) ←→ (m = +1

2
) were per-

formed for H0 ‖ ab for all three samples. For samples S1 and S3, the measurements were
done in a field of H0 = 7T. For S2, the field value was H0 = 8.5T. Additionally to the
measurements along ab, the angle dependence of the linewidth and the Knight shift was
checked for samples S1 and S2, by slightly tilting the field out of the ab plane by an angle
θ. Sample S1 was also measured for H0 ‖ c.

Linewidth

The 75As NMR spectra at room temperature are very narrow, exhibiting a full width at
half maximum (FWHM) of 23.5 kHz (S3) and 28 kHz (S1) [see
Fig. 8.4(b)].1 The temperature dependence of the 75As NQR and NMR linewidths is
given in Fig. 8.4(a) and 8.4(b), respectively. For S1 and S3, the 75As NQR as well as the
75As NMR linewidth (regardless of the angle) increase with decreasing temperature in
the paramagnetic phase. According to Section 2.4 this implies that magnetic correlations
progressively gain in strength upon lowering the temperature. At high temperature, local
moments are fluctuating with a much higher frequency 1/τc than the NMR frequency.
The nuclei can only sense the time-averaged local field and the NMR line will be narrow
(motional narrowing). As the fluctuating moments slow down, the nuclei will begin to feel
a distribution of local fields. This will broaden the NMR and NQR linewidths, as observed
in the case of samples S1 and S3. For sample S2, however, the 75As NQR linewidth is
temperature-independent, as indicated by the red line in Fig. 8.4(a). This result together
with the smallest absolute value of the 75As NMR linewidth of S2 at low temperature in
comparison to all other samples also points to a temperature-independent NMR linewidth
for this sample [indicated by the red line in Fig. 8.4(b)]. Thus, regarding the linewidth
behavior, no hint for magnetic correlations is found in sample S2, in contrast to the other
two samples.

For sample S1, the linewidth has also been measured as a function of the tilting angle θ.
Already a small tilting angle of 2◦ causes a noticeable broadening, which gets even more
pronounced when increasing the tilting angle to 5.6◦ [see Fig. 8.4(b)]. These strong angle
dependencies indicate the existence of anisotropic spin fluctuations. This is consistent
with the incommensurate, “almost ferromagnetic” correlations which have been reported
in recent band structure calculations [214].

In the superconducting state, the temperature dependence of the linewidth also varies
with the investigated sample. For S1 it decreases below Tc for both, NQR and NMR
measurements. For S2 the 75As NMR linewidth increases. This is the usually expected
behavior due to vortex-related broadening mechanisms in the superconducting state. The
decrease of the linewidth in the case of S1 excludes possible vortex-related broadening
mechanisms and suggests a suppression of spin fluctuations in the superconducting state

1 Note that sample S2 could not be measured by 75As NMR at high temperatures. To perform such
measurements, the resonant circuit had to be changed, which implied that the sample probe had to be
taken out of the cryostat. During this process, the sample degraded because of its extreme sensitivity
to air and moisture.
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(a) FWHM of 75As NQR spectra for S1 (grey
rhombi), S2 (red squares) and S3 (blue dots).
The dashed line denotes Tc = 18K. The red line
is a guide to the eyes.

(b) FWHM of 75As NMR spectra for H0 ‖ ab
for S1 (grey filled rhombi), S3 (blue dots) (both
measured in 7T) and S2 (red squares, 8.5T).
For S1, also the FWHM for small tilting angles
θ of H0 vs ab are shown (grey open rhombi).
The dashed line denotes Tc(7T) = 14.6K. The
red line is a guide to the eyes.

Figure 8.4: FWHM of 75As NQR spectra (left panel) and 75As NMR spectra for H0 ‖ ab (right
panel) for all three measured single crystals. For sample S3, additional angle-dependent FWHM
are shown. To facilitate comparison, both data sets have been plotted on the same scale. The
very low temperature part of the 75As NQR linewidth of S3, which goes up to 240 kHz at 4.2K,
is thus out of the scale.

(in field as well as in zero field). In the case of sample S3, the NQR linewidth increases
very strongly in the superconducting state, up to 240 kHz at 4.2K. The NMR linewidth of
S3 first increases slightly, but then drops again. The origin of this very peculiar behavior
is unclear. It suggests that spin fluctuations, which are present in the superconducting
state in zero field, are suppressed by an externally appplied field.

Knight Shift

To extract the Knight shift, the resonance frequency of the 75As NMR spectra first had to
be corrected for second-order quadrupole effects according to Eq. (2.39). Due to the large
value of νq, the second-order quadrupole shift amounted up to ∆(2)ν(θ) ≈ 1.5MHz. The
strong dependence of ∆(2)ν(θ) on the angle θ, which is the angle between the principal
axis of the EFG ( which in the case of LiFeAs is Vzz ‖ c, see Section 8.4) and the direction
of the magnetic field H0, could be used to align the samples with great accuracy.

The resulting Knight shift data at low temperature are shown in Fig. 8.5. The left
panel of Fig. 8.5, displays the angle-dependent Knight shift of samples S1 and S2. For
sample S1 and H0 ‖ ab (θ = 0◦), the Knight shift Kab does not show any change upon
crossing Tc. This is in stark contrast to what is expected and observed in spin-singlet
superconductors. Even more surprising, this behavior changes when the field is slightly
tilted out of the ab plane of the sample. Already for a very small tilting angle of θ = 2◦, the



8.2 75As-NMR 117

Figure 8.5: 75As NMR Knight shift of LiFeAs at low temperature. The left panel shows the
Knight shift and its angular dependence for sample S1 in H0 = 7T (grey rhombi) and sample
S2 in H0 = 8.5T (red squares). Filled symbols denote H0 ‖ ab, open symbols denote a tilting of
the field out of the ab plane by the corresponding angle. The right panel shows the Knight shift
for sample S3 with H0 ‖ ab for two measurements in H0 = 7T (blue and dark red dots) and an
interjacent measurement in H0 = 4.5 T (orange dots). Dashed lines denote Tc(H0) (14.6 K for
7T and 15.3 K for 4.5 T). The same scale is chosen for both figures to facilitate comparison.

Knight shift clearly drops below Tc and approaches a finite value as T → 0. For θ = 5.6◦,
the Knight shift even increases slightly below Tc, but approaches the same finite value as
in the case of θ = 2◦ at low temperature. Measurements on polycrystalline samples of
LiFeAs performed by other groups reported very similar data to the θ = 2◦ data shown
here, but assigned it to a H0 ‖ ab alignment [80, 81]. However, the precise assignment of
the H0 ‖ ab singularity in powder spectra is ambiguous.

The Knight shift of sample S2 is slightly larger than the one of S1. More strikingly, it
shows a clear decrease below Tc for both measured angles (θ = 0◦ and 3◦), and does not
exhibit a strong angle dependence.

The constant Knight shift for sample S1 and θ = 0◦ suggests the occurrence of unusual
triplet superconductivity in this sample. But before really concluding on triplet Cooper
pairing, several other possible sources for a constant Knight shift in the superconducting
state have to be ruled out.

The total Knight shift K consists of an orbital and a spin contribution: K = Korb +
Ks. The orbital part involves the orbital motion of the conduction electrons and is
usually temperature-independent, while the spin shift Ks is proportional to the static
spin susceptibility Ks ∝ Ahf (~q = 0, ωL)χs(~q = 0). As already stated in Section 3.1,
in the case of strong orbital magnetism, the orbital shift Korb can become as large as
the spin shift Ks and may lead to an unchanged Knight shift across Tc even for singlet
superconductors [92, 93]. Also spin-orbit scattering in the presence of disorder might
cause a finite Knight shift in the superconducting state [94]. However, both effects can be
ruled out for the present case. First of all, the strong angular dependence of the Knight
shift in the superconducting state (see left panel of Fig. 8.5) is incompatible with a large
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orbital contribution to the Knight shift. Second, the vast collection of proofs for the
high purity of the crystals [small NQR and NMR lines, sharp superconducting transition,
smallest residual resistivity, ... (see Section 5.3.2)] speaks strongly against the scenario of
an impurity-induced enhanced spin-orbit scattering.

Diamagnetic shifts due to demagnetization effects in the superconducting state always
lead to a decreasing shift (see Section 3.1). Together with an increasing spin shift, this
could also result in the observation of an unchanged total shift in the superconducting
state. However, due to the plate-like shape of the samples diamagnetic shifts can be
neglected for H0 ‖ ab. Furthermore, large demagnetization effects are normally also
visible in a line broadening due to an inhomogeneous field distribution in the mixed state.
Such a line broadening is not observed for sample S1. In contrast, the NQR and NMR
linewidth decreases in the superconducting state of sample S1.

After ruling out all the mentioned possible sources for a constant Knight shift, one can
conclude that the observation of a constant Knight shift in the superconducting state of
sample S1 for H0 ‖ ab is caused by an unchanged spin susceptibility. This gives strong
evidence for an unconventional spin-triplet superconducting pairing state in sample S1.

The stark changes in the temperature dependence of the Knight shift in the super-
conducting state upon slightly tilting the sample S1 in the magnetic field suggest that
even small magnetic fields along c direction are enough to cause a transition into an-
other superconducting state, with a different and possibly more conventional spin-singlet
symmetry.

In triplet superconductors, a strong anisotropy of the spin susceptibility is anticipated
because of spin-orbit coupling, which, even when it is weak, will align the spins of the
triplet pairs along a particular direction. The observed anisotropy of the Knight shift
(and thus the spin susceptibility) in LiFeAs indicates that the spins of the Cooper pairs lie

within the ab plane. The ~d-vector, which characterizes the order parameter of spin-triplet
superconductors (see Section 3.1), thus points along c. A similar situation is encountered

in Sr2RuO4. There, the phase with the order parameter ~d ‖ c is stable as long as the field
is applied along ab. Already a small tilting angle results in drastic changes in the upper
critical field Hc2 which were interpreted as a transition to another superconducting state
[302].

The right panel of Fig. 8.5 shows the Knight shift of sample S3 at low temperature,
measured for H0 ‖ ab for fields of 7T and 4.5T. Because of possible heating effects which
might falsify the quadrupole frequency at 4.2K (see Section 5.4.3), only data for temper-
atures down to 8K can be shown.2 The first measurements in 7T (blue dots) showed
an unchanged Knight shift across Tc, similar to what has been observed for sample S1,
and thus also points towards a spin-triplet pairing mechanism in this sample. Subsequent
measurements at lower field values of 4.5T (orange dots) showed a decrease of the Knight
shift in the superconducting state. The first assumption at this stage of the measurements
was that the sample was aged and thus degraded. However, a subsequent check at 7T
(dark red dots) showed within error bars the same absolute values of K(H0 = 7T) as
obtained in the measurements at 7T before and again a constant Knight shift across Tc.

2 Heating effects in the NMR measurements can be excluded, since all data sets, displaying constant
and decreasing Knight shifts, have been measured under the same measurement conditions.
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Figure 8.6: 75As NMR Knight shift of LiFeAs samples S1 (filled grey rhombi) and S3 (blue
dots) for H0 ‖ ab in H0 = 7T in the whole temperature range. For sample S1, additional data
for small tilting angles of the magnetic field vs the ab direction are shown (open grey rhombi).
The dashed line denotes Tc(7T) = 14.6K.

Besides the strong angular dependence of the Knight shift as revealed by measurements
on sample S1, LiFeAs also seems to feature a strong field dependence of its superconduct-
ing properties. The observation of constant Knight shift in samples S1 and S3 at a
magnetic field of 7T and the decreasing Knight shift of sample S3 in a lower field is rem-
iniscent of the situation found in one-dimensional superconductors, where a field-induced
transition from singlet to triplet superconductivity has been discussed theoretically and
experimentally [303, 304].

It is clear that more data are needed to clarify the situation encountered in LiFeAs.
Unfortunately the high sensitivity of the samples to moisture and air precluded mea-
surements of the angle-dependent Knight shift of sample S3 and/or the field-dependent
Knight shift of sample S1.

To complete the Knight shift data set, Fig. 8.6 shows the Knight shift of the samples
S1 and S3 in the paramagnetic phase. In agreement with earlier NMR work on powder
samples [80, 81], it decreases with decreasing temperature before it levels off at around
50K. Analogous to the procedure in Section 6.1, the hyperfine coupling constant was
extracted from plots of K versus the bulk susceptibility for T > 170K. For H ‖ ab,
the averaged hyperfine coupling amounts to 75Aab

hf = 63 kOe/µB [298]. This value is
enhanced compared to the hyperfine coupling of 75As in LaO0.9F0.1FeAs (see Table 6.1).
An extraction of the hyperfine coupling constant for H ‖ c gave 75Ac

hf = 9.3 kOe/µB

[298] and thus a large anisotropy of the hyperfine couplings, in contrast to what has been
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observed for other pnictides (for instance 75Aab
hf = 26.4 kOe/µB and 75Ac

hf = 18.8 kOe/µB

in the case of BaFe2As2 [228]).
The flattening at around 50K evidences that the static spin susceptibility is enhanced

at low temperatures. This is consistent with the presence of ferromagnetic spin fluctu-
ations, which were suggested by theoretical calculations [214]. A similar behavior has
been observed in Sr2RuO4 [233]. The decrease of K at higher temperatures resembles
the decreasing Knight shift observed in many other pnictides. It may have a different
origin and might even mask the enhancement at low temperature. The strong angular
dependence of K measured for sample S1 is difficult to understand. It may be due to
the complicated multi-band character of the electronic structure. In such a case, the spin
susceptibility may have different contributions from different bands, which might respond
differently to a given field direction. This is similar to the case of Sr2RuO4, where an
orbital-dependent behavior of the Ru 4d spin susceptibility has been observed and related
to several independent spin degrees of freedom in this compound [233].

8.2.2 Dynamic Properties - Spin-Lattice Relaxation Rate

Fig. 8.7 compares the 75As NMR spin-lattice relaxation rates for all three single crystals
measured along H0 ‖ ab. In the normal state at high temperature, samples S1 and S3
exhibit comparable absolute values of (T1T )

−1. Sample S3 follows a similar behavior as
observed in 75As NQR (T1T )

−1: it decrease slightly with temperature before levelling
off at a constant value at around 120K. In contrast, (T1T )

−1 of sample S1 shows nearly
no temperature dependence at high temperature and increases to a weak but clearly
visible maximum just above Tc. This increase takes place in the temperature range where
(T1T )

−1 of S3 is constant. The observed peak is also visible in the (T1T )
−1 data of the

same sample measured along c direction (see left panel of Fig. 8.8). Its presence in the 75As
NMR (T1T )

−1, together with its absence in the 75As NQR (T1T )
−1 of sample S1, indicates

that the normal state spin dynamics are strongly influenced by an external magnetic field,
signaling a proximity to an instability, whose nature is still unclear.

The behavior of (T1T )
−1 of sample S1 also remains unusual in the superconducting

state. It shows only slight changes upon crossing Tc (see inset of Figure 8.7). The strong
upturn of (T1T )

−1 below Tc, which was observed in 75As NQR measurements on S1 (see
Fig. 8.3), is suppressed in field. (T1T )

−1 of S2 clearly drops below Tc, similarly to what
has been reported in previous works on powder and single crystalline samples [80, 81, 225].
For sample S3, (T1T )

−1 first shows a slight enhancement directly below Tc, which is then
followed by a decrease. This has also been observed in 75As NQR (T1T )

−1 measurements
on this sample (see inset of Fig. 8.3). In the NQR measurements it seems that (T1T )

−1

of S3 first follows the enhancement of (T1T )
−1 of S1 and then decreases. Since this

increase takes place below Tc, it possibly indicates the presence of spin fluctuations in the
superconducting state of sample S3. Note that such an increase has not been observed
for sample S2.

To further compare the upturn in the 75As NQR (T1T )
−1 to the suppression of this

upturn in a magnetic field, the left panel of Fig. 8.8 compares the 75As NQR (T1T )
−1

of S1 with the 75As NMR (T1T )
−1 of S1 measured along H0 ‖ c at low temperature.

Since c is the principal axis of the EFG, both data sets should be equivalent. And indeed
the absolute values are comparable at high temperature. At low temperature, however,
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Figure 8.7: Temperature dependence of the 75As NMR spin-lattice relaxation rate measured
along H0 ‖ ab for samples S1 (grey triangles), S2 (red squares) and S3 (blue dots). The blue
line is a guide to the eye. The inset enlarges the low temperature part. The dashed lines denote
Tc(H0). The data were taken in H0 = 7T for S1 and S3 and in H0 = 8.5 T for S2.

both data sets deviate from each other. While the 75As NQR (T1T )
−1 is constant just

before Tc, the
75As NMR (T1T )

−1 shows the already mentioned peak just above Tc. In the
superconducting state, the 75As NQR (T1T )

−1 increases, while the 75As NMR (T1T )
−1

does not exhibit strong changes.
A similar behavior is observed in the superconducting state of the polycrystalline sam-

ple (see right panel of Fig. 8.3). Its 75As NQR (T1T )
−1 shows a strong upturn in the

superconducting state. The beginning of this upturn is clearly connected to Tc and thus
to the superconducting state. In the 75As NMR (T1T )

−1 measured in a field of 15.47T
parallel to ab [Tc(15.47T) ≈ 12K], this upturn is completely suppressed and (T1T )

−1

decreases very weakly below Tc.
A very similar behavior has also been observed in La0.87Ca0.13OFeP by 31P NMR mea-

surements in different fields [297]. The data are reproduced in Fig. 8.9. In this compound,
the 31P NMR (T1T )

−1 increases below Tc as long as very small external fields are applied.
This increase is suppressed by applying larger fields.

In the following, the arguments of Reference [297] will be repeated, which led to the
conclusion that novel spin dynamics develop below Tc. At first glance, one might relate the
increase of (T1T )

−1 in the superconducting state with some impurity contribution which
may dominate the spin dynamics in the superconducting state as other contributions to
the dynamics are gapped out. However, as already pointed out various times, the high
purity reflected in sharp 75As NMR, 75As NQR and 7Li NMR resonance lines, as well
as other physical properties and also the possibility to fit the recovery of the nuclear
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Figure 8.8: Comparison of the 75As NQR (T1T )
−1 (closed symbols) and the 75As NMR (T1T )

−1

(open symbols) for S1 (rhombi, left panel) and the polycrystalline sample (triangles, right panel).
Note that for S1, the 75As MNR (T1T )

−1 has been measured in a field of 7T and parallel to
c, while for the polycrystal it has been measured in a field of 15.47 T and along ab. The 75As
NMR (T1T )

−1 data of the polycrystal are scaled to facilitate comparison with the NQR data,
which, since VZZ ‖ c, measure along c. Due to an anisotropy in the hyperfine coupling Ahf (~q),
the actual absolute value of the 75As NMR (T1T )

−1 for H ‖ ab is higher. The arrows denote Tc

with (dashed) and without (solid) external field.

magnetization with a single exponential function in the whole temperature range, makes
an impurity contribution very unlikely. An increase of (T1T )

−1 due to vortex dynamics,
which sometimes has been observed in organic superconductors and cuprates [305, 306],
can also be excluded since the upturn of (T1T )

−1 in LiFeAs is most pronounced in 75As
NQR measurements, where vortices are absent. A third possibility considers the existence
of local moments in the system. In the normal state these local moments scatter with
the conduction electrons and fluctuate very fast, such that they do not affect the NMR
properties. Upon entering the superconducting state, the conduction electrons are gapped
out. Therefore, the local moments start to slow down, leading to an increase in the spin-
lattice relaxation rate. However, if local moments would be present, they should also
affect the linewidth and the Knight shift, which is not the case. So also this possibility is
unlikely.

The last possibility pointed out by Nakai et al. [297], is the emergence of low-energy
spin fluctuations relevant to the superconducting order parameter. In the case of spin-
triplet superconductivity, the collective modes of the Cooper pairs may give rise to novel
spin dynamics in the superconducting state [297]. This explanation, independently sug-
gested when discussing the (T1T )

−1 data of La0.87Ca0.13OFeP,3 is in good agreement with
the observation of a constant Knight shift across Tc for the same sample S1, for which the
enhancement of (T1T )

−1 in the 75As NQR was observed. Thus, there are two independent
strong evidences for the occurrence of spin-triplet superconductivity in sample S1.

3 Note that up to now there are no published Knight shift measurements on La0.87Ca0.13OFeP.
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Figure 8.9: 31P NMR (T1T )
−1 of La0.87Ca0.13OFeP at low temperature, measured in different

external fields of 0.095 T (blue dots), 0.525 T (green triangles) and 6T (open squares). The solid
lines denote the ac susceptibility χac in 0.095 T (blue) and 0.525 T (green). The red dashed line
is a linear fit to χac to define Tc. Figure reproduced from [297].

The 75As NQR and NMR spin-lattice relaxation rate T−1
1 of sample S3 is plotted in

Fig. 8.10. It decreases below Tc with a field-independent T 3 dependence. This much more
usual behavior is surprising, since the Knight shift measured in 7T did not change upon
crossing Tc, pointing towards a spin-triplet superconducting state similar to the Knight

Figure 8.10: Temperature dependence of the 75As NQR T−1
1 (blue squares) and 75As NMR

T−1
1 in 4.5 T (orange dots) and 7T (violet dots) of sample S3 on a doubled logarithmic scale.

Arrows in the respective colour denote the corresponding Tc (18K for NQR, 15.3 K for 4.5 T
and 14.6 K for 7T). The dashed lines represent T −1

1 ∝ T 3 in the superconducting state.
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shift of S1. Regarding these very similar static properties between these two compounds
one could have expected that S3 also features the same dynamic properties than S1. This
is clearly not the case. The reason for this discrepancy is unclear.

8.3 Summary of 75As NQR and NMR Results

Taken together all the obtained 75As NQR and NMR measurements on the three different
samples out of the same batch, no definite picture of the superconducting properties of
LiFeAs can be given at the end. For the three investigated single crystals and the poly-
crystalline sample, different normal state properties as well as different superconducting
state properties have been observed. They are summarized in Table 8.1. The single crys-
talline samples exhibit a high purity, confirmed by different physical properties as well as
by several NMR and NQR aspects such as narrow NQR and NMR resonance lines and
single exponential recovery curves. The samples are only distinguishable by their slightly
different quadrupole frequencies νq, suggesting tiny changes in their stoichiometries which
cannot be measured by any macroscopic measurement. These tiny changes are enough to
cause strongly different superconducting properties.

For sample S1, the sample with the highest νq, strong evidences for a spin-triplet
superconducting state (as long as the field is applied exactly along ab) are found in
the constant Knight shift and the peculiar behavior of (T1T )

−1. The strong angular
dependence of the static properties suggests that a transition into another superconducting
state with a more usual order parameter may be caused by small magnetic fields along
the c direction.

Sample S2, the one with the lowest νq, exhibits the “least surprising” properties. Its
Knight shift as well as its 75As NMR (T1T )

−1 decrease in the superconducting state. It
also lacks a strong angular dependence. This is compatible with standard singlet pairing.

Sample S3 exhibits the intermediate νq and also lies in between the two other samples
regarding its properties. For NQR and NMR measurements, its (T1T )

−1 first increases
slightly just below Tc, before decreasing similarly to (T1T )

−1 of S2. This may indicate the
persistence of spin fluctuations in the beginning of the superconducting state. The Knight
shift of S3 is constant across Tc when measured in 7T, but decreases when measured in
4.5T. This points towards a field-induced triplet superconducting state similar to the one
observed in S1.

The superconducting state of LiFeAs is thus believed to be strongly dependent on the
stoichiometry, the absolute value of the magnetic field and the field-orientation. Different
phases are competing in LiFeAs and tiny changes of the stoichiometry, the field or the
angle can cause transitions between different superconducting ground states, including the
possibility of spin-triplet pairing. The extreme sensitivity of the properties towards tiny
changes of external parameters suggests that LiFeAs is in a proximity to an instability.
As suggested by recent theoretical work [214] and corroborated by the evidences for spin-
triplet pairing in some cases, this instability might be a ferromagnetic one.

The overall behavior of LiFeAs is clearly unconventional and differs a lot from other
pnictides. A lot of questions remain unanswered. Further investigation of the angular
and field dependence are needed to clarify the situation encountered in this interesting
material.
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property S1 poly S3 S2

νq(100K) (MHz) 21.19 21.18 21.15 21.13

FWHMNQR(300K) (kHz) 80 113 44 60

FWHMNQR in normal state increases - increases const.

FWHMNQR in SC state decreases
increases

increases -
(not shown)

(T1T )
−1
NQR in SC state increases increases decreases -

FHWMNMR(20K) (kHz) 52 - 38 17

FWHMNMR in normal state increases - increases const.

FWHMNMR in SC state decreases - both increases

Kab(7T) in SC state const. - const. decreases

K(7T, θ > 0◦) in SC state decreases - ? decreases

Kab(4.5T) in SC state ? - decreases ?

(T1T )
−1
NMR in SC state

approx. decreases
decreases decreases

const. slightly

Table 8.1: Summary of some NQR and NMR properties of all four investigated samples of
LiFeAs. They are ordered according to their quadrupole frequency (see second row).

8.4 7Li-NMR

7Li NMR measurements were performed on sample S3 in a field of 4.5T for both field
directions, H0 ‖ c and H0 ‖ ab. Some selected spectra for both directions are presented in
Fig. 8.11. At high temperature very narrow spectra are observed for both directions, with
the same linewidths for the central line and the satellites. At T = 200K the linewidths
amount only to 11 kHz (9 kHz) for H0 ‖ c (H0 ‖ ab), respectively. These small linewidths
allow to observe the very small splitting of the 7Li NMR spectra into a central line and
two satellites due to first order quadrupole effects, although the quadrupole frequency is
only 32 kHz at room temperature. The satellites for H0 ‖ c are separated by 2νq and the
satellites for H0 ‖ ab are separated by νq. According to Fig. 2.2 this corresponds to a
tetragonal symmetry with an asymmetry parameter η = 0 and the principal axis of the
EFG lying along the c axis.

The identical linewidth of the central line and satellites for a given field direction at
high temperatures indicates that the broadening mechanism is mainly magnetic and the
distribution of the EFG is negligibly small. The extreme narrow lines corroborate further
the high purity of the investigated sample. Furthermore, the 7Li spectra assure that there
is only one single Li site in the investigated sample. This is in stark contrast to what has
been observed by 7Li NMR measurements on a single crystal by another group, where two
different 7Li resonances are observed, pointing towards the presence of two inequivalent
sites in their crystal [225].
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(a) 7Li NMR spectra for H0 ‖ c. The satellites
are separated by 2νq.

(b) 7Li NMR spectra for H0 ‖ ab. The satellites
are separated by νq .

Figure 8.11: 7Li NMR spectra of LiFeAs for both field directions at some selected tem-
peratures. The black dots denote the measured spectra, the red line is a fit containing three
Lorentzian lines connected via the Knight shift K and the quadrupole frequency νq and with
the constraints, that both satellites feature the same linewidth and area. The green (blue) filled
lines denote the corresponding Lorentzian line(s) for the central line (satellites).

By lowering the temperature the resonance lines broaden. It is possible to fit the
spectra with three Lorentzian lines connected by K and νq and with equal linewidths of
the satellites down to Tc for both field directions. Fig. 8.12 comprises the temperature
evolution of the linewidths of the satellites and the central lines for H0 ‖ ab and H0 ‖ c.
The broadening is more pronounced for H0 ‖ c. The broadening in the normal state
indicates that the 7Li nuclei experience a slowing down of spin fluctuations, similar to the
75As nuclei (see Fig. 8.4).

Below Tc, the spectra for H0 ‖ ab suddenly broaden much more, such that a fit with
three Lorentzians is not possible any more. On this account, only data down to 14K are
shown for H0 ‖ ab. The values of K and νq could also not be extracted consistently below
14K for H0 ‖ ab. In the case of H0 ‖ c the spectra below Tc resemble the one for 16K
shown in Fig. 8.11(a) and K and νq could still be extracted, although with larger error
bars.

The value of the extracted quadrupole frequency, νq(300K)= 32 kHz, is consistent with
the value of νq(300K)= 34 kHz, which was estimated by an echo decay measurement on
a polycrystalline sample [80]. The temperature evolution of the quadrupole frequency
is depicted in Fig. 8.13. It shows a much weaker temperature dependence than the
75As quadrupole frequency. No unusual contributions to the EFG and its temperature
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Figure 8.12: Temperature dependence of the full width at half maximum (FWHM) of the 7Li
NMR resonance lines for H0 ‖ ab (squares) and H0 ‖ c (dots). The FWHM for the central lines
(closed symbols) are the same as the ones for the satellites (open symbols) at high temperature.
The dashed line denotes Tc(4.5T) = 15.3K.

Figure 8.13: Temperature dependence of the 7Li quadrupole frequency (dots). The solid line is
a fit to the empirical temperature dependence of the quadrupole frequency in non-cubic metals
[307].

dependence are visible. Its slight increase with decreasing temperature is in line with
the frequently observed behavior of the EFG in non-cubic metals, showing a (1− aT 3/2)
dependence [307]. At low temperature, error bars increase due to the broadening of the
spectra.
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(a) Temperature dependence of the 7Li NMR
Knight shift for H0 ‖ ab (squares) and H0 ‖ c
(dots) measured in H0 = 4.5T. The dashed line
denotes Tc(4.5T) = 15.3K. The solids lines are
guides to the eyes.

(b) 7Li NMR Knight shift for H0 ‖ c vs macro-
scopic susceptibility χ. The inset shows the ex-
traction of Korb.

Figure 8.14: Temperature-dependent 7Li NMR Knight shift for both field directions (a) and
extraction of the hyperfine coupling tensor for H0 ‖ c (b).

The Knight shift for H0 ‖ ab and H0 ‖ c is depicted in Fig. 8.14(a). Again, it can
be divided into a temperature-independent orbital contribution Korb and the spin part
Ks, which stems from a hyperfine coupling to the electronic spin susceptibility. A pure
orbital shift for Li in solids is typically found to range in between −20 ppm and +30ppm
[308]. The measured Knight shift is very small and negative. For H0 ‖ c it is basically
zero at intermediate temperatures. At high temperatures it slightly increases. Since the
macroscopic susceptibility decreases in the high temperature range [129], the increase
of the Knight shift in this temperature range indicates that the hyperfine coupling is
negative. This is unexpected. Negative contributions to the hyperfine coupling normally
stem from core polarization effects (see Section 2.2.2). But since Li is in a 1s2 state,
which is a fully filled, isotropic shell, no core polarization contributions are expected.
Possibly this negative hyperfine coupling stems from a core polarization due to non-s-
character-like conduction electrons or from an sp hybridization with the As p orbitals.
A plot of the Knight shift for H0 ‖ c, Kc, versus the macroscopic susceptibility χ with
temperature as implicit parameter is shown in Fig. 8.14(b). Only data for T ≥ 120K
are shown. A linear fit between K and χ resulted in a hyperfine coupling of about
7Ahf(~q = 0) = (−4.4±1.1)kOe/µB. This value is comparable to the hyperfine coupling of
La in LaO0.9F0.1FeAs (see Table 6.1). Only the sign is opposite. The relatively small value
is consistent with the location of both ions outside the FeAs layers, which leads to a weak
coupling to the dominant Fe 3d moments. For the orbital contribution only the upper
and lower limits can be given, since nothing is known about the absolute values of the
temperature-independent contributions to the susceptibility (van Vleck and diamagnetic
susceptibility). Korb lies between 350 ppm and -10 ppm, which covers widely the range of
the typical orbital shifts. 350 ppm is very unlikely, since this would overcome the absolute
value of the Knight shift.
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Figure 8.15: Temperature-dependent 7Li NMR (T1T )
−1 for H0 ‖ c in 4.5 T. The dashed line

denotes Tc(4.5T) = 15.3K.

For H0 ‖ ab the Knight shift is constant and amounts to approximately −190 ppm.
This might be attributed to a pure orbital shift.

The decrease of K for H0 ‖ c and T < 30K illustrates an increase of the spin suscepti-
bility below 30K, due to the negative hyperfine coupling constant. Its physical origin is
unclear. This increase has to be taken with great care, since in this temperature range the
spectra are much broader than at higher temperatures, which renders the determination
of the Knight shift more imprecise. An increasing spin susceptibility in the superconduct-
ing state is unphysical. It is supposed to decrease in the case of spin-singlet formation or
to stay constant in the case of triplet pairing. A possible explanation could be a change
of the hyperfine coupling in this temperature range, due to the complicated multi-band
character of the electronic structure.

Measurements of 7Li NMR spin-lattice relaxation rate were only possible for H0 ‖ c.
For H0 ‖ ab no inversion of the nuclear magnetization could be achieved. Attempts to
measure T1 via saturation recovery also failed for H0 ‖ ab. This might be due to the
small quadrupole splitting. This small splitting implicates that all three resonance lines
are exited during the measurement of T1 (for both field directions). The smaller splitting
in the case of H ‖ ab leads to oscillations of the spin echo during the T1 measurements,
which complicate the analysis. Fig. 8.15 shows the 7Li NMR (T1T )

−1 for H0 ‖ c measured
in 4.5T in the paramagnetic phase. (T1T )

−1 is constant down to 100K and then starts to
increase. This increase indicates the slowing down of spin fluctuations, consistent with the
increase of the NMR linewidths (see Fig. 8.12). Up to now, no data have been measured
in the superconducting state.
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8.5 Summary of 7Li NMR Results

7Li NMR measurements have been performed on sample S3 in a field of 4.5T. The narrow
resonance lines at high temperatures for both field directions corroborate the high purity
of the investigated crystal and allow a precise determination of the very small quadrupole
frequency (νq = 32 kHz at room temperature). A broadening of the resonance lines and
an increasing (T1T )

−1 with decreasing temperature indicate that the 7Li nuclei sense
the slowing down of magnetic fluctuations, similar to the 75As nuclei. The determined
Knight shifts are very small and nearly temperature-independent in the paramagnetic
regime. A linear scaling between the Knight shift along c direction and the macroscopic
susceptibility at high temperature results in a negative hyperfine coupling constant of
about 7Ahf(~q = 0) = (−4.4 ± 1.1)kOe/µB, whose absolute value is comparable to the
hyperfine coupling constant of La in LaO0.9F0.1FeAs.
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NMR measurements on two compounds of the recently discovered Fe-based supercon-
ductors, LaO1−xFxFeAs and LiFeAs, have been presented. The measurements revealed
unconventional properties in the normal state as well as in the superconducting state for
both compounds.

Chapter 6 reported measurements of static and dynamic low-energy properties of
LaO1−xFxFeAs in the normal state, covering a broad doping range from the undoped,
magnetically-ordered compound LaOFeAs to the optimally-doped LaO0.9F0.1FeAs.

Considering the static NMR properties of LaO1−xFxFeAs, measured by the Knight
shift K, the following conclusions can be made:

A decrease of the local spin susceptibility with decreasing temperature was found in
underdoped LaO0.95F0.05FeAs and optimally-doped LaO0.9F0.1FeAs, in agreement with
macroscopic susceptibility measurements. The scaling of the local spin susceptibility,
measured by the Knight shift, and the macroscopic powder susceptibility proved the
absence of magnetic impurity contributions and thereby the high quality of the investi-
gated samples. The further scaling of the NMR Knight shifts of three measured nuclei
in LaO0.9F0.1FeAs, namely 75As, 139La, and 57Fe, suggested that all nuclear spins are
probing the same spin degree of freedom. The system might therefore be describable
within a single spin liquid picture, despite the complicated multi-band character of the
electronic structure. The decrease of the spin susceptibility in the normal state seems
to be a characteristic property of Fe-based superconductors. Its physical reason is still
not well understood. Theoretical approaches include effects of a temperature-dependent
change in the electronic density of states, and the existence of a pseudogap, similar to
what have been found in cuprates. However, no broad pseudogap peak was observed
in NMR measurements of the 75As Knight shift in LaO0.9F0.1FeAs up to 480K, and in-
tended pseudogap fits result in unrealistically high values of the pseudogap. Together
with the dynamic properties, this makes a pseudogap behavior very unlikely and points
more towards a density of states effect.

Furthermore, hyperfine coupling constants were extracted for 75As, 139La, and 57Fe
nuclei in LaO0.9F0.1FeAs, and their absolute values were explained. The ordered moment
in the magnetically-ordered SDW state of LaOFeAs was found to be 0.63(1)µB, which is
in good agreement with recent neutron scattering experiments.

The investigation of the low-energy spin dynamics by (T1T )
−1 measurements in the

normal state of LaO1−xFxFeAs revealed the following results:
For undoped LaOFeAs a strong increase of the 75As (T1T )

−1 towards the magnetic
ordering temperature TN proves the sensitivity of the 75As nuclei for antiferromagnetic
fluctuations. It points towards a second-order-like phase transition to the magnetically-
ordered state. The increase of T−1

1 can be well described by Moriya’s SCR theory for
weak itinerant antiferromagnets.
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(T1T )
−1 of the underdoped samples LaO0.95F0.05FeAs and LaO0.925F0.075FeAs still ex-

hibits a substantial increase with decreasing temperature between T ≈ 200K and Tc,
indicating the presence of remnant antiferromagnetic fluctuations in these superconduct-
ing compounds. At higher temperatures (T1T )

−1 decreases linearly, similar to (T1T )
−1

of optimally-doped LaO0.9F0.1FeAs. Both the high temperature and the low temperature
behavior of (T1T )

−1 in the underdoped samples have been compared with the temperature
dependence of the resistivity. Good agreement has been found. Resistivity measurements
find also evidence for remnant spin fluctuations at low temperatures (above Tc) and a
non-Fermi-liquid linear temperature dependence at high temperatures.

The dynamic spin susceptibility of LaO0.9F0.1FeAs, measured by (T1T )
−1, decreases

similarly to the static spin susceptibility. No evidence for the existence of antiferromag-
netic fluctuations in this optimally-doped sample is found. The decrease of (T1T )

−1 with
temperature cannot be described within a pseudogap picture. No pseudogap peak is
observed in (T1T )

−1 up to 480K and pseudogap fits failed to describe consistently the
decrease of (T1T )

−1 in the whole measured temperature regime. The decrease can be
well described by a simple linear temperature-dependence. A scaling of (T1T )

−1 mea-
sured on 75As, 139La, 57Fe, and 19F in optimally-doped LaO0.9F0.1FeAs suggested that
spin fluctuations are suppressed simultaneously over the whole ~q-space.

This overall doping dependence of (T1T )
−1 in LaO1−xFxFeAs indicates that antiferro-

magnetic spin fluctuations, which are still present in the underdoped samples
LaO0.95F0.05FeAs and LaO0.925F0.075FeAs, have to be suppressed completely before super-
conductivity can reach its highest Tc in optimally-doped LaO0.9F0.1FeAs. In conclusion,
superconductivity and magnetism seem to compete in LaO1−xFxFeAs, in contrast to other
pnictides such as Ba(Fe1−xCox)2As2, where samples with the highest Tc still feature well
pronounced antiferromagnetic fluctuations. These results are in agreement with the differ-
ent phase diagrams reported for both compounds, where coexistence between magnetism
and superconductivity is found for Ba(Fe1−xCox)2As2, but not for LaO1−xFxFeAs.

For LaO0.9F0.1FeAs a Korringa ratio T1TK
2
s = const., pointing towards a Fermi-liquid

behavior, was observed for Tc < T < 300K in good agreement with resistivity measure-
ments. A more unconventional linear scaling T1TKs = const. was observed at higher
temperatures for LaO0.9F0.1FeAs and for T ≥ 250K for LaO0.95F0.05FeAs. The slope
of both linear scalings was found to be the same. This suggests an intrinsic, doping-
independent high temperature electronic phase persisting over a broad doping range. Its
microscopic origin is still not well understood, but might be closely related to the com-
plicated multi-band electronic structure.

The properties of LaO1−xFxFeAs in the superconducting state were discussed in
Chapter 7.

The 75As NMR and 75As NQR spin-lattice relaxation rate T−1
1 was found to de-

crease proportional to T 3 in the superconducting state of LaO1−xFxFeAs with x = 0.05,
x = 0.075 and x = 0.1. Together with the absence of a Hebel-Slichter coherence peak this
points towards an unconventional superconducting gap symmetry. Taking into account
the results of other experimental methods which found evidence for a fully-gapped su-
perconducting order parameter, the results indicated an unconventional s± symmetry of
the superconducting gap function. Within this symmetry, each Fermi surface features an
isotropic superconducting gap, whose sign changes upon going from a hole to an electron
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pocket, and vice versa. The observed temperature dependence of the spin-lattice relax-
ation rate can be well described within this model by considering the effect of impurity
scattering or weak anisotropies in the gap function.

The effect of impurities on the superconducting properties was further studied on an
optimally-doped sample with additional arsenic vacancies, LaO0.9F0.1FeAs1−δ. Despite
the enhanced disorder, this compound possesses improved superconducting properties
and exhibits a faster decrease of the spin-lattice relaxation rate in the superconducting
state. T−1

1 decreases with T 5. The effect of arsenic impurities was first discussed under the
assumption that these vacancies act as non-magnetic impurities. Three possible scenarios
were presented under this assumption: a crossover from a nodal to nodeless s± symmetry,
an impurity-induced enhanced intraband scattering, which stabilizes the s± symmetry,
and a transition from a s± to a more conventional s++ symmetry. Since recent analyses of
the spin susceptibility provided evidence for the formation of local moments around each
arsenic vacancy, the spin-lattice relaxation rate data were reinterpreted by considering
the effect of magnetic impurities. In this case, the s± symmetry is stabilized, because
magnetic impurities are harmless for such a sign-reversing symmetry.

Further work might concentrate on the overdoped region, to test the Fermi-liquid be-
havior as suggested by resistivity measurements for x > 0.1. Also the impact of impurities
might be further studied, for instance by changing the concentration of arsenic deficiencies
in LaO0.9F0.1FeAs or by examining their effects in underdoped samples.

Chapter 8 reported 75As NQR, 75As NMR and 7Li NMR measurements on LiFeAs.
75As NQR and NMR measurements on three different single crystals and a polycrys-

talline sample of LiFeAs yielded very different results in the normal state as well as in the
superconducting state. The samples could be distinguished by their slightly different 75As
NQR frequencies, indicating tiny changes in the stoichiometry, which were not detectable
by other experimental methods up to date.

The sample with the highest νq (S1) exhibits an unchanged Knight shift Kab upon
crossing Tc as long as the magnetic field is exactly aligned along the ab direction. Fur-
thermore a peculiar upturn of the 75As NQR (T1T )

−1 in the superconducting state is
observed for this sample, which is suppressed in 75As NMR measurements. These results
indicate the possibility of a spin-triplet superconducting ground state in sample S1. The
angle dependence of K suggests that a transition into another superconducting symmetry
with a more usual singlet pairing occurs as soon as the magnetic field is slightly tilted out
of the ab plane.

The crystal with the lowest νq (S2) exhibits more usual NMR properties, such as a
decrease of the Knight shift and the spin-lattice relaxation rate in the superconducting
state, both being compatible with unconventional singlet pairing.

Sample S3 (with an intermediate νq) lies between these two extremities. (T1T )
−1 of

this sample decreases in the superconducting state for both, 75As NQR and 75As NMR
measurements. Its Knight shift decreases in low fields (4.5T), but is constant in slightly
higher fields (7T) in the superconducting state.

The superconducting state of LiFeAs is thus found to be strongly dependent on slight
changes of the stoichiometry, as well as on the value and the relative orientation of the
magnetic field.
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The samples with the most unusual properties in the superconducting state (S1 and S3),
show an increase of the 75As NQR and 75As NMR linewidths with decreasing temperature,
indicating the presence of spin fluctuations in these compounds. Recent theoretical work
suggests a proximity of this compound to a ferromagnetic instability.

7Li NMR measurements on sample S3 in the paramagnetic regime showed a weak
temperature dependence of the quadrupole frequency and a vanishingly small, nearly
temperature-independent Knight shift. An increase of the spin-lattice relaxation rate
below 100K proved that also 7Li is sensitive to the slowing-down of magnetic fluctuations.

In conclusion, the situation in LiFeAs is far from being well understood. The supposed
slight differences in stoichiometry should be checked with other high-sensitive methods.
More data for different field values and field orientations are needed to understand the
sensitivity of the ground state.

Ongoing work in the IFW Dresden also concentrates on NMR measurements on ferro-
magnetic Li-deficient samples and the effect of Co-doping.
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A.1 NMR Powder Spectra

According to Equations (2.33) and (2.34), the first and second order quadrupole shifts
depend on the Euler angles θ and φ, which describe the relative orientation of the principle
axis system of the EFG (X, Y, Z) to the magnetic field direction (commonly along z). The
principal axis system of the EFG is defined by the local symmetry of the unit cell. For
single crystalline samples a certain orientation of the crystal (and therewith of the EFG)
versus the magnetic field can be chosen and well resolved, single resonance lines can be
obtained and assigned as central lines or satellites (see for instance Fig. 2.2). By rotating
the single crystal with respect to the applied magnetic field and observing the position
changes of the satellites and the central line, it is possible to determine the orientation
of the principal axes of the EFG and the parameters η and νq ∝ VZZ. In polycrystalline
samples however, each crystallite is randomly oriented to the external magnetic field.
This leads to a distribution of Euler angles and thus to a broad powder pattern, whose
shape can be calculated by summing up the contributions from all possible orientations in
Equations (2.33) and (2.34). Additionally, possible anisotropies of the Knight shift tensor
have to be considered.

For the Knight shift tensor defined in Eq. (2.14) there exists one coordinate system
(X ′, Y ′, Z ′) in which this tensor is diagonal. Let θ and φ be the angles describing the
relative orientation of (X ′, Y ′, Z ′) versus the direction of the external magnetic field along
z, then the Knight shift measured along the direction z of the applied magnetic field is
given by [36, 55]:

Kz(θ, φ) = KX′ sin2 θ cos2 φ+KY ′ sin2 θ sin2 φ+KZ′ cos2 θ (A.1)

To better express possible anisotropies, it is convenient to use [36, 52, 55]:

Kiso =
1

3
(KX′ +KY ′ +KZ′)

Kaniso =
1

2
(KY ′ −KX′)

Kaxial =
1

6
(2KZ′ −KX′ −KY ′) , (A.2)

such that in the end the Knight shift Kz along the direction z of the applied magnetic
field can be expressed as [36, 52, 55]:

Kz(θ, φ) = Kiso +Kaxial(3 cos
2 θ − 1) +Kaniso sin

2 θ cos 2φ . (A.3)

The isotropic part Kiso shifts the resonance line without affecting its line width, while
the axial and the anisotropic contributions to the Knight shift, Kaxial and Kaniso, entail
a broadening of the line.
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The first order quadrupole interactions [see Eq. (2.33)] lead to the appearance of
broadened quadrupolar satellites symmetrically distributed around the central transition
[32, 36] (see Fig. A.1).

In second order, the quadrupole interaction [see Eq. (2.34)]:

∆(2)νm(θ, φ, η) = −
ν2q
νL

1

6

[

I(I + 1)− 3

4

]

[

A(φ, η) cos4 θ +B(φ, η) cos2 θ + C(φ, η)
]

(A.4)

with the prefactors [54–56]:

A(φ, η) = −27

8
− 9

4
η cos 2φ− 3

8
η2 cos2 2φ

B(φ, η) =
30

8
− 1

2
η2 + 2η cos 2φ+

3

4
η2 cos2 2φ

C(φ, η) = −3

8
+

1

3
η2 +

1

4
η cos 2φ− 3

8
η2 cos2 2φ (A.5)

gives rise to an asymmetric shape of the central line, where, depending on the value of η,
five (η < 1/3) or six (η > 1/3) characteristic features can be observed [52, 55]. Fig. A.2
shows the line shape of the central transition for the case η < 1/3. Two singularities,
two shoulders and a step appear as characteristic features in the line shape. For the
prominent case of η = 0, the shoulders merge with their neighbouring singularities and the
step appears at the Larmor frequency ν = νL (neglecting magnetic hyperfine corrections,
which will shift νL by the Knight shift K). If the second order quadrupole interaction is
sufficiently large, it may also affect the satellites [52, 55]. For details of this effect, the
reader is referred to [52, 53].

Figure A.1: Theoretical powder pattern for I = 3/2 in case of first order quadrupole effects
for η = 0. For clarity the intensity of the satellites is artificially enhanced. Magnetic hyperfine
contributions are neglected in this sketch (K = 0).
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Figure A.2: Theoretical powder pattern for the central transition (m = −1/2 ↔ m = +1/2) in
case of second order quadrupole effects for η < 1/3 (reproduced from [55]). Frequencies are given
in units of (ν2q/144νL)[I(I + 1)− 3/4]. Magnetic hyperfine interactions are neglected (K = 0).

Combining second order quadrupole and first order magnetic hyperfine cor-
rections corresponding to Equations (A.3), (A.4) and (A.5), and assuming that the prin-
cipal axes of the EFG and the Knight shift tensor coincide with each other, the powder
pattern of the central resonance line resembles the one depicted in Fig. A.2. The charac-
teristic features corresponding to the second order shifts as marked in Fig. A.2, are now
additionally shifted against each other by the influence of the magnetic shift anisotropy. In
general, the exact line shape of the powder pattern of the central line has to be computed
including the mentioned effects. Since in powders the angles θ and φ are distributed with
equal probability, the powder pattern can be calculated as the probability distribution of
a resonance frequency ν in the interval ν + dν within the solid angle d cos θdφ [54, 55].
To extract the important quadrupole and magnetic shift parameters, it is sufficient to
know the positions of the characteristic singularities and shoulders. These positions can
be calculated by finding the critical points which solve:

(

∂ν

∂ cos θ

)

cos θ=a,φ=b

=

(

∂ν

∂φ

)

cos θ=a,φ=b

= 0 (A.6)

on the surface ν = ν(cos θ, φ), where (a, b) are the coordinates of a critical point [54, 55].
The surface ν = ν(cos θ, φ) is given by combining Equations (A.3), (A.4) and (A.5):

ν(θ, φ) = [1 +Kz(θ, φ)]νL +∆(2)ν(θ, φ) . (A.7)

An example of an experimentally observed powder pattern for the central transition,
including second order quadrupole and first order magnetic hyperfine corrections is given
in Fig. A.3. The black solid line is a simulation. It gives η = 0 and νq = νc (VZZ ‖ c).
Since η = 0, only two singularities and a step are visible as characteristic features in
the spectrum. The shoulders as sketched in Fig. A.2 are merged with the singularities.
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Figure A.3: Experimental powder pattern for the central transition of 75As NMR measured
on a polycrystalline LiFeAs sample at T = 100K. The black squares are the data points, the
black solid line is a simulation of the powder spectrum including second order quadrupole effects
and first order anisotropic magnetic hyperfine corrections. Values used for the simulation are
given in the inset. The spectrum was measured by sweeping the magnetic field while applying a
constant radio frequency ν and is thus mirror-inverted in comparison to Fig. A.2. Arrows denote
the characteristic features of the powder pattern and the field orientation of the corresponding
crystallites.

The value of νc = νq = 21.05MHz used for the simulation is close to νq = 21.18MHz
which was measured with 75As NQR (see fig. 8.2). The value of the spin shift along ab,
Kab = 0.015%, is one order of magnitude lower than what has been measured in 75As
NMR for H ‖ ab (see Fig. 8.6). This might be due to the extreme sensitivity of K versus
the orientation of the external magnetic field (see Fig. 8.5 and 8.6).
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A.2 Calculation of Spin-Lattice Relaxation Functions

In the following, the general derivation of the relaxation function Mz(t) will be reflected
based on primary literature and overview articles [68–72, 309].

It starts with a consideration of the population of the nuclear magnetic energy levels
Em and possible transitions between these levels. The time dependence of the normalized
population nm of a nuclear magnetic energy level Em is expressed by [70]:

dnm

dt
=

N
∑

n=1,n6=m

(Wmnnn −Wnmnm) m = 1, 2, . . . , N = 2I + 1 . (A.8)

Written in a matrix notation, where nm is the mth component of the vector ~n, this
becomes:

d~n

dt
= W′~n , (A.9)

where the components of the transition probability matrix W′ are given by [70]:

W ′
mn =

{

Wmn for m 6= n

−
∑

k,k 6=mWkm for m = n .
(A.10)

Due to the normalization
∑N

m=1 nm = 1, the normalized populations are not indepen-
dent from each other. It is therefore useful to define the population difference between
adjacent energy levels as a new set of independent variables ∆nm, which are the 2I com-
ponents of the vector

#   »

∆n:

∆nm = nm − nm+1 m = 1, 2, . . . , N − 1 = 2I . (A.11)

The population difference ∆nm is directly proportional to the NMR signal from the
corresponding transition Em+1 ↔ Em. In thermal equilibrium it will be defined as
∆nm(t =∞) =: ∆nm,∞, where ∆nm,∞ is the mth component of the corresponding vector
#       »

∆n∞. Interesting for the theoretical description of the relaxation are the differences from
the equilibrium values: ∆nm(t)−∆nm,∞. With these new variables, Eq. (A.9) becomes:

d(
#   »

∆n(t)− #       »

∆n∞)

dt
= −A

(

#   »

∆n(t)− #       »

∆n∞

)

, (A.12)

where the components of the new matrix A are defined by:

− Amn = (DW′D−1)mn m = 1, 2, . . . , N − 1 = 2I . (A.13)

The introduction of the transformation matrix D whose components read:

Dmn =

{

δmn − δm+1,n for m ≤ N − 1

1 for m = N ,
(A.14)

accounts for the transformation from Eq. (A.9) to Eq. (A.12) [70]. The solution of
Eq. (A.12) is given by [70]:

∆nm(t) = ∆nm,∞ +
∑

n,k

Cm,n exp(−λnt)C
−1
n,k[∆nk(t = 0)−∆nk,∞] , (A.15)
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where λn and C are the eigenvalues and the eigenvector matrix of the matrix A, with the
nth column of C being the eigenvector to the corresponding eigenvalue λn. The element
[∆nk(t = 0)−∆nk,∞] depends on the specific initial conditions.

Once the 2I solutions ∆nm(t) are known, the relaxation function is expressed by [71]:

M(t) =M0

[

1−
∑

m

am exp(−λmt)

]

, (A.16)

where the prefactors am depend on the eigenvector matrix C and the specific initial
conditions expressed in [

#   »

∆n(t = 0)− #       »

∆n∞]. For an ideal inversion recovery measurement
they have to fulfil the condition

∑

m am = 2. In the general case of a flip of the nuclear
magnetization by an angle θ, this condition becomes

∑

m am = 1− cos θ. It is convenient
to extract the inversion factor f =

∑

m am out of the sum and keep normalized prefactors
a′m with

∑

m a
′
m = 1 in the sum. The general relaxation function then becomes:

M(t) =M0

[

1− f
(

∑

m

a′m exp(−λmt)

)]

. (A.17)

The probabilities Wmn for a transition between the eigenstates |m〉 and |n〉 of the
static Hamiltonian H0 are in second-order perturbation theory given by [71]:

Wmn
m6=n
=

1

~2

∫ ∞

−∞
dt exp(iωmnt)〈m|H1(t)|n〉〈n|H1(0)|m〉

Wmm = −
∑

m6=n

Wmn , (A.18)

whereH1 is the perturbing Hamiltonian and ωmn = (〈m|H0|m〉−〈n|H0|n〉)/~ is the transi-
tion frequency. The transition probability for a downward transitionWm−1→m is related to
its corresponding upward transition Wm→m−1 via the Boltzmann factor exp (~ω0/kBT ).
The exponent ∆ = (~ω0/kBT ) is usually very small, such that a series expansion can
be used [68]: Wm−1→m = Wm→m−1(1 + ∆). In the high temperature limit this gives
Wm−1→m ≈ Wm→m−1. Accordingly

Wmn ≈ Wnm (A.19)

is a good approximation for the considered temperature and frequency range1.
Relaxation mechanisms may be induced by fluctuating magnetic fields ~h(t) and fluc-

tuating components of the EFG Vk(t). They are comprised in the time-dependent
perturbing Hamiltonian H1(t) [71]:

H1(t) = Hmag(t) +HQ(t)

− ~γ~I · ~h(t) + eQ

4I(2I − 1)

2
∑

k=−2

Vk(t)T2k(~I) , (A.20)

1 Typical NMR frequencies lie in the range of tens to some hundreds of MHz, which correspond to
temperatures in the mK range.
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where T2k(~I) are spherical tensor operators. Rapid nuclear spin exchange terms, which
can also cause longitudinal relaxation, are omitted in H1(t), since they proceed with times
of the order of T2 much smaller than T1 and can therefore be neglected.

The static Hamiltonian H0 contains both magnetic and quadrupole contributions:
H0 = HZ + HQ. As long as HZ � HQ, which is the case for hνzzη � ~γH0,

2 the
eigenfunctions of H0 can be approximated by the eigenfunctions of the Zeeman term HZ .
The main magnetic and quadrupolar relaxation matrix terms are then given by [71]:

Wmag
mn = J(ωmn){|〈m|I+|n〉|2 + |〈m|I−|n〉|2} (A.21)

W quad,1
mn = J (1)(ωmn){|〈m|I+Iz + IzI

+|n〉|2 + |〈m|I−Iz + IzI
−|n〉|2} (A.22)

W quad,2
mn = J (2)(ωmn){|〈m|(I+)2|n〉|2 + |〈m|(I−)2|n〉|2} (A.23)

with the spectral densities of the fluctuating magnetic and quadrupolar fields J(ω) and
J (1,2)(ω), respectively.

In the following, only the case of pure magnetic relaxation will be regarded. The
spectral density for this case is given by:

J(ω) =
γ2

2

∫ ∞

−∞
dt exp(iωmnt)[h+, h−] ' J(0) =:W , (A.24)

where h± = hx±ihy and [A,B] = 1
2
(A(t)B(0) +B(t)A(0)). The last relation in Eq. (A.24)

implies the supplementary assumption that the spectral density is well described by a
single value3. From Eq. (A.21) it can be deduced, that in the case of magnetic relaxation
only transitions between neighbouring energy levels (m) ↔ (m − 1) with ∆m = ±1 are
possible. The transition probability between two adjacent energy levels is then given by
[68]:

Wmag
m↔m−1 = W (I +m)(I −m+ 1) . (A.25)

It has been shown [69] that for a magnetic relaxation of a given nuclear spin value I,
there exist 2I relaxation times λ−1

m which amount to:

λ−1
m = [pm(pm + 1)W ]−1 with pm = 1, 2, . . . , 2I . (A.26)

Which relaxation rates out of this series contribute to a certain relaxation functions de-
pends on the specific transition (m)↔ (m− 1) on which the relaxation is observed.

For a nuclear spin I = 3/2 the transition probabilities are W−1/2↔−3/2

= W+3/2↔+1/2 = 3W and W+1/2↔−1/2 = 4W . The 2I relaxation times amount to λ−1/2 =
2W , λ1/2 = 6W and λ3/2 = 12W . Supposing that the system was in thermal equilibrium
before being exposed to an inversion recovery pulse sequence, where the 180◦ pulse was
short enough for the relaxation during the pulse to be negligible, the relaxtion of the
central resonance line (m = +1/2)↔ (m = −1/2) is described by:

Mz(t) =M0{1− f [0.9 exp(−12Wt) + 0.1 exp(−2Wt)]} , (A.27)

2 The condition hνzzη = ~ωzzη � ~γH0 is fulfilled for small quadrupole frequencies νzz as well as
for large quadrupole frequencies νzz as long as the external field H0 is aligned along the direction of
the principal axis of the EFG (η � 1) [70]. If the measurement conditions do not comply with the
mentioned restriction, the analysis is more complicated.

3 The spectral density can be described by a single value W as long as the inverse correlation time τ−1
c

of the fluctuating magnetic field h(t) is large compared to ωmn: ωmnτc � 1.
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while on the satellite transitions (m = ±3/2) ↔ (m = ±1/2) the recovery of the magneti-
zation follows:

Mz(t) =M0{1− f [0.4 exp(−12Wt) + 0.5 exp(−6Wt) + 0.1 exp(−2Wt)]} . (A.28)

The spin-lattice relaxation time T 1 is arbitrarily defined. It is common to use:

1

T1
= 2W , (A.29)

but also other definitions of T1 relative to W or some of the Wm↔m−1 are possible. Us-
ing the definition (A.29) and the equations (A.27) and (A.28) one obtains the relaxation
functions (2.54) and (2.55), which were used in the course of this work for NMR measure-
ments.

If there exist also relevant quadrupole contributions to the relaxation, additional
quadrupole transition probabilities W

quad,(1),(2)
m↔n will have to be considered, which are mul-

tiples of the spectral densities of the fluctuating components of the EFG defined by [71]:

J (1,2)(ω) =
(eQ)2

~2

∫ ∞

−∞
dt exp(iωmnt)[V+1,2, V−1,2] ' J (1,2)(0) =: W1,2 , (A.30)

where V±1 = Vxz±iVyz and V±2 =
1
2
(Vxx−Vyy)±iVxy [310]. W1 andW2 refer to quadrupole

transitions with ∆m = ±1 and ∆m = ±2, respectively. In this case, one has three defined
spin-lattice relaxation times T1, T

(1)
1 and T

(2)
1 related to W , W1 and W2. The relaxation

cannot be described by one specifically defined spin-lattice relaxation time T1 any more.
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A.3 Stretched Exponential Relaxation Function

Stretching exponents λ < 1 represent a phenomenological expression for the distribu-
tion of spin-lattice relaxation rates around a characteristic time T1. In Section 7.2
we used a stretched exponential function to describe the inversion recovery curves of
LaO0.9F0.1FeAs1−δ in the temperature range Tc > T > 14K:

Mz(t) =M0[1− f(0.9e−(6t/T1)λ + 0.1e−(t/T1)λ)] . (A.31)

However, there exists no generally accepted practice of the use of the stretching expo-
nent λ in multi-exponential relaxation functions of nuclear spins I > 1/2. In the following,
the use of a stretching exponent λ in the literature will therefore be recapitulated and the
choice of Eq. (A.31) will be explained.

For recoveries of the nuclear magnetization of a nuclear spin of I = 1/2 or a nuclear
spin of I = 3/2 with a non-existing or negligibly small quadrupole splitting, such that all
three resonances are excited simultaneously, the use of a stretching exponent λ is quite
common and straightforward [311–313]. The relaxation function reads:

Mz(t) =M0[1− fe−(t/T1)
λ

] (A.32)

and does not cause difficulties in the quantitative comparison and interpretation, since
the normal relaxation function is given by exactly the same equation with λ = 1.

For multi-exponential relaxation functions, which are needed for nuclear spins I > 1/2,
three trends could be found in literature:

1. Some references, all dealing with a nuclear spin of I > 7/2, refer to the very simple
stretched exponential function of the form of Eq. (A.32) [66, 314–317]. Most of them
fixed the stretching exponent to λ = 0.5. The choice of Eq. (A.32) is arbitrary since the
standard relaxation function of a nuclear spin of I = 7/2 is normally multi-exponential
with a single T1 [318]:

Mz(t) =M0[1− (Ae−28t/T1 + Be−15t/T1 + Ce−6t/T1 +De−t/T1)] . (A.33)

The switching between the use of the multi-exponential Eq. (A.33) and the stretched single
exponential formula Eq. (A.32) in certain temperature regions leads to unphysical steps
in the temperature dependence of T−1

1 , since Eq. (A.32) neglects the multi-exponential
nature of the relaxation. Thus the values of T1 derived from Eq. (A.32) are much too
short. The overall qualitative temperature dependence will however be the same.

2. Other authors tried to include the stretching exponent λ directly into the multi-
exponential relaxation functions for I = 5/2 and I = 7/2, respectively [319, 320], leading
to multiple exponents of the form (const. × t/T1)

λ, similar to the relaxation function
Eq. (A.31) which was used in Chapter 7.2.4 The denotation of λ is the same as in

4 Note that some authors of [320] presented seven years earlier a relaxation function with exponents
of the form [const. × (t/T1)

λ], where the numerical coefficients const. are not raised to the power of
λ [318]. This is however unphysical, since the choice of T1 is rather arbitrary (see discussion of the
calculation of the relaxation functions in Appendix A.2). Depending on the theoretical definitions,
it might be T1 = 3/(2W1) or T1 = 1/(2W1), where W1 is a specific magnetic relaxation rate of the
nuclear spin system, which also has to be defined [72]. Therefore the numerical coefficients have to be
included in the radix. The frequent use of the expression [(3t/T1)

λ] in the relaxation functions of NQR
experiments on I = 3/2 [29, 30, 49, 321–325] is another example of the use of stretching exponent λ
including numerical prefactors.



144 A Appendix

the former case. The advantage of this method is that the absolute values of T −1
1 are

comparable between fits with λ = 1 and with λ < 1 and thus no artificial steps will
appear in the temperature dependence of T−1

1 , when switching from λ = 1 to λ < 1.
3. A distribution of spin-lattice relaxation rates can even be modelled, leading to

relaxation functions of the type [72, 311, 320, 326]:

Mz(t) =

∫

P (ω)Mz,λ=1(ω, t)dω , (A.34)

where P (ω) is a chosen probability distribution function (Gaussian, rectangular,
Lorentzian,..) of nuclei relaxing at a rate ω and Mz,λ=1(ω, t) is the corresponding multi-
exponential relaxation function. P (ω) has to be normalized to unity:

∫ ∞

0

P (ω)dω = 1 . (A.35)

Using for instance a Gaussian distribution, the fitting function Eq. (A.34) is determined
by only two parameters: the center of the Gaussian distribution, which displays the most
probable relaxation rate T−1

1 , and the width σ of the Gaussian distribution. It has been
shown that the width of the Gaussian distribution σ is directly proportional to the stretch-
ing exponent λ of a stretched multi-exponential relaxation function Mz[(const. × t/T1)

λ]
as described in case 2. and that the absolute T−1

1 values derived from both fitting proce-
dures are very similar [320].

Figure A.4: Stretched exponential fitting for LaO0.9F0.1FeAs1−δ at T = 22K in H =
7.01 T. Black squares denote the data points. The dotted/dashed line represents fitting with
Eq. (A.32)/Eq. (A.31), respectively.
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T (K) T1 (ms) from (A.32) T1 (ms) from (A.31) ratio (A.31) /(A.32)

24 116.8 595.2 5.1

22 174.9 896.3 5.1

20 307.5 1617.9 5.3

18 530.4 2787.9 5.3

16 764.0 3934.2 5.1

Table A.1: T1 values for LaO0.9F0.1FeAs1−δ derived from the different stretched exponen-
tial fitting functions (A.32) and (A.31) in the temperature range Tc > T > 14K and their
corresponding ratio.

Just for comparison, the recovery curves were also fit with the simple single stretched
exponential function (A.32). Both fitting procedures (A.31) and (A.32) gave satisfactory
fits with coefficients of determination (R2) higher than 0.999. Figure A.4 shows the two
fitting functions for the data at T = 22K in H = 7.01T. The fits are nearly not distin-
guishable by eye. They yielded however very different T1 values, which are summarized
in table A.1 for the whole relevant temperature range.

For the fitting of the recovery curves of LaO0.9F0.1FeAs1−δ in the very small temperature
range Tc > T > 14K Eq. (A.31) corresponding to approach 2. was preferred to the other
two possibilities, since Eq. (A.32) (case 1.) would have yielded artificially small T1 values
and an approach as in case 3. would not have been of additional benefit, since it was the
T1 values which were from interest and not their concrete distribution function P (ω).

The values differ in a fixed factor of 5.2 from each other. The resulting temperature
dependence of T−1

1 is therefore unaffected by the choice of the fitting function. Only the
absolute values changed. This is summarized in Fig. A.5. The discussion in this Chapter
shows that one always have to be careful when comparing T1 values quantitatively with
the results of other groups or measurements, since the absolute values depend on the
underlying definition of the relaxation rate W1 and its relation to T1 [72].
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Figure A.5: Spin-lattice relaxation rate T−1
1 of LaO0.9F0.1FeAs1−δ in H = 7.01 T for differ-

ent stretched exponential fitting functions in the temperature range Tc > T > 14K and (for
comparison) at T = 100K with λ ≈ 1. Open squares denote the data derived from fitting with
(7.1) [(7.2)] for T > Tc [T ≤ 14K]. Filled squares are data fitted from Eq. (A.32) and dots from
Eq. (A.31). The qualitative temperature dependence is the same while the absolute values are
quite different (note the double logarithmic scale).
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A.4 Spin Diffusion

Among various possible mechanisms for the linear temperature dependence of T−1
1 at very

low temperature (T < 0.3Tc) in the superconducting state of
LaO0.9F0.1FeAs1−δ , the classical spin diffusion from vortex cores was listed in Section 7.2.
Spin diffusion itself is the diffusion of the nuclear magnetization among the nuclear spins
due to their dipole-dipole coupling [33]. In superconductors in the flux-melted phase, spin
diffusion may also occur via diffusion of the vortex cores [327]. If the spin-spin relaxation
time T2 is much shorter than the spin-lattice relaxation time T1, the spin-lattice relaxation
in the (normal conducting) vortex cores T−1

1,n and in the superconducting intervortex re-

gions T−1
1,sc average together to the observed T−1

1,obs in the superconducting state. The effect

of spin diffusion from vortex cores is only observable as long as T−1
1,n � T−1

1,sc [328]. This

condition is fullfilled at low temperature, since T−1
1,sc decreases fast in the superconducting

state because of the opening of the superconducting energy gap. For this reason, the effect
of spin diffusion on the spin-lattice relaxation rate can only be visible at low temperature.
In this regime, the measured T−1

1,obs is higher than the intrinsic spin-lattice relaxation T−1
1,sc

and therefore leads to a deviation from the intrinsic temperature dependence of T −1
1,sc. A

recent example is the conventional s++-multiband superconductor YNi2B2C [292]. Spin
diffusion may also arise in more or less clean s±-superconductors, but not in unconven-
tional superconductors with pronounced nodes or many impurity-induced states in the
gap.

Although the lack of field-dependence of (T1T )
−1 of LaO0.9F0.1FeAs1−δ revealed that

spin diffusion can not be the reason for T−1
1 ∝ T at low temperature, in the following the

analysis of the first NMR data in 7.01 T in terms of the spin diffusion mechanism will be
presented, since it was a prominent candidate awhile.

In the case of spin diffusion, the ratio of of (T1T )
−1 in the normal state and below

0.3Tc has to be compared with the upper critical field H∗
c2 scaled by the field H of the

measurements [328, 329]:

α =
(T1T )

−1
obs

(T1T )−1
n

=
H

Φ0
ξ2ab =

H

2πH∗
c2

. (A.36)

In this equation Φ0 denotes the flux quantum and ξab the coherence length. H
Φ0

ξ2ab is
the volume fraction of the vortex cores. Eq. (A.36) is only valid under the condition
Hc1 � H � Hc2, which is fullfilled for the discussed measurements.

Fig. A.6 shows the spin-lattice relaxation rate T−1
1 of LaO0.9F0.1FeAs1−δ versus tem-

perature. The blue line is a fit to a linear temperature dependence at high temperature.
The inset shows the data below 0.3 Tc and the corresponding linear fit (red line). The

comparison of both slopes yielded α =
(T1T )−1

obs

(T1T )−1
n
≈ 0.008. This gives a coherence length

of ξab ≈ 15.4 Å, which corresponds to an orbital upper critical field of H∗
c2(0) = 140T,

in reasonable agreement with H∗
c2(0) = (119 ± 13)T derived from the measured slopes

dHc2/dT |Tc
[219, 290].

The shaded yellow area in Fig. A.6 is the estimate of the slope of T−1
1 at high tem-

peratures, by taking the fitted slope of T−1
1 at low temperatures and H∗

c2(0) = (119 ±
13)T as it was estimated from resistivity data [219, 290]. The boundaries of this area are
given by the error of the upper critical field. Both ways of analyzing the data seem to
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Figure A.6: T−1
1 of LaO0.9F0.1FeAs1−δ versus temperature measured in H0 = 7.01 T. The

inset highlights the linear temperature dependence in the superconducting state. The blue (red)
line is a linear fit to the data in the normal (superconducting) state. The yellow shaded area
shows the expected slope of (T1T )

−1
n in the normal state for an upper critical field of H ∗

c2(0) =
(119 ± 13) T. The arrow denotes Tc(H0) = 26K.

work reasonably. But, as already stated above, subsequent measurements revealed that a
field dependence of (T1T )

−1 was missing. Fig. A.7 shows the field dependence of (T1T )
−1
obs

at T = 8K. Taking into consideration the field independence of (T1T )
−1
n (see fig. 7.7),

(T1T )
−1
obs should scale linearly with H [see Eq. (A.36)]. This is depicted by the black line

in Fig. A.7, using the formerly obtained value of H∗
c2(0) = 140T. The data do not follow

the required linear field dependence. Spin diffusion can therefore be ruled out.
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Figure A.7: Field dependence of (T1T )
−1
sc at T = 8 K of LaO0.9F0.1FeAs1−δ . The line is the

expected field dependence in the case of spin diffusion which gives: (T1T )
−1
sc =

(T1T )−1
n ξ2

ab

Φ0
H.
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[118] S. Lebègue, Phys. Rev. B 75, 035110 (2007).

[119] D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).

[120] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403
(2008).

[121] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett.
101, 057003 (2008).

[122] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and
H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

[123] D. Singh, Physica C: Superconductivity 469, 418 (2009), Superconductivity in
Iron-Pnictides.

[124] D. Lu, M. Yi, S.-K. Mo, J. Analytis, J.-H. Chu, A. Erickson, D. Singh,
Z. Hussain, T. Geballe, I. Fisher, and Z.-X. Shen, Physica C: Superconduc-
tivity 469, 452 (2009).

[125] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[126] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

[127] C. Day, Physics Today 62, 36 (2009).

[128] C. Chu, F. Chen, M. Gooch, A. Guloy, B. Lorenz, B. Lv, K. Sasmal,
Z. Tang, J. Tapp, and Y. Xue, Physica C: Superconductivity 469, 326 (2009).

[129] I. Morozov, A. Boltalin, O. Volkova, A. Vasiliev, O. Kataeva,
U. Stockert, M. Abdel-Hafiez, D. Bombor, A. Bachmann, L. Harnagea,
M. Fuchs, H.-J. Grafe, G. Behr, R. Klingeler, S. Borisenko, C. Hess,
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A. Dubroka, M. Rössle, K. W. Kim, C. Baines, and C. Bernhard, Nature
Mater. 8, 310 (2009).

[138] S. Sanna, R. De Renzi, G. Lamura, C. Ferdeghini, A. Palenzona,
M. Putti, M. Tropeano, and T. Shiroka, Phys. Rev. B 80, 052503 (2009).

[139] S. Sanna, R. De Renzi, T. Shiroka, G. Lamura, G. Prando, P. Carretta,
M. Putti, A. Martinelli, M. R. Cimberle, M. Tropeano, and A. Palen-

zona, Phys. Rev. B 82, 060508(R) (2010).

[140] D. H. Ryan, J. M. Cadogan, C. Ritter, F. Canepa, A. Palenzona, and
M. Putti, Phys. Rev. B 80, 220503 (2009).

[141] H. Maeter, H. Luetkens, Y. G. Pashkevich, A. Kwadrin, R. Khasanov,
A. Amato, A. A. Gusev, K. V. Lamonova, D. A. Chervinskii, R. Klin-
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Crystal Growth 314, 341 (2011).

[259] K. Ueda and T. Moriya, J. Phys. Soc. Jpn. 38, 32 (1975).

[260] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, volume 56 of
Springer Series in Solid-State Sciences, Springer, Berlin, 1985.

[261] S. Ohsugi, Y. Kitaoka, K. Ishida, and K. Asayama, J. Phys. Soc. Jpn. 60,
2351 (1991).

[262] B. J. Suh, P. C. Hammel, Y. Yoshinari, J. D. Thompson, J. L. Sarrao,
and Z. Fisk, Phys. Rev. Lett. 81, 2791 (1998).

[263] F. C. Chou, F. Borsa, J. H. Cho, D. C. Johnston, A. Lascialfari, D. R.

Torgeson, and J. Ziolo, Phys. Rev. Lett. 71, 2323 (1993).

[264] L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin,
L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 80, 140508 (2009).

[265] A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, J. Y. Howe, and D. Man-

drus, Phys. Rev. B 77, 174503 (2008).

[266] M. Bankay, M. Mali, J. Roos, and D. Brinkmann, Phys. Rev. B 50, 6416
(1994).

[267] N. Doiron-Leyraud, P. Auban-Senzier, S. René de Cotret, C. Bour-
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and L. Schultz, Evidence for Pauli-limiting behaviour at high fields and enhanced
upper critical fields near Tc in several disordered FeAs based Superconductors,
Physica C 470, S288 - S290 (2010).

8. D. Paar, H.-J. Grafe, G. Lang, F. Hammerath, K. Manthey, G. Behr, J. Werner, B.
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